15-780: Graduate AI Lecture 3. FOL proofs

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

HW1

- Out today
- Due Tue, Feb. 1 (two weeks)
 - hand in hardcopy at beginning of class
- Covers propositional and FOL
- Don't leave it to the last minute!

Collaboration policy

- OK to discuss general strategies
- What you hand in must be your own work
 - written with no access to notes from joint meetings, websites, etc.
- You must acknowledge all significant discussions, relevant websites, etc., on your HW

Late policy

- 5 late days to split across all HWs
 - these account for conference travel, holidays, illness, or any other reasons
- After late days, out of 70th %ile for next
 24 hrs, 40th %ile for next 24, no credit
 thereafter (but still must turn in)
- Day = 24 hrs or part thereof, HWs due at 10:30AM

Office hours

- My office hours this week (usually 12–1 Thu) are canceled
- Email if you need to discuss something with me

Review

NP

- Decision problems
- Reductions: A reduces to B means B at least as hard as A
 - Ex: k-coloring to SAT, SAT to CNF-SAT
 - Sometimes a practical tool
- \circ NP = reduces to SAT
- NP-complete = both directions to SAT
- $\circ P \stackrel{?}{=} NP$

Propositional logic

- Proof trees, proof by contradiction
- Inference rules (e.g., resolution)
- Soundness, completeness
- First nontrivial SAT algorithm
- Horn clauses, MAXSAT, nonmonotonic logic

FOL

- Models
 - objects, function tables, predicate tables
- Compositional semantics
 - object constants, functions, predicates
 - o terms, atoms, literals, sentences
 - quantifiers, variables, free/bound, variable assignments

Proofs in FOL

- Skolemization, CNF
- Universal instantiation
- Substitution lists, unification
- MGU (unique up to renaming, exist efficient algorithms to find it)

Proofs in FOL

Quiz

Can we unify
 knows(John, x) knows(x, Mary)

What about
 knows(John, x) knows(y, Mary)

Quiz

Can we unify
 knows(John, x) knows(x, Mary)

What about

knows(John, x) knows(y, Mary)

No!

 $x \rightarrow Mary, y \rightarrow John$

Standardize apart

- But knows(x, Mary) is logically equivalent to knows(y, Mary)!
- Moral: standardize apart before unifying

First-order resolution

- Given clauses $(\alpha \lor c)$, $(\neg d \lor \beta)$, and a substitution list L unifying c and d
- Conclude $(\alpha \lor \beta) : L$
- In fact, only ever need L to be MGU of c, d

rains a outside (x) => wet (x) wet (x)=> rusty (x) v rust proof (x) (x) FOCOTEUN - (=(x) +000N guideloof (Rothy) guides of () > robot(x) 1 outside (x)

rains a outside (x) => wet (x) wet (x)=> rusty (x) v rust proof (x) (x) forgtens - (=(x) todos guidelost (Rolby) gridebot (A) = robot (A) 1 outside (A) $\neg (\exists x. rusty(x)) \geq \neg rusty(x)^{14}$ $1,2 \models rolot(R) = (x \rightarrow R)$ 1,3 to outside (R) (x→ R) 4,5= 75.stproof(R)13 67 = routside (x) v vet (x) 8 89 = wet (R) 11 10,11 E risty (R) v rust proof (R) 12 12,13 F (vsty (R) 15 14, 15 ===

) mans u moutaide(R) u met(x) 6

met(x) u rusty (x) u reist proof (R) 10 - robot(v) v rustproof(x) 4 rains guide Sot (R) rguidebot(x)²u robot(x) rguidebot(x) u robot(x)³

First-order factoring

- When removing redundant literals, we have the option of unifying them first
- \circ Given clause (a \vee b \vee θ), substitution L
- If a: L and b: L are syntactically identical
- Then we can conclude $(a \lor \theta) : L$
- Again L = MGU is enough

Completeness

 First-order resolution (w/ FO factoring) is sound and complete for FOL w/o equality (famous theorem due to Herbrand and Robinson)

Jacques Herbrand 1908–1931

- Unlike propositional case, may be infinitely many possible conclusions
- So, FO entailment is semidecidable (entailed statements are recursively enumerable)

