16-782 Planning & Decision-making in Robotics

Search Algorithms:

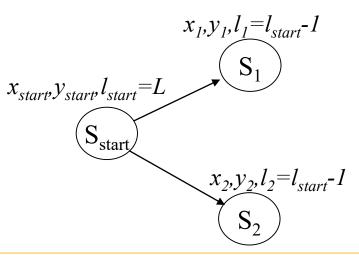
Markov Property,

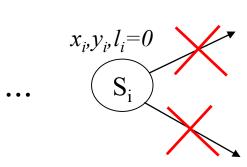
Dependent vs. Independent variables,

Dominance relationship

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

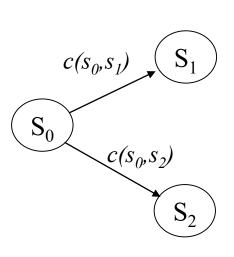
• Suppose we are planning 2D (x,y) path for UAV


- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- want to minimize some cost function associated with each transition (for example, minimize the risk of flying close to people)
- subject to the trajectory being feasible given the UAV battery level L


What should be the variables defining each state (i.e., dimensions of the search)?

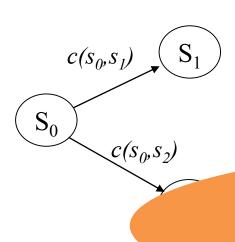
• Suppose we are planning 2D (x,y) path for UAV

- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- want to minimize some cost function associated with each transition (for example, minimize the risk of flying close to people)
- subject to the trajectory being feasible given the UAV battery level L
- Planning needs to be in (x,y,l), where l is the remaining battery level



states with battery level 0 have no successors

Markov Property

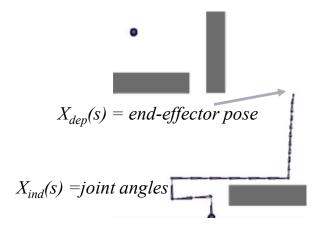

 Cost and Set of Successors needs to depend <u>ONLY</u> on the current state (no dependence on the history of the path leading up to it!)

for all states s: succ(s) = function of sfor all s in succ(s): c(s,s') = function of s, s'

Markov Property

 Cost and Set of Successors needs to depend <u>ONLY</u> on the current state (no dependence on the history of the path leading up to it!)

for all states s: succ(s) = function of sfor all s in succ(s): c(s,s') = function of s, s'

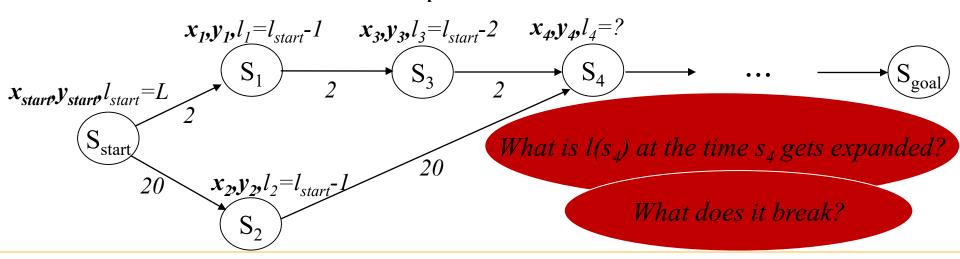

Clearly true in an explicit (given) graph

Can be violated in **implicit** (dynamically generated) graphs, where succ(s) and c(s,s') are computed on-the-fly as a function of s,

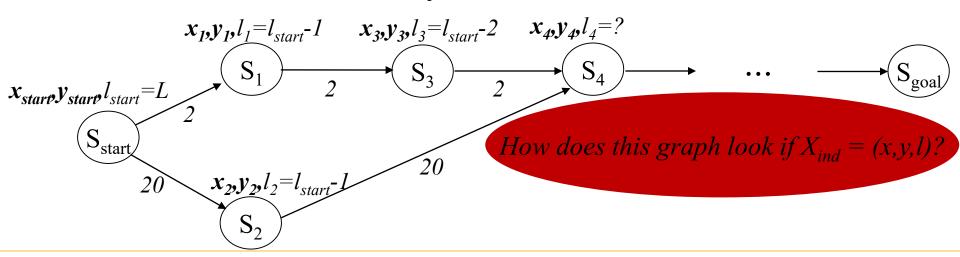
when using dependent variables

Independent vs. Dependent Variables

- X(s) variables associated with s
- $X(s) = \{X_{ind}(s), X_{dep}(s)\}$
- $X_{ind}(s)$ independent variables
- $X_{dep}(s)$ dependent variables


