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Abstract
We propose a novel second order cone programming formulation for designing robust classifiers
which can handle uncertainty in observations. Similar formulations are also derived for designing
regression functions which are robust to uncertainties in the regression setting. The proposed for-
mulations are independent of the underlying distribution,requiring only the existence of second or-
der moments. These formulations are then specialized to thecase of missing values in observations
for both classification and regression problems. Experiments show that the proposed formulations
outperform imputation.

1. Introduction

Denote by(x,y)∈X×Y patterns with corresponding labels. The typical machine learning formula-
tion only deals with the case where(x,y) are givenexactly. Quite often, however, this is not the case
— for instance in the case of missing values we may be able (using a secondary estimation proce-
dure) to estimate the values of the missing variables, albeit with a certain degreeof uncertainty. In
other cases, the observations maybe systematically censored. In yet other cases the data may repre-
sent an entire equivalence class of observations (e.g. in optical character recognition all digits, their
translates, small rotations, slanted versions, etc. bear the same label). It istherefore only natural to
take the potential range of such data into account and design estimators accordingly. What we pro-
pose in the present paper goes beyond the traditional imputation strategy in the context of missing
variables. Instead, we integrate the fact that some observations are notcompletely determined into
the optimization problem itself, leading to convex programming formulations.

In the context of this paper we will assume that the uncertainty is only in the patterns x, e.g.
some of its components maybe missing, and the labelsy are known precisely whenever given.
We first consider the problem of binary classification where the labelsy can take two values,Y =
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{1,−1}. This problem was partially addressed in (Bhattacharyya et al., 2004b),where a second
order cone programming (SOCP) formulation was derived to design a robust linear classifier when
the uncertainty was described by multivariate normal distributions. Another related approach is
the Total Support Vector Classification (TSVC) of Bi and Zhang (2004)who, starting from a very
similar premise, end up with a non-convex problem with corresponding iterative procedure.

One of the main contributions of this paper is to generalize the results of Bhattacharyya et al.
(2004b) by proposing a SOCP formulation for designing robust binary classifiers for arbitrary distri-
butions having finite mean and covariance. This generalization is acheivedby using a multivariate
Chebychev inequality (Marshall and Olkin, 1960). We also show that the formulation achieves
robustness by requiring that for every uncertain datapoint an ellipsoid should lie in the correct half-
space. This geometric view immediately motivates various error measures whichcan serve as per-
formance metrics. We also extend this approach to the multicategory case. Next we consider the
problem of regression with uncertainty in the patternsx. Using Chebyshev inequalities two SOCP
fromulations are derived, namelyClose to Meanformulation andSmall Residualformulation, which
give linear regression functions robust to the uncertainty inx. This is another important contribu-
tion of this paper. As in the classification case the formulations can be interpreted geometrically
suggesting various error measures. The proposed formulations are then applied to the problem of
patterns having missing values both in the case of classification and regression. Experiments con-
ducted on real world data sets show that the proposed formulations outperform imputations. We
also propose a way to extend the proposed formulations to arbitrary feature spaces by using kernels
for both classification and regression problems.

Outline: The paper is organised as follows: Section 2 introduces the problem of classification
with uncertain data. In section 3 we make use of Chebyshev inequalities for multivariate random
variable to obtain an SOCP which is one of the main contribution of the paper. Wealso show that
same formulation could be obtained by assuming that the underlying uncertaintycan be modeled
by an ellipsoid. This geometrical insight is exploited for designing various error measures. A
similar formulation is obtained for a normal distribution. Instead of an ellipsoid one can think of
more general sets to describe uncertainty. One can tackle such formulations by constraint sampling
methods. These constraint sampling methods along with other extensions are discussed in section
4. The other major contribution is discussed in section 5. Again using Chebyshev inequalities
two different formulations are derived for regression in section 5 for handling uncertainty inx. As
before the formulations motivate various error measures which are useful for comparison. In section
6 we specialize the formulations to the missing value problem both in the case of classification and
regression. In section 7 nonlinear prediction functions are discussed.To compare the performance
of the formulations numerical experiments were performed on various realworld datasets. The
results are compared favourably with the imputation based strategy, details are given in section 8.
Finally we conclude in section 9.

2. Linear Classification by Hyperplanes

Assume that we haven observations(xi ,yi) drawn iid (independently and identically distributed)
from a distribution overX× Y, wherexi is the ith pattern andyi is the corresponding label. In
the following we will briefly review the SVM formulation when the observations are known with
certainty and then consider the problem of uncertain observations.
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2.1 Classification with Certainty

For simplicity assume thatY = {±1} andX = R
m with a finitem. For linearly separable datasets

we can find a hyperplane〈w,x〉+ b = 0 1 which separates the two classes and the corresponding
classification rule is given by

f (x) = sgn(〈w,x〉+b) .

One can compute the parameters of the hyperplane(w,b) by solving a quadratic optimization prob-
lem (see Cortes and Vapnik (1995))

minimize
w,b

1
2
‖w‖2 (1a)

subject toyi (〈w,xi〉+b)≥ 1 for all 1≤ i ≤ n, (1b)

where‖w‖ is the euclidean norm.2 In many cases, such separation is impossible. In this sense the
constraints (1b) are hard. One can still construct a hyperplane by relaxing the constraints in (1). This
leads to the following soft margin formulation withL1 regularization (Bennett and Mangasarian,
1993; Cortes and Vapnik, 1995):

minimize
w,b,ξ

1
2
‖w‖2 +C

n

∑
i=1

ξi (2a)

subject toyi (〈w,xi〉+b)≥ 1−ξi for all 1≤ i ≤ n (2b)

ξi ≥ 0 for all 1≤ i ≤ n. (2c)

The above formulation minimizes an upper bound on the number of errors. Errors occur when
ξi ≥ 1. The quantityCξi is the “penalty” for any data pointxi that either lies within the margin on
the correct side of the hyperplane (ξi ≤ 1) or on the wrong side of the hyperplane (ξi > 1).

One can re-formulate (2) as an SOCP by replacing the‖w‖2 term in the objective (2a) by a
constraint which upper bounds‖w‖ by a constant W. This yields

minimize
w,b,ξ

n

∑
i=1

ξi (3a)

subject toyi (〈w,xi〉+b)≥ 1−ξi for all 1≤ i ≤ n (3b)

ξi ≥ 0 for all 1≤ i ≤ n (3c)

‖w‖ ≤W. (3d)

Instead ofC the formulation (3) uses a direct bound on‖w‖, namelyW. One can show that for
suitably chosenC andW the formulations (2) and (3) give the same optimal values of(w,b,ξ). Note
that (3d) is a second order cone constraint (Lobo et al., 1998).3 With this reformulation in mind we
will, in the rest of the paper, deal with (2) and, with slight abuse of nomenclature, discuss SOCPs
where the transformation from (2) to (3) is implicit.

1. 〈a,b〉 denotes the dot product betweena,b∈ X. ForX = R
m,〈a,b〉= a⊤b. The formulations discussed in the paper

holds for arbitrary Hilbert spaces with a suitably defined dot product〈., .〉.
2. The Euclidean norm for elementx∈ X is defined as‖x‖=

√

〈x,x〉 whereX is a Hilbert space.
3. Second order cones are given by inequalities inw which take the form‖Σw+c‖ ≤ 〈w,x〉+b. In this casec = 0 and

the cone contains a ray in the direction of−w, b determines the offset from the origin, andΣ determines the shape of
the cone.
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2.2 Classification Under Uncertainty

So far we assumed that the(xi ,yi) pairs are known with certainty. In many situations this may not
be the case. Suppose that instead of the pattern(xi ,yi) we only have a distribution overxi , that isxi

is a random variable. In this case we may replace (2b) by a probabilistic constraint

Pr
xi
{yi (〈w,xi〉+b)≥ 1−ξi} ≥ 1−κi for all 1≤ i ≤ n. (4)

In other words, we require that the random variablexi lies on the correct side of the hyperplane with
probability greater thanκi . For high values ofκi , which is a user defined parameter in(0,1], one
can obtain a good classifier with a low probability of making errors.

Unless we make some further assumptions or approximations on (4) it will be rather difficult to
solve it directly. For this purpose the following sections describe various approaches on how to deal
with the optimization. We begin with the assumption that the second moments ofxi exist. In this
case we may make use of Chebyshev inequalities (Marshall and Olkin, 1960) to obtain a SOCP.

