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In this paper, we prove the first approximate max-flow min- 
cut theorem for general multicommodity flow. We use it 
to get approximation algorithms for minimum deletion of 
clauses of a P-CNFE formula, via minimization, and other 
problems. We also present approximation algorithms for 
chordalization of a graph and for register sufficiency, based 
on undirected and directed node separators . 

1 Introduction 

Max-flow min-cut theorems 

The amount of flow one can push through a network from 
a source to a sink clearly cannot exceed the capacity of a 
cut separating them, and the celebrated max-flow min-cut 
theorem of Ford and Fulkerson [3] and of Elias, Feinstein 
and Shannon [2] showed that the capacity upper bound is 
always tight. The value of the maximum flow is equal to 
the capacity of the minimum cut. This result yielded as 
a byproduct an algorithm for finding a minimum capacity 
cut. 

Ever since, researchers have sought to generalize the 
ma-flow min-cut theorem to apply to cases of multicom- 
modity flow, in which each of several commodities has its 
own source and sink. In 1963, Hu showed [ll] that such a 
theorem held for 2-commodity flow. In subsequent work, 
various special cases have been identified for which the 
max-flow min-cut theorem holds. As was demonstrated 
fairly early, however, no such theorem can hold in general 
for all multicommodity flow instances. 

Leighton and Rao [16] recently defined the notion of an 
approzimate max-flow min-cut theorem, by showing that 
the capacity upper bound is within a logarithmic factor of 
being tight for a special class of multicommodity flow in- 
stances, called uniform multicommodity flow. In a uniform 
flow problem for a graph G, a flow of value 1 is required 
between every two nodes of G. Their approximate max- 
flow min-cut theorem also yields an algorithm for finding 
an approximately sparsest cut, which in turn is the basis 
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for a variety of approximation algorithms for NP-complete 
graph problems. 

Our approximate max-flow min-cut theorem for ar- 
bitrary multicommodity flow 

In this paper, we have gone a step further. We have proved 
an approximate mu-flow min-cut theorem that holds for 
all multicommodity flow problems. Our theorem is the first 
for arbitrary multicommodity flow. 

Theorem 1.1 Consider a multicommodity pow problem 
where the sum of the demands is D and the sum of the 
capacities is C (and demands and capacities are integral). 
In order for there to ezist a feasible flow, it i s  suficient 
that every cut's capacity ezceeds its demand b y  a factor of  
O(logC1ogD). 

Moreover, our theorem yields an algorithm for finding a 
cut that is (approximately) minimum relative to the flow 
that must cross it. By appropriate choices of source-sink 
pairs, one can use this algorithm to find cuts that are (ap  
proximately) minimum subject to certain criteria. Thus 
we significantly enhance the generality of the cut-based ap- 
proach to approximation algorithms. 

New approximation algorithms: Deleting 2- 
CNFr clauses to achieve satisfiability, and 
applications 
As a consequence, we obtain new approximation algo- 
rithms. Our first result is the following theorem: 

Theorem 1.2 Given a 2 - C N l k  formula with weighted 
clauses of the form ( P  Q ) ,  one can in polynomial time 
find an approzimately minimum-weight set of clawes whose 
deletion yields a satisfiable formula.' The performance ra- 
ti0 i8 O(iOg3 n) .  

One of our aims in this research is to develop a framework 
for approximate solution of graph problems of the form: 
delete a minimum number of nodes (or edges) in order to 

'A complementary result WM obtained by Johnson [12] in 1974; he 
rhowed that the maximum ri5c of a rstirfiable aubret of claurer could 
be approximated to within a small constant factor; indeed, for every 
formula, d but at most a constant fraction of the clauses could be 
satisfied simultaneously. In view of this latter result, it makes sense 
to focus on how many clauses must be deleted to achieve satisfiability. 
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obtain a graph with a desired structural property. Our 
algorithm for P-CNFE clause deletion provides a good basis 
for such algorithms; one can sometimes state the structural 
property in the language of 2-CNF= in such a way that 
deleting clauses corresponds to deleting edges or nodes of 
the graph.l 

The edge-deletion graph bipartization problem-deleting 
a minimum number of edges to get a bipartite graph-was 
studied in [28]. Using our variant of 2-CNF= in which 
each clause has the form (P E Q), it is easy to state that 
a given graph is bipartite: For each node v ,  we have a 
Boolean variable P,,. For each edge ( v ,  w } ,  there is a clause 
(P,, G i P w )  of weight 1. The resulting formula is satisfiable 
if and only if the graph is bipartite; any satisfying truth 
assignment gives a bipartition (a two-coloring). Moreover, 
the minimum number of clauses that must be deleted to 
achieve satisfiability equals the number of edges that must 
be deleted to achieve two-colorability. 

Using similar techniques, we can solve some other prob- 
lems. The via minimization problem (discussed in [l]) is 
a problem arising in the design of a printed circuit board, 
in which there are two layers and one wants to minimize 
the number of holes made in the board in order to connect 
wires on different layers. The geometry of the problem is 
fixed; the goal is to choose an assignment of pieces of wire 
to layers. 

Theorem 1.3 One can in polynomial time approzimately 
solve 

e the edge-deletion graph bipartization problem, 

e the via minimization problem. 

The performance guarantee i s  the same as that in Theorem 
1.2. 

New approximation algorithms: Approxi- 
mately minimum chordalization 
By adapting the method of [16], we can find approxi- 
mately minimum node separators. This was also observed 
by Leighton [17]. We use this technique to approximately 
solve two NP-complete problems. 

It has been a longstanding open problem to find an a p  
proximately minimum chordalization of a graph, i.e. to 
find a set of edges whose addition to the input graph 
yields a chordal graph. This problem has several applica- 
tions, of which the most well-known was discovered by Rose 
[2 11 , Gaussian elimination for sparse linear systems. When 
Gaussian elimination is used to solve a sparse symmetric 
positive-definite linear system, the order in which variables 
are eliminated has a significant bearing on the complexity 

of the elimination process, both in terms of time and space. 
The reason is that each successive variable elimination t y p  
ically results in "fill-in", new non-zero entries in the matrix. 
These new non-zero entries must be stored, and they enter 
into subsequent calculations, so in order to minimize stor- 
age and calculation time, it is desirable to minimize the 
fill-in. Heuristics such as the "minimum-degree" heuristic 
are commonly used in an attempt to do just that. Other 
heuristics can be found in [14]. 

