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ABSTRACT
An Identity-based encryption (IBE) is an exciting alterna-
tive to public-key encryption, as IBE eliminates the need
for a Public Key Infrastructure (PKI). The senders using an
IBE do not need to look up the public keys and the cor-
responding certificates of the receivers, the identities (e.g.
emails or IP addresses) of the latter are sufficient to en-
crypt. Any setting, PKI- or identity-based, must provide
a means to revoke users from the system. Efficient revoca-
tion is a well-studied problem in the traditional PKI setting.
However in the setting of IBE, there has been little work on
studying the revocation mechanisms. The most practical
solution requires the senders to also use time periods when
encrypting, and all the receivers (regardless of whether their
keys have been compromised or not) to update their private
keys regularly by contacting the trusted authority. We note
that this solution does not scale well – as the number of
users increases, the work on key updates becomes a bottle-
neck. We propose an IBE scheme that significantly improves
key-update efficiency on the side of the trusted party (from
linear to logarithmic in the number of users), while staying
efficient for the users. Our scheme builds on the ideas of the
Fuzzy IBE primitive and binary tree data structure, and is
provably secure.

Categories and Subject Descriptors
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General Terms
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1. INTRODUCTION

1.1 Motivation
Identity (ID)-based encryption, or IBE for short, is an

exciting alternative to public-key encryption, which elimi-
nates the need for a Public Key Infrastructure (PKI) that
makes publicly available the mapping between identities,
public keys, and validity of the latter. The senders using an
IBE do not need to look up the public keys and the corre-
sponding certificates of the receivers, because the identities
(e.g. emails or IP addresses) together with common public
parameters are sufficient for encryption. The private keys
of the users are issued by a trusted third party called the
private key generator (PKG). Ideas of identity-based cryp-
tography go back to 1984 and Shamir [25], but the first IBE
scheme was constructed by Boneh and Franklin only in 2001
[7], building on the progress in elliptic curves with bilinear
pairings.

Any setting, PKI- or identity-based, must provide a means
to revoke users from the system, e.g. if their private keys
get compromised. In a PKI setting a certification authority
informs the senders about expired or revoked keys of the
users via publicly available digital certificates and certificate
revocation lists.

As a solution to this problem for IBE, Boneh and Franklin
[7] suggested that users renew their private keys periodically,
e.g. every week, and senders use the receivers’ identities
concatenated with the current time period, e.g. “week 15 of
2008”. Notice that since only the PKG’s public key and the
receiver’s identity are needed to encrypt, and there is no way
to communicate to the senders that an identity has been re-
voked, such a mechanism to regularly update users’ private
keys seems to be the only viable solution to the revocation
problem. This means that all users, regardless of whether
their keys have been exposed or not, have to regularly get
in contact with the PKG, prove their identity and get new
private keys. The PKG must be online for all such transac-
tions, and a secure channel must be established between the
PKG and each user to transmit the private key. Taking scal-
ability of IBE deployment into account, we observe that for
a very large number of users this may become a bottleneck.

We note that alternatively, in order to avoid the need for
interaction and a secure channel, the PKG may encrypt the
new keys of non-revoked users under their identities and
the previous time period, and send the ciphertexts to these



users (or post them online). With this approach, for every
non-revoked user in the system, the PKG is required to per-
form one key generation and one encryption operation per
key update. We note that this solution, just as the original
suggestion, requires the PKG to do work linear in the num-
ber of users, and does not scale well as the number of users
grow. The goal of the paper is to study this problem and
find solutions to alleviate it.

1.2 Related work
Efficient revocation is a well-studied problem in the tradi-

tional PKI setting, e.g. [19, 22, 1, 21, 20, 12, 13]. However
in the setting of IBE, there has been little work on studying
the revocation mechanisms. Hanaoka et al. [16] propose a
way for the users to periodically renew their private keys
without interacting with the PKG. Each user updates the
keys locally with the help of a special secret key contained
in a device that is assumed to be physically-secure. We,
on the other hand, consider a setting where all secret key
information of a user can be compromised.
Revocation has been studied in the ID-based setting with

mediators [6, 18]. In this setting there is a special semi-
trusted third party called a mediator who holds shares of all
users’ private keys and helps users to decrypt each cipher-
text. If an identity is revoked then the mediator is instructed
to stop helping the user. But we want to focus on a much
more practical standard IBE setting where users are able to
decrypt on their own.
The goal of broadcast encryption is to prevent revoked

users from accessing secret information being broadcast. The
broadcast encryption solutions, however, and in particular
ID-based broadcast encryption ones, do not directly trans-
late into solutions for our problem. In broadcast encryption,
a non-revoked user can help a revoked user gain access to
the sensitive information being broadcast (since this infor-
mation is the same for all parties). On the other hand, in
the IBE setting a revoked user, or the adversary holding its
private key, should not be able to decrypt messages even if
it colludes with any number of non-revoked users.
Thus, to the best of our knowledge, the solution proposed

by Boneh and Franklin in [7] remains the most practical user
revocation solution in the IBE setting.

1.3 Contributions
We propose a new way to mitigate the limitation of IBE

with regard to revocation, and improve efficiency of the pre-
vious solution. We want to remove interaction form the
process of key update, as keeping the PKG online can be a
bottleneck, especially if the number of users is very large. At
the same time we do not want to employ physically-secure
devices and we want to significantly minimize the work done
by the PKG and users.
First we define the Revocable IBE primitive and its secu-

rity model that formalizes the possible threats. The model,
of course, takes into account all adversarial capabilities of
the standard IBE security notion. I.e. the adversary should
be able to learn the private keys of the users with identi-
ties of its choice, and in the case of chosen-ciphertext attack
to also see decryptions under the private key of the chal-
lenge identity of the ciphertexts of its choice. The adversary
should not be able to learn any partial information about
the messages encrypted for the challenge identity. In addi-
tion we consider the adversary having access to periodic key

updates (as we assume this information is public) and being
able to revoke users with IDs of its choice. The adversary
should not be able to learn any partial information about
the messages encrypted for any revoked identity when the
ciphertext is created after the time of revocation (i.e. for
the ID containing the time past the revocation time).

