
Oracle® Database
SQL Language Reference

23ai
F47038-26
July 2025

Oracle Database SQL Language Reference, 23ai

F47038-26

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Author: Usha Krishnamurthy

Contributors: Abhishek Munnolimath , Adrian Daniel Popescu, Alan Williams, Alfonso Colunga Sosa , Andy Witkowski,
Atif Chaudhry, Beda Hammerschmidt, Bill Lee, Chris Saxon, Drew Adams, Gerald Venzl, Giridhar Ravipati, Gopal
Mulagund, Gregg Christman, Hermann Baer, Huagang Li , Ian Neall, James Stamos, Jan Michels, Josh Spiegel,
Laurent Daynes, Loic Lefevre, Mahesh Girkar, Mark Dilman, Martin Bach, Mary Beth Roeser, Meichun Hsu, Naveen
Gopal, Nigel Bayliss, Nishant Chaudhary, Oskar Van Rest, Patricia Huey, Peter Knaggs, Sabrina Petride, Shashaanka
Agrawal, Sriram Krishnamurthy, Sergiusz Wolicki, Thomas Baby, Vlad Ioan Haprian, Ya Li, Yanfei Fan, Yi Ouyang,
Yunrui Li, Zhen Hua Li , Zhenqiang Fan

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Related Documents i

Conventions ii

 Changes in This Release for Oracle Database SQL Language Reference

Changes in Oracle Database Release 23ai i

1 Introduction to Oracle SQL

History of SQL 1

SQL Standards 1

How SQL Works 1

Common Language for All Relational Databases 2

Using Enterprise Manager 2

Lexical Conventions 2

Tools Support 3

2 Basic Elements of Oracle SQL

Data Types 1

Oracle Built-in Data Types 5

Character Data Types 8

Numeric Data Types 12

LONG Data Type 17

Datetime and Interval Data Types 18

RAW and LONG RAW Data Types 27

Large Object (LOB) Data Types 28

JSON Data Type 30

Extended Data Types 33

Boolean Data Type 34

Vector Data Type 39

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page i of xxvi

Rowid Data Types 42

ROWID Data Type 42

UROWID Data Type 43

ANSI, DB2, and SQL/DS Data Types 43

User-Defined Types 45

Object Types 45

REF Data Types 45

Varrays 46

Nested Tables 46

Oracle-Supplied Types 46

Any Types 47

ANYTYPE 47

ANYDATA 47

ANYDATASET 47

XML Types 47

XMLType 47

URI Data Types 48

URIFactory Package 49

Spatial Types 49

SDO_GEOMETRY 49

SDO_TOPO_GEOMETRY 50

SDO_GEORASTER 50

Data Type Comparison Rules 50

Numeric Values 50

Datetime Values 51

Binary Values 51

Character Values 51

Object Values 54

Varrays and Nested Tables 54

Data Type Precedence 55

Data Conversion 55

Implicit and Explicit Data Conversion 55

Implicit Data Conversion 55

Implicit Data Conversion Examples 58

Explicit Data Conversion 58

Security Considerations for Data Conversion 60

Literals 61

Text Literals 62

Numeric Literals 63

Integer Literals 63

NUMBER and Floating-Point Literals 64

Datetime Literals 66

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page ii of xxvi

Interval Literals 69

INTERVAL YEAR TO MONTH 70

INTERVAL DAY TO SECOND 71

Format Models 73

Number Format Models 73

Number Format Elements 74

Datetime Format Models 76

Datetime Format Elements 77

Datetime Format Elements and Globalization Support 82

ISO Standard Date Format Elements 83

The RR Datetime Format Element 83

Datetime Format Element Suffixes 84

Format Model Modifiers 84

Format Model Examples 85

String-to-Date Conversion Rules 87

XML Format Model 88

Nulls 89

Nulls in SQL Functions 90

Nulls with Comparison Conditions 90

Nulls in Conditions 90

Comments 91

Comments Within SQL Statements 91

Comments on Schema and Nonschema Objects 92

Hints 92

Alphabetical Listing of Hints 98

ALL_ROWS Hint 98

APPEND Hint 99

APPEND_VALUES Hint 99

CACHE Hint 100

CHANGE_DUPKEY_ERROR_INDEX Hint 100

CLUSTER Hint 101

CLUSTERING Hint 101

COMPRESS_IMMEDIATE Hint 102

CONTAINERS Hint 102

CURSOR_SHARING_EXACT Hint 103

DISABLE_PARALLEL_DML Hint 103

DRIVING_SITE Hint 103

DYNAMIC_SAMPLING Hint 104

ENABLE_PARALLEL_DML Hint 104

FACT Hint 105

FIRST_ROWS Hint 105

FRESH_MV Hint 105

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page iii of xxvi

FULL Hint 106

GATHER_OPTIMIZER_STATISTICS Hint 106

GROUPING Hint 107

HASH Hint 107

IGNORE_ROW_ON_DUPKEY_INDEX Hint 107

INDEX Hint 108

INDEX_ASC Hint 109

INDEX_COMBINE Hint 109

INDEX_DESC Hint 110

INDEX_FFS Hint 110

INDEX_JOIN Hint 110

INDEX_SS Hint 111

INDEX_SS_ASC Hint 111

INDEX_SS_DESC Hint 112

INMEMORY Hint 112

INMEMORY_PRUNING Hint 113

IVF_ITERATION Hint 113

LEADING Hint 113

MERGE Hint 113

MODEL_MIN_ANALYSIS Hint 114

MONITOR Hint 114

NATIVE_FULL_OUTER_JOIN Hint 115

NOAPPEND Hint 115

NOCACHE Hint 115

NO_CLUSTERING Hint 115

NO_EXPAND Hint 116

NO_FACT Hint 116

NO_GATHER_OPTIMIZER_STATISTICS Hint 116

NO_INDEX Hint 117

NO_INDEX_FFS Hint 117

NO_INDEX_SS Hint 118

NO_INMEMORY Hint 118

NO_INMEMORY_PRUNING Hint 118

NO_MERGE Hint 118

NO_MONITOR Hint 119

NO_NATIVE_FULL_OUTER_JOIN Hint 119

NO_PARALLEL Hint 119

NOPARALLEL Hint 120

NO_PARALLEL_INDEX Hint 120

NOPARALLEL_INDEX Hint 120

NO_PQ_CONCURRENT_UNION Hint 120

NO_PQ_SKEW Hint 121

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page iv of xxvi

NO_PUSH_PRED Hint 121

NO_PUSH_SUBQ Hint 121

NO_PX_JOIN_FILTER Hint 122

NO_QUERY_TRANSFORMATION Hint 122

NO_RESULT_CACHE Hint 122

NO_REWRITE Hint 122

NOREWRITE Hint 123

NO_STAR_TRANSFORMATION Hint 123

NO_STATEMENT_QUEUING Hint 123

NO_UNNEST Hint 123

NO_USE_BAND Hint 124

NO_USE_CUBE Hint 124

NO_USE_HASH Hint 124

NO_USE_MERGE Hint 124

NO_USE_NL Hint 125

NO_XML_QUERY_REWRITE Hint 125

NO_XMLINDEX_REWRITE Hint 125

NO_ZONEMAP Hint 126

OPTIMIZER_FEATURES_ENABLE Hint 126

OPT_PARAM Hint 126

ORDERED Hint 127

PARALLEL Hint 127

PARALLEL_INDEX Hint 130

PQ_CONCURRENT_UNION Hint 130

PQ_DISTRIBUTE Hint 131

PQ_FILTER Hint 133

PQ_SKEW Hint 134

PUSH_PRED Hint 134

PUSH_SUBQ Hint 134

PX_JOIN_FILTER Hint 135

QB_NAME Hint 135

RESULT_CACHE Hint 135

RETRY_ON_ROW_CHANGE Hint 137

REWRITE Hint 137

STAR_TRANSFORMATION Hint 138

STATEMENT_QUEUING Hint 138

UNNEST Hint 139

USE_BAND Hint 139

USE_CONCAT Hint 140

USE_CUBE Hint 140

USE_HASH Hint 141

USE_MERGE Hint 141

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page v of xxvi

USE_NL Hint 141

USE_NL_WITH_INDEX Hint 142

Database Objects 142

Schema Objects 142

Nonschema Objects 143

Database Object Names and Qualifiers 144

Database Object Naming Rules 144

Schema Object Naming Examples 148

Schema Object Naming Guidelines 149

Syntax for Schema Objects and Parts in SQL Statements 149

How Oracle Database Resolves Schema Object References 150

References to Objects in Other Schemas 151

References to Objects in Remote Databases 151

Creating Database Links 151

References to Database Links 152

References to Partitioned Tables and Indexes 153

References to Object Type Attributes and Methods 155

3 Pseudocolumns

Hierarchical Query Pseudocolumns 1

CONNECT_BY_ISCYCLE Pseudocolumn 1

CONNECT_BY_ISLEAF Pseudocolumn 2

LEVEL Pseudocolumn 2

Sequence Pseudocolumns 3

Where to Use Sequence Values 4

How to Use Sequence Values 4

Version Query Pseudocolumns 6

COLUMN_VALUE Pseudocolumn 6

OBJECT_ID Pseudocolumn 8

OBJECT_VALUE Pseudocolumn 8

ORA_ROWSCN Pseudocolumn 9

ORA_SHARDSPACE_NAME Pseudocolumn 10

ROWID Pseudocolumn 10

ROWNUM Pseudocolumn 11

XMLDATA Pseudocolumn 12

4 Operators

About SQL Operators 1

Unary and Binary Operators 1

Operator Precedence 2

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page vi of xxvi

Arithmetic Operators 2

COLLATE Operator 3

Concatenation Operator 4

Hierarchical Query Operators 5

PRIOR 5

CONNECT_BY_ROOT 6

Set Operators 6

Multiset Operators 6

MULTISET EXCEPT 7

MULTISET INTERSECT 8

MULTISET UNION 9

SHARD_CHUNK_ID Operator 9

User-Defined Operators 11

Data Quality Operators 11

FUZZY_MATCH 11

PHONIC_ENCODE 13

GRAPH_TABLE Operator 15

Graph Reference 18

Graph Pattern 20

Path Pattern 22

Element Pattern 25

Quantified Path Pattern 35

Parenthesized Path Pattern 38

Graph Pattern WHERE Clause 40

Graph Table Shape 41

COLUMNS Clause 41

Rows Clause 44

Value Expressions for GRAPH_TABLE 49

Property Reference 49

Vertex and Edge ID Functions 51

Vertex and Edge Equal Predicates 53

SOURCE and DESTINATION Predicates 54

Aggregation in GRAPH_TABLE 55

JSON Object Access Expressions for Property Graphs 58

MATCHNUM 59

ELEMENT_NUMBER 61

PATH_NAME 62

IS LABELED 64

PROPERTY_EXISTS 65

JSON_ID Operator 66

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page vii of xxvi

5 Expressions

About SQL Expressions 1

Simple Expressions 3

Analytic View Expressions 4

Examples of Analytic View Expressions 23

Compound Expressions 26

CASE Expressions 27

Column Expressions 29

CURSOR Expressions 29

Datetime Expressions 31

Function Expressions 32

Interval Expressions 33

JSON Object Access Expressions 34

Model Expressions 36

Object Access Expressions 38

Placeholder Expressions 39

Scalar Subquery Expressions 39

Type Constructor Expressions 40

Expression Lists 41

BOOLEAN Expressions 43

6 Conditions

About SQL Conditions 1

Condition Precedence 3

Comparison Conditions 3

Simple Comparison Conditions 5

Group Comparison Conditions 6

Floating-Point Conditions 8

Logical Conditions 9

Model Conditions 10

IS ANY Condition 10

IS PRESENT Condition 11

Multiset Conditions 12

IS A SET Condition 12

IS EMPTY Condition 13

MEMBER Condition 14

SUBMULTISET Condition 14

Pattern-matching Conditions 15

LIKE Condition 15

REGEXP_LIKE Condition 19

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page viii of xxvi

Null Conditions 21

XML Conditions 21

EQUALS_PATH Condition 21

UNDER_PATH Condition 22

SQL For JSON Conditions 23

IS JSON Condition 23

JSON_EQUAL Condition 30

JSON_EXISTS Condition 30

JSON_TEXTCONTAINS Condition 34

Compound Conditions 36

BETWEEN Condition 37

EXISTS Condition 38

IN Condition 38

IS OF type Condition 41

BOOLEAN Test Condition 42

7 Functions

About SQL Functions 2

Aggregate Functions 4

Analytic Functions 6

Data Cartridge Functions 13

Model Functions 14

Object Reference Functions 14

OLAP Functions 14

Single-Row Functions 14

Numeric Functions 14

Character Functions Returning Character Values 15

Character Functions Returning Number Values 16

Character Set Functions 16

Collation Functions 16

Datetime Functions 16

General Comparison Functions 17

Conversion Functions 18

Large Object Functions 19

Collection Functions 19

Hierarchical Functions 19

Oracle Machine Learning for SQL Functions 19

XML Functions 20

JSON Functions 21

Encoding and Decoding Functions 21

NULL-Related Functions 21

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page ix of xxvi

Environment and Identifier Functions 22

Domain Functions 22

Vector Functions 22

UUID Functions 23

ABS 23

ACOS 24

ADD_MONTHS 24

ANY_VALUE 25

APPROX_COUNT 26

APPROX_COUNT_DISTINCT 27

APPROX_COUNT_DISTINCT_AGG 28

APPROX_COUNT_DISTINCT_DETAIL 29

APPROX_MEDIAN 32

APPROX_PERCENTILE 35

APPROX_PERCENTILE_AGG 38

APPROX_PERCENTILE_DETAIL 38

APPROX_RANK 42

APPROX_SUM 43

ASCII 44

ASCIISTR 44

ASIN 45

ATAN 46

ATAN2 46

AVG 47

BFILENAME 49

BIN_TO_NUM 50

BITAND 51

BIT_AND_AGG 53

BITMAP_BIT_POSITION 54

BITMAP_BUCKET_NUMBER 54

BITMAP_CONSTRUCT_AGG 55

BITMAP_COUNT 55

BITMAP_OR_AGG 56

BIT_OR_AGG 56

BIT_XOR_AGG 57

BOOLEAN_AND_AGG 58

BOOLEAN_OR_AGG 59

CARDINALITY 60

CAST 60

CEIL (datetime) 67

CEIL (interval) 68

CEIL (number) 69

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page x of xxvi

CHARTOROWID 70

CHECKSUM 70

CHR 71

CLUSTER_DETAILS 73

CLUSTER_DISTANCE 76

CLUSTER_ID 78

CLUSTER_PROBABILITY 81

CLUSTER_SET 83

COALESCE 86

COLLATION 87

COLLECT 88

COMPOSE 89

CON_DBID_TO_ID 90

CON_GUID_TO_ID 91

CON_ID_TO_CON_NAME 92

CON_ID_TO_DBID 92

CON_ID_TO_GUID 93

CON_ID_TO_UID 94

CON_NAME_TO_ID 94

CON_UID_TO_ID 95

CONCAT 96

CONVERT 97

CORR 99

CORR_* 100

CORR_S 102

CORR_K 102

COS 103

COSH 103

COUNT 104

COVAR_POP 106

COVAR_SAMP 108

CUBE_TABLE 109

CUME_DIST 111

CURRENT_DATE 112

CURRENT_TIMESTAMP 113

CV 114

DATAOBJ_TO_MAT_PARTITION 115

DATAOBJ_TO_PARTITION 116

DBTIMEZONE 117

DECODE 117

DECOMPOSE 119

DENSE_RANK 120

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xi of xxvi

DEPTH 122

DEREF 123

DOMAIN_CHECK 124

DOMAIN_CHECK_TYPE 129

DOMAIN_DISPLAY 133

DOMAIN_NAME 135

DOMAIN_ORDER 137

DUMP 139

EMPTY_BLOB, EMPTY_CLOB 141

EVERY 141

EXISTSNODE 142

EXP 143

EXTRACT (datetime) 144

EXTRACT (XML) 146

EXTRACTVALUE 147

FEATURE_COMPARE 148

FEATURE_DETAILS 150

FEATURE_ID 153

FEATURE_SET 155

FEATURE_VALUE 158

FIRST 161

FIRST_VALUE 163

FLOOR (datetime) 165

FLOOR (interval) 166

FLOOR (number) 167

FROM_TZ 168

FROM_VECTOR 168

GREATEST 170

GROUP_ID 171

GROUPING 172

GROUPING_ID 173

HEXTORAW 174

INITCAP 175

INSTR 175

ITERATION_NUMBER 177

IS_UUID 179

JSON_ARRAY 179

JSON_ARRAYAGG 182

JSON_DATAGUIDE 185

JSON_MERGEPATCH 186

JSON_OBJECT 188

JSON_OBJECTAGG 193

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xii of xxvi

JSON_QUERY 195

JSON_SCALAR 202

JSON_SERIALIZE 203

JSON_TABLE 205

JSON_TRANSFORM 216

JSON_VALUE 229

JSON Type Constructor 236

KURTOSIS_POP 237

KURTOSIS_SAMP 238

LAG 238

LAST 240

LAST_DAY 240

LAST_VALUE 241

LEAD 244

LEAST 245

LENGTH 246

LISTAGG 247

LN 251

LNNVL 252

LOCALTIMESTAMP 253

LOG 254

LOWER 254

LPAD 255

LTRIM 256

MAKE_REF 257

MAX 257

MEDIAN 259

MIN 261

MOD 262

MONTHS_BETWEEN 264

NANVL 264

NCHR 265

NEW_TIME 266

NEXT_DAY 267

NLS_CHARSET_DECL_LEN 267

NLS_CHARSET_ID 268

NLS_CHARSET_NAME 268

NLS_COLLATION_ID 269

NLS_COLLATION_NAME 269

NLS_INITCAP 271

NLS_LOWER 272

NLS_UPPER 272

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xiii of xxvi

NLSSORT 273

NTH_VALUE 276

NTILE 278

NULLIF 279

NUMTODSINTERVAL 280

NUMTOYMINTERVAL 281

NVL 282

NVL2 283

ORA_DM_PARTITION_NAME 284

ORA_DST_AFFECTED 285

ORA_DST_CONVERT 285

ORA_DST_ERROR 286

ORA_HASH 287

ORA_INVOKING_USER 288

ORA_INVOKING_USERID 288

PATH 289

PERCENT_RANK 290

PERCENTILE_CONT 292

PERCENTILE_DISC 294

POWER 296

POWERMULTISET 297

POWERMULTISET_BY_CARDINALITY 298

PREDICTION 299

PREDICTION_BOUNDS 303

PREDICTION_COST 305

PREDICTION_DETAILS 309

PREDICTION_PROBABILITY 313

PREDICTION_SET 317

PRESENTNNV 320

PRESENTV 322

PREVIOUS 323

RANK 324

RATIO_TO_REPORT 326

RAWTOHEX 326

RAWTONHEX 327

RAW_TO_UUID 328

REF 328

REFTOHEX 329

REGEXP_COUNT 330

REGEXP_INSTR 335

REGEXP_REPLACE 338

REGEXP_SUBSTR 343

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xiv of xxvi

REGR_ (Linear Regression) Functions 346

REMAINDER 351

REPLACE 352

ROUND (datetime) 353

ROUND (interval) 353

ROUND (number) 354

ROUND_TIES_TO_EVEN (number) 356

ROW_NUMBER 356

ROWIDTOCHAR 358

ROWIDTONCHAR 359

RPAD 359

RTRIM 360

SCN_TO_TIMESTAMP 361

SESSIONTIMEZONE 363

SET 363

SIGN 364

SIN 365

SINH 365

SKEWNESS_POP 366

SKEWNESS_SAMP 366

SOUNDEX 367

SQRT 368

STANDARD_HASH 369

STATS_BINOMIAL_TEST 369

STATS_CROSSTAB 371

STATS_F_TEST 372

STATS_KS_TEST 373

STATS_MODE 374

STATS_MW_TEST 376

STATS_ONE_WAY_ANOVA 377

STATS_T_TEST_* 378

STATS_T_TEST_ONE 380

STATS_T_TEST_PAIRED 380

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU 380

STATS_WSR_TEST 382

STDDEV 382

STDDEV_POP 384

STDDEV_SAMP 385

SUBSTR 387

SUM 388

SYS_CONNECT_BY_PATH 390

SYS_CONTEXT 391

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xv of xxvi

SYS_DBURIGEN 400

SYS_EXTRACT_UTC 401

SYS_GUID 401

SYS_OP_ZONE_ID 402

SYS_ROW_ETAG 404

SYS_TYPEID 405

SYS_XMLAGG 406

SYS_XMLGEN 406

SYSDATE 407

SYSTIMESTAMP 408

TAN 409

TANH 410

TIMESTAMP_TO_SCN 411

TIME_BUCKET (datetime) 412

TO_APPROX_COUNT_DISTINCT 415

TO_APPROX_PERCENTILE 416

TO_BINARY_DOUBLE 417

TO_BINARY_FLOAT 419

TO_BLOB (bfile) 420

TO_BLOB (raw) 421

TO_BOOLEAN 422

TO_CHAR (bfile|blob) 423

TO_CHAR (boolean) 423

TO_CHAR (character) 424

TO_CHAR (datetime) 426

TO_CHAR (number) 431

TO_CLOB (bfile|blob) 433

TO_CLOB (character) 434

TO_DATE 435

TO_DSINTERVAL 437

TO_LOB 439

TO_MULTI_BYTE 440

TO_NCHAR (boolean) 441

TO_NCHAR (character) 441

TO_NCHAR (datetime) 442

TO_NCHAR (number) 443

TO_NCLOB 443

TO_NUMBER 444

TO_SINGLE_BYTE 445

TO_TIMESTAMP 446

TO_TIMESTAMP_TZ 448

TO_UTC_TIMESTAMP_TZ 450

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xvi of xxvi

TO_VECTOR 452

TO_YMINTERVAL 453

TRANSLATE 455

TRANSLATE ... USING 456

TREAT 457

TRIM 459

TRUNC (datetime) 460

TRUNC (interval) 461

TRUNC (number) 462

TZ_OFFSET 463

UID 464

UNISTR 464

UPPER 465

USER 466

USERENV 466

UUID 468

UUID_TO_RAW 468

VALIDATE_CONVERSION 469

VALUE 472

VAR_POP 472

VAR_SAMP 474

VARIANCE 475

VECTOR 476

VECTOR_CHUNKS 477

VECTOR_DISTANCE 484

L1_DISTANCE 486

L2_DISTANCE 487

COSINE_DISTANCE 487

INNER_PRODUCT 487

VECTOR_DIMS 488

VECTOR_DIMENSION_COUNT 488

VECTOR_DIMENSION_FORMAT 489

VECTOR_EMBEDDING 490

VECTOR_NORM 491

VECTOR_SERIALIZE 492

VSIZE 493

WIDTH_BUCKET 494

XMLAGG 495

XMLCAST 496

XMLCDATA 497

XMLCOLATTVAL 498

XMLCOMMENT 499

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xvii of xxvi

XMLCONCAT 499

XMLDIFF 500

XMLELEMENT 502

XMLEXISTS 505

XMLFOREST 505

XMLISVALID 506

XMLPARSE 507

XMLPATCH 508

XMLPI 509

XMLQUERY 510

XMLSEQUENCE 511

XMLSERIALIZE 513

XMLTABLE 514

XMLTRANSFORM 517

CEIL, FLOOR, ROUND, and TRUNC Date Functions 518

About User-Defined Functions 520

Prerequisites 520

Name Precedence 521

Naming Conventions 521

8 Common SQL DDL Clauses

allocate_extent_clause 1

constraint 3

deallocate_unused_clause 32

file_specification 33

logging_clause 42

parallel_clause 45

physical_attributes_clause 47

size_clause 50

storage_clause 51

annotations_clause 60

9 SQL Queries and Subqueries

About Queries and Subqueries 1

Creating Simple Queries 2

Hierarchical Queries 2

Hierarchical Query Examples 5

The Set Operators 8

Sorting Query Results 11

Joins 12

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xviii of xxvi

Join Conditions 12

Equijoins 12

Band Joins 13

Self Joins 13

Cartesian Products 13

Inner Joins 13

Outer Joins 14

Antijoins 15

Semijoins 15

Using Subqueries 16

Unnesting of Nested Subqueries 17

Selecting from the DUAL Table 18

Distributed Queries 19

10

SQL Statements: ADMINISTER KEY MANAGEMENT to ALTER JSON
RELATIONAL DUALITY VIEW

Types of SQL Statements 1

Data Definition Language (DDL) Statements 2

Data Manipulation Language (DML) Statements 3

Transaction Control Statements 3

Session Control Statements 4

System Control Statements 4

Embedded SQL Statements 4

How the SQL Statement Chapters are Organized 4

ADMINISTER KEY MANAGEMENT 5

ALTER ANALYTIC VIEW 33

ALTER ATTRIBUTE DIMENSION 35

ALTER AUDIT POLICY (Unified Auditing) 37

ALTER CLUSTER 42

ALTER DATABASE 47

ALTER DATABASE DICTIONARY 100

ALTER DATABASE LINK 102

ALTER DIMENSION 103

ALTER DISKGROUP 106

ALTER DOMAIN 139

ALTER FLASHBACK ARCHIVE 141

ALTER FUNCTION 144

ALTER HIERARCHY 145

ALTER INDEX 146

ALTER INDEXTYPE 169

ALTER INMEMORY JOIN GROUP 172

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xix of xxvi

ALTER JAVA 174

ALTER JSON RELATIONAL DUALITY VIEW 176

11

SQL Statements: ALTER LIBRARY to ALTER SESSION

ALTER LIBRARY 1

ALTER LOCKDOWN PROFILE 2

ALTER MATERIALIZED VIEW 15

ALTER MATERIALIZED VIEW LOG 37

ALTER MATERIALIZED ZONEMAP 45

ALTER MLE ENV 48

ALTER MLE MODULE 50

ALTER OPERATOR 51

ALTER OUTLINE 55

ALTER PACKAGE 56

ALTER PLUGGABLE DATABASE 58

ALTER PMEM FILESTORE 86

ALTER PROCEDURE 88

ALTER PROFILE 89

ALTER PROPERTY GRAPH 92

ALTER RESOURCE COST 94

ALTER ROLE 96

ALTER ROLLBACK SEGMENT 98

ALTER SEQUENCE 101

ALTER SESSION 105

Initialization Parameters and ALTER SESSION 113

Session Parameters and ALTER SESSION 113

12

SQL Statements: ALTER SYNONYM to COMMENT

ALTER SYNONYM 1

ALTER SYSTEM 3

ALTER TABLE 28

ALTER TABLESPACE 181

ALTER TABLESPACE SET 198

ALTER TRIGGER 200

ALTER TYPE 202

ALTER USER 204

ALTER VIEW 217

ANALYZE 220

ASSOCIATE STATISTICS 228

AUDIT (Traditional Auditing) 233

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xx of xxvi

AUDIT (Unified Auditing) 233

CALL 238

COMMENT 242

13

SQL Statements: COMMIT to CREATE JSON RELATIONAL DUALITY
VIEW

COMMIT 1

CREATE ANALYTIC VIEW 6

CREATE ATTRIBUTE DIMENSION 15

CREATE AUDIT POLICY (Unified Auditing) 26

CREATE CLUSTER 37

CREATE CONTEXT 47

CREATE CONTROLFILE 50

CREATE DATABASE 57

CREATE DATABASE LINK 74

CREATE DIMENSION 80

CREATE DIRECTORY 85

CREATE DISKGROUP 89

CREATE DOMAIN 97

CREATE EDITION 114

CREATE FLASHBACK ARCHIVE 117

CREATE FUNCTION 120

CREATE HIERARCHY 122

CREATE HYBRID VECTOR INDEX 126

CREATE INDEX 127

CREATE INDEXTYPE 163

CREATE INMEMORY JOIN GROUP 168

CREATE JAVA 169

CREATE JSON RELATIONAL DUALITY VIEW 175

14

SQL Statements: CREATE LIBRARY to CREATE SCHEMA

CREATE LIBRARY 1

CREATE LOCKDOWN PROFILE 3

CREATE LOGICAL PARTITION TRACKING 5

CREATE MATERIALIZED VIEW 6

CREATE MATERIALIZED VIEW LOG 39

CREATE MATERIALIZED ZONEMAP 51

CREATE MLE ENV 60

CREATE MLE MODULE 61

CREATE OPERATOR 63

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xxi of xxvi

CREATE OUTLINE 68

CREATE PACKAGE 71

CREATE PACKAGE BODY 73

CREATE PFILE 75

CREATE PLUGGABLE DATABASE 77

CREATE PMEM FILESTORE 101

CREATE PROCEDURE 102

CREATE PROFILE 105

CREATE PROPERTY GRAPH 115

CREATE RESTORE POINT 129

CREATE ROLE 133

CREATE ROLLBACK SEGMENT 137

CREATE SCHEMA 140

15

SQL Statements: CREATE SEQUENCE to DROP CLUSTER

CREATE SEQUENCE 1

CREATE SPFILE 9

CREATE SYNONYM 13

CREATE TABLE 17

CREATE TABLESPACE 158

CREATE TABLESPACE SET 179

CREATE TRIGGER 182

CREATE TRUE CACHE 184

CREATE TYPE 184

CREATE TYPE BODY 187

CREATE USER 189

CREATE VECTOR INDEX 200

CREATE VIEW 203

DELETE 220

DISASSOCIATE STATISTICS 231

DROP ANALYTIC VIEW 233

DROP ATTRIBUTE DIMENSION 234

DROP AUDIT POLICY (Unified Auditing) 235

DROP CLUSTER 236

16

SQL Statements: DROP CONTEXT to DROP JAVA

DROP CONTEXT 1

DROP DATABASE 2

DROP DATABASE LINK 3

DROP DIMENSION 4

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xxii of xxvi

DROP DIRECTORY 5

DROP DISKGROUP 6

DROP DOMAIN 8

DROP EDITION 10

DROP FLASHBACK ARCHIVE 11

DROP FUNCTION 12

DROP HIERARCHY 13

DROP INDEX 14

DROP INDEXTYPE 16

DROP INMEMORY JOIN GROUP 18

DROP JAVA 19

17

SQL Statements: DROP LIBRARY to DROP SYNONYM

DROP LIBRARY 1

DROP LOCKDOWN PROFILE 2

DROP MATERIALIZED VIEW 3

DROP MATERIALIZED VIEW LOG 5

DROP MATERIALIZED ZONEMAP 7

DROP MLE ENV 8

DROP MLE MODULE 8

DROP OPERATOR 9

DROP OUTLINE 11

DROP PACKAGE 12

DROP PLUGGABLE DATABASE 13

DROP PMEM FILESTORE 15

DROP PROCEDURE 16

DROP PROFILE 17

DROP PROPERTY GRAPH 18

DROP RESTORE POINT 18

DROP ROLE 20

DROP ROLLBACK SEGMENT 21

DROP SEQUENCE 22

DROP SYNONYM 23

18

SQL Statements: DROP TABLE to LOCK TABLE

DROP TABLE 1

DROP TABLESPACE 5

DROP TABLESPACE SET 9

DROP TRIGGER 10

DROP TYPE 11

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xxiii of xxvi

DROP TYPE BODY 13

DROP USER 14

DROP VIEW 16

EXPLAIN PLAN 17

FLASHBACK DATABASE 20

FLASHBACK TABLE 24

GRANT 29

INSERT 67

LOCK TABLE 90

19

SQL Statements: MERGE to UPDATE

MERGE 1

NOAUDIT (Traditional Auditing) 11

NOAUDIT (Unified Auditing) 16

PURGE 20

RENAME 22

REVOKE 24

ROLLBACK 36

SAVEPOINT 38

SELECT 39

SET CONSTRAINT[S] 138

SET ROLE 140

SET TRANSACTION 142

TRUNCATE CLUSTER 145

TRUNCATE TABLE 147

UPDATE 151

A How to Read Syntax Diagrams

Graphic Syntax Diagrams A-1

Required Keywords and Parameters A-2

Optional Keywords and Parameters A-3

Syntax Loops A-4

Multipart Diagrams A-4

Backus-Naur Form Syntax A-5

B Automatic and Manual Locking Mechanisms During SQL Operations

List of Nonblocking DDLs B-1

Automatic Locks in DML Operations B-3

Automatic Locks in DDL Operations B-6

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xxiv of xxvi

Exclusive DDL Locks B-6

Share DDL Locks B-6

Breakable Parse Locks B-6

Manual Data Locking B-7

C Oracle and Standard SQL

ANSI Standards C-1

ISO Standards C-2

Oracle Compliance to Core SQL C-3

Oracle Support for Optional Features of SQL/Foundation C-8

Oracle Compliance with SQL/CLI C-24

Oracle Compliance with SQL/PSM C-24

Oracle Compliance with SQL/MED C-25

Oracle Compliance with SQL/OLB C-25

Oracle Compliance with SQL/JRT C-25

Oracle Compliance with SQL/XML C-25

Oracle Compliance with SQL/MDA C-30

Oracle Compliance with SQL/PGQ C-30

Oracle Compliance with FIPS 127-2 C-31

Oracle Extensions to Standard SQL C-33

Oracle Compliance with Older Standards C-33

Character Set Support C-33

D Oracle Regular Expression Support

Multilingual Regular Expression Syntax D-1

Regular Expression Operator Multilingual Enhancements D-2

Perl-influenced Extensions in Oracle Regular Expressions D-3

E Oracle SQL Reserved Words and Keywords

Oracle SQL Reserved Words E-1

Oracle SQL Keywords E-4

F Extended Examples

Using Extensible Indexing F-1

Using XML in SQL Statements F-8

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xxv of xxvi

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page xxvi of xxvi

Preface

This reference contains a complete description of the Structured Query Language (SQL) used
to manage information in an Oracle Database. Oracle SQL is a superset of the American
National Standards Institute (ANSI) and the International Organization for Standardization
(ISO) SQL standard.

This Preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
The Oracle Database SQL Language Reference is intended for all users of Oracle SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Database PL/SQL Language Reference for information on PL/SQL, the procedural
language extension to Oracle SQL

• Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer's Guide for detailed
descriptions of Oracle embedded SQL

Many of the examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database installation. Refer to
Oracle Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page ii of ii

Changes in This Release for Oracle Database
SQL Language Reference

This preface contains:

• Changes in Oracle Database Release 23ai

Changes in Oracle Database Release 23ai

New Features
The following features are new in Release 23ai:

Vector Utility API

The Vector Utility API provides a SQL function VECTOR_CHUNKS which processes text into
pieces (chunks) in preparation for the generation of embeddings to be used with a vector
index. The API is configurable in terms of size of chunks and rules for splitting chunks.

Support for ONNX-Format Models as First-Class Database Objects

The Open Neural Network Exchange (ONNX) is an open format to represent machine learning
models. It faciliates the exchange of models between systems and is supported by an ONNX
runtime environment that enables using models for scoring/inference.

You can import ONNX-format models to Oracle Database for the machine learning techniques
classification, regression, clustering, and embeddings.

The models will be imported as first-class MINING MODEL objects in your schema. Inference
can be done using the family of OML scoring operators, including PREDICTION, CLUSTER, and
VECTOR_EMBEDDING.

Vector Data Type

This feature provides a built-in VECTOR data type that enables vector similarity searches within
the database.

With a built-in VECTOR data type, you can run run AI-powered vector similarity searches within
the database instead of having to move business data to a separate vector database. Avoiding
data movement reduces complexity, improves security, and enables searches on current data.
You also can run far more powerful searches with Oracle AI Vector Search by combining
sophisticated business data searches with AI vector similarity search using simple, intuitive
SQL and the full power of the converged database - JSON, Graph, Text, Spatial, Relational
and Vector - all within a single query.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page i of iv

Support of Vector Data type in JSON Type

This functionality extends the standard JSON scalar types, to include the new Vector data type.
It is fully supported by all Oracle JSON constructs, and a vector scalar JSON value is
convertible to/from a JSON array of numbers.

Embedding vector values in JSON-type data is important for interoperability between SQL
values and JSON values. For example, a table with a VECTOR column can be exposed in JSON
data without a loss of data-type information allowing developers to create the next generation
of AI applications.

Vector Indexes

SQL Support for Boolean Data Type

Oracle Database now supports the BOOLEAN data type in compliance with the ISO SQL
standard.

With the BOOLEAN data type you can store TRUE and FALSE values inside tables use boolean
expressions in SQL statements.

Native Representation of Graphs in Oracle Database

Oracle Database now has native support for property graph data structures and graph queries.

Property graphs provide an intuitive way to find direct or indirect dependencies in data
elements and extract insights from these relationships. The enterprise-grade manageability,
security features, and performance features of Oracle Database are extended to property
graphs. Developers can easily build graph applications using existing tools, languages, and
development frameworks. They can use graphs in conjunction with transactional data, JSON,
Spatial, and other data types.

Support for the ISO/IEC SQL Property Graph Queries (SQL/PGQ) Standard

The ISO SQL standard has been extended to include comprehensive support for property
graph queries and creating property graphs in SQL. Oracle is among the first commercial
software products to support this standard.

Developers can easily build graph applications with SQL using existing SQL development tools
and frameworks. Support of the ISO SQL standard allows for greater code portability and
reduces the risk of application lock-in.

Direct Joins for UPDATE and DELETE Statements

Join the target table in UPDATE and DELETE statements to other tables using the FROM clause.
These other tables can limit the rows changed or be the source of new values. Direct joins
make it easier to write SQL to change and delete data.

Multilingual Engine Module Calls

Multilingual Engine (MLE) Module Calls allow you to invoke JavaScript functions stored in
modules from SQL and PL/SQL. Call Specifications written in PL/SQL link JavaScript to
PL/SQL code units.

DEFAULT ON NULL for UPDATE Statements

You can define columns as DEFAULT ON NULL for update operations, which was previously only
possible for insert operations. Columns specified as DEFAULT ON NULL are automatically
updated to the specific default value when an update operation tries to update a value to NULL.

Changes in This Release for Oracle Database SQL Language Reference

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page ii of iv

GROUP BY Column Alias or Position

You can now use column alias or SELECT item position in GROUP BY, GROUP BY CUBE, GROUP BY
ROLLUP, and GROUP BY GROUPING SETS clauses. Additionally, the HAVING clause supports
column aliases. These enhancements make it easier to write GROUP BY and HAVING clauses. It
can make SQL queries much more readable and maintainable while providing better SQL code
portability.

SELECT Without FROM Clause

You can now run SELECT expression-only queries without a FROM clause. This new feature
improves SQL code portability and ease of use.

SQL UPDATE RETURN Clause Enhancements

The RETURNING INTO clause for INSERT, UPDATE, and DELETE statements are enhanced to
report old and new values affected by the respective statement. This allows developers to use
the same logic for each of these DML types to obtain values before and after statement
execution. Old and new values are valid only for UPDATE statements. INSERT statements do not
report old values and DELETE statements do not report new values.

Data Use Case Domains

A data use case domain is a dictionary object that belongs to a schema and encapsulates a
set of optional properties and constraints for common values, such as credit card numbers or
email addresses. After you define a data use case domain, you can define table columns to be
associated with that domain, thereby explicitly applying the domain's optional properties and
constraints to those columns.

With data use case domains, you can define how you intend to use data centrally. This make it
easier to ensure you handle values consistently across applications and improve data quality.

DBMS Blockchain Versions

The blockchain table row version feature allows you to have multiple historical versions of a
row that is maintained within a blockchain table corresponding to a set of user-defined
columns. A view bctable_last$ on top of the blockchain table allows you to see just the latest
version of a row. This feature allows you to guarantee row versioning when using tamper-
resistant blockchain tables in your application.

CEIL FLOOR for DATE, TIMESTAMP, and INTERVAL Types

You can now pass DATE, TIMESTAMP, and INTERVAL values to the CEIL and FLOOR functions.
These functions include an optional second argument to specify a rounding unit. You can also
pass INTERVAL values to ROUND and TRUNC functions.

These functions make it easy to find the upper and lower bounds for date and time values for a
specified unit.

IF [NOT] EXISTS Syntax Support

DDL object creation, modification, and deletion now support the IF EXISTS and IF NOT EXISTS
syntax modifiers. This enables you to control whether an error should be raised if a given
object exists or does not exist.

Changes in This Release for Oracle Database SQL Language Reference

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page iii of iv

Schema Annotations

Annotations help you use database objects in the same way across all applications. This
simplifies development and improves data quality. Annotations enable you to store and retrieve
metadata about database objects. These are name-value pairs or simply a name. These are
freeform text fields applications can use to customize business logic or user interfaces.

JSON-Relational Duality View

JSON Relational Duality Views are fully updatable JSON views over relational data. Data is still
stored in relational tables in a highly efficient normalized format but can be accessed by
applications in the form of JSON documents.

Deprecated Features
The following features are deprecated since Release 23, and may be desupported in a future
release:

Starting from Oracle Database Release 23, the GOST256 and SEED128 encryption algorithms are
deprecated and no longer available for new encryption keys. Oracle recommends that you use
the stronger AES256 or ARIA256 encryption algorithms.

Desupported Features
The following features are desupported in Oracle Database Release 23:

•

For a full list of desupported features for Release 23, please see the Oracle Database Upgrade
Guide.

Changes in This Release for Oracle Database SQL Language Reference

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page iv of iv

1
Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs and users
access data in an Oracle Database. Application programs and Oracle tools often allow users
access to the database without using SQL directly, but these applications in turn must use SQL
when executing the user's request. This chapter provides background information on SQL as
used by most database systems.

This chapter contains these topics:

• History of SQL

• SQL Standards

• Lexical Conventions

• Tools Support

History of SQL
Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared Data Banks",
in June 1970 in the Association of Computer Machinery (ACM) journal, Communications of the
ACM. Codd's model is now accepted as the definitive model for relational database
management systems (RDBMS). The language, Structured English Query Language
(SEQUEL) was developed by IBM Corporation, Inc., to use Codd's model. SEQUEL later
became SQL (still pronounced "sequel"). In 1979, Relational Software, Inc. (now Oracle)
introduced the first commercially available implementation of SQL. Today, SQL is accepted as
the standard RDBMS language.

SQL Standards
Oracle strives to comply with industry-accepted standards and participates actively in SQL
standards committees. Industry-accepted committees are the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO), which is affiliated
with the International Electrotechnical Commission (IEC). Both ANSI and the ISO/IEC have
accepted SQL as the standard language for relational databases. When a new SQL standard
is simultaneously published by these organizations, the names of the standards conform to
conventions used by the organization, but the standards are technically identical.

See Also

Oracle and Standard SQL for a detailed description of Oracle Database conformance
to the SQL standard

How SQL Works
The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically speaking, SQL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 4

is a data sublanguage. The purpose of SQL is to provide an interface to a relational database
such as Oracle Database, and all SQL statements are instructions to the database. In this SQL
differs from general-purpose programming languages like C and BASIC. Among the features of
SQL are the following:

• It processes sets of data as groups rather than as individual units.

• It provides automatic navigation to the data.

• It uses statements that are complex and powerful individually, and that therefore stand
alone. Flow-control statements, such as begin-end, if-then-else, loops, and exception
condition handling, were initially not part of SQL and the SQL standard, but they can now
be found in ISO/IEC 9075-4 - Persistent Stored Modules (SQL/PSM). The PL/SQL
extension to Oracle SQL is similar to PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example, to retrieve a
set of rows from a table, you define a condition used to filter the rows. All rows satisfying the
condition are retrieved in a single step and can be passed as a unit to the user, to another SQL
statement, or to an application. You need not deal with the rows one by one, nor do you have
to worry about how they are physically stored or retrieved. All SQL statements use the
optimizer, a part of Oracle Database that determines the most efficient means of accessing
the specified data. Oracle also provides techniques that you can use to make the optimizer
perform its job better.

SQL provides statements for a variety of tasks, including:

• Querying data

• Inserting, updating, and deleting rows in a table

• Creating, replacing, altering, and dropping objects

• Controlling access to the database and its objects

• Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

Common Language for All Relational Databases
All major relational database management systems support SQL, so you can transfer all skills
you have gained with SQL from one database to another. In addition, all programs written in
SQL are portable. They can often be moved from one database to another with very little
modification.

Using Enterprise Manager
Many of the operations you can accomplish using SQL syntax can be done much more easily
using Enterprise Manager. For more information, see the Oracle Enterprise Manager
documentation set, Oracle Database 2 Day DBA, or any of the Oracle Database 2 Day +
books.

Lexical Conventions
The following lexical conventions for issuing SQL statements apply specifically to the Oracle
Database implementation of SQL, but are generally acceptable in other SQL implementations.

Chapter 1
Using Enterprise Manager

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 4

When you issue a SQL statement, you can include one or more tabs, carriage returns, spaces,
or comments anywhere a space occurs within the definition of the statement. Thus, Oracle
Database evaluates the following two statements in the same manner:

SELECT last_name,salary*12,MONTHS_BETWEEN(SYSDATE,hire_date)
 FROM employees
 WHERE department_id = 30
 ORDER BY last_name;

SELECT last_name,
 salary * 12,
 MONTHS_BETWEEN(SYSDATE, hire_date)
FROM employees
WHERE department_id=30
ORDER BY last_name;

Case is insignificant in reserved words, keywords, identifiers, and parameters. However, case
is significant in text literals and quoted names. Refer to Text Literals for a syntax description of
text literals.

Note

SQL statements are terminated differently in different programming environments. This
documentation set uses the default SQL*Plus character, the semicolon (;).

Tools Support
Oracle provides a number of utilities to facilitate your SQL development process:

• Oracle SQL Developer is a graphical tool that lets you browse, create, edit, and delete
(drop) database objects, edit and debug PL/SQL code, run SQL statements and scripts,
manipulate and export data, and create and view reports.

Using SQL Developer, you can connect to any target Oracle Database schema using
standard Oracle Database authentication. DBAs can also use SQL Developer to
administer and monitor their database, with interfaces for Data Pump, RMAN, and Auditing
also included.

Once connected, you can perform operations on objects in the database. You can also
connect to schemas for selected databases, such as MySQL, Microsoft SQL Server, and
Amazon Redshift, view metadata and data in these databases, and migrate these
databases to Oracle Database.

• Oracle SQL Developer Command Line (SQLcl) is a free command line interface for Oracle
Database. It allows you to interactively or batch execute SQL and PL/SQL.

SQLcl offers integrated Oracle Cloud (OCI) support, client side scripting with JavaScript,
custom commands, and updated SQL*Plus commands (INFO vs DESC). Additionally,
SQLcl provides native vi or Emacs editing, statement completion, and persistent command
recall for a feature-rich experience, all while supporting your previously written SQL*Plus
scripts.

• Database Actions delivers your favorite Oracle Database desktop tool’s features and
experience to your web browser. Delivered as a single-page web application, Database
Actions is powered by Oracle REST Data Services (ORDS).

Database Actions offers a worksheet for running queries and scripts, the ability to manage
and browse your data dictionary, a REST development environment for your REST APIs

Chapter 1
Tools Support

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 4

and AUTOREST enabled objects, an interface for Oracle’s JSON Document Store
(SODA), a DBA console for managing the database, a data model reporting solution, and
access to PerfHub. Database Actions is also available automatically for any Oracle
Autonomous Database OCI Service.

• SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database server or client installation. It has a command-line user interface.

See Also

SQL*Plus User's Guide and Reference and Oracle APEX App Builder User’s Guide for
more information on these products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL statements
within a procedure programming language.

• The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

• The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded SQL
statements and translate them into statements that can be understood by C/C++ and
COBOL compilers, respectively.

See Also

Oracle C++ Call Interface Developer's Guide, Pro*COBOL Developer's Guide, and
Oracle Call Interface Developer's Guide for additional information on the embedded
SQL statements allowed in each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using does not
support this complete functionality, then you can find a discussion of the restrictions in the
manual describing the tool, such as SQL*Plus User's Guide and Reference.

Chapter 1
Tools Support

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 4

2
Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL. These
elements are the simplest building blocks of SQL statements. Therefore, before using the SQL
statements described in this book, you should familiarize yourself with the concepts covered in
this chapter.

This chapter contains these sections:

• Data Types

• Data Type Comparison Rules

• Literals

• Format Models

• Nulls

• Comments

• Database Objects

• Database Object Names and Qualifiers

• Syntax for Schema Objects and Parts in SQL Statements

Data Types
Each value manipulated by Oracle Database has a data type. The data type of a value
associates a fixed set of properties with the value. These properties cause Oracle to treat
values of one data type differently from values of another. For example, you can add values of
NUMBER data type, but not values of RAW data type.

When you create a table or cluster, you must specify a data type for each of its columns. When
you create a procedure or stored function, you must specify a data type for each of its
arguments. These data types define the domain of values that each column can contain or
each argument can have. For example, DATE columns cannot accept the value February 29
(except for a leap year) or the values 2 or 'SHOE'. Each value subsequently placed in a
column assumes the data type of the column. For example, if you insert '01-JAN-98' into a DATE
column, then Oracle treats the '01-JAN-98' character string as a DATE value after verifying that it
translates to a valid date.

Oracle Database provides a number of built-in data types as well as several categories for
user-defined types that can be used as data types. The syntax of Oracle data types appears in
the diagrams that follow. The text of this section is divided into the following sections:

• Oracle Built-in Data Types

• Rowid Data Types

• ANSI, DB2, and SQL/DS Data Types

• User-Defined Types

• Oracle-Supplied Types

• Any Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 156

• XML Types

• Spatial Types

A data type is either scalar or nonscalar. A scalar type contains an atomic value, whereas a
nonscalar (sometimes called a "collection") contains a set of values. A large object (LOB) is a
special form of scalar data type representing a large scalar value of binary or character data.
LOBs are subject to some restrictions that do not affect other scalar types because of their
size. Those restrictions are documented in the context of the relevant SQL syntax.

See Also

Restrictions on LOB Columns

The Oracle precompilers recognize other data types in embedded SQL programs. These data
types are called external data types and are associated with host variables. Do not confuse
built-in data types and user-defined types with external data types. For information on external
data types, including how Oracle converts between them and built-in data types or user-
defined types, see Pro*COBOL Developer's Guide, and Pro*C/C++ Developer's Guide.

datatype::=

Oracle_built_in_datatypes

Rowid_datatypes

ANSI_supported_datatypes

User_defined_types

Oracle_supplied_types

Any_types

XML_types

Spatial_types

The Oracle built-in data types appear in the figures that follows. For descriptions, refer to
Oracle Built-in Data Types.

Oracle_built_in_datatypes::=

character_datatypes

number_datatypes

long_and_raw_datatypes

datetime_datatypes

large_object_datatypes

rowid_datatypes

json_datatype

boolean_datatype

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 156

character_datatypes::=

CHAR

(size

BYTE

CHAR

)

VARCHAR2 (size

BYTE

CHAR

)

NCHAR

(size)

NVARCHAR2 (size)

number_datatypes::=

NUMBER

(precision

, scale

)

FLOAT

(precision)

BINARY_FLOAT

BINARY_DOUBLE

long_and_raw_datatypes::=

LONG

LONG RAW

RAW (size)

datetime_datatypes::=

DATE

TIMESTAMP

(fractional_seconds_precision) WITH

LOCAL

TIME ZONE

INTERVAL YEAR

(year_precision)

TO MONTH

INTERVAL DAY

(day_precision)

TO SECOND

(fractional_seconds_precision)

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 156

large_object_datatypes::=

BLOB

CLOB

NCLOB

BFILE

rowid_datatypes::=

ROWID

UROWID

(size)

The ANSI-supported data types appear in the figure that follows. ANSI, DB2, and SQL/DS
Data Types discusses the mapping of ANSI-supported data types to Oracle built-in data types.

ANSI_supported_datatypes::=

CHARACTER

VARYING

(size)

CHAR

NCHAR
VARYING (size)

VARCHAR (size)

NATIONAL
CHARACTER

CHAR

VARYING

(size)

NUMERIC

DECIMAL

DEC

(precision

, scale

)

INTEGER

INT

SMALLINT

FLOAT

(size)

DOUBLE PRECISION

REAL

For descriptions of user-defined types, refer to User-Defined Types .

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 156

The Oracle-supplied data types appear in the figures that follows. For descriptions, refer to
Oracle-Supplied Types .

Oracle_supplied_types::=

any_types

XML_types

spatial_types

any_types::=

SYS.AnyData

SYS.AnyType

SYS.AnyDataSet

For descriptions of the Any types, refer to Any Types .

XML_types::=

XMLType

URIType

For descriptions of the XML types, refer to XML Types .

spatial_types::=

SDO_Geometry

SDO_Topo_Geometry

SDO_GeoRaster

For descriptions of the spatial types, refer to Spatial Types .

Oracle Built-in Data Types
The Built-In Data Type Summary table lists the built-in data types available. Oracle Database
uses a code to identify the data type internally. This is the number in the Code column of the
Built-In Data Type Summary table. You can verify the codes in the table using the DUMP
function.

In addition to the built-in data types listed in the Built-In Data Type Summary table, Oracle
Database uses many data types internally that are visible via the DUMP function.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 156

Table 2-1 Built-In Data Type Summary

Code Data Type Description

1 VARCHAR2(size [BYTE | CHAR]) Variable-length character string having maximum length size bytes or
characters. You must specify size for VARCHAR2. Minimum size is 1
byte or 1 character. Maximum size is:

• 32767 bytes or characters if MAX_STRING_SIZE = EXTENDED
• 4000 bytes or characters if MAX_STRING_SIZE = STANDARD
Refer to Extended Data Types for more information on the
MAX_STRING_SIZE initialization parameter.

BYTE indicates that the column will have byte length semantics. CHAR
indicates that the column will have character semantics.

1 NVARCHAR2(size) Variable-length Unicode character string having maximum length size
characters. You must specify size for NVARCHAR2. The number of
bytes can be up to two times size for AL16UTF16 encoding and three
times size for UTF8 encoding. Maximum size is determined by the
national character set definition, with an upper limit of:

• 32767 bytes if MAX_STRING_SIZE = EXTENDED
• 4000 bytes if MAX_STRING_SIZE = STANDARD
Refer to Extended Data Types for more information on the
MAX_STRING_SIZE initialization parameter.

2 NUMBER [(p [, s])] Number having precision p and scale s. The precision p can range
from 1 to 38. The scale s can range from -84 to 127. Both precision
and scale are in decimal digits. A NUMBER value requires from 1 to 22
bytes.

2 FLOAT [(p)] A subtype of the NUMBER data type having precision p. A FLOAT
value is represented internally as NUMBER. The precision p can range
from 1 to 126 binary digits. A FLOAT value requires from 1 to 22 bytes.

8 LONG Character data of variable length up to 2 gigabytes, or 231 -1 bytes.
Provided for backward compatibility.

12 DATE Valid date range from January 1, 4712 BC, to December 31, 9999 AD.
The default format is determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY parameter. The size is
fixed at 7 bytes. This data type contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, and SECOND. It does not have
fractional seconds or a time zone.

100 BINARY_FLOAT 32-bit floating point number. This data type requires 4 bytes.

101 BINARY_DOUBLE 64-bit floating point number. This data type requires 8 bytes.

180 TIMESTAMP [(fractional_seconds_precision)] Year, month, and day values of date, as well as hour, minute, and
second values of time, where fractional_seconds_precision is the number
of digits in the fractional part of the SECOND datetime field. Accepted
values of fractional_seconds_precision are 0 to 9. The default is 6. The
default format is determined explicitly by the
NLS_TIMESTAMP_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 7 or 11 bytes, depending on
the precision. This data type contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, and SECOND. It contains fractional
seconds but does not have a time zone.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 156

Table 2-1 (Cont.) Built-In Data Type Summary

Code Data Type Description

181 TIMESTAMP [(fractional_seconds_precision)]
WITH TIME ZONE

All values of TIMESTAMP as well as time zone displacement value,
where fractional_seconds_precision is the number of digits in the
fractional part of the SECOND datetime field. Accepted values are 0 to
9. The default is 6. The default date format for the TIMESTAMP WITH
TIME ZONE data type is determined by the
NLS_TIMESTAMP_TZ_FORMAT initialization parameter. The size is
fixed at 13 bytes. This data type contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, and
TIMEZONE_MINUTE. It has fractional seconds and an explicit time
zone.

231 TIMESTAMP [(fractional_seconds_precision)]
WITH LOCAL TIME ZONE

All values of TIMESTAMP WITH TIME ZONE, with the following
exceptions:

• Data is normalized to the database time zone when it is stored in
the database.

• When the data is retrieved, users see the data in the session time
zone.

The default format is determined explicitly by the
NLS_TIMESTAMP_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 7 or 11 bytes, depending on
the precision.

182 INTERVAL YEAR [(year_precision)] TO
MONTH

Stores a period of time in years and months, where year_precision is
the number of digits in the YEAR datetime field. Accepted values are 0
to 9. The default is 2. The size is fixed at 5 bytes.

183 INTERVAL DAY [(day_precision)] TO
SECOND [(fractional_seconds_precision)]

Stores a period of time in days, hours, minutes, and seconds, where

• day_precision is the maximum number of digits in the DAY datetime
field. Accepted values are 0 to 9. The default is 2.

• fractional_seconds_precision is the number of digits in the fractional
part of the SECOND field. Accepted values are 0 to 9. The default
is 6.

The size is fixed at 11 bytes.

23 RAW(size) Raw binary data of length size bytes. You must specify size for a RAW
value. Maximum size is:

• 32767 bytes if MAX_STRING_SIZE = EXTENDED
• 2000 bytes if MAX_STRING_SIZE = STANDARD
Refer to Extended Data Types for more information on the
MAX_STRING_SIZE initialization parameter.

24 LONG RAW Raw binary data of variable length up to 2 gigabytes.

69 ROWID Base 64 string representing the unique address of a row in its table.
This data type is primarily for values returned by the ROWID
pseudocolumn.

208 UROWID [(size)] Base 64 string representing the logical address of a row of an index-
organized table. The optional size is the size of a column of type
UROWID. The maximum size and default is 4000 bytes.

96 CHAR [(size [BYTE | CHAR])] Fixed-length character data of length size bytes or characters.
Maximum size is 2000 bytes or characters. Default and minimum size is
1 byte.

BYTE and CHAR have the same semantics as for VARCHAR2.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 156

Table 2-1 (Cont.) Built-In Data Type Summary

Code Data Type Description

96 NCHAR[(size)] Fixed-length character data of length size characters. The number of
bytes can be up to two times size for AL16UTF16 encoding and three
times size for UTF8 encoding. Maximum size is determined by the
national character set definition, with an upper limit of 2000 bytes.
Default and minimum size is 1 character.

112 CLOB A character large object containing single-byte or multibyte characters.
Both fixed-width and variable-width character sets are supported, both
using the database character set. Maximum size is (4 gigabytes - 1) *
(database block size).

112 NCLOB A character large object containing Unicode characters. Both fixed-
width and variable-width character sets are supported, both using the
database national character set. Maximum size is (4 gigabytes - 1) *
(database block size). Stores national character set data.

113 BLOB A binary large object. Maximum size is (4 gigabytes - 1) * (database
block size).

114 BFILE Contains a locator to a large binary file stored outside the database.
Enables byte stream I/O access to external LOBs residing on the
database server. Maximum size is 4 gigabytes.

119 JSON Maximum size is 32 megabytes.

252 BOOLEAN The BOOLEAN data type comprises the distinct truth values True and
False. Unless prohibited by a NOT NULL constraint, the boolean data
type also supports the truth value UNKNOWN as the null value.

127 VECTOR The VECTOR data type represents a vector as a series of numbers
stored in one of the following formats:

• INT8 (8-bit integers)
• FLOAT32 (32-bit floating-point numbers)
• FLOAT64 (64-bit floating-point numbers)
• BINARY
FLOAT32 and FLOAT64 are IEEE standards. Oracle Database
automatically casts the values as needed.

The sections that follow describe the Oracle data types as they are stored in Oracle Database.
For information on specifying these data types as literals, refer to Literals .

Character Data Types
Character data types store character (alphanumeric) data, which are words and free-form text,
in the database character set or national character set. They are less restrictive than other data
types and consequently have fewer properties. For example, character columns can store all
alphanumeric values, but NUMBER columns can store only numeric values.

Character data is stored in strings with byte values corresponding to one of the character sets,
such as 7-bit ASCII or EBCDIC, specified when the database was created. Oracle Database
supports both single-byte and multibyte character sets.

