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Abstract

The goal of this paper is to raise a new question: What
changes in operating systems and networks if it were
feasible to have a (type of) lookup table that supported bil-
lions, or hundreds of billions, of entries, using only a few
bits per entry. We do so by showing that the progress of
Moore’s law, continuing to give more and more transistors
per chip, makes it possible to apply formerly ludicrous
amounts of brute-force parallel computation to find space-
savings opportunities.

We make two primary observations: First, that some
applications can tolerate getting an incorrect answer from
the table if they query for a key that is not in the table.
For these applications, we can discard the keys entirely,
using storage space only for the values. Further, for some
applications, the value is not arbitrary. If the range of
output values is small, we can instead view the problem as
one of set separation. These two observations allow us to
shrink the size of the mapping by brute force searching for
a “perfect mapping” from inputs to outputs that (1) does
not store the input keys; and (2) avoids collisions (and
thus the related storage). Our preliminary results show
that we can reduce memory consumption by an order
of magnitude compared to traditional hash tables while
providing competitive or better lookup performance.

1 Introduction

Large, fast lookup tables are fundamental building blocks
for routers, directory services, caches, and more; in all
of these cases, their not-inconsiderable cost in memory
is judged worthwhile for the size of data that must be
stored. Through this paper, we invite the reader to day-
dream: What additional building blocks and services may
be created if we were able to reduce this cost by over an
order of magnitude, building lookup tables that are, in the
best case of a single-bit value, perhaps 50 times smaller
than before? Based upon the new approach we outline
in this paper, a single commodity server can hold tens of
millions of lookup entries in L3 cache (versus the hun-
dreds of megabytes previously required), or fit hundreds
of billions of entries in memory, instead of spilling to
flash or disk.

Although we demonstrate this technique using only a
simple hash table, it potentially applies to many scenarios:

e Why use hierarchy in IPv6 routing? Perhaps we
could simply store a forwarding entry to every device
in the world.

e Why use hierarchical metadata servers for dis-
tributed filesystems? Or, why not have every node
cache the location of every fragment of data?

e Perhaps these content-based routing people aren’t
crazy after all.

The space saving arises from the core observation that
for many applications, a general mapping from keys to
values is not necessary. Rather, these problems should
be more accurately viewed as set separation, if (1) the
range of possible values is very small (e.g., the output
ports on a router, the sub-databases to direct a query); and
(2) it’s OK to return seemingly-valid answers for keys
that were never inserted into a set. Not storing keys (ex-
ploiting property 2) has obvious space saving advantages.
Intuitively, storing a set separation requires less space
than mapping to arbitrary values because when the set of
possible values is small, each value repeats frequently in
a normal lookup table, which leads to space inefficiency.

This sounds like a theory problem, so we take a typi-
cally boneheaded systems approach that just happens to
work: We brute-force it, and we made the code do the
brute-forcing really fast.

To brute-force find a set separator for a set of n keys
ki,ko,...,k,, start with a parameterizable hash function
Hj(key) that produces a different value for the same key if
the parameter i is changed. (One could trivially think of
doing this by just appending the bits of i to the bits of key
and passing them to a strong hash function, but we have a
faster technique.)

Then, brute force until H;(k;) indicates that k; is in the
proper set, H;(ky) similarly for k;, and so on, observing
that you’re looking for one value of i by which H; works
for all n keys. This is an exponential search. Once such
a value of i is found, we store it so that we can later look
up keys using the right hash function.

Why this might be the right tradeoff: Moore’s law has
reserved its greatest rewards for trivially parallel, pre-
dictable control-flow, no-memory-referencing computa-
tions such as these. As we show later in this paper, such



computation can leverage both instruction level paral-
lelism, SIMD, and GP-GPUs, as necessary. Memory
capacity and bandwidth, in contrast, has not advanced
as rapidly as this very heart of the CPU. Therefore, set
separation, viewed properly, has become an excellent
opportunity to trade up-front computation (during table
construction) for space.

The benefit of encoding the set separation into hash
functions is twofold. First, by only storing the indexes (i)
of the hash functions, we do not have to explicitly store
the keys at all; storing the values plus some fixed overhead
means that we can approach the information theoretical
lower bound (i.e., the minimum amount of bits required).
Second, by dramatically reducing the overall table size,
the set separator-based table can then provide a boost in
performance—a table that previously would only fit on
disk, can fit in memory, and a table that previously would
only fit in memory, might even fit in CPU L3 cache.

Needless to say, encoding the keys and values into hash
functions also creates as many problems as it solves—how
to handle updates, negative lookups, and even to answer
what in the world one might do with such a large lookup
table in the first place. Our goal in this paper is not to
solve all of these problems, but to place them on the table
as problems worth solving.

