rustc_parse/parser/path.rs
1use std::mem;
2
3use ast::token::IdentIsRaw;
4use rustc_ast::token::{self, MetaVarKind, Token, TokenKind};
5use rustc_ast::{
6 self as ast, AngleBracketedArg, AngleBracketedArgs, AnonConst, AssocItemConstraint,
7 AssocItemConstraintKind, BlockCheckMode, GenericArg, GenericArgs, Generics, ParenthesizedArgs,
8 Path, PathSegment, QSelf,
9};
10use rustc_errors::{Applicability, Diag, PResult};
11use rustc_span::{BytePos, Ident, Span, kw, sym};
12use thin_vec::ThinVec;
13use tracing::debug;
14
15use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
16use super::{Parser, Restrictions, TokenType};
17use crate::ast::{PatKind, TyKind};
18use crate::errors::{
19 self, AttributeOnEmptyType, AttributeOnGenericArg, FnPathFoundNamedParams,
20 PathFoundAttributeInParams, PathFoundCVariadicParams, PathSingleColon, PathTripleColon,
21};
22use crate::exp;
23use crate::parser::{
24 CommaRecoveryMode, ExprKind, FnContext, FnParseMode, RecoverColon, RecoverComma,
25};
26
27/// Specifies how to parse a path.
28#[derive(Copy, Clone, PartialEq)]
29pub enum PathStyle {
30 /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
31 /// with something else. For example, in expressions `segment < ....` can be interpreted
32 /// as a comparison and `segment ( ....` can be interpreted as a function call.
33 /// In all such contexts the non-path interpretation is preferred by default for practical
34 /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
35 /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
36 ///
37 /// Also, a path may never be followed by a `:`. This means that we can eagerly recover if
38 /// we encounter it.
39 Expr,
40 /// The same as `Expr`, but may be followed by a `:`.
41 /// For example, this code:
42 /// ```rust
43 /// struct S;
44 ///
45 /// let S: S;
46 /// // ^ Followed by a `:`
47 /// ```
48 Pat,
49 /// In other contexts, notably in types, no ambiguity exists and paths can be written
50 /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
51 /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
52 Type,
53 /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
54 /// visibilities or attributes.
55 /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
56 /// (paths in "mod" contexts have to be checked later for absence of generic arguments
57 /// anyway, due to macros), but it is used to avoid weird suggestions about expected
58 /// tokens when something goes wrong.
59 Mod,
60}
61
62impl PathStyle {
63 fn has_generic_ambiguity(&self) -> bool {
64 matches!(self, Self::Expr | Self::Pat)
65 }
66}
67
68impl<'a> Parser<'a> {
69 /// Parses a qualified path.
70 /// Assumes that the leading `<` has been parsed already.
71 ///
72 /// `qualified_path = <type [as trait_ref]>::path`
73 ///
74 /// # Examples
75 /// `<T>::default`
76 /// `<T as U>::a`
77 /// `<T as U>::F::a<S>` (without disambiguator)
78 /// `<T as U>::F::a::<S>` (with disambiguator)
79 pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (Box<QSelf>, Path)> {
80 let lo = self.prev_token.span;
81 let ty = self.parse_ty()?;
82
83 // `path` will contain the prefix of the path up to the `>`,
84 // if any (e.g., `U` in the `<T as U>::*` examples
85 // above). `path_span` has the span of that path, or an empty
86 // span in the case of something like `<T>::Bar`.
87 let (mut path, path_span);
88 if self.eat_keyword(exp!(As)) {
89 let path_lo = self.token.span;
90 path = self.parse_path(PathStyle::Type)?;
91 path_span = path_lo.to(self.prev_token.span);
92 } else {
93 path_span = self.token.span.to(self.token.span);
94 path = ast::Path { segments: ThinVec::new(), span: path_span, tokens: None };
95 }
96
97 // See doc comment for `unmatched_angle_bracket_count`.
98 self.expect(exp!(Gt))?;
99 if self.unmatched_angle_bracket_count > 0 {
100 self.unmatched_angle_bracket_count -= 1;
101 debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
102 }
103
104 let is_import_coupler = self.is_import_coupler();
105 if !is_import_coupler && !self.recover_colon_before_qpath_proj() {
106 self.expect(exp!(PathSep))?;
107 }
108
109 let qself = Box::new(QSelf { ty, path_span, position: path.segments.len() });
110 if !is_import_coupler {
111 self.parse_path_segments(&mut path.segments, style, None)?;
112 }
113
114 Ok((
115 qself,
116 Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
117 ))
118 }
119
120 /// Recover from an invalid single colon, when the user likely meant a qualified path.
121 /// We avoid emitting this if not followed by an identifier, as our assumption that the user
122 /// intended this to be a qualified path may not be correct.
