// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file input format is based loosely on // Tools/DumpRenderTree/ImageDiff.m // The exact format of this tool's output to stdout is important, to match // what the run_web_tests.py script expects. #include #include #include #include #include #include #include #include #include "base/check.h" #include "base/command_line.h" #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/numerics/safe_conversions.h" #include "base/process/memory.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/strings/string_util.h" #include "base/strings/utf_string_conversions.h" #include "build/build_config.h" #include "third_party/abseil-cpp/absl/types/optional.h" #include "tools/imagediff/image_diff_png.h" #if BUILDFLAG(IS_WIN) #include "windows.h" #endif // Causes the app to remain open, waiting for pairs of filenames on stdin. // The caller is then responsible for terminating this app. static const char kOptionPollStdin[] = "use-stdin"; // Causes the app to additionally calculate a diff of the color histograms // (which is resistant to shifts in layout). static const char kOptionCompareHistograms[] = "histogram"; // Causes the app to output an image that visualizes the difference. static const char kOptionGenerateDiff[] = "diff"; // Causes the app to have a tolerance for difference in output. To account for // differences which occur when running vs hardware GPU output. static const char kOptionFuzzyDiff[] = "fuzzy-diff"; // Causes the app to use the WPT fuzzy-matching algorithm. Both arguments are // ranges of the form "x-y", where x and y are integers. If either of these // arguments are used, both must be. // // https://web-platform-tests.org/writing-tests/reftests.html#fuzzy-matching static const char kOptionFuzzyMaxChannelDiff[] = "fuzzy-max-channel-diff"; static const char kOptionFuzzyMaxPixelsDiff[] = "fuzzy-max-pixels-diff"; // Return codes used by this utility. static const int kStatusSame = 0; static const int kStatusDifferent = 1; static const int kStatusError = 2; // Color codes. static const uint32_t RGBA_RED = 0x000000ff; static const uint32_t RGBA_ALPHA = 0xff000000; class Image { public: Image() : w_(0), h_(0) { } Image(const Image& image) = default; Image& operator=(const Image& image) = default; bool has_image() const { return w_ > 0 && h_ > 0; } int w() const { return w_; } int h() const { return h_; } const unsigned char* data() const { return &data_.front(); } // Creates the image from stdin with the given data length. On success, it // will return true. On failure, no other methods should be accessed. bool CreateFromStdin(size_t byte_length) { if (byte_length == 0) return false; std::unique_ptr source(new unsigned char[byte_length]); if (fread(source.get(), 1, byte_length, stdin) != byte_length) return false; if (!image_diff_png::DecodePNG(source.get(), byte_length, &data_, &w_, &h_)) { Clear(); return false; } return true; } // Creates the image from the given filename on disk, and returns true on // success. bool CreateFromFilename(const base::FilePath& path) { FILE* f = base::OpenFile(path, "rb"); if (!f) return false; std::vector compressed; const int buf_size = 1024; unsigned char buf[buf_size]; size_t num_read = 0; while ((num_read = fread(buf, 1, buf_size, f)) > 0) { compressed.insert(compressed.end(), buf, buf + num_read); } base::CloseFile(f); if (!image_diff_png::DecodePNG(&compressed[0], compressed.size(), &data_, &w_, &h_)) { Clear(); return false; } return true; } void Clear() { w_ = h_ = 0; data_.clear(); } // Returns the RGBA value of the pixel at the given location uint32_t pixel_at(int x, int y) const { DCHECK(x >= 0 && x < w_); DCHECK(y >= 0 && y < h_); return *reinterpret_cast(&(data_[(y * w_ + x) * 4])); } void set_pixel_at(int x, int y, uint32_t color) const { DCHECK(x >= 0 && x < w_); DCHECK(y >= 0 && y < h_); void* addr = &const_cast(&data_.front())[(y * w_ + x) * 4]; *reinterpret_cast(addr) = color; } private: // pixel dimensions of the image int w_, h_; std::vector data_; }; float PercentageDifferent(const Image& baseline, const Image& actual, bool fuzzy_diff) { int w = std::min(baseline.w(), actual.w()); int h = std::min(baseline.h(), actual.h()); // Compute pixels different in the overlap. int pixels_different = 0; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { if (fuzzy_diff) { uint32_t pixel_base = baseline.pixel_at(x, y); uint32_t pixel_actual = actual.pixel_at(x, y); if (pixel_base == pixel_actual) continue; // The pixels are in an rgba format. uint8_t subpixels_base[4]; uint8_t subpixels_actual[4]; subpixels_base[0] = pixel_base & 0xFF; subpixels_actual[0] = pixel_actual & 0xFF; subpixels_base[1] = (pixel_base >> 8) & 0xFF; subpixels_actual[1] = (pixel_actual >> 8) & 0xFF; subpixels_base[2] = (pixel_base >> 16) & 0xFF; subpixels_actual[2] = (pixel_actual >> 16) & 0xFF; subpixels_base[3] = (pixel_base >> 24) & 0xFF; subpixels_actual[3] = (pixel_actual >> 24) & 0xFF; for (int i = 0; i < 4; i++) { uint8_t subpixel_diff = subpixels_base[i] > subpixels_actual[i] ? subpixels_base[i] - subpixels_actual[i] : subpixels_actual[i] - subpixels_base[i]; if (subpixel_diff > 1) { pixels_different++; break; } } } else if (baseline.pixel_at(x, y) != actual.pixel_at(x, y)) { pixels_different++; } } } // Count pixels that are a difference in size as also being different. int max_w = std::max(baseline.w(), actual.w()); int max_h = std::max(baseline.h(), actual.h()); // These pixels are off the right side, not including the lower right corner. pixels_different += (max_w - w) * h; // These pixels are along the bottom, including the lower right corner. pixels_different += (max_h - h) * max_w; // Like the WebKit ImageDiff tool, we define percentage different in terms // of the size of the 'actual' bitmap. float total_pixels = static_cast(actual.w()) * static_cast(actual.h()); if (total_pixels == 0) { // When the bitmap is empty, they are 100% different. return 100.0f; } return 100.0f * pixels_different / total_pixels; } typedef std::unordered_map RgbaToCountMap; float HistogramPercentageDifferent(const Image& baseline, const Image& actual) { // TODO(johnme): Consider using a joint histogram instead, as described in // "Comparing Images Using Joint Histograms" by Pass & Zabih // http://www.cs.cornell.edu/~rdz/papers/pz-jms99.pdf int w = std::min(baseline.w(), actual.w()); int h = std::min(baseline.h(), actual.h()); // Count occurences of each RGBA pixel value of baseline in the overlap. RgbaToCountMap baseline_histogram; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { // hash_map operator[] inserts a 0 (default constructor) if key not found. baseline_histogram[baseline.pixel_at(x, y)]++; } } // Compute pixels different in the histogram of the overlap. int pixels_different = 0; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { uint32_t actual_rgba = actual.pixel_at(x, y); RgbaToCountMap::iterator it = baseline_histogram.find(actual_rgba); if (it != baseline_histogram.end() && it->second > 0) it->second--; else pixels_different++; } } // Count pixels that are a difference in size as also being different. int max_w = std::max(baseline.w(), actual.w()); int max_h = std::max(baseline.h(), actual.h()); // These pixels are off the right side, not including the lower right