
New degree bounds for polynomial threshold functions∗

Ryan O’Donnell†

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213 USA

odonnell@theory.lcs.mit.edu

Rocco A. Servedio‡

Department of Computer Science

Columbia University

New York, NY 10025 USA

rocco@cs.columbia.edu

Abstract

A real multivariate polynomial p(x1, . . . , xn) is said to sign-represent a Boolean

function f : {0, 1}n → {−1, 1} if the sign of p(x) equals f(x) for all inputs x ∈ {0, 1}n.

We give new upper and lower bounds on the degree of polynomials which sign-represent

Boolean functions. Our upper bounds for Boolean formulas yield the first known

subexponential time learning algorithms for formulas of superconstant depth. Our

lower bounds for constant-depth circuits and intersections of halfspaces are the first

new degree lower bounds since 1968, improving results of Minsky and Papert. The

lower bounds are proved constructively; we give explicit dual solutions to the necessary

linear programs.

∗A preliminary version of these results appeared as [24].
†This work was done while at the Department of Mathematics, MIT, Cambridge, MA, and while supported

by NSF grant 99-12342.
‡Corresponding author. Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship

and by NSF grant CCR-98-77049. This work was done while at the Division of Engineering and Applied
Sciences, Harvard University, Cambridge, MA.

1 Introduction

Let f be a Boolean function f : {−1, 1}n → {−1, 1} and let p be a degree d multilinear

polynomial in n variables with real coefficients. If the sign of p(x) equals f(x) for every

x ∈ {−1, 1}n, then we say that f is computed by a polynomial threshold function of degree

d; equivalently we say that p sign-represents f.

Polynomial threshold functions are an interesting and natural representation for Boolean

functions which have many applications in complexity theory and learning theory, see, e.g.,

[3, 5, 6, 4, 26, 17, 16]. Positive results showing that functions have low degree polynomial

threshold functions can be used to obtain efficient learning algorithms via linear program-

ming; see, e.g., [17, 16]. Negative results showing that a function requires threshold polyno-

mials of large degree and/or large coefficients can be used to obtain oracles separating PP

from smaller classes; see, e.g., [5, 29].

In this paper we give new upper and lower bounds on polynomial threshold function

degree for several interesting and natural classes of functions which have been previously

considered (but not resolved) in the literature. It seems likely that both the upper and lower

bound techniques we use will prove useful for broader classes of functions.

1.1 Previous work The study of polynomial threshold functions began with Minsky and

Papert in their 1968 book on perceptrons [21]. Minsky and Papert gave three lower bounds

on the degree of polynomial threshold functions:

• Any polynomial threshold function which computes parity on n variables must have

degree at least n. This result has since been reproved many times, see, e.g., [3, 7].

• Any polynomial threshold function which computes a particular linear-size CNF for-

mula, the “one-in-a-box” function on n variables, must have degree Ω(n1/3). By Boolean

duality this lower bound also holds for a corresponding DNF formula.

• Any polynomial threshold function which computes the AND of two majorities each

on n variables must have degree ω(1).

Despite the fact that many researchers in learning theory and complexity theory have

studied polynomial threshold functions, relatively little progress has been made on improving

these lower bounds since 1968. In particular, Vereshchagin [29] has a lower bound for a

promise-problem extension of one-in-a-box and Beigel [5] has a lower bound for a certain

linear threshold function; however, both of these show degree lower bounds for polynomial

threshold functions only under the added assumption that the polynomials have small integer

coefficients. More progress has been made on upper bounds; Beigel, Reingold, and Spielman

1

[6] proved that there is a polynomial threshold function of degree O(log n) which computes

the AND of two n-bit majorities. More recently, Klivans and Servedio [17] showed that

any polynomial-size DNF formula (equivalently, CNF formula) has a polynomial threshold

function of degree O(n1/3 log n), and Klivans et al. [16] showed that any Boolean function

of a polylogarithmic number of halfspaces with quasipolynomially-bounded weights has a

polynomial threshold function of polylogarithmic degree.

We briefly note that researchers have also studied the sparseness of polynomial threshold

functions for various types of Boolean functions, where the sparseness is simply the number of

nonzero coefficients in the polynomial; see e.g. [7, 13, 18]. Sparseness bounds for polynomial

threshold functions depend heavily on whether the polynomials in question are over {0, 1}n

versus {−1, 1}n, whereas this choice does not affect degree bounds. Sparseness bounds are

in general incomparable to degree bounds, though of course a polynomial with very many

nonzero coefficients over n variables cannot have too low degree. Krause and Pudlak [18]

have given lower bounds on the number of nonzero coefficients which must be present in

any polynomial threshold function for a particular depth-3 Boolean circuit, but their lower

bounds are not strong enough to imply new lower bounds on polynomial threshold function

degree.

1.2 Our results We give new upper and lower bounds on polynomial threshold functions

for several interesting and natural classes of functions. Our main results are:

• We give an Ω(logn
log logn

) lower bound on the degree of any polynomial threshold function

which computes the AND of two n-bit majorities. Equivalently, this lower bound

holds for the degree of any bivariate real polynomial p(x, y) which is positive on the

integer lattice points in the upper-right quadrant with coordinates bounded by n, and

is negative on the lattice points in the other three quadrants with coordinates bounded

in magnitude by n. This result (and our next) is the first new unconditional lower

bound for polynomial threshold degree since 1968; it improves on Minsky and Papert’s

lower bound of ω(1) and nearly matches the O(log n) upper bound of Beigel, Reingold

and Spielman.

• We prove an “XOR lemma” for polynomial threshold function degree and use this

lemma to obtain an Ω(n1/3 log2d/3 n) lower bound on the degree of an explicit Boolean

circuit of polynomial size and depth d + 2. This is the first improvement on Minsky

and Papert’s Ω(n1/3) lower bound for any constant-depth circuit.

• We prove that any Boolean formula of depth d and size s is computed by a polynomial

threshold function of degree
√
s(log s)O(d). This gives us the first known upper bound

2

for Boolean formulas of superconstant depth. In particular, any Boolean formula of size

o(n2) and depth o(logn
log logn

) has a polynomial threshold function of nontrivial (sublinear)

degree. We use our upper bound to provide the first known subexponential learning

algorithm for such formulas. Note that since parity on
√
s variables can be computed

by a formula of size s, the best possible degree upper bound which depends only on s

is
√
s.

We note that since the initial conference publication of these results [24], Ambainis et

al. have shown that in fact any Boolean formula of size s is approximately computed by

a polynomial of degree O(
√
s) [1], with pointwise error at most 1/3 on each input. This

immediately implies the existence of a polynomial threshold function of degree O(
√
s), thus

improving on our degree bound.

1.3 Our techniques Perhaps surprisingly, our lower bounds are achieved constructively.

The question of whether a given function has a polynomial threshold function of degree d

can be formulated as the feasibility question for a certain linear program. By duality, we can

show the linear program is infeasible — and hence the function has polynomial threshold

degree exceeding d — by showing that the dual linear program is feasible. We construct

explicit dual solutions. (Interestingly, Vereschagin’s lower bound [29] involves showing that

a certain linear program is feasible by explicitly demonstrating the infeasibility of the dual.)

Our upper bounds build on ideas from [17, 16] and use tools from real approximation

theory.

1.4 Organization Section 2 gives preliminaries on polynomial threshold functions and

describes the duality technique we use for our lower bounds. In Section 3 we prove our XOR

lemma for polynomial threshold functions using the duality technique, and use this lemma

to obtain new lower bounds for constant depth circuits. In Section 4 we apply the lower

bound technique to prove our Ω(logn
log logn

) lower bound for the AND of two majorities. In

Section 5 we give our upper bounds for Boolean formulas and the application to learning.

2 Preliminaries

2.1 Sign-representations of Boolean functions A multilinear monomial over the vari-

ables x1, . . . , xn is one in which each variable has degree at most one. Such a monomial is

defined by the set S ⊆ [n] of variables x1, . . . , xn that it contains; we write xS to denote the

monomial
∏

i∈S xi. A multilinear polynomial (with coefficients in the reals) is a sum of the

3

form

p(x1, . . . , xn) =
∑
S⊆[n]

pSxS

where each pS ∈ R. Since we will always be dealing with functions whose domain is {−1, 1}n

or {0, 1}n, we may consider only multilinear polynomials with no loss of generality in our

results.

We remark that viewing the polynomial p as a real-valued function on {−1, 1}n, the

coefficients {pS}S⊆[n] correspond to the Fourier spectrum of the function p with respect

to the standard orthonormal basis formed by the collection of all 2n monomials {xS}S⊆[n].

Following [26], we refer to the set S ⊆ 2[n] of monomials on which p has nonzero coefficients

as the spectral support of p.

We make the following standard definitions of sign-representing polynomials for a Boolean

function (see [3]).

Definition 2.1 Let f : {−1, 1}n → {−1, 1} be a Boolean function. Let p : {−1, 1}n → R be

a multilinear polynomial which is not identically 0.

We say that p weakly sign-represents f if f(x) = sgn(p(x)) for all x such that p(x) 6= 0.

We say that p strongly sign-represents f , or simply sign-represents f , if f(x) = sgn(p(x))

and p(x) 6= 0 for every x ∈ {−1, 1}n. We write thr(f) to denote the minimum degree over

all polynomials strongly sign-representing f , and thrw(f) to denote the minimum degree over

all polynomials weakly sign-representing f .

