// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_OBJECTS_FIXED_ARRAY_INL_H_ #define V8_OBJECTS_FIXED_ARRAY_INL_H_ #include "src/objects/fixed-array.h" #include "src/base/tsan.h" #include "src/conversions.h" #include "src/handles-inl.h" #include "src/heap/heap-write-barrier-inl.h" #include "src/objects-inl.h" #include "src/objects/bigint.h" #include "src/objects/compressed-slots.h" #include "src/objects/heap-number-inl.h" #include "src/objects/map.h" #include "src/objects/maybe-object-inl.h" #include "src/objects/oddball.h" #include "src/objects/slots.h" #include "src/roots-inl.h" // Has to be the last include (doesn't have include guards): #include "src/objects/object-macros.h" namespace v8 { namespace internal { OBJECT_CONSTRUCTORS_IMPL(FixedArrayBase, HeapObject) OBJECT_CONSTRUCTORS_IMPL(FixedArray, FixedArrayBase) OBJECT_CONSTRUCTORS_IMPL(FixedDoubleArray, FixedArrayBase) OBJECT_CONSTRUCTORS_IMPL(FixedTypedArrayBase, FixedArrayBase) OBJECT_CONSTRUCTORS_IMPL(ArrayList, FixedArray) OBJECT_CONSTRUCTORS_IMPL(ByteArray, FixedArrayBase) OBJECT_CONSTRUCTORS_IMPL(TemplateList, FixedArray) OBJECT_CONSTRUCTORS_IMPL(WeakFixedArray, HeapObject) OBJECT_CONSTRUCTORS_IMPL(WeakArrayList, HeapObject) FixedArrayBase::FixedArrayBase(Address ptr, AllowInlineSmiStorage allow_smi) : HeapObject(ptr, allow_smi) { SLOW_DCHECK( (allow_smi == AllowInlineSmiStorage::kAllowBeingASmi && IsSmi()) || IsFixedArrayBase()); } ByteArray::ByteArray(Address ptr, AllowInlineSmiStorage allow_smi) : FixedArrayBase(ptr, allow_smi) { SLOW_DCHECK( (allow_smi == AllowInlineSmiStorage::kAllowBeingASmi && IsSmi()) || IsByteArray()); } NEVER_READ_ONLY_SPACE_IMPL(WeakArrayList) CAST_ACCESSOR(ArrayList) CAST_ACCESSOR(ByteArray) CAST_ACCESSOR(FixedArray) CAST_ACCESSOR(FixedArrayBase) CAST_ACCESSOR(FixedDoubleArray) CAST_ACCESSOR(FixedTypedArrayBase) CAST_ACCESSOR(TemplateList) CAST_ACCESSOR(WeakFixedArray) CAST_ACCESSOR(WeakArrayList) SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) SYNCHRONIZED_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) SMI_ACCESSORS(WeakFixedArray, length, kLengthOffset) SYNCHRONIZED_SMI_ACCESSORS(WeakFixedArray, length, kLengthOffset) SMI_ACCESSORS(WeakArrayList, capacity, kCapacityOffset) SYNCHRONIZED_SMI_ACCESSORS(WeakArrayList, capacity, kCapacityOffset) SMI_ACCESSORS(WeakArrayList, length, kLengthOffset) Object FixedArrayBase::unchecked_synchronized_length() const { return ACQUIRE_READ_FIELD(*this, kLengthOffset); } ACCESSORS(FixedTypedArrayBase, base_pointer, Object, kBasePointerOffset) ObjectSlot FixedArray::GetFirstElementAddress() { return RawField(OffsetOfElementAt(0)); } bool FixedArray::ContainsOnlySmisOrHoles() { Object the_hole = GetReadOnlyRoots().the_hole_value(); ObjectSlot current = GetFirstElementAddress(); for (int i = 0; i < length(); ++i, ++current) { Object candidate = *current; if (!candidate->IsSmi() && candidate != the_hole) return false; } return true; } Object FixedArray::get(int index) const { DCHECK(index >= 0 && index < this->length()); return RELAXED_READ_FIELD(*this, kHeaderSize + index * kTaggedSize); } Handle FixedArray::get(FixedArray array, int index, Isolate* isolate) { return handle(array->get(index), isolate); } template MaybeHandle FixedArray::GetValue(Isolate* isolate, int index) const { Object obj = get(index); if (obj->IsUndefined(isolate)) return MaybeHandle(); return Handle(T::cast(obj), isolate); } template Handle FixedArray::GetValueChecked(Isolate* isolate, int index) const { Object obj = get(index); CHECK(!obj->IsUndefined(isolate)); return Handle(T::cast(obj), isolate); } bool FixedArray::is_the_hole(Isolate* isolate, int index) { return get(index)->IsTheHole(isolate); } void FixedArray::set(int index, Smi value) { DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map()); DCHECK_LT(index, this->length()); DCHECK(Object(value).IsSmi()); int