
Approximation through multicommodity flow

Abstract

Philip Klein4 Aj it Agrawalt R. Ravit Satish RaoJ

In this paper, we prove the first approximate max-flow min-
cut theorem for general multicommodity flow. We use it
to get approximation algorithms for minimum deletion of
clauses of a P-CNFE formula, via minimization, and other
problems. We also present approximation algorithms for
chordalization of a graph and for register sufficiency, based
on undirected and directed node separators .

1 Introduction

Max-flow min-cut theorems

The amount of flow one can push through a network from
a source to a sink clearly cannot exceed the capacity of a
cut separating them, and the celebrated max-flow min-cut
theorem of Ford and Fulkerson [3] and of Elias, Feinstein
and Shannon [2] showed that the capacity upper bound is
always tight. The value of the maximum flow is equal to
the capacity of the minimum cut. This result yielded as
a byproduct an algorithm for finding a minimum capacity
cut.

Ever since, researchers have sought to generalize the
ma-flow min-cut theorem to apply to cases of multicom-
modity flow, in which each of several commodities has its
own source and sink. In 1963, Hu showed [ll] that such a
theorem held for 2-commodity flow. In subsequent work,
various special cases have been identified for which the
max-flow min-cut theorem holds. As was demonstrated
fairly early, however, no such theorem can hold in general
for all multicommodity flow instances.

Leighton and Rao [16] recently defined the notion of an
approzimate max-flow min-cut theorem, by showing that
the capacity upper bound is within a logarithmic factor of
being tight for a special class of multicommodity flow in-
stances, called uniform multicommodity flow. In a uniform
flow problem for a graph G, a flow of value 1 is required
between every two nodes of G. Their approximate max-
flow min-cut theorem also yields an algorithm for finding
an approximately sparsest cut, which in turn is the basis

'Research supported by an NSF grant CCR-9012357
t Brown University, Providence, RI 02912.
Aiken Computation Laboratory, Harvard University, Cambridge,

MA. Research supported by ONR Grant # N0014-88-k-0243.

for a variety of approximation algorithms for NP-complete
graph problems.

Our approximate max-flow min-cut theorem for ar-
bitrary multicommodity flow

In this paper, we have gone a step further. We have proved
an approximate mu-flow min-cut theorem that holds for
all multicommodity flow problems. Our theorem is the first
for arbitrary multicommodity flow.

Theorem 1.1 Consider a multicommodity pow problem
where the sum of the demands is D and the sum of the
capacities is C (and demands and capacities are integral).
In order for there to ezist a feasible flow, it i s suficient
that every cut's capacity ezceeds its demand b y a factor of
O(logC1ogD).

Moreover, our theorem yields an algorithm for finding a
cut that is (approximately) minimum relative to the flow
that must cross it. By appropriate choices of source-sink
pairs, one can use this algorithm to find cuts that are (ap
proximately) minimum subject to certain criteria. Thus
we significantly enhance the generality of the cut-based ap-
proach to approximation algorithms.

New approximation algorithms: Deleting 2-
CNFr clauses to achieve satisfiability, and
applications
As a consequence, we obtain new approximation algo-
rithms. Our first result is the following theorem:

Theorem 1.2 Given a 2 - C N l k formula with weighted
clauses of the form (P Q) , one can in polynomial time
find an approzimately minimum-weight set of clawes whose
deletion yields a satisfiable formula.' The performance ra-
ti0 i8 O(iOg3 n) .

One of our aims in this research is to develop a framework
for approximate solution of graph problems of the form:
delete a minimum number of nodes (or edges) in order to

'A complementary result WM obtained by Johnson [12] in 1974; he
rhowed that the maximum ri5c of a rstirfiable aubret of claurer could
be approximated to within a small constant factor; indeed, for every
formula, d but at most a constant fraction of the clauses could be
satisfied simultaneously. In view of this latter result, it makes sense
to focus on how many clauses must be deleted to achieve satisfiability.

I26
CH2925-6/90/0000/0726$01 .OO 0 1990 I EEE

obtain a graph with a desired structural property. Our
algorithm for P-CNFE clause deletion provides a good basis
for such algorithms; one can sometimes state the structural
property in the language of 2-CNF= in such a way that
deleting clauses corresponds to deleting edges or nodes of
the graph.l

The edge-deletion graph bipartization problem-deleting
a minimum number of edges to get a bipartite graph-was
studied in [28]. Using our variant of 2-CNF= in which
each clause has the form (P E Q), it is easy to state that
a given graph is bipartite: For each node v , we have a
Boolean variable P,,. For each edge (v , w } , there is a clause
(P,, G i P w) of weight 1. The resulting formula is satisfiable
if and only if the graph is bipartite; any satisfying truth
assignment gives a bipartition (a two-coloring). Moreover,
the minimum number of clauses that must be deleted to
achieve satisfiability equals the number of edges that must
be deleted to achieve two-colorability.

Using similar techniques, we can solve some other prob-
lems. The via minimization problem (discussed in [l]) is
a problem arising in the design of a printed circuit board,
in which there are two layers and one wants to minimize
the number of holes made in the board in order to connect
wires on different layers. The geometry of the problem is
fixed; the goal is to choose an assignment of pieces of wire
to layers.

Theorem 1.3 One can in polynomial time approzimately
solve

e the edge-deletion graph bipartization problem,

e the via minimization problem.

The performance guarantee i s the same as that in Theorem
1.2.

New approximation algorithms: Approxi-
mately minimum chordalization
By adapting the method of [16], we can find approxi-
mately minimum node separators. This was also observed
by Leighton [17]. We use this technique to approximately
solve two NP-complete problems.

It has been a longstanding open problem to find an a p
proximately minimum chordalization of a graph, i.e. to
find a set of edges whose addition to the input graph
yields a chordal graph. This problem has several applica-
tions, of which the most well-known was discovered by Rose
[2 11 , Gaussian elimination for sparse linear systems. When
Gaussian elimination is used to solve a sparse symmetric
positive-definite linear system, the order in which variables
are eliminated has a significant bearing on the complexity

of the elimination process, both in terms of time and space.
The reason is that each successive variable elimination t y p
ically results in "fill-in", new non-zero entries in the matrix.
These new non-zero entries must be stored, and they enter
into subsequent calculations, so in order to minimize stor-
age and calculation time, it is desirable to minimize the
fill-in. Heuristics such as the "minimum-degree" heuristic
are commonly used in an attempt to do just that. Other
heuristics can be found in [14].