123 ///
124 /// ```ignore (diagnostics)
125 /// <Bar as Baz<T>>:Qux
126 /// ^ help: use double colon
127 /// ```
128 fn recover_colon_before_qpath_proj(&mut self) -> bool {
129 if !self.check_noexpect(&TokenKind::Colon)
130 || self.look_ahead(1, |t| !t.is_non_reserved_ident())
131 {
132 return false;
133 }
134
135 self.bump(); // colon
136
137 self.dcx()
138 .struct_span_err(
139 self.prev_token.span,
140 "found single colon before projection in qualified path",
141 )
142 .with_span_suggestion(
143 self.prev_token.span,
144 "use double colon",
145 "::",
146 Applicability::MachineApplicable,
147 )
148 .emit();
149
150 true
151 }
152
153 pub fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
154 self.parse_path_inner(style, None)
155 }
156
157 /// Parses simple paths.
158 ///
159 /// `path = [::] segment+`
160 /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
161 ///
162 /// # Examples
163 /// `a::b::C<D>` (without disambiguator)
164 /// `a::b::C::<D>` (with disambiguator)
165 /// `Fn(Args)` (without disambiguator)
166 /// `Fn::(Args)` (with disambiguator)
167 pub(super) fn parse_path_inner(
168 &mut self,
169 style: PathStyle,
170 ty_generics: Option<&Generics>,
171 ) -> PResult<'a, Path> {
172 let reject_generics_if_mod_style = |parser: &Parser<'_>, path: Path| {
173 // Ensure generic arguments don't end up in attribute paths, such as:
174 //
175 // macro_rules! m {
176 // ($p:path) => { #[$p] struct S; }
177 // }
178 //
179 // m!(inline<u8>); //~ ERROR: unexpected generic arguments in path
180 //
181 if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
182 {
183 let span = path
184 .segments
185 .iter()
186 .filter_map(|segment| segment.args.as_ref())
187 .map(|arg| arg.span())
188 .collect::<Vec<_>>();
189 parser.dcx().emit_err(errors::GenericsInPath { span });
190 // Ignore these arguments to prevent unexpected behaviors.
191 let segments = path
192 .segments
193 .iter()
194 .map(|segment| PathSegment { ident: segment.ident, id: segment.id, args: None })
195 .collect();
196 Path { segments, ..path }
197 } else {
198 path
199 }
200 };
201
202 if let Some(path) =
203 self.eat_metavar_seq(MetaVarKind::Path, |this| this.parse_path(PathStyle::Type))
204 {
205 return Ok(reject_generics_if_mod_style(self, path));
206 }
207
208 // If we have a `ty` metavar in the form of a path, reparse it directly as a path, instead
209 // of reparsing it as a `ty` and then extracting the path.
210 if let Some(path) = self.eat_metavar_seq(MetaVarKind::Ty { is_path: true }, |this| {
211 this.parse_path(PathStyle::Type)
212 }) {
213 return Ok(reject_generics_if_mod_style(self, path));
214 }
215
216 let lo = self.token.span;
217 let mut segments = ThinVec::new();
218 let mod_sep_ctxt = self.token.span.ctxt();
219 if self.eat_path_sep() {
220 segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
221 }
222 self.parse_path_segments(&mut segments, style, ty_generics)?;
223 Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
224 }
225
226 pub(super) fn parse_path_segments(
227 &mut self,
228 segments: &mut ThinVec<PathSegment>,
229 style: PathStyle,
230 ty_generics: Option<&Generics>,
231 ) -> PResult<'a, ()> {
232 loop {
233 let segment = self.parse_path_segment(style, ty_generics)?;
234 if style.has_generic_ambiguity() {
235 // In order to check for trailing angle brackets, we must have finished
236 // recursing (`parse_path_segment` can indirectly call this function),
237 // that is, the next token must be the highlighted part of the below example:
238 //
239 // `Foo::<Bar as Baz<T>>::Qux`
240 // ^ here
241 //
242 // As opposed to the below highlight (if we had only finished the first
243 // recursion):
244 //
245 // `Foo::<Bar as Baz<T>>::Qux`
246 // ^ here
247 //
248 // `PathStyle::Expr` is only provided at the root invocation and never in
249 // `parse_path_segment` to recurse and therefore can be checked to maintain
250 // this invariant.
251 self.check_trailing_angle_brackets(&segment, &[exp!(PathSep)]);
252 }
253 segments.push(segment);
254
255 if self.is_import_coupler() || !self.eat_path_sep() {
256 // IMPORTANT: We can *only ever* treat single colons as typo'ed double colons in
257 // expression contexts (!) since only there paths cannot possibly be followed by
258 // a colon and still form a syntactically valid construct. In pattern contexts,
259 // a path may be followed by a type annotation. E.g., `let pat:ty`. In type
260 // contexts, a path may be followed by a list of bounds. E.g., `where ty:bound`.
