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HW1

Out today

Due Tue, Feb. 1 (two weeks)

hand in hardcopy at beginning of class

Covers propositional and FOL

Don’t leave it to the last minute!
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Collaboration policy

OK to discuss general strategies

What you hand in must be your own work

written with no access to notes from 

joint meetings, websites, etc.

You must acknowledge all significant 

discussions, relevant websites, etc., on 

your HW
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Late policy

5 late days to split across all HWs

these account for conference travel, 

holidays, illness, or any other reasons

After late days, out of 70th %ile for next 

24 hrs, 40th %ile for next 24, no credit 

thereafter (but still must turn in)

Day = 24 hrs or part thereof, HWs due at 

10:30AM
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Office hours

My office hours this week (usually 12–1 

Thu) are canceled

Email if you need to discuss something 

with me
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Review
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NP

Decision problems

Reductions: A reduces to B means B at 

least as hard as A

Ex: k-coloring to SAT, SAT to CNF-SAT

Sometimes a practical tool

NP = reduces to SAT

NP-complete = both directions to SAT

P = NP
?
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Propositional logic

Proof trees, proof by contradiction

Inference rules (e.g., resolution)

Soundness, completeness

First nontrivial SAT algorithm

Horn clauses, MAXSAT, nonmonotonic 

logic
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FOL

Models

objects, function tables, predicate tables

Compositional semantics

object constants, functions, predicates

terms, atoms, literals, sentences

quantifiers, variables, free/bound, 

variable assignments
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Proofs in FOL

Skolemization,  CNF 

Universal instantiation

Substitution lists, unification

MGU (unique up to renaming, exist 

efficient algorithms to find it)
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Proofs in 

FOL
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Quiz

Can we unify

knows(John, x)   knows(x, Mary)

What about

knows(John, x)   knows(y, Mary)
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Quiz

Can we unify

knows(John, x)   knows(x, Mary)

What about

knows(John, x)   knows(y, Mary)

No!

x ! Mary, y ! John
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Standardize apart

But knows(x, Mary) is logically equivalent 

to knows(y, Mary)!

Moral: standardize apart before unifying
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First-order resolution

Given clauses (! " c),  (¬d " "), and a 

substitution list L unifying c and d

Conclude (! " ") : L

In fact, only ever need L to be MGU of c, d
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Example

17
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First-order factoring

When removing redundant literals, we 

have the option of unifying them first

Given clause (a " b " #), substitution L

If a : L and b : L are syntactically identical

Then we can conclude (a " #) : L

Again L = MGU is enough
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Completeness

Unlike propositional case, may be infinitely many 

possible conclusions

So, FO entailment is semidecidable (entailed 

statements are recursively enumerable)

Jacques Herbrand

1908–1931

First-order resolution (w/ FO 

factoring) is sound and complete for 

FOL w/o equality (famous theorem 

due to Herbrand and Robinson)
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Algorithm for FOL

Put KB # ¬S in CNF

Pick an application of resolution or 

factoring (using MGU) by some fair rule

standardize apart premises

Add consequence to KB

Repeat
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Variations



Equality

Paramodulation is sound and complete 

for FOL+equality (see RN)

Or, resolution + factoring + axiom 

schema



Restricted semantics

Only check one finite, propositional KB

NP-complete much better than RE

Unique names: objects with different 

names are different (John $ Mary)

Domain closure: objects without names 

given in KB don’t exist

Known functions: only have to infer 

predicates
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Uncertainty

Same trick as before: many independent 

random choices by Nature, logical rules 

for their consequences

Two new difficulties

ensuring satisfiability (not new, harder)

describing set of random choices
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Markov logic

Assume unique names, domain closure, 

known fns: only have to infer propositions

Each FO statement now has a known set 

of ground instances

e.g., loves(x,y) % happy(x) has n2 

instances if there are n people

One random choice per rule instance: 

enforce w/p p (KBs that violate the rule 

are (1–p) times less likely)
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Independent Choice Logic

Generalizes Bayes nets, Markov logic, 

Prolog programs—incomparable to FOL

Use only acyclic KBs (always feasible), 

minimal model (cf. nonmonotonicity)

Assume all syntactically distinct terms are 

distinct (so we know what objects are in 

our model—perhaps infinitely many)

Label some predicates as choices: values 

selected independently for each grounding
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Inference under uncertainty

Wide open topic: lots of recent work!