We show that it is possible to reduce the amount of work
a PKG has to do for key updates and the total size of key
updates to logarithmic in the number of users, while keeping
the key update process non-interactive, and encryption and
decryption efficient.

Our idea is to build on the Fuzzy IBE construction by
Sahai and Waters [24]. The Fuzzy IBE primitive provides
some sort of error-tolerance, i.e. identities are viewed as sets
of attributes, and a user can decrypt if it possesses keys for
enough of (but not necessarily all) attributes a ciphertext is
encrypted under. At the same time, colluding users cannot
combine their keys to decrypt a ciphertext which none of
them were able to decrypt independently.

We propose to combine the Fuzzy IBE construction from
[24] with the binary tree data structure, which was previ-
ously used to improve efficiency of revocations in the PKI
setting [22, 1]. In order to decrypt a ciphertext encrypted
for an identity and time period the user must possess the
keys for these two attributes. The PKG publicly posts and
regularly updates the keys for the current time attribute.
Even though the time attributes are the same for all users,
this does not have to compromise security, thanks to the
collusion-resistance property of Fuzzy IBE. To reduce the
size of key updates from linear to logarithmic in the num-
ber of users, the binary tree data structure is used. Here
we employ a trick to modify the Fuzzy IBE scheme in such
a way that collusion of some users (corresponding to non-
revoked users in our scheme) on some attributes (i.e. time
attribute) is possible. We provide more details and present
the full construction in Section 4.

While our scheme provides major computation and band-
width efficiency improvements at the stage of key update, it
also permits efficient encryption and decryption. We show
that our scheme provably guarantees security assuming the
decisional bilinear Diffie-Hellman (DBDH) problem is hard,
which is a quite common assumption nowadays (cf. e.g. [4,
24, 26, 15]).

We also show two ways to address chosen-ciphertext at-
tack. Our first solution is to modify our scheme by ad-
ditionally employing a strongly-unforgeable one-time signa-
ture scheme in a manner somewhat similar to that from [8,
15]. We also show that it is possible to employ the Fujisaki-
Okamoto (FO) transform [10, 11]. Security of the latter
solution relies on the random oracle model [2], but unlike
the former solution, it is generic, in that it can be applied
to any Revocable IBE scheme.

Since the existing Fuzzy IBE schemes are only secure in
the weaker selective-ID model [9], where the adversary has
to declare the challenge identity up front, with the above
approach we can only achieve selective-ID security as well.
We leave it as an interesting open problem to achieve full
security without such limitation.

We note that senders in our scheme, just like in a regular
IBE scheme, do not need to know anything besides the iden-
tities of the intended receivers and the current time period
in order to encrypt a message. The information posted by
the PKG is only for the receivers to update their secret keys.



Finally, we note that the problem of revocation is equally
important for Fuzzy IBE and attribute-based encryption
(ABE) [15] schemes. While the same periodic key update
solution due to Boneh and Franklin applies, it similarly lim-
its scalability. We show that it is possible to extend our
techniques to provide efficient non-interactive key update to
Fuzzy IBE and ABE schemes.

2. NOTATION AND CONVENTIONS
If κ ∈ N then 1κ denotes the string consisting of κ con-

secutive “1” bits. We denote by ϕ the empty set. If x, y are
strings then x∥y denotes the concatenation of x and y, and
we assume that x and y can be efficiently and unambigu-

ously recovered from x∥y. If S is a finite set then s
$← S

denotes that s is selected uniformly at random from S . We

will often write s1, s2, . . . , sn
$← S as a shorthand for s1

$←
S; s2

$← S; . . . ; sn
$← S. When describing algorithms, a ← b

denotes that a is assigned the value b. If A is a randomized

algorithm and n ∈ N, then a
$← A(i1, i2, . . . , in) denotes

that a is assigned the outcome of the experiment of run-
ning A on inputs i1, i2, . . . , in. If A is deterministic, then we
drop the dollar sign above the arrow. If S = {s1, s2, . . . , sn},
then {xs}s∈S denotes the set {xs1 , xs2 , . . . , xsn}. An adver-
sary is an algorithm. By convention, the running-time of
an adversary includes that of its overlying experiment. All
algorithms are assumed to be randomized and efficient (i.e.
polynomial in the size of the input), unless noted otherwise.
In the rest of the paper κ ∈ N is the security parameter,
n(·) denotes a polynomial in κ, but for simplicity we use the
notation n.

3. REVOCABLE IBE AND ITS SECURITY

3.1 Syntax of Revocable IBE

Definition 3.1. [Revocable IBE]An identity-based en-
cryption with efficient revocation or simply Revocable IBE
scheme RIBE = (S,SK,KU ,DK, E ,D,R) is defined by se-
ven algorithms and has associated message spaceM, iden-
tity space I and time space T . We assume that the size of
T is polynomial in the security parameter. Each algorithm
is run by either one of three types of parties - key authority,
sender or receiver. Key authority maintains a revocation list
rl and state st. Revocation list rl can be part of state st,
but we keep it explicit for clarity. In what follows, we call
an algorithm stateful only if it updates rl or st. We treat
time as discrete as opposed to continuous.

• The stateful setup algorithm S (run by key authority)
takes input security parameter 1κ and number of users
n, and outputs public parameters pk, master key mk,
revocation list rl (initially empty) and state st.

• The stateful private key generation algorithm SK (run
by key authority) takes input public parameters pk,
master key mk, identity ω ∈ I and state st, and out-
puts private key skω and an updated state st.

• The key update generation algorithm KU (run by key
authority) takes input public parameters pk, master key
mk, key update time t ∈ T , revocation list rl and state
st, and outputs key update kut.

