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Administrivia
• Friday

♦ Project #1 due at 11:59pm
• Saturday

♦ Homework #2 due at 11:59pm
♦ Will post solutions Sunday morning

• Monday
♦ Q&A review session 3pm in discussion

• Tuesday
♦ Midterm
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Scheduling Overview
• In discussing process management and 

synchronization, we talked about context switching 
among processes/threads on the ready queue

• But we have glossed over the details of exactly which 
thread is chosen from the ready queue

• Making this decision is called scheduling
• In this lecture, we’ll look at:

♦ Goals of scheduling
♦ Various well-known scheduling algorithms
♦ Standard Unix scheduling algorithm
♦ Deadlock
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Multiprogramming
• In a multiprogramming system, we try to increase CPU 

utilization and job throughput by overlapping I/O and 
CPU activities
♦ Doing this requires a combination of mechanisms and policy

• We have covered the mechanisms
♦ Context switching, how and when it happens
♦ Process queues and process states

• Now we’ll look at the policies
♦ Which process (thread) to run, for how long, etc.

• We’ll refer to schedulable entities as jobs (standard 
usage) – could be processes, threads, people, etc.



April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 5

Scheduling Goals
• Scheduling works at two levels in an operating system

♦ To determine the multiprogramming level, the number of jobs 
loaded into memory

» Moving jobs to/from memory is called swapping
♦ To decide what job to run next to guarantee “good service”

» Good service could be one of many different criteria
• These decisions are known as long-term and short-

term scheduling decisions, respectively
♦ Long-term scheduling happens relatively infrequently

» Significant overhead in swapping a process out to disk
♦ Short-term scheduling happens relatively frequently

» Want to minimize the overhead of scheduling
 Fast context switches, fast queue manipulation
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Scheduling
• The scheduler (aka dispatcher) is the module that manipulates 

the queues, moving jobs to and fro
• The scheduling algorithm determines which jobs are chosen to 

run next and what queues they wait on
• In general, the scheduler runs:

♦ When a job switches from running to waiting
♦ When an interrupt occurs (e.g., I/O completes)
♦ When a job is created or terminated

• We’ll discuss scheduling algorithms in two contexts
♦ In preemptive systems the scheduler can interrupt a running job 

(involuntary context switch)
♦ In non-preemptive systems, the scheduler waits for a running job to 

explicitly block (voluntary context switch)
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Scheduling Metrics
• Scheduling algorithms can have many different goals:

♦ CPU utilization (%CPU)
♦ Job throughput (# jobs/time)
♦ Turnaround time (Tfinish – Tstart)
♦ Waiting time (Avg(Twait): avg time spent on wait queues)
♦ Response time (Avg(Tready): avg time spent on ready queue)

• Batch systems
♦ Strive for job throughput, turnaround time (supercomputers)

• Interactive systems
♦ Strive to minimize response time for interactive jobs (PC)
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Starvation
Starvation is a scheduling “non-goal”:
• Starvation is a situation where a process is prevented 

from making progress because some other process 
has the resource it requires
♦ Resource could be the CPU, or a lock (recall readers/writers)

• Starvation usually a side effect of the sched. algorithm
♦ A high priority process always prevents a low priority process 

from running on the CPU
♦ One thread always beats another when acquiring a lock

• Starvation can be a side effect of synchronization
♦ Constant supply of readers always blocks out writers
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FCFS/FIFO
• First-come first-served (FCFS), first-in first-out (FIFO)

♦ Jobs are scheduled in order of arrival to ready Q
♦ “Real-world” scheduling of people in lines (e.g., supermarket)
♦ Typically non-preemptive (no context switching at market)
♦ Jobs treated equally, no starvation

• Problem
♦ Average waiting time can be large if small jobs wait behind 

long ones (high turnaround time)
» You have a basket, but you’re stuck behind someone with a cart
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Shortest Job First (SJF)
• Shortest Job First (SJF)

♦ Choose the job with the smallest expected CPU burst
» Person with smallest number of items to buy

♦ Provably optimal minimum average waiting time (AWT)

AWT = (8 + (8+4)+(8+4+2))/3 = 11.33

AWT = (4 + (4+8)+(4+8+2))/3 = 10

AWT = (4+ (4+2)+(4+2+8))/3 = 8

AWT = (2 + (2+4)+(2+4+8))/3 = 7.33
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Shortest Job First (SJF)
• Problems

♦ Impossible to know size of CPU burst
» Like choosing person in line without looking inside basket/cart 

♦ How can you make a reasonable guess?
♦ Can potentially starve

• Flavors
♦ Can be either preemptive or non-preemptive
♦ Preemptive SJF is called shortest remaining time first (SRTF)



April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 12

Priority Scheduling
• Priority Scheduling

♦ Choose next job based on priority
» Airline checkin for first class passengers

♦ Can implement SJF, priority = 1/(expected CPU burst)
♦ Also can be either preemptive or non-preemptive

