
L
e

c
tu

re
 #

2
0

Optimizer Implementation
(Part II)
@Andy_Pavlo // 15-721 // Spring 2020

ADVANCED
DATABASE
SYSTEMS

https://15721.courses.cs.cmu.edu/spring2020/
http://db.cs.cmu.edu/
https://twitter.com/andy_pavlo

15-721 (Spring 2020)

QUERY OPTIMIZATION

For a given query, find a correct execution plan
that has the lowest "cost".

This is the part of a DBMS that is the hardest to
implement well (proven to be NP-Complete).

No optimizer truly produces the "optimal" plan
→ Use estimation techniques to guess real plan cost.
→ Use heuristics to limit the search space.

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

QUERY OPTIMIZATION STRATEGIES

Choice #1: Heuristics
→ INGRES, Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R, early IBM DB2, most open-source DBMSs

Choice #3: Randomized Search
→ Academics in the 1980s, current Postgres

Choice #4: Stratified Search
→ IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #5: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum

3

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

STRATIFIED SEARCH

First rewrite the logical query plan using
transformation rules.
→ The engine checks whether the transformation is allowed

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the
logical plan to a physical plan.

4

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

UNIFIED SEARCH

Unify the notion of both logical→logical and
logical→physical transformations.
→ No need for separate stages because everything is

transformations.

This approach generates a lot more
transformations so it makes heavy use of
memoization to reduce redundant work.

5

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

TOP-DOWN VS. BOT TOM-UP

Top-down Optimization
→ Start with the final outcome that you want, and then

work down the tree to find the optimal plan that gets you
to that goal.

→ Example: Volcano, Cascades

Bottom-up Optimization
→ Start with nothing and then build up the plan to get to

the final outcome that you want.
→ Examples: System R, Starburst

6

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Logical Query Optimization

Cascades / Columbia

Dynamic Programming

Other Implementations

Project #3 Code Reviews

2

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOGICAL QUERY OPTIMIZATION

Transform a logical plan into an equivalent logical
plan using pattern matching rules.

The goal is to increase the likelihood of
enumerating the optimal plan in the search.

Cannot compare plans because there is no cost
model but can "direct" a transformation to a
preferred side.

8

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

LOGICAL QUERY OPTIMIZATION

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

9

Source: Thomas Neumann

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

15-721 (Spring 2020)

SPLIT CONJUNCTIVE PREDICATES

10

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Andy's OG Remix"

s

APPEARS ALBUM

×

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

ARTIST.NAMEp

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SPLIT CONJUNCTIVE PREDICATES

10

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

×
ARTIST APPEARS ALBUM

×

Decompose predicates into their
simplest forms to make it easier
for the optimizer to move them
around.

ARTIST.NAMEp
ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PREDICATE PUSHDOWN

11

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest
point in the plan after Cartesian
products.

×

ARTIST.NAMEp

×

ARTIST.ID=APPEARS.ARTIST_IDs

ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PREDICATE PUSHDOWN

11

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest
point in the plan after Cartesian
products.

×

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_IDs
ALBUM.NAME="Andy's OG Remix"s

APPEARS.ALBUM_ID=ALBUM.IDs
×

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

REPL ACE CARTESIAN PRODUCTS

12

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

×
ARTIST.ID=APPEARS.ARTIST_IDs

APPEARS.ALBUM_ID=ALBUM.IDs
×

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

REPL ACE CARTESIAN PRODUCTS

12

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s
ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECTION PUSHDOWN

13

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Andy's OG Remix"s

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PROJECTION PUSHDOWN

13

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s

IDpARTIST.NAME,
APPEARS.ALBUM_IDp

ID,NAMEp ARTIST_ID,
ALBUM_IDp

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PHYSICAL QUERY OPTIMIZATION

Transform a query plan's logical operators into
physical operators.
→ Add more execution information
→ Select indexes / access paths
→ Choose operator implementations
→ Choose when to materialize (i.e., temp tables).

This stage must support cost model estimates.

14

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

OBSERVATION

All the queries we have looked at so far have had
the following properties:
→ Equi/Inner Joins
→ Simple join predicates that reference only two tables.
→ No cross products

Real-world queries are much more complex:
→ Outer Joins
→ Semi-joins
→ Anti-joins

15

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

REORDERING LIMITATIONS

No valid reordering is possible.

16

SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id

FULL OUTER JOIN C
ON B.val = C.id;

B

⟕

B.val=C.id⟗

A C

A.id=B.id

Source: Pit Fender

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ub-madoc.bib.uni-mannheim.de/36655/

15-721 (Spring 2020)

REORDERING LIMITATIONS

No valid reordering is possible.

The A⟕B operator is not
commutative with B⟗C.
→ The DBMS does not know the value

of B.val until after computing the
join with A.

16

SELECT * FROM A
LEFT OUTER JOIN B
ON A.id = B.id

FULL OUTER JOIN C
ON B.val = C.id;

B

⟕

B.val=C.id⟗

A C

A.id=B.id

Source: Pit Fender

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://ub-madoc.bib.uni-mannheim.de/36655/

15-721 (Spring 2020)

PL AN ENUMERATION

Approach #1: Transformation
→ Modify some part of an existing query plan to transform

it into an alternative plan that is equivalent.