• The deterministic decryption key generation algorithm
DK (run by receiver) takes input private key skω and
key update kut, and outputs decryption key dkω,t or a
special symbol ⊥ indicating that ω was revoked. (We
say an identity ω was revoked at time t if revocation
algorithm R was run by key authority on input (ω, t, rl,
st) for any rl, st.)

• The encryption algorithm E (run by sender) takes in-
put public parameters pk, identity ω ∈ I, encryption
time t ∈ T and message m ∈ M, and outputs cipher-
text c. For simplicity and wlog we assume that ω, t are
efficiently computable from c.

• The deterministic decryption algorithm D (run by re-
ceiver) takes input decryption key dkω,t and ciphertext
c, and outputs a message m ∈M or, a special symbol
⊥ indicating that the ciphertext is invalid.

• The stateful revocation algorithm R (run by key au-
thority) takes input identity to be revoked ω ∈ I, revo-
cation time t ∈ T , revocation list rl and state st, and
outputs an updated revocation list rl.

The consistency condition requires that for all κ ∈ N and
polynomials (in κ) n, all pk and mk output by setup algo-
rithm S, all m ∈ M, ω ∈ I, t ∈ T and all possible valid
states st and revocation lists1 rl, if identity ω was not re-
voked before or, at time t then the following experiment
returns 1 with probability 1:

(skω, st)
$← SK(pk,mk, ω, st)

kut
$← KU(pk,mk, t, rl, st)

dkω,t ← DK(skω, kut)

c
$← E(pk, ω, t,m)

If D(dkω,t, c) = m then return 1 else return 0.

Remarks. Note that we differentiate between the terms
“private key” and “decryption key”.

One can also define the decryption key generation algo-
rithm that instead of private key skω takes input the de-
cryption key for the previous time period dkω,t−1. We do
not further discuss this version here since it is not used in
our construction.

3.2 Security of Revocable IBE
We define the selective-revocable-ID security for Revoca-

ble IBE schemes. Our security model captures the standard
notion of selective-ID security but it also takes into account
possible revocations. Since we explicitly consider time peri-
ods, in the beginning of the experiment in addition to the
challenge identity the adversary also declares the challenge
time. Just as in the standard slective-ID security definition
the adversary can request to learn users’ keys. In addition
we let the adversary to revoke users of its choice (including
the challenge identity) at any period of time and see all key
updates. Unlike in the standard security model, we allow the
adversary to learn the private key for the challenge identity,
but only if it was revoked prior to or at the challenge time.

1A valid state is the one that is output by either setup algo-
rithm S or private key generation algorithm SK. A valid
revocation list is the one that is output by either setup algo-
rithm S or revocation algorithm R.



The adversary is given a ciphertext of one of the two mes-
sages of its choice encrypted for the challenge identity and
time. It has to guess which of the messages was encrypted.
First we define (selective) security against chosen-plaintext

attack and then show how to extend the definition to chosen-
ciphertext attack.

Definition 3.2. [sRID Security] Let RIBE = (S, SK,
KU ,DK, E ,D,R) be a Revocable IBE scheme. The adver-
sary first outputs the challenge identity and time, and also
some information state it wants to preserve. Later it is given
access to three oracles that correspond to the algorithms of
the scheme. The oracles share state.2 Since we use the
simplified notation for the oracles, we define them now:

• The private key generation oracle SK(·) takes input
identity ω and runs SK(pk,mk, ω, st) to return private
key skω.

• The key update generation oracle KU(·) takes input
time t and runs KU(pk,mk, t, rl, st) to return key up-
date kut.

• The revocation oracle R(·, ·) takes input identity ω
and time t and runs R(ω, t, rl, st) to update rl.

For adversaryA and number of users n define the following
experiments:

Experiment Expsrid−cpa
RIBE,A,n(1

κ)

b
$← {0, 1}

(ω∗, t∗, state)
$← A(1κ)

(pk,mk, rl, st)
$← S(1κ, n)

(m0,m1, state)
$← ASK(·),KU(·),R(·,·)(pk, state)

c∗
$← E(pk, ω∗, t∗,mb)

d
$← ASK(·),KU(·),R(·,·)(pk, c∗, state)

If b = d return 1 else return 0.

The following conditions must always hold:

1. m0,m1 ∈M and |m0| = |m1|.

2. KU(·) and R(·, ·) can be queried on time which is
greater than or equal to the time of all previous queries
i.e. the adversary is allowed to query only in non-
decreasing order of time3. Also, the oracle R(·, ·) can-
not be queried on time t if KU(·) was queried on t.4

3. If SK(·) was queried on identity ω∗ then R(·, ·) must
be queried on (ω∗, t) for any t ≤ t∗.

We define the advantage of the adversaryAdvsrid−cpa
RIBE,A,n(κ)

as

2 · Pr
[
Expsrid−cpa

RIBE,A,n(1
κ) = 1

]
− 1

The scheme RIBE is said to be sRID-CPA secure if the
function Advsrid−cpa

RIBE,A,n(·) is negligible in κ for any efficient
A and polynomial n.
2To be more formal we could define a single oracle that
maintains the state and invokes these oracles as subroutines.
We do not do it for simplicity.
3This is wlog because, the adversary can query the oracles
for all possible time periods, one by one.
4This is because we assume that the key update is done at
the end of the time period t.

Chosen-ciphertext attack. We extend the above def-
inition in the standard way to take into account chosen-
ciphertext attack. Whenever the adversary is given the or-
acles, it is also given the decryption oracle D(·) that takes
input ciphertext c and runs D(dkω∗,t, c) to return message
m or ⊥. The usual restriction is that D(·) cannot be queried
on challenge ciphertext c∗. The advantage of the adversary
Advsrid−cca

RIBE,A,n(κ) and sRID-CCA security are defined anal-
ogously to the CPA setting.

4. MAIN CONSTRUCTION
Intuition. At a high level we build on the (large universe)
construction of Fuzzy IBE [24] and the binary tree data
structure. We briefly recall the Fuzzy IBE primitive ideas
and the basics of the construction.

