
10-701/15-781 Machine Learning, Fall 2003

Homework 2 Solution

If you have questions, please contact Jiayong Zhang <zhangjy@cs.cmu.edu>.

1. (Error Function) The sum-of-squares error is the most common training criterion for neu-
ral nets primarily because of its analytical simplicity. Nevertheless, there are many other
possible choices of error function which can be considered depending on the particular
application. In this excise you will explore one of such alternatives, which is designed to
better approximate the sample error.

Consider the following simple two-layer neural network for M-category classification.
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The network has M output units. Each has a sigmoid activation function. There are no
hidden units. Given a set of training samples {(xn, yn)}N

n=1, yn ∈ {1, . . . , M}, the sum-of-
squares criterion EMSE can be written as

EMSE =
N∑

n=1

En =
N∑

n=1

M∑
m=1

(
t(n)
m − o(n)

m

)2

where t(n) = (t
(n)
1 , . . . , t

(n)
M ) is the binary valued target vector associated with the n-th

sample

t(n)
m =

{
1, m = yn

0, otherwise.

The sample error is defined as EMCE =
∑

n �n, where

�n =

{
0, o

(n)
yn = maxj o

(n)
j

1, otherwise.

(a) (10 pts) Briefly state possible strengths and weaknesses of EMCE compared to EMSE .

EMSE is analytically simple (e.g. it allows the minimization with respect to the
output weights to be expressed as a linear optimization problem which can be
solved in closed form). The output of a network trained by minimizing EMSE
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approximate the posterior probabilities P (Cm|x), which can be related to the
optimal classification through Bayes rule. However, such a probabilistic inter-
pretation dependends on a sufficient large number of training samples and
hidden units. EMSE can be justified by maximum likelihood on the assump-
tion of Gaussian distributed target data. However, the target values for the
classification coding scheme are binary.
EMCE is directly related to the optimal classification. It avoids the more gen-
eral problem of density estimation as an intermediate step. However, EMCE

is a noncontinuous function, thus cannot be differentiated. In addition, EMCE

may not guarantee good generalization performance as it simply measures
the training set error.

(b) (10 pts) Define

Ln =
1

1 + e−ξ(dn+α)
,

dn = −o(n)
yn

+

[
1

M − 1

∑
m,m�=yn

o(n)
m

η

]1/η

.

Briefly explain why Ln can be used to approximate �n by choosing appropriate pa-
rameters ξ, α and η.

i. When α = 0 and ξ is sufficiently large, Ln approximates the step function
with respect to dn.

ii. When η is sufficiently large,

dn




< 0 if yn = arg max
j

o
(n)
j ,

> 0 otherwise.

As an extreme, lim
η→∞

dn = −o
(n)
yn + max

m,m�=yn

o
(n)
m .

(c) (10 pts) Find the network update rule when using the criterion function E =
∑

n Ln.

Let β be the learning rate parameter, the batch weight update rule will be

∆wji = −β
∑

n

∂Ln

∂wji

So the main task is to compute the term ∂Ln/∂wji. For simplicity, we will
ignore the superscripts of sample index (n).
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By chain rule,

∂Ln

∂wji
=

∂Ln

∂dn
·

M∑
m=1

∂dn

∂om
· ∂om

∂wji

=
∂Ln

∂dn
· ∂dn

∂oj
· ∂oj

∂wji
// Note that

∂om

∂wji
= 0 if m �= j.

As oj is the output from a sigmoid unit, we have

∂oj

∂wji
= oj(1 − oj) · xi

Similarly, following the fact that Ln is a sigmoid with respect to ξ(dn + α),

∂Ln

∂dn

= Ln(1 − Ln) · ξ

If j = yn, then ∂dn/∂oj = −1. Otherwise,

∂dn

∂oj

=
1

\η

[
1

M − 1

∑
m,m�=yn

om
η

] 1
η
−1

· \η
M − 1

o
(η−1)
j

=
1

M − 1

[
1

M − 1

∑
m,m�=yn

om
η

]− η−1
η

o
(η−1)
j

=
1

M − 1

[
oj

dn + oyn

](η−1)

To summarize, the complete expression for ∂Ln/∂wji is

∂Ln

∂wji

=




−ξLn(1 − Ln)oj(1 − oj)xi if j = yn,

ξ

M − 1
Ln(1 − Ln)

[
oj

dn + oyn

](η−1)

oj(1 − oj)xi otherwise.

