Derandomized dimensionality reduction with applications

Lars Engebretsen Piotr Indyk Ryan O’Donnell
MIT Laboratory for Computer Science
Cambridge, Massachusetts 02139-3594

E-mail: {enge,indyk,odonnell}@theory.lcs.mit.edu

December 26, 2001

Abstract

The Johnson-Lindenstrauss lemma provides a way to map a number of points in high-
dimensional space into a low-dimensional space, with only a small distortion of the distances
between the points. The proofs of the lemma are non-constructive: they show that a random
mapping induces small distortions with high probability, but they do not construct the actual
mapping. In this paper, we provide a procedure that constructs such a mapping deterministi-
cally in time almost linear in the number of distances to preserve times the dimension of the
original space. We then use that result (together with Nisan’s pseudorandom generator) to
obtain an efficient derandomization of several approximation algorithms based on semidefinite
programming.

1 Introduction

Dimensionality reduction is a general class of techniques which allow one to reduce the dimension
of a multidimensional set of data points while preserving some important properties of the set. One
of the most fundamental and useful dimensionality reduction techniques is given by the Johnson-
Lindenstrauss lemma (JL lemma), which states that any set of n points in [can be embedded into
19 with d’ = O(log n/€?) in such a way that the distances between all pairs of points are preserved
up to a factor of 1 £ €. Since the original dimension could be as big as n, the JL lemma provides a
way to reduce the size of the data set by several orders of magnitude while preserving its distance
properties.

The JL lemma was introduced to Theoretical Computer Science in [LLR94] and has since
found many algorithmic applications. It is by now a standard way to achieve polynomial [PRTV00,
BOR99, GIV01] or even exponential [IM97, Das99] improvements to the complexity of approximate
algorithms. Very recently it also became a topic of more applied investigation (e.g., see [IKMO00]). In
addtion, it has several structural implications; for example, together with Bourgain’s lemma [LLR94]
it implies that any n-point metric can be embedded into 120 (logm) with distortion O(logn).

Because of its importance, several proofs of this lemma exists in the literature, e.g., see [JL84,
FM88, IM97, AV99, DG99, Ach01]; some of them simplify the original proof, others simplify the
embedding or improve the O() constant. Unfortunately, none of the existing proofs is constructive.
More specifically, all the proofs proceed by showing that a random linear mapping (taken from a
proper space of mappings) preserves the distances with probability strictly greater than 0. There-
fore, the proofs do not lead to a deterministic algorithm for finding such an embedding, but only
to a randomized procedure.

In this paper we address this issue and provide a deterministic algorithm which finds a mapping
with the properties guaranteed by the JL lemma. The algorithm runs in O(dm(logn + 1/¢)°M)
time, where m < n? is the number of pairs of distances to preserve. For comparison, note that
even verifying the quality of a random mapping (and therefore all Las Vegas algorithm for finding
a good embedding) would take O(dm) time, which is only slightly less than the running time of
our algorithm. As a consequence of our result, we also obtain deterministic procedures for some
implications of rhe JL lemma. In particular, since it is known how to embed an m-point metric
into I with distortion O(logn) deterministically (e.g., see [LLR94]), we obtain a deterministic
polynomial time algorithm which finds such an embedding into ls with dimension O(logn).

In the second part of this paper, we show that by using the deterministic JL lemma one
can efficiently derandomize several approximation algorithms based on semidefinite programming
(SDP); in particular, we treat the MAXCUT algorithm of [GW95] and the 3-coloring algorithms
of [KMS98]. It was already known that these algorithms could be derandomized in polynomial
time; see [MR95]. However, the algorithm therein was extremely complex and had very high
running time (around 73%). In contrast, our approach is conceptually much simpler, since it de-
couples the derandomization into the dimensionality reduction step (same for all problems) and
enumeration step (problem-dependent but fairly simple). In addition, the running time of our al-
gorithms (excluding the SDP part) is only O(n?+°(0)!, The derandomization approach we present
for the MAXCUT algorithm of [GW95] can be extended to derandomize several other SDP-based
approximation algorithms for constraint satisfaction problems. Among other things, our approach
works for all constraints that involve only three variables [Zwi98], including MAX 3-SAT [KZ97],
MAX k-CUT [FJ97, GWO01], and systems of linear equations mod p with two unknowns per equa-
tion [AEHO1].

1.1 Our techniques

Our deterministic embedding result is obtained by using the method of conditional probabilities.
In particular, we apply it to derandomize the proof of JL lemma given in [IM97]. Their proof
(described briefly in Preliminaries) is very convenient for our purpose, since it provides us with
exact expressions for the values of relevant conditional probabilities. In particular, computing the
probability of a single “unsuccessful” event (i.e., that a given pair of points is mapped with large
distortion) can be done by evaluating a 3-dimensional integral of a smooth function. This can be
easily done in polynomial time (and with polynomially small error) via any numerical integration
algorithm, e.g., the trapezoid method. However, in order to obtain a fast algorithm, we show that
the integrated function can be well-approximated by a polynomial of polylogarithmic degree. In
this way, we can find/update the probability of a single event in polylogarithmic time. Since at any
step of the algorithm we consider O(m) events and the algorithm performs O(dlog®") n) steps, the
running time follows.

The derandomization of SDP-based approximation algorithms is done as follows. First, we
compute the solution to the semidefinite program, getting a set of vectors in n-dimensional space.
Then, we reduce the dimension to O(logn) or even O(1) using the deterministic JL lemma; we
can show that the reduction approximately preserves the quality of the solution. Finally, we
round the vectors to obtain a feasible solution to the combinatorial problem. In the original
algorithms [GW95, KMS98] this was done by choosing a random vector 7 and computing the dot

'To make the comparison with [MR95] fair, one should note that our method results in approximation factors
C1(1 — €) for MAXCUT and C*¢ for 3-coloring, where C; and C are the approximation factors of the randomized
algorithms. On the other hand, the algorithms of [MR95] result in approximation factors C1(1—1/n) and C2(1—1/n);
It is likely that they would be able to obtain our factors in something somewhat faster than in O(n®*°) time.

products of r and the solution vectors. Here, we simulate the random choice of r by enumerating
all potential vectors. This can be done efficiently, since (a) the dimensionality of the space is low
and (b) the number of vectors to consider can be further reduced by showing that r does not have
to be “truly random” and that “pseudorandom” vectors obtained via the generator of Nisan [Nis92]
are good enough.

1.2 Previous work

In recent years, there has been several results on deterministic embeddings between various spaces.
One such result [CCGGY98, CCGGPY98] is that any n-point metric space can be deterministically
embedded into a probabilistic tree metric with low distortion; this improves earlier randomized
results of [Bar96, Bar98]. As a consequence, several approximation algorithms based on such
embeddings can be derandomized. However, the methods of [CCGG98, CCGGPI8] are based on
linear programming and cannot be applied in our context.