Algorithm for FOL

- \circ Put KB $\wedge \neg S$ in CNF
- Pick an application of resolution or factoring (using MGU) by some fair rule
 - standardize apart premises
- Add consequence to KB
- Repeat

Variations

Equality

- **Paramodulation** is sound and complete for FOL+equality (see RN)
- Or, resolution + factoring + axiom
 schema

$$\forall P. \forall x,y. (x=y) \Rightarrow P(x) \Rightarrow P(y)$$

 $\forall D. \forall x,y.z. (x=y) \Rightarrow P(x,z) \Rightarrow P(y,z)$
 $\Rightarrow P(z,x) \Rightarrow P(z,y)$

Restricted semantics

- Only check one finite, propositional KB
 - NP-complete much better than RE
- Unique names: objects with different names are different (John ≠ Mary)
- Domain closure: objects without names given in KB don't exist
- Known functions: only have to infer predicates

Uncertainty

- Same trick as before: many independent random choices by Nature, logical rules for their consequences
- Two new difficulties
 - ensuring satisfiability (not new, harder)
 - describing set of random choices

Markov logic

- Assume unique names, domain closure, known fns: only have to infer propositions
- Each FO statement now has a known set of ground instances
 - e.g., $loves(x,y) \Rightarrow happy(x) has n^2$ instances if there are n people
- One random choice per rule instance: enforce w/p p (KBs that violate the rule are (1-p) times less likely)

Independent Choice Logic

- Generalizes Bayes nets, Markov logic,
 Prolog programs—incomparable to FOL
- Use only acyclic KBs (always feasible),
 minimal model (cf. nonmonotonicity)
- Assume all syntactically distinct terms are distinct (so we know what objects are in our model—perhaps infinitely many)
- Label some predicates as choices: values selected independently for each grounding

Inference under uncertainty

- Wide open topic: lots of recent work!
- We'll cover only the special case of propositional inference under uncertainty
- The extension to FO is left as an exercise for the listener

Second order logic

- SOL adds quantification over predicates
- *E.g.*, principle of mathematical induction:
 - $\circ \quad \forall P. P(0) \land (\forall x. P(x) \Rightarrow P(S(x))) \\
 \Rightarrow \forall x. P(x)$
- There is no sound and complete inference procedure for SOL (Gödel's famous incompleteness theorem)

Others

- Temporal and modal logics ("P(x) will be true at some time in the future," "John believes P(x)")
- Nonmonotonic FOL
- First-class functions (lambda operator, application)

0 ...

Who? What?

Where?

Wh-questions

- We've shown how to answer a question like "is Socrates mortal?"
- What if we have a question whose answer is not just yes/no, like "who killed JR?" or "where is my robot?"
- Simplest approach: prove $\exists x. killed(x, JR)$, hope the proof is constructive
 - may not work even if constr. proof exists

Answer literals

- Instead of $\neg P(x)$, add $(\neg P(x) \lor answer(x))$
 - o answer is a **new** predicate
- If there's a proof of P(foo), can eliminate $\neg P(x)$ by resolution and unification, leaving answer(x) with x bound to foo

```
Kills (Jack, Cat) v Kills (Curiosity, Cat)

2-14:11s (Jack, Cat)

3-14:11s (x, Cat)

13=6:11s (x, Cat)

42= F
```

```
Kills (Jack, Cat) v Kills (Curiosity, Cat)
2 - Wills ( Jack, Cat)
- Kills (x, Cat)
1,3 (x > J) k kills (Cariosity, Cat)
3,4 (x7 Cu) = F
```

```
Kills (Jack, Cat) v Kills (Curiosity, Cat)
2 - Wills ( Jack, Cat)
3 - Kills (x, Cat) v Answer (x)
1,3 E Lills (J, C) v ansver (Cu) 4
2,4 = answer (Cu)
```

Instance

Generation

Bounds on KB value

- If we find a model M of KB, then KB is satisfiable
- If L is a substitution list, and if (KB: L) is unsatisfiable, then KB is unsatisfiable
 - \circ e.g., $mortal(x) \rightarrow mortal(uncle(x))$

Bounds on KB value

- $KB_0 = KB$ w/ each syntactically distinct atom replaced by a different 0-arg proposition
 - $\circ likes(x, kittens) \lor \neg likes(y, x) \rightarrow A \lor \neg B$
- KB ground and KB_0 unsatisfiable $\Rightarrow KB$ unsatisfiable

Propositionalizing

- Let L be a ground substitution list
- Consider $KB' = (KB: L)_0$
 - \circ KB' unsatisfiable \Rightarrow KB unsatisfiable
 - KB' is propositional
- Try to show contradiction by handing KB' to a SAT solver: if KB' unsatisfiable, done
- · Which L? x foo y > foo 7 foo , ...