offset = kHeaderSize + index * kTaggedSize; RELAXED_WRITE_FIELD(*this, offset, value); } void FixedArray::set(int index, Object value) { DCHECK_NE(GetReadOnlyRoots().fixed_cow_array_map(), map()); DCHECK(IsFixedArray()); DCHECK_GE(index, 0); DCHECK_LT(index, this->length()); int offset = kHeaderSize + index * kTaggedSize; RELAXED_WRITE_FIELD(*this, offset, value); WRITE_BARRIER(*this, offset, value); } void FixedArray::set(int index, Object value, WriteBarrierMode mode) { DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map()); DCHECK_GE(index, 0); DCHECK_LT(index, this->length()); int offset = kHeaderSize + index * kTaggedSize; RELAXED_WRITE_FIELD(*this, offset, value); CONDITIONAL_WRITE_BARRIER(*this, offset, value, mode); } void FixedArray::NoWriteBarrierSet(FixedArray array, int index, Object value) { DCHECK_NE(array->map(), array->GetReadOnlyRoots().fixed_cow_array_map()); DCHECK_GE(index, 0); DCHECK_LT(index, array->length()); DCHECK(!ObjectInYoungGeneration(value)); RELAXED_WRITE_FIELD(array, kHeaderSize + index * kTaggedSize, value); } void FixedArray::set_undefined(int index) { set_undefined(GetReadOnlyRoots(), index); } void FixedArray::set_undefined(Isolate* isolate, int index) { set_undefined(ReadOnlyRoots(isolate), index); } void FixedArray::set_undefined(ReadOnlyRoots ro_roots, int index) { FixedArray::NoWriteBarrierSet(*this, index, ro_roots.undefined_value()); } void FixedArray::set_null(int index) { set_null(GetReadOnlyRoots(), index); } void FixedArray::set_null(Isolate* isolate, int index) { set_null(ReadOnlyRoots(isolate), index); } void FixedArray::set_null(ReadOnlyRoots ro_roots, int index) { FixedArray::NoWriteBarrierSet(*this, index, ro_roots.null_value()); } void FixedArray::set_the_hole(int index) { set_the_hole(GetReadOnlyRoots(), index); } void FixedArray::set_the_hole(Isolate* isolate, int index) { set_the_hole(ReadOnlyRoots(isolate), index); } void FixedArray::set_the_hole(ReadOnlyRoots ro_roots, int index) { FixedArray::NoWriteBarrierSet(*this, index, ro_roots.the_hole_value()); } void FixedArray::FillWithHoles(int from, int to) { for (int i = from; i < to; i++) { set_the_hole(i); } } ObjectSlot FixedArray::data_start() { return RawField(OffsetOfElementAt(0)); } ObjectSlot FixedArray::RawFieldOfElementAt(int index) { return RawField(OffsetOfElementAt(index)); } void FixedArray::MoveElements(Heap* heap, int dst_index, int src_index, int len, WriteBarrierMode mode) { DisallowHeapAllocation no_gc; heap->MoveElements(*this, dst_index, src_index, len, mode); } void FixedArray::CopyElements(Heap* heap, int dst_index, FixedArray src, int src_index, int len, WriteBarrierMode mode) { DisallowHeapAllocation no_gc; heap->CopyElements(*this, src, dst_index, src_index, len, mode); } // Perform a binary search in a fixed array. template int BinarySearch(T* array, Name name, int valid_entries, int* out_insertion_index) { DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == nullptr); int low = 0; int high = array->number_of_entries() - 1; uint32_t hash = name->hash_field(); int limit = high; DCHECK(low <= high); while (low != high) { int mid = low + (high - low) / 2; Name mid_name = array->GetSortedKey(mid); uint32_t mid_hash = mid_name->hash_field(); if (mid_hash >= hash) { high = mid; } else { low = mid + 1; } } for (; low <= limit; ++low) { int sort_index = array->GetSortedKeyIndex(low); Name entry = array->GetKey(sort_index); uint32_t current_hash = entry->hash_field(); if (current_hash != hash) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = sort_index + (current_hash > hash ? 