Rose reformulated the notion of fill-in as a graph prop
erty. He showed that if we interpret the matrix as a graph-
where a non-zero entry Ai, corresponds to the existence of
an edge (a , j}-then the filled-in matrix corresponds to a
chordal graph. He thereby characterized the matrices for
which no fill-in is required-they are the matrices whose
graphs are chordal. He also demonstrated that for any
given matrix, minimizing the fill-in corresponds to adding
a minimum number of edges to a graph to make it chordal.

The issue of minimizing fill-in is especially important in
the solution of linear programs. When an interior-point
method is used, the principal cost of an iteration is due
to solving a symmetric positive-definite system of linear
equations. The particular system changes at each itera-
tion, but the graph associated with the system remains
the same. Since it is the graph that determines what fill-in
is achievable and how, it is worth spending considerable
time finding a good chordalization of the graph in order to
save time and storage at each iteration of the linear pro-
gramming a lg~r i thm.~

Unfortunately, as Rose, Tarjan, and Lueker conjec-
tured [22] and Yannakakis proved [29], finding a minimum
chordalization is NP-complete. We are thus led to consider-
ing whether minimum chordalization can be approximated
by a polynomial-time algorithm. Until now, no such a p
proximation algorithms were known that provably achieved
better- t han- trivial performance.

Our new algorithm

In this paper, we report the discovery of such an approx-
imation algorithm, based on a method in [16], on a mod-
ification of this method due to Leighton, Makedon, and
Tragoudas [17], and on a separator theorem of Gilbert,
Rose, and Edenbrandt [9]. The algorithm performs partic-
ularly well on graphs with small degree. Fortunately, lin-
ear systems arising in practice (e.g. from the finite-element
method) often have graphs with small degree, because of
constraints in the physical system being modelled.

Theorem 1.4 For an input graph with n nodes and maz-
imum degree k , the algorithm outputs a chordal graph such

'Cf. Papadimitriou and Yannakakis's idea [20] of expressing NP-
complete problem with quantified sentences in order to study their
approximability.

5Note also that the cost of a floating-point operation, which de-
pends on the precision required, typically exceeds the cost of a step
in a chordalization algorithm.

727

that the number of edges is within a factor of O(&log4 n)
of optimal.

We can also prove a performance bound when the degree
is large, but the bound is weaker and somewhat compli-
cated, and we postpone it until Section 6.

It follows from Theorem 1.4 and the work of Rose that
one can find an order of elimination that approximately
minimises the storage required for symmetric positive-
definite matrices where each row and column has a small
number of non-zero entries.

Our algorithm is similar to the generalized nested dis-
section of Lipton, Rose, and Tarjan [18]. Their algorithm
works for any class of graphs with O(f(n)) separators, and
relies on a recursive decomposition baaed on such separa-
tors. The performance of the algorithm is determined by
the function f(n). Since we do not assume the input graph
has any special structure, we cannot rely on the existence of
small separators. Gilbert [6] has shown that for every graph
with degree at most k, there exists a nested dissection or-
der that yields fill a t most O(k log n) times optimum. We
build on his important result. Gilbert’s argument, how-
ever, is inherently non-constructive in that his choice of
separators depends crucially on the optimally filled graph.
Our analysis shows that it is sufficient to choose nearly
optimal node separators in order to achieve near-optimal
fill.

It turns out that our algorithm also approximately min-
imizes the total time required for the elimination process.
Here we use the customary measure of time for this process,
the number of multiplications.

Theorem 1.5 The algorithm outputs an elimination or-
dering such that the number of multiplications is within a
factor of O(k log6 n) of optimal.

Solving linear systems in parallel

Our algorithm is particularly well-suited to use in parallel
solution of linear systems. In a typical parallel implemen-
tation of Gaussian elimination, each iteration consists of
selecting some set of variables and eliminating them from
the system. In order to eliminate all the variables in the
set simultaneously, they must not interact-no two vari-
ables can occur in the same equation. The height of an
elimination ordering is the number of iterations necessary;
thus minimizing height corresponds to minimizing the par-
allel time required by this method. Moreover, the choice of
which variables to eliminate in each step determines fill-in;
it is desirable to keep the fill-in small, both to keep the
storage small and to keep the number of processors small.
Gilbert [7] has conjectured that there is an ordering that
simultaneously minimises height and approximately min-
imizes (t& within a constant factor) the number of edges
in the filled-in graph. Our analysis represents progress to-
wards proving this conjecture.

Theorem 1.6 For degree k graphs, there ezists an order-
ing that simultaneowly minimizes height to within a loga-
rithmic factor and minimizes number of edges t o within a
factor ofO(&log’ n).

Theorem 1.6 follows from the analysis we use to prove
Theorem 1.4 and from the analysis of Gilbert and Haf-
steinsson [8]. They propose essentially the same algorithm
aa us to find elimination orderings that simultaneously min-
imize three important measures: tree width, front size, and
elimination tree height. As part of their analysis, they
show that the elimination tree height is within a logarith-
mic factor of the size of a minimum balanced node separa-
tor. Their algorithm differs from ours only in that it finds
small node separators by first finding small edge separa-
tors. Consequently, their algorithm’s performance guaran-
tee for height depends linearly on the maximum degree of
the input graph. As they observe, use of an approximation
algorithm for node separators would yield a guarantee that
was independent of degree. Since we use such an approxi-
mation algorithm, we achieve such a guarantee.

Theorem 1.7 The algorithm outputs an elimination or-
dering whose height is within a factor of O(1og’ n) of opti-
mal.

Register sufficiency
Given a computation dag, how many registers are needed to
compute it? This NP-complete problem arises in compiler
optimization, in the task of register allocation.

Theorem 1.8 There is a polynomial time algorithm that
finds an order for computing an n-node dag such that the
number of registers required is within an O(1og’n) factor
of the optimal.

2 An approximate max-flow min-
cut theorem for general undi-
rected multicommodity flow

2.1 Preliminaries
In this section we prove an approximate max-flow min-
cut theorem that forms the basis for the 2-CNF= clause
deletion algorithm of Section 5 and the applications: bi-
partization and via minimization.

