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Abstract. The Fourier Entropy-Influence (FEI) conjecture of Friedgut
and Kalai [1] seeks to relate two fundamental measures of Boolean func-
tion complexity: it states that H[f ] ≤ C · Inf [f ] holds for every Boolean
function f , where H[f ] denotes the spectral entropy of f , Inf [f ] is its
total influence, and C > 0 is a universal constant. Despite significant
interest in the conjecture it has only been shown to hold for a few classes
of Boolean functions.

Our main result is a composition theorem for the FEI conjecture. We
show that if g1, . . . , gk are functions over disjoint sets of variables satis-
fying the conjecture, and if the Fourier transform of F taken with respect
to the product distribution with biases E[g1], . . . ,E[gk] satisfies the con-
jecture, then their composition F (g1(x1), . . . , gk(xk)) satisfies the con-
jecture. As an application we show that the FEI conjecture holds for
read-once formulas over arbitrary gates of bounded arity, extending a
recent result [2] which proved it for read-once decision trees. Our tech-
niques also yield an explicit function with the largest known ratio of
C ≥ 6.278 between H[f ] and Inf [f ], improving on the previous lower
bound of 4.615.

1 Introduction

A longstanding and important open problem in the field of Analysis of Boolean
Functions is the Fourier Entropy-Influence conjecture made by Ehud Friedgut
and Gil Kalai in 1996 [1,3]. The conjecture seeks to relate two fundamental
analytic measures of Boolean function complexity, the spectral entropy and total
influence:

Fourier Entropy-Influence (FEI) Conjecture. There exists a universal con-
stant C > 0 such that for every Boolean function f : {−1, 1}n → {−1, 1}, it holds
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that H[f ] ≤ C · Inf [f ]. That is,

∑
S⊆[n]

f̂(S)2 log2

(
1

f̂(S)2

)
≤ C

∑
S⊆[n]

|S| · f̂(S)2.

Applying Parseval’s identity to a Boolean function f we get
∑
S⊆[n] f̂(S)2 =

E[f(x)2] = 1, and so the Fourier coefficients of f induce a probability distri-
bution Sf over the 2n subsets of [n] wherein S ⊆ [n] has “weight” (probability

mass) f̂(S)2. The spectral entropy of f , denoted H[f ], is the Shannon entropy of
Sf , quantifying how spread out the Fourier weight of f is across all 2n monomi-
als. The influence of a coordinate i ∈ [n] on f is Inf i[f ] = Pr[f(x) 6= f(x⊕i)]3,
where x⊕i denotes x with its i-th bit flipped, and the total influence of f is sim-
ply Inf [f ] =

∑n
i=1 Inf i[f ]. Straightforward Fourier-analytic calculations show

that this combinatorial definition is equivalent to the quantity ES∼Sf [|S|] =∑
S⊆[n] |S| · f̂(S)2, and so total influence measures the degree distribution of the

monomials of f , weighted by the squared-magnitude of its coefficients. Roughly
speaking then, the FEI conjecture states that a Boolean function whose Fourier
weight is well “spread out” (i.e. has high spectral entropy) must have a signifi-
cant portion of its Fourier weight lying on high degree monomials (i.e. have high
total influence).4

In addition to being a natural question concerning the Fourier spectrum of
Boolean functions, the FEI conjecture also has important connections to several
areas of theoretical computer science and mathematics. Friedgut and Kalai’s
original motivation was to understand general conditions under which monotone
graph properties exhibit sharp thresholds, and the FEI conjecture captures the
intuition that having significant symmetry, hence high spectral entropy, is one
such condition. Besides its applications in the study of random graphs, the FEI
conjecture is known to imply the celebrated Kahn-Kalai-Linial theorem [4]:

KKL Theorem. For every Boolean function f there exists an i ∈ [n] such that

Inf i[f ] = Var[f ] ·Ω( logn
n ).

The FEI conjecture also implies Mansour’s conjecture [5]:

Mansour’s Conjecture. Let f be a Boolean function computed by a t-term
DNF formula. For any constant ε > 0 there exists a collection S ⊆ 2[n] of
cardinality poly(t) such that

∑
S∈S f̂(S)2 ≥ 1− ε.

Combined with recent work of Gopalan et al. [6], Mansour’s conjecture yields
an efficient algorithm for agnostically learning the class of poly(n)-term DNF

3 All probabilities and expectations are with respect to the uniform distribution unless
otherwise stated.

4 The assumption that f is Boolean-valued is crucial here, as the same conjecture
is false for functions f : {−1, 1}n → R satisfying

∑
S⊆[n] f̂(S)2 = 1. The canoni-

cal counterexample is f(x) = 1√
n

∑n
i=1 xi which has total influence 1 and spectral

entropy log2 n.
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formulas from queries. This would resolve a central open problem in computa-
tional learning theory [7]. De et al. also noted that sufficiently strong versions of
Mansour’s conjecture would yield improved pseudorandom generators for depth-
2 AC0 circuits [8]. More generally, the FEI conjecture implies the existence of
sparse L2-approximators for Boolean functions with small total influence:

Sparse L2-approximators. Assume the FEI conjecture holds. Then for every
Boolean function f there exists a 2O(Inf [f ]/ε)-sparse polynomial p : Rn → R

such that E[(f(x)− p(x))2] ≤ ε.