On occasion we will view the domain of f as {0, 1}n instead of {−1, 1}n; it is easy to see

that this does not change the degree of any sign-representing polynomial.

2.2 Distributions and their connection with sign-representations We will require

the following notion of a distribution over {−1, 1}n.

Definition 2.2 We say that a distribution over {−1, 1}n is a map w : {−1, 1}n → R≥0

which is not identically 0. The set of points {x : w(x) 6= 0} is called the support of the

distribution w. If the support of w is all of {−1, 1}n then we say that w is a total distribution.

If
∑

x∈{−1,1}n w(x) = 1 then we say that w is a probability distribution.

Given a monomial xS, S ⊆ [n], we say that the correlation of xS with f under distribution

w is

Ew[f(x)xS] :=
∑

x∈{−1,1}n
f(x)xSw(x).

4

Fix a Boolean function f : {−1, 1}n → {−1, 1}. As we now explain, there is an exact

correspondence between sign-representing polynomials for f and distributions over {−1, 1}n.

Let Af be a 2n × 2n matrix with ±1 entries as follows. We view the rows of Af as being

indexed by inputs x ∈ {−1, 1}n and the columns of Af as indexed by subsets of variables

S ⊆ [n]. The entry Af [x, S] in row x and column S of the matrix is equal to f(x)xS.

Note that for any S1, S2 ⊆ [n] we have that the inner product of the S1 and S2 columns

of Af is (writing S1∆S2 to denote the symmetric difference of S1 and S2)

∑
x∈{−1,1}n

f(x)xS1f(x)xS2 =
∑

x∈{−1,1}n
xS1∆S2 =

0 if S1 6= S2

2n if S1 = S2

so consequently Af is an orthogonal matrix (in fact it is a Hadamard matrix) and hence is

a bijective mapping from R2n to R2n .

Now let p be a 2n-dimensional column vector p whose entries are indexed by subsets

S ⊆ [n]. Then Afp is a 2n-dimensional column vector, which we call w, whose entries are

indexed by x ∈ {−1, 1}n. The x-th entry of w is

w(x) =
∑
S⊆[n]

Af [x, S]pS =
∑
S⊆[n]

f(x)xSpS = f(x)
∑
S⊆[n]

pSxS = f(x)p(x).

So the vector p corresponds to a weak (strong) sign-representation of f if and only if the

vector w = Afp corresponds to a distribution (total distribution) over {−1, 1}n. We thus

have

Proposition 2.3 The mapping Af is a bijection between weak sign-representations of f and

distributions, and moreover is a bijection between strong sign-representations of f and total

distributions.

If p(x) is a weak sign-representation of f and w = Afp is the corresponding distribution,

we have that the S coefficient of p is proportional to the correlation of xS with f under w.

To see this, recall that this correlation is

∑
x∈{−1,1}n

f(x)xSw(x) =
∑

x∈{−1,1}n
f(x)xS

f(x)
∑
T⊆[n]

pTxT


=

∑
x

xS
∑
T

pTxT

=
∑
T

pT
∑
x

xS∆T = 2npS

where the final equality holds because the inner sum is nonzero only if T = S, in which case

it is 2n. We thus have:

5

Proposition 2.4 Let p be a weak sign-representation of f and w = Afp the corresponding

distribution. Then the spectral support of p is S if and only if

• f has zero correlation with xS under w for every monomial S 6∈ S, and

• f has non-zero correlation with xS under w for every monomial S ∈ S.

2.3 The Theorem of the Alternative Our main tool for proving polynomial threshold

degree lower bounds is the following so-called “Theorem of the Alternative.” It can be proved

immediately using linear programming duality, as was essentially done by Aspnes et al. in

[3]; see also [26] for a nice exposition of the simple proof. A completely different proof based

on the distribution perspective can be given by combining the “Discriminator Lemma” of

[14] with the learning-theoretic technique of boosting, see [12, 13].

Theorem 2.5 Let f : {−1, 1}n → {−1, 1} be a Boolean function. Let S ⊆ 2[n] be any set of

monomials. Then exactly one of the following holds:

• f has a strong representation with spectral support in S; or,

• f has a weak representation with spectral support in 2[n] \ S.

Given the equivalence between sign-representations and distributions from the previous

subsection, there are three other ways of restating Theorem 2.5. We will need one more:

Theorem 2.6 Let f : {−1, 1}n → {−1, 1} be a Boolean function. Let S ⊆ 2[n] be any set of

monomials. Then exactly one of the following holds:

• f has a strong representation with spectral support in S; or,

• there is a distribution on {−1, 1}n under which f has zero correlation to every mono-

mial in S.

3 An XOR lemma for PTF degree

Let f be any Boolean function {−1, 1}n → {−1, 1} defined on variables x1, . . . , xn and let

g be any Boolean function {−1, 1}n → {−1, 1} defined on variables y1, . . . , yn. Let f ⊕ g

denote the XOR (parity) of f and g. We will prove the following “XOR lemma:”

Theorem 3.1 Let f and g be Boolean functions on disjoint sets of variables. Then thr(f ⊕
g) = thr(f) + thr(g).

6

We note that Theorem 3.1 is similar in spirit (though incomparable) to a recent result of

Sieling [27] which shows that DT (f ⊕ g) = DT (f) · DT (g), where DT (f) is the minimum

decision tree size of f.

Proof of Theorem 3.1: The upper bound is easy; if pf (x) is a strong sign-representation

of f of degree thr(f) and pg(y) is a strong sign-representation of g with degree thr(g) then

pf (x)pg(y) is easily seen to be a strong sign-representation of f ⊕ g, and deg(pf (x)pg(y)) =

thr(f) + thr(g).

For the lower bound, since f has no strong representation on the set of monomials of

degree strictly less than thr(f), Theorem 2.5 tells us that f has a weak representation qf (x)

supported on the monomials xS with |S| ≥ thr(f). Similarly, g has a weak representation

qg(y) supported on the monomials yT with |T | ≥ thr(g). Now qf (x)qg(y) is a weak repre-

sentation of f ⊕ g; in particular, it is not identically zero because there is at least one x for

which qf (x) 6= 0 and at least one y for which qg(y) 6= 0, so qf (x)qg(y) 6= 0 for these inputs.

Note that qf (x)qg(y) is supported on the set of monomials which have degree at least thr(f)

in x and at least thr(g) in y. Applying Theorem 2.5 again we conclude that any strong

representation for f ⊕ g must use some monomial with degree at least thr(f) in x and at

least thr(g) in y; this is more than sufficient to prove that thr(f ⊕ g) ≥ thr(f) + thr(g).

(Theorem 3.1)

For f a Boolean function let ⊕kf denote the XOR of k copies of f on disjoint sets of

variables. From Theorem 3.1 we obtain:

Corollary 3.2 thr(⊕kf) = k · thr(f).

This corollary thus includes Minsky and Papert’s lower bound of n for the parity function

as a special case.

Corollary 3.2 also yields the following lower bound for constant depth circuits:

Theorem 3.3 For all d ≥ 1 there is an AND/OR/NOT circuit C of depth d + 2 and size

poly(n) which has polynomial threshold function degree Ω(n1/3(log n)2d/3).

Proof: The circuit C computes the parity of (log n)d disjoint copies of Minsky and Papert’s

“one-in-a-box” function, where each one-in-a-box function is defined on n/(log n)d variables.

It is well known that for any constant d, parity on (log n)d variables can be computed by an

AND/OR/NOT circuit of depth d + 1 and size poly(n). Since the one-in-a-box function on

n/(log n)d variables is a depth-2 circuit of size O(n/(log n)d), by substituting the appropriate

one-in-a-box function for each input to the parity we see that C is a circuit of poly(n) size

7

and depth d+ 2 (we save one on depth by collapsing gates of the same kind on the next to

bottom layer). By Minsky and Papert’s lower bound, we know that any polynomial threshold

function for one-in-a-box on n/(log n)d variables must have degree Ω((n/(log n)d)1/3). Con-

sequently Corollary 3.2 implies that thr(C) = Ω(n1/3(log n)2d/3) and the theorem is proved.

In fact, we can actually give an alternate proof of Minsky and Papert’s lower bound for

one-in-a-box by using our lower bound technique of applying the Theorem of the Alternative

(Theorem 2.6) and constructing the necessary distribution explicitly. See Appendix A.

Theorem 3.3 is of interest since it gives the first ω(n1/3) lower bound for any function in

AC0. We note that Theorem 3.3 also shows that the n1/3 log n upper bound of Klivans and

Servedio for depth-2 AC0 circuits does not hold for depth-4 AC0.

4 A lower bound for the AND of two majorities

Let n be odd, and let AND-MAJn : {−1, 1}n × {−1, 1}n → {−1, 1} be the function which

on input (x, y), x, y ∈ {−1, 1}n, outputs 1 if both MAJn(x) = 1 and MAJn(y) = 1. Here

MAJn is the majority function on n bits, x 7→ sgn(
∑n

i=1 xi). In this section we show that

thr(AND-MAJn) = Ω(logn
log logn

), improving on the ω(1) lower bound of Minsky and Papert.

Note that O(log n) is an upper bound, by Beigel, Reingold, and Spielman [6].

The high-level idea of the proof is to use the Theorem of the Alternative. More precisely,

we will show that there is a distribution on {−1, 1}n under which AND-MAJn has zero

correlation with every “low-degree” monomial. Given this, Theorem 2.6 implies that f has

no strong representation with spectral support in the set of “low-degree” monomials, so

consequently the threshold degree of AND-MAJn must be high.

