
15-780: Graduate AI

Lecture 3. FOL proofs

Geoff Gordon (this lecture)

Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

Admin

2

HW1

Out today

Due Tue, Feb. 1 (two weeks)

hand in hardcopy at beginning of class

Covers propositional and FOL

Don’t leave it to the last minute!

3

Collaboration policy

OK to discuss general strategies

What you hand in must be your own work

written with no access to notes from

joint meetings, websites, etc.

You must acknowledge all significant

discussions, relevant websites, etc., on

your HW

4

Late policy

5 late days to split across all HWs

these account for conference travel,

holidays, illness, or any other reasons

After late days, out of 70th %ile for next

24 hrs, 40th %ile for next 24, no credit

thereafter (but still must turn in)

Day = 24 hrs or part thereof, HWs due at

10:30AM

5

Office hours

My office hours this week (usually 12–1

Thu) are canceled

Email if you need to discuss something

with me

6

Review

7

NP

Decision problems

Reductions: A reduces to B means B at

least as hard as A

Ex: k-coloring to SAT, SAT to CNF-SAT

Sometimes a practical tool

NP = reduces to SAT

NP-complete = both directions to SAT

P = NP
?

8

Propositional logic

Proof trees, proof by contradiction

Inference rules (e.g., resolution)

Soundness, completeness

First nontrivial SAT algorithm

Horn clauses, MAXSAT, nonmonotonic

logic

9

FOL

Models

objects, function tables, predicate tables

Compositional semantics

object constants, functions, predicates

terms, atoms, literals, sentences

quantifiers, variables, free/bound,

variable assignments

10

Proofs in FOL

Skolemization, CNF

Universal instantiation

Substitution lists, unification

MGU (unique up to renaming, exist

efficient algorithms to find it)

11

Proofs in

FOL
12

Quiz

Can we unify

knows(John, x) knows(x, Mary)

What about

knows(John, x) knows(y, Mary)

13

Quiz

Can we unify

knows(John, x) knows(x, Mary)

What about

knows(John, x) knows(y, Mary)

No!

x ! Mary, y ! John

14

Standardize apart

But knows(x, Mary) is logically equivalent

to knows(y, Mary)!

Moral: standardize apart before unifying

15

First-order resolution

Given clauses (! " c), (¬d " "), and a

substitution list L unifying c and d

Conclude (! " ") : L

In fact, only ever need L to be MGU of c, d

16

Example

17

18

First-order factoring

When removing redundant literals, we

have the option of unifying them first

Given clause (a " b " #), substitution L

If a : L and b : L are syntactically identical

Then we can conclude (a " #) : L

Again L = MGU is enough

19

Completeness

Unlike propositional case, may be infinitely many

possible conclusions

So, FO entailment is semidecidable (entailed

statements are recursively enumerable)

Jacques Herbrand

1908–1931

First-order resolution (w/ FO

factoring) is sound and complete for

FOL w/o equality (famous theorem

due to Herbrand and Robinson)

20

Algorithm for FOL

Put KB # ¬S in CNF

Pick an application of resolution or

factoring (using MGU) by some fair rule

standardize apart premises

Add consequence to KB

Repeat

21

Variations

Equality

Paramodulation is sound and complete

for FOL+equality (see RN)

Or, resolution + factoring + axiom

schema

Restricted semantics

Only check one finite, propositional KB

NP-complete much better than RE

Unique names: objects with different

names are different (John $ Mary)

Domain closure: objects without names

given in KB don’t exist

Known functions: only have to infer

predicates
24

Uncertainty

Same trick as before: many independent

random choices by Nature, logical rules

for their consequences

Two new difficulties

ensuring satisfiability (not new, harder)

describing set of random choices

25

Markov logic

Assume unique names, domain closure,

known fns: only have to infer propositions

Each FO statement now has a known set

of ground instances

e.g., loves(x,y) % happy(x) has n2

instances if there are n people

One random choice per rule instance:

enforce w/p p (KBs that violate the rule

are (1–p) times less likely)
26

R
ic

h
a
rd

so
n
 &

 D
o
m

in
g
o
s

Independent Choice Logic

Generalizes Bayes nets, Markov logic,

Prolog programs—incomparable to FOL

Use only acyclic KBs (always feasible),

minimal model (cf. nonmonotonicity)

Assume all syntactically distinct terms are

distinct (so we know what objects are in

our model—perhaps infinitely many)

Label some predicates as choices: values

selected independently for each grounding
27

Inference under uncertainty

Wide open topic: lots of recent work!

