Using Software-based Attestation
for Verifying Embedded Systems in Cars

Arvind Seshadri Adrian Perrig _ Leendert van Doorn _
Carnegie Mellon University Carnegie Mellon University IBM & Carnegie Mellon University
arvinds@cs.cmu.edu perrig@cmu.edu leendert@ece.cmu.edu
ABSTRACT want to get more power out of their motor may alter the firmware

of the engine controller to change the CAM and valve timiridg [
If done incorrectly, such timing changes can cause cafalst@n-
gine damage, and even result in engine explosion.

Software updates are often used in embedded systems to patch
bugs in existing code or to add greater functionality. Thdaig
mechanism also introduces a security vulnerability. Amckér
may exploit the update mechanisms to inject malicious cat i
the device. This attack becomes increasingly serious, asowe
tinue to network embedded systems and connect them to e Int
net.

With advances in automobile electronics, we find a rapidifaol
ation of embedded systems in cars, both in safety-critipplica-
tions and for passenger comfort. These embedded systerrs are
creasingly networked for their operation and enhancedtioimal-

ity. However, the increased connectivity of embedded systaliso
greatly complicates design, increases the number of &ihodes,
and introduces the risk of remote malicious attacks, suetoass
and viruses. Moreover, car owners may alter the code on ¢aeir
to access features they did not pay for or achieve highermpeie

formance. Such owner-initiated changes are likely to dmate So far, code attestatiorhas been proposed as a mechanism to

the car's safety. verify the code running on a system, and special hardwaréasec
We propose SWATT, a SoftWare-based AT Testation mechanism . 9 ystem, 'SP
nisms have been designed to achieve this property, e.g.,[&G

to detect ar!q defend .agalnst these threats.. SWATT enables anmerly known as TCPA) [15] and NGSCB (formerly known as Pal-
external verifier to verify the code of a running system toedet

maliciously inserted or altered code. So fende attestatiomas ?(;jt"ljnr:)a&g]i.lai?givlirl :é)egla};t(kalzranwgv(\)/?:jeutGOtgrgc\)/lstﬁeitsatsamay
been proposed as a mechanism to verify the code running on a We desianed andgimyle?lnented SWATT. a software-based ap-
system, and special hardware mechanisms have been designed 9 plemen ’ ; p
achieve this property, e.g., TCG (formerly known as TCPA][1 gr%ach to the problem of vernalng the code “I”‘”'T‘fg on an G.‘“be
and NGSCB (formerly known as Palladium) [6]. However, spkci ed system [9]. SWATT enables an external verifier to veriy t

: . : ; code running on a system, without direct physical accedsteiin-
hardware to provide attestation may not be available indgggs- bedded system’s memory. SWATT is secure as long as the verifie
tems or due to cost reasons. Therefore, we design SWATT to be y Y- 9

LT . has a correct view of the hardware. In particular, the venfeeds
software-based. Code attestation is instrumental to mpplica- . . .
. . - . to know the clock speed, instruction set architecture (1849 the
tions, such as remote detection of malicious code (suchaarir

horses and viruses) in embedded systems and gives an assuran memory arch|tgcture of the m'cr,""o“t“’“‘?r on the embediied
o . vice, and the size of the device’s memories. To attack SWATT,
that critical embedded systems are running the correct. dbaes

. . . an attacker would need to change the hardware of the devids. T
use SWATT to verify code running on embedded systems in a car, significantly increases attacker effort, previously aaakter simpl
an attacker is forced to perform a hardware change to hidertise 9 y P 4 ply

ence of altered code; greatly increasing the effort reguing an needed to upload malicious firmware, but with SWATT the &itac

attacker and preventing entire classes of remote attacks also has to modify the hardware.
P 9 ’ As afirst step, we implemented SWATT on the Mica Mote sensor

network devices [4]. The motes have an 8-bit microcontraliith
1 INTRODUCTION no virtual memory support. Many of the embedded systemsinsed
cars, such as the engine timing controller, are based oe Kied of
small microcontrollers. Hence, our approach is directlglizpble
to car-based embedded systems.

