
k+ DECISION TREES

JAMES ASPNES 1 AND ERIC BLAIS 2 AND MURAT DEMIRBAS 3 AND RYAN O’DONNELL 2 AND
ATRI RUDRA 3 AND STEVE UURTAMO 3

1 Department of Computer Science, Yale University, New Haven, CT 06520.
E-mail address, J. Aspnes: aspnes@cs.yale.edu

2 Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
E-mail address, E. Blais: eblais@cs.cmu.edu

E-mail address, R. O’Donnell: odonnell@cs.cmu.edu

3 Department of Computer Science and Engineering, University at Buffalo, State University of New York,
Buffalo, NY, 14260.
E-mail address, M. Demirbas: demirbas@buffalo.edu

E-mail address, A. Rudra: atri@buffalo.edu

E-mail address, S. Uurtamo: uurtamo@buffalo.edu

Abstract. Consider a wireless sensor network in which each node possesses a bit of information.
Suppose all sensors with the bit 1 broadcast this fact to a central processor. If zero or one sensors
broadcast, the central processor can detect this fact. If two or more sensors broadcast, the central
processor can only detect that there is a “collision.” Although collisions may seem to be a nuisance,
they can in some cases help the central processor compute an aggregate function of the sensors’
data.

Motivated by this scenario, we study a new model of computation for boolean functions: the
2+ decision tree. This model is an augmentation of the standard decision tree model: now each
internal node queries an arbitrary set of literals and branches on whether 0, 1, or at least 2 of the
literals are true. This model was suggested in a work of Ben-Asher and Newman but does not seem
to have been studied previously.

Our main result shows that 2+ decision trees can “count” rather effectively. Specifically, we
show that zero-error 2+ decision trees can compute the threshold-of-t symmetric function with O(t)
expected queries (and that Ω(t) is a lower bound even for two-sided error 2+ decision trees). Inter-
estingly, this feature is not shared by 1+ decision trees, demonstrating that “collisions can help.”
Our result implies that the natural generalization to k+ decision trees does not give much more
power than 2+ decision trees. We also prove a lower bound of Ω̃(t) · log(n/t) for the deterministic
2+ complexity of the threshold-of-t function, demonstrating that the randomized 2+ complexity
can in some cases be unboundedly better than deterministic 2+ complexity.

Finally, we generalize the above results to arbitrary symmetric functions, and we discuss the
relationship between k+ decision trees and other complexity notions such as decision tree rank and
communication complexity.

Key words and phrases: Decision trees, complexity, symmetric functions, balls and bins, lower bounds.
R.O. is supported in part by NSF grants CCF-0747250 and CCF-0915893, a Sloan fellowship, and an Okawa

fellowship. A.R. and S.U. are supported in part by NSF CAREER grant CCF-0844796.

c© J. Aspnes, E. Blais, M. Demirbas, R. O’Donnell, A. Rudra, and S. Uurtamo

0

k+ DECISION TREES 1

1. Introduction

Decision trees provide an elegant framework for studying the complexity of boolean functions.
The internal nodes of a decision tree are associated with tests on the input; the branches leaving a
node correspond to the outcomes of the associated test; and, the leaves of the tree are labeled with
output values. The main parameter of interest is the depth of the decision tree; i.e., the maximum
number of tests made over all inputs. The decision tree complexity of a particular boolean function
is defined to be the minimum of this parameter over all decision trees computing the function.

We can define different decision tree models by restricting the set of tests that can be performed
at each internal node. In the simple decision tree model, each test queries the value of a single bit
of the input. This standard model is extremely well-studied in theoretical computer science; see
e.g. the survey of Buhrman and de Wolf [6]. Other models include linear decision trees, where the
tests are signs of linear forms on the bits (see, e.g., [9]); algebraic decision trees, the generalization
to signs of low-degree polynomials (see, e.g., [4]); k-AND decision trees [5], where the tests are
ANDs of up to k literals; k-bounded decision trees [16], the generalization to arbitrary functions of
up to k bits; and F2-linear decision trees [14], where the tests are parities of sets of input bits.

Closer to the interests of the present article are models where the tests are threshold functions of
the input bits. When the tests can be ORs of input variables, the model is known as combinatorial
group testing (see the book [10]). When the tests can count and branch on the number of inputs in
any subset of variables, the model is connected to that of combinatorial search (see the book [1]).
Finally, when the tests allowed are ORs of any subset of input literals, we have the decision tree
model studied by Ben-Asher and Newman [3]. We call this last model the 1+ decision tree model.

In this article, we initiate the study of the 2+ decision tree model. The tests in this model
are on arbitrary subsets of the n input literals, and the branches correspond to the cases of either
0, 1, or at least 2 literals in the subset being true. (We will give a formal definition in Sec-
tion 2.1.) We also introduce and examine the k+ decision tree model, a natural generalization of
the 2+ model in which the branches correspond to 0, 1, 2, . . . , k−1, or at least k literals being true.

Organization of the article. We defer the statement of our main results to Section 3, in order
to first describe our motivation for studying 2+ decision trees and introduce formal definitions of
our models. We prove our main results in Sections 4 and 5, and we present other results from the
full version of this article in Section 6.

Motivation. Our original motivation for considering 2+ decision trees came from an application in
wireless sensor networks. Consider the scenario where n sensor nodes can communicate directly with
a central node (i.e., a “single-hop” network). Further, each node contains one bit of information
(e.g., “Is the temperature more than 70◦F?”) and the central node wants to compute some aggregate
function over this information (e.g., “Is the temperature more than 70◦F for at least 10 of the
sensors?”). How efficiently can the central node compute the aggregate function? The naive way
to compute the aggregate function is to query each sensor node individually; with this approach,
the number of queries required for the central node to compute the aggregate function is bounded
below by the simple decision tree complexity of the function.

A better solution is to use the broadcast primitive available in wireless networks. With a single
broadcast message, the central node may simultaneously ask all the nodes if their bit is 1. If the
central node does not hear back any reply, it learns that all the sensor nodes’ bits are 0. If it does
hear a reply, then it knows that at least one of the sensors’ bits is a 1. The complexity of computing
the aggregate function with this approach is now determined by the 1+ decision tree complexity of
the function.

It is possible to make even better use of the broadcast primitive. When the central node has
made a query and is listening for replies, there are three possible scenarios: either 0, 1, or at least
2 sensor nodes reply. In the first two cases, the outcome is clear. In the latter case, there will be

2 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

a collision in the sensors’ replies. Conventional wisdom says that collisions are bad, and in fact
protocols in wireless networks try to disambiguate collisions. In this scenario, however, collisions
provide useful information: if the algorithm at the central node does not try to avoid collisions but
instead uses them to determine when at least 2 sensors have replied, the complexity of computing
the aggregate function is determined by the 2+ decision tree complexity of the function. Indeed,
there has been recent work in using existing wireless sensor nodes to detect collisions and using
this capability to design more efficient protocols [7, 8].

A similar motivation for 2+ decision trees appears in the work of Ben-Asher and Newman [3].
They were concerned with the PRAM model of parallel computation with n processors and a one-
bit CRCW memory cell. This led naturally to the 1+ model of computation, which Ben-Asher
and Newman studied. The authors also mentioned that an Ethernet channel scenario — say, a
single bus Ethernet network where the controller can detect any collisions in the network — yields
a computational model equivalent to our 2+ decision trees, but left the study of this model as an
open problem.

2. Preliminaries

2.1. Definitions

In this article, we are concerned with boolean functions; i.e., functions of the form f : {0, 1}n →
{0, 1}. We write a typical input as x = (x1, . . . , xn) ∈ {0, 1}n, and write |x| for its Hamming weight,
namely

∑n
i=1 xi. We also use the notation [n] = {1, . . . , n} and log(m) = max{log2(m), 1}.

A boolean function f : {0, 1}n → {0, 1} is monotone if f(x) > f(y) whenever x > y coordinate-
wise. A function f is (totally) symmetric if the value of f(x) is determined by |x|. When f is
symmetric, we write f0, f1, . . . , fn ∈ {0, 1} for the values of the function on inputs of Hamming
weight 0, 1, . . . n, respectively. The functions which are both monotone and symmetric are the
threshold functions. Given 0 6 t 6 n + 1, the t-threshold function T tn : {0, 1}n → {0, 1} is defined
by T tn(x) = 1 iff |x| > t.

For an arbitrary symmetric function f we recall the integer parameter Γ(f), first introduced
by Paturi [18], and related to the longest interval centered around n/2 on which f is constant:

Γ(f) = min
06`6dn/2e

{` : f` = f`+1 = · · · = fn−`}.