These data types are used for character data:

• CHAR Data Type

• NCHAR Data Type

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 156

• VARCHAR2 Data Type

• NVARCHAR2 Data Type

For information on specifying character data types as literals, refer to Text Literals .

CHAR Data Type

The CHAR data type specifies a fixed-length character string in the database character set. You
specify the database character set when you create your database.

When you create a table with a CHAR column, you specify the column length as size optionally
followed by a length qualifier. The qualifier BYTE denotes byte length semantics while the
qualifier CHAR denotes character length semantics. In the byte length semantics, size is the
number of bytes to store in the column. In the character length semantics, size is the number of
code points in the database character set to store in the column. A code point may have from 1
to 4 bytes depending on the database character set and the particular character encoded by
the code point. Oracle recommends that you specify one of the length qualifiers to explicitly
document the desired length semantics of the column. If you do not specify a qualifier, the
value of the NLS_LENGTH_SEMANTICS parameter of the session creating the column defines the
length semantics, unless the table belongs to the schema SYS, in which case the default
semantics is BYTE.

Oracle ensures that all values stored in a CHAR column have the length specified by size in the
selected length semantics. If you insert a value that is shorter than the column length, then
Oracle blank-pads the value to column length. If you try to insert a value that is too long for the
column, then Oracle returns an error. Note that if the column length is expressed in characters
(code points), blank-padding does not guarantee that all column values have the same byte
length.

You can omit size from the column definition. The default value is 1.

The maximum value of size is 2000, which means 2000 bytes or characters (code points),
depending on the selected length semantics. However, independently, the absolute maximum
length of any character value that can be stored into a CHAR column is 2000 bytes. For
example, even if you define the column length to be 2000 characters, Oracle returns an error if
you try to insert a 2000-character value in which one or more code points are wider than 1
byte. The value of size in characters is a length constraint, not guaranteed capacity. If you want
a CHAR column to be always able to store size characters in any database character set, use a
value of size that is less than or equal to 500.

To ensure proper data conversion between databases and clients with different character sets,
you must ensure that CHAR data consists of well-formed strings.

See Also

Oracle Database Globalization Support Guide for more information on character set
support and Data Type Comparison Rules for information on comparison semantics

NCHAR Data Type

The NCHAR data type specifies a fixed-length character string in the national character set. You
specify the national character set as either AL16UTF16 or UTF8 when you create your
database. AL16UTF16 and UTF8 are two encoding forms of the Unicode character set
(UTF-16 and CESU-8, correspondingly) and hence NCHAR is a Unicode-only data type.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 156

When you create a table with an NCHAR column, you specify the column length as size
characters, or more precisely, code points in the national character set. One code point has
always 2 bytes in AL16UTF16 and from 1 to 3 bytes in UTF8, depending on the particular
character encoded by the code point.

Oracle ensures that all values stored in an NCHAR column have the length of size characters. If
you insert a value that is shorter than the column length, then Oracle blank-pads the value to
the column length. If you try to insert a value that is too long for the column, then Oracle
returns an error. Note that if the national character set is UTF8, blank-padding does not
guarantee that all column values have the same byte length.

You can omit size from the column definition. The default value is 1.

The maximum value of size is 1000 characters when the national character set is AL16UTF16,
and 2000 characters when the national character set is UTF8. However, independently, the
absolute maximum length of any character value that can be stored into an NCHAR column is
2000 bytes. For example, even if you define the column length to be 1000 characters, Oracle
returns an error if you try to insert a 1000-character value but the national character set is
UTF8 and all code points are 3 bytes wide. The value of size is a length constraint, not
guaranteed capacity. If you want an NCHAR column to be always able to store size characters in
both national character sets, use a value of size that is less than or equal to 666.

To ensure proper data conversion between databases and clients with different character sets,
you must ensure that NCHAR data consists of well-formed strings.

If you assign a CHAR value to an NCHAR column, the value is implicitly converted from the
database character set to the national character set. If you assign an NCHAR value to a CHAR
column, the value is implicitly converted from the national character set to the database
character set. If some of the characters from the NCHAR value cannot be represented in the
database character set, then if the value of the session parameter NLS_NCHAR_CONV_EXCP is
TRUE, then Oracle reports an error. If the value of the parameter is FALSE, non-representable
characters are replaced with the default replacement character of the database character set,
which is usually the question mark '?' or the inverted question mark '¿'.

See Also

Oracle Database Globalization Support Guide for information on Unicode data type
support

VARCHAR2 Data Type

The VARCHAR2 data type specifies a variable-length character string in the database character
set. You specify the database character set when you create your database.

When you create a table with a VARCHAR2 column, you must specify the column length as size
optionally followed by a length qualifier. The qualifier BYTE denotes byte length semantics while
the qualifier CHAR denotes character length semantics. In the byte length semantics, size is the
maximum number of bytes that can be stored in the column. In the character length semantics,
size is the maximum number of code points in the database character set that can be stored in
the column. A code point may have from 1 to 4 bytes depending on the database character set
and the particular character encoded by the code point. Oracle recommends that you specify
one of the length qualifiers to explicitly document the desired length semantics of the column. If
you do not specify a qualifier, the value of the NLS_LENGTH_SEMANTICS parameter of the
session creating the column defines the length semantics, unless the table belongs to the
schema SYS, in which case the default semantics is BYTE.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 156

Oracle stores a character value in a VARCHAR2 column exactly as you specify it, without any
blank-padding, provided the value does not exceed the length of the column. If you try to insert
a value that exceeds the specified length, then Oracle returns an error.

The minimum value of size is 1. The maximum value is:

• 32767 bytes if MAX_STRING_SIZE = EXTENDED

• 4000 bytes if MAX_STRING_SIZE = STANDARD

Refer to Extended Data Types for more information on the MAX_STRING_SIZE initialization
parameter and the internal storage mechanisms for extended data types.

While size may be expressed in bytes or characters (code points) the independent absolute
maximum length of any character value that can be stored into a VARCHAR2 column is 32767 or
4000 bytes, depending on MAX_STRING_SIZE. For example, even if you define the column
length to be 32767 characters, Oracle returns an error if you try to insert a 32767-character
value in which one or more code points are wider than 1 byte. The value of size in characters is
a length constraint, not guaranteed capacity. If you want a VARCHAR2 column to be always able
to store size characters in any database character set, use a value of size that is less than or
equal to 8191, if MAX_STRING_SIZE = EXTENDED, or 1000, if MAX_STRING_SIZE = STANDARD.

Oracle compares VARCHAR2 values using non-padded comparison semantics.

To ensure proper data conversion between databases with different character sets, you must
ensure that VARCHAR2 data consists of well-formed strings. See Oracle Database Globalization
Support Guide for more information on character set support.

See Also

Data Type Comparison Rules for information on comparison semantics

VARCHAR Data Type

Do not use the VARCHAR data type. Use the VARCHAR2 data type instead. Although the
VARCHAR data type is currently synonymous with VARCHAR2, the VARCHAR data type might be
redefined in a future release as a separate data type used for variable-length character strings
compared with different comparison semantics.

NVARCHAR2 Data Type

The NVARCHAR2 data type specifies a variable-length character string in the national character
set. You specify the national character set as either AL16UTF16 or UTF8 when you create your
database. AL16UTF16 and UTF8 are two encoding forms of the Unicode character set
(UTF-16 and CESU-8, correspondingly) and hence NVARCHAR2 is a Unicode-only data type.

When you create a table with an NVARCHAR2 column, you must specify the column length as
size characters, or more precisely, code points in the national character set. One code point has
always 2 bytes in AL16UTF16 and from 1 to 3 bytes in UTF8, depending on the particular
character encoded by the code point.

Oracle stores a character value in an NVARCHAR2 column exactly as you specify it, without any
blank-padding, provided the value does not exceed the length of the column. If you try to insert
a value that exceeds the specified length, then Oracle returns an error.

The minimum value of size is 1. The maximum value is:

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 156

• 16383 if MAX_STRING_SIZE = EXTENDED and the national character set is AL16UTF16

• 32767 if MAX_STRING_SIZE = EXTENDED and the national character set is UTF8

• 2000 if MAX_STRING_SIZE = STANDARD and the national character set is AL16UTF16

• 4000 if MAX_STRING_SIZE = STANDARD and the national character set is UTF8

Refer to Extended Data Types for more information on the MAX_STRING_SIZE initialization
parameter and the internal storage mechanisms for extended data types.

Independently of the maximum column length in characters, the absolute maximum length of
any value that can be stored into an NVARCHAR2 column is 32767 or 4000 bytes, depending on
MAX_STRING_SIZE. For example, even if you define the column length to be 16383 characters,
Oracle returns an error if you try to insert a 16383-character value but the national character
set is UTF8 and all code points are 3 bytes wide. The value of size is a length constraint, not
guaranteed capacity. If you want an NVARCHAR2 column to be always able to store size
characters in both national character sets, use a value of size that is less than or equal to
10922, if MAX_STRING_SIZE = EXTENDED, or 1333, if MAX_STRING_SIZE = STANDARD.

Oracle compares NVARCHAR2 values using non-padded comparison semantics.

To ensure proper data conversion between databases and clients with different character sets,
you must ensure that NVARCHAR2 data consists of well-formed strings.

If you assign a VARCHAR2 value to an NVARCHAR2 column, the value is implicitly converted from
the database character set to the national character set. If you assign an NVARCHAR2 value to a
VARCHAR2 column, the value is implicitly converted from the national character set to the
database character set. If some of the characters from the NVARCHAR2 value cannot be
represented in the database character set, then if the value of the session parameter
NLS_NCHAR_CONV_EXCP is TRUE, then Oracle reports an error. If the value of the parameter is
FALSE, non-representable characters are replaced with the default replacement character of the
database character set, which is usually the question mark '?' or the inverted question mark '¿'.

See Also

Oracle Database Globalization Support Guide for information on Unicode data type
support.

Numeric Data Types
The Oracle Database numeric data types store positive and negative fixed and floating-point
numbers, zero, infinity, and values that are the undefined result of an operation—"not a
number" or NAN. For information on specifying numeric data types as literals, refer to Numeric
Literals .

NUMBER Data Type

The NUMBER data type stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 10-130 to but not including 1.0 x 10126. If you specify an arithmetic
expression whose value has an absolute value greater than or equal to 1.0 x 10126, then
Oracle returns an error. Each NUMBER value requires from 1 to 22 bytes.

Specify a fixed-point number using the following form:

NUMBER(p,s)

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 156

where:

• p is the precision, or the maximum number of significant decimal digits, where the most
significant digit is the left-most nonzero digit, and the least significant digit is the right-most
known digit. Oracle guarantees the portability of numbers with precision of up to 20
base-100 digits, which is equivalent to 39 or 40 decimal digits depending on the position of
the decimal point.

• s is the scale, or the number of digits from the decimal point to the least significant digit.
The scale can range from -84 to 127.

– Positive scale is the number of significant digits to the right of the decimal point to and
including the least significant digit.

– Negative scale is the number of significant digits to the left of the decimal point, to but
not including the least significant digit. For negative scale the least significant digit is
on the left side of the decimal point, because the actual data is rounded to the
specified number of places to the left of the decimal point. For example, a specification
of (10,-2) means to round to hundreds.

Scale can be greater than precision, most commonly when e notation is used. When scale is
greater than precision, the precision specifies the maximum number of significant digits to the
right of the decimal point. For example, a column defined as NUMBER(4,5) requires a zero for
the first digit after the decimal point and rounds all values past the fifth digit after the decimal
point.

It is good practice to specify the scale and precision of a fixed-point number column for extra
integrity checking on input. Specifying scale and precision does not force all values to a fixed
length. If a value exceeds the precision, then Oracle returns an error. If a value exceeds the
scale, then Oracle rounds it.

Specify an integer using the following form:

NUMBER(p)

This represents a fixed-point number with precision p and scale 0 and is equivalent to
NUMBER(p,0).

Specify a floating-point number using the following form:

NUMBER

The absence of precision and scale designators specifies the maximum range and precision
for an Oracle number.

See Also

Floating-Point Numbers

Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision

Actual Data Specified As Stored As

123.89 NUMBER 123.89

123.89 NUMBER(3) 124

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 156

Table 2-2 (Cont.) Storage of Scale and Precision

Actual Data Specified As Stored As

123.89 NUMBER(3,2) exceeds precision

123.89 NUMBER(4,2) exceeds precision

123.89 NUMBER(5,2) 123.89

123.89 NUMBER(6,1) 123.9

123.89 NUMBER(6,-2) 100

.01234 NUMBER(4,5) .01234

.00012 NUMBER(4,5) .00012

.000127 NUMBER(4,5) .00013

.0000012 NUMBER(2,7) .0000012

.00000123 NUMBER(2,7) .0000012

1.2e-4 NUMBER(2,5) 0.00012

1.2e-5 NUMBER(2,5) 0.00001

FLOAT Data Type

The FLOAT data type is a subtype of NUMBER. It can be specified with or without precision,
which has the same definition it has for NUMBER and can range from 1 to 126. Scale cannot be
specified, but is interpreted from the data. Each FLOAT value requires from 1 to 22 bytes.

To convert from binary to decimal precision, multiply n by 0.30103. To convert from decimal to
binary precision, multiply the decimal precision by 3.32193. The maximum of 126 digits of
binary precision is roughly equivalent to 38 digits of decimal precision.

The difference between NUMBER and FLOAT is best illustrated by example. In the following
example the same values are inserted into NUMBER and FLOAT columns:

CREATE TABLE test (col1 NUMBER(5,2), col2 FLOAT(5));

INSERT INTO test VALUES (1.23, 1.23);
INSERT INTO test VALUES (7.89, 7.89);
INSERT INTO test VALUES (12.79, 12.79);
INSERT INTO test VALUES (123.45, 123.45);

SELECT * FROM test;

 COL1 COL2
---------- ----------
 1.23 1.2
 7.89 7.9
 12.79 13
 123.45 120

In this example, the FLOAT value returned cannot exceed 5 binary digits. The largest decimal
number that can be represented by 5 binary digits is 31. The last row contains decimal values
that exceed 31. Therefore, the FLOAT value must be truncated so that its significant digits do
not require more than 5 binary digits. Thus 123.45 is rounded to 120, which has only two
significant decimal digits, requiring only 4 binary digits.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 156

Oracle Database uses the Oracle FLOAT data type internally when converting ANSI FLOAT data.
Oracle FLOAT is available for you to use, but Oracle recommends that you use the
BINARY_FLOAT and BINARY_DOUBLE data types instead, as they are more robust. Refer to
Floating-Point Numbers for more information.

Floating-Point Numbers
Floating-point numbers can have a decimal point anywhere from the first to the last digit or can
have no decimal point at all. An exponent may optionally be used following the number to
increase the range, for example, 1.777 e-20. A scale value is not applicable to floating-point
numbers, because the number of digits that can appear after the decimal point is not restricted.

Binary floating-point numbers differ from NUMBER in the way the values are stored internally by
Oracle Database. Values are stored using decimal precision for NUMBER. All literals that are
within the range and precision supported by NUMBER are stored exactly as NUMBER. Literals
are stored exactly because literals are expressed using decimal precision (the digits 0 through
9). Binary floating-point numbers are stored using binary precision (the digits 0 and 1). Such a
storage scheme cannot represent all values using decimal precision exactly. Frequently, the
error that occurs when converting a value from decimal to binary precision is undone when the
value is converted back from binary to decimal precision. The literal 0.1 is such an example.

Oracle Database provides two numeric data types exclusively for floating-point numbers:

BINARY_FLOAT

BINARY_FLOAT is a 32-bit, single-precision floating-point number data type. Each BINARY_FLOAT
value requires 4 bytes.

BINARY_DOUBLE

BINARY_DOUBLE is a 64-bit, double-precision floating-point number data type. Each
BINARY_DOUBLE value requires 8 bytes.

In a NUMBER column, floating point numbers have decimal precision. In a BINARY_FLOAT or
BINARY_DOUBLE column, floating-point numbers have binary precision. The binary floating-
point numbers support the special values infinity and NaN (not a number).

You can specify floating-point numbers within the limits listed in Table 2-3. The format for
specifying floating-point numbers is defined in Numeric Literals .

Table 2-3 Floating Point Number Limits

Value BINARY_FLOAT BINARY_DOUBLE

Maximum positive finite value 3.40282E+38F 1.79769313486231E+308

Minimum positive finite value 1.17549E-38F 2.22507485850720E-308

IEEE754 Conformance

The Oracle implementation of floating-point data types conforms substantially with the Institute
of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic,
IEEE Standard 754-1985 (IEEE754). The floating-point data types conform to IEEE754 in the
following areas:

• The SQL function SQRT implements square root. See SQRT .

• The SQL function REMAINDER implements remainder. See REMAINDER .

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 156

• Arithmetic operators conform. See Arithmetic Operators .

• Comparison operators conform, except for comparisons with NaN. Oracle orders NaN
greatest with respect to all other values, and evaluates NaN equal to NaN. See Floating-
Point Conditions .

• Conversion operators conform. See Conversion Functions .

• The default rounding mode is supported.

• The default exception handling mode is supported.

• The special values INF, -INF, and NaN are supported. See Floating-Point Conditions .

• Rounding of BINARY_FLOAT and BINARY_DOUBLE values to integer-valued BINARY_FLOAT
and BINARY_DOUBLE values is provided by the SQL functions ROUND, TRUNC, CEIL, and
FLOOR.

• Rounding of BINARY_FLOAT/BINARY_DOUBLE to decimal and decimal to BINARY_FLOAT/
BINARY_DOUBLE is provided by the SQL functions TO_CHAR, TO_NUMBER, TO_NCHAR,
TO_BINARY_FLOAT, TO_BINARY_DOUBLE, and CAST.

The floating-point data types do not conform to IEEE754 in the following areas:

• -0 is coerced to +0.

• Comparison with NaN is not supported.

• All NaN values are coerced to either BINARY_FLOAT_NAN or BINARY_DOUBLE_NAN.

• Non-default rounding modes are not supported.

• Non-default exception handling mode are not supported.

Numeric Precedence
Numeric precedence determines, for operations that support numeric data types, the data
type Oracle uses if the arguments to the operation have different data types. BINARY_DOUBLE
has the highest numeric precedence, followed by BINARY_FLOAT, and finally by NUMBER.
Therefore, in any operation on multiple numeric values:

• If any of the operands is BINARY_DOUBLE, then Oracle attempts to convert all the operands
implicitly to BINARY_DOUBLE before performing the operation.

• If none of the operands is BINARY_DOUBLE but any of the operands is BINARY_FLOAT, then
Oracle attempts to convert all the operands implicitly to BINARY_FLOAT before performing
the operation.

• Otherwise, Oracle attempts to convert all the operands to NUMBER before performing the
operation.

If any implicit conversion is needed and fails, then the operation fails. Refer to Table 2-9 for
more information on implicit conversion.

In the context of other data types, numeric data types have lower precedence than the
datetime/interval data types and higher precedence than character and all other data types.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 156

LONG Data Type

Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, BLOB) instead.
LONG columns are supported only for backward compatibility.

LONG columns store variable-length character strings containing up to 2 gigabytes -1, or 231-1
bytes. LONG columns have many of the characteristics of VARCHAR2 columns. You can use
LONG columns to store long text strings. The length of LONG values may be limited by the
memory available on your computer. LONG literals are formed as described for Text Literals .

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns. Further, LOB functionality is
enhanced in every release, whereas LONG functionality has been static for several releases.
See the modify_col_properties clause of ALTER TABLE and TO_LOB for more information on
converting LONG columns to LOB.

You can reference LONG columns in SQL statements in these places:

• SELECT lists

• SET clauses of UPDATE statements

• VALUES clauses of INSERT statements

The use of LONG values is subject to these restrictions:

• A table can contain only one LONG column.

• You cannot create an object type with a LONG attribute.

• LONG columns cannot appear in WHERE clauses or in integrity constraints (except that they
can appear in NULL and NOT NULL constraints).

• LONG columns cannot be indexed.

• LONG data cannot be specified in regular expressions.

• A stored function cannot return a LONG value.

• You can declare a variable or argument of a PL/SQL program unit using the LONG data
type. However, you cannot then call the program unit from SQL.

• Within a single SQL statement, all LONG columns, updated tables, and locked tables must
be located on the same database.

• LONG and LONG RAW columns cannot be used in distributed SQL statements and cannot
be replicated.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 156

• If a table has both LONG and LOB columns, then you cannot bind more than 4000 bytes of
data to both the LONG and LOB columns in the same SQL statement. However, you can
bind more than 4000 bytes of data to either the LONG or the LOB column.

In addition, LONG columns cannot appear in these parts of SQL statements:

• GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the DISTINCT
operator in SELECT statements

• The UNIQUE operator of a SELECT statement

• The column list of a CREATE CLUSTER statement

• The CLUSTER clause of a CREATE MATERIALIZED VIEW statement

• SQL built-in functions, expressions, or conditions

• SELECT lists of queries containing GROUP BY clauses

• SELECT lists of subqueries or queries combined by the UNION, INTERSECT, or MINUS set
operators

• SELECT lists of CREATE TABLE ... AS SELECT statements

• ALTER TABLE ... MOVE statements

• SELECT lists in subqueries in INSERT statements

Triggers can use the LONG data type in the following manner:

• A SQL statement within a trigger can insert data into a LONG column.

• If data from a LONG column can be converted to a constrained data type (such as CHAR
and VARCHAR2), then a LONG column can be referenced in a SQL statement within a
trigger.

• Variables in triggers cannot be declared using the LONG data type.

• :NEW and :OLD cannot be used with LONG columns.

You can use Oracle Call Interface functions to retrieve a portion of a LONG value from the
database.

See Also

Oracle Call Interface Developer's Guide

Datetime and Interval Data Types
The datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP
WITH LOCAL TIME ZONE. Values of datetime data types are sometimes called datetimes. The
interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND. Values of
interval data types are sometimes called intervals. For information on expressing datetime
and interval values as literals, refer to Datetime Literals and Interval Literals.

Both datetimes and intervals are made up of fields. The values of these fields determine the
value of the data type. Table 2-4 lists the datetime fields and their possible values for datetimes
and intervals.

To avoid unexpected results in your DML operations on datetime data, you can verify the
database and session time zones by querying the built-in SQL functions DBTIMEZONE and

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 156

SESSIONTIMEZONE. If the time zones have not been set manually, then Oracle Database uses
the operating system time zone by default. If the operating system time zone is not a valid
Oracle time zone, then Oracle uses UTC as the default value.

Table 2-4 Datetime Fields and Values

Datetime Field Valid Values for Datetime Valid Values for INTERVAL

YEAR -4712 to 9999 (excluding year 0) Any positive or negative integer

MONTH 01 to 12 0 to 11

DAY 01 to 31 (limited by the values of MONTH and YEAR,
according to the rules of the current NLS calendar
parameter)

Any positive or negative integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time
fractional seconds. The 9(n) portion is not applicable for
DATE.

0 to 59.9(n), where 9(n) is the
precision of interval fractional
seconds

TIMEZONE_HOUR -12 to 14 (This range accommodates daylight saving
time changes.) Not applicable for DATE or TIMESTAMP.

Not applicable

TIMEZONE_MINUTE
(See note at end of table)

00 to 59. Not applicable for DATE or TIMESTAMP. Not applicable

TIMEZONE_REGION Query the TZNAME column of the V$TIMEZONE_NAMES
data dictionary view. Not applicable for DATE or
TIMESTAMP. For a complete listing of all time zone
region names, refer to Oracle Database Globalization
Support Guide.

Not applicable

TIMEZONE_ABBR Query the TZABBREV column of the
V$TIMEZONE_NAMES data dictionary view. Not
applicable for DATE or TIMESTAMP.

Not applicable

Note

TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together and interpreted as an
entity in the format +|- hh:mi, with values ranging from -12:59 to +14:00. Refer to Oracle
Data Provider for .NET Developer's Guide for information on specifying time zone
values for that API.

DATE Data Type

The DATE data type stores date and time information. Although date and time information can
be represented in both character and number data types, the DATE data type has special
associated properties. For each DATE value, Oracle stores the following information: year,
month, day, hour, minute, and second.

You can specify a DATE value as a literal, or you can convert a character or numeric value to a
date value with the TO_DATE function. For examples of expressing DATE values in both these
ways, refer to Datetime Literals .

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 156

Using Julian Days

A Julian day number is the number of days since January 1, 4712 BC. Julian days allow
continuous dating from a common reference. You can use the date format model "J" with date
functions TO_DATE and TO_CHAR to convert between Oracle DATE values and their Julian
equivalents.

Note

Oracle Database uses the astronomical system of calculating Julian days, in which the
year 4713 BC is specified as -4712. The historical system of calculating Julian days, in
contrast, specifies 4713 BC as -4713. If you are comparing Oracle Julian days with
values calculated using the historical system, then take care to allow for the 365-day
difference in BC dates.

The default date values are determined as follows:

• The year is the current year, as returned by SYSDATE.

• The month is the current month, as returned by SYSDATE.

• The day is 01 (the first day of the month).

• The hour, minute, and second are all 0.

These default values are used in a query that requests date values where the date itself is not
specified, as in the following example, which is issued in the month of May:

SELECT TO_DATE('2009', 'YYYY')
 FROM DUAL;

TO_DATE('

01-MAY-09

Example

This statement returns the Julian equivalent of January 1, 2009:

SELECT TO_CHAR(TO_DATE('01-01-2009', 'MM-DD-YYYY'),'J')
 FROM DUAL;

TO_CHAR

2454833

See Also

Selecting from the DUAL Table for a description of the DUAL table

TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATE data type. It stores the year, month, and
day of the DATE data type, plus hour, minute, and second values. This data type is useful for

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 156

storing precise time values and for collecting and evaluating date information across
geographic regions. Specify the TIMESTAMP data type as follows:

TIMESTAMP [(fractional_seconds_precision)]

where fractional_seconds_precision optionally specifies the number of digits Oracle stores in the
fractional part of the SECOND datetime field. When you create a column of this data type, the
value can be a number in the range 0 to 9. The default is 6.

See Also

TO_TIMESTAMP for information on converting character data to TIMESTAMP data

TIMESTAMP WITH TIME ZONE Data Type

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone region name
or a time zone offset in its value. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time).
This data type is useful for preserving local time zone information.

Specify the TIMESTAMP WITH TIME ZONE data type as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits Oracle stores in the
fractional part of the SECOND datetime field. When you create a column of this data type, the
value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at http://
www.iana.org/time-zones/. Oracle time zone data may not reflect the most recent data available at
this site.

See Also

• Oracle Database Globalization Support Guide for more information on Oracle time
zone data

• Support for Daylight Saving Times and Table 2-20 for information on daylight
saving support

• TO_TIMESTAMP_TZ for information on converting character data to TIMESTAMP
WITH TIME ZONE data

• ALTER SESSION for information on the ERROR_ON_OVERLAP_TIME session
parameter

TIMESTAMP WITH LOCAL TIME ZONE Data Type

TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP that is sensitive to time
zone information. It differs from TIMESTAMP WITH TIME ZONE in that data stored in the database
is normalized to the database time zone, and the time zone information is not stored as part of
the column data. When a user retrieves the data, Oracle returns it in the user's local session

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 156

http://www.iana.org/time-zones/
http://www.iana.org/time-zones/

time zone. This data type is useful for date information that is always to be displayed in the
time zone of the client system in a two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONE data type as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits Oracle stores in the
fractional part of the SECOND datetime field. When you create a column of this data type, the
value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at http://
www.iana.org/time-zones/. Oracle time zone data may not reflect the most recent data available at
this site.

See Also

• Oracle Database Globalization Support Guide for more information on Oracle time
zone data

• Oracle Database Development Guide for examples of using this data type and
CAST for information on converting character data to TIMESTAMP WITH LOCAL
TIME ZONE

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
This data type is useful for representing the difference between two datetime values when only
the year and month values are significant.

Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

where year_precision is the number of digits in the YEAR datetime field. The default value of
year_precision is 2.

You have a great deal of flexibility when specifying interval values as literals. Refer to Interval
Literals for detailed information on specifying interval values as literals. Also see Datetime and
Interval Examples for an example using intervals.

INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. This data type is useful for representing the precise difference between two datetime
values.

Specify this data type as follows:

INTERVAL DAY [(day_precision)]
 TO SECOND [(fractional_seconds_precision)]

where

• day_precision is the number of digits in the DAY datetime field. Accepted values are 0 to 9.
The default is 2.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 156

http://www.iana.org/time-zones/
http://www.iana.org/time-zones/

• fractional_seconds_precision is the number of digits in the fractional part of the SECOND datetime
field. Accepted values are 0 to 9. The default is 6.

You have a great deal of flexibility when specifying interval values as literals. Refer to Interval
Literals for detailed information on specify interval values as literals. Also see Datetime and
Interval Examples for an example using intervals.

Datetime/Interval Arithmetic

You can perform a number of arithmetic operations on date (DATE), timestamp (TIMESTAMP,
TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval (INTERVAL
DAY TO SECOND and INTERVAL YEAR TO MONTH) data. Oracle calculates the results based on
the following rules:

• You can use NUMBER constants in arithmetic operations on date and timestamp values, but
not interval values. Oracle internally converts timestamp values to date values and
interprets NUMBER constants in arithmetic datetime and interval expressions as numbers of
days. For example, SYSDATE + 1 is tomorrow. SYSDATE - 7 is one week ago. SYSDATE +
(10/1440) is ten minutes from now. Subtracting the hire_date column of the sample table
employees from SYSDATE returns the number of days since each employee was hired. You
cannot multiply or divide date or timestamp values.

• Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to NUMBER.

• Each DATE value contains a time component, and the result of many date operations
include a fraction. This fraction means a portion of one day. For example, 1.5 days is 36
hours. These fractions are also returned by Oracle built-in functions for common
operations on DATE data. For example, the MONTHS_BETWEEN function returns the number
of months between two dates. The fractional portion of the result represents that portion of
a 31-day month.

• If one operand is a DATE value or a numeric value, neither of which contains time zone or
fractional seconds components, then:

– Oracle implicitly converts the other operand to DATE data. The exception is
multiplication of a numeric value times an interval, which returns an interval.

– If the other operand has a time zone value, then Oracle uses the session time zone in
the returned value.

– If the other operand has a fractional seconds value, then the fractional seconds value
is lost.

• When you pass a timestamp, interval, or numeric value to a built-in function that was
designed only for the DATE data type, Oracle implicitly converts the non-DATE value to a
DATE value. Refer to Datetime Functions for information on which functions cause implicit
conversion to DATE.

• When interval calculations return a datetime value, the result must be an actual datetime
value or the database returns an error. For example, the next two statements return errors:

SELECT TO_DATE('31-AUG-2004','DD-MON-YYYY') + TO_YMINTERVAL('0-1')
 FROM DUAL;

SELECT TO_DATE('29-FEB-2004','DD-MON-YYYY') + TO_YMINTERVAL('1-0')
 FROM DUAL;

The first fails because adding one month to a 31-day month would result in September 31,
which is not a valid date. The second fails because adding one year to a date that exists
only every four years is not valid. However, the next statement succeeds, because adding
four years to a February 29 date is valid:

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 156

SELECT TO_DATE('29-FEB-2004', 'DD-MON-YYYY') + TO_YMINTERVAL('4-0')
 FROM DUAL;

TO_DATE('

29-FEB-08

• Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH LOCAL TIME
ZONE, Oracle converts the datetime value from the database time zone to UTC and
converts back to the database time zone after performing the arithmetic. For TIMESTAMP
WITH TIME ZONE, the datetime value is always in UTC, so no conversion is necessary.

Table 2-5 is a matrix of datetime arithmetic operations. Dashes represent operations that are
not supported.

Table 2-5 Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric

DATE

+ — — DATE DATE

- NUMBER INTERVAL DATE DATE

* — — — —

/ — — — —

TIMESTAMP

+ — — TIMESTAMP DATE

- INTERVAL INTERVAL TIMESTAMP DATE

* — — — —

/ — — — —

INTERVAL

+ DATE TIMESTAMP INTERVAL —

- — — INTERVAL —

* — — — INTERVAL

/ — — — INTERVAL

Numeric

+ DATE DATE — NA

- — — — NA

* — — INTERVAL NA

/ — — — NA

Examples

You can add an interval value expression to a start time. Consider the sample table oe.orders
with a column order_date. The following statement adds 30 days to the value of the order_date
column:

SELECT order_id, order_date + INTERVAL '30' DAY AS "Due Date"
 FROM orders
 ORDER BY order_id, "Due Date";

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 156

Support for Daylight Saving Times
Oracle Database automatically determines, for any given time zone region, whether daylight
saving is in effect and returns local time values accordingly. The datetime value is sufficient for
Oracle to determine whether daylight saving time is in effect for a given region in all cases
except boundary cases. A boundary case occurs during the period when daylight saving goes
into or comes out of effect. For example, in the US-Pacific region, when daylight saving goes
into effect, the time changes from 2:00 a.m. to 3:00 a.m. The one hour interval between 2 and
3 a.m. does not exist. When daylight saving goes out of effect, the time changes from 2:00
a.m. back to 1:00 a.m., and the one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZR and TZD format elements, as described
in Table 2-20. TZR represents the time zone region name in datetime input strings. Examples
are 'Australia/North', 'UTC', and 'Singapore'. TZD represents an abbreviated form of the time zone
region name with daylight saving information. Examples are 'PST' for US/Pacific standard time
and 'PDT' for US/Pacific daylight time. To see a listing of valid values for the TZR and TZD format
elements, query the TZNAME and TZABBREV columns of the V$TIMEZONE_NAMES dynamic
performance view.

Note

Time zone region names are needed by the daylight saving feature. These names are
stored in two types of time zone files: one large and one small. One of these files is
the default file, depending on your environment and the release of Oracle Database
you are using. For more information regarding time zone files and names, see Oracle
Database Globalization Support Guide.

For a complete listing of the time zone region names in both files, refer to Oracle Database
Globalization Support Guide.

Oracle time zone data is derived from the public domain information available at http://
www.iana.org/time-zones/. Oracle time zone data may not reflect the most recent data available at
this site.

See Also

• Datetime Format Models for information on the format elements and the session
parameter ERROR_ON_OVERLAP_TIME .

• Oracle Database Globalization Support Guide for more information on Oracle time
zone data

• Oracle Database Reference for information on the dynamic performance views

Datetime and Interval Examples

The following example shows an INTERVAL aggregation query:

SELECT job_name,
 SUM(cpu_used)
 FROM DBA_SCHEDULER_JOB_RUN_DETAILS

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 156

http://www.iana.org/time-zones/
http://www.iana.org/time-zones/

 GROUP BY job_name
 HAVING SUM (cpu_used) > interval '5' minute;

The view DBA_SCHEDULER_JOB_RUN_DETAILS contains the log run details for all scheduler jobs
in the database. The column CPU_USED of type INTERVAL DAY(3) TO SECOND(2) displays the
amount of CPU used for the job run. This query returns the names of all the scheduler jobs that
have lasted more than 5 minutes.

The following example shows how to specify some datetime and interval data types.

CREATE TABLE time_table
 (start_time TIMESTAMP,
 duration_1 INTERVAL DAY (6) TO SECOND (5),
 duration_2 INTERVAL YEAR TO MONTH);

The start_time column is of type TIMESTAMP. The implicit fractional seconds precision of
TIMESTAMP is 6.

The duration_1 column is of type INTERVAL DAY TO SECOND. The maximum number of digits in
field DAY is 6 and the maximum number of digits in the fractional second is 5. The maximum
number of digits in all other datetime fields is 2.

The duration_2 column is of type INTERVAL YEAR TO MONTH. The maximum number of digits of
the value in each field (YEAR and MONTH) is 2.

Interval data types do not have format models. Therefore, to adjust their presentation, you
must combine character functions such as EXTRACT and concatenate the components. For
example, the following examples query the hr.employees and oe.orders tables, respectively, and
change interval output from the form "yy-mm" to "yy years mm months" and from "dd-hh" to
"dddd days hh hours":

SELECT last_name, EXTRACT(YEAR FROM (SYSDATE - hire_date) YEAR TO MONTH)
 || ' years '
 || EXTRACT(MONTH FROM (SYSDATE - hire_date) YEAR TO MONTH)
 || ' months' "Interval"
 FROM employees;

LAST_NAME Interval
------------------------- --------------------
OConnell 2 years 3 months
Grant 1 years 9 months
Whalen 6 years 1 months
Hartstein 5 years 8 months
Fay 4 years 2 months
Mavris 7 years 4 months
Baer 7 years 4 months
Higgins 7 years 4 months
Gietz 7 years 4 months
. . .

SELECT order_id, EXTRACT(DAY FROM (SYSDATE - order_date) DAY TO SECOND)
 || ' days '
 || EXTRACT(HOUR FROM (SYSDATE - order_date) DAY TO SECOND)
 || ' hours' "Interval"
 FROM orders;

 ORDER_ID Interval
---------- --------------------
 2458 780 days 23 hours
 2397 685 days 22 hours
 2454 733 days 21 hours
 2354 447 days 20 hours

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 156

 2358 635 days 20 hours
 2381 508 days 18 hours
 2440 765 days 17 hours
 2357 1365 days 16 hours
 2394 602 days 15 hours
 2435 763 days 15 hours
. . .

RAW and LONG RAW Data Types

Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

The RAW and LONG RAW data types store data that is not to be explicitly converted by Oracle
Database when moving data between different systems. These data types are intended for
binary data or byte strings. For example, you can use LONG RAW to store graphics, sound,
documents, or arrays of binary data, for which the interpretation is dependent on the use.

Oracle strongly recommends that you convert LONG RAW columns to binary LOB (BLOB)
columns. LOB columns are subject to far fewer restrictions than LONG columns. See TO_LOB
for more information.

RAW is a variable-length data type like VARCHAR2, except that Oracle Net (which connects
client software to a database or one database to another) and the Oracle import and export
utilities do not perform character conversion when transmitting RAW or LONG RAW data. In
contrast, Oracle Net and the Oracle import and export utilities automatically convert CHAR,
VARCHAR2, and LONG data between different database character sets, if data is transported
between databases, or between the database character set and the client character set, if data
is transported between a database and a client. The client character set is determined by the
type of the client interface, such as OCI or JDBC, and the client configuration (for example, the
NLS_LANG environment variable).

When Oracle implicitly converts RAW or LONG RAW data to character data, the resulting
character value contains a hexadecimal representation of the binary input, where each
character is a hexadecimal digit (0-9, A-F) representing four consecutive bits of RAW data. For
example, one byte of RAW data with bits 11001011 becomes the value CB.

When Oracle implicitly converts character data to RAW or LONG RAW, it interprets each
consecutive input character as a hexadecimal representation of four consecutive bits of binary
data and builds the resulting RAW or LONG RAW value by concatenating those bits. If any of the
input characters is not a hexadecimal digit (0-9, A-F, a-f), then an error is reported. If the number
of characters is odd, then the result is undefined.

The SQL functions RAWTOHEX and HEXTORAW perform explicit conversions that are equivalent
to the above implicit conversions. Other types of conversions between RAW and character data
are possible with functions in the Oracle-supplied PL/SQL packages UTL_RAW and UTL_I18N.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 156

Large Object (LOB) Data Types
The built-in LOB data types BLOB, CLOB, and NCLOB (stored internally) and BFILE (stored
externally) can store large and unstructured data such as text, image, video, and spatial data.
The size of BLOB, CLOB, and NCLOB data can be up to (232-1 bytes) * (the value of the CHUNK
parameter of LOB storage). If the tablespaces in your database are of standard block size, and
if you have used the default value of the CHUNK parameter of LOB storage when creating a
LOB column, then this is equivalent to (232-1 bytes) * (database block size). BFILE data can be
up to 264-1 bytes, although your operating system may impose restrictions on this maximum.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the table.

CLOB, NCLOB, and BLOB values up to approximately 4000 bytes are stored inline if you enable
storage in row at the time the LOB column is created. LOBs greater than 4000 bytes are
always stored externally. Refer to ENABLE STORAGE IN ROW for more information.

LOB columns contain LOB locators that can refer to internal (in the database) or external
(outside the database) LOB values. Selecting a LOB from a table actually returns the LOB
locator and not the entire LOB value. The DBMS_LOB package and Oracle Call Interface (OCI)
operations on LOBs are performed through these locators.

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

• LOBs can be attributes of an object type (user-defined data type).

• The LOB locator is stored in the table column, either with or without the actual LOB value.
BLOB, NCLOB, and CLOB values can be stored in separate tablespaces. BFILE data is stored
in an external file on the server.

• When you access a LOB column, the locator is returned.

• A LOB can be up to (232-1 bytes)*(database block size) in size. BFILE data can be up to
264-1 bytes, although your operating system may impose restrictions on this maximum.

• LOBs permit efficient, random, piece-wise access to and manipulation of data.

• You can define more than one LOB column in a table.

• With the exception of NCLOB, you can define one or more LOB attributes in an object.

• You can declare LOB bind variables.

• You can select LOB columns and LOB attributes.

• You can insert a new row or update an existing row that contains one or more LOB
columns or an object with one or more LOB attributes. In update operations, you can set
the internal LOB value to NULL, empty, or replace the entire LOB with data. You can set the
BFILE to NULL or make it point to a different file.

• You can update a LOB row-column intersection or a LOB attribute with another LOB row-
column intersection or LOB attribute.

• You can delete a row containing a LOB column or LOB attribute and thereby also delete
the LOB value. For BFILEs, the actual operating system file is not deleted.

You can access and populate rows of an inline LOB column (a LOB column stored in the
database) or a LOB attribute (an attribute of an object type column stored in the database)
simply by issuing an INSERT or UPDATE statement.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 156

Restrictions on LOB Columns

LOB columns are subject to a number of rules and restrictions. See Oracle Database
SecureFiles and Large Objects Developer's Guide for a complete listing.

See Also

• Oracle Database PL/SQL Packages and Types Reference and Oracle Call
Interface Developer's Guide for more information about these interfaces and LOBs

• the modify_col_properties clause of ALTER TABLE and TO_LOB for more information
on converting LONG columns to LOB columns

BFILE Data Type

The BFILE data type enables access to binary file LOBs that are stored in file systems outside
Oracle Database. A BFILE column or attribute stores a BFILE locator, which serves as a pointer
to a binary file on the server file system. The locator maintains the directory name and the
filename.

You can change the filename and path of a BFILE without affecting the base table by using the
BFILENAME function. Refer to BFILENAME for more information on this built-in SQL function.

Binary file LOBs do not participate in transactions and are not recoverable. Rather, the
underlying operating system provides file integrity and durability. BFILE data can be up to 264-1
bytes, although your operating system may impose restrictions on this maximum.

The database administrator must ensure that the external file exists and that Oracle processes
have operating system read permissions on the file.

The BFILE data type enables read-only support of large binary files. You cannot modify or
replicate such a file. Oracle provides APIs to access file data. The primary interfaces that you
use to access file data are the DBMS_LOB package and Oracle Call Interface (OCI).

See Also

Oracle Database SecureFiles and Large Objects Developer's Guide and Oracle Call
Interface Programmer's Guide for more information about LOBs and CREATE
DIRECTORY

BLOB Data Type

The BLOB data type stores unstructured binary large objects. BLOB objects can be thought of
as bitstreams with no character set semantics. BLOB objects can store binary data up to (4
gigabytes -1) * (the value of the CHUNK parameter of LOB storage). If the tablespaces in your
database are of standard block size, and if you have used the default value of the CHUNK
parameter of LOB storage when creating a LOB column, then this is equivalent to (4 gigabytes
- 1) * (database block size).

BLOB objects have full transactional support. Changes made through SQL, the DBMS_LOB
package, or Oracle Call Interface (OCI) participate fully in the transaction. BLOB value

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 156

manipulations can be committed and rolled back. However, you cannot save a BLOB locator in
a PL/SQL or OCI variable in one transaction and then use it in another transaction or session.

CLOB Data Type

The CLOB data type stores single-byte and multibyte character data. Both fixed-width and
variable-width character sets are supported, and both use the database character set. CLOB
objects can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of
character data. If the tablespaces in your database are of standard block size, and if you have
used the default value of the CHUNK parameter of LOB storage when creating a LOB column,
then this is equivalent to (4 gigabytes - 1) * (database block size).

CLOB objects have full transactional support. Changes made through SQL, the DBMS_LOB
package, or Oracle Call Interface (OCI) participate fully in the transaction. CLOB value
manipulations can be committed and rolled back. However, you cannot save a CLOB locator in
a PL/SQL or OCI variable in one transaction and then use it in another transaction or session.

NCLOB Data Type

The NCLOB data type stores Unicode data. Both fixed-width and variable-width character sets
are supported, and both use the national character set. NCLOB objects can store up to (4
gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of character text data. If the
tablespaces in your database are of standard block size, and if you have used the default
value of the CHUNK parameter of LOB storage when creating a LOB column, then this is
equivalent to (4 gigabytes - 1) * (database block size).

NCLOB objects have full transactional support. Changes made through SQL, the DBMS_LOB
package, or OCI participate fully in the transaction. NCLOB value manipulations can be
committed and rolled back. However, you cannot save an NCLOB locator in a PL/SQL or OCI
variable in one transaction and then use it in another transaction or session.

See Also

Oracle Database Globalization Support Guide for information on Unicode data type
support

JSON Data Type
You can create a database table that has one or more JSON columns, alone or with relational
columns. Oracle recommends that you use JSON data type for the JSON columns.

When using textual JSON data to perform an INSERT or UPDATE operation on a JSON type
column, the data is implicitly wrapped with constructor JSON. If the column is not JSON but
VARCHAR2, CLOB, or BLOB, then use condition IS JSON as a check constraint, to ensure that the
data inserted is well-formed JSON data.

For examples see Creating Tables With JSON Columns of the JSON Developer's Guide.

json_type_column::=

column_name JSON_type_specification

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 156

JSON_type_specification::=

JSON

(

JSON_type_modifier_list

JSON_array_modifier

JSON_modifier_limit

)

JSON_type_modifier

JSON_modifier_limit

(JSON_type_modifier_list::=, JSON_array_modifier::=, JSON_modifier_limit::=,
JSON_type_modifier::=)

JSON_type_modifier_list::=

JSON_type_modifier

,
JSON_modifier_limit

JSON_type_modifier::=

ARRAY

OBJECT

SCALAR

JSON_scalar_modifier

JSON_scalar_modifier::=

NUMBER

STRING

BINARY_DOUBLE

BINARY_FLOAT

DATE

TIMESTAMP

WITH TIME ZONE

NULL

BOOLEAN

BINARY

INTERVAL

YEAR TO MONTH

DAY TO SECOND

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 156

JSON_modifier_limit::=

LIMIT max_size

JSON_array_modifier::=

ARRAY (JSON_scalar_modifier

ALLOW

DISALLOW
NULL

, JSON_array_size , SORT

)

JSON_modifier_limit

JSON_modifier_limit::=

JSON_array_size::=

*

max_size

Note

You can create tables with JSON data type only in ASSM tablespaces.

You can use the JSON data type to store JSON data natively in binary format. This improves
query performance because textual JSON data no longer needs to be parsed. You can create
JSON type instances from other SQL data, and conversely.

You must set the database initialization parameter compatible to 20 in order to use the new JSON
data type.

The other SQL data types that support JSON data, besides JSON type, are VARCHAR2, CLOB,
and BLOB. Non-JSON type data is called textual, or serialized, JSON data. It is unparsed
character data.

You can use the JSON constructor function to convert textual JSON data to JSON type data.

To convert JSON type data to textual data, you can use the JSON_SERIALIZE function.

You can create complex JSON type data from non-JSON type data using the JSON generation
functions: JSON_OBJECT, JSON_ARRAY, JSON_OBJECTAGG, and JSON_ARRAYAGG.

You can create a JSON type instance with a scalar JSON value using the function
JSON_SCALAR .

In the other direction, you can use the function JSON_VALUE to query JSON type data and return
an instance of a SQL object type or collection type.

When defining a JSON-type column you can follow the type keyword JSON with a JSON-type
modifier, in parentheses: (OBJECT), (ARRAY), or (SCALAR). This requires the column content to

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 156

be a JSON object, array, or scalar value, respectively. (This is similar to using VARCHAR(42)
instead of just VARCHAR2.)

Modifier keyword SCALAR can be followed by a keyword that specifies the required type of
scalar: BOOLEAN, BINARY, BINARY_DOUBLE, BINARY_FLOAT, DATE, INTERVAL DAY TO SECOND ,
INTERVAL YEAR TO MONTH, NULL, NUMBER, STRING, TIMESTAMP, or TIMESTAMP WITH TIME ZONE.

You can provide more than one modifier between the parentheses, separating them with
commas. For example, (OBJECT, ARRAY) requires nonscalar values, and (OBJECT, SCALAR
DATE) allows only objects or dates.

Create a Table with a JSON Type Column of JSON OBJECT: Example

The following table definition requires the JSON data type column po_document to be a JSON
object by using a JSON modifier:

CREATE TABLE j_purchaseorder
 (id VARCHAR2 (32) NOT NULL PRIMARY KEY,
 date_loaded TIMESTAMP (6) WITH TIME ZONE,
 po_document JSON (OBJECT));

Restrictions

If you specify SORT in the clause json_array_modifer, then you must also specify JSON_array_size.
When you use SORT you need to explicitly use * for JSON_array_size to show that there is no size
limit.

See Also

• JSON Data Type of the JSON Developer's Guide.

• For more information on creating a JSON column see Creating a Table with a
JSON Column of the JSON developer's Guide.

• For the syntax of JSON modifiers see IS JSON Condition

Extended Data Types
Beginning with Oracle Database 12c, you can specify a maximum size of 32767 bytes for the
VARCHAR2, NVARCHAR2, and RAW data types. You can control whether your database supports
this new maximum size by setting the initialization parameter MAX_STRING_SIZE as follows:

• If MAX_STRING_SIZE = STANDARD, then the size limits for releases prior to Oracle Database
12c apply: 4000 bytes for the VARCHAR2 and NVARCHAR2 data types, and 2000 bytes for
the RAW data type. This is the default.

• If MAX_STRING_SIZE = EXTENDED, then the size limit is 32767 bytes for the VARCHAR2,
NVARCHAR2, and RAW data types.

See Also

Setting MAX_STRING_SIZE = EXTENDED may update database objects and possibly
invalidate them. Refer to Oracle Database Reference for complete information on the
implications of this parameter and how to set and enable this new functionality.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 156

A VARCHAR2 or NVARCHAR2 data type with a declared size of greater than 4000 bytes, or a RAW
data type with a declared size of greater than 2000 bytes, is an extended data type. Extended
data type columns are stored out-of-line, leveraging Oracle's LOB technology. The LOB
storage is always aligned with the table. In tablespaces managed with Automatic Segment
Space Management (ASSM), extended data type columns are stored as SecureFiles LOBs.
Otherwise, they are stored as BasicFiles LOBs. The use of LOBs as a storage mechanism is
internal only. Therefore, you cannot manipulate these LOBs using the DBMS_LOB package.

Note

• Oracle strongly recommends the use of SecureFiles LOBs as a storage
mechanism. Note that BasicFiles LOBs impose restrictions on the capabilities of
extended data type columns.

• Extended data types are subject to the same rules and restrictions as LOBs. Refer
to Oracle Database SecureFiles and Large Objects Developer's Guide for more
information.

Note that, although you must set MAX_STRING_SIZE = EXTENDED in order to set the size of a
RAW data type to greater than 2000 bytes, a RAW data type is stored as an out-of-line LOB only
if it has a size of greater than 4000 bytes. For example, you must set MAX_STRING_SIZE =
EXTENDED in order to declare a RAW(3000) data type. However, the column is stored inline.

You can use extended data types just as you would standard data types, with the following
considerations:

• For special considerations when creating an index on an extended data type column, or
when requiring an index to enforce a primary key or unique constraint, see Creating an
Index on an Extended Data Type Column.

• If the partitioning key column for a list partition is an extended data type column, then the
list of values that you want to specify for a partition may exceed the 4K byte limit for the
partition bounds. See the list_partitions clause of CREATE TABLE for information on how to
work around this issue.

• The value of the initialization parameter MAX_STRING_SIZE affects the following:

– The maximum length of a text literal. See Text Literals for more information.

– The size limit for concatenating two character strings. See Concatenation Operator for
more information.

– The length of the collation key returned by the NLSSORT function. See NLSSORT .

– The size of some of the attributes of the XMLFormat object. See XML Format Model for
more information.

– The size of some expressions in the following XML functions: XMLCOLATTVAL ,
XMLELEMENT , XMLFOREST , XMLPI , and XMLTABLE .

Boolean Data Type
Release 23 introduces the SQL boolean data type. The data type boolean has the truth values
TRUE and FALSE. If there is no NOT NULL constraint, the boolean data type also supports the
truth value UNKNOWN as the null value.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 156

You can use the boolean data type wherever data type appears in Oracle SQL syntax. For
example, you can specify a boolean column with the keywords BOOLEAN or BOOL in CREATE
TABLE:

CREATE TABLE example (id NUMBER, c1 BOOLEAN, c2 BOOL);

You can use SQL keywords TRUE, FALSE and NULL to represent states “TRUE”, “FALSE”, and
“NULL” respectively. For example, using the table example created above, you can insert the
following:

INSERT INTO example VALUES (1, TRUE, NULL);

INSERT INTO example VALUES (2, FALSE, true);

You can use literals to represent "TRUE" and "FALSE" states. Case is not enforced in "TRUE"
and "FALSE", you can have all lower case, all upper case, or a combination of upper and lower
case. Leading and trailing white spaces are ignored.

Table 2-6 String Literals To Represent "TRUE" and "FALSE"

STATE TRUE FALSE

- 'true' 'false'

- 'yes' 'no'

- 'on' 'off'

- '1' '0'

- 't' 'f'

- 'y' 'n'

Note that numbers are translated into boolean as follows:

• 0 translates to FALSE.

• Non 0 values like 42 or -3.14 translate to TRUE.

Given the table example created below with two boolean columns c1 and c2:

CREATE TABLE example (id NUMBER, c1 BOOLEAN, c2 BOOL);

Insert into example the following rows:

INSERT INTO example VALUES (1, TRUE, NULL);
INSERT INTO example VALUES (2, FALSE, true);
INSERT INTO example VALUES (3, 0, 'off');
INSERT INTO example VALUES (4, 'no', 'yes');
INSERT INTO example VALUES (5, 'f', 't');
INSERT INTO example VALUES (6, false, true);
INSERT INTO example VALUES (7, 'on', 'off');
INSERT INTO example VALUES (8, -3.14, 1);

SELECT of a boolean type column always returns TRUE , FALSE. A value of NULL returns nothing.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 156

SELECT * FROM example;
ID C1 C2
---------- ----- -----
1 TRUE
2 FALSE TRUE
3 FALSE FALSE
4 FALSE TRUE
5 FALSE TRUE
6 FALSE TRUE
7 TRUE FALSE
8 TRUE TRUE
8 rows selected.

Constraints on Boolean Columns

The following constraints are supported on boolean columns:

• NOT NULL

• UNIQUE

• PRIMARY KEY

• FOREIGN KEY

• CHECK

Comparison and Assignment of Booleans

The following comparison operators are supported to compare boolean values: =, !=, < >, <, <=, >,
>=, GREATEST, LEAST, [NOT] IN

SELECT * FROM example WHERE c1 = c2;

 ID C1 C2
--------- ------- --------
 3 FALSE FALSE
 8 TRUE TRUE

SELECT * FROM example e1
WHERE c1 >= ALL (SELECT c2 FROM example e2 WHERE e2.id > e1.id);

 ID C1 C2
--------- ----- -------
 1 TRUE
 7 TRUE FALSE
 8 TRUE TRUE

Operations on Booleans that Return Booleans

You can use the NOT, AND, and OR operators on SQL conditions, boolean columns, and
boolean constants. For example:

 SELECT * FROM example WHERE NOT c2;

 ID C1 C2
--------- ------ ------
 3 FALSE FALSE
 7 TRUE FALSE

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 156

SELECT * FROM example WHERE c1 AND c2;

 ID C1 C2
---------- ----- -------
 8 TRUE TRUE

SELECT * FROM example WHERE c1 AND TRUE;

 ID C1 C2
---------- ------- -------
 7 TRUE FALSE
 8 TRUE TRUE
 1 TRUE

SELECT * FROM example WHERE c1 OR c2;

 ID C1 C2
---------- --------- ------
 1 TRUE
 2 FALSE TRUE
 4 FALSE TRUE
 5 FALSE TRUE
 6 FALSE TRUE
 7 TRUE FALSE
 8 TRUE TRUE

7 rows selected.

Boolean Operator NOT

The NOT (TRUE) is FALSE. NOT (FALSE) is true. NOT (NULL) is NULL.

Boolean Operator AND

Truth Table for the AND Boolean Operator

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL FALSE FALSE NULL

Boolean Operator OR

Truth Table for the OR Boolean Operator

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 156

Boolean Operator IS

Truth Table for the IS Boolean Operator

IS TRUE FALSE NULL

TRUE TRUE FALSE FALSE

FALSE FALSE TRUE FALSE

NULL FALSE FALSE TRUE

Boolean Operator IS NOT

Truth Table for the IS NOT Boolean Operator

IS NOT TRUE FALSE NULL

TRUE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE

NULL TRUE TRUE FALSE

In addition to supporting SQL conditions, the NOT, AND, and OR operators support operations
on boolean columns and boolean constants. For example, these are all valid statements:

SELECT * FROM example WHERE NOT c2;
SELECT * FROM example WHERE c1 AND c2;
SELECT * FROM example WHERE c1 AND TRUE;
SELECT * FROM example WHERE c1 OR c2;

You can use IS [NOT] NULL on a boolean value expression to determine its state. For example:

SELECT * FROM example WHERE c2 IS NULL;

 ID C1 C2
---------- ----------- -----------
 1 TRUE

Booleans in SQL Expressions

Boolean expressions are supported in SQL syntax wherever expr is used.

SQL expressions and conditions have been enhanced to support the new boolean data type.
Links to relevant SQL syntax:

BOOLEAN Expressions

CAST Between Boolean Data Type and Other Oracle Built-In Data Types

The rules to cast between BOOLEAN and other Oracle built-in data types are as follows:

When casting BOOLEAN to numeric :

• If the boolean value is true, then resulting value is 1.

• If the boolean value is false, then resulting value is 0.

When casting numeric to BOOLEAN :

• If the numeric value is non-zero (e.g., 1, 2, -3, 1.2), then resulting value is true.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 156

• If the numeric value is zero, then resulting value is false.

When casting BOOLEAN to CHAR(n) and NCHAR(n):

• If the boolean value is true and n is not less than 4, then the resulting value is 'TRUE'
extended on the right by n - 4 spaces.

• If the boolean value is false and n is not less than 5, then the resulting value is 'FALSE'
extended on the right by n – 5 spaces.

• Otherwise, a data exception error is raised.

When casting a character string to boolean, leading and trailing spaces of the character string
are ignored. If the resulting character string is one of the accepted literals used to determine a
valid boolean value, then the result is that valid boolean value.

When casting BOOLEAN to VARCHAR(n), NVARCHAR(n)

• If the boolean value is true and n is not less than 4, then resulting value is true.

• If the boolean value is false and n is not less than 5, then resulting value is false.

• Otherwise, a data exception error is raised.

You can use the function TO_BOOLEAN to explicitly convert character value expressions or
numeric value expressions to boolean values.

Functions TO_CHAR, TO_NCHAR, TO_CLOB, TO_NCLOB, TO_NUMBER, TO_BINARY_DOUBLE, and
TO_BINARY_FLOAT have boolean overloads to convert boolean values to number or character
types.

Note

TO_BOOLEAN

Vector Data Type
Vector is a new Oracle built-in data type. This data type represents a vector as an array of
numbers, called dimensions stored in one of the following formats:

• INT8 (8-bit integers)

• FLOAT32 (32-bit, single precision floating-point numbers)

• FLOAT64 (64-bit, double precision floating-point numbers)

• BINARY (packed UINT8 bytes where each dimension is a single bit)

FLOAT32 and FLOAT64 are IEEE standards.

You can declare a column as vector data type, and optionally specify the dimension count and
dimension format.

Syntax Examples:

CREATE TABLE t (v VECTOR);
CREATE TABLE t (v VECTOR(*, *));
CREATE TABLE t (v VECTOR(100));
CREATE TABLE t (v VECTOR(100, *));

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 156

CREATE TABLE t (v VECTOR(*, FLOAT32));
CREATE TABLE t (v VECTOR(100, FLOAT32));

Rules

• If you specify the number of dimensions at declaration, then you must input the same
number of dimensions.

