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Abstract There has recently been an explosion of fascinating theo-
retical results on the advantages of this type of activenlear
We prove that access to a prior distribution ing, compared to passive learning, in terms of the number
over target functions can dramatically improve of labels required to obtain a prescribed accuracy (called
the sample complexity of self-terminating ac- the sample complexily e.g., [FSST97, Das04, DKMO09,

tive learning algorithms, so that it is always bet- Das05, Han07b, BHV10, BBLO9, Wan09a#06, Han07a,
ter than the known results for prior-dependent ~ DHMO7, Fri09, CNO8, Now08, BBZ07, Hanll, Koll0,

passive learning. In particular, this is in stark Han09, BDLO9]. In particular, [BHV10] show that in
contrast to the analysis of prior-independent al- noise-free binary classifier learning, for any passiveriear
gorithms, where there are simple known learn- ing algorithm for a concept space of finite VC dimension,
ing problems for which no self-terminating algo- there exists an active learning algorithm with asymptoti-
rithm can provide this guarantee for all priors. cally much smaller sample complexity for any nontrivial

target concept. In later work, [Han09] strengthens this re-

sult by removing a certain strong dependence on the dis-
1 Introduction and Background tribution of the data in the learning algorithm. Thus, it

appears there are profound advantages to active learning

Active learningis a powerful form of supervised machine compared to passive learning.

learning characterized by interaction between the legmin o yever, the ability to rapidly converge to a good classifier
algorithm and supervisor during the leaming process. IN;sing only a small number of labels is only one desirable

this work, we consider a variant known psol-basedac-  quality of a machine learning method, and there are other
tive learning, in which a learning algorithm is given accessyajities that may also be important in certain scenarios. |

to a (typically very large) collection of unlabeled examle ariicular, the ability toverify the performance of a learning
and is able to select any of those examples, request the Shietnod is often a crucial part of machine learning applica-
pervisor to label it (in agreement with the target concept) ¢ions, as (among other things) it helps us determine whether

then after receiving the label, selects another exampi® fro \ye have enough data to achieve a desired level of accuracy
the pool, etc. This sequential label-requesting process co iy the given method. In passive learning, one common

tinues until some halting criterion is reached, atwhicpoi - 4 ctice for this verification is to hold out a random sample
the algorithm outputs a function, and the objective is forgt |apeled examples asvalidation sampleo evaluate the
this function to closely approximate the (unknown) targetyained classifier (e.g., to determine when training is com-
concept in the future. The primary motivation behind pool-pjete). |t turns out this technique is not feasible in active
based active learning is that, often, unlabeled examp&s afearning, since in order to be really useful as an indicator
inexpensive and available in abundance, while annotatings \vhether we have seen enough labels to guarantee the
those examples can be costly or time-consuming; &s sUCResjred accuracy, the number of labeled examples in the
we often wish to select only the informative examples 0;5nqom validation sample would need to be much larger
be labeled, thus reducing information-redundancy t0 SOM@,an, the number of labels requested by the active learning
extent, compare(_j to the baseline of selecting the exam_plecﬁgorithm itself, thus (to some extent) canceling the sgsin

to be labeled uniformly at random from the pool (passivegpained by performing active rather than passive learning
learning). Another common practice in passive learning is to exam-
App_ez’_:lring in I_Droceedings of t_he_”” International Conference on ine the training error rat(ElOf .thde. rettum?d Cl?ssncler’ Whli?
Artificial Intelligence and Statistics (AISTATS) 2011, Fort Laud- carl sgrve as a reasonable .'n Icator of per or.man_ce (after
erdale, FL, USA. Volume 15 of JMLR: W&CP 15. Copyright adjusting for model complexity). However, again this mea-
2011 by the authors. sure of performance is not necessarily reasonable foreactiv
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learning, since the set of examples the algorithm requestguite restrictive, and many interesting learning problems
the labels of is typically distributed very differently fro  are precluded by this requirement. Furthermore, theré exis
the test examples the classifier will be applied to aftentrai learning problems (with finite VC dimension) for which the

ing. Query by Committee algorithm makes an expected number

of label requests exceedifiyf1/<). To date, there has not

This reasoning indicates that performance verification isD :
. . . . een a general analysis of how the valugyafan behave
(at best) a far more subtle issue in active learning than

in passive learning. Indeed, [BHV10] note that althoughas.a fynction.ofs, though such an analysis would likely be
the number of labels required to achieve good accuracy igune Interesting.

