Pioneer: Verifying Code |

ntegrity and Enforcing

Untampered Code Execution on Legacy Systems:

Arvind Seshadri
CMU/CyLab

Adrian Perrig

CMU/CyLab IBM

ABSTRACT

We propose a primitive, called Pioneer, as a first step towards ver-
ifiable code execution on untrusted legacy hosts. Pioneer does no
require any hardware support such as secure co-processoirior
architecture extensions. We implement Pioneer on an Intel Pentium
IV Xeon processor. Pioneer can be used as a basic building block
to build security systems. We demonstrate this by building a kernel
rootkit detector.

Categories and Subject Descriptors:Software, Operating Sys-
tems, Security and Protection, Verification.

General Terms: Security.

Keywords: Verifiable Code Execution, Software-based Code At-
testation, Dynamic Root of Trust, Rootkit Detection, Self-check-
summing Code.

1 INTRODUCTION

Obtaining a guarantee that a given code has executed untampere

on an untrusted legacy computing platform has been an open re-

search challenge. We refer to this as the probleredfiable code
execution An untrusted computing platform can tamper with code
execution in at least three ways: 1) by modifying the code before
invoking it; 2) executing alternate code; or 3) modifying execution
state such as memory or registers when the code is running.

In this paper, we proposesoftware-basegbrimitive called Pi-
oneet as a first step towards addressing the problem of verifiable
code execution on legacy computing platform without relying on

secure co-processors or CPU architecture extensions such as virtu

alization support. Pioneer is based on a challenge-response proto
col between an external trusted entity, calleddispatcherand an
untrusted computing platform, called thaetrusted platform The

*This research was supported in part by CyLab at the Carnegie Mellon University un-
der grant DAAD19-02-1-0389 from the Army Research Office, by NSF under grant
CNS-0509004, and by a gift from IBM, Intel and Microsoft. The views and conclu-

Mark Luk
CMU/CyLab

Elaine Shi
CMU/CyLab

Leendert van Doorn Pradeep Khosla

CMU/CyLab

dispatcher communicates with the untrusted platform over a com-
munication link, such as a network connection. After a successful

{'nvocation of Pioneer, the dispatcher obtains assurance that: 1) an

arbitrary piece of code, called tiegecutableon the untrusted plat-
form is unmodified; 2) the unmodified executable is invoked for
execution on the untrusted platform; and 3) the executable is ex-
ecuted untampered, despite the presence of malicious software on
the untrusted platform.

To provide these properties, we assume that the dispatcher knows
the hardware configuration of the untrusted platform, and that the
untrusted platform cannot collude with other devices during verifi-
cation. We also assume that the communication channel between
the dispatcher and the untrusted platform provides the property of
message-origin authenticatipne., the communication channel is
configured so that the dispatcher obtains the guarantee that the Pio-
neer packets it receives originate from the untrusted platform. Fur-
thermore, to provide the guarantee of untampered code execution,
we assume that the executable is self-contained, not needing to
Hwoke any other software on the untrusted platform, and that it
can execute at the highest processor privilege level with interrupts
turned off.

The dispatcher uses Pioneer to dynamically establish a trusted
computing base on the untrusted platform, calleddywamic root
of trust All code contained in the dynamic root of trust is guar-
anteed to be unmodified and is guaranteed to execute in an un-
tampered execution environment. Once established, the dynamic
root of trust measures the integrity of the executable and invokes
the executable. The executable is guaranteed to execute in the un-
tampered execution environment of the dynamic root of trust. In

Pioneer, the dynamic root of trust is instantiated througtvéréi-
cation functionaself-checkindunction that computes a checksum
over its own instructions. The checksum computation slows down
noticeably if the adversary tampers with the computation. Thus,
if the dispatcher receives the correct checksum from the untrusted
platform within the expected amount of time, it obtains the guaran-

tee that the verification function code on the execution platform is

sions contained here are those of the authors and should not be interpreted as necegynmodified.

sarily representing the official policies or endorsements, either express dedingi
ARO, Carnegie Mellon University, IBM, Intel, Microsoft, NSF, or the UGovern-
ment or any of its agencies.

1We call our primitive Pioneer because it can be used to instantiate a trustedrbas
an untrusted platform.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgunes prior specific
permission and/or a fee.

SOSP'050ctober 23—26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0015.00.

Pioneer can be used as a basic primitive for developing security
applications. We illustrate this by designing a kernel rootkit de-
tector. Our rootkit detector uses a software-based kernel integrity
monitor. Instead of using rootkit signatures or low level filesystem
scans to find files hidden by a rootkit, our kernel integrity monitor
computes periodic hashes of the kernel code segment and static data
structures to detect unauthorized kernel changes. The trusted com-
puter uses Pioneer to obtain a guarantee that the kernel integrity
monitor is unmodified and runs untampered. When implemented
on version 2.6 of the Linux kernel, our rootkit detector was able
to detect all publically-known rootkits for this series of the Linux
kernel.

An important property of Pioneer is that it enables software- 2 PROBLEM DEFINITION , ASSUMPTIONS &
based code attestation [21]. Code attestation allows a trusted en- ATTACKER M ODEL
tity, known as theverifier, to verify the software stack running on
another entity, known as tretestation platform The verifier and In this section, we describe the problem we address, discuss the
the attestation platform are usually different physical computing assumptions we make, and describe our attacker model.
devices. A measurement agent on the attestation platform takes o
integrity measurements of the platform’s software stack and sends2-1 Problem Definition
them to the verifier. The verifier uses the integrity measurements We define the problem oferifiable code executigrin which the
obtained from the attestation platform to detect modifications in the dispatcher wants a guarantee that some arbitrary code has executed
attestation platform’s software stack. untampered on an untrusted external platform, even in the presence

The Trusted Computing Group (TCG) has released standardSOf_:_nh""“c'ous sof(;wallrefon thﬁ externﬁl ptlwatfi_rm. f . led th
for secure computing platforms, based on a tamper-resistant chip . e u_ntruste _pat orm has a sefl-checking unct[()_n, calle the
called the Trusted Platform Module (TPM) [24]. The verifier can v_erlflcatlon f_unctlon. The dispatcher invokes the verification fqr_m-
use the TPM on the attestation platform to obtain the guarantee offion by sending a challenge to the untrusted platform. The verifica-

load-time attestation, whereby the verifier obtains a guarantee of trilon function frek;[urns .‘? chgck?um FO the gispat.cr;ler. Th de dilspatcher
what code was loaded into the system memory initially. All code as a copy of the verification function and can independently verify

is measured before it is loaded and the measurements are stored irlt-he checksum. If the checksum returned by the untrusted platform

side the TPM. In response to an attestation request, the attestatioﬁsbco_rreCL and is returnid W'tg'n the_expecte}d time, the dlsp?]tcher
platform sends the load-time measurements to the verifier. obtains the guarantee that a dynamic root of trust exists on the un-

trusted platform. The code in the dynamic root of trust measures the

The SHA-1 hash function is used as the measurement agent inexecutable, sends the measurement to the dispatcher, and invokes
TCG. The collision resistance property of SHA-1 has been compro- the executable. The executable runs in an untampered execution
mised [25]. The adversary can exploit this vulnerability to create environment, which was set up as part of instantiating the dynamic
a good version and a malicious version of an executable with the root of trust. The dispatcher can verify the measurement since it
same hash value. The adversary can then undetectably exchangBas a copy of the executable. Taken together, the correctness of the
the good copy of the executable with the malicious copy on the checksum and correctness of the executable measurement provide
attestation platform. After obtaining the load-time measurements the guarantee of verifiable code execution to the dispatcher.
from the attestation platform, the verifier believes that the attes- Even if malicious software runs on the untrusted platform, it can-
tation platform loaded the good copy of the executable. In real- not tamper with the execution of the executable. The adversary
ity, the attestation platform has loaded the malicious copy. Hence, can perform an active DoS attack and thwart Pioneer from being
the load-time attestation guarantee provided by TCG does not holdrun at all. However, the adversary cannot cheat by introducing a
anymore. Also, other systems that rely on the load-time attestation false negative, where the correct checksum value has been porte

provided by TCG such as Terra, Intel's LaGrande Technology and within the expected time to the dispatcher, without the correct code
AMD’s Pacifica are compromised as well [4, 11, 12]. executing on the untrusted platform.

It is not possible to update the TCG measurement agent using
software methods. The only way to update is to physically replace
hardware. TCG is designed this way to prevent an adversary from We assume that the dispatcher knows the exact hardware config-
replacing the measurement agent with a malicious version. How- uration of the untrusted platform, including the CPU model, the
ever, this also means that whenever the cryptographic primitives CPU clock speed, and the memory latency. We also assume that
used by TCG are compromised, the only way to re-secure alreadythe CPU of the untrusted platform is not overclocked. In addition,
deployed systems is to physically replace their hardware. the untrusted platform has a single CPU, that does not have sup-
ort for Symmetric Multi-Threading (SMT). For the x86 architec-

.) . ure, we also assume that the adversary does not generate a System
not require any hardware extensions to the attestation platform. TheManagement Interrupt (SMI) on the untrusted platform during the
verifier depends on Pioneer to guarantee the verifiably correct ex- execution of Pioneer

ecution of the measurement agent. Pioneer-based code attestation We assume the communication channel between the dispatcher

has threg main advan.tages.: 1) it can be updatgd using SOftwareand the untrusted platform provides message-origin authentication
methods if the underlying primitives are compromised, 2) it works

i.e., the dispatcher is guaranteed that all Pioneer packets it receives
on legacy systems that lack secure co-processors or other hardwar

. originate at the untrusted platform. Also, we assume that the un-
enhancgments to protect th_e mea}surement agent f”’".‘ a mal'c'ouﬁrusted platform can only communicate with the dispatcher dur-
attestation platform, and 3) it provides the propertywi-time at-

testation i.e., the verifier can verify the integrity of software run- Ing the time Pioneer runs. Equivalently, the dispatcher can de-
; nie., - grity . tect the untrusted platform attempting to contact other computing
ning on the attestation platform at the present time. Run-time attes-

. . ~~ platforms. We make this assumption to eliminate gnexy at-
gﬁ?srlaﬁirgxldseisciSst(r)?tr\:\?aerr(.agcl;rigtigr;h;g;:]ize-l;:lcg/ girslzﬁilgz?t;ms ack where the untrusted platform asks a faster computing device
after Ioadir;g (proxy), t(_) compute the checksum on its behalf. _

’ Assuming that the untrusted platform has only one wired com-

The paper is organized as follows. Section 2 describes the prob-munication interface, we can provide message-origin authentica-
lem we address, our assumptions, and attacker model. In Section 3fion and eliminate the proxy attack by physically connecting the
we give an overview of Pioneer. We then describe the design of the untrusted platform to dispatcher with a cable. Also, if the untrusted
verification function and its implementation on the Intel Pentium platform can only communicate over a Local Area Network (LAN),
IV Xeon processor in Sections 4 and 5, respectively. Section 6 the network administrators can configure the network switches such
describes our kernel rootkit detector. We discuss related work in that any packets sent by the untrusted platform will reach only the
Section 7 and conclude in Section 8. dispatcher.