The number of embedded systems in cars is expanding. These em
bedded systems are increasingly networked for enhancetidan
ality and firmware upgrades. Networking these devices h#ls bo

positive and negative aspects: on the positive side netagn- Outline In Section 2, we give a problem definition and describe
hances capabilities, but on the negative side networkimgtiyr the attacker model. Section 3 presents our general apparath
complicates design, increases the number of failure moates, describes the implementation of SWATT on the mica mote senso
introduces the risk of remote malicious attacks, like wormsl network devices. In Section 4 we discuss related work, and we
viruses. For example, recently, we have witnessed ther‘oabirm present our conclusions in Section 5.

that infects cell phones using their bluetooth interfade 48d we

could easily imagine worms that use similar mechanismsdpapr 2 PRrROBLEM DEFINITION , ASSUMPTIONS, &
gate from car to car on a highway. Another risk are car owrfes t

alter the firmware of embedded car systems to gain accesslito ad THREAT MODEL
tional features, for example use the GPS technology of theefaé Software attestatiors a method to externally verify the code run-
Motors OnStar system without paying for the service [8]s itliear ning on an embedded device, without physical access to the-me
that unauthorized changes to firmware may interfere witbrotar ory. Consider the setting that Figure 1 shows. We assume that
systems and thus reduce the car safety. Finally, car owhats t a verification device which we call theverifier, wants to check

whether the code memory contents ofeanbedded devicevhich

we refer to as thélevice is the same as some expected value. We
assume that the verifier knows the expected code memoryrasente
For embedded systems used in cars, the verifier could be the ma
ufacturer or another authorized entity. So the expectadeval the
device's code memory will be known to the verifier. The goal is
to design an effectiveerification proceduresuch that it will suc-
ceed if the code memory contents of the device is the sameeas th
expected value, and it will fail with extremely high probitli if

the code memory contents of the device differs from the ebgpec
value even by a single byte. We say a verification procedutie wi
this property is a secure verification procedure.

We assume that the device contains a memory content verifi-
cation procedure that the verifier can activate remotelyjtetAa-
tively, this procedure could also be downloaded any timerpo
the verification.) To verify that the device’'s memory matkhiee
expected memory contents, the verifier creates a randortenpel
and sends it to the device. The device then computes thensspo
the challenge using the verification procedure. Using itallcopy
of the device’s expected memory, the verifier can locally pora
the expected response and verify the correctness of theakevi
response. Note that we do not need to assume that the deviee co
tains a trusted version of the verification procedure—faregle,
we assume that an attacker can take full control of a comzexni
device and may not run the legitimate verification procedbi@w-
ever, a secure design of the verification procedure will enghat
the verification will fail if the memory content of the devidees
not match the expected content no matter what code the dewise
for the verification.

Verifier Device

response

request

Y

—_3
-

Device’s presumed memory content Device memory

Figure 1: Generic external memory verification. The verifier
has a copy of the device’s presumed memory, and sends a re-
guest to the embedded device. The device can prove its memory
contents by returning the correct response.

Threat Model. We assume that an attacker has full control over
the memory of the device. However, we assume that the attacke
does not modify the hardware of the device, e.g., increassite

of the memory, or increase the clock speed of the proces$at T
is, we assume that the verifier knows the exact hardware ennfig
ration of embedded device. Also, it is assumed that impetsam
and proxy attacks, where the response to the challenge tnem t
verifier is computed by another entity on the device'’s belei

not possible.

2.1 Naive Approaches and Attacks

A naive approach for verifying the embedded device’s memory
contents is for the verifier to challenge the embedded dewdice
compute and return a message authentication code (MAC)eof th
embedded device's memory contents. The verifier sends amand
MAC key, and the embedded device computes the MAC on the en-
tire memory using the key and returns the resulting MAC value
The random key prevents pre-computation and replay attduis
would be possible if a simple hash function were used. Howeve
we show that just verifying the response is insufficient—acker

can easily cheat. The embedded device is likely to have some

empty memory, which is filled with zeros. When an attackesralt
parts of the memory (e.g., inserting a Trojan horse or vjril) at-
tacker could store the original memory contents in the empeyn-
ory region and compute the MAC function on the original meynor
contents during the verification process. Figure 2 illussahis at-
tack. It is not necessary for the embedded device to have atyem
memory region for this attack to succeed. An attacker caxgtlgs
easily move the original code to another device that it caglcess
when computing the MAC.

