PRuning Through Satisfaction

Marijn J.H. Heule, Benjamin Kiesl,
Martina Seidl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

TEXAS [9%V

JOHANNES KEPLER
— AT AUSTIN —— UNIVERSITAT LINZ

Haifa Verification Conference November 15, 2017

Satisfiability Solving (Highly Simplified)

SAT problem:
Given a propositional
formula, is it satisfiable?

(xVy)A(xVI)A(TV2)

2/ 25

Satisfiability Solving (Highly Simplified)

SAT problem:

Given a propositional

formula, is it satisfiable?
Input Formula in CNF

\

(xVy)A(xVI)A(TV2)

2/ 25

Satisfiability Solving (Highly Simplified)

SAT problem:
Given a propositional
formula, is it satisfiable?

(xVy)A(xVy)A(YVZ)

2/ 25

Satisfiability Solving (Highly Simplified)

SAT problem:
Given a propositional
formula, is it satisfiable?

(xVy)AxVy)A(YVZ)

2/ 25

Satisfiability Solving (Highly Simplified)

SAT problem:
Given a propositional
formula, is it satisfiable?

(xVy)AxvE)A @V 2)

2/ 25

Satisfiability Solving (Highly Simplified)

SAT problem:
Given a propositional
formula, is it satisfiable?

(xVy)A(xvZ) A FVE)

2/ 25

Satisfiability Solving (Highly Simplified)

SAT problem:
Given a propositional
formula, is it satisfiable?

(xVy)A(xvZ) A FVE)

conflict — prune

2/ 25

Satisfiability Solving (Highly Simplified)

SAT problem:
Given a propositional
formula, is it satisfiable?

(xVy)AxvE) AV 2)

2/ 25

Satisfiability Solving (Highly Simplified)

SAT problem:
Given a propositional
formula, is it satisfiable?

(xVy)AxvE) AV 2)

Satisfiable

2/ 25

Key Idea: Prune Less Satisfiable Branches

Can we prune earlier?
Even satisfiable branches?

3/25

Key Idea: Prune Less Satisfiable Branches

Can we prune earlier?
Even satisfiable branches?

3/25

Key Idea: Prune Less Satisfiable Branches

Can we prune earlier?
Even satisfiable branches?

3/25

Key Idea: Prune Less Satisfiable Branches

Can we prune earlier?
Even satisfiable branches?

“less satisfiable” — prune

3/25

Key Idea: Prune Less Satisfiable Branches

Can we prune earlier?
Even satisfiable branches?

“less satisfiable” — prune

How to prune? Add redundant clauses!

3/25

Pruning via Clause Addition

m A clause prunes all branches that falsify the clause.

4 /25

Pruning via Clause Addition

m A clause prunes all branches that falsify the clause.

m Example: The clause (x) prunes all branches where x is false.

4 /25

Pruning via Clause Addition

m A clause prunes all branches that falsify the clause.

m Example: The clause (x) prunes all branches where x is false.

4 /25

Pruning via Clause Addition

m A clause prunes all branches that falsify the clause.
m Example: The clause (x) prunes all branches where x is false.

m Other Examples:

4 /25

Pruning via Clause Addition

m A clause prunes all branches that falsify the clause.
m Example: The clause (x) prunes all branches where x is false.

m Other Examples: (k)

4 /25

Pruning via Clause Addition

m A clause prunes all branches that falsify the clause.
m Example: The clause (x) prunes all branches where x is false.

m Other Examples: ()

4 /25

Pruning via Clause Addition

m A clause prunes all branches that falsify the clause.
m Example: The clause (x) prunes all branches where x is false.

m Other Examples: (xVvy)

4 /25

Pruning via Clause Addition

m A clause prunes all branches that falsify the clause.
m Example: The clause (x) prunes all branches where x is false.

m Other Examples: (yV2)

4 /25

Pruning via Clause Addition

m A clause prunes all branches that falsify the clause.
m Example: The clause (x) prunes all branches where x is false.

m Other Examples: (x VX)

4 /25

Introduction

The Positive Reduct
Conditional Autarkies
The Algorithm
Evaluation

Conclusions and Future Work

5/ 25

The Positive Reduct

Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

Cvx xV D A A— B
cvD (res) 5 (mp)

7/25

Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

Cvx xV D A A— B
o (e L5 (mp)

= |nference rules reason about the presence of facts.

o If certain premises are present, infer the conclusion.

7/25

Traditional Proofs vs. Interference-Based Proofs

m In traditional proof systems, everything that is inferred, is
logically implied by the premises.

Cvx xV D A A— B
o (e L5 (mp)

= |nference rules reason about the presence of facts.

o If certain premises are present, infer the conclusion.

m Different approach: Allow not only implied conclusions.
e Require only that the addition of facts preserves satisfiability.
e Reason also about the absence of facts.

= This leads to interference-based proof systems.

7/25

Redundant Clauses

A clause C is redundant w.r.t. a formula F if and only if F
and F A C are either both satisfiable or both unsatisfiable.

