LCOV - code coverage report
Current view: top level - src/backend/utils/adt - uuid.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 196 250 78.4 %
Date: 2025-08-19 14:18:13 Functions: 25 30 83.3 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * uuid.c
       4             :  *    Functions for the built-in type "uuid".
       5             :  *
       6             :  * Copyright (c) 2007-2025, PostgreSQL Global Development Group
       7             :  *
       8             :  * IDENTIFICATION
       9             :  *    src/backend/utils/adt/uuid.c
      10             :  *
      11             :  *-------------------------------------------------------------------------
      12             :  */
      13             : 
      14             : #include "postgres.h"
      15             : 
      16             : #include <limits.h>
      17             : #include <time.h>             /* for clock_gettime() */
      18             : 
      19             : #include "common/hashfn.h"
      20             : #include "lib/hyperloglog.h"
      21             : #include "libpq/pqformat.h"
      22             : #include "port/pg_bswap.h"
      23             : #include "utils/fmgrprotos.h"
      24             : #include "utils/guc.h"
      25             : #include "utils/skipsupport.h"
      26             : #include "utils/sortsupport.h"
      27             : #include "utils/timestamp.h"
      28             : #include "utils/uuid.h"
      29             : 
      30             : /* helper macros */
      31             : #define NS_PER_S    INT64CONST(1000000000)
      32             : #define NS_PER_MS   INT64CONST(1000000)
      33             : #define NS_PER_US   INT64CONST(1000)
      34             : #define US_PER_MS   INT64CONST(1000)
      35             : 
      36             : /*
      37             :  * UUID version 7 uses 12 bits in "rand_a" to store  1/4096 (or 2^12) fractions of
      38             :  * sub-millisecond. While most Unix-like platforms provide nanosecond-precision
      39             :  * timestamps, some systems only offer microsecond precision, limiting us to 10
      40             :  * bits of sub-millisecond information. For example, on macOS, real time is
      41             :  * truncated to microseconds. Additionally, MSVC uses the ported version of
      42             :  * gettimeofday() that returns microsecond precision.
      43             :  *
      44             :  * On systems with only 10 bits of sub-millisecond precision, we still use
      45             :  * 1/4096 parts of a millisecond, but fill lower 2 bits with random numbers
      46             :  * (see generate_uuidv7() for details).
      47             :  *
      48             :  * SUBMS_MINIMAL_STEP_NS defines the minimum number of nanoseconds that guarantees
      49             :  * an increase in the UUID's clock precision.
      50             :  */
      51             : #if defined(__darwin__) || defined(_MSC_VER)
      52             : #define SUBMS_MINIMAL_STEP_BITS 10
      53             : #else
      54             : #define SUBMS_MINIMAL_STEP_BITS 12
      55             : #endif
      56             : #define SUBMS_BITS  12
      57             : #define SUBMS_MINIMAL_STEP_NS ((NS_PER_MS / (1 << SUBMS_MINIMAL_STEP_BITS)) + 1)
      58             : 
      59             : /* sortsupport for uuid */
      60             : typedef struct
      61             : {
      62             :     int64       input_count;    /* number of non-null values seen */
      63             :     bool        estimating;     /* true if estimating cardinality */
      64             : 
      65             :     hyperLogLogState abbr_card; /* cardinality estimator */
      66             : } uuid_sortsupport_state;
      67             : 
      68             : static void string_to_uuid(const char *source, pg_uuid_t *uuid, Node *escontext);
      69             : static int  uuid_internal_cmp(const pg_uuid_t *arg1, const pg_uuid_t *arg2);
      70             : static int  uuid_fast_cmp(Datum x, Datum y, SortSupport ssup);
      71             : static bool uuid_abbrev_abort(int memtupcount, SortSupport ssup);
      72             : static Datum uuid_abbrev_convert(Datum original, SortSupport ssup);
      73             : static inline void uuid_set_version(pg_uuid_t *uuid, unsigned char version);
      74             : static inline int64 get_real_time_ns_ascending();
      75             : static pg_uuid_t *generate_uuidv7(uint64 unix_ts_ms, uint32 sub_ms);
      76             : 
      77             : Datum
      78      586320 : uuid_in(PG_FUNCTION_ARGS)
      79             : {
      80      586320 :     char       *uuid_str = PG_GETARG_CSTRING(0);
      81             :     pg_uuid_t  *uuid;
      82             : 
      83      586320 :     uuid = (pg_uuid_t *) palloc(sizeof(*uuid));
      84      586320 :     string_to_uuid(uuid_str, uuid, fcinfo->context);
      85      586284 :     PG_RETURN_UUID_P(uuid);
      86             : }
      87             : 
      88             : Datum
      89        5904 : uuid_out(PG_FUNCTION_ARGS)
      90             : {
      91        5904 :     pg_uuid_t  *uuid = PG_GETARG_UUID_P(0);
      92             :     static const char hex_chars[] = "0123456789abcdef";
      93             :     char       *buf,
      94             :                *p;
      95             :     int         i;
      96             : 
      97             :     /* counts for the four hyphens and the zero-terminator */
      98        5904 :     buf = palloc(2 * UUID_LEN + 5);
      99        5904 :     p = buf;
     100      100368 :     for (i = 0; i < UUID_LEN; i++)
     101             :     {
     102             :         int         hi;
     103             :         int         lo;
     104             : 
     105             :         /*
     106             :          * We print uuid values as a string of 8, 4, 4, 4, and then 12
     107             :          * hexadecimal characters, with each group is separated by a hyphen
     108             :          * ("-"). Therefore, add the hyphens at the appropriate places here.