0 : 1); } return T::kNotFound; } if (entry == name) { if (search_mode == ALL_ENTRIES || sort_index < valid_entries) { return sort_index; } return T::kNotFound; } } if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = limit + 1; } return T::kNotFound; } // Perform a linear search in this fixed array. len is the number of entry // indices that are valid. template int LinearSearch(T* array, Name name, int valid_entries, int* out_insertion_index) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { uint32_t hash = name->hash_field(); int len = array->number_of_entries(); for (int number = 0; number < len; number++) { int sorted_index = array->GetSortedKeyIndex(number); Name entry = array->GetKey(sorted_index); uint32_t current_hash = entry->hash_field(); if (current_hash > hash) { *out_insertion_index = sorted_index; return T::kNotFound; } if (entry == name) return sorted_index; } *out_insertion_index = len; return T::kNotFound; } else { DCHECK_LE(valid_entries, array->number_of_entries()); DCHECK_NULL(out_insertion_index); // Not supported here. for (int number = 0; number < valid_entries; number++) { if (array->GetKey(number) == name) return number; } return T::kNotFound; } } template int Search(T* array, Name name, int valid_entries, int* out_insertion_index) { SLOW_DCHECK(array->IsSortedNoDuplicates()); if (valid_entries == 0) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = 0; } return T::kNotFound; } // Fast case: do linear search for small arrays. const int kMaxElementsForLinearSearch = 8; if (valid_entries <= kMaxElementsForLinearSearch) { return LinearSearch(array, name, valid_entries, out_insertion_index); } // Slow case: perform binary search. return BinarySearch(array, name, valid_entries, out_insertion_index); } double FixedDoubleArray::get_scalar(int index) { DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() && map() != GetReadOnlyRoots().fixed_array_map()); DCHECK(index >= 0 && index < this->length()); DCHECK(!is_the_hole(index)); return READ_DOUBLE_FIELD(*this, kHeaderSize + index * kDoubleSize); } uint64_t FixedDoubleArray::get_representation(int index) { DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() && map() != GetReadOnlyRoots().fixed_array_map()); DCHECK(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kDoubleSize; return READ_UINT64_FIELD(*this, offset); } Handle FixedDoubleArray::get(FixedDoubleArray array, int index, Isolate* isolate) { if (array->is_the_hole(index)) { return ReadOnlyRoots(isolate).the_hole_value_handle(); } else { return isolate->factory()->NewNumber(array->get_scalar(index)); } } void FixedDoubleArray::set(int index, double value) { DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() && map() != GetReadOnlyRoots().fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; if (std::isnan(value)) { WRITE_DOUBLE_FIELD(*this, offset, std::numeric_limits::quiet_NaN()); } else { WRITE_DOUBLE_FIELD(*this, offset, value); } DCHECK(!is_the_hole(index)); } void FixedDoubleArray::set_the_hole(Isolate* isolate, int index) { set_the_hole(index); } void FixedDoubleArray::set_the_hole(int index) { DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() && map() != GetReadOnlyRoots().fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; WRITE_UINT64_FIELD(*this, offset, kHoleNanInt64); } bool FixedDoubleArray::is_the_hole(Isolate* isolate, int index) { return is_the_hole(index); } bool FixedDoubleArray::is_the_hole(int index) { return get_representation(index) == kHoleNanInt64; } void FixedDoubleArray::MoveElements(Heap* heap, int dst_index, int src_index, int len, WriteBarrierMode mode) { DCHECK_EQ(SKIP_WRITE_BARRIER, mode); double* data_start = reinterpret_cast(FIELD_ADDR(*this, kHeaderSize)); MemMove(data_start + dst_index, data_start + src_index, len * kDoubleSize); } void FixedDoubleArray::FillWithHoles(int from, int to) { for (int i = from; i < to; i++) { set_the_hole(i); } } MaybeObject WeakFixedArray::Get(int index) const { DCHECK(index >= 0 && index < this->length()); return RELAXED_READ_WEAK_FIELD(*this, OffsetOfElementAt(index)); } void WeakFixedArray::Set(int index, MaybeObject value) { DCHECK_GE(index, 0); DCHECK_LT(index, length()); int offset = OffsetOfElementAt(index); RELAXED_WRITE_WEAK_FIELD(*this, offset, value); WEAK_WRITE_BARRIER(*this, offset, value); } void WeakFixedArray::Set(int index, MaybeObject value, WriteBarrierMode mode) { DCHECK_GE(index, 0); DCHECK_LT(index, length()); int offset = OffsetOfElementAt(index); RELAXED_WRITE_WEAK_FIELD(*this, offset, value); CONDITIONAL_WEAK_WRITE_BARRIER(*this, offset, value, mode); } MaybeObjectSlot WeakFixedArray::data_start() { return RawMaybeWeakField(kHeaderSize); } MaybeObjectSlot WeakFixedArray::RawFieldOfElementAt(int index) { return RawMaybeWeakField(OffsetOfElementAt(index)); } MaybeObject WeakArrayList::Get(int index) const { DCHECK(index >= 0 && index < this->capacity()); return RELAXED_READ_WEAK_FIELD(*this, OffsetOfElementAt(index)); } void WeakArrayList::Set(int index, MaybeObject value, WriteBarrierMode mode) { DCHECK_GE(index, 0); DCHECK_LT(index, this->capacity()); int offset = OffsetOfElementAt(index); RELAXED_WRITE_WEAK_FIELD(*this, offset, value); CONDITIONAL_WEAK_WRITE_BARRIER(*this, offset, value, mode); } MaybeObjectSlot WeakArrayList::data_start() { return RawMaybeWeakField(kHeaderSize); } HeapObject WeakArrayList::Iterator::Next() { if (!array_.is_null()) { while (index_ < array_->length()) { MaybeObject item = array_->Get(index_++); DCHECK(item->IsWeakOrCleared()); if (!item->IsCleared()) return item->GetHeapObjectAssumeWeak(); } array_ = WeakArrayList(); } return HeapObject(); } int ArrayList::Length() const { if (FixedArray::cast(*this)->length() == 0) return 0; return Smi::ToInt(FixedArray::cast(*this)->get(kLengthIndex)); } void ArrayList::SetLength(int length) { return FixedArray::cast(*this)->set(kLengthIndex, Smi::FromInt(length)); } Object ArrayList::Get(int index) const { return FixedArray::cast(*this)->get(kFirstIndex + index); } ObjectSlot ArrayList::Slot(int index) { return RawField(OffsetOfElementAt(kFirstIndex + index)); } void ArrayList::Set(int index, Object obj, WriteBarrierMode mode) { FixedArray::cast(*this)->set(kFirstIndex + index, obj, mode); } void ArrayList::Clear(int index, Object undefined) { DCHECK(undefined->IsUndefined()); FixedArray::cast(*this)->set(kFirstIndex + index, undefined, SKIP_WRITE_BARRIER); } int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kTaggedSize); } byte ByteArray::get(int index) const { DCHECK(index >= 0 && index < this->length()); return READ_BYTE_FIELD(*this, kHeaderSize + index * kCharSize); } void ByteArray::set(int index, byte value) { DCHECK(index >= 0 && index < this->length()); WRITE_BYTE_FIELD(*this, kHeaderSize + index * kCharSize, value); } void ByteArray::copy_in(int index, const byte* buffer, int length) { DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index && index + length <= this->length()); Address dst_addr = FIELD_ADDR(*this, kHeaderSize + index * kCharSize); memcpy(reinterpret_cast(dst_addr), buffer, length); } void ByteArray::copy_out(int index, byte* buffer, int length) { DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index && index + length <= this->length()); Address src_addr = FIELD_ADDR(*this, kHeaderSize + index * kCharSize); memcpy(buffer, reinterpret_cast(src_addr), length); } int ByteArray::get_int(int index) const { DCHECK(index >= 0 && index < this->length() / kIntSize); return READ_INT_FIELD(*this, kHeaderSize + index * kIntSize); } void ByteArray::set_int(int index, int value) { DCHECK(index >= 0 && index < this->length() / kIntSize); WRITE_INT_FIELD(*this, kHeaderSize + index * kIntSize, value); } uint32_t ByteArray::get_uint32(int index) const { DCHECK(index >= 0 && index < this->length() / kUInt32Size); return