Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * int8.c
4 : * Internal 64-bit integer operations
5 : *
6 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : * IDENTIFICATION
10 : * src/backend/utils/adt/int8.c
11 : *
12 : *-------------------------------------------------------------------------
13 : */
14 : #include "postgres.h"
15 :
16 : #include <ctype.h>
17 : #include <limits.h>
18 : #include <math.h>
19 :
20 : #include "common/int.h"
21 : #include "funcapi.h"
22 : #include "libpq/pqformat.h"
23 : #include "nodes/nodeFuncs.h"
24 : #include "nodes/supportnodes.h"
25 : #include "optimizer/optimizer.h"
26 : #include "utils/builtins.h"
27 :
28 :
29 : typedef struct
30 : {
31 : int64 current;
32 : int64 finish;
33 : int64 step;
34 : } generate_series_fctx;
35 :
36 :
37 : /***********************************************************************
38 : **
39 : ** Routines for 64-bit integers.
40 : **
41 : ***********************************************************************/
42 :
43 : /*----------------------------------------------------------
44 : * Formatting and conversion routines.
45 : *---------------------------------------------------------*/
46 :
47 : /* int8in()
48 : */
49 : Datum
50 133530 : int8in(PG_FUNCTION_ARGS)
51 : {
52 133530 : char *num = PG_GETARG_CSTRING(0);
53 :
54 133530 : PG_RETURN_INT64(pg_strtoint64_safe(num, fcinfo->context));
55 : }
56 :
57 :
58 : /* int8out()
59 : */
60 : Datum
61 318030 : int8out(PG_FUNCTION_ARGS)
62 : {
63 318030 : int64 val = PG_GETARG_INT64(0);
64 : char buf[MAXINT8LEN + 1];
65 : char *result;
66 : int len;
67 :
68 318030 : len = pg_lltoa(val, buf) + 1;
69 :
70 : /*
71 : * Since the length is already known, we do a manual palloc() and memcpy()
72 : * to avoid the strlen() call that would otherwise be done in pstrdup().
73 : */
74 318030 : result = palloc(len);
75 318030 : memcpy(result, buf, len);
76 318030 : PG_RETURN_CSTRING(result);
77 : }
78 :
79 : /*
80 : * int8recv - converts external binary format to int8
81 : */
82 : Datum
83 24 : int8recv(PG_FUNCTION_ARGS)
84 : {
85 24 : StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
86 :
87 24 : PG_RETURN_INT64(pq_getmsgint64(buf));
88 : }
89 :
90 : /*
91 : * int8send - converts int8 to binary format
92 : */
93 : Datum
94 5000 : int8send(PG_FUNCTION_ARGS)
95 : {
96 5000 : int64 arg1 = PG_GETARG_INT64(0);
97 : StringInfoData buf;
98 :
99 5000 : pq_begintypsend(&buf);
100 5000 : pq_sendint64(&buf, arg1);
101 5000 : PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
102 : }
103 :
104 :
105 : /*----------------------------------------------------------
106 : * Relational operators for int8s, including cross-data-type comparisons.
107 : *---------------------------------------------------------*/
108 :
109 : /* int8relop()
110 : * Is val1 relop val2?
111 : */
112 : Datum
113 354442 : int8eq(PG_FUNCTION_ARGS)
114 : {
115 354442 : int64 val1 = PG_GETARG_INT64(0);
116 354442 : int64 val2 = PG_GETARG_INT64(1);
117 :
118 354442 : PG_RETURN_BOOL(val1 == val2);
119 : }
120 :
121 : Datum
122 60050 : int8ne(PG_FUNCTION_ARGS)
123 : {
124 60050 : int64 val1 = PG_GETARG_INT64(0);
125 60050 : int64 val2 = PG_GETARG_INT64(1);
126 :
127 60050 : PG_RETURN_BOOL(val1 != val2);
128 : }
129 :
130 : Datum
131 627038 : int8lt(PG_FUNCTION_ARGS)
132 : {
133 627038 : int64 val1 = PG_GETARG_INT64(0);
134 627038 : int64 val2 = PG_GETARG_INT64(1);
135 :
136 627038 : PG_RETURN_BOOL(val1 < val2);
137 : }
138 :
139 : Datum
140 247242 : int8gt(PG_FUNCTION_ARGS)
141 : {
142 247242 : int64 val1 = PG_GETARG_INT64(0);
143 247242 : int64 val2 = PG_GETARG_INT64(1);
144 :
145 247242 : PG_RETURN_BOOL(val1 > val2);
146 : }
147 :
148 : Datum
149 5656 : int8le(PG_FUNCTION_ARGS)
150 : {
151 5656 : int64 val1 = PG_GETARG_INT64(0);
152 5656 : int64 val2 = PG_GETARG_INT64(1);
153 :
154 5656 : PG_RETURN_BOOL(val1 <= val2);
155 : }
156 :
157 : Datum
158 6006 : int8ge(PG_FUNCTION_ARGS)
159 : {
160 6006 : int64 val1 = PG_GETARG_INT64(0);
161 6006 : int64 val2 = PG_GETARG_INT64(1);
162 :
163 6006 : PG_RETURN_BOOL(val1 >= val2);
164 : }
165 :
166 : /* int84relop()
167 : * Is 64-bit val1 relop 32-bit val2?
168 : */
169 : Datum
170 196342 : int84eq(PG_FUNCTION_ARGS)
171 : {
172 196342 : int64 val1 = PG_GETARG_INT64(0);
173 196342 : int32 val2 = PG_GETARG_INT32(1);
174 :
175 196342 : PG_RETURN_BOOL(val1 == val2);
176 : }
177 :
178 : Datum
179 94 : int84ne(PG_FUNCTION_ARGS)
180 : {
181 94 : int64 val1 = PG_GETARG_INT64(0);
182 94 : int32 val2 = PG_GETARG_INT32(1);
183 :
184 94 : PG_RETURN_BOOL(val1 != val2);
185 : }
186 :
187 : Datum
188 694576 : int84lt(PG_FUNCTION_ARGS)
189 : {
190 694576 : int64 val1 = PG_GETARG_INT64(0);
191 694576 : int32 val2 = PG_GETARG_INT32(1);
192 :
193 694576 : PG_RETURN_BOOL(val1 < val2);
194 : }
195 :
196 : Datum
197 140350 : int84gt(PG_FUNCTION_ARGS)
198 : {
199 140350 : int64 val1 = PG_GETARG_INT64(0);
200 140350 : int32 val2 = PG_GETARG_INT32(1);
201 :
202 140350 : PG_RETURN_BOOL(val1 > val2);
203 : }
204 :
205 : Datum
206 22178 : int84le(PG_FUNCTION_ARGS)
207 : {
208 22178 : int64 val1 = PG_GETARG_INT64(0);
209 22178 : int32 val2 = PG_GETARG_INT32(1);
210 :
211 22178 : PG_RETURN_BOOL(val1 <= val2);
212 : }
213 :
214 : Datum
215 10038 : int84ge(PG_FUNCTION_ARGS)
216 : {
217 10038 : int64 val1 = PG_GETARG_INT64(0);
218 10038 : int32 val2 = PG_GETARG_INT32(1);
219 :
220 10038 : PG_RETURN_BOOL(val1 >= val2);
221 : }
222 :
223 : /* int48relop()
224 : * Is 32-bit val1 relop 64-bit val2?
