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Abstract—Data driven decision support systems often benefit
from human participation to validate outcomes produced by
automated procedures. Perceived utility hinges on the system’s
ability to learn transparent, comprehensible models from data.
We introduce and formalize Informative Projection Recovery:
the problem of extracting a set of low-dimensional projections of
data which jointly form an accurate solution to a given learning
task. We approach this problem with RIPR: a regression-based
algorithm that identifies informative projections by optimizing
over a matrix of point-wise loss estimators. It generalizes from our
previous algorithm, offering solutions to classification, clustering,
and regression tasks. Experiments show that RIPR can discover
and leverage structures of informative projections in data, if
they exist, while yielding accurate and compact models. It is
particularly useful in applications involving multivariate numeric
data in which expert assessment of the results is of the essence.

I. PROBLEM STATEMENT

Intelligent decision support systems are rarely fully auto-
mated. Data limitations, absence of contextual information, as
well as the need for accountability, often require human in-
volvement. The stringency of the requirement usually escalates
with the stakes of decisions being made. Notable examples
include medical diagnosis or nuclear threat detection, but
the benefits of explainable analytics are universal. To meet
these requirements, the output of a regression, clustering, or a
classification system must therefore be presented in a form that
is comprehensible and intuitive to humans, while offering the
users insight into how the learning task was accomplished.
A desirable solution consists of a small number of low-
dimensional (not higher than 3-D) projections of data, selected
from among the original dimensions, that jointly provide
good acccuracy while exposing the processes of inference and
prediction to visual inspection by humans.

We formulate Informative Projection Recovery (IPR) as
the problem of identifying small groups of features which
encapsulate enough information to allow learning of well-
performing models. Each such feature group — equivalent to a
low-dimensional axis-aligned projection — handles a different
subset of data with a specific model. The resulting set of
projections, with their corresponding models, jointly form a
solution to the IPR problem. We have previously proposed
such a solution tailored to non-parametric classification. Our
RECIP algorithm [10] employs point estimators for conditional
entropy to recover a set of low-dimensional projections that
classify queries using non-parametric discriminators in an
alternate fashion — each query is classified using one specific
projection from the retrieved set.

In this paper, we substantially extend the Informative
Projection Recovery (IPR) problem using a formalization

applicable to any learning task for which a consistent estimator
of the loss function exists. To solve the generalized IPR
problem, we introduce the Regression-based Informative Pro-
jection Recovery (RIPR) algorithm. It is applicable to a broad
variety of machine learning tasks such as semi-supervised
classification, clustering, or regression, as well as to various
generic machine learning algorithms that can be tailored to
fit the problem framework. RIPR is useful when (1) There
exist low-dimensional embeddings of data for which accurate
models for the target tasks can be learned; (2) It is feasible
to identify a low-dimensional model that can correctly process
given queries. We formulate loss functions that can be used
to implement IPR solutions for common learning problems,
and we introduce additive estimators for them. We empirically
show that RIPR can succeed in recovering the underlying
structures. For synthetic data, it yields a very good recall of
known informative projections. For real-world data, it reveals
groups of features confirmed to be relevant by domain experts.
We observe that low-dimensional RIPR can perform at least
as well as models using learners from the same class, trained
using all features in the data.

II. RELATED WORK

Dimensionality reduction is a common preprocessing step
in applications where simplified models are preferable. Meth-
ods that learn linear combinations of features, such as LDA,
are not quite appropriate for the task considered here, since for
compehensibility we prefer to rely on the dimensions available
natively in the original feature space. Feature selection meth-
ods, such as the lasso, are suitable for identifying informative
features, but they do not identify specific data points for which
they are relevant. Our work specifically fits the goals of query
dependent feature selection and context specific classification.

