I5-780: Grad Al Lecture 19: Graphical models, Monte Carlo methods

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Reminder: midterm March 29
- Reminder: project milestone reports due March 3 I

Review: scenarios

- Converting QBF+ to PBI/MILP by scenarios
 - ▶ Replicate decision variables for each scenario
 - Replicate clauses: share first stage vars; set scenario vars by scenario index; replace decision vars by replicates
 - Sample random scenarios
- Example: PSTRIPS

Review: dynamic programming

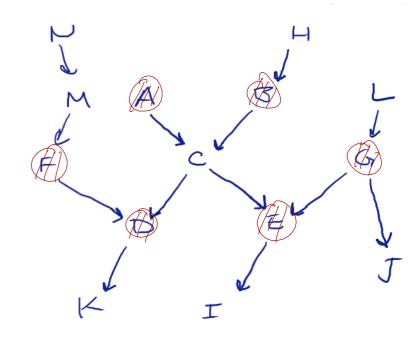
- Solving #SAT by dynamic programming (variable elimination)
 - repeatedly move sums inward, combine tables, sum out
 - treewidth and runtime/space

Review: graphical models

- Bayes net = DAG + CPTs
 - For each RV (say X), there is one CPT specifying P(X | pa(X))
 - Can simulate with propositional logic + random causes
- Inference: similar to #SAT DP—move sums inward
 - Can do partly analytically
 - Allows us to prove independences and conditional ind's from DAG alone

Review: graphical models

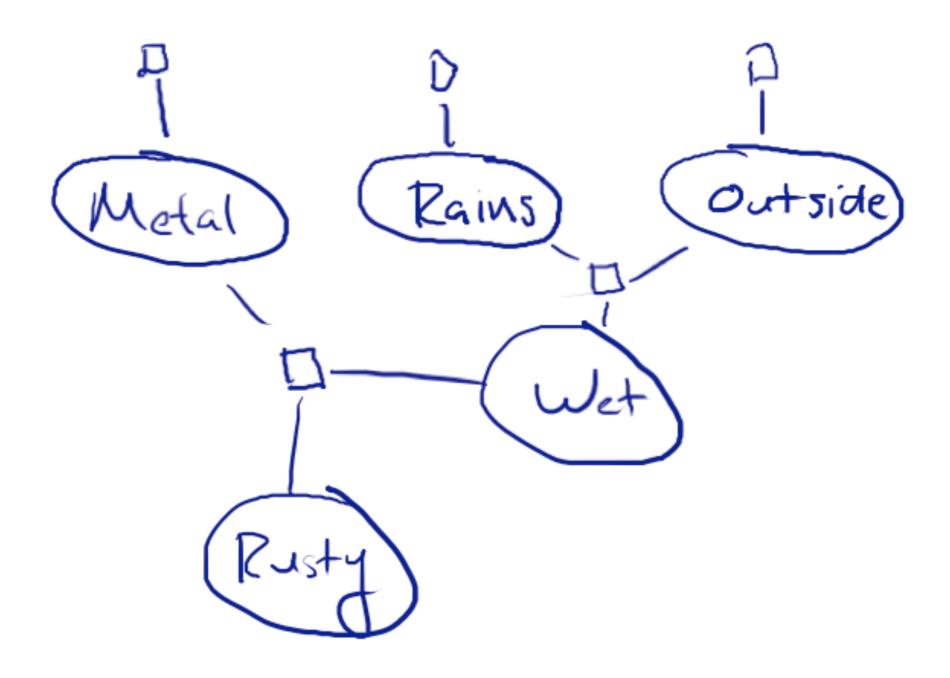
- Blocking, explaining away
- Markov blanket
- Learning: counting, Laplace smoothing
 - if hidden variables: take 10-708 or use a toolbox



Factor graphs

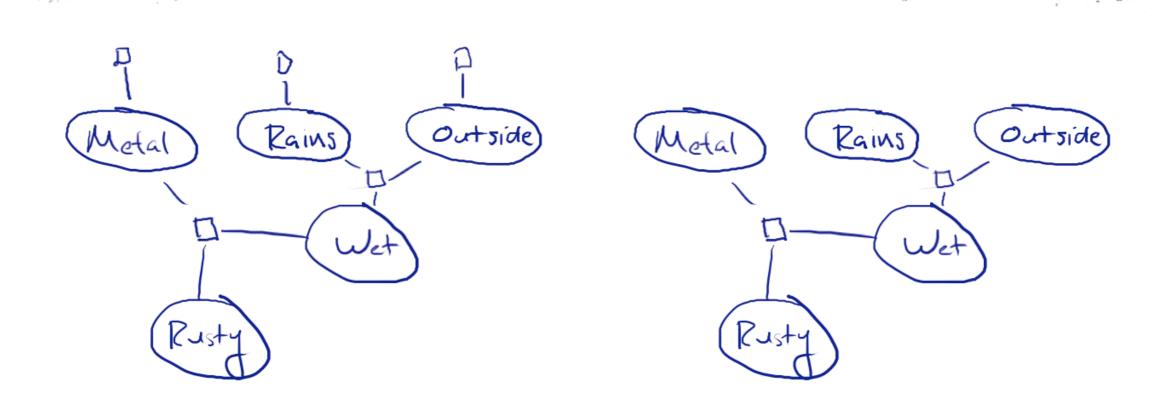
- Another common type of graphical model
- Uses undirected, bipartite graph instead of DAG