2.3 Inequalities on Moments

The key tool are the following inequalities, which allow us to bound probabilitiesof misclassifi-
cation subject to second order moment constraints onx. Markov’s inequality states that ifξ is a
random variable,h : R→ [0,∞) anda is some positive constant then

Pr{h(ξ)≥ a} ≤ E [h(ξ)]

a
.

Consider the functionh(x) = x2. This yields

Pr{|ξ| ≥ a} ≤ E
[

ξ2
]

a2 . (5)

Moreover, consideringh(x) = (x−E[x])2 yields the Chebyshev inequality

Pr{|ξ−E(ξ)| ≥ a} ≤ Var [ξ]

a2 . (6)

Denote by ¯x,Σ mean and variance of a random variablex. In this case the multivariate Chebyshev in-
equality (Marshall and Olkin, 1960; Lanckriet et al., 2002; Boyd and Vandenberghe, 2004) is given
by

sup
x∼(x,Σ)

Pr{〈w,x〉 ≤ t}= (1+d2)−1 whered2 = inf
x|〈x,w〉≤t

(x−x)⊤Σ−1(x−x) . (7)

This bound always holds for a family of distributions having the same secondorder moments and
in the worst case equality is attained. We will refer to the distribution corresponding to the worst
case as theworst distribution. These bounds will be used to turn the linear inequalities used in
Support Vector Machine classification and regression into inequalities which take the uncertainty of
the observed random variables into account.

3. Classification

The main results of our work for the classification problem are presented inthis section. Second
order cone programming solutions are developed which can handle uncertainty in the observations.

1286



SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

3.1 Main Result

In order to make progress we need to specify properties of (4). Several settings come to mind and
we will show that all of them lead to an SOCP.

Robust Formulation Assume that for eachxi we only know its mean ¯xi and varianceΣi . In this
case we want to be able to classify correctly even for theworst distributionin this class.
Denote byx∼ (µ,Σ) a family of distributions which have a common mean and covariance,
given byµ andΣ respectively. In this case (4) becomes

inf
xi∼(x̄i ,Σi)

Pr
xi

(yi (〈xi ,w〉+b)≥ 1−ξi)≥ 1−κi . (8)

This means that even for the worst distribution we still classifyxi correctly with high proba-
bility 1−κi .

Normal Distribution Equally well, we might assume thatxi is, indeed, distributed according to
a normal distribution with mean ¯xi and varianceΣi . This should allow us to provide tighter
bounds, as we have perfect knowledge on howxi is distributed. In other words, we would like
to solve the classification problem, where (4) becomes

Pr
xi∼N(x̄i ,Σi)

(yi (〈xi ,w〉+b)≥ 1−ξi)≥ 1−κi . (9)

Using a Gaussian assumption on the underlying data allows one to use readily available tech-
niques like EM (Dempster et al., 1977; Schneider, 2001) to impute the missing values.

It turns out that both (8) and (9) lead to the same optimization problem.

Theorem 1 The classification problem with uncertainty, as described in (4) leads to the following
second order cone program, when using constraints (8), (9):

minimize
w,b,ξ

1
2
‖w‖2 +C

n

∑
i=1

ξi (10a)

subject to yi (〈w, x̄i〉+b)≥ 1−ξi + γi

∥

∥

∥

∥

Σ
1
2
i w

∥

∥

∥

∥

for all 1≤ i ≤ n (10b)

ξi ≥ 0 for all 1≤ i ≤ n, (10c)

whereΣ 1
2 is a symmetric square matrix and is the matrix square root ofΣ = Σ 1

2 Σ 1
2 .

More specifically, the following formula forγi hold:

• In the robust casēxi , Σi correspond to the presumed means and variances and

γi =
√

κi/(1−κi). (11)

• In the normal distribution case, again̄xi ,Σi correspond to mean and variance. Moreoverγi is
given by the functional inverse of the normal CDF, that is

γi = φ−1(κi) whereφ(u) :=
1√
2π

Z u

−∞
e−

s2
2 ds. (12)
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Note that forκi < 0.5 the functional inverse of the Gaussian cumulative distribution function be-
comes negative. This means that in those cases the joint optimization problem isnonconvex, as the
second order cone constraint enters as aconcavefunction. This is the problem that Bi and Zhang
(2004) study. They find an iterative procedure which will converge to alocal optimum. On the other
hand, wheneverγi ≥ 0 we have aconvexproblem with unique minimum value.

As expectedφ−1(κi) <
√

κi
1−κi

. What this means in terms of our formulation is that, by making

Gaussian assumption we only scale down the size of the uncertainty ellipsoid withrespect to the
Chebyshev bound.

Formulation (10) can be solved efficiently using various interior point optimization methods
(Boyd and Vandenberghe, 2004; Lobo et al., 1998; Nesterov and Nemirovskii, 1993) with freely
available solvers, such as SeDuMi (Sturm, 1999) making them attractive for large scale missing
value problems.

3.2 Proof of Theorem 1

Robust Classification We can restate (8) as

sup
x∼(xi ,Σi)

Pr
x
{yi (〈w,x〉+b)≤ 1−ξi} ≤ κi .

See that it is exactly equivalent to (8) and using Eq. (7) we can write

sup
x∼(xi ,Σi)

Pr
x
{yi (〈w,x〉+b)≥ 1−ξi}= (1+d2)−1≤ κi , (13a)

where,d2 = inf
x|yi(〈x,w〉+b)≤1−ξi

(x−xi)
⊤Σ−1

i (x−xi) . (13b)

Now we solve (13b) explicitly. In casexi satisfiesyi (〈w,xi〉+b)≥ 1−ξi then clearly the infimum in
(13b) is zero. If not,d2 is just the distance of the meanxi from the hyperplaneyi (〈w,xi〉+b)= 1−ξi ,
that is

d2 =
yi (〈w,xi〉+b−1+ξi)

√

w⊤Σiw
. (14)

The expression ford2 in (14) when plugged into the requirement11+d2 ≤ κi gives (10b) whereγi is
given as in (11) thus proving the first part.

Normal Distribution Since projections of a normal distributions are themselves normal we may
rewrite (9) as a scalar probabilistic constraint. We have

Pr

{

zi−zi

σzi

≥ yib+ξi−1−zi

σzi

}

≤ κi , (15)

wherezi := −yi 〈w,xi〉 is a normal random variable with mean ¯zi and varianceσ2
zi

:= w⊤Σiw. Con-
sequently(zi − z̄i)/σzi is a random variable with zero mean and unit variance and we can compute
the lhs of (15) by evaluating the cumulative distribution functionφ(x) for normal distributions. This
makes (15) equivalent to the condition

φ
(

σ−1
zi

(yib+ξi−1−zi)
)

≥ κi ,

which can be solved for the argument ofφ.

1288



SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

3.3 Geometric Interpretation and Error Measures

The constraint (10b) can also be derived from a geometric viewpoint. Assume thatx takes values in
an ellipsoid with center ¯x, metricΣ and radius4 γ, that is

x∈ E(x̄,Σ,γ) :=
{

x|(x− x̄)⊤Σ−1(x− x̄)≤ γ2
}

. (16)

The robustness criteria can be enforced by requiring that that we classify x correctly for allx ∈
E(x̄,Σ,γ), that is

y(〈x,w〉+b)≥ 1−ξ for all x∈ E(x̄,Σ,γ). (17)

In the subsequent section we will study other constraints than ellipsoid sets for x.

Lemma 2 The optimization problem

minimize
x

〈w,x〉 subject to x∈ E(x̄,Σ,γ)

has its minimum at̄x− γ
(

w⊤Σw
)− 1

2 Σw with minimum value〈x̄,w〉− γ
(

w⊤Σw
)

1
2 . Moreover, the

maximum of(〈w,x〉−〈w, x̄〉) subject to x∈ E(x̄,Σ,γ) is given byγ
∥

∥

∥
Σ 1

2 w
∥

∥

∥
.

Proof We begin with the second optimization problem. Substitutingv := Σ− 1
2 (x− x̄) one can see

that the problem is equivalent to maximizing〈w,Σ 1
2 v〉 subject to‖v‖ ≤ γ. The latter is maximized

for v = γΣ 1
2 w/

∥

∥

∥
Σ 1

2 w
∥

∥

∥
with maximum valueγ

∥

∥

∥
Σ 1

2 w
∥

∥

∥
. This proves the second claim.