Another related result (obtained in [I00]) is an explicit embedding of 4 into 1%0(1082 Y with
distortion 1+1/ d®(); earlier, only randomized embeddings of this type had been known. The main
tool used in [I00] is the Nisan generator, also used in the enumeration part of our deterministic
SDP-based approximation algorithms. However, applying this tool to the JL lemma itself would
result in an algorithm with only quasi-polynomial time, 20(log? ™), which is much worse than that
guaranteed by our algorithm.

2 Preliminaries

The general statement of the JL lemma is as follows.

Lemma 1. Let v1...v,, be a sequence of vectors in R* and let ¢, F € (0, 1]. Then there ezists a
linear mapping A : R¢ — R* where k = O(log(1/F)/€e?) such that, for at least a fraction 1 — F of
the m wectors,

klvi|? < |Avi|? < k(1 + €)|vi|*.

Note that since the mapping A is linear, we can assume without loss of generality that all v;’s
are unit vectors. Furthermore, we can get rid of the factor of k by taking A’ = ﬁA.

Since our deterministic version of the above result is obtained by derandomizing the probabilistic
proof from [IM97], we recall the basic components of this proof. Its basic idea is to choose the matrix
A at random such that each of its coordinates is chosen independently from N(0,1). By spherical
symmetry of the normal distribution it follows that each coordinate of Aw; is also distributed
according to N (0, 1). Therefore, for each j = 1...%/2, the sum of squares of consecutive coordinates
Y; = |(Av)a;—1]? + |(Av)2;|* has exponential distribution with exponent 1/2. Assuming k is even,
the expectation of L = |Av|? is equal to) ; E[Yj] = k. One can show that L is sharply concentrated
around its mean (i.e., its value lies in [1,1 + €] with probability 1 — F'). Thus the expected number
of v;’s whose length is approximately preserved is at least (1 — F')m.

We mention that the above proof goes through even if the elements of A are normal variables
“truncated” to lie in the interval [—B, B] for B = O(y/log kdm). Moreover, it remains correct if
the values of A;; are not continuous but are represented using only O(log kdm) bits.

The Johnson-Lindenstrauss lemma approximately preserves vectors’ lengths. Since our appli-
cations involve semidefinite programming, which is more concerned with vectors’ angles, we record
here a simple lemma relating the two (the proof is presented in the appendix):

Lemma 2. Suppose that vy,...,v, € R¢ are unit vectors, and A : R* — R¥ is a linear mapping
such that [v|? < |Av|? < (1+€)|v|? for all v = v; or v; —vj. Let w; be the vector Av; normalized to
unit length. Then w; - w; < v;-v; + € for all 4, .

3 Deterministic dimensionality reduction

We will derandomize the algorithm described in Preliminaries using the method of conditional
probabilities. For i = 1...m we use E; to denote the event “|Av;|? > k(1 +€)” and E! to denote
the event “|Av;|> < k”. We know that Pr[E;], Pr[E!] < F/2 for each i. We exploit the method of
conditional probabilities to find A for which the number of unsatisfied events is at most 2Fm.

The method of conditional probabilities proceeds by setting the random bits (in our case, the
bits of A) one by one; each bit is set to the value which minimizes the expected number of unsatisfied
events conditioned on that setting. In our case, the order in which we set the bits of the matrix
is as follows: we start by setting the bits of A1, Ajg,... (i.e., the first row), then we set the bits
of the elements of the second row of A, and so on. The bits of each element A;; are set by first
determining its sign, then its most significant bit, its second significant bit and so on. Note that
each setting of bits corresponds to restricting A;; to lie within a certain interval.

It remains to show how to compute the probabilities of events E; and E; conditioned on partial
settings of the bits. We focus on one E;, since the remaining events can be treated similarly. Each
event E; is of the form “|Av|? > ¢” where t = (1+¢)k. Note that if the rows 1... s are already fully
set, then the values of (Av); ... (Av), are already determined, and thus it suffices to compute the
probability of an event “|A[s +1...k,-]-v|? > ¢", where t = (1 +€)k — |A[1...s,-] - v|?. Therefore,
without the loss of generality we can assume that we are setting the first row of the matrix A (say,
the element A;;). The value of |Av|? can be then expressed as a sum of (v; X1 + aX')? + Z, where

e X is a random normal variable restricted to an interval I
e X' is a random normal variable, and a is the norm of the vector v[j +1...d]
e Z is a sum of k — 1 squares of normal variables, i.e., has x? distribution.

Therefore, we need to estimate Pr[(v; X;+aX')2+Z > t]. To this end we use the following technical
lemma (the proof is presented in the appendix):

Lemma 3. Let X; be a Gaussian truncated to I C [—L, L], X' be N(0,1) and Z have x* distribu-
tion. Let Wi = \/%771' fI e %2 dg. Then, for any n > 0, it is possible to compute an approzimation
to

Pr[(v; X1 +aX')? + Z > {]

with additive error
tk/QtTl
26/2T (k /2)(Ty)!

tk/QtTl 27’2T2—|—1 677]2/2
+ 1+ +
2k/2T (k/2)(T1)! (T2)! 1
th/24T1 2n2T2+1 e~ /2 1,213
1 1
Ut U ey) \ T) Wiy

by evaluating a polynomial with O(TTSTs) terms.

Now we are ready to show how to implement the method of conditional probabilities in O(dm)
time. First, we show how to set the parameters T7,75,7T3 such that the error guaranteed by
Lemma 3 is smaller than a parameter o > 0. In order to set T} observe that ¢t < 2k, and therefore
T1 = O(logk + log 1/a) is sufficient to keep the first error term smaller than «/3. To bound the
second term, it is sufficient to set n = O(y/log1/a) and T> = 71 to make the second term smaller
than a/3.

Finally, in order to bound the third term, we need to bound Wr from below. To this end, note
that if we discretize all values of A with precision up to +1/D, then the value of W7 is at least

|1] - e_nz/Q/\/27r >1/D - e_nz/Z/\/2_7T.

Therefore, we need T3 = O(log D + 7?) to make the third term smaller than «/3. Thus, the total
error term is at most «, while 71,75, T3 = O(log k + log 1/a + log D).

Unfortunately, we still cannot apply the above estimations directly, since our algorithm does
not generate the matrix A with real values, but rather a matrix A whose values are truncated to
the interval [—L, L] and discretized to be multiples of 1/D. Therefore, we need to estimate the
conditional probabilities over the space induced by A instead of A. Note that we can assume that
with probability at least 1 — kdN(L) = 1 — O(kde=~"/2) each coordinate of A is within 1/D from
the corresponding coordinate of A.

