
CSE 120
Principles of Operating

Systems

Spring 2019

Lecture 9: Scheduling and Deadlock
Geoffrey M. Voelker

Administrivia
• Friday

♦ Project #1 due at 11:59pm
• Saturday

♦ Homework #2 due at 11:59pm
♦ Will post solutions Sunday morning

• Monday
♦ Q&A review session 3pm in discussion

• Tuesday
♦ Midterm

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 2

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 3

Scheduling Overview
• In discussing process management and

synchronization, we talked about context switching
among processes/threads on the ready queue

• But we have glossed over the details of exactly which
thread is chosen from the ready queue

• Making this decision is called scheduling
• In this lecture, we’ll look at:

♦ Goals of scheduling
♦ Various well-known scheduling algorithms
♦ Standard Unix scheduling algorithm
♦ Deadlock

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 4

Multiprogramming
• In a multiprogramming system, we try to increase CPU

utilization and job throughput by overlapping I/O and
CPU activities
♦ Doing this requires a combination of mechanisms and policy

• We have covered the mechanisms
♦ Context switching, how and when it happens
♦ Process queues and process states

• Now we’ll look at the policies
♦ Which process (thread) to run, for how long, etc.

• We’ll refer to schedulable entities as jobs (standard
usage) – could be processes, threads, people, etc.

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 5

Scheduling Goals
• Scheduling works at two levels in an operating system

♦ To determine the multiprogramming level, the number of jobs
loaded into memory

» Moving jobs to/from memory is called swapping
♦ To decide what job to run next to guarantee “good service”

» Good service could be one of many different criteria
• These decisions are known as long-term and short-

term scheduling decisions, respectively
♦ Long-term scheduling happens relatively infrequently

» Significant overhead in swapping a process out to disk
♦ Short-term scheduling happens relatively frequently

» Want to minimize the overhead of scheduling
 Fast context switches, fast queue manipulation

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 6

Scheduling
• The scheduler (aka dispatcher) is the module that manipulates

the queues, moving jobs to and fro
• The scheduling algorithm determines which jobs are chosen to

run next and what queues they wait on
• In general, the scheduler runs:

♦ When a job switches from running to waiting
♦ When an interrupt occurs (e.g., I/O completes)
♦ When a job is created or terminated

• We’ll discuss scheduling algorithms in two contexts
♦ In preemptive systems the scheduler can interrupt a running job

(involuntary context switch)
♦ In non-preemptive systems, the scheduler waits for a running job to

explicitly block (voluntary context switch)

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 7

Scheduling Metrics
• Scheduling algorithms can have many different goals:

♦ CPU utilization (%CPU)
♦ Job throughput (# jobs/time)
♦ Turnaround time (Tfinish – Tstart)
♦ Waiting time (Avg(Twait): avg time spent on wait queues)
♦ Response time (Avg(Tready): avg time spent on ready queue)

• Batch systems
♦ Strive for job throughput, turnaround time (supercomputers)

• Interactive systems
♦ Strive to minimize response time for interactive jobs (PC)

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 8

Starvation
Starvation is a scheduling “non-goal”:
• Starvation is a situation where a process is prevented

from making progress because some other process
has the resource it requires
♦ Resource could be the CPU, or a lock (recall readers/writers)

• Starvation usually a side effect of the sched. algorithm
♦ A high priority process always prevents a low priority process

from running on the CPU
♦ One thread always beats another when acquiring a lock

• Starvation can be a side effect of synchronization
♦ Constant supply of readers always blocks out writers

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 9

FCFS/FIFO
• First-come first-served (FCFS), first-in first-out (FIFO)

♦ Jobs are scheduled in order of arrival to ready Q
♦ “Real-world” scheduling of people in lines (e.g., supermarket)
♦ Typically non-preemptive (no context switching at market)
♦ Jobs treated equally, no starvation