Rose reformulated the notion of fill-in as a graph prop 
erty. He showed that if we interpret the matrix as a graph- 
where a non-zero entry Ai, corresponds to the existence of 
an edge ( a ,  j}-then the filled-in matrix corresponds to a 
chordal graph. He thereby characterized the matrices for 
which no fill-in is required-they are the matrices whose 
graphs are chordal. He also demonstrated that for any 
given matrix, minimizing the fill-in corresponds to adding 
a minimum number of edges to a graph to make it chordal. 

The issue of minimizing fill-in is especially important in 
the solution of linear programs. When an interior-point 
method is used, the principal cost of an iteration is due 
to solving a symmetric positive-definite system of linear 
equations. The particular system changes at each itera- 
tion, but the graph associated with the system remains 
the same. Since it is the graph that determines what fill-in 
is achievable and how, it is worth spending considerable 
time finding a good chordalization of the graph in order to 
save time and storage at each iteration of the linear pro- 
gramming a lg~r i thm.~  

Unfortunately, as Rose, Tarjan, and Lueker conjec- 
tured [22] and Yannakakis proved [29], finding a minimum 
chordalization is NP-complete. We are thus led to consider- 
ing whether minimum chordalization can be approximated 
by a polynomial-time algorithm. Until now, no such a p  
proximation algorithms were known that provably achieved 
better- t han- trivial performance. 

Our new algorithm 

In this paper, we report the discovery of such an approx- 
imation algorithm, based on a method in [16], on a mod- 
ification of this method due to Leighton, Makedon, and 
Tragoudas [17], and on a separator theorem of Gilbert, 
Rose, and Edenbrandt [9]. The algorithm performs partic- 
ularly well on graphs with small degree. Fortunately, lin- 
ear systems arising in practice (e.g. from the finite-element 
method) often have graphs with small degree, because of 
constraints in the physical system being modelled. 

Theorem 1.4 For  an input graph with n nodes and maz- 
imum degree k ,  the algorithm outputs a chordal graph such 

'Cf. Papadimitriou and Yannakakis's idea [20] of expressing NP- 
complete problem with quantified sentences in order to study their 
approximability. 

5Note also that the cost of a floating-point operation, which de- 
pends on the precision required, typically exceeds the cost of a step 
in a chordalization algorithm. 
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that the number of edges is within a factor of O(&log4 n) 
of optimal. 

We can also prove a performance bound when the degree 
is large, but the bound is weaker and somewhat compli- 
cated, and we postpone it until Section 6. 

It follows from Theorem 1.4 and the work of Rose that 
one can find an order of elimination that approximately 
minimises the storage required for symmetric positive- 
definite matrices where each row and column has a small 
number of non-zero entries. 

Our algorithm is similar to the generalized nested dis- 
section of Lipton, Rose, and Tarjan [18]. Their algorithm 
works for any class of graphs with O(f(n)) separators, and 
relies on a recursive decomposition baaed on such separa- 
tors. The performance of the algorithm is determined by 
the function f(n). Since we do not assume the input graph 
has any special structure, we cannot rely on the existence of 
small separators. Gilbert [6] has shown that for every graph 
with degree at most k, there exists a nested dissection or- 
der that yields fill a t  most O(k log n) times optimum. We 
build on his important result. Gilbert’s argument, how- 
ever, is inherently non-constructive in that his choice of 
separators depends crucially on the optimally filled graph. 
Our analysis shows that it is sufficient to choose nearly 
optimal node separators in order to achieve near-optimal 
fill. 

It turns out that our algorithm also approximately min- 
imizes the total time required for the elimination process. 
Here we use the customary measure of time for this process, 
the number of multiplications. 

Theorem 1.5 The algorithm outputs an elimination or- 
dering such that the number of multiplications is within a 
factor of O(k log6 n) of optimal. 

Solving linear systems in parallel  

Our algorithm is particularly well-suited to use in parallel 
solution of linear systems. In a typical parallel implemen- 
tation of Gaussian elimination, each iteration consists of 
selecting some set of variables and eliminating them from 
the system. In order to eliminate all the variables in the 
set simultaneously, they must not interact-no two vari- 
ables can occur in the same equation. The height of an 
elimination ordering is the number of iterations necessary; 
thus minimizing height corresponds to minimizing the par- 
allel time required by this method. Moreover, the choice of 
which variables to eliminate in each step determines fill-in; 
it is desirable to keep the fill-in small, both to keep the 
storage small and to keep the number of processors small. 
Gilbert [7] has conjectured that there is an ordering that 
simultaneously minimises height and approximately min- 
imizes (t& within a constant factor) the number of edges 
in the filled-in graph. Our analysis represents progress to- 
wards proving this conjecture. 

Theorem 1.6 For degree k graphs, there ezists an order- 
ing that simultaneowly minimizes height to within a loga- 
rithmic factor and minimizes number of edges t o  within a 
factor ofO(&log’ n). 

Theorem 1.6 follows from the analysis we use to prove 
Theorem 1.4 and from the analysis of Gilbert and Haf- 
steinsson [8]. They propose essentially the same algorithm 
aa us to  find elimination orderings that simultaneously min- 
imize three important measures: tree width, front size, and 
elimination tree height. As part of their analysis, they 
show that the elimination tree height is within a logarith- 
mic factor of the size of a minimum balanced node separa- 
tor. Their algorithm differs from ours only in that it finds 
small node separators by first finding small edge separa- 
tors. Consequently, their algorithm’s performance guaran- 
tee for height depends linearly on the maximum degree of 
the input graph. As they observe, use of an approximation 
algorithm for node separators would yield a guarantee that 
was independent of degree. Since we use such an approxi- 
mation algorithm, we achieve such a guarantee. 