- *Independent Variables* are used to define state s
 - two states s and s' are considered to be the same state if and only if $X_{ind}(s) = X_{ind}(s')$
- **Dependent Variables** often used to help with computing cost or list of successor states
 - if for all s, $X_{dep}(s) = f(X_{ind}(s))$ (that is, only depends on independent variables, then Markov Property holds true)
 - Often however, developers suggest to compute $X_{dep}(s)$ based on the path leading up to $X_{ind}(s)$

- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- want to minimize some cost function associated with each transition (for example, minimize the risk of flying close to people)
- subject to the trajectory being feasible given the UAV battery level L
- Consider $X_{ind}=(x,y)$, $X_{dep}=(l)$, where l is the remaining battery level



- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- want to minimize some cost function associated with each transition (for example, minimize the risk of flying close to people)
- subject to the trajectory being feasible given the UAV battery level L
- Consider $X_{ind}=(x,y)$, $X_{dep}=(l)$, where l is the remaining battery level

- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- want to minimize some cost function associated with each transition (for example, minimize the risk of flying close to people)
- subject to the trajectory being feasible given the UAV battery level L
- Consider $X_{ind}=(x,y)$, $X_{dep}=(l)$, where l is the remaining battery level

Consider Planning with Constraints on Rate of Turning

• Suppose we are planning 2D(x,y) path for a ground robot and constraining its heading to change by at most 45 degrees at each timestep based on the previous transition

- Consider $X_{ind} = (x,y)$, $X_{dep} = (\theta)$, where θ is robot's heading

Example of incompleteness?

Consider Planning with Continuous (x,y,Θ)

• Suppose we are planning 3D (x,y,Θ) path for a ground robot but we don't have motion primitives (lattice) that move the robot exactly between the centers of 3D cells

- Consider $X_{ind} = (x_{disc}, y_{disc}, \Theta_{disc})$, $X_{dep} = (x_{cont}, y_{cont}, \Theta_{cont})$, where X_{dep} keeps track of the continuous robot pose along its path [Barraquand, J. & Latombe, '93]

Example of "incompleteness"?

Consider Planning in Dynamic Environments

• Suppose we are planning a path among moving obstacles

- want a collision-free path to s_{goal}
- want to minimize some cost function associated with each transition
- Consider $X_{ind} = (robot pose)$, $X_{dep} = (t)$, where t is time

Example of incompleteness?

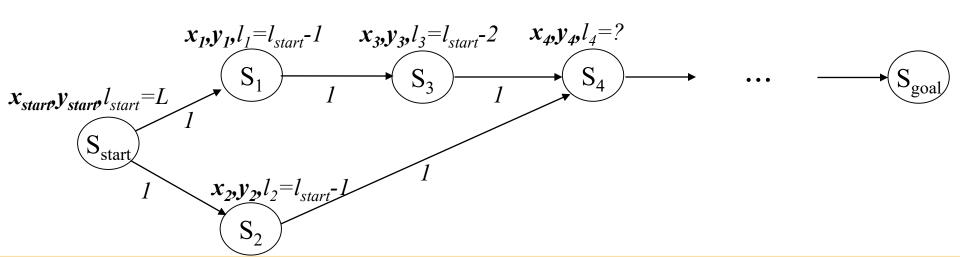
Consider Planning in Dynamic Environments

• Suppose we are planning a path among moving obstacles

- want a collision-free path to s_{goal}
- assume cost function is time
- Consider $X_{ind} = (robot pose)$, $X_{dep} = (t)$, where t is time

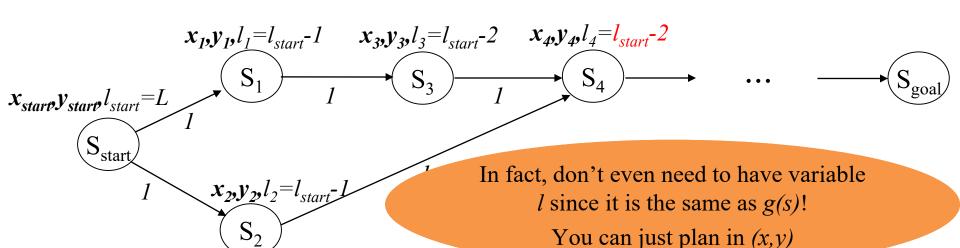
Is it incomplete?