     109             :          */
     110       94464 :         if (i == 4 || i == 6 || i == 8 || i == 10)
     111       23616 :             *p++ = '-';
     112             : 
     113       94464 :         hi = uuid->data[i] >> 4;
     114       94464 :         lo = uuid->data[i] & 0x0F;
     115             : 
     116       94464 :         *p++ = hex_chars[hi];
     117       94464 :         *p++ = hex_chars[lo];
     118             :     }
     119        5904 :     *p = '\0';
     120             : 
     121        5904 :     PG_RETURN_CSTRING(buf);
     122             : }
     123             : 
     124             : /*
     125             :  * We allow UUIDs as a series of 32 hexadecimal digits with an optional dash
     126             :  * after each group of 4 hexadecimal digits, and optionally surrounded by {}.
     127             :  * (The canonical format 8x-4x-4x-4x-12x, where "nx" means n hexadecimal
     128             :  * digits, is the only one used for output.)
     129             :  */
     130             : static void
     131      586320 : string_to_uuid(const char *source, pg_uuid_t *uuid, Node *escontext)
     132             : {
     133      586320 :     const char *src = source;
     134      586320 :     bool        braces = false;
     135             :     int         i;
     136             : 
     137      586320 :     if (src[0] == '{')
     138             :     {
     139          24 :         src++;
     140          24 :         braces = true;
     141             :     }
     142             : 
     143     9967026 :     for (i = 0; i < UUID_LEN; i++)
     144             :     {
     145             :         char        str_buf[3];
     146             : 
     147     9380742 :         if (src[0] == '\0' || src[1] == '\0')
     148          36 :             goto syntax_error;
     149     9380730 :         memcpy(str_buf, src, 2);
     150     9380730 :         if (!isxdigit((unsigned char) str_buf[0]) ||
     151     9380718 :             !isxdigit((unsigned char) str_buf[1]))
     152          24 :             goto syntax_error;
     153             : 
     154     9380706 :         str_buf[2] = '\0';
     155     9380706 :         uuid->data[i] = (unsigned char) strtoul(str_buf, NULL, 16);
     156     9380706 :         src += 2;
     157     9380706 :         if (src[0] == '-' && (i % 2) == 1 && i < UUID_LEN - 1)
     158     1937034 :             src++;
     159             :     }
     160             : 
     161      586284 :     if (braces)
     162             :     {
     163          18 :         if (*src != '}')
     164           6 :             goto syntax_error;
     165          12 :         src++;
     166             :     }
     167             : 
     168      586278 :     if (*src != '\0')
     169           6 :         goto syntax_error;
     170             : 
     171      586272 :     return;
     172             : 
     173          48 : syntax_error:
     174          48 :     ereturn(escontext,,
     175             :             (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
     176             :              errmsg("invalid input syntax for type %s: \"%s\"",
     177             :                     "uuid", source)));
     178             : }
     179             : 
     180             : Datum
     181           0 : uuid_recv(PG_FUNCTION_ARGS)
     182             : {
     183           0 :     StringInfo  buffer = (StringInfo) PG_GETARG_POINTER(0);
     184             :     pg_uuid_t  *uuid;
     185             : 
     186           0 :     uuid = (pg_uuid_t *) palloc(UUID_LEN);
     187           0 :     memcpy(uuid->data, pq_getmsgbytes(buffer, UUID_LEN), UUID_LEN);
     188           0 :     PG_RETURN_POINTER(uuid);
     189             : }
     190             : 
     191             : Datum
     192           0 : uuid_send(PG_FUNCTION_ARGS)
     193             : {
     194           0 :     pg_uuid_t  *uuid = PG_GETARG_UUID_P(0);
     195             :     StringInfoData buffer;
     196             : 
     197           0 :     pq_begintypsend(&buffer);
     198           0 :     pq_sendbytes(&buffer, uuid->data, UUID_LEN);
     199           0 :     PG_RETURN_BYTEA_P(pq_endtypsend(&buffer));
     200             : }
     201             : 
     202             : /* internal uuid compare function */
     203             : static int
     204    41776958 : uuid_internal_cmp(const pg_uuid_t *arg1, const pg_uuid_t *arg2)
     205             : {
     206    41776958 :     return memcmp(arg1->data, arg2->data, UUID_LEN);
     207             : }
     208             : 
     209             : Datum
     210       82718 : uuid_lt(PG_FUNCTION_ARGS)
     211             : {
     212       82718 :     pg_uuid_t  *arg1 = PG_GETARG_UUID_P(0);
     213       82718 :     pg_uuid_t  *arg2 = PG_GETARG_UUID_P(1);
     214             : 
