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Abstract

We propose a novel second order cone programming formalédiodesigning robust classifiers

which can handle uncertainty in observations. Similar faations are also derived for designing
regression functions which are robust to uncertaintiesénrégression setting. The proposed for-
mulations are independent of the underlying distributreuiring only the existence of second or-
der moments. These formulations are then specialized tratbeof missing values in observations
for both classification and regression problems. Experimghow that the proposed formulations
outperform imputation.

1. Introduction

Denote by(x,y) € X x Y patterns with corresponding labels. The typical machine learning formula-
tion only deals with the case whepe y) are giverexactly Quite often, however, this is not the case
— for instance in the case of missing values we may be able (using a seg@stiaration proce-
dure) to estimate the values of the missing variables, albeit with a certain ddgreeertainty. In
other cases, the observations maybe systematically censored. In yatasgtbe the data may repre-
sent an entire equivalence class of observations (e.g. in opticakbiaracognition all digits, their
translates, small rotations, slanted versions, etc. bear the same labeijelefore only natural to
take the potential range of such data into account and design estimatordiagly. What we pro-
pose in the present paper goes beyond the traditional imputation strategydaritext of missing
variables. Instead, we integrate the fact that some observations arempletely determined into
the optimization problem itself, leading to convex programming formulations.

In the context of this paper we will assume that the uncertainty is only in therpskee.g.
some of its components maybe missing, and the lapelse known precisely whenever given.
We first consider the problem of binary classification where the lapetmn take two value§ =
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{1,—1}. This problem was partially addressed in (Bhattacharyya et al., 2004igre a second
order cone programming (SOCP) formulation was derived to design atrbiveiar classifier when
the uncertainty was described by multivariate normal distributions. Anotlated approach is
the Total Support Vector Classification (TSVC) of Bi and Zhang (26049, starting from a very
similar premise, end up with a non-convex problem with corresponding iteratocedure.

One of the main contributions of this paper is to generalize the results of Bhartyga et al.
(2004b) by proposing a SOCP formulation for designing robust bidasgsiiers for arbitrary distri-
butions having finite mean and covariance. This generalization is achajvesing a multivariate
Chebychev inequality (Marshall and Olkin, 1960). We also show that dhmulation achieves
robustness by requiring that for every uncertain datapoint an ellipboiad lie in the correct half-
space. This geometric view immediately motivates various error measures egncerve as per-
formance metrics. We also extend this approach to the multicategory casewdlernsider the
problem of regression with uncertainty in the pattexngsing Chebyshev inequalities two SOCP
fromulations are derived, nameBlose to Mearfiormulation andSmall Residualormulation, which
give linear regression functions robust to the uncertainty. ifthis is another important contribu-
tion of this paper. As in the classification case the formulations can be inedpgeometrically
suggesting various error measures. The proposed formulations araghked to the problem of
patterns having missing values both in the case of classification and liegreSgperiments con-
ducted on real world data sets show that the proposed formulations autperfiputations. We
also propose a way to extend the proposed formulations to arbitrarydesgtaces by using kernels
for both classification and regression problems.

Outline: The paper is organised as follows: Section 2 introduces the problem ssfifdation
with uncertain data. In section 3 we make use of Chebyshev inequalities ftivariate random
variable to obtain an SOCP which is one of the main contribution of the papeal3/eshow that
same formulation could be obtained by assuming that the underlying uncertaimtye modeled
by an ellipsoid. This geometrical insight is exploited for designing variousr eneasures. A
similar formulation is obtained for a normal distribution. Instead of an ellipso& aan think of
more general sets to describe uncertainty. One can tackle such formsilagiconstraint sampling
methods. These constraint sampling methods along with other extensionscargsdisin section
4. The other major contribution is discussed in section 5. Again using Chebysequalities
two different formulations are derived for regression in section 5 &mdting uncertainty irx. As
before the formulations motivate various error measures which ard émetomparison. In section
6 we specialize the formulations to the missing value problem both in the casessificktion and
regression. In section 7 nonlinear prediction functions are discu3setbmpare the performance
of the formulations numerical experiments were performed on variousveddl datasets. The
results are compared favourably with the imputation based strategy, detag#ven in section /8.
Finally we conclude in section 9.

2. Linear Classification by Hyperplanes

Assume that we have observationgx;,y;) drawn iid (independently and identically distributed)
from a distribution over x Y, wherex; is theit" pattern andy; is the corresponding label. In
the following we will briefly review the SVM formulation when the observations lenown with
certainty and then consider the problem of uncertain observations.
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2.1 Classification with Certainty

For simplicity assume thét = {+1} andX = R™ with a finitem. For linearly separable datasets
we can find a hyperplan@v,x) + b = 0 which separates the two classes and the corresponding
classification rule is given by

f(x) = sgn((w,x) +b).

One can compute the parameters of the hyperplart® by solving a quadratic optimization prob-
lem (see Cortes and Vapnik (1995))

1
minimize 5 [[wi| (1a)
subject toy; (W, %) +b) > 1 forall 1<i<n, (1b)

where||w| is the euclidean norrh.In many cases, such separation is impossible. In this sense the
constraints (1b) are hard. One can still construct a hyperplane bynglte constraints in (1). This
leads to the following soft margin formulation withy regularization (Bennett and Mangasarian,
1993; Cortes and Vapnik, 1995):

o1 5 n
minimize = ||w C i 2a
mize [w|*+C 3 & (2a)
subject toy; ((w, %) +b) > 1§ forall1<i<n (2b)
& >0 forall1<i<n. (2¢)

The above formulation minimizes an upper bound on the number of errorsrsEyccur when
& > 1. The quantityCg; is the “penalty” for any data poirng that either lies within the margin on
the correct side of the hyperplartg € 1) or on the wrong side of the hyperplarég £ 1).

One can re-formulate (2) as an SOCP by replacing”tlm#2 term in the objective (2a) by a
constraint which upper boundlsv|| by a constant W. This yields

n
mir\)vilr)gize i;zi (32)
subject toy; ((W, %) +b) > 1—§&; forall1<i<n (3b)
& >0 forall1<i<n (3¢)
[l <W. (3d)

Instead ofC the formulation ((3) uses a direct bound [/, namelyW. One can show that for
suitably chose& andW the formulations (2) and (3) give the same optimal valugswib, £ ). Note
that (3d) is a second order cone constraint (Lobo et al., i@gﬁ)h this reformulation in mind we
will, in the rest of the paper, deal with (2) and, with slight abuse of nomameladiscuss SOCPs
where the transformation from|(2) to (3) is implicit.

1. (a,b) denotes the dot product betweai € X. ForX = R™ (a,b) = a’b. The formulations discussed in the paper
holds for arbitrary Hilbert spaces with a suitably defined dot prodygt

2. The Euclidean norm for elemex X is defined aglx|| = /(x,x) whereX is a Hilbert space.

3. Second order cones are given by inequalities imhich take the form|Zw+c|| < (w,x) +b. In this casec = 0 and
the cone contains a ray in the direction-efv, b determines the offset from the origin, ahdietermines the shape of
the cone.
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2.2 Classification Under Uncertainty

So far we assumed that tlim, y;) pairs are known with certainty. In many situations this may not
be the case. Suppose that instead of the patiery)) we only have a distribution ovex, that isx;
is a random variable. In this case we may replace (2b) by a probabilistitraort

Priyi (W) +b) > 1-§} > 1« forall 1<i<n. (4)

In other words, we require that the random variablées on the correct side of the hyperplane with
probability greater thar;. For high values ok;, which is a user defined parameter(d 1], one
can obtain a good classifier with a low probability of making errors.

