CSE 120
Principles of Operating
Systems

Fall 2024

Lecture 3: Processes

Geoffrey M. Voelker

Processes

* This lecture starts a class segment that covers
processes, threads, and synchronization

¢

These topics are perhaps the most important in this class

* Today’s topics are processes and process
management

¢

¢

¢

¢

¢

What are the units of execution?

How are those units of execution represented in the OS?
How is work scheduled in the CPU?

What are the possible execution states of a process?
How does a process move from one state to another?

October 3, 2024 CSE 120 — Lecture 3 — Processes

The Process

* The process is the OS abstraction for execution
+ It is the unit of execution
+ ltis the unit of scheduling
+ lItis the dynamic execution context of a program

* A process is sometimes called a job or a task or a
sequential process

* A sequential process is a program in execution
+ It defines the instruction-at-a-time execution of a program
+ Programs are static entities with the potential for execution

October 3, 2024 CSE 120 — Lecture 3 — Processes

Process Components

« A process contains all state for a program in execution

¢

¢

¢

¢

¢

¢

¢

An address space

The code for the executing program

The data for the executing program

An execution stack encapsulating the state of procedure calls
The program counter (PC) indicating the next instruction

A set of general-purpose registers with current values

A set of operating system resources
» Open files, network connections, etc.

« A process is named using its process ID (PID)

October 3, 2024 CSE 120 — Lecture 3 — Processes

Unix PIDs

top - 10:85:04 up 373 days, 1:29, 1 user, load average: 0.00, 0.01, 0.00
Tasks: 206 total, 1 running, 122 sleeping, 1 stopped, 0 zombie

%Cpu(s): ©.0 us, ©.1 sy, 0.0 ni, 99.8 id, ©.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 98967544 total, 72343520 free, 1141584 used, 25482440 buff/cache

KiB Swap: 2097148 total, 2097148 free, 0 used. 96887280 avail Mem

USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

27210 voelker 20 33536 3692 3160 R 6.3 0.0 100.05 top

27211 root 20 66208 5360 4664 :00.01 sshd

27877 root 20 0 0 :05.72 kworker/0:2
root 20 9432 6796 146 .34 systemd
root 20 0 0 :07.77 kthreadd
root 0 :00.00 kworker/0:+
root 20 :57.38 kworker/ul+
root 5 :00.00 mm_percpu_+
root 20 :17.02 ksoftirqd/e
root 20 :58.78 rcu_sched
root 20 :00.00 rcu_bh
root rt :02.67 migration/@
root rt :57.85 watchdog/®©
root 20 :00.00 cpuhp/0@
root 20 :00.00 cpuhp/1
root rt :55.63 watchdog/1
root rt :03.08 migration/1

(&)

—

OO0 00O OO0,V OO

S
I
S
S
I
I
I
S
I
I
S
S
S
S
S

(avINev e B o BN ov I aw Bav BYav BN cO RN aw N aN)
(av e Bav Brav BN ce R aw B o Brav RN s BN o BEav BN av I e s B e B A BN 08

(ev e Bav B oI ce BN an o Brav BN e BN cO B A RN AN]
(vl ev BN av BN e BN e RN av B av BN av BN o BN co B v BN a V]
OO0 0O OO WW
(evievNav Bov BN co RN av Ban Brav BN oo BN oo B av BN B e v BN a v B o BN V)
OO0 OO OO DOOdDO O
—_—
O

(e

S

October 3, 2024 CSE 120 — Lecture 3 — Processes

Basic Process Address Space

OXFFFFFFFF
A

Address
Space

\J
0x00000000

October 3, 2024

Stack

l
!

A

SP

Heap
(Dynamic Memory Alloc)

Static Data
(Data Segment)

Code
(Text Segment)

<~— PC

CSE 120 — Lecture 3 — Processes

Process State

* A process has an execution state that indicates what it
Is currently doing

+ Running: Executing instructions on the CPU
» It is the process that has control of the CPU
» How many processes can be in the running state simultaneously?

+ Ready: Waiting to be assigned to the CPU
» Ready to execute, but another process is executing on the CPU

+ Waiting: Waiting for an event, e.g., I/O completion
» It cannot make progress until event is signaled (disk completes)
* As a process executes, it moves from state to state
+ Unix “ps™: column indicates execution state
+ What state do you think a process is in most of the time?
+ How many processes can a system support?