The first claim follows from the observation that maximum and minimum of the second objec-
tive function match (up to a sign) and from the fact that the first objective function can be obtained
form the second by a constant offset〈w, x̄〉.
This means that for fixedw the minimum of the lhs of (17) is given by

yi (〈x̄i ,w〉+b)− γi

√

w⊤Σiw. (18)

The parameterγ is a function ofκ, and is given by (11) in the general case. For the normal case
it is given by (12). We will now use this ellipsoidal view to derive quantities which can serve as
performance measures on a test set.

Worst Case Error: given an uncertainty ellipsoid, we can have the following scenarios:

1. The centroid is classified correctly and the hyperplane does not cut the ellipsoid: The error is
zero as all the points within the ellipsoid are classified correctly.

2. The centroid is misclassified and the hyperplane does not cut the ellipsoid: Here the error is
1 as all the points within the ellipsoid are misclassified.

3. The hyperplane cuts the ellipsoid. Here the worst case error is one aswe can always find
points within the uncertainty ellipsoid that get misclassified.

4. Note that we could as well dispose ofγ by transformingΣ← γ−2Σ. The latter, however, leads to somewhat inconve-
nient notation.
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Figure 1 illustrates these cases. It shows a scenario in which there is uncertainty in two of the
features. Figure corresponds to those two dimensions. It shows three ellipsoids corresponding to
the possible scenarios.

To decide whether the ellipsoid,E(µ,Σ,γ), intersects the hyperplane,w⊤x+b = 0, one needs to
compute

z=
w⊤µ+b√

w⊤Σw
.

If |z| ≤ γ then the hyperplane intersects the ellipsoid, see (Bhattacharyya et al., 2004a). For an
uncertain observation, i.e. given an ellipsoid, with the labely, the worst case error is given by

ewc(E) =

{

1 if yz< γ
0 otherwise.

Expected Error The previous measure is a pessimistic one. A more optimistic measure could be
the expected error. We find out the volume of the ellipsoid on the wrong side of the hyperplane and
use the ratio of this volume to the entire volume of the ellipsoid as the expected error measure. When
the hyperplane doesn’t cut the ellipsoid, expected error is either zero or one depending on whether
the ellipsoid lies entirely on the correct side or entirely on the wrong side of thehyperplane. In some
sense, this measure gives the expected error for each sample when there is uncertainty. In figure 1
we essentially take the fraction of the area of the shaded portion of the ellipsoidas the expected error
measure. In all our experiments, this was done by generating large numberof uniformly distributed
points in the ellipsoid and then taking the fraction of the number of points on the correct side of the
hyperplane to the total number of points generated.

4. Extensions

We now proceed to extending the optimization problem to a larger class of constraints. The fol-
lowing three modifications come to mind: (a) extension to multiclass classification, (b) extension of
the setting to different types of set constraints, and (c) the use of constraint sampling to deal with
nontrivial constraint sets

4.1 Multiclass Classification

An obvious and necessary extension of above optimization problems is to deal with multiclass clas-
sification. Giveny∈ Y one solves the an optimization problem maximizing the multiclass margin
(Collins, 2002; R̈atsch et al., 2002; Taskar et al., 2003):

minimize
w,ξ

n

∑
i=1

ξi (19a)

subject to〈wyi ,xi〉−max
y6=yi

〈wy,xi〉 ≥ 1−ξi andξi ≥ 0 for all 1≤ i ≤ n (19b)

|Y|

∑
i=1

‖wyi‖2≤W2. (19c)

Herewi are the weight vectors corresponding to each class. Taking square roots of (19c) yields a
proper SOCP constraint onw∈ R

d×|Y|. Note that instead of (19b) we could also state|Y|−1 linear
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Figure 1: Three scenarios occurring when classifying a point: One of the unshaded ellipsoids lies
entirely on the ”correct” side of the hyperplane, the other lies entirely on the”wrong”
side of the hyperplane. The third, partially shaded ellipsoid has parts on either sides. In
the worst case we count the error for this pattern as one whereas in the expected case we
count the error as the fraction of the volume (in this case area) on the ”wrong” side as the
error

inequalities onwi according to each(yi ,y) combination. The latter allows us apply a reasoning
analogous to that of Theorem 1 (we skip the proof as it is identical to that ofSection 3.2 with small
modifications for a union bound argument). This yields:

minimize
w,b,ξ

1
2

|Y|

∑
i=1

‖wi‖2 +C
n

∑
i=1

ξi (20a)

subject to(〈wyi −wy, x̄i〉)≥ 1−ξi + γi

∥

∥

∥

∥

Σ
1
2
i (wyi −wy)

∥

∥

∥

∥

for 1≤ i ≤ n,y 6= yi (20b)

ξi ≥ 0 for 1≤ i ≤ n. (20c)

The key difference between (10) and (20) is that we have a set of|Y| −1 second order cone con-
straints per observation.

4.2 Set Constraints

The formulations presented so far can be broadly understood in the context of robust convex op-
timization (see Ben-Tal and Nemirovski (1998, 2001)). In the following wediscuss a few related
formulations which were proposed in the context of pattern classification. This subsection lists types
of the constraint set and the kind of optimization problems used for solving SVM for the underlying
constraint sets.
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Note that we may rewrite the constraints on the classification as follows:

yi (〈x,w〉+b)≥ 1−ξi for all x∈ Si . (21)

Here the setsSi are given bySi = E(x̄i ,Σi ,γi). This puts our optimization setting into the same cate-
gory as the knowledge-based SVM (Fung et al., 2002) and SDP for invariances (Graepel and Herbrich,
2004), as all three deal with the above type of constraint (21), but the setSi is different. More to the
point, in (Graepel and Herbrich, 2004)Si = S(bi ,β) is a polynomial inβ which describes the set of
invariance transforms ofxi (such as distortion or translation). (Fung et al., 2002) defineSi to be a
polyhedral “knowledge” set, specified by the intersection of linear constraints.

By the linearity of (21) it follows that if (21) holds forSi then it also holds for coSi , the convex
hull of Si . Such considerations suggest yet another optimization setting: instead of specifying a
polyhedral setSi by constraints we can also specify it by its vertices. Depending onSi such a
formulation may be computationally more efficient.

In particular ifSi is the convex hull of a set of generatorsxi j as in

Si = co{xi j for 1≤ j ≤mi}.

We can replace (21) by

yi (〈w,xi j 〉+b)≥ 1−ξi for all 1≤ j ≤mi .

In other words, enforcing constraints for the convex hull is equivalent to enforcing them for the
verticesof the set. Note that the index ranges overj rather thani. Such a setting is useful e.g. in the
case of range constraints, where variables are just given by intervalboundaries. Table 1 summarizes
the five cases. Clearly all the above constraints can be mixed and matched. More central is the
notion of stating the problems via (21) as a starting point.

Table 1: Constraint sets and corresponding optimization problems.
Name SetSi Optimization Problem
Plain SVM {xi} Quadratic Program
Knowledge Based SVM Polyhedral set Quadratic Program
Invariances trajectory of polynomial Semidefinite Program
Normal Distribution E(xi ,Σi ,γi) Second Order Cone Program
Convex Hull co{xi j ∀ 1≤ j ≤mi} Quadratic Program

4.3 Constraint Sampling Approaches

In the cases of Table 1 reasonably efficient convex optimization problems can be found which allow
one to solve the domain constrained optimization problem. That said, the optimizationis often
quite costly. For instance, the invariance based SDP constraints of Graepel and Herbrich (2004) are
computationally tractable only if the number of observations is in the order of tens to hundreds, a
far cry from requirements of massive datasets with thousands to millions of observations.

Even worse, the setS may not be finite and it may not be convex either. This means that
the optimization problem, while convex, will not be able to incorporateS efficiently. We could,
of course, circumscribe an ellipsoid forS by using a largeγ to obtain a sufficient condition. This
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approach, however, would typically lead to overly pessimistic classifiers. An alternative is constraint
sampling, as proposed by (de Farias and Roy, 2004; Calafiore and Campi, 2004).