significantly smaller than passive learning, it is often theln the present paper, we take a more general approach to
case that the number of labels requiredvaify that the  the question of active learning with access to the prior. We
accuracy is good is not significantly improved. In particu- are interested in the broad question of whether access to
lar, this phenomenon can dramatically increase the sampline prior bridges the gap between the sample complexity of
complexity of active learning algorithms that adaptiveé¢y d learningand the sample complexity of learnimgth verifi-
termine how many labels to request before terminating. Ircation Specifically, we ask the following question.

short, if we require the algorithm both tearn an accurate . L . .
Can a prior-dependent self-terminating active learning al

concept and t&nowthat its concept is accurate, then the gorithm for a concept class of finite VC dimension always

number of labels required by active learning is often not” ", . .
— . - achieve expected error rate at masusingo(1/¢) label
significantly smaller than the number required by passive

. requests?
learning.

After some basic definitions in Section 2, we begin in Sec-

We should note, however, that the above results wer . X o

. o : ion 3 with a concrete example, namely interval classifiers
proven for a learning scenario in which the target concep : . . . )
. . . . under a uniform data density but arbitrary prior, to illus-
is considered a constant, and no information about the pro-

cess that generates this concept is known a priori. Altern rate the general idea, and convey some of the intuition as

tively, we can consider a modification of this problem, so 0 why one might expect a positive answer to this guestion.

that the target concept can be thought of as a random varlp Section 4, we present a general proof that the answer is

able, a sample from a known distribution (callegréor) always*yes.” As the known results for the sample com-

. . lexity of passive learning with access to the prior are-typi
over the space of possible concepts. Such a setting h‘%’;\llyu 1/e [HKS92], and this is sometimes tight, this rep-

been studied in detail in the context of passive Iearningresents an improvement over passive learning. The proof

for noise-free binary classification. In particular, [HK39 is simple and accessible. vet represents an important ste
found that for any concept space of finite VC dimension. P Y P P P

d, for any prior and distribution over data point8(d/z) in understanding the problem of self-termination in active

- learning algorithms, and the general issue of the complex-
random labeled examples are sulfficient for the expected er: e o

I ity of verification. Also, as this is a result that doest
ror rate of the Bayes classifier produced under the posterio

o nerally hold for prior-in ndent algorithms (even for
distribution to be at most. Furthermore, it is easy to con- ge .e“a y hold fo p 0 dgpg dent algorit S (even fo
. . . their “average-case” behavior induced by the prior) for cer
struct learning problems for which there is@fl /<) lower . . Lo
. tain concept spaces, this also represents a significant step
bound on the number of random labeled examples require . . .
. . oward understanding the inherent value of having access
to achieve expected error rate at mesty any passive :
. e X . _to the prior.
learning algorithm; for instance, the problem of learning

threshold classifiers g, 1] under a uniform data distribu- o o
tion and uniform prior is one such scenario. 2 Definitions and Preliminaries

In the context of active learning (again, with access 1o thesjr; e introduce some notation and formal definitions.
prior), [FSST97] analyze thQuery by Committe@lgo- v denote byt theinstance spaceepresenting the range

rjthm, and f‘”‘?' that if a certain informatiqn ga?n quan- of the unlabeled data points, and we suppose a distribution
tity for the points requested by the algorithm is lower- 1, o 3 "\which we will refer to as thelata distribution

bounded by a valug, then thg algorithm requires only We also suppose the existence of a sequeviceXs, . . .
O((d/g)log(1/¢)) labels to achieve expected error rate alyt i 4 random variables, each with distributid, re-

moste. In particular, they show that this is satisfied for ferred to as the unlabeled data sequence. Though one

cogstantg for Ilr;ear sgpar%t.ors'tl)JnQeraneark-]unlfolrm przlor, could potentially analyze the achievable performance as
and a near-uniform data distribution over the unit Sphere, nqtion of the number of unlabeled points made avail-