October 3, 2024 CSE 120 — Lecture 3 — Processes 7

Unix Process States

top - 10:85:04 up 373 days,
Tasks: 206 total, 1 running, 122 sleeping,
%Cpu(s): ©.0 us, ©.1 sy, 0.0 ni, 99.8 id,
KiB Mem : 98967544 total, 72343520 free,
KiB Swap: 2097148 total, 2097148 free,

1:29, 1 user,

0.0 wa,

PID USER
voelker 0
root 0
root 0
root 0
root 0
root 0 0
root 20 %)
root 5 0
root 20 0

0
0
0
%)
0
0
0
0

PR NI
20
20
20
20
20

VIRT
33536 3692 3166 0.3 0.
66208 5360 4664

0 0 @
225572 9432 6796
0 0 @

RES

root 20
root 20
root rt
root rt
root 20
root 20
root rt
root rt

(avINev e B o BN ov I aw Bav BYav BN cO RN aw N aN)
(av e Bav Brav BN ce R aw B o Brav RN s BN o BEav BN av I e s B e B A BN 08

OO0 0O OO WW

(e Byas Bas BN av RN oo BN ae RS B o RN B e B e B AN]
[av IlevMav e I cv IEev I ev Ml av IR av BN co BN e B w]

(e

s
I
S
S
I
I
I
S
I
I
S
S
S
S
S

S

October 3, 2024 CSE 120 — Lecture 3 — Processes

(evievNav Bov BN co RN av Ban Brav BN oo BN oo B av BN B e v BN a v B o BN V)
®®®®®®®®®®®®®®®®®

load average:

1 stopped,
0.0 hi,
1141584 used, 25482440 buff/cache
0 used. 96887280 avail Mem

-- %CPU %MEM

0.00, 0.01, O
@ zombie
0.0 si,

1

-
O

(av N B av B A IN e RN e B aw PR cS BN co B A BN AN]

0
0
0
9

(ay)

.00

0.0 st

TIME+ COMMAND

100.
100
105.
146
:07.
100
:57.
100
217,
:58.
100
102
:57.
100
100
:55.
103

05

.01

72

.34

77

.00

38

.00

02
78

.00
.67

85

.00
.00

63

.08

top

sshd
kworker/0:2
systemd
kthreadd
kworker/0:+
kworker/ul+
mm_percpu_+
ksoftirqd/o
rcu_sched
rcu_bh
migration/®
watchdog/©
cpuhp/@
cpuhp/1
watchdog/1
migration/T

Process State Graph

Create

Process
-

I/O Done

Unschedule Schedule
Process Process
/IIO,/ Page
Terminated Fault, etc.
Process
Exit

October 3, 2024 CSE 120 — Lecture 3 — Processes

Process Data Structures

How does the OS represent a process in the kernel?

* At any time, there are many processes in the system,
each in a particular state

« The OS data structure representing each process is
called the Process Control Block (PCB)

« The PCB contains all the info about a process

 The PCB also is where the OS keeps all its hardware
execution state (PC, SP, regs, etc.) when the process
IS not running

+ This state is everything that is needed to restore the hardware

to the same configuration it was in when the process was
switched out of the hardware

October 3, 2024 CSE 120 — Lecture 3 — Processes

10

PCB Data Structure

* The PCB contains a huge amount of information in

one large structure
» Process ID (PID)
» Execution state
» Hardware state: PC, SP, regs
» Memory management
» Scheduling
» Accounting
» Pointers for state queues
» Etc.

 Itis a heavyweight abstraction

October 3, 2024 CSE 120 — Lecture 3 — Processes

struct proc (Solaris)

/*
* One structure allocated per active process. It contains all
* data needed about the process while the process may be swapped
* out. Other per-process data (user.h) is also inside the proc structure.
* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.
*/
typedef struct proc {
/*
* Fields requiring no explicit locking
*/
struct vnode *p_exec;
struct as *p_as;
struct plock *p_lockp;
kmutex_t p_crlock;
struct cred *p_cred;
/*
* Fields protected by pidlock
*/
int p_swapcnt;
char p_stat;
char p_wcode;
ushort_t p_pidflag;
int p_wdata;
pid_t p_ppid;
struct proc *p_link;
struct proc *p_parent;

/* pointer to a.out vnode */

/* process address space pointer */
/* ptr to proc struct's mutex lock */
/* lock for p_cred */