Example

```
Kills (Jack, Cat) v Kills (Curiosity, Cat)
- Wills ( Jack, Cat)
- Kills (x, Cat) >>> 7 kills (foo, Cat)
                            wins (T, C) = F
                  A = F
                            CKills (Cor C) = I
                  BFT
                            crils (x,C)=== xf(J, (a)
                  CEF
```

Lifting

- Suppose KB' satisfiable by model M'
- Try to **lift** M' to a model M of KB
 - assign each atom in M the value of its corresponding proposition in M'
 - break ties by specificity where possible
 - break any further ties arbitrarily

Example

```
Kills (Jack, Cat) v Kills (Curiosity, Cat)

- Kills (Jack, Cat)

- kills (Jack, Cat)

kills (Curiosity, Cat)

- kills (Foo, Cat)

M'
```

Discordant pairs

- Atoms kills(x, Cat), kills(Curiosity, Cat)
 - each tight for its clause in M'
 - assigned opposite values in M'
 - $unify: MGU is x \rightarrow Curiosity$
- Such pairs of atoms are discordant
- They suggest useful ways to instantiate

Example

```
Kills (Jack, Cat) v Kills (Curiosity, Cat)

- Wills (Jack, Cat)

- Kills (X, Cat)

- Kills (Curiosity, Cat)

- Kills (Curiosity, Cat)
```

InstGen

- \circ Propositionalize KB \rightarrow KB', run SAT solver
- If KB' unsatisfiable, done
- Else, get model M', lift to M
- If M satisfies KB, done
- Else, pick a discordant pair according to a fair rule; use to instantiate clauses of KB
- Repeat

Soundness and completeness

for FOL w/o =

- We've already argued soundness
- Completeness theorem: if KB is unsatisfiable but KB' is satisfiable, must exist a discordant pair wrt M' which generates a new instantiation of a clause from KB—and, a finite sequence of such instantiations will find an unsatisfiable propositional formula

Agent

Architectures

Situated agent

Inside the agent

Inside the agent

Knowledge Representation

Knowledge Representation

- is the process of
 - Identifing relevant objects, functions, and predicates
 - Encoding general background knowledge about domain (reusable)
 - Encoding specific problem instance
- Sometimes called knowledge engineering

Common themes

- RN identifies many common idioms and problems for knowledge representation
- Hierarchies, fluents, knowledge, belief, ...
- We'll look at a couple

Taxonomies

- isa(Mammal, Animal)
- disjoint(Animal, Vegetable)
- partition({Animal, Vegetable, Mineral, Intangible}, Everything)

Inheritance

- Transitive: $isa(x, y) \land isa(y, z) \Rightarrow isa(x, z)$
- Attach properties anywhere in hierarchy
 - isa(Pigeon, Bird)
 - $\circ isa(x, Bird) \Longrightarrow flies(x)$
 - \circ isa(x, Pigeon) \Rightarrow gray(x)
- So, isa(Tweety, Pigeon) tells us Tweety is gray and flies

Physical composition

- partOf(Wean4625, WeanHall)
- partOf(water37, water3)
- Note distinction between mass and count nouns: any partOf a mass noun also isa that mass noun

Fluents

- Fluent = property that changes over time
 - at(Robot, Wean4623, 11AM)
- Actions change fluents
- Fluents chain together to form possible worlds
- $\circ at(x, p, t) \land adj(p, q) \Rightarrow poss(go(x, p, q), t)$ $\land at(x, q, result(go(x, p, q), t))$

Frame problem

- Suppose we execute an unrelated action (e.g., talk(Professor, FOL))
- Robot shouldn't move:
 - if at(Robot, Wean4623, t), want at(Robot, Wean4623, result(talk(Professor, FOL)))
- But we can't prove it without adding appropriate rules to KB!