We’ll cover only the special case of

propositional inference under uncertainty

The extension to FO is left as an exercise

for the listener

28

Second order logic

SOL adds quantification over predicates

E.g., principle of mathematical induction:

&P. P(0) # (&x. P(x) % P(S(x)))

% &x. P(x)

There is no sound and complete inference

procedure for SOL (Gödel’s famous

incompleteness theorem)

Others

Temporal and modal logics (“P(x) will be

true at some time in the future,” “John

believes P(x)”)

Nonmonotonic FOL

First-class functions (lambda operator,

application)

…

Who? What?

Where?

Wh-questions

We’ve shown how to answer a question

like “is Socrates mortal?”

What if we have a question whose answer

is not just yes/no, like “who killed JR?” or

“where is my robot?”

Simplest approach: prove 'x. killed(x, JR),

hope the proof is constructive

may not work even if constr. proof exists

32

Answer literals

Instead of ¬P(x), add (¬P(x) " answer(x))

answer is a new predicate

If there’s a proof of P(foo), can eliminate

¬P(x) by resolution and unification,

leaving answer(x) with x bound to foo

33

Example

Example

Example

Instance

Generation

Bounds on KB value

If we find a model M of KB, then KB is

satisfiable

If L is a substitution list, and if (KB: L) is

unsatisfiable, then KB is unsatisfiable

e.g., mortal(x) ! mortal(uncle(x))

38

Bounds on KB value

KB0 = KB w/ each syntactically distinct atom

replaced by a different 0-arg proposition

likes(x, kittens) " ¬likes(y, x) ! A " ¬B

KB ground and KB0 unsatisfiable % KB

unsatisfiable

39

Propositionalizing

Let L be a ground substitution list

Consider KB’ = (KB: L)0

KB’ unsatisfiable % KB unsatisfiable

KB’ is propositional

Try to show contradiction by handing KB’

to a SAT solver: if KB’ unsatisfiable, done

Which L?

40

Example

Lifting

Suppose KB’ satisfiable by model M’

Try to lift M’ to a model M of KB

assign each atom in M the value of its

corresponding proposition in M’

break ties by specificity where possible

break any further ties arbitrarily

42

Example

¬kills(Jack, Cat)

kills(Curiosity, Cat)

¬kills(Foo, Cat)

M’

Discordant pairs

Atoms kills(x, Cat), kills(Curiosity, Cat)

each tight for its clause in M’

assigned opposite values in M’

unify: MGU is x ! Curiosity

Such pairs of atoms are discordant

They suggest useful ways to instantiate

44

Example

45

InstGen

Propositionalize KB!KB’, run SAT solver

If KB’ unsatisfiable, done

Else, get model M’, lift to M

If M satisfies KB, done

Else, pick a discordant pair according to a

fair rule; use to instantiate clauses of KB

Repeat

46

Soundness and completeness

We’ve already argued soundness

Completeness theorem: if KB is

unsatisfiable but KB’ is satisfiable, must

exist a discordant pair wrt M’ which

generates a new instantiation of a clause

from KB—and, a finite sequence of such

instantiations will find an unsatisfiable

propositional formula

47

Agent

Architectures

Situated agent

49

Perception

Action

Agent

Environment

Inside the agent

50

Inside the agent

50

Knowledge

Representation

Knowledge Representation

is the process of

Identifing relevant objects, functions,

and predicates

Encoding general background

knowledge about domain (reusable)

Encoding specific problem instance

Sometimes called knowledge engineering

Common themes

RN identifies many common idioms and

problems for knowledge representation

Hierarchies, fluents, knowledge, belief, …

We’ll look at a couple

Taxonomies

isa(Mammal, Animal)

disjoint(Animal, Vegetable)

partition({Animal, Vegetable, Mineral,

Intangible}, Everything)

Inheritance

Transitive: isa(x, y) # isa(y, z) % isa(x, z)

Attach properties anywhere in hierarchy

isa(Pigeon, Bird)

isa(x, Bird) % flies(x)

isa(x, Pigeon) % gray(x)

So, isa(Tweety, Pigeon) tells us Tweety is

gray and flies

Physical composition

partOf(Wean4625, WeanHall)

partOf(water37, water3)

Note distinction between mass and count

nouns: any partOf a mass noun also isa

that mass noun

Fluents

Fluent = property that changes over time

at(Robot, Wean4623, 11AM)

Actions change fluents

Fluents chain together to form possible

worlds

at(x, p, t) # adj(p, q) % poss(go(x, p, q), t)

at(x, q, result(go(x, p, q), t))

Frame problem

Suppose we execute an unrelated action

(e.g., talk(Professor, FOL))

Robot shouldn’t move:

if at(Robot, Wean4623, t), want

at(Robot, Wean4623,

result(talk(Professor, FOL)))

But we can’t prove it without adding

appropriate rules to KB!