Consider a multicommodity flow problem, where we have
a network G with edge-capacities CAP(UW), and commodi-
ties { (s i , t i , d (i)) : i = 1,. . . , k}, where si and ti are, re-
spectively, the source and sink o€ commodity i , and d(i)
is the demand of commodity a. We assume all demands
and capacities are integral. A concurrent flow [26] of ca-
pacity utilization U is a multicommodity flow satisfying the

728

demands and subject to the edge-capacities U C A P (U W) .
The concurrent flow problem is to find a flow f with min-
imum capacity utilization. The concurrent flow problem
relates to feasibility of ordinary multicommodity flow: a
multicommodity flow is feasible if and only if the minimum
capacity utilization is at most 1.

It is useful to think of each pair s;, ti of commodity end-
points as a demand edge s;& in the graph G, with a weight
DEM(sit;) equal to the demand associated with the com-
modity. Thus G has two kinds of edges, demand edges and
ordinary capacity edges.

Each subset V of the node set of G defines a cut, namely
the set r (V) of edges with exactly one endpoint in V. For
a subset E of the edge set of G, let C A P (E) denote the sum
of capacities of capacity edges in E , and let D E M (E) denote
the sum of weights of demand edges in E .

The analogue of a minimum cut is a cut r (A) that min-
imizes the ratio of capacity to demand. That is, define the
minimum cut ratio S as follows:

It is easy to see that the value of the capacity utilization
is at least 1/S. In other words, if the minimum cut ratio
is less than one, then the multicommodity flow problem is
infeasible.

Let f be any length function assigning lengths to the
capacity edges of the graph G, and let distc(v,w) be the
resulting shortest path distance between v and w using ca-
pacity edges. The linear programming dual to the problem
of minimizing the capacity utilization U is maximizing the

demand edge s t

subject to the constraint

c CAP(vw)f(vw) = 1 (3)
capacity edge vu)

In particular, the value of (2) is always at most the value
of the capacity utilization U, and, when f maximizes (2)
and f minimizes U , then the sum (2) equals U. That is, at
optimality, we have

C d i d f (s ; , t i) d (i) = U 2 1/s
i

(4)

Our main result in this section is to show that the leftmost
expression is not much more than the rightmost expression.

Theorem 2.1 There w a polynomial-time algorithm to
find a particular node subset A such that

where C w the sum of a21 capacities and D is the sum of
all demands.

Corollary 2.1
(Approximate Max-flow Min-cut Theorem)
We have

c. a < l / u 5 s
O(logC1ogD) -

In particular, for a multicommodity flow to be feasible, it
w necessary that the min cut ratio S be at least 1, and it
b suficient that it be at least O(1og C log D).

Corollary 2.2
(Approximation Algorithm for Min Cut)
The cut r (A) found by the algorithm of Theorem 2.1 ap-
pmzimately minimues the ratio

to within a factor of O(logC1og D).

The following theorem is useful in applications where
either the capacities or demands are exponentially large.

Theorem 2.2 If either C or D is polynomial in n, the
number of nodes of GI then the performance guarantee can
be improved to be O(log2 n).

2.2 The proof of Theorem 2.1

Our proof of the theorem follows the lines of Leighton and
b o ' s proof for their result concerning the uniform demand
case (the case where there is a demand of 1 between every
pair of nodes).

First solve the dual of the concurrent flow problem, ob-
taining an optimal length function f satisfying the con-
straint (3). Next, assume (for now) that we know the value
of S. We now give an algorithm to assign a path P (s ; , t ;)
to each commodity i such that

E length(P(s;, t i)) D E M (S ; t ;)
a

= o((l /s) logclogD) (5)

To initialize, let DO equal the sum D of all demands, and
let t = 0 .

Each stage t consists of the following steps. Decompose
the graph into node-disjoint trees so that each tree has
height O((l/SDt)logC). (This step is described in more
detail later.) For each commodity i whose endpoints lie in
a common tree, assign to the commodity the path in that
tree, and discard the commodity. Let Dt+l be the sum of
the demands of remaining commodities, i.e. those whose
endpoints are in different trees. Finally, increment t , and

In each stage t , the length of every path assigned is
O((l/SDt) log C), and the sum of demands of commodities

loop.

729

p\

3".
Figure 1: If one of the endpoints of edge vw is within
distance d-&(vw) of r , then all .ft(uw) of the edge's tokens
are within distance d. If neither endpoint is within distance
d, then none of the edge's tokens is within distance d. If
one endpoint is at a distance d - x of r , and x 5 Lt(vw),
then x of the edge's tokens are within distance d.

that were assigned paths is Dt-Dt+l, so the total contribu-
tion of stage t to the left-hand side of (5) is O((l/S) log C)).
It remains to describe a procedure for decomposing G
into trees of small height such that Dt+1 5 Dt/2, for
then the number of stages is a t most logD, and the to-
tal contribution of all stages to the left-hand side of (5) is
O((l/S) log Clog 0).

Decomposition into trees: It is convenient to discretize
or tokenize the distance. Each token of distance will cor-
respond to distance 1/C in the original units. That is,
define

l* (vw) := [Cl(vw)l (6)

for each edge vw. Notice that since C~(VW)CAP(UW) 5 1
and that rounding up adds only one extra token for each
edge, we have that the total token weight is

(7)

Measured in tokens, we must decompose the graph into
trees of token height O((l/SDt)Clog C).

Next, repeat the following step, forming a tree T (as
described below), and then removing the nodes of the tree
from the graph, as well as all incident capacity edges and
demand edges, until the graph no longer contains a source
or sink.

Forming a tree T: Start at any node r , and compute
the shortest-path tree consisting of all nodes reachable
from r . If every node in this tree has distance at most
r(9Cln2C)/SDtl + 1, then let T be this tree. Otherwise,
we must select a distance d ̂ 5 [(9Cln2C)/SDt1 + 1 at
which to truncate the tree.