In the Fuzzy IBE construction from [24], users’ keys and
ciphertexts are associated with sets of descriptive attributes.
A user’s key can decrypt a particular ciphertext only if some
number of attributes (so called “error-tolerance”) match be-
tween the ciphertext and the key. The number of attributes
used to encrypt and the error-tolerance are fixed during the
setup. Security of Fuzzy IBE requires that different users
should not be able to pool their attributes together in order
to decrypt a ciphertext which none of them were able to de-
crypt individually. To prevent collusions, the key generation
algorithm of Fuzzy IBE generates a random polynomial (of
degree one less than the error-tolerance) for each user. This
polynomial is used to compute keys corresponding to a set
of attributes. Since all the keys are computed on different
polynomials, they cannot be combined in any meaningful
way.

In our IBE scheme messages are encrypted for two “at-
tributes”: identity of the receiver and time period. The
decryption key is also computed for attributes identity and
time, on a first-degree polynomial, meaning both attributes
of the decryption key must match with those of a cipher-
text in order to decrypt. We split the decryption key in two
components corresponding to identity and time that we call
private key and key update respectively. The private key is
issued to each user by the key authority,5 just like regular
private keys in IBE. The key update is published by the key
authority and is publicly available to all users. To be able
to decrypt a ciphertext a user needs both the private key
and the key update. Thus, when the key authority needs to
revoke a user it may simply stop publishing key updates for
that user. As we recalled above, in Fuzzy IBE the poly-
nomial of a decryption key is selected at random to prevent
collusion between different keys. Using Fuzzy IBE in a naive
way would thus require computing key updates for each user
separately. We use a different approach to reduce the num-
ber of key updates that key authority needs to compute. We
use a binary tree of height h (with at least as many leaves
as the number of users in the system) and assign a random
polynomial to each node of the tree. Next, we associate
each user to a unique leaf node. Every user gets keys (cor-
responding to its identity) computed on polynomials of all
nodes on the path from the leaf node corresponding to that
user to the root node. To be able to decrypt a ciphertext
encrypted with time t, any user just needs one key update
(corresponding to t) computed on any one of the polynomi-

5We use a different name than PKG to emphasize a new
way to handle revocations.



als of nodes on the path from the leaf node of the user to the
root node. Thus, when no user is revoked, key authority just
needs to publish the key update computed on the polyno-
mial of the root node. When a subset of the users is revoked,
key authority first finds the minimal set of nodes in the tree
which contains an ancestor (or, the node itself) among all
the leaf nodes corresponding to non-revoked users. Then,
key authority publishes key updates on polynomials of the
nodes in this set.
We first address chosen-plaintext attack only, and later

show how to extend the scheme to resist chosen-ciphertext
attack as well. Before we give a formal description of the
scheme, we define bilinear maps (aka. pairings).

Bilinear maps and group generator. Let G,GT be
groups of prime order p (so they are cyclic). A pairing is an
efficiently computable map e : G × G → GT such that the
following two conditions hold:

• Bilinearity: For all g1, g2 ∈ G and x, y ∈ Z, we have
e(gx1 , g

y
2 ) = e(g1, g2)

xy.

• Non-degeneracy: For any generator g of G, e(g, g) is a
generator of GT .

Note that e(·, ·) is symmetric since e(gx, gy) = e(g, g)xy =
e(gy, gx).
A bilinear group generator G is an algorithm that on input

1κ returns G̃, which is a description of groups G,GT of order
p and the bilinear map e as defined above, and also p and a
generator g of G.

Construction. We now specify the scheme RIBE [G] =
(S,SK,KU ,DK, E ,D,R) in detail. We assume that all users
agree on how time is divided by time periods and how each
time period is specified, e.g. by days and “04.14.08”. In our
RIBE scheme messages are encrypted using identity and
time. Identity is a string associated with any user, e.g. an
email “abc@xyz.com”. Time indicates when the ciphertext
is supposed to be decrypted, e.g. on 04.14.08. The message
spaceM is GT . The identity space I is {0, 1}∗, and the time
space T is an arbitrary bitstring set of size polynomial in the
security parameter. We require that the strings specifying
identities and times can be distinguished, e.g. by reserving
the most significant bit (MSB) 0 for identity strings and 1
for time strings. In our construction the identity and time
strings are mapped to unique elements of Z∗

p (if needed, a
collision-resistant hash function {0, 1}∗ → Z∗

p can be used).
From now on for simplicity we assume that identity and time
are distinguished elements in Z∗

p.
For x, i ∈ Z, set J ⊆ Z the Lagrange coefficient ∆i,J(x) is

defined as

∆i,J(x)
def
=

∏
j∈J, j ̸=i

(
x− j

i− j

)
For x ∈ Z, g ∈ GT , J ⊆ Z, h1, . . . , h|J| ∈ G, we define

Hg,J,h1,...,h|J|(x)
def
= gx

2
|J|∏
i=1

(
h
∆i,J(x)

i

)
Our construction uses the binary tree data structure, so

we introduce some notation here. We denote by root the
root node. If v is a leaf node then Path(v) denotes the set

u1 u2 u3 u4 u5

u1 u2 u3 u4 u5

No user is revoked

User u3 is revoked

Nodes for key updates output by KUNodes

Nodes marked as revoked by KUNodes

Figure 1: A pictorial description of the actions of
KUNodes function used in Construction 4.1.

of nodes on the path from v to root (both v and root inclu-
sive). If v is a non-leaf node then vl, vr denote left and right
child of v. We assume that nodes in the tree are uniquely
encoded as strings, and the tree is defined by all of its nodes
descriptions.

We also define a function KUNodes which is used to com-
pute the minimal set of nodes for which key update needs
to be published so that only non-revoked users at time t are
able to decrypt ciphertexts.6 The function takes input a bi-
nary tree T, revocation list rl and time t and outputs a set
of nodes, which is the minimal set of nodes in T such that
none of the nodes in rl with corresponding time ≤ t (users
revoked on or before t) have any ancestor (or, themselves)
in the set, and all other leaf nodes (corresponding to non-
revoked users) have exactly one ancestor (or, themselves) in
the set. The function operates as follows. First mark all the
ancestors of revoked nodes as revoked, then output all the
non-revoked children of revoked nodes. Refer to Figure 1 for
a pictorial depiction. Here is a formal specification.