• Problem
♦ Starvation – low priority jobs can wait indefinitely

• Solution 
♦ “Age” processes

» Increase priority as a function of waiting time
» Decrease priority as a function of CPU consumption
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Round Robin (RR)
• Round Robin

♦ Excellent for timesharing
♦ Ready queue is treated as a circular queue (FIFO)
♦ Each job is given a time slice called a quantum
♦ A job executes for the duration of the quantum, or until it 

blocks or is interrupted
♦ No starvation

• Problem
♦ Context switches are frequent and need to be very fast
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Combining Algorithms
• Scheduling algorithms can be combined

♦ Have multiple queues
♦ Use a different algorithm for each queue
♦ Move processes among queues

• Example: Multiple-level feedback queues (MLFQ)
♦ Multiple queues representing different job types

» Interactive, CPU-bound, batch, system, etc.
♦ Queues have priorities, jobs on same queue scheduled RR
♦ Jobs can move among queues based upon execution history

» Feedback: Switch from interactive to CPU-bound behavior
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Unix Scheduler
• The canonical Unix scheduler uses a MLFQ

♦ 3-4 classes spanning ~170 priority levels
» Timesharing: first 60 priorities
» System: next 40 priorities
» Real-time: next 60 priorities
» Interrupt: next 10 (Solaris)

• Priority scheduling across queues, RR within a queue
♦ The process with the highest priority always runs
♦ Processes with the same priority are scheduled RR

• Processes dynamically change priority
♦ Increases over time if process blocks before end of quantum
♦ Decreases over time if process uses entire quantum
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Motivation of Unix Scheduler
• The idea behind the Unix scheduler is to reward 

interactive processes over CPU hogs
• Interactive processes (shell, editor, etc.) typically run 

using short CPU bursts
♦ They do not finish quantum before waiting for more input

• Want to minimize response time
♦ Time from keystroke (putting process on ready queue) to 

executing keystroke handler (process running)
♦ Don’t want editor to wait until CPU hog finishes quantum

• This policy delays execution of CPU-bound jobs
♦ But that’s ok



Scheduling Overhead
• Operating systems aim to minimize overhead

♦ Context switching takes non-zero time, so it is pure overhead
♦ Overhead includes context switch + choosing next process

• Modern time-sharing OSes (Unix, Windows, …) time-
slice processes in ready list
♦ A process runs for its quantum, OS context switches to 

another, next process runs, etc.
♦ A CPU-bound process will use its entire quantum (e.g., 10ms)
♦ An IO-bound process will use part (e.g., 1ms), then issue IO
♦ The IO-bound process goes on a wait queue, the OS switches 

to the next process to run, the IO-bound process goes back 
on the ready list when the IO completes
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Utilization
• CPU utilization is the fraction of time the system is 

doing useful work (e.g., not context switching)
• If the system has

♦ Quantum of 10ms + context-switch overhead of 0.1ms
♦ 3 CPU-bound processes + round-robin scheduling

• In steady-state, time is spent as follows:
♦ 10ms + 0.1ms + 10ms + 0.1ms + 10ms + 0.1ms
♦ CPU utilization = time doing useful work / total time
♦ CPU utilization = (3*10ms) / (3*10ms + 3*0.1ms) = 30/30.3

• If one process is IO-bound, it will not use full quantum
♦ 10ms + 0.1ms + 10ms + 0.1ms + 1ms + 0.1ms
♦ CPU util = (2*10 + 1) / (2*10 + 1 + 3*0.1) = 21/21.3
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Scheduling Summary
• Scheduler (dispatcher) is the module that gets invoked 

when a context switch needs to happen 
• Scheduling algorithm determines which process runs, 

where processes are placed on queues
• Many potential goals of scheduling algorithms

♦ Utilization, throughput, wait time, response time, etc.
• Various algorithms to meet these goals

♦ FCFS/FIFO, SJF, Priority, RR
• Can combine algorithms

♦ Multiple-level feedback queues
♦ Unix example
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Deadlock
• Synchronization is a live gun – we can easily shoot ourselves in 

the foot
♦ Incorrect use of synchronization can block all processes
♦ You have likely been intuitively avoiding this situation already

• More generally, processes that allocate multiple resources 
generate dependencies on those resources
♦ Locks, semaphores, monitors, etc., just represent the resources that 

they protect
• If one process tries to allocate a resource that a second process 

holds, and vice-versa, they can never make progress
• We call this situation deadlock, and we’ll look at:

♦ Definition and conditions necessary for deadlock
♦ Representation of deadlock conditions
♦ Approaches to dealing with deadlock
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Deadlock Definition
• Deadlock is a problem that can arise:

♦ When processes compete for access to limited resources
♦ When processes are incorrectly synchronized