We begin by applying a simple symmetrization due to Minsky and Papert. Suppose p

is a polynomial threshold function for AND-MAJn where n is odd. Let Zodd
n denote the set

{−n,−(n− 2), . . . ,−1, 1, . . . , n− 2, n} ⊆ Z. Let AND-sgnn : Zodd
n × Zodd

n → {−1, 1} be the

function which on input (x, y) is 1 iff x > 0 and y > 0.

Claim 4.1 There exists a polynomial threshold function for AND-MAJn of degree d if and

only if there exists a bivariate polynomial of degree d which sign-represents AND-sgnn.

Proof: (if) Suppose g is a bivariate polynomial sign-representing AND-sgnn. Let p :

{−1, 1}n × {−1, 1}n → R be given by p(x, y) = g(
∑
xi,
∑
yi). Then the multilinear re-

duction of p has degree d and sign-represents AND-MAJn.

(only if) Suppose p has degree d and sign-represents AND-MAJn. Let q : {−1, 1}n ×
{−1, 1}n → R be given by (x, y) 7→

∑
π1,π2∈Sn p(xπ1(1), . . . , xπ1(n), yπ2(1), . . . , yπ2(n)), where

Sn is the symmetric group on [n]. Because AND-MAJn(xπ1(1), . . . , xπ1(n), yπ2(1), . . . , yπ2(n)) =

8

AND-MAJn(x, y) we conclude that q sign-represents AND-MAJn and has degree d. But notice

that q is symmetric in its x variables and its y variables. Hence there is a degree d bivariate

polynomial q̃(·, ·) such that q̃(
∑
xi,
∑
yi) = q(x, y) for all (x, y) ∈ {−1, 1}n × {−1, 1}n, and

thus q̃ sign-represents AND-sgnn.

It follows that if we prove a lower bound on the degree of a bivariate polynomial which

sign-represents AND-sgnn, we get a lower bound on thr(AND-MAJn). Following Theorem 2.6,

we shall show that there is a probability distribution over Zodd
n ×Zodd

n under which every bi-

variate monomial of degree at most d = Ω(logn
log logn

) has zero correlation with AND-sgnn.

To see that this is enough, suppose that q̃ is a bivariate polynomial of degree d sign-

representing AND-sgnn and w is a probability distribution over Zodd
n × Zodd

n with the stated

property. Then on one hand Ew[AND-sgnn(x, y)q̃(x, y)] = 0 by linearity of expectation, since

each monomial in q̃ has zero correlation with AND-sgnn under w. But on the other hand,

since q̃ strongly sign-represents AND-sgnn, AND-sgnn(x, y)q̃(x, y) > 0 for all (x, y), hence

Ew[AND-sgnn(x, y)q̃(x, y)] > 0, contradiction.

The problem is now set up to our satisfaction. Fix an integer d. We shall try to find a

support (set of points) Z ⊂ Zodd × Zodd and a probability distribution w over these points

such that the function f = AND-sgnn has zero correlation under w with every monomial

xiyj of total degree at most d. That is, we want w : Z → R≥0 with
∑

z∈Z w(z) = 1 such

that:

∀ 0 ≤ i+ j ≤ d, Ew[f(x, y) xiyj] =
∑

(x,y)∈Z

w(x, y)f(x, y) xiyj = 0. (1)

In addition we would like to find a solution in which size(Z) is as small as possible, where

size(Z) denotes max(x,y)∈Z{max{|x|, |y|}}. Once we have such a Z and w, we get a lower

bound of d+ 1 for the degree of a polynomial threshold function computing AND-MAJsize(Z).

In the remainder of this section we give a construction in which size(Z) = dO(d). Since we

can take size(Z) as large as Θ(n), this means we may take d = Ω(logn
log logn

), and we obtain

the main result of this section:

Theorem 4.2 thr(AND-MAJn) = Ω(logn
log logn

).

4.1 Proof of Theorem 4.2

Suppose we fix some n and wish to know if there exists a distribution w supported on

Zodd
n ×Zodd

n satisfying (1). If we view the values {w(x, y) : (x, y) ∈ Zodd
n ×Zodd

n } as unknowns,

this is precisely asking if a certain system of linear equations has a nonnegative solution; i.e.,

it is a feasibility problem for a linear program.

9

Thus let us say that our constraints are all bivariate monomials xiyj of total degree

at most d. We will refer to xiyj as the “(i, j) constraint monomial.” There are a total of

D = (d+1)(d+2)
2

constraint monomials, and for definiteness we will consider them to be ordered

as follows: 1, x, y, x2, xy, y2, x3, etc.

By basic linear programming theory, if there is a feasible solution for the w(x, y)’s then

there is one in which at most D + 1 of the values are nonzero. The key to our proof will be

to guess an acceptable “support” set Z of cardinality D+1 with size(Z) small. We will then

show that the unique solution to the system of equations given by (1) and
∑

w(x, y) = 1 is

indeed nonnegative.

To guess an acceptable support set, we in fact explicitly checked feasibility of the LP

for small values of d. For d = 1 the minimum possible value of n yielding feasibility was

n = 3; for d = 2 the minimum feasible n was n = 23. The explicit solutions were supported

on points that seemed to roughly be of the form (±hi,±hj) for a small constant h and

0 ≤ i, j ≤ d.1 By explicitly considering supports only of this form we were able to show

feasibility bounds with n ≤ 10d for d = 3, 4, 5. Further, by studying the precise solutions

found by the LP solver, we were led to consider the following support set for the general

case, which we will use in the remainder of the proof:

Z = {((−1)` hk, (−1)k h`) : 0 ≤ k + ` ≤ d} ∪ {(−1,−1)},

where here h is a large quantity to be chosen later. We believe h can be taken constant, but

for our proof we will eventually take h = Θ(d9).

This support Z is symmetric about the line y = x and contains exactly D+1 points. We

will refer to ((−1)` hk, (−1)k h`) as the “(k, `) support point” and consider the points to be

ordered in the same order as the monomials (i.e., (1, 1), (h,−1), (−1, h), (h2, 1), (−h,−h),

(1, h2), (h3,−1), etc.), with the special point (−1,−1) coming last. Note that the value of f

on the (k, `) support point is (−1)k`+k+`.

Let Ã be a D × (D + 1) matrix whose columns are indexed by the support points and

whose rows are indexed by the constraint monomials. Define Ã[(i, j), (k, `)] to be the value

of the (i, j)th constraint monomial at the (k, `)th support point, multiplied by the value of

f at the (k, `)th support point. This definition shall include the case of the special (−1,−1)

support point, to whose column (the rightmost column of Ã) we assign the index (0′, 0′) for

reasons that will become clear soon. Let A be the (D+ 1)× (D+ 1) matrix given by adding

a row of 1’s to the bottom of Ã. For notational convenience we will also give this bottom

row the index (0′, 0′). So for (i, j), (k, `) 6= (0′, 0′) we have:

1Given the logarithmic upper bound on threshold degree for AND-MAJn proved by [6], it makes sense to
see a support requiring coordinates exponential in d.

10

A[(i, j), (k, `)] = (−1)k(j+1)+`(i+1)+k`hik+j`, (2)

i.e.

A =



1 −1 −1 1 −1 1 −1 · · · (−1)d −1

1 −h 1 h2 h 1 −h3 · · · 1 1

1 1 −h 1 h h2 1 · · · (−h)d 1

1 −h2 −1 h4 −h2 1 −h6 · · · (−1)d −1
...

...
...

...
...

...
...

...
...

...

1 (−1)d+1 −hd 1 (−1)d+1hd h2d (−1)d+1 · · · (−1)dhd
2

(−1)d+1

1 1 1 1 1 1 1 · · · 1 1


.

Recall that we want to find values w : Z → R such that
∑

(x,y)∈Z w(x, y)f(x, y) xiyj = 0

for all constraints and such that
∑

(x,y)∈Z w(x, y) = 1. By construction these values are

uniquely given by the solution to the following system of linear equations:

A



w(0,0)

w(1,0)

w(0,1)

w(2,0)

...

w(0,d)

w(−1,−1)


=



0

0

0

0
...

0

1


. (3)

In the remainder of the proof we show that by taking h = Θ(d9), we can ensure that the

solution to Equation (3) consists entirely of nonnegative numbers, and hence w corresponds

to a true probability distribution as desired. Since h = O(d9) means that size(Z) = dO(d),

and we may take h to be odd, this proves Theorem 4.2.

We shall consider solving Equation (3) via Cramer’s rule. Cramer’s rule tells us that

Equation (3) implies:

w(u,v) =
detA(u,v)

detA
,

where A(u,v) denotes the matrix A with the (u, v) column replaced by the right hand side of

Equation (3), namely
[

0 0 0 · · · 0 1
]T

. To show that each w(u,v) is nonnegative we

will show that detA(u,v) and detA have the same sign.

Let σ ∈ {+1,−1} be the sign of the product of the diagonal entries in A. We will prove

the following two lemmas and thus prove Theorem 4.2:

Lemma 4.3 sign(detA) = σ.

11

Lemma 4.4 sign(detA(u,v)) = σ for all (u, v).