By Friedgut’s junta theorem [9], the above holds unconditionally with a

weaker bound of 2O(Inf [f ]2/ε2). This is the main technical ingredient underly-
ing several of the best known uniform-distribution learning algorithms [10,11].

For more on the FEI conjecture we refer the reader to Kalai’s blog post [3].

1.1 Our results

Our research is motivated by the following question:

Question 1. Let F : {−1, 1}k → {−1, 1} and g1, . . . , gk : {−1, 1}` → {−1, 1}.
What properties do F and g1, . . . , gk have to satisfy for the FEI conjecture to
hold for the disjoint composition f(x1, . . . , xk) = F (g1(x1), . . . , gk(xk))?

Despite its simplicity this question has not been well understood. For exam-
ple, prior to our work the FEI conjecture was open even for read-once DNFs
(such as the “tribes” function); these are the disjoint compositions of F = OR
and g1, . . . , gk = AND, perhaps two of the most basic Boolean functions with
extremely simple Fourier spectra. Indeed, Mansour’s conjecture, a weaker con-
jecture than FEI, was only recently shown to hold for read-once DNFs [12,8].
Besides being a fundamental question concerning the behavior of spectral en-
tropy and total influence under composition, Question 1 (and our answer to it)
also has implications for a natural approach towards disproving the FEI conjec-
ture; we elaborate on this at the end of this section.

A particularly appealing and general answer to Question 1 that one may
hope for would be the following: “if H[F ] ≤ C1 · Inf [F ] and H[gi] ≤ C2 · Inf [gi]
for all i ∈ [k], then H[f ] ≤ max{C1, C2} · Inf [f ].” While this is easily seen to
be false5, our main result shows that this proposed answer to Question 1 is in
fact true for a carefully chosen sharpening of the FEI conjecture. To arrive at
a formulation that bootstraps itself, we first consider a slight strengthening of
the FEI conjecture which we call FEI+, and then work with a generalization
of FEI+ that concerns the Fourier spectrum of f not just with respect to the
uniform distribution, but an arbitrary product distribution over {−1, 1}n:

5 For example, by considering F = OR2, the 2-bit disjunction, and g1, g2 = AND2, the
2-bit conjunction.
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Conjecture 1 (FEI+ for product distributions). There is a universal constant
C > 0 such that the following holds. Let µ = 〈µ1, . . . , µn〉 be any sequence
of biases and f : {−1, 1}nµ → {−1, 1}. Here the notation {−1, 1}nµ means that
we think of {−1, 1}n as being endowed with the µ-biased product probability

distribution in which Eµ[xi] = µi for all i ∈ [n]. Let {f̃(S)}S⊆[n] be the µ-biased
Fourier coefficients of f . Then

∑
S 6=∅

f̃(S)2 log

(∏
i∈S(1− µ2

i )

f̃(S)2

)
≤ C · (Infµ[f ]−Var

µ
[f ]).

We write Hµ[f ] to denote the quantity
∑
S⊆[n] f̃(S)2 log

(∏
i∈S(1− µ2

i )/f̃(S)2
)

,

and so the inequality of Conjecture 1 can be equivalently stated as Hµ[f≥1] ≤
C · (Infµ[f ]−Varµ[f ]).

In Proposition 1 we show that Conjecture 1 with µ = 〈0, . . . , 0〉 (the uniform
distribution) implies the FEI conjecture. We say that a Boolean function f
“satisfies µ-biased FEI+ with factor C” if the µ-biased Fourier transform of
f satisfies the inequality of Conjecture 1. Our main result, which we prove in
Section 3, is a composition theorem for FEI+:

Theorem 1. Let f(x1, . . . , xk) = F (g1(x1), . . . , gk(xk)), where the domain of
f is endowed with a product distribution µ. Suppose g1, . . . , gk satisfy µ-biased
FEI+ with factor C1 and F satisfies η-biased FEI+ with factor C2, where η =
〈Eµ[g1], . . . ,Eµ[gk]〉. Then f satisfies µ-biased FEI+ with factor max{C1, C2}.

Theorem 1 suggests an inductive approach towards proving the FEI conjec-
ture for read-once de Morgan formulas: since the dictators ±xi trivially satisfy
uniform-distribution FEI+ with factor 1, it suffices to prove that both AND2 and
OR2 satisfy µ-biased FEI+ with some constant independent of µ ∈ [−1, 1]2. In
Section 4 we prove that in fact every F : {−1, 1}k → {−1, 1} satisfies µ-biased
FEI+ with a factor depending only on its arity k and not the biases µ1, . . . , µk.

Theorem 2. Every F : {−1, 1}k → {−1, 1} satisfies µ-biased FEI+ with factor
C = 2O(k) for any product distribution µ = 〈µ1, . . . , µk〉.

Together, Theorems 1 and 2 imply:

Theorem 3. Let f be computed by a read-once formula over the basis B and µ be
any sequences of biases. Then f satisfies µ-biased FEI+ with factor C, where C
depends only on the arity of the gates in B.