There is a natural notion of how much of an edge's tokens
lies within a given distance d of the root r , as illustrated

in Figure 1. Denote this value by amount(vw,d). We de-
termine the total weight of the subgraph within distance d
of r , defined BB follows.

weight(d) = amount(vw, d) CAP(UW)
edge vw

We use binary search on the range ff distances d =
1,2,3 ... [(9Cln2C)/SDt] + 1, to find a d such that

weight(d^+ 1) 5 (1 + -)weight(d^) SDt
8C

The binary search to find such a d ̂ proceeds as follows.
First, we set dl to 1 and 4 to r(9Cln2C)/SDt] +l. Notice,
that weight(d1) is at least (1 + SDt/8C)d8-' and hence at
least 1 since every edge has capacity one. Also notice that
weight(4) is strictly less than (1 + SDt/8C)d*-1 since

(1 + SDt/8C)d7-' 2 (1 + SDt/8C)(gC1"2C)'SD' 2 2C,

and 2C is the total weight in the whole graph by equation
7. Thus, there must be a level between dl and 4 where
the weight does not expand by (1 + SDt/8C). Now, we
consider the level d' = [(dl + 4)/21. If weight(d') is at
least (1 + SDt/8C)d'-' then set dl = d', otherwise set
4 = d'. Notice that a level that does not expand still
exists between dl and 4 and the number of levels between
dl and 4 has been halved. Thus, after O(1ogC) iterations
dl - 4 becomes a constant so d ̂ can easily be found. (We
use this binary search in the algorithm so that the running
time is polynomial in log C and n, i.e., the size of the input

Once d ̂ has been chosen, let T be the porti_on of the
shortest-path tree spanning nodes of $stance 5 d from the
root, and define weight(T) = weight(d). Let ET denote the
set of edges currently incident to T. Note that

CAP(&T) 5 weight(d^+ 1) - weight(2)

graph.)

SDt
8C

5 -weight(T) (9)

Finally we delete the nodes of T and all incident edges, and
repeat, constructing another tree.

What the tree decomposition achieves: Now s u p
pose that all sources and sinks have been deleted. We've
assigned short paths to every commodity whose source
and sink lay in the same tree. Let Dl+l denote the sum
of demands of remaining commodities. We prove that
Dt+l 5 Dt/2. Let DT denote the sum of demands of com-
modities a with source si in T and sink ti outside T. The
trees partition Dt+l. Let r(T) denote the boundary of T,
i.e. the set of edges with exactly one endpoint in T. We
have the following

T T

where the inequality follows from the definition of S. Since
each edge belongs to the boundary of at most two trees
and belongs to at least one ET, we have

C A P (r (T)) 5 2 CAP(&).
~

T T

Using (9), we infer

2SDi
2 CAP(&T) < weight(T)

T T

In constructing the tree decomposition, once we count an
edge towards the weight of the tree, we delete it. Hence
ET weight(T) is no more than the total weight in the whole
graph, which was shown to be 2C in (7). Putting these
inequalities together, we obtain

2.3 Turning the proof into an algorithm
In theorem 2.1, we stated that the algorithm would find
a set
A such that xi dist(si , t i)d(i) = O(1og C log D) w.
In fact, we only proved that ~ , d i s t ~ (s i , t i) D E M (s i t i) =
O(1og C log D) / S . Moreover, we assumed that the value of
S was exactly known in advance.

We remedy this by making two observations. First, note
that the proof still holds when S is replaced by the "ob-
served value of S," which we denote by Sob.. The value
of Sobs is defined to be the minimum value of mj
over all trees T actually appearing in some decomposi-
tion during the algorithm. Thus if we knew Sob. be-
fore running the algorithm, we could substitute it for S,
and proceed as before. We would end up showing that

ting A be the nodes spanned by the tree that determined
the value of Sob., we obtain the bound in Theorem 2.1.

Of course, we can't expect to know the value of Sob.

before running the algorithm. However, if the value sub-
stituted for S in (8) is no more than (3/2)S0b,, then we are
still guaranteed that the remaining demand diminishes by
a factor of 3/4 in each stage. We use this observation as
follows. Start with some estimate of S, derived from look-
ing at an arbitrary cut in the graph. Run the algorithm,
and compare the resulting value of Sob. with the estimate.
If the estimate is no bigger than (3/2)S0b,, then we are
done, otherwise, reduce the estimate by a factor of 3/2,
and repeat.

ci diStc(si,ti)DEM(Si&) = ~(logclOgD)/sob,. By let-

3 Balanced separators
In this section, we discuss the application of concurrent-
flow based methods to finding balanced separators. In Sub-
section 3.1, we show how to apply our Theorem 2.1. These

results are used in Section 5. In Section 4, we present the
application of the method of [16] to finding node separators
in undirected graphs and in directed acyclic graphs. These
results are used in Sections 6 and 7.

3.1 Cutting all the demand

The cuts that are found by the algorithm of the previous
section tend to achieve a low cut ratio. However, such a cut
may only separate a small fraction of the total demand in
the flow problem. In this section, we present some results
about finding a small cut that cuts a large fraction of the
total demand.

In particular, we consider a cut that cuts half the demand
pairs.

Consider a multicommodity flow problem specified by
G = (V, E) . We denote the capacity edges of G by Ec and
denote the demand edges by E o . Now we define Eopt to be
a minimum capacity edge set such that if (HI, ..., IT[} are
the connected components of Gopt = (V, E c - Eopt) then

d (i) 2 D/2.
a ; € H ; , t ; € H h , j # k

That is, the edge set Eopt is the smallest cut that sepa-

We can prove the following result about approximating
rates half the demand in G.

such a cut.

Theorem 3.1 There M a polynomial time algorithm, A ,
that will find a set of edges EA such that if (HI, ..., H I) }
are the connected components of G' = (V, E c - E A) then

and

C A P (E A) I O(logC1og D)cAP(Eopt).

Proof Sketch: We simply find an approximate sparsest
cut using the algorithm of the previous section, remove
the edges in the cut from the graph and repeat until D/3
demand sources and sinks are separated. We can show that
the union of the cuts have small cost by using the fact that
they have small sparsest cut cost. 0

Thus we have an algorithm that finds a small cut that
separates many of the demands. In fact, using the above
theorem, we can find a small cut that separates all de-
mands. First, we say an edge set, EA, completely cuts the
demand in a flow problem if there is no commodity whose
source and sink are in the same connected component of
G' = (V, Ec - EA) . Now we state the following lemma.

73 1

Lemma 3.1 There is a polynomial time algorithm, A, that
given a pow problem on G will find a set of edges EA that
completely cuts the demand in G such that

CAP(EA) = O(logClog2 D)CAP(E,~~) ,

where Eopt is the smallest capacity edge set that completely
cuts G .