261 if self.may_recover()
262 && style == PathStyle::Expr // (!)
263 && self.token == token::Colon
264 && self.look_ahead(1, |token| token.is_non_reserved_ident())
265 {
266 // Emit a special error message for `a::b:c` to help users
267 // otherwise, `a: c` might have meant to introduce a new binding
268 if self.token.span.lo() == self.prev_token.span.hi()
269 && self.look_ahead(1, |token| self.token.span.hi() == token.span.lo())
270 {
271 self.bump(); // bump past the colon
272 self.dcx().emit_err(PathSingleColon {
273 span: self.prev_token.span,
274 suggestion: self.prev_token.span.shrink_to_hi(),
275 });
276 }
277 continue;
278 }
279
280 return Ok(());
281 }
282 }
283 }
284
285 /// Eat `::` or, potentially, `:::`.
286 #[must_use]
287 pub(super) fn eat_path_sep(&mut self) -> bool {
288 let result = self.eat(exp!(PathSep));
289 if result && self.may_recover() {
290 if self.eat_noexpect(&token::Colon) {
291 self.dcx().emit_err(PathTripleColon { span: self.prev_token.span });
292 }
293 }
294 result
295 }
296
297 pub(super) fn parse_path_segment(
298 &mut self,
299 style: PathStyle,
300 ty_generics: Option<&Generics>,
301 ) -> PResult<'a, PathSegment> {
302 let ident = self.parse_path_segment_ident()?;
303 let is_args_start = |token: &Token| {
304 matches!(token.kind, token::Lt | token::Shl | token::OpenParen | token::LArrow)
305 };
306 let check_args_start = |this: &mut Self| {
307 this.expected_token_types.insert(TokenType::Lt);
308 this.expected_token_types.insert(TokenType::OpenParen);
309 is_args_start(&this.token)
310 };
311
312 Ok(
313 if style == PathStyle::Type && check_args_start(self)
314 || style != PathStyle::Mod && self.check_path_sep_and_look_ahead(is_args_start)
315 {
316 // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
317 // it isn't, then we reset the unmatched angle bracket count as we're about to start
318 // parsing a new path.
319 if style == PathStyle::Expr {
320 self.unmatched_angle_bracket_count = 0;
321 }
322
323 // Generic arguments are found - `<`, `(`, `::<` or `::(`.
324 // First, eat `::` if it exists.
325 let _ = self.eat_path_sep();
326
327 let lo = self.token.span;
328 let args = if self.eat_lt() {
329 // `<'a, T, A = U>`
330 let args = self.parse_angle_args_with_leading_angle_bracket_recovery(
331 style,
332 lo,
333 ty_generics,
334 )?;
335 self.expect_gt().map_err(|mut err| {
336 // Try to recover a `:` into a `::`
337 if self.token == token::Colon
338 && self.look_ahead(1, |token| token.is_non_reserved_ident())
339 {
340 err.cancel();
341 err = self.dcx().create_err(PathSingleColon {
342 span: self.token.span,
343 suggestion: self.prev_token.span.shrink_to_hi(),
344 });
345 }
346 // Attempt to find places where a missing `>` might belong.
347 else if let Some(arg) = args
348 .iter()
349 .rev()
350 .find(|arg| !matches!(arg, AngleBracketedArg::Constraint(_)))
351 {
352 err.span_suggestion_verbose(
353 arg.span().shrink_to_hi(),
354 "you might have meant to end the type parameters here",
355 ">",
356 Applicability::MaybeIncorrect,
357 );
358 }
359 err
360 })?;
361 let span = lo.to(self.prev_token.span);
362 AngleBracketedArgs { args, span }.into()
363 } else if self.token == token::OpenParen
364 // FIXME(return_type_notation): Could also recover `...` here.
365 && self.look_ahead(1, |t| *t == token::DotDot)
366 {
367 self.bump(); // (
368 self.bump(); // ..