Since uniform-distribution FEI+ is a strengthening of the FEI conjecture,
Theorem 3 implies that the FEI conjecture holds for read-once formulas over
arbitrary gates of bounded arity. As mentioned above, prior to our work the
FEI conjecture was open even for the class of read-once DNFs, a small subclass
of read-once formulas over the de Morgan basis {AND2,OR2,NOT} of arity 2.
Read-once formulas over a rich basis B are a natural generalization of read-once
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de Morgan formulas, and have seen previous study in concrete complexity (see
e.g. [13]).

Improved lower bound on the FEI constant. Iterated disjoint composi-
tion is commonly used to achieve separations between complexity measures for
Boolean functions [14], and represents a natural approach towards disproving
the FEI conjecture. For example, one may seek a function F such that iterated
compositions of F with itself achieves a super-constant amplification of the ratio
between H[F ] and Inf [F ], or consider variants such as iterating F with a dif-
ferent combining function G. Theorem 3 rules out as potential counterexamples
all such constructions based on iterated composition.

However, the tools we develop to prove Theorem 3 also yield an explicit
function f achieving the best-known separation between H[f ] and Inf [f ] (i.e.
the constant C in the statement of the FEI conjecture). In Section 5 we prove:

Theorem 4. There exists an explicit family of functions fn : {−1, 1}n → {−1, 1}
such that

lim
n→∞

H[fn]

Inf [fn]
≥ 6.278.

This improves on the previous lower bound of C ≥ 60/13 ≈ 4.615 [2].

Previous work. The first published progress on the FEI conjecture was by
Klivans et al. who proved the conjecture for random poly(n)-term DNF formulas
[12]. This was followed by the work of O’Donnell et al. who proved the conjecture
for the class of symmetric functions and read-once decision trees [2].

The FEI conjecture for product distributions was studied in the recent work
of Keller et al. [15], where they consider the case of all the biases being the
same. They introduce the following generalization of the FEI conjecture to these
measures, and show via a reduction to the uniform distribution [16] that it is
equivalent to the FEI conjecture:

Conjecture 2 (Keller-Mossel-Schlank). There is a universal constant C such that
the following holds. Let 0 < p < 1 and f : {−1, 1}n → {−1, 1}, where the domain
of f is endowed with the product distribution where Pr[xi = −1] = p for all

i ∈ [n]. Let {f̃(S)}S⊆[n] be the Fourier coefficients of f with respect to this
distribution. Then

∑
S⊆[n]

f̃(S)2 log2

(
1

f̃(S)2

)
≤ C · log(1/p)

1− p
∑
S⊆[n]

|S| · f̃(S)2.

Notice that in this conjecture, the constant on the right-hand side, C · log(1/p)1−p ,
depends on p. By way of contrast, in our Conjecture 1 the right-hand side con-
stant has no dependence on p; instead, the dependence on the biases is built
into the definition of spectral entropy. We view our generalization of the FEI
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conjecture to arbitrary product distributions (where the biases are not necessar-
ily identical) as a key contribution of this work, and point to our composition
theorem as evidence in favor of Conjecture 1 being a good statement to work
with.

2 Preliminaries

Notation. We will be concerned with functions f : {−1, 1}nµ → R where µ =
〈µ1, . . . , µn〉 ∈ [0, 1]n is a sequence of biases. Here the notation {−1, 1}nµ means
that we think of {−1, 1}n as being endowed with the µ-biased product probability
distribution in which Eµ[xi] = µi for all i ∈ [n]. We write σ2

i to denote variance
of the i-th coordinate Varµ[xi] = 1 − µ2

i , and ϕ : R → R as shorthand for
the function t 7→ t2 log(1/t2), adopting the convention that ϕ(0) = 0. We will
assume familiarity with the basics of Fourier analysis with respect to product
distributions over {−1, 1}n; a review is included in Appendix A.

Proposition 1 (FEI+ implies FEI). Suppose f satisfies uniform-distribution
FEI+ with factor C. Then f satisfies the FEI conjecture with factor max{C, 1/ ln 2}.

Proof. Let f̂(∅)2 = 1 − ε, where ε = Var[f ] by Parseval’s identity. By our
assumption that f satisfies uniform-distribution FEI+ with factor C, we have

∑
S⊆[n]

f̂(S)2 log

(∏
i∈S σ

2
i

f̂(S)2

)
≤ C · (Inf [f ]−Var[f ]) + (1− ε) log

1

(1− ε)

≤ C · (Inf [f ]−Var[f ]) +
ε

ln 2

= C · Inf [f ] +

(
1

ln 2
− C

)
·Var[f ].

If C > 1/ ln 2 then the RHS is at most C · Inf [f ] since ( 1
ln 2 − C) · Var[f ] is

negative. Otherwise we apply the Poincaré inequality (Theorem 7) to conclude
that the RHS is at most C · Inf [f ] + ( 1

ln 2 − C) · Inf [f ] = 1
ln 2 · Inf [f ].