2 Applications

Set separation has many potential applications where high
query performance and low memory use are critical. The
following is an incomplete listing of scenarios where
using set separation may offer benefits.

Network routers A router or switch looks up the desti-
nation address of each packet, selecting an output port
according to its forwarding information base (FIB). To
sustain high-speed forwarding, these routers are equipped
with only a small amount of fast memory, which means
FIB must be compact. The number of output ports on
most individual switching chips is relatively low. This
combination of requirements make set separation an at-
tractive idea for FIB implementation.

Set separation can also provide benefits in content-
based routing [8] where each distinct data item (or even
individual packet) can be named. Particularly for “flat”
naming designs, where, e.g., content is named by its hash,
set separation may enable routers to support an order
of magnitude more content forwarding entries using the
same amount of memory.

Distributed storage systems Large-scale distributed
storage services such as GFS [7] and HDFS [1] employ
a directory service to provide the addresses of individual
data blocks in the storage cluster. It has become com-
monplace to store billions of blocks served by tens of

thousands of storage nodes [6]. Although tens of thou-
sands is larger than the number of values for which set
separation is directly optimal, the scale of this problem
makes it an attractive place to apply set separation as a
building block for improved scaling. The high memory ef-
ficiency and fast query processing of set separation might
allow a directory service to avoid sharding directory in-
formation across multiple nodes, which helps achieve
consistency as well as robustness upon node failures.

Accelerating table joins Performing table joins effi-
ciently is important to process complex SQL-like queries
in database systems. In many cases, joins are performed
between a large table (fact table) and small tables (dimen-
sion tables). If the joining key does not have any null
value or mismatches, and the small table contains only a
small number of values (e.g., from booleans up to, per-
haps, country codes), then set separation may help accel-
erate table joins: Each dimension table is compressed as
a set separator and is quickly broadcasted to the database
nodes that possess a fact table fragment for local joins.

3 How it Works

Set separation problem Formally, the set separation
problem is to: Construct a mapping such that for each
element in set S of size N elements, the mapping returns
avalue in {1,2,...,K}. When the set S is large and the
value K is small (e.g., 4 or 16), this mapping is equivalent
to dividing the set S into K disjoint subsets. This section
first briefly discusses conventional data structures that can
handle set separation. The following subsection shows
how directly solving the set separation problem results in
a faster and more memory-efficient solution.

3.1 Conventional Solutions

Hash tables The simplest set separator is a hash table
that maps each key in S to a unique location and stores
its associated value there (see Figure 1a). This straight-
forward approach wastes space for two reasons: First,
it stores the key associated with each value, both for re-
trievals and to resolve collisions. If two keys with differ-
ent values map to the same hash table bucket, the lookup
procedure must be able to identify the correct value to
return, typically by comparing the stored key against the
key being looked up.

Second, hash tables tend to allocate more space than
the total amount of data they can hold. Simple hashing
schemes such as linear probing typically use only half
of their allocated space before unresolvable collisions
occur; advanced open addressing hashing schemes such
as Cuckoo hashing [14] or d-left hashing [12] are more
space efficient (e.g., > 90%), but they have to resolve



(a) Hash table: the table is stored
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(b) Set separation: the hash function index i is stored

Figure 1: Illustration of using a hash table and set separator to store the mapping from four keys (k;, k>, k3, k4)
to the set {0, 1}. The dashed box is the part to store to represent this mapping.

frequent collisions because they assign each key multiple
candidate locations.

(Minimal) Perfect hashing One way to eliminate the
necessity of storing keys is to get rid of hash collisions.
In order to do so, a common approach is to build an in-
dex based on a (minimal) perfect hashing scheme which
guarantees that any given key in S is mapped to a dis-
tinct location. Such an index can be highly compressed,
for example, both ECT [11], as used in SILT [10], and
CHD [3] use fewer than 2.5 bits per key to store the index.
In addition to the index, these schemes must also store
the value of each key (log, K bits). Furthermore, both are
too slow: ECT is optimized for indexing data in external
storage such as SSDs, and its lookup latency is one to
seven microseconds per lookup; CHD is faster, but is still
much slower than one would like, particularly with a large
number of items (see Section 4).

Observation: Both schemes assign each key a location
to store the value bits explicitly. This is good when the
number of possible values is large, but for set separation
where K is small, giving each key a separate location adds
unnecessary overhead. The information theoretic lower
bound of the hashing approach requires 1.44 +log, K bits
per key, whereas the set separation approach requires only
log, K bits, though no practical scheme quite achieves
either of these limits. On the other hand, updating a value
in hashing is fast and easy, as only one location in memory
must be modified, without affecting other keys or values.