If you do not specify the number of dimensions, then you can input any number of
dimensions.

• If you specify the storage format at declaration and the input’s format is different from the
declared format, it is converted, either up or down, to the declared format.

If the storage format is not specified, every vector will have its dimensions stored without
format modification.

• The number of dimensions must be an integer greater than 0. Note that the number of
dimensions must not be 0.

• Vectors are nullable, but dimensions are not (e.g., you cannot have [1.1, NULL, 2.2]).

• In an UNION ALL statement, if the number of dimensions and the storage format are
different between any two branches, then the result vector’s number of dimensions and
format are flexible.

Declaration Formats for the VECTOR Data Type

The following table lists the possible declaration format for a VECTOR data type:

Possible Declaration Format Explanation

VECTOR Vectors can have an arbitrary number of
dimensions and formats.

VECTOR(*, *) Vectors can have an arbitrary number of
dimensions and formats. VECTOR and
VECTOR(*,*) are equivalent.

VECTOR(number_of_dimensions, *)

equivalent to

VECTOR(number_of_dimensions)

Vectors must all have the specified number of
dimensions or an error is thrown. Every vector will
have its dimensions stored without format
modification.

VECTOR(*, dimension_element_format) Vectors can have an arbitrary number of
dimensions, but their format will be up-converted or
down-converted to the specified dimension element
format (INT8, FLOAT32, FLOAT64,).

A vector can be NULL but its dimensions cannot (for example, you cannot have a VECTOR with
a NULL dimension such as [1.1, NULL, 2.2]).

The following example shows how the system interprets various vector definitions:

CREATE TABLE my_vect_tab (
 v1 VECTOR(3, FLOAT32),
 v2 VECTOR(2, FLOAT64),
 v3 VECTOR(1, INT8),
 v4 VECTOR(1, *),
 v5 VECTOR(*, FLOAT32),
 v6 VECTOR(*, *),
 v7 VECTOR

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 156

);

Table created.

DESC my_vect_tab;
 Name Null? Type
 --------------------------- -------- ----------------------------
 V1 VECTOR(3 , FLOAT32)
 V2 VECTOR(2 , FLOAT64)
 V3 VECTOR(1 , INT8)
 V4 VECTOR(1 , *)
 V5 VECTOR(* , FLOAT32)
 V6 VECTOR(* , *)
 V7 VECTOR(* , *)

Restrictions

You cannot define VECTOR columns in:

• External Tables

• IOTs (neither as Primary Key nor as non-Key column)

• Clusters or Cluster Tables

• Global Temporary Tables

• MSSM tablespaces (only SYS user can create VECTORs as Basicfiles in MSSM
tablespace)

• CQN queries

• Non-vector indexes such as B-tree, Bitmap, Reverse Key, Text, Spatial indexes

You cannot define a VECTOR column as a:

• Partitioning or Subpartitioning Key

• Primary Key

• Foreign Key

• Unique Constraint

• Check Constraint

• Default Value

• Modify Column

Oracle Database does not support the following SQL constructs with VECTOR columns:

• Distinct, Count Distinct

• Order By, Group By

• Join condition

• Comparison operators (>, <, =)

Create Tables with Column as a VECTOR Data Type

Example 1: Create a table with a column of type vector

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 156

The following command creates a table my_vectors with two columns: id of type NUMBER and
embedding of type VECTOR:

CREATE TABLE my_vectors (id NUMBER, embedding VECTOR);

Example 2: Create a table with a column of type vector and specify dimensions and
format

CREATE TABLE my_vectors (id NUMBER, embedding VECTOR(768, INT8)) ;

In the my_vectors table above, each vector that is stored:

• Must have 768 dimensions.

• Each dimension must be formatted as INT8.

• The number of dimensions must be strictly greater than zero with no practical upper limit.

There are a new set of SQL functions that use the VECTOR data type. See Vector Functions

Rowid Data Types
Each row in the database has an address. The sections that follow describe the two forms of
row address in an Oracle Database.

ROWID Data Type
The rows in heap-organized tables that are native to Oracle Database have row addresses
called rowids. You can examine a rowid row address by querying the pseudocolumn ROWID.
Values of this pseudocolumn are strings representing the address of each row. These strings
have the data type ROWID. Refer to Pseudocolumns for more information on the ROWID
pseudocolumn.

Rowids contain the following information:

• The data block of the data file containing the row. The length of this string depends on
your operating system.

• The row in the data block.

• The database file containing the row. The first data file has the number 1. The length of
this string depends on your operating system.

• The data object number, which is an identification number assigned to every database
segment. You can retrieve the data object number from the data dictionary views
USER_OBJECTS, DBA_OBJECTS, and ALL_OBJECTS. Objects that share the same segment
(clustered tables in the same cluster, for example) have the same object number.

Rowids are stored as base 64 values that can contain the characters A-Z, a-z, 0-9, and the
plus sign (+) and forward slash (/). Rowids are not available directly. You can use the supplied
package DBMS_ROWID to interpret rowid contents. The package functions extract and provide
information on the four rowid elements listed above.

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 156

See Also

Oracle Database PL/SQL Packages and Types Reference for information on the
functions available with the DBMS_ROWID package and how to use them

UROWID Data Type
The rows of some tables have addresses that are not physical or permanent or were not
generated by Oracle Database. For example, the row addresses of index-organized tables are
stored in index leaves, which can move. Rowids of foreign tables (such as DB2 tables
accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and foreign
tables. Index-organized tables have logical urowids and foreign tables have foreign urowids.
Both types of urowid are stored in the ROWID pseudocolumn (as are the physical rowids of
heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids do not
change as long as the primary key does not change. The ROWID pseudocolumn of an index-
organized table has a data type of UROWID. You can access this pseudocolumn as you would
the ROWID pseudocolumn of a heap-organized table (using a SELECT ... ROWID statement). If
you want to store the rowids of an index-organized table, then you can define a column of type
UROWID for the table and retrieve the value of the ROWID pseudocolumn into that column.

ANSI, DB2, and SQL/DS Data Types
SQL statements that create tables and clusters can also use ANSI data types and data types
from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or IBM data type name
that differs from the Oracle Database data type name. It converts the data type to the
equivalent Oracle data type, records the Oracle data type as the name of the column data
type, and stores the column data in the Oracle data type based on the conversions shown in
the tables that follow.

Table 2-7 ANSI Data Types Converted to Oracle Data Types

ANSI SQL Data Type Oracle Data Type

CHARACTER(n)

CHAR(n)

CHAR(n)

CHARACTER VARYING(n)

CHAR VARYING(n)

VARCHAR2(n)

NATIONAL CHARACTER(n)

NATIONAL CHAR(n)

NCHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n)

NATIONAL CHAR VARYING(n)

NCHAR VARYING(n)

NVARCHAR2(n)

NUMERIC[(p,s)]

DECIMAL[(p,s)] (Note 1)

NUMBER(p,s)

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 156

Table 2-7 (Cont.) ANSI Data Types Converted to Oracle Data Types

ANSI SQL Data Type Oracle Data Type

INTEGER

INT

SMALLINT

NUMBER(38)

FLOAT (Note 2)

DOUBLE PRECISION (Note 3)

REAL (Note 4)

FLOAT(126)

FLOAT(126)

FLOAT(63)

Notes:

1. The NUMERIC and DECIMAL data types can specify only fixed-point numbers. For those
data types, the scale (s) defaults to 0.

2. The FLOAT data type is a floating-point number with a binary precision b. The default
precision for this data type is 126 binary, or 38 decimal.

3. The DOUBLE PRECISION data type is a floating-point number with binary precision 126.

4. The REAL data type is a floating-point number with a binary precision of 63, or 18 decimal.

Do not define columns with the following SQL/DS and DB2 data types, because they have no
corresponding Oracle data type:

• GRAPHIC

• LONG VARGRAPHIC

• VARGRAPHIC

• TIME

Note that data of type TIME can also be expressed as Oracle datetime data.

See Also

Datetime and Interval Data Types

Table 2-8 SQL/DS and DB2 Data Types Converted to Oracle Data Types

SQL/DS or DB2 Data Type Oracle Data Type

CHARACTER(n) CHAR(n)

VARCHAR(n) VARCHAR(n)

LONG VARCHAR LONG

DECIMAL(p,s) (Note 1) NUMBER(p,s)

INTEGER

SMALLINT

NUMBER(p,0)

FLOAT (Note 2) NUMBER

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 156

Notes:

1. The DECIMAL data type can specify only fixed-point numbers. For this data type, s defaults
to 0.

2. The FLOAT data type is a floating-point number with a binary precision b. The default
precision for this data type is 126 binary or 38 decimal.

User-Defined Types
User-defined data types use Oracle built-in data types and other user-defined data types as
the building blocks of object types that model the structure and behavior of data in applications.
The sections that follow describe the various categories of user-defined types.

See Also

• Oracle Database Concepts for information about Oracle built-in data types

• CREATE TYPE and the CREATE TYPE BODY for information about creating
user-defined types

• Oracle Database Object-Relational Developer's Guide for information about using
user-defined types

Object Types
Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds of
components:

• A name, which identifies the object type uniquely within that schema.

• Attributes, which are built-in types or other user-defined types. Attributes model the
structure of the real-world entity.

• Methods, which are functions or procedures written in PL/SQL and stored in the database,
or written in a language like C or Java and stored externally. Methods implement
operations the application can perform on the real-world entity.

REF Data Types
An object identifier (represented by the keyword OID) uniquely identifies an object and
enables you to reference the object from other objects or from relational tables. A data type
category called REF represents such references. A REF data type is a container for an object
identifier. REF values are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling". A dangling
REF is different from a null REF. To determine whether a REF is dangling or not, use the
condition IS [NOT] DANGLING. For example, given object view oc_orders in the sample schema oe,
the column customer_ref is of type REF to type customer_typ, which has an attribute cust_email:

SELECT o.customer_ref.cust_email
 FROM oc_orders o
 WHERE o.customer_ref IS NOT DANGLING;

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 156

Varrays
An array is an ordered set of data elements. All elements of a given array are of the same data
type. Each element has an index, which is a number corresponding to the position of the
element in the array.

The number of elements in an array is the size of the array. Oracle arrays are of variable size,
which is why they are called varrays. You must specify a maximum size when you declare the
varray.

When you declare a varray, it does not allocate space. It defines a type, which you can use as:

• The data type of a column of a relational table

• An object type attribute

• A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (as part of the row data) or out of line (in a
LOB), depending on its size. However, if you specify separate storage characteristics for a
varray, then Oracle stores it out of line, regardless of its size. Refer to the
varray_col_properties of CREATE TABLE for more information about varray storage.

Nested Tables
A nested table type models an unordered set of elements. The elements may be built-in types
or user-defined types. You can view a nested table as a single-column table or, if the nested
table is an object type, as a multicolumn table, with a column for each attribute of the object
type.

A nested table definition does not allocate space. It defines a type, which you can use to
declare:

• The data type of a column of a relational table

• An object type attribute

• A PL/SQL variable, parameter, or function return type

When a nested table appears as the type of a column in a relational table or as an attribute of
the underlying object type of an object table, Oracle stores all of the nested table data in a
single table, which it associates with the enclosing relational or object table.

Oracle-Supplied Types
Oracle provides SQL-based interfaces for defining new types when the built-in or ANSI-
supported types are not sufficient. The behavior for these types can be implemented in C/C++,
Java, or PL/ SQL. Oracle Database automatically provides the low-level infrastructure services
needed for input-output, heterogeneous client-side access for new data types, and
optimizations for data transfers between the application and the database.

These interfaces can be used to build user-defined (or object) types and are also used by
Oracle to create some commonly useful data types. Several such data types are supplied with
the server, and they serve both broad horizontal application areas (for example, the Any types)
and specific vertical ones (for example, the spatial types).

The Oracle-supplied types, along with cross-references to the documentation of their
implementation and use, are described in the following sections:

• Any Types

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 156

• XML Types

• Spatial Types

Any Types
The Any types provide highly flexible modeling of procedure parameters and table columns
where the actual type is not known. These data types let you dynamically encapsulate and
access type descriptions, data instances, and sets of data instances of any other SQL type.
These types have OCI and PL/SQL interfaces for construction and access.

ANYTYPE
This type can contain a type description of any named SQL type or unnamed transient type.

ANYDATA
This type contains an instance of a given type, with data, plus a description of the type.
ANYDATA can be used as a table column data type and lets you store heterogeneous values in
a single column. The values can be of SQL built-in types as well as user-defined types.

ANYDATASET
This type contains a description of a given type plus a set of data instances of that type.
ANYDATASET can be used as a procedure parameter data type where such flexibility is needed.
The values of the data instances can be of SQL built-in types as well as user-defined types.

See Also

Oracle Database PL/SQL Packages and Types Reference for information on the
ANYTYPE, ANYDATA, and ANYDATASET types

XML Types
Extensible Markup Language (XML) is a standard format developed by the World Wide Web
Consortium (W3C) for representing structured and unstructured data on the World Wide Web.
Universal resource identifiers (URIs) identify resources such as Web pages anywhere on the
Web. Oracle provides types to handle XML and URI data, as well as a class of URIs called
DBURIRef types to access data stored within the database itself. It also provides a set of types
to store and access both external and internal URIs from within the database.

XMLType
This Oracle-supplied type can be used to store and query XML data in the database. XMLType
has member functions you can use to access, extract, and query the XML data using XPath
expressions. XPath is another standard developed by the W3C committee to traverse XML
documents. Oracle XMLType functions support many W3C XPath expressions. Oracle also
provides a set of SQL functions and PL/SQL packages to create XMLType values from existing
relational or object-relational data.

XMLType is a system-defined type, so you can use it as an argument of a function or as the data
type of a table or view column. You can also create tables and views of XMLType. When you

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 156

create an XMLType column in a table, you can choose to store the XML data in a CLOB column,
as binary XML (stored internally as a BLOB), or object relationally.

You can also register the schema (using the DBMS_XMLSCHEMA package) and create a table or
column conforming to the registered schema. In this case Oracle stores the XML data in
underlying object-relational columns by default, but you can specify storage in a CLOB or binary
XML column even for schema-based data.

Queries and DML on XMLType columns operate the same regardless of the storage
mechanism.

See Also

Oracle XML DB Developer’s Guidefor information about using XMLType columns

URI Data Types
Oracle supplies a family of URI types—URIType, DBURIType, XDBURIType, and HTTPURIType—
which are related by an inheritance hierarchy. URIType is an object type and the others are
subtypes of URIType. Since URIType is the supertype, you can create columns of this type and
store DBURIType or HTTPURIType type instances in this column.

HTTPURIType

You can use HTTPURIType to store URLs to external Web pages or to files. Oracle accesses
these files using HTTP (Hypertext Transfer Protocol).

XDBURIType

You can use XDBURIType to expose documents in the XML database hierarchy as URIs that can
be embedded in any URIType column in a table. The XDBURIType consists of a URL, which
comprises the hierarchical name of the XML document to which it refers and an optional
fragment representing the XPath syntax. The fragment is separated from the URL part by a
pound sign (#). The following lines are examples of XDBURIType:

/home/oe/doc1.xml
/home/oe/doc1.xml#/orders/order_item

DBURIType

DBURIType can be used to store DBURIRef values, which reference data inside the database.
Storing DBURIRef values lets you reference data stored inside or outside the database and
access the data consistently.

DBURIRef values use an XPath-like representation to reference data inside the database. If you
imagine the database as an XML tree, then you would see the tables, rows, and columns as
elements in the XML document. For example, the sample human resources user hr would see
the following XML tree:

<HR>
 <EMPLOYEES>
 <ROW>
 <EMPLOYEE_ID>205</EMPLOYEE_ID>
 <LAST_NAME>Higgins</LAST_NAME>
 <SALARY>12008</SALARY>
 .. <!-- other columns -->

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 156

 </ROW>
 ... <!-- other rows -->
 </EMPLOYEES>
 <!-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBURIRef is an XPath expression over this virtual XML document. So to reference the
SALARY value in the EMPLOYEES table for the employee with employee number 205, you can
write a DBURIRef as,

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns and expose
them as URLs to the external world.

URIFactory Package
Oracle also provides the URIFactory package, which can create and return instances of the
various subtypes of the URITypes. The package analyzes the URL string, identifies the type of
URL (HTTP, DBURI, and so on), and creates an instance of the subtype. To create a DBURI
instance, the URL must begin with the prefix /oradb. For example, URIFactory.getURI('/oradb/HR/
EMPLOYEES') would create a DBURIType instance and URIFactory.getUri('/sys/schema') would create an
XDBURIType instance.

See Also

• Oracle Database Object-Relational Developer's Guide for general information on
object types and type inheritance

• Oracle XML DB Developer’s Guide for more information about these supplied
types and their implementation

• Oracle Database Advanced Queuing User's Guide for information about using
XMLType with Oracle Advanced Queuing

Spatial Types
Oracle Spatial and Graph is designed to make spatial data management easier and more
natural to users of location-enabled applications, geographic information system (GIS)
applications, and geoimaging applications. After the spatial data is stored in an Oracle
Database, you can easily manipulate, retrieve, and relate it to all the other data stored in the
database. The following data types are available only if you have installed Oracle Spatial and
Graph.

SDO_GEOMETRY
The geometric description of a spatial object is stored in a single row, in a single column of
object type SDO_GEOMETRY in a user-defined table. Any table that has a column of type
SDO_GEOMETRY must have another column, or set of columns, that defines a unique primary
key for that table. Tables of this sort are sometimes called geometry tables.

The SDO_GEOMETRY object type has the following definition:

Chapter 2
Data Types

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 156

CREATE TYPE SDO_GEOMETRY AS OBJECT
 (sgo_gtype NUMBER,
 sdo_srid NUMBER,
 sdo_point SDO_POINT_TYPE,
 sdo_elem_info SDO_ELEM_INFO_ARRAY,
 sdo_ordinates SDO_ORDINATE_ARRAY);
/

SDO_TOPO_GEOMETRY
This type describes a topology geometry, which is stored in a single row, in a single column of
object type SDO_TOPO_GEOMETRY in a user-defined table.

The SDO_TOPO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_TOPO_GEOMETRY AS OBJECT
 (tg_type NUMBER,
 tg_id NUMBER,
 tg_layer_id NUMBER,
 topology_id NUMBER);
/

SDO_GEORASTER
In the GeoRaster object-relational model, a raster grid or image object is stored in a single row,
in a single column of object type SDO_GEORASTER in a user-defined table. Tables of this sort are
called GeoRaster tables.

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO_GEORASTER AS OBJECT
 (rasterType NUMBER,
 spatialExtent SDO_GEOMETRY,
 rasterDataTable VARCHAR2(32),
 rasterID NUMBER,
 metadata XMLType);
/

See Also

Oracle Spatial Developer's Guide, Oracle Spatial Topology and Network Data Model
Developer's Guide, and Oracle Spatial GeoRaster Developer's Guide for information
on the full implementation of the spatial data types and guidelines for using them

Data Type Comparison Rules
This section describes how Oracle Database compares values of each data type.

Numeric Values
A larger value is considered greater than a smaller one. All negative numbers are less than
zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric value and is
equal to itself.

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 156

See Also

Numeric Precedence and Floating-Point Numbers for more information on comparison
semantics

Datetime Values
A later date or timestamp is considered greater than an earlier one. For example, the date
equivalent of '29-MAR-2005' is less than that of '05-JAN-2006' and the timestamp equivalent of
'05-JAN-2006 1:35pm' is greater than that of '05-JAN-2005 10:09am'.

When two timestamps with time zone are compared, they are first normalized to UTC, that is,
to the timezone offset '+00:00'. For example, the timestamp with time zone equivalent of '16-
OCT-2016 05:59am Europe/Warsaw' is equal to that of '15-OCT-2016 08:59pm US/Pacific'.
Both represent the same absolute point in time, which represented in UTC is October 16th,
2016, 03:59am.

Binary Values
A binary value of the data type RAW or BLOB is a sequence of bytes. When two binary values
are compared, the corresponding, consecutive bytes of the two byte sequences are compared
in turn. If the first bytes of both compared values are different, the binary value that contains
the byte with the lower numeric value is considered smaller. If the first bytes are equal, second
bytes are compared analogously, and so on, until either the compared bytes differ or the
comparison process reaches the end of one of the values. In the latter case, the value that is
shorter is considered smaller.

Binary values of the data type BLOB cannot be compared directly in comparison conditions.
However, they can be compared with the PL/SQL function DBMS_LOB.COMPARE.

See Also

Oracle Database PL/SQL Packages and Types Reference for more information on the
DBMS_LOB.COMPARE function

Character Values
Character values are compared on the basis of two measures:

• Binary or linguistic collation

• Blank-padded or nonpadded comparison semantics

The following subsections describe the two measures.

Binary and Linguistic Collation

In binary collation, which is the default, Oracle compares character values like binary values.
Two sequences of bytes that form the encodings of two character values in their storage
character set are treated as binary values and compared as described in Binary Values . The
result of this comparison is returned as the result of the binary comparison of the source
character values.

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 156

See Also

Oracle Database Globalization Support Guide for more information on character sets

For many languages, the binary collation can yield a linguistically incorrect ordering of
character values. For example, in most common character sets, all the uppercase Latin letters
have character codes with lower values than all the lowercase Latin letters. Hence, the binary
collation yields the following order:

MacDonald
MacIntosh
Macdonald
Macintosh

However, most users expect these four values to be presented in the order:

MacDonald
Macdonald
MacIntosh
Macintosh

This shows that binary collation may not be suitable even for English character values.

Oracle Database supports linguistic collations that order strings according to rules of various
spoken languages. It also supports collation variants that match character values case- and
accent-insensitively. Linguistic collations are more expensive but they provide superior user
experience.

See Also

Oracle Database Globalization Support Guide for more information about linguistic
sorting

Restrictions for Linguistic Collations

Comparison conditions, ORDER BY, GROUP BY and MATCH_RECOGNIZE query clauses,
COUNT(DISTINCT) and statistical aggregate functions, LIKE conditions, and ORDER BY and
PARTITION BY analytic clauses generate collation keys when using linguistic collations. The
collation keys are the same values that are returned by the function NLSSORT and are subject to
the same restrictions that are described in NLSSORT .

Blank-Padded and Nonpadded Comparison Semantics

With blank-padded semantics, if the two values have different lengths, then Oracle first adds
blanks to the end of the shorter one so their lengths are equal. Oracle then compares the
values character by character up to the first character that differs. The value with the greater
character in the first differing position is considered greater. If two values have no differing
characters, then they are considered equal. This rule means that two values are equal if they
differ only in the number of trailing blanks. Oracle uses blank-padded comparison semantics
only when both values in the comparison are either expressions of data type CHAR, NCHAR,
text literals, or values returned by the USER function.

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 156

With nonpadded semantics, Oracle compares two values character by character up to the first
character that differs. The value with the greater character in that position is considered
greater. If two values of different length are identical up to the end of the shorter one, then the
longer value is considered greater. If two values of equal length have no differing characters,
then the values are considered equal. Oracle uses nonpadded comparison semantics
whenever one or both values in the comparison have the data type VARCHAR2 or NVARCHAR2.

The results of comparing two character values using different comparison semantics may vary.
The table that follows shows the results of comparing five pairs of character values using each
comparison semantic. Usually, the results of blank-padded and nonpadded comparisons are
the same. The last comparison in the table illustrates the differences between the blank-
padded and nonpadded comparison semantics.

Blank-Padded Nonpadded

'ac' > 'ab' 'ac' > 'ab'

'ab' > 'a ' 'ab' > 'a '

'ab' > 'a' 'ab' > 'a'

'ab' = 'ab' 'ab' = 'ab'

'a ' = 'a' 'a ' > 'a'

Data-Bound Collation

Starting with Oracle Database 12c Release 2 (12.2), the collation to use when comparing or
matching a given character value is associated with the value itself. It is called the data-bound
collation. The data-bound collation can be viewed as an attribute of the data type of the value.

In previous Oracle Database releases, the session parameters NLS_COMP and NLS_SORT
coarsely determined the collation for all collation-sensitive SQL operations in a database
session. The data-bound collation architecture enables applications to consistently apply
language-specific comparison rules to exactly the data that needs these rules.

Oracle Database 12c Release 2 (12.2) allows you to declare a collation for a table column.
When a column is passed as an argument to a collation-sensitive SQL operation, the SQL
operation uses the column's declared collation to process the column's values. If the SQL
operation has multiple character arguments that are compared to each other, the collation
determination rules determine the collation to use.

There are two types of data-bound collations:

• Named Collation: This collation is a particular set of collating rules specified by a collation
name. Named collations are the same collations that are specified as values for the
NLS_SORT parameter. A named collation can be either a binary collation or a linguistic
collation.

• Pseudo-collation: This collation does not directly specify the collating rules for a SQL
operation. Instead, it instructs the operation to check the values of the session parameters
NLS_SORT and NLS_COMP for the actual named collation to use. Pseudo-collations are the
bridge between the new declarative method of specifying collations and the old method
that uses session parameters. In particular, the pseudo-collation USING_NLS_COMP directs a
SQL operation to behave exactly as it used to behave before Oracle Database 12c
Release 2.

When you declare a named collation for a column, you statically determine how the column
values are compared. When you declare a pseudo-collation, you can dynamically control
comparison behavior with the session parameter NLS_COMP and NLS_SORT. However, static
objects, such as indexes and constraints, defined on a column declared with a pseudo-

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 156

collation, fall back to using a binary collation. Dynamically settable collating rules cannot be
used to compare values for a static object.

The collation for a character literal or bind variable that is used in an expression is derived from
the default collation of the database object containing the expression, such as a view or
materialized view query, a PL/SQL stored unit code, a user-defined type method code, or a
standalone DML or query statement. In Oracle Database 12c Release 2, the default collation of
PL/SQL stored units, user-defined type methods, and standalone SQL statements is always
the pseudo-collation USING_NLS_COMP. The default collation of views and materialized views
can be specified in the DEFAULT COLLATION clause of the CREATE VIEW and CREATE
MATERIALIZED VIEW statements.

If a SQL operation returns character values, the collation derivation rules determine the
derived collation for the result, so that its collation is known, when the result is passed as an
argument to another collation-sensitive SQL operation in the expression tree or to a top-level
consumer, such as an SQL statement clause in a SELECT statement. If a SQL operation
operates on character argument values, then the derived collation of its character result is
based on the collations of the arguments. Otherwise, the derivation rules are the same as for a
character literal.

You can override the derived collation of an expression node, such as a simple expression or
an operator result, by using the COLLATE operator.

Oracle Database allows you to declare a case-insensitive collation for a column, table or
schema, so that the column or all character columns in a table or a schema can be always
compared in a case-insensitive way.

See Also

• Oracle Database Globalization Support Guide for more information on data-bound
collation architecture, including the detailed collation derivation and determination
rules

• COLLATE Operator

Object Values
Object values are compared using one of two comparison functions: MAP and ORDER. Both
functions compare object type instances, but they are quite different from one another. These
functions must be specified as part of any object type that will be compared with other object
types.

See Also

CREATE TYPE for a description of MAP and ORDER methods and the values they
return

Varrays and Nested Tables
Comparison of nested tables is described in Comparison Conditions .

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 156

Data Type Precedence
Oracle uses data type precedence to determine implicit data type conversion, which is
discussed in the section that follows. Oracle data types take the following precedence:

• Datetime and interval data types

• BINARY_DOUBLE

• BINARY_FLOAT

• NUMBER

• Character data types

• All other built-in data types

Data Conversion
Generally an expression cannot contain values of different data types. For example, an
expression cannot multiply 5 by 10 and then add 'JAMES'. However, Oracle supports both
implicit and explicit conversion of values from one data type to another.

Implicit and Explicit Data Conversion
Oracle recommends that you specify explicit conversions, rather than rely on implicit or
automatic conversions, for these reasons:

• SQL statements are easier to understand when you use explicit data type conversion
functions.

• Implicit data type conversion can have a negative impact on performance, especially if the
data type of a column value is converted to that of a constant rather than the other way
around.

• Implicit conversion depends on the context in which it occurs and may not work the same
way in every case. For example, implicit conversion from a datetime value to a VARCHAR2
value may return an unexpected year depending on the value of the NLS_DATE_FORMAT
parameter.

• Algorithms for implicit conversion are subject to change across software releases and
among Oracle products. Behavior of explicit conversions is more predictable.

• If implicit data type conversion occurs in an index expression, then Oracle Database might
not use the index because it is defined for the pre-conversion data type. This can have a
negative impact on performance.

Implicit Data Conversion
Oracle Database automatically converts a value from one data type to another when such a
conversion makes sense.

Table 2-9 is a matrix of Oracle implicit conversions. The table shows all possible conversions,
without regard to the direction of the conversion or the context in which it is made.

The cells with an 'X' indicate the possible implicit conversions from source to destination data
type.

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 156

Table 2-9 Implicit Type Conversion Matrix

Data
Type

CHA
R

VAR
CHA
R2

NCH
AR

NVA
RCH
AR2

DAT
E

DAT
ETI
ME/
INT
ERV
AL

NU
MB
ER

BIN
ARY
_FL
OAT

BIN
ARY
_DO
UBL
E

LON
G

RA
W

RO
WID

CLO
B

BLO
B

NCL
OB

BOOLEAN

CHAR -- X X X X X X X X X X X X X X X

VARCH
AR2

X -- X X X X X X X X X X X -- X --

NCHAR X X -- X X X X X X X X X X -- X X

NVARC
HAR2

X X X -- X X X X X X X X X -- X --

DATE X X X X -- -- -- -- -- -- -- -- -- -- -- --

DATETI
ME/
INTERV
AL

X X X X -- -- -- -- -- X -- -- -- -- -- --

NUMBE
R

X X X X -- -- -- X X -- -- -- -- -- -- X

BINARY
_FLOAT

X X X X -- -- X -- X -- -- -- -- -- -- X

BINARY
_DOUBL
E

X X X X -- -- X X -- -- -- -- -- -- -- X

LONG X X X X -- X1 -- -- -- -- X -- X -- X --

RAW X X X X -- -- -- -- -- X -- -- -- X -- --

ROWID X X X X -- -- -- -- -- -- -- -- -- -- -- --

CLOB X X X X -- -- -- -- - X -- -- -- -- X --

BLOB -- -- -- -- -- -- -- -- - -- X -- -- -- -- --

NCLOB X X X X -- -- -- -- - X -- -- X -- -- --

JSON -- X -- -- -- -- -- -- -- -- -- -- X X -- --

BOOLE
AN

X X X X -- -- X X X -- -- -- -- -- -- --

1 You cannot convert LONG to INTERVAL directly, but you can convert LONG to VARCHAR2 using TO_CHAR(interval), and then

convert the resulting VARCHAR2 value to INTERVAL.

Implicit Data Type Conversion Rules

• During INSERT and UPDATE operations, Oracle converts the value to the data type of the
affected column.

• During SELECT FROM operations, Oracle converts the data from the column to the type of
the target variable.

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 156

• When manipulating numeric values, Oracle usually adjusts precision and scale to allow for
maximum capacity. In such cases, the numeric data type resulting from such operations
can differ from the numeric data type found in the underlying tables.

• When comparing a character value with a numeric value, Oracle converts the character
data to a numeric value.

• Conversions between character values or NUMBER values and floating-point number
values can be inexact, because the character types and NUMBER use decimal precision to
represent the numeric value, and the floating-point numbers use binary precision.

• When converting a CLOB value into a character data type such as VARCHAR2, or converting
BLOB to RAW data, if the data to be converted is larger than the target data type, then the
database returns an error.

• During conversion from a timestamp value to a DATE value, the fractional seconds portion
of the timestamp value is truncated. This behavior differs from earlier releases of Oracle
Database, when the fractional seconds portion of the timestamp value was rounded.

• Conversions from BINARY_FLOAT to BINARY_DOUBLE are exact.

• Conversions from BINARY_DOUBLE to BINARY_FLOAT are inexact if the BINARY_DOUBLE
value uses more bits of precision that supported by the BINARY_FLOAT.

• When comparing a character value with a DATE value, Oracle converts the character data
to DATE.

• When you use a SQL function or operator with an argument of a data type other than the
one it accepts, Oracle converts the argument to the accepted data type.

• When making assignments, Oracle converts the value on the right side of the equal sign
(=) to the data type of the target of the assignment on the left side.

• During concatenation operations, Oracle converts from noncharacter data types to CHAR or
NCHAR.

• During arithmetic operations on and comparisons between character and noncharacter
data types, Oracle converts from any character data type to a numeric, date, or rowid, as
appropriate. In arithmetic operations between CHAR/VARCHAR2 and NCHAR/NVARCHAR2,
Oracle converts to a NUMBER.

• Most SQL character functions are enabled to accept CLOBs as parameters, and Oracle
performs implicit conversions between CLOB and character types. Therefore, functions that
are not yet enabled for CLOBs can accept CLOBs through implicit conversion. In such
cases, Oracle converts the CLOBs to CHAR or VARCHAR2 before the function is invoked. If
the CLOB is larger than 4000 bytes, then Oracle converts only the first 4000 bytes to CHAR.

• When converting RAW or LONG RAW data to or from character data, the binary data is
represented in hexadecimal form, with one hexadecimal character representing every four
bits of RAW data. Refer to "RAW and LONG RAW Data Types " for more information.

• Comparisons between CHAR and VARCHAR2 and between NCHAR and NVARCHAR2 types
may entail different character sets. The default direction of conversion in such cases is
from the database character set to the national character set. Table 2-10 shows the
direction of implicit conversions between different character types.

Table 2-10 Conversion Direction of Different Character Types

Source
Data Type

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2

from CHAR - VARCHAR2 NCHAR NVARCHAR2

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 156

Table 2-10 (Cont.) Conversion Direction of Different Character Types

Source
Data Type

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2

from VARCHAR2 VARCHAR2 - NVARCHAR2 NVARCHAR2

from NCHAR NCHAR NCHAR - NVARCHAR2

from
NVARCHAR2

NVARCHAR2 NVARCHAR2 NVARCHAR2 -

User-defined types such as collections cannot be implicitly converted, but must be explicitly
converted using CAST ... MULTISET.

Implicit Data Conversion Examples

Text Literal Example

The text literal '10' has data type CHAR. Oracle implicitly converts it to the NUMBER data type if
it appears in a numeric expression as in the following statement:

SELECT salary + '10'
 FROM employees;

Character and Number Values Example

When a condition compares a character value and a NUMBER value, Oracle implicitly converts
the character value to a NUMBER value, rather than converting the NUMBER value to a character
value. In the following statement, Oracle implicitly converts '200' to 200:

SELECT last_name
 FROM employees
 WHERE employee_id = '200';

Date Example

In the following statement, Oracle implicitly converts '24-JUN-06' to a DATE value using the
default date format 'DD-MON-YY':

SELECT last_name
 FROM employees
 WHERE hire_date = '24-JUN-06';

Explicit Data Conversion
You can explicitly specify data type conversions using SQL conversion functions. Table 2-11
shows SQL functions that explicitly convert a value from one data type to another.

You cannot specify LONG and LONG RAW values in cases in which Oracle can perform implicit
data type conversion. For example, LONG and LONG RAW values cannot appear in expressions
with functions or operators. Refer to LONG Data Type for information on the limitations on
LONG and LONG RAW data types.

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 156

Table 2-11 Explicit Type Conversions

Source
Data Type

to CHAR,
VARCHAR2
,
NCHAR,
NVARCHAR
2

to
NUMB
ER

to Datetime/
Interval

to RAW to
ROWID

to
LO
NG,
LO
NG
RA
W

to
CLOB,
NCLOB,
BLOB

to
BINAR
Y_FLO
AT

to
BINAR
Y_DOU
BLE

to BOOLEAN

from
CHAR,
VARCHA
R2,
NCHAR,
NVARCH
AR2

TO_CHAR
(char.)

TO_NCHAR
(char.)

TO_NU
MBER

TO_DATE

TO_TIMESTA
MP

TO_TIMESTA
MP_TZ

TO_YMINTER
VAL

TO_DSINTER
VAL

HEXTOR
AW

CHART
O-
=ROWI
D

-- TO_CLO
B

TO_NCL
OB

TO_BIN
ARY_FL
OAT

TO_BIN
ARY_DO
UBLE

TO_BOOLEAN

from
NUMBER

TO_CHAR
(number)

TO_NCHAR
(number)

-- TO_DATE

NUMTOYM-
INTERVAL

NUMTODS-
INTERVAL

-- -- -- -- TO_BIN
ARY_FL
OAT

TO_BIN
ARY_DO
UBLE

TO_BOOLEAN

from
Datetime/
Interval

TO_CHAR
(date)

TO_NCHAR
(datetime)

-- -- -- -- -- -- -- -- --

from RAW RAWTOHEX

RAWTONHE
X

-- -- -- -- -- TO_BLO
B

-- -- --

from
ROWID

ROWIDTOCH
AR

-- -- -- -- -- -- -- -- --

from
LONG /
LONG
RAW

-- -- -- -- -- -- TO_LOB -- -- --

from
CLOB,
NCLOB,
BLOB

TO_CHAR

TO_NCHAR

-- -- -- -- -- TO_CLO
B

TO_NCL
OB

-- -- --

from
CLOB,
NCLOB,
BLOB

TO_CHAR

TO_NCHAR

-- -- -- -- -- TO_CLO
B

TO_NCL
OB

-- -- --

from
BINARY_
FLOAT

TO_CHAR
(char.)

TO_NCHAR
(char.)

TO_NU
MBER

-- -- -- -- -- TO_BIN
ARY_FL
OAT

TO_BIN
ARY_DO
UBLE

TO_BOOLEAN

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 156

Table 2-11 (Cont.) Explicit Type Conversions

Source
Data Type

to CHAR,
VARCHAR2
,
NCHAR,
NVARCHAR
2

to
NUMB
ER

to Datetime/
Interval

to RAW to
ROWID

to
LO
NG,
LO
NG
RA
W

to
CLOB,
NCLOB,
BLOB

to
BINAR
Y_FLO
AT

to
BINAR
Y_DOU
BLE

to BOOLEAN

from
BINARY_
DOUBLE

TO_CHAR
(char.)

TO_NCHAR
(char.)

TO_NU
MBER

-- -- -- -- -- TO_BIN
ARY_FL
OAT

TO_BIN
ARY_DO
UBLE

TO_BOOLEAN

from
BOOLEA
N

TO_CHAR
(boolean)

TO_NCHAR
(boolean)

TO_NU
MBER

-- -- -- -- -- TO_BIN
ARY_FL
OAT

TO_BIN
ARY_DO
UBLE

TO_BOOLEAN

See Also

Conversion Functions for details on all of the explicit conversion functions

Security Considerations for Data Conversion
When a datetime value is converted to text, either by implicit conversion or by explicit
conversion that does not specify a format model, the format model is defined by one of the
globalization session parameters. Depending on the source data type, the parameter name is
NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, or NLS_TIMESTAMP_TZ_FORMAT. The values of
these parameters can be specified in the client environment or in an ALTER SESSION statement.

The dependency of format models on session parameters can have a negative impact on
database security when conversion without an explicit format model is applied to a datetime
value that is being concatenated to text of a dynamic SQL statement. Dynamic SQL
statements are those statements whose text is concatenated from fragments before being
passed to a database for execution. Dynamic SQL is frequently associated with the built-in
PL/SQL package DBMS_SQL or with the PL/SQL statement EXECUTE IMMEDIATE, but these are
not the only places where dynamically constructed SQL text may be passed as argument. For
example:

EXECUTE IMMEDIATE
'SELECT last_name FROM employees WHERE hire_date > ''' || start_date || '''';

where start_date has the data type DATE.

In the above example, the value of start_date is converted to text using a format model specified
in the session parameter NLS_DATE_FORMAT. The result is concatenated into SQL text. A
datetime format model can consist simply of literal text enclosed in double quotation marks.
Therefore, any user who can explicitly set globalization parameters for a session can decide
what text is produced by the above conversion. If the SQL statement is executed by a PL/SQL
procedure, the procedure becomes vulnerable to SQL injection through the session parameter.
If the procedure runs with definer's rights, with higher privileges than the session itself, the user
can gain unauthorized access to sensitive data.

Chapter 2
Data Type Comparison Rules

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 156

See Also

Oracle Database PL/SQL Language Reference for further examples and for
recommendations on avoiding this security risk

Note

This security risk also applies to middle-tier applications that construct SQL text from
datetime values converted to text by the database or by OCI datetime functions.
Those applications are vulnerable if session globalization parameters are obtained
from a user preference.

Implicit and explicit conversion for numeric values may also suffer from the analogous problem,
as the conversion result may depend on the session parameter NLS_NUMERIC_CHARACTERS.
This parameter defines the decimal and group separator characters. If the decimal separator is
defined to be the quotation mark or the double quotation mark, some potential for SQL
injection emerges.

See Also

• Oracle Database Globalization Support Guide for detailed descriptions of the
session globalization parameters

• Format Models for information on the format models

Literals
The terms literal and constant value are synonymous and refer to a fixed data value. For
example, 'JACK', 'BLUE ISLAND', and '101' are all character literals; 5001 is a numeric literal.
Character literals are enclosed in single quotation marks so that Oracle can distinguish them
from schema object names.

This section contains these topics:

• Text Literals

• Numeric Literals

• Datetime Literals

• Interval Literals

Many SQL statements and functions require you to specify character and numeric literal
values. You can also specify literals as part of expressions and conditions. You can specify
character literals with the 'text' notation, national character literals with the N'text' notation, and
numeric literals with the integer, or number notation, depending on the context of the literal. The
syntactic forms of these notations appear in the sections that follow.

To specify a datetime or interval data type as a literal, you must take into account any optional
precisions included in the data types. Examples of specifying datetime and interval data types
as literals are provided in the relevant sections of Data Types .

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 156

Text Literals
Use the text literal notation to specify values whenever string appears in the syntax of
expressions, conditions, SQL functions, and SQL statements in other parts of this reference.
This reference uses the terms text literal, character literal, and string interchangeably. Text,
character, and string literals are always surrounded by single quotation marks. If the syntax
uses the term char, then you can specify either a text literal or another expression that resolves
to character data — for example, the last_name column of the hr.employees table. When char
appears in the syntax, the single quotation marks are not used.

The syntax of text literals or strings follows:

string::=

N

n ’

c

’

Q

q
’ quote_delimiter c quote_delimiter ’

where N or n specifies the literal using the national character set (NCHAR or NVARCHAR2 data).
By default, text entered using this notation is translated into the national character set by way
of the database character set when used by the server. To avoid potential loss of data during
the text literal conversion to the database character set, set the environment variable
ORA_NCHAR_LITERAL_REPLACE to TRUE. Doing so transparently replaces the n' internally and
preserves the text literal for SQL processing.

See Also

Oracle Database Globalization Support Guide for more information about N-quoted
literals

In the top branch of the syntax:

• c is any member of the user's character set. A single quotation mark (') within the literal
must be preceded by an escape character. To represent one single quotation mark within a
literal, enter two single quotation marks.

• ' ' are two single quotation marks that begin and end text literals.

In the bottom branch of the syntax:

• Q or q indicates that the alternative quoting mechanism will be used. This mechanism
allows a wide range of delimiters for the text string.

• The outermost ' ' are two single quotation marks that precede and follow, respectively, the
opening and closing quote_delimiter.

• c is any member of the user's character set. You can include quotation marks (") in the text
literal made up of c characters. You can also include the quote_delimiter, as long as it is not
immediately followed by a single quotation mark.

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 156

• quote_delimiter is any single- or multibyte character except space, tab, and return. The
quote_delimiter can be a single quotation mark. However, if the quote_delimiter appears in the
text literal itself, ensure that it is not immediately followed by a single quotation mark.

If the opening quote_delimiter is one of [, {, <, or (, then the closing quote_delimiter must be the
corresponding], }, >, or). In all other cases, the opening and closing quote_delimiter must be
the same character.

Text literals have properties of both the CHAR and VARCHAR2 data types:

• Within expressions and conditions, Oracle treats text literals as though they have the data
type CHAR by comparing them using blank-padded comparison semantics.

• A text literal can have a maximum length of 4000 bytes if the initialization parameter
MAX_STRING_SIZE = STANDARD, and 32767 bytes if MAX_STRING_SIZE = EXTENDED. See
Extended Data Types for more information.

Here are some valid text literals:

'Hello'
'ORACLE.dbs'
'Jackie''s raincoat'
'09-MAR-98'
N'nchar literal'

Here are some valid text literals using the alternative quoting mechanism:

q'!name LIKE '%DBMS_%%'!'
q'<'So,' she said, 'It's finished.'>'
q'{SELECT * FROM employees WHERE last_name = 'Smith';}'
nq'ï Ÿ1234 ï'
q'"name like '['"'

See Also

Blank-Padded and Nonpadded Comparison Semantics

Numeric Literals
Use numeric literal notation to specify fixed and floating-point numbers.

Integer Literals
You must use the integer notation to specify an integer whenever integer appears in
expressions, conditions, SQL functions, and SQL statements described in other parts of this
reference.

The syntax of integer follows:

integer::=

+

–

digit

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 156

where digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

An integer can store a maximum of 38 digits of precision.

Here are some valid integers:

7
+255

NUMBER and Floating-Point Literals
You must use the number or floating-point notation to specify values whenever number or n
appears in expressions, conditions, SQL functions, and SQL statements in other parts of this
reference.

The syntax of number follows:

number::=

+

– digit

. digit

. digit

e

E

+

–

digit

f

F

d

D

where

• + or - indicates a positive or negative value. If you omit the sign, then a positive value is
the default.

• digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

• e or E indicates that the number is specified in scientific notation. The digits after the E
specify the exponent. The exponent can range from -130 to 125.

• f or F indicates that the number is a 32-bit binary floating point number of type
BINARY_FLOAT.

• d or D indicates that the number is a 64-bit binary floating point number of type
BINARY_DOUBLE.

If you omit f or F and d or D, then the number is of type NUMBER.

The suffixes f (F) and d (D) are supported only in floating-point number literals, not in
character strings that are to be converted to NUMBER. For example, if Oracle is expecting a
NUMBER and it encounters the string '9', then it converts the string to the number 9.
However, if Oracle encounters the string '9f', then conversion fails and an error is returned.

A number of type NUMBER can store a maximum of 38 digits of precision. If the literal requires
more precision than provided by NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, then Oracle
truncates the value. If the range of the literal exceeds the range supported by NUMBER,
BINARY_FLOAT, or BINARY_DOUBLE, then Oracle raises an error.

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 156

Numeric literals are SQL syntax elements, which are not sensitive to NLS settings. The
decimal separator character in numeric literals is always the period (.). However, if a text literal
is specified where a numeric value is expected, then the text literal is implicitly converted to a
number in an NLS-sensitive way. The decimal separator contained in the text literal must be
the one established with the initialization parameter NLS_NUMERIC_CHARACTERS. Oracle
recommends that you use numeric literals in SQL scripts to make them work independently of
the NLS environment.

The following examples illustrate the behavior of decimal separators in numeric literals and text
literals. These examples assume that you have established the comma (,) as the NLS decimal
separator for the current session with the following statement:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS=',.';

The previous statement also establishes the period (.) as the NLS group separator, but that is
irrelevant for these examples.

This example uses the required decimal separator (.) in the numeric literal 1.23 and the
established NLS decimal separator (,) in the text literal '2,34'. The text literal is converted to the
numeric value 2.34, and the output is displayed using commas for the decimal separators.

SELECT 2 * 1.23, 3 * '2,34' FROM DUAL;

 2*1.23 3*'2,34'
---------- ----------
 2,46 7,02

The next example shows that a comma is not treated as part of a numeric literal. Rather, the
comma is treated as the delimiter in a list of two numeric expressions: 2*1 and 23.

SELECT 2 * 1,23 FROM DUAL;

 2*1 23
---------- ----------
 2 23

The next example shows that the decimal separator in a text literal must match the NLS
decimal separator in order for implicit text-to-number conversion to succeed. The following
statement fails because the decimal separator (.) does not match the established NLS decimal
separator (,):

SELECT 3 * '2.34' FROM DUAL;
 *
ERROR at line 1:
ORA-01722: invalid number

See Also

ALTER SESSION and Oracle Database Reference

Here are some valid NUMBER literals:

25
+6.34
0.5
25e-03
-1

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 156

Here are some valid floating-point number literals:

25f
+6.34F
0.5d
-1D

You can also use the following supplied floating-point literals in situations where a value cannot
be expressed as a numeric literal:

Table 2-12 Floating-Point Literals

Literal Meaning Example

binary_float_nan A value of type
BINARY_FLOAT for
which the condition IS
NAN is true

SELECT COUNT(*)
 FROM employees
 WHERE TO_BINARY_FLOAT(commission_pct)
 != BINARY_FLOAT_NAN;

binary_float_infinity Single-precision
positive infinity

SELECT COUNT(*)
 FROM employees
 WHERE salary < BINARY_FLOAT_INFINITY;

binary_double_nan A value of type
BINARY_DOUBLE for
which the condition IS
NAN is true

SELECT COUNT(*)
 FROM employees
 WHERE TO_BINARY_FLOAT(commission_pct)
 != BINARY_FLOAT_NAN;

binary_double_infinity Double-precision
positive infinity

SELECT COUNT(*)
 FROM employees
 WHERE salary < BINARY_DOUBLE_INFINITY;

Datetime Literals
Oracle Database supports four datetime data types: DATE, TIMESTAMP, TIMESTAMP WITH TIME
ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

Date Literals

You can specify a DATE value as a string literal, or you can convert a character or numeric
value to a date value with the TO_DATE function. DATE literals are the only case in which Oracle
Database accepts a TO_DATE expression in place of a string literal.

To specify a DATE value as a literal, you must use the Gregorian calendar. You can specify an
ANSI literal, as shown in this example:

DATE '1998-12-25'

The ANSI date literal contains no time portion, and must be specified in the format 'YYYY-MM-
DD'. Alternatively you can specify an Oracle date value, as in the following example:

TO_DATE('98-DEC-25 17:30','YY-MON-DD HH24:MI')

The default date format for an Oracle DATE value is specified by the initialization parameter
NLS_DATE_FORMAT. This example date format includes a two-digit number for the day of the

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 156

month, an abbreviation of the month name, the last two digits of the year, and a 24-hour time
designation.

Oracle automatically converts character values that are in the default date format into date
values when they are used in date expressions.

If you specify a date value without a time component, then the default time is midnight
(00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you specify a date
value without a date, then the default date is the first day of the current month.

Oracle DATE columns always contain both the date and time fields. Therefore, if you query a
DATE column, then you must either specify the time field in your query or ensure that the time
fields in the DATE column are set to midnight. Otherwise, Oracle may not return the query
results you expect. You can use the TRUNC date function to set the time field to midnight, or
you can include a greater-than or less-than condition in the query instead of an equality or
inequality condition.

Here are some examples that assume a table my_table with a number column row_num and a
DATE column datecol:

INSERT INTO my_table VALUES (1, SYSDATE);
INSERT INTO my_table VALUES (2, TRUNC(SYSDATE));

SELECT *
 FROM my_table;

 ROW_NUM DATECOL
---------- ---------
 1 03-OCT-02
 2 03-OCT-02

SELECT *
 FROM my_table
 WHERE datecol > TO_DATE('02-OCT-02', 'DD-MON-YY');

 ROW_NUM DATECOL
---------- ---------
 1 03-OCT-02
 2 03-OCT-02

SELECT *
 FROM my_table
 WHERE datecol = TO_DATE('03-OCT-02','DD-MON-YY');

 ROW_NUM DATECOL
---------- ---------
 2 03-OCT-02

If you know that the time fields of your DATE column are set to midnight, then you can query
your DATE column as shown in the immediately preceding example, or by using the DATE literal:

SELECT *
 FROM my_table
 WHERE datecol = DATE '2002-10-03';

 ROW_NUM DATECOL
---------- ---------
 2 03-OCT-02

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 156

However, if the DATE column contains values other than midnight, then you must filter out the
time fields in the query to get the correct result. For example:

SELECT *
 FROM my_table
 WHERE TRUNC(datecol) = DATE '2002-10-03';

 ROW_NUM DATECOL
---------- ---------
 1 03-OCT-02
 2 03-OCT-02

Oracle applies the TRUNC function to each row in the query, so performance is better if you
ensure the midnight value of the time fields in your data. To ensure that the time fields are set
to midnight, use one of the following methods during inserts and updates:

• Use the TO_DATE function to mask out the time fields:

INSERT INTO my_table
 VALUES (3, TO_DATE('3-OCT-2002','DD-MON-YYYY'));

• Use the DATE literal:

INSERT INTO my_table
 VALUES (4, '03-OCT-02');

• Use the TRUNC function:

INSERT INTO my_table
 VALUES (5, TRUNC(SYSDATE));

The date function SYSDATE returns the current system date and time. The function
CURRENT_DATE returns the current session date. For information on SYSDATE, the TO_* datetime
functions, and the default date format, see Datetime Functions .

TIMESTAMP Literals

The TIMESTAMP data type stores year, month, day, hour, minute, and second, and fractional
second values. When you specify TIMESTAMP as a literal, the fractional_seconds_precision value can
be any number of digits up to 9, as follows:

TIMESTAMP '1997-01-31 09:26:50.124'

TIMESTAMP WITH TIME ZONE Literals

The TIMESTAMP WITH TIME ZONE data type is a variant of TIMESTAMP that includes a time zone
region name or time zone offset. When you specify TIMESTAMP WITH TIME ZONE as a literal, the
fractional_seconds_precision value can be any number of digits up to 9. For example:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00'

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example,

TIMESTAMP '1999-04-15 8:00:00 -8:00'

is the same as

TIMESTAMP '1999-04-15 11:00:00 -5:00'

8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard Time.

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 156

You can replace the UTC offset with the TZR (time zone region name) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP '1999-04-15 8:00:00 US/Pacific'

To eliminate the ambiguity of boundary cases when the daylight saving time switches, use both
the TZR and a corresponding TZD format element. The following example ensures that the
preceding example will return a daylight saving time value:

TIMESTAMP '1999-10-29 01:30:00 US/Pacific PDT'

You can also express the time zone offset using a datetime expression:

SELECT TIMESTAMP '2009-10-29 01:30:00' AT TIME ZONE 'US/Pacific'
 FROM DUAL;

See Also

Datetime Expressions for more information

If you do not add the TZD format element, and the datetime value is ambiguous, then Oracle
returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter set to TRUE. If
that parameter is set to FALSE, then Oracle interprets the ambiguous datetime as standard time
in the specified region.

TIMESTAMP WITH LOCAL TIME ZONE Literals

The TIMESTAMP WITH LOCAL TIME ZONE data type differs from TIMESTAMP WITH TIME ZONE in
that data stored in the database is normalized to the database time zone. The time zone offset
is not stored as part of the column data. There is no literal for TIMESTAMP WITH LOCAL TIME
ZONE. Rather, you represent values of this data type using any of the other valid datetime
literals. The table that follows shows some of the formats you can use to insert a value into a
TIMESTAMP WITH LOCAL TIME ZONE column, along with the corresponding value returned by a
query.

Table 2-13 TIMESTAMP WITH LOCAL TIME ZONE Literals

Value Specified in INSERT Statement Value Returned by Query

'19-FEB-2004' 19-FEB-2004.00.00.000000 AM

SYSTIMESTAMP 19-FEB-04 02.54.36.497659 PM

TO_TIMESTAMP('19-FEB-2004', 'DD-MON-YYYY') 19-FEB-04 12.00.00.000000 AM

SYSDATE 19-FEB-04 02.55.29.000000 PM

TO_DATE('19-FEB-2004', 'DD-MON-YYYY') 19-FEB-04 12.00.00.000000 AM

TIMESTAMP'2004-02-19 8:00:00 US/Pacific' 19-FEB-04 08.00.00.000000 AM

Notice that if the value specified does not include a time component (either explicitly or
implicitly), then the value returned defaults to midnight.

Interval Literals
An interval literal specifies a period of time. You can specify these differences in terms of years
and months, or in terms of days, hours, minutes, and seconds. Oracle Database supports two

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 156

types of interval literals, YEAR TO MONTH and DAY TO SECOND. Each type contains a leading
field and may contain a trailing field. The leading field defines the basic unit of date or time
being measured. The trailing field defines the smallest increment of the basic unit being
considered. For example, a YEAR TO MONTH interval considers an interval of years to the
nearest month. A DAY TO MINUTE interval considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYMINTERVAL or
NUMTODSINTERVAL conversion function to convert the numeric data into interval values.

Interval literals are used primarily with analytic functions.

See Also

Analytic Functions , NUMTODSINTERVAL , and NUMTOYMINTERVAL

INTERVAL YEAR TO MONTH
Specify YEAR TO MONTH interval literals using the following syntax:

interval_year_to_month::=

INTERVAL ’ integer

– integer

’

YEAR

MONTH

(precision)
TO

YEAR

MONTH

where

• 'integer [-integer]' specifies integer values for the leading and optional trailing field of the
literal. If the leading field is YEAR and the trailing field is MONTH, then the range of integer
values for the month field is 0 to 11.

• precision is the maximum number of digits in the leading field. The valid range of the leading
field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field

If you specify a trailing field, then it must be less significant than the leading field. For example,
INTERVAL '0-1' MONTH TO YEAR is not valid.

The following INTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 2 months:

INTERVAL '123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 156

Table 2-14 Forms of INTERVAL YEAR TO MONTH Literals

Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is greater
than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.

INTERVAL '300' MONTH(3) An interval of 300 months.

INTERVAL '4' YEAR Maps to INTERVAL '4-0' YEAR TO MONTH and
indicates 4 years.

INTERVAL '50' MONTH Maps to INTERVAL '4-2' YEAR TO MONTH and
indicates 50 months or 4 years 2 months.

INTERVAL '123' YEAR Returns an error, because the default precision is
2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to yield
another INTERVAL YEAR TO MONTH literal. For example:

INTERVAL '5-3' YEAR TO MONTH + INTERVAL'20' MONTH =
INTERVAL '6-11' YEAR TO MONTH

INTERVAL DAY TO SECOND
Specify DAY TO SECOND interval literals using the following syntax:

interval_day_to_second::=

INTERVAL ’

integer

integer time_expr

time_expr

’

DAY

HOUR

MINUTE

(leading_precision)

SECOND

(leading_precision

, fractional_seconds_precision

)

TO

DAY

HOUR

MINUTE

SECOND

(fractional_seconds_precision)

where

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 156

• integer specifies the number of days. If this value contains more digits than the number
specified by the leading precision, then Oracle returns an error.

• time_expr specifies a time in the format HH[:MI[:SS[.n]]] or MI[:SS[.n]] or SS[.n], where n specifies
the fractional part of a second. If n contains more digits than the number specified by
fractional_seconds_precision, then n is rounded to the number of digits specified by the
fractional_seconds_precision value. You can specify time_expr following an integer and a space
only if the leading field is DAY.

• leading_precision is the number of digits in the leading field. Accepted values are 0 to 9. The
default is 2.

• fractional_seconds_precision is the number of digits in the fractional part of the SECOND datetime
field. Accepted values are 1 to 9. The default is 6.

Restriction on the Leading Field:

If you specify a trailing field, then it must be less significant than the leading field. For example,
INTERVAL MINUTE TO DAY is not valid. As a result of this restriction, if SECOND is the leading
field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:

• HOUR: 0 to 23

• MINUTE: 0 to 59

• SECOND: 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow, including some
abbreviated versions:

Table 2-15 Forms of INTERVAL DAY TO SECOND Literals

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222' DAY TO SECOND(3) 4 days, 5 hours, 12 minutes, 10 seconds, and 222
thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL '400 5' DAY(3) TO HOUR 400 days 5 hours.

INTERVAL '400' DAY(3) 400 days.

INTERVAL '11:12:10.2222222' HOUR TO SECOND(7) 11 hours, 12 minutes, and 10.2222222 seconds.

INTERVAL '11:20' HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10' HOUR 10 hours.

INTERVAL '10:22' MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.

INTERVAL '4' DAY 4 days.

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2,4) 30.1235 seconds. The fractional second '12345' is
rounded to '1235' because the precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND literal.
For example.