     215       82718 :     PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) < 0);
     216             : }
     217             : 
     218             : Datum
     219       17046 : uuid_le(PG_FUNCTION_ARGS)
     220             : {
     221       17046 :     pg_uuid_t  *arg1 = PG_GETARG_UUID_P(0);
     222       17046 :     pg_uuid_t  *arg2 = PG_GETARG_UUID_P(1);
     223             : 
     224       17046 :     PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) <= 0);
     225             : }
     226             : 
     227             : Datum
     228      154460 : uuid_eq(PG_FUNCTION_ARGS)
     229             : {
     230      154460 :     pg_uuid_t  *arg1 = PG_GETARG_UUID_P(0);
     231      154460 :     pg_uuid_t  *arg2 = PG_GETARG_UUID_P(1);
     232             : 
     233      154460 :     PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) == 0);
     234             : }
     235             : 
     236             : Datum
     237       12742 : uuid_ge(PG_FUNCTION_ARGS)
     238             : {
     239       12742 :     pg_uuid_t  *arg1 = PG_GETARG_UUID_P(0);
     240       12742 :     pg_uuid_t  *arg2 = PG_GETARG_UUID_P(1);
     241             : 
     242       12742 :     PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) >= 0);
     243             : }
     244             : 
     245             : Datum
     246       16290 : uuid_gt(PG_FUNCTION_ARGS)
     247             : {
     248       16290 :     pg_uuid_t  *arg1 = PG_GETARG_UUID_P(0);
     249       16290 :     pg_uuid_t  *arg2 = PG_GETARG_UUID_P(1);
     250             : 
     251       16290 :     PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) > 0);
     252             : }
     253             : 
     254             : Datum
     255          18 : uuid_ne(PG_FUNCTION_ARGS)
     256             : {
     257          18 :     pg_uuid_t  *arg1 = PG_GETARG_UUID_P(0);
     258          18 :     pg_uuid_t  *arg2 = PG_GETARG_UUID_P(1);
     259             : 
     260          18 :     PG_RETURN_BOOL(uuid_internal_cmp(arg1, arg2) != 0);
     261             : }
     262             : 
     263             : /* handler for btree index operator */
     264             : Datum
     265        9308 : uuid_cmp(PG_FUNCTION_ARGS)
     266             : {
     267        9308 :     pg_uuid_t  *arg1 = PG_GETARG_UUID_P(0);
     268        9308 :     pg_uuid_t  *arg2 = PG_GETARG_UUID_P(1);
     269             : 
     270        9308 :     PG_RETURN_INT32(uuid_internal_cmp(arg1, arg2));
     271             : }
     272             : 
     273             : /*
     274             :  * Sort support strategy routine
     275             :  */
     276             : Datum
     277         388 : uuid_sortsupport(PG_FUNCTION_ARGS)
     278             : {
     279         388 :     SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
     280             : 
     281         388 :     ssup->comparator = uuid_fast_cmp;
     282         388 :     ssup->ssup_extra = NULL;
     283             : 
     284         388 :     if (ssup->abbreviate)
     285             :     {
     286             :         uuid_sortsupport_state *uss;
     287             :         MemoryContext oldcontext;
     288             : 
     289         308 :         oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt);
     290             : 
     291         308 :         uss = palloc(sizeof(uuid_sortsupport_state));
     292         308 :         uss->input_count = 0;
     293         308 :         uss->estimating = true;
     294         308 :         initHyperLogLog(&uss->abbr_card, 10);
     295             : 
     296         308 :         ssup->ssup_extra = uss;
     297             : 
     298         308 :         ssup->comparator = ssup_datum_unsigned_cmp;
     299         308 :         ssup->abbrev_converter = uuid_abbrev_convert;
     300         308 :         ssup->abbrev_abort = uuid_abbrev_abort;
     301         308 :         ssup->abbrev_full_comparator = uuid_fast_cmp;
     302             : 
     303         308 :         MemoryContextSwitchTo(oldcontext);
     304             :     }
     305             : 
     306         388 :     PG_RETURN_VOID();
     307             : }
     308             : 
     309             : /*
     310             :  * SortSupport comparison func
     311             :  */
     312             : static int
     313    41484376 : uuid_fast_cmp(Datum x, Datum y, SortSupport ssup)
     314             : {
     315    41484376 :     pg_uuid_t  *arg1 = DatumGetUUIDP(x);
     316    41484376 :     pg_uuid_t  *arg2 = DatumGetUUIDP(y);
     317             : 
     318    41484376 :     return uuid_internal_cmp(arg1, arg2);
     319             : }
     320             : 
     321             : /*
     322             :  * Callback for estimating effectiveness of abbreviated key optimization.