2.2 Assumptions

The software-based code attestation provided by Pioneer doe

2.3 Attacker Model obtained within the expected amount of time is a guarantee to the
We assume an adversary who has complete control over the Soft_dispatcher that the verification function code on the untrusted plat-

ware of the untrusted platform. In other words, the adversary has form is.unmodified and that there is an environment for untgmpered
administrative privileges and can tamper with all software on the €xécution on the untrusted platform. In other words, the dispatcher
untrusted platform including the OS. However, we assume that the obtains the guarantee that there is a dynamic root of trust on the
adversary does not modify the hardware on the untrusted platform. Untrusted platform.
For example, the adversary does not load malicious firmware onto Hash function. We use SHA-1 as the hash function to perform the
peripheral devices such as network cards or disk controllers, or re-integrity measurement of the executable. Although the collision re-
place the CPU with a faster one. In addition, the adversary does notsistance property of SHA-1 has been compromised, we rely on the
perform DMA-based attacks like scheduling a DMA-write causing second-preimage collision resistance property for which SHA-1 is
a benign peripheral device to overwrite the executable between thestill considered secure. To achieve this property, we design the hash
time of measurement and time of invocation. function so that it computes the hash of the executable as a function
of a nonce that is sent by the dispatcher. Thus, the adversary cannot
take advantage of the compromised collision resistance property of
3 PIONEER OVERVIEW SHA-1 to create to two different copies of the executable both of
In this section, we give an overview of the verification function and which have the same hash value. After the measurement, the hash
describe the challenge-response protocol used to set up a dynamig¢unction invokes the executable.
root of trust on the execution platform and to obtain the guarantee gand function. The send function returns the checksum and in-

of verifiable code execution. tegrity measurement to the dispatcher over the communication link.

3.1 The verification function 3.2 The Pioneer Protocol

The verificgtion functjon is the centrgl component of the Pioneer The dispatcher uses a challenge-response protocol to obtain the
system. Itis responsible for performing an integrity measurement o ,arantee of verifiable code execution on the untrusted platform.
on the executable, setting up an execution environment for the ex-The protocol has two steps. First, the dispatcher obtains an assur-
ecutable that ensures untampered execution, and invoking the exynce that there is a dynamic root of trust on the untrusted platform.
ecutable. As Figure 1 shows, the verification function has three gecong, the dispatcher uses the dynamic root of trust to obtain the

parts: a checksum code, a hash function and a send function. guarantee of verifiable code execution.
N (i o o
Dispatcher Untrusted Platform
| . R
' Verification func | Verification func 1 D: t1 < current timenonce—{0,1}"
! D—P: (nonce
! I 1. Challenge
|| Checksum code = | Checksum code .
| ! 3. Checksum 2. P: ¢« ChecksuninonceP)
! w i 5 3. P—-D: (c)
! | 5. Hash of code ‘ Send function ‘ o D: tp « current time
‘ 9 . N .
| ‘ : 3 if (to —t1 > At) then exit with failure
l ! Hash function 2 else verify checksura
! w — @ 4. P: h «— HashnoncgE)
! 4, Hash 6. Invok
; &Ny ”"OGE 5 P—D: (h)
} Executable ! 7. Result (optional) Executable 7} D: verify measurement resuit
| } g 6. P: transfer control t&E
N A \) 7. E—D: (result (optional)

~. Expected memory layout

.) i) Figure 2: The Pioneer protocol. The numbering of events is
Figure 1. Overview of Pioneer. The numbers represent the {he same as in Figure 1. D is the dispatcher, P the verification

temporal ordering of events. function, and E is the executable.

Checksum code. The checksum code computes a checksum over We describe the challenge-response protocol in Figure 2. The
the entire verification function, and sets up an execution environ- dispatcher first sends a challenge containing a random nonce to the
ment in which the send function, the hash function and the exe- untrusted platform, initiating the checksum computation of the ver-
cutable are guaranteed to run untampered by any malicious soft-ification function. The untrusted platform uses the checksum code
ware on the untrusted platform. The checksum code computes athat is part of the verification function to compute the checksum.
fingerprint of the verification function, i.e., if even a single byte of The checksum code also sets up an execution environment to en-
the verification function code is different, the checksum will be dif- sure that the send function, the hash function and the executable can
ferent with a high probability. Thus, a correct checksum provides execute untampered. After computing the checksum, the checksum
a guarantee to the dispatcher that the verification function code is code invokes the send function to return the checksum to the dis-
unmodified. However, an adversary could attempt to manipulate patcher. The dispatcher has a copy of the verification function and
the checksum computation to forge the correct checksum value in can independently verify the checksum. Also, since the dispatcher
spite of having modified the verification function. For example, the knows the exact hardware configuration of the untrusted platform,
adversary could detect when the checksum code reads the alteredhe dispatcher knows the expected time duration of the checksum
memory locations and redirect the read to other memory locations computation. After the send function returns the checksum to the
where the adversary has stored the correct values. To detect suchlispatcher, it invokes the hash function. The hash function mea-
manipulations, we construct the verification function such thatif an sures the executable by computing a hash over it as a function of
adversary tries to manipulate the checksum computation, the com-the dispatcher’s nonce and returns the hash of the executable to the
putation time will noticeably increase. Thus, a correct checksum dispatcher using the send function. The dispatcher also has a copy

of the executable and can independently verify the hash value. Theshown in Figure 3(b), the adversary executes an altered checksum
hash function then invokes the executable, which optionally returns function from the correct location in memory, but computes the
the execution result to the dispatcher. checksum over a correct copy of the checksum function elsewhere
in memory; 2) as shown in Figure 3(c), the adversary does not move
the correct checksum code, but executes its modified checksum
4 DESIGN OF THE CHECKSUM CODE code from other locations in memory; or 3) the adversary places
In this section, we discuss the design of the checksum code that isboth the correct checksum code and its modified checksum code
part of the verification function. The design is presented in a CPU- in memory locations that are different from the memory locations
architecture-independent manner. First, we discuss the propertiesvhere the correct checksum code originally resided, as shown in
of the checksum code, and explain how we achieve these propertied-igure 3(d).
and what attacks these properties can prevent or help detect. Then, It is obvious from the above description that when the adversary
we explain how we set up an execution environment in which the performs a memory copy attack, either the adversary’s Program
hash function, the send function and the executable execute un-Counter (PC) value or the data pointer value or both will differ from
tampered. In Section 5, we shall describe how to implement the the correct execution. We cause the adversary to suffer an execution

checksum code on an Intel Pentium IV Xeon processor. time overhead for the memory copy attack by incorporating both
the PC and the data pointer value into the checksum. In a memory
4.1 Required Properties of the Checksum Code copy attack, the adversary will be forced to forge one or both of

The checksum code has to be constructed such that adversarial tami16S€ values in order to generate the correct checksum, leading to

pering results in either a wrong checksum or a noticeable time &0 iNcrease in execution time. _
delay. We now describe the required properties of the checksum Both the PC and the data pointer hold virtual addresses. The

code and explain how these properties achieve the goals mentione¢/€rification function is assumed to execute from a range of virtual
above. addresses that is known to the dispatcher. As aresult, the dispatcher

knows the excepted value of the PC and the data pointer and can

Time-optimal implementation. Our checksum code needs to be compute the checksum independently.

the checksum code sequence with the fastest running time; other-
wise the adversary could use a faster implementation of the check-
sum code and use the time saved to forge the checksum. Unfor-

tunately, it is an open problem to devise a proof of optimality for
our checksum function. Promising research directions to achieve a
proof of optimality are tools such as Denali [15] or superopt [10] LLL -— DP
that automatically generate the most optimal code sequence for ba- — v ff‘,"c —
sic code blocks in a program. However, Denali currently only op- I) e D
timizes simple code that can be represented by assignments, and V. func ﬁ Mal. func
superopt would not scale to the code size of our checksum func- LLg— PC EEZE = — PC
tion.

To achieve a time-optimal implementation, we use simple in- (@ No attack, PC (b) Memory copy at-
structions such aadd andxor that are challenging to implement and DP are within the tack 1. PC correct,
faster or with fewer operations. Moreover, the checksum code is correct range. but DP incorrect.

structured as code blocks such that operations in one code block
are dependent on the result of operations in the previous code block.

This prevents operation reordering optimizations across code blocks. V. fune Vl<e— pp
Instruction sequencing to eliminate empty issue slots. Most LT
modern CPUs are superscalar, i.e., they issue multiple instructions Mal fune I+ PC Mal func 9+ PC
in every clock cycle. If our checksum code does not have a suffi- HHF, HEX,
cient number of issuable instructions every clock cycle, then one or 7 Z vi; //T;

i i H i H . func
more instruction issue slots will remain empty. An adversary could | <— DP

exploit an empty issue slot to execute additional instructions with-
out overhead. To prevent such an attack, we need to arrange the
instruction sequence of the checksum code so that the processor is- (c) Memory copy at- (d) Memory copy at-

sue logic always has a sufficient number of issuable instructions for tack 2. PC incorrect, tack3 PCand DPin-

every clock cycle. Note that we cannot depend solely on the pro- ' '

cessor out-of-order issue logic for this since it is not guaranteed that

the out-of-order issue logic will always be able to find a sufficient Figure 3: Memory copy attacks. PC refers to the program
number of issuable instructions. counter, DP refers to the data pointer, V.func refers to the ve
ification function, and Mal. func refers to the malicious verifi-

CPU state inputs. The checksum code is self-checksumming, i.e., c :
cation function.

it computes a checksum over its own instruction sequence. The
adversary can modify the checksum code so that instead of check-
summing its own instructions, the adversary’s checksum code com- Iterative checksum code. As Figure 4 shows, the checksum code
putes a checksum over a correct copy of the instructions that is consists of three parts; the initialization code, the checksum loop
stored elsewhere in memory. We call this attackemory copy at- and the epilog code. The most important part is the checksum loop.
tack This attack is also mentioned by Wurster et al. in connection Each checksum loop reads one memory location of the verification
with their attack on software tamperproofing [28]. The adversary function and updates the running value of the checksum with the
can perform the memory copy attack in three different ways: 1) as memory value read, a pseudo-random value and some CPU state in-

Verification Function to fit completely inside the CPU’s L1 instruction cache. Also, the
memory region containing the verification function is small enough
to fit inside the CPU'’s L1 data cache. Thus, once the CPU caches
are warmed up, no more cache misses occur. The time taken to
warm up the CPU caches is a small fraction of the total execu-
tion time. As a result, the variance in execution time caused by
cache misses during the cache warm-up period is small. Three, we
sequence the instructions of the checksum code such that a suffi-
cient number of issuable instructions are available at each clock
cycle. This eliminates the non-determinism due to out-of-order ex-
ecution. As we show in our results in Section 5.3, the combination
of the above three factors leads to a checksum code with very low
execution time variance.

Checksum Initialization Code

Checksum Loop

Epilog Code

Send Function

uonNIaXa Jo JapIO

Hash Function

--- - - —-———— -

Keyed-checksum. To prevent the adversary from pre-computing
the checksum before making changes to the verification function,
and to prevent the replaying of old checksum values, the check-
sum needs to depend on a unpredictable challenge sent by the dis-
patcher. We achieve this in two ways. First, the checksum code
uses the challenge to seed a Pseudo-Random Number Generator
(PRNG) that generates inputs for computing the checksum. Sec-
ond, the challenge is also used to initialize the checksum variable
to a deterministic yet unpredictable value.