This represents a markec_i improve_ment over the results Oible to the learning algorithm (cf. [Das05]), for simplic-
[HKS92] for passive learning, and since the Query by Comyyy iy the present work, we will suppose this unlabeled se-

mittee algorithm is self-verifying, this result is highlgle- guence is essentially inexhaustible, corresponding to the

vr?nt_ tch the pr esent_d|s<l:)us|3|on. I:)oweéeré tge condition th,a%;iractical fact that unlabeled data are typically available
the information gains be lower-bounded by a constant iy, ngance as they are often relatively inexpensive to ob-
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tain. Additionally, there is a sét of measurable classifiers

h: X — {—1,+1}, referred to as theoncept spaceWe ) ) . .
denote byd the VC dimension ofC, and in our present 61513)6'5”0(679,77) = gg%e]E[E[N(Avh &, D, m)[h"]]
context we will restrict ourselves to spad@svith d < oo,

referred to as &C class We also have a probability dis-
tribution 7, called theprior, overC, and a random variable
h* ~ m, called thetarget function we supposé.* is inde-
pendent from the data sequenke, X, .... We adopt the
usual notation for conditional expectations and probabili
ties [ADDOO]; for instancelZ[A| B] can be thoughtofas an hriors. For instance, this is the case foras the space
expectation of the valud, under the conditional distribu- ¢ jnterval classifiers (including the empty interval) on
tion of A given the value of3 (which itself is random), and ~ ,, _ [0, 1] underD = Uniform([0, 1)) (this essentially fol-
thus the value oE[A|B] is essentially determined by the |ows from a proof of [BHV10]). Thus, any general result on
value of 5. For any measurable: X — {—1,+1}, define /) expected sample complexity fardependent algo-

theerror rateer(h) = D({z : h(z) # h*(x)}). Sofar, this i ms would signify that there is a real advantage to having
setup is essentially identical to that of [HKS92, FSST97]. 4.cess to the prior.

:E@meMNMmﬁaDMWWZO
e—0

In these cases, we can think 8 as a kind of “average-
case” analysis of these algorithms. However, there are also
many (X, C, D) for which no suchr-independent algo-
rithm exists, achieving(1/¢) sample complexity foall

The protocol in active learning is the following. An ac-

tive learning algorithmd is given as input the prior, the 3~ An Example: Intervals

data distributionD (though see Section 5), and a value

e € (0,1]. It also (implicitly) depends on the data se- |n this section, we walk through a simple and intuitive ex-
quenceX;, Xo, ..., and has an indirect dependence on theample, to illustrate how access to the prior makes a dif-
target functiom* via the following type of interaction. The = ference in the sample complexity. For simplicity, in this
algorithm may inspect the values; for any initial seg-  example (only) we will suppose the algorithm may request
ment of the data sequence, select an index N to “re-  the label of any point inY’, not just those in the sequence
quest” the label of; after selecting such an index, the a|gO{Xi}; the same ideas can easily be adapted to the setting
rithm receives the valug*(X;). The algorithm may then where queries are restricted{t&, }. Specifically, consider
select another index, request the label, receive the valug’ — [0, 1], D uniform on|[0, 1], and the concept space of
of »* on that point, etc. This happens for a number ofinterval classifierswhereC = {H[ﬂ; i 0<a<b< 1},
rounds,N (A, h*, e, D, ), before eventually the algorithm .

o . ) X Where]I[ia . () = +1if € [a,b] and—1 otherwise. For
halts and returns a classifier An algorithm is said to be each classifieh € C, let w(h) — P(h(z) = +1) (the

correctif E {er (h)} < e forevery(e, D, ); thatis, given  width of the intervah).
direct access to the prior and the data distribution, anelgiv
a specified value, a correct algorithm must be guaranteed
to have expected error rate at mestDefine theexpected
sample complexitgf A for (X, C, D, r) to be the function
SC(e,D,n) =E[N(A, h*,e, D, m)]: the expected number
of label requests the algorithm makes.