3 SWATT: SOFTWARE -BASED ATTESTATION

In this section, we first discuss our general approach. We the
briefly describe the implementation of the SWATT memory eont
verification procedure on the mica mote sensor network deyic
giving the assembler code. Our publication describes SWATT
greater detail and also shows the results of our experini@hts

3.1 Approach: Pseudorandom Memory Traversal

As mentioned in Section 2, the embedded device contains a mem
ory content verification procedure that the verifier canvatsi re-
motely. This verification procedure usegpseudorandom mem-
ory traversal In this approach, the verifier sends the device a
randomly-generated challenge. The challenge is used adase
the pseudorandom number generator (PRG) which generaes th
addresses for memory access. The verification procedunegptire
forms a pseudorandom memory traversal, and iterativelyatgsd

a checksum of the memory contents. The key insight, which pre
vents the attack on MACs mentioned in Section 2, is that an at-
tacker cannot predict which memory location is accesseds;Tif

the attacker alters the memory, it has to perform a checkhenet
the current memory access is to one of the altered locatfons,
each iteration of the verification procedure. If the curnemory
access indeed touches an altered location in the memonrgatthe
tacker’s verification procedure needs to divert tlwad operation

to the memory location where the correct copy is stored. Hven
the attacker alters a single memory location, the increasaining
time of the verification procedure due to the addddstatement
becomes noticeable to the verifier, as the verification ghoeeis
very efficient and performs many iterations. So a verifiet dé-

tect the altered memory because either the checksum rdtbsne
the embedded device is wrong, or the result is delayed a-suspi
ciously long time. We construct the verification procedura ivay
that a single additionalf statement wildetectably slow dowthe
checksum computation by the embedded device, in our impleme
tation on the mica mote sensor nodes, the slowdowni&&s

3.2 Design and Implementation of Verification Procedure on
Sensor Motes

We have designed and implemented our verification procefdure
sensor motes, which use an Atmel ATMEGA163L microcontrplle
an 8-bit Harvard Architecture with 16 Kbytes of program meyno
and 1 Kbyte of data memory [4]. The CPU on the microcontroller
has a RISC architecture. We first describe our design andstimm

its realization in assembly language of the ATMEGA163L.

We use the RC4 Pseudo-Random Generator (PRG) by Rivest
to generate the pseudo-random sequence of addresses farynem
access. RC4 takes a seed as input and outputs a pseudo-random
keystream.

To achieve a low probability of collision for different memyo
contents, we need a sufficiently long output for the checksifm
our checksum function outputs bits, 27" is a lower bound on
the collision probability. In this implementation, we us&4bit
checksum. Figure 3 shows the pseudo code of our implementati

Expected memory layout

i

Verif. code Firmware Empty

Attacker's memory layout

)
i)

Malicious code Firmware Old verification code

Figure 2: Memory verification attack. The attacker replacesthe verification code with malicious verification code and cpies the old
verification code into empty memory.

algorithm Verify(m) Assembly explanation Pure assembly code
/lInput: m number of iterations of the verification proceelur
//Output: Checksum of memory Generatei'" member of random sequence using RC4
Let C be the checksum vector zh— 2 Idi zh, 0x02
andj be the current index into the checksum vector 15 « *(x++) Id r15, x+
for i — 1tom do yl —yl+r15 addyl, r15
/IConstruct address for memory read zl «—*y Idzl,y
A; — (RC4; € 8) 4+ C((j—1) mod) *y «rl5 sty, r15
//Update checksum byte *X «— rl6 stx, r16
Cj — Cj + (Mem[Ai] ® C(j—2) mod s) + RC4i_1) zl «— zI + 115 add zl, r15
C; < rotate left one bit(Cj) zh«+ *z Id zh, z
//Update checksum index Generate 16-bit memory address
j—(i+1) mod8 zl 16 mov zl, r6
return C Load byte from memory and compute transformation
10« *z Ipmr0, z
r0«~—r0&e rl13 xor r0, r13
Figure 3: Verification Procedure (Pseudocode) 0—r0+rd add ro, r4
Incorporate output of transformation into checksum
r7—r7+r0 addr7,r0