Figure 4: Functional structure of the verification function. The
checksum code consists of an initialization code, the checksum
loop which computes the checksum, and the epilog code that
runs after the checksum loop but before the send function.

formation. If the adversary alters the checksum function but wants
to forge a correct checksum output, it has to manipulate the val- . o)
ues of one or more of the inputs in every iteration of the checksum e use aT-function as the PRNG [18]. A T-function is a function

code, causing a constant time overhead per iteration. from _n-bit wo_rds to n-bit word_s that has a single c_yclg length"of 2
] That is, starting from any n-bit value, the T-function is guaranteed
Strongly-ordered checksum function. A strongly-ordered func- {5 produce all the other™2- 1 n-bit values before starting to repeat

tion is a function whose output differs with high probability if the the values. The T-function we usexis— X (x2v 5)mod2', where
operations are evaluated in a different order. A strongly-ordered \ js the bitwise-or operator. Since every iteration of the checksum
function requires an adversary to perform the same operations on¢ode uses one random number to avoid repetition of values from
the same data in the same sequence as the original function to obthe T-function, we have to ensure that the number of iterations of
tain the correct result. For exampleaif, az,a3,a4 andas are ran- he checksum code is less thdhvéhen we use an n-bit T-function.
dom inputs, the functior; ©a; +ag @ as +as is strongly-ordered. e ysen = 64 in our implementation to avoid repetition.

We use a strongly ordered function consisting of alternate add and It would appear that we could use a Message Authentication
xor operations for two reasons. First, this prevents parallelization, Code (MAC)pEJnction instead of the simple chgcksum function
as at any step of the computation the current value is needed to - . : P . .

. we use. MAC functions derive their output as a function of their
compute the succeeding values. For example, the correct order ofinput and a secret key. We do not use a MAC function for two
evaluating the functiom ©a; + asdas is (a1 ©az) +-83)). 1ocone First, the code of current cryptographic MAC functions
If the adversary tries to parallelize the computation by computing

Y - is typically large, which is against our goal of a small code size.
the function in the ordef(a; @ ap) + (ag ® a4)), the output will] ;
be different with high probability. Second, the adversary cannot Also, MAC functions have much stronger properties than what we

. . equire. MAC functions are constructed to be resilient to MAC-
change the order of operations in the checksum code to try to spee orgery attacks. In a MAC-forgery attack, the adversary knows a
up the checksum computatlon. For example, if the adversary eval'finite number of (data, MAC(data)) tuples, where each MAC value
uatesay & az + 83 & & in the order(ay & (a; + (ag ® a4))), the is generated using the same secret key. The task of the adversary
output will be different with high probability.

-)) is to generate a MAC for a new data item that will be valid un-
In addition to using a strongly ordered checksum function, We qer the unknown key. It is clear that we do not require resilience

also rotate the checksum. Thus, the bits of the checksum changey, e \MAC forgery attack, as the nonce sent by the Pioneer dis-
their positions from one iteration of the checksum loop to the next, patcher is not a secret but is sent in the clear. We only require that

which makes our checksum function immune to the attack against e adversary be unable to pre-compute the checksum or replay old
the Genuinity function that we point out in our earlier paper [21]. ~hacksum values.

Small code size. The size of the checksum loop needs to be small 5.\ 4o-random memory traversal. The adversary can keep a

for tr\:v otmalnhr_easonfs. I?rstatge tcod(_e nefds to f'tt'.mo tt.he prgcess%rcorrect copy of any memory locations in the verification function
cache 1o achieve a 1ast and deterministic execution Ume. S€conty, g qifies Then, at the time the checksum code tries to read one

since the adversary usually has a constant overhead per iteration, ¢ +he modified memory locations, the adversary can redirect the

the relative overhead increases with a smaller checksum loop. read to the location where the adversary has stored the correct copy.
Low variance of execution time. Code execution time on modern Thus, the adversary’s final checksum will be correct. We call this
CPUs is non-deterministic for a number of reasons. We want a low attack thedata substitution attack To maximize the adversary’s
variance for the execution time of the checksum code so that the time overhead for the data substitution attack, the checksum code
dispatcher can easily find a threshold value for the correct executionreads the memory region containing the verification function in a
time. We leverage three mechanisms to reduce the execution timepseudo-random pattern. A pseudo-random access pattern prevents
variance of the checksum code. One, the checksum code executethe adversary from predicting which memory read(s) will read the
at the highest privilege CPU privilege level with all maskable inter- modified memory location(s). Thus, the adversary is forced to
rupts turned off, thus ensuring that no other code can run when themonitor every memory read by the checksum code. This approach
checksum code executes. Two, the checksum code is small enouglis similar to our earlier work in SWATT [21].

We use the result of the Coupon Collector’'s Problem to guarantee
that the checksum code will read every memory location of the ver-
ification function with high probability, despite the pseudo-random
memory access pattern. If the size of the verification function is
words, the result of the Coupon Collector’s Problem stateX: iff
the number of memory reads required to read each of therds
at least once, theRr[X > cninn] < n—°t1. Thus, afterO(ninn)
memory reads, each memory location is accessed at least once wit
high probability.

4.2 Execution Environment for Untampered Code Execution

We now explain how the checksum code sets up an untampered

environment for the hash function, the send function, and the exe-
cutable.

Execution at highest privilege level with maskable interrupts
turned off. All CPUs have an instruction to disable maskable in-
terrupts. Executing this instruction changes the state ofitee-

Low Address

’Word 0| Word 1
i

High Address
Word# Word# Word|4 Word‘5

Stack Pointer

Stack Pointer Range

r?:igure 5: The stack trick. A part of the checksum (6 words long

in the figure) is on the stack. The stack pointer is randomly
moved to one of the locations between the markers by each it-
eration of the checksum code. Note that the stack pointer never
points to either end of the checksum.

Replacing exception handlers and non-maskable interrupt han-
dlers. Unlike maskable interrupts, exceptions and non-maskable
interrupts cannot be temporarily turned off. To ensure that the hash

rupt enable/disable bit in the CPU condition codes (flags) function and executable will run untampered, we have to guarantee
register. Thelisable-maskable-interrupt instructioncan that the exception handlers and the handlers for non-maskable in-
only be executed by code executing at the highest privilege level. terrupts are non-malicious. We achieve this guarantee by replacing
The initialization code, which runs before the checksum loop (see the existing exception handlers and the handlers for non-maskable
Figure 4), executes thdisable-maskable-interrupt in- interrupts with our own handlers in the checksum code. Since both
struction. If the checksum code is executing at the highest priv- the hash function and the executable operate at the highest privilege
ilege level, the instruction execution proceeds normally and the level, they should not cause any exceptions. Also, non-maskable
interrupt enable/disable flag in the flags register is set interrupts normally indicate catastrophic conditions, such as hard-
to thedisable state. If the checksum code is executing at lower ware failures, which are low probability events. Hence, during
privilege levels one of two things can happen: 1) tigable- normal execution of the hash function and the executable, neither
maskable-interrupts instruction fails and the status of the non-maskable interrupts nor exceptions should occur. Therefore,
interrupt enable/disable flag is not set talisable , or we replace the existing exception handlers and handlers for non-
2) thedisable-maskable-interrupt instruction traps into maskable interrupts with code that consists only ofirserrupt
software that runs at the highest privilege level. Case 2 occurs whenreturn instruction (e.g.jret on x86). Thus, our handler imme-
the checksum code is running inside a virtual machine (VM). Since diately returns control to whatever code was running before the in-
we assume a legacy computer system where the CPU does not haveerrupt or exception occurred.
support for virtualization, the VM must be created using a software- An intriguing problem concerns where in the checksum code we
based virtual machine monitor (VMM) such as VMware [2]. The should replace the exception and non-maskable interrupt handlers.
VMM internally maintains a copy of the flags register for each VM. We cannot do this in the checksum loop since the instructions that
When the VMM gains control as a result of the checksum code exe- replace the exception and non-maskable interrupt handlers do not
cuting thedisable-maskable-interrupt instructions, the affect the value of the checksum. Thus, the adversary can remove
VMM changes the state of thieterrupt enable/disable these instructions and still compute the correct checksum within the
flag in the copy of the flags register it maintains for the VM and expected time. Also, we cannot place the instructions to replace the
returns control to the VM. This way, the actual CPU flags register exception and non-maskable interrupt handlers in the initialization
remains unmodified. code, since the adversary can skip these instructions and jump di-
We incorporate the flags register into the checksum in each iter- rectly into the checksum loop.
ation of the checksum loop. Note that the adversary cannot replace We therefore place the instructions that replace the handlers for
the flags register with an immediate since the flags register containsexceptions and non-maskable interrupts in the epilog code. The
status flags, such as the carry and zero flag, whose state changespilog code (see Figure 4) is executed after the checksum loop is
as a result of arithmetic and logical operations. If the adversary finished. If the checksum is correct and is computed within the

directly tries to run the checksum code at privilege levels lower
than the highest privilege level, the final checksum will be wrong
since thanterrupt enable/disable flag will not be set to

the disable state. On the other hand, if the adversary tries to

expected time, the dispatcher is guaranteed that the epilog code is
unmodified, since the checksum is computed over the entire ver-
ification function. The adversary can, however, generate a non-
maskable interrupt or exception when the epilog code tries to run,

cheat by using a software VMM, then each read of the flags regis- thereby gaining control. For example, the adversary can set an ex-
ter will trap into the VMM or execute dynamically generated code, ecution break-point in the epilog code. The processor will then
thereby increasing the adversary’s checksum computation time. Ingenerate a debug exception when it tries to execute the epilog code.
this way, when the dispatcher receives the correct checksum within The existing debug exception handler could be controlled by the ad-
the expected time, it has the guarantee that the checksum code exeversary. This attack can be prevented by making use of the stack to
cuted at the highest CPU privilege level with all maskable interrupts store a part of the checksum. The key insight here is that all CPUs
turned off. Since the checksum code transfers control to the hashautomatically save some state on the stack when an interrupt or ex-
function and the hash function in turn invokes the executable, the ception occurs. If the stack pointer is pointing to the checksum that
dispatcher also obtains the guarantee that both the hash functions on the stack, any interrupt or exception will cause the processor
and executable will run at the highest CPU privilege level with all to overwrite the checksum. We ensure that the stack pointer always
maskable interrupts turned off. points to the middle of the checksum on the stack (see Figure 5) so

that part of the checksum will always be overwritten regardless of <—>

whether the stack grows up or down in memory.

Each iteration of the checksum loop randomly picks a word of
the stack-based checksum for updating. It does this by moving
the stack pointer to a random location within the checksum on the
stack, taking care to ensure that the stack pointer is never at eithe

Instruction Prefetcher
Instruction Decoder

Trace Cache BTB

end of the checksum (see Figure 5). The new value of the stack ‘ Allocator/Register Renamer ‘
pointer is generated using the current value of the checksum and the 7 ! 7 v v ¥]
current value of the stack pointer, thereby preventing the adversary Aoy A8 e | | 2xawv| | A P P
from predicting its value in advance.