Approach #2: Generative
→ Assemble building blocks to generate a query plan.

17

ON THE CORRECT AND COMPLETE ENUMERATION
OF THE CORE SEARCH SPACE
SIGMOD 2013

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2465314
https://dl.acm.org/citation.cfm?id=2465314

15-721 (Spring 2020)

DYNAMIC PROGRAMMING OPTIMIZER

Model the query as a hypergraph and then
incrementally expand to enumerate new plans.

Algorithm Overview:
→ Iterate connected sub-graphs and incrementally add new

edges to other nodes to complete query plan.
→ Use rules to determine which nodes the traversal is

allowed to visit and expand.

18

DYNAMIC PROGRAMMING STRIKES BACK
SIGMOD 2008

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/p539-moerkotte.pdf

15-721 (Spring 2020)

CASCADES OPTIMIZER

Object-oriented implementation of the Volcano
query optimizer.

Supports simplistic expression re-writing through
a direct mapping function rather than an
exhaustive search.

19

THE CASCADES FRAMEWORK FOR
QUERY OPTIMIZATION
IEEE DATA ENGINEERING BULLETIN 1995

Graefe

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer1/graefe-ieee1995.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer1/graefe-ieee1995.pdf

15-721 (Spring 2020)

CASCADES OPTIMIZER

Optimization tasks as data structures.

Rules to place property enforcers.

Ordering of moves by promise.

Predicates as logical/physical operators.

20

EFFICIENCY IN THE COLUMBIA DATABASE QUERY OPTIMIZER
PORTLAND STATE UNIVERSITY MS THESIS 1998

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf

15-721 (Spring 2020)

CASCADES EXPRESSIONS

An expression is an operator with zero or more
input expressions.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (ASeq ⨝HJ BSeq) ⨝NL CIdx

21

SELECT * FROM A
JOIN B ON A.id = B.id
JOIN C ON C.id = A.id;

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from

selecting the allowable physical operators for the
corresponding logical forms.

22

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from

selecting the allowable physical operators for the
corresponding logical forms.

22

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

G
ro

u
p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES GROUPS

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression.
→ All physical expressions that can be derived from

selecting the allowable physical operators for the
corresponding logical forms.

22

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)
⋮

Physical Exps
1.(ASeq⨝NLBSeq)⨝NLCSeq
2.(BSeq⨝NLCSeq)⨝NLASeq
3.(ASeq⨝NLCSeq)⨝NLBSeq
4.ASeq⨝NL(CSeq⨝NLBSeq)
⋮

Equivalent
Expressions

G
ro

u
p

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MULTI-EXPRESSION

Instead of explicitly instantiating all possible
expressions in a group, the optimizer implicitly
represents redundant expressions in a group as a
multi-expression.
→ This reduces the number of transformations, storage

overhead, and repeated cost estimations.

23

Output:
[ABC]

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]
⋮

Physical Multi-Exps
1. [AB]⨝SM[C]
2. [AB]⨝HJ[C]
3. [AB]⨝NL[C]
4. [BC]⨝SM[A]
⋮

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES RULES

A rule is a transformation of an expression to a
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression

that can be applied to the rule.
→ Substitute: Defines the structure of the result after

applying the rule.

24

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

Pattern

CASCADES RULES

25

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan
Group

Logical Expr

Physical Expr

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

Stores all previously explored alternatives in a
compact graph structure / hash table.

Equivalent operator trees and their corresponding
plans are stored together in groups.

Provides memoization, duplicate detection, and
property + cost management.

26

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PRINCIPLE OF OPTIMALIT Y

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing

sub-plan P1 that has a greater cost than equivalent plan
P2 with the same physical properties.

27

EXPLOITING UPPER AND LOWER BOUNDS IN
TOP-DOWN QUERY OPTIMIZATION
IDEAS 2001

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/shapiro-ideas2001.pdf

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝SM[B] 80

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

[A]⨝SM[B] 80

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝SM[B] 80

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝SM[B] 80

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝SM[B] 80

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES MEMO TABLE

28

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝NLC
2. [BC]⨝NLA
3. [AC]⨝NLB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝NL[B]
2. [A]⨝SM[B]
3. [B]⨝NL[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. SeqScan(A)
2. IdxScan(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. SeqScan(B)
2. IdxScan(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. SeqScan(C)
2. IdxScan(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

CostBest Expr

[ABC]

[AB]

[A]

[C]

[B]

Output:
[BC]

Logical M-Exps
1. [B]⨝[C]
2. [C]⨝[B]

Physical M-Exps

Output:
[AC]

Logical M-Exps
1. [A]⨝[C]
2. [C]⨝[A]

Physical M-Exps

SeqScan(A) 10

SeqScan(B) 20

IdxScan(C) 5

[A]⨝SM[B] 80

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower

cost than some threshold.