KUNodes(T, rl, t)
X,Y ← ϕ
∀(vi, ti) ∈ rl

if ti ≤ t then add Path(vi) to X
∀x ∈ X

if xl /∈ X then add xl to Y
if xr /∈ X then add xr to Y

If Y = ϕ then add root to Y
Return Y

We are now ready to present the description of Revocable
IBE. We could not use the algorithms of the Fuzzy IBE cons-
truction from [24] in a black-box manner. The reason is that
there the polynomial for each key is picked independently by
the key generation algorithm. And in our construction some

6A similar function was used in [1].



polynomials need to be shared by different keys. After we
provide the details for each algorithm, we give some intu-
ition and relation to the construction from [24] following
“//” sign.

Construction 4.1. Let G be a prime order bilinear group
generator. Let J be {1, 2, 3}.

• Setup S(1κ, n):
(G̃, p, g)

$← G(1κ); a $← Zp; g1 ← ga; g2, h1, h2, h3
$← G.

Let rl be an empty set and T be a binary tree with at
least n leaf nodes.
Return pk = (g, g1, g2, h1, h2, h3) ,mk = a ; rl , st = T.
// Besides the additional outputs of rl, st, it is essen-
tially the same as Setup of Fuzzy IBE where 2 out of
2 attributes need to be matched.

• Private Key Generation SK(pk,mk, ω, st):
Parse pk as (g, g1, g2, h1, h2, h3), mk as a, st as T.7

Pick an unassigned leaf node v from T and store ω in
that node.

∀x ∈ Path(v)

if ax is undefined, then ax
$← Zp,

store ax in node x,

rx
$← Zp ; Dx ← gaxω+a

2 Hg2,J,h1,h2,h3(ω)
rx ;

dx ← grx .
Return skω = {(x,Dx, dx)}x ∈ Path(v), st.

// We note that ax above fixes first-degree polynomial
qx(y) = axy + a corresponding to node x. The algo-
rithm computes the ω-components of the decryption
key using the polynomials of all the nodes on the path
from leaf node corresponding to ω to the root node.

• Key Update Generation KU(pk,mk, t, rl, st):
Parse pk as (g, g1, g2, h1, h2, h3), mk as a, st as T.

∀x ∈ KUNodes(T, rl, t)

rx
$← Zp ; Ex ← gaxt+a

2 Hg2,J,h1,h2,h3(t)
rx ;

ex ← grx .
Return kut = {(x,Ex, ex)}x ∈ KUNodes(T,rl,t).

// The algorithm first finds a minimal set of nodes
which contains an ancestor (or, the node itself) of
all the non-revoked nodes. Then it computes the t-
component of the decryption key using the polynomi-
als of all the nodes in that set.

• Decryption Key Generation DK(skω, kut):
Parse skω as {(i,Di, di)}i ∈ I, kut as {(j, Ej , ej)}j ∈ J

for some set of nodes I, J.

∀(i,Di, di) ∈ skω, (j, Ej , ej) ∈ kut

If ∃(i, j) s.t. i = j then dkω,t ← (Di, Ej , di, ej)
Else (if skω and kut don’t have any node
in common) then dkω,t ← ⊥.

Return dkω,t.

7Every node x in T stores an element ax ∈ Zp and in addi-
tion, every leaf node stores an identity ω. If no such identity
is stored at a leaf node we say that the leaf node is unas-
signed.

// Above we can drop the subscripts i, j since they are
equal, i.e. dkω,t = (D,E, d, e). The algorithm finds
components of skω and kut which were computed on
the same polynomial.

• Encryption E(pk, ω, t,m):
Parse pk as (g, g1, g2, h1, h2, h3).

z
$← Zp ; c1 ← m · e(g1, g2)z ; c2 ← gz ;

cω ← Hg2,J,h1,h2,h3(ω)
z ; ct ← Hg2,J,h1,h2,h3(t)

z.
Return c = (ω, t, cω, ct, c1, c2).
// The Encryption algorithm is essentially the same as
that of Fuzzy IBE.

• Decryption D(dkω,t, c):
Parse dkω,t as (D,E, d, e), c as (ω, t, cω, ct, c1, c2).

m← c1
(

e(d,cω)
e(D,c2)

) t
t−ω

(
e(e,ct)
e(E,c2)

) ω
ω−t

.

Return m.
// The decryption algorithm is essentially the same as
that of Fuzzy IBE.

• Revocation R(ω, t, rl, st):
For all nodes v associated with identity ω add (v, t) to
rl.
Return rl.

Consistency. If identity ω was not revoked before or,
at time t, then we will show that D(dkω,t, c) = m where
dkω,t,m and c are computed as per the consistency require-
ment in Section 3.1.

From the definition of KUNodes we see that if ω was not
revoked before or, at t then the set of nodes output by
KUNodes has one ancestor (or, the node itself) of the leaf
node associated with ω which implies that there will be a
common node in skω and kut and hence DK will not out-
put ⊥. Now from the above construction we have that for
a, ax, z, rω, rt ∈ Zp:

g, g2, h1, h2, h3 ∈ G , g1 = ga

dkω,t = (D,E, d, e) , where
D = gaxω+a

2 Hg2,J,h1,h2,h3(ω)
rω ,

E = gaxt+a
2 Hg2,J,h1,h2,h3(t)

rt , d = grω , e = grt ,
c = (ω, t, cω, ct, c1, c2) , where cω = Hg2,J,h1,h2,h3(ω)

z ,
ct = Hg2,J,h1,h2,h3(t)

z , c1 = m · e(g1, g2)z , c2 = gz.