E.g., for the threshold functions we have Γ(T tn) = min{t, n+ 1− t}.

k+ decision trees. Let 1 6 k 6 n be integers. A k+ decision tree T over n-bit inputs is a tree
in which every leaf has a label from {0, 1}, every internal node is labeled with two disjoint subsets
Qpos, Qneg ⊆ [n], and the internal nodes have k + 1 outgoing edges labeled 0, 1, . . . , k − 1, and k+.
Every internal node is also called a query ; the corresponding sets Qpos and Qneg are called the
positive query set and negative query set. Given a boolean input x = (x1, . . . , xn) ∈ {0, 1}n, the
computation of T on x begins at the root of T . If that node is labeled by (Qpos, Qneg), computation
proceeds along the edge labeled 0, 1, . . . , k−1, or k+ according to Hamming weight of the literal set
{xi : i ∈ Qpos} ∪ {xj : j ∈ Qneg}; i.e.,

∑
i∈Qpos

xi +
∑

j∈Qneg
xj . The label k+ has the interpretation

“at least k.” The computation of T on x then proceeds recursively at the resulting child node. When
a leaf node is reached, the tree’s output on x, denoted by T (x), is the label of the leaf node. T is said
to compute (or decide) a function f : {0, 1}n → {0, 1} if and only if T (x) = f(x) for all x ∈ {0, 1}n.
The cost of T on x, denoted cost(T, x), is the length of the path traced by the computation of T on
x. The depth of the tree T is the maximum cost over all inputs. The deterministic k+ decision tree
complexity of a boolean function f , denoted D(k+)(f), is the minimum depth of any k+ decision
tree that computes it.

k+ DECISION TREES 3

As usual, we also introduce randomized k+ decision trees. Formally, these are probabil-
ity distributions P over deterministic k+ decision trees. The expected cost of P on input x is
ET∼P [cost(T, x)]. The expected cost of P itself is the maximum expected cost over all inputs x.
Given a boolean function f : {0, 1}n → {0, 1}, the error of P on input x is PrT∼P [T (x) 6= f(x)].
We say that P computes f with zero error if this error is 0 for all inputs x (in particular, each
deterministic T in the support of P must compute f). We say that P computes f with two-sided
error if the error is at most 1/3 for all inputs x. Note that both the expected cost measure and
the error measure are worst-case over all inputs; we do not consider distributional complexity in
this article. The zero (respectively, two-sided) error randomized k+ decision tree complexity of a
boolean function f , denoted R

(k+)
0 (f) (respectively, R(k+)

2 (f)), is the minimum expected cost over
all distributions P which compute f with zero (respectively, two-sided) error. In this work, our
randomized upper bounds will be for zero error k+ computation and our randomized lower bounds
for two-sided error.

We conclude by noting that the simple decision tree model can be thought of as the 1+ model
with the extra restriction that the query sets Qpos and Qneg satisfy |Qpos ∪Qneg| = 1 at each node.
As is standard, we use the notation D(f), R0(f), and R2(f) for the associated deterministic, zero
error, and two-sided error complexities.

2.2. Related work

Our main results concern the complexity of symmetric functions under the 2+ decision tree
model, as well as the relation between the deterministic, zero-error randomized, and two-sided error
randomized complexities of functions under the k+ decision tree model. In this section, we review
some of the work done on similar problems in the simple and 1+ decision tree models.

Simple decision trees. The computation of totally symmetric functions is not interesting in
the simple decision tree model; it’s easy to see that for nonconstant totally symmetric f we have
D(f) = n (and it’s also known [17] that even R2(f) > Ω(n)). But some of the most interesting open
problems in the theory of simple decision trees concern highly symmetric functions. Recall that a
graph property for v-vertex graphs is a decision problem f : {0, 1}(

v
2) → {0, 1} which is invariant

under all permutations of the vertices. Let f be a nonconstant monotone graph property. Two
famous open problem in simple decision tree complexity are the evasiveness conjecture [19], that
D(f) must be equal

(
v
2

)
, and the Yao-Karp conjecture [20], that R(f) must be Ω(v2).

The relationship between deterministic and randomized complexity is another interesting as-
pect of simple decision trees. Perhaps surprisingly, it is known [17] that deterministic, zero-error
randomized, and two-sided error randomized simple decision tree complexity are polynomially re-
lated for every boolean function; specifically, D(f) 6 O(R2(f)3). On the other hand, it is not
known whether R0(f) 6 O(R2(f)) holds for all f .

1+ decision trees. In the 1+ model, the complexity of symmetric functions becomes a natural
question, and a non-trivial one. For example, we of course have D(1+)(T 1

n) = 1, but the value
of even D(1+)(T 2

n) is not immediately obvious. Ben-Asher and Newman point out that it is not
hard to show that D(1+)(T tn) 6 O(t log(n/t)), and their main theorem shows that this bound is tight:

Ben-Asher–Newman Theorem [3]. D(1+)(T tn) = Θ(t log(n/t)).

Ben-Asher and Newman also consider randomized complexity. They provide an incomplete
proof of the fact that R(1+)

0 (T 2
n) > Ω(log n), and also observe that R(1+)

2 (T 2
n) = O(1). This leads

to the interesting conclusion that unlike in the simple decision tree model, there is no polynomial
relationship between R(1+)

0 and R(1+)
2 — indeed, R(1+)

0 (f) can be unboundedly larger than R(1+)
2 (f).

4 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

As we mentioned in the introduction, Ben-Asher and Newman leave the study of the 2+ model
as an open problem. In particular, they asked if their main theorem can be extended to D(2+)(T tn) >
Ω(t log(n/t)), observing only a trivial Ω(t) lower bound.

3. Our results

Our main results exactly characterize (up to constants) the zero and two-sided error 2+ com-
plexities of all symmetric functions. We also nearly characterize the deterministic 2+ complexity
of symmetric functions; in particular, we answer the open question of Ben-Asher and Newman up
to a log t factor.

Theorem 3.1. For any symmetric boolean function f : {0, 1}n → {0, 1}, write Γ = Γ(f). Then

Ω
(
(Γ/ log Γ) · log(n/Γ)

)
6 D(2+)(f) 6 O

(
Γ · log(n/Γ)

)
,

R
(2+)
0 (f) = Θ(Γ),

R
(2+)
2 (f) = Θ(Γ).

In particular, the above bounds hold with Γ = min(t, n+ 1− t) for threshold functions f = T tn.

The lower bounds and upper bounds of Theorem 3.1 are proved in Sections 4 and 5 respectively.
An immediate corollary of Theorem 3.1 is that there is no polynomial relationship between

deterministic and zero-error randomized 2+ decision tree complexity; indeed, no bounded relation-
ship at all. This is because for t = O(1) we have D(2+)(T tn) > Ω(log n), yet R(2+)

0 (T tn) = O(1).
This latter result shows that the zero-error 2+ decision tree model is quite powerful, being able to
compute TO(1)

n with a number of queries independent of n.
Our upper bound R

(2+)
0 (f) 6 O(Γ) relies essentially on the upper bound R

(2+)
0 (T tn) 6 O(n),

and to prove this we actually prove a stronger statement: any “k+ query” can be exactly simulated
with an expected O(k) many 2+ queries. Consequently we deduce that the zero error randomized
k+ decision tree complexity of any boolean function is at best O(k) times smaller than its 2+

decision tree complexity.

Corollary 3.2. For any boolean function f : {0, 1}n → {0, 1}, R(k+)
0 (f) > Ω(R(2+)

0 (f)/k).

The inequality in this corollary is best possible. Indeed, we show that for every symmet-
ric function f it holds that R(k+)

0 (f) = Θ(Γ(f)/k). A similar reduction can be made regarding
deterministic k+ complexity — see Appendix A.

The full version of this article includes many other results regarding the k+ decision tree
complexity of general functions. We give a brief overview of some of these results in Section 6.

4. Lower bounds

4.1. Deterministic lower bound

Lemma 4.1. For any symmetric function f : {0, 1}n → {0, 1} such that Γ = Γ(f) > 2,

D(2+)(f) > Ω ((Γ/ log Γ) · log(n/Γ)) .

(When Γ 6 2, D(2+)(f) 6 1.)

Proof. The statement about the Γ 6 2 case is trivial (see the observation in Appendix A). For
Γ > 2, assume without loss of generality that fΓ−1 6= fΓ. (If the inequality does not hold, then
fn−Γ 6= fn−Γ+1 and we exchange the roles of the 0 and 1 labels in the rest of the proof.) Assume
also for now that Γ/3 and 3n/Γ are integers. We describe an adversary that constructs inputs of
weight Γ− 1 or Γ while answering the 2+ queries of the algorithm consistently.

k+ DECISION TREES 5

The adversary maintains two pieces of information: a list of m = Γ/3 sets U1, . . . , Um of
“undefined” variables and a set I ⊆ [m] of the sets of undefined variables that are “active.” Initially,
U` = { nm(`− 1) + 1, . . . , nm · `} and I = [m]. For each query (Qpos, Qneg), the adversary proceeds as
follows:

(1) If there is an index ` ∈ I such that |Qpos ∩U`| > |U`|/m, then the adversary answers “2+”,
assigns the variables in U` \ Qpos the value 0, and updates U` = U` ∩ Qpos. We refer to a
query handled in this manner as an `-query.

(2) Otherwise, let Q′ ⊆ Qneg be a set of size |Q′| = min{2, |Qneg|}. The adversary sets the
variables in U` ∩ (Qpos ∪Q′) to 0 and updates U` = U` \ (Qpos ∪Q′) for each ` ∈ I. It then
returns the answer “0”, “1”, or “2+”, depending on the size of Q′. We refer to the query
as a 0-query in this case.

After answering the query, each set U` of size |U`| < 3m is considered “defined.” When the set U`
is defined, the adversary updates I = I \ {`}. If I is still not empty, the adversary also sets 3 of
the variables in U` to one. When the last set U` is defined, the adversary sets either 2 or 3 of its
variables to one.

While not all the sets are defined, the answers of the adversary are consistent with inputs of
weight Γ − 1 and Γ. Therefore, the algorithm must make enough queries to reduce the sizes of
U1, . . . , Um to less than 3m each. Let q = q0 + q1 + · · ·+ qm be the number of queries made by the
algorithm, where q0 represents the number of 0-queries and q` represents the number of ` queries,
for ` = 1, . . . ,m.

Consider now a fixed ` ∈ [m]. Each `-query removes at most a 1−1/m fraction of the elements
in U`, and each 0-query removes at most |U`|/m+ 2 6 2|U`|/m elements. So |U`| < 3m holds only
when (n

m

)(1
m

)q` (
1− 2

m

)q0
< 3m.

The inequality holds for each of ` = 1, . . . ,m; taking the product of the m inequalities, we obtain(
n
m

)m (1
m

)q1+···+qm (1− 2
m

)m·q0 < (3m)m, which implies(n

3m2

)m
< mq1+···+qm

(
1− 2

m

)m·q0
6 mq1+···+qme2q0 6 m2(q0+q1+···+qm).