Let f : R
d→R andc : R

d×R
m→R

l be convex functions, withΩ⊆R
d being a closed convex

set andS⊆ R
l . Consider the following optimization problem which is an instance of well known

semi-infinite program

minimize
θ∈Ω

f (θ) subject toc(θ,x)≤ 0 for all x∈ S. (22)

Depending onS the problem may have infinite number of constraints, and is in general intractable
for arbitrary f andc. The constraint sampling approach for such problems proceeds by first impos-
ing a probability distribution overSand then obtainingN independent observations,x1, . . . ,xN from
the setSby sampling. Finally one solves the finite convex optimization problem

minimize
θ∈Ω

f (θ) subject toc(θ,xi)≤ 0 for all 1≤ i ≤ N. (23)

The idea is that by satisfyingN constraints there is a high probability that an arbitrary constraint
c(x,θ) is also satisfied. LetθN be the solution of (23). Note that sincexi are random variablesθN, is
also a random variable. The choice ofN is given by a theorem due to Calafiore and Campi (2004).

Theorem 3 Let ε,β ∈ (0,1) and letθ ∈ R
d be the decision vector then

Pr{V(θN)≤ ε} ≥ 1−β where V(θN) = Pr{c(θN,x) > 0|x∈ S}

holds if

N≥ 2
[

dε−1 logε−1 + ε−1 logβ−1 +d
]

,

provided the set{x∈ S|c(θN,x) > 0} is measurable.

Such a choice ofN guarantees that the optimal solutionθN of the sampled problem (23) isε level
feasible solution of the robust optimization problem (22) with high probability. Specializing this
approach for the problem at hand would require drawingN independent observations from the set
Si , for each uncertain constraint, and replacing the SOCP constraint byN linear constraints of the
form

y(w⊤x j
i +b)≥ 1 for all j ∈ {1, . . .N}.

The choice ofN is given by Theorem 3. Clearly the resulting problem is convex and has finite
number of constraints. More importantly this makes the robust problem same asthe standard SVM
optimization problem but with more number of constraints.

In summary the advantage with the constraint sampling approach is one can stillsolve a robust
problem by using a standard SVM solver instead of an SOCP. Another advantage is the approach
easily carries over to arbitrary feature spaces. The downside of Theorem 3 is thatN depends linearly
on thedimensionalityof w. This means that for nonparametric setting tighter bounds are required.5

5. Such bounds are subject to further work and will be reported separately.
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5. Regression

Beyond classification the robust optimization approach can also be extended to regression. In this
case one aims at finding a functionf : X→ Y such that some measure of deviationc(e) between the
observations and predictions, wheree( f (x),y) := f (x)−y, is small. For instance we penalize

c(e) = 1
2e2 LMS Regression (l2) (24a)

c(e) = |e| Median Regression (l1) (24b)

c(e) = max(0, |e|− ε) ε-insensitive Regression (24c)

c(e) =

{

|e|− σ
2 if |e| ≤ σ

1
2σe2 otherwise

Huber’s robust regression (24d)

The ℓ1 and ℓ2 losses are classical. Theε-insensitive loss was proposed by Vapnik et al. (1997),
the robust loss is due to Huber (1982). Typically one does not minimize the empirical average
over these losses directly but rather one minimizes the regularized risk whichis composed of the
empirical mean plus a penalty term onf controlling the capacity. See e.g. (Schölkopf and Smola,
2002) for further details.

Relatively little thought has been given so far to the problem whenx may not be well determined.
Bishop (1995) studies the case wherex is noisy and he proves that this has a regularizing effect on
the estimate. Our aim is complementary: we wish to find robust estimators which do not change
significantly whenx is only known approximately subject to some uncertainty. This occurs, e.g.
when some coordinates ofx are missing.

The basic tool for our approach are the Chebyshev and Gauss-Markov inequalities respectively
to bound the first and second moment ofe( f (x),y). These inequalities are used to derive two
SOCP formulations for designing robust estimators useful for regression with missing variables.
Note that no distribution assumptions are made on the underlying uncertainty, except that the first
and the second moments are available. Our strategy is similar to (Chandrasekaran et al., 1998;
El Ghaoui and Lebret, 1997) where the worst case residual is limited in presence of bounded uncer-
tainties.

5.1 Penalized Linear Regression and Support Vector Regression

For simplicity the main body of our derivation covers the linear setting. Extensionto kernels is
discussed in a later section Section 7. In penalized linear regression settingsone assumes that there
is a function

f (x) = 〈w,x〉+b, (25)

which is used to minimize a regularized risk

minimize
w,b

n

∑
i=1

c(ei) subject to‖w‖ ≤W andei = f (xi)−yi . (26)

HereW > 0. As long asc(ei) is a convex function, the optimization problem (26) is a convex
programming problem. More specifically, for the three loss functions of (24a) we obtain a quadratic
program. Forc(e) = 1

2e2 we obtain Gaussian Process regression estimators (Williams, 1998), in
the second case we obtain nonparametric median estimates (Le et al., 2005), and finally c(e) =
max(0, |e|− ε) yieldsε-insensitive SV regression (Vapnik et al., 1997).

1294



SOCP APPROACHES FORM ISSING AND UNCERTAIN DATA

Eq. (26) is somewhat nonstandard insofar as the penalty on‖w‖ is imposed via the constraints
rather than via a penalty in the objective directly. We do so in order to obtain second order cone
programs for the robust formulation more easily without the need to dualize immediately. In the fol-
lowing part of the paper we will now seek means of bounding or estimatingei subject to constraints
onxi .

5.2 Robust Formulations for Regression

We now discuss how to handle uncertainty inxi . Assume thatxi is a random variable whose first
two moments are known. Using the inequalities of Section 2.3 we derive two formulations which
render estimates robust to the stochastic variations inxi .

Denote by ¯x := E [x] the expected value ofx. One option of ensuring robustness of the estimate
is to require that the prediction errors are insensitive to the distribution overx. That is, we want that

Pr
x
{|e( f (x),y)−e( f (x̄),y)| ≥ θ} ≤ η, (27)

for some confidence thresholdθ and some probabilityη. We will refer to (27) as a “close to mean”
(CTM) requirement. An alternative is to require that the residualξ( f (x),y) be small. We make use
of a probabilistic version of the constraint|e( f (x),y)| ≤ ξ+ ε , that is equivalent to

Pr
x
{|e( f (x),y)| ≥ ξ+ ε} ≤ η. (28)

This is more geared towards good performance in terms of the loss function,as we require the
estimator to be robust only in terms of deviations which lead tolarger estimation error rather than
requiring smoothness overall. We will refer to (28) as a “small residual” (SR) requirement. The
following theorem shows how both quantities can be bounded by means of theChebyshev inequality
(6) and modified markov inequality (5).

Theorem 4 (Robust Residual Bounds)Denote by x∈ R
n a random variable with mean̄x and co-

variance matrixΣ. Then for w∈ R
n and b∈ R a sufficient condition for (27) is

∥

∥

∥
Σ

1
2 w
∥

∥

∥
≤ θ
√

η, (29)

whereΣ 1
2 is the matrix square root ofΣ. Moreover, a sufficient condition for (28) is

√

w⊤Σw+(〈w, x̄〉+b−y)2≤ (ξ+ ε)
√

η. (30)

Proof To prove the first claim note that forf as defined in (25),E(e( f (x),y)) = e( f (x̄),y) which
means thate( f (x),y)−e( f (x̄),y) is a zero-mean random variable whose variance is given byw⊤Σw.
This can be used with Chebyshev’s inequaltiy (6) to bound

Pr
x
{|e( f (x),y)−e( f (x̄),y)| ≥ θ} ≤ w⊤Σw

θ2 . (31)

Hencew⊤Σw≤ θ2η is a sufficient condition for (27) to hold. Taking square roots yields (29). To
prove the second part we need to compute the second order moment ofe( f (x),y). The latter is
computed easily by the bias-variance decomposition as

E
[

e( f (x),y)2]= E
[

(e( f (x),y)−e( f (x̄),y))2
]

+e( f (x̄),y)2

= w⊤Σw+(〈w, x̄〉+b−y)2 . (32)
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Using (5), we obtain a sufficient condition for (28)

w⊤Σw+(〈w, x̄〉+b−y)2≤ (ξ+ ε)2η. (33)

As before, taking the square root yields (30).