One relevant feature selection method [16] learns disjunc-
tions and conjunctions of features leading to models of slightly
greater complexity than what we desire. Ting et al. [21]
introduce Feating, where the submodel selection relies on
simple attribute splits followed by fitting local predictors.
Although the model has some similarities to what we propose,
such as reliance on a decision structure to pick the classi-
fication model, the algorithm itself is substantially different.
Obozinski et al. [17] present a subspace selection method in
the context of multitask learning. Gu et al. [12] propose a joint
method for feature selection and subspace learning, however,
their classification model is not query specific. Multiple al-
gorithms that transform complex or unintelligible models to
user-friendly equivalents have been proposed [5], [8], [14],
[9]. Algorithms specifically designed to yield understandable
models are a precious few. A rule learning method is described



in [18], even though the resulting rules can make visualization
difficult. Itemset mining [15] is attribute-focused, but not
specifically designed for classification. Numerous methods
perform clustering in low-dimensional subspaces [1], [13].
Local subspace preferences [4] capture the directions of high
data density. Clustering has employed information theoretical
approaches [20] and divergence-based methods, e.g. Bregman
Divergence, to unify centroid-based approaches [2]. Spec-
tral clustering obtains low-dimensional projections, however,
it relies on a similarity matrix [7]. Unlike most of those
approaches, our method is designed to retrieve subsets of
the feature space for use in a complementary manner to
provide query-specific solutions. RIPR brings the following
improvements over other dimensionality reduction techniques,
including our RECIP [10]: (1) It is suitable for a wide variety
of learning tasks; (2) It is designed to optimize various types
of machine learning solvers; and (3) It handles missing data.

III. INFORMATIVE PROJECTION RECOVERY

This section formalizes the IPR problem and describes an
algorithmic framework generalized from the RECIP procedure
in [10]. The algorithm solves IPR when the learning task can
be expressed in terms of a loss function and there exists a
consistent point-estimator for the risk. The derivations in Sec-
tion II-A follow the setup of RECIP, the main improvement
being the formalization of the problem for learning tasks other
than classification and the capability to include learners of
arbitrary class — instead of just nonparametric classifiers.

A. Formalization of Projection Recovery

Assume we are given a dataset X = {zy...x,} € X"
where each sample z; € X C R™ and a learning task on
the space X with output in a space ) such as classification,
clustering or regression. The learner for the task is selected
from a class T = {f : X — Y}, where the risk for the class
T is defined in terms of the loss ¢ as

R(r, X) =Exl(x,7) VT eET.
The optimal learner for the task is 7* = argmin_c R(7, X).
We indicate by 7(x} the learner from class 7 obtained by
minimizing the empirical risk over the training set X.

def S 1
T. = argmin R(7,X) = arg min — s, T
3 §€T (7. %) geT n ; (i:7)
The class M of models constructed by our IPR framework is
formalized as having a set II of projections with dimension at
most d, a set T of learners and a selection function g:
M={l ={r; 7 €Il |r| <d},
t={n neT,n:mX)—=)Y Vi=1...1}
ge{f:x—=A{1.. I}} }.
II contains all axis-aligned projections; the subset II C II in
M contains only projections with at most d features. The value
d is application-specific; usually 2 or 3, to permit users to view
the projections. Function g selects the adequate projection 7
and its corresponding learner 7 to handle a given query =x.

Based on this model, we derive a composite learner
which combines the learners operating on the individual low-
dimensional projections. The loss of this learner can be ex-
pressed in terms of the component losses: Trq(z) = 7;(7;(z)),
Uz, Tpm) = £(mj(x), 7;), where g(x) = j represents the index
of the learner which handles data point = and m;(z) is the

projection of x onto 7;. Optimizing over the model class M,
the IPR problem for learning task 7 can be formulated as a
minimization of the expected loss:

M* = argj\inin Ex (g2 (), Tg(a)) (D

Since we are dealing with an unsupervised problem in
terms of the selection function (it is unknown which submodel
should be applied for which point), there are limitations on its
learnability. Recovery is possible in the following example:
For all data x whose j™ feature is in the set A, the targeted
task can be optimally performed by the learner 7}. It uses
features {41 ...i4} of x. The approximation of 77 should only
be trained over samples for which x7 € A.