Consider an active learning algorithm that makes
label requests at the locations (in sequence)
1/2,1/4,3/4,1/8,3/8,5/8,7/8,1/16,3/16,...  until
(case 1) it encounters an examplevith A*(z) = +1 or

until (case 2) the set of classifie¥s C C consistent with

all observed labels so far satisfiggo(h*)|V] < e (which

We will be interested in proving that certain algorithms ever comes first). In case 2, the algorithm simply halts and
achieve a sample complexiyC'(s, D, ) = o(1/e). For  returns the constant classifier that always predictscall
some(X, C, D), it is known that there are-independent it 4_; note thater(h_) = w(h*). In case 1, the algorithm
algorithms (meaning the algorithm’s behavior is indepen-enters a second phase, in which it performs a binary search
dent of thew argument).A such that we always have (repeatedly querying the midpoint between the closest
E[N (A, h*,e,D,m)|h*] = o(1/¢); for instance, threshold two —1 and+1 points, takingd and1 as known negative
classifiers have this property under @Ry homogeneous points) to the left and right of the observed positive point,
linear separators have this property under a uniféron  halting afterlog,(2/<) label requests on each side; this
the unit sphere irk dimensions, and intervals with posi- results in estimates of the target's endpoints up-tg'2,

tive width on X = [0, 1] have this property undeP =  so that returning any classifier among the etC C
Uniform([0, 1]) (see e.g., [Das05]). Itis straightforward to consistent with these labels results in error rate at most
show that any suchl will also haveSC(e, D, ) = o(1/e)  &; in particular, if k is the classifier inV/ returned, then

for everyr. In particular, the law of total expectation and Eler(h)|V] < e.

the dominated convergence theorem impl .
g Py Denoting this algorithm by, andh the classifier it re-

turns, we have

3o ()] = s (3] <=
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so that the algorithm is definitely correct. In conclusion, for this concept spateand data distribu-

Note that case 2 will definitely be satisfied after at mos Flon D, we have a correct active learning algorithm achiev-

% label requests, and case 1 will definitely be satisfied" 9 a sample complexitgC'(e, D, ) = o(1/e) for all pri-

after at mostﬁ label requests, so that the algorithm orsmon .

never makes more thaﬁm + 2log,(2/¢) la-
bel requests. In particular, for ay* with w(h*) > 0,
N(Ap,h*,e,D,m) = o(l/e). Abbreviating N(h*) =
N(Ap,h*,e,D, ), we have

4 Main Result

In this section, we present our main result: a general re-
sult stating thab(1 /<) expected sample complexity is al-

E[N(h*)] =E [N(h*) w(h*) = 0} P (w(h*) = 0) ways achievable by some correct active learning algorithm,
P

B for any (X', C, D, w) for which C has finite VC dimension.
w(h*) > 0} (w(h*) >0). (1)  Since the known results for the sample complexity of pas-
sive learning with access to the prior are typica&lyl /¢),
Sincew(h*) > 0 = N(h*) = o(1/¢), the dominated and since there are known learning probleias C, D, )

+E [N(h*)

convergence theorem implies for which every passive learning algorithm requifgd /<)
samples, this(1/¢) result for active learning represents
lim eE {N(h*) w(h*) > 0} an improvement over passive learning. Additionally, as
e—0 . . . .
mentioned, this type of result is often not possible for al-
=E ng% eN(h™)|w(h*) > 0} =0, gorithms lacking access to the prior as there are well-
) ) known problemg X', C, D) for which no prior-independent
so thatthe second termin (1)d6l/e). If P(w(h*) = 0) = correct algorithm (of the self-terminating type studiedd)e