5.3 Optimization Problems for Regression

The bounds obtained so far allow us to recast (26) into a robust optimizationframework. The key
is that we replace the equality constraintei = f (xi)− yi by one of the two probabilistic constraints
derived in the previous section. In the case of (27) this amounts to solving

minimize
w,b,θ

n

∑
i=1

c(ei)+D
n

∑
i=1

θi (34a)

subject to‖w‖ ≤W andθi ≥ 0 for all 1≤ i ≤ n (34b)

〈x̄i ,w〉+b−yi = ei for all 1≤ i ≤ n (34c)

‖Σ
1
2
i w‖ ≤ θi

√
ηi for all 1≤ i ≤ n, (34d)

where (34d) arises from Prxi {|e( f (xi),yi)−e( f (x̄i),yi)| ≥ θi} ≤ ηi . HereD is a constant determin-
ing the degree of uncertainty that we are going to accept large deviations.Note that (34) is aconvex
optimization problem for all convex loss functionsc(e). This means that it constitutes a general
robust version of the regularized linear regression problem and that all adjustments including the
ν-trick can be used in this context. For the special case ofε-insensitive regression (34) specializes
to an SOCP. Using the standard decomposition of the positive and negative branch of f (xi)−yi into
ξi andξ∗i Vapnik et al. (1997) we obtain

minimize
w,b,ξ,ξ∗,θ

n

∑
i=1

(ξi +ξ∗i )+D
n

∑
i=1

θi (35a)

subject to‖w‖ ≤W andθi ,ξi ,ξ∗i ≥ 0 for all 1≤ i ≤ n (35b)

〈x̄i ,w〉+b−yi ≤ ε+ξi andyi−〈x̄i ,w〉−b≤ ε+ξ∗i for all 1≤ i ≤ n (35c)

‖Σ
1
2
i w‖ ≤ θi

√
ηi for all 1≤ i ≤ n. (35d)

In the same manner, we can use the bound (30) for (28) to obtain an optimization problem which
minimizes the regression error directly. Note that (28) already allows for a margin ε in the regression
error. Hence the optimization problem becomes

minimize
w,b,ξ

n

∑
i=1

ξi (36a)

subject to‖w‖ ≤W andξi ≥ 0 for all 1≤ i ≤ n (36b)
√

w⊤Σiw+(〈w, x̄i〉+b−yi)2≤ (ξi + ε)
√

ηi for all 1≤ i ≤ n. (36c)

Note that (36) is an SOCP. In our experiments we will refer to (35) as the “close-to-mean” (CTM)
formulation and to (36) as the “small-residual” (SR) formulation.
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5.4 Geometrical Interpretation and Error Measures

The CTM formulation can be motivated by a similar geometrical interpretation to the one in the
classification case, using an ellipsoid with centerx, shape and size determined byΣ andγ.

Theorem 5 Assume that xi is uniformly distributed inE(xi ,Σi ,
1√
ηi

) and let f be defined by (25). In
this case (35d) is a sufficient condition for the following requirement:

|e( f (xi),y)−e( f (xi),y)| ≤ θi ∀xi ∈ Ei whereEi := E

(

xi ,Σi ,η
− 1

2
i

)

. (37)

Proof Since f (x) = 〈w,x〉+ b, left inequality in (37) amounts to| 〈w,xi〉− 〈w,xi〉 | ≤ θi . The in-
equality holds for allxi ∈ Ei if maxxi∈Ei | 〈w,xi〉− 〈w,xi〉 | ≤ θi . Application of Lemma 2 yields the
claim.

A similar geometrical interpretation can be shown for SR. Motivated from this we define the fol-
lowing error measures.

Robustness Error: from the geometrical interpretation of CTM it is clear thatγ‖Σ 1
2 w‖ is the maxi-

mum possible difference betweenx and any other point inE(x,Σ,γ), since a small value of this
quantity means smaller difference betweene( f (xi),yi)) ande( f (x̄i),yi)), we callerobust(Σ,γ)
therobustness errormeasure for CTM

erobust(Σ,γ) = γ‖Σ 1
2 w‖. (38)

Expected Residual: from (32) and (33) we can infer that SR attempts to bound the expectation of
the square of the residual. We denote byeexp(Σ, x̄) an error measure for SR where,

eexp(x̄,Σ) =

√

w⊤Σw+(e( f (x̄),y))2. (39)

Worst Case Error: since both CTM and SR are attempting to boundw⊤Σw and e( f (xi),yi) by
minimizing a combination of the two and since the maximum of|e( f (x),y)| overE(x,Σ,γ) is
|e( f (x̄),y)|+ γ‖Σ 1

2 w‖ (see Lemma 2) we would expect this worst case residualw(x̄,Σ,γ) to
be low for both CTM and SR. This measure is given by

eworst(x̄,Σ,γ) = |e( f (x̄),y)|+ γ‖Σ 1
2 w‖. (40)

6. Robust Formulation For Missing Values

In this section we discuss how to apply the robust formulations to the problem of estimation with
missing values. While we use a linear regression model to fill in the missing values, the linear
assumption is not really necessary: as long as we have information on the first and second moments
of the distribution we can use the robust programming formulation for estimation.

6.1 Classification

We begin by computing the sample mean and covariance for each class from the available observa-
tions, using a linear model and Expectation Maximization (EM) (Dempster et al.,1977) to take care
of missing variables wherever appropriate:
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Let (x,y) have partsxm andxa, corresponding to missing and available components respectively.
With meanµ and covarianceΣ for the classy and with decomposition

µ=

[

µa

µm

]

andΣ =

[

Σaa Σam

Σ⊤am Σmm

]

, (41)

we can now find the imputed means and covariances. They are given by

E [xm] = µm+ΣmaΣ−1
aa (xa−µa) (42)

andE
[

xmx⊤m
]

−E [xm]E [xm]⊤ = Σmm−ΣmaΣ−1
aa Σ⊤ma. (43)

In standard EM fashion one begins with initial estimates for mean and covariance, uses the latter
to impute the missing values for the entire class of data and iterates by re-estimatingmean and
covariance until convergence.

Optimization Problem Without loss of generality, suppose that the patterns 1 toc are complete
and that patternsc+1 ton have missing components. Using the above model we have the following
robust formulation:

minimize
w,b,ξ

n

∑
i=1

ξi (44a)

subject toyi (〈w,xi〉+b)≥ 1−ξi for all 1≤ i ≤ c (44b)

yi (〈w,xi〉+b)≥ 1−ξi + γi

∥

∥

∥

∥

Σ
1
2
i w

∥

∥

∥

∥

for all c+1≤ i ≤ n (44c)

‖w‖ ≤W and ξi ≥ 0 for all 1≤ i ≤ n, (44d)

wherexi denotes the pattern with the missing values filled in and

Σi =

[

0 0
0 Σmm−ΣmaΣ−1

aa Σam

]

according to the appropriate class labels. By appropriately choosingγi ’s, we can control the degree
of robustness to uncertainty that arises out of imputation. The quantitiesγi ’s are defined only for the
patterns with missing components.

Prediction After determiningw andb by solving (44) we predict the labely of the patternx by
the following procedure.

1. If x has no missing values use it for step 4.

2. Fill in the missing valuesxm in x using the parameters (mean and the covariance) of each
class, call the resulting patternsx+ andx− corresponding to classes+1 and−1 respectively.

3. Find the distancesd+,d− of the imputed patterns from the hyperplane, that is

d± :=
(

w⊤x±+b
)(

w⊤Σ±w
)− 1

2
.

HereΣ± are the covariance matrices ofx+ andx−. These values tell which class gives a better
fit for the imputed pattern. We choose that imputed sample which has higher distance from
the hyperplane as the better fit: if|d+|> |d−| usex+, otherwise usex− for step 4.

4. Calculatey = sgn
(

w⊤x+b
)

.
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6.2 Regression

As before we assume that the firstc training samples are complete and the remaining training sam-
ples have missing values. After using the same linear model an imputation strategyas above we
now propose to use the CTM and SR formulations to exploit the covariance information to design
robust prediction functions for the missing values.

Once the missing values are filled in, it is straightforward to use our formulation. The CTM
formulation for the missing values case takes the following form

minimize
w,b,θ,ξ,ξ∗

n

∑
i=1

(ξi +ξ∗i )+D
n

∑
i=c+1

θi (45a)

subject to〈w,xi〉+b−yi ≤ ε+ξi , yi−〈w,xi〉−b≤ ε+ξ∗i for all 1≤ i ≤ c (45b)

〈w,xi〉+b−yi ≤ ε+ξi , yi−〈w,xi〉−b≤ ε+ξ∗i for all c+1≤ i ≤ n (45c)
∥

∥

∥

∥

Σ
1
2
i w

∥

∥

∥

∥

≤ θi
√

ηi for all c+1≤ i ≤ n (45d)

θi ≥ 0 for all c+1≤ i ≤ n and ξi ,ξ∗i ≥ 0 for all 1≤ i ≤ n (45e)

‖w‖ ≤W.