Let X7, X’ and Z be the variables corresponding to X7, X', Z but induced by A instead of A.
Observe that with probability at least 1 — kdN(L) we have |X; — X;| < 1/D, | X' — X'| < d/D,
|Z — Z| < dk/D. Therefore, for § = O(dk/D), we have

Pr[(v; X1 +aX')? 4+ Z > t + 6] — kdN(L)
Pr[(v; X1 +aX")? + Z >]
Pr[(v; X1 +aX')? 4+ Z >t — §] + kdN (L)

VANVAN

Now we use the following fact:
Fact 1. There is a constant C such that for any § > 0 we have
|Pr{(v; X1 + aX')V’+Z>t—6 -Pr[(v;Xr+aX")?+Z >t+ 8| <Cs

Therefore, the difference between the probabilities induced by A and 4 is at most O(kd(e~L*/2 + 1/D)).
By setting D = O(#;) and L = O(y/log 1/ + logk + log d) we make the error less than .

Since our algorithm takes O(kdlog D) steps, the sum of the probabilities Pr[E;]| at the end of
the algorithm is at most F'm(1 + O(akdlog D)). By setting o = 1/0(kdlog kd) we can make it at
most 2F'm.

It is easy to verify that the whole derandomization procedure can be implemented to run in
O(dm) time. Thus we have proven the following theorem.

Theorem 1. Letv; ... vy, be a sequence of vectors in R and let e, F € (0,1]. Then in O(dm(logn + 1/€)°M)
deterministic time we can compute a linear mapping A : R — R* where k = O(log(1/F)/€%) such
that

k|’ui\2 < |sz~|2 <k(l+ 6)|’Uz'|2

for all at least a fraction 1 — F of i’s.

4 Derandomized rounding

In this section we show how to use the deterministic dimensionality reduction technique to deran-
domize several known approximation algorithms based on semidefinite programming, including the
ones for MAXCUT and for coloring 3-colorable graphs. The vast majority of such algorithms do
the following:

1. Solve (deterministically) a semidefinite program, obtaining n vectors in R"
2. Round the vectors into integers, obtaining a combinatorial solution to the problem

Since the first step is already deterministic, it is sufficient to focus on the second step. The
implementation of the rounding procedures depends on the actual problem; however, most share
a common essential subprocedure: picking a random spherically symmetric vector r, and then
selecting all solution vectors v such that v - r > ¢ for some constant c¢. For example, the rounding
procedure for MAXCUT in [GW95] picks one random vector r, and then selects all vectors v
satisfying v - r > 0, putting them on one side of the cut. To color 3-colorable graphs, [KMS98]
repeatedly find large independent sets by considering all vectors v such that v - > ¢, where c is a
constant depending on the graphs’ maximum degree.

Our goal is to give a fast deterministic algorithm for performing such selection procedures.
An obvious approach would be to enumerate “all” vectors r (e.g., all points in an e-net for the
n-dimensional sphere) and choose the one giving the “best” selection of vectors. While this would
work, its running time would be exponential in the dimension.

In order to reduce the running time, we use the following two tools:

e Dimensionality reduction: we show that if we reduce the dimension of the solution vectors
from 7 to the much smaller value k, the quality of solution does not degrade significantly. For
example, one can reduce the dimension of MAXCUT vectors to a constant and still preserve
the approximation factor up to arbitrary multiplicative factor of 1 + €. For coloring, we can
reduce the dimension to O(logn) and change the approximation factor only slightly. Then,
enumerating “all” vectors in the new k-dimensional space takes time only polynomial in n
(although the exponent of the polynomial could be very high)

e Small sample spaces: we show that instead of choosing r at random from the set of “all” k-
dimensional vectors, we can choose it from a much smaller subset while almost preserving the
expected quality of the solution. In particular, we use the fact that the two key operations used

in rounding (namely generating a random vector from the k-dimensional normal distribution,
and computing the dot product of two k-dimensional vectors) can be done using logo(l) k
space. Therefore, we can use Nisan’s generator [Nis92] in order to generate the necessary
k9 pseudorandom bits from a truly random seed of length logo(l) k. This reduces the

number of potential vectors r to 2log ™ kwhich is sublinear if & = ©(logn).

Before going on, let us briefly explain what we mean when we speak of enumerating “all” vectors
in k-dimensional space. In a typical randomized selection procedure, one picks a spherically sym-
metric vector r € R* according to the k-dimensional normal distribution. Since the usual model
of randomness involves getting independent random 0/1 bits, generating a vector from the true
normal distribution is not, strictly speaking, possible. Implicit in previously published randomized
selection procedures is an algorithm for generating an approrimately normally distributed vector
r, using a reasonable number of random bits — say k°(). When we enumerate “all” vectors in
k-dimensional space, we are actually enumerating all possible 2k°D vectors 7/ given by this approx-
imating algorithm. Also implicit in such algorithms is the idea that using a vector which is only
approximately normally distributed does not introduce much error. Since we are going to need
accurate estimates of the number of random bits needed and the amount of error introduced, we
give the following technical result, whose proof is deferred to the appendix.

Lemma 4. For every dimension k and error parameter § > 0, there is a distribution X' which can
be sampled using O(log(k/d)) random bits, O(log(k/d)) space, and O(% log?(k/6)) time, and is close
to the 1-dimensional normal distribution in the following sense. Let v,w € R be unit vectors, and
let c € R. Consider the randomized algorithm A, . which picks a random vector r in R* by choosing
each coordinate independently from the 1-dimensional normal distribution, and then outputs 1 or
0 depending on whether v -r > c. If A, instead uses the approzimate distribution X', its output
distribution is the same within additive error £0. A similar statement holds for the algorithm B 4,
which outputs 1 or 0 depending on whether sgn(v -r) = sgn(w - 7).

In the following sections, we first show how to use the first tool to derandomize the MAXCUT
algorithm (since we reduce the dimension to a constant, using small sample spaces to reduce the
running time is not necessary). Then we proceed with the coloring algorithm, which uses both the
dimensionality reduction and small sample space techniques.

4.1 Derandomization of the Goemans-Williamson MAXCUT algorithm

To get a deterministic version of the Goemans-Williamson (GW) MAXCUT algorithm which runs
in small polynomial time, it suffices to use just the first technique mentioned, namely dimensionality
reduction. In this section we show how we can reduce the dimension of the solution space to a
constant without losing much quality; at this point, the naive derandomization of the randomized
selection procedure is still fast.

Recall the GW algorithm, which takes a graph G = (V, E) containing n vertices and m edges?
and tries to find a large cut. First the GW algorithm uses semidefinite programming to maximize
the objective function Z(i,j)eE(l — v; - v;)/2 over the set of all unit vectors vq,...,v, in £". Then
the algorithm picks a random spherically symmetric vector r, and returns the cut consisting of all
vertices ¢ such that v; - r > 0. [GW95] shows that the expected number of edges cut is within a
factor of p = 0.87 of the largest cut.