225 : */
226 : Datum
227 92002 : int48eq(PG_FUNCTION_ARGS)
228 : {
229 92002 : int32 val1 = PG_GETARG_INT32(0);
230 92002 : int64 val2 = PG_GETARG_INT64(1);
231 :
232 92002 : PG_RETURN_BOOL(val1 == val2);
233 : }
234 :
235 : Datum
236 36 : int48ne(PG_FUNCTION_ARGS)
237 : {
238 36 : int32 val1 = PG_GETARG_INT32(0);
239 36 : int64 val2 = PG_GETARG_INT64(1);
240 :
241 36 : PG_RETURN_BOOL(val1 != val2);
242 : }
243 :
244 : Datum
245 6618 : int48lt(PG_FUNCTION_ARGS)
246 : {
247 6618 : int32 val1 = PG_GETARG_INT32(0);
248 6618 : int64 val2 = PG_GETARG_INT64(1);
249 :
250 6618 : PG_RETURN_BOOL(val1 < val2);
251 : }
252 :
253 : Datum
254 3270 : int48gt(PG_FUNCTION_ARGS)
255 : {
256 3270 : int32 val1 = PG_GETARG_INT32(0);
257 3270 : int64 val2 = PG_GETARG_INT64(1);
258 :
259 3270 : PG_RETURN_BOOL(val1 > val2);
260 : }
261 :
262 : Datum
263 3828 : int48le(PG_FUNCTION_ARGS)
264 : {
265 3828 : int32 val1 = PG_GETARG_INT32(0);
266 3828 : int64 val2 = PG_GETARG_INT64(1);
267 :
268 3828 : PG_RETURN_BOOL(val1 <= val2);
269 : }
270 :
271 : Datum
272 3474 : int48ge(PG_FUNCTION_ARGS)
273 : {
274 3474 : int32 val1 = PG_GETARG_INT32(0);
275 3474 : int64 val2 = PG_GETARG_INT64(1);
276 :
277 3474 : PG_RETURN_BOOL(val1 >= val2);
278 : }
279 :
280 : /* int82relop()
281 : * Is 64-bit val1 relop 16-bit val2?
282 : */
283 : Datum
284 30 : int82eq(PG_FUNCTION_ARGS)
285 : {
286 30 : int64 val1 = PG_GETARG_INT64(0);
287 30 : int16 val2 = PG_GETARG_INT16(1);
288 :
289 30 : PG_RETURN_BOOL(val1 == val2);
290 : }
291 :
292 : Datum
293 30 : int82ne(PG_FUNCTION_ARGS)
294 : {
295 30 : int64 val1 = PG_GETARG_INT64(0);
296 30 : int16 val2 = PG_GETARG_INT16(1);
297 :
298 30 : PG_RETURN_BOOL(val1 != val2);
299 : }
300 :
301 : Datum
302 30 : int82lt(PG_FUNCTION_ARGS)
303 : {
304 30 : int64 val1 = PG_GETARG_INT64(0);
305 30 : int16 val2 = PG_GETARG_INT16(1);
306 :
307 30 : PG_RETURN_BOOL(val1 < val2);
308 : }
309 :
310 : Datum
311 3228 : int82gt(PG_FUNCTION_ARGS)
312 : {
313 3228 : int64 val1 = PG_GETARG_INT64(0);
314 3228 : int16 val2 = PG_GETARG_INT16(1);
315 :
316 3228 : PG_RETURN_BOOL(val1 > val2);
317 : }
318 :
319 : Datum
320 30 : int82le(PG_FUNCTION_ARGS)
321 : {
322 30 : int64 val1 = PG_GETARG_INT64(0);
323 30 : int16 val2 = PG_GETARG_INT16(1);
324 :
325 30 : PG_RETURN_BOOL(val1 <= val2);
326 : }
327 :
328 : Datum
329 3228 : int82ge(PG_FUNCTION_ARGS)
330 : {
331 3228 : int64 val1 = PG_GETARG_INT64(0);
332 3228 : int16 val2 = PG_GETARG_INT16(1);
333 :
334 3228 : PG_RETURN_BOOL(val1 >= val2);
335 : }
336 :
337 : /* int28relop()
338 : * Is 16-bit val1 relop 64-bit val2?
339 : */
340 : Datum
341 1854 : int28eq(PG_FUNCTION_ARGS)
342 : {
343 1854 : int16 val1 = PG_GETARG_INT16(0);
344 1854 : int64 val2 = PG_GETARG_INT64(1);
345 :
346 1854 : PG_RETURN_BOOL(val1 == val2);
347 : }
348 :
349 : Datum
350 3312 : int28ne(PG_FUNCTION_ARGS)
351 : {
352 3312 : int16 val1 = PG_GETARG_INT16(0);
353 3312 : int64 val2 = PG_GETARG_INT64(1);
354 :
355 3312 : PG_RETURN_BOOL(val1 != val2);
356 : }
357 :
358 : Datum
359 3228 : int28lt(PG_FUNCTION_ARGS)
360 : {
361 3228 : int16 val1 = PG_GETARG_INT16(0);
362 3228 : int64 val2 = PG_GETARG_INT64(1);
363 :
364 3228 : PG_RETURN_BOOL(val1 < val2);
365 : }
366 :
367 : Datum
368 3228 : int28gt(PG_FUNCTION_ARGS)
369 : {
370 3228 : int16 val1 = PG_GETARG_INT16(0);
371 3228 : int64 val2 = PG_GETARG_INT64(1);
372 :
373 3228 : PG_RETURN_BOOL(val1 > val2);
374 : }
375 :
376 : Datum
377 3828 : int28le(PG_FUNCTION_ARGS)
378 : {
379 3828 : int16 val1 = PG_GETARG_INT16(0);
380 3828 : int64 val2 = PG_GETARG_INT64(1);
381 :
382 3828 : PG_RETURN_BOOL(val1 <= val2);
383 : }
384 :
385 : Datum
386 3714 : int28ge(PG_FUNCTION_ARGS)
387 : {
388 3714 : int16 val1 = PG_GETARG_INT16(0);
389 3714 : int64 val2 = PG_GETARG_INT64(1);
390 :
391 3714 : PG_RETURN_BOOL(val1 >= val2);
392 : }
393 :
394 : /*
395 : * in_range support function for int8.