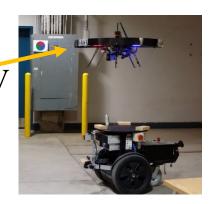
• Suppose we are planning 2D (x,y) path for UAV

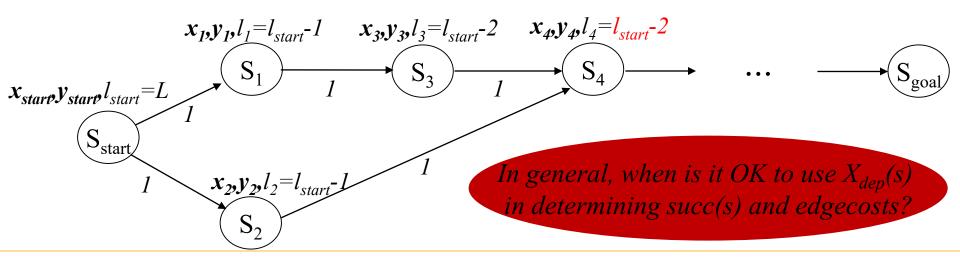


- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- assume cost function is battery consumption
- subject to the trajectory being feasible given the UAV battery level L
- Consider $X_{ind}=(x,y)$, $X_{dep}=(l)$, where l is the remaining battery level

Is it incomplete?



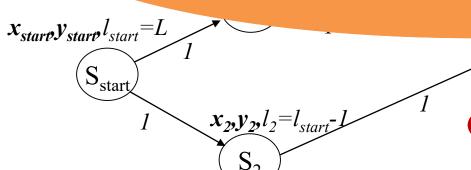

- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- assume cost function is battery consumption
- subject to the trajectory being feasible given the UAV battery level L
- Consider $X_{ind}=(x,y)$, $X_{dep}=(l)$, where l is the remaining battery level



- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- assume cost function is battery consumption
- subject to the trajectory being feasible given the UAV battery level L
- Consider $X_{ind}=(x,y)$, $X_{dep}=(l)$, where l is the remaining battery level

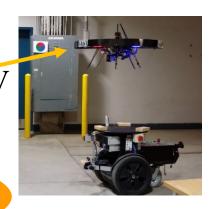
- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- <u>assume cost function is battery consumption</u>
- subject to the trajectory being feasible given the UAV battery level L
- Consider $X_{ind}=(x,y)$, $X_{dep}=(l)$, where l is the remaining battery level

• Suppose we are planning 2D (x,y) path for UAV



- want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
- assume cost function is battery consumption
- subject to the training in the UAV battery level L

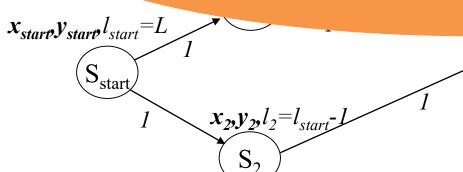
Whenever you can guarantee that for any state *s*:


if we have two paths $\pi_I(s_{start}, s)$ and $\pi_2(s_{start}, s)$ s.t. $c(\pi_I) \ge c(\pi_2)$, then it implies that $c_I(s, s') \ge c_2(s, s')$,

where $c_i(s,s')$ – cost of a least-cost path from s to s' after s is reached from s_{start} via path π_i

In general, when is it OK to use $X_{dep}(s)$ in determining succ(s) and edgecosts?

