
15-780: Grad AI
Lecture 14: Planning

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

Time

Recall fluents

For KBs that evolve, add extra argument to
each predicate saying when it was true

‣ at(Robot, Wean5409)

‣ at(Robot, Wean5409, t17)

Operators

Given a representation like this, can define
operators that change state

E.g., given

‣ at(Robot, Wean5409, t17)

‣ and writing t18 for
result(move(Robot, Wean5409, corridor), t17)

might be able to conclude

‣ at(Robot, corridor, t18)

‣ ¬at(Robot, Wean5409, t18)

Goals

Want our robot to, e.g., get sandwich

Search for proof of has(Geoff, Sandwich, t)

Try to analyze proof tree to find sequence of
operators that make goal true

Russell & Norvig Ch 11–12

Complications

This strategy yields lots of complications

‣ frame or successor-state axioms (facts don’t
change unless operator does it)

‣ generalization of answer literal

‣ unique names, reasoning about equality
among situations…

Result can be slow inference

Planning

Alternate solution: define a subset of FOL
especially for planning

E.g., STRIPS language (STanford Research
Institute Problem Solver)

STRIPS

State of world = { true ground literals }

‣ no distinction between false, unknown

goal = { desired ground literals }

‣ done if goal ⊆ state

unique names, no functions, limited
quantification, limited negation…

‣ can get away w/o equality predicate

STRIPS example

Goal: full(M)

STRIPS example

food(N)

hungry(M)

at(N, W)

at(M, X)

at(B1, Y)

at(B2, Y)

at(B3, Z)

on(B2, B1)

clear(B2)

clear(B3)

height(M, Low)

height(N, High)

STRIPS operators

Operator = { preconditions }, { effects }

If preconditions are true at time t,

‣ can apply operator at time t

‣ effects will be true at time t+1

‣ negated effect: delete from state

‣ rest of state unaffected

Basic STRIPS: one operator per step

Quantification in operators

Preconditions of operator may contain
variables (implicit ∀)

‣ operator can apply if preconditions unify
w/ state (using substitution X)

Effects may use variables bound by
precondition

‣ state t+1 has e / X for each e in effects

Operator example

Eat(target, p, l)

‣ pre: hungry(M), food(target), at(M, p),
at(target, p), level(M, l), level(target, l)

‣ eff: ¬hungry(M), full(M), ¬at(target, p),
¬level(target, l)

Operator example

Move(from, to)

‣ pre: at(M, from), level(M, Low)

‣ eff: at(M, to), ¬at(M, from)

Push(object, from, to)

‣ pre: at(object, from), at(M, from), clear(object)

‣ eff: at(M, to), at(object, to), ¬at(object, from),
¬at(M, from)

Operator example

Climb(object, p)

‣ pre: at(M, p), at(object, p), level(M, Low),
clear(object)

‣ eff: level(M, High), ¬level(M, Low)

ClimbDown()

‣ pre: level(M, High)

‣ eff: ¬level(M, High), level(M, Low)

Plan search

Plan search

Given a planning problem (start state,
operator descriptions, goal)

Run standard search algorithms to find plan

Decisions: search state representation,
neighborhood def’n, search algorithm

Linear planner

Simplest choice: linear planner

‣ Search state = sequence of operators

‣ Neighbor: add op to end of sequence

Bind variables as necessary

‣ both op and binding are choice points

Can search forward from start or backward
from goal, or mix the two

Example heuristic: number of open literals

Linear planner example
Pick an operator, e.g.,

‣ Move(from, to)

‣ pre: at(M, from), level(M, Low)

‣ eff: at(M, to), ¬at(M, from)

Bind vars so preconditions match state

‣ e.g., from: X, to: Y

‣ pre: at(M, X), level(M, Low)

‣ eff: at(M, Y), ¬at(M, X)

Apply operator

food(N)

hungry(M)

at(N, W)

at(B1, Y)

at(B2, Y)

at(B3, Z)

on(B2, B1)

clear(B2)

clear(B3)

level(M, Low)

level(N, High)

at(M, X)