Rusty robot: factor graph



P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

Convention



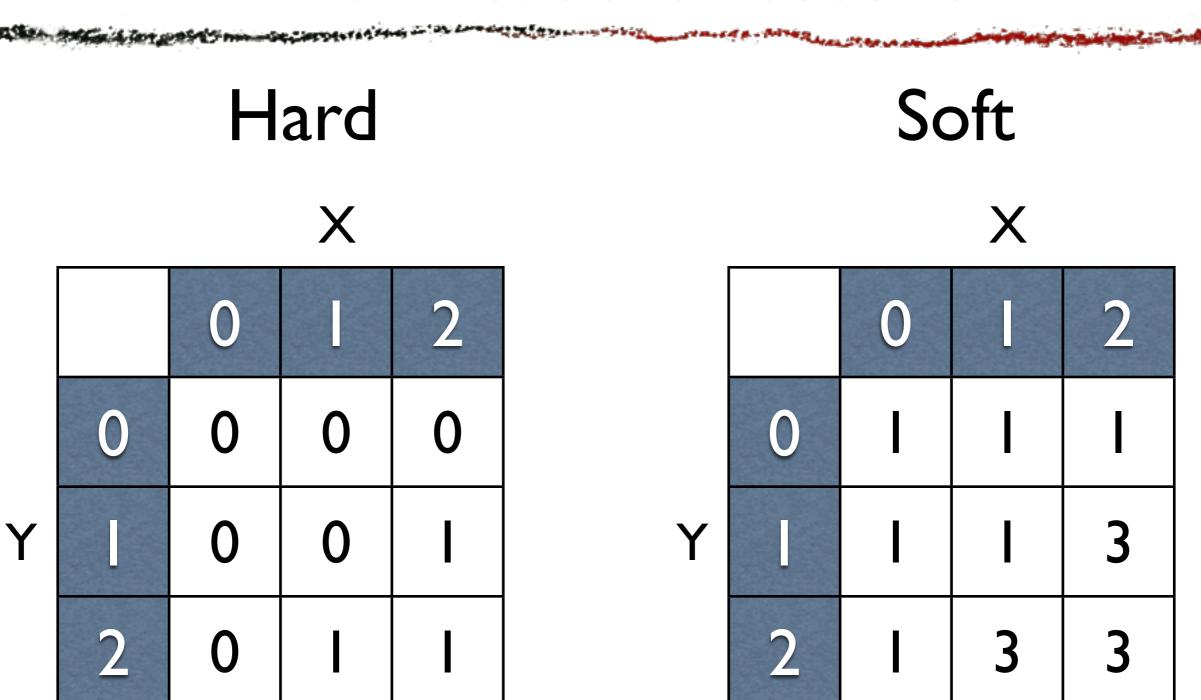
- Don't need to show unary factors
- Why? They don't affect algorithms below.

Non-CPT factors

- Just saw: easy to convert Bayes net → factor graph
- In general, factors need not be CPTs: any nonnegative #s allowed
- \circ In general, P(A, B, ...) =

∘ Z =

Hard v. soft factors



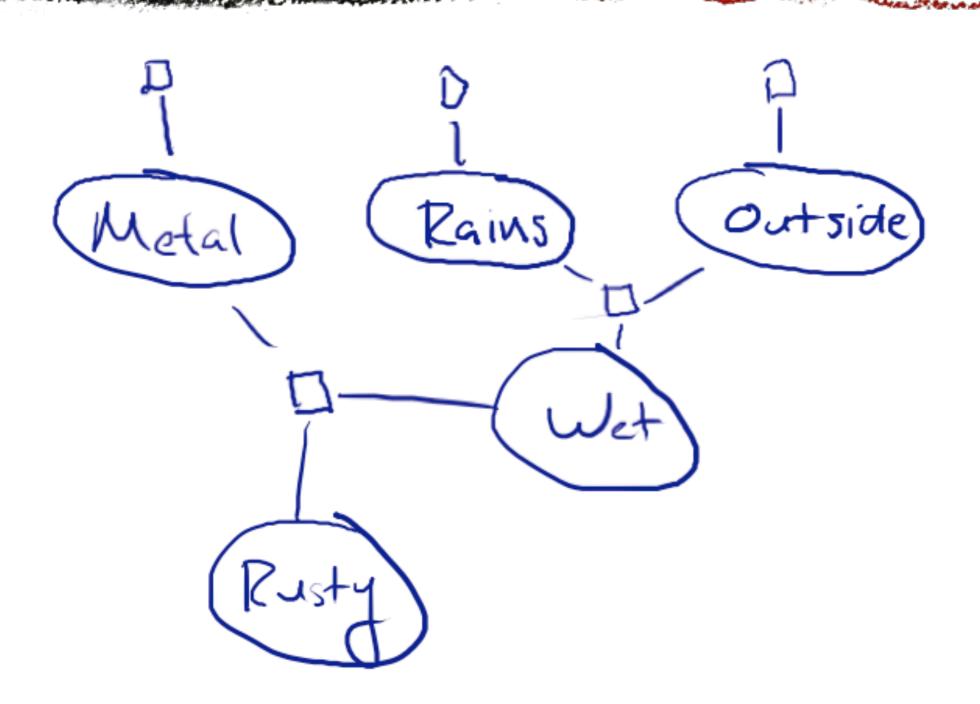
Factor graph → Bayes net

- Conversion possible, but more involved
 - ► Each representation can handle **any** distribution
 - But, size/complexity of graph may differ
- 2 cases for conversion:
 - without adding nodes:
 - adding nodes:

Independence

- Just like Bayes nets, there are graphical tests for independence and conditional independence
- Simpler, though:
 - Cover up all observed nodes
 - Look for a path

Independence example



Modeling independence

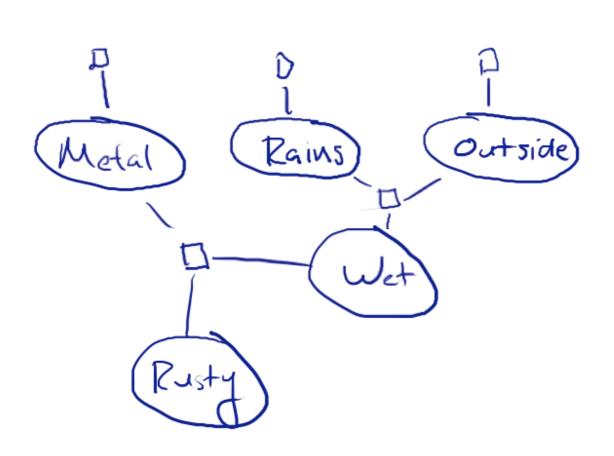
- Take a Bayes net, list the (conditional) independences
- Convert to a factor graph, list the (conditional) independences
- Are they the same list?
- What happened?