     323             :  *
     324             :  * We pay no attention to the cardinality of the non-abbreviated data, because
     325             :  * there is no equality fast-path within authoritative uuid comparator.
     326             :  */
     327             : static bool
     328        2322 : uuid_abbrev_abort(int memtupcount, SortSupport ssup)
     329             : {
     330        2322 :     uuid_sortsupport_state *uss = ssup->ssup_extra;
     331             :     double      abbr_card;
     332             : 
     333        2322 :     if (memtupcount < 10000 || uss->input_count < 10000 || !uss->estimating)
     334        2130 :         return false;
     335             : 
     336         192 :     abbr_card = estimateHyperLogLog(&uss->abbr_card);
     337             : 
     338             :     /*
     339             :      * If we have >100k distinct values, then even if we were sorting many
     340             :      * billion rows we'd likely still break even, and the penalty of undoing
     341             :      * that many rows of abbrevs would probably not be worth it.  Stop even
     342             :      * counting at that point.
     343             :      */
     344         192 :     if (abbr_card > 100000.0)
     345             :     {
     346           0 :         if (trace_sort)
     347           0 :             elog(LOG,
     348             :                  "uuid_abbrev: estimation ends at cardinality %f"
     349             :                  " after " INT64_FORMAT " values (%d rows)",
     350             :                  abbr_card, uss->input_count, memtupcount);
     351           0 :         uss->estimating = false;
     352           0 :         return false;
     353             :     }
     354             : 
     355             :     /*
     356             :      * Target minimum cardinality is 1 per ~2k of non-null inputs.  0.5 row
     357             :      * fudge factor allows us to abort earlier on genuinely pathological data
     358             :      * where we've had exactly one abbreviated value in the first 2k
     359             :      * (non-null) rows.
     360             :      */
     361         192 :     if (abbr_card < uss->input_count / 2000.0 + 0.5)
     362             :     {
     363          96 :         if (trace_sort)
     364           0 :             elog(LOG,
     365             :                  "uuid_abbrev: aborting abbreviation at cardinality %f"
     366             :                  " below threshold %f after " INT64_FORMAT " values (%d rows)",
     367             :                  abbr_card, uss->input_count / 2000.0 + 0.5, uss->input_count,
     368             :                  memtupcount);
     369          96 :         return true;
     370             :     }
     371             : 
     372          96 :     if (trace_sort)
     373           0 :         elog(LOG,
     374             :              "uuid_abbrev: cardinality %f after " INT64_FORMAT
     375             :              " values (%d rows)", abbr_card, uss->input_count, memtupcount);
     376             : 
     377          96 :     return false;
     378             : }
     379             : 
     380             : /*
     381             :  * Conversion routine for sortsupport.  Converts original uuid representation
     382             :  * to abbreviated key representation.  Our encoding strategy is simple -- pack
     383             :  * the first `sizeof(Datum)` bytes of uuid data into a Datum (on little-endian
     384             :  * machines, the bytes are stored in reverse order), and treat it as an
     385             :  * unsigned integer.