Unless we make some further assumptions or approximations on (4) it wiltheer difficult to
solve it directly. For this purpose the following sections describe varippsoaches on how to deal
with the optimization. We begin with the assumption that the second momenrtexist. In this
case we may make use of Chebyshev inequalities (Marshall and Olkin), ttB6tain a SOCP.

2.3 Inequalities on Moments

The key tool are the following inequalities, which allow us to bound probabildfasisclassifi-
cation subject to second order moment constraintg. ollarkov’s inequality states that & is a
random variableh : R — [0, ) andais some positive constant then

E[hE)]

Pr{h(¢) >a} < 3

Consider the functioh(x) = x2. This yields

e (2]

PrilE| = a} < =

()

Moreover, considering(x) = (x— E[x])2 yields the Chebyshev inequality

Pr{e ~E(®)| > a) < o ©)

Denote byx, 2 mean and variance of a random variaklén this case the multivariate Chebyshev in-
equality (Marshall and Olkin, 1960; Lanckriet et al., 2002; Boyd anddémberghe, 2004) is given

by

sup Pr{(w,x) <t} = (1+d?) *whered®>= inf (x—%)' = 1(x—x). 7)
X~ (X,Z) X|(x,w) <t
This bound always holds for a family of distributions having the same secatet moments and
in the worst case equality is attained. We will refer to the distribution corredipg to the worst
case as thevorst distribution These bounds will be used to turn the linear inequalities used in
Support Vector Machine classification and regression into inequalitiehwdie the uncertainty of
the observed random variables into account.

3. Classification

The main results of our work for the classification problem are presenttdsisection. Second
order cone programming solutions are developed which can handlgaintem the observations.
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3.1 Main Result

In order to make progress we need to specify properties|of (4). &esattings come to mind and
we will show that all of them lead to an SOCP.

Robust Formulation Assume that for eack we only know its mearx; and variance;. In this
case we want to be able to classify correctly even forwhest distributionin this class.
Denote byx ~ (i, %) a family of distributions which have a common mean and covariance,

given byp andZ respectively. In this case (4) becomes
inf_ Pr(yi ((x,w) +b) >1-¢&) > 1—Ki. (8)
Xi~ (X, Zi) Xi
This means that even for the worst distribution we still classifgorrectly with high proba-
bility 1 — k;.

Normal Distribution Equally well, we might assume that is, indeed, distributed according to
a normal distribution with mear and variance;. This should allow us to provide tighter
bounds, as we have perfect knowledge on Rpis distributed. In other words, we would like
to solve the classification problem, where (4) becomes

Xiw?\'?()%’zi)(yi ((X,w)+b) >1-¢&) > 1—Kk;. 9)

Using a Gaussian assumption on the underlying data allows one to use read#dple tech-
niques like EM (Dempster et al., 1977; Schneider, 2001) to impute the misdingsva

It turns out that both (8) and (9) lead to the same optimization problem.

Theorem 1 The classification problem with uncertainty, as described in (4) leads to Hogvfog
second order cone program, when using constraints|((8), (9):

o1 d
minimize_ ||w||“+C i 10a
subject to y((vv,>Ti>+b)zl—Ei+yi|Zi%w‘ forall1<i<n (10b)
& >0 forall 1<i<n, (10c)

where3? is a symmetric square matrix and is the matrix square ro& of 5233,
More specifically, the following formula fgr hold:

e In the robust case;j, Z; correspond to the presumed means and variances and
Vi = VKi/(1—K;). (11)

¢ In the normal distribution case, agaiy, Z; correspond to mean and variance. Moreoygeis
given by the functional inverse of the normal CDF, that is

u
vi = @ (k) whereg(u) := Jé/ e %ds (12)
TUJ —o0
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Note that fork; < 0.5 the functional inverse of the Gaussian cumulative distribution function be-
comes negative. This means that in those cases the joint optimization probienc@nvexas the
second order cone constraint enters asrcavefunction. This is the problem that Bi and Zhang
(2004) study. They find an iterative procedure which will convergeléaal optimum. On the other
hand, whenevey; > 0 we have a&onvexproblem with unique minimum value.

As expectedp (k) < , /%‘Kl What this means in terms of our formulation is that, by making
Gaussian assumption we only scale down the size of the uncertainty ellipsoidesfi&ct to the
Chebyshev bound.

Formulation [(10) can be solved efficiently using various interior point optitisizamethods
(Boyd and Vandenberghe, 2004; Lobo et al., 1998; Nesterov andrideskii, 1993) with freely
available solvers, such as SeDuMi (Sturm, 1999) making them attractiarfje scale missing
value problems.

3.2 Proof of Theoreni 1

Robust Classification We can restate (8) as

sup Pr{yi ((w,x) +b) <1-&} <k;.
X (%) X

See that it is exactly equivalent td (8) and using Eq. (7) we can write
sup Pr{yi((wx)+b) >1-§} = (1+d*)* <k, (13a)
XN(Yi,Zi) X
here,d? = inf %) = (x—x). 13b
" X‘yi(<wil>+b)§1*2i (=%)" 27 (x=%) (13b)
Now we solve|(13b) explicitly. In casg satisfiesy; ((w,x;) + b) > 1—§&; then clearly the infimum in

(13Db) is zero. If notd? is just the distance of the meg&from the hyperplang ((w,x) +b) =1-§;,

that is
@Y ((WX)+b—1+%)

VWl Zw
The expression fad? in (14) when plugged into the requiremeﬂ}@ < Kj gives (10b) wherg; is
given as in[(11) thus proving the first part.

(14)

Normal Distribution  Since projections of a normal distributions are themselves normal we may
rewrite (9) as a scalar probabilistic constraint. We have

. = b . 1_*.
Pr{Z. 2 W +&; z} < (15)
Oy Oz
wherez := —y; (w,X;) is a normal random variable with mearand variance:% =w'Zw. Con-

sequently(z — z) /0 is a random variable with zero mean and unit variance and we can compute
the Ihs of (15) by evaluating the cumulative distribution funcii®r) for normal distributions. This
makes/(15) equivalent to the condition

@(ot (yib+& —1-32)) > ki,

which can be solved for the argumentgf
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3.3 Geometric Interpretation and Error Measures
The constraint (10b) can also be derived from a geometric viewpoiisurs thak takes values in
an ellipsoid with centex, metricz and radiué y, that is

xe e y) = {X(x-x T (x-xX) <y} (16)

The robustness criteria can be enforced by requiring that that wefglassorrectly for allx €
&(x,2,y), thatis

y((x,w) +b) >1-¢ forall xe £(x,Z,y). 17)
In the subsequent section we will study other constraints than ellipsoidosets f
Lemma 2 The optimization problem

minimize (w,x) subject to xe £(x,Z,y)
X

_1 _ 1
has its minimum ak—y(w'Zw) 2 Zw with minimum valugx,w) —y(w'Zw)Z2. Moreover, the
maximum of (w, x) — (w,X}) subject to xc £(x,Z,y) is given byyHZ%wH.

Proof We begin with the second optimization problem. Substituting Z*%(x— X) one can see
that the problem is equivalent to maximizir(rg,z%v) subject to||v|| <y. The latter is maximized
forv= yZ%W/HZ%WH with maximum value/HZ%wH. This proves the second claim.