Our rounding procedure will return a cut which is within a factor p — O(€) of optimal, and will
run in deterministic time 20008°(1/€)/€*) ;.

%For simplicity, we consider here only the unweighted case; the weighted case can be treated in a similar way.

The main step is to use the derandomized Johnson-Lindenstrauss algorithm from Theorem 1
to reduce the dimension of the optimal v;’s to k = O(log(1/€)/€%) while preserving at least a 1 — ¢
fraction of the dot products v; - vj, up to a factor of 1 + e. We show that the dimensionality
reduction can change the value of the objective function by at most a factor of 1 — O(e). Once all
the vectors live in k-dimensional space, the second step is to derandomize the selection procedure
by considering all possible vectors that could arise in the randomized choice of a vector from the
k-dimensional normal distribution.

In the following we describe both steps in more detail.

Step 1: dimensionality reduction. We invoke Theorem 1 with parameters F' = ¢, allowable
distortion (1 + ¢) and set of vectors V U V', where:

e V is a multiset containing m/n copies of each vector v;, and
e V' is the set of all vectors v;; = v; — v;, for (4,7) € E.

Note that |V| = |V'| = m.
The derandomized Johnson-Lindenstrauss procedure returns a mapping A of R” into R* (k =
O(log(1/e€)/€?)) such that:

e for at least a fraction 1 — 2F of v;’s we have 1 < |Av;[2 < 1+e¢
e for at least a fraction 1 — 2F of vectors v;; we have |v;;]? < |Av;;[? < (1 + €)|vi;[?

Let E' denote the set of edges (i,7) such that the above good preservation events happen for
all of v, vj, and v;;. E' consists of at least a 1 — 6F fraction of the edges.

If we now set w; to be the normalization of Av; to unit length, Lemma 2 lets us conclude that
w; - wj < v;-v; + € for all (4,7) € E'. Hence we now have a set of unit vectors in R®* such that

Yo (l—wi-w))/2> Y (I—vi-vj—¢)/2> Y (1—vi-v;)/2—m(c/2+6F)

(i,5)€E’ (i,5)EE’ (ij)eE

It is well known that in the optimal solution, }=; e (1 — vi - v;)/2 > m/2. Therefore

> o —wiwy)/2>(1-13¢) Y (1-v;-v5)/2> (1 - 13¢)OPT.

(6.9)eE’ (i,j)EE

Step 2: rounding.

Suppose we now round as in [GW95], forming the cut by picking a random spherically symmetric
vector r € R* and splitting the vertices i according to sgn(w; - r). Then the expected value of the
cut is Y- ; g arccos(wi-wy) /m > 37 ; e gy arccos(w; -wy) /7. We can’t pick r from the true normal
distribution, but by Lemma 4 we can use X' to get the probabilities close enough. I.e., the expected
value of the cut using X' is at least

(% arccostun-wp)fn) - mi2p(3 (1= wiewp)iz) - md

(i,j)E€E (i,5)EE"
> p(1 — 13¢)OPT — md > p(1 — 13e — 26)OPT

where p = 0.87, the first inequality using the analysis of [GW95], the last inequality using OPT >
m/2. Now if we take § = ¢, we end up with a (p — O(€))-approximation algorithm, as desired.

Recall that sampling X’ requires O(log(k/d)) random bits and O(3 log®(k/6)) time. With k =
O(log(1/€)/€?)) and § = €, we see that this is R := O(log(1/€)) random bits and T := O(log?(1/€) /e)
time per coordinate. Enumerating over all choices of random bits for each coordinate leads to a
total time of (2BT)F = 20(10g>(1/)/€*) " Hence we get the claimed deterministic time bound for the
whole algorithm.

We mention in passing that using the small sample techniques explained in the next section,
this running time may be reduced to 2log M (1/€) .

4.2 Derandomization of the Karger-Motwani-Sudan coloring algorithm

In [KMS98], Karger, Motwani, and Sudan give an algorithm for coloring 3-colorable graphs on n
vertices, using O(n'/*) colors. The main part of this result involves showing how to color such a
graph using O(A!/3) colors in such a way that only n/4 edges have both endpoints the same color.
(Here A is the maximum degree of the graph.) Using [Wig83] it is straightforward to show that
such “semicolorings”, using O(A%) colors, lead to fast proper coloring algorithms using O(n%/(1+))
colors.

In order to find a semicoloring using a small number of colors, [KMS98] take the given 3-colorable
graph G = (V, E) with maximum degree A, and solve an associated semidefinite program. This
yields a set of unit vectors {v;}icy C R" with the property that if (¢,j) € E, then v; - v; < —1/2.
At this point, [KMS98] describe two randomized rounding techniques which give a semicoloring.

The first, simpler, technique involves selecting t = 2 + logz A random spherically symmetric
vectors r1,...,r;. Each vertex v; is then given a t-bit color, dictated by the values of sgn(v; - ;).
This leads to O(A!°832) colors, and fewer than n/4 monochromatic edges in expectation.

The second technique involves selecting just one random spherically symmetric vector r, and

then considering all v; such that v;-r > ¢, where ¢ = 4/ %A. Their analysis shows that the subgraph

induced by these vertices has Q(n/A'/3) more vertices than edges in expectation. This leads to
an independent set of roughly the same size. Repeatedly extracting such independent sets gives a
semicoloring using O(A!/3) colors.

We start by derandomizing the first, simpler, technique. As mentioned, there are two steps
involved: dimensionality reduction, and small sample spaces.

Step 1: dimensionality reduction.

As in the MAXCUT algorithm, after we solve the coloring semidefinite program yielding
V1,---,U, € R, we reduce the dimension of the space in which these vectors lie. Specifically,
we invoke Theorem 1 with parameters F' = 1/n, distortion parameter ¢, and set of vectors
{vitiev U {v; — v;}ijev. The result is a new set of vectors in dimension k = O(logn/e?), in which
every vector’s length is approximately preserved. Normalize these vectors to have unit length,
yielding wy, ..., w, € R*. By Lemma 2, w; - w; < v; - vj + €. The key property of the semidefinite
program is that when (7,7) € F, v; - v; < —1/2. Hence the unit vectors w; have the property that
if (4,7) € E, then w; - wj < —1/2 4.

At this point, we might try to derandomize the rounding procedures from [KMS98] by again
trying “all” rounding vectors r € R¥. However, each of the k coordinates of r requires random bits,
and so the time taken would be at least 2¥. This is polynomial since k = O(logn/e?), but it could
be an extremely large polynomial. We would like to do better. To this end, we show how small
sample spaces can decrease the number of rounding vectors r we need to try.