Theorem 1.7 The algorithm outputs an elimination or- 
dering whose height is within a factor of O(1og’ n) of opti- 
mal. 

Register sufficiency 
Given a computation dag, how many registers are needed to 
compute it? This NP-complete problem arises in compiler 
optimization, in the task of register allocation. 

Theorem 1.8 There is a polynomial time algorithm that 
finds an order for computing an n-node dag such that the 
number of registers required is within an O(1og’n) factor 
of the optimal. 

2 An approximate max-flow min- 
cut theorem for general undi- 
rected multicommodity flow 

2.1 Preliminaries 
In this section we prove an approximate max-flow min- 
cut theorem that forms the basis for the 2-CNF= clause 
deletion algorithm of Section 5 and the applications: bi- 
partization and via minimization. 

Consider a multicommodity flow problem, where we have 
a network G with edge-capacities CAP(UW), and commodi- 
ties { ( s i ,  t i ,  d ( i ) )  : i = 1,. . . , k}, where si and ti are, re- 
spectively, the source and sink o€ commodity i ,  and d( i )  
is the demand of commodity a.  We assume all demands 
and capacities are integral. A concurrent flow [26] of ca- 
pacity utilization U is a multicommodity flow satisfying the 
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demands and subject to the edge-capacities U C A P ( U W ) .  
The concurrent flow problem is to find a flow f with min- 
imum capacity utilization. The concurrent flow problem 
relates to feasibility of ordinary multicommodity flow: a 
multicommodity flow is feasible if and only if the minimum 
capacity utilization is at most 1. 

It is useful to think of each pair s;, ti of commodity end- 
points as a demand edge s;& in the graph G, with a weight 
DEM(sit;) equal to the demand associated with the com- 
modity. Thus G has two kinds of edges, demand edges and 
ordinary capacity edges. 

Each subset V of the node set of G defines a cut, namely 
the set r ( V )  of edges with exactly one endpoint in V. For 
a subset E of the edge set of G, let C A P ( E )  denote the sum 
of capacities of capacity edges in E ,  and let D E M ( E )  denote 
the sum of weights of demand edges in E .  

The analogue of a minimum cut is a cut r ( A )  that min- 
imizes the ratio of capacity to demand. That is, define the 
minimum cut ratio S as follows: 

It is easy to see that the value of the capacity utilization 
is at least 1/S. In other words, if the minimum cut ratio 
is less than one, then the multicommodity flow problem is 
infeasible. 

Let f be any length function assigning lengths to the 
capacity edges of the graph G, and let distc(v,w) be the 
resulting shortest path distance between v and w using ca- 
pacity edges. The linear programming dual to the problem 
of minimizing the capacity utilization U is maximizing the 

demand edge s t  

subject to the constraint 

c CAP(vw)f(vw) = 1 (3) 
capacity edge vu) 

In particular, the value of (2) is always at  most the value 
of the capacity utilization U, and, when f maximizes ( 2 )  
and f minimizes U ,  then the sum (2) equals U. That is, at 
optimality, we have 

C d i d f ( s ; , t i ) d ( i )  = U 2 1/s 
i 

(4) 

Our main result in this section is to show that the leftmost 
expression is not much more than the rightmost expression. 

Theorem 2.1 There w a polynomial-time algorithm to 
find a particular node subset A such that 

where C w the sum of a21 capacities and D is the sum of 
all demands. 

Corollary 2.1 
(Approximate Max-flow Min-cut Theorem) 
We have 

c. a < l / u  5 s 
O(logC1ogD) - 

In particular, for a multicommodity flow to be feasible, it 
w necessary that the min cut ratio S be at least 1,  and it 
b suficient that it be at least O(1og C log D). 

Corollary 2.2 
(Approximation Algorithm for Min Cut) 
The cut r ( A )  found by the algorithm of Theorem 2.1 ap- 
pmzimately minimues the ratio 

to within a factor of O(logC1og D). 

The following theorem is useful in applications where 
either the capacities or demands are exponentially large. 

Theorem 2.2 If either C or D is polynomial in n, the 
number of nodes of GI then the performance guarantee can 
be improved to be O(log2 n).  

2.2 The proof of Theorem 2.1 

Our proof of the theorem follows the lines of Leighton and 
b o ' s  proof for their result concerning the uniform demand 
case (the case where there is a demand of 1 between every 
pair of nodes). 

First solve the dual of the concurrent flow problem, ob- 
taining an optimal length function f satisfying the con- 
straint (3). Next, assume (for now) that we know the value 
of S. We now give an algorithm to assign a path P ( s ; , t ; )  
to each commodity i such that 

E length(P(s;, t i ) )  D E M ( S ; t ; )  
a 

= o(( l /s) logclogD) ( 5 )  

To initialize, let DO equal the sum D of all demands, and 
let t = 0 .  

Each stage t consists of the following steps. Decompose 
the graph into node-disjoint trees so that each tree has 
height O((l/SDt)logC). (This step is described in more 
detail later.) For each commodity i whose endpoints lie in 
a common tree, assign to the commodity the path in that 
tree, and discard the commodity. Let Dt+l be the sum of 
the demands of remaining commodities, i.e. those whose 
endpoints are in different trees. Finally, increment t ,  and 

In each stage t ,  the length of every path assigned is 
O((l/SDt) log C), and the sum of demands of commodities 

loop. 
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Figure 1: If one of the endpoints of edge vw is within 
distance d-&(vw) of r ,  then all .ft(uw) of the edge's tokens 
are within distance d. If neither endpoint is within distance 
d, then none of the edge's tokens is within distance d. If 
one endpoint is at  a distance d - x of r ,  and x 5 Lt(vw), 
then x of the edge's tokens are within distance d. 

that were assigned paths is Dt-Dt+l, so the total contribu- 
tion of stage t to the left-hand side of (5) is O( (l/S) log C)). 
It remains to describe a procedure for decomposing G 
into trees of small height such that Dt+1 5 Dt/2, for 
then the number of stages is a t  most logD, and the to- 
tal contribution of all stages to the left-hand side of (5) is 
O( (l/S) log Clog 0). 