369 self.expect(exp!(CloseParen))?;
370 let span = lo.to(self.prev_token.span);
371
372 self.psess.gated_spans.gate(sym::return_type_notation, span);
373
374 let prev_lo = self.prev_token.span.shrink_to_hi();
375 if self.eat_noexpect(&token::RArrow) {
376 let lo = self.prev_token.span;
377 let ty = self.parse_ty()?;
378 let span = lo.to(ty.span);
379 let suggestion = prev_lo.to(ty.span);
380 self.dcx()
381 .emit_err(errors::BadReturnTypeNotationOutput { span, suggestion });
382 }
383
384 Box::new(ast::GenericArgs::ParenthesizedElided(span))
385 } else {
386 // `(T, U) -> R`
387
388 let prev_token_before_parsing = self.prev_token;
389 let token_before_parsing = self.token;
390 let mut snapshot = None;
391 if self.may_recover()
392 && prev_token_before_parsing == token::PathSep
393 && (style == PathStyle::Expr && self.token.can_begin_expr()
394 || style == PathStyle::Pat
395 && self.token.can_begin_pattern(token::NtPatKind::PatParam {
396 inferred: false,
397 }))
398 {
399 snapshot = Some(self.create_snapshot_for_diagnostic());
400 }
401
402 let dcx = self.dcx();
403 let parse_params_result = self.parse_paren_comma_seq(|p| {
404 // Inside parenthesized type arguments, we want types only, not names.
405 let mode = FnParseMode {
406 context: FnContext::Free,
407 req_name: |_| false,
408 req_body: false,
409 };
410 let param = p.parse_param_general(&mode, false, false);
411 param.map(move |param| {
412 if !matches!(param.pat.kind, PatKind::Missing) {
413 dcx.emit_err(FnPathFoundNamedParams {
414 named_param_span: param.pat.span,
415 });
416 }
417 if matches!(param.ty.kind, TyKind::CVarArgs) {
418 dcx.emit_err(PathFoundCVariadicParams { span: param.pat.span });
419 }
420 if !param.attrs.is_empty() {
421 dcx.emit_err(PathFoundAttributeInParams {
422 span: param.attrs[0].span,
423 });
424 }
425 param.ty
426 })
427 });
428
429 let (inputs, _) = match parse_params_result {
430 Ok(output) => output,
431 Err(mut error) if prev_token_before_parsing == token::PathSep => {
432 error.span_label(
433 prev_token_before_parsing.span.to(token_before_parsing.span),
434 "while parsing this parenthesized list of type arguments starting here",
435 );
436
437 if let Some(mut snapshot) = snapshot {
438 snapshot.recover_fn_call_leading_path_sep(
439 style,
440 prev_token_before_parsing,
441 &mut error,
442 )
443 }
444
445 return Err(error);
446 }
447 Err(error) => return Err(error),
448 };
449 let inputs_span = lo.to(self.prev_token.span);
450 let output =
451 self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
452 let span = ident.span.to(self.prev_token.span);
453 ParenthesizedArgs { span, inputs, inputs_span, output }.into()
454 };
455
456 PathSegment { ident, args: Some(args), id: ast::DUMMY_NODE_ID }
457 } else {
458 // Generic arguments are not found.
459 PathSegment::from_ident(ident)
460 },
461 )
462 }
463
464 pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
465 match self.token.ident() {
466 Some((ident, IdentIsRaw::No)) if ident.is_path_segment_keyword() => {
467 self.bump();
468 Ok(ident)
469 }
470 _ => self.parse_ident(),
471 }
472 }
473
474 /// Recover `$path::(...)` as `$path(...)`.
475 ///
476 /// ```ignore (diagnostics)
477 /// foo::(420, "bar")
478 /// ^^ remove extra separator to make the function call
479 /// // or
480 /// match x {
481 /// Foo::(420, "bar") => { ... },
482 /// ^^ remove extra separator to turn this into tuple struct pattern
483 /// _ => { ... },
484 /// }
485 /// ```
486 fn recover_fn_call_leading_path_sep(
487 &mut self,
488 style: PathStyle,
489 prev_token_before_parsing: Token,
490 error: &mut Diag<'_>,
491 ) {
492 match style {
493 PathStyle::Expr
494 if let Ok(_) = self
495 .parse_paren_comma_seq(|p| p.parse_expr())
496 .map_err(|error| error.cancel()) => {}
497 PathStyle::Pat
498 if let Ok(_) = self
499 .parse_paren_comma_seq(|p| {
500 p.parse_pat_allow_top_guard(
501 None,
502 RecoverComma::No,
503 RecoverColon::No,
504 CommaRecoveryMode::LikelyTuple,
505 )
506 })
507 .map_err(|error| error.cancel()) => {}
508 _ => {
509 return;
510 }
511 }
512
513 if let token::PathSep | token::RArrow = self.token.kind {
514 return;
515 }
516
517 error.span_suggestion_verbose(
518 prev_token_before_parsing.span,
519 format!(
520 "consider removing the `::` here to {}",
521 match style {
522 PathStyle::Expr => "call the expression",
523 PathStyle::Pat => "turn this into a tuple struct pattern",
524 _ => {
525 return;
526 }
527 }
528 ),
529 "",
530 Applicability::MaybeIncorrect,
531 );
532 }
533
534 /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
535 /// For the purposes of understanding the parsing logic of generic arguments, this function
536 /// can be thought of being the same as just calling `self.parse_angle_args()` if the source
537 /// had the correct amount of leading angle brackets.
