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min
w

nX

i=1

fi(w)

Large-scale  problems

✧ Distributed systems 
✧ Large scale optimization methods



Large Scale Machine Learning

✧ Machine learning learns from data 
✧ More data  
✓ better accuracy 
✓ can use more complex models
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Ads Click Prediction

✧ Predict if an ad will be clicked 
✧ Each ad impression is an example 
✧ Logistic regression 
✓ Single machine processes 1 million 

examples per second
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Ads Click Prediction

✧ Predict if an ad will be clicked 
✧ Each ad impression is an example 
✧ Logistic regression 
✓ Single machine processes 1 million 

examples per second 
✧ A typical industrial size problem has 
✓ 100 billion examples 
✓ 10 billion unique features
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✧ Recognize the object in an image 
✧ Convolutional neural network  
✧ A state-of-the-art network  
✓ Hundreds of layers 
✓ Billions of floating-point operation for 

processing a single image

Image Recognition
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✧ Distribute workload among many 
machines 

✧ Widely available thanks to cloud 
providers (AWS, GCP, Azure) machine

machine

machine

machine

switch switch

switch switch

Distributed Computing for Large Scale Problems
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✧ Distribute workload among many 
machines 

✧ Widely available thanks to cloud 
providers (AWS, GCP, Azure) 

✧ Challenges  
✓ Limited communication bandwidth (10x 

less than memory bandwidth) 
✓ Large synchronization cost (1ms latency) 
✓ Job failures
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Distributed Optimization for Large Scale ML
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…
✧ Challenges 
✓ Massive communication traffic 
✓ Expensive global synchronization 

min
w

nX

i=1

fi(w)



10

Distributed SystemsDistributed Systems

✓ Large data size, complex models 
✓ Fault tolerant  
✓ Easy to use

Scaling Distributed Machine Learning

Distributed SystemsLarge Scale Optimization

✓ Communication efficient 
✓ Convergence guarantee
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Existing Open Source Systems in 2012
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✧ MPI (message passing interface) 
✓ Hard to use for sparse problems 
✓ No fault tolerance 

✧ Key-value store, e.g. redis 
✓ Expensive individual key-value pair communication 
✓ Difficult to program on the server side 

✧ Hadoop/Spark 
✓ BSP data consistency makes efficient implementation challenging



Parameter Server Architecture
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Model
[Smola’10, Dean’12]

update



Keys Features of our Implementation

✧ Trade off data consistency for speed 
✓ Flexible consistency models 
✓ User-defined filters  

✧ Fault tolerance with chain replication
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[Li et al, OSDI’14]
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Flexible Consistency Model
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Bounded delay / SSP 
[Langford 09, Cipar 13]

1 2 3 4 5

Eventual /  
Total asynchronous  

[Smola 10]
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1 2 3Sequential / BSP 4

gradient push & pulliter 0

gradient push & pulliter 1

execute after finished 
dependency 

gradient push & pulliter 0

gradient push & pulliter 1

no dependency 

Flexible models via 
task dependency graph



User-defined Filters

✧ User defined encoder/decoder for 
efficient communication 

✧ Lossless compression 
✓ General data compression: LZ, LZR, ..  

✧ Lossy compression 
✓ Random skip 
✓ Fixed-point encoding
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Fault Tolerance with Chain Replication
✧ Model is partitioned by consistent hashing 
✧ Chain replication 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✧ Option: aggregation reduces backup traffic
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Proximal Gradient Method

✓ fi: continuously differentiable but not necessarily convex 
✓ h: convex but possibly non-smooth
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min
w2⌦

nX

i=1

fi(w) + h(w)

✧ Iterative update

[Combettes’09]

Prox⌘(x) := argmin

y2⌦
h(y) +

1

2⌘

kx� yk2

wt+1 = Prox�t

"
wt � ⌘t

nX

i=1

fi(wt)

#

where



Delayed Block Proximal Gradient

✧ Algorithm design tailored for parameter 
server implementation 
✓ Update a block of coordinates each time 
✓ Allow delay among blocks 
✓ Use filters during communication   

✧ Only 300 lines of codes
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[Li et al, NIPS’14]

data

model



Convergence Analysis

✧ Assumptions: 
✓ Block Lipschitz continuity: within block        , cross blocks 

✓ Delay is bounded by 𝜏 

✓ Lossy compressions such as random skip filter and significantly-modified filter  

✧ DBPG converges to a stationary point if the learning rate is chosen as 
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Experiments on Ads Click Prediction

✧ Real dataset used in production 
✓ 170 billion examples, 65 billion unique 

features, 636 TB in total 
✧ 1000 machines 
✧ Sparse logistic regression 
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Filters to Reduce Communication Traffic

✧ Key caching 
✓ Cache feature IDs on both sender and 

receiver 
✧ Data compression 
✧ KKT filter 
✓ Shrink gradient to 0 based on the KKT 

condition
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Deep Learning is Unique
✧ Complex workloads 

✧ Heterogeneous computing  
 
 
 

