
Unix Shell Scripts

Norman Matloff

July 30, 2008

Contents

1 Introduction 1

2 Invoking Shell Scripts 2

2.1 Direct Interpretation . 2

2.2 Indirect Interpretation . 2

3 Shell Variables 3

3.1 Setting Variables . 3

3.2 Referencing and Testing Shell Variables . 3

4 Command Arguments 4

5 Language Constructs 5

6 Escape Characters 7

7 Examples 8

7.1 A Shell Script For Deleting Files . 8

8 Further Information 9

1 Introduction

In previous discussions we have talked about many of the facilities of the C shell, such as command aliasing,
job control, etc. In addition, any collection of csh commands may be stored in a file, and csh can be invoked

1

to execute the commands in that file. Such a file is known as a shell script file. The language used in
that file is called shell script language. Like other programming languages it has variables and flow control
statements (e.g. if-then-else, while, for, goto).

In Unix there are several shells that can be used, the C shell (csh and its extension, the T C shell tcsh), the
Bourne Shell (sh and its extensions the Bourne Again Shell bash and the highly programmable Korn shell
ksh) being the more commonly used.

Note that you can run any shell simply by typing its name. For example, if I am now running csh and wish
to switch to ksh, I simply type ksh, and a Korn shell will start up for me. All my commands from that point
on will be read and processed by the Korn shell (though when I eventually want to log off, exiting the Korn
shell will still leave me in the C shell, so I will have to exit from it too).

2 Invoking Shell Scripts

There are two ways to invoke a shell script file.

2.1 Direct Interpretation

In direct interpretation, the command

csh filename [arg ...]

invokes the program csh to interpret the script contained in the file ‘filename’.

2.2 Indirect Interpretation

In indirect interpretation, we must insert as the first line of the file

#! /bin/csh

or

#! /bin/csh -f

(there are situations in which this is not necessary, but it won’t hurt to have it), and the file must be made
executable using chmod (see previous discussion). Then it can be invoked in the same way as any other
command, i.e., by typing the script file name on the command line.

The -f option says that we want fast startup, which it will achieve by not reading or executing the commands
in .cshrc Thus for example, we won’t have the ‘set’ values for shell variables or the aliases from that file,
but if we don’t need them, this will be much faster (if we need a few of them, we can simply add them to
the script file itself).

2

3 Shell Variables

Like other programming languages the csh language has variables. Some variables are used to control the
operation of the shell, such as $path and $history, which we discussed earlier. Other variables can be created
and used to control the operation of a shell script file.

3.1 Setting Variables

Values of shell variable are all character-based: A value is formally defined to be a list of zero or more
elements, and an element is formally defined to be a character string. In other words, a shell variable
consists of an array of strings.

For example,

set X

will set the variable $X to have an empty list as its value. The command

set V = abc

will set V to have the string ‘abc’ as its value. The command

set V = (123 def ghi)

will set V to a list of three elements, which are the strings ‘123’, ‘def’ and ‘ghi’.

The several elements of a list can be treated like array elements. Thus for V in the last example above, $V[2]
is the string ‘def’. We could change it, say to ‘abc’, by the command

set V[2] = abc

3.2 Referencing and Testing Shell Variables

The value of a shell variable can be referenced by placing a $ before the name of the variable. The command

echo $path

will output the value of the variable $path. Or you can access the variable by enclosing the variable name in
curly brace characters, and then prefixing it with a $. The command

echo ${path}

3

would have the same result as the last example. The second method is used when something is to be
appended to the contents of the variable. For example, consider the commands

set fname = prog1
rm ${fname}.c

These would delete the file ‘prog1.c’.

To see how many elements are in a variable’s list, we prefix with a # then a $. The command

echo $#V

above would print 3 to the screen, while

echo $#path

would reveal the number of directories in your search path.

The @ command can be used for computations. For example, if you have shell variables $X and $Y, you
can set a third variable $Z to their sum by

@Z = $X + $Y

4 Command Arguments

Most commands have arguments (parameters), and these are accessible via the shell variable $argv. The first
parameter will be $argv[1], the second $argv[2], and so on. You can also refer to them as $1, $2, etc. The
number of such arguments (analogous to argc in the C language) is $#argv.

For example, consider the following script file, say named Swap:

#! /bin/csh -f

cp $argv[1] tmpfile
cp $argv[2] $argv[1]
cp tmpfile $argv[2]

This would do what its name implies, i.e. swap two files. If, say, I have files x and y, and I type

Swap x y

then the new contents of x would be what used to be y, and the new contents of y would be what used to be
x.