Taking the logarithm on both sides and dividing by 2 logm, we get m
2 logm log n

3m2 < q0 + q1 + · · ·+
qm = q. Recalling that m = Γ/3, we get the desired lower bound.

To complete the proof, we now consider the case where Γ/3 or n/m is not an integer. In this
case, let Γ′ be the largest multiple of 3 that is no greater than Γ, let n′ = n− (Γ− Γ′), and let n′′

be the largest multiple of m no greater than n′. Let the adversary fix the value of the last n − n′
variables to one and the previous n′−n′′ variables to zero. We can now repeat the above argument
with Γ′ and n′′ replacing Γ and n.

4.2. Randomized lower bound

Lemma 4.2. For any symmetric function f : {0, 1}n → {0, 1} such that Γ = Γ(f) > k and integer
k > Γ,

R
(k+)
2 (f) > Ω (Γ/k) .

When Γ 6 k, even D(2+)f 6 1.

Proof. As in the proof of Lemma 4.1, the remark about Γ 6 k is trivial; and, we may assume
without loss of generality that fΓ−1 6= fΓ.

We prove the theorem using Yao’s minimax principle. For a ∈ {Γ−1,Γ}, let Da be the uniform
distribution over all the inputs with exactly a of the first 2Γ − 1 variables set to 1 and all other
variables set to 0. Let D be the distribution on inputs obtained by randomly selecting DΓ or DΓ−1

with equal probability and then drawing an input from the selected distribution. We will show that

6 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

any deterministic k+ decision tree algorithm A that tries to determine the value of an input drawn
from D with q < (2Γ− 1)/(72k) queries must err with probability greater than 1/3.

Let P be a random process for answering queries from A while constructing an input from D.
The random process P starts by selecting an index α uniformly at random from the range [2Γ− 1],
sets the value of the variables x2Γ, . . . , xn to 0, and leaves the values of the variables x1, . . . , x2Γ−1

undefined for now.
When the algorithm makes a query (Qpos, Qneg), the process P begins by randomly ordering

the literals in Qpos∪Qneg. It then processes the literals one by one — either using the value already
assigned to the associated variable or randomly assigning a value to the variable if it is currently
undefined — until either: (a) k literals have been satisfied; or (b) all the literals in Qpos ∪ Qneg

have been processed. In the first case, the answer “k+” is returned; otherwise the answer returned
corresponds to the number of satisfied literals.

After all the queries have been handled, the process P assigns random values to the variables
in [2Γ − 1] \ {α} that are still undefined such that exactly Γ − 1 of them have the value 1. There
are two possibilities: either xα has been defined while answering one of the queries, or it is the last
undefined variable. If the latter occurs, the process ends by flipping a fair coin to determine the
value of xα and the resulting Hamming weight of the input.

When xα is the last undefined variable, its value is established by P after all the interaction
with the algorithm is completed. Therefore, in this case the algorithm cannot predict the value of
xα — and by consequence the value of the function on the input — with probability greater than
1/2. So to complete the proof, it suffices to show that the probability that xα is defined while
answering the queries is less than 1/3.

Let m be the total number of variables whose values are defined while answering the queries
and ζ correspond to the event where α is defined while answering the queries. Then

Pr
P

[ζ] =
∑
t>0

Pr
P

[m = t] ·Pr
P

[ζ | m = t] 6 Pr
P

[m > (2Γ− 1)/6] + Pr
P

[ζ | m < (2Γ− 1)/6].

We now show that both terms and the right-hand side are less than 1/6.
First, let’s bound the probability that m > (2Γ − 1)/6. Let mj be the number of variables

that are assigned a value by the process while answering the jth query. Each variable assigned a
random value satisfies its corresponding literal in the query with probability 1/2, so E[mj] 6 2k

for j = 1, . . . , q. When q < (2Γ − 1)/(72k), E[m] = E
[∑q

j=1mj

]
6 2kq < 1

6 ·
(

2Γ−1
6

)
. Therefore,

by Markov’s inequality, Pr[m > (2Γ− 1)/6] < 1/6.
Finally, let us consider PrP [ζ | m < (2Γ − 1)/6]. Note that α is chosen uniformly at random

from [2Γ−1] by P, so when m < (2Γ−1)/6 variables have been defined while answering the queries,
the probability that α is one of those variables is less than 1/6.

5. Upper bounds

In Appendix A we make a straightforward observation reducing computation of general sym-
metric functions to that of threshold functions. Thus in this section we only discuss computing
threshold functions.

Our upper bound for the deterministic 2+ complexity of thresholds follows immediately from
the Ben-Asher–Newman Theorem (which in fact only needs 1+ queries). In Appendix A we will
also give the following very straightforward extension:

Proposition 5.1. Let 1 6 k 6 t 6 n and 0 6 t 6 n + 1 be integers. Then D(k+)(T tn) 6⌈
t
k

⌉
·
(
2 ·
⌈
log
(
n
t

)⌉
+ 1
)
. Indeed, the associated query algorithm has the further property that it

correctly decides whether |x| is 0, 1, . . . , t− 1, or at least t.

k+ DECISION TREES 7

Incidentally, this Proposition immediately implies for every f that D(k+)(f) is never better
than D(2+)(f) by more than a O(k log(n/k)) factor.

To complete the proof of Theorem 3.1, it now suffices to analyze the zero-error randomized
complexity of threshold functions, which we do in the following theorem:

Theorem 5.2. Let 2 6 k 6 t 6 n be an integers. Then R
(k+)
0 (T tn) 6 O(t/k). Indeed, there

is a randomized k+ query algorithm which, given x ∈ {0, 1}n, correctly decides whether |x| is
0, 1, . . . , t− 1, or at least t, using an expected O(t/k) queries.

(Note that the assumption t > k is not restrictive since the problem can be solved with one k+

query if t 6 k.) Corollary 3.2 follows directly from this theorem (using linearity of expectation),
and as mentioned, Appendix A contains the details on why Theorem 5.2 implies the upper bounds
in Theorem 3.1.

The key to proving Theorem 5.2 is the following “Count” algorithm:

Theorem 5.3. Let k > 2. There is an algorithm Count which on input x, outputs |x| in an
expected O(1 + |x|/k) many k+ queries.

We will also need the following easier result, which we prove in Appendix B.

Proposition 5.4. For each k > 1 and each real t satisfying k 6 t 6 n, there is an O(t/k)-query
zero-error randomized k+ query algorithm which on input x ∈ {0, 1}n certifies that |x| > t, assuming
|x| > 4t. More precisely, the algorithm has the following properties:

(i) It makes (at most) 4t/k queries, with probability 1.
(ii) It outputs either “|x| > t” or “don’t know.”

(iii) If |x| > 4t, it outputs “|x| > t” with probability at least 1/4.
(iv) If it ever outputs “|x| > t”, then indeed |x| > t.

We remark that Proposition 5.4 works even if our k+ queries only return the response “k+” or
“< k”; in particular, it holds even when k = 1. Theorem 5.3, however, needs the full power of k+

queries. We now show how Theorem 5.3 and Proposition 5.4 imply Theorem 5.2:

Proof of Theorem 5.2. The idea is to construct a dovetailing algorithm, as follows: First, run
Count till 4t/k queries are made, or it halts. If it halts with |x| then we are able to output
the correct value for T tn(x). Otherwise we “stop temporarily” and run the algorithm from Propo-
sition 5.4. If that algorithm returns with “|x| > t”, then stop and output T tn(x) = 1; otherwise
resume executing Count for another 4t/k many queries. Repeat this process till either Count
terminates or the algorithm of Proposition 5.4 returns with an answer of “|x| > t.”

The fact that this dovetailing algorithm’s output is always correct follows from the correctness
in Theorem 5.3 and Proposition 5.4. As for the expected number of queries used, if the input x
satisfies |x| > 4t, then by the third property in Proposition 5.4, the dovetailing algorithm stops
after at most an expected 32t/k queries. On the other hand, if |x| < 4t, by Theorem 5.3, the
dovetailing algorithm stops after an expected O(t/k) queries. Thus for any input the dovetailing
algorithm makes at most an expected O(t/k) many queries.

In the next section, we describe how to prove Theorem 5.3 using balls and bins analysis.

5.1. Balls and bins framework

The Count algorithm involves randomly partitioning the coordinates [n] into some number of
“bins.” We think of the “balls” as being the indices for which the input x has a 1. Suppose we toss
the balls (1-coordinates) into bins and then make a k+ query on each bin. Recall that this tells us
whether the number of balls is 0, 1, 2, . . . , k − 1, or > k. If a bin contains fewer than k balls, we
say it isolates these balls.

8 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

Whenever a bin isolates balls, we have made progress: we know exactly how many 1’s are in x in
the bin’s coordinates. We can thenceforth “throw away” these coordinates, remembering only the
1-count in them, and continue processing x on the substring corresponding to those coordinates in
bins with at least k many 1’s. Thus in terms of balls and bins, we can think of the task of counting
|x| as the task of isolating all of the balls. We note that the ability to isolate/count and throw away
is the crucial tool that 2+ queries gain us over 1+ queries.

We now give a brief intuition behind the Count algorithm, with formal analysis in the next
section. Although the algorithm doesn’t actually know |x|, the number of balls, if it could partition
using 2|x|/k bins then that would likely isolate a constant fraction of the balls. If we could do this
repeatedly while only using O(# balls remaining/k) many queries, we will be able to construct the
desired Count algorithm. Since we don’t know the number of balls remaining, we can try using
2, 4, 8, etc., many bins. If we get up to around the “correct number” 2|x|/k, we’re likely to isolate
a good fraction of balls; we can then reset back to 2 bins and repeat. Although we pay a query for
each bin, we don’t have to worry too much about doubling the number of bins too far; resetting
becomes highly likely once the number of bins is at least the correct number. More worrisome is
the possibility of resetting too early; we don’t want to just keep making tiny “nibbles.” However,
we will show that if the number of bins is too small, we are very unlikely to get many isolating
bins; hence we won’t reset.