The epilog code runs before the send function, which sends the | ' v |

L1 Data Cache

checksum back to the dispatcher. Thereby, a valid piece of check-
sum is still on the stack when the epilog code executes. Thus, the |) .

adversary cannot use a non-maskable interrupt or exception to pre-Figure 6: The Intel Netburst Microarchitecture. The execu-
vent the epilog code from running without destroying a part of the fion units are LU: Load Unit; SU: Store Unit; AGU: Address
checksum. Once the epilog code finishes running, all the exception G&neration Unit; 2xALU: Double-speed Integer ALUs that ex-
handlers and the handlers for non-maskable interrupts will have €CUte twopLops each per cycle; ALU: Complex Integer ALU;
been replaced. In this manner, the dispatcher obtains the guarante& P+ Floating Point, MMX, and SSE unit.

that any code that runs as a result of an exception or a non-maskable

interrupt will be non-malicious. . N .
P The L1-data cache is 16KB in size, 8-way set associative and has

a 64 byte line size. The L2 cache is unified (holds both instructions
5 CHECKSUM CODE IMPLEMENTATION ON and data). Its size varies depending on the processor family. The
THE NETBURST MICROARCHITECTURE L2 cache is 8 way set associative and has a 64 byte line size.

The EM64T extensions add support for a 64-bit address space
and 64-bit operands to the 32-bit x86 architecture. The general
. ; purpose registers are all extended to 64 bits and eight new general
sions. First, we briefly describe the Netburst microarchitecture, purpose registers are added by the EMB4T extensions. In addition,

gmgz;sei?géi?;ﬁgteﬁe% \?\/llelgttgczﬁgt;\uor:v xe?:ﬁsliﬁg;?'tﬁgggggk a feature called segmentatfoallows a process to divide up its data
) ! ; . ‘segment into multiple logical address spaces cakgientsTwo
sum code on the Intel x86 architecture. Section 5.3 shows the re- 9 P g b

Its of . ing the ti head of the diff special CPU registerdy andgs) hold pointers to segment de-
sults of our experlme_nts measuring the t_lme overnhead ol the differ- scriptors that provide the base address and the size of a segment as
ent attacks. Finally, in Section 5.4 we discuss some points related

toth tical deol Cof Pi d extensi o th twell as segment access rights. To refer to data in a particular seg-
to the practical deployment of Floneer and extensions to the currént ot the process annotates the pointer to the data with the segment
implementation of Pioneer.

register that contains the pointer to the descriptor of the segment.
51 The Netburst Microarchitecture and EM64T Extensions The processor adds the base address of the segment to the pointer to
generate the full address of the reference. Tfg16000 would

In this section, we present a simplified overview of the Intel Net- refer to the first byte of the segment whose descriptor is pointed to
burst microarchitecture that is implemented in the Pentium IV fam- py fs .

ily of CPUs. We also describe the EM64T extensions that add sup-
port for 64-bit addresses and data to the 32-bit x86 architecture. 5.2 Implementation of Pioneer on x86

Figure 6 shows a simplified view of the front-end and execution We now discuss how we implement the checksum code so that it
units in the Netburst architecture. The figure and our subsequenthas all the properties we describe in Section 4.1. Then we de-

description are based on a description of the Netburst microarchi- scribe how the checksum code sets up the execution environment

teﬁfﬁre_by Bog_gs edt al. [d7]. in Pentium IV CP v decod described in Section 4.2 on the x86 architecture.
€ mstru_ctlon ecoder in Pentium Us can only decode Every iteration of the checksum code performs these five actions:
one instruction every clock cycle. To prevent the instruction de- 1) deriving the next pseudo-random number from the T-function, 2)

coder fr_om creating a performance. bottleneck, the Netbur_st mi- reading the memory word for checksum computation, 3) updating
croarchitecture uses a trace cache instead of a regular L1 instruc-

.) - ; the checksum, 4) rotating the checksum usingtate instruc-
tions cache. The trace cache holds decoded x86 instructions in thetion and 5) updating some program state such as the data pointer
form of pops. pops are RISC-style instructions that are generated ’]

.) . -) Except for reading the CPU state and our defense against the mem-
by the instruction Qecoder when it qecodes the x86 instructions. ory copy attack, all properties are implemented on the x86 archi-
Every)_??16 mstructlonh breaksh dlc()jwn mtolgne or m(()jre de_pendent tecture exactly as we describe in Section 4.1. Below, we describe
HOPpS. e trace cache can 10ld up to 12¢0Ps and can issue the technigues we employ to obtain the CPU state on the x86 ar-
up to threepops to the execution core per clock cycle. Thus, the

Netburst mi hitecture is a 3 . | i chitecture. We also describe how we design our defense against the
) r:eitelétrjremlcroarc itecture is a 3-way issue superscalar microar- ooy copy attacks.

The Netburst microarchitecture employs seven execution units. CPU state inputs. The CPU state inputs, namely the Program
The load and store units have dedicated Arithmetic Logic Units Counter (PC) and the data pointer, are included in the checksum
(ALU) called Address Generation Units (AGU) to generate ad- © detect the three memory copy attacks. On the x86 architecture
dresses for memory access. Two double-speed integer ALUs ex With EM64T extensions, the PC cannot be used as an operand for

ecute twopops every clock CyCIe' The double SpeEd ALUs handle 2Unlike the I1A32 architecture, the EM64T extensions do not use code or seagk

§|mple arithmetic operations like add, subtract and logical opera- ments. So, thes andss segment registers are ignored by the processor. Alsalshe
tions. andes segment registers are not used by the processor for accessing data segments.

In this section we describe our implementation of the checksum
code on an Intel Pentium IV Xeon processor with EM64T exten-

any instruction other than tHea instruction. So, if we want to without incurring a time overhead because of the presence of ded-
include the value of the PC in the checksum, the fastest way to doicated AGUs in the load and the store execution units; and 3) the
it is to use the following two instructions: first, tihea instruction PC cannot be used like a general purpose register in instructions,
moves the current value of PC into a general purpose register, andwhich limits our flexibility in designing defenses for the memory
next, we incorporate the value in the general purpose register into copy attacks.

the checksum. Since the value of the PC is known in advance, the \We now describe how the adversary can implement the three
adversary can directly incorporate the corresponding value into the memory copy attacks on the x86 architecture and how we construct
checksum as an immediate. Doing so makes the adversary’s checkthe checksum code so that the memory copy attacks increase the

sum computation faster since it does not needéhe instruction. adversary's checksum computation time.
Hence, on the x86 platform we cannot directly include the PCin | the first memory copy attack shown in Figure 3(b), the ad-
the checksum. versary runs a modified checksum code from the correct memory

Instead of directly including the PC in the checksum, we con- |gcation and computes the checksum over a copy of the unmodi-
struct the checksum code so that correctness of the checksum defieq verification function placed elsewhere in memory. This attack
pends on executing a sequence of absolute jumps. By including therequires the adversary to add a constant displacement to the data
jump target of each jump into the checksum, we indirectly access pointer. There are two ways the adversary can do this efficiently:

the value of the PC. 1) it can annotate all instructions that use the data pointer with one
of the segment registerés or gs, and the processor automati-
Block 1 cally adds the segment base address to the data pointer, or 2) the
3 adversary can use an addressing mode that adds an immediate or a
L jmp*reg registt_ar value to the data poi_nter, and the AGU in tht=T load execution
Bock 2 unit will add the correspondlng value to the data pomter.. However,
1 our checksum code uses all sixteen general purpose registers, so th
adversary can only use an immediate to displace the data pointer.
4 jmp *reg) Neither of these techniques adds any time overhead to the ad-
Block 3 versary’s checksum computation. Also, both techniques retain the
correct value of the data pointer. Thus, this memory copy attack
cannot be detected by including the data pointer in the checksum.
imp *reg 5 However, both these techniques increase the instruction length. We
Block 4 leverage this fact in designing our defense against this memory
copy attack. The segment register annotation adds one byte to the
imp “reg length of any instruction that accesses memory, whereas address-

ing with immediate displacement increases the instruction length
) by the size of the immediate. Thus, in this memory copy attack,
Figure 7: Structure of the checksum code. There are 4 code the adversary’s memory reference instructions increase in length
blocks. Each block is 128 bytes in size. The arrows show one by 3 minimum of one byte. An instruction that reads memory with-
possible sequence of control transfers between the blocks. out a segment register annotation or an immediate displacement
is 3 bytes long on the x86 architecture with EM64T extensions.
As Figure 7 shows, we construct the checksum code as a se-We place an instruction having a memory reference, suctlés
quence of four code blocks. Each code block generates the absomem, reg, as the first instruction of each of the four checksum
lute address of the entry point of any of the four code blocks using code blocks. In each checksum code block, we construct the jump
the current value of the checksum as a parameter. Both the codearget address so that, the jump lands with equal probability on ei-
block we are jumping from and the code block we are jumping to ther the first instruction of a checksum code block or at an offset
incorporate the jump address in the checksum. The last instruc-of 3 bytes from the start of a code block. In an unmodified code
tion of code block jumps to the absolute address that was generatedblock, the second instruction is at an offset of 3 bytes from the start
earlier. of the block. When the adversary modifies the code blocks to do a
All of the code blocks execute the same set of instructions to up- memory copy attack, the second instruction of the block cannot be-
date the checksum but have a different ordering of the instructions. gin before the 4th byte of the block. Thus, 50% of the jumps would
Since the checksum function is strongly ordered, the final value of |and in the middle of the first instruction, causing the processor to
the checksum depends on executing the checksum code blocks ifyenerate aillegal opcode exception.
the correct sequence, which is determined by the sequence of jJumps 1 agccommodate the longer first instruction, the adversary would
between the blocks.) . move its code blocks farther apart, as Figure 8 shows. The adver-
The checksum code blocks are contiguously placed in memory. sary can generate its jump target addresses efficiently by aligning
Each block is 128 bytes in size. The blocks are aligned in memory jis checksum code blocks in memory in the following way. The
so that the first instruction of each block is at an address that is @adversary places its code blocks on 256 byte boundaries and sepa-
multiple of 128. This simplifies the jump target address generation rates its first and second instruction by 8 bytes. Then, the adversary
since the jump targets can be generated by appropriately maskingcan generate its jump addresses by left-shifting the correct jump
the current value of the checksum. address by 1. We incorporate the jump address into the checksum
Memory copy attacks. Memory copy attacks are the most diffi- both before and after the jump. So, the adversary has to left-shift
cult attacks to defend against on the x86 architecture, mainly for the correct jump address by 1 before the jump instruction is exe-
of three reasons: 1) the adversary can use segmentation to haveuted and restore the correct jump address by right-shifting after
the processor automatically add a displacement to the data pointerthe jump is complete. Thus, the adversary’s overhead for the first
without incurring a time overhead; 2) the adversary can utilize memory copy attack is the execution latency of one left-shift in-
memory addressing with an immediate or register displacement, struction and one right-shift instruction.