Decomposition into trees: It is convenient to discretize 
or tokenize the distance. Each token of distance will cor- 
respond to distance 1/C in the original units. That is, 
define 

l* (vw)  := [Cl(vw)l (6) 

for each edge vw. Notice that since C~(VW)CAP(UW) 5 1 
and that rounding up adds only one extra token for each 
edge, we have that the total token weight is 

(7) 

Measured in tokens, we must decompose the graph into 
trees of token height O((l/SDt)Clog C). 

Next, repeat the following step, forming a tree T (as 
described below), and then removing the nodes of the tree 
from the graph, as well as all incident capacity edges and 
demand edges, until the graph no longer contains a source 
or sink. 

Forming a tree T: Start at  any node r ,  and compute 
the shortest-path tree consisting of all nodes reachable 
from r .  If every node in this tree has distance at  most 
r(9Cln2C)/SDtl + 1, then let T be this tree. Otherwise, 
we must select a distance d  ̂ 5 [(9Cln2C)/SDt1 + 1 at 
which to truncate the tree. 

There is a natural notion of how much of an edge's tokens 
lies within a given distance d of the root r ,  as illustrated 

in Figure 1. Denote this value by amount(vw,d). We de- 
termine the total weight of the subgraph within distance d 
of r ,  defined BB follows. 

weight(d) = amount(vw, d) CAP(UW) 
edge vw 

We use binary search on the range ff distances d = 
1,2,3 ... [(9Cln2C)/SDt] + 1, to find a d such that 

weight(d^+ 1) 5 (1 + -)weight(d^) SDt 
8C 

The binary search to find such a d  ̂ proceeds as follows. 
First, we set dl to 1 and 4 to r(9Cln2C)/SDt] +l. Notice, 
that weight(d1) is at least (1 + SDt/8C)d8-' and hence at  
least 1 since every edge has capacity one. Also notice that 
weight(4) is strictly less than (1 + SDt/8C)d*-1 since 

(1 + SDt/8C)d7-' 2 (1 + SDt/8C)(gC1"2C)'SD' 2 2C, 

and 2C is the total weight in the whole graph by equation 
7. Thus, there must be a level between dl and 4 where 
the weight does not expand by (1 + SDt/8C). Now, we 
consider the level d' = [(dl + 4)/21. If weight(d') is at 
least (1 + SDt/8C)d'-' then set dl = d', otherwise set 
4 = d'. Notice that a level that does not expand still 
exists between dl and 4 and the number of levels between 
dl and 4 has been halved. Thus, after O(1ogC) iterations 
dl - 4 becomes a constant so d  ̂ can easily be found. (We 
use this binary search in the algorithm so that the running 
time is polynomial in log C and n, i.e., the size of the input 

Once d  ̂ has been chosen, let T be the porti_on of the 
shortest-path tree spanning nodes of $stance 5 d from the 
root, and define weight(T) = weight(d). Let ET denote the 
set of edges currently incident to T. Note that 

CAP(&T) 5 weight(d^+ 1) - weight(2) 

graph. ) 

SDt 
8C 

5 -weight(T) (9) 

Finally we delete the nodes of T and all incident edges, and 
repeat, constructing another tree. 

What the tree decomposition achieves: Now s u p  
pose that all sources and sinks have been deleted. We've 
assigned short paths to every commodity whose source 
and sink lay in the same tree. Let Dl+l denote the sum 
of demands of remaining commodities. We prove that 
Dt+l 5 Dt/2. Let DT denote the sum of demands of com- 
modities a with source si in T and sink ti outside T. The 
trees partition Dt+l. Let r(T)  denote the boundary of T, 
i.e. the set of edges with exactly one endpoint in T. We 
have the following 

T T 



where the inequality follows from the definition of S. Since 
each edge belongs to the boundary of at most two trees 
and belongs to at least one ET, we have 

C A P ( r ( T ) )  5 2 CAP(&). 
~ 

T T 

Using (9), we infer 

2SDi 
2 CAP(&T)  < weight(T) 

T T 

In constructing the tree decomposition, once we count an 
edge towards the weight of the tree, we delete it. Hence 
ET weight(T) is no more than the total weight in the whole 
graph, which was shown to be 2C in (7). Putting these 
inequalities together, we obtain 

2.3 Turning the proof into an algorithm 
In theorem 2.1, we stated that the algorithm would find 
a set 
A such that xi dist(si ,  t i )d( i )  = O(1og C log D) w. 
In fact, we only proved that ~ , d i s t ~ ( s i , t i ) D E M ( s i t i )  = 
O(1og C log D ) / S .  Moreover, we assumed that the value of 
S was exactly known in advance. 

We remedy this by making two observations. First, note 
that the proof still holds when S is replaced by the "ob- 
served value of S," which we denote by Sob.. The value 
of Sobs is defined to be the minimum value of mj 
over all trees T actually appearing in some decomposi- 
tion during the algorithm. Thus if we knew Sob. be- 
fore running the algorithm, we could substitute it for S, 
and proceed as before. We would end up showing that 

ting A be the nodes spanned by the tree that determined 
the value of Sob., we obtain the bound in Theorem 2.1. 

Of course, we can't expect to know the value of Sob. 

before running the algorithm. However, if the value sub- 
stituted for S in (8) is no more than (3/2)S0b,, then we are 
still guaranteed that the remaining demand diminishes by 
a factor of 3/4 in each stage. We use this observation as 
follows. Start with some estimate of S, derived from look- 
ing at  an arbitrary cut in the graph. Run the algorithm, 
and compare the resulting value of Sob. with the estimate. 
If the estimate is no bigger than (3/2)S0b,, then we are 
done, otherwise, reduce the estimate by a factor of 3/2, 
and repeat. 

ci diStc(si,ti)DEM(Si&) = ~(logclOgD)/sob,. By let- 

3 Balanced separators 
In this section, we discuss the application of concurrent- 
flow based methods to finding balanced separators. In Sub- 
section 3.1, we show how to apply our Theorem 2.1. These 

results are used in Section 5. In Section 4, we present the 
application of the method of [16] to finding node separators 
in undirected graphs and in directed acyclic graphs. These 
results are used in Sections 6 and 7. 