4 Separators in Graphs
As a consequence of the approximate max-flow min-cut
theorem of Leighton-Rao, one can find weighted edge- and
node-separators in a graph. We list their results below.

Lemma 4.1 ([16, 171) For a graph (directed or undi-
rected), there ezists a polynomial algorithm to find a $-
balanced edge-separator (node-separator) with cost within
O(1og n) factor of the optimal $balanced edge-separator
(node-separator).

We observe that one can find directed node separators in
a DAG. That is, we find a partition, (L, X, R), of the nodes
of G such that there are no edges of G between L and R,
and all edges between X and R are directed from X to R.
The node cut ratio of a directed node separator, (L, X , R),
is defined to be 1x1 / min(lL U XI, IR U XI). The sparsest
node cut ratio of a graph is the smallest node cut ratio of
any directed node separator in the graph.

Lemma 4.2 Given a DAG G , we can find a directed node
separator of G whose node cut ratio is within a factor of
O(1ogn) of the sparsest node cut ratio.

Proof: We construct an auxiliary directed graph G' from
G with the property that we can recover a node-separator
of G from an edge-separator of GI. We augment the DAG
G to G' as follows. For each node v in G, we add two
nodes v; and v , in G' with a directed edge from vi to v ,
of infinite cost and a reverse edge from v , to vi of unit
cost. We call such reverse edges the pseudo-edges. For
each original edge (u ,o) in G, directed edges (u, ,v;) and
(v i , U,) of infinite cost are added.

The algorithm in [16] finds a directed edge-separator in
G' where the ratio of the capacity of the separator edges
divided by the number of nodes on the smaller side is within
a factor of O(1ogn) of the minimum value. We call this
minimum value the sparsest edge cut ratio.

Any optimal or near-optimal edge separator for G' will
only contain pseudo-edges, hence we can recover a node
separator in G from these pseudo-edges. Since any node
separator with a node cut ratio of n, in G can be mapped
to an edge separator in G' with an edge cut ratio of at
most n,, the sparsest edge cut ratio in G' is no more than
the sparsest node cut ratio in G. Moreover, for any edge

separator in G' with an edge cut ratio of e,, the node sep-
arator recovered from it has a node cut ratio of no more
than 2e, in G. Hence from an approximate edge separator
algorithm for G' with a performance guarantee of clogn,
one can find an approximate directed node separator in G
with a performance guarantee of 2clogn. 0

We use the above lemmas for the approximation algo-
rithms presented hereafter.

5 Approximately minimizing un-
satisfied clauses in a 2-CNF=
formula

Given a 2-CNF_ formula F with weighted clauses of the
form (p E q), finding a minimum weighted set of clauses
whose deletion yields a satisfiable formula is known to be
NP-complete [4]. We use a well-known construction to re-
formulate this problem as a problem of deleting edges in
a graph. We then show how to approximate this edge-
deletion problem by defining a flow function in this graph
and using the approximate max-flow min-cut theorem for
general concurrent flow in Section 4.

Defn: We define a weighted P-CNFG formula to be a
conjunction of weighted clauses of the type (p E q) where
p and q are literals, and E refers to logical equivalence.

5.1 Modeling the problem
Given a weighted 2-CNF= formula F, we define the corre-
sponding boolean graph G(F) as follows. Let the node-set
V(G) be the set of all the literals that occur in F. For every
clause (p G q) in F, include the undirected edge (p , q) in
G(F). This edge is assigned a weight equal to the weight of
the corresponding clause (p E q) in F. We shall henceforth
use the terms "literal" and "vertex" interchangeably.

We can easily prove the following lemma [13].

Lemma 5.1 A weighted 2 - C N E . formula F is satisfiable
iff no connected component of the graph G(F) constructed
as above contains both a literal and its negation.

By virtue of Lemma 5.1, we have the following corollary.

Corollary 5.1 Given a weighted 2 - C N E formula F,
finding a minimum weight set of clauses whose deletion
yields a satisfiable formula is equivalent to finding a mini-
mum weight set of edges in the corresponding boolean graph
G(F) such that its deletion from G(F) leaves the graph with
no connected component containing both a literal and its
negation.

5.2 The algorithm
Define a general concurrent flow problem on the boolean
graph G(F) by assigning one unit of a commodity to flow

732

from each literal zi to -xi occuring in the same connected
component. From Lemma 3.1, we can find a set of edges
in G(F) whose cost is at most within a factor of O(10g3 n)
of the minimum cost separator that completely cute all the
demands in G(F). From Corollary 5.1, such a separator
corresponds to the minimum weight set of clauses that we
are looking for and we have the following theorem.

Theorem 5.1 There ezists an algorithm that finds an ap-
prozimately minimum-weight set of clawes to delete from
a given weighted 2 -CNlk formula to leave it satisfiable.
The performance ratio is O(10g3 n).

6 Minimum chordalizat ion
In this section we give an approximation algorithm for min-
imum chordal graph completion of an input graph. For
bounded degree graphs, the algorithm guarantees a poly-
log factor approximation to the number of edges in the
optimal chordal graph. For unbounded degree graphs, the
bound is weaker. This is the first known polynomial-time
algorithm with a non-trivial performance guarantee.
As Rose has shown, and as discussed in the introduc-

tion, chordalization arises in solving a symmetric positive-
definite system of linear equations. The order of elimina-
tion affects the storage, sequential time, and parallel time
required to solve the system. Our algorithm outputs an
ordering that approximately minimizes all these quantities
simultaneously over all possible elimination orderings.

6.1 The Algorithm: Near-Optimal Gener-
alized Nested Dissection

Given a graph G(V, E), we define an elimination ordering
a of its vertices. The graph G is then augmented to be the
elimination graph G' for the elimination ordering Q [22].
G' is the output chordal graph produced by the algorithm.
The elimination graph is obtained as follows. At step i , the
graph Gi-1 is augmented to G, such that all the higher
numbered neighbors in Gi-1 of the node numbered i (in
the ordering a) form a clique. Go is set to the original
graph G. The elimination graph corresponds to Givl.

Elimination Ordering Algorithm: Given a graph
G(V, E) with n nodes to be numbered in the range [a, b] ,
where b = a + n - 1, we proceed as follows. If n = 1, we
number the node. Else, we find a balanced node separator
X for G using Lemma 4.1. Let 1x1 = s. We number the
vertices in the separator from b - 1x1 + 1 to b in any or-
der. Let there be k connected subgraphs AI,. . . , A k of sizes
nl, . . . , n k left on removing X from G. We recursively num-
ber the graph Ai in the range [a+$: nj, 0-1+~~,, nj]
for each i E [l, k].