O, this CompleteS the prOOf. We focus the rest of the proofcan achiev@(l/g) Samp'e Comp|exity for every pnomk

on the first term in (1), in the case thatw (k") = 0) > 0:  [BHV10]; in particular, the intervals problem studied abov
i.e. there is nonzero probability that the targetlabels s one such example.

the space almost all negative. Lettiligdenote the subset

of C consistent with all requested labels, note that on thé'St; we have a small lemma.

eventw(h*) = 0, aftern label requests (for. a power Lemma 1. For any sequence of functioss : C — [0, o)
of 2) we havemax,cy w(h) < 1/n. Thus, for any value such that,Vf € C, ¢,(f) = o(1/n) andVn € N,
we € (0,1), after at mostw% label requests, on the event ¢,(f) < ¢/n (for an f-independent constaate (0, 00)),

thatw(h*) = 0, there exists a sequengg in [0, co) such that
E [uw(n)[v] = / w(h)I[h € V]r(dh)/x(V) ¢n=o(l/n) and  lm P (fn(h%) > én) =0.
< /w(h)ﬂ[w(h) < w.]r(dh)/x(V) Proof. Eor any constarﬁ € (0, 00), we have (by Markov's
inequality and the dominated convergence theorem)

=E[w)I[w(h") < w]] /m(V) . 1
E [w(h*)I [w(h*) < w.] A P (ngn(h7) > 0) < 5 lim Engn(h%)]
=T Plw(h) =0) @)

Now note that, by the dominated convergence theorem,

= %]E [ lim nd)n(h*)} =0.

n— 00

Therefore (by induction), there exists a diverging seqaenc

- w(h* ) [w(h*) < w] n; in N such thatim;_, . sup,,~.,, P (n¢,(h*) >277) =

lim E . . . nZni o
w0 w 0. Inverting this, leti, = max{i € N : n; < n},
w(h)w(h*) < w] and define¢,(h*) = (1/n) - 27'». By construction,
=E [3}310 w — } =0. P (¢n(h*) > ¢,) — 0. Furthermore;n; — oo =

1, — 00, SO that we have
Therefore, E[w(h*)[[w(h*) <w]] = o(w). If ] _ ) »
we define w. as the largest value ofv for which Jim ng, = lim 27 =0,

E [w(h*)I[w(h*) < w]] < eP(w(h*) = 0) (or, say, half

the supremum if the maximum is not achieved), then wdMPYiNg ¢, = o(1/n). H
havew. = w(e). Combined with (2), this implies Theorem 1. For any VC classC, there is a correct ac-

. . 9 tive learning algorithm that, for every data distributidn

E [N(h Jw(h™) = 0} < v o(1/e). and prior 7, achieves expected sample complesi€y for

(X,C, D, ) such that
Thus, all of the terms in (1) are(1/¢), so that in total
E[N(h*)] = o(1/¢). SC(e,D,m) = o(1/e).
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Our approach to proving Theorem 1 is via a reduction toTherefore, by the law of total expectation,

established results about active learning algorithmsateat
not self-verifying. Specifically, consider a slightly dif-

ferent type of active learning algorithm than that defined

above: namely, an algorithm, that takes as input a

budgetn € N on the number of label requests it is al-

lowed to make, and that after making at mesfabel re-
quests returns as output a classifter. Let us refer to
any such algorithm as budget-basedctive learning al-

gorithm. Note that budget-based active learning algosthm
are prior-independent (have no direct access to the prior

B lor (b =B [B [er ()

< %W({fE(C : R(n; f,D)>R(n;m,D)})+R(n;w, D)

=o(1/n).

If n. = O(1), then clearlyn. = o(1/<) as needed. Other-

h” < E[R(n; h*,D)]

wise, sincen, is monotonic ins, we must haver. 1 oo as

¢ 1 0. In particular, in this latter case we have

The following result was proven by [Han09] (see also the y;,, . ne

related earlier work of [BHV10]).