Since the proofs of these lemmas are rather technical, we give a word of intuition before

entering into the details. Lemma 4.3 essentially says that the dominant contribution to detA,

viewed as a sum over permutations, comes from the identity permutation corresponding to

the diagonal elements in A. Intuitively this is because the product of the diagonal elements

of A yields the largest total exponent for h over all permutations, which is a consequence of

the way we chose the support Z. (As a toy example, consider the 4× 4 submatrix in the top

left immediately below (2). The product of the 4 diagonal elements yields an exponent of 6

while every other permissible choice of 4 elements from this submatrix yields an exponent

of at most 5.) Lemma 4.4 essentially says that a similar phenomenon holds even for the

matrix A(u,v) (which is less well-structured than A); not surprisingly the proof there is more

complicated than the one for Lemma 4.3.

4.1.1 Proof of Lemma 4.3 To prove Lemma 4.3 we view detA as a polynomial in

h. Let T := deg(detA) be the degree of detA. We show that the leading term of detA

(corresponding to hT) dominates all the other terms for h sufficiently large, and thus the

sign of detA is the same as the sign of the leading term. More precisely, we establish the

following two facts:

Claim 4.5 The coefficient of hT in detA is 2σ.

Claim 4.6 For all u ≥ 1 the coefficient of hT−u in detA is at most 2(D+2)4u in magnitude.

Claim 4.6 implies that the sum of the absolute values of the lower-order terms in detA is at

most
∑T

u=1 2(D + 2)4uhT−u ≤ hT
∑T

u=1(2(D + 2)4/h)u. If we take h to be Θ(d9) then this

quantity will be strictly smaller than hT . But by Claim 4.5 we have that the leading term

of detA is 2σhT . Thus sgn(detA) = σ and Lemma 4.3 holds.

We set the stage before proving Claims 4.5 and 4.6 with some notation and some obser-

vations. Let S denote the permutation group on the D+ 1 indices (0, 0), (1, 0), (0, 1), (2, 0),

(1, 1), (0, 2), . . . , (0, d), (0′, 0′). Then:

detA =
∑
π∈S

sgn(π)
∏
(i,j)

A[(i, j), π(i, j)]. (4)

Recall that for (i, j), (k, `) 6= (0′, 0′), the entry A[(i, j), (k, `)] is ±hik+j`, which we will write

as ± exph ((i, j) · (k, `)), with exph(t) denoting ht and · being the usual dot product. In the

12

case that (i, j) = (0′, 0′) or (k, `) = (0′, 0′), the entry A[(i, j), (k, `)] is ±1 = ±h0. If we define

(0′, 0′) · (a, b) to be 0, then we have that for any permutation π ∈ S,

∏
(i,j)

A[(i, j), π(i, j)] = ± exph

∑
(i,j)

(i, j) · π(i, j)

 .

Given a permutation π ∈ S, write t(π) =
∑

(i,j)(i, j) · π(i, j), so the permutation π

contributes ±1 to the coefficient of ht(π) in detA. Then the absolute value of the coefficient

of hu in detA is at most |{π ∈ S : t(π) = u}|. We will use this fact to bound all the

lower-order terms in detA; for the leading term we will pay more attention to the signs.

To calculate t(π) from π, we decompose the permutation π as a product of cycles. For

each cycle π0 = ((i1, j1) (i2, j2) · · · (im, jm)) we have by simple arithmetic:

m∑
r=1

(ir, jr) · (ir, jr)−
m∑
r=1

(ir, jr) · π0(ir, jr) =
1

2

m∑
r=1

(ir − ir−1)2 + (jr − jr−1)2, (5)

where we use the notation (i0, j0) = (im, jm). (Note that a geometric interpretation of this

quantity is that it is half the sum of the squares of the lengths of the line segments which

make up the cycle in the two-dimensional plane from (i1, j1) to (i2, j2) to (i3, j3) to . . .

to (im, jm) to (i1, j1).) In particular, this quantity is at least 1 for every nontrivial cycle,

where a trivial cycle for us is either a cycle of length 1 or the transposition exchanging

(0, 0) and (0′, 0′). The quantity in Equation (5) is 0 for trivial cycles. Thus we have that

the identity permutation and the transposition ((0, 0), (0′, 0′)) are the only two permutations

which achieve the maximum value t(π) = T. It is easy to see that this maximum value T is∑
(i,j) i

2 + j2, which one easily calculates to be T := d(d+ 1)2(d+ 2)/6. We further see that

every other permutation “pays a penalty” in its t value for each nontrivial cycle it contains,

and this penalty is given by the right-hand side of Equation (5). Hence to calculate t(π)

from π we simply sum up the penalties for each cycle in its cycle decomposition and subtract

the total from T .

Proof of Claim 4.5: As described above, we have that there are exactly two permutations

which lead to the maximum power hT in Equation (4): the identity permutation which takes

all the diagonal elements, and the ((0, 0), (0′, 0′)) transposition which takes the top-right

entry of A, the bottom-left entry of A, and the diagonal elements otherwise. The product

of the top-left and bottom-right entries of A is 1. The product of the top-right and bottom-

left entries is −1; however this gets flipped to +1 by the sign of the permutation (it is a

transposition so its sign is −1). We conclude that leading term of detA is 2σhT where

σ ∈ {−1, 1} is the sign of the product of the diagonal entries in A. (Claim 4.5)

13

Proof of Claim 4.6: To bound the coefficient on the lower-order term hT−u in detA we

simply count the number of permutations π which have t(π) = T − u. This count gives

an upper bound on the magnitude of the coefficient. If t(π) = T − u then the penalty

accounting scheme from Equation (5) tells us that π has at most u nontrivial cycles. In

fact we can say more: any nontrivial cycle of length m must incur a penalty of at least

bm/2c. (This follows from the geometric interpretation described earlier, together with the

fact that any nontrivial cycle of length m ≥ 3 can include at most one segment of length 0

between (0, 0) and (0′, 0′).) Consequently, if t(π) = T − u then the lengths of the nontrivial

cycles in π’s cycle decomposition must sum to at most 3u (in the worst case all its cycles

may be 3-cycles each of which incurs a penalty of 1). Now observe that there are at most

(D + 2)4u permutations on D + 1 elements which decompose into at most u cycles whose

total length is at most 3u. (Any such sequence of cycles can be written as a string of length

4u over a D + 2 element alphabet, where the extra symbol is used to mark the end of each

cycle.) Doubling this upper bound covers the optional addition of the trivial ((0, 0), (0′, 0′))

transposition. We thus may conclude that there are at most 2(D+ 2)4u permutations π ∈ S

which have t(π) = T − u. (Claim 4.6)

4.1.2 Proof of Lemma 4.4 It now remains to show that sgn(detA(u,v)) = σ for each

(u, v). By the nature of cofactor expansion, detA(u,v) is equal to a certain sign ρ, times

the determinant of A with the bottom row and the (u, v) column deleted. In the case

(u, v) = (0′, 0′) we have ρ = 1 and we shall write A′(0′,0′) for the matrix A with its last row

and column deleted. For all (u, v) 6= (0′, 0′), let us write A′(u,v) for the matrix gotten by

first deleting the bottom row and (u, v) column from A, and then moving the (0′, 0′) column

leftward until it is in the place where the old (u, v) used to be. Shifting the (0′, 0′) column

like this incurs a sign change equal to −ρ; we conclude that detA(u,v) = − detA′(u,v). Hence

it is sufficient for us to show that sgn(detA′(0′,0′)) = σ and that sgn(detA′(u,v)) = −σ for all

(u, v) 6= (0′, 0′).

Let us begin by dispensing with the cases (u, v) = (0′, 0′) or (0, 0). In both of these cases

A′(u,v) is very similar to A with the last row and column deleted; when (u, v) = (0′, 0′) this

is exactly what A′(u,v) is, and when (u, v) = (0, 0) some of the signs in the first column are

changed. Hence the analysis of detA′(u,v) is virtually identical to the above analysis of detA,

except that (0′, 0′) is no longer present. The leading term will therefore be equal to the top-

left entry of A′(u,v) times σhT ; this entry is 1 when (u, v) = (0′, 0′) and is −1 when (u, v) =

(0, 0), as desired. The analysis bounding the lower-order terms goes through in essentially

the same way as before (again without (0′, 0′)) and we conclude that sgn(detA′(0′,0′)) = σ

and sgn(detA′(0,0)) = −σ as desired.

14

Throughout the rest of this section we assume that (u, v) 6= (0′, 0′), (0, 0). Let T(u,v) denote

the degree of det(A′(u,v)).

Let C denote the number of paths from (u, v) to (1, 0) plus the number of paths from

(u, v) to (0, 1), where each path uses steps (−1, 0), (0,−1), and (−1,−1). (Such paths

are known as Delannoy paths, and the number of such paths between a pair of points is a

Delannoy number, see e.g. p. 80 of [11]; hence C is a sum of two Delannoy numbers.)

We will prove the following two claims:

Claim 4.7 The coefficient of hT(u,v) in det(A′(u,v)) is −2σC.

Claim 4.8 For all s ≥ 1 the coefficient of hT(u,v)−s in det(A′(u,v)) is at most 4C(D + 2)4s in

magnitude.

As in the previous subsection, these two claims show that we may take h = Θ(d9) to obtain

sgn(det(A′(u,v))) = −σ, so they suffice to prove the lemma.