• Problem
♦ Average waiting time can be large if small jobs wait behind

long ones (high turnaround time)
» You have a basket, but you’re stuck behind someone with a cart

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 10

Shortest Job First (SJF)
• Shortest Job First (SJF)

♦ Choose the job with the smallest expected CPU burst
» Person with smallest number of items to buy

♦ Provably optimal minimum average waiting time (AWT)

AWT = (8 + (8+4)+(8+4+2))/3 = 11.33

AWT = (4 + (4+8)+(4+8+2))/3 = 10

AWT = (4+ (4+2)+(4+2+8))/3 = 8

AWT = (2 + (2+4)+(2+4+8))/3 = 7.33

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 11

Shortest Job First (SJF)
• Problems

♦ Impossible to know size of CPU burst
» Like choosing person in line without looking inside basket/cart

♦ How can you make a reasonable guess?
♦ Can potentially starve

• Flavors
♦ Can be either preemptive or non-preemptive
♦ Preemptive SJF is called shortest remaining time first (SRTF)

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 12

Priority Scheduling
• Priority Scheduling

♦ Choose next job based on priority
» Airline checkin for first class passengers

♦ Can implement SJF, priority = 1/(expected CPU burst)
♦ Also can be either preemptive or non-preemptive

• Problem
♦ Starvation – low priority jobs can wait indefinitely

• Solution
♦ “Age” processes

» Increase priority as a function of waiting time
» Decrease priority as a function of CPU consumption

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 13

Round Robin (RR)
• Round Robin

♦ Excellent for timesharing
♦ Ready queue is treated as a circular queue (FIFO)
♦ Each job is given a time slice called a quantum
♦ A job executes for the duration of the quantum, or until it

blocks or is interrupted
♦ No starvation

• Problem
♦ Context switches are frequent and need to be very fast

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 14

Combining Algorithms
• Scheduling algorithms can be combined

♦ Have multiple queues
♦ Use a different algorithm for each queue
♦ Move processes among queues

• Example: Multiple-level feedback queues (MLFQ)
♦ Multiple queues representing different job types

» Interactive, CPU-bound, batch, system, etc.
♦ Queues have priorities, jobs on same queue scheduled RR
♦ Jobs can move among queues based upon execution history

» Feedback: Switch from interactive to CPU-bound behavior

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 15

Unix Scheduler
• The canonical Unix scheduler uses a MLFQ

♦ 3-4 classes spanning ~170 priority levels
» Timesharing: first 60 priorities
» System: next 40 priorities
» Real-time: next 60 priorities
» Interrupt: next 10 (Solaris)

• Priority scheduling across queues, RR within a queue
♦ The process with the highest priority always runs
♦ Processes with the same priority are scheduled RR

• Processes dynamically change priority
♦ Increases over time if process blocks before end of quantum
♦ Decreases over time if process uses entire quantum

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 16

Motivation of Unix Scheduler
• The idea behind the Unix scheduler is to reward

interactive processes over CPU hogs
• Interactive processes (shell, editor, etc.) typically run

using short CPU bursts
♦ They do not finish quantum before waiting for more input

• Want to minimize response time
♦ Time from keystroke (putting process on ready queue) to

executing keystroke handler (process running)
♦ Don’t want editor to wait until CPU hog finishes quantum

• This policy delays execution of CPU-bound jobs
♦ But that’s ok

Scheduling Overhead
• Operating systems aim to minimize overhead

♦ Context switching takes non-zero time, so it is pure overhead
♦ Overhead includes context switch + choosing next process

• Modern time-sharing OSes (Unix, Windows, …) time-
slice processes in ready list
♦ A process runs for its quantum, OS context switches to

another, next process runs, etc.
♦ A CPU-bound process will use its entire quantum (e.g., 10ms)
♦ An IO-bound process will use part (e.g., 1ms), then issue IO
♦ The IO-bound process goes on a wait queue, the OS switches

to the next process to run, the IO-bound process goes back
on the ready list when the IO completes