Bloom filters A Bloom filter [4] is a compact data struc-
ture used to represent a set of keys for set-membership
tests. It achieves high space efficiency by allowing false
positives, and has many applications [5]. For example,
BUFFALO [15] proposed building a switch using a com-
bination of K Bloom filters to represent K different output
ports. They lookup in the mapping from key to port (the
set id) by checking the candidate address for membership
in all K Bloom filters. One inefficiency in this approach is
that a query may see positive results from multiple Bloom
filters, so the system must store additional information to

resolve these false positives.

Observation: Building a switch is fundamentally a
problem of set separation; using multiple binary mem-
bership tests as an approximation is less space efficient.
Typically, it requires 8 or more bits per key to ensure the
false positive rate is smaller than 1%.

3.2 OQOur Approach

Our proposal is to divide the entire set of input keys into
many small groups. Each group is small enough (e.g.,
roughly 16 keys in our implementation) to ensure that
a brute-force search can efficiently find a hash function
that generates the correct mapping results for all the items
in this group. The group size is independent of K (the
number of sets/values).

Step 1: Partition keys into groups. To calculate the
group id of a given key, one obvious way is to compute a
hash of this key modulo the total number of groups. This
approach is simple, but some groups will be significantly
more loaded than the average group [13]. While a small
imbalance is acceptable, very large groups require much
longer to find the right hash functions using a brute-force
search because the time grows exponentially as the group
size increases.

To help uniformly distribute keys across groups, we
instead first partition the entire input set into much
larger buckets (e.g., 1024 keys per bucket in expectation).
Within each bucket we spend 0.5 bits per key to refine the
group partition using a two-level hashing scheme simi-
lar to [9]. In this paper, we omit the details of how this
load-balanced group partitioning works.

Step 2: Search for a hash function in each group. For
each group, the search process iterates over a parame-
terized hash function family H;(-) where i € {1,2,...}
is the parameter. Starting from i = 0, for each key x in
this group we verify if H;(x) equals the given mapping
result of x; if any key x fails, we reject the current hash
function H;, switch to the next hash function H;;; and



start over the test for all the keys in this group (not only
the keys making H; fail). Once a hash function H; passes
all the tests for the current group, we store the index i for
this group and continue to the next group (see Figure 1b).
Once a maximum number of functions have been tested
without success, a fallback mechanism is triggered to han-
dle this group, e.g., we can store this group explicitly
without adding too much overhead because this situation
is very rare according to the theory and our experiments.

Why it saves space Given a hash function H;, the prob-
ability to pass the test of all 16 keys in a group is
p = (1/K)'. Thus, the number of tested functions is
a random variable with a Geometric distribution. Its in-
formation entropy is calculated by:

—(1—p)logy(1—p)—plog, p
p

~ 16log, K,

which indicates that each group must use 16log, K bits on
average to store the hash function index i. Note that this
is the achievable lower bound because it is also the total
number of bits required to store the values only without
keys. In other words, we encode the values of each key
in the hash function index i, and the keys are no longer
needed, which is the source of space saving.

Why the search is fast The expected number of func-
tions tested for each group is 1/p = K'®. However, we
can further speed up the brute-force search by the follow-
ing observations:

e When K > 2, instead of looking for one hash func-
tion that outputs the right value in {1,...,K} for
each key, we search for log, K independent hash
functions, each only outputs value in {0, 1}, and the
Jj-th hash function is responsible for the j-th bit for
the mapping results. In this way, the expected total
number of functions to test is reduced to log, K - 21
from K'6.

e The brute-force search within each group can benefit
from SIMD (vector) instructions and GP-GPUs; fur-
thermore, each ~ 16-key group is independent and
amenable to parallelization.

4 Vague Numbers That Show That
This Idea Is Not Entirely Crazy

To test the feasibility of our idea, we built a preliminary
implementation of set separation to evaluate its memory
consumption as well as performance in terms of con-
struction and lookup speed. Our current implementation
consists of about 1000 lines of C++. We conducted our
experiments on a commodity server equipped with two
Intel Xeon E5-2680 processors and 64 GiB of DRAM.

This machine runs GNU/Linux 3.2.0 x86_64, and we used
gcc 4.6.3 to compile the code. All experiments used a
single thread.

Table 1 compares our set separation with three
different implementations: STL unordered.map,
Google SparseHash [2] (a memory-efficient version
of unordered_map), and a hash table using CHD [3]
(minimal perfect hashing for indexing). To report total
memory use, we used glibc’s mallinfo () feature,
excluding initial memory allocation and unallocated space
to accurately measure each implementation’s use.

Set separation uses the least memory across all sce-
narios. Regardless of the key length, it requires 2.03
bits/item when the value is boolean. Both set separation
and CHD have memory use independent of key length,
shrinking their memory consumption considerably. As a
result, set separation uses 50x—100x less memory than
unordered map and SparseHash, and its use of set
separation instead of value storage enables it to use 50%
less memory than the state-of-the-art CHD.