Jj, A st. Vo with 27 € A, 7%(a! .. 2™) = 75 (2™ ... 2')

B. Regression-based Informative Projection Recovery (RIPR)

The crux of the algorithm is writing the empirical ver-
sion of (1) as a combinatorial problem over multiple projec-
tions. The algorithm is designed assuming there exist low-
dimensional embeddings that enable capturing accurate models
for the target task. Thus, every sample data x; can be dealt with
by just one projection 7; — recall that g(z;) = j. We model
this as a binary matrix B: B;; = I[g(z;) = j].

The minimizers of the risk and empirical risk are:

11|
M* = argminE;yZ Ig(x) = jlé(m;(z), 75)
M =
. 1
M* = argj\flninﬁzzf[g(xi) = jll(mj(2i), 75) 2
i=1 j=1

Assume now that we can consistently estimate the loss of a
taskAlearner T at each available sample, Athat is

Wst. VeeX, 7T plimysool(z,7)=4L4z,7) (3)
Plugging (3) into (2) yields the final form used to obtain the

estimated model:
n |I0]

M = argmin Y Y " I{g(x:) = jll(m;(x:), 7:)
Mo =
n ||
= argmin ZZBijLij 5 Lij = é(ﬂ'j(ﬂ?i),ﬂ')
MT|<|IT| 5= j=1
The loss estimators L;; are computed for every data point on
every subspace of up to the user-specified dimensionality d.
B is learned through a regularized regression procedure that
penalizes the number of projections II used in the model. This
translates to an ¢y penalty on the number of non-zero columns
in B, relaxed to ¢;. The ¢y penalty is written as I[B. ; # 0],
while its relaxation is || B]|1,1.
B =argmin||L* — L ® B||? + )\ZI[B'J # 0]
B =
where d* is the number of projections, L} e min; L;; and
the operator ® is defined as
-
©:R™ xR S R", (LOB); =Y _ Li;By

j=1

The basic optimization procedure is detailed in [10], the
key difference here is in the computation of the loss matrix
L. The technique resembles the adaptive lasso. It gradually re-
duces the number of non-zero columns in B until convergence



Algorithm 1 RIPR framework.

d=11...1]
repeat
B=argming ||[L*—L ® B|[3+\|BS|e,
subject to || B, .||le, =1 k=1...n
0; = |B_jlle, j=1...d* (update multiplier)
5'= (181l - 8)/118l1e
until ) converges
return IT = {m;;

IB.ile, >0 Vi=1...d*}

to a stable set of projections. As illustrated in Algorithm 1,
the procedure uses the multiplier § to gradually bias selection
towards projections that not only perform well but also suit a
large number of data points.

C. Customizing RIPR for Different Learning Tasks

Next, we show how to formulate IPR for different learning
tasks. When the aim is to find informative projections without
knowing the class of learners to be used, we employ nonpara-
metric estimators of loss. The performance of the algorithm
will depend on their rates of convergence.

1) Classification: We have addressed the IPR problem for
classification in [10]. To run the RECIP algorithm using the
RIPR framework, the risk is the conditional entropy of the label
given the features. The conditional entropy over data assigned
to projection 7; is shown to be estimated as follows:

AV Ir(X)s {olg(e) = 1) o = S Tlglan) = jliGe )

Z(xi, 7_7]:) _ ( (7’1, — 1)Vk<71'j (.”L’Z), ﬂj(Xy(xi) \ l‘l)) ) (I1—a)|m|
’ nvg(mj (i), 75 (X oy (i)

m(X) is the projection of vector X onto m; X, is the subset

of the sample for which the label is v; X \ « is the sample

obtained when removing point x from X; v (x, X) represents

the k" distance from point x to its k-nearest-neighbor from

the sample X; T,’fj is the £-NN classifier on projection ;.

This result is obtained by using the Tsallis a-divergence
estimator [19] and yields a loss estimator for binary classifi-
cation. « is a constant close to 1 (e.g., 0.95) and |7;| is the
dimensionality of the subspace ;.