We’ll cover only the special case of 

propositional inference under uncertainty

The extension to FO is left as an exercise 

for the listener
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Second order logic

SOL adds quantification over predicates

E.g., principle of mathematical induction:

&P. P(0) # (&x. P(x) % P(S(x))) 

% &x. P(x)

There is no sound and complete inference 

procedure for SOL (Gödel’s famous 

incompleteness theorem)



Others

Temporal and modal logics (“P(x) will be 

true at some time in the future,” “John 

believes P(x)”)

Nonmonotonic FOL

First-class functions (lambda operator, 

application)

…



Who? What?

Where?



Wh-questions

We’ve shown how to answer a question 

like “is Socrates mortal?”

What if we have a question whose answer 

is not just yes/no, like “who killed JR?” or 

“where is my robot?”

Simplest approach: prove 'x. killed(x, JR), 

hope the proof is constructive

may not work even if constr. proof exists
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Answer literals

Instead of ¬P(x), add (¬P(x) " answer(x))

answer is a new predicate

If there’s a proof of P(foo), can eliminate 

¬P(x) by resolution and unification, 

leaving answer(x) with x bound to foo
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Example



Example



Example



Instance 

Generation



Bounds on KB value

If we find a model M of KB, then KB is 

satisfiable

If L is a substitution list, and if (KB: L) is 

unsatisfiable, then KB is unsatisfiable

e.g., mortal(x) ! mortal(uncle(x))
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Bounds on KB value

KB0 = KB w/ each syntactically distinct atom 

replaced by a different 0-arg proposition

likes(x, kittens) " ¬likes(y, x) ! A " ¬B

KB ground and KB0 unsatisfiable % KB 

unsatisfiable

39



Propositionalizing

Let L be a ground substitution list

Consider KB’ = (KB: L)0

KB’ unsatisfiable % KB unsatisfiable

KB’ is propositional

Try to show contradiction by handing KB’ 

to a SAT solver: if KB’ unsatisfiable, done

Which L?
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Example



Lifting

Suppose KB’ satisfiable by model M’

Try to lift M’ to a model M of KB

assign each atom in M the value of its 

corresponding proposition in M’

break ties by specificity where possible

break any further ties arbitrarily
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Example

¬kills(Jack, Cat)

kills(Curiosity, Cat)

¬kills(Foo, Cat)

M’



Discordant pairs

Atoms kills(x, Cat), kills(Curiosity, Cat)

each tight for its clause in M’

assigned opposite values in M’

unify: MGU is x ! Curiosity

Such pairs of atoms are discordant

They suggest useful ways to instantiate
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Example
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InstGen

Propositionalize KB!KB’, run SAT solver

If KB’ unsatisfiable, done

Else, get model M’, lift to M

If M satisfies KB, done

Else, pick a discordant pair according to a 

fair rule; use to instantiate clauses of KB

Repeat
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Soundness and completeness

We’ve already argued soundness

Completeness theorem: if KB is 

unsatisfiable but KB’ is satisfiable, must 

exist a discordant pair wrt M’ which 

generates a new instantiation of a clause 

from KB—and, a finite sequence of such 

instantiations will find an unsatisfiable 

propositional formula
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Agent 

Architectures



Situated agent
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Perception

Action

Agent

Environment



Inside the agent
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Inside the agent
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Knowledge 

Representation



Knowledge Representation

is the process of

Identifing relevant objects, functions, 

and predicates

Encoding general background 

knowledge about domain (reusable)

Encoding specific problem instance

Sometimes called knowledge engineering



Common themes

RN identifies many common idioms and 

problems for knowledge representation

Hierarchies, fluents, knowledge, belief, …

We’ll look at a couple



Taxonomies

isa(Mammal, Animal)

disjoint(Animal, Vegetable)

partition({Animal, Vegetable, Mineral, 

Intangible}, Everything)



Inheritance

Transitive: isa(x, y) # isa(y, z) % isa(x, z)

Attach properties anywhere in hierarchy

isa(Pigeon, Bird)

isa(x, Bird) % flies(x)

isa(x, Pigeon) % gray(x)

So, isa(Tweety, Pigeon) tells us Tweety is 

gray and flies



Physical composition

partOf(Wean4625, WeanHall)

partOf(water37, water3)

Note distinction between mass and count 

nouns: any partOf a mass noun also isa 

that mass noun



Fluents

Fluent = property that changes over time

at(Robot, Wean4623, 11AM)

Actions change fluents

Fluents chain together to form possible 

worlds

at(x, p, t) # adj(p, q) % poss(go(x, p, q), t) 

# at(x, q, result(go(x, p, q), t))



Frame problem

Suppose we execute an unrelated action 

(e.g., talk(Professor, FOL))

Robot shouldn’t move: 

if at(Robot, Wean4623, t), want 

at(Robot, Wean4623, 

result(talk(Professor, FOL)))

But we can’t prove it without adding 

appropriate rules to KB!