3.1 Cutting all the demand 

The cuts that are found by the algorithm of the previous 
section tend to achieve a low cut ratio. However, such a cut 
may only separate a small fraction of the total demand in 
the flow problem. In this section, we present some results 
about finding a small cut that cuts a large fraction of the 
total demand. 

In particular, we consider a cut that cuts half the demand 
pairs. 

Consider a multicommodity flow problem specified by 
G = (V, E ) .  We denote the capacity edges of G by Ec and 
denote the demand edges by E o .  Now we define Eopt to be 
a minimum capacity edge set such that if (HI, ..., IT[} are 
the connected components of Gopt = (V, E c  - Eopt) then 

d ( i )  2 D/2. 
a ; € H ; , t ; € H h , j # k  

That is, the edge set Eopt is the smallest cut that sepa- 

We can prove the following result about approximating 
rates half the demand in G. 

such a cut. 

Theorem 3.1 There M a polynomial time algorithm, A ,  
that will find a set of edges EA such that if (HI, ..., H I ) }  
are the connected components of G' = (V, E c  - E A )  then 

and 

C A P ( E A )  I O(logC1og D)cAP(Eopt). 

Proof Sketch: We simply find an approximate sparsest 
cut using the algorithm of the previous section, remove 
the edges in the cut from the graph and repeat until D/3 
demand sources and sinks are separated. We can show that 
the union of the cuts have small cost by using the fact that 
they have small sparsest cut cost. 0 

Thus we have an algorithm that finds a small cut that 
separates many of the demands. In fact, using the above 
theorem, we can find a small cut that separates all de- 
mands. First, we say an edge set, EA,  completely cuts the 
demand in a flow problem if there is no commodity whose 
source and sink are in the same connected component of 
G' = (V, Ec - EA) .  Now we state the following lemma. 
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Lemma 3.1 There is a polynomial time algorithm, A,  that 
given a pow problem on G will find a set of edges EA that 
completely cuts the demand in G such that 

CAP(EA) = O(logClog2 D)CAP(E,~~) ,  

where Eopt is the smallest capacity edge set that completely 
cuts G .  

4 Separators in Graphs 
As a consequence of the approximate max-flow min-cut 
theorem of Leighton-Rao, one can find weighted edge- and 
node-separators in a graph. We list their results below. 

Lemma 4.1 ([16, 171) For a graph (directed or undi- 
rected), there ezists a polynomial algorithm to find a $-  
balanced edge-separator (node-separator) with cost within 
O(1og n) factor of the optimal $balanced edge-separator 
(node-separator). 

We observe that one can find directed node separators in 
a DAG. That is, we find a partition, (L, X, R), of the nodes 
of G such that there are no edges of G between L and R, 
and all edges between X and R are directed from X to R. 
The node cut ratio of a directed node separator, (L, X ,  R), 
is defined to be 1x1 / min(lL U XI, IR U XI). The sparsest 
node cut ratio of a graph is the smallest node cut ratio of 
any directed node separator in the graph. 

Lemma 4.2 Given a DAG G ,  we can find a directed node 
separator of G whose node cut ratio is within a factor of 
O(1ogn) of the sparsest node cut ratio. 

Proof: We construct an auxiliary directed graph G' from 
G with the property that we can recover a node-separator 
of G from an edge-separator of GI. We augment the DAG 
G to G' as follows. For each node v in G,  we add two 
nodes v; and v ,  in G' with a directed edge from vi  to v ,  
of infinite cost and a reverse edge from v ,  to vi of unit 
cost. We call such reverse edges the pseudo-edges. For 
each original edge (u ,o )  in G, directed edges (u, ,v;)  and 
( v i ,  U,) of infinite cost are added. 

The algorithm in [16] finds a directed edge-separator in 
G' where the ratio of the capacity of the separator edges 
divided by the number of nodes on the smaller side is within 
a factor of O(1ogn) of the minimum value. We call this 
minimum value the sparsest edge cut ratio. 

Any optimal or near-optimal edge separator for G' will 
only contain pseudo-edges, hence we can recover a node 
separator in G from these pseudo-edges. Since any node 
separator with a node cut ratio of n, in G can be mapped 
to an edge separator in G' with an edge cut ratio of at  
most n,, the sparsest edge cut ratio in G' is no more than 
the sparsest node cut ratio in G. Moreover, for any edge 

separator in G' with an edge cut ratio of e,, the node sep- 
arator recovered from it has a node cut ratio of no more 
than 2e, in G.  Hence from an approximate edge separator 
algorithm for G' with a performance guarantee of clogn, 
one can find an approximate directed node separator in G 
with a performance guarantee of 2clogn. 0 

We use the above lemmas for the approximation algo- 
rithms presented hereafter. 

5 Approximately minimizing un- 
satisfied clauses in a 2-CNF= 
formula 

Given a 2-CNF_ formula F with weighted clauses of the 
form (p E q), finding a minimum weighted set of clauses 
whose deletion yields a satisfiable formula is known to be 
NP-complete [4]. We use a well-known construction to re- 
formulate this problem as a problem of deleting edges in 
a graph. We then show how to approximate this edge- 
deletion problem by defining a flow function in this graph 
and using the approximate max-flow min-cut theorem for 
general concurrent flow in Section 4. 

Defn: We define a weighted P-CNFG formula to be a 
conjunction of weighted clauses of the type ( p  E q )  where 
p and q are literals, and E refers to logical equivalence. 

5.1 Modeling the problem 
Given a weighted 2-CNF= formula F, we define the corre- 
sponding boolean graph G(F) as follows. Let the node-set 
V(G) be the set of all the literals that occur in F. For every 
clause (p G q )  in F, include the undirected edge ( p , q )  in 
G(F).  This edge is assigned a weight equal to the weight of 
the corresponding clause (p E q )  in F. We shall henceforth 
use the terms "literal" and "vertex" interchangeably. 