2) Semi-supervised Classification: RIPR allows an exten-
sion to semi-supervised classification. Consider a problem with
labeled samples X, and X_ and unlabeled samples X,
where each sample belongs to R™. The objective is to find
a discriminator in a low-dimensional sub-space of features
that correctly classifies the labeled samples and simultaneously
allows substantial separation for unlabeled data, i.e., very few
unlabeled data points remain between the clusters of data from
different classes. We choose a loss function that penalizes
unlabeled data according to how ambivalent they are to the
label assigned. This is equivalent to considering all possible
label assignments and assuming the most ‘confident’ one — the
label with the lowest loss — for unlabeled data. The estimator
for labeled data is the same as for supervised classification.
The score for a projection is computed by using the same
estimator for KL divergence between class distributions, to
which we add a metric for unlabeled data which penalizes
samples that are about equidistant from the point-clouds of
each class: R(X,, 7¥). We use the notation 7(X) to represent

™
the projections of a set of data points X:

5 k Vi1 (m(z), (X)) A—)lxl
R(X,7r) ZIEZX+( V:(ﬂ' z 77r(X_§) )
Vi1 (m(z), m( X))\ A=a)lrl
+ 2 Coateon i) )

In these learning tasks, typical convergence issues encoun-
tered with nearest-neighbor estimators can often be remedied
thanks to low dimensionality of the projections.

3) Clustering: It is not always straightforward to devise ad-
ditive point estimators of loss for clustering since some meth-
ods rely on global as well as local information. Distribution-
based and centroid-based clustering fit models on the entire
sets of data. This is an issue for the IPR problem because
it is not known upfront how data should be assigned to the
submodels. To go around this, we first learn a RIPR model
for density-based clustering, and then cluster each projection
using only data assignment provided by it. Of course, that
is not required if density-based clustering is the method of
choice. To solve IPR for density-based clustering, we consider
the negative divergence, in the neighborhood of each sample,
between the distribution from which the sample X is drawn
and the uniform distribution on X. Let U be the size n
sample drawn uniformly from X. Again, we use the nearest-
neighbor estimator converging to the KL divergence. 7 is
some clustering technique such as k-means.

Retu(mi(@), 71) = — K L(mi(X)|||m:(U))

. . i (1—a
Faa (), ) oADK y 00
d(mi(z), U)

We now illustrate how RIPR clustering with k-means can
improve over applying k-means to the entire set of features.
Synthetic data used has 20 numeric features, and contains
three Gaussian clusters on each of its informative projections.
The informative projections comprise the following sets of
feature indices: {17,12}, {10,20, 1} and {4, 6, 9}. Clusterings
obtained by k-means shown in those projections are depicted
in the left part of Figure 1. The right part of it shows reslts
obtained with RIPR. Every cluster is colored differently, with
black representing data not assigned to that projection. The
number of clusters is selected with cross-validation for both k-
means and RIPR. The clustering obtained with k-means on all
dimensions looks very noisy when projected on the actual in-
formative features. The explanation is that the clustering might
look correct in the 20-dimensional space, but when projected,
it no longer makes sense. On the other hand, RIPR recovers
the underlying model enabling the correct identification of the
clusters. Naturally, recovery is only possible as long as the
number of incoherent data points (that do not respect the low-
dimensional model) stays below a certain level.

4) Regression: Our intent for RIPR is to enable projection
retrieval independently of the type of a regressor used, so the
natural choice for a loss metric is a non-parametric estimator.
We consider k-NN regression - computing the value at a query
point by averaging the values at the k-nearest neighbors of the
query. To factor in spatial placement, we weigh the values by
their inverse distance from query, then estimate predicted value



Fig. 1: Projections of k-means clusters on the informative features and
RIPR low-dimensional clusters induced from synthetic data.

as normalized weighted average of the neighbor values.

Ureg(mi(2), 7i(mi(2))) = (F(mi(2)) = y)®  Lreg =0
k
i—1 WY 1
7i(mi(x)) = 7217/3 adOL ), where w(;) = ———
S we llz = z@ll2

Concerning the selection function, we identify two possible
approaches. The first is to label each training data point
according to the projections in the set used to solve it, then
train a classifier using these labels. The second is to simply
estimate, based on the regressor accuracy at neighboring data,
the probability that the regressor is appropriate for this data
point. We opt for the latter because it avoids the issues with an
additional training step and it is consistent with the regressors
themselves in the usa%e of neighborhood information.
g(z) = argmin M, wey = -
je(l )y i we lz —z@ll2
Interestingly, because of the consistency properties of the

nearest-neighbor methods [6], the composite regressor is also
consistent under the assumption of existence of embedding.