The first claim follows from the observation that maximum and minimum of thergkobjec-
tive function match (up to a sign) and from the fact that the first objectimetion can be obtained
form the second by a constant offget x). [ |

This means that for fixed the minimum of the Ihs of (17) is given by

Yi ((%,w) +b) —yivw'Zjw. (18)

The parametey is a function ofk, and is given by (11) in the general case. For the normal case
it is given by (12). We will now use this ellipsoidal view to derive quantitiedaolifrcan serve as
performance measures on a test set.

Worst Case Error:  given an uncertainty ellipsoid, we can have the following scenarios:

1. The centroid is classified correctly and the hyperplane does notecatlihsoid: The error is
zero as all the points within the ellipsoid are classified correctly.

2. The centroid is misclassified and the hyperplane does not cut the ellipseid the error is
1 as all the points within the ellipsoid are misclassified.

3. The hyperplane cuts the ellipsoid. Here the worst case error is owe aan always find
points within the uncertainty ellipsoid that get misclassified.

4. Note that we could as well disposeydy transformings «— y—22. The latter, however, leads to somewhat inconve-
nient notation.
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Figurel 1 illustrates these cases. It shows a scenario in which there idainigein two of the
features. Figure corresponds to those two dimensions. It shows tlipseids corresponding to
the possible scenarios.
To decide whether the ellipsoil(|, Z,y), intersects the hyperplane, x+b = 0, one needs to

compute

w' p+b

VwTsw
If |zl <y then the hyperplane intersects the ellipsoid, see (Bhattacharyya et ala)20Bor an
uncertain observation, i.e. given an ellipsoid, with the Ighéhe worst case error is given by

1 ifyz<y
0 otherwise

Buc(€) = {

Expected Error The previous measure is a pessimistic one. A more optimistic measure could be
the expected error. We find out the volume of the ellipsoid on the wrong $ithe diyperplane and

use the ratio of this volume to the entire volume of the ellipsoid as the expectedeasure. When

the hyperplane doesn'’t cut the ellipsoid, expected error is either zenoeodepending on whether

the ellipsoid lies entirely on the correct side or entirely on the wrong side diytherplane. In some
sense, this measure gives the expected error for each sample wheis thiecertainty. In figure! 1

we essentially take the fraction of the area of the shaded portion of the ellgsstiid expected error
measure. In all our experiments, this was done by generating large nomiréformly distributed
points in the ellipsoid and then taking the fraction of the number of points on tirectside of the
hyperplane to the total number of points generated.

4. Extensions

We now proceed to extending the optimization problem to a larger class dfraions. The fol-
lowing three modifications come to mind: (a) extension to multiclass classificatijoext@nsion of
the setting to different types of set constraints, and (c) the use of agristampling to deal with
nontrivial constraint sets

4.1 Multiclass Classification

An obvious and necessary extension of above optimization problems isltwitieenulticlass clas-
sification. Giverny € Y one solves the an optimization problem maximizing the multiclass margin
(Collins, 2002; Ratsch et al., 2002; Taskar et al., 2003):

n
minimize Y §; 19a
in i; i (19a)
subject to(wy, ,x;) — n;ax(wy,xi) >1-¢&and§ >0 forall1<i<n (19b)
Y7Vi
Kl )
ZHwyiH <W2, (19¢)
i=

Herew; are the weight vectors corresponding to each class. Taking squaseafo(19c¢) yields a
proper SOCP constraint ame R9*/4/, Note that instead of (19b) we could also state— 1 linear
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Misclassified

Correctly Classified
Class +1

Class +1

/—— Hyperplane

-2r Misclassih Correctly Classified b

-2 0 2 4 6 8 10 12 14

Figure 1: Three scenarios occurring when classifying a point: Oneeafitishaded ellipsoids lies
entirely on the "correct” side of the hyperplane, the other lies entirely orivineng”
side of the hyperplane. The third, partially shaded ellipsoid has parts ar sittes. In
the worst case we count the error for this pattern as one whereas ixpibeted case we
count the error as the fraction of the volume (in this case area) on the{)vside as the
error

inequalities onw; according to eaclty;,y) combination. The latter allows us apply a reasoning
analogous to that of Theorem 1 (we skip the proof as it is identical to tia¢ction 3.2 with small
modifications for a union bound argument). This yields:

ol n
minimize = Wi C i 20a
i Zi;H i]|©+ i;EI (20a)

subject to((Wy, —Wy, X)) > 1—& +V; HZ? (W, — W) for1<i<ny#Yy (20b)

& >0 for1<i<n. (20c)

The key difference between (10) and (20) is that we have a séff ef1 second order cone con-
straints per observation.

4.2 Set Constraints

The formulations presented so far can be broadly understood in thexcoht®bust convex op-
timization (see Ben-Tal and Nemirovski (1998, 2001)). In the followingdigeuss a few related
formulations which were proposed in the context of pattern classificatiois.stibsection lists types
of the constraint set and the kind of optimization problems used for solvilg ®Ythe underlying
constraint sets.
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Note that we may rewrite the constraints on the classification as follows:
Yi ((x,w) +b) >1-¢; forallxe S. (22)

Here the set§ are given byS = £(x;, Z;,Vi). This puts our optimization setting into the same cate-
gory as the knowledge-based SVM (Fung et al., 2002) and SDP faiameas (Graepel and Herbrich,
2004), as all three deal with the above type of constraint (21), buett& is different. More to the
point, in (Graepel and Herbrich, 2008)= S(b;, 3) is a polynomial in3 which describes the set of
invariance transforms of (such as distortion or translation). (Fung etlal., 2002) defirte be a
polyhedral “knowledge” set, specified by the intersection of lineartcaimgs.

By the linearity of (21) it follows that if (21) holds fd§ then it also holds for c8, the convex
hull of §. Such considerations suggest yet another optimization setting: insteadaifysm a
polyhedral set§ by constraints we can also specify it by its vertices. Depending auch a
formulation may be computationally more efficient.

In particular if§ is the convex hull of a set of generatogsas in

S =co{xj for1<j<m}.
We can replace (21) by
yi ((W,xij) +b) >1—& forall 1< j<m.

In other words, enforcing constraints for the convex hull is equitaierenforcing them for the
verticesof the set. Note that the index ranges oyeather than. Such a setting is useful e.g. in the
case of range constraints, where variables are just given by intevwabaries. Tablel 1 summarizes
the five cases. Clearly all the above constraints can be mixed and matcleed. ckhtral is the
notion of stating the problems via (21) as a starting point.

Table 1: Constraint sets and corresponding optimization problems.

Name SetS Optimization Problem

Plain SVM {x} Quadratic Program
Knowledge Based SVM Polyhedral set Quadratic Program
Invariances trajectory of polynomial| Semidefinite Program
Normal Distribution E(Xi, Zi, ¥i) Second Order Cone Program
Convex Hull cof{xj V1<j<m} Quadratic Program

4.3 Constraint Sampling Approaches

In the cases of Table 1 reasonably efficient convex optimization problamisecfound which allow
one to solve the domain constrained optimization problem. That said, the optimimatidten
quite costly. For instance, the invariance based SDP constraints ofébeaepHerbrich (2004) are
computationally tractable only if the number of observations is in the order sfttehundreds, a

far cry from requirements of massive datasets with thousands to millionsefwdiions.

Even worse, the séb may not be finite and it may not be convex either. This means that

the optimization problem, while convex, will not be able to incorpo@eficiently. We could,

of course, circumscribe an ellipsoid f8rby using a largey to obtain a sufficient condition. This
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approach, however, would typically lead to overly pessimistic classifiaralt#&rnative is constraint
sampling, as proposed by (de Farias and Roy, 2004; Calafiore and,2204).