5.2. The Count algorithm and proof of Theorem 5.3

Let’s start with a simple warmup (recall that k+ queries can simulate 2+ queries for k > 2):

Proposition 5.5. For any A > 1, there is an algorithm A-Count which on input x, outputs |x|
(or runs forever). If |x| 6 A, then the algorithm halts after an expected O(A2) many 2+ queries.

The proof is by a Birthday Paradox argument and appears in Appendix B.

5.2.1. Reduction to the Shave algorithm. Let 1 6 A <∞ and 0 < ε, δ 6 1 be universal constants
to be chosen later. The main work goes into proving the following:

Theorem 5.6. There is an algorithm Shave which, on input x of weight |x| > A, halts in an
expected O(|x|/k) many k+ queries and with probability at least ε isolates at least δ|x| balls.

Assuming Theorem 5.6, we can complete the proof of Theorem 5.3 by repeatedly running Shave
and dovetailing it with the A-Count algorithm. (The details are in Appendix B.)

5.2.2. The Partition algorithm. The basic building block for the Shave algorithm is the Parti-
tion(t) algorithm, which for t ∈ N = {0, 1, 2, . . . } makes exactly 2t many k+ queries.

Partition(t):
1. Toss the indices into 2t bins and do a k+ query on each bin.
2. Call a bin “good” if the number of balls in it is in the range [1

4k,
3
4k].

3. If the fraction of good bins is at least 1
20 , declare “accept” and isolate the balls.

4. Otherwise declare “reject” and do not isolate any balls.

Remark 5.7. In practice, one would always isolate balls, regardless of accepting or rejecting.
However we do not isolate any balls on a reject for analysis purposes.

Note that in a run of Partition(t), the number of balls in a particular bin is distributed as
Binomial(|x|, 1/2t). In particular, it has mean |x|/2t.

Definition 5.8. We denote by t∗ ∈ N the critical value of t: the unique number such that
1
3
k <

|x|
2t∗

6
2
3
k. (5.1)

(We assume |x| > 0, which is fine since in proving Theorem 5.6 we have |x| > A > 1.)

k+ DECISION TREES 9

We would really like to run Partition(t∗) repeatedly (with t∗ changing as the number of
remaining balls changes); doing so uses Θ(|x|/k) queries and, as we will see, isolates Ω(|x|) balls
in expectation. Unfortunately, we do not in general know what t∗ is, so we have to analyze what
happens for other values of t. When t > t∗, the analysis of Partition is straightforward, and we
defer the proof of the following Proposition to Appendix B. The other cases are handled in the
next two sections.

Proposition 5.9. Suppose we run Partition(t) with t > t∗ −B and it accepts. Then we isolate
at least δ|x| balls, for some δ = δ(B) > 0.

5.2.3. Partition(t∗)’s acceptance probability.

Remark 5.10. It will be convenient for analysis to assume that either k = 2 or k > C, where C
is a large universal constant to be chosen later. Note that we can freely make this assumption: if
2 < k < C, we can simply pretend (for analysis purposes) that k = 2. This causes an overall loss of
a factor of C/2 in the query complexity, but this is just O(1) since C will be a universal constant.
And as noted before, k+ queries can simulate 2+ queries for k > 2.

Theorem 5.11. If we run Partition(t∗), it accepts with probability at least 1
20 .

Proof. If t∗ = 0, then by (5.1), we have 1
4k < |x| <

3
4k < k, which implies that a k+ query will

return the value of |x|. Further, since the indices are tossed in a single bin, Partition(0), will
accept with probability 1. For the rest of the proof, we will assume that t∗ > 1.

Our goal will be to show that when we partition into 2t
∗

bins, the probability a particular bin
is good is at least 1

10 . In that case, the expected fraction of good bins is at least 1
10 . It then follows

that there is at least a 1
20 fraction of good bins with probability at least 1

20 , and this completes the
proof.

Letting X denote the number of balls in a particular bin, we have X ∼ Binomial(|x|, 1/2t∗),
and we need to show that

Pr[1
4k 6 X 6 3

4k] > 1
10 , (5.2)

using the fact that E[X] = |x|/2t∗ is in the range (1
3k,

2
3k] (by (5.1)).

If k is large enough, this follows by Chernoff bounds. Specifically, the probability of X < 1
4k

is no more than what it would be if E[X] = 1
3k, in which case the Chernoff bound gives an upper

bound of exp(− 1
96k). The probability of X > 3

4k is no more than what it would be if E[X] = 2
3k,

in which case the Chernoff bound gives an upper bound of exp(− 1
204k). By taking C to be a

sufficiently large absolute constant (say, C = 120), we ensure that exp(− 1
96k) + exp(− 1

204k) 6 9
10

for all k > C. I.e., a particular bin is indeed good with probability at least 1
10 , assuming k > C.

By Remark 5.10, it suffices to further handle just the k = 2 case. In this case, showing (5.2)
amounts to showing Pr[X = 1] > 1

10 using the fact that X is a binomial random variable with
mean in (2

3 ,
4
3]. Writing X ∼ Binomial(N, p) for simplicity (N = |x|, p = 1/2t

∗
6 1/2), we have

Pr[X = 1] = Np(1− p)N−1 > Np(1− p)N > Np · exp(−(3/2)p)N = (Np) · exp(−(3/2)Np).

Since the function λ · exp(−(3/2)λ) is decreasing for λ > 2
3 , and Np 6 4

3 in our case, we conclude
Pr[X = 1] > 4

3 · exp(−2) > 1
10 , as desired.

5.2.4. Partition(t)’s acceptance probability, t < t∗.

Theorem 5.12. There is an absolute constant B < ∞ such that if we run Partition(t) with
t 6 t∗ −B, it accepts with probability at most

√
|x| exp(−1

3

√
|x|).

10 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

Proof. Define a bin to be “semi-good” if the number of balls in it is at most 3
4k. We will show that

Partition(t) does not even see at least 1
20 fraction of semi-good bins with probability more than√

|x| exp(−1
3

√
|x|).

The number of balls in a bin is binomially distributed with mean

|x|
2t

>
|x|

2t∗−B
>

2B

3
k, (5.3)

using (5.1). Now by taking B large enough, a Chernoff bound will imply that the probability a bin
has at most 3

4k balls is at most

exp(−1
3
· |x|/2t) (5.4)

(indeed, B = 5 suffices). We now divide into two cases: 2t <
√
|x| and 2t >

√
|x|.

Case 1: 2t <
√
|x|. In this case, from (5.4) we see that the probability of a semi-good bin is at

most exp(−1
3

√
|x|). By a union bound, the probability of getting even 1 semi-good bin is at most

2t exp(−1
3

√
|x|) 6

√
|x| exp(−1

3

√
|x|). Thus we are done in this case, since accepting requires at

least 1
202t good bins, and hence certainly at least 1 semi-good bin.

Case 2: 2t >
√
|x|. In this case, we simply combine (5.3) and (5.4) to conclude that the probability

a particular bin is semi-good is at most exp(−2B

9 k), which is at most 1
40 if we make B large enough

(again, B = 5 suffices). We would now like to use a Chernoff bound to claim that the probability
of at least a 1

20 fraction of the 2t bins being even semi-good is at most exp(−1
3 ·2

t) 6 exp(−1
3

√
|x|).

This would complete the proof. The complication is that the events of the bins being semi-good are
not independent. However, the (indicators of the) events are negatively associated (see, e.g., [11,
Prop. 7.2, Theorem 13]), and hence the Chernoff bound is valid (see [11, Prop. 5]).

5.2.5. Boosting slightly the success probability. The success probability of 1/20 that Partition(t∗)
achieves is not quite high enough for us; we would prefer it to be, say, 9/10. This is straightforwardly
achieved by repeating Partition, say, 50 times. In particular, define Partition+(t) to be the
algorithm which runs Partition(t) 50 times, accepting if any of the runs accept (and using, say, the
first isolation), rejecting if all runs reject. Using Proposition 5.9, Theorem 5.11, and Theorem 5.12,
we easily conclude the following:

Theorem 5.13. The algorithm Partition+(t), when run on input x, has the following properties:
(1) It has k+ query complexity 50 · 2t.
(2) If t > t∗ −B and the algorithm accepts, it isolates at least δ|x| balls.
(3) If t = t∗, the algorithm accepts with probability at least 9/10.
(4) If t 6 t∗ −B, the algorithm accepts with probability at most 50

√
|x| exp(−1

3

√
|x|).

5.2.6. Constructing Shave. In this section, we show how to use “doubling-and-dovetailing” with
Partition+ to construct the Shave algorithm, proving Theorem 5.6 and thus Theorem 5.3.

Proof of Theorem 5.6. The Shave algorithm is the following: Run Partition+(t) with “segments”
of t’s as follows:

0; 0, 1; 0, 1, 2; 0, 1, 2, 3; · · ·
Halt and isolate as soon as one of the runs accepts.

Proving the first property of Shave, that it halts in an expected O(|x|/k) queries, is straightfor-
ward. The number of queries used in the “segment” 0, 1, 2, . . . , t above is 50·(20+21+22+· · ·+2t) 6
100 · 2t. We know that every segment ending in a t > t∗ includes a call to Partition+(t∗), which

k+ DECISION TREES 11

has probability at least 9/10 of accepting. Thus the probability of executing the segment ending
in t∗ + j is at most 1/10j for j > 1. We conclude that the expected number of queries is at most

100·(20+21+· · ·+2t
∗
+

1
10

2t
∗+1+

1
102

2t
∗+2+

1
103

2t
∗+3+· · ·) 6 200·2t∗+100· 2/10

(1− 2/10)
·2t∗ = 225·2t∗.

