Scaling Distributed Machine Learning

with System and Algorithm Co-design

Mu LI
Thesis Defense

CSD, CMU
Feb 2nd, 2017

()
%ﬂ Z@w> < Distributed systems

1=1
< Large scale optimization methods

Large-scale problems

Large Scale Machine Learning

More complex models

< Machine learning learns from data
< More data

v better accuracy

Accuracy

v can use more complex models

Data size

Ads Clic

< Predict if an ad will be clicked
< Each ad impression is an example
< Logistic regression

v Single machine processes 1 million
examples per second

0 @® <

k Prediction

il & google.com <

Google

machine learning

All News Videos Books Images More = Search tools

About 24,900,000 results (0.41 seconds)

IBM Machine Learning - IBM.com

Y] www.ibm.com/MachinelLearning ~

Optimize Machine Learning with IBM Watch Video and Try Free Today.
Contribute To The Core - Infuse The Portfolio - Foster The Community

Highlights: Open-Source Cluster Computing Framework, In-Memory Processing...

Try IBM Open Platform IBM Analytics Solutions
IBM dashDB IBM World of Watson 2016

Machine Learning AV - Cylance.com

X} www.cylance.com/machine-learning v (877)973-3336

Predict, Prevent and Protect. Blocks 98% of malware and threats.

Highly scalable - Custom Services - Penetration Testing - Evolve with threats
Highlights: Na Internet Required, Easy To Manage, Low Resource Usage...
Upcoming Events - Contact Us - Cylance Protect - Consulting

Guide to Machine Learning - Help Grow Your Business - apttus.com

IX) info.apttus.com/ ~

Leam How to Use Machine Learming to Grow Your Enterprise Company. Free Guide!

Master Machine Learning - Get Certified in Machine Learning

LY www.coursera.org/machine-learming ~
Earn a Stanford Certificate!

Machine learning is a subfield of computer science that

Ads Click Prediction

< Predict if an ad will be clicked 700
< Each ad impression is an example
< Logistic regression

v Single machine processes 1 million Training
data size 350
examples per second (TB)
< A typical industrial size problem has e
v 100 billion examples
v 10 billion unique features 0

2010 2011 2012 2013 2014

Year

Image Recognition

< Recognize the object in an image .-m[]“

¢ Convolutional neural network
: i .i". ,'Q

\ | 4} / '
e N , B (283
3
- : N
P— mw = R
B o -) <
L. : ‘ ‘| g o
“ -
-— .«l % ’M \“ 5 | , e 4 *
Podeat e = R . | T4 - & it
—— . et =
‘111 - - & f = A' y) "
> " % _ -
= — - \
> 1 -
- 1 . / ‘
J
=
A2 AR

¢ A state-of-the-art network

v Hundreds of layers

v Billions of floating-point operation for
processing a single image

Distributed Computing for Large Scale Problems

< Distribute workload among many

machines
< Widely available thanks to cloud
providers (AWS, GCP, Azure)

machine machine

Distributed Computing for Large Scale Problems

< Distribute workload among many
machines p —

< Widely available thanks to cloud

providers (AWS, GCP, Azure)
< Challenges

v Limited communication bandwidth (10x
less than memory bandwidth)

N)
AN

v Large synchronization cost (1Ims latency)

—
o

v Job failures

0.0

Failure rate (%)

-

100 1000 10000

2 Machine time (hour)

Distributed Optimization for Large Scale ML

n m

< Challenges
v Massive communication traffic

v Expensive global synchronization

Scaling Distributed Machine Learning

Distributed Systems Large Scale Optimization

v Large data size, complex models

v Fault tolerant

v Communication efficient

v Convergence guarantee
v Easy to use

10

Scaling Distributed Machine Learning

Distributed Systems Large Scale Optimization

Parameter Server DBPG

for machine learning for non-convex non-smooth f;

MXNet EMSO

for deep learning for efficient minibatch SGD

11

Scaling Distributed Machine Learning

Distributed Systems Large Scale Optimization

Parameter Server DBPG

for machine learning for non-convex non-smooth f;

MXNet EMSO

for deep learning for efficient minibatch SGD

12

Existing Open Source Systems in 2012

< MPI (message passing interface)

v Hard to use for sparse problems

v No fault tolerance

< Key-value store, e.g. redis

v Expensive individual key-value pair communication

v Difficult to program on the server side

< Hadoop/Spark

v BSP data consistency makes efficient implementation challenging

13

Parameter Server Architecture

[Smola’10, Dean’12]
Model

Server machines

update

push

pull

Worker machines

Training data

14

Keys Features of our Implementation
[Li et al, OSDI'14]