Low Address High Address

Block 1 Block 1
L | . Additional NN Empty Y Empty
Block 2 Instructions
SP1 SP2
Block 3 Block 2 Checksum Piece 1 Checksum Piece 2
Block 4 Figure 9: The layout of the stack on an x86 processor with
Block 3 EM64T extensions. Both checksum pieces are 8 bytes long and
are aligned on 16-byte boundaries. The empty regions are also
77777777 8 bytes long. The stack pointer is assigned at random to one of
the two locations SP1 or SP2.
Block 4
not overwrite the part of the checksum that is on the stack. Also,
Figure 8: Comparison of the code block lengths in the orig- a processor with EM64T extensions always pushes the processor
inal verification function and an adversary-modified verifica- state starting at a 16-byte boundary on receiving interrupts or ex-

tion function. The adversary moves its code blocks in memory ceptions. Thus, we need to make sure that the checksum pieces on
so that the entry points of its code blocks are at addresses that the stack are aligned on 16-byte boundaries so they will be over-
are a power of two. written when an interrupt or exception occurs.
Figure 9 shows the stack layout we use for x86 processors with
EM64T extensions. Our stack layout has checksum pieces alternat-

In the second memory copy attack shown in Figure 3(c), the ad- ing with empty slots. All four elements are eight bytes in size. The
versary keeps the unmodified verification function at the correct checksum code moves the stack pointer so that the stack pointer
memory location, but computes the checksum using a modified points either to location SP1 or to location SP2. On the x86 ar-
checksum code that runs at different memory locations. In this chitecture, the stack grows downwards from high addresses to low
case, the entry points of the adversary’s code blocks will be dif- addresses. To push an item onto the stack, the processor first decre-
ferent, so the adversary would have to generate different jump ad-ments the stack pointer and then writes the item to the memory
dresses. Since we include the jump addresses in the checksum, thiocation pointed to by the stack pointer. With EM64T extensions,
adversary would also have to generate the correct jump addressespushes and pops normally operate on 8-byte data. Since the stack
Hence, the adversary’s checksum code blocks would be larger thanpointer is always initialized to either SP1 or to SP2, a push of the
128 bytes. As before, to accommodate the larger blocks, the adver-rflags register will always write the flags to one of the empty 8-
sary would move its code blocks apart and align the entry points byte regions. If an interrupt or exception were to occur, the proces-
at 256 byte boundaries (Figure 8). Then, the adversary can genersor would push 40 bytes of data onto the stack, thereby overwriting
ate its jump address by left-shifting the correct jump address and either checksum piece 1 or both checksum pieces.
by changing one or more bits in the resulting value using a logical We keep checksum pieces on the stack to prevent the adversary
operation. To restore the correct jump address, the adversary has tgrom getting control through an exception or a non-maskable inter-
undo the changes either by loading an immediate value or by usingrupt. However, the x86 architecture has a special non-maskable in-
a right-shift by 1 and a logical operation. In any case, the adver- terrupt called System Management Interrupt (SMI), which switches
sary’s time overhead for this memory copy attack is greater than the processor into the System Management Mode (SMM). The pur-
the time overhead for first memory copy attack. pose of SMM is to fix chipset bugs and for hardware control.

In the third memory copy attack shown in Figure 3(d), both The SMI does not save the processor state on the stack. So, it
the unmodified verification function and the adversary’s checksum s not possible to prevent the SMI by keeping checksum pieces on
code are not present at the correct memory locations. Thus, thisthe stack. Since the SMI is a special-purpose interrupt, we assume
attack is a combination of the first and the second memory copy that it never occurs when the verification function runs. During our
attacks. The adversary’s time overhead for this memory copy at- experiments, we found this assumption to be true all the time. In
tack is the same as the time overhead for the second memory copysection 5.4, we discuss how we can extend the current implemen-
attack. tation of Pioneer to handle the SMI.

Variable instruction length. The x86 Instruction Set Architecture Description of verification function code. Figure 10 shows the
(ISA) supports variable length instructions. Hence, the adversary pseudocode of one code block of the verification function. The
can reduce the size of the checksum code blocks by replacing oneplock performs six actions: 1) deriving the next pseudo-random
or more instructions with shorter variants that implement the same value from the T-function; 2) generating the jump address, the stack
operation with the same or shorter latency. The adversary can usepointer, and the data pointer using the current value of the check-
the space saved in this manner to implement the memory copy at-sum, 3) pushingflags onto the stack, 4) reading a memory loca-
tacks without its code block size exceeding 128 bytes. To prevent tion containing the verification function, 5) updating the checksum
this attack, we carefully select the instructions used in the check- using the memory read value, previous value of the checksum, the
sum code blocks so that they are the smallest instructions able togutput of the T-function, theflags register, and the jump ad-
perform a given operation with minimum latency. dress, and 6) rotating the checksum using the rotate instruction.

Execution environment for untampered code execution.In or- The checksum is made up of twelve 64-bit pieces, ten in the
der to get the guarantee of execution at the highest privilege level registers and two on the stack. The checksum code uses all sixteen
with maskable interrupts turned off, the checksum code incorpo- general purpose registers.

rates the CPU flags in the checksum. The flags register on the x86 Figure 11 shows the assembler code of one block of the verifi-
architecturerflags , can only be accessed if it is pushed onto the cation function. The code shown is not the optimized version but a
stack. Since we use to the stack to hold a part of the checksum,verbose version to aid readability.

we need to ensure that pushing tiflags onto the stack does

/linput: y number of iterations of the verification procedure
//Output: Checksurtt, (10 segments in registe@ to Co,

l

[IVariables:[codestart,codeen

l
U

and 2 on stackstk, , Cstk, » €ach being 64 bits)

- bounds of memory address under verification
daddr- address of current memory access

X - value of T function

Assembly Instruction
/IRead memory

add (rbx), r15

sub 1, ecx decrement loop counter
add rdi, rax X (x*X) OR5+x
/Imodifies jumparget register rdx and rdi

Explanation

memory read

1 | - counter of iterations xor r14, rdi rdi —rdi©Cj_

I rflags- flags register add rcx, rdx rdx < rdx+loopctr

" jumptarget1: 0] - determines which code block to execute add rbx, rdi rdi < rdi +daddr

I temp- temp register used to compute checksum Xor rax, rdx input x (from T function)

daddr« codestart xor r15, rdi rdi — rdi @ ¢;

for | =yto Odo /Imodifies checksum witdx and rdi
Checksum 1 add rdx, r15 modify checksum{C
/T function updates where 0< x < 2" add rdi, r14 modify checksum{Cy
X+ X+ (X 5) mod 2! xor rdx, -8(rsp) modify checksum on stack
//IReadr flags and incorporate intdaddr xor rl5, r13 Cji2—Cj_2dC;j
daddr« daddr+rflags add ri14,r12 Cj3<—Cj3+Cj1
/IRead from memory addressddr, calculate checksum.L& be the checksum rol r15 r15— rotater15|

vector andj be the current index.

jumptarget < not(jump.target) + loop_ctr & x

temp— x$Cj_; +daddreCj

if jumptargetl] == Oand jumptarget0] == 0 then
Cj — Cj+menjdaddr+ 8] + jumptarget

/IPseudorandom memory access

xor rdi, rbx daddr« daddr® randomits
and mask1, ebx modify daddr

or mask2, rbx modify daddr

/IModify stack pointer and target jump address

else _ xor rdx, rsp Modify rsp
Cj'H Cj + jumptarget and mask3, esp create rsp
end if or mask4, rsp create rsp

Cj,1 <—Cj,1 +temp

and 0x180, edx jump.target < ri15

Cstk — Cstk® jumptarget and 0x1, rdi rdi < rdiANDOx1
Cj2+Cj2+Cj add rdi, rdx rdx «— rdx+ rdi
Cj3+Cj3+Cj1 add rdi, rdi shift rdi
Cj — rotateright(Cj) add rdi, rdx rdx «— rdx+rdi
//Updatedaddrto perform pseudo-random memory traversal or mask, rdx create jumptarget address
daddr«— daddr+x xor rdx, r15 add jump target address into checksum
/lUpdatersp and jumptarget /IT function updates x, at rax
rsp[l] — C;[1] mov rax, rdi save value of T function
j<—(j+1) mod11 imul rax, rax X = X*X
jumptarget[8 : 7] —C;j[8:7] or 0x5, rax X X*X OR5
jumptarget]l: 0 < temp0],temp0] /IRead flags
if jumptarget8:7] =0then pushfq push rflags

goto Checksum 1 add (rsp), rbx daddr— daddr+rflags
else if jumptarget8 : 7] = 1 then jmp *rdx jump to 1 of the 4 blocks

goto Checksum 2

else if jumptarget8: 7] = 2 then
goto Checksum 3

else if jumptarget8 : 7] = 3then
goto Checksum 4

Figure 11: Checksum Assembly Code

‘é’;\‘égksumz receive the Pioneer packets as early as possible. The dispatcher

and the untrusted platform are on the same LAN segment.

Checksum 3 Empty instruction issue slots. In Section 4.1, we mentioned

Checksum 4 that the checksum code instruction sequence has to be carefully

arranged to eliminate empty instruction issue slots. The Netburst
end for

Microarchitecture issuegops, which are derived from decoding
x86 instructions. Hence, to properly sequence the instructions, we
need to know whatiops are generated by the instructions we use in
the checksum code. This information is not publically available. In
the absence of this information, we try to sequence the instructions
through trial-and-error. To detect the presence of empty instruction
Any attack that the adversary uses has to be combined with a mem-issue slots we placeo-op instructions at different places in the
ory copy attack because the adversary’s checksum code will be dif- code. If there are no empty instruction issue slots, planm@p

ferent from the correct checksum code. Hence, the memory copy instructions should always increase the execution time of the check-
attack is the attack with the lowest overhead. Of the three memory sum code. We found this assertion to be only partially true in our
copy attacks, the first has the lowest time overhead for the adver-experiments. There are places in our code wimer®p instruc-

sary. Hence, we implemented two versions of the checksum codetions can be placed without increasing the execution time, indicat-
using x86 assembly: a legitimate version and a malicious version ing the presence of empty instruction issue slots.

thatimplements the first memory copy attack (the correct code plus petermining number of verification function iterations. The

two extra shift instructions). adversary can try to minimize the Network Round-Trip Time (RTT)
Experimental setup. The dispatcher is a PC with a 2.2 GHz Intel between the untrusted platform and dispatcher. Also, the adversary
Pentium IV processor and a 3Com 3c905C network card, running can pre-load its checksum code and the verification function into
Linux kernel version 2.6.11-8. The untrusted platform is a PC with the CPU’s L1 instruction and data caches respectively to ensure that
a 2.8 GHz Intel Pentium IV Xeon processor with EM64T exten- it does not suffer any cache misses during execution. We prevent
sions and an Intel 82545GM Gigabit Ethernet Controller, running the adversary from using the time gained by these two methods to
Linux kernel version 2.6.7. The dispatcher code and the verification forge the checksum.

function are implemented inside the respective network card inter- The theoretically best adversary has zero RTT and no cache miss-
rupt handlers. Implementing code inside the network card interrupt es, which is a constant gain over the execution time of the correct
handler enables both the dispatcher and the untrusted platform tochecksum code. We call this constant time gain asatheersary

Figure 10: Verification Function Pseudocode

5.3 Experiments and Results

. . , T I I
time advantage However, the time overhead of the adversary’s | — Expected Runtime

checksum code increases linearly with the number of iterations of 49| | — Expected Runtime and Network RTT (Adversary Detection Thresholl

. - Legitimate Code’s Runti
the checksum loop. Thus, the dispatcher can ask the untrusted plat- L |os Loaitimate Code's Runtime and Network RTT

form to perform a sufficient number of iterations so that the ad- 49.4f | o—o Theoretically Best Adversary's Runtime .
versary’s time overhead is at least greater than the adversary time g | [°=2 Adversary's Runtime and Network RTT 1
advantage. 2492

The expression for the number of iterations of the checksum loop £
to be performed by the untrusted platform can be derived as fol- £ *°
lows. Letc be the clock speed of the CPalbe the time advantage g 46 8; 1

of the theoretically best adversarybe the adversary’s overhead
per iteration of the checksum loop represented in CPU cycles, and
n is the number of iterations. Then> %’ to prevent false nega-

tives® in the case of the theoretically best adversary.