Chapter 2
Literals

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 156

INTERVAL'20' DAY - INTERVAL'240' HOUR = INTERVAL'10-0' DAY TO SECOND

Format Models
A format model is a character literal that describes the format of datetime or numeric data
stored in a character string. A format model does not change the internal representation of the
value in the database. When you convert a character string into a date or number, a format
model determines how Oracle Database interprets the string. In SQL statements, you can use
a format model as an argument of the TO_CHAR and TO_DATE functions to specify:

• The format for Oracle to use to return a value from the database

• The format for a value you have specified for Oracle to store in the database

For example:

• The datetime format model for the string '17:45:29' is 'HH24:MI:SS'.

• The datetime format model for the string '11-Nov-1999' is 'DD-Mon-YYYY'.

• The number format model for the string '$2,304.25' is '$9,999.99'.

For lists of number and datetime format model elements, see Table 2-16 and Table 2-18.

The values of some formats are determined by the value of initialization parameters. For such
formats, you can specify the characters returned by these format elements implicitly using the
initialization parameter NLS_TERRITORY. You can change the default date format for your
session with the ALTER SESSION statement.

See Also

• ALTER SESSION for information on changing the values of these parameters and
Format Model Examples for examples of using format models

• TO_CHAR (datetime) , TO_CHAR (number) , and TO_DATE

• Oracle Database Reference and Oracle Database Globalization Support Guide for
information on these parameters

This remainder of this section describes how to use the following format models:

• Number Format Models

• Datetime Format Models

• Format Model Modifiers

Number Format Models
You can use number format models in the following functions:

• In the TO_CHAR function to translate a value of NUMBER, BINARY_FLOAT, or BINARY_DOUBLE
data type to VARCHAR2 data type

• In the TO_NUMBER function to translate a value of CHAR or VARCHAR2 data type to NUMBER
data type

• In the TO_BINARY_FLOAT and TO_BINARY_DOUBLE functions to translate CHAR and
VARCHAR2 expressions to BINARY_FLOAT or BINARY_DOUBLE values

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 156

All number format models cause the number to be rounded to the specified number of
significant digits. If a value has more significant digits to the left of the decimal place than are
specified in the format, then pound signs (#) replace the value. This event typically occurs
when you are using TO_CHAR with a restrictive number format string, causing a rounding
operation.

• If a positive NUMBER value is extremely large and cannot be represented in the specified
format, then the infinity sign (~) replaces the value. Likewise, if a negative NUMBER value is
extremely small and cannot be represented by the specified format, then the negative
infinity sign replaces the value (-~).

• If a BINARY_FLOAT or BINARY_DOUBLE value is converted to CHAR or NCHAR, and the input
is either infinity or NaN (not a number), then Oracle always returns the pound signs to
replace the value. However, if you omit the format model, then Oracle returns either Inf or
Nan as a string.

Number Format Elements
A number format model is composed of one or more number format elements. The tables that
follow list the elements of a number format model and provide some examples.

Negative return values automatically contain a leading negative sign and positive values
automatically contain a leading space unless the format model contains the MI, S, or PR format
element.

Table 2-16 Number Format Elements

Element Example Description

, (comma) 9,999 Returns a comma in the specified position. You can specify multiple commas in a number
format model.

Restrictions:
• A comma element cannot begin a number format model.
• A comma cannot appear to the right of a decimal character or period in a number

format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified position.

Restriction: You can specify only one period in a number format model.

$ $9999 Returns value with a leading dollar sign.

0 0999

9990

Returns leading zeros.

Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading space if positive or with a
leading minus if negative. Leading zeros are blank, except for a zero value, which returns a
zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number when the integer part is zero
(regardless of zeros in the format model).

C C999 Returns in the specified position the ISO currency symbol (the current value of the
NLS_ISO_CURRENCY parameter).

D 99D99 Returns in the specified position the decimal character, which is the current value of the
NLS_NUMERIC_CHARACTER parameter. The default is a period (.).

Restriction: You can specify only one decimal character in a number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 156

Table 2-16 (Cont.) Number Format Elements

Element Example Description

G 9G999 Returns in the specified position the group separator (the current value of the
NLS_NUMERIC_CHARACTER parameter). You can specify multiple group separators in a
number format model.

Restriction: A group separator cannot appear to the right of a decimal character or period
in a number format model.

L L999 Returns in the specified position the local currency symbol (the current value of the
NLS_CURRENCY parameter).

MI 9999MI Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last position of a number
format model.

PR 9999PR Returns negative value in <angle brackets>.

Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last position of a number
format model.

RN

rn

RN

rn

Returns a value as Roman numerals in uppercase.

Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

S S9999

9999S

Returns negative value with a leading minus sign (-).

Returns positive value with a leading plus sign (+).

Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or last position of a number
format model.

TM TM The text minimum number format model returns (in decimal output) the smallest number of
characters possible. This element is case insensitive.

The default is TM9, which returns the number in fixed notation unless the output exceeds
64 characters. If the output exceeds 64 characters, then Oracle Database automatically
returns the number in scientific notation.

Restrictions:
• You cannot precede this element with any other element.
• You can follow this element only with one 9 or one E (or e), but not with any

combination of these. The following statement returns an error:

SELECT TO_CHAR(1234, 'TM9e') FROM DUAL;

U U9999 Returns in the specified position the Euro (or other) dual currency symbol, determined by
the current value of the NLS_DUAL_CURRENCY parameter.

V 999V99 Returns a value multiplied by 10n (and if necessary, round it up), where n is the number of
9's after the V.

X XXXX

xxxx

Returns the hexadecimal value of the specified number of digits. If the specified number is
not an integer, then Oracle Database rounds it to an integer.

Restrictions:
• This element accepts only positive values or 0. Negative values return an error.
• You can precede this element only with 0 (which returns leading zeroes) or FM. Any

other elements return an error. If you specify neither 0 nor FM with X, then the return
always has one leading blank. Refer to the format model modifier FM for more
information.

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 156

Table 2-17 shows the results of the following query for different values of number and 'fmt':

SELECT TO_CHAR(number, 'fmt')
 FROM DUAL;

Table 2-17 Results of Number Conversions

number 'fmt' Result

-1234567890 9999999999S '1234567890-'

0 99.99 ' .00'

+0.1 99.99 ' .10'

-0.2 99.99 ' -.20'

0 90.99 ' 0.00'

+0.1 90.99 ' 0.10'

-0.2 90.99 ' -0.20'

0 9999 ' 0'

1 9999 ' 1'

0 B9999 ' '

1 B9999 ' 1'

0 B90.99 ' '

+123.456 999.999 ' 123.456'

-123.456 999.999 '-123.456'

+123.456 FM999.009 '123.456'

+123.456 9.9EEEE ' 1.2E+02'

+1E+123 9.9EEEE ' 1.0E+123'

+123.456 FM9.9EEEE '1.2E+02'

+123.45 FM999.009 '123.45'

+123.0 FM999.009 '123.00'

+123.45 L999.99 ' $123.45'

+123.45 FML999.99 '$123.45'

+1234567890 9999999999S '1234567890+'

Datetime Format Models
You can use datetime format models in the following functions:

• In the TO_* datetime functions to translate a character value that is in a format other than
the default format into a datetime value. (The TO_* datetime functions are TO_DATE,
TO_TIMESTAMP, and TO_TIMESTAMP_TZ.)

• In the TO_CHAR function to translate a datetime value into a character value that is in a
format other than the default format (for example, to print the date from an application)

The total length of a datetime format model cannot exceed 22 characters.

The default datetime formats are specified either explicitly with the NLS session parameters
NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, and NLS_TIMESTAMP_TZ_FORMAT, or implicitly with

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 156

the NLS session parameter NLS_TERRITORY. You can change the default datetime formats for
your session with the ALTER SESSION statement.

See Also

ALTER SESSION and Oracle Database Globalization Support Guide for information
on the NLS parameters

Datetime Format Elements
A datetime format model is composed of one or more datetime format elements as listed in
Table 2-18.

• For input format models, format items cannot appear twice, and format items that
represent similar information cannot be combined. For example, you cannot use 'SYYYY'
and 'BC' in the same format string.

• The second column indicates whether the format element can be used in the TO_* datetime
functions. All format elements can be used in the TO_CHAR function.

• The following datetime format elements can be used in timestamp and interval format
models, but not in the original DATE format model: FF, TZD, TZH, TZM, and TZR.

• Many datetime format elements are padded with blanks or leading zeroes to a specific
length. Refer to the format model modifier FM for more information.

Note

Oracle recommends that you use the 4-digit year element (YYYY) instead of the
shorter year elements for these reasons:

• The 4-digit year element eliminates ambiguity.

• The shorter year elements may affect query optimization because the year is not
known at query compile time and can only be determined at run time.

Uppercase Letters in Date Format Elements
Capitalization in a spelled-out word, abbreviation, or Roman numeral follows capitalization in
the corresponding format element. For example, the date format model 'DAY' produces
capitalized words like 'MONDAY'; 'Day' produces 'Monday'; and 'day' produces 'monday'.

Punctuation and Character Literals in Datetime Format Models
You can include these characters in a date format model:

• Punctuation such as hyphens, slashes, commas, periods, and colons

• Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in the format
model.

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 156

Table 2-18 Datetime Format Elements

Element TO_*
datetime
functions?

Description

-
/
,
.
;
:
"text"

Yes Punctuation and quoted text is reproduced in the result

AD
A.D.

Yes Gregorian calendar era indicator with or without periods
1

AM
A.M.

Yes Meridian indicator with or without periods
1

BC
B.C.

Yes Gregorian calendar era indicator with or without periods
1

CC
SCC

Century

• If the last 2 digits of a 4-digit year are between 01 and 99 (inclusive), then the century
is one greater than the first 2 digits of that year.

• If the last 2 digits of a 4-digit year are 00, then the century is the same as the first 2
digits of that year.

For example: 2002 returns 21, 2000 returns 20.

D
Yes Day of week (1-7). This element depends on the NLS territory of the session.

DAY Yes Name of day

DD
Yes Day of month (1-31)

DDD
Yes Day of year (1-366)

DL
Yes Returns a value in the long date format, which is an extension of the Oracle Database

DATE format, determined by the current value of the NLS_DATE_FORMAT parameter.
Makes the appearance of the date components (day name, month number, and so forth)
depend on the NLS_TERRITORY and NLS_LANGUAGE parameters. For example, in the
AMERICAN_AMERICA locale, this is equivalent to specifying the format 'fmDay, Month dd,
yyyy'. In the GERMAN_GERMANY locale, it is equivalent to specifying the format 'fmDay, dd.
Month yyyy'.

Restriction: You can specify this format only with the TS element, separated by white
space.

DS
Yes Returns a value in the short date format. Makes the appearance of the date components

(day name, month number, and so forth) depend on the NLS_TERRITORY and
NLS_LANGUAGE parameters. For example, in the AMERICAN_AMERICA locale, this is
equivalent to specifying the format 'MM/DD/RRRR'. In the ENGLISH_UNITED_KINGDOM
locale, it is equivalent to specifying the format 'DD/MM/RRRR'.

Restriction: You can specify this format only with the TS element, separated by white
space.

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 156

Table 2-18 (Cont.) Datetime Format Elements

Element TO_*
datetime
functions?

Description

DY
Yes Abbreviated name of day

E
Yes Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha calendars)

EE
Yes Full era name (Japanese Imperial, ROC Official, and Thai Buddha calendars)

FF [1..9]
Yes Fractional seconds; no decimal character is printed. Use the X format element to add the

decimal character. Use the numbers 1 to 9 after FF to specify the number of digits in the
fractional second portion of the datetime value returned. If you do not specify a digit, then
Oracle Database uses the precision specified for the datetime data type or the data type's
default precision. Valid in timestamp formats, but not in DATE formats.

Examples: 'HH:MI:SS.FF'

SELECT TO_CHAR(SYSTIMESTAMP, 'SS.FF3') from DUAL;

FM
Yes Returns a value with no leading or trailing blanks.

See Also: FM

FX
Yes Requires exact matching between the character data and the format model.

See Also: FX

HH
HH12

Yes Hour of day (1-12)

HH24
Yes Hour of day (0-23)

IW
Calendar week of year (1-52 or 1-53), as defined by the ISO 8601 standard:

• A calendar week starts on Monday
• The first calendar week of the year includes January 4
• The first calendar week of the year may include December 29, 30 and 31
• The last calendar week of the year may include January 1, 2, and 3

IYYY
4-digit year of the year containing the calendar week, as defined by the ISO 8601 standard

IYY
IY
I

Last 3, 2, or 1 digit(s) of the year containing the calendar week, as defined by the ISO 8601
standard

J
Yes Julian day: the number of days since January 1, 4712 BC. The number specified with J

must be an integer.

MI
Yes Minute (0-59)

MM
Yes Month (01-12; January = 01)

MON
Yes Abbreviated name of month

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 156

Table 2-18 (Cont.) Datetime Format Elements

Element TO_*
datetime
functions?

Description

MONTH
Yes Name of month

PM
P.M.

Yes Meridian indicator with or without periods
1

Q
Quarter of year (1, 2, 3, 4; January - March = 1)

RM
Yes Roman numeral month (I-XII; January = I)

RR
Yes Lets you store 20th century dates in the 21st century using only two digits.

See Also: The RR Datetime Format Element

RRRR
Yes Round year. Accepts either 4-digit or 2-digit input.

If 2-digit, provides the same return as RR. If you do not want this functionality, enter 4-digit
year.

SS
Yes Second (0-59)

SSSSS
Yes Seconds past midnight (0-86399)

TS
Yes Returns a value in the short time format. Makes the appearance of the time components

(hour, minutes, and so forth) depend on the NLS_TERRITORY and NLS_LANGUAGE
initialization parameters.

Restriction: You can specify this format only with the DL or DS element, separated by
white space.

TZD
Yes Daylight saving information. The TZD value is an abbreviated time zone string with daylight

saving information. It must correspond with the region specified in TZR. Valid in timestamp
with time zone format models only.

Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight time).

TZH
Yes Time zone hour. (See TZM format element.) Valid in timestamp with time zone format

models only.

Example: 'HH:MI:SS.FFTZH:TZM'.

TZM
Yes Time zone minute. (See TZH format element.) Valid in timestamp with time zone format

models only.

Example: 'HH:MI:SS.FFTZH:TZM'.

TZR
Yes Time zone region information. On input, the value must be one of the time zone region

names supported in the database or a time zone offset in the form [+-]hours:minutes. Valid in
timestamp with time zone format models only.

Example: US/Pacific

WW
Week of year (1-53) where week 1 starts on the first day of the year and continues to the
seventh day of the year

W
Week of month (1-5) where week 1 starts on the first day of the month and ends on the
seventh day of the month

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 156

Table 2-18 (Cont.) Datetime Format Elements

Element TO_*
datetime
functions?

Description

X
Yes Decimal character

Example: 'HH:MI:SSXFF'

Y,YYY

SY,YYY

Yes Year with group separator in the position of the comma

S prefixes BC dates with a minus sign (-)

YEAR
SYEAR

Year, spelled out

S prefixes BC dates with a minus sign (-)

YYYY
SYYYY

Yes 4-digit year

S prefixes BC dates with a minus sign

YYY
YY
Y

Yes Last 3, 2, or 1 digit(s) of year

1 If the NLS_DATE_LANGUAGE parameter is AMERICAN, the format model elements AD, BC, AM, and PM output or expect the
corresponding indicators without periods. The format model elements A.D., B.C., A.M., and P.M. output or expect the corresponding
indicators with periods. If the NLS_DATE_FORMAT parameter is not AMERICAN, the format model elements AD, BC, AM, and PM
with and without periods are equivalent, and output or expect indicators that are defined for the given language in Oracle locale data. You
can view this language-specific indicator text in the Oracle Locale Builder utility.

Oracle Database converts strings to dates with some flexibility. For example, when the
TO_DATE function is used, a format model containing punctuation characters matches an input
string lacking some or all of these characters, provided each numerical element in the input
string contains the maximum allowed number of digits—for example, two digits '05' for 'MM' or
four digits '2007' for 'YYYY'. The following statement does not return an error:

SELECT TO_CHAR(TO_DATE('0207','MM/YY'), 'MM/YY') FROM DUAL;

TO_CH

02/07

However, the following format string does return an error, because the FX (format exact) format
modifier requires an exact match of the expression and the format string:

SELECT TO_CHAR(TO_DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL;
SELECT TO_CHAR(TO_DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL;
 *
ERROR at line 1:
ORA-01861: literal does not match format string

Any non-alphanumeric character is allowed to match the punctuation characters in the format
model. For example, the following statement does not return an error:

SELECT TO_CHAR (TO_DATE('02#07','MM/YY'), 'MM/YY') FROM DUAL;

TO_CH

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 156

02/07

See Also

Format Model Modifiers and String-to-Date Conversion Rules for more information

Datetime Format Elements and Globalization Support
The functionality of some datetime format elements depends on the country and language in
which you are using Oracle Database. For example, these datetime format elements return or
accept spelled values:

• MONTH

• MON

• DAY

• DY

• BC or AD or B.C. or A.D.

• AM or PM or A.M or P.M.

The language in which these values are returned or accepted is specified either explicitly with
the initialization parameter NLS_DATE_LANGUAGE or implicitly with the initialization parameter
NLS_LANGUAGE. The values returned by the YEAR and SYEAR datetime format elements are
always in English.

The datetime format element D returns or accepts the number of the day of the week (1-7). The
day of the week that is numbered 1 is specified implicitly by the initialization parameter
NLS_TERRITORY.

The datetime format model element X returns or accepts the decimal character to be output
before the fractional seconds. The decimal character is the first character in the value of the
initialization parameter NLS_NUMERIC_CHARACTERS, which can be specified explicitly or
determined implicitly by the initialization parameter NLS_TERRITORY.

The format model elements Y,YYY and SY,YYY return or accept the numeric group separator in
place of the comma. The group separator is the second character in the value of the
initialization parameter NLS_NUMERIC_CHARACTERS, which can be specified explicitly or
determined implicitly by the initialization parameter NLS_TERRITORY.

All format model elements returning or accepting year, month, or day of the month are
sensitive to the user calendar specified by the initialization parameter NLS_CALENDAR. The
selected user calendar makes the dependent format model elements return or accept the date
values as they are expressed in this calendar. Note that the DATE and TIMESTAMP values that
are output or returned are stored internally always in the Gregorian calendar. NLS_CALENDAR
affects the textual representation of datetime values.

The parameter NLS_CALENDAR overrides the parameter NLS_DATE_LANGUAGE, determining the
month names to display or accept, which may be different from what is expected for dates in
the Gregorian calendar. For example, when NLS_DATE_LANGUAGE is set to ARABIC and
NLS_CALENDAR is set to GREGORIAN, the name of the first month is yanayir (in the Arabic script).
However, if NLS_CALENDAR is set to ARABIC HIJRAH, the name of the first month is muharram (in
the Arabic script).

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 156

See Also

Oracle Database Reference and Oracle Database Globalization Support Guide for
information on globalization support initialization parameters

ISO Standard Date Format Elements
Oracle calculates the values returned by the datetime format elements IYYY, IYY, IY, I, and IW
according to the ISO standard. For information on the differences between these values and
those returned by the datetime format elements YYYY, YYY, YY, Y, and WW, see the
discussion of globalization support in Oracle Database Globalization Support Guide.

The RR Datetime Format Element
The RR datetime format element is similar to the YY datetime format element, but it provides
additional flexibility for storing date values in other centuries. The RR datetime format element
lets you store 20th century dates in the 21st century by specifying only the last two digits of the
year.

If you use the TO_DATE function with the YY datetime format element, then the year returned
always has the same first 2 digits as the current year. If you use the RR datetime format
element instead, then the century of the return value varies according to the specified two-digit
year and the last two digits of the current year.

That is:

• If the specified two-digit year is 00 to 49, then

– If the last two digits of the current year are 00 to 49, then the returned year has the
same first two digits as the current year.

– If the last two digits of the current year are 50 to 99, then the first 2 digits of the
returned year are 1 greater than the first 2 digits of the current year.

• If the specified two-digit year is 50 to 99, then

– If the last two digits of the current year are 00 to 49, then the first 2 digits of the
returned year are 1 less than the first 2 digits of the current year.

– If the last two digits of the current year are 50 to 99, then the returned year has the
same first two digits as the current year.

The following examples demonstrate the behavior of the RR datetime format element.

RR Datetime Format Examples

Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO_DATE('27-OCT-98', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE('27-OCT-17', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;

Year

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 156

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE('27-OCT-98', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE('27-OCT-17', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;

Year

2017

Note that the queries return the same values regardless of whether they are issued before or
after the year 2000. The RR datetime format element lets you write SQL statements that will
return the same values from years whose first two digits are different.

Datetime Format Element Suffixes
Table 2-19 lists suffixes that can be added to datetime format elements:

Table 2-19 Date Format Element Suffixes

Suffix Meaning Example Element Example Value

TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes on date format element suffixes:

• When you add one of these suffixes to a datetime format element, the return value is
always in English.

• Datetime suffixes are valid only to format output. You cannot use them to insert a date into
the database.

Format Model Modifiers
The FM and FX modifiers, used in format models in the TO_CHAR function, control blank
padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each subsequent
occurrence toggles the effects of the modifier. Its effects are enabled for the portion of the
model following its first occurrence, and then disabled for the portion following its second, and
then reenabled for the portion following its third, and so on.

FM

Fill mode. Oracle uses trailing blank characters and leading zeroes to fill format elements to a
constant width. The width is equal to the display width of the largest element for the relevant
format model:

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 156

• Numeric elements are padded with leading zeros to the width of the maximum value
allowed for the element. For example, the YYYY element is padded to four digits (the
length of '9999'), HH24 to two digits (the length of '23'), and DDD to three digits (the length of
'366').

• The character elements MONTH, MON, DAY, and DY are padded with trailing blanks to the
width of the longest full month name, the longest abbreviated month name, the longest full
date name, or the longest abbreviated day name, respectively, among valid names
determined by the values of NLS_DATE_LANGUAGE and NLS_CALENDAR parameters. For
example, when NLS_DATE_LANGUAGE is AMERICAN and NLS_CALENDAR is GREGORIAN (the
default), the largest element for MONTH is SEPTEMBER, so all values of the MONTH format
element are padded to nine display characters. The values of the NLS_DATE_LANGUAGE
and NLS_CALENDAR parameters are specified in the third argument to TO_CHAR and TO_*
datetime functions or they are retrieved from the NLS environment of the current session.

• The character element RM is padded with trailing blanks to the length of 4, which is the
length of 'viii'.

• Other character elements and spelled-out numbers (SP, SPTH, and THSP suffixes) are not
padded.

The FM modifier suppresses the above padding in the return value of the TO_CHAR function.

FX

Format exact. This modifier specifies exact matching for the character argument and datetime
format model of a TO_DATE function:

• Punctuation and quoted text in the character argument must exactly match (except for
case) the corresponding parts of the format model.

• The character argument cannot have extra blanks. Without FX, Oracle ignores extra
blanks.

• Numeric data in the character argument must have the same number of digits as the
corresponding element in the format model. Without FX, numbers in the character
argument can omit leading zeros.

When FX is enabled, you can disable this check for leading zeros by using the FM modifier
as well.

If any portion of the character argument violates any of these conditions, then Oracle returns
an error message.

Format Model Examples
The following statement uses a date format model to return a character expression:

SELECT TO_CHAR(SYSDATE, 'fmDDTH') || ' of ' ||
 TO_CHAR(SYSDATE, 'fmMonth') || ', ' ||
 TO_CHAR(SYSDATE, 'YYYY') "Ides"
 FROM DUAL;

Ides

3RD of April, 2008

The preceding statement also uses the FM modifier. If FM is omitted, then the month is blank-
padded to nine characters:

SELECT TO_CHAR(SYSDATE, 'DDTH') || ' of ' ||
 TO_CHAR(SYSDATE, 'Month') || ', ' ||

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 156

 TO_CHAR(SYSDATE, 'YYYY') "Ides"
 FROM DUAL;

Ides

03RD of April , 2008

The following statement places a single quotation mark in the return value by using a date
format model that includes two consecutive single quotation marks:

SELECT TO_CHAR(SYSDATE, 'fmDay') || '''s Special' "Menu"
 FROM DUAL;

Menu

Tuesday's Special

Two consecutive single quotation marks can be used for the same purpose within a character
literal in a format model.

Table 2-20 shows whether the following statement meets the matching conditions for different
values of char and 'fmt' using FX (the table named table has a column date_column of data type
DATE):

UPDATE table
 SET date_column = TO_DATE(char, 'fmt');

Table 2-20 Matching Character Data and Format Models with the FX Format Model
Modifier

char 'fmt' Match or Error?

'15/ JAN /1998' 'DD-MON-YYYY' Match

' 15! JAN % /1998' 'DD-MON-YYYY' Error

'15/JAN/1998' 'FXDD-MON-YYYY' Error

'15-JAN-1998' 'FXDD-MON-YYYY' Match

'1-JAN-1998' 'FXDD-MON-YYYY' Error

'01-JAN-1998' 'FXDD-MON-YYYY' Match

'1-JAN-1998' 'FXFMDD-MON-YYYY' Match

Format of Return Values: Examples

You can use a format model to specify the format for Oracle to use to return values from the
database to you.

The following statement selects the salaries of the employees in Department 80 and uses the
TO_CHAR function to convert these salaries into character values with the format specified by
the number format model '$99,990.99':

SELECT last_name employee, TO_CHAR(salary, '$99,990.99')
 FROM employees
 WHERE department_id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs, commas every
three digits, and two decimal places.

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 156

The following statement selects the date on which each employee from Department 20 was
hired and uses the TO_CHAR function to convert these dates to character strings with the format
specified by the date format model 'fmMonth DD, YYYY':

SELECT last_name employee, TO_CHAR(hire_date,'fmMonth DD, YYYY') hiredate
 FROM employees
 WHERE department_id = 20;

With this format model, Oracle returns the hire dates without blank padding (as specified by
fm), two digits for the day, and the century included in the year.

See Also

Format Model Modifiers for a description of the fm format element

Supplying the Correct Format Model: Examples

When you insert or update a column value, the data type of the value that you specify must
correspond to the column data type of the column. You can use format models to specify the
format of a value that you are converting from one data type to another data type required for a
column.

For example, a value that you insert into a DATE column must be a value of the DATE data type
or a character string in the default date format (Oracle implicitly converts character strings in
the default date format to the DATE data type). If the value is in another format, then you must
use the TO_DATE function to convert the value to the DATE data type. You must also use a
format model to specify the format of the character string.

The following statement updates Hunold's hire date using the TO_DATE function with the format
mask 'YYYY MM DD' to convert the character string '2008 05 20' to a DATE value:

UPDATE employees
 SET hire_date = TO_DATE('2008 05 20','YYYY MM DD')
 WHERE last_name = 'Hunold';

String-to-Date Conversion Rules
The following additional formatting rules apply when converting string values to date values
(unless you have used the FX or FXFM modifiers in the format model to control exact format
checking):

• You can omit punctuation included in the format string from the date string if all the digits of
the numerical format elements, including leading zeros, are specified. For example, specify
02 and not 2 for two-digit format elements such as MM, DD, and YY.

• You can omit time fields found at the end of a format string from the date string.

• You can use any non-alphanumeric character in the date string to match the punctuation
symbol in the format string.

• If a match fails between a datetime format element and the corresponding characters in
the date string, then Oracle attempts alternative format elements, as shown in Table 2-21.

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 156

Table 2-21 Oracle Format Matching

Original Format Element Additional Format Elements to Try in Place of the Original

'MM' 'MON' and 'MONTH'

'MON 'MONTH'

'MONTH' 'MON'

'YY' 'YYYY'

'RR' 'RRRR'

XML Format Model
The SYS_XMLAgg and SYS_XMLGen (deprecated) functions return an instance of type XMLType
containing an XML document. Oracle provides the XMLFormat object, which lets you format the
output of these functions.

Table 2-22 lists and describes the attributes of the XMLFormat object. The function that
implements this type follows the table.

See Also

• SYS_XMLAGG for information on the SYS_XMLAgg function

• SYS_XMLGEN for information on the SYS_XMLGen function

• Oracle XML DB Developer’s Guide for more information on the implementation of
the XMLFormat object and its use

Table 2-22 Attributes of the XMLFormat Object

Attribute Data Type Purpose

enclTag VARCHAR2(4000) or
VARCHAR2(32767)1

The name of the enclosing tag for the result of the SYS_XMLAgg or
SYS_XMLGen (deprecated) function.

SYS_XMLAgg: The default is ROWSET.

SYS_XMLGen: If the input to the function is a column name, then the
default is the column name. Otherwise the default is ROW. When
schemaType is set to USE_GIVEN_SCHEMA, this attribute also gives the
name of the XMLSchema element.

schemaType VARCHAR2(100) The type of schema generation for the output document. Valid values
are 'NO_SCHEMA' and 'USE_GIVEN_SCHEMA'. The default is
'NO_SCHEMA'.

schemaName VARCHAR2(4000) or
VARCHAR2(32767)1

The name of the target schema Oracle uses if the value of the
schemaType is 'USE_GIVEN_SCHEMA'. If you specify schemaName, then
Oracle uses the enclosing tag as the element name.

targetNameSpace VARCHAR2(4000) or
VARCHAR2(32767)1

The target namespace if the schema is specified (that is, schemaType is
GEN_SCHEMA_*, or USE_GIVEN_SCHEMA)

Chapter 2
Format Models

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 156

Table 2-22 (Cont.) Attributes of the XMLFormat Object

Attribute Data Type Purpose

dburlPrefix VARCHAR2(4000) or
VARCHAR2(32767)1

The URL to the database to use if WITH_SCHEMA is specified. If this
attribute is not specified, then Oracle declares the URL to the types as
a relative URL reference.

processingIns VARCHAR2(4000) or
VARCHAR2(32767)1

User-provided processing instructions, which are appended to the top
of the function output before the element.

1 The data type for this attribute is VARCHAR2(4000) if the initialization parameter MAX_STRING_SIZE = STANDARD, and
VARCHAR2(32767) if MAX_STRING_SIZE = EXTENDED. See Extended Data Types for more information.

The function that implements the XMLFormat object follows:

STATIC FUNCTION createFormat(
 enclTag IN varchar2 := 'ROWSET',
 schemaType IN varchar2 := 'NO_SCHEMA',
 schemaName IN varchar2 := null,
 targetNameSpace IN varchar2 := null,
 dburlPrefix IN varchar2 := null,
 processingIns IN varchar2 := null) RETURN XMLGenFormatType
 deterministic parallel_enable,
 MEMBER PROCEDURE genSchema (spec IN varchar2),
 MEMBER PROCEDURE setSchemaName(schemaName IN varchar2),
 MEMBER PROCEDURE setTargetNameSpace(targetNameSpace IN varchar2),
 MEMBER PROCEDURE setEnclosingElementName(enclTag IN varchar2),
 MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar2),
 MEMBER PROCEDURE setProcessingIns(pi IN varchar2),
 CONSTRUCTOR FUNCTION XMLGenFormatType (
 enclTag IN varchar2 := 'ROWSET',
 schemaType IN varchar2 := 'NO_SCHEMA',
 schemaName IN varchar2 := null,
 targetNameSpace IN varchar2 := null,
 dbUrlPrefix IN varchar2 := null,
 processingIns IN varchar2 := null) RETURN SELF AS RESULT
 deterministic parallel_enable,
 STATIC function createFormat2(
 enclTag in varchar2 := 'ROWSET',
 flags in raw) return sys.xmlgenformattype
 deterministic parallel_enable
);

Nulls
If a column in a row has no value, then the column is said to be null, or to contain null. Nulls
can appear in columns of any data type that are not restricted by NOT NULL or PRIMARY KEY
integrity constraints. Use a null when the actual value is not known or when a value would not
be meaningful.

Oracle Database treats a character value with a length of zero as null. However, do not use
null to represent a numeric value of zero, because they are not equivalent.

Chapter 2
Nulls

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 156

Note

Oracle Database currently treats a character value with a length of zero as null.
However, this may not continue to be true in future releases, and Oracle recommends
that you do not treat empty strings the same as nulls.

Any arithmetic expression containing a null always evaluates to null. For example, null added
to 10 is null. In fact, all operators (except concatenation) return null when given a null operand.

Nulls in SQL Functions
For information on null handling in SQL functions, see Nulls in SQL Functions .

Nulls with Comparison Conditions
To test for nulls, use only the comparison conditions IS NULL and IS NOT NULL. If you use any
other condition with nulls and the result depends on the value of the null, then the result is
UNKNOWN. Because null represents a lack of data, a null cannot be equal or unequal to any
value or to another null. However, Oracle considers two nulls to be equal when evaluating a
DECODE function. Refer to DECODE for syntax and additional information.

Oracle also considers two nulls to be equal if they appear in compound keys. That is, Oracle
considers identical two compound keys containing nulls if all the non-null components of the
keys are equal.

Nulls in Conditions
A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT
statement with a condition in the WHERE clause that evaluates to UNKNOWN returns no rows.
However, a condition evaluating to UNKNOWN differs from FALSE in that further operations on an
UNKNOWN condition evaluation will evaluate to UNKNOWN. Thus, NOT FALSE evaluates to TRUE,
but NOT UNKNOWN evaluates to UNKNOWN.

Table 2-23 shows examples of various evaluations involving nulls in conditions. If the
conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT statement, then
no rows would be returned for that query.

Table 2-23 Conditions Containing Nulls

Condition Value of A Evaluation

a IS NULL 10 FALSE

a IS NOT NULL 10 TRUE

a IS NULL NULL TRUE

a IS NOT NULL NULL FALSE

a = NULL 10 UNKNOWN

a != NULL 10 UNKNOWN

a = NULL NULL UNKNOWN

a != NULL NULL UNKNOWN

Chapter 2
Nulls

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 156

Table 2-23 (Cont.) Conditions Containing Nulls

Condition Value of A Evaluation

a = 10 NULL UNKNOWN

a != 10 NULL UNKNOWN

For the truth tables showing the results of logical conditions containing nulls, see Table 6-5,
Table 6-6, and Table 6-7.

Comments
You can create two types of comments:

• Comments within SQL statements are stored as part of the application code that executes
the SQL statements.

• Comments associated with individual schema or nonschema objects are stored in the data
dictionary along with metadata on the objects themselves.

Comments Within SQL Statements
Comments can make your application easier for you to read and maintain. For example, you
can include a comment in a statement that describes the purpose of the statement within your
application. With the exception of hints, comments within SQL statements do not affect the
statement execution. Refer to Hints on using this particular form of comment.

A comment can appear between any keywords, parameters, or punctuation marks in a
statement. You can include a comment in a statement in two ways:

• Begin the comment with a slash and an asterisk (/*). Proceed with the text of the comment.
This text can span multiple lines. End the comment with an asterisk and a slash (*/). The
opening and terminating characters need not be separated from the text by a space or a
line break.

• Begin the comment with -- (two hyphens). Proceed with the text of the comment. This text
cannot extend to a new line. End the comment with a line break.

Some of the tools used to enter SQL have additional restrictions. For example, if you are using
SQL*Plus, by default you cannot have a blank line inside a multiline comment. For more
information, refer to the documentation for the tool you use as an interface to the database.

A SQL statement can contain multiple comments of both styles. The text of a comment can
contain any printable characters in your database character set.

Example

These statements contain many comments:

SELECT last_name, employee_id, salary + NVL(commission_pct, 0),
 job_id, e.department_id
 /* Select all employees whose compensation is
 greater than that of Pataballa.*/
 FROM employees e, departments d
 /*The DEPARTMENTS table is used to get the department name.*/
 WHERE e.department_id = d.department_id
 AND salary + NVL(commission_pct,0) > /* Subquery: */
 (SELECT salary + NVL(commission_pct,0)

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 156

 /* total compensation is salary + commission_pct */
 FROM employees
 WHERE last_name = 'Pataballa')
 ORDER BY last_name, employee_id;

SELECT last_name, -- select the name
 employee_id -- employee id
 salary + NVL(commission_pct, 0), -- total compensation
 job_id, -- job
 e.department_id -- and department
 FROM employees e, -- of all employees
 departments d
 WHERE e.department_id = d.department_id
 AND salary + NVL(commission_pct, 0) > -- whose compensation
 -- is greater than
 (SELECT salary + NVL(commission_pct,0) -- the compensation
 FROM employees
 WHERE last_name = 'Pataballa') -- of Pataballa
 ORDER BY last_name -- and order by last name
 employee_id -- and employee id.
;

Comments on Schema and Nonschema Objects
You can use the COMMENT command to associate a comment with a schema object (table,
view, materialized view, operator, indextype, mining model) or a nonschema object (edition)
using the COMMENT command. You can also create a comment on a column, which is part of a
table schema object. Comments associated with schema and nonschema objects are stored in
the data dictionary. Refer to COMMENT for a description of this form of comment.

Hints
Hints are comments in a SQL statement that pass instructions to the Oracle Database
optimizer. The optimizer uses these hints to choose an execution plan for the statement,
unless some condition exists that prevents the optimizer from doing so.

Hints were introduced in Oracle7, when users had little recourse if the optimizer generated
suboptimal plans. Now Oracle provides a number of tools, including the SQL Tuning Advisor,
SQL plan management, and SQL Performance Analyzer, to help you address performance
problems that are not solved by the optimizer. Oracle strongly recommends that you use those
tools rather than hints. The tools are far superior to hints, because when used on an ongoing
basis, they provide fresh solutions as your data and database environment change.

Hints should be used sparingly, and only after you have collected statistics on the relevant
tables and evaluated the optimizer plan without hints using the EXPLAIN PLAN statement.
Changing database conditions as well as query performance enhancements in subsequent
releases can have significant impact on how hints in your code affect performance.

The remainder of this section provides information on some commonly used hints. If you
decide to use hints rather than the more advanced tuning tools, be aware that any short-term
benefit resulting from the use of hints may not continue to result in improved performance over
the long term.

Using Hints

A statement block can have only one comment containing hints, and that comment must follow
the SELECT, UPDATE, INSERT, MERGE, or DELETE keyword.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 156

The following syntax diagram shows hints contained in both styles of comments that Oracle
supports within a statement block. The hint syntax must follow immediately after an INSERT,
UPDATE, DELETE, SELECT, or MERGE keyword that begins the statement block.

hint::=

/*+ hint

string

*/

– – + hint

string

where:

• The plus sign (+) causes Oracle to interpret the comment as a list of hints. The plus sign
must follow immediately after the comment delimiter. No space is permitted.

• hint is one of the hints discussed in this section. The space between the plus sign and the
hint is optional. If the comment contains multiple hints, then separate the hints by at least
one space.

• string is other commenting text that can be interspersed with the hints.

The --+ syntax requires that the entire comment be on a single line.

Oracle Database ignores hints and does not return an error under the following circumstances:

• The hint contains misspellings or syntax errors. However, the database does consider
other correctly specified hints in the same comment.

• The comment containing the hint does not follow a DELETE, INSERT, MERGE, SELECT, or
UPDATE keyword.

• A combination of hints conflict with each other. However, the database does consider other
hints in the same comment.

• The database environment uses PL/SQL version 1, such as Forms version 3 triggers,
Oracle Forms 4.5, and Oracle Reports 2.5.

• A global hint refers to multiple query blocks. Refer to Specifying Multiple Query Blocks in a
Global Hint for more information.

With 19c you can use DBMS_XPLAN to find out whether a hint is used or not used. For more
information, see the Database SQL Tuning Guide.

Specifying a Query Block in a Hint

You can specify an optional query block name in many hints to specify the query block to which
the hint applies. This syntax lets you specify in the outer query a hint that applies to an inline
view.

The syntax of the query block argument is of the form @queryblock, where queryblock is an
identifier that specifies a query block in the query. The queryblock identifier can either be system-
generated or user-specified. When you specify a hint in the query block itself to which the hint
applies, you omit the @queryblock syntax.

• The system-generated identifier can be obtained by using EXPLAIN PLAN for the query.
Pretransformation query block names can be determined by running EXPLAIN PLAN for the

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 156

query using the NO_QUERY_TRANSFORMATION hint. See NO_QUERY_TRANSFORMATION
Hint .

• The user-specified name can be set with the QB_NAME hint. See QB_NAME Hint .

Specifying Global Hints

Many hints can apply both to specific tables or indexes and more globally to tables within a
view or to columns that are part of indexes. The syntactic elements tablespec and indexspec define
these global hints.

tablespec::=

view .

table

You must specify the table to be accessed exactly as it appears in the statement. If the
statement uses an alias for the table, then use the alias rather than the table name in the hint.
However, do not include the schema name with the table name within the hint, even if the
schema name appears in the statement.

Note

Specifying a global hint using the tablespec clause does not work for queries that use
ANSI joins, because the optimizer generates additional views during parsing. Instead,
specify @queryblock to indicate the query block to which the hint applies.

indexspec::=

index

(

table .

column)

When tablespec is followed by indexspec in the specification of a hint, a comma separating the
table name and index name is permitted but not required. Commas are also permitted, but not
required, to separate multiple occurrences of indexspec.

Specifying Multiple Query Blocks in a Global Hint

Oracle Database ignores global hints that refer to multiple query blocks. To avoid this issue,
Oracle recommends that you specify the object alias in the hint instead of using tablespec and
indexspec.

For example, consider the following view v and table t:

CREATE VIEW v AS
 SELECT e.last_name, e.department_id, d.location_id
 FROM employees e, departments d
 WHERE e.department_id = d.department_id;

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 94 of 156

CREATE TABLE t AS
 SELECT * from employees
 WHERE employee_id < 200;

Note

The following examples use the EXPLAIN PLAN statement, which enables you to
display the execution plan and determine if a hint is honored or ignored. Refer to
EXPLAIN PLAN for more information.

The LEADING hint is ignored in the following query because it refers to multiple query blocks,
that is, the main query block containing table t and the view query block v:

EXPLAIN PLAN
 SET STATEMENT_ID = 'Test 1'
 INTO plan_table FOR
 (SELECT /*+ LEADING(v.e v.d t) */ *
 FROM t, v
 WHERE t.department_id = v.department_id);

The following SELECT statement returns the execution plan, which shows that the LEADING hint
was ignored:

SELECT id, LPAD(' ',2*(LEVEL-1))||operation operation, options, object_name, object_alias
 FROM plan_table
 START WITH id = 0 AND statement_id = 'Test 1'
 CONNECT BY PRIOR id = parent_id AND statement_id = 'Test 1'
 ORDER BY id;

 ID OPERATION OPTIONS OBJECT_NAME OBJECT_ALIAS
--- -------------------- ---------- ------------- --------------------
 0 SELECT STATEMENT
 1 HASH JOIN
 2 HASH JOIN
 3 TABLE ACCESS FULL DEPARTMENTS D@SEL$2
 4 TABLE ACCESS FULL EMPLOYEES E@SEL$2
 5 TABLE ACCESS FULL T T@SEL$1

The LEADING hint is honored in the following query because it refers to object aliases, which
can be found in the execution plan that was returned by the previous query:

EXPLAIN PLAN
 SET STATEMENT_ID = 'Test 2'
 INTO plan_table FOR
 (SELECT /*+ LEADING(E@SEL$2 D@SEL$2 T@SEL$1) */ *
 FROM t, v
 WHERE t.department_id = v.department_id);

The following SELECT statement returns the execution plan, which shows that the LEADING hint
was honored:

SELECT id, LPAD(' ',2*(LEVEL-1))||operation operation, options,
 object_name, object_alias
 FROM plan_table
 START WITH id = 0 AND statement_id = 'Test 2'
 CONNECT BY PRIOR id = parent_id AND statement_id = 'Test 2'
 ORDER BY id;

 ID OPERATION OPTIONS OBJECT_NAME OBJECT_ALIAS

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 95 of 156

--- -------------------- ---------- ------------- --------------------
 0 SELECT STATEMENT
 1 HASH JOIN
 2 HASH JOIN
 3 TABLE ACCESS FULL EMPLOYEES E@SEL$2
 4 TABLE ACCESS FULL DEPARTMENTS D@SEL$2
 5 TABLE ACCESS FULL T T@SEL$1

See Also

The Oracle Database SQL Tuning Guide describes hints and the EXPLAIN PLAN .

Hints by Functional Category

Table 2-24 lists the hints by functional category and contains cross-references to the syntax
and semantics for each hint. An alphabetical reference of the hints follows the table.

Table 2-24 Hints by Functional Category

Hint Link to Syntax and Semantics

Optimization Goals and
Approaches

ALL_ROWS Hint

FIRST_ROWS Hint

Access Path Hints CLUSTER Hint

-- CLUSTERING Hint

NO_CLUSTERING Hint

-- FULL Hint

-- HASH Hint

-- INDEX Hint

NO_INDEX Hint

-- INDEX_ASC Hint

INDEX_DESC Hint

-- INDEX_COMBINE Hint

-- INDEX_JOIN Hint

-- INDEX_FFS Hint

-- INDEX_SS Hint

-- INDEX_SS_ASC Hint

-- INDEX_SS_DESC Hint

-- NATIVE_FULL_OUTER_JOIN Hint

NO_NATIVE_FULL_OUTER_JOIN Hint

-- NO_INDEX_FFS Hint

-- NO_INDEX_SS Hint

-- NO_ZONEMAP Hint

In-Memory Column Store
Hints

INMEMORY Hint

NO_INMEMORY Hint

-- INMEMORY_PRUNING Hint

NO_INMEMORY_PRUNING Hint

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 96 of 156

Table 2-24 (Cont.) Hints by Functional Category

Hint Link to Syntax and Semantics

Join Order Hints ORDERED Hint

-- LEADING Hint

Join Operation Hints USE_BAND Hint

NO_USE_BAND Hint

-- USE_CUBE Hint

NO_USE_CUBE Hint

-- USE_HASH Hint

NO_USE_HASH Hint

-- USE_MERGE Hint

NO_USE_MERGE Hint

-- USE_NL Hint

USE_NL_WITH_INDEX Hint

NO_USE_NL Hint

Parallel Execution Hints ENABLE_PARALLEL_DML Hint

DISABLE_PARALLEL_DML Hint

-- PARALLEL Hint

NO_PARALLEL Hint

-- PARALLEL_INDEX Hint

NO_PARALLEL_INDEX Hint

-- PQ_CONCURRENT_UNION Hint

NO_PQ_CONCURRENT_UNION Hint

-- PQ_DISTRIBUTE Hint

-- PQ_FILTER Hint

-- PQ_SKEW Hint

NO_PQ_SKEW Hint

Online Application Upgrade
Hints

CHANGE_DUPKEY_ERROR_INDEX Hint

-- IGNORE_ROW_ON_DUPKEY_INDEX Hint

-- RETRY_ON_ROW_CHANGE Hint

Query Transformation Hints FACT Hint

NO_FACT Hint

-- MERGE Hint

NO_MERGE Hint

-- NO_EXPAND Hint

USE_CONCAT Hint

-- REWRITE Hint

NO_REWRITE Hint

-- UNNEST Hint

NO_UNNEST Hint

-- STAR_TRANSFORMATION Hint

NO_STAR_TRANSFORMATION Hint

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 97 of 156

Table 2-24 (Cont.) Hints by Functional Category

Hint Link to Syntax and Semantics

-- NO_QUERY_TRANSFORMATION Hint

XML Hints NO_XMLINDEX_REWRITE Hint

-- NO_XML_QUERY_REWRITE Hint

Other Hints APPEND Hint

APPEND_VALUES Hint

NOAPPEND Hint

-- CACHE Hint

NOCACHE Hint

-- CONTAINERS Hint

-- CURSOR_SHARING_EXACT Hint

-- DRIVING_SITE Hint

-- DYNAMIC_SAMPLING Hint

FRESH_MV Hint

-- GATHER_OPTIMIZER_STATISTICS Hint

NO_GATHER_OPTIMIZER_STATISTICS Hint

GROUPING Hint

-- MODEL_MIN_ANALYSIS Hint

-- MONITOR Hint

-- NO_MONITOR Hint

-- OPT_PARAM Hint

-- PUSH_PRED Hint

NO_PUSH_PRED Hint

-- PUSH_SUBQ Hint

NO_PUSH_SUBQ Hint

-- PX_JOIN_FILTER Hint

NO_PX_JOIN_FILTER Hint

-- QB_NAME Hint

Alphabetical Listing of Hints
This section provides syntax and semantics for all hints in alphabetical order.

ALL_ROWS Hint

/*+ ALL_ROWS */

The ALL_ROWS hint instructs the optimizer to optimize a statement block with a goal of best
throughput, which is minimum total resource consumption. For example, the optimizer uses the
query optimization approach to optimize this statement for best throughput:

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 98 of 156

SELECT /*+ ALL_ROWS */ employee_id, last_name, salary, job_id
 FROM employees
 WHERE employee_id = 107;

If you specify either the ALL_ROWS or the FIRST_ROWS hint in a SQL statement, and if the data
dictionary does not have statistics about tables accessed by the statement, then the optimizer
uses default statistical values, such as allocated storage for such tables, to estimate the
missing statistics and to subsequently choose an execution plan. These estimates might not be
as accurate as those gathered by the DBMS_STATS package, so you should use the DBMS_STATS
package to gather statistics.

If you specify hints for access paths or join operations along with either the ALL_ROWS or
FIRST_ROWS hint, then the optimizer gives precedence to the access paths and join operations
specified by the hints.

APPEND Hint

/*+ APPEND */

The APPEND hint instructs the optimizer to use direct-path INSERT with the subquery syntax of
the INSERT statement.

• Conventional INSERT is the default in serial mode. In serial mode, direct path can be used
only if you include the APPEND hint.

• Direct-path INSERT is the default in parallel mode. In parallel mode, conventional insert can
be used only if you specify the NOAPPEND hint.

The decision whether the INSERT will go parallel or not is independent of the APPEND hint.

In direct-path INSERT, data is appended to the end of the table, rather than using existing space
currently allocated to the table. As a result, direct-path INSERT can be considerably faster than
conventional INSERT.

The APPEND hint is only supported with the subquery syntax of the INSERT statement, not the
VALUES clause. If you specify the APPEND hint with the VALUES clause, it is ignored and
conventional insert will be used. To use direct-path INSERT with the VALUES clause, refer to
"APPEND_VALUES Hint ".

See Also

NOAPPEND Hint for information on that hint and Oracle Database Administrator’s
Guide for information on direct-path inserts

APPEND_VALUES Hint

/*+ APPEND_VALUES */

The APPEND_VALUES hint instructs the optimizer to use direct-path INSERT with the VALUES
clause. If you do not specify this hint, then conventional INSERT is used.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 99 of 156

In direct-path INSERT, data is appended to the end of the table, rather than using existing space
currently allocated to the table. As a result, direct-path INSERT can be considerably faster than
conventional INSERT.

The APPEND_VALUES hint can be used to greatly enhance performance. Some examples of its
uses are:

• In an Oracle Call Interface (OCI) program, when using large array binds or array binds with
row callbacks

• In PL/SQL, when loading a large number of rows with a FORALL loop that has an INSERT
statement with a VALUES clause

The APPEND_VALUES hint is only supported with the VALUES clause of the INSERT statement. If
you specify the APPEND_VALUES hint with the subquery syntax of the INSERT statement, it is
ignored and conventional insert will be used. To use direct-path INSERT with a subquery, refer
to "APPEND Hint ".

See Also

Oracle Database Administrator’s Guide for information on direct-path inserts

CACHE Hint

/*+ CACHE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The CACHE hint instructs the optimizer to place the blocks retrieved for the table at the most
recently used end of the LRU list in the buffer cache when a full table scan is performed. This
hint is useful for small lookup tables.

In the following example, the CACHE hint overrides the default caching specification of the
table:

SELECT /*+ FULL (hr_emp) CACHE(hr_emp) */ last_name
 FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans (long tables) and table scans (short
tables), as shown in the V$SYSSTAT data dictionary view.

CHANGE_DUPKEY_ERROR_INDEX Hint

/*+ CHANGE_DUPKEY_ERROR_INDEX (

table , index

table (column

,

)

) */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 100 of 156

Note

The CHANGE_DUPKEY_ERROR_INDEX, IGNORE_ROW_ON_DUPKEY_INDEX, and
RETRY_ON_ROW_CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints does not apply for these three hints.

The CHANGE_DUPKEY_ERROR_INDEX hint provides a mechanism to unambiguously identify a
unique key violation for a specified set of columns or for a specified index. When a unique key
violation occurs for the specified index, an ORA-38911 error is reported instead of an
ORA-001.

This hint applies to INSERT, UPDATE operations. If you specify an index, then the index must
exist and be unique. If you specify a column list instead of an index, then a unique index whose
columns match the specified columns in number and order must exist.

This use of this hint results in error messages if specific rules are violated. Refer to
IGNORE_ROW_ON_DUPKEY_INDEX Hint for details.

Note

This hint disables both APPEND mode and parallel DML.

CLUSTER Hint

/*+ CLUSTER (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The CLUSTER hint instructs the optimizer to use a cluster scan to access the specified table.
This hint applies only to tables in an indexed cluster.

CLUSTERING Hint

/*+ CLUSTERING */

This hint is valid only for INSERT and MERGE operations on tables that are enabled for attribute
clustering. The CLUSTERING hint enables attribute clustering for direct-path inserts (serial or
parallel). This results in partially-clustered data, that is, data that is clustered per each insert or
merge operation. This hint overrides a NO ON LOAD setting in the DDL that created or altered
the table. This hint has no effect on tables that are not enabled for attribute clustering.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 101 of 156

See Also

• clustering_when clause of CREATE TABLE for more information on the NO ON LOAD
setting

• NO_CLUSTERING Hint

COMPRESS_IMMEDIATE Hint

Syntax

/*+ COMPRESS_IMMEDIATE */

COMPRESS_IMMEDIATE forces compression to happen immediately during direct load.

When Automatic Storage Compression is enabled via
DBMS_ILM_ADMIN.ENABLE_AUTO_OPTIMIZE, compression is delayed for new direct loads. Use
this hint to overide the delay and compress the direct load immediately.

CONTAINERS Hint

/*+ CONTAINERS (DEFAULT_PDB_HINT = ’ hint ’) */

The CONTAINERS hint is useful in a multitenant container database (CDB). You can specify this
hint in a SELECT statement that contains the CONTAINERS() clause. Such a statement lets you
query data in the specified table or view across all containers in a CDB or application
container.

• To query data in a CDB, you must be a common user connected to the CDB root, and the
table or view must exist in the root and all PDBs. The query returns all rows from the table
or view in the CDB root and in all open PDBs.

• To query data in an application container, you must be a common user connected to the
application root, and the table or view must exist in the application root and all PDBs in the
application container. The query returns all rows from the table or view in the application
root and in all open PDBs in the application container.

Statements that contain the CONTAINERS() clause generate and execute recursive SQL
statements in each queried PDB. You can use the CONTAINERS hint to pass a default PDB hint
to each recursive SQL statement. For hint, you can specify any SQL hint that is appropriate for
the SELECT statement.

In the following example, the NO_PARALLEL hint is passed to each recursive SQL statement
that is executed as part of the evaluation of the CONTAINERS() clause:

SELECT /*+ CONTAINERS(DEFAULT_PDB_HINT='NO_PARALLEL') */
 (CASE WHEN COUNT(*) < 10000
 THEN 'Less than 10,000'
 ELSE '10,000 or more' END) "Number of Tables"
 FROM CONTAINERS(DBA_TABLES);

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 102 of 156

See Also

containers_clause for more information on the CONTAINERS() clause

CURSOR_SHARING_EXACT Hint

/*+ CURSOR_SHARING_EXACT */

Oracle can replace literals in SQL statements with bind variables, when it is safe to do so. This
replacement is controlled with the CURSOR_SHARING initialization parameter. The
CURSOR_SHARING_EXACT hint instructs the optimizer to switch this behavior off. When you
specify this hint, Oracle executes the SQL statement without any attempt to replace literals
with bind variables.

DISABLE_PARALLEL_DML Hint

/*+ DISABLE_PARALLEL_DML */

The DISABLE_PARALLEL_DML hint disables parallel DML for DELETE, INSERT, MERGE, and
UPDATE statements. You can use this hint to disable parallel DML for an individual statement
when parallel DML is enabled for the session with the ALTER SESSION ENABLE PARALLEL DML
statement.

DRIVING_SITE Hint

/*+ DRIVING_SITE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The DRIVING_SITE hint instructs the optimizer to execute the query at a different site than that
selected by the database. This hint is useful if you are using distributed query optimization.

For example:

SELECT /*+ DRIVING_SITE(departments) */ *
 FROM employees, departments@rsite
 WHERE employees.department_id = departments.department_id;

If this query is executed without the hint, then rows from departments are sent to the local site,
and the join is executed there. With the hint, the rows from employees are sent to the remote site,
and the query is executed there and the result set is returned to the local site.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 103 of 156

DYNAMIC_SAMPLING Hint

/*+ DYNAMIC_SAMPLING (

@ queryblock tablespec

integer) */

(See Specifying a Query Block in a Hint , tablespec::=)

The DYNAMIC_SAMPLING hint instructs the optimizer how to control dynamic sampling to
improve server performance by determining more accurate predicate selectivity and statistics
for tables and indexes.

You can set the value of DYNAMIC_SAMPLING to a value from 0 to 10. The higher the level, the
more effort the compiler puts into dynamic sampling and the more broadly it is applied.
Sampling defaults to cursor level unless you specify tablespec.

The integer value is 0 to 10, indicating the degree of sampling.

If a cardinality statistic already exists for the table, then the optimizer uses it. Otherwise, the
optimizer enables dynamic sampling to estimate the cardinality statistic.

If you specify tablespec and the cardinality statistic already exists, then:

• If there is no single-table predicate (a WHERE clause that evaluates only one table), then
the optimizer trusts the existing statistics and ignores this hint. For example, the following
query will not result in any dynamic sampling if employees is analyzed:

SELECT /*+ DYNAMIC_SAMPLING(e 1) */ count(*)
 FROM employees e;

• If there is a single-table predicate, then the optimizer uses the existing cardinality statistic
and estimates the selectivity of the predicate using the existing statistics.

To apply dynamic sampling to a specific table, use the following form of the hint:

SELECT /*+ DYNAMIC_SAMPLING(employees 1) */ *
 FROM employees
 WHERE ...

See Also

Oracle Database SQL Tuning Guide for information about dynamic sampling and the
sampling levels that you can set

ENABLE_PARALLEL_DML Hint

/*+ ENABLE_PARALLEL_DML */

The ENABLE_PARALLEL_DML hint enables parallel DML for DELETE, INSERT, MERGE, and UPDATE
statements. You can use this hint to enable parallel DML for an individual statement, rather
than enabling parallel DML for the session with the ALTER SESSION ENABLE PARALLEL DML
statement.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 104 of 156

See Also

Oracle Database VLDB and Partitioning Guide for information about enabling parallel
DML

FACT Hint

/*+ FACT (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The FACT hint is used in the context of the star transformation. It instructs the optimizer that the
table specified in tablespec should be considered as a fact table.

FIRST_ROWS Hint

/*+ FIRST_ROWS (integer) */

The FIRST_ROWS hint instructs Oracle to optimize an individual SQL statement for fast
response, choosing the plan that returns the first n rows most efficiently. For integer, specify the
number of rows to return.

For example, the optimizer uses the query optimization approach to optimize the following
statement for best response time:

SELECT /*+ FIRST_ROWS(10) */ employee_id, last_name, salary, job_id
 FROM employees
 WHERE department_id = 20;

In this example each department contains many employees. The user wants the first 10
employees of department 20 to be displayed as quickly as possible.

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in SELECT
statement blocks that include any blocking operations, such as sorts or groupings. Such
statements cannot be optimized for best response time, because Oracle Database must
retrieve all rows accessed by the statement before returning the first row. If you specify this hint
in any such statement, then the database optimizes for best throughput.

See Also

ALL_ROWS Hint for additional information on the FIRST_ROWS hint and statistics

FRESH_MV Hint

/*+ FRESH_MV */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 105 of 156

The FRESH_MV hint applies when querying a real-time materialized view. This hint instructs the
optimizer to use on-query computation to fetch up-to-date data from the materialized view,
even if the materialized view is stale.

The optimizer ignores this hint in SELECT statement blocks that query an object that is not a
real-time materialized view, and in all UPDATE, INSERT, MERGE, and DELETE statement blocks.