< Trade off data consistency for speed

v Flexible consistency models

v User-defined filters ‘
< Fault tolerance with chain replication

15

Flexible Consistency Model

execute after finished

dependency

WIdOl gradient push & pull

i -
iter 1 2 e Sequential / BSP @@ —©O—0

gradient push & pull

iter 1 Eventual /
© © 0 O

Total asynchronous
[Smola 10]
no dependency

Bounded delay / SSP

Flexible models via [Langford 09, Cipar 13]

task dependency graph

16

User-defined Filters

machine
Data
¢ User defined encoder/decoder for
. . . Nncodaer
efficient communication

< Lossless compression
v General data compression: LZ, LZR, .. communication

< Lossy compression

v Random skip

v Fixed-point encoding Data

machine

17

Fault Tolerance with Chain Replication

< Model is partitioned by consistent hashing
< Chain replication ack ack

worker O server O :m

push push

< Option: aggregation reduces backup traffic

ack

v o M e
push
Q

18

Scaling Distributed Machine Learning

Distributed Systems Large Scale Optimization

Parameter Server DBPG

for machine learning for non-convex non-smooth f;

MXNet EMSO

for deep learning for efficient minibatch SGD

19

Proximal Gradient Method

[Combettes'09]

v fi: continuously differentiable but not necessarily convex

v h: convex but possibly non-smooth

< lterative update

wiy1 = Prox.,

where Prox,(z) := argmin h(y)

20

Wt — Tt Z fz(wt)
i i=1 _

y el

1
o E yl|?
"

Delayed Block Proximal Gradient

[Li et al, NIPS'14]

< Algorithm design tailored for parameter _

server implementation
v Update a block of coordinates each time
v Allow delay among blocks

v Use filters during communication

< Only 300 lines of codes

21

Convergence Analysis

< Assumptions:

v Block Lipschitz continuity: within block L..,, cross blocks Lo,

v Delayis bounded by 7

v Lossy compressions such as random skip filter and significantly-modified filter

< DBPG converges to a stationary point if the learning rate is chosen as

1
<
" Lyar + T Lo

Y

22

Experiments on Ads Click Prediction

Time to achieve the same objective value
< Real dataset used in production

v 170 billion examples, 65 billion unique . . »
features, 636 TB in total . ------ computing _ . ------ walting

¢ 1000 machines 15 |
.. : time
< Sparse logistic regression (hour) ! [B — ...
oz 05 [. B N
min Zlog(l + exp(—y; (s, w))) + A||wl|1
i=1 O

Maximal delay

23

Filters to Reduce Communication Traffic

Server

Traffic (%)

< Key caching

v Cache feature IDs on both sender and

receiver Baseline Key Compre- KKT
Caching ssing Filter

< Data compression

< KKT filter

v Shrink gradient to O based on the KKT
condition

Traffic (%)

Baseline Key Compre- KKT
Caching ssing Filter

24

Scaling Distributed Machine Learning

Distributed Systems Large Scale Optimization

Parameter Server DBPG

for machine learning for non-convex non-smooth f;

MXNet EMSO

for deep learning for efficient minibatch SGD

25

Deep Learning is Unique

< Complex workloads

- i 5 B__1 B__1 B__14 B__1i lll lllililllillli
414 i iy 84 iy 84 iy 84 fg5igui
I"'I==|i=:=:’|l=|ll::||l|::||l|::||l|::||ll:'i-?::ii i::il

el A

< Easy to use programming interface

“deep learning” trend in the past 5 years

26

Key Features of MXNet

[Chen et al, NIPS'15 workshop]
(corresponding author)

< Easy-to-use front-end

v Mixed programming

& Scalable and efficient back-end

v Computation and memory optimization
v Auto-parallelization

v Scaling to multiple GPU/machines

27

Mixed Programming

< Declarative programs are easy to < Imperative programming is flexible
optimize v e.g. Numpy, Matlab, Torch, ...

v e.g. TensorFlow, Theano, Caffe, ...

import mxnet as mx
a = mx.nd.zeros((100, 50))
b = mx.nd.ones((100, 50))

import mxnet as mx
net = mx.symbol.Variable('data')
net = mx.symbol.FullyConnected(

— X
data=net, num_hidden=128) Cpini(c)b
net = mx.symbol.SoftmaxOutput(data=net) E += 1

model = mx.module.Module(net)
model.forward(data=c)
model.backward()

Good for updating and interacting
Good for defining the neural network with the neural network