For construction, set separation is modestly slower than
the other schemes, and roughly 3 x slower than the STL
unordered_map. We believe that in a full implementa-
tion, the construction throughput of set separation can be
improved by exploiting parallelism.

Finally, the fastest lookups come from STL
unordered_map when the dataset is small, and from
set separation when the dataset is larger, likely due to the
dataset fitting better in cache. CHD, the closest competitor
to set separation in memory efficiency, always has 2x-3x
slower lookup speed than set separation. We believe, but
have not measured, that the hash table performance will
degrade also with larger key sizes due to both memory
use and the need to perform full key comparison. Neither
set separation nor CHD should suffer this slowdown.

Storing 1 billion keys proved surprisingly challeng-
ing for many of the schemes. STL unordered.-map
aborted, as it required too much memory (more than our
available 64 GiB) during construction. SparseHash
completed the construction, but it consumed about 16
GiB memory. The original CHD code (from the authors)
was unable to handle 1 billion keys, and ran out of mem-
ory on construction; we therefore modified it to create a
set of CHDs, each for a partition (about 1 million keys) of
the entire input data. Set separation used a proportionally
larger amount of memory without requiring partitioning,
and had slightly decreased construction speed.

5 Discussion

The primitive as we have discussed it is not perfect: It
requires a lot of solid systems support around it to actually
build working systems with. We discuss briefly two such



unordered.map SparseHash CHD SetSep
Baseline: size (MiB) 625.32 266.62 6.04 3.88
16 Million items, constr. (M items/sec) 2.58 1.48 1.05 0.84
64-bit key, 1-bit value | lookup (M items/sec) 9.68 3.44 3.39 9.15
Larger Keys: size (MiB) 869.46 342.63 6.04 3.88
16 Million items, constr. (M items/sec) 2.52 1.32 1.04 0.84
20B key, 1-bit value lookup (M items/sec) 6.42 3.12 3.22 8.62
More Keys: size (MiB) Out of memory 15941.46 377.68 24243
1 Billion items, constr. (M items/sec) - 0.87 1.02 0.70
64-bit key, 1-bit value | lookup (M items/sec) - 1.99 1.34 3.97

Table 1: Comparing single-thread performance of set separation and hash tables, averaged from 5 runs.

areas in which support is particularly needed.

Support for update and delete Set separation is de-
signed and optimized for high-performance lookups with
near-optimal memory consumption. Updating the value
of a single key requires, first, being able to obtain the
full keys of the other elements in the group (perhaps via
lookup on SSD); then update must brute-force search for
a new hash for the affected group, but the rest of the
set separator can remain unchanged. Inserting new keys
can work in a similar way: find the group where the key
should appear and recompute the group’s hash function.
Once the number of insertions reaches the point where a
single group has too many keys, finding a hash function
might become computationally infeasible. At this point,
one could split the group or re-constructing the entire
separator, similar to rehashing in hash tables. With dele-
tion, there is flexibility to defer the update. The separator
will return correct results for the remaining keys, but the
old value for the deleted key. Alternatively, the deletion
process could assign an unused value to the deleted key
and recompute that group’s hash.

As noted above, recomputing the separator requires the
original keys. The in-memory set separator itself does not
store any keys explicitly, as noted above, so the system
will have to keep a copy of the original key-value pairs—
most likely on disk. By batching these updates, we believe
it is possible to construct systems in which fetching this
data need not be on a performance critical path.

Look up non-existent keys Unlike conventional hash
tables or Bloom filters, our set separator always returns
meaningless mapping results for non-existent keys instead
of errors to indicate that the keys are not present. These
false positives mean that the target application must have
an out-of-band mechanism to handle the incorrect results
(or be able to ignore them).

One idea to help reduce, but not eliminate, the false
positives is to place a Bloom filter in front of the set
separator as a membership test. If the Bloom filter has a
false positive, the separator will return an invalid answer

for the not-present key.

If the application has an out-of-band mechanism to de-
tect incorrect answers, the system can either insert that
key with a “not found” value (similar to the deletion mech-
anism described above) or potentially keep a lookaside
table or Bloom filter of keys that are known not to exist.

Several of the possible application scenarios for com-
pact set separation can tolerate (i.e., detect) incorrect re-
sults for missing keys. For example, if a switch sees a
packet with a previously unknown destination and sends
it out the wrong port, network messages will notify the
switch that it was incorrect at which point it can ask its
neighbors to where that destination address should be for-
warded. If the set separator is used to locate blocks in a
distributed storage service, individual storage nodes will
notify the directory service if they do not have the block.
Typically, however, clients will only be looking up blocks
known to exist, and the “not found” case will be rare.

6 Conclusion

Cycles become cheap
Theory falls to brute-force hack
Tables big become

World-changing applications needed. Apply inside.
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