Inference

- o Inference: prior + evidence → posterior
- We gave examples of inference in a Bayes net, but not a general algorithm
- Reason: general algorithm uses factor-graph representation
- Steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query

Inference

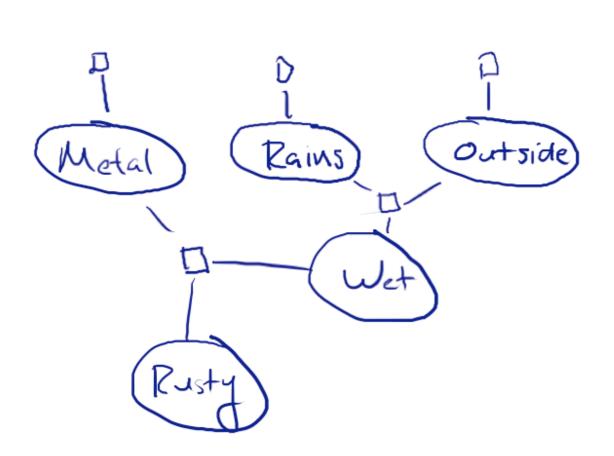
P(M, Ra, O, W, Ru) = 6, (M) 4, (Ra) 43(0) 64(Ra, 0, W) 4-(M, W, Ru)/2



Typical Q: given Ra=F, Ru=T, what is P(W)?

Incorporate evidence

P(M, R, O, W, Ru) = 6, (M) 4, (R) 43(0) 64(R, 0, u) 4-(M, R, R)/2



Condition on Ra=F, Ru=T

FFF 0.9

Eliminate nuisance nodes

P(M, R/, O, W, R/M) = \$, (M) \$/(R/N \$/0) \$4(R/N W) \$/(M/W, R/M) / 2

- Remaining nodes: M, O, W
- Query: P(W)
- So, O&M are nuisance—marginalize away
- Marginal =

Elimination order

- Sum out the nuisance variables in turn
- Can do it in any order, but some orders may be easier than others
- Let's do O, then M

One last elimination

Checking our work

http://www.aispace.org/bayes/version5.1.6/bayes.jnlp

Discussion

- Steps: instantiate evidence, eliminate nuisance nodes, normalize, answer query
 - each elimination introduces a new table, makes some old tables irrelevant
- Normalization
- Each elim. order introduces different tables
 - some tables bigger than others
- FLOP count; treewidth

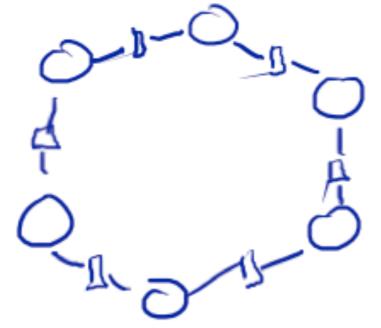
Treewidth examples

Chain O-0-0-0-0-0

Treewidth examples

Parallel chains

Cycle



Discussion

- Several relationships between GMs and logic (similar DP algorithm, use of independent choices + logical consequences to represent a GM, factor graph with 0-1 potentials = CSP, MAP assignment = ILP)
- o Directed v. undirected: advantages to both
- Lifted reasoning
 - Propositional logic + objects = FOL
 - ▶ FO GMs are a current hot topic of research (plate models, MLNs, ICL)—not solved yet!

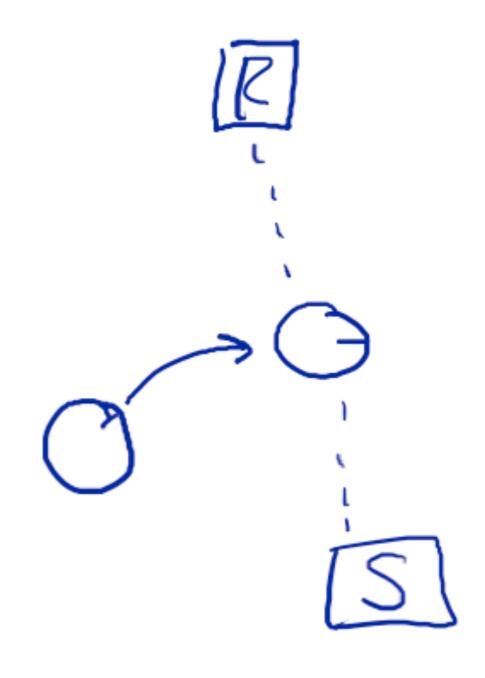
Discussion: belief propagation

- Suppose we want all I-variable marginals
- Could do N runs of variable elimination
- Or: the BP algorithm simulates N runs for the price of 2
- For details: Kschischang et al. reading

HMMs and DBNs

Inference over time

- Consider a robot:
 - true state (x, y, θ)
 - controls (v, w)
 - N range sensors (here N=2: r, s)