/* process credentials */

/* number of swapped out lwps */
/* status of process */
/* current wait code */
/* flags protected only by pidlock */
/* current wait return value */
/* process id of parent */
/* forward link */
/* ptr to parent process */
struct proc *p_child; /* ptr to first child process */
struct proc *p_sibling; /* ptr to next sibling proc on chain */
struct proc *p_psibling; /* ptr to prev sibling proc on chain */
struct proc *p_sibling_ns; /* prt to siblings with new state */
struct proc *p_child_ns; /* prt to children with new state */
struct proc *p_next; /* active chain link next */
struct proc *p_prev; /* active chain link prev */
struct proc *p_nextofkin; /* gets accounting info at exit */
struct proc *p_orphan;
struct proc *p_nextorph;

October 3, 2024

p_pglink; / process group hash chain link next */
struct proc *p_ppglink; /* process group hash chain link prev */
struct sess *p_sessp; /* session information */

struct pid *p_pidp; /* process ID info */

struct pid *p_pgidp; /* process group ID info */
/*

* Fields protected by p_lock

*

kcondvar_t p_cv;
kcondvar_t p_flag_cyv;
kcondvar_t p_lwpexit; /* waiting for some Iwp to exit */
kcondvar_t p_holdlwps; /* process is waiting for its lwps */
/* to to be held. */
/* unused */
/* protected while set. */

/* proc struct's condition variable */

ushort_t p_pad1;
uint_t p_flag;

/* flags defined below */
clock_t p_utime;
clock_t p_stime;
clock_t p_cutime;
clock_t p_cstime;
caddr_t *p_segacct;
caddr_t p_brkbase;
size_t p_brksize;

/%

* Per process signal stuff.
*/

k_sigset_t p_sig;

/* user time, this process */

/* system time, this process */

/* sum of children's user time */

/* sum of children's system time */
/* segment accounting info */
/* base address of heap */

/* heap size in bytes */

/* signals pending to this process */
k_sigset_t p_ignore; /* ignore when generated */
k_sigset_t p_siginfo; /* gets signal info with signal */
struct sigqueue *p_sigqueue; /* queued siginfo structures */
struct sigghdr *p_sigghdr; /* hdr to sigqueue structure pool */
struct sigghdr *p_signhdr; /* hdr to signotify structure pool */
uchar_t p_stopsig; /* jobcontrol stop signal */

CSE 120 — Lecture 3 — Processes

12

struct proc (Solaris) (2)

/*

* Special per-process flag when set will fix misaligned memory
* references.

*/

char p_fixalignment;

/*

* Per process Iwp and kernel thread stuff

*/

id_t p_lwpid; /* most recently allocated Iwpid */

/* number of lwps in this process */
/* number of not stopped Iwps */
/* number of lwps in lwp_wait() */
/* number of zombie Iwps */
/* number of entries in p_zomb_tid */
/* array of zombie Iwpids */
/* circular list of threads */

int p_lwpcent;
int p_lwprent;
int p_lwpwait;
int p_zombcnt;
int p_zomb_max;
id t *p_zomb_tid;
kthread_t *p_tlist;
/*

* Iproc (process filesystem) debugger interface stuff.
*/

k_sigset_t p_sigmask;
k_fltset_t p_fltmask;
struct vnode *p_trace;

/* mask of traced signals (/proc) */
/* mask of traced faults (/proc) */
/* pointer to primary /proc vnode */
struct vnode *p_plist; /* list of /proc vnodes for process */
kthread_t *p_agenttp; /* thread ptr for /proc agent Iwp */
struct watched_area *p_warea; /* list of watched areas */
ulong_t p_nwarea; /* number of watched areas */
struct watched_page *p_wpage; /* remembered watched pages (vfork) */
int p_nwpage; /* number of watched pages (vfork) */
int p_mapcnt; /* number of active pr_mappage()s */
struct proc *p_rlink; /* linked list for server */
kcondvar_t p_srwchan_cv;
size_t p_stksize; /* process stack size in bytes */
/*
* Microstate accounting, resource usage, and real-time profiling
*/
hrtime_t p_mstart;
hrtime_t p_mterm;

/* hi-res process start time */
/* hi-res process termination time */

October 3, 2024

hrtime_t p_mlreal; /* elapsed time sum over defunct Iwps */
hrtime_t p_acctiNMSTATES]; /* microstate sum over defunct lwps */
struct Irusage p_ru; /* Irusage sum over defunct Iwps */

struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */
uintptr_t p_rprof_cyclic; /* ITIMER_REALPROF cyclic */

uint_t p_defunct; /* number of defunct lwps */

I

* profiling. A lock is used in the event of multiple lwp's

* using the same profiling base/size.