Let f : RY — R andc: RY x R™ — R! be convex functions, witf C RY being a closed convex
set andSC R'. Consider the following optimization problem which is an instance of well known
semi-infinite program

mirelirgizef(e) subject toc(6,x) <O forallxe S (22)
S

Depending orsthe problem may have infinite number of constraints, and is in general ifitacta
for arbitrary f andc. The constraint sampling approach for such problems proceeds tiyniirgs-
ing a probability distribution ove$and then obtainind)l independent observations, ..., xy from
the setSby sampling. Finally one solves the finite convex optimization problem

mirgirgizef(e) subject tac(6,x) <Oforall 1<i <N. (23)
S

The idea is that by satisfyinly constraints there is a high probability that an arbitrary constraint
c(x,0) is also satisfied. Ly be the solution of (23). Note that singeare random variable, is
also a random variable. The choiceMfis given by a theorem due to Calafiore and Campi (2004).

Theorem 3 Lete, B € (0,1) and letd € RY be the decision vector then
Pr{V(6n) <&} >1— B where M6y) = Pr{c(by,X) > 0|x € S}
holds if
N > 2[de tloge *+& tlogB~* +d,
provided the sefx € Sc(6n,x) > 0} is measurable.

Such a choice oN guarantees that the optimal solutiéi of the sampled problem (23) &slevel
feasible solution of the robust optimization problem (22) with high probabilifyecalizing this
approach for the problem at hand would require dravihgdependent observations from the set
S, for each uncertain constraint, and replacing the SOCP constraMtligar constraints of the
form

y(w'x) +b) > 1forall j € {1,...N}.

The choice ofN is given by Theorem|3. Clearly the resulting problem is convex and has fin
number of constraints. More importantly this makes the robust problem sathe standard SVM
optimization problem but with more number of constraints.

In summary the advantage with the constraint sampling approach is one canlgélh robust
problem by using a standard SVM solver instead of an SOCP. Anothantye is the approach
easily carries over to arbitrary feature spaces. The downside ofdimedis thafN depends linearly
on thedimensionalityof w. This means that for nonparametric setting tighter bounds are re@Jired.

5. Such bounds are subject to further work and will be reported atghar

1293



SHIVASWAMY, BHATTACHARYYA AND SMOLA

5. Regression

Beyond classification the robust optimization approach can also be edtemdegression. In this
case one aims at finding a functién XX — Y such that some measure of deviatajg) between the
observations and predictions, whe(d (x),y) := f(x) —y, is small. For instance we penalize

cle) = 1€ LMS Regressionl$) (24a)
c(e) = |e| Median Regression4) (24b)
c(e) = max(0,|e| —¢) e-insensitive Regression (24c)
-2 iflel <
c(e) = ’f‘ 2 < _0 Huber’s robust regression (24d)
=€  otherwise

The /1 and /, losses are classical. Theinsensitive loss was proposed by Vapnik et al. (1997),
the robust loss is due to Huber (1982). Typically one does not minimize th&ieah@verage
over these losses directly but rather one minimizes the regularized risk vghicimposed of the
empirical mean plus a penalty term drcontrolling the capacity. See e.qg. ($tkopf and Smola,
2002) for further details.

Relatively little thought has been given so far to the problem wraay not be well determined.
Bishop (1995) studies the case wheiie noisy and he proves that this has a regularizing effect on
the estimate. Our aim is complementary: we wish to find robust estimators whicbt dhange
significantly whenx is only known approximately subject to some uncertainty. This occurs, e.g.
when some coordinates gfare missing.

The basic tool for our approach are the Chebyshev and GausosWiadgualities respectively
to bound the first and second momentedf (x),y). These inequalities are used to derive two
SOCP formulations for designing robust estimators useful for regresgith missing variables.
Note that no distribution assumptions are made on the underlying uncertaicéytehat the first
and the second moments are available. Our strategy is similar to (Chandeaasekal., 1998;

El Ghaoui and Lebret, 1997) where the worst case residual is limiteésepce of bounded uncer-
tainties.

5.1 Penalized Linear Regression and Support Vector Regression

For simplicity the main body of our derivation covers the linear setting. Exterisidernels is
discussed in a later section Section 7. In penalized linear regression settingssumes that there
is a function

f(x) = (w,X) + b, (25)

which is used to minimize a regularized risk

n
minvslrtr)lizezlc(a) subject to||w|| <W ande = f(x) —Vi. (26)
<, &
HereW > 0. As long asc(g) is a convex function, the optimization problem (26) is a convex
programming problem. More specifically, for the three loss functions af)(24 obtain a quadratic
program. Forc(e) = 1€? we obtain Gaussian Process regression estimators (Williams, 1998), in
the second case we obtain nonparametric median estimates (Le et al., 200%padly c(e) =
max(0, |e| — €) yieldse-insensitive SV regression (Vapnik et al., 1997).
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Eqg. (26) is somewhat nonstandard insofar as the penalfyviris imposed via the constraints
rather than via a penalty in the objective directly. We do so in order to obtaondeorder cone
programs for the robust formulation more easily without the need to dualize iratabd In the fol-
lowing part of the paper we will now seek means of bounding or estimatisgbject to constraints
onx;.

5.2 Robust Formulations for Regression

We now discuss how to handle uncertaintyxin Assume thak; is a random variable whose first
two moments are known. Using the inequalities of Section 2.3 we derive two fations which
render estimates robust to the stochastic variatiors in

Denote byx := E [x] the expected value of One option of ensuring robustness of the estimate
is to require that the prediction errors are insensitive to the distributionxovérat is, we want that

Pr{le(f(x).y) —e(f(X).)| > 8} <n. (27)

for some confidence threshdddand some probability. We will refer to (27) as a “close to mean”
(CTM) requirement. An alternative is to require that the residgé(x),y) be small. We make use
of a probabilistic version of the constraief f (x),y)| < &+ €, that is equivalent to

Pr{le(f(x),y)| > &+¢} <n. (28)

This is more geared towards good performance in terms of the loss funasone require the
estimator to be robust only in terms of deviations which lealdtger estimation error rather than
requiring smoothness overall. We will refer to (28) as a “small residudR) (®quirement. The
following theorem shows how both quantities can be bounded by means@fi#s/shev inequality
(6) and modified markov inequality (5).