So, D(dkω,t, c)

= c1

(
e(d, cω)

e(D, c2)

) t
t−ω

(
e(e, ct)

e(E, c2)

) ω
ω−t

= m · e(g1, g2)z

×
(

e(grω ,Hg2,J,h1,h2,h3(ω)
z)

e(gaxω+a
2 Hg2,J,h1,h2,h3(ω)

rω , gz)

) t
t−ω

×
(

e(grt , Hg2,J,h1,h2,h3(t)
z)

e(gaxt+a
2 Hg2,J,h1,h2,h3(t)

rt , gz)

) ω
ω−t

= m · e(g1, g2)z
(

1

e(gaxω+a
2 , gz)

) t
t−ω

×
(

1

e(gaxt+a
2 , gz)

) ω
ω−t



= m · e(g1, g2)z

×

 1

e(g
(axω+a)( t

t−ω
)+(axt+a)( ω

ω−t
)

2 , gz)


= m · e(g1, g2)z

1

e(ga2 , g
z)

= m · e(g1, g2)z
1

e(g2, g1)z

= m.

Remarks. The function KUNodes needs to be executed only
when rl has changed, so key authority can store the output of
KUNodes and use it until rl changes. If the number of users
exceeds n, the capacity of the current tree, it is possible to
extend the tree and permit n more users as follows. Take an
“empty” tree of the same size and connect the roots of the
current and new trees to the new parent root node. Now
the combined tree has 2n leaf nodes, and new users can be
accommodated. Each user will need an additional private
key component computed on the polynomial of the new root
node. This new private key component can be encrypted
(under the corresponding identity and time) and published.

Efficiency. We first analyze communication and time com-
plexity of key authority in computing and publishing key up-
dates as a function of the number of users n and number
of revoked users r. We compare the worst case complexity
of our scheme with that of the general revocation solution
suggested by Boneh-Franklin [7] that we outlined in the In-
troduction. Table 1 summarizes the results. The complexity
analysis for our construction follows directly from Theorem 1
of [1], as the number of necessary key updates in our scheme
corresponds to the number of nodes returned by function
KUNodes, and a similar function on the binary tree was used
in [1].
As the table shows, our scheme represents a significant im-

provement over the Boneh-Franklin solution for small values
of r. For larger values of r (especially as it reaches close to
n), this advantage is lost. We however note that as r be-
comes large, our scheme can be “reset” to keep key update
efficient (by running the setup algorithm again which will
make the revocation list empty and releasing new private
keys for only non-revoked users).
In terms of encryption and decryption, our construct-

ion is slightly less efficient than the existing IBE schemes.
E.g. the decryption algorithms of IBEs by Waters [26] and
Boneh-Boyen [4] require 2 pairing computations (the slowest
computation compared to group operations and exponentia-
tions), and our scheme requires 4. Encryption in the schemes
of [26, 4] is dominated by 3 and 4 exponentiations, while our
scheme uses 12. We chose Waters and Boneh-Boyen con-
structions for comparison because they are the most efficient
IBE schemes secure in standard (RO devoid) model under
standard assumptions. This may be a reasonable price to
pay for the significant improvement in key-update efficiency,
which may become a bottleneck for a large number of users.
We note that the size of secret keys is larger in our scheme,
a user needs to store up to 3h = 3 log n group elements.
We note that using the suggestion from [23], efficiency

of our scheme, and in particular, its encryption algorithm,
can be improved, if a hash function is used in place of the
function H. Security analysis in this case will need to rely
on the random oracle (RO) model [2]. This will improve

Table 1: Key update complexity comparison
r = 0 1 < r ≤ n/2 n/2 < r ≤ n

BF [7] O(n) O(n− r) O(n− r)
Revocable IBE O(1) O(r log (n

r
)) O(n− r)

the number of exponentiations in encryption to 4 while the
decryption algorithm will still be dominated by 4 paring op-
erations. In contrast, the cost of encryption and decryption
in the Boneh-Franklin scheme [7] is dominated by one pair-
ing each.

Security. Even though different users have their private
keys computed on the same polynomial this does not intro-
duce insecurity in RIBE as opposed to Fuzzy IBE. In our
scheme collusion among different users is possible, however
such collusion is not useful. No matter how many revoked
users try to collude, they will still be unable to decrypt a
ciphertext for a new time period, as they cannot obtain the
necessary decryption key component. Security of RIBE is
based on the hardness of decisional bilinear Diffie-Hellman
(DBDH) problem, which we now recall. problem.

Definition 4.2. [DBDH ] Let G be a prime order bilin-
ear group generator. The decisional bilinear Diffie-Hellman
(DBDH) problem is said to be hard for G if for every efficient
adversary A its advantage Advdbdh

G,A (k) defined as

Pr
[
Expdbdh-real

G,A (1κ) = 1
]
− Pr

[
Expdbdh-rand

G,A (1κ) = 1
]

is a negligible function in κ, and where the experiments
are as follows:

Experiment Expdbdh-real
G,A (1κ)

(G̃, p, g)
$← G(1κ) ; x, y, z $← Zp

X ← gx ; Y ← gy ; Z ← gz ; W ← e(g, g)xyz

d
$← A(1κ, G̃, p, g,X, Y, Z,W )

Return d

Experiment Expdbdh-rand
G,A (1κ)

(G̃, p, g)
$← G(1κ) ; x, y, z, w $← Zp

X ← gx ; Y ← gy ; Z ← gz ; W ← e(g, g)w

d
$← A(1κ, G̃, p, g,X, Y, Z,W )

Return d

We now state the security result.

Theorem 4.3. Let G be a prime order bilinear group gen-
erator and RIBE [G] = (S,SK,KU ,DK, E ,D,R) be the as-
sociated Revocable IBE scheme defined by Construction 4.1.
Then RIBE [G] is sRID-CPA-secure if the DBDH problem
is hard for G.

The proof is in the full version [3]. It contains a concrete
security statement showing that the reduction is tight.