*/

kmutex_t p_pflock;
struct prof p_prof;

/* protects user profile arguments */
/* profile arguments */

I*
* The user structure
*/
struct user p_user; /* (see sys/user.h) */

I*

* Doors.
*/

kthread_t

struct door_node

*p_server_threads;
p_door_list; / active doors */

struct door_node *p_unref_list;

kcondvar_t p_server_cv;

char p_unref_thread; /* unref thread created */
I*

* Kernel probes

*/

uchar_t p_tnf_flags;

CSE 120 — Lecture 3 — Processes

13

struct proc (Solaris) (3)

/*

* C2 Security (C2_AUDIT)

*/

caddr_t p_audit_data; /* per process audit structure */

kthread_t *p_aslwptp; /* thread ptr representing "aslwp" */
#if defined(i386) || defined(__i386) || defined(__ia64)

/*

* LDT support.

*/

kmutex_t p_Idtlock;

struct seg_desc *p_|dt;

struct seg_desc p_Idt_desc;

/* protects the following fields */
/* Pointer to private LDT */
/* segment descriptor for private LDT */

int p_ldtlimit; /* highest selector used */

#endif
size_t p_swrss; /* resident set size before last swap */
structaio *p_aio; /* pointer to async I/O struct */
struct itimer **p_itimer; /* interval timers */
k_sigset_t p_notifsigs; /* signals in notification set */
kcondvar_t p_notifcv; /* notif cv to synchronize with aslwp */
timeout_id_t p_alarmid; /* alarm's timeout id */
uint_t p_sc_unblocked; /* number of unblocked threads */

struct vnode *p_sc_door; /* scheduler activations door */

caddr_t p_usrstack; /* top of the process stack */

uint_t p_stkprot; /* stack memory protection */

model_t p_model; /* data model determined at exec time */
struct Iwpchan_data *p_lcp; /* lwpchan cache */

/*

* protects unmapping and initilization of robust locks.

*/

kmutex_t p_lcp_mutexinitlock;

utrap_handler_t *p_utraps;
refstr_t

/* pointer to user trap handlers */
p_corefile; / pattern for core file */

October 3, 2024

#if defined(__ia64)

caddr_t
size t
uchar_t

#endif

void

struct task
struct proc
struct proc

int
int

kthread_t

*p_rce;

p_upstack; /* base of the upward-growing stack */
p_upstksize; /* size of that stack, in bytes */
p_isa; /* which instruction set is utilized */

/* resource control extension data */
p_task; / our containing task */

p_taskprev; / ptr to previous process in task */
p_tasknext; / ptrto next process in task */

p_lwpdaemon; /* number of TP_DAEMON Iwps */
p_Iwpdwait;

/* number of daemons in lwp_wait() */
**p_tidhash; /* tid (Iwpid) lookup hash table */

struct sc_data *p_schedctl; /* available schedctl structures */

} proc_t;

CSE 120 — Lecture 3 — Processes

14

PCBs and Hardware State

 When a process is running, its hardware state (PC,
SP, regs, etc.) is in the CPU

+ The hardware registers contain the current values

* When the OS stops running a process, it saves the
current values of the registers into the PCB

* When the OS is ready to start executing a new
process, it loads the hardware registers from the
values stored in the process PCB

+ What happens to the code that is executing?

* The process of changing the CPU hardware state from

one process to another is called a context switch
+ This can happen 100 or 1000 times a second!

October 3, 2024 CSE 120 — Lecture 3 — Processes

15

State Queues

How does the OS keep track of processes?

* The OS maintains a collection of queues that
represent the state of all processes in the system

« Typically, the OS has one queue for each state
+ Ready, waiting, etc.

« Each PCB is queued on a state queue according to its
current state

* As a process changes state, its PCB is unlinked from
one queue and linked into another

October 3, 2024 CSE 120 — Lecture 3 — Processes 16

Process Creation

* A process is created by another process
+ Parent is creator, child is created (Unix: ps “PPID” field)
+ What creates the first process (Unix: init (PID 0 or 1))?