396 : *
397 : * Note: we needn't supply int8_int4 or int8_int2 variants, as implicit
398 : * coercion of the offset value takes care of those scenarios just as well.
399 : */
400 : Datum
401 108 : in_range_int8_int8(PG_FUNCTION_ARGS)
402 : {
403 108 : int64 val = PG_GETARG_INT64(0);
404 108 : int64 base = PG_GETARG_INT64(1);
405 108 : int64 offset = PG_GETARG_INT64(2);
406 108 : bool sub = PG_GETARG_BOOL(3);
407 108 : bool less = PG_GETARG_BOOL(4);
408 : int64 sum;
409 :
410 108 : if (offset < 0)
411 0 : ereport(ERROR,
412 : (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
413 : errmsg("invalid preceding or following size in window function")));
414 :
415 108 : if (sub)
416 54 : offset = -offset; /* cannot overflow */
417 :
418 108 : if (unlikely(pg_add_s64_overflow(base, offset, &sum)))
419 : {
420 : /*
421 : * If sub is false, the true sum is surely more than val, so correct
422 : * answer is the same as "less". If sub is true, the true sum is
423 : * surely less than val, so the answer is "!less".
424 : */
425 36 : PG_RETURN_BOOL(sub ? !less : less);
426 : }
427 :
428 72 : if (less)
429 36 : PG_RETURN_BOOL(val <= sum);
430 : else
431 36 : PG_RETURN_BOOL(val >= sum);
432 : }
433 :
434 :
435 : /*----------------------------------------------------------
436 : * Arithmetic operators on 64-bit integers.
437 : *---------------------------------------------------------*/
438 :
439 : Datum
440 936 : int8um(PG_FUNCTION_ARGS)
441 : {
442 936 : int64 arg = PG_GETARG_INT64(0);
443 : int64 result;
444 :
445 936 : if (unlikely(arg == PG_INT64_MIN))
446 6 : ereport(ERROR,
447 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
448 : errmsg("bigint out of range")));
449 930 : result = -arg;
450 930 : PG_RETURN_INT64(result);
451 : }
452 :
453 : Datum
454 6 : int8up(PG_FUNCTION_ARGS)
455 : {
456 6 : int64 arg = PG_GETARG_INT64(0);
457 :
458 6 : PG_RETURN_INT64(arg);
459 : }
460 :
461 : Datum
462 130504 : int8pl(PG_FUNCTION_ARGS)
463 : {
464 130504 : int64 arg1 = PG_GETARG_INT64(0);
465 130504 : int64 arg2 = PG_GETARG_INT64(1);
466 : int64 result;
467 :
468 130504 : if (unlikely(pg_add_s64_overflow(arg1, arg2, &result)))
469 12 : ereport(ERROR,
470 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
471 : errmsg("bigint out of range")));
472 130492 : PG_RETURN_INT64(result);
473 : }
474 :
475 : Datum
476 252 : int8mi(PG_FUNCTION_ARGS)
477 : {
478 252 : int64 arg1 = PG_GETARG_INT64(0);
479 252 : int64 arg2 = PG_GETARG_INT64(1);
480 : int64 result;
481 :
482 252 : if (unlikely(pg_sub_s64_overflow(arg1, arg2, &result)))
483 18 : ereport(ERROR,
484 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
485 : errmsg("bigint out of range")));
486 234 : PG_RETURN_INT64(result);
487 : }
488 :
489 : Datum
490 180 : int8mul(PG_FUNCTION_ARGS)
491 : {
492 180 : int64 arg1 = PG_GETARG_INT64(0);
493 180 : int64 arg2 = PG_GETARG_INT64(1);
494 : int64 result;
495 :
496 180 : if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
497 18 : ereport(ERROR,
498 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
499 : errmsg("bigint out of range")));
500 162 : PG_RETURN_INT64(result);
501 : }
502 :
503 : Datum
504 132 : int8div(PG_FUNCTION_ARGS)
505 : {
506 132 : int64 arg1 = PG_GETARG_INT64(0);
507 132 : int64 arg2 = PG_GETARG_INT64(1);
508 : int64 result;
509 :
510 132 : if (arg2 == 0)
511 : {
512 6 : ereport(ERROR,
513 : (errcode(ERRCODE_DIVISION_BY_ZERO),
514 : errmsg("division by zero")));
515 : /* ensure compiler realizes we mustn't reach the division (gcc bug) */
516 : PG_RETURN_NULL();
517 : }
518 :
519 : /*
520 : * INT64_MIN / -1 is problematic, since the result can't be represented on
521 : * a two's-complement machine. Some machines produce INT64_MIN, some
522 : * produce zero, some throw an exception. We can dodge the problem by
523 : * recognizing that division by -1 is the same as negation.
524 : */
525 126 : if (arg2 == -1)
526 : {
527 6 : if (unlikely(arg1 == PG_INT64_MIN))
528 6 : ereport(ERROR,
529 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
530 : errmsg("bigint out of range")));
531 0 : result = -arg1;
532 0 : PG_RETURN_INT64(result);
533 : }
534 :
535 : /* No overflow is possible */
536 :
537 120 : result = arg1 / arg2;
538 :
539 120 : PG_RETURN_INT64(result);
540 : }
541 :
542 : /* int8abs()
543 : * Absolute value
544 : */
545 : Datum
546 36 : int8abs(PG_FUNCTION_ARGS)
547 : {
548 36 : int64 arg1 = PG_GETARG_INT64(0);
549 : int64 result;
550 :
551 36 : if (unlikely(arg1 == PG_INT64_MIN))
552 6 : ereport(ERROR,
553 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
554 : errmsg("bigint out of range")));
555 30 : result = (arg1 < 0) ? -arg1 : arg1;
556 30 : PG_RETURN_INT64(result);
557 : }
558 :
559 : /* int8mod()
560 : * Modulo operation.