3 Composition theorem for FEI+

We will be concerned with compositions of functions f = F (g1(x1), . . . , gk(xk))
where g1, . . . , gk are over disjoint sets of variables each of size `. The domain of
each gi is endowed with a product distribution µi = 〈µi1, . . . , µi`〉, which induces
an overall product distribution µ = 〈µ1

1, . . . , µ
1
` , . . . , µ

k
1 , . . . , µ

k
` 〉 over the domain

of f : {−1, 1}k` → {−1, 1}. For notational clarity we will adopt the equivalent
view of g1, . . . , gk as functions over the same domain {−1, 1}k`µ endowed with
the same product distribution µ, with each gi depending only on ` out of k`
variables.

Our first lemma gives formulas for the spectral entropy and total influence
of the product of functions Φ1, . . . , Φk over disjoint sets of variables. The lemma
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holds for real-valued functions Φi; we require this level of generality as we will
not be applying the lemma directly to the Boolean-valued functions g1, . . . , gk in
the composition F (g1(x1), . . . , gk(xk)), but instead to their normalized variants
Φ(gi) = (gi −E[gi])/Var[gi]

1/2.

Lemma 1. Let Φ1, . . . , Φk : {−1, 1}k`µ → R where each Φi depends only on the
` coordinates in {(i− 1)`+ 1, . . . , i`}. Then

Hµ[Φ1 · · ·Φk] =

k∑
i=1

Hµ[Φi]
∏
j 6=i

E
µ

[Φ2
j ] and Infµ[Φ1 · · ·Φk] =

k∑
i=1

Infµ[Φi]
∏
j 6=i

E
µ

[Φ2
j ].

Due to space considerations we defer the proof of Lemma 1 to Appendix
B. We note that this lemma recovers as a special case the folklore observation
that the FEI conjecture “tensorizes”: for any f if we define f⊕k(x1, . . . , xk) =
f(x1) · · · f(xk) then H[f⊕k] = k · H[f ] and Inf [f⊕k] = k · Inf [f ]. Therefore
H[f ] ≤ C · Inf [f ] if and only if H[f⊕k] ≤ C · Inf [f⊕k].

Our next proposition relates the basic analytic measures – spectral entropy,
total influence, and variance – of a composition f = F (g1(x1), . . . , gk(xk)) to
the corresponding quantities of the combining function F and base functions
g1, . . . , gk. As alluded to above, we accomplish this by considering f as a linear
combination of the normalized functions Φ(gi) = (gi − E[gi])/Var[gi]

1/2 and
applying Lemma 1 to each term in the sum. We mention that this proposition
is also the crux of our new lower bound of C ≥ 6.278 on the constant of the FEI
conjecture, which we present in Section 5.

Proposition 2. Let F : {−1, 1}k → R, and g1, . . . , gk : {−1, 1}k`µ → {−1, 1}
where each gi depends only on the ` coordinates in {(i − 1)` + 1, . . . , i`}. Let

f(x) = F (g1(x), . . . , gk(x)) and {F̃ (S)}S⊆[k] be the η-biased Fourier coefficients
of F where η = 〈Eµ[g1]), . . . ,Eµ[gk]〉. Then

Hµ[f≥1] = Hη[F≥1] +
∑
S 6=∅

F̃ (S)2
∑
i∈S

Hµ[g≥1i ]

Varµ[gi]
, (1)

Infµ[f ] =
∑
S 6=∅

F̃ (S)2
∑
i∈S

Infµ[gi]

Varµ[gi]
, and (2)

Varµ[f ] =
∑
S 6=∅

F̃ (S)2 = Varη[F ]. (3)

Proof. By the η-biased Fourier expansion of F : {−1, 1}kη → R and the definition
of η we have

F (y1, . . . , yk) =
∑
S⊆[n]

F̃ (S)
∏
i∈S

yi − ηi√
1− η2i

=
∑
S⊆[n]

F̃ (S)
∏
i∈S

yi −Eµ[gi]

Varµ[gi]1/2
,

so we may write

F (g1(x), . . . , gk(x)) =
∑
S⊆[n]

F̃ (S)
∏
i∈S

Φ(gi(x)), where Φ(gi(x)) =
gi(x)−Eµ[gi]

Varµ[gi]1/2
.
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Note that Φ normalizes gi such that Eµ[Φ(gi)] = 0 and Eµ[Φ(gi)
2] = 1. First we

claim that

Hµ[f≥1] = Hµ

[∑
S 6=∅

F̃ (S)
∏
i∈S

Φ(gi)

]
=
∑
S 6=∅

Hµ
[
F̃ (S)

∏
i∈S

Φ(gi)
]
.

It suffices to show that for any two distinct non-empty sets S, T ⊆ [k], no mono-

mial φµU occurs in the µ-biased spectral support of both F̃ (S)
∏
i∈S Φ(gi) and

F̃ (T )
∏
i∈T Φ(gi). To see this recall that Φ(gi) is balanced with respect to µ (i.e.