But 2t∗ < 3 |x|k , by (5.1), so the expected number of queries is at most 775 |x|k , as needed.
It remains to show the second property of Shave, that it has probability at least ε of isolating

at least δ|x| balls. To do this, we will forget about all the segments ending in a t > t∗; we will
still be able to show the desired result. We divide up the remaining invocations of Partition+(t)
(from the segments up to and including t∗) into two parts: The “low” t’s, those with t 6 t∗ − B;
and the “high” t’s, those with t > t∗ −B. Our goal is to show that with some positive probability
ε, there is at least one accepting call to Partition+(t) with a high t. In that case, we know that
at least δ|x| balls are isolated, as required.

Note that there are at most t∗(t∗ + 1)/2 calls to Partition+ (in the segments ending with
t 6 t∗) and hence at most this many calls with with low t’s. By a union bound, the probability
that any call to Partition+ with a low t succeeds is at most t∗(t∗+1)

2 · 50
√
|x| exp(−1

3

√
|x|) 6

O(
√
|x| lg2 |x|) exp(−1

3

√
|x|), where we used 2t

∗
< 3 |x|k and hence t∗ 6 O(log |x|). We have the

liberty of assuming that |x| > A for any large universal constant A we like; by taking A large
enough (it can be checked that A = 1500 suffices), the above probability can be made smaller than
1
3 . We then have that with probability at least 2

3 , all calls to Partition+ with low t’s reject.
Certainly, the probability that at least one of the calls to Partition+ with a high t accepts

is at least 9/10; this is because the call with t = t∗ alone accepts with at least this probability.
Therefore, we conclude that we get at least one call with a high t which accepts with probability
at least (2/3) · (9/10) = 3/5. We can take this 3/5 to be our value of ε.

6. Other results

In the full version of this article, we prove a number of results about the deterministic k+

complexity of non-symmetric functions. We state a number of these results in this section. The
proofs of these results are given in Appendix C.

First, every boolean function has nontrivial deterministic k+ complexity:

Theorem 6.1. For all f : {0, 1}n → {0, 1}, D(k+)(f) 6 O(n/ log k).

The proof of this theorem uses a result from the combinatorial group testing literature [10].
The bound in Theorem 6.1 is sharp:

Theorem 6.2. At least a 1−2−2n−1
fraction of functions f : {0, 1}n → {0, 1} satisfy the inequality

D(k+)(f) > (n/ log(k + 1))(1− on(1)).

We can furthermore exhibit simple explicit functions with this property:

Theorem 6.3. Let eq : {0, 1}n × {0, 1}n → {0, 1} be defined by eq(x, y) = 1 iff x = y. Then
D(k+)(eq) > Ω(n/ log k).

The proof of Theorem 6.3 is a direct corollary of a more general result linking deterministic
k+ complexity to communication complexity. Let CC(f) denote the deterministic 2-party commu-
nication complexity of f (for details, see [15]).

Theorem 6.4. For any f : {0, 1}n × {0, 1}n → {0, 1}, D(k+)(f) > Ω(CC(f)/ log k).

Interestingly, the deterministic k+ complexity of a function is also closely related to its simple
decision tree rank. The notion of (simple) decision tree rank was first introduced by Ehrenfeucht
and Haussler [12] in the context of learning theory, and has the following recursive definition. If T

12 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

has a single (leaf) node we define rank(T) = 0. Otherwise, supposing the two subtrees of T ’s root
node are T1 and T2, we define rank(T) = max{rank(T1),rank(T2)} if rank(T1) 6= rank(T2),
and rank(T) = rank(T1) + 1 if rank(T1) = rank(T2). For a boolean function f , we define
rank(f) to be the minimum rank among simple decision trees computing f .

Theorem 6.5. For all f : {0, 1}n → {0, 1}, rank(f)/k 6 D(k+)(f) 6 O
(
rank(f) log(n/rank(f))

)
.

Both bounds in this inequality may be tight. For the lower bound, we will show in Lemma C.6
that for any symmetric function f we have rank(f) = Θ(Γ(f)). This implies that for t = Θ(n)
we have rank(T tn) = Θ(n); but for this t we also have D(k+)(T tn) 6 O(n/k), by Proposition 5.1.
This does not rule out a lower bound of the form (rank(f)/k) · log(n/rank(f)), but such a lower
bound would be ruled out by the OR function, which has rank 1 but even 1+ query complexity 1.
The upper bound is tight in the case of the so-called odd-max-bit function, which has rank 1; we
show in Appendix C.5 that D(k+)(odd-max-bit) > Ω(log n), independent of k.

Finally, in contrast to the evasiveness conjecture, we show that the basic monotone graph
property of connectivity has o(v2) deterministic 1+ complexity:

Theorem 6.6. For the connectivity graph property Connv : {0, 1}(
v
2) → {0, 1} it holds that

D(1+)(Connv) 6 v(dlog ve+ 1).

References

[1] M. Aigner. Combinatorial Search. Wiley-Teubner Series in Computer Science, 1988.
[2] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational Complexity, 4:339–349, 1994.
[3] Y. Ben-Asher and I. Newman. Decision trees with boolean threshold queries. J. Comput. Syst. Sci., 51(3):495–

502, 1995.
[4] M. Ben-Or. Lower bounds for algebraic computation trees. In STOC ’83, pages 80–86, 1983.
[5] N. H. Bshouty. A subexponential exact learning algorithm for DNF using equivalence queries. Information

Processing Letters”, 59(3):37–39, 1996.
[6] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey. Theoretical Computer

Science, 288(1):21–43, 2002.
[7] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and T. Nolte. Consensus and collision detectors in wireless

ad hoc networks. In Principles Of Distributed Computing (PODC), pages 197–206, 2005.
[8] M. Demirbas, O. Soysal, and M. Hussain. Singlehop collaborative feedback primitives for wireless sensor networks.

INFOCOM miniconference, 2008.
[9] D. Dobkin and R. J. Lipton. Multidimensional searching problems. SIAM Journal on Computing, 5(2):181–186,

1976.
[10] D.-Z. Du and F. K. Hwang. Combinatorial Group Testing and its Applications. World Scientific, 2000.
[11] D. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence. Random Structures and Algorithms,

13(2):99–124, 1998.
[12] A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples. Information and Computation,

82(3):231–246, 1989.
[13] K. Hamza. The smallest uniform upper bound on the distance between the mean and the median of the binomial

and Poisson distributions. Statistics and Probability Letters, 23(1):21–25, 1995.
[14] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. SIAM Journal on Computing,

22(6):1331–1348, 1993.
[15] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.
[16] S. Moran, M. Snir, and U. Manber. Applications of ramsey’s theorem to decision tree complexity. J. ACM,

32(4):938–949, 1985.
[17] N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999–1007, 1991.
[18] R. Paturi. On the degree of polynomials that approximate symmetric boolean functions (preliminary version).

In STOC ’92, pages 468–474, 1992.
[19] A. L. Rosenberg. On the time required to recognize properties of graphs: a problem. SIGACT News, 5(4):15–16,

1973.
[20] A. C.-C. Yao. Monotone bipartite graph properties are evasive. SIAM Journal on Computing, 17(3):517–520,

1988.

k+ DECISION TREES 13

Acknowledgments

We thank Dana Angluin, Jiang Chen, Sarah C. Eisenstat, Onur Soysal and Yitong Yin for
helpful discussions.

Appendix A. From threshold functions to symmetric functions

We begin with the following simple observation, which reduces computing general symmetric
functions to computing threshold functions:

Lemma A.1. For any 1 6 k 6 t 6 n, assume that there is a deterministic k+ query algorithm
that on input x ∈ {0, 1}n can determine whether |x| is 0, 1, . . . , t − 1 or at least t with Q

(k)
1 (t, n)

queries; and also assume there is a deterministic k+ query algorithm that can determine if |x| is
n, n − 1, . . . , n − t + 1 or at most n − t with Q

(k)
0 (t, n) queries. Then for any symmetric function

f , there is a deterministic k+ query algorithm that decides f with Q(k)
1 (Γ(f), n) +Q

(k)
0 (Γ(f), n) k+

queries. The same result also holds in the zero-error randomized k+ model of computation (where
we refer to the expected number of queries made).

Proof. The algorithm for deciding f is a quite easy. First, run the first-mentioned algorithm to
decide if |x| is 0, 1, . . . ,Γ(f) − 1 or at least Γ(f). Note that if |x| < Γ(f), then since we know
|x|, we can determine f(x). Similarly, using the second-mentioned algorithm we can determine
|x| if |x| > n − Γ(f) in which case we again know f(x) exactly. Thus, the only case left is
Γ(f) 6 |x| 6 n− Γ(f). However, in this case by definition of Γ(·), the value of f is constant (and
hence, we can determine f(x)).

It is immediate that the query complexity of the algorithm above is at most Q(k)
1 (Γ(f), n) +

Q
(k)
0 (Γ(f), n) in the deterministic case; the zero-error randomized case follows by linearity of ex-

pectation.

Let us first apply this for zero error randomized computation. By Theorem 5.2, we may take
Q

(k)
1 (t, n) to be O(t/k). By switching the roles of 0 and 1 in the proof of Theorem 5.2, we may also

take Q(k)
0 (t, n) = O(t/k). Thus, Lemma A.1 implies the randomized upper bounds in Theorem 3.1.

We now move to deterministic computation. It remains to prove Proposition 5.1, which we
now restate:

Proposition 5.1 (Restated). Let 1 6 k 6 t 6 n and 0 6 t 6 n+ 1 be integers. Then D(k+)(T tn) 6⌈
t
k

⌉
·
(
2 ·
⌈
log
(
n
t

)⌉
+ 1
)
. Indeed, the associated query algorithm has the further property that it

correctly decides whether |x| is 0, 1, . . . , t− 1, or at least t.