561 : */
562 : Datum
563 54 : int8mod(PG_FUNCTION_ARGS)
564 : {
565 54 : int64 arg1 = PG_GETARG_INT64(0);
566 54 : int64 arg2 = PG_GETARG_INT64(1);
567 :
568 54 : if (unlikely(arg2 == 0))
569 : {
570 6 : ereport(ERROR,
571 : (errcode(ERRCODE_DIVISION_BY_ZERO),
572 : errmsg("division by zero")));
573 : /* ensure compiler realizes we mustn't reach the division (gcc bug) */
574 : PG_RETURN_NULL();
575 : }
576 :
577 : /*
578 : * Some machines throw a floating-point exception for INT64_MIN % -1,
579 : * which is a bit silly since the correct answer is perfectly
580 : * well-defined, namely zero.
581 : */
582 48 : if (arg2 == -1)
583 18 : PG_RETURN_INT64(0);
584 :
585 : /* No overflow is possible */
586 :
587 30 : PG_RETURN_INT64(arg1 % arg2);
588 : }
589 :
590 : /*
591 : * Greatest Common Divisor
592 : *
593 : * Returns the largest positive integer that exactly divides both inputs.
594 : * Special cases:
595 : * - gcd(x, 0) = gcd(0, x) = abs(x)
596 : * because 0 is divisible by anything
597 : * - gcd(0, 0) = 0
598 : * complies with the previous definition and is a common convention
599 : *
600 : * Special care must be taken if either input is INT64_MIN ---
601 : * gcd(0, INT64_MIN), gcd(INT64_MIN, 0) and gcd(INT64_MIN, INT64_MIN) are
602 : * all equal to abs(INT64_MIN), which cannot be represented as a 64-bit signed
603 : * integer.
604 : */
605 : static int64
606 264 : int8gcd_internal(int64 arg1, int64 arg2)
607 : {
608 : int64 swap;
609 : int64 a1,
610 : a2;
611 :
612 : /*
613 : * Put the greater absolute value in arg1.
614 : *
615 : * This would happen automatically in the loop below, but avoids an
616 : * expensive modulo operation, and simplifies the special-case handling
617 : * for INT64_MIN below.
618 : *
619 : * We do this in negative space in order to handle INT64_MIN.
620 : */
621 264 : a1 = (arg1 < 0) ? arg1 : -arg1;
622 264 : a2 = (arg2 < 0) ? arg2 : -arg2;
623 264 : if (a1 > a2)
624 : {
625 96 : swap = arg1;
626 96 : arg1 = arg2;
627 96 : arg2 = swap;
628 : }
629 :
630 : /* Special care needs to be taken with INT64_MIN. See comments above. */
631 264 : if (arg1 == PG_INT64_MIN)
632 : {
633 90 : if (arg2 == 0 || arg2 == PG_INT64_MIN)
634 12 : ereport(ERROR,
635 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
636 : errmsg("bigint out of range")));
637 :
638 : /*
639 : * Some machines throw a floating-point exception for INT64_MIN % -1,
640 : * which is a bit silly since the correct answer is perfectly
641 : * well-defined, namely zero. Guard against this and just return the
642 : * result, gcd(INT64_MIN, -1) = 1.
643 : */
644 78 : if (arg2 == -1)
645 12 : return 1;
646 : }
647 :
648 : /* Use the Euclidean algorithm to find the GCD */
649 1230 : while (arg2 != 0)
650 : {
651 990 : swap = arg2;
652 990 : arg2 = arg1 % arg2;
653 990 : arg1 = swap;
654 : }
655 :
656 : /*
657 : * Make sure the result is positive. (We know we don't have INT64_MIN
658 : * anymore).
659 : */
660 240 : if (arg1 < 0)
661 102 : arg1 = -arg1;
662 :
663 240 : return arg1;
664 : }
665 :
666 : Datum
667 180 : int8gcd(PG_FUNCTION_ARGS)
668 : {
669 180 : int64 arg1 = PG_GETARG_INT64(0);
670 180 : int64 arg2 = PG_GETARG_INT64(1);
671 : int64 result;
672 :
673 180 : result = int8gcd_internal(arg1, arg2);
674 :
675 168 : PG_RETURN_INT64(result);
676 : }
677 :
678 : /*
679 : * Least Common Multiple
680 : */
681 : Datum
682 156 : int8lcm(PG_FUNCTION_ARGS)
683 : {
684 156 : int64 arg1 = PG_GETARG_INT64(0);
685 156 : int64 arg2 = PG_GETARG_INT64(1);
686 : int64 gcd;
687 : int64 result;
688 :
689 : /*
690 : * Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
691 : * division-by-zero error below when x is zero, and an overflow error from
692 : * the GCD computation when x = INT64_MIN.
693 : */
694 156 : if (arg1 == 0 || arg2 == 0)
695 72 : PG_RETURN_INT64(0);
696 :
697 : /* lcm(x, y) = abs(x / gcd(x, y) * y) */
698 84 : gcd = int8gcd_internal(arg1, arg2);
699 84 : arg1 = arg1 / gcd;
700 :
701 84 : if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
702 6 : ereport(ERROR,
703 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
704 : errmsg("bigint out of range")));
705 :
706 : /* If the result is INT64_MIN, it cannot be represented. */
707 78 : if (unlikely(result == PG_INT64_MIN))
708 6 : ereport(ERROR,
709 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
710 : errmsg("bigint out of range")));
711 :
712 72 : if (result < 0)
713 36 : result = -result;
714 :
715 72 : PG_RETURN_INT64(result);
716 : }
717 :
718 : Datum
719 19539592 : int8inc(PG_FUNCTION_ARGS)
720 : {
721 19539592 : int64 arg = PG_GETARG_INT64(0);
722 : int64 result;
723 :
724 19539592 : if (unlikely(pg_add_s64_overflow(arg, 1, &result)))
725 0 : ereport(ERROR,
726 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
727 : errmsg("bigint out of range")));
728 :
729 19539592 : PG_RETURN_INT64(result);
730 : }
731 :
732 : Datum
733 24 : int8dec(PG_FUNCTION_ARGS)
734 : {
735 24 : int64 arg = PG_GETARG_INT64(0);
736 : int64 result;
737 :
738 24 : if (unlikely(pg_sub_s64_overflow(arg, 1, &result)))
739 0 : ereport(ERROR,
740 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
741 : errmsg("bigint out of range")));
742 :
743 24 : PG_RETURN_INT64(result);
744 : }
745 :
746 :
747 : /*
748 : * These functions are exactly like int8inc/int8dec but are used for
749 : * aggregates that count only non-null values. Since the functions are
750 : * declared strict, the null checks happen before we ever get here, and all we
751 : * need do is increment the state value. We could actually make these pg_proc
752 : * entries point right at int8inc/int8dec, but then the opr_sanity regression
753 : * test would complain about mismatched entries for a built-in function.