Eµ[Φ(gi)] = Eµ[Φ(gi)φ
µ
∅ ] = 0), and so every monomial φµU in the support of

F̃ (S)
∏
i∈S Φ(gi) is of the form

∏
i∈S φ

µ
Ui

where Ui is a non-empty subset of the
relevant variables of gi (i.e. {(i − 1)` + 1, . . . , i`}); likewise for monomials in

the support of F̃ (T )
∏
i∈T Φ(gi). In other words the non-empty subsets of [k]

induce a partition of the µ-biased Fourier support of f , where φµU is mapped to
∅ 6= S ⊆ [k] if and only if U contains a relevant variable of gi for every i ∈ S and
none of the relevant variables of gj for any j /∈ S.

With this identity in hand we have

Hµ[f≥1] =
∑
S 6=∅

Hµ
[
F̃ (S)

∏
i∈S

Φ(gi)
]

=
∑
S 6=∅

ϕ(F̃ (S)) + F̃ (S)2
∑
i∈S

Hµ[Φ(gi)].

=
∑
S 6=∅

ϕ(F̃ (S)) + F̃ (S)2
∑
i∈S

(
Hµ[gi −Eµ[gi]]

Varµ[gi]
+ ϕ

(
1

Varµ[gi]1/2

)
Var
µ

[gi]

)

= Hη[F≥1] +
∑
S 6=∅

F̃ (S)2
∑
i∈S

Hµ[g≥1i ]

Varµ[gi]
,

where the second and third equalities are two applications of Lemma 1 (for the

second equality we view F̃ (S) as a constant function with Hµ[F̃ (S)] = ϕ(F̃ (S))).
By the same reasoning, we also have

Infµ[f ] =
∑
S 6=∅

Infµ
[
F̃ (S)

∏
i∈S

Φ(gi(x
i))
]

=
∑
S 6=∅

F̃ (S)2
∑
i∈S

Infµ[Φ(gi)]

=
∑
S 6=∅

F̃ (S)2
∑
i∈S

Infµ[gi]

Varµ[gi]
.

Here the second equality is by Lemma 1, again viewing F̃ (S) as a constant func-

tion with Infµ[F̃ (S)] = 0, and the third equality uses the fact that Infµ[αf ] =
α2 · Infµ[f ] and Infµ[gi −Eµ[gi]] = Infµ[gi]. Finally we see that

Varµ[f ] =
∑
S 6=∅

Varµ

[
F̃ (S)

∏
i∈S

Φ(gi)
]

=
∑
S 6=∅

F̃ (S)2
∏
i∈S

Varµ[Φ(gi)] =
∑
S 6=∅

F̃ (S)2,
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where the last quantity is Varη[F ]. Here the second equality uses the fact that
the functions Φ(gi) are on disjoint sets of variables (and therefore statistically
independent when viewed as random variables), and the third equality holds
since Varµ[Φ(gi)] = E[Φ(gi)

2]−E[Φ(gi)]
2 = 1.

We are now ready to prove our main theorem:

Theorem 1. Let F : {−1, 1}k → R, and g1, . . . , gk : {−1, 1}k`µ → {−1, 1}
where each gi depends only on the ` coordinates in {(i − 1)` + 1, . . . , i`}. Let
f(x) = F (g1(x), . . . , gk(x)) and suppose C > 0 satisfies

1. Hµ[g≥1i ] ≤ C · (Infµ[gi]−Varµ[gi]) for all i ∈ [k].
2. Hη[F≥1] ≤ C · (Infη[F ]−Varη[F ]), where η = 〈Eµ[g1], . . . ,Eµ[gk]〉.

Then Hµ[f≥1] ≤ C · (Infµ[f ]−Varµ[f ]).

Proof. By our first assumption each gi satisfies Infµ[gi] ≥ 1
CHµ[g≥1]+Varµ[gi],

and so combining this with equation (2) of Proposition 2 we have

Infµ[f ] =
∑
S 6=∅

F̃ (S)2
∑
i∈S

Infµ[gi]

Varµ[gi]
≥
∑
S 6=∅

F̃ (S)2
∑
i∈S

(
Hµ[g≥1i ]

CVarµ[gi]
+ 1

)

= Infη[F ] +
1

C

∑
S 6=∅

F̃ (S)2
∑
i∈S

Hµ[g≥1i ]

Varµ[gi]
(4)

This along with equations (1) and (3) of Proposition 2 completes the proof:

Hµ[f≥1] = Hη[F≥1] +
∑
S 6=∅

F̃ (S)2
∑
i∈S

Hµ[g≥1i ]

Varµ[gi]

≤ C · (Infη[F ]−Varη[F ]) +
∑
S 6=∅

F̃ (S)2
∑
i∈S

Hµ[g≥1i ]

Varµ[gi]

≤ C · (Infµ[f ]−Varη[F ]) = C · (Infµ[f ]−Varµ[f ]).

Here the first equality is by (1), the first inequality by our second assumption,
the second inequality by (4), and finally the last identity by (3).