Proof. We may assume without loss of generality that t 6 bn/2c, by reversing the role of 0 and 1 if
necessary. Define b = dt/ke and consider the following algorithm. Divide up the n input bits into
2b sets of equal size (except possibly one of them) and run a k+ query on each of them. If at least
b of the queries return an answer of k+, then the algorithm stops and has verified that at least
t input bits are one. Otherwise, on at least b of the queried sets, the algorithm knows the exact
count of the number of ones in them. Let t′ be the sum of these exact counts and let n′ be the total
number of input bits involved in such subsets (note that n′ > n/2). Note that now the algorithm
has reduced to the problem of T t−t

′

n−n′ on the input bits which are in the query sets that returned
an answer of k+. (Further, we have at least halved the input size.) Repeat the steps above until
either the algorithm stops or we are left with t input bits. (Till now we have used 2bdlog(n/t)e
queries.) Finally, note that T tt can be determined by using b many k+ queries; and in fact, one can
determine the exact number of ones in the t input bits in b queries. This completes the proof.

14 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

By changing the roles of 0 and 1 in Proposition 5.1, the same algorithm can also determine if
|x| is n, n− 1, . . . , n− t+ 1 or at most n− t with O(t/k · log(n/t)) k+ queries. Thus, we have that
both Q

(k)
0 (t, n) and Q

(k)
1 (t, n) are O(t/k · log(n/t)). This along with Lemma A.1 proves the upper

bound for deterministic 2+ decision tree complexity in Theorem 3.1.

Appendix B. Proofs for Section 5

In this section, we complete the proofs of the Propositions stated in Section 5.

Proposition 5.4 (Restated). For each k > 1 and each real t satisfying k 6 t 6 n, there is an
O(t/k)-query zero-error randomized k+ query algorithm which on input x ∈ {0, 1}n certifies that
|x| > t, assuming |x| > 4t. More precisely, the algorithm has the following properties:

(i) It makes (at most) 4t/k queries, with probability 1.
(ii) It outputs either “|x| > t” or “don’t know.”

(iii) If |x| > 4t, it outputs “|x| > t” with probability at least 1/4.
(iv) If it ever outputs “|x| > t”, then indeed |x| > t.

Proof. Let m = b4t/kc. If m > n we can solve the problem trivially by querying every bit.
Otherwise, 1 6 m 6 n; we now partition the input coordinates randomly into m bins and perform
a k+ query on each. If at least t/k of the responses are “k+” then we output “|x| > t” (which is
certainly correct); otherwise we output “don’t know.”

Assume now that |x| > 4t; i.e., there are at least 4t “balls.” The number of balls in a particular
bin has distribution Binomial(|x|, 1/m) and hence its mean |x|/m is at least 4t/m > k. It known
that the median of a binomial random variable is at least the floor of its mean [13]; hence the
probability that a bin has fewer than k balls is at most 1/2. The expected fraction of bins with
fewer than k balls is therefore at most (1/2)m; hence by Markov’s inequality, the probability that
there are more than (2/3)m bins with fewer than k balls is at most (1/2)/(2/3) = 3/4. Thus with
probability at least 1/4 we see at least (1/3)m bins with k+ balls, and (1/3)m = (1/3)b4t/kc > t/k.
This completes the proof.

Proposition 5.9 (Restated). Suppose we run Partition(t) with t > t∗−B and it accepts. Then
we isolate at least δ|x| balls, for some δ = δ(B) > 0.

Proof. Since we accept, at least 1
20 · 2

t bins are good. Note that a good bin isolates all of the balls
in it, since 3

4k < k. Since good bins have at least 1
4k balls, we isolate at least

1
4
k · 1

202t >
1
80
· (k2t

∗
) · 2−B >

1
80
· 3

2
|x| · 2−B

balls, using (5.1). Taking δ = (3/160)2−B completes the proof.

B.1. Proof of Proposition 5.5

Toss the coordinates into A2 bins and perform a 2+ query on each. If all of the bins contain
either 0 or 1 balls, we can report |x|. Otherwise, if we get at least one 2+ response, we repeat.
Assuming there are at most A balls, a standard “Birthday Paradox” analysis implies that the
probability we get any collisions — i.e., any 2+ responses — is at most 1/A2 + 2/A2 + · · ·+ (A−
1)/A2 6 A(A − 1)/2A2 6 1/2. Since each trial uses A2 queries, and we succeed in identifying |x|
with probability 1/2 in each trial, the expected number of queries is at most 2A2.

k+ DECISION TREES 15

B.2. Proof of Theorem 5.3

The idea is to repeatedly run the Shave algorithm, isolating balls. We also dovetail this
repeated Shaving with the A-Count algorithm. This allows us to freely assume, in analysis using
the Shave algorithm, that |x| > A; for as soon as this fails to hold, Proposition 5.5 implies we
halt after an expected 2 ·O(A2) = O(1) more k+ queries (recall that A is a universal constant). It
remains to show that Shave will reduce the ball count below A in an expected O(|x|/k) queries.

The analysis is straightforward. Suppose that at some stage we have at most w balls. We
analyze the expected number of Shaves until the number of balls is at most (1− δ/2)w. So long
as there are at least (1 − δ/2)w balls, each time we run Shave we have at least an ε chance of
“successfully” isolating at least δ(1 − δ/2)w > (δ/2)w balls. As soon as we have a success, we
drop to at most (1 − δ/2)w balls. The expected number of runs of Shave to get a success is at
most 1/ε, and each uses at most an expected O(w/k) queries. By Wald’s Theorem, the expected
number of queries to get a success is at most (1/ε) ·O(w/k) = O(w/k) (since ε is a positive absolute
constant). Finally, since we start with |x| balls, the expected number of queries to get below A
balls is certainly at most

O(|x|k) +O((1−δ/2)|x|
k) +O((1−δ/2)2|x|

k) +O((1−δ/2)3|x|
k) + · · · = (2/δ)O(|x|k) = O(|x|k)

(since δ is a positive absolute constant).

Appendix C. Proofs for Section 6

In this section, we provide the proofs of the Theorems stated in Section 6. The full version of
this article will have more complete discussions of these Theorems.

C.1. Results for general functions

The following theorem is a well-known result from combinatorial search and group testing:

Theorem C.1 ([10]). Any n-bit vector can be identified exactly with O(n/ log n) many n+ queries.

Theorem 6.1 follows directly as a corollary of this theorem.

Theorem 6.1 (Restated). For all f : {0, 1}n → {0, 1}, D(k+)(f) 6 O(n/ log k).

Proof. Consider the following method for determining any given n-bit string with k+ queries. First,
we divide the set [n] of indices into dn/ke subsets size at most k. By Theorem 6.1, we can use
O(k/ log k) queries to determine each of the associated substrings. So in total, O(dn/ke ·k/ log k) =
O(n/ log k) queries are required to determine the input string exactly, which also lets us determine
any function f of this input string.

The proof of Theorem 6.2 follows from a counting argument on k+ decision trees with bounded
depth.

Theorem 6.2 (Restated). At least a 1 − 2−2n−1
fraction of functions f : {0, 1}n → {0, 1} satisfy

the inequality D(k+)(f) > (n/ log(k + 1))(1− on(1)).

Proof. Let Tk(d) be the number of k+ decision trees of depth at most d. Recall that the total
number of n-variable boolean functions is 22n

. Thus, if we show that for d strictly less than the
claimed bound

Tk(d) < 22n−1
, (C.1)

we will be done (as the Tk(d) k+ decision trees can compute at most Tk(d) distinct functions).
To prove (C.1), we first estimate Tk(d). Consider the root node of any k+ decision tree of

depth at most d. There are 3n different choices for the query at the root (each index in [n] can
either be present in the positive query set, or in the negative query set, or in neither). Now each of

16 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

the subtrees for each of the k + 1 possible outcomes is in turn a k+ decision tree of depth at most
d− 1. Thus, we get the recurrence relation:

Tk(d) = 3n · (T (d− 1))k+1 ,

with T (0) = 2 (as a decision tree of depth 0, which does not make any queries can only compute
the constant functions). One can check (e.g., by induction) that the recurrence is satisfied by

log(Tk(d)) 6 n log 3(1 + (k + 1) + · · ·+ (k + 1)d−1) + 2(k + 1)d−1 6 2(k + 1)d−1(n log 3 + 1),

where the second inequality follows from the fact that k > 1. The bound above implies (C.1)
provided

1 + (d− 1) log(k + 1) + log(n log 3 + 1) < n− 1,
which is implied by

d <
n

log(k + 1)
− log n

log(k + 1)
− 4

log(k + 1)
+ 1 =

n

log(k + 1)
(1− on(1)) ,

as desired.

C.2. Connection to Communication Complexity

Given a boolean function g : {0, 1}n × {0, 1}n → {0, 1}, let CC(g) denote the (two party)
deterministic communication complexity of g. The proof of Theorem 6.4 is obtained by a straight-
forward generalization of the known relationship between simple decision trees and communication
complexity (cf. [15]).

Theorem 6.4 (Restated). For any f : {0, 1}n × {0, 1}n → {0, 1}, D(k+)(f) > Ω(CC(f)/ log k).

Proof. Let T be a deterministic k+ decision tree of depth d that decides g. We will use T to design
a protocol to decide g with at most 2dlog(k + 1)e · d bits of communication. Note that this proves
the claimed result.

Let x1, . . . , x2n denote the input bits to g and assume Alice has x1, . . . , xn and Bob has
xn+1, . . . , x2n. Alice and Bob will essentially simulate the input on T . First let us assume
that Alice and Bob are at the same node in T in their simulation. Let the node correspond to
querying the sets (Qpos, Qneg) ⊆ [2n] × [2n]. Define (Apos, Aneg) = (Qpos, Qneg) ∩ [n] × [n] and
(Bpos, Bneg) = (Qpos, Qneg) \ (Apos, Aneg). Now Alice evaluates the query (Apos, Aneg) on the input
(x1, . . . , xn) and communicates the answer to Bob (this takes at most dlog(k+ 1)e bits as there are
k+1 possible answers). Bob evaluates the query (Bpos, Bneg) on (xn+1, . . . , x2n) and using the value
he received from Alice can compute the answer of the query (Qpos, Qneg) on (x1, . . . , x2n), which
he communicates back to Alice using at most dlog(k+ 1)e bits. Note that after Bob communicates
back to Alice, both know which node in T to move to next. Finally, the proof is complete by noting
that Alice and Bob can be “synchronized” at the beginning by making them both start at the root
of T .