✧ Easy to use programming interface

26

“deep learning” trend in the past 5 years



Key Features of MXNet

✧ Easy-to-use front-end 
✓ Mixed programming 

✧ Scalable and efficient back-end 
✓ Computation and memory optimization 
✓ Auto-parallelization 
✓ Scaling to multiple GPU/machines
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[Chen et al, NIPS’15 workshop] 
(corresponding author)
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✧ Imperative programming is flexible  
✓ e.g. Numpy, Matlab, Torch, …

Mixed Programming

import mxnet as mx 
a = mx.nd.zeros((100, 50)) 
b = mx.nd.ones((100, 50)) 
c = a * b 
print(c) 
c += 1

import mxnet as mx 
net = mx.symbol.Variable('data') 
net = mx.symbol.FullyConnected( 
         data=net, num_hidden=128) 
net = mx.symbol.SoftmaxOutput(data=net) 
model = mx.module.Module(net) 
model.forward(data=c) 
model.backward()

✧ Declarative programs are easy to 
optimize 
✓ e.g. TensorFlow, Theano, Caffe, …

Good for defining the neural network
Good for updating and interacting 

with the neural network



Back-end System
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Back-end

import mxnet as mx 
a = mx.nd.zeros((100, 50)) 
b = mx.nd.ones((100, 50)) 
c = a * b 
c += 1

import mxnet as mx 
net = mx.symbol.Variable('data') 
net = mx.symbol.FullyConnected( 
         data=net, num_hidden=128) 
net = mx.symbol.SoftmaxOutput(data=net) 
texec = mx.module.Module(net) 
texec.forward(data=c) 
texec.backward()

Front-end

✧ Optimization 
✓ Memory optimization 
✓ Operator fusion and 

runtime compilation  
✧ Scheduling 
✓ Auto-parallelization



Scale to Multiple GPU Machines
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PCIe Switch
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Network Switch

63 GB/s  
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15.75 GB/s  
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1.25 GB/s  
10 Gbit Ethernet

Hierarchical parameter server

Level-1 Servers

Workers

Level-2 Servers

GPUs

CPUs

✧ 1000 lines of codes



Experiment Setup

✧   
✓ 1.2 million images with 1000 classes 

✧ Resnet 152-layer model 
✧ EC2 P2.8 xlarge 
✓ 8 K80 GPUs per machine
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GPU 0-7

PCIe switches
CPU

✧ Minibatch SGD 
✓ Draw a random set of examples It at 

iteration t 
✓ Update  

wt+1 = wt �
⌘t
|It|

X

i2It

@fi(wt)

✧ Synchronized updating



Communication Cost 

✧ Fix #GPUs per 
machine
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Scalability

33

tim
e 

(s
ec

)

0

0.25

0.5

0.75

1

# of GPUs

0 32 64 96 128

Communication cost
batch size/GPU=4
batch size/GPU=8
batch size/GPU=16

115x speedup



Convergence

✧ Increase learning 
rate by 5x 

✧ Increase learning 
rate by 10x, decrease 
it at epoch 50, 80
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Minibatch SGD

✧ Large batch size b in SGD  
✓ Better parallelization within a batch 
✓ Less switching/communication cost 

✧ Small batch size b  
✓ Faster convergence 
 
 
 
N: number of examples processed

36

O(1/
p
N + b/N)

Batch size (b)

Better system  
performance

convergence 
rateWorse



Motivation

✧ Improve converge rate for large batch size 
✓ Example variance decreases with batch size 
✓ Solve a more “accurate” optimization 

subproblem over each batch
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Batch size (b)

Better system  
performance

convergence 
rate

[Li et al, KDD’14]

Worse



Efficient Minibatch SGD
✧ Define                             . Minibatch SGD solves
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fIt(w) :=
X

i2It

fi(w)

first-order approximation

wt = argmin
w2⌦


fIt(wt�1) + h@fIt(wt�1), w � wt�1i+

1

2⌘t
kw � wt�1k22

�
conservative penalty

✧ For convex fi, choose                             . EMSO has convergence rate  
 
 
(compared to                              )

⌘t = O(b/
p
N)

O(1/
p
N)

O(1/
p
N + b/N)

exact objective

wt = argmin
w2⌦


fIt(w) +

1

2⌘t
kw � wt�1k22

�
✧ EMSO solves the subproblem at each iteration



Experiment
✧ Ads click prediction with fixed run time
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Extended to deep learning in [Keskar et al, arXiv’16]
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min
w

nX

i=1

fi(w)

✧ Distributed systems 
✧ Large scale optimization

Large-scale  problems

Reduce  
communication  

cost
Co-design

✓ Communicate less 
✓ Message compression 
✓ Relaxed data consistency

With appropriate computational frameworks and algorithm 
design, distributed machine learning can be made simple, 

fast, and scalable, both in theory and in practice.
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Scaling to 16 GPUs in a Single Machine
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Compare to a L-BFGS Based System
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Sections not Covered

✧ AdaDelay: model the actual delay for asynchronized SGD 
✧ Parsa: data placement to reduce communication cost 
✧ Difacto: large scale factorization machine
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