Separator Tree Representation: The elimination or-
dering of G can be related to the separator tree of the

graph. The vertices in the separator X form the root of
the tree with subtrees formed recursively for each of the
pieces A I , . . . , Ah. The elimination numbering of the ver-
tices is consistent with a postorder traversal of the tree
nodes, with vertices in a tree node numbered in any order.

Defn: We shall refer to a node in the separator tree
T as a separator, and to a node in the original graph G
as a vertez. The vertices forming a separator are said to
belong to the separator. Each vertex belongs to exactly one
Separator and we refer to this node as the separator node of
the vertex. The depth of a separator is the distance of the
separator node from the root of the tree. The depth of a
vertex is the same as the depth of the separator it belongs
to. The subtree of a separator is the subtree rooted at the
separator in the separator tree. We say that a vertex U is
an ancestor of v if U'S separator node is either the same or
is an ancestor of U'S separator node in the separator tree.

We now state without proof a few lemmas that will be
useful in subsequent arguments. All references to elimina-
tion orders or separator trees in Section 6 refer to the ones
presented above.

Fact 6.1 Every node induced subgraph of a chordal graph
i s also chordal.

Theorem 6.1 ([9]) Every chordal graph has a clique sep-
arator, and hence has a node separator of size at most
O (a) , where E is the number of edges in the graph.

Lemma 6.1 For any vertez v , an edge (U, U) is in G' only
if for some edge (z , v) E G, v is an ancestor of z, and U
belongs t o a separator node on the path from U'S separator
node to z 's separator node. Note that this includes the case
in which U and v belong to the same separator.

Lemma 6.2 The height of the separator tree is O(1ogn).

6.2 Bounds on the number of edges
In this section we analyze the total number of edges in the
resulting graph G' for the cases of bounded and unbounded
degree graphs.

Defn: We define the weight of a separator (w) to be
the number of vertices belonging to the separator, and the
weight of a tree (W) to be the sum of the weights of each of
the separators in the tree. Edges with both their endpoints
in vertices at the same depth and different depths will re-
spectively be called flat edges and jump edges. The cost
of a vertez (c) is the number of edges from the vertex to
vertices at greater depth. Thus the total number of jump
edges in G' is the sum of the costs of the vertices. The
cost of a separator is the sum of the costs of the vertices
belonging to it.

Theorem 6.2 The total number of flat edges in G' at a
given depth is 0 (E,tlog'n). Hence the total number of
flat edges in G' is 0 (Ewtlog3n).

133

I 1

Figure 2: Counting the jumpedges in G*- Bounded degree
case.

Proof Sketch: By Lemma 6.1, the number of flat edges
at a given depth are no more than those required to turn
each separator into a clique. Let the subgraph induced by
the subtree rooted at a separator X in the optimal chordal
graph have EOpt,X edges. By Fact 6.1, Theorem 6.1, and
Lemma 4.1, 1x1 is , / G O (l o g n) . Hence the number of
flat edges within X is O(EVt,xlog’n). Summing over node
disjoint chordal graphs induced by the subtrees of each of
the separators at the given depth, the claim follows. 0

Theorem 6.3 The total number of edges in G‘ is
0 (&E,tlog4n), where k is the mazimum degree of the
graph.

Proof: Theorem 6.2 shows that the total number of flat
edges is within the bound. Hence it suffices to show that
the total number of jump edges is 0 (&E,Jog4n).

For a vertex U, consider its neighbors in G at greater
depth. Consider the tree formed by the union of the paths
from U’S separator to separators containing such neighbors.
Call it the associated tree of U. Since G has bounded degree
k, this tree can have at most k separator leaves, and hence
at most k separators at any depth. By Lemma 6.1, the
cost of the vertex U is the weight of U’S associated subtree.

Let us estimate the sum of the costs of all vertices at
a given level 11 in the tree (see Figure 2). Suppose that
level consists of separators X1 , .. . , X,. For i = 1,. . . , p ,
consider the highest-cost vertex of X i , and let be the
associated subtree for this vertex. For each level 1, let
Wt(Tj) be the weight of Ti due to vertices at level 1. Then
the sum of the costs of vertices at level 11 is no more than
the sum, over all levels 1 greater than 11, of the value

The weight of Ti at level 1 is the sum of the sizes of at
most IC separators Xi,l,l1.. ., Xj,t,k. Substituting into (lo) ,

we get

where the inequality follows from the Cauchy-Schwartz in-
eauality.

Since the Xi’s are all disjoint, it follows from the proof
of Theorem 6.2 that = O(,/&logn). Sim-

ilarly, Jc:=, IXi,c,jI’ = O(&logn). Thus

the right-hand side of (11) is 0 &Eoptlog2n). Sum-
ming over all levels 11 and 1, we conclude that there are
0 (&E,tlog4n) jumpedges. 0

For unbounded degree graphs, we state the following re-
sult without proof.

(

Theorem 6.4 For an unbounded degree graph G with n
vertices and m edges, the total number of edges in G‘ is

Eopt @og3’’n)) .
It should be noted that the above value is no more than

O(mfl0g3.’n) factor of the optimal.

6.3 Bounds on the number of multiplica-
tions

For solving a symmetric sparse system of linear equations
without pivoting, we view the matrix as the adjacency ma-
trix of a graph G. We define the elimination numbering of
the nodes in G aa in Section 6.1. We show that for a matrix
with the number of non-zero entries in any row (or column)
not exceeding IC, the number of multiplications performed
using this elimination order is within a 0 (klog‘n) multi-
plicative factor of that required by the optimal elimination
ordering.

Before we prove the main result of this section, we give
some lemmas that will be used later. A system of linear
equations in n variables given by Ax = b is considered
dense if the matrix A has O(n’) non-zero entries.

Fact 6.2 The number of multiplications required t o solve
a dense system of equations in m variables is R (m3).

The following lemma is a consequence of fact 6.2.

Lemma 6.3 For any chordal graph G’, if m is the size
of its clique separator, then Sa (m3) i s a lower bound on
the number of multiplications required for any elimination
ordering.