Studying detA′(u,v) is slightly more complex than studying detA because its rows and

columns no longer have the same names; the rows of A′(u,v) are named (0, 0), (1, 0), (0, 1),

(2, 0), . . . , (u, v), . . . , (0, d), whereas the columns are named (0, 0), (1, 0), (0, 1), (2, 0),

. . . , (0′, 0′), . . . , (0, d). To deal with this, we will let S′ denote the permutation group on

the D row indices of A′(u,v), and we will view (u, v) as (0′, 0′) whenever it is the “output”

of a permutation. To be precise, let ι be a mapping which maps (i, j) to (i, j) for each

(i, j) 6= (u, v), and maps (u, v) to (0′, 0′). Then our determinant equation becomes:

detA′(u,v) =
∑
π∈S

sgn(π)
∏
(i,j)

A[(i, j), ι(π(i, j))]. (6)

We may write t(π) =
∑

(i,j)(i, j) · ι(π(i, j)), so we have
∏

(i,j)A[(i, j), ι(π(i, j))] = ±ht(π).

As before we will calculate t(π) by considering the cycle decomposition of π and com-

puting the penalty difference from T = d(d + 1)2(d + 2)/6 for each cycle. Since now the

“identity” permutation does not exist, the permutations maximizing t(π) may not achieve

T ; indeed, since (u, v) 6= (0′, 0′) it is the case that maximizing permutations will not achieve

t(π) = T. Let us now find the new highest value for t(π). The cycle decomposition of π

contains a unique cycle (which may be a 1-cycle) containing (u, v), and perhaps other cycles

which do not contain (u, v). For the cycles not containing (u, v), ι does not enter into the

picture in calculating t(π0); hence Equation (5) still holds and we conclude that for any π

with maximal t(π), all its nontrivial cycles must involve (u, v). Thus, in order to find all

maximizing π’s, it is sufficient to determine which cycles containing (u, v) give the smallest

penalty.

15

Let π∗ be a cycle containing (u, v); say π∗ = ((u, v), (i1, j1), (i2, j2), · · · , (im, jm)), so

according to our conventions π∗ maps (u, v) to (i1, j1), maps (ir, jr) to (ir+1, jr+1) for 1 ≤
r ≤ m − 1, and maps (im, jm) to ι(u, v) = (0′, 0′). Write (i0, j0) = (u, v). Then akin to

Equation (5) we have:

m∑
r=0

(ir, jr) · (ir, jr)−
m∑
r=0

(ir, jr) · ι(π∗(ir, jr))

=
m∑
r=0

(ir, jr) · (ir, jr)−
m∑
r=0

(ir, jr) · (ir+1 mod m+1, jr+1 mod m+1) + iru+ jrv

=
1

2

((
m∑
r=1

(ir − ir−1)2 + (jr − jr−1)2

)
+ (u− ir)2 + (v − jr)2

)
+ imu+ jmv (as in Equation (5))

=
1

2

((
m∑
r=1

(ir − ir−1)2 + (jr − jr−1)2

)
+ i2m + j2

m + u2 + v2

)
. (7)

The geometric interpretation of the quantity on the right-hand side of Equation (7) is

that it is half the sum of the squares of the path segments on the closed path from (u, v)

to (i1, j1) to (i2, j2) to · · · to (im, jm) to (0, 0) to (u, v). It is immediate that in a cycle

minimizing this quantity, there should be no path step which has either x or y displacement

greater than 1 in magnitude (aside from the step from (0, 0) to (u, v) which is forced).

Consequently, the permutations π which maximize t(π) are precisely those cycles π∗ such

that (1) ir+1−ir ∈ {−1, 0} and jr+1−jr ∈ {−1, 0} for 0 ≤ r < m, and (2) im, jm ∈ {0, 1}. It is

easy to see that each such maximizing permutation has t(π) = T(u,v) = T − 1
2
(u+v+u2 +v2).

Proof of Claim 4.7: Now we can compute the coefficient of hT(u,v) in detA′(u,v). Given a

permutation π maximizing t(π), let ε(π) denote the sign of π’s contribution to the deter-

minant computation of Equation (6), i.e. ε(π) = sgn(π)
∏

(i,j) sgn(A[(i, j), ι(π(i, j))]). Then

the leading coefficient of detA′(u,v) is just the sum of ε(π) over all maximizing π.

Let π = ((u, v), (i1, j1), (i2, j2), · · · , , (im, jm)) be a maximizing permutation; as before we

write (i0, j0) = (u, v). By the definition of σ as the product of the signs of A’s diagonal

elements, we get that:

σε(π) = sgn(π)

(
m−1∏
r=0

sgn(A[(ir, jr), (ir, jr)])sgn(A[(ir, jr), (ir+1, jr+1)])

)
· sgn(A[(im, jm), (im, jm)])sgn(A[(im, jm), (0′, 0′)]).

We claim that for each 0 ≤ r ≤ m−1 we have sgn(A[(ir, jr), (ir, jr)])sgn(A[(ir, jr), (ir+1, jr+1)]) =

16

−1, independent of (ir, jr). For from Equation (2) we know that:

sgn(A[(ir, jr), (ir, jr)])sgn(A[(ir, jr), (ir+1, jr+1)])

= exp−1(ir(jr + 1) + jr(ir + 1) + irjr) exp−1(ir+1(jr + 1) + jr+1(ir + 1) + ir+1jr+1)

= exp−1(irjr + ir+1jr + irjr+1 + ir+1jr+1 + ir + ir+1 + jr + jr+1)

= exp−1((ir + ir+1 + 1)(jr + jr+1 + 1)− 1),

which is always −1 as claimed, because (ir, jr)− (ir+1, jr+1) ∈ {(1, 0), (0, 1), (1, 1)}.
Thus we have:

σε(π) = sgn(π)(−1)msgn(A[(im, jm), (im, jm)])sgn(A[(im, jm), (0′, 0′)])

= +sgn(A[(im, jm), (im, jm)])sgn(A[(im, jm), (0′, 0′)]) (∗),

because π is a cycle of length m + 1. If (im, jm) = (1, 1) then (∗) = −1; otherwise, (∗) =

+1. Hence we conclude that ε(π) = σ if (im, jm) = (1, 1) and ε(π) = −σ if (im, jm) ∈
{(0, 0), (1, 0), (0, 1)}. For each maximizing cycle π of length m+1 with (im, jm) 6= (0, 0), there

is a corresponding maximizing cycle π′ of length m+2 obtained by appending (im+1, jm+1) =

(0, 0) to π. Thus we have ε(π)+ε(π′) = 0 when (im, jm) = (1, 1) and ε(π)+ε(π′) = −2σ when

(im, jm) = (1, 0) or (0, 1). In conclusion, the leading term in detA′(u,v) is exactly −2σChT(u,v) ,

where as stated above C is the number of paths from (u, v) to (1, 0) plus the number of

paths from (u, v) to (0, 1), where each path uses steps (−1, 0), (0,−1), and (−1,−1). Since

(u, v) 6= (0, 0) we have C ≥ 1, and the claim is proved. (Claim 4.7)

Proof of Claim 4.8: We must upper-bound the magnitude of the lower-order terms in

detA′(u,v). We do this as in the analysis of detA by upper-bounding the number of permu-

tations π with t(π) = T(u,v) − s. To each π ∈ S′ we will associate a maximizing permutation

π∗ (i.e., one for which t(π∗) = T(u,v)), and a “deviation description.” We will show that the

longer the deviation description, the smaller t(π) is compared to t(π∗). Thus the number

of permutations π with t(π) close to T(u,v) will be upper-bounded by the number of optimal

permutations times the number of short deviation descriptions.

Let π be an arbitrary permutation in S′ and write π as the product of a cycle π0 involving

(u, v), and some other cycles π1, . . . , πs. The maximizing permutation π∗ we associate with

π will depend only on π0. View π0 geometrically as a path from (u, v) to π−1
0 (u, v). Call

a path “optimal” if it only uses steps (−1, 0), (0,−1), and (−1,−1), so in particular every

maximizing permutation contains one nontrivial cycle containing (u, v) whose corresponding

path is optimal. We will split π0 up into its optimal and nonoptimal segments. Specifically,

ai, bi, ci, di, . . . , ar, br are defined as follows: π0 proceeds optimally from (u, v) to (a1, b1),

17

at which point it takes a nonoptimal step. Let (c1, d1) be the first point it proceeds to

subsequently with the property that c1 ≤ a1, d1 ≤ b1. Then π0 proceeds optimally from

(c1, d1) to (a2, b2), at which point it makes a nonoptimal step. Let (c2, d2) be the first point

it proceeds to subsequently with c2 ≤ a2, d2 ≤ b2. Continuing in this fashion, let (ar, br) be

the last point reached in the last optimal segment of π0; π0 may optionally go on and reach

π−1
0 (u, v). We will let the maximizing permutation π∗ associated with π be any optimal path

that agrees with π0 on all steps from (u, v) to (a1, b1), all steps from (c1, d1) to (a2, b2), . . . ,

all steps from (cr−1, dr−1) to (ar, br), and then ends by proceeding optimally to (0, 0).

The deviation description of π will simply be a list of all of the cycles π1, . . . , πs not

containing (u, v), along with a description of π0’s deviation from π∗. This deviation consists

of the path from (a1, b1) to (c1, d1), from (a2, b2) to (c2, d2), etc., possibly ending with some

path from (ar, br) to a point not in {0, 1}2. Note that π can be recovered from π∗ and the

deviation description.

Now let us compute t(π∗)− t(π). This difference is equal to (T − t(π))− (T − t(π∗)), and

Equations (5) and (7) tell us how to compute these quantities. By Equation (5), t(π) pays

an extra penalty over t(π∗) for each of its cycles not involving (u, v), π1, . . . , πs. As in the

analysis of detA we know that such a cycle of length m incurs a penalty of at least bm/2c.
Equation (7) allows us to compare the penalties against T that each of t(π∗) and t(π) pays.