corner. pixels_different += (max_w - w) * h; // These pixels are along the bottom, including the lower right corner. pixels_different += (max_h - h) * max_w; // Like the WebKit ImageDiff tool, we define percentage different in terms // of the size of the 'actual' bitmap. float total_pixels = static_cast(actual.w()) * static_cast(actual.h()); if (total_pixels == 0) { // When the bitmap is empty, they are 100% different. return 100.0f; } return 100.0f * pixels_different / total_pixels; } void PrintHelp() { fprintf(stderr, "Usage:\n" " image_diff [--histogram] \n" " Compares two files on disk, returning 0 when they are the same;\n" " passing \"--histogram\" additionally calculates a diff of the\n" " RGBA value histograms (which is resistant to shifts in layout)\n" " image_diff --use-stdin\n" " Stays open reading pairs of filenames from stdin, comparing them,\n" " and sending 0 to stdout when they are the same\n" " image_diff --diff \n" " Compares two files on disk, outputs an image that visualizes the\n" " difference to \n"); /* For unfinished webkit-like-mode (see below) "\n" " image_diff -s\n" " Reads stream input from stdin, should be EXACTLY of the format\n" " \"Content-length: Content-length: ...\n" " it will take as many file pairs as given, and will compare them as\n" " (cmp_file, reference_file) pairs\n"); */ } int CompareImages(const base::FilePath& file1, const base::FilePath& file2, bool compare_histograms, bool fuzzy_diff) { Image actual_image; Image baseline_image; if (!actual_image.CreateFromFilename(file1)) { fprintf(stderr, "image_diff: Unable to open file \"%" PRFilePath "\"\n", file1.value().c_str()); return kStatusError; } if (!baseline_image.CreateFromFilename(file2)) { fprintf(stderr, "image_diff: Unable to open file \"%" PRFilePath "\"\n", file2.value().c_str()); return kStatusError; } float tolerance = fuzzy_diff ? 1.0f : 0.0f; if (compare_histograms) { float percent = HistogramPercentageDifferent(actual_image, baseline_image); const char* passed = percent > tolerance ? "failed" : "passed"; printf("histogram diff: %01.2f%% %s\n", percent, passed); } const char* diff_name = compare_histograms ? "exact diff" : "diff"; float percent = PercentageDifferent(actual_image, baseline_image, fuzzy_diff); const char* passed = percent > tolerance ? "failed" : "passed"; printf("%s: %01.2f%% %s\n", diff_name, percent, passed); if (percent > tolerance) { // failure: The WebKit version also writes the difference image to // stdout, which seems excessive for our needs. return kStatusDifferent; } // success return kStatusSame; /* Untested mode that acts like WebKit's image comparator. I wrote this but decided it's too complicated. We may use it in the future if it looks useful char buffer[2048]; while (fgets(buffer, sizeof(buffer), stdin)) { if (strncmp("Content-length: ", buffer, 16) == 0) { char* context; strtok_s(buffer, " ", &context); int image_size = strtol(strtok_s(NULL, " ", &context), NULL, 10); bool success = false; if (image_size > 0 && actual_image.has_image() == 0) { if (!actual_image.CreateFromStdin(image_size)) { fputs("Error, input image can't be decoded.\n", stderr); return 1; } } else if (image_size > 0 && baseline_image.has_image() == 0) { if (!baseline_image.CreateFromStdin(image_size)) { fputs("Error, baseline image can't be decoded.\n", stderr); return 1; } } else { fputs("Error, image size must be specified.