     386             :  */
     387             : static Datum
     388     3384150 : uuid_abbrev_convert(Datum original, SortSupport ssup)
     389             : {
     390     3384150 :     uuid_sortsupport_state *uss = ssup->ssup_extra;
     391     3384150 :     pg_uuid_t  *authoritative = DatumGetUUIDP(original);
     392             :     Datum       res;
     393             : 
     394     3384150 :     memcpy(&res, authoritative->data, sizeof(Datum));
     395     3384150 :     uss->input_count += 1;
     396             : 
     397     3384150 :     if (uss->estimating)
     398             :     {
     399             :         uint32      tmp;
     400             : 
     401     3384150 :         tmp = DatumGetUInt32(res) ^ (uint32) (DatumGetUInt64(res) >> 32);
     402             : 
     403     3384150 :         addHyperLogLog(&uss->abbr_card, DatumGetUInt32(hash_uint32(tmp)));
     404             :     }
     405             : 
     406             :     /*
     407             :      * Byteswap on little-endian machines.
     408             :      *
     409             :      * This is needed so that ssup_datum_unsigned_cmp() (an unsigned integer
     410             :      * 3-way comparator) works correctly on all platforms.  If we didn't do
     411             :      * this, the comparator would have to call memcmp() with a pair of
     412             :      * pointers to the first byte of each abbreviated key, which is slower.
     413             :      */
     414     3384150 :     res = DatumBigEndianToNative(res);
     415             : 
     416     3384150 :     return res;
     417             : }
     418             : 
     419             : static Datum
     420           0 : uuid_decrement(Relation rel, Datum existing, bool *underflow)
     421             : {
     422             :     pg_uuid_t  *uuid;
     423             : 
     424           0 :     uuid = (pg_uuid_t *) palloc(UUID_LEN);
     425           0 :     memcpy(uuid, DatumGetUUIDP(existing), UUID_LEN);
     426           0 :     for (int i = UUID_LEN - 1; i >= 0; i--)
     427             :     {
     428           0 :         if (uuid->data[i] > 0)
     429             :         {
     430           0 :             uuid->data[i]--;
     431           0 :             *underflow = false;
     432           0 :             return UUIDPGetDatum(uuid);
     433             :         }
     434           0 :         uuid->data[i] = UCHAR_MAX;
     435             :     }
     436             : 
     437           0 :     pfree(uuid);                /* cannot leak memory */
     438             : 
     439             :     /* return value is undefined */
     440           0 :     *underflow = true;
     441           0 :     return (Datum) 0;
     442             : }
     443             : 
     444             : static Datum
     445           0 : uuid_increment(Relation rel, Datum existing, bool *overflow)
     446             : {
     447             :     pg_uuid_t  *uuid;
     448             : 
     449           0 :     uuid = (pg_uuid_t *) palloc(UUID_LEN);
     450           0 :     memcpy(uuid, DatumGetUUIDP(existing), UUID_LEN);
     451           0 :     for (int i = UUID_LEN - 1; i >= 0; i--)
     452             :     {
     453           0 :         if (uuid->data[i] < UCHAR_MAX)
     454             :         {
     455           0 :             uuid->data[i]++;
     456           0 :             *overflow = false;
     457           0 :             return UUIDPGetDatum(uuid);
     458             :         }
     459           0 :         uuid->data[i] = 0;
     460             :     }
     461             : 
     462           0 :     pfree(uuid);                /* cannot leak memory */
     463             : 
     464             :     /* return value is undefined */
     465           0 :     *overflow = true;
     466           0 :     return (Datum) 0;
     467             : }
     468             : 
     469             : Datum
     470           0 : uuid_skipsupport(PG_FUNCTION_ARGS)
     471             : {
     472           0 :     SkipSupport sksup = (SkipSupport) PG_GETARG_POINTER(0);
     473           0 :     pg_uuid_t  *uuid_min = palloc(UUID_LEN);
     474           0 :     pg_uuid_t  *uuid_max = palloc(UUID_LEN);
     475             : 
     476           0 :     memset(uuid_min->data, 0x00, UUID_LEN);
     477           0 :     memset(uuid_max->data, 0xFF, UUID_LEN);
     478             : 
     479           0 :     sksup->decrement = uuid_decrement;
     480           0 :     sksup->increment = uuid_increment;
     481           0 :     sksup->low_elem = UUIDPGetDatum(uuid_min);
     482           0 :     sksup->high_elem = UUIDPGetDatum(uuid_max);
     483             : 
     484           0 :     PG_RETURN_VOID();
     485             : }
     486             : 
     487             : /* hash index support */
     488             : Datum
     489        2426 : uuid_hash(PG_FUNCTION_ARGS)
     490             : {
     491        2426 :     pg_uuid_t  *key = PG_GETARG_UUID_P(0);
     492             : 
     493        2426 :     return hash_any(key->data, UUID_LEN);
     494             : }
     495             : 
     496             : Datum
     497          60 : uuid_hash_extended(PG_FUNCTION_ARGS)
     498             : {
     499          60 :     pg_uuid_t  *key = PG_GETARG_UUID_P(0);
     500             : 
     501          60 :     return hash_any_extended(key->data, UUID_LEN, PG_GETARG_INT64(1));
     502             : }
     503             : 
     504             : /*
     505             :  * Set the given UUID version and the variant bits
     506             :  */
     507             : static inline void
     508       53640 : uuid_set_version(pg_uuid_t *uuid, unsigned char version)
     509             : {
     510             :     /* set version field, top four bits */
     511       53640 :     uuid->data[6] = (uuid->data[6] & 0x0f) | (version << 4);
     512             : 
     513             :     /* set variant field, top two bits are 1, 0 */
     514       53640 :     uuid->data[8] = (uuid->data[8] & 0x3f) | 0x80;
     515       53640 : }
     516             : 
     517             : /*
     518             :  * Generate UUID version 4.