READ_UINT32_FIELD(*this, kHeaderSize + index * kUInt32Size); } void ByteArray::set_uint32(int index, uint32_t value) { DCHECK(index >= 0 && index < this->length() / kUInt32Size); WRITE_UINT32_FIELD(*this, kHeaderSize + index * kUInt32Size, value); } void ByteArray::clear_padding() { int data_size = length() + kHeaderSize; memset(reinterpret_cast(address() + data_size), 0, Size() - data_size); } ByteArray ByteArray::FromDataStartAddress(Address address) { DCHECK_TAG_ALIGNED(address); return ByteArray::cast(Object(address - kHeaderSize + kHeapObjectTag)); } int ByteArray::DataSize() const { return RoundUp(length(), kTaggedSize); } int ByteArray::ByteArraySize() { return SizeFor(this->length()); } byte* ByteArray::GetDataStartAddress() { return reinterpret_cast(address() + kHeaderSize); } byte* ByteArray::GetDataEndAddress() { return GetDataStartAddress() + length(); } template PodArray::PodArray(Address ptr) : ByteArray(ptr) {} template PodArray PodArray::cast(Object object) { return PodArray(object.ptr()); } // static template Handle> PodArray::New(Isolate* isolate, int length, AllocationType allocation) { return Handle>::cast( isolate->factory()->NewByteArray(length * sizeof(T), allocation)); } template int PodArray::length() const { return ByteArray::length() / sizeof(T); } void* FixedTypedArrayBase::external_pointer() const { intptr_t ptr = READ_INTPTR_FIELD(*this, kExternalPointerOffset); return reinterpret_cast(ptr); } void FixedTypedArrayBase::set_external_pointer(void* value) { intptr_t ptr = reinterpret_cast(value); WRITE_INTPTR_FIELD(*this, kExternalPointerOffset, ptr); } void* FixedTypedArrayBase::DataPtr() { return reinterpret_cast( base_pointer()->ptr() + reinterpret_cast(external_pointer())); } int FixedTypedArrayBase::ElementSize(InstanceType type) { int element_size; switch (type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \ case FIXED_##TYPE##_ARRAY_TYPE: \ element_size = sizeof(ctype); \ break; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE default: UNREACHABLE(); } return element_size; } int FixedTypedArrayBase::DataSize(InstanceType type) const { if (base_pointer() == Smi::kZero) return 0; return length() * ElementSize(type); } int FixedTypedArrayBase::DataSize() const { return DataSize(map()->instance_type()); } size_t FixedTypedArrayBase::ByteLength() const { return static_cast(length()) * static_cast(ElementSize(map()->instance_type())); } int FixedTypedArrayBase::size() const { return OBJECT_POINTER_ALIGN(kDataOffset + DataSize()); } int FixedTypedArrayBase::TypedArraySize(InstanceType type) const { return OBJECT_POINTER_ALIGN(kDataOffset + DataSize(type)); } // static int FixedTypedArrayBase::TypedArraySize(InstanceType type, int length) { return OBJECT_POINTER_ALIGN(kDataOffset + length * ElementSize(type)); } uint8_t Uint8ArrayTraits::defaultValue() { return 0; } uint8_t Uint8ClampedArrayTraits::defaultValue() { return 0; } int8_t Int8ArrayTraits::defaultValue() { return 0; } uint16_t Uint16ArrayTraits::defaultValue() { return 0; } int16_t Int16ArrayTraits::defaultValue() { return 0; } uint32_t Uint32ArrayTraits::defaultValue() { return 0; } int32_t Int32ArrayTraits::defaultValue() { return 0; } float Float32ArrayTraits::defaultValue() { return std::numeric_limits::quiet_NaN(); } double Float64ArrayTraits::defaultValue() { return std::numeric_limits::quiet_NaN(); } template typename Traits::ElementType FixedTypedArray::get_scalar(int index) { DCHECK((index >= 0) && (index < this->length())); return FixedTypedArray::get_scalar_from_data_ptr(DataPtr(), index); } // static template typename Traits::ElementType FixedTypedArray::get_scalar_from_data_ptr( void* data_ptr, int index) { typename Traits::ElementType* ptr = reinterpret_cast(data_ptr); // The JavaScript memory model allows for racy reads