(d) (5 pts) What problem would you expect to arise in network training if we choose
ξ � 0?

The larger ξ, the more close Ln is to the step function. As a result, there will
be more local minima in the energy function. A practical coase-to-fine trick is
to start from small ξ and gradually increase with time.

(e) (5 pts) Can you think of any continuous function other than Ln that is also able to
approximate �n closely?
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Softmax: Ln = 1 − exp(o
(n)
yn /σ2)∑M

m=1 exp(o
(n)
m /σ2)

Arc Tangent: Ln = 0.5 +
1

π
arctan [ξ(dn + α)]

Hyperbolic Tangent: Ln = 0.5 + 0.5 tanh [ξ(dn + α)]

2. (Cross-validation) In a medical diagnosis problem, we want to train a neural network using
the Back-propagation algorithm. In order to determine the amount of training, a simple
validation technique is employed. Specifically, we randomly split the available samples
into two equal sized parts, one for training and the other for validation. The error curves
on these two sets are shown in the following plot. Note that the training error decreases
monotonically against the number of batch updates, whereas the validation error does not.

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

E
rr

or

Number of batch updates

Error Curves Using Batch-mode Gradient Descent

Training set error
Validation set error

Suppose now that we were to retrain the same neural network using exactly the same algo-
rithm, but using ten times as much available data (50% for training and 50% for test).

(a) (10 pts) Would you expect the training curve to be different? If so, draw what you
would expect. You only need to give a qualitative sketch. In either case, explain your
reasoning.

(b) (10 pts) Would you expect the validation curve to be different? If so, draw what you
would expect. You only need to give a qualitative sketch. In either case, explain your
reasoning.

Notice that as the number of training and test examples approach infinity,
these two curves must become identical. At that piont, they are both going to
be measuring the true error of the learned hypothesis. Thus, as the volume
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of data grows, the two curves will move toward a line between these two. The
validation set curve will move downward, because the true error will decrease.
The training curve will move upward at the same time, because overfitting will
decrease. In other words, the optimistically biased estimate of true error given
by the training error will become less biased as the volume of training data
approaches infinity.

Suppose now that we replace the simple validation with m-fold cross-validation.

(c) (10 pts) True or false, because each of the test sets are independent, the validation
error curves from each fold are also independent. Explain your reasoning.

False. The training sets are correlated because they share examples. They
become increasingly correlated for higher m.

(d) (Optional, 5 pts) True or false, there is an a priori good choice of m for us to decide
the amount of training. Explain your reasoning.

m-fold cross-validation is an unbiased estimator for the expected accuracy of
sample size N − N/m.
If you want to estimate the final accuracy of a classifier trained on N examples,
then m-fold cross-validation is biased. The bias can be reduced by increasing
the number of folds. But increasing it too much may increase the variance,
since higher m increases the correlation in the training sets. The extent of
such a trade-off depends on the underlying data distribution and the learning
method you are using.
When cross-validation is used for model selection (e.g. selecting the early
stopping for neural nets, where we are interested in the difference between
two classifiers), the variance may be even more important assuming the bias
affects all classifiers similarly. In such cases lower m values are often recom-
mended. However, as m decreases, there is variance due to the instability of
training set themselves, leading to an increase in variance.

3. (PAC Learning) Consider the hypothesis class Hrd2 of “regular, depth-2 decision trees”
over n Boolean variables. A “regular, depth-2 decision tree” is a depth-2 decision tree (a
tree with four leaves, all distance 2 from the root) in which the left and right child of the
root are required to contain the same variable. For instance, the following tree is in Hrd2.
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(a) (10 pts) As a function of n, how many syntactically distinct trees are there in Hrd2?
By “syntactically distinct”, we mean trees that look different but may still represent
the same function.

A Hrd2 tree is constructed by filling blanks in the following structure. Two trees
are syntactically different if they are different in any of the seven fields. In that
case, the number of trees is 24n(n − 1).