Every time π0 deviates from π∗ it pays an extra penalty of at least 1. Indeed, just as in the

analysis of extraneous cycles, a deviation path from (ai, bi) to (ci, di) which touches m nodes

must incur an extra penalty of at least bm/2c. This holds also for a final deviation path

which does not end up in {0, 1}2, since it must pay for half the squared distance from the

origin of its endpoint. Both π∗ and π0 pay equally for the final 1
2
(k2 + `2) term.

In conclusion, if the total length of the cycles and deviation paths in π’s deviation descrip-

tion is m then (T − t(π))− (T − t(π∗)) is at least bm/2c; i.e., t(π) ≤ T(u,v)−bm/2c. Hence as

in the analysis of detA we can get an upper bound of (D+2)4s ·#{number of maximizing π0}
for the number of permutations π with t(π) = T(u,v)−s. But note that the leading coefficient

in detA′(u,v) has magnitude 2C, and 2C is at least half the number of maximizing permuta-

tions π0. To see this, recall that C counts the number of optimal paths from (u, v) to either

(1, 0) or (0, 1), and each maximizing permutation corresponds to an optimal path to one of

(0, 0), (0, 1), (1, 0), (1, 1). The number of optimal paths to (1, 1) is at most C (each such path

can be extended to a path ending in (1, 0) or (0, 1)), and hence the number of optimal paths

to (0, 0) is at most 2C (since the next to last point on any such path is either (1, 0), (0, 1) or

(1, 1)). It follows that the magnitude of the sum of all lower-order terms in detA′(u,v) is at

most
∑T(u,v)

s=1 4C(D + 2)4shT(u,v)−s, and the claim is proved. (Claim 4.8)

18

5 Upper bounds for Boolean formulas

In this section we consider Boolean formulas composed of NOT gates and unbounded fan-in

AND and OR gates. The depth of a formula is the length of the longest path from the root

to any leaf, and the size is the number of occurrences of variables.

We will also consider variants of polynomial threshold functions in which the polynomial is

subject to a stricter requirement than just sign-representing f. Following Nisan and Szegedy

[23], we write d̃eg(f) to denote the minimum degree of any polynomial which approximates

f to within 1/3 on all inputs, i.e. such a polynomial p(x) must satisfy:

∀x ∈ {0, 1}n |f(x)− p(x)| ≤ 1

3
.

Clearly we have d̃eg(f) ≥ thr(f) for all f. We write |p − f |∞ to denote maxx∈{0,1}n |p(x) −
f(x)|. Thus if |p− f |∞ < 1

3
we have deg(p) ≥ d̃eg(f) ≥ thr(f).

We prove two similar theorems bounding the polynomial threshold degree of Boolean

formulas:

Theorem 5.1 Let f be computed by a Boolean formula of depth d and size s. Then there is

a polynomial p(x1, . . . , xn) of degree at most 2O(d)(log s)5d/2
√
s such that |p− f |∞ ≤ 1

s
.

Theorem 5.2 Let f be computed by a Boolean formula of depth d and size s. Then there is a

polynomial p(x1, . . . , xn) of degree at most 2O(d)(log s)5ds
1
2
− 1

2d+1−2 such that sgn(p(x)) = f(x).

The proof technique in both cases is to first manipulate the formula to get a more

structured form, and then to apply real approximating functions (Chebyshev polynomials,

the rational functions of [6]) at each gate.

Some preliminary notes: throughout this section we let 0 represent FALSE and 1 represent

TRUE, and thus we view Boolean functions as mappings from {0, 1}n to {0, 1}. Without

loss of generality we may assume that our formulas contain no NOT gates; i.e., they consist

only of AND and OR gates. This is because any negations in a formula F can be pushed to

the leaves using DeMorgan’s laws with no increase in size or depth. Once all negations are

at the leaves we can replace each negated variable ¬xi with a variable yi to obtain a formula

F ′ which has no negations. Given a polynomial which sign-represents or approximates F ′,

we can obtain a corresponding polynomial for F by replacing each yi with 1 − xi, and this

will not increase the degree.

5.1 Proof of Theorem 5.1 Henceforth the variables c1, c2, . . . refer to fixed universal

constants. We will use the following lemma proved in Appendix B:

19

Lemma 5.3 Let f =
∧`
i=1 fi be a Boolean formula where ` ≥ 2. For 1 ≤ i ≤ ` let pi be a

polynomial with deg(pi) ≤ r such that |pi − fi|∞ ≤ ε, where 0 < ε < 1
8`
. Then there is a

polynomial p with deg(p) ≤ (4
√
` log 1

ε
)r such that |p− f |∞ ≤ (c2` log 1

ε
)ε.

It is easy to see that an identical result holds if f =
∨`
i=1 fi, i.e. f ’s top-level gate is an

OR instead of an AND.

The following lemma is now easy to establish:

Lemma 5.4 Let f be computed by a Boolean formula F of depth d and size s. Suppose that

for any path from the root of F to a leaf, the product of the fanins of the gates on the path is

at most t. Then there is a polynomial p with deg(p) ≤ (c3 log s)d
√
t such that |p− f |∞ ≤ 1

s
.

Proof: Note first that for any Boolean formula of size s, there is a multilinear interpolating

polynomial which computes the formula exactly and is of degree at most s. Consequently if

(c3 log s)d
√
t ≥ s the lemma is trivially true, so we assume that (c3 log s)d

√
t < s.

Consider the formula F. Each leaf contains some variable xi, so clearly there is a degree-

1 polynomial which exactly computes the function at each leaf. Now apply Lemma 5.3

successively to every gate in F, going up from the leaves to the root. At each leaf we may

take ε in Lemma 5.3 to be any positive value; we take ε = 1
s3
. Each time we go up through

a gate of fanin ` the value of ε which we may use in Lemma 5.3 is multiplied by at most

c2` log(s3) = c3` log s. An easy induction on the depth of F shows that at the root we obtain

a polynomial p such that

deg(p) ≤ (4 log(s3))d
√
t < (c3 log s)d

√
t

and

|p− f |∞ ≤
1

s3
· (c3 log s)dt <

1

s3
· s2 =

1

s

as desired.

With Lemmas 5.3 and 5.4 in hand, in order to prove Theorem 5.1 it suffices to bound

the product of the fanins on any path from the root to a leaf. In an arbitrary formula this

product can be quite large; it is easy to construct a formula of size s and depth d in which

there is a path composed of d gates each of fanin s
d
. Thus in general this product can be as

large as (s
d
)d; however we can remedy this situation as described below.

Lemma 5.5 Let F be a formula of size s and depth d. There is a formula G of size s

and depth 2d computing the same function as F such that the product of the fanins on any

root-to-leaf path in G is at most (4 log s)ds.

20

Proof: We prove the following slightly stronger statement: for any formula F of size s and

depth d, there is a formula G of size s and depth 2d computing F such that the product

of the fanins on any root-to-leaf path in G is at most (2dlog se)ds. The lemma follows since

2 log s ≥ dlog se for all s.

The proof is by induction on d. For d = 0 the formula must be a single variable so s = 1

and the claim is trivially true. Suppose without loss of generality that F =
∧`
i=1 Fi where

` ≥ 2, each Fi has depth at most d− 1, and the sum of the sizes of F1, . . . , F` is s. Let |Fi|
denote the size of Fi. We partition the formulas F1, . . . , F` into disjoint classes C1, . . . , Cdlog se

where the class Cj contains exactly those Fi such that 2j−1 ≤ |Fi| < 2j. By the induction

hypothesis each formula Fi ∈ Cj has an equivalent formula Gi of size |Fi| and depth at

most 2d− 2 such that the product of the fanins along any root-to-leaf path in Gi is at most

(2dlog se)d−1|Fi| < 2d+j−1dlog sed−1. Let G =
∧dlog se
j=1 Hj where the formula Hj is defined as

Hj =
∧
i:Fi∈Cj Gi.

To see that this works, first observe that each Cj contains at most s/2j−1 formulas Fi.

Thus the fanin at the root of Hj is at most s/2j−1, and hence the product of the fanins along

any path in Hj is at most 2dsdlog sed−1. Thus the product of the fanins along any path in G

is at most (2dlog se)ds as desired and the lemma is proved.

Theorem 5.1 follows from combining Lemmas 5.4 and 5.5.

5.2 Proof of Theorem 5.2 Theorem 5.1 uses Chebyshev polynomials to construct poly-

nomials which closely approximate Boolean formulas. In this section we extend this con-

struction using rational functions to construct polynomials which only sign-represent Boolean

formulas. The bound given in Theorem 5.2 is asymptotically superior to Theorem 5.1 for

any constant d.

We define the degree of a rational function p(x)/q(x) to be max{deg(p), deg(q)}. Theo-

rem 5.2 is a consequence of the following lemma:

Lemma 5.6 Let f be computed by a Boolean formula of depth d and size s. Then there is a

rational function r of degree at most cd4(log s)5ds
1
2
− 1

2d+1−2 such that |r − f |∞ < 1
4s
.