and writes to a // SharedArrayBuffer's backing store, which will always be a FixedTypedArray. // ThreadSanitizer will catch these racy accesses and warn about them, so we // disable TSAN for these reads and writes using annotations. // // We don't use relaxed atomics here, as it is not a requirement of the // JavaScript memory model to have tear-free reads of overlapping accesses, // and using relaxed atomics may introduce overhead. TSAN_ANNOTATE_IGNORE_READS_BEGIN; ElementType result; if (COMPRESS_POINTERS_BOOL && alignof(ElementType) > kTaggedSize) { // TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size // fields (external pointers, doubles and BigInt data) are only kTaggedSize // aligned so we have to use unaligned pointer friendly way of accessing // them in order to avoid undefined behavior in C++ code. result = ReadUnalignedValue(reinterpret_cast
(ptr) + index * sizeof(ElementType)); } else { result = ptr[index]; } TSAN_ANNOTATE_IGNORE_READS_END; return result; } template void FixedTypedArray::set(int index, ElementType value) { CHECK((index >= 0) && (index < this->length())); // See the comment in FixedTypedArray::get_scalar. auto* ptr = reinterpret_cast(DataPtr()); TSAN_ANNOTATE_IGNORE_WRITES_BEGIN; if (COMPRESS_POINTERS_BOOL && alignof(ElementType) > kTaggedSize) { // TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size // fields (external pointers, doubles and BigInt data) are only kTaggedSize // aligned so we have to use unaligned pointer friendly way of accessing // them in order to avoid undefined behavior in C++ code. WriteUnalignedValue( reinterpret_cast
(ptr) + index * sizeof(ElementType), value); } else { ptr[index] = value; } TSAN_ANNOTATE_IGNORE_WRITES_END; } template typename Traits::ElementType FixedTypedArray::from(int value) { return static_cast(value); } template <> inline uint8_t FixedTypedArray::from(int value) { if (value < 0) return 0; if (value > 0xFF) return 0xFF; return static_cast(value); } template <> inline int64_t FixedTypedArray::from(int value) { UNREACHABLE(); } template <> inline uint64_t FixedTypedArray::from(int value) { UNREACHABLE(); } template typename Traits::ElementType FixedTypedArray::from(uint32_t value) { return static_cast(value); } template <> inline uint8_t FixedTypedArray::from(uint32_t value) { // We need this special case for Uint32 -> Uint8Clamped, because the highest // Uint32 values will be negative as an int, clamping to 0, rather than 255. if (value > 0xFF) return 0xFF; return static_cast(value); } template <> inline int64_t FixedTypedArray::from(uint32_t value) { UNREACHABLE(); } template <> inline uint64_t FixedTypedArray::from(uint32_t value) { UNREACHABLE(); } template typename Traits::ElementType FixedTypedArray::from(double value) { return static_cast(DoubleToInt32(value)); } template <> inline uint8_t FixedTypedArray::from(double value) { // Handle NaNs and less than zero values which clamp to zero. if (!(value > 0)) return 0; if (value > 0xFF) return 0xFF; return static_cast(lrint(value)); } template <> inline int64_t FixedTypedArray::from(double value) { UNREACHABLE(); } template <> inline uint64_t FixedTypedArray::from(double value) { UNREACHABLE(); } template <> inline float FixedTypedArray::from(double value) { using limits = std::numeric_limits; if (value > limits::max()) return limits::infinity(); if (value < limits::lowest()) return -limits::infinity(); return static_cast(value); } template <> inline double FixedTypedArray::from(double value) { return value; } template typename Traits::ElementType FixedTypedArray::from(int64_t value) { UNREACHABLE(); } template typename Traits::ElementType FixedTypedArray::from(uint64_t value) { UNREACHABLE(); } template <> inline int64_t FixedTypedArray::from(int64_t value) { return value; } template <> inline uint64_t