Apply operator

food(N)

hungry(M)

at(N, W)

at(B1, Y)

at(B2, Y)

at(B3, Z)

on(B2, B1)

clear(B2)

clear(B3)

level(M, Low)

level(N, High)

at(M, Y)

Repeat…

Plan is now [move(X, Y)]

Pick another operator and binding

‣ Climb(object, p), p: Y, object: B2

‣ pre: at(M, Y), at(B2, Y), level(M, Low),
clear(B2)

‣ eff: level(M, High), ¬level(M, Low)

Apply operator

food(N)

hungry(M)

at(N, W)

at(B1, Y)

at(B2, Y)

at(B3, Z)

on(B2, B1)

clear(B2)

clear(B3)

level(N, High)

at(M, Y)

level(M, Low)

Apply operator

food(N)

hungry(M)

at(N, W)

at(B1, Y)

at(B2, Y)

at(B3, Z)

on(B2, B1)

clear(B2)

clear(B3)

level(N, High)

at(M, Y)

level(M, High)

And so forth

A possible plan:

‣ move(X, Y), move(Y, Z), push(B3, Z, Y),
push(B3, Y, X), push(B3, X, W),
climb(B3, W), eat(N, W, High)

DFS will try moving XYX, climbing on boxes
unnecessarily, etc.

Partial-order planner

Linear planner can be wasteful: backtrack
undoes most recent action, rather than one
that might have caused failure

Partial order planner tries to fix this

‣ so does CBJ—can use together

Avoids committing to details of plan until it
has to (principle of least commitment)

Partial-order planner

Search state:

‣ set of operators (partially bound)

‣ ordering constraints

‣ causal links (also called guards)

‣ open preconditions

Neighborhood: plan refinement

‣ resolve an open precondition by adding
operator, constraint, and/or guard

State: set of operators

Might include move(X, p) “I will move
somewhere from X”, eat(target) “I will eat
something”

Also, extra operators START, FINISH

‣ effects of START are initial state

‣ preconditions of FINISH are goals

State: partial ordering

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

State: guards

Describe where preconditions are satisfied

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

State: open preconditions

All unsatisfied preconditions of any action

Unsatisfied = doesn’t have a guard

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)

level(M, Low)

at(M, r) clear(B3)

…

Adding an ordering constraint

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)

level(M, Low)

at(M, r) clear(B3)

…

Adding an ordering constraint

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

at(M, p)

at(B3, r)
at(M, r) clear(B3)

…

level(M, Low)

at(N, p)

Adding an ordering constraint

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

at(M, p)

at(B3, r)
at(M, r) clear(B3)

…

Wouldn’t ever add ordering on its own—but
may need to when adding operator or guard

level(M, Low)

at(N, p)

Adding a guard

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)

level(M, Low)

at(M, r) clear(B3)

…

Adding a guard

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

Adding a guard

Must go forward (may need to add ordering)

Can’t cross operator that affects condition

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)at(N, p)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

Adding a guard

Might involve binding a variable (may be more
than one way to do so)

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

Adding an operator

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

Adding an operator

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

move(s, r)
at(M, s)

level(M, Low)

Adding an operator

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

at(N, W)

at(M, p)

at(B3, r)
level(M, Low)

at(M, r) clear(B3)

…

move(s, r)
at(M, s)

level(M, Low)

Resolving conflict

START move(X, p)

eat(N)

FINISH

push(B3, r, q)

at(M, X)
full(M)

at(N, W)

at(M, p)

level(M, Low)

clear(B3)

…

move(s, r)

at(B3, r)

at(M, r)

at(M, s)

level(M, Low)

Recap of neighborhood

Pick an open precondition

Pick an operator and binding that can satisfy it

‣ may need to add a new op

‣ or can use existing op

Add guard

Resolve conflicts by adding constraints, bindings

Consistency & completeness

Plan consistent: no cycles in ordering,
preconditions guaranteed true throughout
guard intervals

Plan complete: no open preconditions

Search maintains consistency, terminates
when complete

Execution

A consistent, complete plan can be executed
by linearizing it:

‣ execute actions in any order that matches
constraints

‣ fill in unbound vars in any consistent way