538 ///
539 /// ```ignore (diagnostics)
540 /// bar::<<<<T as Foo>::Output>();
541 /// ^^ help: remove extra angle brackets
542 /// ```
543 fn parse_angle_args_with_leading_angle_bracket_recovery(
544 &mut self,
545 style: PathStyle,
546 lo: Span,
547 ty_generics: Option<&Generics>,
548 ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
549 // We need to detect whether there are extra leading left angle brackets and produce an
550 // appropriate error and suggestion. This cannot be implemented by looking ahead at
551 // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
552 // then there won't be matching `>` tokens to find.
553 //
554 // To explain how this detection works, consider the following example:
555 //
556 // ```ignore (diagnostics)
557 // bar::<<<<T as Foo>::Output>();
558 // ^^ help: remove extra angle brackets
559 // ```
560 //
561 // Parsing of the left angle brackets starts in this function. We start by parsing the
562 // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
563 // `eat_lt`):
564 //
565 // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
566 // *Unmatched count:* 1
567 // *`parse_path_segment` calls deep:* 0
568 //
569 // This has the effect of recursing as this function is called if a `<` character
570 // is found within the expected generic arguments:
571 //
572 // *Upcoming tokens:* `<<<T as Foo>::Output>;`
573 // *Unmatched count:* 2
574 // *`parse_path_segment` calls deep:* 1
575 //
576 // Eventually we will have recursed until having consumed all of the `<` tokens and
577 // this will be reflected in the count:
578 //
579 // *Upcoming tokens:* `T as Foo>::Output>;`
580 // *Unmatched count:* 4
581 // `parse_path_segment` calls deep:* 3
582 //
583 // The parser will continue until reaching the first `>` - this will decrement the
584 // unmatched angle bracket count and return to the parent invocation of this function
585 // having succeeded in parsing:
586 //
587 // *Upcoming tokens:* `::Output>;`
588 // *Unmatched count:* 3
589 // *`parse_path_segment` calls deep:* 2
590 //
591 // This will continue until the next `>` character which will also return successfully
592 // to the parent invocation of this function and decrement the count:
593 //
594 // *Upcoming tokens:* `;`
595 // *Unmatched count:* 2
596 // *`parse_path_segment` calls deep:* 1
597 //
598 // At this point, this function will expect to find another matching `>` character but
599 // won't be able to and will return an error. This will continue all the way up the
600 // call stack until the first invocation:
601 //
602 // *Upcoming tokens:* `;`
603 // *Unmatched count:* 2
604 // *`parse_path_segment` calls deep:* 0
605 //
606 // In doing this, we have managed to work out how many unmatched leading left angle
607 // brackets there are, but we cannot recover as the unmatched angle brackets have
608 // already been consumed. To remedy this, we keep a snapshot of the parser state
609 // before we do the above. We can then inspect whether we ended up with a parsing error
610 // and unmatched left angle brackets and if so, restore the parser state before we
611 // consumed any `<` characters to emit an error and consume the erroneous tokens to
612 // recover by attempting to parse again.
613 //
614 // In practice, the recursion of this function is indirect and there will be other
615 // locations that consume some `<` characters - as long as we update the count when
616 // this happens, it isn't an issue.
617
618 let is_first_invocation = style == PathStyle::Expr;
619 // Take a snapshot before attempting to parse - we can restore this later.
620 let snapshot = is_first_invocation.then(|| self.clone());
621
622 self.angle_bracket_nesting += 1;
623 debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
624 match self.parse_angle_args(ty_generics) {
625 Ok(args) => {
626 self.angle_bracket_nesting -= 1;
627 Ok(args)
628 }
629 Err(e) if self.angle_bracket_nesting > 10 => {
630 self.angle_bracket_nesting -= 1;
631 // When encountering severely malformed code where there are several levels of
632 // nested unclosed angle args (`f::<f::<f::<f::<...`), we avoid severe O(n^2)
633 // behavior by bailing out earlier (#117080).
634 e.emit().raise_fatal();
635 }
636 Err(e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
637 self.angle_bracket_nesting -= 1;
638
639 // Swap `self` with our backup of the parser state before attempting to parse
640 // generic arguments.
641 let snapshot = mem::replace(self, snapshot.unwrap());
642
643 // Eat the unmatched angle brackets.
644 let all_angle_brackets = (0..snapshot.unmatched_angle_bracket_count)
645 .fold(true, |a, _| a && self.eat_lt());
646
647 if !all_angle_brackets {
648 // If there are other tokens in between the extraneous `<`s, we cannot simply
649 // suggest to remove them. This check also prevents us from accidentally ending
650 // up in the middle of a multibyte character (issue #84104).