The proof, which is by induction on d, is given in Appendix C. To see that Lemma

5.6 implies Theorem 5.2, let r(x) = p(x)/q(x). Since r(x) ∈ [−1
s
, 1
s
] if f(x) = 0 and r(x) ∈

[1− 1
s
, 1 + 1

s
]) if f(x) = 1, we have that

f(x) = sgn(r(x)− 1/2) = sgn((r(x)− 1/2)q(x)2) = sgn(p(x)q(x)− q(x)2/2)

for all x ∈ {0, 1}n.

21

5.3 Discussion In earlier work Klivans and Servedio [17] showed that any Boolean formula

of constant depth d and size s has a polynomial threshold function of degree Õ(s1− 1

3·2d−3). For

even moderately large constant values of d, this bound is not far from the trivial upper bound

of s. In contrast, our new bounds are considerably stronger. Theorem 5.2 gives an o(s1/2)

bound for some d = Ω(log log s), and Theorems 5.1 and 5.2 both give a bound of O(s1/2+ε)

for any d = o(log s
log log s

). To our knowledge Theorems 5.1 and 5.2 are the first nontrivial upper

bounds on polynomial threshold function degree for formulas of superconstant depth.

In other earlier work, Buhrman, Cleve and Wigderson [8] gave an O(s1/2 logd−1(s)) upper

bound on the bounded-error quantum query complexity of certain Boolean formulas of size s

and depth d. Since the bounded-error quantum query complexity upper bounds the required

degree for an approximating polynomial (see Theorem 18 of [9]), their results imply an

O(s1/2 logd−1(s)) upper bound on the degree of the formulas that they consider. However,

their bound applies only to “Sipser functions”, namely to formulas of size s and depth d in

which all of the gates at any given depth have the same fanin (the fanins can be different

for gates at different depths). Our Theorem 5.1 thus generalizes their bound on the degree

of approximating polynomials to a substantially broader class of formulas, since we do not

make any restrictions on fanin.2

5.4 Learning Boolean formulas of superconstant depth in subexponential time

We close this section by describing some consequences of our results in computational learn-

ing theory. It is known (see [17, 16]) that if a class C of Boolean functions over {0, 1}n has

thr(f) ≤ r for all f ∈ C, then C can be learned in time nO(r) in either of two well-studied and

demanding learning models, the Probably Approximately Correct (PAC) model of learning

from random examples [15, 28] and the online model of learning from adversarially generated

examples [2, 20]. Thus our polynomial threshold function upper bounds from Theorems 5.1

and 5.2 immediately give a range of new subexponential time learning results for various

classes of Boolean formulas. For example, we immediately obtain:

Theorem 5.7 The class of linear-size Boolean formulas of depth o(logn
log logn

) can be learned

in time 2n
1/2+ε

for all ε > 0.

This is the first subexponential time learning algorithm for linear size formulas of supercon-

stant depth.

We emphasize that the PAC learning results which follow from our upper bounds hold for

the general PAC model of learning from random examples which are drawn from an arbitrary

2We note in passing that an easy argument shows that any Sipser function of size s has a polynomial
threshold function approximator of degree at most s1/2; the proof is based on the observation that either
the product of the odd-depth fanins or the even-depth fanins in any Sipser function must be at most s1/2.

22

probability distribution over {0, 1}n. This is in contrast with many results in learning theory

(such as the quasipolynomial time algorithm of Linial et al. [19] for learning constant-depth

circuits) which require the random examples to be drawn from the uniform distribution on

{0, 1}n.

References

[1] A. Ambainis, A. Childs, B. Reichardt, R. Spalek, and S. Zhang. Any AND-OR formula

of size n can be evaluated in time n1/2+o(1) on a quantum computer. In Proc. 48th IEEE

Symposium on Foundations of Computer Science (FOCS), pages 363–372, 2007.

[2] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

[3] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of voting polyno-

mials. Combinatorica, 14(2):1–14, 1994.

[4] R. Beigel. The polynomial method in circuit complexity. In Proceedings of the Eigth

Conference on Structure in Complexity Theory, pages 82–95, 1993.

[5] R. Beigel. Perceptrons, PP, and the Polynomial Hierarchy. Computational Complexity,

4:339–349, 1994.

[6] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. Journal of

Computer & System Sciences, 50(2):191–202, 1995.

[7] J. Bruck. Harmonic analysis of polynomial threshold functions. SIAM Journal on

Discrete Mathematics, 3(2):168–177, 1990.

[8] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and

computation. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of

Computing, pages 63–68. ACM Press, 1998.

[9] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a

survey. Theoretical Computer Science, 288(1):21–43, 2002.

[10] E. Cheney. Introduction to approximation theory. McGraw-Hill, New York, New York,

1966.

[11] L. Comtet. Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel,

Dordrecht, Netherlands, 1974.

23

[12] Y. Freund. Boosting a weak learning algorithm by majority. Information and Compu-

tation, 121(2):256–285, 1995.

[13] M. Goldmann. On the power of a threshold gate at the top. Information Processing

Letters, 63(6):287–293, 1997.

[14] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of

bounded depth. Journal of Computer and System Sciences, 46:129–154, 1993.

[15] M. Kearns and U. Vazirani. An introduction to computational learning theory. MIT

Press, Cambridge, MA, 1994.

[16] A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and thresholds of

halfspaces. In Proceedings of the 43rd Annual Symposium on Foundations of Computer

Science, pages 177–186, 2002.

[17] A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). In Proceedings of the

Thirty-Third Annual Symposium on Theory of Computing, pages 258–265, 2001.

[18] M. Krause and P. Pudlak. Computing boolean functions by polynomials and threshold

circuits. Computational Complexity, 7(4):346–370, 1998.

[19] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and

learnability. Journal of the ACM, 40(3):607–620, 1993.

[20] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-

threshold algorithm. Machine Learning, 2:285–318, 1988.

[21] M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry

(expanded edition). MIT Press, Cambridge, MA, 1988.

[22] D. J. Newman. Rational approximation to |x|. Michigan Mathematical Journal, 11:11–

14, 1964.

[23] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. In

Proceedings of the Twenty-Fourth Annual Symposium on Theory of Computing, pages

462–467, 1992.

[24] R. O’Donnell and R. Servedio. New degree bounds for polynomial threshold functions.

In Proceedings of the 35th ACM Symposium on Theory of Computing, pages 325–334,

2003.

24

[25] R. Paturi and M. Saks. Approximating threshold circuits by rational functions. Infor-

mation and Computation, 112(2):257–272, 1994.

[26] M. Saks. Slicing the hypercube, pages 211–257. London Mathematical Society Lecture

Note Series 187, 1993.

[27] D. Sieling. Minimization of decision trees is hard to approximate. Technical Report

ECCC Report TR02-054, Electronic colloquium on computational complexity, 2002.

[28] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,

1984.

[29] N. Vereshchagin. Lower bounds for perceptrons solving some separation problems and

oracle separation of AM from PP. In Proceedings of the Third Annual Israel Symposium

on Theory of Computing and Systems, 1995.

A A new proof of the one-in-a-box lower bound

Recall that the DNF version f of the one-in-a-box function is a read-once DNF (OR of

ANDs) in which there are m ANDs (terms) each with fanin 4m2. Minsky and Papert [21]

showed that f requires polynomial threshold degree m; we now reprove this using our lower

bound technique.

We begin by performing some of the same steps as in Section 4. Let [4m2] denote the set

{0, 1, 2, . . . , 4m2}. By symmetrization, it suffices to prove a lower bound of m for the degree

of any m-variate polynomial over R which sign-represents the function g : [4m2]m → {−1, 1},
g(x1, . . . , xm) = −1 iff at least one of the xi’s is 0. By the Theorem of the Alternative (as

in Section 4), we can do this by constructing a distribution w on [4m2]m under which g has

zero correlation with every m-variate monomial of degree at most m− 1.

Let xt ∈ [4m2]m denote the point ((t− 1)2, (t− 3)2, (t− 5)2, . . . , (t− (2m− 1))2). The

support of w will be the following 2m + 1 points: {xt : t = 0 . . . 2m}. (This is the same set

of points Minsky and Papert considered.) The weight w gives to the point xt will be
(

2m
t

)
.

Notice that g(xt) = 1 iff t is odd. Therefore, to show that g has zero correlation with every

monomial of degree at most m−1 under w, we must show that for all 0 ≤ a1 +a2 +· · ·+am <

m:
2m∑
t=0

(−1)t
(

2m

t

) m∏
i=1

(t− (2i− 1))2ai = 0.

In fact, if h(t) is any univariate polynomial of degree smaller than 2m then:

2m∑
t=0

(−1)t
(

2m

t

)
h(t) = 0. (8)

25

This follows immediately from the following well-known combinatorial identity: For all 0 ≤
c < 2m:

2m∑
t=0

(−1)t
(

2m

t

)
tc = 0. (9)

(To prove this identity, write (x − 1)2m =
∑2m

t=0(−1)t
(

2m
t

)
xt by the Binomial Theorem.

Substitute x = 1 to get (9) for c = 0. Now differentiate and substitute x = 1 to get (9) for

c = 1. Differentiate again and substitute x = 1 to get (8) with h(t) = t(t − 1); by linear

combination with (9) for c = 1 we get (9) for c = 2. Repeatedly differentiate and substitute

x = 1; this yields (8) with h(t) = t(t− 1)(t− 2), t(t− 1)(t− 2)(t− 3), etc., which gives (9)

for c = 2, 3, etc. by linear combination with previously derived identities. The whole process

may be repeated 2m− 1 times.)