754 : */
755 :
756 : Datum
757 1200492 : int8inc_any(PG_FUNCTION_ARGS)
758 : {
759 1200492 : return int8inc(fcinfo);
760 : }
761 :
762 : Datum
763 240024 : int8inc_float8_float8(PG_FUNCTION_ARGS)
764 : {
765 240024 : return int8inc(fcinfo);
766 : }
767 :
768 : Datum
769 6 : int8dec_any(PG_FUNCTION_ARGS)
770 : {
771 6 : return int8dec(fcinfo);
772 : }
773 :
774 : /*
775 : * int8inc_support
776 : * prosupport function for int8inc() and int8inc_any()
777 : */
778 : Datum
779 584 : int8inc_support(PG_FUNCTION_ARGS)
780 : {
781 584 : Node *rawreq = (Node *) PG_GETARG_POINTER(0);
782 :
783 584 : if (IsA(rawreq, SupportRequestWFuncMonotonic))
784 : {
785 78 : SupportRequestWFuncMonotonic *req = (SupportRequestWFuncMonotonic *) rawreq;
786 78 : MonotonicFunction monotonic = MONOTONICFUNC_NONE;
787 78 : int frameOptions = req->window_clause->frameOptions;
788 :
789 : /* No ORDER BY clause then all rows are peers */
790 78 : if (req->window_clause->orderClause == NIL)
791 24 : monotonic = MONOTONICFUNC_BOTH;
792 : else
793 : {
794 : /*
795 : * Otherwise take into account the frame options. When the frame
796 : * bound is the start of the window then the resulting value can
797 : * never decrease, therefore is monotonically increasing
798 : */
799 54 : if (frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING)
800 42 : monotonic |= MONOTONICFUNC_INCREASING;
801 :
802 : /*
803 : * Likewise, if the frame bound is the end of the window then the
804 : * resulting value can never decrease.
805 : */
806 54 : if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING)
807 12 : monotonic |= MONOTONICFUNC_DECREASING;
808 : }
809 :
810 78 : req->monotonic = monotonic;
811 78 : PG_RETURN_POINTER(req);
812 : }
813 :
814 506 : PG_RETURN_POINTER(NULL);
815 : }
816 :
817 :
818 : Datum
819 858 : int8larger(PG_FUNCTION_ARGS)
820 : {
821 858 : int64 arg1 = PG_GETARG_INT64(0);
822 858 : int64 arg2 = PG_GETARG_INT64(1);
823 : int64 result;
824 :
825 858 : result = ((arg1 > arg2) ? arg1 : arg2);
826 :
827 858 : PG_RETURN_INT64(result);
828 : }
829 :
830 : Datum
831 8730 : int8smaller(PG_FUNCTION_ARGS)
832 : {
833 8730 : int64 arg1 = PG_GETARG_INT64(0);
834 8730 : int64 arg2 = PG_GETARG_INT64(1);
835 : int64 result;
836 :
837 8730 : result = ((arg1 < arg2) ? arg1 : arg2);
838 :
839 8730 : PG_RETURN_INT64(result);
840 : }
841 :
842 : Datum
843 5216 : int84pl(PG_FUNCTION_ARGS)
844 : {
845 5216 : int64 arg1 = PG_GETARG_INT64(0);
846 5216 : int32 arg2 = PG_GETARG_INT32(1);
847 : int64 result;
848 :
849 5216 : if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
850 6 : ereport(ERROR,
851 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
852 : errmsg("bigint out of range")));
853 5210 : PG_RETURN_INT64(result);
854 : }
855 :
856 : Datum
857 134 : int84mi(PG_FUNCTION_ARGS)
858 : {
859 134 : int64 arg1 = PG_GETARG_INT64(0);
860 134 : int32 arg2 = PG_GETARG_INT32(1);
861 : int64 result;
862 :
863 134 : if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
864 6 : ereport(ERROR,
865 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
866 : errmsg("bigint out of range")));
867 128 : PG_RETURN_INT64(result);
868 : }
869 :
870 : Datum
871 2390 : int84mul(PG_FUNCTION_ARGS)
872 : {
873 2390 : int64 arg1 = PG_GETARG_INT64(0);
874 2390 : int32 arg2 = PG_GETARG_INT32(1);
875 : int64 result;
876 :
877 2390 : if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
878 12 : ereport(ERROR,
879 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
880 : errmsg("bigint out of range")));
881 2378 : PG_RETURN_INT64(result);
882 : }
883 :
884 : Datum
885 194 : int84div(PG_FUNCTION_ARGS)
886 : {
887 194 : int64 arg1 = PG_GETARG_INT64(0);
888 194 : int32 arg2 = PG_GETARG_INT32(1);
889 : int64 result;
890 :
891 194 : if (arg2 == 0)
892 : {
893 6 : ereport(ERROR,
894 : (errcode(ERRCODE_DIVISION_BY_ZERO),
895 : errmsg("division by zero")));
896 : /* ensure compiler realizes we mustn't reach the division (gcc bug) */
897 : PG_RETURN_NULL();
898 : }
899 :
900 : /*
901 : * INT64_MIN / -1 is problematic, since the result can't be represented on
902 : * a two's-complement machine. Some machines produce INT64_MIN, some
903 : * produce zero, some throw an exception. We can dodge the problem by
904 : * recognizing that division by -1 is the same as negation.