Model

$$x_{t+1} = x_t + v_t \cos \theta_t + \text{noise}$$

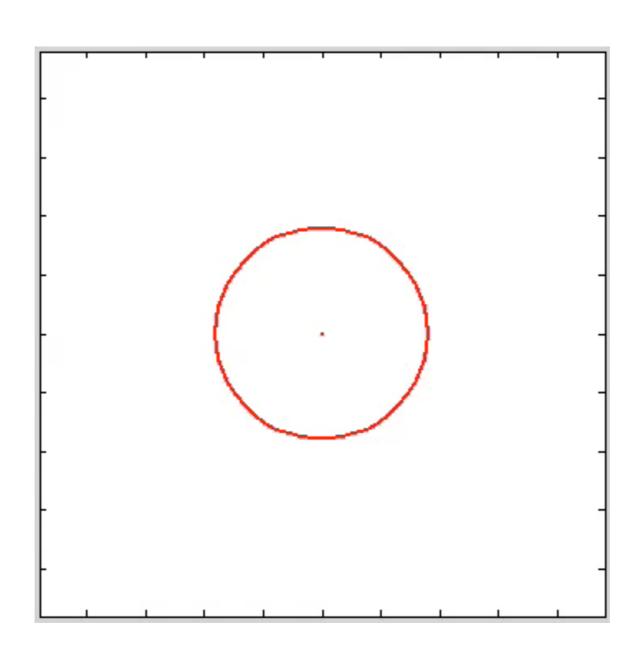
$$y_{t+1} = y_t + v_t \sin \theta_t + \text{noise}$$

$$\theta_{t+1} = \theta_t + w_t + \text{noise}$$

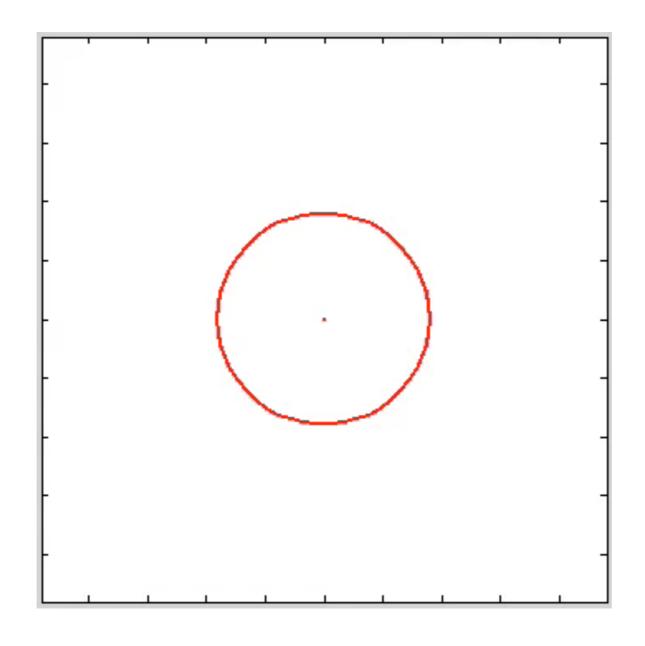
$$r_t = \sqrt{(x_t - x^R)^2 + (y_t - y^R)^2} + \text{noise}$$

$$s_t = \sqrt{(x_t - x^S)^2 + (y_t - y^S)^2} + \text{noise}$$

Model of x, y, θ (r, s unobserved)