Theorem 4 (Robust Residual Bounds)Denote by x R" a random variable with meax and co-
variance matriXz. Then for we R" and be R a sufficient condition for (27) is

‘ z%wH <OV, (29)
where? is the matrix square root &f. Moreover, a sufficient condition far (28) is

VWIS (W) +b—Y)2 < (E+ )V (30)

Proof To prove the first claim note that fdras defined in (25)E(e(f(x),y)) = e(f(X),y) which
means thag( f (x),y) —e(f(X),y) is a zero-mean random variable whose variance is givem'txw.
This can be used with Chebyshev’s inequaltiy (6) to bound

)
Pr{le(f(0.y) —e( (%) > 8} < " @)

Hencew' Zw < 62 is a sufficient condition for (27) to hold. Taking square roots yields.(d®)
prove the second part we need to compute the second order momg(it(ef,y). The latter is
computed easily by the bias-variance decomposition as

E [e(f(x),y)?] :E[(e(f(x),y)—e(f()?),y))z +e(f(%),y)?
=w'Zw+ ((WX) +b—y)*. (32)
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Using (8), we obtain a sufficient condition for (28)
w'Ew+ (W X) +b—y)? < (E+8)°n. (33)

As before, taking the square root yields |(30). |

5.3 Optimization Problems for Regression

The bounds obtained so far allow us to recast (26) into a robust optimiZagimework. The key
is that we replace the equality constragnt= f(x;) —y; by one of the two probabilistic constraints
derived in the previous section. In the case of (27) this amounts to solving

n n
mlm%zei;c(a) +Di;6i (34a)
subject to|w|| <W and6; > 0 forall1<i<n (34b)
(X, w) +b—yi =¢ forall1<i<n (34c)
1
[Z?w]| < 8iy/Mi forall1<i<n, (34d)

where (34d) arises from R |e(f(x),yi) —e(f(%),¥i)| > 6i} <n;. HereD is a constant determin-
ing the degree of uncertainty that we are going to accept large deviatiotsthat/(34) is @onvex
optimization problem for all convex loss functiong). This means that it constitutes a general
robust version of the regularized linear regression problem and ltredjastments including the
v-trick can be used in this context. For the special caseinensitive regression (34) specializes
to an SOCP. Using the standard decomposition of the positive and negatin@hioff (x;) —y; into

& and¢; Vapnik et al. (1997) we obtain

n n
minimize i+&)+DY 6 35a
Wh.EE 0 i;(al EI) i; I ( )
subject to]|w|| <W and®;,§;,&" >0 forall1<i<n (35b)
(X, W) +b—y <e+§&andy — (x,w) —b<e+&  foralll<i<n  (35¢)
1
1Z2w] < 6ivNi forall1<i<n. (35d)

In the same manner, we can use the bound (30) far (28) to obtain an optimipatiblem which
minimizes the regression error directly. Note that (28) already allows forgimein the regression
error. Hence the optimization problem becomes

n
minimize i 36a
nim i;E. (36a)
subject to||w|| <W and§; >0 forall1<i<n (36b)
VWIS (W) +b— )2 < (& + )yl forall 1<i<n. (36¢)

Note that[(36) is an SOCP. In our experiments we will refer to (35) as tleséeto-mean” (CTM)
formulation and to (36) as the “small-residual” (SR) formulation.
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5.4 Geometrical Interpretation and Error Measures

The CTM formulation can be motivated by a similar geometrical interpretation tortbarothe
classification case, using an ellipsoid with cemteshape and size determined byndy.

Theorem 5 Assume thatjis uniformly distributed ir€ (X, Z;, \/—%) and let f be defined by (25). In

this case((35d) is a sufficient condition for the following requirement:
_1
le(f(xi),y) —e(f(Xi),y)| <6 Vx €& where; :=¢E (xi,zijr]i 2> . (37)

Proof Sincef(x) = (w,x) + b, left inequality in [(37) amounts tp{w,x;) — (W, %) | < ;. The in-
equality holds for alk € &; if maxyceg, | (W, X) — (W, %) | < 6;. Application of Lemma 2 yields the
claim. -

A similar geometrical interpretation can be shown for SR. Motivated from teiglefine the fol-
lowing error measures.

Robustness Error: from the geometrical interpretation of CTM it is clear tlyﬁaz%wu is the maxi-
mum possible difference betwerand any other point i (X,Z,y), since a small value of this
quantity means smaller difference betwegh(x;),y:)) ande(f(X),yi)), we calleopus{Z, Y)
therobustness erromeasure for CTM

Grobus(Z,Y) = Y| 22w (38)

Expected Residual: from (32) and[(33) we can infer that SR attempts to bound the expectation of
the square of the residual. We denotesgyy(>,x) an error measure for SR where,

CorplK Z) = /W W+ (e (7),Y))%. (39)

Worst Case Error: since both CTM and SR are attempting to bowmdsw and e( f(x;),y) by
minimizing a combination of the two and since the maximunietf (x),y)| over&(X,Z,y) is

le(f(X),y)| +Y{|Z2w|| (see Lemmal2) we would expect this worst case residgals. y) to
be low for both CTM and SR. This measure is given by

Bworst(% Z,Y) = [e( (X, Y)| + V]| Z2w]]. (40)

6. Robust Formulation For Missing Values

In this section we discuss how to apply the robust formulations to the proi@stimation with
missing values. While we use a linear regression model to fill in the missing ydhedinear
assumption is not really necessary: as long as we have information orstrenfirsecond moments
of the distribution we can use the robust programming formulation for estimation.

6.1 Classification

We begin by computing the sample mean and covariance for each class &awvaitable observa-
tions, using a linear model and Expectation Maximization (EM) (Dempster @t94l7) to take care
of missing variables wherever appropriate:
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Let (x,y) have partxy, andx,, corresponding to missing and available components respectively.
With meanu and covariance for the classy and with decomposition

Ha 22a  2Zam ]
H [ HMm } [ Sam Zmm (41)
we can now find the imputed means and covariances. They are given by
E [Xn] = b+ ZmaZaa (Xa — Ha) (42)
andE [xmx;] —E Xl E[Xn] T = Zmm— SmaZadTl (43)

In standard EM fashion one begins with initial estimates for mean and coeariares the latter
to impute the missing values for the entire class of data and iterates by re-estimat@&mgand
covariance until convergence.

Optimization Problem Without loss of generality, suppose that the patternsdae complete
and that patterns+ 1 ton have missing components. Using the above model we have the following
robust formulation:

n
o _ »
ml\r;mlkcglzeizlé, (44a)
subject toy; ((w, ;) +b) > 1§ forall1<i<c (44b)
1
yi(<W>Xi>+b)21—Ei+W‘ZiZWH forallc+1<i<n (44c)
[w|| <W and & >0 forall1<i<n, (44d)

wherex; denotes the pattern with the missing values filled in and

s _ [ 00 }
I 0 me—zmaz;a';l Zam

according to the appropriate class labels. By appropriately chogsngve can control the degree
of robustness to uncertainty that arises out of imputation. The quantifiese defined only for the
patterns with missing components.

Prediction After determiningw andb by solving (44) we predict the labglof the patterrx by
the following procedure.

1. If x has no missing values use it for step 4.

2. Fill in the missing valueg,, in x using the parameters (mean and the covariance) of each
class, call the resulting patterrs andx_ corresponding to classeasl and—1 respectively.

3. Find the distanced, ,d_ of the imputed patterns from the hyperplane, that is
_1
dy = (WTXi_ +b) (WTZi_W> .

HereZ .. are the covariance matricesxaf andx_. These values tell which class gives a better
fit for the imputed pattern. We choose that imputed sample which has higheraistam
the hyperplane as the better fit|df, | > |d_| usex,, otherwise use _ for step 4.

4. Calculatey = sgn(w'x+b).
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6.2 Regression

As before we assume that the ficsraining samples are complete and the remaining training sam-
ples have missing values. After using the same linear model an imputation stestedpve we
now propose to use the CTM and SR formulations to exploit the covarianmeriafion to design
robust prediction functions for the missing values.

Once the missing values are filled in, it is straightforward to use our formulafitie CTM
formulation for the missing values case takes the following form

n n
minimize i+&)+D 6; 45a
ninimiz i;(ﬁ. &) i:ZH i (45a)
subject to(w, ;) +b—yi <e+&,yi—(Wx)—b<e+&  foralll<i<c (45b)
(WXi)+b—yi <e+&,yi—(Wx)—-b<e+&  forallc+1<i<n (45c)
‘zi%WH <8y forallc+1<i<n  (45d)
6 >0 forallc+1<i<nandg§,& >0 forall1<i<n (45e)
[wl[ <W.