28

Back-end System

import mxnet as mx

 bort mxnet ac mx net = mx.symbol.Variable('data"')
: ?Omx ng zeros((100, 50)) net = mx.symbol.FullyConnected(
E _ mx.nd.ones((lee ’5@)) data=net, num_hidden=128)
c _ N ’ net = mx.symbol.SoftmaxOutput(data=net)
c ;_ 1 texec = mx.module.Module(net)
- texec.forward(data=c)
texec.backward()
Front-end
Back-end L
¢ Optimization

v Operator fusion and

-+ runtime compilation
< Scheduling

v Auto-parallelization

v Memory optimization

29

Scale to Multiple GPU Machines

Hierarchical parameter server

Network Switch

1.25 GB/s
10 Gbit Ethernet | evel-2 Servers
15.75 GB/s
PCle 3.0 16x
Level-1 Servers
63 GB/s

¢ 1000 lines of codes

30

Experiment Setup

¢ IMAGENET

v 1.2 million images with 1000 classes

¢ Minibatch SGD

v Draw a random set of examples /; at
< Resnet 152-layer model iteration t

< EC2 P2.8 xlarge v Update
v 8 K80 GPUs per machine

W1 = Wy |7]7_t| Zafz(wt)
CPU t 1€ 14

PCle switches

< Synchronized updating

GPU 0-7

31

Communication Cost

0.7

<& Fix #GPUs per O 1GPU/machine

machine /= 2 GPU/machine
0.575 = 4 GPU/machine
S 1+ 8 GPU/machine
-
o 0.45
£
0.325
0.2
0 32 64 96 128
H of GPUs

32

Scalability

115x speedup
1

O Communication cost
</ batch size/GPU=4
o/ | = batch size/GPU=8
- > = I} batch size/GPU=16
QD v
o 05 | o
£ N
o /\)
0.25 | -~
9
0
0 32 64 26 128
H of GPUs

33

Convergence

0.8

| 0.625
< Increase learning

rate by 5x
0.45

< Increase learning
rate by 10x, decrease
it at epoch 50, 80

0.275 ~— batch size=256
— batch size=2,560
— batch size=5,120

Top-1validation accuracy

0.1
O 30 60 20 120

of epochs

34

Scaling Distributed Machine Learning

Distributed Systems Large Scale Optimization

Parameter Server DBPG

for machine learning for non-convex non-smooth f;

MXNet EMSO

for deep learning for efficient minibatch SGD

35

Minibatch SGD

< Large batch size b in SGD

v Better parallelization within a batch A
] £ chi , , Better system
v Less switching/communication cost berformance
< Small batch size b
v Faster convergence convergence
Worse rate
O(1/V'N + b/N)

Batch size (b)
N: number of examples processed

36

Motivation
[Li et al, KDD'14]

Better | , system
. 1
¢ Improve converge rate for large batch size ' performance
v Example variance decreases with batch size ‘
v Solve a more “accurate” optimization
subproblem over each batch convergence
________ rate
Worse
>
Batch size (b)

37

Efficient Minibatch SGD

¢ Define fr.(w) :=) _ fi(w). Minibatch SGD solves

1€l
first-order approximation conservative penalty
] 1 -

wy = argmin | f1, (wi—1) + (01, (wi—1),w = wp1) + o—|lw = w15
weQ | Tt
< EMSO solves the subproblem at eEch iteration
| 1
wy = argmin | fr, (w) - 9 |w — wt—ng
wel) | Tt

exact objective

< For convex f;, choose 1n: = O(b/ V' N) . EMSO has convergence rate
O(1/VN)

(compared to O(1/vV'N +b/N))
38

Experiment

< Ads click prediction with fixed run time

Single machine 10 machines

Objective
Objective

le3 led leb

Batch size Batch size

Extended to deep learning in [Keskar et al, arXiv'16]
39

n
Large-scale problems min Zfz(w)
w
i=1

Reduce < Distributed systems
communication

cost

. Co-design
< Large scale optimization

v Communicate less

With a Propriate computational frameworks and algorithm
v Message compression

Oc? . . | .
/ Relaxed datesign, elg’grlbuted machine learning can be made simple,
I?hs%, and scalable, both in theory and in practice.

40

Acknowledgement

Committee members

with other 13 collaborators

41

Backup slides

42

Scaling to 16 GPUs in a Single Machine

1
O Comm Cost
<= bs/GPU=2
s F bs/GPU=4
%) 1+ bs/GPU=8
) o - 1 & bs/GPU=16
= o5 ([HEO——T0——— Y
£ o
= V=V v V Communication
0.25 | . NN e S dominates
9
0 Loo—
0 4 3 12 16
H of GPUs

43

Compare to a L-BFGS Based System

| computing [waiting
- System A

- Parameter Server

Objective

01 110
Time (hour)

System A Parameter
Server

44

Sections not Covered

< AdaDelay: model the actual delay for asynchronized SGD
< Parsa: data placement to reduce communication cost
< Difacto: large scale factorization machine

45