\n", stderr); return 1; } } if (actual_image.has_image() && baseline_image.has_image()) { float percent = PercentageDifferent(actual_image, baseline_image); if (percent > 0.0) { // failure: The WebKit version also writes the difference image to // stdout, which seems excessive for our needs. printf("diff: %01.2f%% failed\n", percent); } else { // success printf("diff: %01.2f%% passed\n", percent); } actual_image.Clear(); baseline_image.Clear(); } fflush(stdout); } */ } // Calculate the absolute difference between two pixels in a specified channel // c, assuming the pixels are encoded with four 8-bit channels. uint8_t GetChannelDiff(int c, uint32_t base_pixel, uint32_t actual_pixel) { int shift = c * 8; uint8_t channel_base = (base_pixel >> shift) & 0xFF; uint8_t channel_actual = (actual_pixel >> shift) & 0xFF; return channel_base > channel_actual ? channel_base - channel_actual : channel_actual - channel_base; } bool CreateImageDiff(const Image& image1, const Image& image2, bool fuzzy_diff, std::vector fuzzy_allowed_max_channel_diff, std::vector fuzzy_allowed_pixels_diff, Image* out) { int w = std::min(image1.w(), image2.w()); int h = std::min(image1.h(), image2.h()); *out = Image(image1); bool same = (image1.w() == image2.w()) && (image1.h() == image2.h()); // TODO(estade): do something with the extra pixels if the image sizes // are different. int pixels_different = 0; uint8_t max_channel_diff = 0; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { uint32_t base_pixel = image1.pixel_at(x, y); uint32_t actual_pixel = image2.pixel_at(x, y); if (base_pixel != actual_pixel) { // Set differing pixels red. out->set_pixel_at(x, y, RGBA_RED | RGBA_ALPHA); same = false; // Record the necessary information for WPT fuzzy matching. WPT images // only compare on the RGB channels, not A. pixels_different++; for (int c = 0; c < 3; c++) { max_channel_diff = std::max( max_channel_diff, GetChannelDiff(c, base_pixel, actual_pixel)); } } else { // Set same pixels as faded. uint32_t alpha = base_pixel & RGBA_ALPHA; uint32_t new_pixel = base_pixel - ((alpha / 2) & RGBA_ALPHA); out->set_pixel_at(x, y, new_pixel); } } } if (!same) { printf("Found pixels_different: %d, max_channel_diff: %u\n", pixels_different, max_channel_diff); } if (!fuzzy_diff) { return same; } if (fuzzy_allowed_max_channel_diff.empty()) { float percent = PercentageDifferent(image1, image2, fuzzy_diff); return percent < 1.0f; } // WPT fuzzy matching. This algorithm is equivalent to 'check_pass' in // tools/wptrunner/wptrunner/executors/base.py printf("Allowed pixels_different; %d-%d, max_channel_diff: %u-%u\n", fuzzy_allowed_pixels_diff[0], fuzzy_allowed_pixels_diff[1], fuzzy_allowed_max_channel_diff[0], fuzzy_allowed_max_channel_diff[1]); return ((pixels_different == 0 && fuzzy_allowed_pixels_diff[0] == 0) || (max_channel_diff == 0 && fuzzy_allowed_max_channel_diff[0] == 0) || (fuzzy_allowed_pixels_diff[0] <= pixels_different && pixels_different <= fuzzy_allowed_pixels_diff[1] && fuzzy_allowed_max_channel_diff[0] <= max_channel_diff && max_channel_diff <= fuzzy_allowed_max_channel_diff[1])); } int DiffImages(const base::FilePath& file1, const base::FilePath& file2, bool fuzzy_diff, std::vector max_per_channel, std::vector max_pixels_different, const base::FilePath& out_file) { Image actual_image; Image baseline_image; if (!actual_image.CreateFromFilename(file1)) { fprintf(stderr, "image_diff: Unable to open file \"%" PRFilePath "\"\n", file1.value().c_str()); return kStatusError; } if (!baseline_image.CreateFromFilename(file2)) { fprintf(stderr, "image_diff: Unable to open file \"%" PRFilePath "\"\n", file2.value().c_str()); return kStatusError; } Image diff_image; bool same = CreateImageDiff(baseline_image, actual_image, fuzzy_diff, max_per_channel, max_pixels_different, &diff_image); if (same) return kStatusSame; std::vector