Approach #3: Transformation Exhaustion
→ Stop when there are no more ways to transform the

target plan. Usually done per group.

29

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CASCADES IMPLEMENTATIONS

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Pivotal Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ Clustrix (2000s)
→ CMU Peloton (2010s – RIP)

30

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF
http://docs.clustrix.com/display/CLXDOC/Query+Optimizer
https://github.com/cmu-db/peloton/tree/master/src/optimizer

15-721 (Spring 2020)

PIVOTAL ORCA

Standalone Cascades implementation.
→ Originally written for Greenplum.
→ Extended to support HAWQ.

A DBMS can use Orca by implementing API to
send catalog + stats + logical plans and then
retrieve physical plans.

Supports multi-threaded search.

31

ORCA: A MODULAR QUERY OPTIMIZER
ARCHITECTURE FOR BIG DATA
SIGMOD 2014

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://greenplum.org/
http://hawq.apache.org/
https://dl.acm.org/doi/10.1145/2588555.2595637
https://dl.acm.org/doi/10.1145/2588555.2595637

15-721 (Spring 2020)

ORCA ENGINEERING

Issue #1: Remote Debugging
→ Automatically dump the state of the optimizer (with

inputs) whenever an error occurs.
→ The dump is enough to put the optimizer back in the

exact same state later for further debugging.

Issue #2: Optimizer Accuracy
→ Automatically check whether the ordering of the estimate

cost of two plans matches their actual execution cost.

32

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

APACHE CALCITE

Standalone extensible query optimization
framework for data processing systems.
→ Support for pluggable query languages, cost models, and

rules.
→ Does not distinguish between logical and physical

operators. Physical properties are provided as
annotations.

Originally part of LucidDB.

33

APACHE CALCITE: A FOUNDATIONAL FRAMEWORK FOR OPTIMIZED
QUERY PROCESSING OVER HETEROGENEOUS DATA SOURCES
SIGMOD 2018

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dbdb.io/db/luciddb
https://dl.acm.org/doi/10.1145/3183713.3190662
https://dl.acm.org/doi/10.1145/3183713.3190662

15-721 (Spring 2020)

MEMSQL OPTIMIZER

Rewriter
→ Logical-to-logical transformations with access to the

cost-model.

Enumerator
→ Logical-to-physical transformations.
→ Mostly join ordering.

Planner
→ Convert physical plans back to SQL.
→ Contains MemSQL-specific commands for moving data.

34

THE MEMSQL QUERY OPTIMIZER
VLDB 2017

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.vldb.org/pvldb/vol9/p1401-chen.pdf
http://www.vldb.org/pvldb/vol9/p1401-chen.pdf

15-721 (Spring 2020)

MEMSQL OPTIMIZER OVERVIEW

35

Parser
Abstract

Syntax
Tree

Logical
Plan

Physical
Plan

Cost
Estimates

SQL Query

Binder

Rewriter

Enumerator

Planner

Physical
Plan

SQL

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

All of this relies on a good cost model.
A good cost model needs good statistics.

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

PARTING THOUGHTS

All of this relies on a good cost model.
A good cost model needs good statistics.

36

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

37

Project #3

CODE REVIEW
GUIDE

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

CODE REVIEWS

Each group will send a pull request to the CMU-
DB master branch.
→ This will automatically run tests + coverage calculation.
→ PR must be able to merge cleanly into master branch.
→ Reviewing group will write comments on that request.
→ Add the URL to the Google spreadsheet and notify the

reviewing team that it is ready.

Please be helpful and courteous.

38

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

15-721 (Spring 2020)

GENERAL TIPS

The dev team should provide you with a summary
of what files/functions the reviewing team should
look at.

Review fewer than 400 lines of code at a time and
only for at most 60 minutes.

Use a checklist to outline what kind of problems
you are looking for.

39

Source: SmartBear

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/

15-721 (Spring 2020)

CHECKLIST GENERAL

Does the code work?

Is all the code easily understood?

Is there any redundant or duplicate code?

Is the code as modular as possible?

Can any global variables be replaced?

Is there any commented out code?

Is it using proper debug log functions?

40

Source: Gareth Wilson

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://blog.fogcreek.com/increase-defect-detection-with-our-code-review-checklist-example/

15-721 (Spring 2020)

CHECKLIST DOCUMENTATION

Do comments describe the intent of the code?

Are all functions commented?

Is any unusual behavior described?

Is the use of 3rd-party libraries documented?

Is there any incomplete code?

41

Source: Gareth Wilson

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://blog.fogcreek.com/increase-defect-detection-with-our-code-review-checklist-example/

15-721 (Spring 2020)

CHECKLIST TESTING

Do tests exist and are they comprehensive?

Are the tests really testing the feature?

Are they relying on hardcoded answers?

What is the code coverage?

42

Source: Gareth Wilson

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://blog.fogcreek.com/increase-defect-detection-with-our-code-review-checklist-example/

15-721 (Spring 2020)

NEXT CL ASS

Non-Traditional Query Optimization Methods

43

https://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