Let Mop* be the optimal multiplication count for any
Then we have the following elimination ordering of G.

results.

734

Theorem 6.5 Let a given level in the separator tree have
p separators with weights wl . . . w p . Then R (E:=, 6)
is a lower bound on Mop*.

Proof Sketch: The vertices in the subtrees of different
separators at a level are disjoint. Hence the subgraphs
induced by them in the optimal chordal graph are node
disjoint. Each induced subgraph is also chordal and hence
Lemma 6.3 provides a lower bound on the optimal multipli-
cation count for each. By summing over all the subgraphs,
we obtain the theorem. 0

For any vertex with elimination number i , the vertex
along with all its neighbors with number higher than i form
a clique in G'. We shall refer to this clique as the associ-
ated clique for the vertex, and denote it by C,. The num-
ber of multiplications (Mu) required to eliminate a variable
U , is the total number of edges in the clique C,. Let M
be the number of multiplications required for the elimi-
nation ordering defined by the algorithm. M is given by
E, EcEC, 1, which is the same as E, 1. We can
hence sum over the multiplication contribution for each
edge. The multiplication contribution (henceforth referred
to simply as contribution) for an edge (U , U) is the total
number of vertices with depth no less than that of U or U ,

containing (U , U) in its associated clique.

Theorem 6.6 The elimination ordering defined above
yields a multiplication count of 0 (kMoptlog6n).

Proof Sketch: We count the contributions from edges
that go between any two levels of the tree. To count this
contribution, we count the contribution due to all vertices
at a depth no less than those of the two levels. Using
techniques similar to those for proving Theorem 6.3 we
can show that this contribution is no more than k times
the sum of the cubes of the separator sizes at the three
levels under consideration, which using Theorem 6.5 is
0 (3kM,tlog3n). The claim then follows. 0

6.4 Bounds on the height of the elimina-
tion ordering

Minimizing the height of the elimination ordering mini-
mizes the time required to solve the system of equations
in parallel. Let &in be the minimum elimination height
for any elimination ordering of a given set of linear equa-
tions. We show that the elimination ordering proposed also
minimizes height to within a polylog factor of &in.

Fact 6.3 To solve a dense system of equations in m vari-
ables, &in is R (m).

Lemma 6.4 For any chordal graph G', if m is the size of
its clique separator, then &in for G' i s R (m).

Theorem 6.7 If wmaE is the mazimum weight of a separa-
tor in the separator tree of G , then &in f o r G i s n (e).
Proof: Let X be the separator in the separator tree with
the maximum weight, and let V, be the set of vertices in
the subtree of the separator X. If GLt corresponds to
the optimal chordal graph with minimum height over all
elimination orders, then let the graph induced by q in
GQt be Gj. Gj has a clique separator of size R (z) by
Theorem 6.1, and this is a lower bound on &in by Lemma
6.4. 0

Theorem 6.8 The elimination ordering defined in Section
6.3 yields a height of 0 (&j,log'n).

Proof: Consider all the separators at each level. One vari-
able from each of the separators can be eliminated simul-
taneously as there are no direct edges between the vari-
ables. Hence the height for eliminating all the variables at
a level is no more than w,,,. Since the number of levels
is 0 (log n), the claim follows. 0

It should be mentioned that a parallel prefix operation
may be required at each elimination step to update the
coefficients in the matrix as a result of eliminating multiple
variables simultaneously.

7 Approximating Register Suffi-
ciency

In this section, we present a polylogarithmic approxima-
tion to the register suficiency problem. Given a DAG G
(where IG(= n) with its vertices numbered by a topologi-
cal ordering r , the register cost at step i is defined as the
number of nodes in the set (1, . . . , i } that are tails of edges
that go from the set (1,. . . , i - 1) to the set { i , . . . , n}. The
mazimum register cost of this ordering, denoted by MRC,,
is the maximumof the register costs over all steps i . We
shall refer to the minimum value of the maximum register
cost achievable by any topological ordering for G as the
optimum register cost M for G. The register sufficiency
problem is to find an ordering r such that MRC, = M.
This problem is shown to be NP-complete in [23]. We give
a polynomial time algorithm that finds a topological order-
ing of G with its maximum register cost within a polylog-
arithmic factor of M.

We now describe the algorithm for the register sufficiency
problem.

We find an approximate sparsest directed node s e p
arator (L , X , R) in G as outlined in Lemma 4.2. If
1x1 / min(ILI , IRI) is greater than 1/ logn then we output
an arbitrary topological ordering for G. Otherwise, we par-
tition G into L U X and R. We recursively order each of
these subgraphs, and output the topological ordering of

735

G consisting of the recursively produced order of L U X
followed by the recursively produced order of R.

We now argue that this algorithm produces the desired
result. First, it is easy to see that the following fact holds.

Fact 7.1 The ordering r defined by the above algorithm is
a topological ordering.

Now we proceed by showing that r is a good topological
ordering.

Theorem 7.1 Given 4n n-node DAG G , one can in poly-
nomial time find 4 topological ordering r of G such that
MRC, is within 4 factor of O(1og'n) of the optimum reg-
ister cost M for G .

Proof: Consider the first cut, (L,X,R), that is used in
the algorithm above to produce r. Notice that if the algo-
rithm recurses the schedule r needs to use only as many
registers as the size of X plus the maximum of the number
of registers that T needs for evaluating LUX or to evaluate
R.

Thus we can use the following recurrence to estimate the
performance bound when the algorithm recurses.

If the algorithm does not recurse, we use the trivial
bound of S(n) being at most n.

We proceed by bounding the size of 1x1 in terms of M.
To do this we consider an optimal ordering, rapt of G. We
form a partition, (A, B), of the nodes of G where A consists
of the first n/2 nodes in the ordering ropt. Now consider
the set of nodes in A with a neighbor in B: these form
a directed node separator of G. Clearly, a register must
be used for each of these. Thus, there are no more than
M such nodes. Thus, there exists a node separator of G
with sparsest cut cost of a t most M/ IAl = M/(n/2). Now
recall that (L , X, R) has sparsest cut cost of O(1ogn) times
optimal. Thus,

M
n/2 '

IX I 5 clogn-
min(IL U XI, IR U XI)

When the algorithm does not recurse, -4
is at most logn+ 1. Thus from (13), n, and hence S(n), is
at most 2cM log n(1og n + l), which is O(M log' n).