Only partially available data have the constraints (45d). As before, quariseare defined only
for patterns with missing components. A similar SR formulation could be easily eltéam the
case of missing values:

c n

mvivgig;igei;(éi +&)+ i:ZHEi

subject to(w,x;) +b—y; <e+& , yi—(WX) —b<e+& forall1<i<c
\/WTZiWJr((W,Yi)er—yi)ZS (e+&)vni forallc+1<i<n
& >0foralll<i<cand§ >0 forall1<i<n
[Iw] <W.

7. Kernelized Robust Formulations

In this section we propose robust formulations for designing nonlineasiéilers by using kernel
function. Note that a kernel function is a functith: Q x Q — R, whereK obeys the Mercer
conditions (Mercer, 1909). We also extend these ideas to nonlineassign functions.
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7.1 Kernelized Formulations for Classification
The dual of the formulation (44), is given below (for a proof, please/gpendix A).

n
imi A —W3S 47
m%mlz?; i ) (47a)
n
subject tozl)\iyi =0, (47b)
i=
Cc n ;T
| Zlhiina + > AW W)l <9, (47c)
i= i=ct1
Ai+Bi=1 forall1<i<n (47d)
lul <1 forallc+1<i<n (47e)
Ai,Bi,0>0 forall1<i<n. (479)
The KKT conditions can be stated as (see Appendix A)
C n 1
Zl)\iYiXi + > NYi(Ri+¥iZu) = Ounig (48a)
i= i=c+1
n
Aiyi =0,6>0 (48D)
I; 1 Y1
Ni+Bi=1pB =0 A >0, BAi =0 forall1<i<n (48c)
Ai(Yi((w,x) +b)—1+&) =0 forall1<i<c (48d)
1
Aj(yj ((WXj) +b) = 1+&; —yj(Zfuj)) =0 forallc+1<j<n (48e)
O({W, Uny1) —W) =0. (48f)

The KKT conditions of the problem give some very interesting insights:

1. Wheny; =0 ¢+ 1 <i < nthe method reduces to standard SVM expressed as an SOCP as it
is evident from formulation (47).

2. Wheny; # 0 the problem is still similar to SVM but instead of a fixed pattern the solution

1
chooses the vector + v Z7 u; from the uncertainty ellipsoid. Which vector is chosen depends
on the value ofy. Figure|(2) has a simple scenario to show the effect of robustness on the
optimal hyperplane.

1 1
3. The unit vectou; maximizesy 2w and hence has the same direction agw.

4. The unit vectou,, 1 has the same direction as From (48a), for arbitrary data, one obtains
d > 0, which implies(w,un;1) =W due to [(48f). Substituting fou,1 in (48a) gives the
following expression fow,

w:\%/ <ig)\iYiXi +i_§-1)\iyi <Xi +Viziéui>> : (49)

This expression fow is very similar to the expression obtained in the standard SVM. The werctor
has been expressed as a combination of complete patterns and vectottsefitancertainty ellipsoid
of the incomplete patterns.
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\ \ Nominal
\ \| Hyperplane
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Robust N
s Hyperplane N < N

Figure 2: Circles and stars represent patterns belonging to the twosclaseeellipsoid around the
pattern denotes the uncertainty ellipsoid. Its shape is controlled by théarms@matrix
and the size by. The vertical solid line represents the optimal hyperplane obtained by
nominal SVM while the thick dotted line represents the optimal hyperplane oltaine
the robust classifier

Kernelized Formulation It is not simple to solve the dual (47) as a kernelized formulation. The

difficulty arises from the fact that the constraint containing the dot ptsdof the patterns (47c)
T
1

involves terms such abX; + yiZ? uj Xj +Yj Zj% uj | for some i and j. Ass’s are unknown, it is
not possible to calculate the value of the kernel function directly. Hencigigest a simple method
to solve the problem from the primal itself.

When the shape of the uncertainty ellipsoid for a pattern with missing valueteisrdeed by
the covariance matrix of the imputed values, any point in the ellipsoid is in thedffiha patterns
used in estimating the covariance matrix. This is because the eigenvectoescof/tiriance matrix
span the entire ellipsoid. The eigenvectors of a covariance matrix are ipaheéthe patterns from
which the covariance matrix is estimated. Since eigenvectors are in the gpapafterns and they
span the entire ellipsoid, any vector in the ellipsoid is in the span of the pattemsshich the
covariance matrix is estimated.

The above fact and the equation to constmudtom the dual variables (49) imphy is in the
span of the imputed data ( all the patterns: complete and the incomplete pattermsssitiy values
imputed). Hencew =S, 0% + 31,1 0iX;.

Now, consider the constraint

yi ((w, %) +b) > 1-§.

It can be rewritten as,

({(Fons 3 on) o)) o1
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We replace the dot product in the above equation by a kernel functiogtto g
yi ((o,K(x))+b) >1-§&,

whereK (x)T = [K(x1,X),...,K(Xe; %), K(Xc41,%),- - ., K(Xn,x)] anda " = [ay,...,dy,]. The obser-
vationx; is either a complete pattern or a pattern with missing values filled in. Now, we et
uncertainty inK (x;) to obtain the non-linear version of our formulation that can be solved easily.
When we consider the uncertaintyi{x;) the probabilistic constraint takes the form

Pr(yi ((o,K(%)) +b) > 1-&) > ;. (50)

As in the original problem we now treﬁt(xi) as a random variable. The equation (50) has the same
structure as the probabilistic constraint of Section 3. Following the same asepsSection 3, it
can be shown that the above probabilistic constraint is equivalent to

yi (0K (x)) +b) > 1£i+\/z\/m,

where>k andK (%) are the covariance and the meankafx;) (in K-space). In view of this, the
following is the non-linear version of the formulation:

n
L _ 51
m|27|g2|zeglé. (51a)
subject toy; ({(a,K(x)) +b) > 1§ forall1<i<c (51b)
yi ({0, K(%}))+b) >1—&; +y; Z'j(%a forallc+1<j<n (51c)
ol <W & >0 forall1<i<n. (51d)

The constraint (51d) follows from the fact that we are now doing linéessification inK-space.
The constraint is similar to the constrajiw|| < W which we had in the linear versions.

Estimation of Parameters A point to be noted here is thii‘-< defines the uncertainty iK(x;).
In the original lower dimensional space we had a closed form formula to detilma covariance
for patterns with missing values. However, now we face a situation whereee® to estimate the
covariance irk-space. A simple way of doing this is to assume spherical uncertairn€ysipace.
Another way of doing this is by a nearest neighbour based estimation.tifitaés the covariance
of K(x), we first find outk nearest neighbours of and then we estimate the covariance from
K(x,),...,K(x,) wherex,,...,x, are the nearest neighboursaf

It is straight forward to extend this more general result (51) to the missihge\problem fol-
lowing the same steps as in (6).

Classification Oncea’s are found, given a test pattetrits class is predicted in the following way:
If the pattern is incomplete, it is first imputed using the way it was done duringriga However,
this can be done in two ways, one corresponding to each class as this alalgsown for the pattern.
In that case the distance of each imputed pattern from the hyperplane isisahifmm

T’ TR
_«a K(t)+band hzza K(t)+b

vaTZa VaTsa
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whereX; andZ, are the covariances obtained by the same strategy as during training.r dighe
the above two is selected as it gives a better fit for the pattern. The prediotithe pattern is
the prediction of its centroid (i.e. the prediction for the centroid which giveetser fit). Let

h = max(|hs|,|hg|), if h= |hy| theny = sgn(h;) elsey = sgn’h;) wherey is the prediction for the
pattern t. In case the pattern is complete, there is no ambiguity we can giiee" ) + b) as the
prediction.