We can easily prove the following lemma [13]. 

Lemma 5.1 A weighted 2 - C N E .  formula F is satisfiable 
iff no connected component of the graph G(F) constructed 
as above contains both a literal and its negation. 

By virtue of Lemma 5.1, we have the following corollary. 

Corollary 5.1 Given a weighted 2 - C N E  formula F, 
finding a minimum weight set of clauses whose deletion 
yields a satisfiable formula is equivalent to finding a mini- 
mum weight set of edges in the corresponding boolean graph 
G(F) such that its deletion from G(F) leaves the graph with 
no connected component containing both a literal and its 
negation. 

5.2 The algorithm 
Define a general concurrent flow problem on the boolean 
graph G(F)  by assigning one unit of a commodity to flow 
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from each literal zi to -xi occuring in the same connected 
component. From Lemma 3.1, we can find a set of edges 
in G(F) whose cost is at most within a factor of O(10g3 n) 
of the minimum cost separator that completely cute all the 
demands in G(F). From Corollary 5.1, such a separator 
corresponds to the minimum weight set of clauses that we 
are looking for and we have the following theorem. 

Theorem 5.1 There ezists an algorithm that finds an ap- 
prozimately minimum-weight set of clawes to delete from 
a given weighted 2 -CNlk  formula to leave it satisfiable. 
The performance ratio is O(10g3 n).  

6 Minimum chordalizat ion 
In this section we give an approximation algorithm for min- 
imum chordal graph completion of an input graph. For 
bounded degree graphs, the algorithm guarantees a poly- 
log factor approximation to the number of edges in the 
optimal chordal graph. For unbounded degree graphs, the 
bound is weaker. This is the first known polynomial-time 
algorithm with a non-trivial performance guarantee. 
As Rose has shown, and as discussed in the introduc- 

tion, chordalization arises in solving a symmetric positive- 
definite system of linear equations. The order of elimina- 
tion affects the storage, sequential time, and parallel time 
required to solve the system. Our algorithm outputs an 
ordering that approximately minimizes all these quantities 
simultaneously over all possible elimination orderings. 

6.1 The Algorithm: Near-Optimal Gener- 
alized Nested Dissection 

Given a graph G(V, E), we define an elimination ordering 
a of its vertices. The graph G is then augmented to be the 
elimination graph G' for the elimination ordering Q [22]. 
G' is the output chordal graph produced by the algorithm. 
The elimination graph is obtained as follows. At step i ,  the 
graph Gi-1 is augmented to G, such that all the higher 
numbered neighbors in Gi-1 of the node numbered i (in 
the ordering a) form a clique. Go is set to the original 
graph G. The elimination graph corresponds to Givl. 

Elimination Ordering Algorithm: Given a graph 
G(V, E) with n nodes to be numbered in the range [a, b] ,  
where b = a + n - 1, we proceed as follows. If n = 1, we 
number the node. Else, we find a balanced node separator 
X for G using Lemma 4.1. Let 1x1 = s. We number the 
vertices in the separator from b - 1x1 + 1 to b in any or- 
der. Let there be k connected subgraphs AI,. . . , A k  of sizes 
nl, . . . , n k  left on removing X from G. We recursively num- 
ber the graph Ai in the range [a+$: nj, 0-1+~~,, nj] 
for each i E [l, k]. 

Separator Tree Representation: The elimination or- 
dering of G can be related to the separator tree of the 

graph. The vertices in the separator X form the root of 
the tree with subtrees formed recursively for each of the 
pieces A I ,  . . . , Ah. The elimination numbering of the ver- 
tices is consistent with a postorder traversal of the tree 
nodes, with vertices in a tree node numbered in any order. 

Defn: We shall refer to a node in the separator tree 
T as a separator, and to a node in the original graph G 
as a vertez. The vertices forming a separator are said to 
belong to the separator. Each vertex belongs to exactly one 
Separator and we refer to this node as the separator node of 
the vertex. The depth of a separator is the distance of the 
separator node from the root of the tree. The depth of a 
vertex is the same as the depth of the separator it belongs 
to. The subtree of a separator is the subtree rooted at the 
separator in the separator tree. We say that a vertex U is 
an ancestor of v if U'S separator node is either the same or 
is an ancestor of U'S separator node in the separator tree. 

We now state without proof a few lemmas that will be 
useful in subsequent arguments. All references to elimina- 
tion orders or separator trees in Section 6 refer to the ones 
presented above. 

Fact 6.1 Every node induced subgraph of a chordal graph 
i s  also chordal. 

Theorem 6.1 ([9]) Every chordal graph has a clique sep- 
arator, and hence has a node separator of size at most 
O ( a ) ,  where E is the number of edges in the graph. 

Lemma 6.1 For any vertez v ,  an edge (U, U )  is in G' only 
if for some edge ( z , v )  E G, v is an ancestor of z, and U 
belongs t o  a separator node on the path from U'S  separator 
node to z 's separator node. Note that this includes the case 
in which U and v belong to the same separator. 

Lemma 6.2 The height of the separator tree is O(1ogn). 

6.2 Bounds on the number of edges 
In this section we analyze the total number of edges in the 
resulting graph G' for the cases of bounded and unbounded 
degree graphs. 

Defn: We define the weight of a separator ( w )  to be 
the number of vertices belonging to the separator, and the 
weight of a tree ( W )  to be the sum of the weights of each of 
the separators in the tree. Edges with both their endpoints 
in vertices at  the same depth and different depths will re- 
spectively be called flat edges and jump edges. The cost 
of a vertez ( c )  is the number of edges from the vertex to 
vertices at greater depth. Thus the total number of jump 
edges in G' is the sum of the costs of the vertices. The 
cost of a separator is the sum of the costs of the vertices 
belonging to it. 