     519             :  *
     520             :  * All UUID bytes are filled with strong random numbers except version and
     521             :  * variant bits.
     522             :  */
     523             : Datum
     524          42 : gen_random_uuid(PG_FUNCTION_ARGS)
     525             : {
     526          42 :     pg_uuid_t  *uuid = palloc(UUID_LEN);
     527             : 
     528          42 :     if (!pg_strong_random(uuid, UUID_LEN))
     529           0 :         ereport(ERROR,
     530             :                 (errcode(ERRCODE_INTERNAL_ERROR),
     531             :                  errmsg("could not generate random values")));
     532             : 
     533             :     /*
     534             :      * Set magic numbers for a "version 4" (pseudorandom) UUID and variant,
     535             :      * see https://datatracker.ietf.org/doc/html/rfc9562#name-uuid-version-4
     536             :      */
     537          42 :     uuid_set_version(uuid, 4);
     538             : 
     539          42 :     PG_RETURN_UUID_P(uuid);
     540             : }
     541             : 
     542             : /*
     543             :  * Get the current timestamp with nanosecond precision for UUID generation.
     544             :  * The returned timestamp is ensured to be at least SUBMS_MINIMAL_STEP greater
     545             :  * than the previous returned timestamp (on this backend).
     546             :  */
     547             : static inline int64
     548       53598 : get_real_time_ns_ascending()
     549             : {
     550             :     static int64 previous_ns = 0;
     551             :     int64       ns;
     552             : 
     553             :     /* Get the current real timestamp */
     554             : 
     555             : #ifdef  _MSC_VER
     556             :     struct timeval tmp;
     557             : 
     558             :     gettimeofday(&tmp, NULL);
     559             :     ns = tmp.tv_sec * NS_PER_S + tmp.tv_usec * NS_PER_US;
     560             : #else
     561             :     struct timespec tmp;
     562             : 
     563             :     /*
     564             :      * We don't use gettimeofday(), instead use clock_gettime() with
     565             :      * CLOCK_REALTIME where available in order to get a high-precision
     566             :      * (nanoseconds) real timestamp.
     567             :      *
     568             :      * Note while a timestamp returned by clock_gettime() with CLOCK_REALTIME
     569             :      * is nanosecond-precision on most Unix-like platforms, on some platforms
     570             :      * such as macOS it's restricted to microsecond-precision.
     571             :      */
     572       53598 :     clock_gettime(CLOCK_REALTIME, &tmp);
     573       53598 :     ns = tmp.tv_sec * NS_PER_S + tmp.tv_nsec;
     574             : #endif
     575             : 
     576             :     /* Guarantee the minimal step advancement of the timestamp */
     577       53598 :     if (previous_ns + SUBMS_MINIMAL_STEP_NS >= ns)
     578           0 :         ns = previous_ns + SUBMS_MINIMAL_STEP_NS;
     579       53598 :     previous_ns = ns;
     580             : 
     581       53598 :     return ns;
     582             : }
     583             : 
     584             : /*
     585             :  * Generate UUID version 7 per RFC 9562, with the given timestamp.
     586             :  *
     587             :  * UUID version 7 consists of a Unix timestamp in milliseconds (48 bits) and
     588             :  * 74 random bits, excluding the required version and variant bits. To ensure
     589             :  * monotonicity in scenarios of high-frequency UUID generation, we employ the
     590             :  * method "Replace Leftmost Random Bits with Increased Clock Precision (Method 3)",
     591             :  * described in the RFC. This method utilizes 12 bits from the "rand_a" bits
     592             :  * to store a 1/4096 (or 2^12) fraction of sub-millisecond precision.
     593             :  *
     594             :  * unix_ts_ms is a number of milliseconds since start of the UNIX epoch,
     595             :  * and sub_ms is a number of nanoseconds within millisecond. These values are
     596             :  * used for time-dependent bits of UUID.