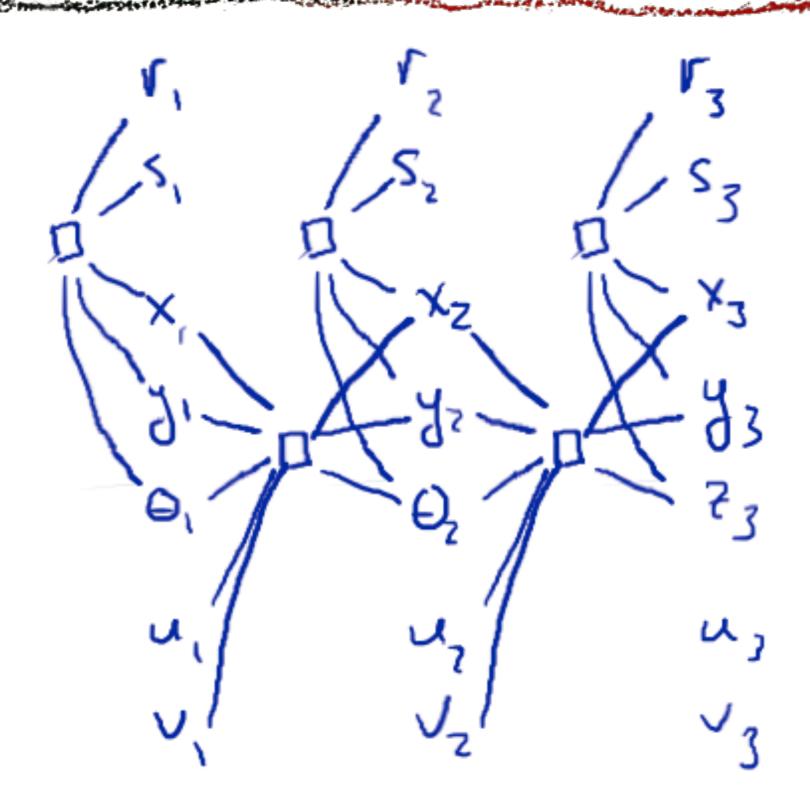


Goal: inference over time



N=I sensor, repeatedly observe range = Im + noise

Factor graph



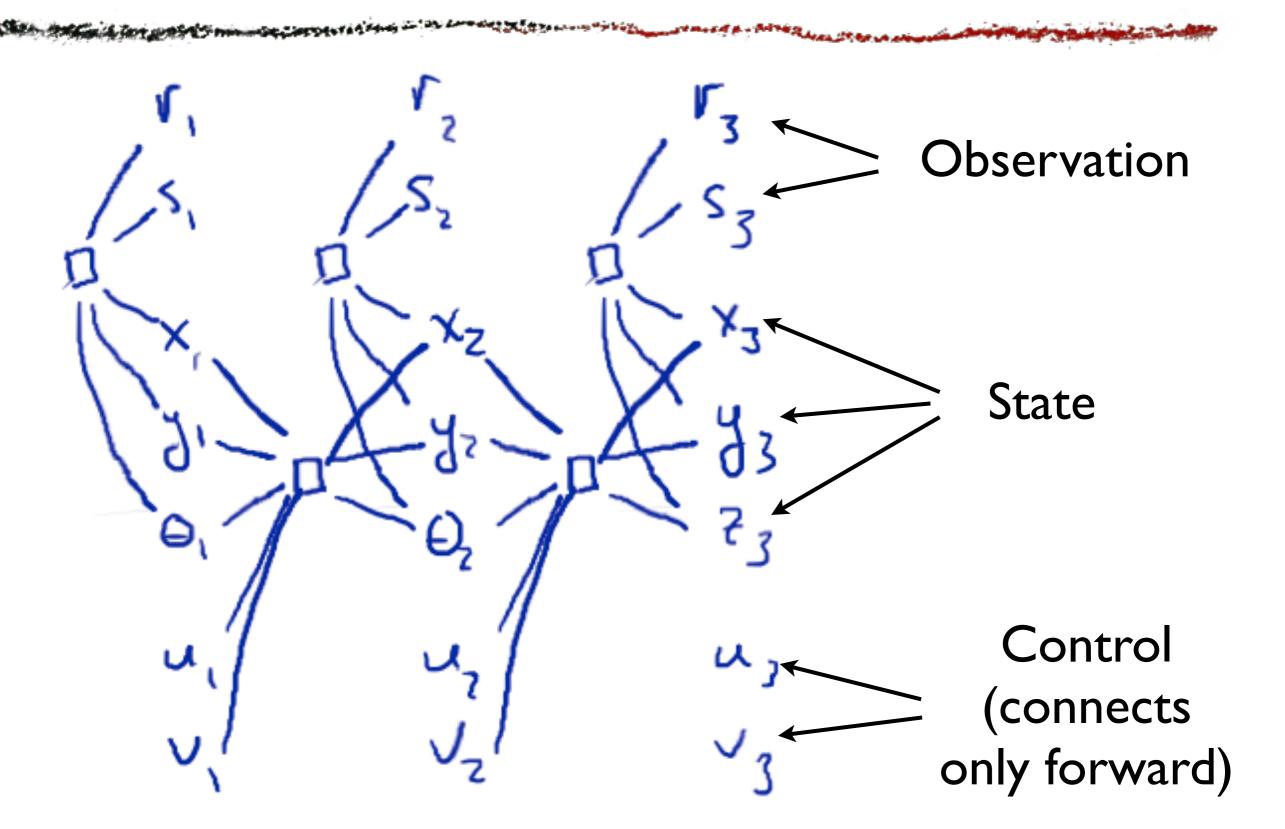
Dynamic Bayes Network

- DBN: factor graph composed of a single structural unit repeated over time
 - conceptually infinite to right, but in practice cut off at some maximum T
- Factors must be conditional distributions

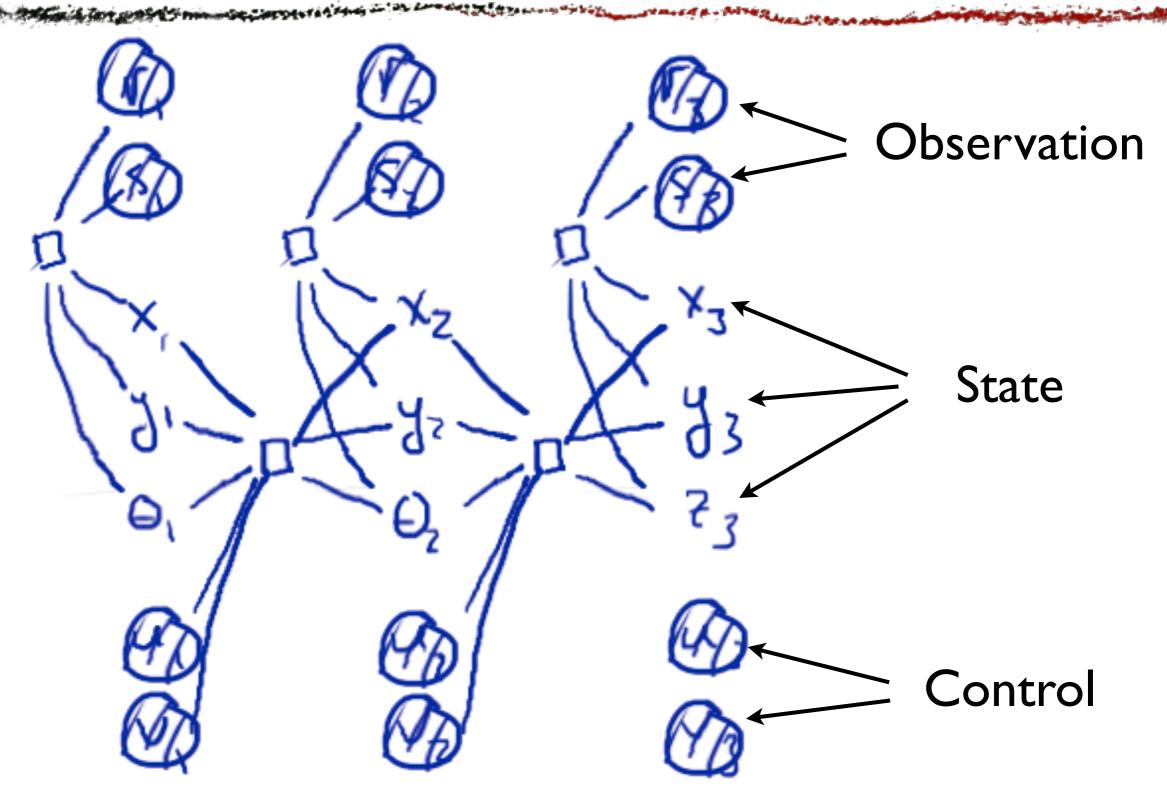
$$\forall x_{t}, y_{t}, \theta_{t}, u_{t}, v_{t} \quad \sum_{x_{t+1}, y_{t+1}, \theta_{t+1}} \phi(x_{t}, y_{t}, \theta_{t}, u_{t}, v_{t}, x_{t+1}, y_{t+1}, \theta_{t+1}) = 1$$