See Also

The { ENABLE | DISABLE } ON QUERY COMPUTATION clause of CREATE
MATERIALIZED VIEW for more information on real-time materialized views

FULL Hint

/*+ FULL (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The FULL hint instructs the optimizer to perform a full table scan for the specified table. For
example:

SELECT /*+ FULL(e) */ employee_id, last_name
 FROM hr.employees e
 WHERE last_name LIKE :b1;

Oracle Database performs a full table scan on the employees table to execute this statement,
even if there is an index on the last_name column that is made available by the condition in the
WHERE clause.

The employees table has alias e in the FROM clause, so the hint must refer to the table by its alias
rather than by its name. Do not specify schema names in the hint even if they are specified in
the FROM clause.

GATHER_OPTIMIZER_STATISTICS Hint

/*+ GATHER_OPTIMIZER_STATISTICS */

The GATHER_OPTIMIZER_STATISTICS hint instructs the optimizer to enable statistics gathering
during the following types of bulk loads:

• CREATE TABLE ... AS SELECT

• INSERT INTO ... SELECT into an empty table using a direct-path insert

See Also

Oracle Database SQL Tuning Guide for more information on statistics gathering for
bulk loads

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 106 of 156

GROUPING Hint

/*+ GROUPING */

The GROUPING hint applies to data mining scoring functions when scoring partitioned models.
This hint results in partitioning the input data set into distinct data slices so that each partition is
scored in its entirety before advancing to the next partition; however, parallelism by partition is
still available. Data slices are determined by the partitioning key columns that were used when
the model was built. This method can be used with any data mining function against a
partitioned model. The hint may yield a query performance gain when scoring large data that is
associated with many partitions, but may negatively impact performance when scoring large
data with few partitions on large systems. Typically, there is no performance gain if you use this
hint for single row queries.

In the following example, the GROUPING hint is used in the PREDICTION function.

SELECT PREDICTION(/*+ GROUPING */my_model USING *) pred FROM <input table>;

See Also

Oracle Machine Learning for SQL Functions

HASH Hint

/*+ HASH (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The HASH hint instructs the optimizer to use a hash scan to access the specified table. This
hint applies only to tables in a hash cluster.

IGNORE_ROW_ON_DUPKEY_INDEX Hint

/*+ IGNORE_ROW_ON_DUPKEY_INDEX (

table , index

table (column

,

)

) */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 107 of 156

Note

The CHANGE_DUPKEY_ERROR_INDEX, IGNORE_ROW_ON_DUPKEY_INDEX, and
RETRY_ON_ROW_CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints does not apply for these three hints.

The IGNORE_ROW_ON_DUPKEY_INDEX hint applies only to single-table INSERT operations. It is
not supported for UPDATE, DELETE, MERGE, or multitable insert operations.
IGNORE_ROW_ON_DUPKEY_INDEX causes the statement to ignore a unique key violation for a
specified set of columns or for a specified index. When a unique key violation is encountered, a
row-level rollback occurs and execution resumes with the next input row. If you specify this hint
when inserting data with DML error logging enabled, then the unique key violation is not logged
and does not cause statement termination.

The semantic effect of this hint results in error messages if specific rules are violated:

• If you specify index, then the index must exist and be unique. Otherwise, the statement
causes ORA-38913.

• You must specify exactly one index. If you specify no index, then the statement causes
ORA-38912. If you specify more than one index, then the statement causes ORA-38915.

• You can specify either a CHANGE_DUPKEY_ERROR_INDEX or
IGNORE_ROW_ON_DUPKEY_INDEX hint in an INSERT statement, but not both. If you specify
both, then the statement causes ORA-38915.

As with all hints, a syntax error in the hint causes it to be silently ignored. The result will be that
ORA-00001 will be caused, just as if no hint were used.

Note

This hint disables both APPEND mode and parallel DML.

See Also

CHANGE_DUPKEY_ERROR_INDEX Hint

INDEX Hint

/*+ INDEX (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX hint instructs the optimizer to use an index scan for the specified table. You can use
the INDEX hint for function-based, domain, B-tree, bitmap, and bitmap join indexes.

The behavior of the hint depends on the indexspec specification:

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 108 of 156

• If the INDEX hint specifies a single available index, then the database performs a scan on
this index. The optimizer does not consider a full table scan or a scan of another index on
the table.

• For a hint on a combination of multiple indexes, Oracle recommends using INDEX_COMBINE
rather than INDEX, because it is a more versatile hint. If the INDEX hint specifies a list of
available indexes, then the optimizer considers the cost of a scan on each index in the list
and then performs the index scan with the lowest cost. The database can also choose to
scan multiple indexes from this list and merge the results, if such an access path has the
lowest cost. The database does not consider a full table scan or a scan on an index not
listed in the hint.

• If the INDEX hint specifies no indexes, then the optimizer considers the cost of a scan on
each available index on the table and then performs the index scan with the lowest cost.
The database can also choose to scan multiple indexes and merge the results, if such an
access path has the lowest cost. The optimizer does not consider a full table scan.

For example:

SELECT /*+ INDEX (employees emp_department_ix)*/ employee_id, department_id
 FROM employees
 WHERE department_id > 50;

INDEX_ASC Hint

/*+ INDEX_ASC (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_ASC hint instructs the optimizer to use an index scan for the specified table. If the
statement uses an index range scan, then Oracle Database scans the index entries in
ascending order of their indexed values. Each parameter serves the same purpose as in
INDEX Hint .

The default behavior for a range scan is to scan index entries in ascending order of their
indexed values, or in descending order for a descending index. This hint does not change the
default order of the index, and therefore does not specify anything more than the INDEX hint.
However, you can use the INDEX_ASC hint to specify ascending range scans explicitly should
the default behavior change.

INDEX_COMBINE Hint

/*+ INDEX_COMBINE (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_COMBINE hint can use any type of index: bitmap, b-tree, or domain. If you do not
specify indexspec in the INDEX_COMBINE hint, the optimizer implicitly applies theINDEX hint to all
indexes, using as many indexes as possible. If you specify indexspec, then the optimizer uses all

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 109 of 156

the hinted indexes that are legal and valid to use, regardless of cost. Each parameter serves
the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX_COMBINE(e emp_manager_ix emp_department_ix) */ *
 FROM employees e
 WHERE manager_id = 108
 OR department_id = 110;

INDEX_DESC Hint

/*+ INDEX_DESC (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_DESC hint instructs the optimizer to use a descending index scan for the specified
table. If the statement uses an index range scan and the index is ascending, then Oracle scans
the index entries in descending order of their indexed values. In a partitioned index, the results
are in descending order within each partition. For a descending index, this hint effectively
cancels out the descending order, resulting in a scan of the index entries in ascending order.
Each parameter serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX_DESC(e emp_name_ix) */ *
 FROM employees e;

See Also

Oracle Database SQL Tuning Guide for information on full scans

INDEX_FFS Hint

/*+ INDEX_FFS (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_FFS hint instructs the optimizer to perform a fast full index scan rather than a full
table scan.

Each parameter serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX_FFS(e emp_name_ix) */ first_name
 FROM employees e;

INDEX_JOIN Hint

/*+ INDEX_JOIN (

@ queryblock

tablespec

indexspec

) */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 110 of 156

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_JOIN hint instructs the optimizer to use an index join as an access path. For the hint
to have a positive effect, a sufficiently small number of indexes must exist that contain all the
columns required to resolve the query.

Each parameter serves the same purpose as in INDEX Hint . For example, the following query
uses an index join to access the manager_id and department_id columns, both of which are indexed
in the employees table.

SELECT /*+ INDEX_JOIN(e emp_manager_ix emp_department_ix) */ department_id
 FROM employees e
 WHERE manager_id < 110
 AND department_id < 50;

INDEX_SS Hint

/*+ INDEX_SS (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_SS hint instructs the optimizer to perform an index skip scan for the specified table.
If the statement uses an index range scan, then Oracle scans the index entries in ascending
order of their indexed values. In a partitioned index, the results are in ascending order within
each partition.

Each parameter serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX_SS(e emp_name_ix) */ last_name
 FROM employees e
 WHERE first_name = 'Steven';

See Also

Oracle Database SQL Tuning Guide for information on index skip scans

INDEX_SS_ASC Hint

/*+ INDEX_SS_ASC (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_SS_ASC hint instructs the optimizer to perform an index skip scan for the specified
table. If the statement uses an index range scan, then Oracle Database scans the index
entries in ascending order of their indexed values. In a partitioned index, the results are in
ascending order within each partition. Each parameter serves the same purpose as in INDEX
Hint .

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 111 of 156

The default behavior for a range scan is to scan index entries in ascending order of their
indexed values, or in descending order for a descending index. This hint does not change the
default order of the index, and therefore does not specify anything more than the INDEX_SS
hint. However, you can use the INDEX_SS_ASC hint to specify ascending range scans explicitly
should the default behavior change.

See Also

Oracle Database SQL Tuning Guide for information on index skip scans

INDEX_SS_DESC Hint

/*+ INDEX_SS_DESC (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_SS_DESC hint instructs the optimizer to perform an index skip scan for the specified
table. If the statement uses an index range scan and the index is ascending, then Oracle scans
the index entries in descending order of their indexed values. In a partitioned index, the results
are in descending order within each partition. For a descending index, this hint effectively
cancels out the descending order, resulting in a scan of the index entries in ascending order.

Each parameter serves the same purpose as in the INDEX Hint . For example:

SELECT /*+ INDEX_SS_DESC(e emp_name_ix) */ last_name
 FROM employees e
 WHERE first_name = 'Steven';

See Also

Oracle Database SQL Tuning Guide for information on index skip scans

INMEMORY Hint

/*+ INMEMORY (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The INMEMORY hint enables In-Memory queries.

This hint does not instruct the optimizer to perform a full table scan. If a full table scan is
desired, then also specify the FULL Hint .

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 112 of 156

INMEMORY_PRUNING Hint

/*+ INMEMORY_PRUNING (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The INMEMORY_PRUNING hint enables pruning of In-Memory queries.

IVF_ITERATION Hint

/*+ IVF_ITERATION */

Use the IVF_ITERATION hint to specify a terminable iteration IVF index.

For more on terminable iteration for an IVF index see Terminable Iteration for IVF Index of the
AI Vector Search User's Guide.

LEADING Hint

/*+ LEADING (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The LEADING hint is a multitable hint that can specify more than one table or view. LEADING
instructs the optimizer to use the specified set of tables as the prefix in the execution plan. The
first table specified is used to start the join.

This hint is more versatile than the ORDERED hint. For example:

SELECT /*+ LEADING(e j) */ *
 FROM employees e, departments d, job_history j
 WHERE e.department_id = d.department_id
 AND e.hire_date = j.start_date;

The LEADING hint is ignored if the tables specified cannot be joined first in the order specified
because of dependencies in the join graph. If you specify two or more conflicting LEADING
hints, then all of them are ignored. If you specify the ORDERED hint, it overrides all LEADING
hints.

MERGE Hint

/*+ MERGE

(

@ queryblock

@ queryblock

tablespec

)

*/

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 113 of 156

(See Specifying a Query Block in a Hint , tablespec::=)

The MERGE hint lets you merge views in a query.

If a view's query block contains a GROUP BY clause or DISTINCT operator in the SELECT list, then
the optimizer can merge the view into the accessing statement only if complex view merging is
enabled. Complex merging can also be used to merge an IN subquery into the accessing
statement if the subquery is uncorrelated.

For example:

SELECT /*+ MERGE(v) */ e1.last_name, e1.salary, v.avg_salary
 FROM employees e1,
 (SELECT department_id, avg(salary) avg_salary
 FROM employees e2
 GROUP BY department_id) v
 WHERE e1.department_id = v.department_id
 AND e1.salary > v.avg_salary
 ORDER BY e1.last_name;

When the MERGE hint is used without an argument, it should be placed in the view query block.
When MERGE is used with the view name as an argument, it should be placed in the
surrounding query.

MODEL_MIN_ANALYSIS Hint

/*+ MODEL_MIN_ANALYSIS */

The MODEL_MIN_ANALYSIS hint instructs the optimizer to omit some compile-time optimizations
of spreadsheet rules—primarily detailed dependency graph analysis. Other spreadsheet
optimizations, such as creating filters to selectively populate spreadsheet access structures
and limited rule pruning, are still used by the optimizer.

This hint reduces compilation time because spreadsheet analysis can be lengthy if the number
of spreadsheet rules is more than several hundreds.

MONITOR Hint

/*+ MONITOR */

The MONITOR hint forces real-time SQL monitoring for the query, even if the statement is not
long running. This hint is valid only when the parameter CONTROL_MANAGEMENT_PACK_ACCESS
is set to DIAGNOSTIC+TUNING.

See Also

Oracle Database SQL Tuning Guide for more information about real-time SQL
monitoring

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 114 of 156

NATIVE_FULL_OUTER_JOIN Hint

/*+ NATIVE_FULL_OUTER_JOIN */

The NATIVE_FULL_OUTER_JOIN hint instructs the optimizer to use native full outer join, which is a
native execution method based on a hash join.

See Also

• NO_NATIVE_FULL_OUTER_JOIN Hint

• Oracle Database SQL Tuning Guide for more information about native full outer
joins

NOAPPEND Hint

/*+ NOAPPEND */

The NOAPPEND hint instructs the optimizer to use conventional INSERT even when INSERT is
performed in parallel mode.

NOCACHE Hint

/*+ NOCACHE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NOCACHE hint instructs the optimizer to place the blocks retrieved for the table at the least
recently used end of the LRU list in the buffer cache when a full table scan is performed. This
is the normal behavior of blocks in the buffer cache. For example:

SELECT /*+ FULL(hr_emp) NOCACHE(hr_emp) */ last_name
 FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans(long tables) and table scans(short
tables), as shown in the V$SYSSTAT view.

NO_CLUSTERING Hint

/*+ NO_CLUSTERING */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 115 of 156

This hint is valid only for INSERT and MERGE operations on tables that are enabled for attribute
clustering. The NO_CLUSTERING hint disables attribute clustering for direct-path inserts (serial or
parallel). This hint overrides a YES ON LOAD setting in the DDL that created or altered the table.
This hint has no effect on tables that are not enabled for attribute clustering.

See Also

• clustering_when clause of CREATE TABLE for more information on the YES ON LOAD
setting

• CLUSTERING Hint

NO_EXPAND Hint

/*+ NO_EXPAND

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The NO_EXPAND hint instructs the optimizer not to consider OR-expansion for queries having OR
conditions or IN-lists in the WHERE clause. Usually, the optimizer considers using OR expansion
and uses this method if it decides that the cost is lower than not using it. For example:

SELECT /*+ NO_EXPAND */ *
 FROM employees e, departments d
 WHERE e.manager_id = 108
 OR d.department_id = 110;

See Also

The USE_CONCAT Hint , which is the opposite of this hint

NO_FACT Hint

/*+ NO_FACT (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_FACT hint is used in the context of the star transformation. It instruct the optimizer that
the queried table should not be considered as a fact table.

NO_GATHER_OPTIMIZER_STATISTICS Hint

/*+ NO_GATHER_OPTIMIZER_STATISTICS */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 116 of 156

The NO_GATHER_OPTIMIZER_STATISTICS hint instructs the optimizer to disable statistics
gathering during the following types of bulk loads:

• CREATE TABLE AS SELECT

• INSERT INTO ... SELECT into an empty table using a direct path insert

The NO_GATHER_OPTIMIZER_STATISTICS hint is applicable to a conventional load. If this hint is
specified in the conventional insert statement, Oracle will obey the hint and not collect real-time
statistics.

See Also

Oracle Database SQL Tuning Guide for more information on online statistics gathering
for conventional loads.

NO_INDEX Hint

/*+ NO_INDEX (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_INDEX hint instructs the optimizer not to use one or more indexes for the specified
table. For example:

SELECT /*+ NO_INDEX(employees emp_empid) */ employee_id
 FROM employees
 WHERE employee_id > 200;

Each parameter serves the same purpose as in INDEX Hint with the following modifications:

• If this hint specifies a single available index, then the optimizer does not consider a scan
on this index. Other indexes not specified are still considered.

• If this hint specifies a list of available indexes, then the optimizer does not consider a scan
on any of the specified indexes. Other indexes not specified in the list are still considered.

• If this hint specifies no indexes, then the optimizer does not consider a scan on any index
on the table. This behavior is the same as a NO_INDEX hint that specifies a list of all
available indexes for the table.

The NO_INDEX hint applies to function-based, B-tree, bitmap, cluster, or domain indexes. If a
NO_INDEX hint and an index hint (INDEX, INDEX_ASC, INDEX_DESC, INDEX_COMBINE, or
INDEX_FFS) both specify the same indexes, then the database ignores both the NO_INDEX hint
and the index hint for the specified indexes and considers those indexes for use during
execution of the statement.

NO_INDEX_FFS Hint

/*+ NO_INDEX_FFS (

@ queryblock

tablespec

indexspec

) */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 117 of 156

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_INDEX_FFS hint instructs the optimizer to exclude a fast full index scan of the specified
indexes on the specified table. Each parameter serves the same purpose as in the NO_INDEX
Hint . For example:

SELECT /*+ NO_INDEX_FFS(items item_order_ix) */ order_id
 FROM order_items items;

NO_INDEX_SS Hint

/*+ NO_INDEX_SS (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_INDEX_SS hint instructs the optimizer to exclude a skip scan of the specified indexes on
the specified table. Each parameter serves the same purpose as in the NO_INDEX Hint .

See Also

Oracle Database SQL Tuning Guide for information on index skip scans

NO_INMEMORY Hint

/*+ NO_INMEMORY (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_INMEMORY hint disables In-Memory queries.

NO_INMEMORY_PRUNING Hint

/*+ NO_INMEMORY_PRUNING (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_INMEMORY_PRUNING hint disables pruning of In-Memory queries.

NO_MERGE Hint

/*+ NO_MERGE

(

@ queryblock

@ queryblock

tablespec

)

*/

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 118 of 156

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_MERGE hint instructs the optimizer not to combine the outer query and any inline view
queries into a single query.

This hint lets you have more influence over the way in which the view is accessed. For
example, the following statement causes view seattle_dept not to be merged:

SELECT /*+ NO_MERGE(seattle_dept) */ e1.last_name, seattle_dept.department_name
 FROM employees e1,
 (SELECT location_id, department_id, department_name
 FROM departments
 WHERE location_id = 1700) seattle_dept
 WHERE e1.department_id = seattle_dept.department_id;

When you use the NO_MERGE hint in the view query block, specify it without an argument.
When you specify NO_MERGE in the surrounding query, specify it with the view name as an
argument.

NO_MONITOR Hint

/*+ NO_MONITOR */

The NO_MONITOR hint disables real-time SQL monitoring for the query, even if the query is long
running.

NO_NATIVE_FULL_OUTER_JOIN Hint

/*+ NO_NATIVE_FULL_OUTER_JOIN */

The NO_NATIVE_FULL_OUTER_JOIN hint instructs the optimizer to exclude the native execution
method when joining each specified table. Instead, the full outer join is executed as a union of
left outer join and anti-join.

See Also

NATIVE_FULL_OUTER_JOIN Hint

NO_PARALLEL Hint

/*+ NO_PARALLEL (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_PARALLEL hint instructs the optimizer to run the statement serially. This hint overrides
the value of the PARALLEL_DEGREE_POLICY initialization parameter. It also overrides a PARALLEL

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 119 of 156

parameter in the DDL that created or altered the table. For example, the following SELECT
statement will run serially:

ALTER TABLE employees PARALLEL 8;
SELECT /*+ NO_PARALLEL(hr_emp) */ last_name
 FROM employees hr_emp;

See Also

• Note on Parallel Hints for more information on the parallel hints

• Oracle Database Reference for more information on the
PARALLEL_DEGREE_POLICY initialization parameter

NOPARALLEL Hint
The NOPARALLEL hint has been deprecated. Use the NO_PARALLEL hint instead.

NO_PARALLEL_INDEX Hint

/*+ NO_PARALLEL_INDEX (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_PARALLEL_INDEX hint overrides a PARALLEL parameter in the DDL that created or
altered the index, thus avoiding a parallel index scan operation.

See Also

Note on Parallel Hints for more information on the parallel hints

NOPARALLEL_INDEX Hint
The NOPARALLEL_INDEX hint has been deprecated. Use the NO_PARALLEL_INDEX hint instead.

NO_PQ_CONCURRENT_UNION Hint

/*+ NO_PQ_CONCURRENT_UNION

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The NO_PQ_CONCURRENT_UNION hint instructs the optimizer to disable concurrent processing of
UNION and UNION ALL operations.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 120 of 156

See Also

• PQ_CONCURRENT_UNION Hint

• Oracle Database VLDB and Partitioning Guide for information about using this hint

NO_PQ_SKEW Hint

/*+ NO_PQ_SKEW (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_PQ_SKEW hint advises the optimizer that the distribution of the values of the join keys
for a parallel join is not skewed—that is, a high percentage of rows do not have the same join
key values. The table specified in tablespec is the probe table of the hash join.

NO_PUSH_PRED Hint

/*+ NO_PUSH_PRED

(

@ queryblock

@ queryblock

tablespec

)

*/

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_PUSH_PRED hint instructs the optimizer not to push a join predicate into the view. For
example:

SELECT /*+ NO_MERGE(v) NO_PUSH_PRED(v) */ *
 FROM employees e,
 (SELECT manager_id
 FROM employees) v
 WHERE e.manager_id = v.manager_id(+)
 AND e.employee_id = 100;

NO_PUSH_SUBQ Hint

/*+ NO_PUSH_SUBQ

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The NO_PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries as the last
step in the execution plan. Doing so can improve performance if the subquery is relatively
expensive or does not reduce the number of rows significantly.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 121 of 156

NO_PX_JOIN_FILTER Hint

/*+ NO_PX_JOIN_FILTER (tablespec) */

This hint prevents the optimizer from using parallel join bitmap filtering.

NO_QUERY_TRANSFORMATION Hint

/*+ NO_QUERY_TRANSFORMATION */

The NO_QUERY_TRANSFORMATION hint instructs the optimizer to skip all query transformations,
including but not limited to OR-expansion, view merging, subquery unnesting, star
transformation, and materialized view rewrite. For example:

SELECT /*+ NO_QUERY_TRANSFORMATION */ employee_id, last_name
 FROM (SELECT * FROM employees e) v
 WHERE v.last_name = 'Smith';

NO_RESULT_CACHE Hint

/*+ NO_RESULT_CACHE */

The optimizer caches query results in the result cache if the RESULT_CACHE_MODE initialization
parameter is set to FORCE. In this case, the NO_RESULT_CACHE hint disables such caching for
the current query.

If the query is executed from OCI client and OCI client result cache is enabled, then the
NO_RESULT_CACHE hint disables caching for the current query.

NO_REWRITE Hint

/*+ NO_REWRITE

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The NO_REWRITE hint instructs the optimizer to disable query rewrite for the query block,
overriding the setting of the parameter QUERY_REWRITE_ENABLED. For example:

SELECT /*+ NO_REWRITE */ sum(s.amount_sold) AS dollars
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 GROUP BY t.calendar_month_desc;

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 122 of 156

NOREWRITE Hint
The NOREWRITE hint has been deprecated. Use the NO_REWRITE hint instead.

NO_STAR_TRANSFORMATION Hint

/*+ NO_STAR_TRANSFORMATION

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The NO_STAR_TRANSFORMATION hint instructs the optimizer not to perform star query
transformation.

NO_STATEMENT_QUEUING Hint

/*+ NO_STATEMENT_QUEUING */

The NO_STATEMENT_QUEUING hint influences whether or not a statement is queued with parallel
statement queuing.

When PARALLEL_DEGREE_POLICY is set to AUTO, this hint enables a statement to bypass the
parallel statement queue. However, a statement that bypasses the statement queue can
potentially cause the system to exceed the maximum number of parallel execution servers
defined by the value of the PARALLEL_SERVERS_TARGET initialization parameter, which
determines the limit at which parallel statement queuing is initiated.

There is no guarantee that the statement that bypasses the parallel statement queue receives
the number of parallel execution servers requested because only the number of parallel
execution servers available on the system, up to the value of the PARALLEL_MAX_SERVERS
initialization parameter, can be allocated.

For example:

SELECT /*+ NO_STATEMENT_QUEUING */ emp.last_name, dpt.department_name
 FROM employees emp, departments dpt
 WHERE emp.department_id = dpt.department_id;

See Also

STATEMENT_QUEUING Hint

NO_UNNEST Hint

/*+ NO_UNNEST

(@ queryblock)

*/

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 123 of 156

(See Specifying a Query Block in a Hint)

Use of the NO_UNNEST hint turns off unnesting .

NO_USE_BAND Hint

/*+ NO_USE_BAND (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_BAND hint instructs the optimizer to exclude band joins when joining each
specified table to another row source. For example:

SELECT /*+ NO_USE_BAND(e1 e2) */
 e1.last_name
 || ' has salary between 100 less and 100 more than '
 || e2.last_name AS "SALARY COMPARISON"
FROM employees e1, employees e2
WHERE e1.salary BETWEEN e2.salary - 100 AND e2.salary + 100;

NO_USE_CUBE Hint

/*+ NO_USE_CUBE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_CUBE hint instructs the optimizer to exclude cube joins when joining each specified
table to another row source using the specified table as the inner table.

NO_USE_HASH Hint

/*+ NO_USE_HASH (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_HASH hint instructs the optimizer to exclude hash joins when joining each
specified table to another row source using the specified table as the inner table. For example:

SELECT /*+ NO_USE_HASH(e d) */ *
 FROM employees e, departments d
 WHERE e.department_id = d.department_id;

NO_USE_MERGE Hint

/*+ NO_USE_MERGE (

@ queryblock

tablespec) */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 124 of 156

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_MERGE hint instructs the optimizer to exclude sort-merge joins when joining each
specified table to another row source using the specified table as the inner table. For example:

SELECT /*+ NO_USE_MERGE(e d) */ *
 FROM employees e, departments d
 WHERE e.department_id = d.department_id
 ORDER BY d.department_id;

NO_USE_NL Hint

/*+ NO_USE_NL (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_NL hint instructs the optimizer to exclude nested loops joins when joining each
specified table to another row source using the specified table as the inner table. For example:

SELECT /*+ NO_USE_NL(l h) */ *
 FROM orders h, order_items l
 WHERE l.order_id = h.order_id
 AND l.order_id > 2400;

When this hint is specified, only hash join and sort-merge joins are considered for the specified
tables. However, in some cases tables can be joined only by using nested loops. In such
cases, the optimizer ignores the hint for those tables.

NO_XML_QUERY_REWRITE Hint

/*+ NO_XML_QUERY_REWRITE */

The NO_XML_QUERY_REWRITE hint instructs the optimizer to prohibit the rewriting of XPath
expressions in SQL statements. By prohibiting the rewriting of XPath expressions, this hint also
prohibits the use of any XMLIndexes for the current query. For example:

SELECT /*+NO_XML_QUERY_REWRITE*/ XMLQUERY('<A/>' RETURNING CONTENT)
 FROM DUAL;

See Also

NO_XMLINDEX_REWRITE Hint

NO_XMLINDEX_REWRITE Hint

/*+ NO_XMLINDEX_REWRITE */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 125 of 156

The NO_XMLINDEX_REWRITE hint instructs the optimizer not to use any XMLIndex indexes for
the current query. For example:

SELECT /*+NO_XMLINDEX_REWRITE*/ count(*)
 FROM warehouses
 WHERE existsNode(warehouse_spec, '/Warehouse/Building') = 1;

See Also

NO_XML_QUERY_REWRITE Hint for another way to disable the use of XMLIndexes

NO_ZONEMAP Hint

/*+ NO_ZONEMAP (

@ queryblock

tablespec

SCAN

JOIN

PARTITION

) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_ZONEMAP hint disables the use of a zone map for different types of pruning. This hint
overrides an ENABLE PRUNING setting in the DDL that created or altered the zone map.

Specify one of the following options:

• SCAN - Disables the use of a zone map for scan pruning.

• JOIN - Disables the use of a zone map for join pruning.

• PARTITION - Disables the use of a zone map for partition pruning.

See Also

• ENABLE | DISABLE PRUNING clause of CREATE MATERIALIZED ZONEMAP

• Oracle Database Data Warehousing Guide for more information on pruning with
zone maps

OPTIMIZER_FEATURES_ENABLE Hint
This hint is fully documented in the Database Reference book.

Please see Database Reference for details.

OPT_PARAM Hint

/*+ OPT_PARAM (parameter_name

,

parameter_value) */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 126 of 156

The OPT_PARAM hint lets you set an initialization parameter for the duration of the current query
only. This hint is valid only for the following parameters: APPROX_FOR_AGGREGATION,
APPROX_FOR_COUNT_DISTINCT, APPROX_FOR_PERCENTILE, OPTIMIZER_DYNAMIC_SAMPLING,
OPTIMIZER_INDEX_CACHING, OPTIMIZER_INDEX_COST_ADJ, and
STAR_TRANSFORMATION_ENABLED.

For example, the following hint sets the parameter STAR_TRANSFORMATION_ENABLED to TRUE
for the statement to which it is added:

SELECT /*+ OPT_PARAM('star_transformation_enabled' 'true') */ *
 FROM ... ;

Parameter values that are strings are enclosed in single quotation marks. Numeric parameter
values are specified without quotation marks.

ORDERED Hint

/*+ ORDERED */

The ORDERED hint instructs Oracle to join tables in the order in which they appear in the FROM
clause. Oracle recommends that you use the LEADING hint, which is more versatile than the
ORDERED hint.

When you omit the ORDERED hint from a SQL statement requiring a join, the optimizer chooses
the order in which to join the tables. You might want to use the ORDERED hint to specify a join
order if you know something that the optimizer does not know about the number of rows
selected from each table. Such information lets you choose an inner and outer table better
than the optimizer could.

The following query is an example of the use of the ORDERED hint:

SELECT /*+ ORDERED */ o.order_id, c.customer_id, l.unit_price * l.quantity
 FROM customers c, order_items l, orders o
 WHERE c.cust_last_name = 'Taylor'
 AND o.customer_id = c.customer_id
 AND o.order_id = l.order_id;

PARALLEL Hint

Note on Parallel Hints

Beginning with Oracle Database 11g Release 2, the PARALLEL and NO_PARALLEL hints are
statement-level hints and supersede the earlier object-level hints: PARALLEL_INDEX,
NO_PARALLEL_INDEX, and previously specified PARALLEL and NO_PARALLEL hints. For
PARALLEL, if you specify integer, then that degree of parallelism will be used for the statement. If
you omit integer, then the database computes the degree of parallelism. All the access paths
that can use parallelism will use the specified or computed degree of parallelism.

In the syntax diagrams below, parallel_hint_statement shows the syntax for statement-level hints,
and parallel_hint_object shows the syntax for object-level hints. Object-level hints are supported
for backward compatibility, and are superseded by statement-level hints.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 127 of 156

parallel_hint_statement::=

/*+ PARALLEL

(

DEFAULT

AUTO

MANUAL

integer

)

*/

parallel_hint_object::=

/*+ PARALLEL (

@ queryblock

tablespec

integer

DEFAULT

) */

(See Specifying a Query Block in a Hint , tablespec::=)

The PARALLEL hint instructs the optimizer to use the specified number of concurrent servers for
a parallel operation. This hint overrides the value of the PARALLEL_DEGREE_POLICY initialization
parameter. It applies to the SELECT, INSERT, MERGE, UPDATE, and DELETE portions of a
statement, as well as to the table scan portion. If any parallel restrictions are violated, then the
hint is ignored.

Note

The number of servers that can be used is twice the value in the PARALLEL hint, if
sorting or grouping operations also take place.

For a statement-level PARALLEL hint:

• PARALLEL: The statement results in a degree of parallelism equal to or greater than the
computed degree of parallelism, except when parallelism is not feasible for the lowest cost
plan. When parallelism is is not feasible, the statement runs serially.

• PARALLEL (DEFAULT): The optimizer calculates a degree of parallelism equal to the number
of CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

• PARALLEL (AUTO): The statement results in a degree of parallelism that is equal to or
greater than the computed degree of parallelism, except when parallelism is not feasible
for the lowest cost plan. When parallelism is is not feasible, the statement runs serially.

• PARALLEL (MANUAL): The optimizer is forced to use the parallel settings of the objects in
the statement.

• PARALLEL (integer): The optimizer uses the degree of parallelism specified by integer.

In the following example, the optimizer calculates the degree of parallelism. The statement
always runs in parallel.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 128 of 156

SELECT /*+ PARALLEL */ last_name
 FROM employees;

In the following example, the optimizer calculates the degree of parallelism, but that degree
may be 1, in which case the statement will run serially.

SELECT /*+ PARALLEL (AUTO) */ last_name
 FROM employees;

In the following example, the PARALLEL hint advises the optimizer to use the degree of
parallelism currently in effect for the table itself, which is 5:

CREATE TABLE parallel_table (col1 number, col2 VARCHAR2(10)) PARALLEL 5;

SELECT /*+ PARALLEL (MANUAL) */ col2
 FROM parallel_table;

For an object-level PARALLEL hint:

• PARALLEL: The query coordinator should examine the settings of the initialization
parameters to determine the default degree of parallelism.

• PARALLEL (integer): The optimizer uses the degree of parallelism specified by integer.

• PARALLEL (DEFAULT): The optimizer calculates a degree of parallelism equal to the number
of CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

In the following example, the PARALLEL hint overrides the degree of parallelism specified in the
employees table definition:

SELECT /*+ FULL(hr_emp) PARALLEL(hr_emp, 5) */ last_name
 FROM employees hr_emp;

In the next example, the PARALLEL hint overrides the degree of parallelism specified in the
employees table definition and instructs the optimizer to calculate a degree of parallelism equal to
the number of CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

SELECT /*+ FULL(hr_emp) PARALLEL(hr_emp, DEFAULT) */ last_name
 FROM employees hr_emp;

Refer to CREATE TABLE and Oracle Database Concepts for more information on parallel
execution.

See Also

• CREATE TABLE and Oracle Database Concepts for more information on parallel
execution.

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_PARALLEL_EXECUTE package, which provides methods to apply table
changes in chunks of rows. Changes to each chunk are independently committed
when there are no errors.

• Oracle Database Reference for more information on the
PARALLEL_DEGREE_POLICY initialization parameter

• NO_PARALLEL Hint

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 129 of 156

PARALLEL_INDEX Hint

/*+ PARALLEL_INDEX (

@ queryblock

tablespec

indexspec

integer

DEFAULT

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The PARALLEL_INDEX hint instructs the optimizer to use the specified number of concurrent
servers to parallelize index range scans, full scans, and fast full scans for partitioned indexes.

The integer value indicates the degree of parallelism for the specified index. Specifying DEFAULT
or no value signifies that the query coordinator should examine the settings of the initialization
parameters to determine the default degree of parallelism. For example, the following hint
indicates three parallel execution processes are to be used:

SELECT /*+ PARALLEL_INDEX(table1, index1, 3) */

See Also

Note on Parallel Hints for more information on the parallel hints

PQ_CONCURRENT_UNION Hint

/*+ PQ_CONCURRENT_UNION

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The PQ_CONCURRENT_UNION hint instructs the optimizer to enable concurrent processing of
UNION and UNION ALL operations.

See Also

• NO_PQ_CONCURRENT_UNION Hint

• Oracle Database VLDB and Partitioning Guide for information about using this hint

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 130 of 156

PQ_DISTRIBUTE Hint

/*+ PQ_DISTRIBUTE (

@ queryblock

tablespec
distribution

outer_distribution inner_distribution
) */

(See Specifying a Query Block in a Hint , tablespec::=)

The PQ_DISTRIBUTE hint instructs the optimizer how to distribute rows among producer and
consumer query servers. You can control the distribution of rows for either joins or for load.

Control of Distribution for Load

You can control the distribution of rows for parallel INSERT ... SELECT and parallel CREATE
TABLE ... AS SELECT statements to direct how rows should be distributed between the producer
(query) and the consumer (load) servers. Use the upper branch of the syntax by specifying a
single distribution method. The values of the distribution methods and their semantics are
described in Table 2-25.

Table 2-25 Distribution Values for Load

Distribution Description

NONE No distribution. That is the query and load operation are combined into
each query server. All servers will load all partitions. This lack of
distribution is useful to avoid the overhead of distributing rows where
there is no skew. Skew can occur due to empty segments or to a
predicate in the statement that filters out all rows evaluated by the
query. If skew occurs due to using this method, then use either
RANDOM or RANDOM_LOCAL distribution instead.

Note: Use this distribution with care. Each partition loaded requires a
minimum of 512 KB per process of PGA memory. If you also use
compression, then approximately 1.5 MB of PGA memory is consumer
per server.

PARTITION This method uses the partitioning information of tablespec to distribute
the rows from the query servers to the load servers. Use this
distribution method when it is not possible or desirable to combine the
query and load operations, when the number of partitions being loaded
is greater than or equal to the number of load servers, and the input
data will be evenly distributed across the partitions being loaded—that
is, there is no skew.

RANDOM This method distributes the rows from the producers in a round-robin
fashion to the consumers. Use this distribution method when the input
data is highly skewed.

RANDOM_LOCAL This method distributes the rows from the producers to a set of servers
that are responsible for maintaining a given set of partitions. Two or
more servers can be loading the same partition, but no servers are
loading all partitions. Use this distribution method when the input data
is skewed and combining query and load operations is not possible due
to memory constraints.

For example, in the following direct-path insert operation, the query and load portions of the
operation are combined into each query server:

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 131 of 156

INSERT /*+ APPEND PARALLEL(target_table, 16) PQ_DISTRIBUTE(target_table, NONE) */
 INTO target_table
 SELECT * FROM source_table;

In the following table creation example, the optimizer uses the partitioning of target_table to
distribute the rows:

CREATE /*+ PQ_DISTRIBUTE(target_table, PARTITION) */ TABLE target_table
 NOLOGGING PARALLEL 16
 PARTITION BY HASH (l_orderkey) PARTITIONS 512
 AS SELECT * FROM source_table;

Control of Distribution for Joins

You control the distribution method for joins by specifying two distribution methods, as shown
in the lower branch of the syntax diagram, one distribution for the outer table and one
distribution for the inner table.

• outer_distribution is the distribution for the outer table.

• inner_distribution is the distribution for the inner table.

The values of the distributions are HASH, BROADCAST, PARTITION, and NONE. Only six
combinations table distributions are valid, as described in Table 2-26:

Table 2-26 Distribution Values for Joins

Distribution Description

HASH, HASH The rows of each table are mapped to consumer query servers, using
a hash function on the join keys. When mapping is complete, each
query server performs the join between a pair of resulting partitions.
This distribution is recommended when the tables are comparable in
size and the join operation is implemented by hash-join or sort merge
join.

BROADCAST, NONE All rows of the outer table are broadcast to each query server. The
inner table rows are randomly partitioned. This distribution is
recommended when the outer table is very small compared with the
inner table. As a general rule, use this distribution when the inner table
size multiplied by the number of query servers is greater than the outer
table size.

NONE, BROADCAST All rows of the inner table are broadcast to each consumer query
server. The outer table rows are randomly partitioned. This distribution
is recommended when the inner table is very small compared with the
outer table. As a general rule, use this distribution when the inner table
size multiplied by the number of query servers is less than the outer
table size.

PARTITION, NONE The rows of the outer table are mapped using the partitioning of the
inner table. The inner table must be partitioned on the join keys. This
distribution is recommended when the number of partitions of the outer
table is equal to or nearly equal to a multiple of the number of query
servers; for example, 14 partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not partitioned
or not equijoined on the partitioning key.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 132 of 156

Table 2-26 (Cont.) Distribution Values for Joins

Distribution Description

NONE, PARTITION The rows of the inner table are mapped using the partitioning of the
outer table. The outer table must be partitioned on the join keys. This
distribution is recommended when the number of partitions of the outer
table is equal to or nearly equal to a multiple of the number of query
servers; for example, 14 partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not partitioned
or not equijoined on the partitioning key.

NONE, NONE Each query server performs the join operation between a pair of
matching partitions, one from each table. Both tables must be
equipartitioned on the join keys.

For example, given two tables r and s that are joined using a hash join, the following query
contains a hint to use hash distribution:

SELECT /*+ORDERED PQ_DISTRIBUTE(s HASH, HASH) USE_HASH (s)*/ column_list
 FROM r,s
 WHERE r.c=s.c;

To broadcast the outer table r, the query is:

SELECT /*+ORDERED PQ_DISTRIBUTE(s BROADCAST, NONE) USE_HASH (s) */ column_list
 FROM r,s
 WHERE r.c=s.c;

PQ_FILTER Hint

/*+ PQ_FILTER (

SERIAL

NONE

HASH

RANDOM

) */

The PQ_FILTER hint instructs the optimizer on how to process rows when filtering correlated
subqueries.

• SERIAL: Process rows serially on the left and right sides of the filter. Use this option when
the overhead of parallelization is too high for the query, for example, when the left side has
very few rows.

• NONE: Process rows in parallel on the left and right sides of the filter. Use this option when
there is no skew in the distribution of the data on the left side of the filter and you would
like to avoid distribution of the left side, for example, due to the large size of the left side.

• HASH: Process rows in parallel on the left side of the filter using a hash distribution.
Process rows serially on the right side of the filter. Use this option when there is no skew in
the distribution of data on the left side of the filter.

• RANDOM: Process rows in parallel on the left side of the filter using a random distribution.
Process rows serially on the right side of the filter. Use this option when there is skew in
the distribution of data on the left side of the filter.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 133 of 156

PQ_SKEW Hint

/*+ PQ_SKEW (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The PQ_SKEW hint advises the optimizer that the distribution of the values of the join keys for a
parallel join is highly skewed—that is, a high percentage of rows have the same join key
values. The table specified in tablespec is the probe table of the hash join.

PUSH_PRED Hint

/*+ PUSH_PRED

(

@ queryblock

@ queryblock

tablespec

)

*/

(See Specifying a Query Block in a Hint , tablespec::=)

The PUSH_PRED hint instructs the optimizer to push a join predicate into the view. For example:

SELECT /*+ NO_MERGE(v) PUSH_PRED(v) */ *
 FROM employees e,
 (SELECT manager_id
 FROM employees) v
 WHERE e.manager_id = v.manager_id(+)
 AND e.employee_id = 100;

PUSH_SUBQ Hint

/*+ PUSH_SUBQ

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries at the earliest
possible step in the execution plan. Generally, subqueries that are not merged are executed as
the last step in the execution plan. If the subquery is relatively inexpensive and reduces the
number of rows significantly, then evaluating the subquery earlier can improve performance.

This hint has no effect if the subquery is applied to a remote table or one that is joined using a
merge join.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 134 of 156

PX_JOIN_FILTER Hint

/*+ PX_JOIN_FILTER (tablespec) */

This hint forces the optimizer to use parallel join bitmap filtering.

QB_NAME Hint

/*+ QB_NAME (queryblock) */

(See Specifying a Query Block in a Hint)

Use the QB_NAME hint to define a name for a query block. This name can then be used in a
hint in the outer query or even in a hint in an inline view to affect query execution on the tables
appearing in the named query block.

If two or more query blocks have the same name, or if the same query block is hinted twice
with different names, then the optimizer ignores all the names and the hints referencing that
query block. Query blocks that are not named using this hint have unique system-generated
names. These names can be displayed in the plan table and can also be used in hints within
the query block, or in query block hints. For example:

SELECT /*+ QB_NAME(qb) FULL(@qb e) */ employee_id, last_name
 FROM employees e
 WHERE last_name = 'Smith';

RESULT_CACHE Hint

/*+ RESULT_CACHE

TEMP =
TRUE

FALSE SHELFLIFE = integer

*/

The RESULT_CACHE hint instructs the database to cache the results of the current query or
query fragment in memory and then to use the cached results in future executions of the query
or query fragment. The hint is recognized in the top-level query, the subquery_factoring_clause, or
FROM clause inline view. The cached results reside in the result cache memory portion of the
shared pool.

A cached result is automatically invalidated whenever a database object used in its creation is
successfully modified.

TEMP = TRUE | FALSE

If TEMP has a value of TRUE , then the query will be allowed to spill to disk and allocate space in
the temporary tablespace, if needed.

If TEMP has a value of FALSE , then the query will not be allowed to spill to disk and use the
temporary tablespace for caching the result.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 135 of 156

Both values TRUE and FALSE override the value of the RESULT_CACHE_MODE initialization
parameter.

If you do not specify TEMP, then the value of RESULT_CACHE_MODE holds.

SHELFLIFE

Use SHELFLIFE to specify how long (in seconds) the result of a query or a query fragment
should be cached in memory.

SHELFLIFE has two purposes:

• It specifies how long results will be cached for objects where the database has no
knowledge about when to invalidate. These are results based on objects like fixed objects,
objects accessed via DB or Cloud Links, or Data Link objects.

• It specifies how long results will be cached for local objects. Without SHELFLIFE, results on
local objects are cached until they are aged out of the result cache. With this object you
can define when a result will be automatically invalidated even if no DML happened on the
objects.

The SHELFLIFE value must be a positive integer. The maximum value is 4294967295 seconds.

Example: RESULT_CACHE with SHELFLIFE

The following example shows a RESULT_CACHE hint with a value of 120 forSHELFLIFE. This
means that the result of the query or query fragment in which this hint appears will be cached
for 120 seconds.

/*+ RESULT_CACHE (SHELFLIFE=120) */

After 120 seconds, the cached result is marked as invalid.

If the query result is large and does not fit in memory, use both the SHELFLIFE and the TEMP
options to indicate that the result should be written to disk in the temporary tablespace.

Example: RESULT_CACHE with TEMP and SHELFLIFE

/*+ RESULT_CACHE (TEMP= true SHELFLIFE=120) */

RESULT_CACHE_INTEGRITY Parameter

The initialization parameter RESULT_CACHE_INTEGRITY specifies whether the result cache will
consider queries using non-deterministic constructs - such as PL/SQL functions that are not
declared as deterministic, as queries that can be cached.

• If you set RESULT_CACHE_INTEGRITY to ENFORCED, then only deterministic constructs will be
eligible for result caching. The ENFORCED setting overrides the setting of
RESULT_CACHE_MODE or specified hints. For example, queries using PL/SQL functions that
are not declared as deterministic will never be cached and must be declared as
deterministic.

• If you set RESULT_CACHE_INTEGRITY to TRUSTED, then the database honors the setting of
RESULT_CACHE_MODE and specified hints and considers queries using possibly non-
deterministic constructs as candidates for result caching. For example, queries using
PL/SQL functions that are not declared as deterministic can be cached. Note, however,
that results that are known to be nondeterministic will not be cached, e.g. SYSDATE or
constructs involving SYSDATE.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 136 of 156

If the query is executed from an OCI client and the OCI client result cache is enabled, then the
RESULT_CACHE hint enables client caching for the current query.

See Also

Oracle Database Performance Tuning Guide for information about using this hint,
Oracle Database Reference for information about the RESULT_CACHE_MODE
initialization parameter, and Oracle Call Interface Developer's Guide for more
information about the OCI result cache and usage guidelines

RETRY_ON_ROW_CHANGE Hint

/*+ RETRY_ON_ROW_CHANGE */

Note

The CHANGE_DUPKEY_ERROR_INDEX, IGNORE_ROW_ON_DUPKEY_INDEX, and
RETRY_ON_ROW_CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints does not apply for these three hints.

This hint is valid only for UPDATE and DELETE operations. It is not supported for INSERT or
MERGE operations. When you specify this hint, the operation is retried when the ORA_ROWSCN
for one or more rows in the set has changed from the time the set of rows to be modified is
determined to the time the block is actually modified.

See Also

IGNORE_ROW_ON_DUPKEY_INDEX Hint and CHANGE_DUPKEY_ERROR_INDEX
Hint

REWRITE Hint

/*+ REWRITE

(

@ queryblock

view)

*/

(See Specifying a Query Block in a Hint)

The REWRITE hint instructs the optimizer to rewrite a query in terms of materialized views, when
possible, without cost consideration. Use the REWRITE hint with or without a view list. If you use
REWRITE with a view list and the list contains an eligible materialized view, then Oracle uses
that view regardless of its cost.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 137 of 156

Oracle does not consider views outside of the list. If you do not specify a view list, then Oracle
searches for an eligible materialized view and always uses it regardless of the cost of the final
plan.

See Also

• Oracle Database Concepts for more information on materialized views

• Oracle Database Data Warehousing Guide for more information on using REWRITE
with materialized views

STAR_TRANSFORMATION Hint

/*+ STAR_TRANSFORMATION

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The STAR_TRANSFORMATION hint instructs the optimizer to use the best plan in which the
transformation has been used. Without the hint, the optimizer could make a query optimization
decision to use the best plan generated without the transformation, instead of the best plan for
the transformed query. For example:

SELECT /*+ STAR_TRANSFORMATION */ s.time_id, s.prod_id, s.channel_id
 FROM sales s, times t, products p, channels c
 WHERE s.time_id = t.time_id
 AND s.prod_id = p.prod_id
 AND s.channel_id = c.channel_id
 AND c.channel_desc = 'Tele Sales';

Even if the hint is specified, there is no guarantee that the transformation will take place. The
optimizer generates the subqueries only if it seems reasonable to do so. If no subqueries are
generated, then there is no transformed query, and the best plan for the untransformed query
is used, regardless of the hint.

See Also

• Oracle Database Data Warehousing Guide for a full discussion of star
transformation.

• Oracle Database Reference for more information on the
STAR_TRANSFORMATION_ENABLED initialization parameter.

STATEMENT_QUEUING Hint

/*+ STATEMENT_QUEUING */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 138 of 156

The NO_STATEMENT_QUEUING hint influences whether or not a statement is queued with parallel
statement queuing.

When PARALLEL_DEGREE_POLICY is not set to AUTO, this hint enables a statement to be
considered for parallel statement queuing, but to run only when enough parallel processes are
available to run at the requested DOP. The number of available parallel execution servers,
before queuing is enabled, is equal to the difference between the number of parallel execution
servers in use and the maximum number allowed in the system, which is defined by the
PARALLEL_SERVERS_TARGET initialization parameter.

For example:

SELECT /*+ STATEMENT_QUEUING */ emp.last_name, dpt.department_name
 FROM employees emp, departments dpt
 WHERE emp.department_id = dpt.department_id;

See Also

NO_STATEMENT_QUEUING Hint

UNNEST Hint

/*+ UNNEST

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The UNNEST hint instructs the optimizer to unnest and merge the body of the subquery into the
body of the query block that contains it, allowing the optimizer to consider them together when
evaluating access paths and joins.

Before a subquery is unnested, the optimizer first verifies whether the statement is valid. The
statement must then pass heuristic and query optimization tests. The UNNEST hint instructs the
optimizer to check the subquery block for validity only. If the subquery block is valid, then
subquery unnesting is enabled without checking the heuristics or costs.

See Also

• Collection Unnesting: Examples for more information on unnesting nested
subqueries and the conditions that make a subquery block valid

• Oracle Database SQL Tuning Guide for additional information on subquery
unnesting

USE_BAND Hint

/*+ USE_BAND (

@ queryblock

tablespec) */

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 139 of 156

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_BAND hint instructs the optimizer to join each specified table with another row source
using a band join. For example:

SELECT /*+ USE_BAND(e1 e2) */
 e1.last_name
 || ' has salary between 100 less and 100 more than '
 || e2.last_name AS "SALARY COMPARISON"
FROM employees e1, employees e2
WHERE e1.salary BETWEEN e2.salary - 100 AND e2.salary + 100;

The order the tables are listed in the USE_BAND hint does not specify a join order. To hint a
specific join order, the LEADING hint is required.

USE_CONCAT Hint

/*+ USE_CONCAT

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The USE_CONCAT hint instructs the optimizer to transform combined OR-conditions in the WHERE
clause of a query into a compound query using the UNION ALL set operator. Without this hint,
this transformation occurs only if the cost of the query using the concatenations is cheaper
than the cost without them. The USE_CONCAT hint overrides the cost consideration. For
example:

SELECT /*+ USE_CONCAT */ *
 FROM employees e
 WHERE manager_id = 108
 OR department_id = 110;

See Also

The NO_EXPAND Hint , which is the opposite of this hint

USE_CUBE Hint

/*+ USE_CUBE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

When the right-hand side of the join is a cube, the USE_CUBE hint instructs the optimizer to join
each specified table with another row source using a cube join. If the optimizer decides not to
use the cube join based on statistical analysis, then you can use USE_CUBE to override that
decision.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 140 of 156

USE_HASH Hint

/*+ USE_HASH (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_HASH hint instructs the optimizer to join each specified table with another row source
using a hash join. For example:

SELECT /*+ USE_HASH(l h) */ *
 FROM orders h, order_items l
 WHERE l.order_id = h.order_id
 AND l.order_id > 2400;

The order the tables are listed in the USE_HASH hint does not specify a join order. To hint a
specific join order, the LEADING hint is required.

USE_MERGE Hint

/*+ USE_MERGE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_MERGE hint instructs the optimizer to join each specified table with another row source
using a sort-merge join. For example:

SELECT /*+ USE_MERGE(employees departments) */ *
 FROM employees, departments
 WHERE employees.department_id = departments.department_id;

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and ORDERED
hints. The optimizer uses those hints when the referenced table is forced to be the inner table
of a join. The hints are ignored if the referenced table is the outer table.

USE_NL Hint
The USE_NL hint instructs the optimizer to join each specified table to another row source with a
nested loops join, using the specified table as the inner table.

/*+ USE_NL (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and ORDERED
hints. The optimizer uses those hints when the referenced table is forced to be the inner table
of a join. The hints are ignored if the referenced table is the outer table.

Chapter 2
Comments

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 141 of 156

In the following example, where a nested loop is forced through a hint, orders is accessed
through a full table scan and the filter condition l.order_id = h.order_id is applied to every row. For
every row that meets the filter condition, order_items is accessed through the index order_id.

SELECT /*+ USE_NL(l h) */ h.customer_id, l.unit_price * l.quantity
 FROM orders h, order_items l
 WHERE l.order_id = h.order_id;

The order the tables are listed in the USE_NL hint does not specify a join order. To hint a specific
join order, the LEADING hint is required.

Example

select /*+ LEADING(t2) USE_NL(t1) */ sum(t1.a),sum(t2.a)
from t1 , t2
where t1.b = t2.b;
select * from table(dbms_xplan.display_cursor()) ;

Adding an INDEX hint to the query could avoid the full table scan on orders, resulting in an
execution plan similar to one used on larger systems, even though it might not be particularly
efficient here.

USE_NL_WITH_INDEX Hint

/*+ USE_NL_WITH_INDEX (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The USE_NL_WITH_INDEX hint instructs the optimizer to join the specified table to another row
source with a nested loops join using the specified table as the inner table. For example:

SELECT /*+ USE_NL_WITH_INDEX(l item_product_ix) */ *
 FROM orders h, order_items l
 WHERE l.order_id = h.order_id
 AND l.order_id > 2400;

The following conditions apply:

• If no index is specified, then the optimizer must be able to use some index with at least one
join predicate as the index key.

• If an index is specified, then the optimizer must be able to use that index with at least one
join predicate as the index key.

Database Objects
Oracle Database recognizes objects that are associated with a particular schema and objects
that are not associated with any particular schema, as described in the sections that follow.

Schema Objects
A schema is a collection of logical structures of data, or schema objects. A schema is owned
by a database user and has the same name as that user. Each user owns a single schema.
Schema objects can be created and manipulated with SQL and include the following types of
objects:

Chapter 2
Database Objects

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 142 of 156

Analytic views
Attribute dimensions
Clusters
Constraints
Database links
Database triggers
Dimensions
External procedure libraries
Hierarchies
Index-organized tables
Indexes
Indextypes
Java classes
Java resources
Java sources
Join groups
Materialized views
Materialized view logs
Mining models
Object tables
Object types
Object views
Operators
Packages
Property Graphs
Sequences
Stored functions
Stored procedures
Synonyms
Tables
Views
Zone maps

Nonschema Objects
Other types of objects are also stored in the database and can be created and manipulated
with SQL but are not contained in a schema:

Contexts
Directories
Editions
Flashback archives
Lockdown profiles
Profiles
Restore points
Roles
Rollback segments
Tablespaces
Tablespace sets
Unified audit policies
Users

Chapter 2
Database Objects

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 143 of 156

In this reference, each type of object is described in the section devoted to the statement that
creates the database object. These statements begin with the keyword CREATE. For example,
for the definition of a cluster, see CREATE CLUSTER .

See Also

Oracle Database Concepts for an overview of database objects

You must provide names for most types of database objects when you create them. These
names must follow the rules listed in the sections that follow.

Database Object Names and Qualifiers
Some database objects are made up of parts that you can or must name, such as the columns
in a table or view, index and table partitions and subpartitions, integrity constraints on a table,
and objects that are stored within a package, including procedures and stored functions. This
section provides:

• Rules for naming database objects and database object location qualifiers

• Guidelines for naming database objects and qualifiers

Note

Oracle uses system-generated names beginning with "SYS_" for implicitly generated
database objects and subobjects, and names beginning with "ORA_" for some Oracle-
supplied objects. Oracle discourages you from using these prefixes in the names you
explicitly provide to your database objects and subobjects to avoid possible conflict in
name resolution.

Database Object Naming Rules
Every database object has a name. In a SQL statement, you represent the name of an object
with a quoted identifier or a nonquoted identifier.

• A quoted identifier begins and ends with double quotation marks ("). If you name a schema
object using a quoted identifier, then you must use the double quotation marks whenever
you refer to that object.

• A nonquoted identifier is not surrounded by any punctuation.

You must use double quotation marks (") for schema names that begin with numbers or special
characters.

You can use either quoted or nonquoted identifiers to name any database object. However,
database names, global database names, database link names, disk group names, and
pluggable database (PDB) names are always case insensitive and are stored as uppercase. If
you specify such names as quoted identifiers, then the quotation marks are silently ignored.

Chapter 2
Database Object Names and Qualifiers

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 144 of 156

See Also

CREATE USER for additional rules for naming users and passwords

Note

Oracle does not recommend using quoted identifiers for database object names.
These quoted identifiers are accepted by SQL*Plus, but they may not be valid when
using other tools that manage database objects.

The following list of rules applies to both quoted and nonquoted identifiers unless otherwise
indicated:

1. The maximum length of identifier names depends on the value of the COMPATIBLE
initialization parameter.

• If COMPATIBLE is set to a value of 12.2 or higher, then names must be from 1 to
128 bytes long with these exceptions:

– Names of databases are limited to 8 bytes.

– Names of disk groups, pluggable databases (PDBs), rollback segments,
tablespaces, and tablespace sets are limited to 30 bytes.

– From Release 21c onwards names of pluggable databases are limited to 64 bytes.

If an identifier includes multiple parts separated by periods, then each attribute can be
up to 128 bytes long. Each period separator, as well as any surrounding double
quotation marks, counts as one byte. For example, suppose you identify a column like
this:

"schema"."table"."column"

The schema name can be 128 bytes, the table name can be 128 bytes, and the
column name can be 128 bytes. Each of the quotation marks and periods is a single-
byte character, so the total length of the identifier in this example can be up to 392
bytes.

• If COMPATIBLE is set to a value lower than 12.2, then names must be from 1 to 30
bytes long with these exceptions:

– Names of databases are limited to 8 bytes.

– Names of database links can be as long as 128 bytes.

If an identifier includes multiple parts separated by periods, then each attribute can be
up to 30 bytes long. Each period separator, as well as any surrounding double
quotation marks, counts as one byte. For example, suppose you identify a column like
this:

"schema"."table"."column"

The schema name can be 30 bytes, the table name can be 30 bytes, and the column
name can be 30 bytes. Each of the quotation marks and periods is a single-byte
character, so the total length of the identifier in this example can be up to 98 bytes.

2. Nonquoted identifiers cannot be Oracle SQL reserved words. Quoted identifiers can be
reserved words, although this is not recommended.

Chapter 2
Database Object Names and Qualifiers

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 145 of 156

Depending on the Oracle product you plan to use to access a database object, names
might be further restricted by other product-specific reserved words.

Note

The reserved word ROWID is an exception to this rule. You cannot use the
uppercase word ROWID, either quoted or nonquoted, as a column name. However,
you can use the uppercase word as a quoted identifier that is not a column name,
and you can use the word with one or more lowercase letters (for example, "Rowid"
or "rowid") as any quoted identifier, including a column name.