D. Computational Complexity

RIPR requires estimating the loss for every data point, for
every combination of features. To find the k™ nearest neighbors
of every sample point using a using a k-d tree [11] — which
costs O(dnlogn) to build — for every projection of up to size
d costs O(logn). Thus, for all d* = O(m?) projections, the
total time required to compute the loss matrix is O(d*(d +
L)nlogn), or, in terms of the feature size m, O(dm?nlogn).

For the complexity of Algorithm 1, we use the bounds
in [3]. The optimization is over a matrix of size N = d*n.
Computing the values and derivatives of the objective and
the constraints requires M = O(d*n) operations. The upper
and lower bound on the number of operations needed to

obtain a solution € away from the optimum are O(NM )in(1)
and O(N(N? + M))in(+) respectively. Thus, the worst case

runtime for the optimization is O<m4dn4) In (%) Although

the complexity increases exponentially with d, for the appli-
cations we consider d is typically 2, resulting in a runtime of

O(m8n4) In (%) + 0 (anlog n)

In the adaptive lasso procedure, we can discount projec-
tions that are not informative for any of the sample data points
so the dimensionality of the optimization problem is reduced
from n x d* to n x min (d*,n). When m? > n, the runtime
depends largely on n (4), which is beneficial for datasets that
are underdetermined (small sample size but large number of
features) — a frequent case in e.g. computational biology.

@) (n8> In (%) + O(dn2 log n) )

IV. EXPERIMENTAL RESULTS

This section illustrates the capabilities of the RIPR frame-
work in recovering the underlying patterns in data and in
training well-performing classification and regression systems.
The lasso appears to be a natural contender for our method.
However, it only retrieves features rather than projections. In
[10], we have attempted to adapt the lasso to the projection
recovery problem, but even the improved version of the lasso
performed poorly for the recovery of query-specific models.

A. Semi-supervised Classification

To evaluate RIPR semi-supervised classification, we use
the same type of synthetic data as in [10], but we obscure
some labels before training to see if the projection recovery
performance is maintained. The synthetic data for this section
contains P = 2 informative projections and M = 10 features.
Every projection has N = 1,000 data points which it can
classify. There are also R noisy data points that cannot be
classified by any projection; this parameter varies between
experiments. Also variable is the proportion of unlabeled data.
We start with fully labeled data, then for every u points in the
training set we obscure one label, so for smaller u, the larger
proportion of unlabeled data, and the harder the task.

TABLE I: Accuracy of semi-supervised RIPR on synthetic data com-
pared to a k-NN model on all features and projection recovery.

no u u=7 u=5 u=3 no u u=7 u=5 u=3
R Accuracy RIPR SSC Accuracy k-NN
0 0928 0931 0918 0928 | 0.722 0.713 0.714  0.707
30 0923 0919 0931 0928 | 0.726  0.724 0717  0.714
50 0904 0.896 0.898 0.886 | 0.726  0.701  0.701  0.699

100 0.893 0.882 0.878 0.877 | 0.717 0.711  0.698  0.715
1000 0.688  0.687 0.693 0.705 | 0.627 0.621  0.612  0.607

Table I summarizes the accuracy of RIPR for semi-
supervised classification using k-NN models on each of the
projections. We call this method Ripped k-NN. We have
included the performance of a k-NN model trained using all
features. As expected, RIPR outperforms the high-dimensional
model. Even though noise impacts RIPR performance, our
technique performs better than k-NN even for R = 1, 000. This
improvement is not limited to k-NN classifiers: Section IV-C
shows similar results when comparing SVM regressors to their
Ripped version. RIPR achieves very good precision and recall
for all values of R, despite the noise and unlabeled data.