4

5 Language Constructs

The shell script language, like other programming languages, has constructs for conditional execution (if-
then-else; while), iterative execution (for loop), a switch statement, and a goto statement:

1. if-then-else

The syntax of the if-then-else construct is

if (expr) simple-command

or

if (expr) then
commandlist-1

[else
commandlist-2]

endif

The expression expr will be evaluated and according to its value, the commandlist-1 or the commandlist-2
will be executed. The portion of the construct enclosed in ’[’ and ’]’ is optional.1

As an example, suppose we write a shell script which is supposed to have two parameters, and that the code
will set up two variables, ‘name1’ and ‘name2’ from those two parameters, i.e.

set name1 = $argv[1]
set name2 = $argv[2]

(which presumably it would make use of later on). But suppose we also wish to do error-checking, emitting
an error message if the user gives fewer than two, or more than two, parameters. We could use the following
code

if ($#argv <> 2) then
echo "you must give exactly two parameters"

else
set name1 = $argv[1]
set name2 = $argv[2]

endif

2. while

The syntax of while loop construct is
1This is standard notation in the software world, so remember it.

5

while (expr)
commandlist

end

The commandlist will be executed until the expr evaluates to false.

3. foreach

The syntax of foreach loop construct is

foreach var (worddlist)
commandlist

end

The commandlist is executed once for each word in the wordlist, and each time the variable var will contain
the value of that word. For example, the following script can search all immediate subdirectories of the
current directory for a given file (and then quit if it finds one):

#! /bin/csh -f
set f = $1
foreach d (*)

if (-e $d/$f) then
echo FOUND: $d/$f
exit(0)

endif
end
echo $f not found in subdirectories

For example, say I call this script FindImm, and my current directory consists of files s, t and u, with s and t
being subdirectories, and with t having a file x. Typing

FindImm x

would yield the message

FOUND: t/x

Here is how it works: In the line

foreach d (*)

the ‘*’ is a wild card, so it would expand to a list of all files in my current directory, i.e. the list (s t u). So,
the for-loop will first set d = s, then d = t and finally d = u.

In the line

6

if (-e $d/$f) then

the -e means existence; in other words, we are asking if the file $d/$f exists. If we type ‘FindImm x’ as in
the example above, $f would be x, and $d would start out as s, so we would be asking if the file s/x exists
(the answer would be no).

4. switch

The switch command provides a multiple branch similar to the switch statement in C. The general form of
switch is:

switch (str)
case string1:

commandlist1
breaksw

case string2:
commandlist2
breaksw

default
commandlist

endsw

The given string str is successively matched against the case patterns. Control flow is switched to where
the first match occurs. As in file name expansion, a case label may be a literal string, or contain variable
substitution, or contain wild-card character such as *,?, etc.

5. Goto

The goto command provides a way to branch unconditionally to a line identified by a label.

goto lab

where lab is a label on a line (by itself) somewhere in the script in the form

lab:

6 Escape Characters

If you download files from the Web, they may have been created under Windows, with names inconsistent
with Unix. Here are a couple of tips for handling this:

• The most common problem is file names with embedded spaces, say a file named before July. To
reference such a file from a C shell command line, simply precede each space by a backslash. For
instance, to remove the file before July, type

7

rm before\ July

• Suppose you have a file whose name begins with the character ‘-’. The problem here is that most Unix
commands use that character to signify options to the commands. For example,

ls -ul

is the command to list the files and their latest access times.

Say you have a file named -trendy, which you want to copy to xyz. You could not simply type

cp -trendy xyz

but could type

cp -- -trendy xyz

The double hyphen tells the shell that there will be no more options on this line.

7 Examples

7.1 A Shell Script For Deleting Files

This code, which we will call Del, will delete files like rm does, prompting for your confirmation for each
file to be deleted, including directory files (which the -i option of rm won’t do).

#! /bin/csh -f

foreach name ($argv)
if (-f $name) then

echo -n "delete the file ’${name}’ (y/n/q)?"
else

echo -n "delete the entire directory ’${name}’ (y/n/q)? "
endif
set ans = $<
switch ($ans)

case n:
continue

case q:
exit

case y:
rm -r $name
continue

endsw
end

(Before reading further, try this program yourself. Set up a test directory, with several files in it, at least one
of which is a subdirectory, with at least one file there. Then type ‘Del *’.)

8

The line

if (-f $name) then

tests to see if the file whose name is in $name is an ordinary file, as opposed to a directory file.

The -n option of echo tells the shell not to print the newline character, so that our answer, y/n/q, will be on
the same line.

In the line

set ans = $<

the symbol ‘$<’ means the input from the keyboard.

The keyword ‘continue’ means to go to the top of the enclosing loop.

The -r option of the rm command means that if an argument is a directory, then remove that directory, and
all the files (and subdirectories, etc.) within it.

8 Further Information

There are several books dealing with the C shell, but you should first read the man page for csh. You will
find all kinds of features not mentioned here.

9

	Introduction
	Invoking Shell Scripts
	Direct Interpretation
	Indirect Interpretation

	Shell Variables
	Setting Variables
	Referencing and Testing Shell Variables

	Command Arguments
	Language Constructs
	Escape Characters
	Examples
	A Shell Script For Deleting Files

	Further Information