All Redundant Clauses

PR = Propagation Redundant

PR Clauses [CADE'17]

RES = Resolvents

SET = Set-Blocked Clauses
[IJCAR'16]

8/25

Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is SET or PR w.r.t. a formula
F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

9/25

Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is SET or PR w.r.t. a formula
F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C. Let « denote the smallest
assignment that falsifies C. The positive reduct of F and « is
a formula which is satisfiable if and only if C is SET w.r.t. F.

9/25

Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is SET or PR w.r.t. a formula
F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C. Let « denote the smallest
assignment that falsifies C. The positive reduct of F and « is
a formula which is satisfiable if and only if C is SET w.r.t. F.

Positive reducts are typically very easy to solve!

9/ 25

Finding Redundant Clauses: The Positive Reduct

Determining whether a clause C is SET or PR w.r.t. a formula
F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C. Let « denote the smallest
assignment that falsifies C. The positive reduct of F and « is
a formula which is satisfiable if and only if C is SET w.r.t. F.

Positive reducts are typically very easy to solve!

Key |dea: While solving a formula F, check whether the
positive reduct of F and the current assignment « is satisfiable.
In that case, prune the branch «.

9/25

The Positive Reduct: An Example

Given a formula F and a clause C. Let « denote the smallest
assignment that falsifies C. The positive reduct of F and «,
denoted by p(F,), is the formula that contains C and all
assigned(D, a)) with D € F and D is satisfied by a.

Example
Consider the formula F := (x Vy)A(xVy)A (¥ V 2).

Let GG = (%), so a; = x.
The positive reduct p(F,a1) = (X) A (x) A (x) is unsatisfiable.

Let G =(XVy), soa=xy.
The positive reduct p(F,az) = (X Vy)A(xVy)A(xVy)is
satisfiable.

10 / 25

Conditional Autarkies

Autarkies

A non-empty assignment « is an autarky for formula F if every
clause C € F that is touched by « is also satisfied by a.

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula F := (x Vy)A(xVy)A (Y V 2).
Assignment oy = Z is an autarky: (x Vy)A(xVy)A (Y V 2).
Assignment a, = x ¥ z is an autarky: (xVy)A(xVy)A(VV2).

12 /25

Autarkies

A non-empty assignment « is an autarky for formula F if every
clause C € F that is touched by « is also satisfied by a.

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula F := (x Vy)A(x Vy)A (¥ V 2).
Assignment oy = Z is an autarky: (x Vy)A(xVy)A (Y V 2).
Assignment a, = x ¥ z is an autarky: (xVy)A(xVy)A(VV2).

Given an assignment «, F|q denotes a formula F without the
clauses satisfied by o and without the literals falsified by «.

Theorem ([Monien and Speckenmeyer 1985])

Let « be an autarky for formula F.
Then, F and F |« are satisfiability equivalent.

12 /25

Conditional Autarkies

An assignment o = Qeon U Qay IS @ conditional autarky for
formula F if e is an autarky for F|ag,,-

Example

Consider the formula F := (x Vy)A(x Vy)A (¥ V 2).
Let ctcon = X and Quyy = ¥, then o = qieon U Qtayy = X ¥ is @
conditional autarky for F:

Qant = y is an autarky for F|a,,, = (V V 2).

13 /25

Conditional Autarkies

An assignment o = Qeon U Qay IS @ conditional autarky for
formula F if e is an autarky for F|ag,,-

Example

Consider the formula F := (x Vy)A(x Vy)A (¥ V 2).
Let ctcon = X and Quyy = ¥, then o = qieon U Qtayy = X ¥ is @
conditional autarky for F:

Qant = y is an autarky for F|a,,, = (V V 2).

Let o = areon U oy be a conditional autarky for formula F.
Then F and F A (Qtcon — aut) are satisfiability-equivalent.

In the above example, we could therefore learn (X V ¥).

13 /25

Learning PR clauses

Theorem
Given a formula F and an assignment «. Every satisfying
assignment w of p(F,«) is a conditional autarky of F.

Recall: Given a formula F and a clause C. Let « denote the
smallest assignment that falsifies C. C is SET w.r.t. F if and
only if p(F,) is satisfiable.

Let assignment w satisfy p(F,). Removing all but one of the
literals in C that are satisfied by w results in a PR clause w.r.t. F.

14 / 25

The Algorithm

Pseudo-Code of CDCL (formula F)

13

14

15

16

a:=10
forever do
a := Simplify (F, a)
if F|q contains a falsified clause then
C := AnalyzeConflict ()
if C is the empty clause then return unsatisfiable

F:=FU{C}

a := BackJump (C, «)
else

I := Decide ()

if / is undefined then return satisfiable
a:=aU{l}

16 / 25

Pseudo-Code of SDCL (formula F)

1 a:=10

2 forever do

3 a = Simplify (F, a)

a if F|q contains a falsified clause then

5 C := AnalyzeConflict ()

6 if C is the empty clause then return unsatisfiable
7 F:=FuU {C}

8 a := BackJump (C,)

9 else if p(F,«) is satisfiable then

10 C := AnalyzeWitness ()

1 F:=FuU{C}

12 a = BackJump (C, «)

13 else

14 | :== Decide ()

15 if / is undefined then return satisfiable
16 a:=aU{l}

16 / 25

Evaluation

17 /25

Benchmark Suite: Pigeon Hole Formulas

Can n+1 pigeons be placed in n holes (at-most-one pigeon per hole)?