Step 2: small sample spaces.

Consider the algorithm A, . from Lemma 4. It uses a random spherically symmetric vector r
and calculates the dot product of r with v, returning 1 iff v-r > ¢. Notice that this calculation can be
performed in a very small amount of space if the coordinates of r are presented in an online fashion.
Namely, it only needs space which is polynomial in the size of one coordinate of v or r. Hence, if
the coordinates of r are generated online using the algorithm for sampling from distribution X',
then A, . becomes an algorithm using R := O(k log(k/§)) random bits and S := log® Y (k/6) total
space.

Hence, the results of Nisan ([Nis92]) allow us to build a pseudorandom generator using small-
length seed which fools every algorithm A, .. Specifically, the length of the seed is O(SlogR),
which is still log®Y)(k/§). The additive error that Nisan incurs in the output distribution is only
279 < §. Since we already incur an error of § for using X' instead of the true k-dimensional normal
distribution, this is not a problem.

Summarizing, we now have a fast algorithm (time O(% log*(k/d))) for generating a nearly spher-
ically symmetric vector r using only logo(l) (k/d) random bits, such that for all unit vectors v and
numbers ¢, the probability that v - r > ¢ is within £2§ of the desired probability.

oW (k/ %) which is sublinear

At this point, we can enumerate over all possible seeds in time 2'°8
in n when € and § are constant, since k = O(logn/¢€?).

Let’s see why this is enough to give a fast derandomization of the first, simple rounding procedure
of [KMS98]. Suppose we pick the rounding vectors of the simple procedure one at a time, at each
step partitioning the vertices into two sets and thus adding a bit to the color label of each vertex.
Let (i,j) € E. When r is picked from the true normal distribution, the probability that both w; - r
and w;j - r have different signs is equal to arccos(w; - wj)/m. By Lemma 2, w; - w; < —1/2 + €.
Hence, arccos(w; - wj)/m > arccos(—1/2 4+ ¢€)/m > 2/3 — O(€e). We conclude that the probability a
particular edge becomes cut given the new color bit assigned is at least 2/3 — O(e).

We don’t actually have truly normal rounding vectors. However Lemma 4 tells us that we
only lose an additive factor of O(¢) in this estimation. So by taking § = €, we conclude that the
probability a random output of our pseudorandom generator causes a particular edge to be cut
is at least 2/3 — O(e). Hence if we start with m uncut edges, rounding with a random output of
the generator gives us at most (1/3 + O(e))m uncut edges in expectation. We can enumerate all
outputs of the generator in sublinear time, and thus find a particular vector such that rounding
with it leads to at most (1/3 4+ O(€))m uncut edges.

Now we simply repeat this process. After ¢ := logz_o() A + O(1) rounds we will go from m

edges down to less than n/4, and hence have a semicoloring. This leads to 2 = O(A!%8s-0()?2)
colors. Le., we have a fast derandomization of the first rounding scheme of [KMS98].

In order to derandomize the second rounding procedure of [KMS98], we have to be a little more
careful. This is because the analysis depends on very small quantities, which are overwhelmed
when the error parameter § is a constant. In the simple rounding procedure, the color classes are
essentially assigned one bit at a time. In the improved rounding procedure, all bits of a color class
are found at once. If we take the intermediate road of assigning color classes in blocks of constantly
many bits, then we can get arbitrarily close to the desired O(A!/3)-semicoloring, in such a way that
the error parameter ¢ does not overwhelm the probabilities. We leave the details to the appendix.

10

References

[AchO1]

[AEHO01]

[AV99]

[Bar96]

[Bar98]

[BORYY]

[CCGGYS]

[CCGGPYS]

[Das99]

[DGYY]

[Fel62]

[FMS8]

[FI97]

[GIVO1]

[MRY5]

[GR94]

D. Achlioptas. Database-friendly random projections. Principles of Database Systems,
2001.

G. Andersson, L. Engebretsen, and J. Hastad. A new way of using semidefinite
programming with applications to linear equations mod p. Journal of Algorithms,
39(2):162—204, 2001.

R. I. Arriaga and S. Vempala. Algorithmic theories of learning. Foundations of Com-
puter Science, 1999.

Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applica-
tions. Foundations of Computer Science, 1996.

Y. Bartal. On approximating arbitrary metrices by tree metrics. Symposium on Theory
of Computing, 1998.

A. Borodin, R. Ostrovsky, Y. Rabani. Subquadratic approximation algorithms for
clustering problems in high dimensional spaces. Symposium on Theory of Computing,
1999.

M. Charikar and C. Chekuri and A. Goel and S. Guha. Rounding via trees: deter-
ministic approximation algorithms for group Steiner trees and k-Median. Symposium
on Theory of Computing, 1998.

M. Charikar and C. Chekuri and A. Goel and S. Guha and S. Plotkin. Approximating
a finite metric by a small number of tree metrics. Foundations of Computer Science,
1998.

S. Dasgupta. Learning mixtures of Gaussians. Foundations of Computer Science,
1999.

S. Dasgupta and A. Gupta. An elementary proof of the Johnson-Lindenstrauss lemma.
1CSI technical report TR-99-006, Berkeley, CA, 1999.

William Feller. An Introduction to Probability Theory and Its Applications, volume 1.
John Wiley & Sons, New York, second edition, 1962.

P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the sphericity of
some graphs Journal of Combinatorial Theory B, 44(1988), pp. 355-362.

Alan Frieze and Mark Jerrum. Improved approximation algorithms for MAX k-CUT
and MAX BISECTION. Algorithmica, 18:67-81, 1997.

A. Goel, P. Indyk, and K. Varadarajan. Reductions among high dimensional proximity
problems. Symposium on Discrete Algorithms, 2001.

S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based approx-
imation algorithms. Foundations of Computer Science, 1995.

I.S. Gradsteyn and I.M. Ryzhik. Table of Integrals, Series, and Products. Academic
Press, Boston, fifth edition, January 1994.

11

[GW95]

[GWO1]

[100]

[TKMOO]

[IM97]

[JL84]

[KMS98]

[KZ97]

[LLR94]

[Nis92]

[PRTVO0]

[Wig83]

[Zwi98]

Michel X. Goemans and David P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42(6):1115-1145, November 1995.

Michel X. Goemans and David P. Williamson. Approximation algorithms for MAX-
3-CUT and other problems via complex semidefinite programming. Symposium on
Theory of Computing, 2001.

P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream
computation Foundations of Computer Science, 2000.

P. Indyk and N. Koudas and S. Muthukrishnan. Identifying representative trends in
massive time series datasets using sketches. International Conference on Very Large
Databases (VLDB), 2000.