4 Distribution-independent bound for FEI+

In this section we prove that µ-biased FEI+ holds for all Boolean functions
F : {−1, 1}kµ → {−1, 1} with factor C independent of the biases µ1, . . . , µk of
µ. When µ = 〈0, . . . 0〉 is the uniform distribution it is well-known that the
FEI conjecture holds with factor C = O(log k), and a bound of C ≤ 2k is
trivial since Inf [F ] is always an integer multiple of 2−k and H[F ] ≤ 1; neither
proofs carry through to the setting of product distributions. We remark that even
verifying the seemingly simple claim “there exists a universal constant C such
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that Hµ[MAJ3] ≤ C · (Infµ[MAJ3] −Varµ[MAJ3]) for all product distributions
µ ∈ [0, 1]3”, where MAJ3 the majority function over 3 variables, turns out to be
technically cumbersome.

The high-level strategy is to bound each of the 2k − 1 terms of Hµ[F≥1]
separately; due to space considerations we defer the proof the main lemma to
Appendix B.

Lemma 2. Let F : {−1, 1}kµ → {−1, 1}. Let S ⊆ [k], S 6= ∅, and suppose

F̃ (S) 6= 0. For any j ∈ S we have

F̃ (S)2 log

(∏
i∈S σ

2
i

F̃ (S)2

)
≤ 22k

ln 2
·Var

µ
[Dφµj

F ].

Theorem 2. Let F : {−1, 1}kµ → {−1, 1}. Then

Hµ[F≥1] ≤ 2O(k) · (Infµ[F ]−Varµ[F ]).

Proof. The claim can be equivalently stated as Hµ[F≥1] ≤ 2O(k)
∑n
i=1 Varµ[Dφµi

F ],
since

n∑
i=1

Var[Dφµi
F ] =

∑
|S|≥2

|S|·F̃ (S)2 ≤ 2
∑
|S|≥2

(|S|−1)·F̃ (S)2 = 2·(Infµ[F ]−Varµ[F ]).

By Lemma 2, for every S 6= ∅ that contributes ϕ(F̃ (S)) to Hµ[F≥1] we have

ϕ(F̃ (S)) ≤ 2O(k) Varµ[Dφµj
F ], where j is any element of S. Summing over all

2k − 1 non-empty subsets S of [k] completes the proof.

4.1 FEI+ for read-once formulas

Finally, we combine our two main results so far, the composition theorem (Theo-
rem 1) and the distribution-independent universal bound (Theorem 2), to prove
Conjecture 1 for read-once formulas with arbitrary gates of bounded arity.

Definition 1. Let B be a set of Boolean functions. We say that a Boolean func-
tion f is a formula over the basis B if f is computable a formula with gates
belonging to B. We say that f is a read-once formula over B if every variable
appears at most once in the formula for f .

Corollary 1. Let C > 0 and B be a set of Boolean functions, and suppose
Hµ[F ] ≤ C · (Infµ[F ] − Varµ[F ]) for all F ∈ B and product distributions µ.
Let C be the class of read-once formulas over the basis B. Then Hµ[f ] ≤ C ·
(Infµ[f ]−Varµ[f ]) for all f ∈ C and product distributions µ.

Proof. We proceed by structural induction on the formula computing f . The
base case holds since the µ-biased Fourier expansion of the dictator x1 and anti-
dictator −xi is ±(µ1 + σ1φ

µ
1 (x)) and so Hµ[f≥1] = f̃({1})2 log(σ2

1/f̃({1})2) =
σ2
1 log(σ2

1/σ
2
1) = 0.

10



For the inductive step, suppose f = F (g1, . . . , gk), where F ∈ B and g1, . . . , gk
are read-once formulas over B over disjoint sets of variables. Let µ be any prod-
uct distribution over the domain of f . By our induction hypothesis we have
Hµ[g≥1i ] ≤ C · (Infµ[gi] − Varµ[gi]) for all i ∈ [k], satisfying the first require-
ment of Theorem 1. Next, by our assumption on F ∈ B, we have Hη[F≥1] ≤
C · (Infη[F ] −Varη[F ]) for all product distributions η, and in particular, η =
〈Eµ[g1], . . . ,Eµ[gk]〉, satisfying the second requirement of Theorem 1. Therefore,
by Theorem 1 we conclude that Hµ[f ] ≤ C · (Infµ[f ]−Varµ[f ]).

By Theorem 2, for any set B of Boolean functions with maximum arity k and
product distribution µ, every F ∈ B satisfies Hµ[F ] ≤ 2O(k) ·(Infµ[F ]−Varµ[q]).
Combining this with Corollary 1 yields the following:

Theorem 3. Let B be a set of Boolean functions with maximum arity k, and
C be the class of read-once formulas over the basis B. Then Hµ[f ] ≤ 2O(k) ·
(Infµ[f ]−Varµ[f ]) for all f ∈ C and product distributions µ.

5 Lower bound on the constant of the FEI conjecture

The tools we develop in this paper also yield an explicit function f achieving the
best-known ratio between H[f ] and Inf [f ] (i.e. a lower bound on the constant
C in the FEI conjecture). We will use the following special case of Proposition
2 on the behavior of spectral entropy and total influence under composition:

Lemma 3 (Amplification lemma). Let F : {−1, 1}k → {−1, 1} and g :
{−1, 1}` → {−1, 1} be balanced Boolean functions. Let f0 = g, and for all m ≥ 1,
define fm = F (fm−1(x1), . . . , fm−1(xk)). Then

H[fm] = H[g] · Inf [F ]m + H[F ] · Inf [F ]m − 1

Inf [F ]− 1

Inf [fm] = Inf [g] · Inf [F ]m.