( )
/ \

( ) ( )
/ \ / \

( )( )( )( )

(b) (10 pts) Give an upper bound for the number of examples needed in the PAC model
to learn any target concept in Hrd2 with error ε and confidence δ.

m ≥ 1

ε
[ln |Hrd2| + ln(1/δ)]

where |Hrd2| = 24n(n − 1).

(c) (10 pts) Consider the following WEIGHTED-MAJORITY algorithm for the class Hrd2.
You begin with all hypotheses in Hrd2 assigned an initial weight equal to 1. Every
time you see a new example, you predict based on a weighted majority vote over all
hypotheses in Hrd2. Then, instead of eliminating the inconsistent trees, you cut down
their weight by a factor of 2. How many mistakes will this procedure make at most,
as a function of n and the number of mistakes of the best tree in Hrd2?

m ≤ 2.4 [k + log2 |Hrd2|]
where |Hrd2| = 24n(n − 1), and k is the number of mistakes made by the best
tree in Hrd2.

(d) (Optional, 5 pts) Derive the number of semantically distinct trees in Hrd2, which
leads to a tighter bound in (b).

The number of semantically distinct trees is the number of Boolean functions
f : {0, 1}n → {±1} that Hrd2 can implement. These functions can be divided
into three categories:

i. Functions of zero variable. There are only 2 possibilities: f = 1 or f =
−1. They correspond to trees where all leaf nodes are labeled the same:
++++ and ----.

ii. Functions of one variable. There are 2n such functions, 2 for each of n
variables. They correspond to trees with leaf node labellings ++--, --++,
+-+- and -+-+.
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iii. Functions of two variables. For each combination of two variables a and
b, there are ten functions: a∧b, ¬a∧b, a∧¬b, ¬a∧¬b, (a∧b)∨(¬a∧¬b) and
their negates. They correspond to trees with leaf node labellings +---,
-+--, --+-, ---+, +--+ and -+++, +-++, ++-+, +++-, -++-.

So the final number is 2 + 2n + 10C2
n = 5n2 − 3n + 2.

4. (Optional, 10 pts, Radial Basis Function) Consider the following four-layer neural net-
work.

This network consists of an input layer, two hidden layers, and an output layer. The first
hidden layer has L1 units, each of which computes the Gaussian radial basis function

o
(1)
j = φj(x) = exp

{
−‖x − µj‖2

2σ2
j

}
(j = 1, . . . , L1),

where x is the d-dimensional input vector with elements xi, and µj is the vector determin-
ing the center of basis function φj. The second hidden layer and the output layer consist of
units with activation functions f (2) and f (3) respectively.

o
(l)
j = f (l)(netj) = f (l)

(
Ll−1∑
i=1

o
(l−1)
i w

(l)
ji + w

(l)
j0

)
(l = 2, 3).

Note that the forms of f (l) are left unspecified. You are given a set of training data
{(xn, yn)}N

n=1.

(a) Suppose yn ∈ (0, +∞), specify some network structure and parameter settings that
allow the entire network to exactly implement the kernel regression estimate:

y(x) =

∑
n yn exp{−‖x − xn‖2/2h2}∑

n exp{−‖x − xn‖2/2h2} .
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L1 = N L2 = 2

f (2) = ln(·) f (3) = exp(·)
µj = xj σ2

j = h2

w
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w
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10 = 0 w
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(3)
12 = −1

(b) Suppose yn ∈ {−1, +1}, and we further assume that both p(x|y = +1) and p(x|y =
−1) follow the unimodal multivariate normal distribution with isotropic covariance

p(x|y = ±1) =
1

(2π)d/2λd
±1

exp

{
−‖x − γ±1‖2

2λ2
±1

}
.

Specify some network structure and parameter settings that allow the entire network
to output exactly the posterior probability P (y = +1|x) when the number of training
samples N → ∞.

L1 = 2 L2 = 2

f (2) = ln(·) f (3) = exp(·)

µ1 = γ̂+1 σ2
1 = λ̂2

+1

µ2 = γ̂−1 σ2
2 = λ̂2

−1

w
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10 = w

(2)
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(2)
20 = 0

w
(2)
11 = P (y = +1)/λd

+1 w
(2)
21 = P (y = +1)/λd

+1, w
(2)
22 = P (y = −1)/λd

−1

w
(3)
10 = 0 w

(3)
11 = 1, w

(3)
12 = −1
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