PHP, := /\ (x1p V- VXnp) A /\ /\ (Xhp VXhq)

1<p<n+l 1<h<n1<p<qg<n+l

The binary clauses encode the constraint <y (Xp1;...;Xhn+1).

There exists more compact encodings, such as the sequential
counter and minimal encoding, for at-most-one constraints.

We include these encodings to evaluate the robustness of the solver.

18 / 25

Tool Comparison

We used three tools in our evaluation:

m EBDDRES: A tool based on binary decision diagrams that
can convert a refutation into an extended resolution proof.

m GLUCOSER: A SAT solver with extended learning, i.e., a
technique that introduces new variables and could
potentially solve pigeon hole formulas in polynomial time.

® LINGELING (PR): Our SDCL solver.

19 / 25

Results on Small Pigeon Hole Formulas

input EBDDRES GLucosER LINGELING (PR)
formula |#var Fcls| time #node | time #lemma |time #lemma
PHPjp-std | 110 561 1.00 3M 22.711 329,470 | 0.07 329
PHP;1-std | 132 738 3.47 OM |146.61 1,514,845 | 0.11 439
PHPip-std | 156 949 | 10.64 27M |307.29 2,660,358 | 0.16 571
PHP3-std | 182 1,197 | 30.81 76M |982.84 6,969,736 | 0.22 727
PHPip-seq | 220 311 OF — l.62 25,712 | 0.07 327
PHP;1-seq | 264 375 OF — 6.94 77,747 | 0.10 437
PHPip-seq | 312 445 OF —— | 19.40 174,084 | 0.14 569
PHPy3-seq | 364 521| OF —— |172.76 1,061,318 | 0.18 725
PHPio-min | 180 281| 28.60 81M 0.64 15,777 | 0.06 329
PHPi1-min | 220 342 143.92 399M 1.82 34,561 | 0.10 439
PHP15-min | 264 409 OF — 9.87 121,321 | 0.13 571
PHP;3-min | 312 482 OF — 57.66 483,789 | 0.18 727

OF = 32-bit overflow

20 / 25

Results on Large Pigeon Hole Formulas

input EBDDRES GLucosER LINGELING (PR)

formula | #var #cls | time #node | time F#lemma time #lemma
PHPyy-std 420 4221 OF —— | TO — 1.61 2,659
PHPs-std 930 13,981| OF —— | TO —— | 1345 8,989
PHPyo-std | 1,640 32,841| OF —— | TO — | 6741 21,319
PHPso-std | 2,550 63,801| OF —— | TO — |241.14 41,649
PHPyy-seq | 840 1,221| OF —— | TO — 1.05 2,657
PHPsy-seq | 1,860 2,731| OF —— | TO — 6.55 8,987
PHPyo-seq | 3,280 4,841| OF —— | TO — | 27.10 21,317
PHPsg-seq | 5,100 7,551 OF —— | TO — | 86.30 41,647
PHPyy-min| 760 1,161 OF —— | TO — 1.03 2,659
PHP3p-min | 1,740 2,641| OF —— | TO — 6.30 8,989
PHPyy-min | 3,120 4,721| OF —— TO —_— 26.65 21,319
PHPsop-min | 4,900 7,401| OF —— | TO —— | 85.00 41,649

OF = 32-bit overflow

TO = timeout of 9000 seconds

21 /25

Conclusions and Future Work

22 /25

Conclusions

SDCL generalizes the well-known CDCL paradigm by
allowing to prune branches that are potentially satisfiable:

m Such branches can be found using the positive reduct;
m Pruning can be expressed in the PR proof system;

m Runtime and proofs can be exponentially smaller.

Our SDCL solver finds short proofs of pigeon hole formulas:

m Integrated in the state-of-the-art solver Lingeling;

m Linear sized proofs in O(n*) can be found fully automatically;
m The implementation is efficient, robust, and open source.

23 /25

Future Work

m SDCL likely requires different heuristics compared to CDCL
m Can more branches be pruned using stronger SAT calls?
m How to minimize clauses from pruning through satisfaction?

m Can SLS techniques be used to find conditional autarkies?

24 / 25

PRuning Through Satisfaction

Marijn J.H. Heule, Benjamin Kiesl,
Martina Seidl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

TEXAS [9%V

JOHANNES KEPLER
— AT AUSTIN —— UNIVERSITAT LINZ

Haifa Verification Conference November 15, 2017

	Introduction
	The Positive Reduct
	Conditional Autarkies
	The Algorithm
	Evaluation
	Conclusions and Future Work