7.2 Kernelized Robust Formulations for Regressions

As discussed for the case of classification we derive nonlinear signssfunctions by using tHé.
We fit a hyperplanéa, b) in theK wherea = [0y, a5, ..., a,]. Whenevex is a random variable we
considerK (x) as a random variable with me&{X) and with either unit covariance or a covariance
estimated from nearest neighbours in thespace. Instead of findingv,b) we resort to finding
(a,b) wherea plays the role ofv but in theK-space. Essentially, we just have to replacby o
andx; by Kx and the covariance by the estimate covariance irKitspace. Given these facts, we
get the following kernelized version of the Close To Mean formulation:

minimizei(ii +&) + D_iei

abBEE |
subject to{a,K(%)) +b—yi <e+§; forall1<i<n
yi—(o,K(X))—b<e+& forall1<i<n
\/aT=ka < 6y/ni forall1<i<n
o] <W and 6;,&;,& >0 forall1<i<n.

Similarly, the kernelized version of formulation SR is given by,

n
minimizey §;
nim i;&.
subject to\/O(TZ}‘a +({a,K(®)) +b—yi)2 < (e+ &)y forall1<i<n
lall <W and & >0 forall1<i<n.

In the above formulation:{}‘ is the estimate covariance in tKespace. If the patterns 1 through
are complete and the pattems 1 throughn have missing values, then assumipig= 1 andsX =0
for i from 1 throughc, would make the above formulations directly applicable to the case.

8. Experiments

In this section we empirically test the derived formulations for both classifitatial regression
problems which have missing values in the observations. In all the casasriptgint method was
used to solve SOCP using the commercially avilable Mosek solver.

8.1 Classification

We consider the classification case first. Consider a binary classificattrhepr with training
data having missing values. The missing values are filled in by imputation andcgigrgly a
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SVM classifier was trained on the complete data to obtaimtminal classifierWe compared the
proposed formulations with the nominal classifiers by performing numeriparanents on real life
data bench mark datasets. We also use a non-linear separable datehset that the kernelized
version works when the linear version breaks down. In our formulatienwill assume thag; = .

For evaluating the results of robust classifier we used the worst caseand the expected error
along with the actual error. A test pattern with no missing values can be dicdatlyified. In case
it has missing values, we first impute the missing values and then classify thenpatie refer to
the error on a set of patterns using this approach the actual error.

We first consider the problem of classifying OCR data where missing vakme®ccur more
frequently. Specifically we consider the classification problem betweetwihdigits '3’ and '8'.
We have used the UCI (Blake and Merz, 1998) OCR data set, A data senesaged by deleting
75% of the pixels from 50% of the training patterns. Missing values wereithpuated using linear
regression. We trained a SVM on this imputed data, to obtain the nominal clas§ifiss was
compared with the robust classifier trained with different valueg, @orresponding to different
degrees of confidence as stated in (11).

The error rates of the classifiers were obtained on the test data satdomby deleting 75%
of the pixels from each pattern. We then repeated 10 such iterations &mdeubthe average
error rates. Figure!3 shows some of the digits that were misclassified bythieal classifier but
were correctly classified by the robust classifier. The effectiveagssir formulation is evident
from these images. With only partial pixels available, our formulation did betéer tine nominal
classifier. Figure 4 show the different error rates obtained on this CaE&skt. In all the three
measures, the robust classifier outperformed the nominal classifier.

219534131
B AEFFFY 9%

Figure 3: In all images the left image shows a complete digit, the right image shewgit after
randomly deleting 75% of the pixels. The first five are '3’ while the next éike’8’.

OCR digits OCR digits OCR digits

—t— Nominal 1 —+— Nominal —+— Nominal 1]
-5 Robust o~ Robust el LB Robust
04 o
5 0%
5 8
4
3 03|
g 4
g s
£ E
028
02 oz
—e_ o »,@\Y )
EC R Ta—

25 3 35 4 o o5 1 15 2 25 3 4 45 s o o5 1 15z 25
Y y v

Actual Error
Expected Ej
t C:

Figure 4: Error rates againgwith linear classifier on the OCR data.
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Here we report the error rates using three measures we defined derdtirer UCI data sets
(Blake and Merz (1998)), Heart, lonosphere and Sonar. Lineasiore of our formulation was
used. Experiments were done with low noise (50% patterns with missing valndd)igh noise
(90% patterns with missing values). The data sets were divided in the ratith®:thrger set was
used for training the nominal and robust classifiers while the smaller setisealsas test data set.
50% of the feature values (chosen at random) were deleted from 50% twhining patterns (in the
low noise case) and 90% of the training patterns (in the high noise cas@®arltiegression based
model was used to fill in the missing values. Nominal classifier and robusif@as with different
values ofy were trained using each such data set. Error rates were obtained festhata set after
deleting 50% of the feature values from each test pattern. The erreregterted here are over ten
such randomized iterations.

The error rates as a function pfare plotted in Figures|5,6 and 7. In case of actual error, the
plots also show a horizontal line labeled 'clean’ which is the error rate oadtual data set without
any missing values. In this case, we did not delete any feature valuestieodata set. Nominal
classifiers were trained and testing was also done on complete test samplagn@as to see how
close our robust classifier could get near the error rates obtaineglthsicomplete data set.

It can be seen that the robust classifier, with suitable amount of rolsgstoees very close
to the error rates on the clean data set. Amongst the three error measuwasshcase error, the
last column of Figure 7, brings out the advantage of the robust clagsiethe nominal classifier.
Clearly with increasing the robust formulation gives dividends over the nominal classifier.

We also did experiments to compare the kernelized version of the formulatertoy linear
formulation. For this purpose, we generated a dataset as follows. Blizzpalass was obtained by
generating uniformly distributed points in a hypershper®3rof unit radius centered at the origin.
The negative class was obtained by generating uniformly distributed poimtsimular band of
thickness one, with the inner radius two, centered around the originmmsuy

1 X <1
Y= -1 2<x <3,

wherex € R®. An illustration of how such a dataset looks in two dimensions is given in thefeft
Figure 8. Hundred patterns were generated for each class. Theetlatassdivided in the ratio 9:1.
The larger part was used for training, the smaller part for testing. Tiamomly chosen values
were deleted from the training data set. The missing values were filled in useay liegression
based strategy. We trained a classifier for different valugs Attual Error was found out for both
the kernelized version and the linear version of the formulation. The raspltsted here are over
ten such randomized runs. Gaussian ke(iek,y) = exp(—q||x—y||?)) was used in the case of
kernelized formulation. The parametgwas chosen by cross validation. Spherical uncertainty was
assumed ifK-space for samples with missing values in case of kernelized robust faiomsla

Figure| 8 shows actual error rates with linear nominal, linear robust, kegdenominal and
kernelized robust. It can be seen that the linear classifier has brakem evhile the kernelized
classifier has managed a smaller error rate. It can also be observétkthatbust kernelized classi-
fier has the least error rate.