$$\forall x_{t}, y_{t}, \theta_{t} \quad \sum_{r_{t}, s_{t}} \phi(x_{t}, y_{t}, \theta_{t}, r_{t}, s_{t}) = 1$$

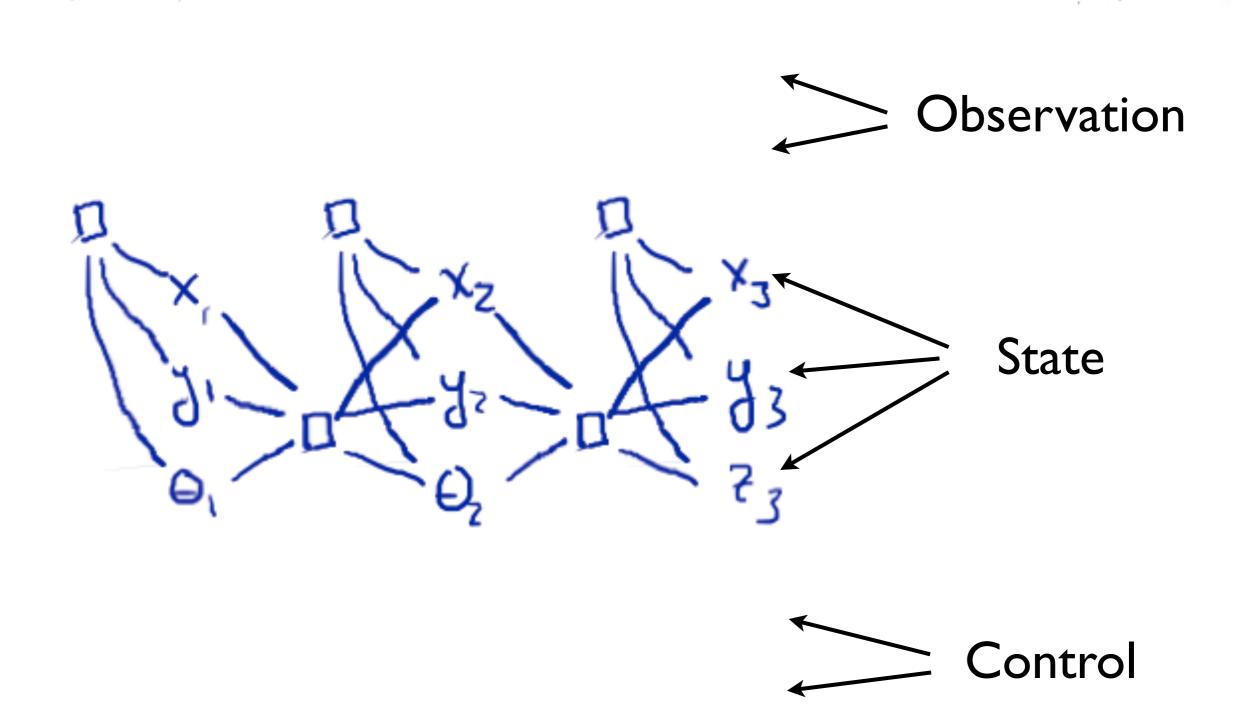
Three kinds of variable



Condition on obs, do(control)



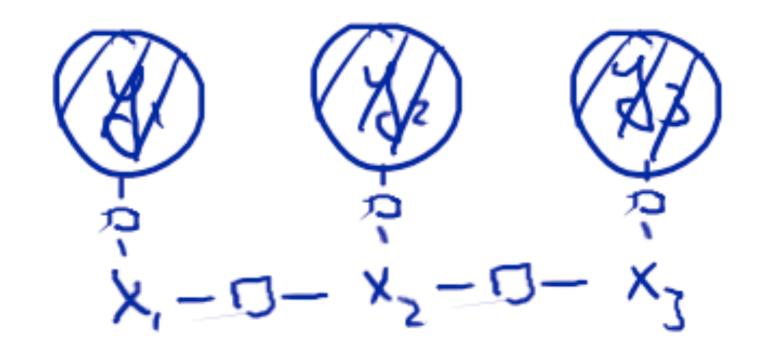
Condition on obs, do(control)



Simplified version

- ∘ State: $x_t \in \{1, 2, 3\}$
- ∘ Observation: $y_t \in \{L, H\}$
- Control: just one (i.e., no choice)—"keep going"

Hidden Markov Models



- This is an HMM—a DBN with:
 - one state variable
 - one observation variable

Potentials

		X_{t+1}		
			2	3
		0.7	0.3	0
X_t	2	0.3	0.3	0.3
	3	0	0.3	0.7

		ı t	
		Ш	I
		0.67	0.33
t	2	0.5	0.5
	3	0.33	0.67

HMM inference

- \circ Condition on $y_1 = H, y_2 = H, y_3 = L$
- What is P(X₂ | HHL)?