Now we consider the case where the algorithm does re-
curse. With the above bound on 1x1, we can rewrite re-
currence (12) as

When the algorithm recurses, we have 1x1 5
so we can rewrite the above inequality as

where c' is no more than c(1 + &).
We further simplify the above equation to be

S(n) 5 2rc'Mlogn+ S((1- r)n), (14)

where

r = min(lL U XI 9 PI) = (1 - "(IL U XI 1 PI)).
n n

Finally, we note that a t most M registers are needed
to evaluate any subgraph of G. Inductively assuming that
S(n') is c"M log' n', we can infer from (14) that S(n) 5
c"M log2 n for an appropriate constant c". 0

8 Final remarks
We have presented an approximate min-max theorem for
general multicommodity flow. Recently, we have been able
to generalize this theorem to apply to hypergraph net-
works; using this theorem, we can handle CNFE clauses
with an arbitrary number of literals per clause.

We have not addressed running times of algorithms de-
scribed in this paper, but we note that the algorithm of
[15] can be used to quickly find approximate solutions to
the concurrent flow problems.

Our approximate min-max theorem, while more general
than that in [16], does not guarantee as good an approx-
imation. In contrast to [lS], we have no example demon-
strating that our bound is existentially tight. It is therefore
an open problem to improve our bound or show it cannot
be improved.

Acknowledgements
We gratefully acknowledge helpful conversations with John
Gilbert, Tom Leighton, John Reif, and David Shmoys.

References
H. Choi, K. Nakajima and C.S. Rim, UGraph bipar-
tization and via-minimizatiuon" , SIAM J. of Discrete
Maths Vol. 2, No. 1 (1989), pp. 38-47.

P. Elias, A. Feinstein and C.E. Shannon, 'A note on
the maximum flow through a network", IRS Duns.
Information Theory IT 2 (1956), pp. 117-119.

736

[3] L. R. Ford, Jr., and D. R. Fulkerson, Flows in Net-
works, Princeton University Press, Princeton, New
Jersey (1962).

[18] R. J. Lipton, D. J. Rose, and R. E. Tarjan, "General-
ized nested dissection", SIAM Journal on Numerical
Analysis 16 (1979), pp. 346-358.

[4] M. R. Garey and D. S. Johnson, Computers and In-
tractability: A guide t o the theory of NP-completeness,
W. H. Freeman, San Francisco (1979).

[19] R. J. Lipton and R. E. Tarjan, "Applications of a pla-
nar separator theorem, SIAM Journal on Computing
9 (1980), pp. 615-627.

[5] George, J. A., "Nested Dissection of a regular finite
element mesh", SIAM Journal on Numerical Analysis
10 (1983), pp. 345-367.

[6] J. R. Gilbert, "Some Nested Dissection Order is
Nearly Optimal" , Information Processing Letters 26
(1987/88), pp. 325-328.

[7] J. R. Gilbert, personal communication (1989).

[8] J. R. Gilbert and H. Hafsteinsson, "Approximating
treewidth, minimum front size, and minimum elimi-
nation tree height", manuscript, 1989

[9] J. R. Gilbert, D. J. Rose, and A. Edenbrandt, "A
separator theorem for chordal graphs", SIAM J. Alg.
Disc. Meth. 5 (1984), pp. 306-313.

[lo] M. C. Golumbic, Algorithmic Graph Theory and Per-
fec t Graphs, Academic Press, New York (1980).

[ll] T. C. Hu, "Multicommodity network flows", Upera-
tions Research 11, (1963), pp. 344-360.

[20] C. H. Papadimitriou and M. Yannakakis, "Optimiza-
tion, approximation, and complexity classes" , Pro-
ceedings, 20th ACM Symposium on Theory of Com-
puting (1988), pp. 229-234.

[21] D. J. Rose, "Triangulated graphs and the elimination
process", Journal of Math. Anal. Appl. 32 (1970), p.
597-609.

[22] D. J. Rose, R. E. Tarjan, and G. S. Lueker, "Algorith-
mic aspects of vertex elimination on graphs", SIAM
J , Comp. 5 (1976), pp. 266-283.

SIAM J . Comp. 4 (1975), pp. 226-248.
[23] R. Sethi, "Complete register allocation problems",

[24] P.D. Seymour, "Matroids and multicommodity flows" ,
European Journal of Combinatorics 2 (1981), pp. 257-
290.

[25] P.D. Seymour, "On odd cuts and planar multicom-
modity flows", Proc. London Math. Soc. 42 (1981),
pp. 178-192.

[12] D. S. Johnson, "Approximation algorithms for combi-
natorial problems" , Journal of Computer and System

1261 F. Shahrokhi and D. Matula, "The maximum concur-
rent flow problem," Journal of the ACM 37:2 (1990),

Sciences 9 (1974), pp. 256-278. pp. 318-334

[13] N. D. Jones, Y. E. Lien and W. T. Lasser, "New prob-
lems complete for nondeterministic log space" , Math.
Systems Theory, 10 (1976), pp. 1-17.

[27] R. Schreiber, "A new implementation of sparse Gaus-
sian elimination" , ACM Rans. on Mathematical Soft-
ware 8:3 (1982), pp. 256-276.

[14] U. Kjzrulff, "Triangulation of graphs - Algorithms
giving small total state space", R 90-09, Institute for

[28] M. Yannakakis, "Edge-Deletion problems", SIAM J.
Computing 10, (1981), pp. 297-309.

Electronic Systems, Department of Mathematics and
Computer Science, University of Aalborg (1990). [29] M. Yannakakis, "Computing the minimum fill-in is

NP-complete" , SIAM J. Algebraic and Discrete Meth-
[15] P. Klein, C. Stein, and E. Tardos, "Leighton-Rao

might be practical: faster approximation algorithms
for concurrent flow with uniform capacities" , Proceed-
ings, 22nd ACM Symposium on Theory of Computing
(1990), pp. 310-321.

ods 2 (l98l), PP. 77-79.

[16] F. T. Leighton and S. Rao, "An approximate max-
flow min-cut theorem for uniform multicommodity
flow problems with application to approximation al-
gorithms" , Proceedings, 29th Symposium on Founda-
tions of Computer Science (1988), pp. 422-431.

[17] F. T. Leighton, F. Makedon, and S. Tragoudas, per-
sonal communication, 1990

737

