Classification: Mitchell's Machine Learning, Chapter 6 # What's learning, revisited Overfitting Bayes optimal classifier Naïve Bayes Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University January 25th, 2006 #### Announcements - Recitations stay on Thursdays - 5-6:30pm in Wean 5409 - Special Matlab recitation: - □ Jan. 25 Wed. 5:00-7:00pm in NSH 3305 - First homework is out: - □ Programming part and Analytic part - Remember collaboration policy: can discuss questions, but need to write your own solutions and code - □ Due Mon. Feb 6th beginning of class - Start early! #### **Bias-Variance Tradeoff** - Choice of hypothesis class introduces learning bias - More complex class → less bias - More complex class → more variance ### Training set error $\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i} \left(t(\mathbf{x}_i) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$ $$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_j \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2$$ - Given a dataset (Training data) - Choose a loss function - \square e.g., squared error (L₂) for regression - Training set error: For a particular set of parameters, loss function on training data: $$error_{train}(\mathbf{w}) = rac{1}{N_{train}} \sum_{j=1}^{N_{train}} \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) ight)^2$$ # Training set error as a function of model complexity #### Prediction error - Training set error can be poor measure of "quality" of solution - Prediction error: We really care about error over all possible input points, not just training data: $$egin{array}{lll} error_{true}(\mathbf{w}) & = & E_{\mathbf{x}} \left[\left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) ight)^{2} ight] \ & = & \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) ight)^{2} d\mathbf{x} \end{array}$$ # Prediction error as a function of model complexity $$error_{train}(\mathbf{w}) = \frac{1}{N_{train}} \sum_{j=1}^{N_{train}} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$ $$error_{true}(\mathbf{w}) = \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_i h_i(\mathbf{x}) \right)^2 d\mathbf{x}$$ ### Computing prediction error - hard integral - ☐ May not know t(x) for every x $$error_{true}(\mathbf{w}) = \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} d\mathbf{x}$$ - Monte Carlo integration (sampling approximation) - □ Sample a set of i.i.d. points $\{\mathbf{x}_1, ..., \mathbf{x}_M\}$ from $p(\mathbf{x})$ - □ Approximate integral with sample average $$error_{true}(\mathbf{w}) \hspace{0.2cm} pprox \hspace{0.2cm} rac{1}{M} \sum_{j=1}^{M} \left(t(\mathbf{x}_{j}) - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j}) ight)^{2}$$ # Why training set error doesn't approximate prediction error? Sampling approximation of prediction error: $$error_{true}(\mathbf{w}) \hspace{0.2cm} pprox \hspace{0.2cm} rac{1}{M} \sum_{j=1}^{M} \left(t(\mathbf{x}_{j}) - \sum_{i} w_{i} h_{i}(\mathbf{x}_{j}) ight)^{2}$$ Training error : $$error_{train}(\mathbf{w}) = \frac{1}{N_{train}} \sum_{j=1}^{N_{train}} \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2$$ - Very similar equations!!! - □ Why is training set a bad measure of prediction error??? # Why training set error doesn't approximate prediction error? #### Because you cheated!!! Training error good estimate for a single **w**, But you optimized **w** with respect to the training error, and found **w** that is good for this set of samples Training error is a (optimistically) biased estimate of prediction error - Very similar equations!!! - □ Why is training set a bad measure of prediction error??? #### Test set error $$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_j \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j) \right)^2$$ - Given a dataset, randomly split it into two parts: - □ Training data $\{\mathbf{x}_1, ..., \mathbf{x}_{Ntrain}\}$ - \square Test data $\{\mathbf{x}_1, ..., \mathbf{x}_{\text{Ntest}}\}$ - Use training data to optimize parameters w - **Test set error:** For the *final solution* w*, evaluate the error using: $$error_{test}(\mathbf{w}) = \frac{1}{N_{test}} \sum_{j=1}^{N_{test}} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$ # Test set error as a function of model complexity $$error_{train}(\mathbf{w}) = \frac{1}{N_{train}} \sum_{j=1}^{N_{train}} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$ $$error_{true}(\mathbf{w}) = \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_i h_i(\mathbf{x}) \right)^2 d\mathbf{x}$$ $$rror_{test}(\mathbf{w}) = \frac{1}{N_{test}} \sum_{j=1}^{N_{test}} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$ # How many points to I use for training/testing? - Very hard question to answer! - Too few training points, learned w is bad - ☐ Too few test points, you never know if you reached a good solution - Bounds, such as Hoeffding's inequality can help: $$P(||\widehat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$ - More on this later this semester, but still hard to answer - Typically: - if you have a reasonable amount of data, pick test set "large enough" for a "reasonable" estimate of error, and use the rest for learning - □ if you have little data, then you need to pull out the big guns... - e.g., bootstrapping #### **Error estimators** $$error_{true}(\mathbf{w}) = \int_{\mathbf{x}} \left(t(\mathbf{x}) - \sum_{i} w_{i} h_{i}(\mathbf{x}) \right)^{2} d\mathbf{x}$$ $$error_{train}(\mathbf{w}) = \frac{1}{N_{train}} \sum_{j=1}^{N_{train}} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$ $$error_{test}(\mathbf{w}) = \frac{1}{N_{test}} \sum_{j=1}^{N_{test}} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$ #### Error as a function of number of training examples for a fixed model complexity little data infinite data #### **Error estimators** P #### Be careful!!! Test set only unbiased if you never never never never do any any any learning on the test data err For example, if you use the test set to select the degree of the polynomial... no longer unbiased!!! (We will address this problem later in the semester) $$error_{test}(\mathbf{w}) = \frac{1}{N_{test}} \sum_{j=1}^{N_{test}} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$ ### Overfitting Overfitting: a learning algorithm overfits the training data if it outputs a solution w when there exists another solution w' such that: $$[error_{train}(\mathbf{w}) < error_{train}(\mathbf{w}')] \land [error_{true}(\mathbf{w}') < error_{true}(\mathbf{w})]$$ ### What's (supervised) learning, more formally - Given: - \square **Dataset**: Instances $\{\langle \mathbf{x}_1; \mathbf{t}(\mathbf{x}_1) \rangle, \dots, \langle \mathbf{x}_N; \mathbf{t}(\mathbf{x}_N) \rangle\}$ - e.g., $\langle \mathbf{x}_i; t(\mathbf{x}_i) \rangle = \langle (GPA=3.9, IQ=120, MLscore=99); 150K \rangle$ - ☐ Hypothesis space: H - e.g., polynomials of degree 8 - □ Loss function: measures quality of hypothesis h∈H - e.g., squared error for regression - Obtain: - \square **Learning algorithm**: obtain $h \in H$ that minimizes loss function - e.g., using matrix operations for regression - Want to minimize prediction error, but can only minimize error in dataset # Types of (supervised) learning problems, revisited - Regression, e.g., - dataset: \(\range\) position; temperature\(\range\) - □ hypothesis space: - □ Loss function: - Density estimation, e.g., - □ dataset: ⟨grades⟩ - hypothesis space: - Loss function: - Classification, e.g., - □ dataset: ⟨brain image; {verb v. noun}⟩ - hypothesis space: - Loss function: # Learning is (simply) function approximation! - The general (supervised) learning problem: - ☐ Given some data (including features), hypothesis space, loss function - □ Learning is no magic! - □ Simply trying to find a function that fits the data - Regression - Density estimation - Classification - (Not surprisingly) Seemly different problem, very similar solutions... #### Classification - **Learn**: h: $X \mapsto Y$ - □ X features - ☐ Y target classes - Suppose you know P(Y|X) exactly, how should you classify? - □ Bayes classifier: ■ Why? ### Optimal classification ■ **Theorem:** Bayes classifier h_{Bayes} is optimal! - That is $error_{true}(h_{Bayes})) \leq error_{true}(h), \ \forall h(\mathbf{x})$ - Proof: ### **Bayes Rule** $$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$ Which is shorthand for: $$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}$$ ### How hard is it to learn the optimal classifier? Data = | Sky | Temp | Humid | Wind | Water | Forecst | EnjoySpt | |-------|--------------|-----------------------|--------|-------|-----------------|----------| | Sunny | Warm | Normal | Strong | Warm | \mathbf{Same} | Yes | | Sunny | Warm | High | Strong | Warm | \mathbf{Same} | Yes | | Rainy | Cold | High | Strong | Warm | Change | No | | Sunny | ${\rm Warm}$ | High | Strong | Cool | Change | Yes | - How do we represent these? How many parameters? - □ Prior, P(Y): - Suppose Y is composed of *k* classes - □ Likelihood, P(**X**|Y): - Suppose X is composed of n binary features ■ Complex model → High variance with limited data!!! ### Conditional Independence ■ X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z $(\forall i, j, k)P(X = i|Y = j, Z = k) = P(X = i|Z = k)$ • e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning) Equivalent to: $$P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$ #### What if features are independent? - Predict 10701Grade - From two conditionally Independent features - ☐ HomeworkGrade - □ ClassAttendance ### The Naïve Bayes assumption - Naïve Bayes assumption: - □ Features are independent given class: $$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$ = $P(X_1|Y)P(X_2|Y)$ ■ More generally: $$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$ - How many parameters now? - Suppose X is composed of n binary features ### The Naïve Bayes Classifier - Given: - □ Prior P(Y) - □ n conditionally independent features X given the class Y - \square For each X_i , we have likelihood $P(X_i|Y)$ - Decision rule: $$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$ = $\arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$ If assumption holds, NB is optimal classifier! ### MLE for the parameters of NB - Given dataset - □ Count(A=a,B=b) ← number of examples where A=a and B=b - MLE for NB, simply: - □ Prior: P(Y=y) = \square Likelihood: $P(X_i=x_i|Y_i=y_i) =$ # Subtleties of NB classifier 1 – Violating the NB assumption Usually, features are not conditionally independent: $$P(X_1...X_n|Y) \neq \prod_i P(X_i|Y)$$ - Actual probabilities P(Y|X) often biased towards 0 or 1 - Nonetheless, NB is the single most used classifier out there - □ NB often performs well, even when assumption is violated - □ [Domingos & Pazzani '96] discuss some conditions for good performance ### Subtleties of NB classifier 2 – Insufficient training data - What if you never see a training instance where X₁=a when Y=b? - □ e.g., Y={SpamEmail}, X₁={'Enlargement'} - $\Box P(X_1=a \mid Y=b) = 0$ - Thus, no matter what the values $X_2,...,X_n$ take: - \square P(Y=b | X₁=a,X₂,...,X_n) = 0 What now??? ### MAP for Beta distribution BH, Bt extradet $$\theta^{\beta_H+lpha_H-1}(1- heta)^{eta_T+lpha_T-1}$$ $$P(\theta \mid \mathcal{D}) = \underbrace{\frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)}}_{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$ MAP: use most likely parameter: $$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) = \frac{\beta_{H} + \lambda_{H} - 1}{\beta_{H} + \lambda_{H} + \beta_{T} + \lambda_{T} - 2}$$ - Beta prior equivalent to extra thumbtack flips - \blacksquare As $N \to \infty$, prior is "forgotten" - But, for small sample size, prior is important! # Bayesian learning for NB parameters – a.k.a. smoothing - Dataset of N examples - Prior - \square "distribution" Q(X_i,Y), Q(Y) - □ m "virtual" examples - MAP estimate - $\square P(X_i|Y)$ Now, even if you never observe a feature/class, posterior probability never zero #### Text classification - Classify e-mails - ☐ Y = {Spam,NotSpam} - Classify news articles - ☐ Y = {what is the topic of the article?