Experimental results. To calculate the time advantage of the 0 50 100

theoretically best adversary, we need to know the upper bound Time of Measurement [minutes]

on the RTT and the time saved by pre-warming the caches. We . .

determine the RTT upper bound by observing flieg latency Figure 12: Results from Location 1.

for different hosts on our LAN segment. This gives us an RTT

upper bound of 0.25ms since all ping latencies are smaller than | — Expected Runtime _ |
. . --- Expected Runtime and Network RTT (Adversary Detection Thresholl

this value. Also, we calculate the amount of time that cache pre- 496[- |. . Legitimate Code’s Runtime]

warming saves the adversary by running the checksum code with L |o—o Legitimate Code’s Runtime and Network RTT]
and without pre-warming the caches and observing the running - ;Z‘jg[:gfya!y;ﬁf::‘;iﬁg;ﬁi”;‘?f
times using the CPU’sdtsc instruction. The upper bound on 7
the cache pre-warming time is 0.0016ms. Therefore, for our exper-
iments we fix the theoretically best adversary’s time advantage to
be 0.2516ms. The attack that has the least time overhead is the first
memory copy attack, which has an overhead of 0.6 CPU cycles per
iteration of the checksum loop. The untrusted platform has a 2.8 N A N
GHz CPU. Using these values, we determine the required number L A
of checksum loop iterations to be 1,250,000. To prevent false pos- 48'6(W WW M Wﬁw*
itives due to RTT variations, we double the number of iterations to 8.4
2,500,000. | |
The dispatcher knows, the time taken by the correct checksum 0 Time of Measurement [minutes] 100
code to carry out 2,500,000 iterations. It also knows that the upper
bound on the RTTrtt. Therefore, the dispatcher considers any
checksum result that is received after time rtt to be late. This
threshold is thedversary detection threshold

We place the dispatcher at two different physical locations on increase in the few tens of milliseconds between the time it mea-
our LAN segment. We run our experiments for 2 hours at each lo- sures the RTT and the time it receives the checksum packet from
cation. Every 2 minutes, the dispatcher sends a challenge to the unthe untrusted platform. Second, the dispatcher can take RTT mea-
trusted platform. The untrusted platform returns a checksum com- surements at coarser time granularity, say every few seconds, and
puted using the correct checksum code. On receiving the responseuse these measurements to update its current value of the RTT.
the dispatcher sends another challenge. The untrusted platform re-
turns a checksum computed using the adversary’s checksum code,
in response to this challenge. Both the dispatcher and the untrustecb.4 Discussion

platform measure the time taken to compute the two checksumsyye now discuss virtual-memory-based attacks, issues concerning

using the CPU'sdisc instruction. The time measured on the un- the practical deployment of Pioneer, and potential extensions to the
trusted platform for the adversary’s checksum computation is the cyrrent implementation of Pioneer to achieve better properties.
checksum computation time of the theoretically best adversary.

Figures 12 and 13 show the results of our experiments at the
two physical locations on the LAN segment. Based on the results,
we observe the following points: 1) even the running time of the
theoretically best adversary is greater than the Adversary Detection
Threshold, yielding a false negative rate of 0%; 2) the checksum
computation time shows a very low variance, that we have a fairly
deterministic runtime; 3) we observe some false positives (5 out of
60) at location 2, which we can avoid by better estimating the RTT.

We suggest two methods for RTT estimation. First, the dis-
patcher measures the RTT to the untrusted platform just before it
sends the challenge and assumes that the RTT will not significantly

IS
©
IS
T
|

iy

©

N}
|

S VAR VAVAN VAV WAVAY-!
LAV S AR

IS
©
T
(

Execution Time [ms]
L

Y

@

@
|

Figure 13: Result from Location 2.

Implementing the verification function as SMM module. The
System Management Mode (SMM) is a special operating mode
present on all x86 CPUs. Code running in the SMM mode runs
at the highest CPU privilege level. The execution environment pro-
vided by SMM has the following properties that are useful for im-
plementing Pioneer: 1) all interrupts, including the Non-Maskable
Interrupt (NMI) and the System Management Interrupt (SMI), and
all exceptions are disabled by the processor, 2) paging and virtual
memory are disabled in SMM, which precludes virtual-memory-
based attacks, and 3) real-mode style segmentation is used, making
it easier to defend against the segmentation-based memory copy
attack.

3A false negative occurs when Pioneer claims that the untrusted platform is tncom V|rtua|'mem9ry'based_ attacks. There are two ways 'U'Wh|_Ch the
promised when the untrusted platform is actually compromised. adversary might use virtual memory to attack the verification func-

tion: 1) the adversary could create memory protection exceptions Pioneer does not require any code to reside in immutable stor-
by manipulating the page table entries and obtain control through age media, thereby making it easy to update. Also, Pioneer pro-
the exception handler, or 2) the adversary could perform a memory vides the property of verifiable code execution without having to

copy attack by loading the instruction and data Translation Looka- reboot the untrusted platform, without having to transfer code over
side Buffer (TLB) entries that correspond to the same virtual ad- the network and without relying on any unverified software on the

dress with different physical addresses. Since we use the stackuntrusted platform to transfer control to the executable.

to hold checksum pieces during checksum computation and later

replace the exception handlers, the adversary cannot use memor3Single Instruction Multiple Data (SIMD) instructions in the form

pl’OtﬁCth(;l exceptions t%gam control. h ; of MMX and SSE technologies [13]. These instructions can simul-
The adversary cakn, owever, usel td_e CPUhTLBShtO per ordm 2 taneously perform the same operation on multiple data items. This
memory copy attack. Wurster et al. discuss how the second at-ig ¢aqter than operating on the data items one at a time. However,

tack can be implemented on the UltraSparc processor [28]. Their the adversary cannot use the MMX or SSE instructions to speed
up its checksum code, since we design the checksum code to be

attack can be adapted to the Intel x86 architecture in the context

of Pioneer as _follows: 1)_ the adversary loads the_ page table_ en'non-parallelizable.

try corresponding to the virtual address of the verification function o)

with the address of the physical page where the adversary keepg’ioneer and TCG. A promising approach for reducing exposure
an unmodified copy of the verification function, 2) the adversary o network RTT and for achieving a trusted channel to the untrusted
does data accesses to virtual addresses of the verification functionplatform is to leverage a Trusted Platform Module (TPM). The
thereby loading the its mapping into the CPU’s D-TLB, and 3) the TPM could issue the challenge and time the execution of the check-
adversary replaces the page table entry corresponding to the virtuaSum code and return the signed result and computation time to the
address of the verification function with the address of the phys- dispatcher. However, this would require that the TPM be an active
ical page where the adversary keeps the modified checksum codelevice, whereas the current generation of TPMs are passive.

is kept. When the CPU starts to execute the adversary’s checksumpijrectly computing checksum over the executable. Why do we
code, it will load its I-TLB entry with the mapping the adversary need a hash function? Why can the checksum code not simply
setup in step 3. Thus, the CPU's I-TLB and D-TLB will have dif- compute the checksum over the executable? While this simpler
ferent phySica| addresses Corresponding to the same virtualkaddre approach may work in most cases, an adversary could exploit re-
and the adversary will be able to perform the memory copy attack. dundancy in the memory image of the executable to perform data-
The current implementation of Pioneer does not defend againstdependent optimizations. A simple example is a executable image
this memory copy attack. However, a promising idea to defend that contains a large area initialized to zeros, which allows the ad-
against the attack is as follows. We create virtual address aliasesversary to suppress memory reads to that region and also to sup-
to the physical pages contaning the verification function so that the press updating the checksum with the memory value read (in case
number of aliases is greater than the number of entries in the CPU’sof add or xor operations).
TLB. Each iteration of the checksum code loads the PC and the data_, . . , - .
pointer with two of the virtual address aliases, selected in apseudo-SkI nit and senter. AMDS Pa(:|f|cla. technology has an in-
random manner. If the checksum loop performs a sufficient number struction calledskinit Wh'.Ch can venﬁaybly transfer control to
of iterations so that with high probability all virtual address aliases an executable after measuring it [4]. Intel's LaGrande Technology

are guaranteed to be used then the CPU will eventually evict the (LT)_has a similar |nstruct|onse_nter [.12]' Both_sente_r and
adversary's entry from the TLB. skinit also set up an execution environment in which the exe-

The adversary can prevent its entry from being evicted from the cutable that is invoked is guaranteed to execute untampered. These
TLB by not using all the virtual address aliases. However, in this instructions are used to start-up a Virtual Machine Monitor (VMM)

case, the adversary will have to fake the value of the PC and the dataﬁrrn?3 i?tcel;:gtgim?cl) (Selr?' t%Ot:aer]zgtlga“?hnast ;(;Ig gr(tcr)]retk-:-g\clal\lllol\?(?;
pointer for the unused virtual address aliases. Since each iterationuncOm romisedpat gtar{-u gHowever due to the vulnerability of
of the checksum code selects the virtual address aliases with Whichth SHpA 1 hash functi ?h TCG | ,d " ttestati Y
to load the PC and the data pointer in a pseudo-random manner, the € -1 hash function, the TCG load-time attestation property
adversary will have to check which aliases are used to load the pc'S compromised as we describe in Se(_:tlon L H_ence, the_r(_a IS no
and the data pointer in each iteration of the checksum code. Thisguarantee that the SK or the VMM that is started is not malicious.
will increase the adversary’s checksum computation time. Implementing Pioneer on other architectures. We use the x86
The TLB-based memory copy attack can also be prevented by architecture as our implementation platform example for the fol-
implementing the verification function as an SMM module. Since lowing reasons: 1) since x86 is the most widely deployed archi-
the CPU uses physical addresses in SMM and all virtual memory tecture today, our implementation of Pioneer on x86 can imme-
support is disabled, the memory copy attack that uses the TLBs isdiately be used on many legacy systems; and 2) due to require-
not possible anymore. ments of backward compatibility, the x86 is a complex architec-
ture, with a non-orthogonal ISA. Therefore, implementing Pioneer

Why use Pioneer instead of trusted network boot? In trusted . . - . .
network boot, the BIOS on a host fetches the boot image from a on the x86 architecture is more challenging than implementing it
! on RISC architectures with more orthogonal instruction sets, such

trusted server and executes the boot image. In order to provide the
guarantee of verifiable code execution, trusted network boot has t03S the MIPS, and the Alpha.