• Suppose we are planning 2D (x,y) path for UAV



- want a Assuming we are running optimal search
- assume (such as A^*).
- subject to the trace

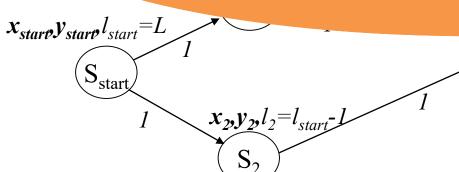
Whenever you can guarantee that for any state *s*:

if we have two paths $\pi_I(s_{start}, s)$ and $\pi_2(s_{start}, s)$ s.t. $c(\pi_I) \ge c(\pi_2)$, then it implies that $c_I(s, s') \ge c_2(s, s')$,

where $c_i(s,s')$ – cost of a least-cost path from s to s' after s is reached from s_{start} via path π_i

In general, when is it OK to use $X_{dep}(s)$ in determining succ(s) and edgecosts?

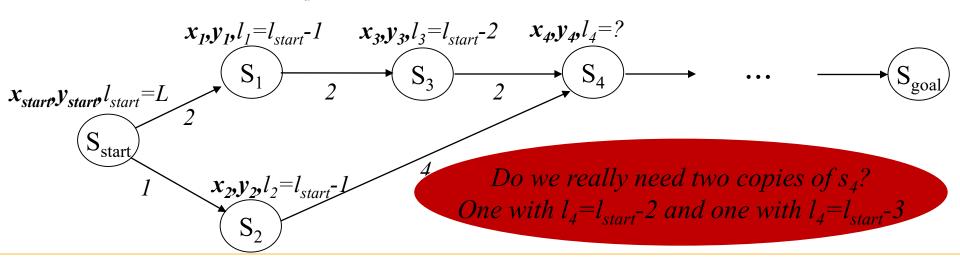
• Suppos What happens if we are running suboptimal search such as weighted A*?



- want a Assuming we are running optimal search
- assume (such as A^*).
- subject to the trace

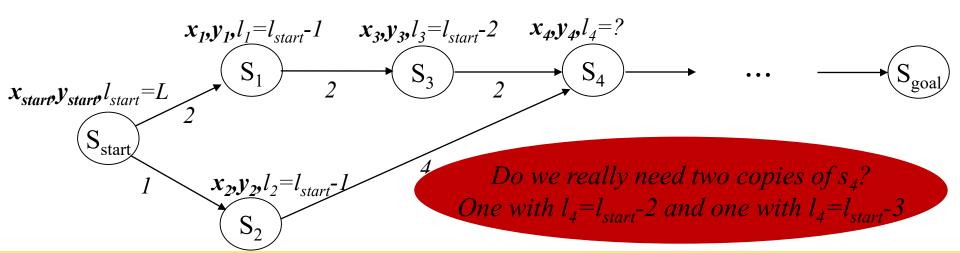
Whenever you can guarantee that for any state *s*:

if we have two paths $\pi_I(s_{start}, s)$ and $\pi_2(s_{start}, s)$ s.t. $c(\pi_I) \ge c(\pi_2)$, then it implies that $c_I(s, s') \ge c_2(s, s')$,


where $c_i(s,s')$ – cost of a least-cost path from s to s' after s is reached from s_{start} via path π_i

In general, when is it OK to use $X_{dep}(s)$ in determining succ(s) and edgecosts?

Dominance Relationship


- Suppose we are planning 2D (x,y) path for UAV
 - want a collision-free path to $s_{goal} = (x_{goal}, y_{goal})$
 - want to minimize some cost function associated with each transition (for example, minimize the minimize the
 - subje What are the general conditions for pruning "dominated" states?
 - Consider $X_{ind} = (x,y,l)$

Dominance Relationship

if $(g(s) \le g(s'))$ and s dominates s', then s' can be pruned by search s dominates s' implies s cannot be part of a solution that is better than the solution from s'

- want to minimize the sixty of the sixty of
- subje What are the general conditions for pruning "dominated" states?
- Consider $X_{ind} = (x,y,l)$

A* Search with Dominance Check

Main function

```
g(s_{start}) = 0; all other g-values are infinite; OPEN = \{s_{start}\};
ComputePath();
publish solution;
ComputePath function
while(s_{goal} is not expanded and OPEN \neq 0)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
    if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
      if there exists state s" such that (g(s") \le g(s') AND s" dominates s')
           continue; //skip inserting state s' into OPEN, i.e., prune
      insert s' into OPEN;
```

What You Should Know...

- Dependent vs. Independent variables.
- Definition of Markov Property
- The definition and the use of Dominance relationship