Theorem 6.2 The total number of flat edges in G' at a 
given depth is 0 (E,tlog'n). Hence the total number of 
flat edges in G' is 0 (Ewtlog3n). 
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I 1 

Figure 2: Counting the jumpedges in G*- Bounded degree 
case. 

Proof Sketch: By Lemma 6.1, the number of flat edges 
at  a given depth are no more than those required to turn 
each separator into a clique. Let the subgraph induced by 
the subtree rooted at  a separator X in the optimal chordal 
graph have EOpt,X edges. By Fact 6.1, Theorem 6.1, and 
Lemma 4.1, 1x1 is , / G O ( l o g n ) .  Hence the number of 
flat edges within X is O(EVt,xlog’n). Summing over node 
disjoint chordal graphs induced by the subtrees of each of 
the separators at the given depth, the claim follows. 0 

Theorem 6.3 The total number of edges in G‘ is 
0 (&E,tlog4n), where k is the mazimum degree of the 
graph. 

Proof: Theorem 6.2 shows that the total number of flat 
edges is within the bound. Hence it suffices to show that 
the total number of jump edges is 0 (&E,Jog4n). 

For a vertex U, consider its neighbors in G at greater 
depth. Consider the tree formed by the union of the paths 
from U’S separator to separators containing such neighbors. 
Call it the associated tree of U. Since G has bounded degree 
k, this tree can have at  most k separator leaves, and hence 
at most k separators at any depth. By Lemma 6.1, the 
cost of the vertex U is the weight of U’S associated subtree. 

Let us estimate the sum of the costs of all vertices at 
a given level 11 in the tree (see Figure 2). Suppose that 
level consists of separators X1 , .. . , X,. For i = 1,. . . , p ,  
consider the highest-cost vertex of X i ,  and let be the 
associated subtree for this vertex. For each level 1, let 
Wt(Tj) be the weight of Ti due to vertices at level 1. Then 
the sum of the costs of vertices at  level 11 is no more than 
the sum, over all levels 1 greater than 11, of the value 

The weight of Ti at  level 1 is the sum of the sizes of at 
most IC separators Xi,l,l1.. ., Xj,t,k. Substituting into ( lo) ,  

we get 

where the inequality follows from the Cauchy-Schwartz in- 
eauality. 

Since the Xi’s are all disjoint, it follows from the proof 
of Theorem 6.2 that = O( ,/&logn). Sim- 

ilarly, Jc:=, IXi,c,jI’ = O(&logn). Thus 

the right-hand side of (11) is 0 &Eoptlog2n). Sum- 
ming over all levels 11 and 1, we conclude that there are 
0 (&E,tlog4n) jumpedges. 0 

For unbounded degree graphs, we state the following re- 
sult without proof. 

( 

Theorem 6.4 For an unbounded degree graph G with n 
vertices and m edges, the total number of edges in G‘ is 

Eopt @og3’’n)) . 
It should be noted that the above value is no more than 

O(mfl0g3.’n) factor of the optimal. 

6.3 Bounds on the number of multiplica- 
tions 

For solving a symmetric sparse system of linear equations 
without pivoting, we view the matrix as the adjacency ma- 
trix of a graph G. We define the elimination numbering of 
the nodes in G aa in Section 6.1. We show that for a matrix 
with the number of non-zero entries in any row (or column) 
not exceeding IC, the number of multiplications performed 
using this elimination order is within a 0 (klog‘n) multi- 
plicative factor of that required by the optimal elimination 
ordering. 

Before we prove the main result of this section, we give 
some lemmas that will be used later. A system of linear 
equations in n variables given by Ax = b is considered 
dense if the matrix A has O(n’) non-zero entries. 

Fact 6.2 The number of multiplications required t o  solve 
a dense system of equations in m variables is  R (m3). 

The following lemma is a consequence of fact 6.2. 

Lemma 6.3 For any chordal graph G’, if m is the size 
of its clique separator, then Sa (m3) i s  a lower bound on 
the number of multiplications required for any elimination 
ordering. 

Let Mop* be the optimal multiplication count for any 
Then we have the following elimination ordering of G. 

results. 
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Theorem 6.5 Let a given level in the separator tree have 
p separators with weights wl . . . w p .  Then R (E:=, 6) 
is a lower bound on Mop*. 

Proof Sketch: The vertices in the subtrees of different 
separators at a level are disjoint. Hence the subgraphs 
induced by them in the optimal chordal graph are node 
disjoint. Each induced subgraph is also chordal and hence 
Lemma 6.3 provides a lower bound on the optimal multipli- 
cation count for each. By summing over all the subgraphs, 
we obtain the theorem. 0 

For any vertex with elimination number i ,  the vertex 
along with all its neighbors with number higher than i form 
a clique in G'. We shall refer to this clique as the associ- 
ated clique for the vertex, and denote it by C,. The num- 
ber of multiplications (Mu) required to eliminate a variable 
U ,  is the total number of edges in the clique C,. Let M 
be the number of multiplications required for the elimi- 
nation ordering defined by the algorithm. M is given by 
E, EcEC, 1, which is the same as E, 1. We can 
hence sum over the multiplication contribution for each 
edge. The multiplication contribution (henceforth referred 
to simply as contribution) for an edge ( U ,  U )  is the total 
number of vertices with depth no less than that of U or U ,  

containing ( U ,  U )  in its associated clique. 

Theorem 6.6 The elimination ordering defined above 
yields a multiplication count of 0 (kMoptlog6n). 

Proof Sketch: We count the contributions from edges 
that go between any two levels of the tree. To count this 
contribution, we count the contribution due to all vertices 
at a depth no less than those of the two levels. Using 
techniques similar to those for proving Theorem 6.3 we 
can show that this contribution is no more than k times 
the sum of the cubes of the separator sizes at the three 
levels under consideration, which using Theorem 6.5 is 
0 (3kM,tlog3n). The claim then follows. 0 

6.4 Bounds on the height of the elimina- 
tion ordering 

Minimizing the height of the elimination ordering mini- 
mizes the time required to solve the system of equations 
in parallel. Let &in be the minimum elimination height 
for any elimination ordering of a given set of linear equa- 
tions. We show that the elimination ordering proposed also 
minimizes height to within a polylog factor of &in. 