Frame problem

The frame problem is that it’s a pain to

list all of the things that don’t change

when we execute an action

Naive solution: frame axioms

for each fluent, list actions that can’t

change fluent

KB size: O(AF) for A actions, F fluents

Frame problem

Better solution: successor-state axioms

For each fluent, list actions that can change

it (typically fewer): if go(x, p, q) is possible,

at(x, q, result(a, t)) (

a = go(x, p, q) " (at(x, q, t) # a $ go(x, q, z))

Size O(AE+F) if each action has E effects

Debugging KB

Sadly always necessary…

Severe bug: logical contradictions

Less severe: undesired conclusions

Least severe: missing conclusions

First 2: trace back chain of reasoning until

reason for failure is revealed

Last: trace desired proof, find what’s missing

Examples

A simple data structure

(ABB)) cons(A, cons(B, cons(B, nil)))

input(x) ⇔ r(x, nil)

r(cons(x, y), z) ⇔ r(y, cons(x, z))

r(nil, x) ⇔ output(x)

63

Caveat

input(x) ⇔ r(x, nil)

r(cons(x, y), z) ⇔ r(y, cons(x, z))

r(nil, x) ⇔ output(x)

64

A context-free grammar

S := NP VP

NP := D Adjs N

VP := Advs V PPs | Advs V DO PPs | Advs V IO DO PPs

PP := Prep NP

DO := NP

IO := NP

Adjs := Adj Adjs | {}

Advs := Adv Advs | {}

PPs := PP PPs | {}

D := a | an | the | {}

Adj := errant | atonal | squishy | piquant | desultory

Adv := quickly | excruciatingly

V := throws | explains | slithers

Prep := to | with | underneath

N := aardvark | avocado | accordion | professor | pandemonium
65

A context-free grammar

S := NP VP

NP := D Adjs N

VP := Advs V PPs | Advs V DO PPs | Advs V IO DO PPs

PP := Prep NP

DO := NP

IO := NP

Adjs := Adj Adjs | {}

Advs := Adv Advs | {}

PPs := PP PPs | {}

D := a | an | the | {}

Adj := errant | atonal | squishy | piquant | desultory

Adv := quickly | excruciatingly

V := throws | explains | slithers

Prep := to | with | underneath

N := aardvark | avocado | accordion | professor | pandemonium
65

the errant professor
explains the desultory
avocado to the squishy

aardvark

a piquant accordion
quickly excruciatingly

slithers underneath the
atonal pandemonium

Shift-reduce parser

input(x) ⇒ parse(x, nil)

parse(cons(x, y), z) ⇒ parse(y, cons(x, z))

parse(x, (VP NP . y)) ⇒ parse(x, (S . y))

parse(x, (N Adjs D . y)) ⇒ parse(x, (NP . y))

parse(x, y) ⇒ parse(x, (Adjs . y))

parse(x, (aardvark . y)) ⇒ parse(x, (N . y))

…
parse(nil, (S)) ⇒ parsed

66

An example parse

input((the professor slithers))

67

More careful

input(x) ! input(y) % (x = y)

NP ! VP ! NP ! S ! NP ! the ! avocado !

aardvark ! avocado ! the ! …

terminal(x) (x = avocado " x = the " …

input(x) (parse(x, nil)

parse(nil, (S)) (parsed

68

More careful (cont’d)

terminal(x) %
[parse(cons(x, y), z) (parse(y, cons(x, z))]

[parse(x, (aardvark . y)) " parse(x, (avocado . y))
" …] (parse(x, (N . y))

[parse(x, y) " parse(x, (Adjs Adj . y)]
(parse(x, (Adjs . y))

…

69

Extensions

Probabilistic CFG

Context-sensitive features (e.g.,

coreference: John and Mary like to sail.

His yacht is red, and hers is blue.)

70