Only partially available data have the constraints (45d). As before, quantities θi ’s are defined only
for patterns with missing components. A similar SR formulation could be easily obtained for the
case of missing values:

minimize
w,b,ξ,ξ∗

c

∑
i=1

(ξi +ξ∗i )+
n

∑
i=c+1

ξi

subject to〈w,xi〉+b−yi ≤ ε+ξi , yi−〈w,xi〉−b≤ ε+ξ∗i for all 1≤ i ≤ c
√

w⊤Σiw+(〈w,xi〉+b−yi)2≤ (ε+ξi)
√

ηi for all c+1≤ i ≤ n

ξ∗i ≥ 0 for all 1≤ i ≤ c and ξi ≥ 0 for all 1≤ i ≤ n

‖w‖ ≤W.

7. Kernelized Robust Formulations

In this section we propose robust formulations for designing nonlinear classifiers by using kernel
function. Note that a kernel function is a functionK : Ω×Ω→ R, whereK obeys the Mercer
conditions (Mercer, 1909). We also extend these ideas to nonlinear regression functions.
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7.1 Kernelized Formulations for Classification

The dual of the formulation (44), is given below (for a proof, please see Appendix A).

maximize
λ,δ,β,u

n

∑
i=1

λi−Wδ, (47a)

subject to
n

∑
i=1

λiyi = 0, (47b)

‖
c

∑
i=1

λiyixi +
n

∑
i=c+1

λiyi(xi + γiΣ
1
2T
i ui)‖ ≤ δ, (47c)

λi +βi = 1 for all 1≤ i ≤ n (47d)

‖ui‖ ≤ 1 for all c+1≤ i ≤ n (47e)

λi ,βi ,δ≥ 0 for all 1≤ i ≤ n. (47f)

The KKT conditions can be stated as (see Appendix A)
c

∑
i=1

λiyixi +
n

∑
i=c+1

λiyi(xi + γiΣ
1
2
i ui) = δun+1 (48a)

n

∑
i=1

λiyi = 0,δ≥ 0 (48b)

λi +βi = 1, βi ≥ 0, λi ≥ 0, βiλi = 0 for all 1≤ i ≤ n (48c)

λi(yi(〈w,xi〉+b)−1+ξi) = 0 for all 1≤ i ≤ c (48d)

λ j(y j(
〈

w,x j
〉

+b)−1+ξ j − γ j(Σ
1
2
j u j)) = 0 for all c+1≤ j ≤ n (48e)

δ(〈w,un+1〉−W) = 0. (48f)

The KKT conditions of the problem give some very interesting insights:

1. Whenγi = 0 c+1≤ i ≤ n the method reduces to standard SVM expressed as an SOCP as it
is evident from formulation (47).

2. Whenγi 6= 0 the problem is still similar to SVM but instead of a fixed pattern the solution

chooses the vectorxi +γiΣ
1
2
i ui from the uncertainty ellipsoid. Which vector is chosen depends

on the value ofui . Figure (2) has a simple scenario to show the effect of robustness on the
optimal hyperplane.

3. The unit vectorui maximizesu⊤i Σ
1
2
i w and henceui has the same direction asΣ

1
2
i w.

4. The unit vectorun+1 has the same direction asw. From (48a), for arbitrary data, one obtains
δ > 0, which implies〈w,un+1〉 = W due to (48f). Substituting forun+1 in (48a) gives the
following expression forw,

w =
W
δ

(

c

∑
i=1

λiyixi +
n

∑
i=c+1

λiyi

(

xi + γiΣ
1
2
i ui

)

)

. (49)

This expression forw is very similar to the expression obtained in the standard SVM. The vectorw
has been expressed as a combination of complete patterns and vectors from the uncertainty ellipsoid
of the incomplete patterns.
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Figure 2: Circles and stars represent patterns belonging to the two classes. The ellipsoid around the
pattern denotes the uncertainty ellipsoid. Its shape is controlled by the covariance matrix
and the size byγ. The vertical solid line represents the optimal hyperplane obtained by
nominal SVM while the thick dotted line represents the optimal hyperplane obtained by
the robust classifier

Kernelized Formulation It is not simple to solve the dual (47) as a kernelized formulation. The
difficulty arises from the fact that the constraint containing the dot products of the patterns (47c)

involves terms such as

(

xi + γiΣ
1
2
i ui

)T(

x j + γ jΣ
1
2
j u j

)

for some i and j. Asu’s are unknown, it is

not possible to calculate the value of the kernel function directly. Hence wesuggest a simple method
to solve the problem from the primal itself.

When the shape of the uncertainty ellipsoid for a pattern with missing values is determined by
the covariance matrix of the imputed values, any point in the ellipsoid is in the spanof the patterns
used in estimating the covariance matrix. This is because the eigenvectors of the covariance matrix
span the entire ellipsoid. The eigenvectors of a covariance matrix are in the span of the patterns from
which the covariance matrix is estimated. Since eigenvectors are in the span ofthe patterns and they
span the entire ellipsoid, any vector in the ellipsoid is in the span of the patterns from which the
covariance matrix is estimated.

The above fact and the equation to constructw from the dual variables (49) implyw is in the
span of the imputed data ( all the patterns: complete and the incomplete patterns withmissing values
imputed). Hence,w = ∑c

i=1 αixi +∑n
i=c+1 αixi .

Now, consider the constraint

yi (〈w,xi〉+b)≥ 1−ξi .

It can be rewritten as,

yi

(〈(

c

∑
l=1

αl xl +
n

∑
l=c+1

αl xl

)

,xi

〉

+b

)

≥ 1−ξi .
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We replace the dot product in the above equation by a kernel function to get

yi
(〈

α, K̃(xi)
〉

+b
)

≥ 1−ξi ,

whereK̃(xi)
T = [K(x1,xi), . . . ,K(xc,xi),K(xc+1,xi), . . . ,K(xn,xi)] andα⊤ = [α1, . . . ,αn]. The obser-

vationxi is either a complete pattern or a pattern with missing values filled in. Now, we consider the
uncertainty inK̃(xi) to obtain the non-linear version of our formulation that can be solved easily.
When we consider the uncertainty iñK(xi) the probabilistic constraint takes the form

Pr
(

yi
(〈

α, K̃ (xi)
〉

+b
)

≥ 1−ξi
)

≥ κi . (50)

As in the original problem we now treatK̃ (xi) as a random variable. The equation (50) has the same
structure as the probabilistic constraint of Section 3. Following the same stepsas in Section 3, it
can be shown that the above probabilistic constraint is equivalent to

yi
(〈

α, K̃ (xi)
〉

+b
)

≥ 1−ξi +

√

κi

1−κi

√

αTΣk
i α,

whereΣk
i and K̃ (xi) are the covariance and the mean ofK̃ (xi) (in K̃-space). In view of this, the

following is the non-linear version of the formulation:

minimize
α,b,ξ

n

∑
i=1

ξi (51a)

subject toyi
(〈

α, K̃(xi)
〉

+b
)

≥ 1−ξi for all 1≤ i ≤ c (51b)

yi
(〈

α, K̃(x j)
〉

+b
)

≥ 1−ξ j + γ j

∥

∥

∥

∥

Σk1
2

j α
∥

∥

∥

∥

for all c+1≤ j ≤ n (51c)

‖α‖ ≤W ξi ≥ 0 for all 1≤ i ≤ n. (51d)

The constraint (51d) follows from the fact that we are now doing linear classification inK̃-space.
The constraint is similar to the constraint‖w‖ ≤W which we had in the linear versions.

Estimation of Parameters A point to be noted here is thatΣk
j defines the uncertainty iñK(x j).

In the original lower dimensional space we had a closed form formula to estimate the covariance
for patterns with missing values. However, now we face a situation where weneed to estimate the
covariance inK̃-space. A simple way of doing this is to assume spherical uncertainty inK̃-space.
Another way of doing this is by a nearest neighbour based estimation. To estimate the covariance
of K̃(xi), we first find outk nearest neighbours ofxi and then we estimate the covariance from
K̃(xi1), . . . , K̃(xik) wherexi1, . . . ,xik are the nearest neighbours ofxi .

It is straight forward to extend this more general result (51) to the missing value problem fol-
lowing the same steps as in (6).