8.2 Regression

Given aregression problem with training data having missing values in tleevati®ns we obtained
thenominal regressiofunction by training a Support Vector Regression(SVR) formulation ther
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Figure 5: Error rates as a function pfor Heart. Patterns in the top row contained 50% missing
variables, even ones 90%. From left to right — actual error, expested, and worst
case error.

imputed data. The obtained regression function will be called the nominal BMRis section we
compare our formulations with nominal SVR on a toy dataset and one re#l dataset in the
linear setting. We also compared the kernelized formulations with the linear ffations.

The first set of results is on a toy data set consisting of 150 observatiéash observation
consistedy,X) pair where

y=w'x+b, w' =[1,2,3,4,5], b=-7.

Patternsx were generated from a Gaussian distribution with mees,0, and randomly chosen
covariance matrixz. The results are reported for the following choiceof

0.1872 01744 00349 -0.3313 -0.2790
0.1744 04488 00698 —0.6627 —0.5580
0.0349 00698 01140 -0.1325 -0.1116
—0.3313 -0.6627 —0.1325 13591 10603
—0.2790 —-0.5580 —-0.1116 10603 09929

Missing values were introduced by randomly choosing 50% of the exampiededeting 2 of
the entries example selected at random for each chosen example. Thedataided in the ratio
9:1, the larger one was used for training and the smaller one was usedgtfogteThe results re-
ported here are the average over ten such randomly partitioned traimingsaata. After imputing
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Figure 6: Error rates as a function gffor lonosphere. Patterns in the top row contained 50%
missing variables, even ones 90%. From left to right — actual erroea&gd error, and

Worst case error.

the missing values using a linear regression model, training data was usedftegitbnd formula-
tions. The first row of Figure 9 shows robustness efror (38), weasé error (40) for CTM and
expected residual (39) and worst case error (40) for SR. Thendeow gives the results on UCI
Blake and Merz (1998) boston data set with the same test methodology. efloenpance of our
formulation over nominal regression is evident.

To validate our kernelized formulation, 150 sample®mhwere randomly generated as in the
above case. For eachthe output is given by = ¢ @(x) — co, see footnot@The mappingp(x)
is such that a hyperplane R'® is actually a quadratic curve iR°. Randomly generatedlandcg
were used in this mapping. 40% of the values were deleted at random @%abd 20% of the
training samples for CTM and SR, they were filled in using the linear regressialel. A Gaussian
kernelK(a,b) = exp(—y||a— b||?) with kernel parametey = 0.1 was used. Figure 10 shows the
test errors per sample on 10 runs with different randomly deleted valesserror is the error rate
on a test set with missing values filled in. Essentially, we calcgidtee(f(X;,yi)) for all the test
samples where the missing values are filled in using the training data set pasusétg a linear

6. Letx = [x1,X2,...,Xs]. The mappingp: R® — R1%is defined by

O(X) = x5 X3 X3 X2 V/2x1%0 V' 2x1X3 V/2X1X4 V2X1X5 V 2XaX3 V/2XoXa V/ 2XoX5 V/2XaX4 v/ 2XaXs v 2XaXs) .
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Figure 8: The left figure shows how the data set looks in two dimensionsgthtefigure gives the
actual error rate for linear and kernelized formulations for the robusthaminal cases.

regression model. Essentially it is the absolute residual for imputed mearatast The figures
show that the kernelized version of the robust formulation does a betténgotthe linear version
when the underlying function is non-linear.
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Figure 9: Top row — toy data set, Bottom row — Boston Housing estimation prglifeom left
to right: robustness (CTM), worst case error (CTM), expected vasibR), and worst
case error (SR). All graphs describe the error as a function of thestoess).

9. Conclusions

In this paper we have proposed SOCP formulations for designing ribeat prediction functions
which are capable of tackling uncertainty in the patterns both in classificatibregression setting.
The formulations are applicable to any uncertainty distribution provided thtehfio moments are
computable. When applied to the missing variables problem the formulationsfoutp¢he impu-
tation based classifiers and regression functions. We have also pdopegy to design nonlinear
prediction functions by using regression setting.

The robustness in the context of classification can be geometrically ines@s requiring that
all points in the ellipsoid occur on one side of the hyperplane. Insteadvaidnan ellipsoidal un-
certainty one can have situations where the uncertainty is describeditvgigrbets. The constraint
sampling approaches can serve as useful alternatives for sudamsob-uture work will consist in

examining this approach for the problem at hand.
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Appendix A. Dual of the SOCP
The Lagrangian of (44) is given by

L(wE,b,A,B,0) —_iii — _iBiEi - _i?\i (vi (WX +Db) —1+&)

n 1
-y A (y;(waj+b>—1+zj—v,-HzJ-an)+6<||w||—w> (54)
j=c+1

Bi,Ai, 6> 0.
Recall that for any € R" the relationshi|x||2 = max <1 x"y holds. This can be used to handle
and||w|| leading to a modified Lagrangian given as follows

1
terms like ijW

Ll(W7ﬁab7)\7B767 U) :ZLEI _ZLBIEI _Zl)\l (yl (WTxl +b) - 1+EI)

n 1 T
- > A (yj(Wij+b)—1+Ej—yj <Zj2W> u,-) +8(W lpr1 —W).
j=c+1
(55)

The Lagrangiarf; has the same optimal value &svhen maximized with respect tds subject to
the constraintgu;|| <1 for allc+1 <i<n+1. Note that ther's are defined only for patterns with
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missing values and, ; is defined for the constraitiiv|| <W. Therefore
L1(w, &, b,AB,0) = mljaxL (W, &,b,A,B,0,u) subjectto|lui|| <1foralliec {c+1,...n+1}.

By definition, solving((44) is equivalent to finding the saddle-point of thgrhangianC,. By virtue
of the above reasoning and due to convexity we obtain

minimizemaximizel (w,&, b, A, 3,0) (56a)
wb,& 238
=minimizemaximizeL (w,§,b,A, 3,0, u) (56b)
wb&  ASBul<1
=maximizeminimizeL1 (w,§,b,A,3,0,u). (56¢)

ASB <1 wbE

Eq (56c) now enables us to eliminate the primal variables to give the dual.glpéitial derivatives
of L with respect taw, b, and§ yields

C n
Oul (WEDABEU == 3 Ay = 5 N (vi% V=P Ty +8una (57)
i= j=c+1
aEiL(VV,E,b,)\,B,E,U):1—)\i—[3i (57b)
n
0pL (W,&,b,A,B,0,u) = 217\% (57¢)
i=

Changing the sign afi; for c+1 <i < ndoes not matter since the optimal value of maximization
of bothw'u; and—w'u; over ||uj| < 1 are the same. Substitutingu; in (57a) byy;u; and then
equating/(57a) | (57b) and (57¢) to zero gives

C n
1

AiYiXi + AYi (X 4+ViZi2Tui ) = Sunst (58a)
I; Y1 J:Z+l ]( ] 14] J) n+
1-A—-Bi=0 (58b)
n

Ay = 0. (58c)
I; 1Yl

Substituting((58a), (58b) and (58c¢) in (55) subject to the relevanti@nts yields the dual stated
as follows

n
maximize y A\j —Wd 59a
vimize 5 A (59a)
n
subject tozl)\iyi =0 (59b)
i=
C n 1
AWt 3 A (% =52y ) = Bunia (59¢)
i= j=ct1
Ai+Bi=1 forall1<i<n (59d)
lull <1 forallc+1<i<n+1 (59e)
Ai,Bi,6>0 forall1<i<n. (59f)
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For arbitrary dat® > 0, which when plugged into (58a), gives

IEUN DI YEREYNY (7(1- +yiz,-%Tu,->
Un+1 = 5

and hence the dual (47) follows.
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