651 let _ = mem::replace(self, snapshot);
652 Err(e)
653 } else {
654 // Cancel error from being unable to find `>`. We know the error
655 // must have been this due to a non-zero unmatched angle bracket
656 // count.
657 e.cancel();
658
659 debug!(
660 "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
661 snapshot.count={:?}",
662 snapshot.unmatched_angle_bracket_count,
663 );
664
665 // Make a span over ${unmatched angle bracket count} characters.
666 // This is safe because `all_angle_brackets` ensures that there are only `<`s,
667 // i.e. no multibyte characters, in this range.
668 let span = lo
669 .with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count.into()));
670 self.dcx().emit_err(errors::UnmatchedAngle {
671 span,
672 plural: snapshot.unmatched_angle_bracket_count > 1,
673 });
674
675 // Try again without unmatched angle bracket characters.
676 self.parse_angle_args(ty_generics)
677 }
678 }
679 Err(e) => {
680 self.angle_bracket_nesting -= 1;
681 Err(e)
682 }
683 }
684 }
685
686 /// Parses (possibly empty) list of generic arguments / associated item constraints,
687 /// possibly including trailing comma.
688 pub(super) fn parse_angle_args(
689 &mut self,
690 ty_generics: Option<&Generics>,
691 ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
692 let mut args = ThinVec::new();
693 while let Some(arg) = self.parse_angle_arg(ty_generics)? {
694 args.push(arg);
695 if !self.eat(exp!(Comma)) {
696 if self.check_noexpect(&TokenKind::Semi)
697 && self.look_ahead(1, |t| t.is_ident() || t.is_lifetime())
698 {
699 // Add `>` to the list of expected tokens.
700 self.check(exp!(Gt));
701 // Handle `,` to `;` substitution
702 let mut err = self.unexpected().unwrap_err();
703 self.bump();
704 err.span_suggestion_verbose(
705 self.prev_token.span.until(self.token.span),
706 "use a comma to separate type parameters",
707 ", ",
708 Applicability::MachineApplicable,
709 );
710 err.emit();
711 continue;
712 }
713 if !self.token.kind.should_end_const_arg()
714 && self.handle_ambiguous_unbraced_const_arg(&mut args)?
715 {
716 // We've managed to (partially) recover, so continue trying to parse
717 // arguments.
718 continue;
719 }
720 break;
721 }
722 }
723 Ok(args)
724 }
725
726 /// Parses a single argument in the angle arguments `<...>` of a path segment.
727 fn parse_angle_arg(
728 &mut self,
729 ty_generics: Option<&Generics>,
730 ) -> PResult<'a, Option<AngleBracketedArg>> {
731 let lo = self.token.span;
732 let arg = self.parse_generic_arg(ty_generics)?;
733 match arg {
734 Some(arg) => {
735 // we are using noexpect here because we first want to find out if either `=` or `:`
736 // is present and then use that info to push the other token onto the tokens list
737 let separated =
738 self.check_noexpect(&token::Colon) || self.check_noexpect(&token::Eq);
739 if separated && (self.check(exp!(Colon)) | self.check(exp!(Eq))) {
740 let arg_span = arg.span();
741 let (binder, ident, gen_args) = match self.get_ident_from_generic_arg(&arg) {
742 Ok(ident_gen_args) => ident_gen_args,
743 Err(()) => return Ok(Some(AngleBracketedArg::Arg(arg))),
744 };
745 if binder {
746 // FIXME(compiler-errors): this could be improved by suggesting lifting
747 // this up to the trait, at least before this becomes real syntax.
748 // e.g. `Trait<for<'a> Assoc = Ty>` -> `for<'a> Trait<Assoc = Ty>`
749 return Err(self.dcx().struct_span_err(
750 arg_span,
751 "`for<...>` is not allowed on associated type bounds",
752 ));
753 }
754 let kind = if self.eat(exp!(Colon)) {
755 AssocItemConstraintKind::Bound { bounds: self.parse_generic_bounds()? }
756 } else if self.eat(exp!(Eq)) {
757 self.parse_assoc_equality_term(
758 ident,
759 gen_args.as_ref(),
760 self.prev_token.span,
761 )?
762 } else {
763 unreachable!();
764 };
765
766 let span = lo.to(self.prev_token.span);
767
768 let constraint =
769 AssocItemConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
770 Ok(Some(AngleBracketedArg::Constraint(constraint)))
771 } else {
772 // we only want to suggest `:` and `=` in contexts where the previous token
773 // is an ident and the current token or the next token is an ident
774 if self.prev_token.is_ident()
775 && (self.token.is_ident() || self.look_ahead(1, |token| token.is_ident()))
776 {
777 self.check(exp!(Colon));
778 self.check(exp!(Eq));
779 }
780 Ok(Some(AngleBracketedArg::Arg(arg)))
781 }
782 }
783 _ => Ok(None),
784 }
785 }
786
787 /// Parse the term to the right of an associated item equality constraint.