Theorem 6.3 follows directly from Theorem 6.4.

Theorem 6.3 (Restated). Let eq : {0, 1}n×{0, 1}n → {0, 1} be defined by eq(x, y) = 1 iff x = y.
Then D(k+)(eq) > Ω(n/ log k).

Proof. It is well-known that CC(eq) = n + 1 (see, for example, [15, §1.3]). The proof is then
completed by applying Theorem 6.4.

k+ DECISION TREES 17

C.3. Connection to rank

The proof of Theorem 6.5 requires the following properties of the rank function.

Proposition C.2. Let r > 1 be an integer and T be a decision tree of rank r. Then:
(a) The roots of all the subtrees of T with rank r lie on a unique path in T (with the root as one of

its end points).
(b) Let T have ` leaves and let T1, . . . , T` be decision trees of rank at most r′. Then replacing the

ith leaf in T by Ti results in a decision tree of rank at most r + r′.

Proof. Both the properties can be proved by induction. For part (a), we induct on the depth of T .
First, note that by the definition of rank, any subtree T ′ of T has rank at most r. Let T0 and T1

be the subtrees rooted at the children of the root of T . Again, by the definition of rank note that
it cannot be the case that both T0 and T1 have rank exactly r. Now if both T0 and T1 have rank
r − 1, then we are done (as neither of them will have a rank r node). Otherwise, w.l.o.g. assume
that T0 has rank r and T1 has rank at most r − 1. Then we recurse on T0 to obtain the required
path.

If Ti has rank exactly r′ for every 1 6 i 6 `, then part (b) follows from the definition of rank.
Further, due to the following claim, for the general case, one can assume that all the Ti’s have rank
exactly r′. Let T ′ be a subtree of T and let T ′′ be an arbitrary decision tree with higher rank than
T ′. If one replaces T ′ by T ′′ in T , then the rank of T does not decrease. The claim follows from
a simple induction on the depth of the root of T ′ in T . If the depth is 1, then by the definition
of rank after the substitution of T ′ with T ′′, all proper subtrees of T not contained in T ′ have the
same rank as before. Again by the definition of rank, the rank of the root of T does not decrease
after the substitution. The general case follows from a similar argument.

The lower bound of Theorem 6.5 follows from a simulation argument that uses the fact that a
single k+ query can be simulated by a rank k decision tree.

Lemma C.3. Let k > 1 and d > 0 be integers. If a k+ decision tree of depth d decides a boolean
function f , then there is a decision tree of rank at most k · d that decides f .

Proof. We begin by proving that any k+ query on n variables can be simulated by a decision tree
of rank at most k. Let the k+ query be (Qpos, Qneg) ⊆ [n]× [n]. The proof of the claim follows by
induction on k + |Qpos ∪Qneg|.

For the base case of k = 1 and |Qpos∪Qneg| = 1, it is easy to check that the query (Qpos, Qneg)
can be simulated by a decision tree with one node that queries the variable in Qpos ∪ Qneg and
takes a decision depending on whether the variable is a 1 or not. Note that this decision tree has
a rank of 1.

Assume as the inductive hypothesis that any (k′)+ query (Q′pos, Q
′
neg) with k′+ |Q′pos∪Q′neg| =

N > 2 can be simulated by a decision tree of rank at most k′. Let (Qpos, Qneg) be a k+ query with
k + |Qpos ∪ Qneg| = N + 1. First assume that Qpos is not empty and let xi ∈ Qpos. Consider the
following decision tree (which we call T) that simulates (Qpos, Qneg). Query xi. If the answer is 1
then we need to simulate the (k− 1)+ query (Qpos \ {xi}, Qneg), otherwise we need to simulate the
k+ query (Qpos \ {xi}, Qneg). For each of these, by induction, we have decision trees of rank k − 1
and k that can simulate the respective queries. Thus, by the definition of rank T has rank k, as
desired. If Qpos = ∅, then let xi ∈ Qneg. Again the required rank k decision tree is similar to the
previous case (except the “roles” of 0 (as well as Qpos) and 1 (and Qneg respectively) are swapped).
Finally if Qpos ∪Qneg = ∅, then the claim follows trivially.

To complete the proof, let T be a k+ decision tree of depth d. We will now construct a decision
tree T ′ of rank at most kd that simulates T . The construction is pretty simple: replace each k+

query in T by the corresponding decision tree of rank at most k that is guaranteed by the claim
above. (In particular, consider the following recursive construction: replace the root in T by its

18 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

corresponding decision tree τ and replicate the children of the root in T at the appropriate leaves
in τ . Then recurse on these replicated k+ decision trees of depth at most d−1.) Now one can prove
that T ′ has rank at most kd by a simple induction on d and using part (b) of Proposition C.2.

The upper bound of Theorem 6.5 is implied by the following result.

Lemma C.4. Let r, d > 1 be integers. If a boolean function f has a decision tree with rank r and
depth d, then there is a 1+ decision tree of depth O(r log(d/r)) that decides f .

Proof. For the proof, we will need to solve the following problem: Given literals `1, . . . , `n (where
each `i is either xi or x̄i) find the minimum i∗ such that `i∗ = 1 (if no such index exists, output
fail). We now give an algorithm that finds such an i∗ with O(log(i∗)) 1+ queries to the input bits
x1, . . . , xn. First the algorithm queries geometrically increasing sized sets to first get an estimate
on i∗. More precisely in “round” j > 0 we do a 1+ query1 on the set {`1, . . . , `2j} and we stop at
the first round j∗ such that the answer is 1+ (if no such j∗ exists, the algorithm stops and outputs
fail). Note that i∗ 6 2j

∗
6 2i∗. In the second step, the algorithm runs a binary search on the set

{`1, . . . , `2j∗} to find out the exact value of i∗. In other words, in the first step the algorithm runs
a 1+ query on {`1, . . . , `2j∗−1}. If the answer is 1+, then the algorithm recurses on {`1, . . . , `2j∗−1}
else it recurses on {`2j∗−1+1, . . . , `2j∗}. (The base case is when there is only one literal is left, whose
index is i∗.) Both these steps take O(log(i∗)) many 1+ queries, as desired.

Let T be the given decision tree of rank r and depth d that decides f . We will show how to
simulate T (i.e. given an input determine which leaf of T the input reaches) with O(r log(d/r)) 1+

queries. By part (a) of Lemma C.2, T has exactly one path (call it P) that consists of roots of all
the rank r subtrees in T . W.l.o.g. assume that the variables in P are (in order) x1, . . . , xt. Further,
define the literal corresponding to the t nodes as `1, . . . , `t such that to “get off” P at the ith node,
¯̀
1 ∧ · · · ∧ ¯̀

i−1 ∧ `i needs to be satisfied2. Now given the procedure in the para above, we find out
the minimum i such that given the values of `1, . . . , `t, we will move off P after querying xi. Note
that by definition of P once we query xi, we will move onto a decision tree of rank at most r − 1
and depth at most d− i. We now recurse on this subtree till we are left with a tree of depth 1, in
which case we can find the correct leaf with a single 1+ query. Note that since the rank decreases
by at least one in each step, there can be at most r′ 6 r such steps. Let yj (1 6 j 6 r′) denote
the amount by which the depth of the decision tree decreases in jth step. Note that the number of
queries made by the algorithm in this step is O(log yj). Also note that

r′∑
j=1

yj = d. (C.2)

Thus, the total number of 1+ queries made by our algorithm is

O

log

 r′∏
j=1

yj

 6 O (r log(d/r)) ,

where the inequality follows from the fact that given (C.2), the product
∏r
j=1 dj is maximized when

dj = d/r for every j (and the fact that r′ 6 r).

1By running a 1+ query on the set {`1, . . . , `t}, we mean a 1+ query (Qpos, Qneg) on {x1, . . . , xt}, where Qpos =
{i|`i = xi} and Qneg = {j|`j = x̄j}.

2There is a small technicality that for i = t, when either ¯̀
1 ∧ · · · ∧ ¯̀

t−1 ∧ `t or ¯̀
1 ∧ · · · ∧ ¯̀

t−1 ∧ ¯̀
t is satisfied, then

we end up in a subtree of rank r − 1. However, the algorithm mentioned later on can handle this special case.

k+ DECISION TREES 19

C.4. Rank of Symmetric Functions

In this section, we establish for symmetric functions f a relation between rank(f) and Γ(f).
To do so, we first introduce the gap measure of symmetric boolean functions.

Definition C.5. The gap of the symmetric function f : {0, 1}n → {0, 1} is

gap(f) = max
06a6b6n

{b− a : fa = fa+1 = · · · = fb}.3

There is a precise relation between the rank of a symmetric function f and the value of gap(f).

Lemma C.6. For any symmetric function f : {0, 1}n → {0, 1},
rank(f) + gap(f) = n.

Proof. When f is a constant function, then rank(f) = 0 and gap(f) = n, so the Lemma holds.
We now show that the Lemma also holds when f is not a constant function by induction on n.

When n = 1, the only non-constant functions are f = x1 and f = x1, in which case gap(f) = 0
and rank(f) = 1.

Consider now a fixed n > 1, and let T be a tree computing f . Since f is non-constant, the tree
has depth at least one. Without loss of generality, let T query xn at its root. Define the functions
g0, g1 : {0, 1}n−1 → {0, 1} by letting

g0(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) and
g1(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1).