Piotr Indyk and Rajeev Motwani, Approximate nearest neighbors: towards removing
the curse of dimensionality. Symposium on Theory of Computing, 1997.

W.B. Johnson and J. Lindenstrauss. Extensions of Lipshitz mapping into Hilbert
space. Contemporary Mathematics, 26:189-206, 1984.

David Karger, Rajeev Motwani and Madhu Sudan. Approximate graph coloring by
semidefinite programming. Journal of the ACM, 45(2):246-265, March 1998.

H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? Foundations
of Computer Science, 1997.

N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. Foundations of Computer Science, pages 577-591, 1994.

Noam Nisan, Pseudorandom sequences for space bounded computations. Combina-
torica, 12:449-461, 1992.

C. Papadimitriou and P. Raghavan and H. Tamaki and S. Vempala. Latent semantic
indexing: a probabilistic analysis. Symposium on the Principles of Database Systems,
1998.

Avi Wigderson. Improving the performance guarantee for approximate graph coloring.
Journal of the ACM, 30:729-735, 1983.

U. Zwick. Approximation algorithms for constraint satisfaction problems involving at
most three variables per constraint. Symposium on Discrete Algorithms, 1998

A Proof of Lemma 2

Proof of Lemma 2. This lemma states that if A approximately preserves the lengths of all v;’s and
(v;i — vj)’s, then it also does not shrink the angle between vectors by more than a small additive

amount.

12

Note that w; - w; = (Av; - Av;)/|Av;||Av;| < Aw; - Avj, since v; and v; are unit vectors. Hence it
suffices to show that Av; - Av; < v; -v; + €. Using the relation |z — y|? = |z|> — 2z -y + |y|?, we get:

24v; - Av; = |Avi|* +|Av;* — |Av; — Av;|?
< (il + (1 + oy ” — |A(v —)]
= 2+ 2¢— ‘A(’Uz —’Uj)|2
< 2—|—26—‘UZ'—’U]'|2
< 24 2¢ — (Joil* — 205 - 0 + |v]?)
= 26—}-2’0,' -’Uj
and we are done. O

B Proof of Lemma 3

Proof of Lemma 3. Let the probability densities of X;, X’ and Z, respectively, be fx,, fx: and fz,
respectively. Then the above probability can be written

o
/ / Pr[Z >t — (vjz + az")?|fx, (z) fx: (') dz da’
z€l Jx'=—00
Since Pr[Z > z] =1 as soon as z < 0, we can rewrite the above integral as 1 — I;, where
L= // Pr[Z <t — (vjz + az')?|fx, (z) fx (z') dz d2,

(z,z')eA

and A = {(z,2') : ' € I A (vjz + az')? < t}. Let us now start by evaluating
t—(vjz+az’)?
Pr[Z <t — (vjz +az')] = / fz(z)dz
0

By Proposition 1, we can approximate

Sk/2-1p—2/2 (z/2)k/2—1e—z/2
- O2k2T(k/2) 2D(k/2)

fz(2)

within an additive error of
k/2—1,Ty
B = t t
2k/2T (k/2)(Ty)!

by a polynomial with 77 terms. Thus,

t—(vjz+az’)?
/ fz(z)dz
0

can be expressed as a polynomial in y/t — (v;z + az')? with O(T}) terms, within an additive error
of tFE;. Let us denote this polynomial by P. It then remains to calculate

b= //(z,z')eA P(\/t — (vjz + am’)2> Ix, (@) fx (z') dz dz'.

13

Since [[(')eA Ix,(z)fx (') dzdz’ < 1, the above integral approximates I; within an additive
error of tEy, i.e., |I1 — Io] < tE;. We now compute an approximation to Iy. Let us rewrite 5 as

(Vt-vjz)/a
I z/me[fx(z) dx/x t P(\/t — (vjz + aﬂﬁ’)Z) fxi(a') do’

'=(~Vi-v;z)/a
_ / Iy(2) fx (2) dz.
xel

Substitute v;z +az’ = y in the inner integral I3(z). This gives integration in the interval |y| < v/,
ie.,

a

Vi
B == [\/EP(\/t - y2>fX'((y — v;z)/a) dy. 1)
Yy

Since fx: decreases rapidly, it is enough to integrate over the y such that the argument to fx: is
close to zero. More precisely, let

Y={y‘y2§\/i}ﬂ{y‘w3n}-
a

Since fx is the probability density for the normal distribution, the error we introduce by computing

Liz) = 1 /y . P(M) f ((y — vy)fa) dy

a

instead of I5 is bounded by the maximum value of P in the interval times the weight of tails of the
normal distribution, which gives that

Is() — Lu(z)| < %(1 1 tEy) / Ty ((y — vjz)) dy

y—vje|/a>n
= (1+tE1)/ fxi(s)ds

Moreover, for y € Y, fx: can be approximated within additive error Ey = 5?2 /(T,)! by a poly-
nomial with 75 terms by Proposition 2. Let us denote this polynomial by Q. Since 0 < P(-) < 1,
up to an additive error of tF7, this implies that we can compute an approximation to I4(z) by
computing

B = | _P(VIEE) el - vofa) ay.

a

The error introduced by this approximation is

() = Is@)| < (L4 tB) [[fxo(s) = Q)| ds

[s|<n
< (1+tEy) - 2nE,,

which implies that

e~/
1) ~ 1) < (1-+183) (20 +).

14

We now argue that I5(z) can be expressed as a polynomial with few terms. Note that

P<\/t — y2> = Pi(y) +Vt — y2Py(y),

where P; and P, are polynomials with O(T%2) terms and degree O(T}). Also, @ contains O(T%)
terms ans has degree O(T») when the powers of (y — vjz)/a have been expanded. Thus,

@) =5 [(Pw)Qwy + VE=PP0)Q)dy.
yey

a
By Proposition 3,
| PwQ@w
yey
is a polynomial with O(T2T%) terms since P;(y)Q(z,y) has O(T?TZ2) terms; by By Proposition 4,

/ Vi PR)QEy) dy

is a polynomial with O(T$T5) terms since P3(y)Q(x,y) has O(T2TZ) terms and degree O(TiT5).
Thus, I5(z) can be expressed as a polynomial in z with O(T?T3) terms; let us denote this polynomial
by R. Finally, we can compute

Is = / _ R@)fx(z)dr

since fx is a probability distribution,
|IQ — 16| S / ‘Ig(.’IJ) - I5(£E)|fx(.’1,') dr S max|13(x) — I5(.’L')‘
el

To compute an approximation to Ig, note that since

g2
fx;(z) = ewi;iim,
we can approximate fx, within additive error
1,275
BT Wi(Ty)!

by a polynomial with T3 terms by Proposition 2. Since 0 < R(-) < 1 within an additive error
max‘Ig(a:) - I5(x)|, this implies that Is can be approximated within additive error

(1 + max| I3 (z) — 15(:5)\)15;3

by integrating a polynomial with O(T?T3T3) terms, let us denote the resulting polynomial by I7.