See Also

• Oracle SQL Reserved Words for a listing of all Oracle SQL reserved words

• The manual for a specific product, such as Oracle Database PL/SQL
Language Reference, for a list of the reserved words of that product

3. The Oracle SQL language contains other words that have special meanings. These words
include data types, schema names, function names, the dummy system table DUAL, and
keywords (the uppercase words in SQL statements, such as DIMENSION, SEGMENT,
ALLOCATE, DISABLE, and so forth). These words are not reserved. However, Oracle uses
them internally in specific ways. Therefore, if you use these words as names for objects
and object parts, then your SQL statements may be more difficult to read and may lead to
unpredictable results.

In particular, do not use words beginning with SYS_ or ORA_ as schema object names, and
do not use the names of SQL built-in functions for the names of schema objects or user-
defined functions.

See Also

• Oracle SQL Keywords for information how to obtain a list of keywords

• Data Types , About SQL Functions , and Selecting from the DUAL Table

4. You should use characters from the ASCII repertoire in database names, global database
names, and database link names, because these characters provide optimal compatibility
across different platforms and operating systems. You must use only characters from the
ASCII repertoire in the names of common users, common roles, and common profiles in a
multitenant container database (CDB).

5. You can include multibyte characters in passwords.

6. Nonquoted identifiers must begin with an alphabetic character from your database
character set. Quoted identifiers can begin with any character.

7. Nonquoted identifiers can only contain alphanumeric characters from your database
character set and the underscore (_), dollar sign ($), and pound sign (#). Database links
can also contain periods (.) and "at" signs (@). Oracle strongly discourages you from
using $ and # in nonquoted identifiers.

Chapter 2
Database Object Names and Qualifiers

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 146 of 156

Quoted identifiers can contain any characters and punctuations marks as well as spaces.
However, neither quoted nor nonquoted identifiers can contain double quotation marks or
the null character (\0).

8. Within a namespace, no two objects can have the same name.

The following schema objects share one namespace:

• Packages

• Private synonyms

• Sequences

• Stand-alone procedures

• Stand-alone stored functions

• Tables

• User-defined operators

• User-defined types

• Views

Each of the following schema objects has its own namespace:

• Clusters

• Constraints

• Database triggers

• Dimensions

• Indexes

• Materialized views (When you create a materialized view, the database creates an
internal table of the same name. This table has the same namespace as the other
tables in the schema. Therefore, a schema cannot contain a table and a materialized
view of the same name.)

• Private database links

Because tables and sequences are in the same namespace, a table and a sequence in the
same schema cannot have the same name. However, tables and indexes are in different
namespaces. Therefore, a table and an index in the same schema can have the same
name.

Each schema in the database has its own namespaces for the objects it contains. This
means, for example, that two tables in different schemas are in different namespaces and
can have the same name.

Each of the following nonschema objects also has its own namespace:

• Editions

• Parameter files (PFILEs) and server parameter files (SPFILEs)

• Profiles

• Public database links

• Public synonyms

• Tablespaces

• User roles

Chapter 2
Database Object Names and Qualifiers

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 147 of 156

Because the objects in these namespaces are not contained in schemas, these
namespaces span the entire database.

9. Nonquoted identifiers are not case sensitive. Oracle interprets them as uppercase. Quoted
identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following names to
different objects in the same namespace:

"employees"
"Employees"
"EMPLOYEES"

Note that Oracle interprets the following names the same, so they cannot be used for
different objects in the same namespace:

employees
EMPLOYEES
"EMPLOYEES"

10. When Oracle stores or compares identifiers in uppercase, the uppercase form of each
character in the identifiers is determined by applying the uppercasing rules of the database
character set. Language-specific rules determined by the session setting NLS_SORT are not
considered. This behavior corresponds to applying the SQL function UPPER to the identifier
rather than the function NLS_UPPER.

The database character set uppercasing rules can yield results that are incorrect when
viewed as being in a certain natural language. For example, small letter sharp s ("ß"), used
in German, does not have an uppercase form according to the database character set
uppercasing rules. It is not modified when an identifier is converted into uppercase, while
the expected uppercase form in German is the sequence of two characters capital letter S
("SS"). Similarly, the uppercase form of small letter i, according to the database character
set uppercasing rules, is capital letter I. However, the expected uppercase form in Turkish
and Azerbaijani is capital letter I with dot above.

The database character set uppercasing rules ensure that identifiers are interpreted the
same in any linguistic configuration of a session. If you want an identifier to look correctly
in a certain natural language, then you can quote it to preserve the lowercase form or you
can use the linguistically correct uppercase form whenever you use that identifier.

11. Columns in the same table or view cannot have the same name. However, columns in
different tables or views can have the same name.

12. Procedures or functions contained in the same package can have the same name, if their
arguments are not of the same number and data types. Creating multiple procedures or
functions with the same name in the same package with different arguments is called
overloading the procedure or function.

13. Tablespace names are case sensitive, unlike other identifiers that are limited to 30 bytes.

Schema Object Naming Examples
The following examples are valid schema object names:

last_name
horse
hr.hire_date
"EVEN THIS & THAT!"
a_very_long_and_valid_name

All of these examples adhere to the rules listed in Database Object Naming Rules .

Chapter 2
Database Object Names and Qualifiers

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 148 of 156

Schema Object Naming Guidelines
Here are several helpful guidelines for naming objects and their parts:

• Use full, descriptive, pronounceable names (or well-known abbreviations).

• Use consistent naming rules.

• Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use with the
objective of making names as descriptive as possible. When in doubt, choose the more
descriptive name, because the objects in the database may be used by many people over a
period of time. Your counterpart ten years from now may have difficulty understanding a table
column with a name like pmdd instead of payment_due_date.

Using consistent naming rules helps users understand the part that each table plays in your
application. One such rule might be to begin the names of all tables belonging to the FINANCE
application with fin_.

Use the same names to describe the same things across tables. For example, the department
number columns of the sample employees and departments tables are both named department_id.

Syntax for Schema Objects and Parts in SQL Statements
This section tells you how to refer to schema objects and their parts in the context of a SQL
statement. This section shows you:

• The general syntax for referring to an object

• How Oracle resolves a reference to an object

• How to refer to objects in schemas other than your own

• How to refer to objects in remote databases

• How to refer to table and index partitions and subpartitions

The following diagram shows the general syntax for referring to an object or a part:

database_object_or_part::=

schema .

object

. part @ dblink

(dblink::=)

where:

• object is the name of the object.

• schema is the schema containing the object. The schema qualifier lets you refer to an object
in a schema other than your own. You must be granted privileges to refer to objects in
other schemas. If you omit schema, then Oracle assumes that you are referring to an object
in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown with list item
8. Nonschema objects, also shown with list item 8, cannot be qualified with schema because

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 149 of 156

they are not schema objects. An exception is public synonyms, which can optionally be
qualified with "PUBLIC". The quotation marks are required.

• part is a part of the object. This identifier lets you refer to a part of a schema object, such as
a column or a partition of a table. Not all types of objects have parts.

• dblink applies only when you are using the Oracle Database distributed functionality. This is
the name of the database containing the object. The dblink qualifier lets you refer to an
object in a database other than your local database. If you omit dblink, then Oracle
assumes that you are referring to an object in your local database. Not all SQL statements
allow you to access objects on remote databases.

You can include spaces around the periods separating the components of the reference to the
object, but it is conventional to omit them.

How Oracle Database Resolves Schema Object References
When you refer to an object in a SQL statement, Oracle considers the context of the SQL
statement and locates the object in the appropriate namespace. After locating the object,
Oracle performs the operation specified by the statement on the object. If the named object
cannot be found in the appropriate namespace, then Oracle returns an error.

The following example illustrates how Oracle resolves references to objects within SQL
statements. Consider this statement that adds a row of data to a table identified by the name
departments:

INSERT INTO departments
 VALUES (280, 'ENTERTAINMENT_CLERK', 206, 1700);

Based on the context of the statement, Oracle determines that departments can be:

• A table in your own schema

• A view in your own schema

• A private synonym for a table or view

• A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your own
schema before considering namespaces outside your schema. In this example, Oracle
attempts to resolve the name departments as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonyms. If the object is a private synonym, then
Oracle locates the object for which the synonym stands. This object could be in your own
schema, another schema, or on another database. The object could also be another
synonym, in which case Oracle locates the object for which this synonym stands.

2. If the object is in the namespace, then Oracle attempts to perform the statement on the
object. In this example, Oracle attempts to add the row of data to departments. If the object is
not of the correct type for the statement, then Oracle returns an error. In this example,
departments must be a table, view, or a private synonym resolving to a table or view. If
departments is a sequence, then Oracle returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches the
namespace containing public synonyms. If the object is in that namespace, then Oracle
attempts to perform the statement on it. If the object is not of the correct type for the
statement, then Oracle returns an error. In this example, if departments is a public synonym
for a sequence, then Oracle returns an error.

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 150 of 156

If a public synonym has any dependent tables or user-defined types, then you cannot create
an object with the same name as the synonym in the same schema as the dependent objects.

If a synonym does not have any dependent tables or user-defined types, then you can create
an object with the same name in the same schema as the dependent objects. Oracle
invalidates any dependent objects and attempts to revalidate them when they are next
accessed.

See Also

Oracle Database PL/SQL Language Reference for information about how PL/SQL
resolves identifier names

References to Objects in Other Schemas
To refer to objects in schemas other than your own, prefix the object name with the schema
name:

schema.object

For example, this statement drops the employees table in the sample schema hr:

DROP TABLE hr.employees;

References to Objects in Remote Databases
To refer to objects in databases other than your local database, follow the object name with the
name of the database link to that database. A database link is a schema object that causes
Oracle to connect to a remote database to access an object there. This section tells you:

• How to create database links

• How to use database links in your SQL statements

Creating Database Links
You create a database link with the statement CREATE DATABASE LINK . The statement lets
you specify this information about the database link:

• The name of the database link

• The database connect string to access the remote database

• The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names
When you create a database link, you must specify its name. Database link names are
different from names of other types of objects. They can be as long as 128 bytes and can
contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the database to
which the database link refers and the location of that database in the hierarchy of database
names. The following syntax diagram shows the form of the name of a database link:

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 151 of 156

dblink::=

database

. domain @ connection_qualifier

where:

• database should specify the name portion of the global name of the remote database to which
the database link connects. This global name is stored in the data dictionary of the remote
database. You can see this name in the GLOBAL_NAME data dictionary view.

• domain should specify the domain portion of the global name of the remote database to which
the database link connects. If you omit domain from the name of a database link, then
Oracle qualifies the database link name with the domain of your local database as it
currently exists in the data dictionary.

• connection_qualifier lets you further qualify a database link. Using connection qualifiers, you
can create multiple database links to the same database. For example, you can use
connection qualifiers to create multiple database links to different instances of the Oracle
Real Application Clusters that access the same database.

See Also

Oracle Database Administrator’s Guidefor more information on connection
qualifiers

The combination database.domain is sometimes called the service name.

See Also

Oracle Database Net Services Administrator's Guide

Username and Password
Oracle uses the username and password to connect to the remote database. The username
and password for a database link are optional.

Database Connect String
The database connect string is the specification used by Oracle Net to access the remote
database. For information on writing database connect strings, see the Oracle Net
documentation for your specific network protocol. The database connect string for a database
link is optional.

References to Database Links
Database links are available only if you are using Oracle distributed functionality. When you
issue a SQL statement that contains a database link, you can specify the database link name
in one of these forms:

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 152 of 156

• The complete database link name as stored in the data dictionary, including the database,
domain, and optional connection_qualifier components.

• The partial database link name is the database and optional connection_qualifier components, but
not the domain component.

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, then Oracle expands the
name to contain the domain of the local database as found in the global database name
stored in the data dictionary. (You can see the current global database name in the
GLOBAL_NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the same name
as the database link in the statement. Then, if necessary, it searches for a public database
link with the same name.

• Oracle always determines the username and password from the first matching
database link (either private or public). If the first matching database link has an
associated username and password, then Oracle uses it. If it does not have an
associated username and password, then Oracle uses your current username and
password.

• If the first matching database link has an associated database string, then Oracle uses
it. Otherwise Oracle searches for the next matching (public) database link. If no
matching database link is found, or if no matching link has an associated database
string, then Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing the
remote database, if the value of the GLOBAL_NAMES parameter is true, then Oracle verifies
that the database.domain portion of the database link name matches the complete global
name of the remote database. If this condition is true, then Oracle proceeds with the
connection, using the username and password chosen in Step 2. If not, Oracle returns an
error.

4. If the connection using the database string, username, and password is successful, then
Oracle attempts to access the specified object on the remote database using the rules for
resolving object references and referring to objects in other schemas discussed earlier in
this section.

You can disable the requirement that the database.domain portion of the database link name must
match the complete global name of the remote database by setting to FALSE the initialization
parameter GLOBAL_NAMES or the GLOBAL_NAMES parameter of the ALTER SYSTEM or ALTER
SESSION statement.

See Also

Oracle Database Administrator’s Guide for more information on remote name
resolution

References to Partitioned Tables and Indexes
Tables and indexes can be partitioned. When partitioned, these schema objects consist of a
number of parts called partitions, all of which have the same logical attributes. For example,
all partitions in a table share the same column and constraint definitions, and all partitions in an
index share the same index columns.

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 153 of 156

Partition-extended and subpartition-extended names let you perform some partition-level and
subpartition-level operations, such as deleting all rows from a partition or subpartition, on only
one partition or subpartition. Without extended names, such operations would require that you
specify a predicate (WHERE clause). For range- and list-partitioned tables, trying to phrase a
partition-level operation with a predicate can be cumbersome, especially when the range
partitioning key uses more than one column. For hash partitions and subpartitions, using a
predicate is more difficult still, because these partitions and subpartitions are based on a
system-defined hash function.

Partition-extended names let you use partitions as if they were tables. An advantage of this
method, which is most useful for range-partitioned tables, is that you can build partition-level
access control mechanisms by granting (or revoking) privileges on these views to (or from)
other users or roles. To use a partition as a table, create a view by selecting data from a single
partition, and then use the view as a table.

Syntax

You can specify partition-extended or subpartition-extended table names in any SQL statement
in which the partition_extended_name or subpartition_extended_name element appears in the syntax.

partition_extended_name::=

PARTITION partition

PARTITION FOR (partition_key_value

,

)

subpartition_extended_name::=

SUBPARTITION subpartition

SUBPARTITION FOR (subpartition_key_value

,

)

The DML statements INSERT, UPDATE, and DELETE and the ANALYZE statement require
parentheses around the partition or subpartition name. This small distinction is reflected in the
partition_extension_clause:

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 154 of 156

In partition_extended_name, subpartition_extended_name, and partition_extension_clause, the PARTITION FOR
and SUBPARTITION FOR clauses let you refer to a partition without using its name. They are valid
with any type of partitioning and are especially useful for interval partitions. Interval partitions
are created automatically as needed when data is inserted into a table.

For the respective partition_key_value or subpartition_key_value, specify one value for each partitioning
key column. For multicolumn partitioning keys, specify one value for each partitioning key. For
composite partitions, specify one value for each partitioning key, followed by one value for each
subpartitioning key. All partitioning key values are comma separated. For interval partitions,
you can specify only one partition_key_value, and it must be a valid NUMBER or datetime value.
Your SQL statement will operate on the partition or subpartitions that contain the values you
specify.

See Also

The CREATE TABLE INTERVAL Clause for more information on interval partitions

Restrictions on Extended Names

Currently, the use of partition-extended and subpartition-extended table names has the
following restrictions:

• No remote tables: A partition-extended or subpartition-extended table name cannot contain
a database link (dblink) or a synonym that translates to a table with a dblink. To use remote
partitions and subpartitions, create a view at the remote site that uses the extended table
name syntax and then refer to the remote view.

• No synonyms: A partition or subpartition extension must be specified with a base table.
You cannot use synonyms, views, or any other objects.

• The PARTITION FOR and SUBPARTITION FOR clauses are not valid for DDL operations on
views.

• In the PARTITION FOR and SUBPARTITION FOR clauses, you cannot specify the keywords
DEFAULT or MAXVALUE or a bind variable for the partition_key_value or subpartition_key_value.

• In the PARTITION and SUBPARTITION clauses, you cannot specify a bind variable for the
partition or subpartition name.

Example

In the following statement, sales is a partitioned table with partition sales_q1_2000. You can create
a view of the single partition sales_q1_2000, and then use it as if it were a table. This example
deletes rows from the partition.

CREATE VIEW Q1_2000_sales AS
 SELECT *
 FROM sales PARTITION (SALES_Q1_2000);

DELETE FROM Q1_2000_sales
 WHERE amount_sold < 0;

References to Object Type Attributes and Methods
To refer to object type attributes or methods in a SQL statement, you must fully qualify the
reference with a table alias. Consider the following example from the sample schema oe, which

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 155 of 156

contains a type cust_address_typ and a table customers with a cust_address column based on the
cust_address_typ:

CREATE TYPE cust_address_typ
 OID '82A4AF6A4CD1656DE034080020E0EE3D'
 AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/
CREATE TABLE customers
 (customer_id NUMBER(6),
 cust_first_name VARCHAR2(20) CONSTRAINT cust_fname_nn NOT NULL,
 cust_last_name VARCHAR2(20) CONSTRAINT cust_lname_nn NOT NULL,
 cust_address cust_address_typ,
. . .

In a SQL statement, reference to the postal_code attribute must be fully qualified using a table
alias, as illustrated in the following example:

SELECT c.cust_address.postal_code
 FROM customers c;

UPDATE customers c
 SET c.cust_address.postal_code = '14621-2604'
 WHERE c.cust_address.city = 'Rochester'
 AND c.cust_address.state_province = 'NY';

To reference a member method that does not accept arguments, you must provide empty
parentheses. For example, the sample schema oe contains an object table categories_tab, based
on catalog_typ, which contains the member function getCatalogName. In order to call this method in
a SQL statement, you must provide empty parentheses as shown in this example:

SELECT TREAT(VALUE(c) AS catalog_typ).getCatalogName() "Catalog Type"
 FROM categories_tab c
 WHERE category_id = 90;

Catalog Type

online catalog

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 156 of 156

3
Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table. You can
select from pseudocolumns, but you cannot insert, update, or delete their values. A
pseudocolumn is also similar to a function without arguments (refer to Functions). However,
functions without arguments typically return the same value for every row in the result set,
whereas pseudocolumns typically return a different value for each row.

This chapter contains the following sections:

• Hierarchical Query Pseudocolumns

• Sequence Pseudocolumns

• Version Query Pseudocolumns

• COLUMN_VALUE Pseudocolumn

• OBJECT_ID Pseudocolumn

• OBJECT_VALUE Pseudocolumn

• ORA_ROWSCN Pseudocolumn

• ROWID Pseudocolumn

• ROWNUM Pseudocolumn

• XMLDATA Pseudocolumn

Hierarchical Query Pseudocolumns
The hierarchical query pseudocolumns are valid only in hierarchical queries. The hierarchical
query pseudocolumns are:

• CONNECT_BY_ISCYCLE Pseudocolumn

• CONNECT_BY_ISLEAF Pseudocolumn

• LEVEL Pseudocolumn

To define a hierarchical relationship in a query, you must use the CONNECT BY clause.

CONNECT_BY_ISCYCLE Pseudocolumn
The CONNECT_BY_ISCYCLE pseudocolumn returns 1 if the current row has a child which is also
its ancestor. Otherwise it returns 0.

You can specify CONNECT_BY_ISCYCLE only if you have specified the NOCYCLE parameter of the
CONNECT BY clause. NOCYCLE enables Oracle to return the results of a query that would
otherwise fail because of a CONNECT BY loop in the data.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 13

See Also

Hierarchical Queries for more information about the NOCYCLE parameter and
Hierarchical Query Examples for an example that uses the CONNECT_BY_ISCYCLE
pseudocolumn

CONNECT_BY_ISLEAF Pseudocolumn
The CONNECT_BY_ISLEAF pseudocolumn returns 1 if the current row is a leaf of the tree defined
by the CONNECT BY condition. Otherwise it returns 0. This information indicates whether a
given row can be further expanded to show more of the hierarchy.

CONNECT_BY_ISLEAF Example

The following example shows the first three levels of the hr.employees table, indicating for each
row whether it is a leaf row (indicated by 1 in the IsLeaf column) or whether it has child rows
(indicated by 0 in the IsLeaf column):

SELECT last_name "Employee", CONNECT_BY_ISLEAF "IsLeaf",
 LEVEL, SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 WHERE LEVEL <= 3 AND department_id = 80
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 4
 ORDER BY "Employee", "IsLeaf";

Employee IsLeaf LEVEL Path
------------------------- ---------- ---------- -------------------------
Abel 1 3 /King/Zlotkey/Abel
Ande 1 3 /King/Errazuriz/Ande
Banda 1 3 /King/Errazuriz/Banda
Bates 1 3 /King/Cambrault/Bates
Bernstein 1 3 /King/Russell/Bernstein
Bloom 1 3 /King/Cambrault/Bloom
Cambrault 0 2 /King/Cambrault
Cambrault 1 3 /King/Russell/Cambrault
Doran 1 3 /King/Partners/Doran
Errazuriz 0 2 /King/Errazuriz
Fox 1 3 /King/Cambrault/Fox
. . .

See Also

Hierarchical Queries and SYS_CONNECT_BY_PATH

LEVEL Pseudocolumn
For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1 for a root
row, 2 for a child of a root, and so on. A root row is the highest row within an inverted tree. A
child row is any nonroot row. A parent row is any row that has children. A leaf row is any row
without children. Figure 3-1 shows the nodes of an inverted tree with their LEVEL values.

Chapter 3
Hierarchical Query Pseudocolumns

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 13

Figure 3-1 Hierarchical Tree

L
e

v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

L
e

v
e

l
4

c
h

ild
/

le
a

f

p
a

re
n

t/
c
h

ild

ro
o

t/
p

a
re

n
t

p
a

re
n

t/
c
h

ild

c
h

ild
/

le
a

f

c
h

ild
/

le
a

f
c
h

ild
/

le
a

f

c
h

ild
/

le
a

f

p
a

re
n

t/
c
h

ild

p
a

re
n

t/
c
h

ild

See Also

Hierarchical Queries for information on hierarchical queries in general and IN
Condition for restrictions on using the LEVEL pseudocolumn

Sequence Pseudocolumns
A sequence is a schema object that can generate unique sequential values. These values are
often used for primary and unique keys. You can refer to sequence values in SQL statements
with these pseudocolumns:

• CURRVAL: Returns the current value of a sequence

• NEXTVAL: Increments the sequence and returns the next value

You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence.CURRVAL
sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you must
have been granted either SELECT object privilege on the sequence or SELECT ANY SEQUENCE
system privilege, and you must qualify the sequence with the schema containing it:

schema.sequence.CURRVAL
schema.sequence.NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the sequence with
a complete or partial name of a database link:

schema.sequence.CURRVAL@dblink
schema.sequence.NEXTVAL@dblink

A sequence can be accessed by many users concurrently with no waiting or locking.

Chapter 3
Sequence Pseudocolumns

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 13

See Also

References to Objects in Remote Databases for more information on referring to
database links

Where to Use Sequence Values
You can use CURRVAL and NEXTVAL in the following locations:

• The select list of a SELECT statement that is not contained in a subquery, materialized view,
or view

• The select list of a subquery in an INSERT statement

• The VALUES clause of an INSERT statement

• The SET clause of an UPDATE statement

Restrictions on Sequence Values

You cannot use CURRVAL and NEXTVAL in the following constructs:

• A subquery in a DELETE, SELECT, or UPDATE statement

• A query of a view or of a materialized view

• A SELECT statement with the DISTINCT operator

• A SELECT statement with a GROUP BY clause or ORDER BY clause

• A SELECT statement that is combined with another SELECT statement with the UNION,
INTERSECT, or MINUS set operator

• The WHERE clause of a SELECT statement

• The condition of a CHECK constraint

Within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced LONG columns,
updated tables, and locked tables must be located on the same database.

How to Use Sequence Values
When you create a sequence, you can define its initial value and the increment between its
values. The first reference to NEXTVAL returns the initial value of the sequence. Subsequent
references to NEXTVAL increment the sequence value by the defined increment and return the
new value. Any reference to CURRVAL always returns the current value of the sequence, which
is the value returned by the last reference to NEXTVAL.

Before you use CURRVAL for a sequence in your session, you must first initialize the sequence
with NEXTVAL. Refer to CREATE SEQUENCE for information on sequences.

Within a single SQL statement containing a reference to NEXTVAL, Oracle increments the
sequence once:

• For each row returned by the outer query block of a SELECT statement. Such a query block
can appear in the following places:

– A top-level SELECT statement

Chapter 3
Sequence Pseudocolumns

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 13

– An INSERT ... SELECT statement (either single-table or multitable). For a multitable
insert, the reference to NEXTVAL must appear in the VALUES clause, and the sequence
is updated once for each row returned by the subquery, even though NEXTVAL may be
referenced in multiple branches of the multitable insert.

– A CREATE TABLE ... AS SELECT statement

– A CREATE MATERIALIZED VIEW ... AS SELECT statement

• For each row updated in an UPDATE statement

• For each INSERT statement containing a VALUES clause

• For each INSERT ... [ALL | FIRST] statement (multitable insert). A multitable insert is
considered a single SQL statement. Therefore, a reference to the NEXTVAL of a sequence
will increase the sequence only once for each input record coming from the SELECT portion
of the statement. If NEXTVAL is specified more than once in any part of the INSERT ... [ALL |
FIRST] statement, then the value will be the same for all insert branches, regardless of how
often a given record might be inserted.

• For each row merged by a MERGE statement. The reference to NEXTVAL can appear in the
merge_insert_clause or the merge_update_clause or both. The NEXTVALUE value is incremented for
each row updated and for each row inserted, even if the sequence number is not actually
used in the update or insert operation. If NEXTVAL is specified more than once in any of
these locations, then the sequence is incremented once for each row and returns the same
value for all occurrences of NEXTVAL for that row.

• For each input row in a multitable INSERT ALL statement. NEXTVAL is incremented once for
each row returned by the subquery, regardless of how many occurrences of the
insert_into_clause map to each row.

If any of these locations contains more than one reference to NEXTVAL, then Oracle increments
the sequence once and returns the same value for all occurrences of NEXTVAL.

If any of these locations contains references to both CURRVAL and NEXTVAL, then Oracle
increments the sequence and returns the same value for both CURRVAL and NEXTVAL.

Finding the next value of a sequence: Example

This example selects the next value of the employee sequence in the sample schema hr:

SELECT employees_seq.nextval
 FROM DUAL;

Inserting sequence values into a table: Example

This example increments the employee sequence and uses its value for a new employee
inserted into the sample table hr.employees:

INSERT INTO employees
 VALUES (employees_seq.nextval, 'John', 'Doe', 'jdoe', '555-1212',
 TO_DATE(SYSDATE), 'PU_CLERK', 2500, null, null, 30);

Reusing the current value of a sequence: Example

This example adds a new order with the next order number to the master order table. It then
adds suborders with this number to the detail order table:

INSERT INTO orders (order_id, order_date, customer_id)
 VALUES (orders_seq.nextval, TO_DATE(SYSDATE), 106);

INSERT INTO order_items (order_id, line_item_id, product_id)

Chapter 3
Sequence Pseudocolumns

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 13

 VALUES (orders_seq.currval, 1, 2359);

INSERT INTO order_items (order_id, line_item_id, product_id)
 VALUES (orders_seq.currval, 2, 3290);

INSERT INTO order_items (order_id, line_item_id, product_id)
 VALUES (orders_seq.currval, 3, 2381);

Version Query Pseudocolumns
The version query pseudocolumns are valid only in Oracle Flashback Version Query, which is a
form of Oracle Flashback Query. The version query pseudocolumns are:

• VERSIONS_STARTSCN and VERSIONS_STARTTIME: Starting System Change Number (SCN) or
TIMESTAMP when the row version was created. This pseudocolumn identifies the time when
the data first had the values reflected in the row version. Use this pseudocolumn to identify
the past target time for Oracle Flashback Table or Oracle Flashback Query. If this
pseudocolumn is NULL, then the row version was created before start.

• VERSIONS_ENDSCN and VERSIONS_ENDTIME: SCN or TIMESTAMP when the row version
expired. If the pseudocolumn is NULL, then either the row version was current at the time of
the query or the row corresponds to a DELETE operation.

• VERSIONS_XID: Identifier (a RAW number) of the transaction that created the row version.

• VERSIONS_OPERATION: Operation performed by the transaction: I for insertion, D for
deletion, or U for update. The version is that of the row that was inserted, deleted, or
updated; that is, the row after an INSERT operation, the row before a DELETE operation, or
the row affected by an UPDATE operation.

For user updates of an index key, Oracle Flashback Version Query might treat an UPDATE
operation as two operations, DELETE plus INSERT, represented as two version rows with a D
followed by an I VERSIONS_OPERATION.

See Also

• flashback_query_clause for more information on version queries

• Oracle Database Development Guide for more information on using Oracle
Flashback Version Query

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules for values of the VERSIONS_OPERATION pseudocolumn

COLUMN_VALUE Pseudocolumn
When you refer to an XMLTable construct without the COLUMNS clause, or when you use the
TABLE collection expression to refer to a scalar nested table type, the database returns a virtual
table with a single column. This name of this pseudocolumn is COLUMN_VALUE.

In the context of XMLTable, the value returned is of data type XMLType. For example, the
following two statements are equivalent, and the output for both shows COLUMN_VALUE as the
name of the column being returned:

SELECT *
 FROM XMLTABLE('<a>123');

Chapter 3
Version Query Pseudocolumns

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 13

COLUMN_VALUE

<a>123

SELECT COLUMN_VALUE
 FROM (XMLTable('<a>123'));

COLUMN_VALUE
--
<a>123

In the context of a TABLE collection expression, the value returned is the data type of the
collection element. The following statements create the two levels of nested tables illustrated in
Creating a Table: Multilevel Collection Example to show the uses of COLUMN_VALUE in this
context:

CREATE TYPE phone AS TABLE OF NUMBER;
/
CREATE TYPE phone_list AS TABLE OF phone;
/

The next statement uses COLUMN_VALUE to select from the phone type:

SELECT t.COLUMN_VALUE
 FROM TABLE(phone(1,2,3)) t;

COLUMN_VALUE

 1
 2
 3

In a nested type, you can use the COLUMN_VALUE pseudocolumn in both the select list and the
TABLE collection expression:

SELECT t.COLUMN_VALUE
 FROM TABLE(phone_list(phone(1,2,3))) p, TABLE(p.COLUMN_VALUE) t;

COLUMN_VALUE

 1
 2
 3

The keyword COLUMN_VALUE is also the name that Oracle Database generates for the scalar
value of an inner nested table without a column or attribute name, as shown in the example
that follows. In this context, COLUMN_VALUE is not a pseudocolumn, but an actual column
name.

CREATE TABLE my_customers (
 cust_id NUMBER,
 name VARCHAR2(25),
 phone_numbers phone_list,
 credit_limit NUMBER)
 NESTED TABLE phone_numbers STORE AS outer_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS inner_ntab);

Chapter 3
COLUMN_VALUE Pseudocolumn

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 13

See Also

• XMLTABLE for information on that function

• table_collection_expression::= for information on the TABLE collection expression

• ALTER TABLE examples in Nested Tables: Examples

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules for values of the COLUMN_VALUE pseudocolumn

OBJECT_ID Pseudocolumn
The OBJECT_ID pseudocolumn returns the object identifier of a column of an object table or
view. Oracle uses this pseudocolumn as the primary key of an object table. OBJECT_ID is useful
in INSTEAD OF triggers on views and for identifying the ID of a substitutable row in an object
table.

Note

In earlier releases, this pseudocolumn was called SYS_NC_OID$. That name is still
supported for backward compatibility. However, Oracle recommends that you use the
more intuitive name OBJECT_ID.

See Also

Oracle Database Object-Relational Developer's Guide for examples of the use of this
pseudocolumn

OBJECT_VALUE Pseudocolumn
The OBJECT_VALUE pseudocolumn returns system-generated names for the columns of an
object table, XMLType table, object view, or XMLType view. This pseudocolumn is useful for
identifying the value of a substitutable row in an object table and for creating object views with
the WITH OBJECT IDENTIFIER clause.

Note

In earlier releases, this pseudocolumn was called SYS_NC_ROWINFO$. That name is still
supported for backward compatibility. However, Oracle recommends that you use the
more intuitive name OBJECT_VALUE.

Chapter 3
OBJECT_ID Pseudocolumn

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 13

See Also

• object_table and object_view_clause for more information on the use of this
pseudocolumn

• Oracle Database Object-Relational Developer's Guide for examples of the use of
this pseudocolumn

ORA_ROWSCN Pseudocolumn
ORA_ROWSCN reflects the system change-number (SCN) of the most recent change to a row.
This change can be at the level of a block (coarse) or at the level of a row (fine-grained). The
latter is provided by row-level dependency tracking. Refer to CREATE TABLE ...
NOROWDEPENDENCIES | ROWDEPENDENCIES for more information on row-level
dependency tracking. In the absence of row-level dependencies, ORA_ROWSCN reflects block-
level dependencies.

Whether at the block level or at the row level, the ORA_ROWSCN should not be considered to be
an exact SCN. For example, if a transaction changed row R in a block and committed at SCN
10, it is not always true that the ORA_ROWSCN for the row would return 10. While a value less
than 10 would never be returned, any value greater than or equal to 10 could be returned. That
is, the ORA_ROWSCN of a row is not always guaranteed to be the exact commit SCN of the
transaction that last modified that row. However, with fine-grained ORA_ROWSCN, if two
transactions T1 and T2 modified the same row R, one after another, and committed, a query
on the ORA_ROWSCN of row R after the commit of T1 will return a value lower than the value
returned after the commit of T2. If a block is queried twice, then it is possible for the value of
ORA_ROWSCN to change between the queries even though rows have not been updated in the
time between the queries. The only guarantee is that the value of ORA_ROWSCN in both queries
is greater than the commit SCN of the transaction that last modified that row.

You cannot use the ORA_ROWSCN pseudocolumn in a query to a view. However, you can use it
to refer to the underlying table when creating a view. You can also use this pseudocolumn in
the WHERE clause of an UPDATE or DELETE statement.

ORA_ROWSCN is not supported for Flashback Query. Instead, use the version query
pseudocolumns, which are provided explicitly for Flashback Query. Refer to the SELECT ...
flashback_query_clause for information on Flashback Query and Version Query
Pseudocolumns for additional information on those pseudocolumns.

Restriction on ORA_ROWSCN: This pseudocolumn is not supported for external tables.

Example

The first statement below uses the ORA_ROWSCN pseudocolumn to get the system change
number of the last operation on the employees table. The second statement uses the
pseudocolumn with the SCN_TO_TIMESTAMP function to determine the timestamp of the
operation:

SELECT ORA_ROWSCN, last_name
 FROM employees
 WHERE employee_id = 188;

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN), last_name
 FROM employees
 WHERE employee_id = 188;

Chapter 3
ORA_ROWSCN Pseudocolumn

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 13

See Also

SCN_TO_TIMESTAMP

ORA_SHARDSPACE_NAME Pseudocolumn
You can use the ORA_SHARDSPACE_NAME pseudocolumn to run queries across shards instead
of a sharding key.

Before you can run cross-shard queries from the catalog, you must create users in the catalog
with shared DDL enabled. Then you must grant these users access to the privately sharded
tables.

The queries referencing the privately sharded tables will run across the shards in the catalog
using the pseudocolumn ORA_SHARDSPACE_NAME associated to them. To run a cross shard
query on a given shard, you must filter the query with the predicate ORA_SHARDSPACE_NAME =
<shardspace_name_belonging_to_name>.

Examples

SELECT CUST_NAME, CUST_ID FROM CUSTOMER WHERE ORA_SHARDSPACE_NAME = 'EUROPE'

This query will run on one of the shards belonging to the shardspace named Europe. The
query will run on the primary shard of the sharspace Europe or on one of its standbys,
depending on the value of the parameter MULTISHARD_QUERY_DATA_CONSISTENCY.

A query like:

SELECT CUST_NAME, CUST_ID FROM CUSTOMER

where the table CUSTOMER is marked as privately sharded, will run on all shards.

ROWID Pseudocolumn
For each row in the database, the ROWID pseudocolumn returns the address of the row. Oracle
Database rowid values contain information necessary to locate a row:

• The data object number of the object

• The data block in the data file in which the row resides

• The position of the row in the data block (first row is 0)

• The data file in which the row resides (first file is 1). The file number is relative to the
tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in different
tables that are stored together in the same cluster can have the same rowid.

Values of the ROWID pseudocolumn have the data type ROWID or UROWID. Refer to Rowid Data
Types and UROWID Data Type for more information.

Rowid values have several important uses:

• They are the fastest way to access a single row.

• They can show you how the rows in a table are stored.

Chapter 3
ORA_SHARDSPACE_NAME Pseudocolumn

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 13

• They are unique identifiers for rows in a table.

You should not use ROWID as the primary key of a table. If you delete and reinsert a row with
the Import and Export utilities, for example, then its rowid may change. If you delete a row,
then Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and WHERE clause of a query,
these pseudocolumn values are not actually stored in the database. You cannot insert, update,
or delete a value of the ROWID pseudocolumn.

Example

This statement selects the address of all rows that contain data for employees in department
20:

SELECT ROWID, last_name
 FROM employees
 WHERE department_id = 20;

ROWNUM Pseudocolumn

Note

• The ROW_NUMBER built-in SQL function provides superior support for ordering the
results of a query. Refer to ROW_NUMBER for more information.

• The row_limiting_clause of the SELECT statement provides superior support for limiting
the number of rows returned by a query. Refer to row_limiting_clause for more
information.

For each row returned by a query, the ROWNUM pseudocolumn returns a number indicating the
order in which Oracle selects the row from a table or set of joined rows. The first row selected
has a ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this example:

SELECT *
 FROM employees
 WHERE ROWNUM < 11;

If an ORDER BY clause follows ROWNUM in the same query, then the rows will be reordered by
the ORDER BY clause. The results can vary depending on the way the rows are accessed. For
example, if the ORDER BY clause causes Oracle to use an index to access the data, then
Oracle may retrieve the rows in a different order than without the index. Therefore, the
following statement does not necessarily return the same rows as the preceding example:

SELECT *
 FROM employees
 WHERE ROWNUM < 11
 ORDER BY last_name;

If you embed the ORDER BY clause in a subquery and place the ROWNUM condition in the top-
level query, then you can force the ROWNUM condition to be applied after the ordering of the
rows. For example, the following query returns the employees with the 10 smallest employee
numbers. This is sometimes referred to as top-N reporting:

Chapter 3
ROWNUM Pseudocolumn

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 13

SELECT *
 FROM (SELECT * FROM employees ORDER BY employee_id)
 WHERE ROWNUM < 11;

In the preceding example, the ROWNUM values are those of the top-level SELECT statement, so
they are generated after the rows have already been ordered by employee_id in the subquery.

Conditions testing for ROWNUM values greater than a positive integer are always false. For
example, this query returns no rows:

SELECT *
 FROM employees
 WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUM of 1 and makes the condition false. The second
row to be fetched is now the first row and is also assigned a ROWNUM of 1 and makes the
condition false. All rows subsequently fail to satisfy the condition, so no rows are returned.

You can also use ROWNUM to assign unique values to each row of a table, as in this example:

UPDATE my_table
 SET column1 = ROWNUM;

Refer to the function ROW_NUMBER for an alternative method of assigning unique numbers
to rows.

Note

Using ROWNUM in a query can affect view optimization.

XMLDATA Pseudocolumn
Oracle stores XMLType data either in LOB or object-relational columns, based on XMLSchema
information and how you specify the storage clause. The XMLDATA pseudocolumn lets you
access the underlying LOB or object relational column to specify additional storage clause
parameters, constraints, indexes, and so forth.

Example

The following statements illustrate the use of this pseudocolumn. Suppose you create a simple
table of XMLType with one CLOB column:

CREATE TABLE xml_lob_tab of XMLTYPE
 XMLTYPE STORE AS CLOB;

To change the storage characteristics of the underlying LOB column, you can use the following
statement:

ALTER TABLE xml_lob_tab
 MODIFY LOB (XMLDATA) (STORAGE (MAXSIZE 2G) CACHE);

Now suppose you have created an XMLSchema-based table like the xwarehouses table created
in Using XML in SQL Statements . You could then use the XMLDATA column to set the
properties of the underlying columns, as shown in the following statement:

ALTER TABLE xwarehouses
 ADD (UNIQUE(XMLDATA."WarehouseId"));

Chapter 3
XMLDATA Pseudocolumn

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 13

Chapter 3
XMLDATA Pseudocolumn

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 13

4
Operators

An operator manipulates data items and returns a result. Syntactically, an operator appears
before or after an operand or between two operands.

This chapter contains these sections:

• About SQL Operators

• Arithmetic Operators

• COLLATE Operator

• Data Quality Operators

• Concatenation Operator

• GRAPH_TABLE Operator

• Hierarchical Query Operators

• Multiset Operators

• Set Operators

• SHARD_CHUNK_ID Operator

• User-Defined Operators

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot by
themselves serve as the condition of a WHERE or HAVING clause in queries or subqueries. For
information on logical operators, which serve as conditions, refer to Conditions.

About SQL Operators
Operators manipulate individual data items called operands or arguments. Operators are
represented by special characters or by keywords. For example, the multiplication operator is
represented by an asterisk (*).

If you have installed Oracle Text, then you can use the SCORE operator, which is part of that
product, in Oracle Text queries. You can also create conditions with the built-in Text operators,
including CONTAINS, CATSEARCH, and MATCHES. For more information on these Oracle Text
elements, refer to Oracle Text Reference.

Unary and Binary Operators
The two general classes of operators are:

• unary: A unary operator operates on only one operand. A unary operator typically appears
with its operand in this format:

operator operand

• binary: A binary operator operates on two operands. A binary operator appears with its
operands in this format:

operand1 operator operand2

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 66

Other operators with special formats accept more than two operands. If an operator is given a
null operand, then the result is always null. The only operator that does not follow this rule is
concatenation (||).

Operator Precedence
Precedence is the order in which Oracle Database evaluates different operators in the same
expression. When evaluating an expression containing multiple operators, Oracle evaluates
operators with higher precedence before evaluating those with lower precedence. Oracle
evaluates operators with equal precedence from left to right within an expression.

Table 4-1 lists the levels of precedence among SQL operators from high to low. Operators
listed on the same line have the same precedence.

Table 4-1 SQL Operator Precedence

Operator Operation

+, - (as unary operators), PRIOR,
CONNECT_BY_ROOT, COLLATE

Identity, negation, location in hierarchy

*, / Multiplication, division

+, - (as binary operators), || Addition, subtraction, concatenation

<-> is the Euclidian distance operator, <=> is the
cosine distance operator, <#> is the negative dot
product operator

Shorthand Operators for Distances

SQL conditions are evaluated after SQL operators See "Condition Precedence"

Precedence Example

In the following expression, multiplication has a higher precedence than addition, so Oracle
first multiplies 2 by 3 and then adds the result to 1.

1+2*3

You can use parentheses in an expression to override operator precedence. Oracle evaluates
expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS), which combine
sets of rows returned by queries, rather than individual data items. All set operators have equal
precedence.

See Also

Hierarchical Query Operators and Hierarchical Queries for information on the PRIOR
operator, which is used only in hierarchical queries

Arithmetic Operators
You can use an arithmetic operator with one or two arguments to negate, add, subtract,
multiply, and divide numeric values. Some of these operators are also used in datetime and
interval arithmetic. The arguments to the operator must resolve to numeric data types or to any
data type that can be implicitly converted to a numeric data type.

Chapter 4
Arithmetic Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 66

Unary arithmetic operators return the same data type as the numeric data type of the
argument. For binary arithmetic operators, Oracle determines the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data type, and returns
that data type. Table 4-2 lists arithmetic operators.

See Also

Table 2-9 for more information on implicit conversion, Numeric Precedence for
information on numeric precedence, and Datetime/Interval Arithmetic

Table 4-2 Arithmetic Operators

Operator Purpose Example

+ - When these denote a positive or negative
expression, they are unary operators.

SELECT *
 FROM order_items
 WHERE quantity = -1
 ORDER BY order_id,
 line_item_id, product_id;

SELECT *
 FROM employees
 WHERE -salary < 0
 ORDER BY employee_id;

+ - When they add or subtract, they are binary
operators.

SELECT hire_date
 FROM employees
 WHERE SYSDATE - hire_date > 365
 ORDER BY hire_date;

* / Multiply, divide. These are binary operators.
UPDATE employees
 SET salary = salary * 1.1;

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate double
negation or the subtraction of a negative value. The characters -- are used to begin comments
within SQL statements. You should separate consecutive minus signs with a space or
parentheses. Refer to Comments for more information on comments within SQL statements.

COLLATE Operator
The COLLATE operator determines the collation for an expression. This operator enables you to
override the collation that the database would have derived for the expression using standard
collation derivation rules.

COLLATE is a postfix unary operator. It has the same precedence as other unary operators, but
it is evaluated after all prefix unary operators have been evaluated.

You can apply this operator to expressions of type VARCHAR2, CHAR, LONG, NVARCHAR, or
NCHAR.

The COLLATE operator takes one argument, collation_name, for which you can specify a named
collation or pseudo-collation. If the collation name contains a space, then you must enclose the
name in double quotation marks.

Chapter 4
COLLATE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 66

Table 4-3 describes the COLLATE operator.

Table 4-3 COLLATE Operator

Operator Purpose Example

COLLATE collation_name Determines the collation
for an expression

SELECT last_name
 FROM employees
 ORDER BY last_name COLLATE GENERIC_M;

See Also

• Compound Expressions for information on using the COLLATE operator in a
compound expression

• Oracle Database Globalization Support Guide for more information on the
COLLATE operator

Concatenation Operator
The concatenation operator manipulates character strings and CLOB data. Table 4-4 describes
the concatenation operator.

Table 4-4 Concatenation Operator

Operator Purpose Example

|| Concatenates character strings and
CLOB data.

SELECT 'Name is ' || last_name
 FROM employees
 ORDER BY last_name;

The result of concatenating two character strings is another character string. If both character
strings are of data type CHAR, then the result has data type CHAR and is limited to 2000
characters. If either string is of data type VARCHAR2, then the result has data type VARCHAR2
and is limited to 32767 characters if the initialization parameter MAX_STRING_SIZE = EXTENDED
and 4000 characters if MAX_STRING_SIZE = STANDARD. Refer to Extended Data Types for more
information. If either argument is a CLOB, the result is a temporary CLOB. Trailing blanks in
character strings are preserved by concatenation, regardless of the data types of the string or
CLOB.

On most platforms, the concatenation operator is two solid vertical bars, as shown in Table 4-4.
However, some IBM platforms use broken vertical bars for this operator. When moving SQL
script files between systems having different character sets, such as between ASCII and
EBCDIC, vertical bars might not be translated into the vertical bar required by the target Oracle
Database environment. Oracle provides the CONCAT character function as an alternative to the
vertical bar operator for cases when it is difficult or impossible to control translation performed
by operating system or network utilities. Use this function in applications that will be moved
between environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a zero-length
character string with another operand always results in the other operand, so null can result
only from the concatenation of two null strings. However, this may not continue to be true in

Chapter 4
Concatenation Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 66

future versions of Oracle Database. To concatenate an expression that might be null, use the
NVL function to explicitly convert the expression to a zero-length string.

See Also

• Character Data Types for more information on the differences between the CHAR
and VARCHAR2 data types

• The functions CONCAT and NVL

• Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about CLOBs

• Oracle Database Globalization Support Guide for the collation derivation rules for
the concatenation operator

Concatenation Example

This example creates a table with both CHAR and VARCHAR2 columns, inserts values both with
and without trailing blanks, and then selects these values and concatenates them. Note that for
both CHAR and VARCHAR2 columns, the trailing blanks are preserved.

CREATE TABLE tab1 (col1 VARCHAR2(6), col2 CHAR(6),
 col3 VARCHAR2(6), col4 CHAR(6));

INSERT INTO tab1 (col1, col2, col3, col4)
 VALUES ('abc', 'def ', 'ghi ', 'jkl');

SELECT col1 || col2 || col3 || col4 "Concatenation"
 FROM tab1;

Concatenation

abcdef ghi jkl

Hierarchical Query Operators
Two operators, PRIOR and CONNECT_BY_ROOT, are valid only in hierarchical queries.

PRIOR
In a hierarchical query, one expression in the CONNECT BY condition must be qualified by the
PRIOR operator. If the CONNECT BY condition is compound, then only one condition requires the
PRIOR operator, although you can have multiple PRIOR conditions. PRIOR evaluates the
immediately following expression for the parent row of the current row in a hierarchical query.

PRIOR is most commonly used when comparing column values with the equality operator. (The
PRIOR keyword can be on either side of the operator.) PRIOR causes Oracle to use the value of
the parent row in the column. Operators other than the equal sign (=) are theoretically possible
in CONNECT BY clauses. However, the conditions created by these other operators can result in
an infinite loop through the possible combinations. In this case Oracle detects the loop at run
time and returns an error. Refer to Hierarchical Queries for more information on this operator,
including examples.

Chapter 4
Hierarchical Query Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 66

CONNECT_BY_ROOT
CONNECT_BY_ROOT is a unary operator that is valid only in hierarchical queries. When you
qualify a column with this operator, Oracle returns the column value using data from the root
row. This operator extends the functionality of the CONNECT BY [PRIOR] condition of hierarchical
queries.

Restriction on CONNECT_BY_ROOT

You cannot specify this operator in the START WITH condition or the CONNECT BY condition.

See Also

CONNECT_BY_ROOT Examples

Set Operators
Set operators combine the results of two component queries into a single result. Queries
containing set operators are called compound queries. Table 4-5 lists the SQL set operators.
They are fully described with examples in The Set Operators.

Table 4-5 Set Operators

Operator Returns

UNION All distinct rows selected by either query

UNION ALL All rows selected by either query, including duplicates

INTERSECT All distinct rows selected by both queries

INTERSECT ALL All rows selected by both queries including duplicates

MINUS All distinct rows selected by the first query but not the second

MINUS ALL All rows selected by the first query but not the second including duplicates

EXCEPT All distinct rows selected by the first query but not the second

EXCEPT ALL All rows selected by the first query but not the second including duplicates

Multiset Operators
Multiset operators combine the results of two nested tables into a single nested table.

The examples related to multiset operators require that two nested tables be created and
loaded with data as follows:

First, make a copy of the oe.customers table called customers_demo:

CREATE TABLE customers_demo AS
 SELECT * FROM customers;

Next, create a table type called cust_address_tab_typ. This type will be used when creating the
nested table columns.

Chapter 4
Set Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 66

CREATE TYPE cust_address_tab_typ AS
 TABLE OF cust_address_typ;
/

Now, create two nested table columns in the customers_demo table:

ALTER TABLE customers_demo
 ADD (cust_address_ntab cust_address_tab_typ,
 cust_address2_ntab cust_address_tab_typ)
 NESTED TABLE cust_address_ntab STORE AS cust_address_ntab_store
 NESTED TABLE cust_address2_ntab STORE AS cust_address2_ntab_store;

Finally, load data into the two new nested table columns using data from the cust_address column
of the oe.customers table:

UPDATE customers_demo cd
 SET cust_address_ntab =
 CAST(MULTISET(SELECT cust_address
 FROM customers c
 WHERE c.customer_id =
 cd.customer_id) as cust_address_tab_typ);

UPDATE customers_demo cd
 SET cust_address2_ntab =
 CAST(MULTISET(SELECT cust_address
 FROM customers c
 WHERE c.customer_id =
 cd.customer_id) as cust_address_tab_typ);

MULTISET EXCEPT
MULTISET EXCEPT takes as arguments two nested tables and returns a nested table whose
elements are in the first nested table but not in the second nested table. The two input nested
tables must be of the same type, and the returned nested table is of the same type as well.

nested_table1 MULTISET EXCEPT

ALL

DISTINCT

nested_table2

• The ALL keyword instructs Oracle to return all elements in nested_table1 that are not in
nested_table2. For example, if a particular element occurs m times in nested_table1 and n times
in nested_table2, then the result will have (m-n) occurrences of the element if m >n and 0
occurrences if m<=n. ALL is the default.

• The DISTINCT keyword instructs Oracle to eliminate any element in nested_table1 which is
also in nested_table2, regardless of the number of occurrences.

• The element types of the nested tables must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of those
elements found in the first nested table but not in the second nested table:

SELECT customer_id, cust_address_ntab
 MULTISET EXCEPT DISTINCT cust_address2_ntab multiset_except
 FROM customers_demo

Chapter 4
Multiset Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 66

 ORDER BY customer_id;

CUSTOMER_ID MULTISET_EXCEPT(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
----------- --
 101 CUST_ADDRESS_TAB_TYP()
 102 CUST_ADDRESS_TAB_TYP()
 103 CUST_ADDRESS_TAB_TYP()
 104 CUST_ADDRESS_TAB_TYP()
 105 CUST_ADDRESS_TAB_TYP()
. . .

The preceding example requires the table customers_demo and two nested table columns
containing data. Refer to Multiset Operators to create this table and nested table columns.

MULTISET INTERSECT
MULTISET INTERSECT takes as arguments two nested tables and returns a nested table whose
values are common in the two input nested tables. The two input nested tables must be of the
same type, and the returned nested table is of the same type as well.

nested_table1 MULTISET INTERSECT

ALL

DISTINCT

nested_table2

• The ALL keyword instructs Oracle to return all common occurrences of elements that are in
the two input nested tables, including duplicate common values and duplicate common
NULL occurrences. For example, if a particular value occurs m times in nested_table1 and n
times in nested_table2, then the result would contain the element min(m,n) times. ALL is the
default.

• The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned nested
table, including duplicates of NULL, if they exist.

• The element types of the nested tables must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of those
elements found in both input nested tables:

SELECT customer_id, cust_address_ntab
 MULTISET INTERSECT DISTINCT cust_address2_ntab multiset_intersect
 FROM customers_demo
 ORDER BY customer_id;

CUSTOMER_ID MULTISET_INTERSECT(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID
----------- ---
 101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
 102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'))
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
 104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
 105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))
. . .

The preceding example requires the table customers_demo and two nested table columns
containing data. Refer to Multiset Operators to create this table and nested table columns.

Chapter 4
Multiset Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 66

MULTISET UNION
MULTISET UNION takes as arguments two nested tables and returns a nested table whose
values are those of the two input nested tables. The two input nested tables must be of the
same type, and the returned nested table is of the same type as well.

nested_table1 MULTISET UNION

ALL

DISTINCT

nested_table2

• The ALL keyword instructs Oracle to return all elements that are in the two input nested
tables, including duplicate values and duplicate NULL occurrences. This is the default.

• The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned nested
table, including duplicates of NULL, if they exist.

• The element types of the nested tables must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of elements
from both input nested tables:

SELECT customer_id, cust_address_ntab
 MULTISET UNION cust_address2_ntab multiset_union
 FROM customers_demo
 ORDER BY customer_id;

CUSTOMER_ID MULTISET_UNION(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
----------- ---
 101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'),
 CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
 102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'),
 CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN','US'))
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'),
 CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
 104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'),
 CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
 105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'),
 CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))
. . .

The preceding example requires the table customers_demo and two nested table columns
containing data. Refer to Multiset Operators to create this table and nested table columns.

SHARD_CHUNK_ID Operator
You can use the SQL operator SHARD_CHUNK_ID to get the chunk ID in a sharding
environment. You must provide the table family ID and the sharding key as input.

This operator can be used in all three sharding types: system, user-defined, and composite.
You can run the operator from the catalog and the shard.

Syntax

SELECT SHARD_CHUNK_ID(table_family, sharding_key1 [, sharding_key2 ...]) FROM table_name ...

Chapter 4
SHARD_CHUNK_ID Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 66

Semantics

table_family

The first operand table_family refers to the identifier of the table family. It can be:

• The table family id that can be queried from the GSMADMIN_INTERNAL.TABLE_FAMILY table,
or

• The name of the root table in the form of SCHEMA_NAME.TABLE_NAME .

If there is only one table family across the entire sharding environment, table_family can take
NULL as input. This will default to the existing single table family.

sharding_key

The second operand sharding_key refers to a list of sharding keys. It can be a constant value or
column name.

You must order the list of sharding keys as follows:

1. List of super-sharding keys in the order they are defined.

2. List of sharding keys in the order they are defined. For this refer to
GSMADMIN_INTERNAL.SHARDKEY_COLUMNS .

In system and user-defined sharding environments, where super-sharding keys are not used,
you only need to supply sharding keys.

Example

Given the composite sharded table customers defined as follows:

CREATE SHARDED TABLE customers (
 custno NUMBER NOT NULL,
 name VARCHAR2(50) NOT NULL,
 signup DATE DEFAULT NULL,
 class VARCHAR2(3) NOT NULL,
CONSTRAINT cust_pk PRIMARY KEY(custno,name))
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (custno,name)
PARTITIONS AUTO
(PARTITIONSET gold VALUES ('gld') TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES ('slv') TABLESPACE SET tbs2)
;

You can query it for the chunk ID with the following statement:

SELECT SHARD_CHUNK_ID(null, class, custno, name) FROM customers;

See Also

• Using Oracle Sharding

Chapter 4
SHARD_CHUNK_ID Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 66

User-Defined Operators
Like built-in operators, user-defined operators take a set of operands as input and return a
result. However, you create them with the CREATE OPERATOR statement, and they are identified
by user-defined names. They reside in the same namespace as tables, views, types, and
standalone functions.

After you have defined a new operator, you can use it in SQL statements like any other built-in
operator. For example, you can use user-defined operators in the select list of a SELECT
statement, the condition of a WHERE clause, or in ORDER BY clauses and GROUP BY clauses.
However, you must have EXECUTE privilege on the operator to do so, because it is a user-
defined object.

See Also

CREATE OPERATOR for an example of creating an operator and Oracle Database
Data Cartridge Developer's Guide for more information on user-defined operators

Data Quality Operators
You can expand data quality capabilities within Oracle Database with string matching operators
PHONIC_ENCODE and FUZZY_MATCH.

These operators can help you find near duplicate rows by matching strings that sounds alike or
have small differences in spelling, for example:

• "Chris" and "Kris", in strings that sound alike

• "kitten" and "sitten", in strings that have small differences in spelling

FUZZY_MATCH
FUZZY_MATCH takes the algorithm to be used as the first argument, the strings to be processed
as the second and third arguments, and some optional arguments that control the quality of the
desired output.

FUZZY_MATCH (

LEVENSHTEIN

DAMERAU_LEVENSHTEIN

JARO_WINKLER

BIGRAM

TRIGRAM

WHOLE_WORD_MATCH

LONGEST_COMMON_SUBSTRING

, str1 , str2

,

UNSCALED

RELATE_TO_SHORTER

EDIT_TOLERANCE number

)

The UTL_MATCH package evaluates byte by byte, while FUZZY_MATCH evaluates character by
character. Therefore UTL_MATCH only works for comparison between single-byte strings while
FUZZY_MATCH handles multi-byte charactersets.

Chapter 4
User-Defined Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 66

When the UNSCALED option is specified, FUZZY_MATCH returns a measure in characters for the
following algorithms: LEVENSHTEIN , DAMERAU_LEVENSHTEIN , BIGRAM , TRIGRAM ,
LONGEST_COMMON_SUBSTRING .

Arguments

The supported algorithms are:

• LEVENSHTEIN corresponds to UTL_MATCH.EDIT_DISTANCE or UTL_MATCH.EDIT_SIMILARITY
and gives a measure of character edit distance or similarity.

• DAMERAU_LEVENSHTEIN distance differs from the classical LEVENSHTEIN distance by
including transpositions among its allowable operations in addition to the three classical
single-character edit operations (insertions, deletions and substitutions).

• JARO_WINKLER corresponds to UTL_MATCH.JARO_WINKLER (a percentage between 0-1) or
UTL_MATCH.JARO_WINKLER_SIMILARITY (the same but scaled from 0-100).

• BIGRAM and TRIGRAM are instances of the N-gram matching technique, which counts the
number of common contiguous sub-strings (grams) between the two strings.

• WHOLE_WORD_MATCH corresponds to Word Match Percentage or Count comparison in
Oracle Enterprise Data Quality. It calculates the LEVENSHTEIN or edit distance of two
phrases with words (instead of letters) as matching units.