} - Classify webpages - ☐ Y = {Student, professor, project, ...} - What about the features X? - □ The text! # Features **X** are entire document – X_i for ith word in article #### Article from rec.sport.hockey Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.e From: xxx@yyy.zzz.edu (John Doe) Subject: Re: This year's biggest and worst (opinic Date: 5 Apr 93 09:53:39 GMT I can only comment on the Kings, but the most obvious candidate for pleasant surprise is Alex Zhitnik. He came highly touted as a defensive defenseman, but he's clearly much more than that. Great skater and hard shot (though wish he were more accurate). In fact, he pretty much allowed the Kings to trade away that huge defensive liability Paul Coffey. Kelly Hrudey is only the biggest disappointment if you thought he was any good to begin with. But, at best, he's only a mediocre goaltender. A better choice would be Tomas Sandstrom, though not through any fault of his own, but because some thugs in Toronto decided #### NB for Text classification - P(X|Y) is huge!!! - □ Article at least 1000 words, $\mathbf{X} = \{X_1, ..., X_{1000}\}$ - \square X_i represents ith word in document, i.e., the domain of X_i is entire vocabulary, e.g., Webster Dictionary (or more), 10,000 words, etc. - NB assumption helps a lot!!! - \square P(X_i=x_i|Y=y) is just the probability of observing word x_i in a document on topic y $$h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) \prod_{i=1}^{LengthDoc} P(x_i|y)$$ ### Bag of words model - Typical additional assumption Position in document doesn't matter: P(X_i=x_i|Y=y) = P(X_k=x_i|Y=y) - □ "Bag of words" model order of words on the page ignored - □ Sounds really silly, but often works very well! $$P(y) \prod_{i=1}^{LengthDoc} P(x_i|y)$$ When the lecture is over, remember to wake up the person sitting next to you in the lecture room. ### Bag of words model - Typical additional assumption Position in document doesn't matter: P(X_i=x_i|Y=y) = P(X_k=x_i|Y=y) - □ "Bag of words" model order of words on the page ignored - □ Sounds really silly, but often works very well! $$P(y) \prod_{i=1}^{LengthDoc} P(x_i|y)$$ in is lecture lecture next over person remember room sitting the the to to up wake when you ### Bag of Words Approach all about the company Our energy exploration, production, and distribution operations span the globe, with activities in more than 100 countries. At TOTAL, we draw our greatest strength from our fast-growing oil and gas reserves. Our strategic emphasis on natural gas provides a strong position in a rapidly expanding market. Our expanding refining and marketing operations in Asia and the Mediterranean Rim complement already solid positions in Europe, Africa, and the U.S. Our growing specialty chemicals sector adds balance and profit to the core energy business. aardvark about all Africa apple anxious gas oil Zaire ### NB with Bag of Words for text classification - Learning phase: - □ Prior P(Y) - Count how many documents you have from each topic (+ prior) - $\square P(X_i|Y)$ - For each topic, count how many times you saw word in documents of this topic (+ prior) - Test phase: - □ For each document - Use naïve Bayes decision rule $$h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) \prod_{i=1}^{LengthDoc} P(x_i|y)$$ ### Twenty News Groups results Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.guns sci.space sci.crypt sci.electronics sci.med Naive Bayes: 89% classification accuracy # Learning curve for Twenty News Groups Accuracy vs. Training set size (1/3 withheld for test) #### What you need to know - Training/test/true errors - Biased v. unbiased error estimate - Never train on the test data!!! (Even if you think you are not doing it) - Types of learning problems - Learning is (just) function approximation! - Optimal decision using Bayes Classifier - Naïve Bayes classifier - ☐ What's the assumption - □ Why we use it - How do we learn it - □ Why is Bayesian estimation important - Text classification - □ Bag of words model