In particular, if F = g we have

H[fm]

Inf [fm]
=

H[F ]

Inf [F ]
+

H[F ]

Inf [F ](Inf [F ]− 1)
− H[F ]

Inf [F ]m+1(Inf [F ]− 1)
.

Proof. Since the composition of a balanced function with another remains bal-
anced, we have the recurrence relations H[fm] = H[fm−1] · Inf [F ] + H[F ] and
H[fm] = H[fm−1] ·Inf [F ]+H[F ] as special cases of Proposition 2. Solving them
yields the claim.

Theorem 4. There exists an infinite family of functions fm : {−1, 1}6m →
{−1, 1} such that limm→∞H[fm]/Inf [fm] ≥ 6.278944.

Proof. Let

g = (x1∧x2∧x3)∨(x1∧x2∧x4)∨(x1∧x2∧x5∧x6)∨(x1∧x2∧x3)∨(x1∧x2∧x4∧x5).

11



It can be checked that g is a balanced function with H[F ] ≥ 3.92434 and
Inf [F ] = 1.625. Applying Lemma 3 with F = g, we get

lim
m→∞

H[fm]

Inf [fm]
≥ 3.92434

1.625
+

3.92434

1.625× 0.625
= 6.278944.
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A Biased Fourier Analysis

Theorem 5 (Fourier expansion). Let µ = 〈µ1, . . . , µn〉 be a sequence of bi-
ases. The µ-biased Fourier expansion of f : {−1, 1}n → R is

f(x) =
∑
S⊆[n]

f̃(S)φµS(x),

where

φµS(x) =
∏
i∈S

xi − µi
σi

and f̃(S) = E
µ

[f(x)φµS(x)],

and σ2
i = Varµ[xi] = 1− µ2

i .

The µ-biased spectral support of f is the collection S ⊆ 2[n] of subsets S ⊆ [n]

such that f̃(S) 6= 0. We write f≥k to denote
∑
|S|≥k f̃(S)φµS(x), the projection

of f onto its monomials of degree at least k.

Theorem 6 (Parseval’s identity). Let f : {−1, 1}nµ → R. Then
∑
S⊆[n] f̃(S)2 =

Eµ[f(x)2]. In particular, if the range of f is {−1, 1} then
∑
S⊆[n] f̃(S)2 = 1.

Definition 2 (Influence). Let f : {−1, 1}nµ → R. The influence of variable
i ∈ [n] on f is Infµi [f ] = Eρ[Varµi [fρ]], where ρ is a µ-biased random restric-
tion to the coordinates in [n]\{i}. The total influence of f , denoted Infµ[f ], is∑n
i=1 Infµi [f ].

We recall a few basic Fourier formulas. The expectation of f is given by
Eµ[f ] = f̃(∅) and its variance Varµ[f ] =

∑
S 6=∅ f̃(S)2. For each i ∈ [n], Infµi [f ] =∑

S3i f̃(S)2 and so Infµ[f ] =
∑
S⊆[n] |S| · f̃(S)2. We omit the sub- and super-

scripts when µ = 〈0, . . . , 0〉 is the uniform distribution. Comparing the Fourier
formulas for variance and total influence yields the Poincaré inequality for func-
tions f : {−1, 1}nµ → R:

Theorem 7 (Poincaré inequality). Let f : {−1, 1}nµ → R. Then Infµ[f ] ≤
Varµ[f ].

Recall that the i-th discrete derivative operator for f : {−1, 1}n → {−1, 1}
is defined to be

Dxi(x) = 1
2

(
f(xi←1)− f(xi←−1)

)
,

and for S ⊆ [n] we write DxSf to denote ◦i∈SDxif .

Definition 3 (Discrete derivative). The i-th discrete derivative operator Dφµi
with respect to the µ-biased product distribution on {−1, 1}n is defined by Dφµi

f(x) =
σiDxif(x).

With respect to the µ-biased Fourier expansion of f : {−1, 1}nµ → R the
operator Dφµi

satisfies

Dφµi
f =

∑
S3i

f̃(S)φµS ,

and so for any S ⊆ [n] we have f̃(S) = E[◦i∈SDφµi
f ] =

∏
i∈S σi Eµ[(DxSf)].
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B Omitted Proofs

Lemma 1. Let Φ1, . . . , Φk : {−1, 1}k`µ → R where each Φi depends only on the
` coordinates in {(i− 1)`+ 1, . . . , i`}. Then

Hµ[Φ1 · · ·Φk] =

k∑
i=1

Hµ[Φi]
∏
j 6=i

E
µ

[Φ2
j ] and Infµ[Φ1 · · ·Φk] =

k∑
i=1

Infµ[Φi]
∏
j 6=i

E
µ

[Φ2
j ].