* The parent defines (or donates) resources and
privileges for its children
+ User ID is inherited — children of your shell execute with your
privileges
 After creating a child, the parent may either wait for it
to finish its task or continue in parallel

October 3, 2024 CSE 120 — Lecture 3 — Processes

19

Process Creation: Windows

* The system call on Windows for creating a process is
called, surprisingly enough, CreateProcess:

(simplified)

« (CreateProcess

¢

¢

¢

Creates and initializes a new PCB

Creates and initializes a new address space

Loads the program specified by “prog” into the address space
Copies “args” into memory allocated in address space

Initializes the saved hardware context to start execution at
main (or wherever specified in the file)

Places the PCB on the ready queue

October 3, 2024 CSE 120 — Lecture 3 — Processes 20

A

Platforms ~ Resources v

Learn / Windows / Apps / Win32 / APl / Processthreadsapi.h / ® ¢

CreateProcessA function (processthreadsapi.h)

Article » 09/23/2022 + 13 minutes to read o LA

Creates a new process and its primary thread. The new process runs in the security context of the calling process.

If the calling process is impersonating another user, the new process uses the token for the calling process, not the
impersonation token. To run the new process in the security context of the user represented by the impersonation token,

use the CreateProcessAsUser or CreateProcessWithLogonW function.

Syntax

C++ i Copy

BOOL CreateProcessA(

[in, optional] LPCSTR lpApplicationName,

[in, out, optional] LPSTR 1pCommandLine,

[in, optional] LPSECURITY_ATTRIBUTES lpProcessAttributes,

[in, optional] LPSECURITY_ATTRIBUTES lpThreadAttributes,

[in] BOOL bInheritHandles,

[in] DWORD dwCreationFlags,

[in, optional] LPVOID 1pEnvironment,

[in, optional] LPCSTR 1pCurrentDirectory,

[in] LPSTARTUPINFOA 1lpStartupInfo,

[out] LPPROCESS_INFORMATION lpProcessInformation
);

Parameters

= |n this article

Syntax
Parameters
Return value

Remarks

Process Creation: Unix

* In Unix, processes are created using fork()

 fork()

+ Creates and initializes a new PCB
+ Creates a new address space

+ Initializes the address space with a copy of the entire
contents of the address space of the parent

+ Initializes the kernel resources to point to the resources used
by parent (e.g., open files)

+ Places the PCB on the ready queue
* Fork returns twice
+ Huh?
+ Returns the child’s PID to the parent, “0” to the child

October 3, 2024 CSE 120 — Lecture 3 — Processes 22

[_T_l Mac Developer Library

0S X Man Pages

FORE (2) BSD Syatem Calls Manual FORE (2)

NAME
fork -- create a new proceas

SYNOPSIS
#Finclude <umstd h>

pid ¢
fork (void) ;

DESCRIFTION
Fork () causes creation of & new process. The new process (child process) is an exect copy of the call-
ing process (parent proces3) except for the following:

- The child process has a unigque process ID.

= The child proeess has a different parent process ID (i.e., the process ID of the parent
process) .

. The child process haa its own copy of the parent's descriptors. Theae descriptors reference
the same underlying ckijects, =aco that, for instance, file pointers in file cbjects are shared
between the child and the parent, 3c that an lseek({2) cn a descriptor in the child process
can affect a subsequent read or write by the parent. This descriptor copying is alsc used by
the shell to eatakblish atandard input and cutput for newly created proceases a3 well as to
set up pipes.

. The child proocesses reacurce utilizations are set to 0p see setrlimit{2).
RETURN VALUES
Upon successiul completion, fork() returns a value of 0 to the child process and returns the process ID

ocf the child process te the parent process. Othermwise, a wvalue of -1 is returned to the parent
process, no child process is created, and the glebal wvariable erroc i3 set to indicate the errcr.

ERRORS
Fork () will fail and no child process will be created if:

[ERAGATH] The system-impcsed limit on the total nurber of processes under executicn would be
exceeded. This limit is ecnfiguraticn-dependent.

fork()

int main(int argc, char *argv[])
{
char *name = argv[0];
int child pid = fork();
if (child pid == 0) {
printf (“Child of %s is %d\n”, name, getpid()):;

return 0O;

} else {
printf (“My child is %d\n”, child pid);
return O;

What does this program print?