B. Clustering

RIPR can be wrapped around virtually any existing clus-
tering, regression, or classification algorithm, maintaining their
high performance while satisfying the requirement of working
with only a few dimensions of data at a time. Below we show
that RIPR combined with k-means — which we informally call
Ripped k-means — performs better than the standard k-means
by leveraging the low-dimensional structure in data.

We trained RIPR and k-means models and evaluated
their performance on datasets from the UCI repository. Meta-
parameters for both methods were optimized via cross-
validation. The data was scaled to [0,1) before clustering.
We used distortion as the evaluation metric as it is native
to k-means. We opt against using Rand index since in its
standard form it requires the actual labels that are unavailable
in most real-world clustering data sets. As shown in Table II,
the distortion results for the RIPR model are better than for
plain k-means. The resulting cluster dimensionalities vary as
well, which is why we also considered another metric of
success: the volume of the resulting clusters measured in full
feature space. This comparison is fair because the volumes
are computed in the same dimensionality. For k-means, we
approximated the volume of each cluster by its enclosing
hyper-ellipsoid. For RIPR, the approximation for each cluster
used its enclosing cylinder, the base of which was the ellipsoid
corresponding to the actual identified low-dimensional cluster.
This comparison is also provided in Table II. It is apparent that
RIPR obtains slightly more compact models than k-means, but
has the advantage that only a fraction of the features are used
by it. The total number of centroids is roughly the same for
k-means and RIPR, so the difference in volume is genuinely
due to the improvement fidelity of clustering.

TABLE II: Results of clustering of real-world datasets.

UCI | Avg Dist  Avg Dist  LogVol LogVol
RIPR k-means RIPR k-means

Seeds 16 107 7.68 9.70
Libras 9 265 -5.80 7.26
Boone 125 1.15¢6  240.00 248.15
Cell 40,877 8.18e6 54.69 67.68
Concrete 1,370 55,594 49.24 52.75

C. Regression

As with clustering, RIPR regression is meant to comple-
ment existing regression algorithms. We exemplify by en-
hancing SVM and comparing it with the standard SVM. The
synthetic data we use contains 20 features generated uniformly
with Gaussian noise. The first feature and ¢ pairs of other

features (j1,j2) determine the regression function as follows:
q

Flo) =D I[j <= a1 < j+1]f(xj,, 2),)+e
j=1

Table III shows that ‘Ripped Kernel SVM’ achieves better
accuracy that Kernel SVM trained on all features. The explana-
tion is that RIPR actively identifies and ignores noisy features
and useless data while learning each submodel. Additionally,
we tested whether the underlying projections are correctly
recovered by computing precision and recall metrics. Recall
is always high, while precision is high as long as the pro-
jections do not overlap significantly in the feature space. It is
because partially-informative projections can also be recovered
if feature overlaps exist. This behavior can be controlled by
adjusting the extent of regularization.

Viel...q

TABLE III: RIPR SVM and standard SVM compared on synthetic data

[IP# 2 3 5 7 0] 2 3 5 7 10 |
MSE RIPR MSE SVM
0 0.05 027 005 002 023|027 116 0.11 0.1 043
100 042 126 034 145 052 08 1.02 0.6 299 094
200 0.5 0.86 0.8 033 099 | 097 127 029 0.68 144
400 0.63 147 134 1.61 0.11 04 126 1.64 171 0.08
800 0.69 038 1.12 0.68 1.1 | 052 0.06 0091 09 1.16
RIPR Precision for IPR RIPR Recall for IPR

0 1 1 04 043 0.3 | 0.67 I 067 1 1
100 1 0.67 0.6 043 02 | 0.67 0.67 1 1 067
200 1 1 0.6 043 0.3 | 0.67 1 1 1 1
400 1 1 0.6 043 0.1 | 0.67 1 1 1 033
800 1 067 04 029 03 | 0.67 0.67 0.67 0.67 1

D. Case Study 1: Artifact Detection from Partially-Observed
Vital Signals for Monitoring Intensive Care Unit Patients

An additional extension of RIPR (vs. our previous algo-
rithm RECIP) is its tolerance to missing data. For a data
point z, the values of the loss estimators are set to oo for all
projections that involve missing values for x. This ensures that
data tends to be explained using projections that have a full
description for it, while projections with some missigness are
not prefereable though not ignored. This extends RIPR’s range
of applications, which include a medical informatics task.