Classification Onceα’s are found, given a test patternt its class is predicted in the following way:
If the pattern is incomplete, it is first imputed using the way it was done during training. However,
this can be done in two ways, one corresponding to each class as the classis unknown for the pattern.
In that case the distance of each imputed pattern from the hyperplane is computed from

h1 =
αTK̃(t)+b
√

αTΣ1α
and h2 =

αTK̃(t)+b
√

αTΣ2α
,
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whereΣ1 andΣ2 are the covariances obtained by the same strategy as during training. Higher of
the above two is selected as it gives a better fit for the pattern. The prediction for the pattern is
the prediction of its centroid (i.e. the prediction for the centroid which gives abetter fit). Let
h = max(|h1|, |h2|), if h = |h1| theny = sgn(h1) elsey = sgn(h2) wherey is the prediction for the
pattern t. In case the pattern is complete, there is no ambiguity we can give sgn(αTK̃(t)+b) as the
prediction.

7.2 Kernelized Robust Formulations for Regressions

As discussed for the case of classification we derive nonlinear regressions functions by using thẽK.
We fit a hyperplane(α,b) in theK̃ whereα = [α1,α2, . . . ,αn]. Wheneverx is a random variable we
considerK̃(x) as a random variable with meañK(x) and with either unit covariance or a covariance
estimated from nearest neighbours in theK̃-space. Instead of finding(w,b) we resort to finding
(α,b) whereα plays the role ofw but in theK̃-space. Essentially, we just have to replacew by α
andxi by K̃xi and the covariance by the estimate covariance in theK̃-space. Given these facts, we
get the following kernelized version of the Close To Mean formulation:

minimize
α,b,θ,ξ,ξ∗

n

∑
i=1

(ξi +ξ∗i )+D
n

∑
i=1

θi

subject to
〈

α, K̃(xi)
〉

+b−yi ≤ ε+ξi for all 1≤ i ≤ n

yi−
〈

α, K̃(xi)
〉

−b≤ ε+ξ∗i for all 1≤ i ≤ n
√

α⊤Σk
i α≤ θi

√
ηi for all 1≤ i ≤ n

‖α‖ ≤W and θi ,ξi ,ξ∗i ≥ 0 for all 1≤ i ≤ n.

Similarly, the kernelized version of formulation SR is given by,

minimize
α,b,ξ

n

∑
i=1

ξi

subject to
√

α⊤Σk
i α+(

〈

α, K̃(xi)
〉

+b−yi)2≤ (ε+ξi)
√

ηi for all 1≤ i ≤ n

‖α‖ ≤W and ξi ≥ 0 for all 1≤ i ≤ n.

In the above formulations,Σk
i is the estimate covariance in thẽK-space. If the patterns 1 throughc

are complete and the patternsc+1 throughn have missing values, then assumingηi = 1 andΣk
i = 0

for i from 1 throughc, would make the above formulations directly applicable to the case.

8. Experiments

In this section we empirically test the derived formulations for both classification and regression
problems which have missing values in the observations. In all the cases interior point method was
used to solve SOCP using the commercially avilable Mosek solver.

8.1 Classification

We consider the classification case first. Consider a binary classification problem with training
data having missing values. The missing values are filled in by imputation and subsequently a
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SVM classifier was trained on the complete data to obtain thenominal classifier. We compared the
proposed formulations with the nominal classifiers by performing numerical experiments on real life
data bench mark datasets. We also use a non-linear separable data set to show that the kernelized
version works when the linear version breaks down. In our formulationswe will assume thatγ j = γ.

For evaluating the results of robust classifier we used the worst case error and the expected error
along with the actual error. A test pattern with no missing values can be directlyclassified. In case
it has missing values, we first impute the missing values and then classify the pattern. We refer to
the error on a set of patterns using this approach the actual error.

We first consider the problem of classifying OCR data where missing valuescan occur more
frequently. Specifically we consider the classification problem between thetwo digits ’3’ and ’8’.
We have used the UCI (Blake and Merz, 1998) OCR data set, A data set is generated by deleting
75% of the pixels from 50% of the training patterns. Missing values were thenimputed using linear
regression. We trained a SVM on this imputed data, to obtain the nominal classifier. This was
compared with the robust classifier trained with different values ofγ, corresponding to different
degrees of confidence as stated in (11).

The error rates of the classifiers were obtained on the test data set by randomly deleting 75%
of the pixels from each pattern. We then repeated 10 such iterations and obtained the average
error rates. Figure 3 shows some of the digits that were misclassified by the nominal classifier but
were correctly classified by the robust classifier. The effectivenessof our formulation is evident
from these images. With only partial pixels available, our formulation did better than the nominal
classifier. Figure 4 show the different error rates obtained on this OCR data set. In all the three
measures, the robust classifier outperformed the nominal classifier.

Figure 3: In all images the left image shows a complete digit, the right image showsthe digit after
randomly deleting 75% of the pixels. The first five are ’3’ while the next fiveare ’8’.
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Figure 4: Error rates againstγ with linear classifier on the OCR data.
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Here we report the error rates using three measures we defined for three other UCI data sets
(Blake and Merz (1998)), Heart, Ionosphere and Sonar. Linear version of our formulation was
used. Experiments were done with low noise (50% patterns with missing values)and high noise
(90% patterns with missing values). The data sets were divided in the ratio 9:1,the larger set was
used for training the nominal and robust classifiers while the smaller set wasused as test data set.
50% of the feature values (chosen at random) were deleted from 50% ofthe training patterns (in the
low noise case) and 90% of the training patterns (in the high noise case). Linear regression based
model was used to fill in the missing values. Nominal classifier and robust classifiers with different
values ofγ were trained using each such data set. Error rates were obtained for thetest data set after
deleting 50% of the feature values from each test pattern. The error rates reported here are over ten
such randomized iterations.

The error rates as a function ofγ are plotted in Figures 5,6 and 7. In case of actual error, the
plots also show a horizontal line labeled ’clean’ which is the error rate on theactual data set without
any missing values. In this case, we did not delete any feature values fromthe data set. Nominal
classifiers were trained and testing was also done on complete test samples. Our aim was to see how
close our robust classifier could get near the error rates obtained using the complete data set.

It can be seen that the robust classifier, with suitable amount of robustness comes very close
to the error rates on the clean data set. Amongst the three error measures the worst case error, the
last column of Figure 7, brings out the advantage of the robust classifierover the nominal classifier.
Clearly with increasingγ the robust formulation gives dividends over the nominal classifier.

We also did experiments to compare the kernelized version of the formulation over the linear
formulation. For this purpose, we generated a dataset as follows. The positive class was obtained by
generating uniformly distributed points in a hypershpere inR

5 of unit radius centered at the origin.
The negative class was obtained by generating uniformly distributed points ina annular band of
thickness one, with the inner radius two, centered around the origin. In summary

y =

{

1 ‖x‖ ≤ 1
−1 2≤ ‖x‖ ≤ 3,

wherex∈ R
5. An illustration of how such a dataset looks in two dimensions is given in the leftof

Figure 8. Hundred patterns were generated for each class. The data set was divided in the ratio 9:1.
The larger part was used for training, the smaller part for testing. Threerandomly chosen values
were deleted from the training data set. The missing values were filled in using linear regression
based strategy. We trained a classifier for different values ofγ. Actual Error was found out for both
the kernelized version and the linear version of the formulation. The resultsreported here are over
ten such randomized runs. Gaussian kernel(K(x,y) = exp(−q‖x−y‖2)) was used in the case of
kernelized formulation. The parameterq was chosen by cross validation. Spherical uncertainty was
assumed iñK-space for samples with missing values in case of kernelized robust formulations.

Figure 8 shows actual error rates with linear nominal, linear robust, kernelized nominal and
kernelized robust. It can be seen that the linear classifier has broken down, while the kernelized
classifier has managed a smaller error rate. It can also be observed thatthe robust kernelized classi-
fier has the least error rate.

8.2 Regression

Given a regression problem with training data having missing values in the observations we obtained
thenominal regressionfunction by training a Support Vector Regression(SVR) formulation overthe
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Figure 5: Error rates as a function ofγ for Heart. Patterns in the top row contained 50% missing
variables, even ones 90%. From left to right — actual error, expectederror, and worst
case error.

imputed data. The obtained regression function will be called the nominal SVR.In this section we
compare our formulations with nominal SVR on a toy dataset and one real world dataset in the
linear setting. We also compared the kernelized formulations with the linear formulations.

The first set of results is on a toy data set consisting of 150 observations. Each observation
consisted(y,x) pair where

y = w⊤x+b, w⊤ = [1,2,3,4,5], b =−7.