FixedTypedArray::from(uint64_t value) { return value; } template <> inline uint64_t FixedTypedArray::from(int64_t value) { return static_cast(value); } template <> inline int64_t FixedTypedArray::from(uint64_t value) { return static_cast(value); } template typename Traits::ElementType FixedTypedArray::FromHandle( Handle value, bool* lossless) { if (value->IsSmi()) { return from(Smi::ToInt(*value)); } DCHECK(value->IsHeapNumber()); return from(HeapNumber::cast(*value)->value()); } template <> inline int64_t FixedTypedArray::FromHandle( Handle value, bool* lossless) { DCHECK(value->IsBigInt()); return BigInt::cast(*value)->AsInt64(lossless); } template <> inline uint64_t FixedTypedArray::FromHandle( Handle value, bool* lossless) { DCHECK(value->IsBigInt()); return BigInt::cast(*value)->AsUint64(lossless); } template Handle FixedTypedArray::get(Isolate* isolate, FixedTypedArray array, int index) { return Traits::ToHandle(isolate, array->get_scalar(index)); } template void FixedTypedArray::SetValue(uint32_t index, Object value) { ElementType cast_value = Traits::defaultValue(); if (value->IsSmi()) { int int_value = Smi::ToInt(value); cast_value = from(int_value); } else if (value->IsHeapNumber()) { double double_value = HeapNumber::cast(value)->value(); cast_value = from(double_value); } else { // Clamp undefined to the default value. All other types have been // converted to a number type further up in the call chain. DCHECK(value->IsUndefined()); } set(index, cast_value); } template <> inline void FixedTypedArray::SetValue(uint32_t index, Object value) { DCHECK(value->IsBigInt()); set(index, BigInt::cast(value)->AsInt64()); } template <> inline void FixedTypedArray::SetValue(uint32_t index, Object value) { DCHECK(value->IsBigInt()); set(index, BigInt::cast(value)->AsUint64()); } Handle Uint8ArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Uint8ClampedArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Int8ArrayTraits::ToHandle(Isolate* isolate, int8_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Uint16ArrayTraits::ToHandle(Isolate* isolate, uint16_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Int16ArrayTraits::ToHandle(Isolate* isolate, int16_t scalar) { return handle(Smi::FromInt(scalar), isolate); } Handle Uint32ArrayTraits::ToHandle(Isolate* isolate, uint32_t scalar) { return isolate->factory()->NewNumberFromUint(scalar); } Handle Int32ArrayTraits::ToHandle(Isolate* isolate, int32_t scalar) { return isolate->factory()->NewNumberFromInt(scalar); } Handle Float32ArrayTraits::ToHandle(Isolate* isolate, float scalar) { return isolate->factory()->NewNumber(scalar); } Handle Float64ArrayTraits::ToHandle(Isolate* isolate, double scalar) { return isolate->factory()->NewNumber(scalar); } Handle BigInt64ArrayTraits::ToHandle(Isolate* isolate, int64_t scalar) { return BigInt::FromInt64(isolate, scalar); } Handle BigUint64ArrayTraits::ToHandle(Isolate* isolate, uint64_t scalar) { return BigInt::FromUint64(isolate, scalar); } // static template STATIC_CONST_MEMBER_DEFINITION const InstanceType FixedTypedArray::kInstanceType; template FixedTypedArray::FixedTypedArray(Address ptr) : FixedTypedArrayBase(ptr) { DCHECK(IsHeapObject() && map()->instance_type() == Traits::kInstanceType); } template FixedTypedArray FixedTypedArray::cast(Object object) { return FixedTypedArray(object.ptr()); } int TemplateList::length() const { return Smi::ToInt(FixedArray::cast(*this)->get(kLengthIndex)); } Object TemplateList::get(int index) const { return FixedArray::cast(*this)->get(kFirstElementIndex + index); } void TemplateList::set(int index, Object value) { FixedArray::cast(*this)->set(kFirstElementIndex + index, value); } } // namespace internal } // namespace v8 #include "src/objects/object-macros-undef.h" #endif // V8_OBJECTS_FIXED_ARRAY_INL_H_