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 17

Utilization
• CPU utilization is the fraction of time the system is

doing useful work (e.g., not context switching)
• If the system has

♦ Quantum of 10ms + context-switch overhead of 0.1ms
♦ 3 CPU-bound processes + round-robin scheduling

• In steady-state, time is spent as follows:
♦ 10ms + 0.1ms + 10ms + 0.1ms + 10ms + 0.1ms
♦ CPU utilization = time doing useful work / total time
♦ CPU utilization = (3*10ms) / (3*10ms + 3*0.1ms) = 30/30.3

• If one process is IO-bound, it will not use full quantum
♦ 10ms + 0.1ms + 10ms + 0.1ms + 1ms + 0.1ms
♦ CPU util = (2*10 + 1) / (2*10 + 1 + 3*0.1) = 21/21.3

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 18

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 19

Scheduling Summary
• Scheduler (dispatcher) is the module that gets invoked

when a context switch needs to happen
• Scheduling algorithm determines which process runs,

where processes are placed on queues
• Many potential goals of scheduling algorithms

♦ Utilization, throughput, wait time, response time, etc.
• Various algorithms to meet these goals

♦ FCFS/FIFO, SJF, Priority, RR
• Can combine algorithms

♦ Multiple-level feedback queues
♦ Unix example

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 20

Deadlock
• Synchronization is a live gun – we can easily shoot ourselves in

the foot
♦ Incorrect use of synchronization can block all processes
♦ You have likely been intuitively avoiding this situation already

• More generally, processes that allocate multiple resources
generate dependencies on those resources
♦ Locks, semaphores, monitors, etc., just represent the resources that

they protect
• If one process tries to allocate a resource that a second process

holds, and vice-versa, they can never make progress
• We call this situation deadlock, and we’ll look at:

♦ Definition and conditions necessary for deadlock
♦ Representation of deadlock conditions
♦ Approaches to dealing with deadlock

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 21

Deadlock Definition
• Deadlock is a problem that can arise:

♦ When processes compete for access to limited resources
♦ When processes are incorrectly synchronized

• Definition:
♦ Deadlock exists among a set of processes if every process is

waiting for an event that can be caused only by another
process in the set.

lockA->Acquire();
…
lockB->Acquire();

lockB->Acquire();
…
lockA->Acquire();

Process 1 Process 2

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 22

Deadlock with Join

…
B.join();
…

…
A.join();
…

Thread A Thread B

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 23

Conditions for Deadlock
• Deadlock can exist if and only if the following four

conditions hold simultaneously:
1. Mutual exclusion – At least one resource must be held in a

non-sharable mode
2. Hold and wait – There must be one process holding one

resource and waiting for another resource
3. No preemption – Resources cannot be preempted (critical

sections cannot be aborted externally)
4. Circular wait – There must exist a set of processes [P1, P2,

P3,…,Pn] such that P1 is waiting for P2, P2 for P3, etc.

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 24

Resource Allocation Graph
• Deadlock can be described using a resource allocation

graph (RAG)
• The RAG consists of a set of vertices P={P1, P2, …,

Pn} of processes and R={R1, R2, …, Rm} of resources
♦ A directed edge from a process to a resource, PiRi, means

that Pi has requested Rj

♦ A directed edge from a resource to a process, RiPi, means
that Rj has been allocated by Pi

♦ Each resource has a fixed number of units
• If the graph has no cycles, deadlock cannot exist
• If the graph has a cycle, deadlock may exist

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 25

RAG Example

A cycle…and
deadlock!

Same cycle…but no
deadlock. Why?