Proof. We prove both formulas by induction on k, noting that the bases cases
are trivially true. For the inductive step, we define h(x) =

∏
i∈[k−1] Φi(x) and

see that

Hµ[h · Φk] =
∑

S⊆[(k−1)`]
T⊆{(k−1)`+1,...k`}

h̃(S)2Φ̃k(T )2 log

( ∏
i∈S∪T σ

2
i

h̃(S)2Φ̃k(T )2

)

=
∑
S,T

h̃(S)2Φ̃k(T )2

[
log

(∏
i∈S σ

2
i

h̃(S)2

)
+ log

(∏
i∈T σ

2
i

Φ̃k(T )2

)]
= E

µ
[h2] ·Hµ[Φk] + E

µ
[Φ2
k] ·Hµ[h]

=
∏

i∈[k−1]

E
µ

[Φ2
i ] ·Hµ[Φk] + E

µ
[Φ2
k]

k−1∑
i=1

Hµ[Φi]
∏
j 6=i

E
µ

[Φ2
j ]


=

k∑
i=1

Hµ[Φi]
∏
j 6=i

E
µ

[Φ2
j ].

Here in the first equality we use the fact that if f : {−1, 1}nµ → R does not depend

on coordinate i ∈ [n] then f̃(S) = 0 for all S 3 i (i.e. the Fourier spectrum of
f is supported on sets containing only its relevant variables). The third equality
is by Parseval’s, and the fourth by the induction hypothesis applied to h.

The formula for influence follows from a similar derivation:

Infµ[h · Φk] =
∑

S⊆[(k−1)`]
T⊆{(k−1)`+1,...k`}

|S ∪ T | · h̃(S)2Φ̃k(T )2

=
∑
S,T

|T | · h̃(S)2Φ̃k(T )2 +
∑
S,T

|S| · h̃(S)2Φ̃k(T )2

= E
µ

[h2] · Infµ[Φk] + E
µ

[Φ2
k] · Infµ[h]

=
∏

i∈[k−1]

E
µ

[Φ2
i ] · Infµ[Φk] + E

µ
[Φ2
k]

k−1∑
i=1

Infµ[Φi]
∏
j 6=i

E
µ

[Φ2
j ]


=

k∑
i=1

Infµ[Φi]
∏
j 6=i

E
µ

[Φ2
j ],

14



and this completes the proof.

Lemma 2. Let F : {−1, 1}kµ → {−1, 1}. Let S ⊆ [k], S 6= ∅, and suppose

F̃ (S) 6= 0. For any j ∈ S we have

F̃ (S)2 log

(∏
i∈S σ

2
i

F̃ (S)2

)
≤ 22k

ln 2
·Var

µ
[Dφµj

F ].

Proof. Recall that F̃ (S) = Eµ[◦i∈SDφµi
f ] =

∏
i∈S σi Eµ[DxSf ], and so

F̃ (S)2 log

(∏
i∈S σ

2
i

F̃ (S)2

)
=
∏
i∈S

σ2
i ·E

µ
[DxSF ]2 log

(
1

E[DxSF ]2

)
≤ 1

ln 2

∏
i∈S

σ2
i ·
∣∣E
µ

[DxSF ]
∣∣

≤ 1

ln 2

∏
i∈S

σ2
i Pr
µ

[DxSF 6= 0].

Here the first inequality holds since t2 log(1/t2) ≤ t/ ln(2) for all t ∈ R+, and the
second uses the fact that DxSF is bounded within [−1, 1]. Therefore it suffices
to argue that∏
i∈S

σ2
i Pr
µ

[DxSF 6= 0] ≤ 22k ·Var
µ

[Dφµj
F ]

= 22kσ2
j ·Var

µ
[DjF ]

= 22kσ2
j E
y∈{−1,1}[n]\S

[
E

z∈{−1,1}S\{j}

[
((DjF )|y(z)− µ)2

]]
,

where µ = E[DjF ] and (DjF )|y denotes the restriction of DjF where the coor-
dinates in [n]\S are set according to y. We first rewrite the desired inequality
above as 2−2k

∏
i∈S\{j}

σ2
i

 E
y∈{−1,1}[n]\S

[1DxSF (y)6=0]

≤ E
y∈{−1,1}[n]\S

[
E

z∈{−1,1}S\{j}

[
((DjF )|y(z)− µ)2

]]
and argue that this holds point-wise: for every y ∈ [n]\S such that DxSF (y) 6= 0,

E
[
((DjF )|y(z)− µ)2

]
≥ 2−2k

∏
i∈S\{j}

σ2
i .

To see this, fix y ∈ {−1, 1}[n]\S such that (DxSF )(y) 6= 0. Viewing (DxSF ) as
(DxS\{j}DjF ), it follows that (DjF )|y is non-constant. Since (DjF )|y takes val-
ues in {−1, 0, 1}, there must exist some z∗ ∈ {−1, 1}S\{j} such that |(DjF )|y(z∗)−
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µ| ≥ 1
2 and so indeed

E
[
((DjF )|y(z)− µ)2

]
≥
(

1

2

)2

Pr[z = z∗]

=
1

4

∏
i∈S\{j}

1± µi
2

≥ 1

4

∏
i∈S\{j}

σ2
i

4
≥ 2−2k

∏
i∈S\{j}

σ2
i .

16


	A composition theorem for the Fourier Entropy-Influence conjecture