Assembly code Figure 4 shows the assembly code, written in the

. «—
assembly language of the Atmel ATMEGA163L microcontroller rre—rr<<l . Isl r7
- . : 7 « r7 + carrybit adc r7,r5
The architecture of the microcontroller has the followiguac-
r4 «— zh mov r4, zh

teristics:

e The microcontroller has a Harvard Architecture, with 16 kdsy . o
of program memory and 1 Kbyte of data memory. Figure 4: Verification Procedure (Assembly Code)

e The CPU inside the microcontroller uses a RISC ISA. This
means that all instructions except loads and stores haye onl
CPU register and immediate as operands. Only loads and
stores use memory addresses.

singlei f statement (compare + branch) that takes 3 cycles, to the
main loop, adds a 13% overhead, in terms of machine cycles, to
each iteration of the loop. We show through experimentsttiiat

e The CPU has 32 8-bit general purpose registers, r0 — r31. Overhead is externally detectable [9].
Registers r26 and r27 together can be treated as a 16-hit reg-
ister x, used for indirect addressing of data memory. Simi-
larly, r28 and r29 form register y and r30 and r31 form reg-

ister z. The upper and lower 8-bits of the 16-bit registees ar SWATT provides code attestation without requiring any ke
named using the suffix 'h” and 'I' after the name of the reg- modifications. This is an important advantage, as ownersnaa-
ister. Thus xh and xI refer to the upper and lower bytes of X yfacturers, or service stations could verify the firmwarenrbed-
and similarly for y and z. ded systems in the car without having direct access to theanem
ries. SWATT could be used today on current cars, for exanple t
detect firmware alterations on the engine controller. Far&unet-
worked cars that may be connected to the Internet, we cowdd us
SWATT to detect maliciously injected code, and to ensuréttiea
correct code is running on the system. As an example, theeyar k
could perform code attestation every time we start the endig
storing challenge-response pairs in the key. Since SWAPUIisly

The main loop of our verification procedure is just 16 assgmbl software based, it benefits from a lower deployment cost hiaad-
instructions and takes 23 machine cycles. Hence, the addifia ware based approaches.

3.3 Discussion

e Data and program memory can be addressed directly or in-
directly. To indirectly address data memory, one of x, y or
Z registers holds the pointer to the memory location. In case
of program memory, only the z register can be used for in-
direct addressing. Indirect addressing has displacemest,
decrement and post-increment modes.

4 RELATED WORK

Paar and Wollinger discuss security risks in cars and show ho
security and cryptography can be used to achieve acces®kont
theft, anonymity, reliable communication, content prtitet, and
legal controls [7]. In addition to cryptographic processes pro-
pose SWATT in this article to further control these risks anatect
against changes of the car’s firmware.

The IBM 4758 secure cryptographic coprocessor [12, 13, 14]
runs a general purpose operating system and allows fielchdpgr
of its software stack. To ensure the integrity of the systeosés
a form of secure boot [1, 2] that starts from an initial trass¢ate
and each layer verifies the digital signature of the nextrldge
fore executing it. This ensures that the software stack babeen
altered.

Systems such as TCG (formerly known as TCPA) [15] and NGSCB
(formerly known as Palladium) [6] use essentially the saotén
to bootstrap trust but the mechanisms are very differentG 86d
NGSCB measure the integrity of the various components using
secure hash function (SHA-1) and the result is stored in aragp
secure coprocessor. This coprocessor can attest to theseirae
ments by signing them with the attestation identity key thatored
inside the coprocessor. What is measured differs per sySt€s
starts measurement from system boot and NGSCB starts nragasur
when the Nexus takes control. [9

SWATT does not need a secure coprocessor and allows a trusted
external entity to verify the code on a device using softweao-
niques. Further, this verification need not be done at dewiz#
but can be carried out whenever the external verifier wishemot
so0. Once the code is verified, it forms the trusted computaggb
Hence we bootstrap trust entirely in software and provideugu
tees similar to TCG or NGSCB, without requiring secure hamnaw
Therefore, SWATT can be used with legacy systems that do not
have secure hardware and with systems that lack secure dr@dw
due to cost concerns.