5. ADDRESSING CCA SECURITY
We suggest two ways to construct RIBE schemes that re-

sist chosen-ciphertext attacks. Our first solution is a mod-
ification of our main construction. Our second solution is
generic in that it is based on any sRID-CPA secure scheme,
though CCA security relies on the RO model.



RIBECCA Construction. We combine the ideas of [8]
(used there for a different problem of constructing an IND-
CCA public-key encryption scheme) with the error-tolerance
property of Fuzzy IBE to modify our Revocable IBE scheme.
Changes are mainly in the encryption and decryption algo-
rithms. We employ a strongly-unforgeable one-time signa-
ture scheme (cf. [5] that recalls the primitive and its se-
curity definition). The setup algorithm of the new scheme
is very similar to the one in Fuzzy IBE where 2 out of 3
attributes of ciphertexts should match with those of the de-
cryption key. The private key generation and key update
generation algorithms are very similar to those of RIBE ex-
cept that we now use second-degree polynomials as opposed
to first-degree polynomials in RIBE . The encryption algo-
rithm runs the key generation algorithm of OT S to obtain a
signing key and verification key and then encrypts the mes-
sage with three attributes: identity, time and verification
key. Then it signs the resulting intermediate ciphertext us-
ing the signing key. The decryption algorithm verifies the
signature and that ciphertext is properly formed (by using
a ciphertext sanity check due to [14]) before decrypting.
Let G be a bilinear group generator and OT S = (SGen,

Sign,Ver) be a one-time signature scheme. Let RIBE [G] =
(S, SK, KU ,DK, E ,D,R) be the scheme of Construction
4.1. We define RIBECCA[G,OT S] = (S ′, SK′,KU ′,DK,
E ′,D′,R) by specifying the differences from RIBE . Here we
require that identities, time periods and the verification keys
for the one-time signature output by SGen are mapped to
distinguished elements in Z∗

p (e.g. by pre-pending “00”, “01”
and “11” to strings of these types and then using a collision-
resistant hash function that maps {0, 1}∗ to Z∗

p. Let J be
{1, 2, 3, 4}.

• Setup S ′(κ, n):
Everything is the same as in S except that pk has an

additional element h4
$← G and pk = (g, g1, g2, h1, h2,

h3, h4).

• Private Key Generation SK′(pk,mk, ω, st):
Everything is the same as in SK except that now we
pick a random second-degree polynomial qx(y) with
coefficients in Zp and the same restriction that qx(0) =
a. Parse pk as (g, g1, g2, h1, h2, h3, h4), mk as a, st as
T. Pick an unassigned leaf node v from T and store ω
in that node.

∀x ∈ Path(v)
if qx is undefined, then pick a random second-
degree polynomial qx s.t. qx(0) = a
store qx in node x

rx
$← Zp ; Dx ← g

qx(ω)
2 Hg2,J,h1,h2,h3,h4(ω)

rx

dx ← grx

Return skω = {(x,Dx, dx)}x ∈ Path(v), st.

• Key Update Generation KU ′(pk,mk, t, rl, st):
Parse pk as (g, g1, g2, h1, h2, h3, h4), mk as a, st as T.

∀x ∈ KUNodes(T, rl, t)

rx
$← Zp ; Ex ← g

qx(t)
2 Hg2,J,h1,h2,h3,h4(t)

rx

ex ← grx

Return kut = {(x,Ex, ex)}x ∈ KUNodes(T,rl,t).

• Encryption E ′(pk, ω, t,m):
Parse pk as (g, g1, g2, h1, h2, h3, h4)

(sigk, vk)
$← SGen(1κ).

z
$← Zp ; c1 ← m · e(g1, g2)z ; c2 ← gz

cω ← Hg2,J,h1,h2,h3,h4(ω)
z ; ct ← Hg2,J,h1,h2,h3,h4(t)

z

cvk ← Hg2,h1,h2,h3,h4(vk)
z ; c← (ω, t, cω, ct, cvk, c1, c2)

σ ← Sign(sigk, c)
Return c̃ = (c, σ, vk).

• Decryption D′(dkω,t, c̃):
Parse dkω,t as (D,E, d, e) and
c̃ as ((ω, t, cω, ct, cvk, c1, c2), σ, vk)
If Ver(vk, c, σ) ̸= 1 then return ⊥.
Else pick r1, r2, r3

$← Zp

If e(c2, Hg2,J,h1,h2,h3,h4(ω)
r1 ·Hg2,J,h1,h2,h3,h4(t)

r2

×Hg2,J,h1,h2,h3,h4(vk)
r3) ̸= e(g, cr1ω cr2t cr3vk),

Then return ⊥.
Else m← c1

(
e(d,cω)
e(D,c2)

) t
t−ω

(
e(e,ct)
e(E,c2)

) ω
ω−t

.

Return m.

One can verify that consistency follows directly from the
consistency of OT S and RIBE .

RIBECCA Security. We claim the following.

Theorem 5.1. Let G be a prime order bilinear group gen-
erator, OT S = (SGen,Sign,Ver) be a one-time signature
scheme and RIBECCA[G,OT S] = (S ′, SK′,KU ′,DK, E ′,
D′,R) be the associated Revocable IBE scheme as per con-
struction above. Then RIBECCA[G,OT S] is sRID-CCA-
secure if the DBDH problem is hard for G and OT S is
strongly unforgeable.