15

To sum up, |I} — Is| < €1, |z — Ig| < e, and |Ig — Ir| < €3, where

tk/QtTl
T k2D (k/2)(Th)!
2,’72T2+1 e—n2/2
ez—(l—l—a)((T)! + ; ,
L2T3
=(1+e)——.
es = (62)WI(T?,)z

Therefore, we can compute an approximation to
Pr[(v; X1 +aX')? + Z > {]

with additive error €; + €3 + €3 by evaluating a polynomial with O(T?T$T3) terms. O

C Proof of Lemma 4

Definition 1. ¢(x) will denote the normal density function, i.e., ¢(z) = \/LQ—W e /2,

Definition 2. N(c) will denote the tail of the normal cumulative distribution function, i.e., N(c) =
JZ ¢(z)dz

We begin by describing X', which we try to make 7-close to the 1-dimensional normal distribu-
tion (we specify 7 in terms of ¢ later). By Proposition 5, we can pick an M = O(1/log(1/n)) such
that 2N (M) < n; i.e., such that the probability that a normal variable’s magnitude exceeds M is
at most 1. Define P C R to be the set of integer multiples of 20 which are no more than M in
magnitude (we will also specify € in terms of d later). Let X’ be the random variable taking values
in P given by the following randomized algorithm:

- Generate a random real ¢ between 0 and 1 by using 2log(1/6) random bits
- Proceed through the points p1,ps,... in P

- At point p;, calculate an approximation f; to ¢(p;) within +6

(simply use standard numerical techniques)

- Subtract 26 f; from ¢

- If £ becomes negative, stop and output p

Notice that this algorithm can be carried out in O(log(1/6)) space and O(|P|log(1/0)) time.
Lemma 5. Under this algorithm, the probability that p; is chosen is equal to fziij: é(x) dz+0(6?).

Proof. p; is selected iff the initial choice of ¢ is in the range [E;;ll 20f;, E;Zl 20f;), an interval of
width 26f;. Since ¢ is uniform except with error O(2721°8(1/9)) = O(#?), we conclude that p; is
selected with probability 260 f; + O(62).

Since f; = ¢(p;) + O(0), it follows that 20 f; + O(6%) = 204(p;) + O(6?). Finally, Proposition 7

tells us that 20¢(p;) differs from [7 ij;' #(x) dz by at most O(63). O
Lemma 6. The random variable X' can be written as X + D + U, where:

o X is a random variable drawn from the true normal distribution

16

e D (“discretization” error) is a random variable dependent on X with |D| < 6 always

o U (“unlikely events” error) is a random variable dependent on X which is 0 with probability
at most 1 —n — O(M0)

Proof. Consider the following hypothetical way of picking an z’' according to the distribution X’.
First, draw X from the true normal distribution, yielding . Then |z| > M with probability at
most 7. This accounts for the n chance that U is nonzero, and we now assume that |z| < M. Next,
round z to the nearest multiple of 20, yielding z’. This gives us the discretization error D, with
|D| < 6.

At this point, we have z’ selected with probability f;,ljaa ¢(z) dz. By the previous lemma we
know this is correct within an additive error of £0(62). Over all possible choices of z' € P, this
leads to a total additive error of |P|O(6?) = O(M#). This can be accounted for using the O(M8)
chance that U is nonzero. O

Finally, we are in a position to prove Lemma 4.

Proof of Lemma 4. Consider the two algorithms, A, . and B, ,,, using the distribution X’. They
generate 7' € R* by taking k i.i.d. instances of X' for the coordinates of r. Then r/ is distributed
as X + D + U, where:

e X is a true k-dimensional normal random vector
e D is a random vector dependent on X with |D| < §vk always

e U is a random vector dependent on X which is 0 with probability at least 1 — k(n + O(M0))

The probability that v - X > ¢+ 6k is N(c + 0vk), since v is a unit vector. By Proposition 6,
N(c) — N(c+ 0vk) < 0vk. Since U = 0 except with probability k(n + O(M8)), the probability
that v- (X +U) > c+0Vk is at least N(c) —0vk —k(n+O(M®)). Finally, ifv- (X +U) > c+0Vk
then v - (X + D+ U) > ¢, because v- D > —0vk since v has unit length and |D| < 6+v/k. Hence we
conclude that the probability that v - ' > ¢ is at least N(c) — 0vE — k(n + O(M9)).

A similar argument shows Pr[v -’ >] < N(c) + 0VE + k(n + O(M#)), and so A, . has the
correct output probability within +[k(n + O(M#)) + 0VE].

The calculation for B, . is similar. We handle U as before, and for D, we note that it has
no effect on the sign of v - (X + D), so long as |v - X| > 0vk. Since the distribution of v - X is
1-dimensional normal, this fails only with probability N(—0vk) — N(0vk) < 20vk. Hence By,
has the correct output probability within +[k(n + O(M#)) + 20Vk].

In conclusion, we have that both algorithms have the correct output distribution up to an
additive error of [k(n + O(M0)) + O(6vk)]. Thus if we take = 6/k, and 6 = §/(k+/log(k/9)),
this quantity is N(c) £ O(9).

Plugging the values of n and 8 back into randomness, space, and time bounds, we indeed get
O(log(k+/1og(k/3) /6) = O(log(k/5)) randomness and space, and O(} log¥(k/d)) time. O

D A deterministic O(A/3+0())-semicoloring

In this section with give a rounding procedure that can be applied to the [KMS98] algorithm to
produce an O(A!/3+0(9))_semicoloring. We also show how to derandomize this rounding procedure.
Before starting the rounding procedure we apply dimensionality reduction in the same way as for
the simpler rounding procedure described in the main body of this paper. This implies that for any
edge (i1,42) in the graph, the corresponding unit vectors w;, and w;, satisfy w;, - w;, < —1/2 + €.

17

D.1 The rounding procedure

Suppose t is a large constant parameter. We will have a number of rounds, in each of which we
partition the vertices into ¢ 4+ 1 classes. We do this using ¢ independent selection procedures: We
pick ¢ random vectors such that the coordinates in the vectors are i.i.d. N(0,1) and for each such
vector r; we form the class of vertices C; = {i: w; - r; > c}, where c is a global constant that will
be chosen later. If a vertex falls into more than one class, we pick one for it arbitrarily. If a vertex
is not put into any class, we put it in the “leftover”, (¢ + 1)st class.