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 26

A Simpler Case
• If all resources are single unit and all processes make

single requests, then we can represent the resource
state with a simpler waits-for graph (WFG)
♦ Useful for tracking locks

• The WFG consists of a set of vertices P={P1, P2, …,
Pn} of processes
♦ A directed edge PiPj means that Pi has requested a

resource that Pj currently holds
• If the graph has no cycles, deadlock cannot exist
• If the graph has a cycle, deadlock exists

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 27

Dealing With Deadlock
• There are four approaches for dealing with deadlock:

♦ Ignore it – how lucky do you feel?
♦ Prevention – make it impossible for deadlock to happen
♦ Avoidance – control allocation of resources
♦ Detection and Recovery – look for a cycle in dependencies

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 28

Deadlock Prevention
• Prevention – Ensure that at least one of the necessary

conditions cannot happen
♦ Mutual exclusion

» Make resources sharable (not generally practical)
♦ Hold and wait

» Process cannot hold one resource when requesting another
» Process requests, releases all needed resources at once

♦ Preemption
» OS can preempt resource (costly)

♦ Circular wait
» Impose an ordering (numbering) on the resources and request

them in order (popular OS implementation technique)

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 29

Deadlock Avoidance
• Avoidance

♦ Provide information in advance about what resources will be
needed by processes to guarantee that deadlock will not
happen

♦ System only grants resource requests if it knows that the
process can obtain all resources it needs in future requests

♦ Avoids circularities (wait dependencies)
• Tough

♦ Hard to determine all resources needed in advance
♦ Good theoretical problem, not as practical to use

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 30

Detection and Recovery
• Detection and recovery

♦ If we don’t have deadlock prevention or avoidance, then
deadlock may occur

♦ In this case, we need to detect deadlock and recover from it
• To do this, we need two algorithms

♦ One to determine whether a deadlock has occurred
♦ Another to recover from the deadlock

• Possible, but expensive (time consuming)
♦ Implemented in VMS
♦ Run detection algorithm when resource request times out

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 31

Deadlock Detection
• Detection

♦ Traverse the resource graph looking for cycles
♦ If a cycle is found, preempt resource (force a process to

release)
• Expensive

♦ Many processes and resources to traverse
• Only invoke detection algorithm depending on

♦ How often or likely deadlock is
♦ How many processes are likely to be affected when it occurs

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 32

Deadlock Recovery
Once a deadlock is detected, we have two options…
1. Abort processes

♦ Abort all deadlocked processes
» Processes need to start over again

♦ Abort one process at a time until cycle is eliminated
» System needs to rerun detection after each abort

2. Preempt resources (force their release)
♦ Need to select process and resource to preempt
♦ Need to rollback process to previous state
♦ Need to prevent starvation

April 25, 2019 CSE 120 – Lecture 8 – Scheduling and Deadlock 33

Deadlock Summary
• Deadlock occurs when processes are waiting on each

other and cannot make progress
♦ Cycles in Resource Allocation Graph (RAG)

• Deadlock requires four conditions
♦ Mutual exclusion, hold and wait, no resource preemption,

circular wait
• Four approaches to dealing with deadlock:

♦ Ignore it – Living life on the edge
♦ Prevention – Make one of the four conditions impossible
♦ Avoidance – Banker’s Algorithm (control allocation)
♦ Detection and Recovery – Look for a cycle, preempt or abort

	CSE 120�Principles of Operating Systems��Spring 2019
	Administrivia
	Scheduling Overview
	Multiprogramming
	Scheduling Goals
	Scheduling
	Scheduling Metrics
	Starvation
	FCFS/FIFO
	Shortest Job First (SJF)
	Shortest Job First (SJF)
	Priority Scheduling
	Round Robin (RR)
	Combining Algorithms
	Unix Scheduler
	Motivation of Unix Scheduler
	Scheduling Overhead
	Utilization
	Scheduling Summary
	Deadlock
	Deadlock Definition
	Deadlock with Join
	Conditions for Deadlock
	Resource Allocation Graph
	RAG Example
	A Simpler Case
	Dealing With Deadlock
	Deadlock Prevention
	Deadlock Avoidance
	Detection and Recovery
	Deadlock Detection
	Deadlock Recovery
	Deadlock Summary