• Definition:
♦ Deadlock exists among a set of processes if every process is 

waiting for an event that can be caused only by another 
process in the set.

lockA->Acquire();
…
lockB->Acquire();

lockB->Acquire();
…
lockA->Acquire();

Process 1 Process 2
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Deadlock with Join

…
B.join();
…

…
A.join();
…

Thread A Thread B
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Conditions for Deadlock
• Deadlock can exist if and only if the following four 

conditions hold simultaneously:
1. Mutual exclusion – At least one resource must be held in a 

non-sharable mode
2. Hold and wait – There must be one process holding one 

resource and waiting for another resource
3. No preemption – Resources cannot be preempted (critical 

sections cannot be aborted externally)
4. Circular wait – There must exist a set of processes [P1, P2, 

P3,…,Pn] such that P1 is waiting for P2, P2 for P3, etc.
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Resource Allocation Graph
• Deadlock can be described using a resource allocation 

graph (RAG)
• The RAG consists of a set of vertices P={P1, P2, …, 

Pn} of processes and R={R1, R2, …, Rm} of resources
♦ A directed edge from a process to a resource, PiRi, means 

that Pi has requested Rj

♦ A directed edge from a resource to a process, RiPi, means 
that Rj has been allocated by Pi

♦ Each resource has a fixed number of units
• If the graph has no cycles, deadlock cannot exist
• If the graph has a cycle, deadlock may exist
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RAG Example

A cycle…and 
deadlock!

Same cycle…but no 
deadlock.  Why?
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A Simpler Case
• If all resources are single unit and all processes make 

single requests, then we can represent the resource 
state with a simpler waits-for graph (WFG)
♦ Useful for tracking locks

• The WFG consists of a set of vertices P={P1, P2, …, 
Pn} of processes
♦ A directed edge PiPj means that Pi has requested a 

resource that Pj currently holds 
• If the graph has no cycles, deadlock cannot exist
• If the graph has a cycle, deadlock exists



April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 27

Dealing With Deadlock
• There are four approaches for dealing with deadlock:

♦ Ignore it – how lucky do you feel?
♦ Prevention – make it impossible for deadlock to happen
♦ Avoidance – control allocation of resources
♦ Detection and Recovery – look for a cycle in dependencies
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Deadlock Prevention
• Prevention – Ensure that at least one of the necessary 

conditions cannot happen
♦ Mutual exclusion

» Make resources sharable (not generally practical)
♦ Hold and wait

» Process cannot hold one resource when requesting another
» Process requests, releases all needed resources at once

♦ Preemption
» OS can preempt resource (costly)

♦ Circular wait
» Impose an ordering (numbering) on the resources and request 

them in order (popular OS implementation technique)
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Deadlock Avoidance
• Avoidance

♦ Provide information in advance about what resources will be 
needed by processes to guarantee that deadlock will not 
happen

♦ System only grants resource requests if it knows that the 
process can obtain all resources it needs in future requests

♦ Avoids circularities (wait dependencies)
• Tough

♦ Hard to determine all resources needed in advance
♦ Good theoretical problem, not as practical to use
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Detection and Recovery
• Detection and recovery

♦ If we don’t have deadlock prevention or avoidance, then 
deadlock may occur

♦ In this case, we need to detect deadlock and recover from it
• To do this, we need two algorithms

♦ One to determine whether a deadlock has occurred
♦ Another to recover from the deadlock

• Possible, but expensive (time consuming)
♦ Implemented in VMS
♦ Run detection algorithm when resource request times out
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Deadlock Detection
• Detection

♦ Traverse the resource graph looking for cycles
♦ If a cycle is found, preempt resource (force a process to 

release)
• Expensive

♦ Many processes and resources to traverse
• Only invoke detection algorithm depending on

♦ How often or likely deadlock is
♦ How many processes are likely to be affected when it occurs
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Deadlock Recovery
Once a deadlock is detected, we have two options…
1. Abort processes

♦ Abort all deadlocked processes
» Processes need to start over again

♦ Abort one process at a time until cycle is eliminated
» System needs to rerun detection after each abort

2. Preempt resources (force their release)
♦ Need to select process and resource to preempt
♦ Need to rollback process to previous state
♦ Need to prevent starvation
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Deadlock Summary
• Deadlock occurs when processes are waiting on each 

other and cannot make progress
♦ Cycles in Resource Allocation Graph (RAG)

• Deadlock requires four conditions
♦ Mutual exclusion, hold and wait, no resource preemption, 

circular wait
• Four approaches to dealing with deadlock:

♦ Ignore it – Living life on the edge
♦ Prevention – Make one of the four conditions impossible
♦ Avoidance – Banker’s Algorithm (control allocation)
♦ Detection and Recovery – Look for a cycle, preempt or abort
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