Kennell and Jamieson propose techniques to verify the géwpui
of computer systems [5]. Central to their technique is trespse
that by including sufficient amount of architectural matésrmation
that is generated in a complex CPU into a simple checksumeof th
memory contents, an attacker with a different CPU, who imtry
to simulate the CPU in question will suffer a severe slowdadmn
checksum computation. Unfortunately, their techniquéessifrom
security vulnerabilities [9, 10].

(1

(2]

K]

4]

5

(6]
(7]

8]

[10]
[11]

[12]
[13]
[14]

[15]

5 CONCLUSION

SWATT is a software-based technique for externally venigythe
code running on an embedded device. Central to our techisque
carefully constructed verification procedure that compateheck-
sum over memory in such a way that an attacker cannot alter the
content of that memory without changing the externally ol
running time of the verification procedure while still praihg the
correct checksum. In particular, we use a randomized aqEdss
tern to force the attacker to insert check statements befazey
memory access if the memory was altered.

SWATT is targetted towards embedded systems, without secur
hardware. It does code attestation and provides propegiieis
lar to TCG and NGSCB without requiring secure hardware. Thus
SWATT can be used to detect malicious code. Hence, it can be
used as a primitive for building high confidence embeddetetsys
in a networked environment, where risk of attacks due tocimals
code is significant.

If we use SWATT to verify code running on embedded systems
in a car, an attacker is forced to perform a hardware changieléo

the presence of altered code; greatly increasing the efquired
by an attacker and preventing entire classes of remotekattac

REFERENCES

William A. Arbaugh, David J. Farber, and Jonathan M. SmA reliable boot-
strap architecture. IRroceedings of the IEEE Symposium on Research in Secu-
rity and Privacy pages 65-71, May 1997.

William A. Arbaugh, Angelos D. Keromytis, David J. Farhbe@nd Jonathan M.
Smith. Automated recovery in a secure bootstrap proce$¥dceedings of the
Symposium on Network and Distributed Systems Security $NB&, pages
155-167, March 1998.

Celeste Biever. First cell phone worm emergehttp:// www.
newsci enti st. conf news/ news. j sp?i d=ns99995111, June 2004.
Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, h#&. Culler, and
Kristofer S. J. Pister. System architecture directionsi&worked sensors. Kr-
chitectural Support for Programming Languages and Opegystemgpages
93-104, 2000.

Rick Kennell and Leah H. Jamieson. Establishing the getyuof remote
computer systems. IRroceedings of the 11th USENIX Security Symposium
USENIX, August 2003.

Next-Generation Secure Computing Base (NGSCBjttp://ww.

m crosoft.conlresources/ ngsch/ def aul t. mspx, 2003.

Christof Paar and Thomas Wollinger. Eingebettete siobie und kryptographie
im automobil: Eine einfihrung. IWorkshop Automotive SW Engineering and
ConceptsOctober 2003.

John Schwartz. This car can talk. what it says may causeemo. ht t p:

/1 www. nyti nes. com 2003/ 12/ 29/ t echnol ogy/ 29car . ht nl ,De-
cember 2003.

] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, dnhdeep Khosla.

Swatt: Software-based attestation for embedded deviocd&oceedings of the
IEEE Symposium on Security and Privabjay 2004.

Umesh Shankar, Monica Chew, and J. D. Tygar. Side effa@ not sufficient to
authenticate software. Rroceedings of the 13th USENIX Security Symposium
August 2004.

Peter Shearman. The black mystic art of cam timindittp://nail .
symul i.com vw canpl. htm, http://nmail.symuli.com vw
canp2. htm ,http://mail.symuli.conm vw canp3. ht m ,1997.

S.W. Smith, E. Palmer, and S.H. Weingart. Using a highigrmance, pro-
grammable secure coprocessor.2imd International Conference on Financial
Cryptography 1998.

S.W. Smith, R. Perez, S.H. Weingart, and V. Austel. dafing a high-
performance, programmable secure coprocess@2ihu National Information
Systems Security ConferenGetober 1999.

S.W. Smith and S.H. Weingart. Building a high-performe, programmable se-
cure coprocesso€omputer Networks (Special Issue on Computer Network Se-
curity), 31:831-960, 1999.

Trusted Computing Group
trust edconputi nggroup. or g/, 2003.

(TCG). htt ps: // vwww.