assume that: 1) the host has indeed rebooted; 2) the correct booderifying the timing overhead. Pioneer relies on the execution
image has indeed reached the host; and 3) the BIOS will correctly time of the checksum code. Therefore, the dispatcher has to know
load and transfer control to the boot image. To guarantee that theahead of time what the correct checksum computation time should
BIOS cannot be modified by the adversary, the BIOS will have to be for the untrusted platform. The checksum computation time de-
stored on an immutable storage medium like Read-Only Memory pends on the CPU of the untrusted platform. There are two ways
(ROM). This makes it impossible to update the BIOS without phys- by which the dispatcher can find out the correct checksum com-
ically replacing the ROM, should any vulnerability be discovered putation time: 1) if the dispatcher has access to a trusted platform
in the BIOS code. having the same CPU as the untrusted platform, or a CPU simulator

MMX and SSE instructions. x86 processors provide support for

for the untrusted platform, it can run experiments to get the correct be used to check the integrity of binaries [1]. These tools are in-
execution time; or 2) we can publish the correct execution time for voked from read-only or write-protected media so that the tools do
different CPUs on a trusted web-site. not get compromised.
As kernel rootkits subvert the kernel, we can no longer trust

6 APPLICATIONS the kernel to detect such rootkits. Therefore, Copilot uses ;pecial

trusted hardware (a PCl add-on card) to detect kernel rootkits. All
In this section, we first discuss the types of applications that can rootkit detectors other than Copilot, including AskStrider [26], Car-
leverage Pioneer to achieve security, given the assumptions we makgonite [14] and St. Michael [9], rely on the integrity of one or more
Then, we describe the kernel rootkit detector, the sample applica- parts of the kernel. A sophisticated attacker can circumvent detec-
tion we have built using Pioneer. tion by compromising the integrity of the rootkit detector. Recently
Wang et al. proposed a method to detect stealth software that try to
hide files [27]. Their approach does not rely on the integrity of the
Pioneer can be applied to build security applications that run over kernel; however, it only applies when the stealth software makes
networks controlled by a single administrative entity. On such modifications to the file system.
networks, the network administrator could configure the network |mplementation. We implement our rootkit detector on the x8@

switches so that an untrusted host can only communicate with theyersion of the Linux kernel that is part of the Fedora Core 3 Linux
dispatcher during the execution of Pioneer. This provides the prop- gistribution. The x8664 version of the Linux kernel reserves the
erty of message-origin-authentication while eliminating proxy at- yange of virtual address space ab@sdfff800000000000

tacks. Examples of networks that can be configured in this man- The kernel text segment starts at add@dfffff80100000

ner are corporate networks and cluster computing environments.The kernel text segment contains immutable binary code which
On these networks the network administrator often needs to per-remains static throughout its lifetime. Loadable Kernel Modules

form security-critical administrative tasks on untrusted hosts, such (kM) occupy virtual addresses fro@(ffffff88000000
as installing security patches or detecting malware like viruses and g oxfffffffffff00000

rootkits. For such applications, the administrator has to obtain the \we puild our kernel rootkit detector using a Kernel Measure-

guarantee that the tasks are executed correctly, even in the prespent Agent (KMA). The KMA hashes the kernel image and sends
ence of malicious code on the untrusted host. This guarantee cane hash values to the verifier. The verifier uses Pioneer to obtain
be obtained through Pioneer. _ ‘ the guarantee of verifiable code execution of the KMA. Hence, the
As an example of how Pioneer could be used, we briefly discuss yerifier knows that the hash values it receives from the untrusted
secure code updates. To verifiably install a code update, we canpgst were computed correctly.
invoke the program that installs the code update using Pioneer. Pi- The KMA runs on the CPU at the kernel privilege level, i.e.,
oneer can also be used _to measure software on an untrusted hostp| 0: hence, it has access to all the kernel resources (e.g., page
gfter a update to check if the code update has been successfully[ame& interrupt descriptor tables, jump tables, etc.), and the pro-
installed. cessor state, and can execute privileged instructions. The KMA ob-
6.2 Kernel Rootkit Detection tains the virtual address ranges of thg kernel over vyhich to compute
) the hashes by reading tisystem.mafile. The following symbols
In this section, we describe how we build a kernel rootkit detector are of interest to the KMA: 1)text and_etext , which indicate
using Pioneer. Our kernel rootkit detector allows a trusted verifier the start and the end of the kernel code segmersy®)call _ta-
to detect kernel rootkits that may be installed on an external un- ble which is the kernel system call table; andr8pdule _list
trusted host without relying on signatures of specific rootkits or on which is a pointer to the linked list of all loadable kernel modules
low-level file system scans. Sailer et al. propose to use the load- (LKM) currently linked into the kernel. When the Kernel Measure-
time attestation guarantees provided by a TPM to detect rootkits ment Agent (KMA) is invoked, it performs the following steps:
when the kernel boots [20]. However, their technique cannot detect
rootkits that do not make changes to the disk image of the kernel
but only infect the in-memory image. Such rootkits do not survive
reboots. Our rootkit detector is capable of detecting both kinds of ~ »
rootkits. The only rootkit detection technique we are aware of that
achieves similar properties to ours is Copilot [19]. However, un-

6.1 Potential Security Applications

1. The KMA hashes the kernel code segment betweadand
_etext

. The KMA reads kernel version information to check which
LKMs have been loaded and hashes all the LKM code.

like our rootkit detector, Copilot requires additional hardware in
the form of an add-in PCI card to achieve its guarantees. Hence, it
cannot be used on systems that do not have this PCI card installed.
Also, our rootkit detector runs on the CPU of the untrusted host,
making it immune to the dummy kernel attack that we describe in
Section 7 in the context of Copilot.

Rootkits primer. Rootkits are software installed by an intruder on

a host that allow the intruder to gain privileged access to that host,
while remaining undetected [19, 29]. Rootkits can be classified into
two categories: those that modify the OS kernel, and those that do
not. Of the two, the second category of rootkits can be easily de-
tected. These rootkits typically modify system binaries (e.g., Is, ps,
and netstat) to hide the intruder’s files, processes, network connec-
tions, etc. These rootkits can be detected by a kernel that checks the
integrity of the system binaries against known good copies, e.g., by
computing checksums. There are also tools like Tripwire that can

. The KMA checks that the function pointers in the system call

table only refer to the kernel code segment or to the LKM
code. The KMA also verifies that the return address on the
stack points back to the kernel/lLKM code segment. The re-
turn address is the point in the kernel to which control returns
after the KMA exits.

. The KMA returns the following to the verifier: 1) the hash of

the kernel code segment; 2) the kernel version information
and a list indicating which kernel modules have been loaded;
3) the hash of all the LKM code; 4) a success/failure indicator
stating whether the function pointer check has succeeded.

. The KMA flushes processor caches, restores the register val-

ues, and finally returns to the kernel. The register values and
the return address were saved on the stack when the kernel
called invoked the Pioneer verification function.

We now explain how the verifier verifies the hash values returned ods of code attestation proposed in the literature and discuss how
by the untrusted platform. First, because the kernel text is im- the software-based code attestation provided by Pioneer is different
mutable, it suffices for the verifier to compare the hash value of from other code attestation techniques.
the kernel code segment to the known good hash value for the cor- = .
responding kernel version. However, the different hosts may have 7-1 Verifiable Code Execution
different LKMs installed, and so the hash value of the LKM code Two techniques, Cerium [8] and BIND [23], have been proposed.
can vary. Therefore, the verifier needs to recompute the hash of These use hardware extensions to the execution platform to pro-
the LKM text on the fly according to the list of installed modules vide a remote host with the guarantee of verifiable code execution.
reported by the KMA. The hash value reported by the KMA isthen Cerium relies on a physically tamper-resistant CPU with an em-
compared with the one computed by the verifier. bedded public-private key pair andpekernel that runs from the
Experimental results. We implemented our rootkit detector on ~ CPU cache. BIND requires that the execution platform has a TPM
the Fedora Core 2 Linux distribution, using SHA-1 as the hash chip and CPU architectural enhancements similar to those found in
function. The rootkit detector ran every 5 seconds and success-Intel's LaGrande Technology (LT) [12] or AMD's Secure Execu-
fully detected adore-ng-0.53, the only publically-known rootkit for tion Mode (SEM) [3] and Pacifica technology [4]. Unlike Pioneer,

the 2.6 version of the Linux kernel. neither Cerium nor BIND can be used on legacy computing plat-
forms. As far as we are aware, Pioneer is the only technique that
Standalone (s) Rootkit Detect. (s) % Overhepd attempts to provide the verifiable code execution property solely
PostMark 52 52.99 1.9 i
Bunzip2 21,396 1713 s through software technigues.
copy large file 373 385 3.2

7.2 Code Attestation

Table 1: Overhead of the Pioneer-based rootkit detector Code attestation can be broadly classified into hardware-based and
software-based approaches. While the proposed hardware-based
We monitor the performance overhead of running our rootkit de- attestation techniques work on general purpose computing systems,
tector in the background. We use three representative tasks for meato the best of our knowledge, there exists no software-based attes-
surements: PostMark, bunzip2, and copying a large file. The first tation technique for general purpose computing platforms.
task, PostMark [5], is a file system benchmark that carries out trans- Hardware-based code attestation. Sailer et al. describe a load-
actions on small files. As a result, PostMark is a combination of I/O time attestation technique that relies on the TPM chip standardized
intensive and computationally intensive tasks. We used bunzip2 to py the Trusted Computing Group [20]. Their technique allows a
to uncompress the Firefox source code, which is a computationally remote verifier to verify what software was loaded into the mem-
intensive task. Finally, we modeled an I/O intensive task by copy- ory of a p|atform_ However, a malicious periphera| could over-
ing the entirdusr/src/linux directory, which totaled to 1.33 yrite code that was just loaded into memory with a DMA-write,
GB, from one harddrive to another. As the table above shows, all thereby breaking the load-time attestation guarantee. Also, as we
three tasks perform reasonably well in the presence of our rootkit discussed in Section 1, the load-time attestation property provided
detector. by the TCG standard is no longer secure since the collision re-
Discussion. As with Copilot, one limitation of our approach is sistance property of SHA-1 has been compromised. Terra uses a
that we do not verify the integrity of data segments or CPU register Trusted Virtual Machine Monitor (TVMM) to partition a tamper-
values. Therefore, the following types of attacks are still possi- resistant hardware platform in multiple virtual machines (VM) that
ble: 1) attacks that do not modify code segments but rely merely are isolated from each other [11]. CPU-based virtualization and
on the injection of malicious data; 2) if the kernel code contains protection are used to isolate the TVMM from the VMs and the
jump/branch instructions whose target address is not read in from VMs from each other. Although the authors only discuss load-time
the verified jump tables, the jump/branch instructions may jump attestation using a TPM, Terra is capable of performing run-time
to some unverified address that contains malicious code. For in- attestation on the software stack of any of the VMs by asking the
stance, if the jump address is read from an unverified data segment,TVMM to take integrity measurements at any time. All the proper-
we cannot guarantee that the jump will only reach addresses thatties provided by Terra are based on the assumption that the TVMM
have been verified. Also, if jump/branch target addresses are storeds uncompromised when it is started and that it cannot be compro-
temporarily in the general purpose registers, it is possible to jump mised subsequently. Terra uses the load-time attestation property
to an unverified code segment, after the KMA returns to the kernel provided by TCG to guarantee that the TVMM is uncompromised
since the KMA restores the CPU register values. In conclusion, atstart-up. Since this property of TCG is compromised, none of the
Pioneer limits a kernel rootkit to be placed solely in mutable data properties of Terra hold. Even if TCG were capable of providing
segments; it requires any pointer to the rootkit to reside in a mu- the load-time attestation property, the TVMM could be compro-
table data segment as well. These properties are similar to whatmised at run-time if there are vulnerabilities in its code. In Copilot,
Copilot achieves. Petroni et al. use an add-in card connected to the PCI bus to per-
Our rootkit detection scheme does not provide backward secu- form periodic integrity measurements of the in-memory Linux ker-
rity. A malicious kernel can uninstall itself when it receives a Pi- nelimage [19]. These measurements are sent to the trusted verifier
oneer challenge, and our Pioneer-based rootkit detector cannot dethrough a dedicated side channel. The verifier uses the measure-
tect bad past events. Backward security can be achieved if we com-ments to detect unauthorized modifications to the kernel memory
bine our approach with schemes that backtrack intrusions throughimage. The Copilot PCI card cannot access CPU-based state such
analyzing system event logs [17]. as the pointer to the page table and pointers to interrupt and excep-
tion handlers. Without access to such CPU state, it is impossible
for the PCI card to determine exactly what resides in the memory
7 RELATED WORK region that the card measures. The adversary can exploit this lack
In this section, we survey related work that addresses the verifi- of knowledge to hide malicious code from the PCI card. For in-
able code execution problem. We also describe the different meth-stance, the PCI card assumes that the Linux kernel code begins at