Frame problem

The frame problem is that it’s a pain to 

list all of the things that don’t change 

when we execute an action

Naive solution: frame axioms

for each fluent, list actions that can’t 

change fluent

KB size: O(AF) for A actions, F fluents



Frame problem

Better solution: successor-state axioms

For each fluent, list actions that can change 

it (typically fewer): if go(x, p, q) is possible,

at(x, q, result(a, t)) ( 

a = go(x, p, q) " (at(x, q, t) # a $ go(x, q, z))

Size O(AE+F) if each action has E effects



Debugging KB

Sadly always necessary…

Severe bug: logical contradictions

Less severe: undesired conclusions

Least severe: missing conclusions

First 2: trace back chain of reasoning until 

reason for failure is revealed

Last: trace desired proof, find what’s missing



Examples



A simple data structure

(ABB) ) cons(A, cons(B, cons(B, nil)))

input(x) ⇔ r(x, nil)

r(cons(x, y), z) ⇔ r(y, cons(x, z))

r(nil, x) ⇔ output(x)
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Caveat

input(x) ⇔ r(x, nil)

r(cons(x, y), z) ⇔ r(y, cons(x, z))

r(nil, x) ⇔ output(x)
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A context-free grammar

S := NP VP

NP := D Adjs N

VP := Advs V PPs | Advs V DO PPs |  Advs V IO DO PPs

PP := Prep NP

DO := NP

IO := NP

Adjs := Adj Adjs | {}

Advs := Adv Advs | {}

PPs := PP PPs | {}

D := a | an | the | {}

Adj := errant | atonal | squishy | piquant | desultory

Adv := quickly | excruciatingly

V := throws | explains | slithers

Prep := to | with | underneath

N := aardvark | avocado | accordion | professor | pandemonium
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A context-free grammar

S := NP VP

NP := D Adjs N

VP := Advs V PPs | Advs V DO PPs |  Advs V IO DO PPs

PP := Prep NP

DO := NP

IO := NP

Adjs := Adj Adjs | {}

Advs := Adv Advs | {}

PPs := PP PPs | {}

D := a | an | the | {}

Adj := errant | atonal | squishy | piquant | desultory

Adv := quickly | excruciatingly

V := throws | explains | slithers

Prep := to | with | underneath

N := aardvark | avocado | accordion | professor | pandemonium
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the errant professor 
explains the desultory 
avocado to the squishy 

aardvark

a piquant accordion 
quickly excruciatingly 

slithers underneath the 
atonal pandemonium



Shift-reduce parser

input(x) ⇒ parse(x, nil)

parse(cons(x, y), z) ⇒ parse(y, cons(x, z))

parse(x, (VP NP . y)) ⇒ parse(x, (S . y))

parse(x, (N Adjs D . y)) ⇒ parse(x, (NP . y))

parse(x, y) ⇒ parse(x, (Adjs . y))

parse(x, (aardvark . y)) ⇒ parse(x, (N . y))

…
parse(nil, (S)) ⇒ parsed
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An example parse

input((the professor slithers))
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More careful

input(x) ! input(y) % (x = y)

NP ! VP ! NP ! S ! NP ! the ! avocado ! 

aardvark ! avocado ! the ! … 

terminal(x) ( x = avocado " x = the " … 

input(x) ( parse(x, nil)

parse(nil, (S)) ( parsed
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More careful (cont’d)

terminal(x) % 
[parse(cons(x, y), z) ( parse(y, cons(x, z))]

[parse(x, (aardvark . y)) " parse(x, (avocado . y))
" …] ( parse(x, (N . y))

[parse(x, y) " parse(x, (Adjs Adj . y)] 
( parse(x, (Adjs . y))

…
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Extensions

Probabilistic CFG

Context-sensitive features (e.g., 

coreference: John and Mary like to sail.  

His yacht is red, and hers is blue.)
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