905 : */
906 188 : if (arg2 == -1)
907 : {
908 6 : if (unlikely(arg1 == PG_INT64_MIN))
909 6 : ereport(ERROR,
910 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
911 : errmsg("bigint out of range")));
912 0 : result = -arg1;
913 0 : PG_RETURN_INT64(result);
914 : }
915 :
916 : /* No overflow is possible */
917 :
918 182 : result = arg1 / arg2;
919 :
920 182 : PG_RETURN_INT64(result);
921 : }
922 :
923 : Datum
924 1370 : int48pl(PG_FUNCTION_ARGS)
925 : {
926 1370 : int32 arg1 = PG_GETARG_INT32(0);
927 1370 : int64 arg2 = PG_GETARG_INT64(1);
928 : int64 result;
929 :
930 1370 : if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
931 6 : ereport(ERROR,
932 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
933 : errmsg("bigint out of range")));
934 1364 : PG_RETURN_INT64(result);
935 : }
936 :
937 : Datum
938 66 : int48mi(PG_FUNCTION_ARGS)
939 : {
940 66 : int32 arg1 = PG_GETARG_INT32(0);
941 66 : int64 arg2 = PG_GETARG_INT64(1);
942 : int64 result;
943 :
944 66 : if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
945 6 : ereport(ERROR,
946 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
947 : errmsg("bigint out of range")));
948 60 : PG_RETURN_INT64(result);
949 : }
950 :
951 : Datum
952 222 : int48mul(PG_FUNCTION_ARGS)
953 : {
954 222 : int32 arg1 = PG_GETARG_INT32(0);
955 222 : int64 arg2 = PG_GETARG_INT64(1);
956 : int64 result;
957 :
958 222 : if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
959 6 : ereport(ERROR,
960 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
961 : errmsg("bigint out of range")));
962 216 : PG_RETURN_INT64(result);
963 : }
964 :
965 : Datum
966 36 : int48div(PG_FUNCTION_ARGS)
967 : {
968 36 : int32 arg1 = PG_GETARG_INT32(0);
969 36 : int64 arg2 = PG_GETARG_INT64(1);
970 :
971 36 : if (unlikely(arg2 == 0))
972 : {
973 6 : ereport(ERROR,
974 : (errcode(ERRCODE_DIVISION_BY_ZERO),
975 : errmsg("division by zero")));
976 : /* ensure compiler realizes we mustn't reach the division (gcc bug) */
977 : PG_RETURN_NULL();
978 : }
979 :
980 : /* No overflow is possible */
981 30 : PG_RETURN_INT64((int64) arg1 / arg2);
982 : }
983 :
984 : Datum
985 36 : int82pl(PG_FUNCTION_ARGS)
986 : {
987 36 : int64 arg1 = PG_GETARG_INT64(0);
988 36 : int16 arg2 = PG_GETARG_INT16(1);
989 : int64 result;
990 :
991 36 : if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
992 6 : ereport(ERROR,
993 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
994 : errmsg("bigint out of range")));
995 30 : PG_RETURN_INT64(result);
996 : }
997 :
998 : Datum
999 36 : int82mi(PG_FUNCTION_ARGS)
1000 : {
1001 36 : int64 arg1 = PG_GETARG_INT64(0);
1002 36 : int16 arg2 = PG_GETARG_INT16(1);
1003 : int64 result;
1004 :
1005 36 : if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
1006 6 : ereport(ERROR,
1007 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1008 : errmsg("bigint out of range")));
1009 30 : PG_RETURN_INT64(result);
1010 : }
1011 :
1012 : Datum
1013 42 : int82mul(PG_FUNCTION_ARGS)
1014 : {
1015 42 : int64 arg1 = PG_GETARG_INT64(0);
1016 42 : int16 arg2 = PG_GETARG_INT16(1);
1017 : int64 result;
1018 :
1019 42 : if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
1020 12 : ereport(ERROR,
1021 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1022 : errmsg("bigint out of range")));
1023 30 : PG_RETURN_INT64(result);
1024 : }
1025 :
1026 : Datum
1027 42 : int82div(PG_FUNCTION_ARGS)
1028 : {
1029 42 : int64 arg1 = PG_GETARG_INT64(0);
1030 42 : int16 arg2 = PG_GETARG_INT16(1);
1031 : int64 result;
1032 :
1033 42 : if (unlikely(arg2 == 0))
1034 : {
1035 6 : ereport(ERROR,
1036 : (errcode(ERRCODE_DIVISION_BY_ZERO),
1037 : errmsg("division by zero")));
1038 : /* ensure compiler realizes we mustn't reach the division (gcc bug) */
1039 : PG_RETURN_NULL();
1040 : }
1041 :
1042 : /*
1043 : * INT64_MIN / -1 is problematic, since the result can't be represented on
1044 : * a two's-complement machine. Some machines produce INT64_MIN, some
1045 : * produce zero, some throw an exception. We can dodge the problem by
1046 : * recognizing that division by -1 is the same as negation.
1047 : */
1048 36 : if (arg2 == -1)
1049 : {
1050 6 : if (unlikely(arg1 == PG_INT64_MIN))
1051 6 : ereport(ERROR,
1052 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1053 : errmsg("bigint out of range")));
1054 0 : result = -arg1;
1055 0 : PG_RETURN_INT64(result);
1056 : }
1057 :
1058 : /* No overflow is possible */
1059 :
1060 30 : result = arg1 / arg2;
1061 :
1062 30 : PG_RETURN_INT64(result);
1063 : }
1064 :
1065 : Datum
1066 36 : int28pl(PG_FUNCTION_ARGS)
1067 : {
1068 36 : int16 arg1 = PG_GETARG_INT16(0);
1069 36 : int64 arg2 = PG_GETARG_INT64(1);
1070 : int64 result;
1071 :
1072 36 : if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
1073 6 : ereport(ERROR,
1074 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1075 : errmsg("bigint out of range")));
1076 30 : PG_RETURN_INT64(result);
1077 : }
1078 :
1079 : Datum
1080 36 : int28mi(PG_FUNCTION_ARGS)
1081 : {
1082 36 : int16 arg1 = PG_GETARG_INT16(0);
1083 36 : int64 arg2 = PG_GETARG_INT64(1);
1084 : int64 result;
1085 :
1086 36 : if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
1087 6 : ereport(ERROR,
1088 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1089 : errmsg("bigint out of range")));
1090 30 : PG_RETURN_INT64(result);