Recovery of meaningful, exmplainable models is funda-
mental for the clinical decision-making process. We work with
a cardio-respiratory monitoring system designed to process
multiple vital signs indicative of the current health status of
a patient. The system issues an alert whenever some form of
instability requires attention. In practice, a substantial fraction
of these alerts are not due to real emergencies (true alerts),
but instead are triggered by malfunctions or inaccuracies of
the sensing equipment (artifacts). Each system-generated alert
is associated with a vital sign that initiated it: either heart
rate (HR), respiratory rate (RR), blood pressure (BP), or
peripheral arterial oxygen saturation (SpO2). Here, we show
as an example the analysis of respiratory rate alerts, i.e. we
consider episodes when this vital sign was the first to exceed its
control limits, triggering an alert. A modest subset of data was
manually reviewed and labeled by clinicians, and true alerts
were distinguished from apparent artifacts. Our aim was to
learn an artifact-identification model and to apply it to data
not yet labeled. The objective was to identify artifact alerts
that can be dismissed on-the-fly to reduce the impact of alert
fatigue among medical personnel and to enable improvements
of the quality of care. We extracted multiple temporal features
for each vital sign independently over duration of each alert
and a window of 4 minutes preceding its onset. These features
included metrics of data density, as well as common moving-
window statistics computed for each of the vital timeseries.

Figure 2 shows the RIPR semi-supervised classification
model obtained for the RR artifact detection. The features
used are the data densities for HR, RR and SpO, and the
minimum value of RR over a time window of observation.
These retrieved models are consistent with the intuition of
seasoned clinicians. The accuracy of the model is 97.8%,
precision and recall for genuine alert recovery are 97.9%
and 99.1% respectively, cross-validated. Some instances were
classified by the system as artifacts while domain experts
initially considered them to be true alerts. Yet, on a closer
visual inspection made possible by the low-dimensional RIPR
projections, they exhibited artifact-like characteristics. Further
analysis showed that the expert-assigned labels were incorrect.
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Fig. 2: RIPR for RR alerts. Artifacts: Blue. True instabilities: Red.

width-of-kernel

1 70 area
perimeter

Fig. 3: Clusters mined from the Seeds dataset

400, 250

350
200f
300

250 150)

150k 100f

10|
50|

50

00 150 200 250 300 360 400 450 500 650 50 100 150 200 250 300 350 400
Furnace Residue

Fig. 4: Clusters induced from the Concrete dataset.
E. Case Study 2: Clustering of UCI Data

We ran RIPR clustering with k-means submodels on two
datasets from the UCI repository to demonstrate how patterns
in data can be mined with our approach. Figure 3 shows
the model recovered from the Seeds dataset. The clustering
that RIPR constructs uses the size and shape of seeds to
achieve their placement into three categories, clearly visually
separated in the figure. The separation according to their
aspect ratio is something that one might intuitively expect.
Figure 4 shows the two informative projections mined from the
Concrete dataset. Here, different concrete mixtures are grouped
by their content. While the first projection generates clusters
according to the high/low contents of cement and high/low
contents furnace residue, the second projection singles out the
mixtures that have (1) No fly ash, (2) No furnace residue or
(3) Equal amounts of each. The clusters seem to capture what
an experimenter might manually label.

V. CONCLUSIONS

We formulated the problem of Informative Projection Re-
covery, and motivated its importance to applications which in-

volve user intervention. We proposed a solution which embeds
existing machine learning algorithms to yield models that are
intuitive and achieve good performance. Our experiments with
synthetic data show that our approach is capable of achieving
high precision and recall metrics, induces compact clusters,
and yields reliable predictive models. It outperforms standard
counterparts when the underlying data has low-dimensional
structures. Real-world data examples illustrate how our method
enables tangible improvements of practical utility and user ac-
ceptance for machine learning based decision support systems.
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