Frame problem

- The frame problem is that it's a pain to list all of the things that don't change when we execute an action
- Naive solution: frame axioms
 - for each fluent, list actions that can't change fluent
 - KB size: O(AF) for A actions, F fluents

Frame problem

- Better solution: successor-state axioms
- For each fluent, list actions that **can** change it (typically fewer): if go(x, p, q) is possible, $at(x, q, result(a, t)) \Leftrightarrow a = go(x, p, q) \lor (at(x, q, t) \land a \neq go(x, q, z))$
- Size O(AE+F) if each action has E effects

Debugging KB

- Sadly always necessary...
 - Severe bug: logical contradictions
 - Less severe: undesired conclusions
 - Least severe: missing conclusions
- First 2: trace back chain of reasoning until reason for failure is revealed
- Last: trace desired proof, find what's missing

Examples

A simple data structure

- \circ (ABB) = cons(A, cons(B, cons(B, nil)))
- \circ input(x) \Leftrightarrow r(x, nil)
- $\circ r(cons(x, y), z) \Leftrightarrow r(y, cons(x, z))$
- \circ r(nil, x) \Leftrightarrow output(x)

Caveat

- \circ input(x) \Leftrightarrow r(x, nil)
- \circ r(cons(x, y), z) \Leftrightarrow r(y, cons(x, z))
- \circ r(nil, x) \Leftrightarrow output(x)

A context-free grammar

```
S := NP VP
NP := D Adjs N
 VP := Advs V PPs | Advs V DO PPs | Advs V IO DO PPs
PP := Prep NP
DO := NP
IO := NP
Adjs := Adj Adjs \mid \{\}
Advs := Adv Advs | \{\}
PPs := PP PPs \mid \{\}
D := a \mid an \mid the \mid \{\}
 Adj := errant | atonal | squishy | piquant | desultory
 Adv := quickly | excruciatingly
```

N := aardvark | avocado | accordion | professor | pandemonium

V := throws | explains | slithers

Prep := to | with | underneath

A context-free grammar

```
    NP:= D
    VP:= A
    PP:= Pr
    DO:= N
    IO:= NI
    Adjs:=
    Advs:=
    PPs:= P
    D:= a I
    Adj:= e
```

Adv := 0

V := thr

Prep :=

S := NP

the errant professor explains the desultory avocado to the squishy aardvark

a piquant accordion quickly excruciatingly slithers underneath the atonal pandemonium O PPs

• N := aardvark | avocado | accordion | professor | pandemonium

Shift-reduce parser

```
input(x) \Rightarrow parse(x, nil)
parse(cons(x, y), z) \Rightarrow parse(y, cons(x, z))
parse(x, (VP NP . y)) \Rightarrow parse(x, (S . y))
parse(x, (N Adjs D.y)) \Rightarrow parse(x, (NP.y))
parse(x, y) \Rightarrow parse(x, (Adjs.y))
parse(x, (aardvark.y)) \Rightarrow parse(x, (N.y))
parse(nil, (S)) \Rightarrow parsed
```

An example parse

input((the professor slithers))

More careful

 $input(x) \land input(y) \Rightarrow (x = y)$

NP \neq VP \wedge NP \neq S \wedge NP \neq the \wedge avocado \neq aardvark \wedge avocado \neq the \wedge ...

terminal(x) \Leftrightarrow x = avocado \lor x = the \lor ...

 $input(x) \Leftrightarrow parse(x, nil)$

 $parse(nil, (S)) \Leftrightarrow parsed$

More careful (cont'd)

```
terminal(x) \Rightarrow
      [parse(cons(x, y), z) \Leftrightarrow parse(y, cons(x, z))]
[parse(x, (aardvark . y)) \vee parse(x, (avocado . y))
     \vee \ldots ] \Leftrightarrow parse(x, (N . y))
[parse(x, y) \vee parse(x, (Adjs Adj . y)]
      \Leftrightarrow parse(x, (Adjs . y))
```

Extensions

- Probabilistic CFG
- Context-sensitive features (e.g., coreference: John and Mary like to sail. His yacht is red, and hers is blue.)