1091 : }
1092 :
1093 : Datum
1094 36 : int28mul(PG_FUNCTION_ARGS)
1095 : {
1096 36 : int16 arg1 = PG_GETARG_INT16(0);
1097 36 : int64 arg2 = PG_GETARG_INT64(1);
1098 : int64 result;
1099 :
1100 36 : if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
1101 6 : ereport(ERROR,
1102 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1103 : errmsg("bigint out of range")));
1104 30 : PG_RETURN_INT64(result);
1105 : }
1106 :
1107 : Datum
1108 36 : int28div(PG_FUNCTION_ARGS)
1109 : {
1110 36 : int16 arg1 = PG_GETARG_INT16(0);
1111 36 : int64 arg2 = PG_GETARG_INT64(1);
1112 :
1113 36 : if (unlikely(arg2 == 0))
1114 : {
1115 6 : ereport(ERROR,
1116 : (errcode(ERRCODE_DIVISION_BY_ZERO),
1117 : errmsg("division by zero")));
1118 : /* ensure compiler realizes we mustn't reach the division (gcc bug) */
1119 : PG_RETURN_NULL();
1120 : }
1121 :
1122 : /* No overflow is possible */
1123 30 : PG_RETURN_INT64((int64) arg1 / arg2);
1124 : }
1125 :
1126 : /* Binary arithmetics
1127 : *
1128 : * int8and - returns arg1 & arg2
1129 : * int8or - returns arg1 | arg2
1130 : * int8xor - returns arg1 # arg2
1131 : * int8not - returns ~arg1
1132 : * int8shl - returns arg1 << arg2
1133 : * int8shr - returns arg1 >> arg2
1134 : */
1135 :
1136 : Datum
1137 42 : int8and(PG_FUNCTION_ARGS)
1138 : {
1139 42 : int64 arg1 = PG_GETARG_INT64(0);
1140 42 : int64 arg2 = PG_GETARG_INT64(1);
1141 :
1142 42 : PG_RETURN_INT64(arg1 & arg2);
1143 : }
1144 :
1145 : Datum
1146 46 : int8or(PG_FUNCTION_ARGS)
1147 : {
1148 46 : int64 arg1 = PG_GETARG_INT64(0);
1149 46 : int64 arg2 = PG_GETARG_INT64(1);
1150 :
1151 46 : PG_RETURN_INT64(arg1 | arg2);
1152 : }
1153 :
1154 : Datum
1155 42 : int8xor(PG_FUNCTION_ARGS)
1156 : {
1157 42 : int64 arg1 = PG_GETARG_INT64(0);
1158 42 : int64 arg2 = PG_GETARG_INT64(1);
1159 :
1160 42 : PG_RETURN_INT64(arg1 ^ arg2);
1161 : }
1162 :
1163 : Datum
1164 30 : int8not(PG_FUNCTION_ARGS)
1165 : {
1166 30 : int64 arg1 = PG_GETARG_INT64(0);
1167 :
1168 30 : PG_RETURN_INT64(~arg1);
1169 : }
1170 :
1171 : Datum
1172 46 : int8shl(PG_FUNCTION_ARGS)
1173 : {
1174 46 : int64 arg1 = PG_GETARG_INT64(0);
1175 46 : int32 arg2 = PG_GETARG_INT32(1);
1176 :
1177 46 : PG_RETURN_INT64(arg1 << arg2);
1178 : }
1179 :
1180 : Datum
1181 30 : int8shr(PG_FUNCTION_ARGS)
1182 : {
1183 30 : int64 arg1 = PG_GETARG_INT64(0);
1184 30 : int32 arg2 = PG_GETARG_INT32(1);
1185 :
1186 30 : PG_RETURN_INT64(arg1 >> arg2);
1187 : }
1188 :
1189 : /*----------------------------------------------------------
1190 : * Conversion operators.
1191 : *---------------------------------------------------------*/
1192 :
1193 : Datum
1194 2524814 : int48(PG_FUNCTION_ARGS)
1195 : {
1196 2524814 : int32 arg = PG_GETARG_INT32(0);
1197 :
1198 2524814 : PG_RETURN_INT64((int64) arg);
1199 : }
1200 :
1201 : Datum
1202 390686 : int84(PG_FUNCTION_ARGS)
1203 : {
1204 390686 : int64 arg = PG_GETARG_INT64(0);
1205 :
1206 390686 : if (unlikely(arg < PG_INT32_MIN) || unlikely(arg > PG_INT32_MAX))
1207 6 : ereport(ERROR,
1208 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1209 : errmsg("integer out of range")));
1210 :
1211 390680 : PG_RETURN_INT32((int32) arg);
1212 : }
1213 :
1214 : Datum
1215 18 : int28(PG_FUNCTION_ARGS)
1216 : {
1217 18 : int16 arg = PG_GETARG_INT16(0);
1218 :
1219 18 : PG_RETURN_INT64((int64) arg);
1220 : }
1221 :
1222 : Datum
1223 36 : int82(PG_FUNCTION_ARGS)
1224 : {
1225 36 : int64 arg = PG_GETARG_INT64(0);
1226 :
1227 36 : if (unlikely(arg < PG_INT16_MIN) || unlikely(arg > PG_INT16_MAX))
1228 6 : ereport(ERROR,
1229 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1230 : errmsg("smallint out of range")));
1231 :
1232 30 : PG_RETURN_INT16((int16) arg);
1233 : }
1234 :
1235 : Datum
1236 12198 : i8tod(PG_FUNCTION_ARGS)
1237 : {
1238 12198 : int64 arg = PG_GETARG_INT64(0);
1239 : float8 result;
1240 :
1241 12198 : result = arg;
1242 :
1243 12198 : PG_RETURN_FLOAT8(result);
1244 : }
1245 :
1246 : /* dtoi8()
1247 : * Convert float8 to 8-byte integer.
1248 : */
1249 : Datum
1250 144 : dtoi8(PG_FUNCTION_ARGS)
1251 : {
1252 144 : float8 num = PG_GETARG_FLOAT8(0);
1253 :
1254 : /*
1255 : * Get rid of any fractional part in the input. This is so we don't fail
1256 : * on just-out-of-range values that would round into range. Note
1257 : * assumption that rint() will pass through a NaN or Inf unchanged.
1258 : */
1259 144 : num = rint(num);
1260 :
1261 : /* Range check */
1262 144 : if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT64(num)))
1263 18 : ereport(ERROR,
1264 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1265 : errmsg("bigint out of range")));
1266 :
1267 126 : PG_RETURN_INT64((int64) num);
1268 : }
1269 :
1270 : Datum
1271 150 : i8tof(PG_FUNCTION_ARGS)
1272 : {
1273 150 : int64 arg = PG_GETARG_INT64(0);
1274 : float4 result;
1275 :
1276 150 : result = arg;
1277 :
1278 150 : PG_RETURN_FLOAT4(result);
1279 : }
1280 :
1281 : /* ftoi8()
1282 : * Convert float4 to 8-byte integer.
1283 : */
1284 : Datum
1285 30 : ftoi8(PG_FUNCTION_ARGS)
1286 : {
1287 30 : float4 num = PG_GETARG_FLOAT4(0);
1288 :
1289 : /*
1290 : * Get rid of any fractional part in the input. This is so we don't fail
1291 : * on just-out-of-range values that would round into range. Note
1292 : * assumption that rint() will pass through a NaN or Inf unchanged.