virtual address 0xc0000000, since it does not have access to thearchitecture independent, so that it can be easily ported to different
CPU register that holds the pointer to the page tables. While this CPU architectures; and 4) increasing the time overhead for differ-
assumption is generally true on 32-bit systems based on the Intelent attacks, so that it is harder for an adversary to forge the correct
x86 processor, the adversary can place a correct kernel image sta checksum within the expected time. There are also low-level at-
ing at address 0xc0000000 while in fact running a malicious kernel tacks that need to be addressed: 1) the adversary could overclock
from another memory location. The authors of Copilot were aware the processor, making it run faster; 2) malicious peripherals, a ma-
of this attack [6]. It is not possible to prevent this attack without licious CPU in a multi-processor system or a DMA-based write
access to the CPU state. The kernel rootkit detector we build using could overwrite the executable code image in memory after it is
Pioneer is able to provide properties equivalent to Copilot without checked but before it is invoked; and 3) dynamic processor clock-
the need for additional hardware. Further, because our rootkit de-ing techniques could lead to false positives. We plan to address all
tector has access to the CPU state, it can determine exactly whichthese issues in our future work.

memory locations contain the kernel code and static data. This en- This paper shows an implementation of Pioneer on an Intel Pen-
sures that our rootkit detector measures the running kernel and nottium 1V Xeon processor based on the Netburst Microarchitecture.
a correct copy masquerading as a running kernel. Also, if the host The architectural complexity of Netburst Microarchitecture and the
running Copilot has an IOMMU, the adversary can re-map the ad- complexity of the x8664 instruction set architecture make it chal-
dresses to perform a data substitution attack. When the PCI cardienging to design a checksum code that executes slower when the
tries to read a location in the kernel, the IOMMU automatically adversary tampers with it in any manner. We design a checksum
redirects the read to a location where the adversary has stored theode that exhausts the issue bandwidth of the Netburst microarchi-
correct copy. tecture, so that any additional instructions the adversary inserts will

Software-based attestation. Genuinity is a technique proposed ~fequire extra cycles to execute.

by Kennell and Jamieson that explores the problem of detecting Pioneer can be used as a new basic building block to build secu-
the difference between a simulator-based computer system and ariity applications. We have demonstrated one such application, the
actual computer system [16]. Genuinity relies on the premise that kernel rootkit detector, and we propose other potential applications.
simulator-based program execution is bound to be slower because aVe hope these examples motivate other researchers to embrace Pi-
simulator has to simulate the CPU architectural state in software, in oneer, extend it, and apply it towards building secure systems.
addition to simulating the program execution. A special checksum
function computes a checksum over memory, while incorporating
different elements of the architectural state into the checksum. By 9 ACKNOWLEDGMENTS

the_ above premise, the checksum func_tion ;hould run sl_ower in we gratefully acknowledge support and feedback of, and fruitful

a simulator than on an actual CPU. While this statement is prob- giscussions with William Arbaugh, Mike Burrows, George Cox,
ably true when the simulator runs on an architecturally different pgyig Durham, David Grawrock, Jon Howell, John Richardson,
CPU than the one it is simulating, an adversary having an architec- pgye Riss, Carlos Rozas, Stefan Savage, Dawn Song, Jesse Walker,
turally similar CPU can compute the Genuinity checksum within - vj_\Min Wang, and our shepherd Emini@ Sirer. We would also

the alloted time while maintaining all the necessary architectural |ike to thank the anonymous reviewers for their helpful comments
state in software. As an example, in their implementation on the g suggestions.

x86, Kennell and Jamieson propose to use special registers, called

Model Specific Registers (MSR), that hold various pieces of the

architectural state like the cache and TLB miss count. The MSRs REFERENCES

can only be read and written using the spediahsr andwrmsr

instructions. We found that these instructions have a long latency [1] Tripwire. http://sourceforge.net/projects/

(~ 300 cycles). An adversary that has an x86 CPU could simu- tripwire/

late the MSRs in software and still compute the Genuinity check- [2 VMware. http:/iwww.vmware.com/

sum within the alloted time, even if the CPU has a lower clock [/ 'gg"og platform for trustworthy computing. INWWInHEG, September
speed than vyhat the adye_rsary claims. Also, Shankar etal. ?hOW 4] Secure virtual machine architecture reference manual DAGbrp.,

weaknesses in the Genuinity approach [22]. SWATT is a technique May 2005.

proposed by Seshadri et al. that performs attestation on embedded 5] Network Appliance. Postmark: A new file system benchmankaila

devices with simple CPU architectures using a software verifica- able at http://www.netapp.com/techlibrary/3022.html, 200

tion function [21]. Similar to Pioneer, the verification function is [6] W. Arbaugh. Personal communication, May 2005.

constructed so that any attempt to tamper with it will increase its [7] D. Boggs, A. Baktha, J. Hawkins, D. Marr, J. Miller, P. Resel,

running time. However, SWATT cannot be used in systems with R. Singhal, B. Toll, and K.S. Venkatraman. The microarchitezbf

complex CPUs. Also, since SWATT checks the entire memory, its the Intel Pentium 4 processor on 90nm technoldgtel Technology

" . L . . Journal 8(01), February 2004.
running time becomes prohibitive on systems with large memories. [8] B.Chen and R. Morris. Certifying program execution véticure pro-

cesors. IrProceedings of HotOS [)2003.

[9] A. Chuvakin. Ups and downs of unix/linux host-based sigisolu-
8 CONCLUSIONS AND FUTURE WORK tions.;login: The Magazine of USENIX and SAGIB(2), April 2003.

We present Pioneer, which is a first step towards addressing the[10] Free Software Foundation. superopt - finds the shoiitestruc-

problem of verifiable code execution on untrusted legacy comput- tion sequence for a given functiorttp:/www.gnu.org/

ing platforms. The current version of Pioneer leaves open research___ directory/devel/compilers/superopt.html :

problems. We need to: 1) deriving a formal proof of the optimality [11] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh
fthe check de impl tation: 2 inq that d Terra: A virtual machine-based platform for trusted computim

ofthe checksum code Implementation;) proving that an adversary In Proceedings of ACM Symposium on Operating Systems Pleésci

cannot use mathematical methods to generate a shorter checksum (sosp)2003.

function that generates the same checksum output when fed with[12] Intel Corp.LaGrande Technology Architectural OvervieBeptember
the same input; 3) deriving a checksum function that is largely CPU 2003.

[13] Intel CorporationlA32 Intel Architecture Software Developer’s Man-
ual Vol.1

K. J. Jones. Loadable Kernel Moduletogin: The Magazine of
USENIX and SAGE26(7), November 2001.

R. Joshi, G. Nelson, and K. Randall. Denali: a goal-atied super-
optimizer. InProceedings of ACM Conference on Programming Lan-
guage Design and Implementation (PLDdages 304-314, 2002.

R. Kennell and L. Jamieson. Establishing the genuinftyemote
computer systems. IRroceedings of USENIX Security Symposium
August 2003.

[17] S. King and P. Chen. Backtracking intrusions.Hroceedings of the
ACM Symposium on Operating Systems Principles (SO&Rjes
223-236, 2003.

A. Klimov and A. Shamir. A new class of invertible mappinds.
CHES '02: Revised Papers from the 4th International Worksbo
Cryptographic Hardware and Embedded Systepeges 470-483,
2003.

N. Petroni, T. Fraser, J. Molina, and W. Arbaugh. Cadpitoa
coprocessor-based kernel runtime integrity monitorPmceedings
of USENIX Security Symposiypages 179-194, 2004.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Desigd in-
plementation of a TCG-based integrity measurement architedtu
Proceedings of USENIX Security Symposipages 223-238, 2004.

[14]

[15]

[16]

[18]

[29]

[20]

[21] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWAT
Software-based attestation for embedded deviceRrdoeedings of
IEEE Symposium on Security and Privabay 2004.

[22] U. Shankar, M. Chew, and J. D. Tygar. Side effects aresnéitcient
to authenticate software. Proceedings of USENIX Security Sympo-
sium pages 89-101, August 2004.

[23] E. Shi, A. Perrig, and L. van Doorn. Bind: A fine-graineteatation
service for secure distributed systems.Proc. of the IEEE Sympo-
sium on Security and Privacpages 154-168, 2005.

[24] Trusted Computing Group (TCG). https:/iwww.
trustedcomputinggroup.org/ , 2003.

[25] Xiaoyun Wang, Yiqun Yin, and Hongbo Yu. Finding colbisis in the
full sha-1. InProceedings of CryptcAugust 2005.

[26] Y. Wang, R. Roussev, C. Verbowski, A. Johnson, and D.d.ad
AskStrider: What has changed on my machine lately? Technical Re
port MSR-TR-2004-03, Microsoft Research, 2004.

[27] Y. Wang, B. Vo, R. Rousseyv, C. Verbowski, and A. Johnssinider
GhostBuster: Why it's a bad idea for stealth software to hitss fi
Technical Report MSR-TR-2004-71, Microsoft Research4200

[28] G. Wurster, P. van Oorschot, and A. Somayaiji. A generiaciton
checksumming-based software tamper resistancProneedings of
IEEE Symposium on Security and Privaday 2005.

[29] D. Zovi. Kernel rootkits. http://www.cs.unm.edu/
“ghandi/lkr.pdf