     597             :  *
     598             :  * NB: all numbers here are unsigned, unix_ts_ms cannot be negative per RFC.
     599             :  */
     600             : static pg_uuid_t *
     601       53598 : generate_uuidv7(uint64 unix_ts_ms, uint32 sub_ms)
     602             : {
     603       53598 :     pg_uuid_t  *uuid = palloc(UUID_LEN);
     604             :     uint32      increased_clock_precision;
     605             : 
     606             :     /* Fill in time part */
     607       53598 :     uuid->data[0] = (unsigned char) (unix_ts_ms >> 40);
     608       53598 :     uuid->data[1] = (unsigned char) (unix_ts_ms >> 32);
     609       53598 :     uuid->data[2] = (unsigned char) (unix_ts_ms >> 24);
     610       53598 :     uuid->data[3] = (unsigned char) (unix_ts_ms >> 16);
     611       53598 :     uuid->data[4] = (unsigned char) (unix_ts_ms >> 8);
     612       53598 :     uuid->data[5] = (unsigned char) unix_ts_ms;
     613             : 
     614             :     /*
     615             :      * sub-millisecond timestamp fraction (SUBMS_BITS bits, not
     616             :      * SUBMS_MINIMAL_STEP_BITS)
     617             :      */
     618       53598 :     increased_clock_precision = (sub_ms * (1 << SUBMS_BITS)) / NS_PER_MS;
     619             : 
     620             :     /* Fill the increased clock precision to "rand_a" bits */
     621       53598 :     uuid->data[6] = (unsigned char) (increased_clock_precision >> 8);
     622       53598 :     uuid->data[7] = (unsigned char) (increased_clock_precision);
     623             : 
     624             :     /* fill everything after the increased clock precision with random bytes */
     625       53598 :     if (!pg_strong_random(&uuid->data[8], UUID_LEN - 8))
     626           0 :         ereport(ERROR,
     627             :                 (errcode(ERRCODE_INTERNAL_ERROR),
     628             :                  errmsg("could not generate random values")));
     629             : 
     630             : #if SUBMS_MINIMAL_STEP_BITS == 10
     631             : 
     632             :     /*
     633             :      * On systems that have only 10 bits of sub-ms precision,  2 least
     634             :      * significant are dependent on other time-specific bits, and they do not
     635             :      * contribute to uniqueness. To make these bit random we mix in two bits
     636             :      * from CSPRNG. SUBMS_MINIMAL_STEP is chosen so that we still guarantee
     637             :      * monotonicity despite altering these bits.
     638             :      */
     639             :     uuid->data[7] = uuid->data[7] ^ (uuid->data[8] >> 6);
     640             : #endif
     641             : 
     642             :     /*
     643             :      * Set magic numbers for a "version 7" (pseudorandom) UUID and variant,
     644             :      * see https://www.rfc-editor.org/rfc/rfc9562#name-version-field
     645             :      */
     646       53598 :     uuid_set_version(uuid, 7);
     647             : 
     648       53598 :     return uuid;
     649             : }
     650             : 
     651             : /*
     652             :  * Generate UUID version 7 with the current timestamp.
     653             :  */
     654             : Datum
     655          78 : uuidv7(PG_FUNCTION_ARGS)
     656             : {
     657          78 :     int64       ns = get_real_time_ns_ascending();
     658          78 :     pg_uuid_t  *uuid = generate_uuidv7(ns / NS_PER_MS, ns % NS_PER_MS);
     659             : 
     660          78 :     PG_RETURN_UUID_P(uuid);
     661             : }
     662             : 
     663             : /*
     664             :  * Similar to uuidv7() but with the timestamp adjusted by the given interval.
     665             :  */
     666             : Datum
     667       53520 : uuidv7_interval(PG_FUNCTION_ARGS)
     668             : {
     669       53520 :     Interval   *shift = PG_GETARG_INTERVAL_P(0);
     670             :     TimestampTz ts;
     671             :     pg_uuid_t  *uuid;
     672       53520 :     int64       ns = get_real_time_ns_ascending();
     673             :     int64       us;
     674             : 
     675             :     /*
     676             :      * Shift the current timestamp by the given interval. To calculate time
     677             :      * shift correctly, we convert the UNIX epoch to TimestampTz and use
     678             :      * timestamptz_pl_interval(). This calculation is done with microsecond
     679             :      * precision.