HMM factors after conditioning

Eliminate x₁ and x₃

Multiply remaining potentials and renormalize

$$\frac{X_{12}}{7/18}$$
 $\frac{X_{2}}{7/18}$
 $\frac{X_{12}}{1079}$
 $\frac{1}{125}$
 $\frac{1}{178}$
 $\frac{X_{2}}{178}$
 $\frac{X_{2}}{178}$
 $\frac{X_{2}}{178}$
 $\frac{1}{178}$
 $\frac{X_{2}}{178}$
 $\frac{1}{178}$
 $\frac{X_{2}}{178}$
 $\frac{1}{178}$
 $\frac{1$

Forward-backward

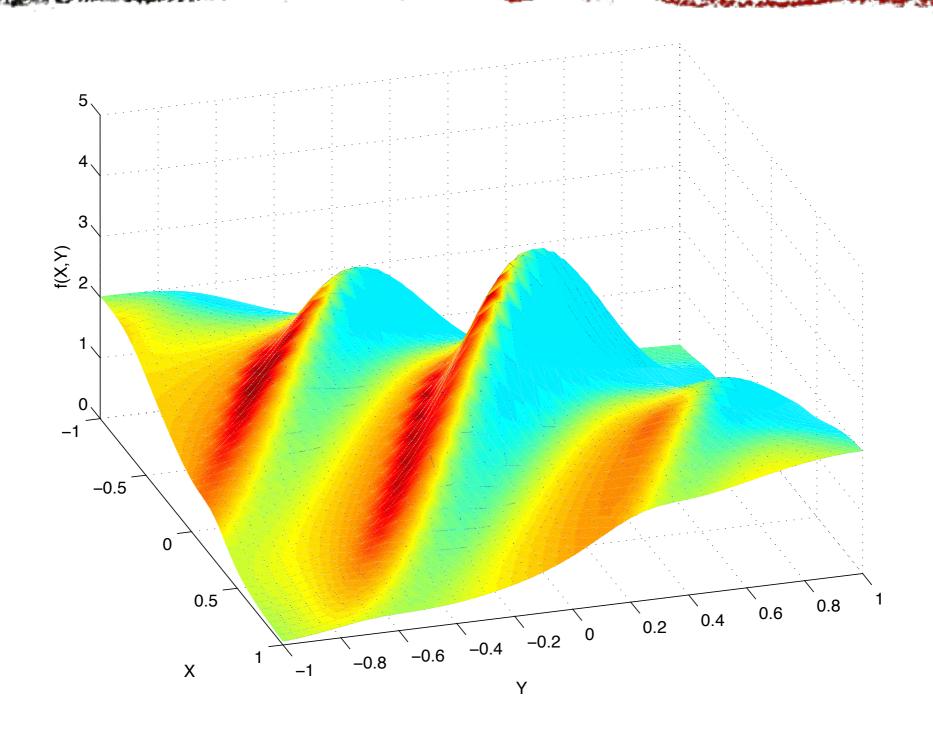
- You may recognize the above as the forwardbackward algorithm
- Special case of dynamic programming / variable elimination / belief propagation

Approximate Inference

Most of the time...

- Treewidth is big
- Variables are high-arity or continuous
- Can't afford exact inference
- Need numerical integration (and/or summation)
- We'll look at randomized algorithms