Lemma 2. [Han09] For any VC classC, there exists a
constantc € (0, ), a functionR(n; f, D), and a (prior-

independent) budget-based active learning algoritdm

such that

VD,Vf € C,R(n; f,D) < ¢/nandR(n; f,D) = o(1/n),

andE {er (hn) h*} < R(n; h*, D) (always), wheré,, is
the classifier returned by, .

e—0

< 1iH(1]€' (1 + max {n >n.—1:E [er (izn)} > 5})
e—>

= shirég . ngi)ilnﬂ {IE {er (hn)} /e > 1}

< lime- max nkE [cr (ﬁ,,)} /e
e—0 n>ne—1

= lim max nkE {er(ﬁn)} = ligsotip nlk {er(ﬁn)} =0,

e—0n>n.—1

so thatn. = o(1/¢), as required. O

That is, equivalently, for any fixed value for the target® Dependence orD in the Learning

function, the expected error ratedél /n), where the ran- Algorithm

dom variable in the expectation is only the data sequence

X1,Xs,.... Our task in the proof of Theorem 1 is to The dependence o in the algorithm described in the
convert such a budget-based algorithm into one of theroof is fairly weak, and we can eliminate any direct de-

form defined in Section 1: that is, a self-terminating prior- pendence oD by replacinger (ﬁn) by al — /2 confi-

dependent algorithm, takingas input.

Proof of Theorem 1Consider A,, h,, R, and ¢ as in
Lemma 2, and define

ne =min{n e N:E [er (hn)] <e}.

This value is accessible based purely on access to

and D. Furthermore, we clearly have (by construction)

E {er (hn)} < e. Thus, denoting byd/, the active learn-
ing algorithm, takingd D, , €) as input, which rungl, (n.)
and then returnk,,_, we have thatd!, is acorrectalgorithm
(i.e., its expected error rate is at met

As for the expected sample complexityC(e, D, )
achieved byA/,, we haveSC(e,D,7) < n., so that it
remains only to bound.. By Lemma 1, there is a-
dependent functio®(n; 7, D) such that

v, 7({f€C:R(n;f,D)>R(n;m,D)}) =0
andR(n;m, D) = o(1/n).

'Furthermore, it is not difficult to see that we can take tRis
to be measurable in thHe" argument.

dence upper bound basedon = Q (% log 1) i.i.d. un-
labeled examples(}, X,..., X,, independent from the
examples used by the algorithm: for instance, set aside in
a pre-processing step, where the bound is derived based on
Hoeffding’s inequality and a union bound over the values
of n that we check, of which there are at mast1/<).

Then we simply increase the value wf(starting at some
constant, such ag until

me

> P (h* (X]) # hn (X)) |{X}5, {le‘}j) <e/2.

i=1

1

Mme

The expected value of the smallest value.dr which this
occurs iso(1/¢). Note that the probability only requires ac-
cess to the priofr, not the data distributio® (the budget-
based algorithmA, of [Han09] has no direct dependence
on D); if desired for computational efficiency, this proba-
bility may also be estimated byla— /4 confidence up-
per bound based oft (= log ) independent samples of
h* values with distributionr, where for each sample we
simulate the execution od,(n) for that (simulated) target
function in order to obtain the returned classifier. In par-
ticular, note that no actual label requests to the oracle are
required during this process of estimating the appropriate
label budget.., as all executions ofl, aresimulated
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6 Inherent Dependence orr in the Sample [BBLO9] M.-F. Balcan, A. Beygelzimer, and J. Langford.
Complexity Agnostic active learningJournal of Computer
and System Sciencé&(1):78-89, 2009.

We have shown that for every prief the sample complex-  [BBZ07] M.-F. Balcan, A. Broder, and T. Zhang. Mar-

ity is bounded by a function thatig1/<). One might won- gin based active learning. Proceedings of the
der whether it is possible that the asymptotic dependence 20/ Conference on Learning Theqr3007.

on ¢ in the sample complexity can be prior-independent,
while still beingo(1/¢). That is, we can ask whether there [BDL09] A. Beygelzimer, S. Dasgupta, and J. Langford.

exists a f-independent) functior(e) = o(1/¢) such that, Importance weighted active learning. Rro-
for all priors w, there is a correct-dependent algorithm ceedings of the International Conference on
achieving a sample complexityC(e, D, w) = O(s(e)), Machine Learning2009.

possibly involving m-dependent constants. Certainly in

some cases, such as threshold classifiers, this is true. HowpHV10]
ever, it seems this is not generally the case, and in paaticul

it fails to hold for the space of interval classifiers.