1293 : */
1294 30 : num = rint(num);
1295 :
1296 : /* Range check */
1297 30 : if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT64(num)))
1298 12 : ereport(ERROR,
1299 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1300 : errmsg("bigint out of range")));
1301 :
1302 18 : PG_RETURN_INT64((int64) num);
1303 : }
1304 :
1305 : Datum
1306 20 : i8tooid(PG_FUNCTION_ARGS)
1307 : {
1308 20 : int64 arg = PG_GETARG_INT64(0);
1309 :
1310 20 : if (unlikely(arg < 0) || unlikely(arg > PG_UINT32_MAX))
1311 6 : ereport(ERROR,
1312 : (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1313 : errmsg("OID out of range")));
1314 :
1315 14 : PG_RETURN_OID((Oid) arg);
1316 : }
1317 :
1318 : Datum
1319 22 : oidtoi8(PG_FUNCTION_ARGS)
1320 : {
1321 22 : Oid arg = PG_GETARG_OID(0);
1322 :
1323 22 : PG_RETURN_INT64((int64) arg);
1324 : }
1325 :
1326 : /*
1327 : * non-persistent numeric series generator
1328 : */
1329 : Datum
1330 3382834 : generate_series_int8(PG_FUNCTION_ARGS)
1331 : {
1332 3382834 : return generate_series_step_int8(fcinfo);
1333 : }
1334 :
1335 : Datum
1336 3382980 : generate_series_step_int8(PG_FUNCTION_ARGS)
1337 : {
1338 : FuncCallContext *funcctx;
1339 : generate_series_fctx *fctx;
1340 : int64 result;
1341 : MemoryContext oldcontext;
1342 :
1343 : /* stuff done only on the first call of the function */
1344 3382980 : if (SRF_IS_FIRSTCALL())
1345 : {
1346 60 : int64 start = PG_GETARG_INT64(0);
1347 60 : int64 finish = PG_GETARG_INT64(1);
1348 60 : int64 step = 1;
1349 :
1350 : /* see if we were given an explicit step size */
1351 60 : if (PG_NARGS() == 3)
1352 14 : step = PG_GETARG_INT64(2);
1353 60 : if (step == 0)
1354 6 : ereport(ERROR,
1355 : (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1356 : errmsg("step size cannot equal zero")));
1357 :
1358 : /* create a function context for cross-call persistence */
1359 54 : funcctx = SRF_FIRSTCALL_INIT();
1360 :
1361 : /*
1362 : * switch to memory context appropriate for multiple function calls
1363 : */
1364 54 : oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
1365 :
1366 : /* allocate memory for user context */
1367 54 : fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
1368 :
1369 : /*
1370 : * Use fctx to keep state from call to call. Seed current with the
1371 : * original start value
1372 : */
1373 54 : fctx->current = start;
1374 54 : fctx->finish = finish;
1375 54 : fctx->step = step;
1376 :
1377 54 : funcctx->user_fctx = fctx;
1378 54 : MemoryContextSwitchTo(oldcontext);
1379 : }
1380 :
1381 : /* stuff done on every call of the function */
1382 3382974 : funcctx = SRF_PERCALL_SETUP();
1383 :
1384 : /*
1385 : * get the saved state and use current as the result for this iteration
1386 : */
1387 3382974 : fctx = funcctx->user_fctx;
1388 3382974 : result = fctx->current;
1389 :
1390 3382974 : if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
1391 52 : (fctx->step < 0 && fctx->current >= fctx->finish))
1392 : {
1393 : /*
1394 : * Increment current in preparation for next iteration. If next-value
1395 : * computation overflows, this is the final result.
1396 : */
1397 3382922 : if (pg_add_s64_overflow(fctx->current, fctx->step, &fctx->current))
1398 0 : fctx->step = 0;
1399 :
1400 : /* do when there is more left to send */
1401 3382922 : SRF_RETURN_NEXT(funcctx, Int64GetDatum(result));
1402 : }
1403 : else
1404 : /* do when there is no more left */
1405 52 : SRF_RETURN_DONE(funcctx);
1406 : }
1407 :
1408 : /*
1409 : * Planner support function for generate_series(int8, int8 [, int8])
1410 : */
1411 : Datum
1412 168 : generate_series_int8_support(PG_FUNCTION_ARGS)
1413 : {
1414 168 : Node *rawreq = (Node *) PG_GETARG_POINTER(0);
1415 168 : Node *ret = NULL;
1416 :
1417 168 : if (IsA(rawreq, SupportRequestRows))
1418 : {
1419 : /* Try to estimate the number of rows returned */
1420 54 : SupportRequestRows *req = (SupportRequestRows *) rawreq;
1421 :
1422 54 : if (is_funcclause(req->node)) /* be paranoid */
1423 : {
1424 54 : List *args = ((FuncExpr *) req->node)->args;
1425 : Node *arg1,
1426 : *arg2,
1427 : *arg3;
1428 :
1429 : /* We can use estimated argument values here */
1430 54 : arg1 = estimate_expression_value(req->root, linitial(args));
1431 54 : arg2 = estimate_expression_value(req->root, lsecond(args));
1432 54 : if (list_length(args) >= 3)
1433 14 : arg3 = estimate_expression_value(req->root, lthird(args));
1434 : else
1435 40 : arg3 = NULL;
1436 :
1437 : /*
1438 : * If any argument is constant NULL, we can safely assume that
1439 : * zero rows are returned. Otherwise, if they're all non-NULL
1440 : * constants, we can calculate the number of rows that will be
1441 : * returned. Use double arithmetic to avoid overflow hazards.
1442 : */
1443 54 : if ((IsA(arg1, Const) &&
1444 46 : ((Const *) arg1)->constisnull) ||
1445 54 : (IsA(arg2, Const) &&
1446 54 : ((Const *) arg2)->constisnull) ||
1447 14 : (arg3 != NULL && IsA(arg3, Const) &&
1448 14 : ((Const *) arg3)->constisnull))
1449 : {
1450 0 : req->rows = 0;
1451 0 : ret = (Node *) req;
1452 : }
1453 54 : else if (IsA(arg1, Const) &&
1454 46 : IsA(arg2, Const) &&
1455 14 : (arg3 == NULL || IsA(arg3, Const)))
1456 : {
1457 : double start,
1458 : finish,
1459 : step;
1460 :
1461 34 : start = DatumGetInt64(((Const *) arg1)->constvalue);
1462 34 : finish = DatumGetInt64(((Const *) arg2)->constvalue);
1463 34 : step = arg3 ? DatumGetInt64(((Const *) arg3)->constvalue) : 1;
1464 :
1465 : /* This equation works for either sign of step */
1466 34 : if (step != 0)
1467 : {
1468 28 : req->rows = floor((finish - start + step) / step);
1469 28 : ret = (Node *) req;
1470 : }
1471 : }
1472 : }
1473 : }
1474 :
1475 168 : PG_RETURN_POINTER(ret);
1476 : }
|