The proof is in [3]. Here we provide some intuition. It is
not hard to show that RIBECCA is sRID-CPA secure, the
security proof is very similar to the proof of Theorem 4.3.
Even though a ciphertext is encrypted under an additional
attribute: the verification key, the key authority never is-
sues the corresponding decryption key component. To show
that RIBECCA is also sRID-CCA secure, the simulator (the
DBDH adversary) needs to simulate the decryption oracle.
Using the arguments very similar to those used in [14] we
can show that the randomized check in the decryption algo-
rithm that the simulator can perform as well does guarantee
with overwhelming probability that a ciphertext was formed
correctly (according to the encryption algorithm). If the ad-
versary queries a ciphertext whose verification key compo-
nent is the same as that of the challenge ciphertext, then the
decryption query cannot be answered correctly, but in this
case one can construct an adversary breaking security of the
one-time signature scheme. If the verification keys are dif-
ferent, then the simulator can generate the decryption key
corresponding to identity and verification key of the queried
ciphertext and decrypt the ciphertext. Generating such a
decryption key is possible because the verification key is dif-
ferent from the challenge verification key, and following the
proof of security of Fuzzy IBE, it is possible for the sim-
ulator to generate valid keys for a set of attributes if they
overlap with the challenge set of attributes in fewer than the
threshold number of attributes.

We note that alternatively we could use simulation-sound
NIZK proofs in a way similar to the construction of CCA
secure Fuzzy IBE in [24], but our construction is more effi-
cient.



Generic CCA construction. The Fujisaki-Okamoto (or
FO for short) transform [11, 10] is a generic transform to
convert a CPA secure public key encryption scheme to a
CCA secure one in the RO model. The transform can also be
applied to IBE schemes as shown in [27, 17]. Here we show
how to apply the FO transform to Revocable IBE schemes.
Unlike the previous approach, this solution is generic in that
it applies to any Revocable IBE scheme. If applied to our
construction (the only secure Revocable IBE scheme cur-
rently known), then we suggest to use its more efficient RO
modification we discussed, since the FO transform also relies
on the RO model.
Let RIBE = (S,SK,KU ,DK, E ,D,R) be any Revocable

IBE scheme as per Definition 3.1. Then we can construct
another Revocable IBE scheme FO-RIBECCA = (S ′, SK,
KU , DK, E ′,D′,R) as follows (we only specify the differ-
ences from RIBE). Let M,M′ be the message spaces of
RIBE , FO-RIBECCA resp. Let COINS be the set from
where E draws its random coins. We require that for every
m ∈ M, rand ∈ COINS we have that m∥rand ∈ M′. To

make the use of randomness explicit we use notation rand
$←

COINS ; E(·, ·, ·, ·; rand) as opposed to the traditional short-
hand E(·, ·, ·, ·). The setup algorithm S ′(1κ, n) follows S. In
addition, it specifies a hash functionH′ :M→ COINS and
outputs it as part of public parameters pk′. The encryption
and decryption algorithms are as follows.

• Encryption E ′(pk′, ω, t,m):

rand
$← COINS ; m′ ← m∥rand

rand′ ← H′(m∥rand) ; c← E(pk, ω, t,m′ ; rand′)
Return c.

• Decryption D′(dkω,t, c):
m′ ← D(dkω,t, c)
Parse m′ as m∥rand
σ′ ← H′(m∥rand)
If c = E ′(pk, ω, t,m′ ; rand′) then return m else return
⊥.

Consistency follows from the justification of the consis-
tency requirement for RIBE .

FO-RIBECCA Security. We now present the formal se-
curity statement for FO-RIBECCA.

Theorem 5.2. Let RIBE be a Revocable IBE scheme as
per Definition 3.1, with message space M, and set of coins
COINS for its encryption algorithm. Let H′ be a hash func-
tion mappingM to COINS be a hash function (modeled as
the RO) and FO-RIBECCA be the associated Revocable IBE
scheme as per construction above. Then FO-RIBECCA is
sRID-CCA-secure in the RO model if RIBE is sRID-CPA
secure.

The proof follows closely the proof of Theorem 1 in [27]
and the proof of Theorem 4.3 and is in the full version [3].

6. REVOCABLE ABE AND FUZZY IBE
Key-policy attribute-based encryption (KP-ABE) [15] is

a generalization of Fuzzy IBE which allows the authority to
specify more advanced decryption policies. In KP-ABE, as
in Fuzzy IBE, each ciphertext is labeled by the sender with
a set of descriptive attributes. However, each private key is

associated with an access tree that specifies which type of ci-
phertexts the key can decrypt. A particular key can decrypt
a particular ciphertext only if the ciphertext attributes sat-
isfy the access tree of the key. The problem of revocation
of attributes is as relevant to KP-ABE as the problem of
identity revocation is relevant for IBE. There is no solution
known other than the frequent key update for all attributes.
As we explained in the Introduction this solution does not
scale well. We extend our ideas to construct a key-policy
attribute-based encryption with efficient revocation or sim-
ply Revocable KP-ABE. Here we just explain how we obtain
a Revocable KP-ABE and that will imply a Revocable Fuzzy
IBE as well. The security of our construction holds only in a
weaker selective revocation list model, where the adversary
must declare in advance all the users to be revoked prior to
the challenge time.

The construction uses the KP-ABE construction from [15]
and a binary tree in the following way. Messages are en-
crypted with attributes γ and time, where γ is the set of
attributes which is used in encryption in KP-ABE. The root
node of the access tree of decryption key is a 2-out-of-2 gate
whose one child is time (similarly to Revocable IBE) and the
other child is the root node of access tree A. The component
of decryption key corresponding to A and time are called pri-
vate key and key update, respectively. Private key for access
tree A is computed in the same way as keys are computed
in KP-ABE except that, instead of the root polynomial of
A, the root polynomial of decryption key evaluates to the
master key at 0. The use of binary tree is essentially the
same in both Revocable IBE and Revocable KP-ABE e.g.,
the way users are assigned to leaf nodes, the way polynomi-
als are selected for each node, the number of private keys
each user gets, the way key updates are computed etc. We
defer the formal description of Revocable KP-ABE and its
security to the full version of the paper [3].

7. CONCLUSIONS
We proposed an IBE scheme with efficient revocation,

whose complexity of key updates is significantly reduced
(from linear to logarithmic in the number of users) com-
pared to the previous solution. We discussed several vari-
ants achieving different levels of security. We also discussed
how to construct an attribute-based encryption scheme with
efficient revocation. Our schemes should be particularly use-
ful in the settings where a large number of users is involved
and scalability is an issue.
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