M.-F. Balcan, S. Hanneke, and J. Wortman
Vaughan. The true sample complexity of active
learning. Machine Learning80(2—-3):111-139,

September 2010.
For instance, consider a prior on the spaceC of in-

terval classifiers, constructed as follows. We are giverfCNO08] R. Castro and R. Nowak. Minimax bounds for
an arbitrary monotonig/(e) = o(1/e); since g(e) = active learning/EEE Transactions on Informa-
o(1/e), there must exist (nonzero) functiong(i) and tion Theory 54(5):2339-2353, July 2008.

1) such thatlim; - ¢1(7) = lim;_,. q2(7) = 0 and . .
33(6) N,g(ql(i)/2”—{) il (qz(i) . i arthqér(rr?ore, letting [Das04] _S. Dasgupta. Analysis o.f a greedy active [earn—
q(i) = max{q: (i), (i)}, by monotonicity ofg we also ing stratggy. IPdvances in Neural Information
haveVi € N, g(q(i)/27+1) < q(i) - 2!, andlim;_, (i) = Processing Systensages 337-344. MIT Press,
0. Then define a functiop(i) with >, _ p(i) = 1 such 2004.
thatp(i) > ¢(i) for infinitely manyi € N; for instance, [Das05]
this can be done inductively as follows. Leg = 1/2; for
eachi € N, if ¢(¢) > a;_1, setp(i) = 0 anda; = «;_1;
otherwise, sep(i) = «,—1 ando; = «;-1/2. Finally,
for eachi € N, and eachj € {0,1,...,2" — 1}, define  [DHMO07] S. Dasgupta, D. Hsu, and C. Monteleoni. A gen-

S. Dasgupta. Coarse sample complexity bounds
for active learning. IrProc. of Neural Informa-
tion Processing Systems (NIR3D05.

+ . i . . . . _
™ ({H[j~2*i,(j+1).2*i]}) = p(i)/2% eral agnostic active Iearmr!g algonthm._ Al
vances in Neural Information Processing Sys-
We letD be uniform onX = [0,1]. Then for eachi € N tems 202007.

s.t.p(i) > q(i), there is &(7) probability the target interval _
has width2—*, and given this any algorithm requires2? ~ [DKM09] S. Dasgupta, A. T. Kalai, and C. Mon-

expected number of requests to determine which of these teleoni.  Analysis of perceptron-based active
2! intervals is the target, failing which the error rate is at learning. Journal of Machine Learning Re-
least2~". In particular, letting:; = p(i)/2+1, any correct search 10:281-299, 2009.

algorithm has sample complexity at leastp(i) - 2¢ for
e = g;. Notingp(i) 2" > q(i)-2 > g(q(i)/2""") > g(es),
this implies there exist arbitrarily small valuesef- 0 for
which the optimal sample complexity is at leasy(¢), so

[Fri09] E. Friedman. Active learning for smooth prob-
lems. InProceedings of the 22 Conference on
Learning Theory2009.

that the sample complexity foto(g(e))- [FSST97] Y. Freund, H. S. Seung, E. Shamir, and
For anys(e) = o(1/¢), there exists a monotonig(c) = N. Tishby. Selective sampling using the query
o(1/¢) such thats(e) = o(g(¢)). Thus, constructingr by committee algorithm. IiMachine Learning

as above for thig, we have that the sample complexity is pages 133-168, 1997.

noto(g(¢)), and therefore noD(s(e)). So at least for the
space of interval classifiers, the specifid /=) asymptotic
dependence onis inherentlyr-dependent.

[Han07a] S. Hanneke. A bound on the label complexity
of agnostic active learning. IRroc. of the 24th
International Conference on Machine Learnjng
2007.
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