788 ///
789 /// That is, parse `$term` in `Item = $term` where `$term` is a type or
790 /// a const expression (wrapped in curly braces if complex).
791 fn parse_assoc_equality_term(
792 &mut self,
793 ident: Ident,
794 gen_args: Option<&GenericArgs>,
795 eq: Span,
796 ) -> PResult<'a, AssocItemConstraintKind> {
797 let arg = self.parse_generic_arg(None)?;
798 let span = ident.span.to(self.prev_token.span);
799 let term = match arg {
800 Some(GenericArg::Type(ty)) => ty.into(),
801 Some(GenericArg::Const(c)) => {
802 self.psess.gated_spans.gate(sym::associated_const_equality, span);
803 c.into()
804 }
805 Some(GenericArg::Lifetime(lt)) => {
806 let guar = self.dcx().emit_err(errors::LifetimeInEqConstraint {
807 span: lt.ident.span,
808 lifetime: lt.ident,
809 binding_label: span,
810 colon_sugg: gen_args
811 .map_or(ident.span, |args| args.span())
812 .between(lt.ident.span),
813 });
814 self.mk_ty(lt.ident.span, ast::TyKind::Err(guar)).into()
815 }
816 None => {
817 let after_eq = eq.shrink_to_hi();
818 let before_next = self.token.span.shrink_to_lo();
819 let mut err = self
820 .dcx()
821 .struct_span_err(after_eq.to(before_next), "missing type to the right of `=`");
822 if matches!(self.token.kind, token::Comma | token::Gt) {
823 err.span_suggestion(
824 self.psess.source_map().next_point(eq).to(before_next),
825 "to constrain the associated type, add a type after `=`",
826 " TheType",
827 Applicability::HasPlaceholders,
828 );
829 err.span_suggestion(
830 eq.to(before_next),
831 format!("remove the `=` if `{ident}` is a type"),
832 "",
833 Applicability::MaybeIncorrect,
834 )
835 } else {
836 err.span_label(
837 self.token.span,
838 format!("expected type, found {}", super::token_descr(&self.token)),
839 )
840 };
841 return Err(err);
842 }
843 };
844 Ok(AssocItemConstraintKind::Equality { term })
845 }
846
847 /// We do not permit arbitrary expressions as const arguments. They must be one of:
848 /// - An expression surrounded in `{}`.
849 /// - A literal.
850 /// - A numeric literal prefixed by `-`.
851 /// - A single-segment path.
852 pub(super) fn expr_is_valid_const_arg(&self, expr: &Box<rustc_ast::Expr>) -> bool {
853 match &expr.kind {
854 ast::ExprKind::Block(_, _)
855 | ast::ExprKind::Lit(_)
856 | ast::ExprKind::IncludedBytes(..) => true,
857 ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
858 matches!(expr.kind, ast::ExprKind::Lit(_))
859 }
860 // We can only resolve single-segment paths at the moment, because multi-segment paths
861 // require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
862 ast::ExprKind::Path(None, path)
863 if let [segment] = path.segments.as_slice()
864 && segment.args.is_none() =>
865 {
866 true
867 }
868 _ => false,
869 }
870 }
871
872 /// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
873 /// the caller.
874 pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
875 // Parse const argument.
876 let value = if self.token.kind == token::OpenBrace {
877 self.parse_expr_block(None, self.token.span, BlockCheckMode::Default)?
878 } else {
879 self.handle_unambiguous_unbraced_const_arg()?
880 };
881 Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
882 }
883
884 /// Parse a generic argument in a path segment.
885 /// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
886 pub(super) fn parse_generic_arg(
887 &mut self,
888 ty_generics: Option<&Generics>,
889 ) -> PResult<'a, Option<GenericArg>> {
890 let mut attr_span: Option<Span> = None;
891 if self.token == token::Pound && self.look_ahead(1, |t| *t == token::OpenBracket) {
892 let attrs_wrapper = self.parse_outer_attributes()?;
893 let raw_attrs = attrs_wrapper.take_for_recovery(self.psess);
894 attr_span = Some(raw_attrs[0].span.to(raw_attrs.last().unwrap().span));
895 }
896 let start = self.token.span;
897 let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
898 // Parse lifetime argument.
899 GenericArg::Lifetime(self.expect_lifetime())
900 } else if self.check_const_arg() {
901 // Parse const argument.
902 GenericArg::Const(self.parse_const_arg()?)
903 } else if self.check_type() {
904 // Parse type argument.