• LONGEST_COMMON_SUBSTRING finds the longest common substring between the two
strings.

Both str arguments can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2.

UNSCALED

The keyword UNSCALED is optional. If you specify UNSCALED the return is one of :

• LEVENSHTEIN or edit distance

• JARO_WINKLER value in percentage

• N-grams, the number of common substrings

• LCS, the length of the longest common substring

RELATE_TO_SHORTER

The keyword RELATE_TO_SHORTER is optional. If you specify RELATE_TO_SHORTER, then the
similarity measure is scaled by the length of the shorter input string. If you do not specify
RELATE_TO_SHORTER, then the default behavior is that the longer string length is used as the
denominator.

EDIT_TOLERANCE

The keyword EDIT_TOLERANCE is optional. You can only specify EDIT_TOLERANCE with the
WHOLE_WORD_MATCH algorithm. If you specify EDIT_TOLERANCE, the character error tolerance
is the maximum percentage of the number of characters in a word that you allow to be
different, while still considering each word as the same.

Returns

The operator returns NUMBER. By default, it is a similarity score normalized to be a percentage
between 0-100.

Examples

SQL> select fuzzy_match(LEVENSHTEIN, 'Mohamed Tarik', 'Mo Tariq') from dual;

Chapter 4
Data Quality Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 66

FUZZY_MATCH(LEVENSHTEIN,'MOHAMEDTARIK','MOTARIQ')

 54

1 row selected.

SQL> select fuzzy_match(LEVENSHTEIN, 'Mohamed Tarik', 'Mo Tariq', unscaled) from dual;

FUZZY_MATCH(LEVENSHTEIN,'MOHAMEDTARIK','MOTARIQ',UNSCALED)
--
 6

1 row selected.

SQL> select fuzzy_match(DAMERAU_LEVENSHTEIN, 'Mohamed Tarik', 'Mo Tariq', relate_to_shorter) from dual;

FUZZY_MATCH(DAMERAU_LEVENSHTEIN,'MOHAMEDTARIK','MOTARIQ',RELATE_TO_SHORTER)

 25

1 row selected.

SQL> select fuzzy_match(BIGRAM, 'Mohamed Tarik', 'Mo Tariq', unscaled) from dual;

FUZZY_MATCH(BIGRAM,'MOHAMEDTARIK','MOTARIQ',UNSCALED)

 5

1 row selected.

SQL> select fuzzy_match(LONGEST_COMMON_SUBSTRING, 'Mohamed Tarik', 'Mo Tariq', unscaled) from dual;

FUZZY_MATCH(LONGEST_COMMON_SUBSTRING,'MOHAMEDTARIK','MOTARIQ',UNSCALED)

 5

1 row selected.

SQL> select fuzzy_match(WHOLE_WORD_MATCH, 'Mohamed Tarik', 'Mo Tariq') from dual;

FUZZY_MATCH(WHOLE_WORD_MATCH,'MOHAMEDTARIK','MOTARIQ')
--
 0

1 row selected

SQL> select fuzzy_match(WHOLE_WORD_MATCH, 'Pawan Kumar Goel', 'Pavan Kumar G', EDIT_TOLERANCE 60) from dual;

FUZZY_MATCH(WHOLE_WORD_MATCH,'PAWANKUMARGOEL','PAVANKUMARG',EDIT_TOLERANCE60)

 67

1 row selected.

PHONIC_ENCODE
PHONIC_ENCODE takes the algorithm to be used as the first argument, the string to be
processed as the second argument, and an optional max_code_len argument that controls the
length of the desired output. max_code_len must be an integer between 1 and 12.

Chapter 4
Data Quality Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 66

PHONIC_ENCODE (
DOUBLE_METAPHONE

DOUBLE_METAPHONE_ALT
, str

, max_code_len

)

Arguments

DOUBLE_METAPHONE returns the primary code. DOUBLE_METAPHONE_ALT returns the alternative
code if present. If the alternative code is not present, it returns the primary code.

str can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2.

The optional argument max_code_len must be an integer. It allows codes longer than the default 4
characters to be returned for the original Metaphone algorithm.

Returns

The operator returns VARCHAR2.

Examples

SQL> select phonic_encode(DOUBLE_METAPHONE, 'smith') c1,
 2 phonic_encode(DOUBLE_METAPHONE_ALT, 'smith') c2 from dual;

C1 C2
------------- -------------
SM0 XMT

1 row selected.

SQL> select phonic_encode(DOUBLE_METAPHONE, 'Schmidt') c1,
 2 phonic_encode(DOUBLE_METAPHONE_ALT, 'Schmidt') c2 from dual;

C1 C2
------------- -------------
XMT SMT

1 row selected.

SQL> select phonic_encode(DOUBLE_METAPHONE, 'phone') c1,
 2 phonic_encode(DOUBLE_METAPHONE_ALT, 'phone') c2 from dual;

C1 C2
------------- -------------
FN FN

1 row selected.

SQL> select phonic_encode(DOUBLE_METAPHONE, 'George') c1,
 2 phonic_encode(DOUBLE_METAPHONE_ALT, 'George') c2 from dual;

C1 C2
------------- -------------
JRJ KRK

1 row selected.

SQL> -- PNNT / PKNNT
SQL> select phonic_encode(DOUBLE_METAPHONE, 'poignant') c1,
 2 phonic_encode(DOUBLE_METAPHONE_ALT, 'poignant') c2,
 3 phonic_encode(DOUBLE_METAPHONE_ALT, 'poignant', 10) c3 from dual;

Chapter 4
Data Quality Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 66

C1 C2 C3
------------- ------------- -------------
PNNT PKNN PKNNT

GRAPH_TABLE Operator
Purpose

The GRAPH_TABLE operator can be used as a table expression in a FROM clause. It takes a
graph as input against which it matches a specified graph pattern. It then outputs a set of
solutions in tabular form.

This topic consists of the following sub-topics:

• Graph Reference

• Graph Pattern

• Graph Table Shape

• Value Expressions for GRAPH_TABLE

Syntax

graph_table::=

GRAPH_TABLE (graph_reference graph_pattern graph_table_shape)

(graph_reference ::=, graph_pattern ::=, graph_table_shape ::=)

Semantics

TheGRAPH_TABLE operator starts with the keyword GRAPH_TABLE and consists of the following
three parts that are placed between parentheses:

• graph_reference: a reference to a graph to perform the pattern matching on. Note that any
graph first needs to be created through a CREATE PROPERTY GRAPH statement before it can
be referenced in a GRAPH_TABLE.

• graph_pattern: a graph pattern consisting of vertex and edge patterns together with search
conditions. The pattern is matched against the graph to obtain a set of solutions.

• graph_table_shape: a COLUMNS clause that projects the solutions into a tabular form.

A FROM clause in SQL may contain any number of GRAPH_TABLE operators as well as other
types of table expressions. This allows for joining data from multiple graphs or for joining graph
data with tabular, JSON, XML, or other types of data.

Examples

Setting Up Sample Data

This example creates a property graph, students_graph, using persons,university, friendships, and
students as the underlying database tables for the graph.

The following statements first create the necessary tables and fill them with sample data:

CREATE TABLE university (

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 66

 id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 1),
 name VARCHAR2(10),
 CONSTRAINT u_pk PRIMARY KEY (id));
INSERT INTO university (name) VALUES ('ABC');
INSERT INTO university (name) VALUES ('XYZ');

CREATE TABLE persons (
 person_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT
 BY 1),
 name VARCHAR2(10),
 birthdate DATE,
 height FLOAT DEFAULT ON NULL 0,
 person_data JSON,
 CONSTRAINT person_pk PRIMARY KEY (person_id));

INSERT INTO persons (name, height, birthdate, person_data)
 VALUES ('John', 1.80, to_date('13/06/1963', 'DD/MM/YYYY'), '{"department":"IT","role":"Software Developer"}');

INSERT INTO persons (name, height, birthdate, person_data)
 VALUES ('Mary', 1.65, to_date('25/09/1982', 'DD/MM/YYYY'), '{"department":"HR","role":"HR Manager"}');

INSERT INTO persons (name, height, birthdate, person_data)
 VALUES ('Bob', 1.75, to_date('11/03/1966', 'DD/MM/YYYY'), '{"department":"IT","role":"Technical Consultant"}');

INSERT INTO persons (name, height, birthdate, person_data)
 VALUES ('Alice', 1.70, to_date('01/02/1987', 'DD/MM/YYYY'), '{"department":"HR","role":"HR Assistant"}');

CREATE TABLE students (
 s_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 1),
 s_univ_id NUMBER,
 s_person_id NUMBER,
 subject VARCHAR2(10),
 CONSTRAINT stud_pk PRIMARY KEY (s_id),
 CONSTRAINT stud_fk_person FOREIGN KEY (s_person_id) REFERENCES persons(person_id),
 CONSTRAINT stud_fk_univ FOREIGN KEY (s_univ_id) REFERENCES university(id)
);

INSERT INTO students(s_univ_id, s_person_id,subject) VALUES (1,1,'Arts');
INSERT INTO students(s_univ_id, s_person_id,subject) VALUES (1,3,'Music');
INSERT INTO students(s_univ_id, s_person_id,subject) VALUES (2,2,'Math');
INSERT INTO students(s_univ_id, s_person_id,subject) VALUES (2,4,'Science');

CREATE TABLE friendships (
 friendship_id NUMBER GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 1),
 person_a NUMBER,
 person_b NUMBER,
 meeting_date DATE,
 CONSTRAINT fk_person_a_id FOREIGN KEY (person_a) REFERENCES persons(person_id),
 CONSTRAINT fk_person_b_id FOREIGN KEY (person_b) REFERENCES persons(person_id),
 CONSTRAINT fs_pk PRIMARY KEY (friendship_id)
);

INSERT INTO friendships (person_a, person_b, meeting_date) VALUES (1, 3, to_date('01/09/2000', 'DD/MM/YYYY'));
INSERT INTO friendships (person_a, person_b, meeting_date) VALUES (2, 4, to_date('19/09/2000', 'DD/MM/YYYY'));
INSERT INTO friendships (person_a, person_b, meeting_date) VALUES (2, 1, to_date('19/09/2000', 'DD/MM/YYYY'));
INSERT INTO friendships (person_a, person_b, meeting_date) VALUES (3, 2, to_date('10/07/2001', 'DD/MM/YYYY'));

The following statement creates a graph on top of the tables:

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 66

CREATE PROPERTY GRAPH students_graph
 VERTEX TABLES (
 persons KEY (person_id)
 LABEL person
 PROPERTIES (person_id, name, birthdate AS dob)
 LABEL person_ht
 PROPERTIES (height),
 university KEY (id)
)
 EDGE TABLES (
 friendships AS friends
 KEY (friendship_id)
 SOURCE KEY (person_a) REFERENCES persons(person_id)
 DESTINATION KEY (person_b) REFERENCES persons(person_id)
 PROPERTIES (friendship_id, meeting_date),
 students AS student_of
 SOURCE KEY (s_person_id) REFERENCES persons(person_id)
 DESTINATION KEY (s_univ_id) REFERENCES university(id)
 PROPERTIES (subject)
);

This creates the following graph:

Example: GRAPH_TABLE Query

The following query matches a pattern on graph students_graph to find friends of a person named
John:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (a IS person) -[e IS friends]- (b IS person)
 WHERE a.name = 'John'
 COLUMNS (b.name)
);

In the query:

• (a IS person) is a vertex pattern that matches vertices labeled person and binds the solutions
to a variable a.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 66

• -[e IS friends]- is an edge pattern that matches either incoming or outgoing edges labeled
friends and binds the solutions to a variable e.

• (b IS person) is another vertex pattern that matches vertices labeled person and binds the
solutions to a variable b.

• WHERE a.name = 'John' is a search condition that accesses the property name from vertices
bound to variable a to compare against the value John.

• COLUMNS (b.name) specifies to return the property name of vertex b as part of the output table.

The output is:

NAME

Mary
Bob

See Also

• SQL Property Graph

• For property graph definitions and terminology , see CREATE PROPERTY
GRAPH.

Graph Reference
Purpose

Each GRAPH_TABLE starts with a graph reference that references the graph to perform the
pattern matching on.

Prerequisites

To query a property graph, you must have READ or SELECT object privilege on the graph. Note
that you do not require READ or SELECT object privilege on the tables or materialized views that
underlie the graph.

To issue an Oracle Flashback Query using the graph_ref_as_of_clause in GRAPH_TABLE, you must
additionally have FLASHBACK object privilege on the tables and materialized views that underlie
the graph. This is needed only for those tables and views that are accessed by the query,
based on the specified graph pattern and label expressions used therein. Alternatively, you
must have FLASHBACK ANY TABLE system privilege.

Syntax

graph_reference::=

graph_name

graph_ref_as_of_clause

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 66

graph_name::=

schema_qualified_name

graph_ref_as_of_clause::=

AS OF

SCN

TIMESTAMP
expr

PERIOD FOR valid_time_column expr

Semantics

A graph name may be qualified with a schema name to allow for querying graphs created by
other users. Furthermore, you can specify the graph_ref_as_of_clause clause to retrieve the result
of the graph query at a particular change number (SCN) or timestamp. If you specify SCN, then
expr must evaluate to a number. If you specify TIMESTAMP, then expr must evaluate to a
timestamp value. In either case, expr cannot evaluate to NULL.

Example 1

The following query counts the number of persons in the students_graph owned by user scott:

SELECT COUNT(*)
FROM GRAPH_TABLE (scott.students_graph
 MATCH (a IS person)
 COLUMNS (a.name)
);

The output is:

 COUNT(*)

 4

Example 2

The following example queries a graph at two different timestamps. It first inserts a new row
into the university table that underlies the students_graph. It then queries versions of the graph
before and after the insertion.

INSERT INTO university (name) VALUES ('u3');

SELECT COUNT(*)
FROM GRAPH_TABLE (
 students_graph
 MATCH (u IS university)
 COLUMNS (u.*)
);

SELECT COUNT(*)

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 66

FROM GRAPH_TABLE (
 students_graph AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '2' MINUTE)
 MATCH (u IS university)
 COLUMNS (u.*)
);

DELETE FROM university WHERE name = 'u3';

The output of the first query is:

 COUNT(*)

 3

The output of the second query is:

 COUNT(*)

 2

Note: this example assumes that the second SELECT query is run at least two minutes after the
graph was created and within two minutes after running the INSERT statement, otherwise the
output is different.

Graph Pattern
Purpose

A graph pattern consists of a set of vertex and edge patterns together with search conditions.
A graph pattern is matched against a graph to obtain a set of solutions containing bindings for
each vertex and edge variable in the pattern.

This topic has the following sub-topics:

• Path Pattern

• Element Pattern

• Quantified Path Pattern

• Parenthesized Path Pattern

• Graph Pattern WHERE Clause

Syntax

graph_pattern::=

MATCH path_pattern_list

graph_pattern_where_clause

path_pattern_list::=

path_pattern

,

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 66

Semantics

A graph pattern contains the following parts:

• MATCH keyword.

• path_pattern_list: a list containing one or more comma-separated path patterns.

• graph_pattern_where_clause: an optional WHERE clause defining a search condition that may
reference vertices and edges from the pattern.

Two path patterns inside the same GRAPH_TABLE may share vertex and edge variables to allow
for creating more complex, non-linear patterns. Variables may also be repeated within a single
path pattern to create a cyclic pattern. If multiple vertex or edge patterns share a variable then
all the label expressions and element pattern WHERE clauses in those patterns must satisfy for
binding to the element variable to occur.

If there are no shared variables between two path patterns, then the solution set is a cross
product of the solutions of the individual path patterns.

Restrictions

A vertex variable may not have the same name as an edge variable.

Examples

Example 1

The following query finds cyclic paths from Mary via two other persons back to Mary. Only
incoming edges are matched (<-[..]-).

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (a IS person) <-[e1 IS friends]- (b IS person)
 <-[e2 IS friends]- (c IS person)
 <-[e3 is friends]- (a IS person)
 WHERE a.name= 'Mary'
 COLUMNS (a.name AS person_a, b.name AS person_b, c.name AS person_c)
);

Here, the graph pattern consists of a single path pattern that has four vertex patterns and three
edge patterns. The first vertex pattern shares a variable a with the last vertex pattern so that
the pattern matches cyclic paths.

Only a single path matches the pattern:

PERSON_A PERSON_B PERSON_C
---------- ---------- ----------
Mary Bob John

Here, the output shows that a path was matched that starts in Mary with an incoming edge to
Bob, followed by an incoming edge to John, followed by an incoming edge back to Mary.

The same query may also be expressed by breaking up the single path pattern into multiple
path patterns as follows:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (a IS person) <-[e1 IS friends]- (b IS person),

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 66

 (b) <-[e2 IS friends]- (c IS person),
 (c) <-[e3 is friends]- (a IS person)
 WHERE a.name= 'Mary'
 COLUMNS (a.name AS person_a, b.name AS person_b, c.name AS person_c)
);

Here, the first path pattern shares variable b with the second path pattern, the second path
pattern shares variable c with the third path pattern, and the third path pattern shares variable a
with the first path pattern.

Path Pattern

Purpose

A path pattern specifies a linear pattern that matches a string of vertices and edges. Path
patterns are made up of the concatenation of one or more vertex and edge patterns. Vertex
and edge patterns may be quantified as well as parenthesized.

Syntax

path_pattern::=

path_variable_declaration

path_pattern_expression

path_variable_declaration::=

path_variable =

path_variable::=

identifier

path_pattern_expression::=

path_term

path_term::=

path_factor

path_concatenation

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 66

path_factor::=

path_primary

quantified_path_primary

path_concatenation::=

path_term path_factor

path_primary::=

element_pattern

parenthesized_path_pattern_expression

Semantics

Syntactically, a path pattern starts with an optional path variable declaration followed by one or
more element patterns, which are either vertex patterns or edge patterns.

The element patterns of a path pattern are not required to alternate between vertex and edge
patterns; there may be two consecutive edge patterns or two consecutive vertex patterns.
These topologically inconsistent patterns are understood during pattern matching as follows:

• Two consecutive vertex patterns bind to the same vertex.

• Two consecutive edge patterns conceptually have an implicit vertex pattern between them.

Restrictions

Path patterns have the following restrictions:

• A path pattern may only contain two consecutive vertex patterns if one of the vertex
patterns is contained in a parenthesized path pattern while the other one is not.

• A parenthesized path pattern must be quantified.

• Path variables cannot be multiply declared. This means that a path variable may not be
declared with the same name as an element variable, an iterator variable, or another path
variable.

Examples

Example 1

The following query counts the number of vertices in the graph:

SELECT COUNT(*)
FROM GRAPH_TABLE (students_graph
 MATCH (v)
 COLUMNS (1 AS dummy)
);

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 66

Note that the COLUMNS clause needs to contain at least one expression, hence a dummy value
is projected but it is not returned from the query.

The result is:

 COUNT(*)

 6

Example 2

The following query counts the number of edges in the graph:

SELECT COUNT(*)
FROM GRAPH_TABLE (students_graph
 MATCH -[e]->
 COLUMNS (1 AS dummy)
);

The result is:

 COUNT(*)

 8

Example 3

The following query finds persons that are two friend hops away from Mary, following either
incoming or outgoing friends edges:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person) -[IS friends]- () -[IS friends]- (m IS person)
 WHERE n.name = 'Mary' AND m.name <> n.name
 COLUMNS (m.name AS fof)
);

In the path pattern above:

• (n IS person) is a vertex pattern that has a variable n and a label expression IS person.

• -[IS friends]- is an any-directed edge pattern that has an implicit variable and a label
expression IS friends.

• () is a vertex pattern that has an implicit variable and no label expression such that it
matches vertices having any label(s).

• -[IS friends]- is again an any-directed edge pattern that has an implicit variable and a label
expression IS friends.

• (n IS person) is a vertex pattern that has a variable n and a label expression IS person.

The result is:

FOF

Bob
John

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 66

Note that the query above can also be expressed as:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person) -[IS friends]- -[IS friends]- (m IS person)
 WHERE n.name = 'Mary' AND m.name <> n.name
 COLUMNS (m.name AS fof)
);

Here, the vertex pattern between the two edge patterns is implicit.

The same query can be expressed using a quantifier to avoid the repeated specification of the
same edge pattern:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person) -[IS friends]-{2}(m IS person)
 WHERE n.name = 'Mary' AND m.name <> n.name
 COLUMNS (m.name AS fof)
);

Quantified path patterns may be parenthesized:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person) (-[IS friends]-){2}(m IS person)
 WHERE n.name = 'Mary' AND m.name <> n.name
 COLUMNS (m.name AS fof)
);

Note that each of the syntax variations above gives the same result:

FOF

Bob
John

Element Pattern

Purpose

An element pattern is either a vertex pattern or an edge pattern. The result of matching an
element pattern is the binding of vertices or edges to the implicitly or explicitly declared
variable of the element pattern.

This section comprises the following sections:

• Vertex Pattern

• Edge Pattern

• Element Pattern Filler

• Element Variable

• Label Expression

• Element Pattern WHERE Clause

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 66

Syntax

element_pattern::=

vertex_pattern

edge_pattern

Vertex Pattern

Purpose

A vertex pattern is a pattern that matches vertices in a graph. The result of such matching is
the binding of a set of vertices to the implicitly or explicitly declared variable of the vertex
pattern.

Syntax

vertex_pattern::=

(element_pattern_filler)

Semantics

Visually, a vertex pattern has two parentheses () to mimic a circle since vertices are typically
represented by circles in visualizations of graphs.

Examples

Example 1

The following query counts the number of vertices in the graph:

SELECT COUNT(*)
FROM GRAPH_TABLE (students_graph
 MATCH (v)
 COLUMNS (1 AS dummy)
);

Note that the COLUMNS clause needs to contain at least one expression, hence a dummy value
is projected but it is not returned from the query.

The result is:

 COUNT(*)

 6

Example 2

The following query matches all persons with a date of birth greater than 1 January 1980:

SELECT name, birthday

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 66

FROM GRAPH_TABLE (students_graph
 MATCH (p IS person WHERE p.dob > DATE '1980-01-01')
 COLUMNS (p.name, p.dob AS birthday)
)
ORDER BY birthday;

The result is:

NAME BIRTHDAY
---------- ---------
Mary 25-SEP-82
Alice 01-FEB-87

Edge Pattern

Purpose

An edge pattern is a pattern that matches edges in a graph. The result of such matching is the
binding of a set of edges to the implicitly or explicitly declared variable of the edge pattern.

Syntax

edge_pattern::=

full_edge_pattern

abbreviated_edge_pattern

full_edge_pattern::=

full_edge_pointing_right

full_edge_pointing_left

full_edge_any_direction

full_edge_pointing_right::=

– [element_pattern_filler] –>

full_edge_pointing_left::=

<– [element_pattern_filler] –

full_edge_any_direction::=

–[element_pattern_filler]–

<–[element pattern_filler]–>

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 66

abbreviated_edge_pattern::=

–>

<–

–

<–>

Semantics

Visually, an edge pattern mimics an arrow since edges are typically represented by arrows in
visualizations of graphs. For example, <-[]- or <- are incoming edge patterns because they look
like incoming arrows, while -[]-> or -> are outgoing edge patterns because they look like
outgoing arrows.

An edge_pattern is either a full_edge_pattern or an abbreviated_edge_pattern. The full edge
pattern has an element_pattern_filler with optional element pattern variable, label expression
and element pattern WHERE clause, while the abbreviated edge pattern provides syntactic
sugar in case none of the three optional filler parts are needed.

The following table summarizes the options:

Table 4-6 Summary of Edge Patterns

Directionality Full Edge Pattern Abbreviated Edge Pattern

Directed pointing to the right -[] -> ->

Directed pointing to the left <-[]- <-

Any-Directed: pointing to the right
or the left

-[]- or <-[]-> -

Note that since the abbreviated syntax does not allow for providing a variable name, a label
expression, or an element pattern WHERE clause, abbreviated edge patterns match with all
edges in the graph that have the specified direction.

Examples

Example 1

The following query counts the number of edges in the graph:

SELECT COUNT(*)
FROM GRAPH_TABLE (students_graph
 MATCH ->
 COLUMNS (1 AS dummy)
);

The result is:

 COUNT(*)

 8

Example 2

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 66

The following query matches all friends edges that have a property meeting_date with a value
greater than DATE '2000-01-01':

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH -[e IS friends WHERE e.meeting_date > DATE '2001-01-01']->
 COLUMNS (e.meeting_date)
);

The result is:

MEETING_D

10-JUL-01

Element Pattern Filler

Purpose

Vertex patterns and full edge patterns have a filler for providing an optional variable
declaration, an optional label expression, and an optional WHERE clause.

Syntax

element_pattern_filler::=

element_variable_declaration is_label_expression element_pattern_where_clause

Semantics

Vertex patterns and full edge patterns and have a filler containing the following parts:

• An optional element_variable_declaration for providing a variable name for the element pattern
so that the element can be referenced elsewhere, for example in WHERE and COLUMNS
clauses. If no variable name is specified, a variable is implicit and cannot be referenced.

• An optional is_label_expression for defining a label expression. Vertices and edges only match
if they satisfy the specified label expression.

• An optional element_pattern_where_clause for defining an in-lined search condition. Vertices and
edges only match if they satisfy the specified search condition.

Examples

Example 1

The following query finds persons that are two friend hops away from Mary, following either
incoming or outgoing friends edges:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person WHERE n.name = 'Mary')
 -[e IS friends WHERE e.meeting_date > DATE '2001-01-01']-
 () -[IS friends]- (m IS person)
 WHERE m.name <> n.name

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 66

 COLUMNS (m.name, e.meeting_date)
);

In the path pattern above:

• (n IS person WHERE n.name = 'Mary') is a vertex pattern that has a variable n, a label expression
IS person and an element pattern WHERE clause WHERE n.name = 'Mary'.

• -[e IS friends WHERE e.meeting_date > DATE '2001-01-01']- is an any-directed edge pattern that has a
variable e, a label expression IS friends and an element pattern WHERE clause WHERE
e.meeting_date > DATE '2001-01-01'.

• () is a vertex pattern that has an implicit variable and neither has a label expression nor an
element pattern WHERE clause.

• -[IS friends]- is an any-directed edge pattern that has an implicit variable, a label expression
IS friends but no element pattern WHERE clause.

• (n IS person) is a vertex pattern that has a variable n, a label expression IS person but no
element pattern WHERE clause.

The result is:

NAME MEETING_D
---------- ---------
John 10-JUL-01

Element Variable

Purpose

Element variables are either vertex or edge variables. During pattern matching, the variables
will bind to sets of vertices or edges in the graph. Element variables can be referenced from
other places in the query to access data of vertices and edges, such as their property values.

Syntax

element_variable_declaration::=

element_variable

element_variable::=

identifier

Semantics

Syntactically, an element_variable_declaration is an identifier and can thus be either double quoted
or unquoted. Declaring an element variable is optional and if no element variable is declared
then the element pattern has an implicit variable with an (implicit) unique name. Implicit
variables cannot be referenced elsewhere in the query.

Multiple vertex patterns may declare the same element variable and multiple edge patterns
may also declare the same element variable. In such cases, there are not multiple variables
but there is a single variable that is shared by the different vertex or edge patterns.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 66

Declared variables are visible within the GRAPH_TABLE in which they are declared. They may
be referenced in WHERE and COLUMNS clauses defined in the same GRAPH_TABLE.

If an element variable is declared in a quantified path pattern, then it may bind to more than
one vertex or edge within a single solution to the pattern. References are interpreted
contextually: if the reference occurs outside the quantified path pattern, then the reference is to
the complete list of graph elements that are bound to the element variable. In this
circumstance, the element variable is said to have group degree of reference. However, if the
reference does not cross a quantifier, then the reference has singleton degree of reference.

For example, in (X) -[E WHERE E.P > 1]->{1,10} (Y) WHERE SUM(E.P) < 100 the edge variable E is
referenced twice: once in the edge pattern and once outside the edge pattern. Within the edge
pattern, E has singleton degree of reference and the property reference E.P references a
property of a single edge. On the other hand, the reference within the SUM aggregate has
group degree of reference (because of the quantifier {1,10}) and references the list of edges
that are bound to E.

Restrictions

• A vertex pattern may not declare a variable with the same name as an edge pattern.

• A quantified path pattern may not declare a variable with the same name as an element
variable declared outside of the quantified path pattern.

Examples

Example 1

The following query finds friends of friends of John following incoming or outgoing edges that
have a property meeting_date with a value greater than DATE '2000-09-015':

SELECT DISTINCT name
FROM GRAPH_TABLE (students_graph
 MATCH (a IS person) -[e IS friends WHERE e.meeting_date > DATE '2000-09-15']-{2} ("b" IS person)
 WHERE a.name = 'John' AND a.name <> "b".name
 COLUMNS ("b".name)
);

In the query above, a and "b" are vertex variables, e is an edge variable and e.meeting_date, a.name
and "b".name are property references that access a property value of the referenced vertex or
edge.

The result shows that John has two such friends of friends:

NAME

Bob
Alice

Example 2

The following query finds friends of Mary and the universities that Mary and her friends went to:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[e1 IS friends]- (p2 IS person)
 , (p1) -[IS student_of]-> (u1 IS university)
 , (p2) -[IS student_of]-> (u2 IS university)
 WHERE p1.name = 'Mary'

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 66

 COLUMNS (p1.name, p2.name AS friend, e1.meeting_date, u1.name AS univ_1, u2.name AS univ_2)
);

In the query above, p1, p2, u1 and u2 are vertex variables, while e1 is an edge variable. The
pattern -[IS student_of]-> appears twice and implicitly declares two unique variables that cannot
be referenced. Furthermore, there are two vertex patterns that share variable p1 and there are
two vertex patterns that share variable p2. Vertices will only bind to such variable if both vertex
patterns match.

The result shows that Mary has three friends, one of which goes to the same university XYZ,
while two other friends go to a different university ABC:

NAME FRIEND MEETING_D UNIV_1 UNIV_2
---------- ---------- --------- ---------- ----------
Mary John 19-SEP-00 XYZ ABC
Mary Bob 10-JUL-01 XYZ ABC
Mary Alice 19-SEP-00 XYZ XYZ

Example 3

The following query finds all paths that have a length between 2 and 5 edges ({2,5}), starting
from a person named Alice and following both incoming and outgoing edges labeled friends.
Edges along paths should not be traversed twice (COUNT(e.friendship_id) = COUNT(DISTINCT
e.friendship_id)). The query returns all friendship IDs along paths as well as the length of each
path.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p IS person) -[e IS friends]-{2,5} (friend IS person)
 WHERE p.name = 'Alice' AND
 COUNT(e.friendship_id) = COUNT(DISTINCT e.friendship_id)
 COLUMNS (LISTAGG(e.friendship_id, ', ') AS friendship_ids,
 COUNT(e.friendship_id) AS path_length));

Note that in the element pattern WHERE clause of the query above, p.name references a property
of a single edge, while e.friendship_id within the COUNT aggregate accesses a list of property
values since the edge variable e is enclosed by the quantifier {2,5}. Similarly, the two property
references in the COLUMNS clause both access a list of property values.

The result is:

FRIENDSHIP_IDS PATH_LENGTH
----------------- -----------
2, 3 2
2, 4 2
2, 3, 1 3
2, 4, 1 3
2, 3, 1, 4 4
2, 4, 1, 3 4

Label Expression

Purpose

Label expressions are used to limit the search to only vertices or edges of a specific type.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 66

Syntax

is_label_declaration::=

IS label_expression

label_expression::=

label

label_disjunction

label_disjunction::=

label_expression | label

label::=

identifier

Semantics

Syntactically, an is_label_declaration starts with the keyword IS followed by a label_expression, which
is either a label or a label_disjunction denoted by a vertical bar |. A label itself is an identifier and
can thus be double quoted or unquoted.

An element pattern matches only vertices and edges that satisfy the label expression. If the
label expression is omitted, then all vertices and edges are matched irrespective of their labels.

Examples

Example 1

The following query matches all vertices labeled person or university and retrieves their name
and date of birth properties:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (x IS person|university)
 COLUMNS (x.name, x.dob)
)
ORDER BY name;

The result is:

NAME DOB
---------- ---------

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 66

ABC
Alice 01-FEB-87
Bob 11-MAR-66
John 13-JUN-63
Mary 25-SEP-82
XYZ

Above, since universities do not have a date of birth, a null value is returned and shows up as
empty string in the DOB column.

Example 2

The following query matches outgoing edges labeled student_of or friends from a person named
Mary to a vertex m that is labeled university or "PERSON":

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person) -[e IS student_of|friends]-> (m IS university|"PERSON")
 WHERE n.name = 'Mary'
 COLUMNS (e.subject, e.meeting_date, m.name)
)
ORDER BY subject, meeting_date, name;

The result is:

SUBJECT MEETING_D NAME
---------- --------- ----------
Math XYZ
 19-SEP-00 Alice
 19-SEP-00 John

Element Pattern WHERE Clause

Purpose

The element pattern WHERE clause specifies a search condition that is syntactically placed
inside a vertex or an edge pattern and that needs to be satisfied by the vertex or edge for the
pattern to match.

Syntax

element_pattern_where_clause::=

WHERE search_condition

Semantics

Syntactically, the element_pattern_where_clause starts with the keyword WHERE and is followed by a
search_condition, which is an arbitrary boolean value expression.

The element pattern WHERE clause may reference any graph element variable in the graph
pattern. If the variable has group degree of reference, then the reference must be inside the
arguments of an aggregate function. See Aggregation in GRAPH_TABLE. There is no
requirement that the search condition must reference the variable of the element pattern itself,
but for improved query readability it is generally recommended that it always does such that

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 66

any search condition that does not reference the element variable is placed in the graph
pattern WHERE clause instead.

Examples

Example 1

The following query finds all friends of John whom he met after 15 September 2000:

SELECT Gt.name
FROM GRAPH_TABLE (students_graph
 MATCH (a IS person WHERE a.name = 'John')
 -[e IS friends WHERE e.meeting_date > DATE '2000-09-15']-
 (b IS person)
 COLUMNS (b.name)
) GT;

The example above contains two element pattern WHERE clauses:

• WHERE a.name = 'John'

• WHERE e.meeting_date > DATE '2000-09-15'.

The result is:

NAME

Mary

Quantified Path Pattern

Purpose

Quantified path patterns allow for repeated matching of a path pattern, typically for the purpose
of matching variable-length paths. The specified quantifier determines a minimum and
maximum for the number of times to match the path pattern.

Syntax

quantified_path_primary::=

path_primary graph_pattern_quantifier

graph_pattern_quantifier::=

fixed_quantifier

general_quantifier

fixed_quantifier::=

{ unsigned_integer }

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 66

general_quantifier::=

{

lower_bound

, upper_bound }

lower_bound::=

unsigned_integer

upper_bound::=

unsigned_integer

Semantics

A quantified_path_primary is a path_primary together with a quantifier. Here, the path primary must
be either an edge pattern or a parenthesized path pattern.

A graph_pattern_quantifier is either:

• A fixed_quantifier, which is an unsigned integer placed between curly braces. The integer
value specifies an exact number of times the pattern should be matched. In other words,
the lower bound on the number of times to match the pattern is the same as the upper
bound.

• A general_quantifier, which has an optional lower_bound, a comma (,) and a mandatory
upper_bound, all of which are placed between curly braces. Lower and upper bound are
unsigned integers and specify a minimum and a maximum number of times to match the
path pattern. If no lower bound is specified, then the lower bound is zero (0).

The following table summarizes the options:

Table 4-7 Quantifier Table

Quantifier Meaning

{ n } Exactly n

{ n, m } Between n and m (inclusive)

{ , m } Between zero (0) and m (inclusive)

Restrictions

The following restrictions apply to quantified path patterns:

• The path primary that is quantified must be either an edge pattern or a parenthesized path
pattern. For example, vertex patterns cannot be quantified unless they appear together
with at least one edge pattern inside a parenthesized path pattern.

• The lower bound should be 0 or greater, while the upper bound should be 1 or greater and
should also be greater than or equal to the lower bound.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 66

• Nested quantifiers are not allowed.

Examples

Example 1

The following query finds friends of friends of John following incoming or outgoing edges that
have a property meeting_date with a value greater than DATE '2000-090-15':

SELECT DISTINCT name
FROM GRAPH_TABLE (students_graph
 MATCH (a IS person)
 -[e IS friends WHERE e.meeting_date > DATE '2000-09-15']-{2}
 (b IS person)
 WHERE a.name = 'John' AND a.name <> b.name
 COLUMNS (b.name)
);

In the query above, the path pattern -[e IS friends WHERE e.meeting_date > DATE '2000-09-15']- is
quantified with the fixed quantifier {2} to indicate that the edge pattern should match exactly
twice.

The result is:

NAME

Bob
Alice

The same query may be written using a parenthesized path pattern too. The following are all
syntactic alternatives, the latter two use a parenthesized path pattern:

• -[e IS friends WHERE e.meeting_date > DATE '2000-09-15']-{2}

• (-[e IS friends WHERE e.meeting_date > DATE '2000-09-15']-){2}

• (-[e IS friends]- WHERE e.meeting_date > DATE '2000-09-15'){2}

Example 2

The following query finds persons that can be reached from Mary within three hops, following
only persons that are taller than Mary.

SELECT DISTINCT name, height
FROM GRAPH_TABLE (students_graph
 MATCH (a IS person|person_ht)
 (-[e IS friends]- (x IS person_ht) WHERE x.height > a.height) {,3}
 (b IS person|person_ht)
 WHERE a.name = 'Mary'
 COLUMNS (b.name, b.height)
)
ORDER BY height;

The result is:
NAME HEIGHT
---------- ----------
Mary 1.65
Alice 1.7
Bob 1.75
John 1.8

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 66

Note that the reason Mary is included in the result is because the specified quantifier {,3} has a
lower bound of zero such that the quantified pattern is allowed to match zero times in which
case variables a and b bind to the same vertex corresponding to Mary.

Example 3

The following query finds all paths between university ABC and university XYZ such that paths
have a length of up to 3 edges ({,3}). For each path, a JSON array is returned such that the
array contains the friendship_id value for edges labeled friends, and the subject value for edges
labeled student_of. Note that the friendship_id property is cast to VARCHAR(100) to make it type-
compatible with the subject property.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (u1 IS university) -[e]-{,3} (u2 IS university)
 WHERE u1.name = 'ABC' AND u2.name = 'XYZ'
 COLUMNS (JSON_ARRAYAGG(CASE WHEN e.subject IS NOT NULL THEN e.subject
 ELSE CAST(e.friendship_id AS VARCHAR(100)) END) AS path));

The result is:

PATH

["Arts","3","Math"]
["Music","4","Math"]

Parenthesized Path Pattern

Purpose

Parenthesized path patterns allow for defining more complex quantified path pattern
expressions.

Syntax

parenthesized_path_pattern_expression::=

(path_pattern_expression

parenthesized_path_pattern_where_clause

)

parenthesized_path_pattern_where_clause::=

WHERE search_condition

Semantics

A parenthesized_path_pattern_expression is a path_pattern_expression together with an optional
parenthesized_path_pattern_where_clause, placed in between parentheses.

Parenthesized path patterns allow for the quantification of any path pattern expression that
contains at least one edge pattern. Without parentheses, only a single edge pattern can be
quantified.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 66

The parenthesized path pattern WHERE clause may reference vertex and edge variables
declared in the parenthesized path pattern itself as well as vertex and edge variables declared
outside of the parenthesized path pattern. If the variable has group degree of reference, then
the reference must be inside the arguments of an aggregate function. See Aggregation in
GRAPH_TABLE.

Restrictions

The following restrictions apply to parenthesized path pattern expressions:

• Each parenthesized path pattern needs to be quantified.

• There can only be a single level of parentheses. Nesting of parenthesized path patterns is
not allowed.

Examples

Example 1

The following query finds persons that can be reached from Bob within one to three hops
({1,3}) such that for each consecutive pair of persons along the path, the first person has a date
of birth that is smaller than the date of birth of the second person.

SELECT DISTINCT name, birthday
FROM GRAPH_TABLE (students_graph
 MATCH
 (a IS person)
 ((x) -[e IS friends]- (y IS person)
 WHERE x.dob < y.dob){1,3}
 (b IS person)
 WHERE a.name = 'Bob'
 COLUMNS (b.name, b.dob AS birthday)
)
ORDER BY birthday;

The result is:

NAME BIRTHDAY
---------- ---------
Mary 25-SEP-82
Alice 01-FEB-87

Example 2

The following query finds all paths that have a length between 2 and 3 edges ({2,3}), starting
from a person named John and following only outgoing edges labeled friends and vertices
labeled person. Vertices along paths should not have the same person_id as John (WHERE
p.person_id <> friend.person_id).

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p IS person) (-[e IS friends]-> (friend IS person)
 WHERE p.person_id <> friend.person_id){2,3}
 WHERE p.name = 'John'
 COLUMNS (COUNT(e.friendship_id) AS path_length,
 LISTAGG(friend.name, ', ') AS names,
 LISTAGG(e.meeting_date, ', ') AS meeting_dates));

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 66

Above, the COLUMNS clause contains three aggregates, the first to compute the length of each
path, the second to create a comma-separated list of person names along paths, and the third
to create a comma-separate list of meeting dates along paths.

The result of the query is:

PATH_LENGTH NAMES MEETING_DATES
----------- ------------------- -----------------------------------
 2 Bob, Mary 01-SEP-00, 10-JUL-01
 3 Bob, Mary, Alice 01-SEP-00, 10-JUL-01, 19-SEP-00

Graph Pattern WHERE Clause

Purpose

The graph pattern WHERE clause specifies a search condition that is syntactically placed at the
end of the graph pattern and that needs to be satisfied by the complete graph pattern in order
for the graph pattern to match.

Syntax

graph_pattern_where_clause::=

WHERE search_condition

Semantics

Syntactically, the graph pattern WHERE clause starts with the keyword WHERE and is followed
by a search_condition, which is an arbitrary boolean value expression.

The graph pattern WHERE clause may reference any element variables in the graph pattern. If
the variable has group degree of reference, then the reference must be inside the arguments
of an aggregate function. See Aggregation in GRAPH_TABLE .

Examples

Example 1

The following query finds all friends of John whom he met after 15 September 2000:

SELECT Gt.name
FROM GRAPH_TABLE (students_graph
 MATCH (a IS person) -[e IS friends]- (b IS person)
 WHERE a.name = 'John' AND e.meeting_date > DATE '2000-09-15'
 COLUMNS (b.name)
) GT;

Note that the two conditions are placed together in the graph pattern WHERE clause to form a
single search that needs to be satisfied by the pattern: WHERE a.name = 'John' AND e.meeting_date >
DATE '2000-09-15'.

The result is:

NAME

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 66

Mary

Graph Table Shape
Purpose

A graph table shape defines how the result of pattern matching should be transformed into
tabular form. This is done through the graph_table_rows_clause and graph_table_columns_clause
clauses.

Syntax

graph_table_shape::=

graph_table_rows_clause

graph_table_columns_clause

COLUMNS Clause

Rows Clause

COLUMNS Clause

Purpose

The COLUMNS clause allows for defining a projection that transforms the result of graph pattern
matching into a regular table that no longer contains graph objects like vertices and edges but
instead regular data values only.

Syntax

graph_table_columns_clause::=

COLUMNS (graph_table_column_definition

,

)

graph_table_column_definition::=

value_expression

AS column_name

all_properties_reference

all_properties_reference::=

element_reference . *

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 66

element_reference::=

element_variable

Semantics

Syntactically, the COLUMNS clause starts with the keyword COLUMNS and is followed by an
opening parenthesis, a comma-separated list of one or more graph_table_column_definition and a
closing parenthesis.

A graph_table_column_definition defines either:

• A single output column via an arbitrary value expression. The value expression may
contain references to vertices and edges in the graph pattern, for example to access
property values of vertices and edges. An optional alias, AS column_name provides a name
for the column. The alias can only be omitted if the value expression is a property
reference, in which case the alias defaults to the property name.

• An all_properties_reference that expands to the set of all valid properties based on the element
type (vertex or edge) and any label expression specified for the element. The set of
properties is the union of properties of the vertex (or edge) labels belonging to tables that
have at least one label that satisfies the label expression. In case some of these matching
tables define a property while other tables do not, then NULL values will be returned for
those tables that do not define the property.

An optional alias, AS column_name provides a name for the column. The alias can only be omitted
if the value expression is a property reference, in which case the alias defaults to the property
name.

Examples

Example 1

The following example returns the name of each person as well as the height in feet by
multiplying the height in meters by 3.281:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person|person_ht)
 COLUMNS (n.name, n.height * 3.281 AS height_in_feet)
)
ORDER BY name;

In the query above, the COLUMNS clause defines two columns. Note that n.name is short for
n.name AS name.

The result is:

NAME HEIGHT_IN_FEET
---------- --------------
Alice 5.5777

Example 2

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 66

The following query matches all FRIENDS edges between two persons P1 and P2 and uses all
properties references P1.* and E.* to retrieve all the properties of vertex P1 as well as all
properties of edge E:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[e IS friends]-> (p2 IS person)
 COLUMNS (p1.*, p2.name AS p2_name, e.*)
)
ORDER BY 1, 2, 3, 4, 5;

The result is:

PERSON_ID NAME DOB HEIGHT P2_NAME FRIENDSHIP_ID MEETING_D
--------- ---- --------- ------ ------- ------------- ---------
 1 John 13-JUN-63 1.8 Bob 1 01-SEP-00
 2 Mary 25-SEP-82 1.65 Alice 2 19-SEP-00
 2 Mary 25-SEP-82 1.65 John 3 19-SEP-00
 3 Bob 11-MAR-66 1.75 Mary 4 10-JUL-01

Note that the result for P1.* includes properties PERSON_ID, NAME and DOB of label PERSON as
well as property HEIGHT of label PERSON_HT. Furthermore, the result for E.* includes properties
FRIENDSHIP_ID and MEETING_DATE of label FRIENDS.

Example 3

The following query matches all vertices in the graph and retrieves all their properties:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (v)
 COLUMNS (v.*)
)
ORDER BY 1, 2, 3, 4, 5;

The result is:

 PERSON_ID NAME DOB HEIGHT ID
---------- ---------- --------- ---------- ----------
 1 John 13-JUN-63 1.8
 2 Mary 25-SEP-82 1.65
 3 Bob 11-MAR-66 1.75
 4 Alice 01-FEB-87 1.7
 ABC 1
 XYZ 2

Note that since PERSON vertices do not have an ID property, NULL values (empty strings) are
returned. Similarly, UNIVERSITY vertices do not have PERSON_ID, DOB and HEIGHT properties so
again NULL values (empty strings) are returned.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 66

Rows Clause

Purpose

The GRAPH_TABLE rows clause is used to specify how many rows should be returned from
GRAPH_TABLE, based on the number of matches to the graph pattern or the number of vertices
or steps in such matches.

Syntax

graph_table_rows_clause::=

ONE ROW PER MATCH

one_row_per_iteration

one_row_per_iteration::=

ONE ROW PER VERTEX (vertex_variable)

ONE ROW PER STEP (vertex_variable , edge_variable , vertex_variable)

in_paths_clause

in_paths_clause::=

IN (path_variable

,

)

graph_table_rows_clause

• ONE ROW PER MATCH, the default, specifies that one row is returned per match to the graph
pattern.

• one_row_per_iteration declares one or more iterator variables and returns one row per
iteration. In particular:

– ONE ROW PER VERTEX declares a single iterator vertex variable. It iterates through the
vertices in paths and binds the iterator variable to different vertices in different
iterations. For each path, it creates as many rows as there are vertices in the path. For
example, if a pattern matches two paths, one with 3 vertices and another with 5
vertices, then a total of 8 rows are returned.

– ONE ROW PER STEP declares an iterator vertex variable, an iterator edge variable, and
another iterator vertex variable. It iterates through the steps of the different paths. A
step is a vertex-edge-vertex triple. If a path is non-empty and thus contains at least
one edge and two vertices, then there are as many steps as there are edges and each
iteration binds the iterator variables to the next edge and its source and destination in

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 66

the path. However, if a path is empty and consists of a single vertex only, then the path
has a single step and the first iterator vertex variable binds to that vertex, while the
iterator edge variable and the second iterator vertex variable are not bound to any
graph element.

• An optional IN paths clause specifies one or more path variables referencing the paths that
should be iterated through. If no IN paths clause is specified then all paths are iterated
through.

When an all_properties_reference contains a reference to an iterator variable, then depending on
the type of the iterator variable, it expands to either all vertex properties or to all edge
properties in the graph. Note that label expressions for elements in the graph pattern are not
considered when expanding the properties of an iterator variable.

See all_properties_reference::= of COLUMNS.

Restrictions

The graph_table_rows_clause clause is subject to the following restrictions:

• Iterator element variables cannot be multiply declared. This means that an iterator variable
may not be declared with the same name as a path variable or an element variable
declared in the graph pattern, or as another iterator variable.

• Iterator variables may only be referenced in the COLUMNS clause but not in the graph
pattern or in the graph pattern WHERE clause.

• The in_paths_clause may reference a path variable at most once.

• If the in_paths_clause is omitted, then either a single path pattern must be specified, or all the
path patterns must have a path variable declaration.

Examples

Example 1

The following query finds all friends path with length between 0 and 3 starting from a person
named John. It outputs one row per vertex.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person) -[e1 IS friends]->{0,3} (IS person)
 WHERE n.name = 'John'
 ONE ROW PER VERTEX (v)
 COLUMNS (
 LISTAGG(e1.friendship_id, ', ') AS friendship_ids,
 v.name)
);

The results are:

FRIENDSHIP_IDS NAME
-------------------- ---------------
 John
1 John
1 Bob
1, 4 John
1, 4 Bob
1, 4 Mary
1, 4, 3 John
1, 4, 3 Bob

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 66

1, 4, 3 Mary
1, 4, 3 John
1, 4, 2 John
1, 4, 2 Bob
1, 4, 2 Mary
1, 4, 2 Alice

The results above show data from five paths that were matched:

• The empty path (zero friendship_ids) contains a single person named John.

• The path with friendship_ids 1 contains two persons named John and Bob.

• The path with friendship_ids 1, 4 contains three persons named John, Bob and Mary.

• The path with friendship_ids 1, 4, 3 contains four persons named John, Bob, Mary and John
(this is a cycle).

• The path with friendship_ids 1, 4, 2 contains four persons named John, Bob, Mary and Alice.

Example 2

The following query again finds all friends path with length between 0 and 3 starting from a
person named John. This time it outputs one row per step.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person) -[e1 IS friends]->{0,3} (IS person)
 WHERE n.name = 'John'
 ONE ROW PER STEP (src, e2, dst)
 COLUMNS (
 LISTAGG(e1.friendship_id, ', ') AS friendship_ids,
 src.name AS src_name,
 e2.friendship_id,
 dst.name AS dst_name)
);

The results are:

FRIENDSHIP_IDS SRC_NAME FRIENDSHIP_ID DST_NAME
-------------------- ---------- ------------- ----------
 John
1 John 1 Bob
1, 4 John 1 Bob
1, 4 Bob 4 Mary
1, 4, 3 John 1 Bob
1, 4, 3 Bob 4 Mary
1, 4, 3 Mary 3 John
1, 4, 2 John 1 Bob
1, 4, 2 Bob 4 Mary
1, 4, 2 Mary 2 Alice

The results above show data from five paths that were matched:

• The empty path (no friendship_ids) has a single step in which iterator vertex variable src is
bound to the vertex corresponding to the person named John, while iterator edge variable
e2 and iterator vertex variable dst are not bound, resulting in NULL values for
FRIENDSHIP_ID and DST_NAME.

• The path with friendship_ids 1 has a single step since it has a single edge. In this step,
iterator vertex variable src is bound to the vertex corresponding to John, iterator edge

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 66

variable e2 is bound to the edge with friendship_ids 1, and iterator vertex variable dst is bound
to the vertex corresponding to Bob.

• The path with friendship_ids 1, 4 has two steps since it has two edges.

• The path with friendship_ids 1, 4, 3 has three steps since it has three edges.

• The path with friendship_ids 1, 4, 2 again has three steps since it has three edges.

Example 3

The following query matches paths between universities ABC and XYZ such that paths consist
of an incoming student_of edge, followed by one or two friends edges, followed by an outgoing
student_of edge. The query returns one row per vertex and for each row it returns the match
number, the element number, the type of the vertex (either person or university), as well as the
name of the university or the person.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (u1 IS university)
 <-[IS student_of]- (p1 IS person)
 -[IS friends]-{1,2} (p2 IS person)
 -[IS student_of]-> (u2 IS university)
 WHERE u1.name = 'ABC' AND u2.name = 'XYZ'
 ONE ROW PER VERTEX (v)
 COLUMNS (MATCHNUM() AS matchnum,
 ELEMENT_NUMBER(v) AS element_number,
 CASE WHEN v.person_id IS NOT NULL
 THEN 'person'
 ELSE 'university'
 END AS label,
 v.name))
ORDER BY matchnum, element_number;

The results are:

MATCHNUM ELEMENT_NUMBER LABEL NAME
---------- -------------- ---------- ----------
 1 1 university ABC
 1 3 person John
 1 5 person Mary
 1 7 university XYZ
 2 1 university ABC
 2 3 person Bob
 2 5 person John
 2 7 person Mary
 2 9 university XYZ
 3 1 university ABC
 3 3 person Bob
 3 5 person Mary
 3 7 university XYZ
 4 1 university ABC
 4 3 person John
 4 5 person Mary
 4 7 person Alice
 4 9 university XYZ
 6 1 university ABC
 6 3 person John
 6 5 person Bob
 6 7 person Mary
 6 9 university XYZ

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 66

 8 1 university ABC
 8 3 person Bob
 8 5 person Mary
 8 7 person Alice
 8 9 university XYZ

Note that a total of 6 paths were matched with match numbers 1, 2, 3, 4, 6 and 8. Each path has
university ABC as the first vertex and university XYZ as the last vertex. Furthermore, paths with
match numbers 1 and 3 contain two person vertices while the other paths (match numbers 2, 4,
6 and 8) contain three person vertices.

Example 4

Like in Example 3, the following query matches paths between universities ABC and XYZ. In
Example 4, the graph pattern is split into three path patterns. The first path pattern matches an
incoming student_of edge, the second path pattern matches one or two friends' edges, and the
third path pattern matches again a student_of edge. The query returns one row per vertex in the
second path. This path contains only person vertices. For each vertex, the query returns the
match number, the path name, the element number, and all the vertex properties.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH path1 = (u1 IS university) <-[IS student_of]- (p1 IS person),
 path2 = (p1) -[IS friends]-{1,2} (p2 IS person),
 path3 = (p2) -[IS student_of]-> (u2 IS university)
 WHERE u1.name = 'ABC' AND u2.name = 'XYZ'
 ONE ROW PER VERTEX (v) IN (path2)
 COLUMNS (MATCHNUM() AS matchnum,
 PATH_NAME() AS path_name,
 ELEMENT_NUMBER(v) AS element_number,
 v.*))
ORDER BY matchnum, element_number;
The results are:
MATCHNUM PATH_NAME ELEMENT_NUMBER PERSON_ID NAME DOB HEIGHT ID
-------- --------- -------------- --------- ----- --------- --------- --
 1 PATH2 1 1 John 13-JUN-63 1.8
 1 PATH2 3 2 Mary 25-SEP-82 1.65
 2 PATH2 1 3 Bob 11-MAR-66 1.75
 2 PATH2 3 1 John 13-JUN-63 1.8
 2 PATH2 5 2 Mary 25-SEP-82 1.65
 3 PATH2 1 3 Bob 11-MAR-66 1.75
 3 PATH2 3 2 Mary 25-SEP-82 1.65
 4 PATH2 1 1 John 13-JUN-63 1.8
 4 PATH2 3 2 Mary 25-SEP-82 1.65
 4 PATH2 5 4 Alice 01-FEB-87 1.7
 6 PATH2 1 1 John 13-JUN-63 1.8
 6 PATH2 3 3 Bob 11-MAR-66 1.75
 6 PATH2 5 2 Mary 25-SEP-82 1.65
 8 PATH2 1 3 Bob 11-MAR-66 1.75
 8 PATH2 3 2 Mary 25-SEP-82 1.65
 8 PATH2 5 4 Alice 01-FEB-87 1.7

Like in Example 3, a total of 6 paths were matched with match numbers 1, 2, 3, 4, 6 and 8. Paths
with match numbers 1 and 3 contain two person vertices while the other paths (match numbers
2, 4, 6 and 8) contain three person vertices. The all properties reference v.* expands to
properties PERSON_ID, NAME, DOB, HEIGHT and ID. Thus, even though person vertices do not
have property ID (only university vertices do), the expansion still includes property ID because
an all properties reference with an iterator variable always expands to either all vertex
properties or all edge properties in the graph based on the iterator variable type.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 66

Value Expressions for GRAPH_TABLE
Purpose

Value expressions in WHERE and COLUMNS clauses inside GRAPH_TABLE inherit all the
functionality supported in value expressions outside of GRAPH_TABLE. Additionally, inside
GRAPH_TABLE, the following value expressions are available:

• Property Reference

• Vertex and Edge ID Functions

• Vertex and Edge Equal Predicates

• SOURCE and DESTINATION Predicates

• Aggregation in GRAPH_TABLE

• JSON Object Access Expressions for Property Graphs

Property Reference

Purpose

Property references allow for accessing property values of vertices and edges.

Syntax

property_reference::=

element_variable . property_name

property_name::=

identifier

Semantics

Syntactically, a property access is an element variable followed by a dot (.) and the name of
the property. A property name is an identifier and may thus be either double quoted or
unquoted.

The label expression specified for an element pattern determines which properties can be
referenced:

• If no label expression is specified, then depending on the type of element variable, either
all vertex properties or all edge properties in the graph can be referenced.

• Otherwise, if a label expression is specified, then the set of properties that can be
referenced is the union of the properties of labels belonging to vertex (or edge) tables that
have at least one label that satisfies the label expression.

If multiple labels satisfy the label expression but they define the same property but of a
different data type, then such properties may only be referenced if the data types are union
compatible. The resulting value will then have the union compatible data type.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 66

If multiple labels satisfy the label expression while some labels have a particular property that
other labels do not, then such properties can still be referenced. The property reference will
result in null values for any vertex or edge that does not have the property.

Furthermore, if the element variable is not bound to a graph element, then the result is the null
value. Note that the only way an element variable is optionally bound is when the element
variable is an iterator variable declared in ONE ROW PER STEP. Specifically, the edge variable
and the second vertex variable declared in ONE ROW PER STEP will not be bound to a graph
element when the path pattern matches an empty path, for example because a quantifier
iterated zero times.

Examples

Example 1

The following query lists the date of birth of all persons and universities in the graph:

SELECT GT.name, GT.birthday
FROM GRAPH_TABLE (students_graph
 MATCH (p IS person|university)
 COLUMNS (p.name, p.dob AS birthday)
) GT
ORDER BY GT.birthday, GT.name;

Note that since only persons John, Bob, Mary, Alice have dates of birth while universities (ABC and
XYZ) do not, null values are returned for universities. These appear as empty strings in the
output:

NAME BIRTHDAY
---------- ---------
John 13-JUN-63
Bob 11-MAR-66
Mary 25-SEP-82
Alice 01-FEB-87
ABC
XYZ

Example 2

The following query matches all PERSON vertices and returns their NAME and HEIGHT:

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (n IS person)
 COLUMNS (n.name, n.height)
)
ORDER BY height;

The result is:

NAME HEIGHT
---------- -------
Mary 1.65
Alice 1.7
Bob 1.75
John 1.8

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 66

Here, even though label PERSON does not have property HEIGHT, the property can still be
referenced because vertex table PERSONS has labels PERSON and PERSON_HT and since label
PERSON matches the label expression, the set of properties that can be referenced is the union
of the properties of labels PERSON and PERSON_HT, which includes the property HEIGHT of label
PERSON_HT.

Vertex and Edge ID Functions

Purpose

Vertex and edge ID functions allow for obtaining unique identifiers for graph elements.

Syntax

element_id_function::=

vertex_id_function

edge_id_function

vertex_id_function::=

VERTEX_ID (element_reference)

edge_id_function::=

EDGE_ID (element_reference)

element_reference::=

element_variable

Semantics

Syntactically, the VERTEX_ID and EDGE_ID functions take an element reference, which should
be a vertex reference in case of VERTEX_ID and an edge reference in case of EDGE_ID. The two
functions generate identifiers for graph elements that are globally unique within a database.