October 3, 2024 CSE 120 — Lecture 3 — Processes 24

Example Output

alpenglow (18) ~/tmp> cc t.c
alpenglow (19) ~/tmp> a.out
My child is 486

Child of a.out is 486

October 3, 2024 CSE 120 — Lecture 3 — Processes

25

Duplicating Address Spaces

child_pid = 486
/

PC—>

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

October 3, 2024

Parent

=)

child_pid = 0
/

/

child pid = fork();

if (child pid
printf (“child”) ;
} else {

printf (“parent”) ;

0) {

~— PC

Child

CSE 120 — Lecture 3 — Processes

26

Divergence

PC —>

child_pid = 486
/

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

October 3, 2024

Parent

=)

child_pid =0
/

/

child pid = fork();

if (child pid
printf (“child”) ;
} else {

printf (“parent”) ;

0) {

~— PC

Child

CSE 120 — Lecture 3 — Processes

27

Example Continued

alpenglow (18) ~/tmp> cc t.c
alpenglow (19) ~/tmp> a.out
My child is 486

Child of a.out is 486
alpenglow (20) ~/tmp> a.out
Child of a.out is 498

My child is 498

Why is the output in a different order?

October 3, 2024 CSE 120 — Lecture 3 — Processes

28

Why fork()?

* Very useful when the child...

+ |Is cooperating with the parent

+ Relies upon the parent’s data to accomplish its task
 Example: Web server

while (1) {

int sock = accept();

if ((child pid = fork()) == 0) {
Handle client request and exit
} else {

Close socket
}

October 3, 2024 CSE 120 — Lecture 3 — Processes

29

New Programs: Unix

* Then...how do we start a new program??

* exec()

¢

¢

¢

¢

¢

Stops the current process

Loads the program “prog” into the process’ address space
Initializes hardware context and args for the new program
Places the PCB onto the ready queue

Note: It does not create a new process

« (Can exec ever return?

October 3, 2024 CSE 120 — Lecture 3 — Processes

30

Process Termination

« All good processes must come to an end. But how?
+ Unix: exit(int status), Windows: ExitProcess(int status)

» Essentially, free resources and terminate
Terminate all threads (next lecture)

Close open files, network connections

Allocated memory (and VM pages out on disk)
Remove PCB from kernel data structures, delete

* Note that a process does not need to clean up itself
+ Why does the OS have to do it?

<

<

<

<

October 3, 2024 CSE 120 — Lecture 3 — Processes

31

wait() a second...

« Often it is convenient to pause until a child process
has finished
+ Think of executing commands in a shell

* Unix wait() (Windows: WaitForSingleObiject)

+ Suspends the current process until any child process ends
+ waitpid() suspends until the specified child process ends

 Wait returns a status value...what is it?

* Unix: Every process must be “reaped” by a parent
+ What happens if a parent process exits before a child?
+ What do you think a “zombie” process is?

October 3, 2024 CSE 120 — Lecture 3 — Processes 32

Unix Shells

while (1) {

char *cmd = read command() ;

int child pid = fork();

if (child pid == 0) {
Manipulate STDIN/OUT/ERR for pipes, redirection, efc.
exec (cmd) ;
panic (“exec failed”);

} else {
waitpid(child pid) ;

October 3, 2024 CSE 120 — Lecture 3 — Processes

33

Fun With Exec (Extra)

 fork() is used to create a new process, exec is used to
load a program into the address space

« What happens if you run “exec bash” in your shell?
* What happens if you run “exec Is” in your shell? Try it.

 fork() can return an error. \Why might this happen?

October 3, 2024 CSE 120 — Lecture 3 — Processes 34

Process Summary

« What are the units of execution?
+ Processes

How are those units of execution represented?
+ Process Control Blocks (PCBs)

How is work scheduled in the CPU?
+ Process states, process queues, context switches

What are the possible execution states of a process?
+ Running, ready, waiting

How does a process move from one state to another?
+ Scheduling, I/O, creation, termination

How are processes created?
+ CreateProcess (Win), fork/exec (Unix)

October 3, 2024 CSE 120 — Lecture 3 — Processes 35

Next time...

 Read Chapters 26, 27

October 3, 2024 CSE 120 — Lecture 3 — Processes

36

	CSE 120�Principles of Operating Systems��Fall 2024
	Processes
	The Process
	Process Components
	Unix PIDs
	Basic Process Address Space
	Process State
	Unix Process States
	Process State Graph
	Process Data Structures
	PCB Data Structure
	struct proc (Solaris)
	struct proc (Solaris) (2)
	struct proc (Solaris) (3)
	PCBs and Hardware State
	State Queues
	Process Creation
	Process Creation: Windows
	Slide Number 21
	Process Creation: Unix
	Slide Number 23
	fork()
	Example Output
	Duplicating Address Spaces
	Divergence
	Example Continued
	Why fork()?
	New Programs: Unix
	Process Termination
	wait() a second…
	Unix Shells
	Fun With Exec (Extra)
	Process Summary
	Next time…