Let (a0, b0) represent the extremities of the longest gap in f . If there are multiple gaps with
maximal length, choose the left-most one. The longest gap in g0 has the same length as the longest
gap in f when b0 < n, and is shorter by one otherwise, so

gap(g0) =

{
gap(f)− 1 , when b0 = n,

gap(f) , when b0 < n.

Similarly, let (a1, b1) represent the extremities of the right-most longest gap in f . Then

gap(g1) =

{
gap(f)− 1 , when a1 = 0,
gap(f) , when a1 > 0.

The functions g0 and g1 are both symmetric, so by the induction hypothesis

rank(g0) = (n− 1)− gap(g0) =

{
n− gap(f) , when b0 = n,

n− gap(f)− 1 , when b0 < n

and

rank(g1) = (n− 1)− gap(g1) =

{
n− gap(f) , when a1 = 0,
n− gap(f)− 1 , when a1 > 0.

The subtrees from the root of T compute g0 and g1, so

rank(T) > n− gap(f).

Furthermore, when f is not constant we can’t have that both a1 = 0 and b0 = n, so at least one of
rank(g0) or rank(g1) must equal n− gap(f)− 1. Therefore, if we choose the subtrees of T such
that they compute g0 and g1 with optimal rank, we get that

rank(T) 6 n− gap(f).

To complete the proof of the Lemma, we note that the above argument is valid for any tree T
that computes f , so rank(f) = n− gap(f).

3Note that gap(f) does not quite measure the length of the longest gap in f ; rather gap(f) + 1 does. But, as we
see in the rest of the section, for our purposes the present definition is (slightly) more convenient.

20 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

With the above Lemma, we can now prove the main result of this section.

Corollary C.7. For any symmetric function f : {0, 1}n → {0, 1},
rank(f)

2
6 Γ(f) 6 rank(f).

Proof. Since fΓ(f) = fΓ(f)+1 = · · · = fn−Γ(f), gap(f) > n− 2Γ(f). Combining this inequality with
Lemma C.6, we get that Γ(f) > rank(f)

2 .
For the upper bound, we first note that either (i) {Γ(f), . . . , n− Γ(f)} is contained inside the

subset of [n+ 1] corresponding to the largest gap in f ; or (ii) {Γ(f), . . . , n− Γ(f)} is disjoint from
the largest gap. In case (i), at least one end point of the largest gap is from {Γ(f), n−Γ(f)}, which
implies that Γ(f) 6 n − gap(f). In case (ii), gap(f) 6 Γ(f). This implies that n − gap(f) >
n − Γ(f) > Γ(f), where the last inequality follows from the fact that Γ(f) 6 n/2. Thus in either
case, we have Γ(f) 6 n− gap(f) and Lemma C.6 completes the proof.

C.5. Odd-Max-Bit

Consider the following function odd-max-bitn : {0, 1}n → {0, 1} (named in [2]). Given any
x = (x1, . . . , xn) ∈ {0, 1}n, define odd-max-bitn(x) to be the parity of the largest index i ∈ [n] such
that xi = 1 (if there is no such index, define the value to be 0). It is well-known that odd-max-bit
is computed by a “decision list,” and hence rank(odd-max-bitn) = 1. We now show a lower
bound for the deterministic k+ complexity of odd-max-bit which is independent of k:

Lemma C.8. Let n > k > 1 be integers. Then D(k+)(odd-max-bitn) > 1
4(log n− 1).

Proof. The proof is by an adversarial argument. Let the input bits be x1, . . . , xn and let T ′ be a
k+-decision tree of depth d′ that decides odd-max-bitn. Note that one can convert T ′ into a k+

decision tree with depth d 6 2d′ such that every query in T has only a positive query set or a
negative query set, but not both. To complete the proof, we will show that d > 1

2(log n − 1). Let
n′ be the largest power power of 2 smaller than n. Next assume that xn−n′′+1 = · · · = xn = 0
and the adversary gives this information to the algorithm for free. In other words, we can assume
without loss of generality that T does not query any bit in xn−n′+1, . . . , xn and we will show that
d > 1

2 log n′, which will complete the proof.
The adversary will inductively, identify a path in T such that if the path length is smaller than

log n′ − 1 then at least a zero and a one input of odd-max-bitn will both reach the end point of
the path. In particular, the adversary will maintain the following invariant after i queries: there
exists a subset Ji ⊆ Ji−1 ⊆ [n′/2] with |Ji| = n′/22i+1 such that any input x with the following two
properties satisfy all the answers given by the adversary so far. (For notational convenience define
2Ji = {2t|t ∈ Ji} and 2Ji − 1 = {2t− 1|t ∈ Ji}.)

(1) x` = 0 if ` 6∈ (2Ji − 1) ∪ (2Ji);
(2)

∑
`∈2Ji−1 x` =

∑
`∈2Ji

x` = 1,

Note that this implies the lower bound. (If d < 1
2 log n′, then |Jq| > 2, which in turn implies that

there exists two inputs a and b such that T has the same output on a and b but odd-max-bitn′(a) 6=
odd-max-bitn′(b).)

We now show how to maintain the sets J(·). First, assign J0 = [n′/2] and note that any vector
x with exactly one 1 in the even and odd indices satisfies both the required properties. Assume by
induction that for any i′ < i, there exist Ji′ with the required properties. For now assume that the
ith query be (S, ∅). Define S′ = S∩((2Ji−1)∪(2Ji)) and call t ∈ Ji to be of type (b1, b2) ∈ {0, 1}2 if
the answers to the memberships of 2t−1 and 2t in S′ are b1 and b2 respectively. By the pigeonhole
principle, there exist a subset J ′ ⊆ Ji−1 such that every element in J ′ has the same type (say
(b∗1, b

∗
2)) and |J ′| > |Ji−1|/4. Define Ji to be any subset of J ′ of size exactly |Ji−1|/4. Further, the

k+ DECISION TREES 21

adversary returns an answer4 of b∗1 + b∗2 to the query S (and in addition also tells the algorithm
that x2t = x2t−1 = 0 for every t ∈ Ji−1 \ Ji). The case of an all negative query can also be handled
analogously.

C.6. Connectivity

We prove Theorem 6.6 by introducing an efficient 1+ decision tree algorithm for solving the
graph connectivity problem.

Theorem 6.6 (Restated). For the connectivity graph property Connv : {0, 1}(
v
2) → {0, 1} it holds

that D(1+)(Connv) 6 v(dlog ve+ 1).

Proof. We will prove the theorem by presenting a 1+ decision tree protocol that runs the DFS
algorithm to compute a spanning forest of the underlying graph. Thus, the algorithm can in fact
even “count” the number of connected components (and in particular can compute Connv). For
notational convenience let the vertex set of the underlying graph be denoted by [v]. Recall that
every input bit corresponds to whether some edge (i, j) is present in the graph or not.

Before we show how to implement the DFS algorithm, we first present a subroutine that solves
the following problem. Given a vertex i ∈ [v] and a subset S ⊆ [v]\{i}, find out a vertex j ∈ S such
that the edge (i, j) is present (if such a vertex does not exist then output “fail”). This procedure
is implemented using a simple divide and conquer strategy. First execute a 1+ (positive) query on
(S, ∅). If the answer is 0 then output “fail.” Otherwise note that there does exists a suitable j ∈ S
such that the edge (i, j) exists. We now start the following recursive procedure that takes as input
a subset S′ ⊆ S and initially S′ = S. We repeat the following procedure till |S′| = 1 (in which case
S′ = {j} and we are done):

(1) Pick an arbitrary an arbitrary subset S′′ ⊂ S′ of size d|S′|/2e and run a 1+ query on (S′′, ∅).
(2) If the answer is zero set S′ ← S′ \ S′′ otherwise set S′ ← S′′. Return to Step 1.

The correctness of this recursive procedure can be easily verified. Further, the number of recursive
calls is at most dlog |S|e, which implies that the overall subroutine makes at most 1 + dlog |S|e 6
1 + dlog ve queries. Note that if the subroutine outputs “fail,” then it makes only one query.

Given the subroutine above, the implementation of the DFS algorithm is fairly obvious. At
any stage, the DFS algorithm maintains a spanning forest on a subset F ⊆ [v] of vertices. Further,
there is a “current” vertex i ∈ F . Initially pick i ∈ [v] arbitrarily and set F = {i}. Repeat the
following steps until F = [v]:

(1) Use the subroutine in the paragraph above on vertex i and S = [v] \ F .
(2) If the subroutine outputs “fail” then set i to be the parent of the current vertex i. If no

parent exists, set i to be an arbitrary vertex in [v] \ F and update F to include this new
current vertex i. Go back to step 1.

(3) Otherwise let j be the vertex returned by the subroutine. Make j the child of the current
vertex in the spanning forest. Then set i to be j and add j to F . Return to step 1.

One can check that the above actually implements the DFS algorithm and thus, as a special case,
computes Connv. To complete the proof we need to bound the total number of queries. Note that
all the queries are made in the invocations to the subroutine from the second paragraph. Further,
all the invocations fall in either one of these two categories: (i) The invocation returned “fail” and
there is exactly one such invocation for every vertex in [v] and (ii) The invocation returned a vertex
in [v] and there is exactly one such invocation for each edge in the final spanning forest. Recall
that the number of 1+ queries made category (i) and (ii) invocations are 1 and at most 1 + dlog ve

4If k = 1 and b∗1 + b∗2 = 2 then return an answer of 1+.

22 J. ASPNES, E. BLAIS, M. DEMIRBAS, R. O’DONNELL, A. RUDRA, AND S. UURTAMO

respectively. Finally, noting that the spanning forest has at most v − 1 edges, the total number of
queries made by our algorithm is at most

1 · v + (dlog ve+ 1)(v − 1) 6 v + vdlog ve,
as desired.