Fact 6.3 To solve a dense system of equations in m vari- 
ables, &in is R (m).  

Lemma 6.4 For any chordal graph G', if m is the size of 
its clique separator, then &in for G' i s  R (m). 

Theorem 6.7 If wmaE is the mazimum weight of a separa- 
tor in the separator tree of G ,  then &in f o r  G i s  n (e). 
Proof: Let X be the separator in the separator tree with 
the maximum weight, and let V, be the set of vertices in 
the subtree of the separator X. If GLt corresponds to 
the optimal chordal graph with minimum height over all 
elimination orders, then let the graph induced by q in 
GQt be Gj. Gj has a clique separator of size R (z) by 
Theorem 6.1, and this is a lower bound on &in by Lemma 
6.4. 0 

Theorem 6.8 The elimination ordering defined in Section 
6.3 yields a height of 0 (&j,log'n). 

Proof: Consider all the separators at  each level. One vari- 
able from each of the separators can be eliminated simul- 
taneously as there are no direct edges between the vari- 
ables. Hence the height for eliminating all the variables at 
a level is no more than w,,,. Since the number of levels 
is 0 (log n), the claim follows. 0 

It should be mentioned that a parallel prefix operation 
may be required at  each elimination step to update the 
coefficients in the matrix as a result of eliminating multiple 
variables simultaneously. 

7 Approximating Register Suffi- 
ciency 

In this section, we present a polylogarithmic approxima- 
tion to the register suficiency problem. Given a DAG G 
(where IG( = n) with its vertices numbered by a topologi- 
cal ordering r ,  the register cost at step i is defined as the 
number of nodes in the set (1, . . . , i }  that are tails of edges 
that go from the set (1,. . . , i -  1) to the set { i ,  . . . , n}. The 
mazimum register cost of this ordering, denoted by MRC,, 
is the maximumof the register costs over all steps i .  We 
shall refer to the minimum value of the maximum register 
cost achievable by any topological ordering for G as the 
optimum register cost M for G. The register sufficiency 
problem is to find an ordering r such that MRC, = M. 
This problem is shown to be NP-complete in [23]. We give 
a polynomial time algorithm that finds a topological order- 
ing of G with its maximum register cost within a polylog- 
arithmic factor of M. 

We now describe the algorithm for the register sufficiency 
problem. 

We find an approximate sparsest directed node s e p  
arator ( L , X , R )  in G as outlined in Lemma 4.2. If 
1x1 / min( ILI , IRI) is greater than 1/ logn then we output 
an arbitrary topological ordering for G. Otherwise, we par- 
tition G into L U X and R. We recursively order each of 
these subgraphs, and output the topological ordering of 
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G consisting of the recursively produced order of L U X 
followed by the recursively produced order of R. 

We now argue that this algorithm produces the desired 
result. First, it is easy to see that the following fact holds. 

Fact 7.1 The ordering r defined by the above algorithm is 
a topological ordering. 

Now we proceed by showing that r is a good topological 
ordering. 

Theorem 7.1 Given 4n n-node DAG G ,  one can in poly- 
nomial time find 4 topological ordering r of G such that 
MRC, is within 4 factor of O(1og'n) of the optimum reg- 
ister cost M for G .  

Proof: Consider the first cut, (L,X,R),  that is used in 
the algorithm above to produce r. Notice that if the algo- 
rithm recurses the schedule r needs to use only as many 
registers as the size of X plus the maximum of the number 
of registers that T needs for evaluating LUX or to evaluate 
R. 

Thus we can use the following recurrence to estimate the 
performance bound when the algorithm recurses. 

If the algorithm does not recurse, we use the trivial 
bound of S(n) being at  most n. 

We proceed by bounding the size of 1x1 in terms of M. 
To do this we consider an optimal ordering, rapt of G. We 
form a partition, (A, B), of the nodes of G where A consists 
of the first n/2 nodes in the ordering ropt. Now consider 
the set of nodes in A with a neighbor in B: these form 
a directed node separator of G. Clearly, a register must 
be used for each of these. Thus, there are no more than 
M such nodes. Thus, there exists a node separator of G 
with sparsest cut cost of a t  most M/ IAl = M/(n/2). Now 
recall that ( L ,  X, R) has sparsest cut cost of O(1ogn) times 
optimal. Thus, 

M 
n/2 ' 

IX I 5 clogn- 
min( IL U XI, IR U XI) 

When the algorithm does not recurse, -4 
is at most logn+ 1. Thus from (13), n, and hence S(n), is 
at  most 2cM log n(1og n + l), which is O(M log' n). 

Now we consider the case where the algorithm does re- 
curse. With the above bound on 1x1, we can rewrite re- 
currence (12) as 

When the algorithm recurses, we have 1x1 5 
so we can rewrite the above inequality as 

where c' is no more than c( 1 + &). 
We further simplify the above equation to  be 

S(n) 5 2rc'Mlogn+ S((1- r)n), (14) 

where 

r =  min(lL U XI 9 PI) = (1 - "(IL U XI 1 PI)). 
n n 

Finally, we note that a t  most M registers are needed 
to evaluate any subgraph of G. Inductively assuming that 
S(n') is c"M log' n', we can infer from (14) that S(n) 5 
c"M log2 n for an appropriate constant c". 0 

8 Final remarks 
We have presented an approximate min-max theorem for 
general multicommodity flow. Recently, we have been able 
to generalize this theorem to apply to hypergraph net- 
works; using this theorem, we can handle CNFE clauses 
with an arbitrary number of literals per clause. 

We have not addressed running times of algorithms de- 
scribed in this paper, but we note that the algorithm of 
[15] can be used to quickly find approximate solutions to 
the concurrent flow problems. 

Our approximate min-max theorem, while more general 
than that in [16], does not guarantee as good an approx- 
imation. In contrast to [lS], we have no example demon- 
strating that our bound is existentially tight. It is therefore 
an open problem to improve our bound or show it cannot 
be improved. 
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