B Proof of Lemma 5.3

The following convention will be useful for this section: for P a polynomial we write “P (x) ∈f
([a, b], [c, d])” as shorthand for

“∀x ∈ {0, 1}n : if f(x) = 0 then P (x) ∈ [a, b] and if f(x) = 1 then P (x) ∈ [c, d].”

Proof of Lemma 5.3: By assumption we have pi(x) ∈fi ([−ε, ε], [1− ε, 1 + ε]) for each i.

Let P (x) denote p1(x) + · · ·+ p`(x) + `ε. It is easy to verify that we have

P (x) ∈f ([0, `− 1 + 2`ε], [`, `+ 2`ε]).

Let Q(x) denote P (x)/(`− 1 + 2`ε). We then have

Q(x) ∈f ([0, 1], [1 +
1− 2`ε

`− 1 + 2`ε
, 1 +

1

`− 1 + 2`ε
]).

Let k = 1−2`ε
`−1+2`ε

. We can rewrite and say Q(x) ∈f ([0, 1], [1 + k, 1 + k + 2`ε
`−1+2`ε

]). Since
2`ε

`−1+2`ε
< 2`ε

`−1
≤ 4ε we have Q(x) ∈f ([0, 1], [1 + k, 1 + k + 4ε]).

Recall that the Chebyshev polynomial of the first kind Cd(t) is a univariate polynomial

of degree d. The following fact is proved later:

Fact B.1 For all d ≥ 1 we have:

1. Cd(t) ∈ [−1, 1] for t ∈ [0, 1].

2. Let td denote Cd
√
de(1 + 1/d). Then td > 2.

3. For all 0 < τ < 1
d

we have Cd
√
de(1 + 1/d+ τ) ∈ [td, td + 26dτ].

26

Let R(x) denote Cdk−1/2e(Q(x)). Since 4ε < 1
2`
< k, by parts 1 and 3 of Fact B.1 we

have that R(x) ∈f ([−1, 1], [tk, tk + 104ε
k

]). Let S(x) denote (1
tk
R(x))dlog 1

ε
e. Using part 2 of

Fact B.1 we find that S(x) ∈f ([−ε, ε], [1, (1 + 104ε
tkk

)dlog 1
ε
e]). We now recall the fact that

(1 + α)r ≤ 1 + 2αr for all α, r ≥ 0 such that αr ≤ 1/2:

(1 + α)r = 1 +
r∑
i=1

αi
(
r

i

)
≤ 1 +

r∑
i=1

(αr)i ≤ 1 + αr

∞∑
i=0

(αr)i ≤ 1 + 2αr.

Using this fact, we find that(
1 +

104ε

tkk

)dlog 1
ε
e

≤ 1 +
416 log 1

ε

tkk
ε.

Using our bounds on tk and k, this is at most 1 + (c2` log 1
ε
)ε as desired.

It remains only to bound deg(S). From our construction it is clear that deg(S) ≤ r ·
dk−1/2e · dlog 1

ε
e. We have that dk−1/2e ≤ d

√
2`e ≤ 2

√
` and dlog 1

ε
e < 2 log 1

ε
. Thus deg(S) ≤

4r
√
` log 1

ε
and the lemma is proved.

Proof of Fact B.1: Part (1) is one of the most basic facts about Chebyshev polynomials (see

[10]). Part (2) follows from the fact that Cd
√
de is convex on [1,∞) and has slope d

√
de2 ≥ d

at 1 (see [10] or [17]).

For Part (3), since Cd
√
de is convex and increasing on [1,∞) we have that

td ≤ Cd
√
de(1 + 1/d+ τ) < td +

τ

1/d

(
Cd
√
de(1 + 2/d)− td

)
.

Thus it suffices to show that Cd
√
de(1 + 2/d)− td < 26. To see this, we recall that Cr(x) can

be defined as Cr(x) = cosh(r · acosh x) for |x| > 1 (see [10]). The Taylor series expansion of

acosh x about x = 1 shows that acosh(1 + ε) <
√

2ε for all ε > 0. Thus we have that

d
√
de · acosh(1 + 2/d) < d

√
de ·

√
4/d ≤ 4.

Hence Cd
√
de(1+2/d) ≤ cosh 4 < 28. Since td > 2 we have Cd

√
de(1+2/d)−td < 26 as desired,

and Fact B.1 is proved.

C Proof of Lemma 5.6

A key tool in the proof of Lemma 5.6 is the fact that low-degree rational functions can

accurately approximate the sgn function. Building on work of Newman [22] and Paturi and

Saks [25], in [6] Beigel et al. showed the following:

Fact C.1 Let k ≥ 1, ε > 0. There is a rational function rk,ε of degree O(k log 1
ε
) such that

27

• rk,ε(x) ∈ [−1− ε,−1] for all x ∈ [−2k,−1];

• rk,ε(x) ∈ [1, 1 + ε] for all x ∈ [1, 2k].

(We note in passing that the O(log n) upper bound for polynomial threshold degree of an

AND of two n-variable majorities given by Beigel et al. is an easy consequence of this fact.)

Proof of Lemma 5.6: The base case d = 1 is easy. Without loss of generality we have that f

is a conjunction f = x1∧· · ·∧xs. The rational function (rlog(2s),1/4s(2(x1+· · ·+xs−s+1
2
))+1)/2

is easily seen to satisfy the conditions of Lemma 5.6.

For the induction step, without loss of generality we may suppose that f is computed by

a Boolean formula F =
∨`
i=1 Fi where ` ≥ 2, each Fi has depth at most d− 1, and the sum

of the sizes |F1|, . . . , |F`| is s. As in Lemma 5.5, for j = 1, . . . , dlog se let Cj be the set of

those Fi such that 2j−1 ≤ |Fi| < 2j. Let Hj =
∨
i:Fi∈Cj Fi (note that unlike Lemma 5.5 now

the subformulas of Hj are Fi’s rather than Gi’s), so f is computed by
∨dlog se
j=1 Hj. We write

hj and fi to denote the Boolean functions computed by formulas Hj and Fi respectively.

Let J = s
1− 1

2d−1 . We will deal with the Hj’s in different ways depending on whether

2j < J or 2j ≥ J.

We first consider j such that 2j < J. By a minor modification of Theorem 5.1 we have that

for each Fi ∈ Cj, there is a polynomial pi such that deg(pi) ≤ (c1)d−1(log s)5(d−1)/2
√
J and

|pi−fi|∞ ≤ 1
4s
. Let Pj(x) = 4(

∑
i:Fi∈Cj pi(x)− 1

2
). Then we have Pj(x) ∈hj ([−3,−1], [1, 4s]),

and hence

Qj(x)
def
=
rlog(4s),1/4s(Pj(x)) + 1

2
∈hj ([−1/4s, 0], [1, 1 + 1/4s]),

where deg(Qj) = O((c1)d−1(log s)5(d−1)/2+2
√
J).

We now consider j such that 2j ≥ J, so each Fi ∈ Cj satisfies |Fi| ≥ J/2. By the induction

hypothesis, we have that for each Fi ∈ Cj there is a rational function ti(x) such that

deg(ti) ≤ (c4)d−1(log |Fi|)5(d−1)|Fi|
1
2
− 1

2d−2

≤ (c4)d−1(log s)5(d−1)2
j(1

2
− 1

2d−2
)

(10)

and |ti − fi|∞ ≤ 1
4|Fi| ≤

1
2J
. Let Tj(x) = 4(

∑
i:Fi∈Cj ti(x) − 1

2
). Since Cj contains at most

s/2j−1 ≤ 2s/J formulas Fi, we have that∑
i:Fi∈Cj

ti ∈hj ([−s/J2, s/J2], [1− s/J2, s]).

Since s/J2 = s
−1+ 2

2d−1 ≤ s−1/3 for d ≥ 2, we may suppose that s/J2 ≤ 1
4
. Consequently, we

have that Tj ∈hj ([−3,−1], [1, 4s]). Since Tj(x) is a sum of at most s/2j−1 rational functions

28

ti whose degrees are bounded by (10), by clearing denominators we can express Tj as a

rational function of degree O((c4)d−1(log s)5(d−1)s/2
j(1

2
+ 1

2d−2
)
. Now observe that

s

2
j(1

2
+ 1

2d−2
)
≤ s

J
1
2

+ 1

2d−2

=
s

s
(1− 1

2d−1
)(1

2
+ 1

2d−2
)

= s
1
2
− 1

2d+1−2 =
√
J,

and hence deg(Tj) = O((c4)d−1(log s)5(d−1)
√
J. Thus, we have

Uj(x)
def
=
rlog(4s),1/4s(Sj(x)) + 1

2
∈hj ([−1/4s, 0], [1, 1 + 1/4s]),

where Uj is a rational function with deg(Uj) = O((c4)d−1(log s)5d−3
√
J).

Now let

V (x) = 4

 ∑
j:2j<J

Qj(x) +
∑
j:2j≥J

Uj − 1/2

 .

Since V (x) is a sum of O(log s) rational functions Qj, Tj, by clearing denominators we have

that V (x) is a rational function of degree O((c4)d−1(log s)5d−2
√
J), and moreover V (x) ∈f

([−3,−1], [1, 4s]). Finally, taking

r(x)
def
=
rlog(4s),1/4s(V (x)) + 1

2
,

we have that |r−f |∞ ≤ 1
4s

and deg(r) ≤ (c4)d(log s)5d
√
J. Since

√
J = s

1
2
− 1

2d+1−2 , the lemma

is proved. (Lemma 5.6)

29

