scipy.cluster.hierarchy.

centroid#

scipy.cluster.hierarchy.centroid(y)[source]#

Perform centroid/UPGMC linkage.

See linkage for more information on the input matrix, return structure, and algorithm.

The following are common calling conventions:

  1. Z = centroid(y)

    Performs centroid/UPGMC linkage on the condensed distance matrix y.

  2. Z = centroid(X)

    Performs centroid/UPGMC linkage on the observation matrix X using Euclidean distance as the distance metric.

Parameters:
yndarray

A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as an m by n array.

Returns:
Zndarray

A linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.

See also

linkage

for advanced creation of hierarchical clusterings.

scipy.spatial.distance.pdist

pairwise distance metrics

Notes

centroid has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variable SCIPY_ARRAY_API=1 and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.

Library

CPU

GPU

NumPy

n/a

CuPy

n/a

PyTorch

JAX

Dask

⚠️ merges chunks

n/a

See Support for the array API standard for more information.

Examples

>>> from scipy.cluster.hierarchy import centroid, fcluster
>>> from scipy.spatial.distance import pdist

First, we need a toy dataset to play with:

x x    x x
x        x

x        x
x x    x x
>>> X = [[0, 0], [0, 1], [1, 0],
...      [0, 4], [0, 3], [1, 4],
...      [4, 0], [3, 0], [4, 1],
...      [4, 4], [3, 4], [4, 3]]

Then, we get a condensed distance matrix from this dataset:

>>> y = pdist(X)

Finally, we can perform the clustering:

>>> Z = centroid(y)
>>> Z
array([[ 0.        ,  1.        ,  1.        ,  2.        ],
       [ 3.        ,  4.        ,  1.        ,  2.        ],
       [ 9.        , 10.        ,  1.        ,  2.        ],
       [ 6.        ,  7.        ,  1.        ,  2.        ],
       [ 2.        , 12.        ,  1.11803399,  3.        ],
       [ 5.        , 13.        ,  1.11803399,  3.        ],
       [ 8.        , 15.        ,  1.11803399,  3.        ],
       [11.        , 14.        ,  1.11803399,  3.        ],
       [18.        , 19.        ,  3.33333333,  6.        ],
       [16.        , 17.        ,  3.33333333,  6.        ],
       [20.        , 21.        ,  3.33333333, 12.        ]]) # may vary

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed explanation of its contents.

We can use scipy.cluster.hierarchy.fcluster to see to which cluster each initial point would belong given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array([ 7,  8,  9, 10, 11, 12,  1,  2,  3,  4,  5,  6], dtype=int32) # may vary
>>> fcluster(Z, 1.1, criterion='distance')
array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32) # may vary
>>> fcluster(Z, 2, criterion='distance')
array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32) # may vary
>>> fcluster(Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also, scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.