Suppose the ¢ random vectors were drawn from the true normal distribution. The probability
that both vertices in an edge (i1,42) fall entirely into the class Cj is

Pr[{w;, € Cj} N{w;, € Cj}] = Pr[{w;, - > ¢} N{wi, - m; > c}] < Prl(w;, +w;,) -1 > 2¢].
The latter probability is N (2¢/|w;, + ws,]||?), thus
Pr[{w;, € Cj}N{w;, € C;j}] < N(2¢/(2 4 2w;, - wi,)) < N(2¢/(1 + 2¢)).

The probability that both vertices fall in the leftover class can be bounded by

Pr{{w;, € Cry1} N {wi, € Ciya}] < Prl{wy, € G}l = (1- N(e))',

where the last bound follows since a vertex is put in the leftover class if does not qualify for any of
the first ¢ classes. Hence

Pr[i; and iy fall into same class] < tN(2¢/(1 + 2¢)) + (1 — N(c))t,

and we call this latter probability p. We now argue that ¢ and ¢ can be selected such that p is
small.
By Proposition 8, N(2¢/(1 4 2¢)) = N(c)e~(3=0()*/2 Thus, we can set

—iniz ce’ /2 In 1 o
=g g =5 (g) 0o

to get p = O(e~ B0 /21054 (1 /N (c))).

It follows that if we make ¢ large enough, and partition into ¢ + 1 classes according to ¢ =
3(1/N(c))In(1/N(c)) independent random vectors, the number of edges which remain in the same
class goes from m down to at most pm in expectation. If we now do log,(1/2A) rounds, the number
of uncut edges decreases to at most m/2A < n/4, and we have a semicoloring as desired. Since
we split into ¢ classes in each round, the total number of color classes in the end is tlogp(1/24) —
(1/2A)logpt < (1/2A)1/3+O(€).

Now, recall that we don’t have true normal distributions. Hence the probabilities N(c) and
N ((2—4e€)c) in the above discussion should really be replaced with N(c)—26 and N (2¢/(1+42¢))+26.
Hence for the same proof to go through, we need § to be much smaller than both N(c) and 1/t.

All of this can be achieved if we pick ¢ and § to be constants in the correct order. Specifically,
take ¢ to be a sufficiently large constant so that the approximation N((2 — 4e)c) ~ N(c)*~9(©
is correct within an additive constant error dependent on e. This forces ¢ to be an even larger
constant. Then we can take ¢ to be an extremely small constant compared to N(c) and 1/¢, and
we’re done.

18

D.2 The derandomization

It remains to give the derandomization and calculate its running time. As the constants ¢, ¢t and d
all depend implicitly on €, our O(-) notation will hide a (very big) dependence on €. In every round
we select ¢ = O(1) vectors independently using the pseudorandom generator, with error parameter
§ = Q(1). This requires O(t1log®™M (k/6)) = 1og®" k truly random bits. We can enumerate over all
of these random bits in time 21°6° ¥ Since &k = O(logn), this is sublinear in n. Once enumerated,
we can pick a set of ¢ vectors which does better than the expected value; i.e., leaves no more than
a p fraction of the remaining uncut edges uncut. Repeating this for all O(logn) rounds gives us
the desired semicoloring in sublinear time.

E Some useful propositions

Proposition 1. Let f(z) = e *. In the interval x € [0,k], f(z) can be approzimated within
additive error kT /T! by a polynomial with T terms and degree T — 1.

Proof. We approximate f by a truncated MacLaurin series,

T-1 npn
fl@)y=>" i + Rr
n=0

n

Since the series is alternating and the absolute values of the terms form a strictly decreasing
sequence, |Ry| < kT /T!. O

Proposition 2. Let f(z) = e /2. In the interval z € [—k, k], f(z) can be approzimated within
additive error k*T /27T by a polynomial with T terms and degree 2T — 2.

g . . 1 1
Proposition 3. For any non-negative integer m, [z™dz = m—_Hacm"' .

Proposition 4. Consider [1™Va — z?dz in the interval [—+/a,+/a] for any non-negative real a
and any non-negative integer m. When m is odd, the integral can be written as Va — 22 times a
polynomial in x with O(m) terms. When m is even, it can be written as the sum of %arcsin%

and Va — x? times a polynomial in x with O(m) terms.

Proof. Let I, = [2™V a — 22 dz and apply some of the results in [GR94, §2.26] withb =0, ¢ = —1,
A = 4ac — b*> = —4a, and n = 0. For m > 2 we get [GR94, equation (2.260.1), p 98]

I, = /:vm\/a—:dew
m—1(, _ .2\3/2 _
_ A ama)T moa o T g

m+ 2 m+ 2
m—1(, _ »2\3/2 _1

_ oz (a —z%) +(m)aIm_Q.
m+ 2 m+ 2

The base cases are
2)3/2

Il:/lv‘/—a_ﬁdx:_(aL

3

19

for odd m. For even m, we get the base case

zva—x
I—/\/a—:ﬁdm—i /
0 va — x2
by [GR94, equation (2.262.1), p 99]. The last integral above is easily evaluated; it is

/ dim = arcsin 2z
Va—12 Vva©
by [GR94, equation (2.261), p 99]. Thus,

zva — 12

Ip=——+ gaurcsini.
2) Ja
U
Prop051t10n 5. Let ¢(z) = \/—2_7, e=%"/2 be the density function for the N(0,1) distribution. Then
P(x)(2 — J5) < [p(t)dt < Lo(x).
Proof. See e.g. [Fel62]. O

Proposition 6. Let ¢(z) = \/%7 e=%"/2 be the density function for the N(0,1) distribution. Then,
for any x and any non-negative 6, fw+5 d(t)dt < 6/v/2m.

Proof. By the mean value theorem, there exists a £ € [z,z + d] such that fm'd (t)dt = ¢(&)0.
Since ¢(z) < ¢(0) = 1/+/2m, the result follows. O

Proposition 7. Let ¢(z) = \/%7 e=%"/2 be the density function for the N(0,1) distribution. Then,
for any x and any non-negative ¢, IIM B(t) dt = 26¢(z) + O(3).

Proof. Let N(z) = [¢(t) dt. Then f“'d #(t)dt = N(z —) — N(z +). By expanding the latter
expression in a Taylor series around z and using the fact that N’ = —¢, we obtain

+o _) N"(&1) N"(&) 3 _ ¢" (&) ¢"(&2)
/z oty dt = —2N'(a)5 — D0 -) g gy 4 N sy TR

—0

for some & € [z — 6, z] and some & € [z,z + 6]. Since ¢” is bounded, the result follows. O

Proposition 8. Let ¢(z) = \/%e—ﬁﬂ be the density function for the N(0,1) distribution and
= [¢(t)dt Then

f ¢(t)dt a—1w22
g = V213

20