     680             :      */
     681             : 
     682       53520 :     ts = (TimestampTz) (ns / NS_PER_US) -
     683             :         (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY * USECS_PER_SEC;
     684             : 
     685             :     /* Compute time shift */
     686       53520 :     ts = DatumGetTimestampTz(DirectFunctionCall2(timestamptz_pl_interval,
     687             :                                                  TimestampTzGetDatum(ts),
     688             :                                                  IntervalPGetDatum(shift)));
     689             : 
     690             :     /* Convert a TimestampTz value back to an UNIX epoch timestamp */
     691       53520 :     us = ts + (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY * USECS_PER_SEC;
     692             : 
     693             :     /* Generate an UUIDv7 */
     694       53520 :     uuid = generate_uuidv7(us / US_PER_MS, (us % US_PER_MS) * NS_PER_US + ns % NS_PER_US);
     695             : 
     696       53520 :     PG_RETURN_UUID_P(uuid);
     697             : }
     698             : 
     699             : /*
     700             :  * Start of a Gregorian epoch == date2j(1582,10,15)
     701             :  * We cast it to 64-bit because it's used in overflow-prone computations
     702             :  */
     703             : #define GREGORIAN_EPOCH_JDATE  INT64CONST(2299161)
     704             : 
     705             : /*
     706             :  * Extract timestamp from UUID.
     707             :  *
     708             :  * Returns null if not RFC 9562 variant or not a version that has a timestamp.
     709             :  */
     710             : Datum
     711       53538 : uuid_extract_timestamp(PG_FUNCTION_ARGS)
     712             : {
     713       53538 :     pg_uuid_t  *uuid = PG_GETARG_UUID_P(0);
     714             :     int         version;
     715             :     uint64      tms;
     716             :     TimestampTz ts;
     717             : 
     718             :     /* check if RFC 9562 variant */
     719       53538 :     if ((uuid->data[8] & 0xc0) != 0x80)
     720           6 :         PG_RETURN_NULL();
     721             : 
     722       53532 :     version = uuid->data[6] >> 4;
     723             : 
     724       53532 :     if (version == 1)
     725             :     {
     726           6 :         tms = ((uint64) uuid->data[0] << 24)
     727           6 :             + ((uint64) uuid->data[1] << 16)
     728           6 :             + ((uint64) uuid->data[2] << 8)
     729           6 :             + ((uint64) uuid->data[3])
     730           6 :             + ((uint64) uuid->data[4] << 40)
     731           6 :             + ((uint64) uuid->data[5] << 32)
     732           6 :             + (((uint64) uuid->data[6] & 0xf) << 56)
     733           6 :             + ((uint64) uuid->data[7] << 48);
     734             : 
     735             :         /* convert 100-ns intervals to us, then adjust */
     736           6 :         ts = (TimestampTz) (tms / 10) -
     737             :             ((uint64) POSTGRES_EPOCH_JDATE - GREGORIAN_EPOCH_JDATE) * SECS_PER_DAY * USECS_PER_SEC;
     738           6 :         PG_RETURN_TIMESTAMPTZ(ts);
     739             :     }
     740             : 
     741       53526 :     if (version == 7)
     742             :     {
     743       53520 :         tms = (uuid->data[5])
     744       53520 :             + (((uint64) uuid->data[4]) << 8)
     745       53520 :             + (((uint64) uuid->data[3]) << 16)
     746       53520 :             + (((uint64) uuid->data[2]) << 24)
     747       53520 :             + (((uint64) uuid->data[1]) << 32)
     748       53520 :             + (((uint64) uuid->data[0]) << 40);
     749             : 
     750             :         /* convert ms to us, then adjust */
     751       53520 :         ts = (TimestampTz) (tms * US_PER_MS) -
     752             :             (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY * USECS_PER_SEC;
     753             : 
     754       53520 :         PG_RETURN_TIMESTAMPTZ(ts);
     755             :     }
     756             : 
     757             :     /* not a timestamp-containing UUID version */
     758           6 :     PG_RETURN_NULL();
     759             : }
     760             : 
     761             : /*
     762             :  * Extract UUID version.
     763             :  *
     764             :  * Returns null if not RFC 9562 variant.
     765             :  */
     766             : Datum
     767          30 : uuid_extract_version(PG_FUNCTION_ARGS)
     768             : {
     769          30 :     pg_uuid_t  *uuid = PG_GETARG_UUID_P(0);
     770             :     uint16      version;
     771             : 
     772             :     /* check if RFC 9562 variant */
     773          30 :     if ((uuid->data[8] & 0xc0) != 0x80)
     774           6 :         PG_RETURN_NULL();
     775             : 
     776          24 :     version = uuid->data[6] >> 4;
     777             : 
     778          24 :     PG_RETURN_UINT16(version);
     779             : }

Generated by: LCOV version 1.16