png_encoding; image_diff_png::EncodeRGBAPNG( diff_image.data(), diff_image.w(), diff_image.h(), diff_image.w() * 4, &png_encoding); if (base::WriteFile(out_file, reinterpret_cast(&png_encoding.front()), base::checked_cast(png_encoding.size())) < 0) return kStatusError; return kStatusDifferent; } // It isn't strictly correct to only support ASCII paths, but this // program reads paths on stdin and the program that spawns it outputs // paths as non-wide strings anyway. base::FilePath FilePathFromASCII(const std::string& str) { #if BUILDFLAG(IS_WIN) return base::FilePath(base::ASCIIToWide(str)); #else return base::FilePath(str); #endif } // Parses a range command line option of the form "x-y", where x and y are both // integers. If the range cannot be parsed, returns kStatusError. int ParseRangeOption(const std::string& range, std::vector& parsed_range) { if (range.empty()) return 0; std::vector tokens = base::SplitString( range, "-", base::KEEP_WHITESPACE, base::SPLIT_WANT_ALL); if (tokens.size() != 2) { fprintf(stderr, "Unable to parse range: '%s'\n", range.c_str()); return kStatusError; } int min, max; if (!base::StringToInt(tokens[0], &min) || !base::StringToInt(tokens[1], &max)) { fprintf(stderr, "Unable to parse range: '%s'\n", range.c_str()); return kStatusError; } parsed_range.push_back(min); parsed_range.push_back(max); return 0; } int main(int argc, const char* argv[]) { base::EnableTerminationOnHeapCorruption(); base::CommandLine::Init(argc, argv); const base::CommandLine& parsed_command_line = *base::CommandLine::ForCurrentProcess(); bool fuzzy_diff = parsed_command_line.HasSwitch(kOptionFuzzyDiff); bool histograms = parsed_command_line.HasSwitch(kOptionCompareHistograms); std::vector fuzzy_max_channel_diff; if (ParseRangeOption( parsed_command_line.GetSwitchValueASCII(kOptionFuzzyMaxChannelDiff), fuzzy_max_channel_diff) == kStatusError) { return kStatusError; } std::vector fuzzy_max_pixels_diff; if (ParseRangeOption( parsed_command_line.GetSwitchValueASCII(kOptionFuzzyMaxPixelsDiff), fuzzy_max_pixels_diff) == kStatusError) { return kStatusError; } // If using either of the WPT fuzzy options, both must be supplied. if (fuzzy_max_channel_diff.size() != fuzzy_max_pixels_diff.size()) { fprintf( stderr, "Either both --%s and --%s must be specified, or neither should be.\n", kOptionFuzzyMaxChannelDiff, kOptionFuzzyMaxPixelsDiff); return kStatusError; } else if (!fuzzy_max_channel_diff.empty()) { // The WPT fuzzy options imply a fuzzy diff is happening. fuzzy_diff = true; } if (parsed_command_line.HasSwitch(kOptionPollStdin)) { // Watch stdin for filenames. std::string stdin_buffer; base::FilePath filename1; while (std::getline(std::cin, stdin_buffer)) { if (stdin_buffer.empty()) continue; if (!filename1.empty()) { // CompareImages writes results to stdout unless an error occurred. base::FilePath filename2 = FilePathFromASCII(stdin_buffer); if (CompareImages(filename1, filename2, histograms, fuzzy_diff) == kStatusError) { printf("error\n"); } fflush(stdout); filename1 = base::FilePath(); } else { // Save the first filename in another buffer and wait for the second // filename to arrive via stdin. filename1 = FilePathFromASCII(stdin_buffer); } } return 0; } const base::CommandLine::StringVector& args = parsed_command_line.GetArgs(); if (parsed_command_line.HasSwitch(kOptionGenerateDiff)) { if (args.size() == 3) { return DiffImages(base::FilePath(args[0]), base::FilePath(args[1]), fuzzy_diff, fuzzy_max_channel_diff, fuzzy_max_pixels_diff, base::FilePath(args[2])); } } else if (args.size() == 2) { return CompareImages(base::FilePath(args[0]), base::FilePath(args[1]), fuzzy_diff, histograms); } PrintHelp(); return kStatusError; }