905
906 // Proactively create a parser snapshot enabling us to rewind and try to reparse the
907 // input as a const expression in case we fail to parse a type. If we successfully
908 // do so, we will report an error that it needs to be wrapped in braces.
909 let mut snapshot = None;
910 if self.may_recover() && self.token.can_begin_expr() {
911 snapshot = Some(self.create_snapshot_for_diagnostic());
912 }
913
914 match self.parse_ty() {
915 Ok(ty) => {
916 // Since the type parser recovers from some malformed slice and array types and
917 // successfully returns a type, we need to look for `TyKind::Err`s in the
918 // type to determine if error recovery has occurred and if the input is not a
919 // syntactically valid type after all.
920 if let ast::TyKind::Slice(inner_ty) | ast::TyKind::Array(inner_ty, _) = &ty.kind
921 && let ast::TyKind::Err(_) = inner_ty.kind
922 && let Some(snapshot) = snapshot
923 && let Some(expr) =
924 self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
925 {
926 return Ok(Some(
927 self.dummy_const_arg_needs_braces(
928 self.dcx()
929 .struct_span_err(expr.span, "invalid const generic expression"),
930 expr.span,
931 ),
932 ));
933 }
934
935 GenericArg::Type(ty)
936 }
937 Err(err) => {
938 if let Some(snapshot) = snapshot
939 && let Some(expr) =
940 self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
941 {
942 return Ok(Some(self.dummy_const_arg_needs_braces(err, expr.span)));
943 }
944 // Try to recover from possible `const` arg without braces.
945 return self.recover_const_arg(start, err).map(Some);
946 }
947 }
948 } else if self.token.is_keyword(kw::Const) {
949 return self.recover_const_param_declaration(ty_generics);
950 } else if let Some(attr_span) = attr_span {
951 let diag = self.dcx().create_err(AttributeOnEmptyType { span: attr_span });
952 return Err(diag);
953 } else {
954 // Fall back by trying to parse a const-expr expression. If we successfully do so,
955 // then we should report an error that it needs to be wrapped in braces.
956 let snapshot = self.create_snapshot_for_diagnostic();
957 let attrs = self.parse_outer_attributes()?;
958 match self.parse_expr_res(Restrictions::CONST_EXPR, attrs) {
959 Ok((expr, _)) => {
960 return Ok(Some(self.dummy_const_arg_needs_braces(
961 self.dcx().struct_span_err(expr.span, "invalid const generic expression"),
962 expr.span,
963 )));
964 }
965 Err(err) => {
966 self.restore_snapshot(snapshot);
967 err.cancel();
968 return Ok(None);
969 }
970 }
971 };
972
973 if let Some(attr_span) = attr_span {
974 let guar = self.dcx().emit_err(AttributeOnGenericArg {
975 span: attr_span,
976 fix_span: attr_span.until(arg.span()),
977 });
978 return Ok(Some(match arg {
979 GenericArg::Type(_) => GenericArg::Type(self.mk_ty(attr_span, TyKind::Err(guar))),
980 GenericArg::Const(_) => {
981 let error_expr = self.mk_expr(attr_span, ExprKind::Err(guar));
982 GenericArg::Const(AnonConst { id: ast::DUMMY_NODE_ID, value: error_expr })
983 }
984 GenericArg::Lifetime(lt) => GenericArg::Lifetime(lt),
985 }));
986 }
987
988 Ok(Some(arg))
989 }
990
991 /// Given a arg inside of generics, we try to destructure it as if it were the LHS in
992 /// `LHS = ...`, i.e. an associated item binding.
993 /// This returns a bool indicating if there are any `for<'a, 'b>` binder args, the
994 /// identifier, and any GAT arguments.
995 fn get_ident_from_generic_arg(
996 &self,
997 gen_arg: &GenericArg,
998 ) -> Result<(bool, Ident, Option<GenericArgs>), ()> {
999 if let GenericArg::Type(ty) = gen_arg {
1000 if let ast::TyKind::Path(qself, path) = &ty.kind
1001 && qself.is_none()
1002 && let [seg] = path.segments.as_slice()
1003 {
1004 return Ok((false, seg.ident, seg.args.as_deref().cloned()));
1005 } else if let ast::TyKind::TraitObject(bounds, ast::TraitObjectSyntax::None) = &ty.kind
1006 && let [ast::GenericBound::Trait(trait_ref)] = bounds.as_slice()
1007 && trait_ref.modifiers == ast::TraitBoundModifiers::NONE
1008 && let [seg] = trait_ref.trait_ref.path.segments.as_slice()
1009 {
1010 return Ok((true, seg.ident, seg.args.as_deref().cloned()));
1011 }
1012 }
1013 Err(())
1014 }
1015}