Patternsx were generated from a Gaussian distribution with mean,µ = 0, and randomly chosen
covariance matrix,Σ. The results are reported for the following choice ofΣ:













0.1872 0.1744 0.0349 −0.3313 −0.2790
0.1744 0.4488 0.0698 −0.6627 −0.5580
0.0349 0.0698 0.1140 −0.1325 −0.1116
−0.3313 −0.6627 −0.1325 1.3591 1.0603
−0.2790 −0.5580 −0.1116 1.0603 0.9929













.

Missing values were introduced by randomly choosing 50% of the examples and deleting 2 of
the entries example selected at random for each chosen example. The datawas divided in the ratio
9:1, the larger one was used for training and the smaller one was used for testing. The results re-
ported here are the average over ten such randomly partitioned training and test data. After imputing
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Figure 6: Error rates as a function ofγ for Ionosphere. Patterns in the top row contained 50%
missing variables, even ones 90%. From left to right — actual error, expected error, and
worst case error.

the missing values using a linear regression model, training data was used with different formula-
tions. The first row of Figure 9 shows robustness error (38), worstcase error (40) for CTM and
expected residual (39) and worst case error (40) for SR. The second row gives the results on UCI
Blake and Merz (1998) boston data set with the same test methodology. The performance of our
formulation over nominal regression is evident.

To validate our kernelized formulation, 150 samples inR
5 were randomly generated as in the

above case. For eachx, the output is given byy = cTφ(x)− c0, see footnote.6 The mappingφ(x)
is such that a hyperplane inR15 is actually a quadratic curve inR5. Randomly generatedc andc0

were used in this mapping. 40% of the values were deleted at random from 50% and 20% of the
training samples for CTM and SR, they were filled in using the linear regression model. A Gaussian
kernelK(a,b) = exp(−γ‖a−b‖2) with kernel parameterγ = 0.1 was used. Figure 10 shows the
test errors per sample on 10 runs with different randomly deleted values.Test error is the error rate
on a test set with missing values filled in. Essentially, we calculate∑n

i=1e( f (xi ,yi)) for all the test
samples where the missing values are filled in using the training data set parameters using a linear

6. Letx = [x1,x2, . . . ,x5]. The mappingφ : R
5→ R

15 is defined by

φ(x) = [x2
1x2

2 x2
3 x2

4 x2
5

√
2x1x2

√
2x1x3

√
2x1x4

√
2x1x5

√
2x2x3

√
2x2x4

√
2x2x5

√
2x3x4

√
2x3x5

√
2x4x5]

⊤.
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Figure 7: Error rates as a function ofγ for Sonar. Patterns in the top row contained 50% missing
variables, even ones 90%. From left to right — actual error, expectederror, and worst
case error.
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Figure 8: The left figure shows how the data set looks in two dimensions, theright figure gives the
actual error rate for linear and kernelized formulations for the robust and nominal cases.

regression model. Essentially it is the absolute residual for imputed mean test data. The figures
show that the kernelized version of the robust formulation does a better jobthan the linear version
when the underlying function is non-linear.
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Figure 9: Top row — toy data set, Bottom row — Boston Housing estimation problem; From left
to right: robustness (CTM), worst case error (CTM), expected residual (SR), and worst
case error (SR). All graphs describe the error as a function of the robustnessη.

9. Conclusions

In this paper we have proposed SOCP formulations for designing robustlinear prediction functions
which are capable of tackling uncertainty in the patterns both in classification and regression setting.
The formulations are applicable to any uncertainty distribution provided the first two moments are
computable. When applied to the missing variables problem the formulations outperform the impu-
tation based classifiers and regression functions. We have also proposed a way to design nonlinear
prediction functions by using regression setting.

The robustness in the context of classification can be geometrically interpreted as requiring that
all points in the ellipsoid occur on one side of the hyperplane. Instead of having an ellipsoidal un-
certainty one can have situations where the uncertainty is described by arbitrary sets. The constraint
sampling approaches can serve as useful alternatives for such problems. Future work will consist in
examining this approach for the problem at hand.
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Figure 10: Linear vs. nonlinear regression. Left: CTM formulation, right: SR formulation.
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Appendix A. Dual of the SOCP

The Lagrangian of (44) is given by

L(w,ξ,b,λ,β,δ) =
n

∑
i=1

ξi−
n

∑
i=1

βiξi−
c

∑
i=1

λi
(

yi
(

wTxi +b
)

−1+ξi
)

−
n

∑
j=c+1

λ j

(

y j(w
Tx j +b)−1+ξ j − γ j‖Σ

1
2
j w‖

)

+δ(‖w‖−W) (54)

βi ,λi ,δ≥ 0.

Recall that for anyx∈ R
n the relationship‖x‖2 = max‖x‖≤1x⊤y holds. This can be used to handle

terms like

∥

∥

∥

∥

Σ
1
2
j w

∥

∥

∥

∥

and‖w‖ leading to a modified Lagrangian given as follows

L1(w,ξ,b,λ,β,δ,u) =
n

∑
i=1

ξi−
n

∑
i=1

βiξi−
c

∑
i=1

λi
(

yi
(

wTxi +b
)

−1+ξi
)

−
n

∑
j=c+1

λ j

(

y j(w
Tx j +b)−1+ξ j − γ j

(

Σ
1
2
j w

)T

u j

)

+δ
(

wTun+1−W
)

.

(55)

The LagrangianL1 has the same optimal value asL when maximized with respect tou’s subject to
the constraints‖ui‖ ≤ 1 for all c+1≤ i ≤ n+1. Note that theu’s are defined only for patterns with
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missing values andun+1 is defined for the constraint‖w‖ ≤W. Therefore

L1(w,ξ,b,λ,β,δ) = max
u

L(w,ξ,b,λ,β,δ,u) subject to‖ui‖ ≤ 1 for all i ∈ {c+1, . . .n+1} .

By definition, solving (44) is equivalent to finding the saddle-point of the LagrangianL1. By virtue
of the above reasoning and due to convexity we obtain

minimize
w,b,ξ

maximize
λ,δ,β

L(w,ξ,b,λ,β,δ) (56a)

=minimize
w,b,ξ

maximize
λ,δ,β,‖u‖≤1

L1(w,ξ,b,λ,β,δ,u) (56b)

=maximize
λ,δ,β,‖u‖≤1

minimize
w,b,ξ

L1(w,ξ,b,λ,β,δ,u) . (56c)

Eq (56c) now enables us to eliminate the primal variables to give the dual. Taking partial derivatives
of L with respect tow,b, andξ yields

∂wL(w,ξ,b,λ,β,δ,u) =−
c

∑
i=1

λiyixi−
n

∑
j=c+1

λ j

(

y jx j − γiΣ j
1
2Tu j

)

+δun+1 (57a)

∂ξi
L(w,ξ,b,λ,β,δ,u) = 1−λi−βi (57b)

∂bL(w,ξ,b,λ,β,δ,u) =
n

∑
i=1

λiyi . (57c)

Changing the sign ofu j for c+1≤ i ≤ n does not matter since the optimal value of maximization
of bothw⊤u j and−w⊤u j over‖u j‖ ≤ 1 are the same. Substituting−u j in (57a) byy ju j and then
equating (57a) , (57b) and (57c) to zero gives

c

∑
i=1

λiyixi +
n

∑
j=c+1

λy j

(

x j + γiΣ j
1
2Tu j

)

= δun+1 (58a)

1−λi−βi = 0 (58b)
n

∑
i=1

λiyi = 0. (58c)

Substituting (58a), (58b) and (58c) in (55) subject to the relevant constraints yields the dual stated
as follows

maximize
u,λ,β,δ

n

∑
i=1

λi−Wδ (59a)

subject to
n

∑
i=1

λiyi = 0 (59b)

c

∑
i=1

λiyixi +
n

∑
j=c+1

λ jy j

(

x j + γiΣ j
1
2Tu j

)

= δun+1 (59c)

λi +βi = 1 for all 1≤ i ≤ n (59d)

‖ui‖ ≤ 1 for all c+1≤ i ≤ n+1 (59e)

λi ,βi ,δ≥ 0 for all 1≤ i ≤ n. (59f)
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For arbitrary dataδ > 0, which when plugged into (58a), gives

un+1 =
∑c

i=1 λiyixi +∑n
j=c+1 λ jy j

(

x j + γiΣ j
1
2Tu j

)

δ

and hence the dual (47) follows.
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