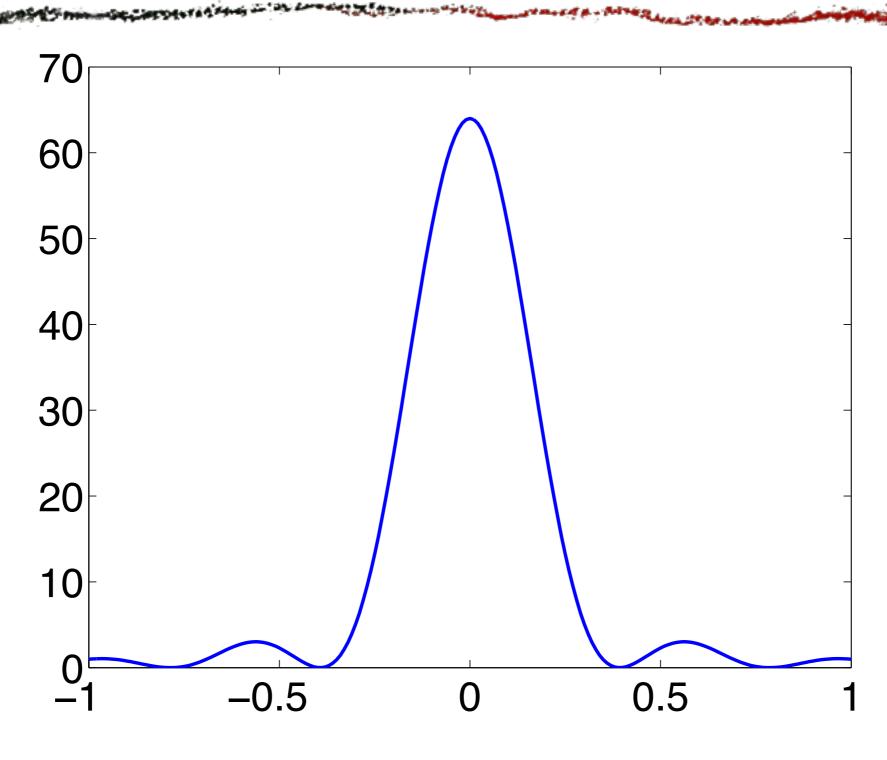
Numerical integration



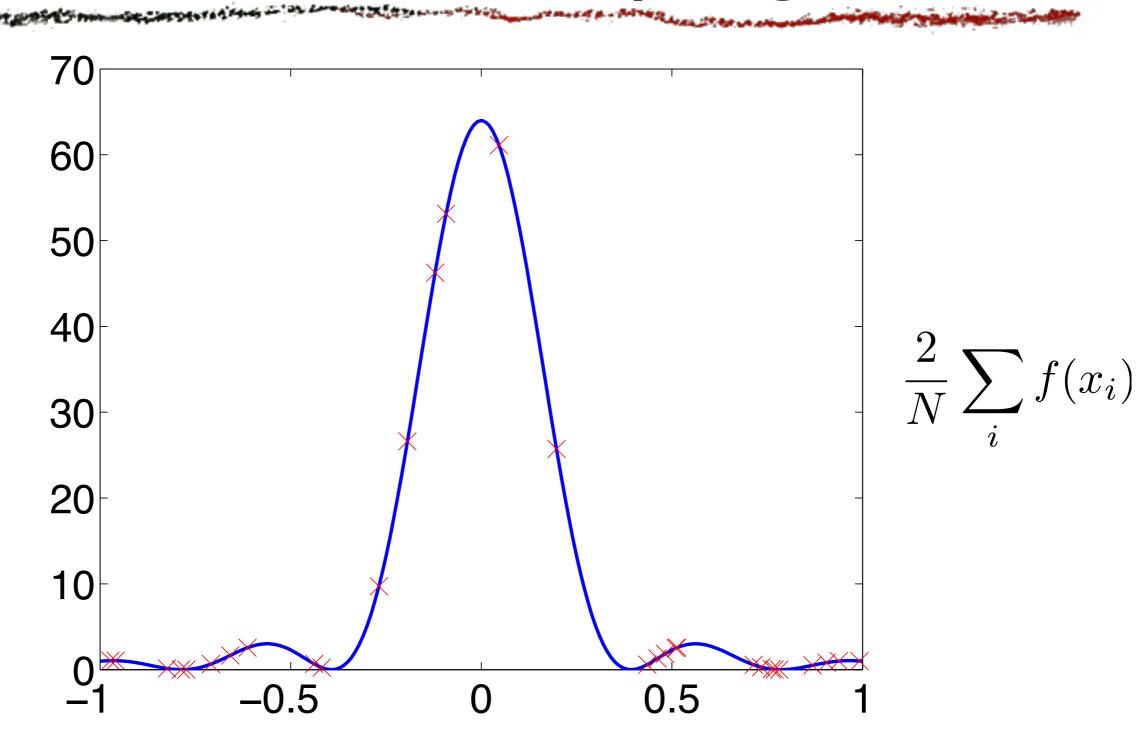
Integration in 1000s of dims

Eliazar and Parr, IJCAI-03

Simple ID problem



Uniform sampling



Uniform sampling

$$E(f(X)) = \int P(x)f(x)dx$$
$$= \frac{1}{V} \int f(x)dx$$

- So,V E(f(X)) is desired integral
- But standard deviation can be big
- Can reduce it by averaging many samples
- But only at rate I/sqrt(N)

- \circ Instead of x \sim uniform, use x \sim Q(x)
- Q = importance distribution
- \circ Should have Q(x) large where f(x) is large
- Problem:

$$E_Q(f(X)) = \int Q(x)f(x)dx$$

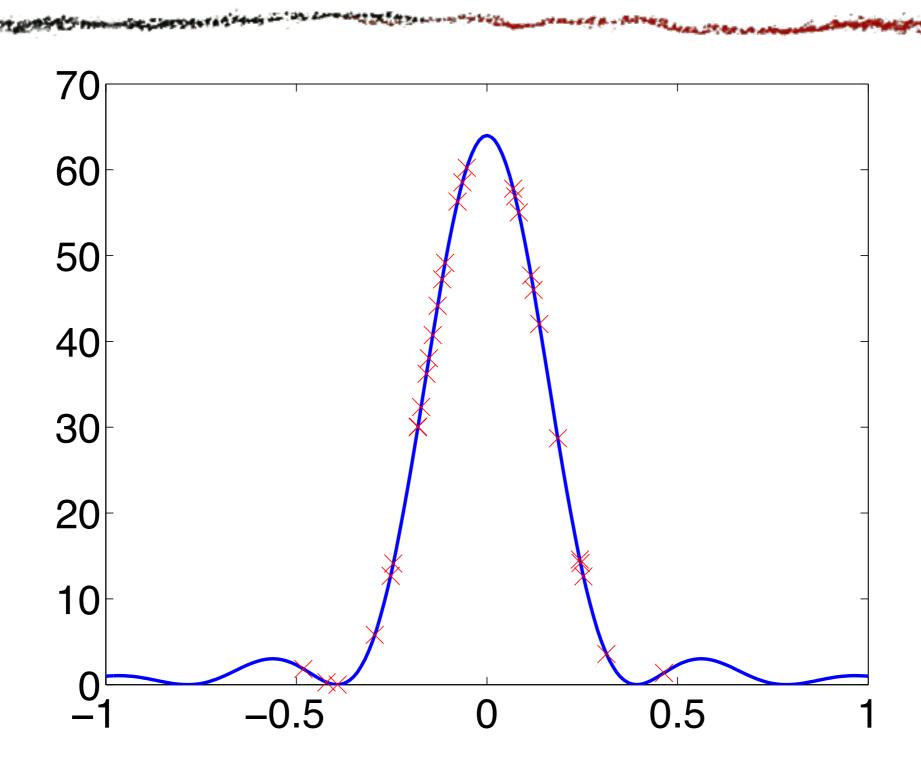
$$h(x) \equiv f(x)/Q(x)$$

$$E_{Q}(h(X)) = \int Q(x)h(x)dx$$

$$= \int Q(x)f(x)/Q(x)dx$$

$$= \int f(x)dx$$

- So, take samples of h(X) instead of f(X)
- \circ w_i = I/Q(x_i) is importance weight
- Q = I/V yields uniform sampling



Variance

- Our How does this help us control variance?
- Suppose f big ==> Q big
- And Q small ==> f small
- Then h = f/Q never gets too big
- Variance of each sample is lower ==> need fewer samples
- A good Q makes a good IS