Content-wise, vertex and edge identifiers are JSON object that contains the following
information:

• Owner of the graph that the vertex or edge is part of.

• Name of the graph that the vertex or edge is part of.

• Element table that the vertex or edge is defined in.

• Key value of the vertex or edge.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 66

If the referenced element variable is not bound to a graph element, then the functions return
the null value.

Examples

Example 1

The following query lists the vertex identifiers of friends of Mary:

SELECT CAST(p2_id AS VARCHAR2(200)) AS p2_id
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[e1 IS friends]- (p2 IS person)
 WHERE p1.name = 'Mary'
 COLUMNS (vertex_id(p2) AS p2_id)
)
ORDER BY p2_id;

The result is:

P2_ID
--
{"GRAPH_OWNER":"SCOTT","GRAPH_NAME":"STUDENTS_GRAPH","ELEM_TABLE":"PERSONS","KEY_VALUE":
{"PERSON_ID":1}}
{"GRAPH_OWNER":"SCOTT","GRAPH_NAME":"STUDENTS_GRAPH","ELEM_TABLE":"PERSONS","KEY_VALUE":
{"PERSON_ID":3}}
{"GRAPH_OWNER":"SCOTT","GRAPH_NAME":"STUDENTS_GRAPH","ELEM_TABLE":"PERSONS","KEY_VALUE":
{"PERSON_ID":4}}

Example 2

The following query uses JSON dot-notation syntax to obtain a set of JSON objects
representing the vertex keys of vertices corresponding to friends of Mary:

SELECT GT.p2_id.KEY_VALUE
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[e1 IS friends]- (p2 IS person)
 WHERE p1.name = 'Mary'
 COLUMNS (vertex_id(p2) AS p2_id)
) GT
ORDER BY key_value;

The result is:

KEY_VALUE
--
{"PERSON_ID":1}
{"PERSON_ID":3}
{"PERSON_ID":4}

Example 3

The following query uses the JSON_VALUE function to obtain all the element table names of
edges in the graph:

SELECT DISTINCT json_value(e_id, '$.ELEM_TABLE') AS elem_table
FROM GRAPH_TABLE (students_graph
 MATCH -[e]-
 COLUMNS (edge_id(e) AS e_id)

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 66

)
ORDER BY elem_table;

The result is:

ELEM_TABLE
--
FRIENDS
STUDENT_OF

Vertex and Edge Equal Predicates

Purpose

The vertex and edge equal predicates allow for specifying that two vertex variables (or two
edge variables) should or should not bind to the same vertex (or edge).

Syntax

element_equal_predicate::=

vertex_equal_predicate

edge_equal_predicate

vertex_equal_predicate::=

VERTEX_EQUAL (element_reference

,

)

edge_equal_predicate::=

EDGE_EQUAL (element_reference

,

)

Semantics

If at least one of the referenced element variables is not bound to a graph element, then the
predicates evaluate to the null value. Otherwise, they evaluate to TRUE or FALSE.

Examples

Example 1

The following query finds friends of friends of Mary. Here, the vertex_equal predicate is used to
make sure Mary herself is not included in the result.

SELECT name
FROM GRAPH_TABLE (students_graph

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 66

 MATCH (p IS person)
 -[IS friends]- (friend IS person)
 -[IS friends]- (friend_of_friend IS person)
 WHERE p.name = 'Mary' AND NOT vertex_equal(p, friend_of_friend)
 COLUMNS (friend_of_friend.name)
)
ORDER BY name;

The result is:

NAME

Bob
John

SOURCE and DESTINATION Predicates

Purpose

The SOURCE and DESTINATION predicates allow for testing if a vertex is the source or the
destination of an edge. They are useful, for example, for determining the direction of edges
that are matched via any-directed edge patterns.

Syntax

source_predicate::=

vertex_reference IS

NOT

SOURCE OF edge_reference

destination_predicate::=

vertex_reference IS

NOT

DESTINATION OF edge_reference

Semantics

The SOURCE predicate takes a vertex and an edge as input and returns TRUE or FALSE
depending on whether the vertex is (not) the source of the edge.

The DESTINATION predicate also takes a vertex and an edge as input and returns TRUE or
FALSE depending on whether the vertex is (not) the destination of the edge.

If at least one of the referenced element variables is not bound to a graph element, then the
predicates evaluate to the null value. Otherwise, they evaluate to TRUE or FALSE.

Examples

Example 1

The following query matches FRIENDS edges that are either incoming or outgoing from Mary.
For each edge, it return the NAME property for the source of the edge as well as the NAME
property of the destination of the edge.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 66

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[e IS friends]- (p2 IS person)
 WHERE p1.name = 'Mary'
 COLUMNS (e.friendship_id,
 e.meeting_date,
 CASE WHEN p1 IS SOURCE OF e THEN p1.name ELSE p2.name END AS from_person,
 CASE WHEN p1 IS DESTINATION OF e THEN p1.name ELSE p2.name END AS to_person))
ORDER BY friendship_id;

FRIENDSHIP_ID MEETING_DATE FROM_PERSON TO_PERSON
------------- ------------ ----------- ---------
 2 19-SEP-00 Mary Alice
 3 19-SEP-00 Mary John
 4 10-JUL-01 Bob Mary

Example 2

The following query find friends of friends of John such that the two FRIENDS edges are either
both incoming or outgoing.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[e1 IS friends]- (p2 IS person)
 -[e2 IS friends]- (p3 IS person)
 WHERE p1.name = 'John'
 AND ((p1 IS SOURCE OF e1 AND p2 IS SOURCE OF e2) OR
 (p1 IS DESTINATION OF e1 AND p2 IS DESTINATION OF e2))
 COLUMNS (p1.name AS person_1,
 CASE WHEN p1 IS SOURCE OF e1
 THEN 'Outgoing' ELSE 'Incoming'
 END AS e1_direction,
 p2.name AS person_2,
 CASE WHEN p2 IS SOURCE OF e2
 THEN 'Outgoing' ELSE 'Incoming'
 END AS e2_direction,
 p3.name AS person_3))
ORDER BY 1, 2, 3;

PERSON_1 E1_DIRECTION PERSON_2 E2_DIRECTION PERSON_3
---------- ------------ ---------- ------------ ----------
John Incoming Mary Incoming Bob
John Outgoing Bob Outgoing Mary

Notice how the path from John via Mary to Alice is not part of the result since it has an
incoming edge followed by an outgoing edge and thus not two edges in the same direction.

Aggregation in GRAPH_TABLE

Purpose

Aggregations in GRAPH_TABLE are used to compute one or more values for a set of vertices or
edges in a variable-length path. This is done using the same Aggregate Functions that are also
available for non-graph queries.

Syntax

All the aggregate functions that are available for non-graph queries are also available for graph
queries. See Aggregate Functions for the syntax of these functions.

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 66

Aggregate functions can be used in WHERE and COLUMNS clauses in GRAPH_TABLE, with the
restriction that WHERE clauses within quantified patterns may not contain aggregate functions.

Syntactically, the value expressions in the aggregations must contain references to vertices
and edges in the graph pattern, rather than to columns of tables like in case of regular (non-
graph) SQL queries.

Semantics

See Aggregate Functions for the semantics of aggregate functions.

The arguments of the aggregate function together must reference exactly one group variable.
In addition, they can reference any number of singleton variables. Note that an element
variable is said to have group degree of reference when the variable is declared in a quantified
path pattern while the reference occurs outside the quantified path pattern. On the other hand,
if the reference does not cross a quantifier then the reference has singleton degree of
reference. Singleton variables may be element pattern variables declared in the graph pattern
or iterator variables declared in the Rows Clause. Also see Element Variable for more details
on the contextual interpretation of graph element references.

The order in which values are aggregated in case of LISTAGG, JSON_ARRAYAGG and XMLAGG is
non-deterministic unless an ORDER BY clause is specified. For example: LISTAGG(edge1.property1
ORDER BY edge1.property1)). There is currently no way to explicitly order by path order in such a
way that elements are ordered in the same order as the vertices or edges in the path.
However, when omitting the ORDER BY clause, the current implementation nevertheless
implicitly orders by path order, but it should not be relied upon as this behavior may change
over time.

Restrictions

• Only WHERE clauses that are not within a quantified pattern may contain aggregations. For
example, the graph pattern WHERE clause as well as non-quantified element pattern
WHERE clauses may contain aggregations, while parenthesized path pattern WHERE
clauses may not contain aggregations since parenthesized path patterns currently have a
restriction that they must always be quantified.

• The arguments of an aggregate function in GRAPH_TABLE together must reference exactly
one group variable. In addition, they may reference any number of singleton variables. For
example, MATCH -[e1]-> WHERE SUM(e1.prop) > 10 is not allowed since variable e1 has
singleton degree of reference within the SUM aggregate, while MATCH -[e2]->{1,10} WHERE
SUM(e2.prop) > 10 and MATCH -[e3]->{1,1} WHERE SUM(e3.prop) > 10 are allowed since variables
e2 and e3 have group degree of reference within the SUM aggregates.

• Variable references must be inside property references, vertex or edge ID functions, or
JSON dot-notation expressions. For example, vertex_equal, edge_equal, IS SOURCE OF and IS
DESTINATION OF cannot be used in aggregate functions. For example, COUNT(edge1) is not
allowed but COUNT(edge_id(edge1)) and COUNT(edge1.some_property)) are allowed.

• The arguments of an aggregate function in GRAPH_TABLE cannot reference anything other
than a vertex or edge declared within the graph pattern of the GRAPH_TABLE. For example,
it is not possible to reference a column that is passed from an outer query.

• In case of LISTAGG, JSON_ARRAYAGG and XMLAGG there is no way to specify that the order
of elements in the result should be in the order of the vertices or edges in the path,
although the current implement nevertheless implicitly orders by path order.

Examples

Example 1

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 66

The following query finds all paths that have a length between 2 and 5 edges ({2,5}), starting
from a person named Alice and following both incoming and outgoing edges labeled friends.
Edges along paths should not be traversed twice (COUNT(edge_id(e) = COUNT(DISTINCT edge_id(e))).
The query returns all friendship IDs along paths as well as the length of each path.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p IS person) -[e IS friends]-{2,5} (friend IS person)
 WHERE p.name = 'Alice' AND
 COUNT(edge_id(e)) = COUNT(DISTINCT edge_id(e))
 COLUMNS (LISTAGG(e.friendship_id, ', ') AS friendship_ids,
 COUNT(edge_id(e)) AS path_length))
ORDER BY path_length, friendship_ids;

Note that in the element pattern WHERE clause of the query above, p.name references a
property of a single edge, while edge_id(e) within the COUNT aggregates accesses a list of
element IDs since the edge variable e is enclosed by the quantifier {2,5}. Similarly, the two
property references in the COLUMNS clause access a list of property values and edge ID
values.

The result is:

FRIENDSHIP_IDS PATH_LENGTH
----------------- -----------
2, 3 2
2, 4 2
2, 3, 1 3
2, 4, 1 3
2, 3, 1, 4 4
2, 4, 1, 3 4

Example 2

The following query finds all paths between university ABC and university XYZ such that paths
have a length of up to 3 edges ({,3}). For each path, a JSON array is returned such that the
array contains the friendship_id value for edges labeled friends, and the subject value for edges
labeled student_of. Note that the friendship_id property is cast to VARCHAR(100) to make it type-
compatible with the subject property.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (u1 IS university) -[e]-{,3} (u2 IS university)
 WHERE u1.name = 'ABC' AND u2.name = 'XYZ'
 COLUMNS (JSON_ARRAYAGG(CASE WHEN e.subject IS NOT NULL THEN e.subject
 ELSE CAST(e.friendship_id AS VARCHAR(100)) END) AS path))
ORDER BY path;
The result is:
PATH

["Arts","3","Math"]
["Music","4","Math"]

Example 3

Example 3 The following query finds all paths that have a length between 2 and 3 edges
({2,3}), starting from a person named John and following only outgoing edges labeled friends
and vertices labeled person. Vertices along paths should not have the same person_id as John
(WHERE p.person_id <> friend.person_id).

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 66

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p IS person) (-[e IS friends]-> (friend IS person)
 WHERE p.person_id <> friend.person_id){2,3}
 WHERE p.name = 'John'
 COLUMNS (COUNT(edge_id(e)) AS path_length,
 LISTAGG(friend.name, ', ') AS names,
 LISTAGG(e.meeting_date, ', ') AS meeting_dates))
ORDER BY path_length;

Above, the COLUMNS clause contains three aggregates, the first to compute the length of each
path, the second to create a comma-separated list of person names along paths, and the third
to create a comma-separate list of meeting dates along paths.

The result of the query is:

PATH_LENGTH NAMES MEETING_DATES
----------- ------------------- -----------------------------------
 2 Bob, Mary 01-SEP-00, 10-JUL-01
 3 Bob, Mary, Alice 01-SEP-00, 10-JUL-01, 19-SEP-00

JSON Object Access Expressions for Property Graphs

Purpose

JSON dot notation for property graphs allows for easy access to JSON data exposed as vertex
or edge property values. It provides a simple syntax for common use cases, while SQL/JSON
functions json_value and json_query can be used for more complex queries against property
graphs containing JSON data.

Syntax

json_property_graph_object_access_expr::=

element_variable . property_name . json_prop_graph_obj_access_step

.
json_item_method

json_prop_graph_obj_access_step::=

json_object_key

array_step

array_step::=

json_object_key

array_step

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 66

Semantics

JSON dot notation for property graphs supports the same functionality as JSON Dot Notation
for columns of JSON data. Please refer to JSON Object Access Expressions.

Examples

The following example creates a new graph on top of the persons table from the sample data.
This graph will have a vertex property person_data of type JSON since the persons table has
person_data column of type JSON. Then, a GRAPH_TABLE query that uses JSON dot notation is
issued against this graph to obtain the role of all persons in the HR department.

CREATE PROPERTY GRAPH persons_graph VERTEX TABLES (persons);

SELECT *
FROM GRAPH_TABLE (persons_graph
 MATCH (n)
 WHERE n.person_data.department = 'HR'
 COLUMNS (n.name, n.person_data.role.string() AS role)
);

The output of above SELECT query is:

NAME ROLE
--------------- ---------------
Mary HR Manager
Alice HR Assistant

Note how item method string() is used in the COLUMNS clause to return a VARCHAR2(4000).
Without the item method it would have returned a JSON string and the result would have been
double quoted.

See Also

Simple Dot Notation Access JSON Data of the JSON Developer's Guide.

MATCHNUM

Purpose

The MATCHNUM function returns a number that uniquely identifies a match in a set of matches.

Syntax

MATCHNUM ()

Semantics

The MATCHNUM function returns a number that uniquely identifies a match in a set of matches.
The numbers are not necessarily consecutive, and gaps may appear for example when
matches were filtered out. Rows returned from GRAPH_TABLE have unique match numbers

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 66

unless ONE ROW PER VERTEX or ONE ROW PER STEP is specified, in which case the same match
number is returned for different iterations within a match.

Restricitons

MATCHNUM can only be used in the COLUMNS clause.

Examples

Example 1

The following query matches all person vertices and for each match returns a unique match
number as well as the name of the person.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p IS person)
 COLUMNS (MATCHNUM() AS matchnum,
 p.name))
ORDER BY matchnum;

The results are:

 MATCHNUM NAME
---------- -------
 1 John
 2 Mary
 3 Bob
 4 Alice

Example 2

The following query finds paths connecting John and Mary either directly or indirectly via a
common friend. For each match, the query returns one row per vertex, which means one row
per person along the friendship path. Each result contains a match number, the element
number of the person vertex, and the name of the person.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[IS friends]-{1,2} (p2 IS person)
 WHERE p1.name = 'John' AND p2.name = 'Mary'
 ONE ROW PER VERTEX (v)
 COLUMNS (MATCHNUM() AS matchnum,
 ELEMENT_NUMBER(v) AS element_number,
 v.name))
ORDER BY matchnum, element_number;

The results are:

MATCHNUM ELEMENT_NUMBER NAME
--------- -------------- ----------
 1 1 John
 1 3 Mary
 2 1 John
 2 3 Bob
 2 5 Mary

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 66

ELEMENT_NUMBER

Purpose

The ELEMENT_NUMBER function returns the sequential element number of the graph element
that an iterator variable currently binds to.

Syntax

ELEMENT_NUMBER (element_reference)

Semantics

The ELEMENT_NUMBER function can be used in a COLUMNS clause if ONE ROW PER VERTEX or
ONE ROW PER STEP is specified. The function references an iterator variable and returns the
sequential element number that the iterator variable currently binds to. Since paths always
start with a vertex and alternate between vertices and edges, the first element is a vertex with
element number 1, the second element is an edge with element number 2, the third element is
a vertex with element number 3, etc. Vertices thus always have odd element numbers while
edges have even element numbers. If a path is empty and thus only has a single vertex and no
edges, and ONE ROW PER STEP is specified, then ELEMENT_NUMBER returns NULL when the
iterator edge variable or the second iterator vertex variable is referenced. Note that empty
paths result in single steps in which only the first iterator (vertex) variable is bound.

Restricitons

• ELEMENT_NUMBER can only be used in the COLUMNS clause.

• ELEMENT_NUMBER can only be used if ONE ROW PER VERTEX or ONE ROW PER STEP is
specified.

• ELEMENT_NUMBER cannot reference any other type of variable than an iterator variable.

Examples

Example 1

The following query finds paths connecting John and Mary either directly or indirectly via a
common friend. For each match, the query returns one row per step. Each result contains a
match number, the element number of the friends edge in the step, the friendship_id and the
names of the two persons in the step.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[IS friends]-{1,2} (p2 IS person)
 WHERE p1.name = 'John' AND p2.name = 'Mary'
 ONE ROW PER STEP (v1, e, v2)
 COLUMNS (MATCHNUM() AS matchnum,
 ELEMENT_NUMBER(e) AS element_number,
 v1.name AS name1,
 e.friendship_id,
 v2.name AS name2))
ORDER BY matchnum, element_number;

The results are:

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 66

The results are:
 MATCHNUM ELEMENT_NUMBER NAME1 FRIENDSHIP_ID NAME2
---------- -------------- ---------- ------------- ----------
 1 2 John 3 Mary
 2 2 John 1 Bob
 2 4 Bob 4 Mary

Example 2

The following query finds all people connected to John via 0 or 1 friends edges. For each
match, the query returns one row per step. Each result contains a match number, the element
number of the friends edge in the step, the friendship_id and the names of the two persons in the
step.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[IS friends]-{0,1} (p2 IS person)
 WHERE p1.name = 'John'
 ONE ROW PER STEP (v1, e, v2)
 COLUMNS (MATCHNUM() AS matchnum,
 ELEMENT_NUMBER(e) AS element_number,
 v1.name AS name1,
 e.friendship_id,
 v2.name AS name2))
ORDER BY matchnum, element_number;

The results are:

The results are:
 MATCHNUM ELEMENT_NUMBER NAME1 FRIENDSHIP_ID NAME2
---------- -------------- ---------- ------------- ---------
 1 John
 2 2 John 3 Mary
 4 2 John 1 Bob

Here, three paths were matched. The path with match number 1 has one vertex and zero
edges. Thus, there is a single step in which iterator vertex variable v1 is bound but iterator
edge variable e and iterator vertex variable v2 are not bound, leading to the NULL values in the
ELEMENT_NUMBER, FRIENDSHIP_ID and NAME2 columns. The other two paths (with
match numbers 2 and 4) also have a single step but since these paths do contain an edge as
well as a second vertex, all three iterator variables are bound, and no NULL values are
returned.

PATH_NAME

Purpose

The PATH_NAME function returns the name of the path that the iterator variables are currently
iterating over.

Syntax

PATH_NAME ()

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 66

Semantics

You can use PATH_NAME in combination with ONE ROW PER VERTEX or ONE ROW PER STEP to
return the name of the path that the iterator variables are currently iterating over.

For example, in case of MATCH p1 = (x)->(y), p2 = (y) -> (z) ONE ROW PER VERTEX (v) COLUMNS
(PATH_NAME() AS path_name), return values of PATH_NAME() are P1 and P2. The return type of
PATH_NAME is CHAR.

In case there is a single path pattern without a path variable declaration, then PATH_NAME will
return NULL.

Note that ONE ROW PER VERTEX and ONE ROW PER STEP have the following restriction: If there are
multiple path patterns, all the path patterns must have a path variable declaration. It thus
follows that PATH_NAME can only return NULL when there is a single path pattern.

Restrictions

• PATH_NAME can only be used in the COLUMNS clause.

• PATH_NAME can only be used if ONE ROW PER VERTEX or ONE ROW PER STEP is specified.

Examples

Example 1

The following query finds friends of Bob's friends and the universities they attend. The graph
pattern is split into two path patterns named PATH1 and PATH2. For each match, PATH1 always
matches 3 vertices while PATH2 always matches 2 vertices. Therefore, since the query specifies
ONE ROW PER VERTEX, a total of 5 rows are returned for each match. Each row includes the
match number, the path name, the element number and the NAME property of the vertices.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH path1 = (p1 IS person) -[IS friends]-{2} (p2 IS person),
 path2 = (p2) -[IS student_of]-> (u2 IS university)
 WHERE p1.name = 'Bob'
 ONE ROW PER VERTEX (v)
 COLUMNS (MATCHNUM() AS matchnum,
 PATH_NAME() AS path_name,
 ELEMENT_NUMBER(v) AS element_number,
 v.name))
ORDER BY matchnum, path_name, element_number;

The result is:

 MATCHNUM PATH_NAME ELEMENT_NUMBER NAME
---------- --------- -------------- ----------
 1 PATH1 1 Bob
 1 PATH1 3 John
 1 PATH1 5 Mary
 1 PATH2 1 Mary
 1 PATH2 3 XYZ
 2 PATH1 1 Bob
 2 PATH1 3 John
 2 PATH1 5 Bob
 2 PATH2 1 Bob
 2 PATH2 3 ABC
 3 PATH1 1 Bob

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 66

 3 PATH1 3 Mary
 3 PATH1 5 Bob
 3 PATH2 1 Bob
 3 PATH2 3 ABC
 4 PATH1 1 Bob
 4 PATH1 3 Mary
 4 PATH1 5 John
 4 PATH2 1 John
 4 PATH2 3 ABC
 5 PATH1 1 Bob
 5 PATH1 3 Mary
 5 PATH1 5 Alice
 5 PATH2 1 Alice
 5 PATH2 3 XYZ

IS LABELED

Purpose

The IS LABELED predicate determines whether a graph element satisfies a label expression.

Syntax

element_reference IS

NOT

LABELED label

Semantics

The IS LABELED predicate determines whether a graph element has a particular label. It returns
a BOOLEAN.

In case the referenced element is not bound then the IS LABELED predicate returns NULL. This
may happen for iterator variables when empty paths are matched.

Restrictions

Label disjunction within a single labeled predicate is not supported. Instead, use multiple
labeled predicates together with the logical OR operator.

Examples

Example 1

The following query finds all outgoing FRIENDS and STUDENT_OF edges from a person named
Bob. It returns the label of the destination vertex as well as person and university IDs and
names. The IS LABELED predicate is used to construct the output label as well as to combine
the person’s id property and the university’s id property into a single ID column.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (p1 IS person) -[IS friends|student_of]-> (x IS person|university)
 WHERE p1.name = 'Bob'
 COLUMNS (CASE
 WHEN x IS LABELED person THEN 'PERSON'
 ELSE 'UNIVERSITY'
 END AS label,
 CASE
 WHEN x IS LABELED person THEN x.person_id

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 66

 ELSE x.id
 END AS id,
 x.name))
ORDER BY label, id;

The query returns:

LABEL ID NAME
---------- ---------- ----------
PERSON 2 Mary
UNIVERSITY 1 ABC

PROPERTY_EXISTS

Purpose

The PROPERTY_EXISTS predicate determines if the graph element bound to a singleton element
reference has a property.

Syntax

PROPERTY_EXISTS (element_reference , property_name)

Semantics

The PROPERTY_EXISTS predicate determines if the graph element bound to a singleton element
reference has a property. It returns a BOOLEAN.

In case the referenced element is not bound then the PROPERTY_EXISTS predicate returns
NULL. This may happen for iterator variables when empty paths are matched.

Examples

Example 1

The following example matches vertices labeled PERSON or UNIVERSITY and for each type of
vertex returns whether it has properties DOB, HEIGHT, NAME and ID.

SELECT *
FROM GRAPH_TABLE (students_graph
 MATCH (x IS person|university)
 COLUMNS (CASE
 WHEN x IS LABELED person THEN 'PERSON'
 ELSE 'UNIVERSITY'
 END AS label,
 PROPERTY_EXISTS(x, dob) AS has_dob,
 PROPERTY_EXISTS(x, height) AS has_height,
 PROPERTY_EXISTS(x, name) AS has_name,
 PROPERTY_EXISTS(x, id) AS has_id))
GROUP BY label, has_dob, has_height, has_name, has_id
ORDER BY label;

The query returns:

LABEL HAS_DOB HAS_HEIGHT HAS_NAME HAS_ID
---------- ----------- ----------- ----------- -----------

Chapter 4
GRAPH_TABLE Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 66

PERSON TRUE TRUE TRUE FALSE
UNIVERSITY FALSE FALSE TRUE TRUE

JSON_ID Operator
Syntax

JSON_ID (’
OID

UUID
’)

Purpose

JSON_ID takes a single argument, one of 'OID' or 'UUID' to create a value for a document-
identifier field that you provide.

JSON_ID returns a value of SQL type RAW that is globally unique. The value returned is
determined by the argument that you provide. With string 'OID', a 12-byte RAW value is
returned; with string 'UUID', a 16-byte RAW value is returned.

See Also

JSON Collections of the JSON Developer's Guide.

Chapter 4
JSON_ID Operator

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 66

5
Expressions

This chapter describes how to combine values, operators, and functions into expressions.

This chapter includes these sections:

• About SQL Expressions

• Simple Expressions

• Analytic View Expressions

• Compound Expressions

• CASE Expressions

• Column Expressions

• CURSOR Expressions

• Datetime Expressions

• Function Expressions

• Interval Expressions

• JSON Object Access Expressions

• Model Expressions

• Object Access Expressions

• Placeholder Expressions

• Scalar Subquery Expressions

• Type Constructor Expressions

• Expression Lists

About SQL Expressions
An expression is a combination of one or more values, operators, and SQL functions that
evaluates to a value. An expression generally assumes the data type of its components.

This simple expression evaluates to 4 and has data type NUMBER (the same data type as its
components):

2*2

The following expression is an example of a more complex expression that uses both functions
and operators. The expression adds seven days to the current date, removes the time
component from the sum, and converts the result to CHAR data type:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

• The select list of the SELECT statement

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 45

• A condition of the WHERE clause and HAVING clause

• The CONNECT BY, START WITH, and ORDER BY clauses

• The VALUES clause of the INSERT statement

• The SET clause of the UPDATE statement

For example, you could use an expression in place of the quoted string 'Smith' in this UPDATE
statement SET clause:

SET last_name = 'Smith';

This SET clause has the expression INITCAP(last_name) instead of the quoted string 'Smith':

SET last_name = INITCAP(last_name);

Expressions have several forms, as shown in the following syntax:

expr::=

simple_expression

compound_expression

calc_meas_expression

case_expression

cursor_expression

datetime_expression

function_expression

interval_expression

JSON_object_access_expr

model_expression

object_access_expression

scalar_subquery_expression

type_constructor_expression

variable_expression

boolean_expression

simple_expression::=,,,,,,,boolean_expression::=

Oracle Database does not accept all forms of expressions in all parts of all SQL statements.
Refer to the section devoted to a particular SQL statement in this book for information on
restrictions on the expressions in that statement.

You must use appropriate expression notation whenever expr appears in conditions, SQL
functions, or SQL statements in other parts of this reference. The sections that follow describe
and provide examples of the various forms of expressions.

Chapter 5
About SQL Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 45

Simple Expressions
A simple expression specifies a column, pseudocolumn, constant, sequence number, or null.

simple_expression::=

query_name

schema .
table

view

materialized view

t_alias

.

column

ROWID

ROWNUM

string

number

sequence .
CURRVAL

NEXTVAL

NULL

TRUE

FALSE

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation marks
required), in which case it must qualify a public synonym for a table, view, or materialized view.
Qualifying a public synonym with "PUBLIC" is supported only in data manipulation language
(DML) statements, not data definition language (DDL) statements.

You can specify ROWID only with a table, not with a view or materialized view. NCHAR and
NVARCHAR2 are not valid pseudocolumn data types.

See Also

Pseudocolumns for more information on pseudocolumns and
subquery_factoring_clause for information on query_name

Some valid simple expressions are:

employees.last_name
'this is a text string'
10
N'this is an NCHAR string'

Chapter 5
Simple Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 45

Analytic View Expressions
You can use analytic view expressions to create calculated measures within the definition of an
analytic view or in a query that selects from an analytic view.

Analytic view expressions differ from other types of expressions in that they reference
elements of hierarchies and analytic views rather than tables and columns.

An analytic view expression is one of the following:

• An av_meas_expression, which is based on a measure in an analytic view

• An av_hier_expression, which returns an attribute value of the related member

You use an analytic view expression as the calc_meas_expression parameter in a calc_measure_clause
in a CREATE ANALYTIC VIEW statement and in the WITH or FROM clauses of a SELECT statement.

In defining a calculated measure, you may also use the following types of expression:

• Simple

• Case

• Compound

• Datetime

• Interval

Syntax

av_expression::=

av_meas_expression

av_hier_expression

av_meas_expression::=

lead_lag_expression

av_window_expression

rank_expression

share_of_expression

qdr_expression

lead_lag_expression::=

lead_lag_function_name (calc_meas_expression) OVER (lead_lag_clause)

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 45

lead_lag_function_name::=

LAG

LAG_DIFF

LAG_DIF_PERCENT

LEAD

LEAD_DIFF

LEAD_DIFF_PERCENT

lead_lag_clause::=

HIERARCHY hierarchy_ref OFFSET offset_expr

WITHIN
LEVEL

PARENT

ACROSS ANCESTOR AT LEVEL level_ref

POSITION FROM
BEGINNING

END

hierarchy_ref::=

attr_dim_alias .

hier_alias

av_window_expression::=

aggregate_function OVER (av_window_clause)

av_window_clause::=

HIERARCHY hierarchy_ref IN member_set

BETWEEN
preceding_boundary

following_boundary

WITHIN

LEVEL

PARENT

ANCESTOR AT LEVEL level_ref

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 45

preceding_boundary ::=

UNBOUNDED PRECEDING

offset_expr PRECEDING
AND

CURRENT MEMBER

offset_expr
PRECEDING

FOLLOWING

UNBOUNDED FOLLOWING

following_boundary::=

CURRENT MEMBER

offset_expr FOLLOWING
AND

offset_expr FOLLOWING

UNBOUNDED FOLLOWING

rank_expression::=

rank_function_name () OVER (rank_clause)

rank_function_name::=

RANK

DENSE_RANK

AVERAGE_RANK

ROW_NUMBER

rank_clause::=

HIERARCHY hierarchy_ref ORDER BY calc_meas_order_by_clause

,

WITHIN

LEVEL

PARENT

ANCESTOR AT LEVEL level_ref

calc_meas_order_by_clause::=

calc_meas_expression

ASC

DESC
NULLS

FIRST

LAST

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 45

share_of_expression::=

SHARE_OF (calc_meas_expression share_clause)

share_clause::=

HIERARCHY hierarchy_ref

PARENT

LEVEL level_ref

MEMBER member_expression

member_expression::=

level_member_literal

hier_navigation_expression

CURRENT MEMBER

NULL

ALL

level_member_literal::=

level_ref
pos_member_keys

named_member_keys

pos_member_keys::=

’ [’ member_key_expr

,

’] ’

named_member_keys::=

’ [’ attr_name = member_key_expr

,

’] ’

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 45

hier_navigation_expression::=

hier_ancestor_expression

hier_parent_expression

hier_lead_lag_expression

hier_first_expression

hier_last_expression

hier_member_at_expression

hier_ancestor_expression::=

HIER_ANCESTOR (member_expression AT
LEVEL level_ref

DEPTH depth_expression
)

hier_parent_expression::=

HIER_PARENT (member_expression)

hier_lead_lag_expression::=

HIER_LEAD

HIER_LAG
(hier_lead_lag_clause)

hier_lead_lag_clause::=

member_expression OFFSET offset_expr

WITHIN

LEVEL

PARENT

ACROSS ANCESTOR AT LEVEL level_ref

POSITION FROM
BEGINNING

END

hier_first_expression::=

HIER_FIRST (member_set)

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 45

hier_last_expression::=

HIER_LAST (member_set)

hier_member_at_expression::=

HIER_MEMBER_AT (member_set , number)

qdr_expression::=

QUALIFY (calc_meas_expression , qualifier)

qualifier::=

hierarchy_ref = member_expression

av_hier_expression::=

hier_function_name (member_expression WITHIN HIERARCHY hierarchy_ref)

hier_function_name::=

HIER_CAPTION

HIER_DEPTH

HIER_DESCRIPTION

HIER_LEVEL

HIER_MEMBER_NAME

HIER_MEMBER_UNIQUE_NAME

HIER_PARENT_LEVEL

HIER_PARENT_UNIQUE_NAME

HIER_CHILD_COUNT

member_set::=

member_to_set_func

set_to_set_func

hier_member_set

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 45

member_to_set_func::=

hier_ancestors

hier_descendants

hier_siblings

hier_children

hier_level_members

hier_ancestors::=

HIER_ANCESTORS (member_expr

self_clause

)

hier_descendants::=

HIER_DESCENDANTS (member_expr

self_clause

AT

LEVEL level_name

DEPTH level_depth

LEAF

)

hier_siblings::=

HIER_SIBLINGS (member_expr

self_clause

)

self_clause ::=

INCLUDE

EXCLUDE

SELF

hier_children::=

HIER_CHILDREN (member_expr)

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 45

hier_level_members::=

HIER_LEVEL_MEMBERS (member_expr

WITHIN

LEVEL

PARENT

ANCESTOR AT
LEVEL level_name

DEPTH level_depth

)

set_to_set_func::=

hier_union

hier_union_all

hier_intersect

hier_minus

hier_distinct

hier_range

hier_window

hier_expand

hier_union::=

HIER_UNION (member_set , member_set)

hier_union_all::=

HIER_UNION_ALL (member_set , member_set)

hier_intersect::=

HIER_INTERSECT (member_set , member_set)

hier_minus::=

HIER_MINUS (member_set , member_set)

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 45

hier_distinct::=

HIER_DISTINCT (member_set)

hier_range::=

HIER_RANGE (member_set

FIRST

LAST

BETWEEN number AND

number

PERCENT

)

hier_window::=

HIER_WINDOW (member_set RELATIVE TO member_expr

BETWEEN
preceding_boundary

following_boundary
)

hier_expand::=

HIER_EXPAND (member_set BY member_to_set_func)

hier_member_set::=

HIER_MEMBER_SET (member_expr

,

)

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 45

hier_cond::=

HIER_CONDITION (member_expr IS

NOT

IN member_set

PARENT

CHILD

ROOT ANCESTOR

LEAF

DESCENDANT

SIBLING

ANCESTOR AT LEVEL level

OR SELF

OF

WITHIN HIERARCHY hierarchy_ref

INCLUDE

SKIP
WHEN NULL

)

hier_position::=

HIER_POSITION (member_expr IN member_set WITHIN HIERARCHY hierarchy_ref

INCLUDE

SKIP
WHEN NULL

)

hier_count::=

HIER_COUNT (

DISTINCT

member_set WITHIN HIERARCHY hierarchy_ref

INCLUDE

SKIP
WHEN NULL

)

Semantics

av_meas_expression

An expression that performs hierarchical navigation to locate related measure values.

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 45

lead_lag_expression

An expression that specifies a lead or lag operation that locates a related measure value by
navigating forward or backward by some number of members within a hierarchy.

The calc_meas_expression parameter is evaluated in the new context created by the
lead_lag_expression. This context has the same members as the outer context, except that the
member of the specified hierarchy is changed to the related member specified by the lead or
lag operation. The lead or lag function is run over the hierarchy members specified by the
lead_lag_clause parameter.

lead_lag_function_name

The lead or lag function may be one of the following:

• LAG returns the measure value of an earlier member.

• LAG_DIFF returns the difference between the measure value of the current member and the
measure value of an earlier member.

• LAG_DIFF_PERCENT returns the percent difference between the measure value of the
current member and the measure value of an earlier member.

• LEAD returns the measure value of a later member.

• LEAD_DIFF returns the difference between the measure value of the current member and
the measure value of a later member.

• LEAD_DIFF_PERCENT returns the percent difference between the measure value of the
current member and the measure value of a later member.

lead_lag_clause

Specifies the hierarchy to evaluate and an offset value. The parameters of the lead_lag_clause are
the following:

• HIERARCHY hierarchy_ref specifies the alias of a hierarchy as defined in the analytic view.

• OFFSET offset_expr specifies a calc_meas_expression that resolves to a number. The number
specifies how many members to move either forward or backward from the current
member. The ordering of members within a level is determined by the definition of the
attribute dimension used by the hierarchy.

• WITHIN LEVEL specifies locating the related member by moving forward or backward by the
offset number of members within the members that have the same level depth as the
current member. The ordering of members within the level is determined by the definition
of the attribute dimension used by the hierarchy.

The WITHIN LEVEL operation is the default if neither the WITHIN LEVEL nor the ACROSS
ANCESTOR AT LEVEL keywords are specified.

• WITHIN PARENT specifies locating the related member by moving forward or backward by
the offset number of members within the members that have the same parent as the
current member.

• ACROSS ANCESTOR AT LEVEL level_ref specifies locating the related member by navigating up
to the ancestor (or to the member itself if no ancestor exists) of the current member at the
level specified by level_ref, and noting the position of each ancestor member (including the
member itself) within its parent. The level_ref parameter is the name of a level in the
specified hierarchy.

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 45

Once the ancestor member is found, navigation moves either forward or backward the
offset number of members within the members that have the same depth as the ancestor
member. After locating the related ancestor, navigation proceeds back down the hierarchy
from this member, matching the position within the parent as recorded on the way up (in
reverse order). The position within the parent is either an offset from the first child or the
last child depending on whether POSITION FROM BEGINNING or POSITION FROM END is
specified. The default value is POSITION FROM BEGINNING. The ordering of members within
the level is determined by the definition of the attribute dimension used by the hierarchy.

av_window_expression

An av_window_expression selects the set of members that are in the specified range starting from
the current member and that are at the same depth as the current member. You can further
restrict the selection of members by specifying a hierarchical relationship using a WITHIN
phrase. Aggregation is then performed over the selected measure values to produce a single
result for the expression.

The parameters for an av_window_expression are the following:

• aggregate_function is any existing SQL aggregate function except COLLECT, GROUP_ID,
GROUPING, GROUPING_ID, SYS_XMLAGG, XMLAGG, and any multi-argument function. A user
defined aggregate function is also allowed. The arguments to the aggregate function are
calc_meas_expression expressions. These expressions are evaluated using the outer context,
with the member of the specified hierarchy changed to each member in the related range.
Therefore, each expression argument is evaluated once per related member. The results
are then aggregated using the aggregate_function.

• OVER (av_window_clause) specifies the hierarchy to use and the boundaries of the window to
consider.

See Also

Aggregate Functions

av_window_clause

The av_window_clause parameter selects a range of members related to the current member. The
range is between the members specified by the preceding_boundary or following_boundary
parameters. The range is always computed over members at the same level as the current
member.

Use IN member_set to specify an arbitrary member set to be used as the window for the window
expression.

The parameters for a av_window_clause are the following:

• HIERARCHY hierarchy_ref specifies the alias of the hierarchy as defined in the analytic view.

• BETWEEN preceding_boundary or following_boundary defines the set of members to relate to the
current member.

• WITHIN LEVEL selects the related members by applying the boundary clause to all
members of the current level. This is the default when the WITHIN keyword is not specified.

• WITHIN PARENT selects the related members by applying the boundary clause to all
members that share a parent with the current member.

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 45

• WITHIN ANCESTOR AT LEVEL selects the related members by applying the boundary clause
to all members at the current depth that share an ancestor (or is the member itself) at the
specified level with the current member. The value of the window expression is NULL if the
current member is above the specified level. If the level is not in the specified hierarchy,
then an error occurs.

preceding_boundary

The preceding_boundary parameter defines a range of members from the specified number of
members backward in the level from the current member and forward to the specified end of
the boundary. The following parameters specify the range:

• UNBOUNDED PRECEDING begins the range at the first member in the level.

• offset_expr PRECEDING begins the range at the offset_expr number of members backward from
the current member. The offset_expr expression is a calc_meas_expression that resolves to a
number. If the offset number is greater than the number of members from the current
member to the first member in the level, than the first member is used as the start of the
range.

• CURRENT MEMBER ends the range at the current member.

• offset_expr PRECEDING ends the range at the member that is offset_expr backward from the
current member.

• offset_expr FOLLOWING ends the range at the member that is offset_expr forward from the
current member.

• UNBOUNDED FOLLOWING ends the range at the last member in the level.

following_boundary

The following_boundary parameter defines a range of members from the specified number of
members from the current member forward to the specified end of the range. The following
parameters specify the range:

• CURRENT MEMBER begins the range at the current member.

• offset_expr FOLLOWING begins the range at the member that is offset_expr forward from the
current member.

• offset_expr FOLLOWING ends the range at the member that is offset_expr forward from the
current member.

• UNBOUNDED FOLLOWING ends the range at the last member in the level.

hierarchy_ref

A reference to a hierarchy of an analytic view. The hier_alias parameter specifies the alias of a
hierarchy in the definition of the analytic view. You may use double quotes to escape special
characters or preserve case, or both.

The optional attr_dim_alias parameter specifies the alias of an attribute dimension in the
definition of the analytic view. You may use the attr_dim_alias parameter to resolve the ambiguity
if the specified hierarchy alias conflicts with another hierarchy alias in the analytic view or if an
attribute dimension is used more than once in the analytic view definition. You may use the
attr_dim_alias parameter even when a name conflict does not exist.

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 45

rank_expression

Hierarchical rank calculations rank the related members of the specified hierarchy based on
the order of the specified measure values and return the rank of the current member within
those results.

Hierarchical rank calculations locate a set of related members in the specified hierarchy, rank
all the related members based on the order of the specified measure values, and then return
the rank of the current member within those results. The related members are a set of
members at the same level as the current member. You may optionally restrict the set by some
hierarchical relationship, but the set always includes the current member. The ordering of the
measure values is determined by the calc_meas_order_by_clause of the rank_clause.

rank_function_name

Each hierarchical ranking function assigns an order number to each related member based on
the calc_meas_order_by_clause, starting at 1. The functions differ in the way they treat measure
values that are the same.

The functions and the differences between them are the following:

• RANK, which assigns the same rank to identical measure values. The rank after a set of
tied values is the number of tied values plus the tied order value; therefore, the ordering
may not be consecutive numbers.

• DENSE_RANK, which assigns the same minimum rank to identical measure values. The
rank after a set of tied values is always one more than the tied value; therefore, the
ordering always has consecutive numbers.

• AVERAGE_RANK, assigns the same average rank to identical values. The next value after
the average rank value is the number of identical values plus 1, that sum divided by 2, plus
the average rank value. For example, for the series of five values 4, 5, 10, 5, 7,
AVERAGE_RANK returns 1, 1.5, 1.5, 3, 4. For the series 2, 12, 10, 12, 17, 12, the returned
ranks are 1, 2, 3, 3, 3, 5.

• ROW_NUMBER, which assigns values that are unique and consecutive across the hierarchy
members. If the calc_meas_order_by_clause results in equal values then the results are non-
deterministic.

rank_clause

The rank_clause locates a range of hierarchy members related to the current member. The range
is some subset of the members in the same level as the current member. The subset is
determined from the WITHIN clause.

Valid values for the WITHIN clause are:

• WITHIN LEVEL, which specifies that the related members are all the members of the current
level. This is the default subset if the WITHIN keyword is not specified.

• WITHIN PARENT, which specifies that the related members all share a parent with the
current member

• WITHIN ANCESTOR AT LEVEL, which specifies that the related members are all of the
members of the current level that share an ancestor (or self) at the specified level with the
current member.

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 45

share_of_expression

A share_of_expression expression calculates the ratio of an expression's value for the current
context over the expression's value at a related context. The expression is a calc_meas_expression
that is evaluated at the current context and the related context. The share_clause specification
determines the related context to use.

share_clause

A share_clause modifies the outer context by setting the member for the specified hierarchy to a
related member.

The parameters of the share clause are the following:

• HIERARCHY hierarchy_ref specifies the name of the hierarchy that is the outer context for the
share_of_expression calculations.

• PARENT specifies that the related member is the parent of the current member.

• LEVEL level_ref specifies that the related member is the ancestor (or is the member itself) of
the current member at the specified level in the hierarchy. If the current member is above
the specified level, then NULL is returned for the share expression. If the level is not in the
hierarchy, then an error occurs.

• MEMBER member_expression specifies that the related member is the member returned after
evaluating the member_expression in the current context. If the value of the specified member
is NULL, then NULL is returned for the share expression.

member_expression

A member_expression a member expression is an expression that returns a single member in a
hierarchy. A member set contains multiple members (possibly including duplicates), and may
be empty. A multiple member expression is an expression that returns a member set.

The hierarchy can be determined from the outer expression (enforced by the syntax).

A member_expression can be one of the following:

• level_member_literal expression specifies a particular member contained within a particular
level. The member is identified by specifying a key value.

• hier_navigation_expr is an expression that relates one member of the hierarchy to another
member.

• CURRENT MEMBER indicates that the function should operate on the current member of the
hierarchy, typically the starting point of a function, used in the innermost function when
nesting. For example, HIER_PARENT(HIER_PARENT(CURRENT MEMBER)) returns the
grandparent of the current member.

When used within a hierarchical window expression, for example, the current member is
the one in which the window is currently operating. The current member can also be
provided by some member set functions as well as in QUALIFY.

• The NULL keyword is simply a placeholder for a member that is not in the hierarchy, called
an empty member. This can be specified explicitly, but can also be the result of a function.
For example, HIER_PARENT on the ALL member of a hierarchy will result in the empty
member. The empty member should not be confused with NULL members that are true
hierarchy members of SKIP WHEN NULL levels.

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 45

• The ALL keyword specifies the ALL member, the ultimate ancestor of every other member
in the hierarchy. Every hierarchy has an implicit ALL member contained within an implicit
ALL level.

level_member_literal

A level member expression specifies a particular member contained within a particular level.
The member is identified by specifying a key value. If the attribute name is not specified, it is
assumed to be the primary key attribute. Typically, just a single attribute needs qualification.

In the case of a level with either a multi-column key or a SKIP WHEN NULL level, multiple
attributes need to be qualified in order to uniquely identify a member. If the key attribute is
specified, ordering is not important. If not specified, the ordering is assumed to be the ordering
as defined in the xxx_HIER_LEVEL_ID_ATTRS data dictionary view.

pos_member_keys

The member_key_expr expression resolves to the key value for the member. When specified by
position, all components of the key must be given in the order found in the
ALL_HIER_LEVEL_ID_ATTRS dictionary view. For a hierarchy in which the specified level is not
determined by the child level, then all member key values of all such child levels must be
provided preceding the current level's member key or keys. Duplicate key components are only
specified the first time they appear.

The primary key is used when level_member_literal is specified using the pos_member_keys phrase.
You can reference an alternate key by using the named_member_keys phrase.

named_member_keys

The member_key_expr expression resolves to the key value for the member. The attr_name
parameter is an identifier for the name of the attribute. If all of the attribute names do not make
up a key or alternate key of the specified level, then an error occurs.

When specified by name, all components of the key must be given and all must use the
attribute name = value form, in any order. For a hierarchy in which the specified level is not
determined by the child level, then all member key values of all such child levels must be
provided, also using the named form. Duplicate key components are only specified once.

hier_navigation_expression

A hier_navigation_expression expression navigates from the specified member to a different member
in the hierarchy.

hier_ancestor_expression

Returns the ancestor of the specified member at the given level. The level can either be
specified by name or depth. If the member has no ancestor at the specified level, the empty
member is returned.

The depth is specified as an expression that must resolve to a number. If the member is at a
level or depth above the specified member, or the member is NULL, then NULL is returned for
the expression value. If the specified level is not in the context hierarchy, then an error occurs.

hier_parent_expression

Returns the parent of the specified member, or the empty member if it has no parent (i.e. is the
ALL member).

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 45

hier_first_expression

Returns the first element in the specified member set. If the member set is empty, the empty
member is returned.

hier_last_expression

Returns the last element in the specified member set. If the member set is empty, the empty
member is returned.

hier_member_at_expression

Returns the member in the specified member set at the position identified by the given
expression representing the position, where positions are 1-based. If the specified position is
greater than the number of elements in the member set, the empty member is returned. The
expression must be coercible to a numeric type, and will be rounded to the nearest integer. If
the expression resolves to an integer less than 1, the empty member is returned.

hier_lead_lag_expression

Navigates from the specified member to a related member by moving forward or backward
some number of members within the context hierarchy. The HIER_LEAD keyword returns a later
member. The HIER_LAG keyword returns an earlier member.

hier_lead_lag_clause

Navigates the offset_expr number of members forward or backward from the specified member.
The ordering of members within a level is specified in the definition of the attribute dimension.

The optional parameters of hier_lead_lag_clause are the following:

• WITHIN LEVEL locates the related member by moving forward or backward offset_expr
members within the members that have the same depth as the current member. The
ordering of members within the level is determined by the definition of the attribute
dimension. The WITHIN LEVEL operation is the default if neither the WITHIN nor the ACROSS
keywords are used.

• WITHIN PARENT locates the related member by moving forward or backward offset_expr
members within the members that have the same depth as the current member, but only
considers members that share a parent with the current member. The ordering of members
within the level is determined by the definition of the attribute dimension.

• WITHIN ACROSS ANCESTOR AT LEVEL locates the related member by navigating up to the
ancestor of the current member (or to the member itself) at the specified level, noting the
position of each ancestor member (including the member itself) within its parent. Once the
ancestor member is found, navigation moves forward or backward offset_expr members
within the members that have the same depth as the ancestor member.

After locating the related ancestor, navigation moves back down the hierarchy from that
member, matching the position within the parent as recorded on the way up (in reverse
order). The position within the parent is either an offset from the first child or the last child
depending on whether POSITION FROM BEGINNING or POSITION FROM END is specified,
defaulting to POSITION FROM BEGINNING. The ordering of members within the level is
determined by the definition of the attribute dimension.

qdr_expression

A qdr_expression is a qualified data reference that evaluates the specified calc_meas_expression in a
new context and sets the hierarchy member to the new value.

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 45

qualifier

A qualifier modifies the outer context by setting the member for the specified hierarchy to the
member resulting from evaluating member_expression. If member_expression is NULL, then the result of
the qdr_expression selection is NULL.

av_hier_expression

An av_hier_expression performs hierarchy navigation to locate an attribute value of the related
member. An av_hier_expression may be a top-level expression, whereas a hier_navigation_expression
may only be used as a member_expression argument.

For example, in the following query HIER_MEMBER__NAME is an av_hier_expression and
HIER_PARENT is a hier_navigation_expression.

HIER_MEMBER_NAME(HIER_PARENT(CURRENT MEMBER) WITHIN HIERARCHY product_hier))

hier_function_name

The hier_function_name values are the following:

• HIER_CAPTION, which returns the caption of the related member in the hierarchy.

• HIER_DEPTH, which returns one less than the number of ancestors between the related
member and the ALL member in the hierarchy. The depth of the ALL member is 0.

• HIER_DESCRIPTION, which returns the description of the related member in the hierarchy.

• HIER_LEVEL, which returns as a string value the name of the level to which the related
member belongs in the hierarchy.

• HIER_MEMBER_NAME, which returns the member name of the related member in the
hierarchy.

• HIER_MEMBER_UNIQUE_NAME, which returns the member unique name of the related
member in the hierarchy.

member_set

The primary purpose of member sets is to allow them to be used within hierarchical functions.
A member set is the result of either a member to set function or a set to set function.

member_to_set_func

All member to set functions take a member expression as input and produce a member set in
hierarchy order. The variants that have a self_clause can specify whether or not the member
specified in the given member expression itself should be included in the resulting member set,
with the default being that it is excluded. If the given member is the empty member, all
functions return an empty set even when INCLUDE SELF is specified.

hier_ancestors

Returns a member set consisting of all ancestors of the specified member, optionally including
the member itself. If the member has no ancestors (i.e. is the ALL member) and self is
excluded, an empty set is returned.

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 45

hier_descendants

Returns a member set consisting of all descendants of the specified member, optionally
including the member itself. If the AT clause is specified, the set of descendants are filtered to
only include members at the specified level or depth. If the member has no descendants (i.e. is
a leaf) optionally filtered to the given level and self is excluded, an empty set is returned.

hier_siblings

Returns a member set consisting of all siblings of the specified member, optionally including
the member itself. A sibling is defined as any member whose parent is equal to the parent of
the given member. If the member has no siblings and self is excluded, an empty set is
returned.

hier_children

Returns a member set consisting of all children of the specified member. If the member has no
children, an empty set is returned.

hier_level_members

Returns a member set consisting of members at the same level as the given member that have
a common ancestor as defined by the WITHIN clause. This function always includes self.
WITHIN PARENT returns all members that are children of the given member’s parent. WITHIN
ANCESTOR AT returns all members at the same level as the given member that have the same
ancestor at the specified level. WITHIN LEVEL returns all members at the same level as the
given member. If the WITHIN clause is omitted, the default is WITHIN LEVEL.

hier_member_set

Returns a member set consisting of explicitly specified members, in the order specified. This
function is in its own category as it is not really performing a navigation, but simply building a
set from some number of given members. Duplicate members are allowed. Any empty
members in the given set are ignored, as a member set will never include the empty member.

set_to_set_func

The functions in this section all operate on a member set. They perform standard set
operations and further hierarchical navigation.

hier_union

Returns the distinct union of members among the two given sets by taking all distinct members
of the first set followed by all members in the second set that are not in the first set.

hier_union_all

Returns all members in the first set followed by all members in the second set, retaining
duplicates.

hier_intersect

Returns all distinct members in order from the first set that also appear in the second set.

hier_minus

Returns all distinct members in order from the first set that do not appear in the second set.

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 45

hier_distinct

Returns the distinct members in order from the given set.

hier_range

Returns members in order from the set that fall within the specified range. In all cases, number is
an expression that is coercible to a number. When PERCENT is not specified, the expression
must evaluate to a positive integer. FIRST will return the first Nmembers in the set. If N is greater
than the number of elements in the set, all elements are returned. LAST will return the last N
members in the set. If N is greater than the number of elements in the set, all elements are
returned. BETWEEN will return all elements whose position in the set is >= the start position and
<= the given end position, with positions being 1-based. If the PERCENT keyword is specified,
the number arguments all represent percentages and must evaluate to a number between 0 and
100.

hier_window

Returns all members in order from the given set which fall within the specified boundary
relative to the given member. If the given member is not in the given set, an empty set is
returned.

hier_expand

For each member in the given set, applies the specified member to set function. References to
CURRENT MEMBER in the member to set function refer to the current member in the set to which
it is being applied. The member sets produced for the members are combined using the
semantics of HIER_UNION_ALL (i.e. retaining duplicates).

hier_cond

Use IN member_set to specify an arbitrary member set to use for the comparison.

hier_position

Returns the numeric 1-based position of the first occurrence of the member identified by
mbr_expr in the specified member set, with references to CURRENT MEMBER referring to the
current member in the set to which it is being applied. If the member does not appear in the
set, NULL is returned. This could be useful if a user wanted to order the output of a query
based on the set order.

hier_count

Returns the number of members in the member set. If the DISTINCT keyword is included,
returns the number of distinct members in the member set.

Examples of Analytic View Expressions
This topic contains examples that show calculated measures defined in the MEASURES clause
of an analytic view and in the ADD MEASURES clause of a SELECT statement.

The examples are the following:

• Examples of LAG Expressions

• Example of a Window Expression

• Examples of SHARE OF Expressions

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 45

• Examples of QDR Expressions

• Example of an Added Measure Using the RANK Function

For more examples, see the tutorials on analytic views at the SQL Live website at https://
livesql.oracle.com/apex/livesql/file/index.html.

Examples of LAG Expressions

These calculated measures different LAG operations.

-- These calculated measures are from the measures_clause of the
-- sales_av analytic view.
MEASURES
 (sales FACT sales, -- A base measure
 units FACT units, -- A base measure
 sales_prior_period AS -- Calculated measures
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1)),
 sales_year_ago AS
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 chg_sales_year_ago AS
 (LAG_DIFF(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 pct_chg_sales_year_ago AS
 (LAG_DIFF_PERCENT(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 sales_qtr_ago AS
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter)),
 chg_sales_qtr_ago AS
 (LAG_DIFF(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter)),
 pct_chg_sales_qtr_ago AS
 (LAG_DIFF_PERCENT(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter))
)

Example of a Window Expression

This calculated measure uses a window operation.

MEASURES
 (sales FACT sales,
 units FACT units,
 sales_qtd AS
 (SUM(sales) OVER (HIERARCHY time_hier
 BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER
 WITHIN ANCESTOR AT LEVEL QUARTER)),
 sales_ytd AS
 (SUM(sales) OVER (HIERARCHY time_hier
 BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER
 WITHIN ANCESTOR AT LEVEL YEAR))
)

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 45

https://livesql.oracle.com/apex/livesql/file/index.html
https://livesql.oracle.com/apex/livesql/file/index.html

Examples of SHARE OF Expressions

These calculated measures use SHARE OF expressions.

MEASURES
 (sales FACT sales,
 units FACT units,
 sales_shr_parent_prod AS
 (SHARE_OF(sales HIERARCHY product_hier PARENT)),
 sales_shr_parent_geog AS
 (SHARE_OF(sales HIERARCHY geography_hier PARENT)),
 sales_shr_region AS
 (SHARE_OF(sales HIERARCHY geography_hier LEVEL REGION))
)

Examples of QDR Expressions

These calculated measures use the QUALIFY keyword to specify qualified data reference
expressions.

MEASURES
 (sales FACT sales,
 units FACT units,
 sales_2011 AS
 (QUALIFY (sales, time_hier = year['11'])),
 sales_pct_chg_2011 AS
 ((sales - (QUALIFY (sales, time_hier = year['11']))) /
 (QUALIFY (sales, time_hier = year['11'])))
)

Example of an Added Measure Using the RANK Function

In this example, the units_geog_rank_level measure uses the RANK function to rank geography
hierarchy members within a level based on units.

SELECT geography_hier.member_name AS "Region",
 units AS "Units",
 units_geog_rank_level AS "Rank"
 FROM ANALYTIC VIEW (
 USING sales_av HIERARCHIES (geography_hier)
 ADD MEASURES (
 units_geog_rank_level AS (
 RANK() OVER (
 HIERARCHY geography_hier
 ORDER BY units desc nulls last
 WITHIN LEVEL))
)
)
 WHERE geography_hier.level_name IN ('REGION')
 ORDER BY units_geog_rank_level;

Chapter 5
Analytic View Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 45

The following is the result of the query.

Regions Units Rank
------------- --------- ----
Asia 56017849 1
South America 23904155 2
North America 20523698 3
Africa 12608308 4
Europe 8666520 5
Oceania 427664 6

Compound Expressions
A compound expression specifies a combination of other expressions.

compound_expression::=

(expr)

+

–

PRIOR

expr

expr

*

/

+

–

| |

expr

expr COLLATE collation_name

You can use any built-in function as an expression (Function Expressions). However, in a
compound expression, some combinations of functions are inappropriate and are rejected. For
example, the LENGTH function is inappropriate within an aggregate function.

The PRIOR operator is used in CONNECT BY clauses of hierarchical queries.

The COLLATE operator determines the collation for an expression. This operator overrides the
collation that the database would have derived for the expression using standard collation
derivation rules.

See Also

• Operator Precedence

• Hierarchical Queries

• COLLATE Operator

Some valid compound expressions are:

Chapter 5
Compound Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 45

('CLARK' || 'SMITH')
LENGTH('MOOSE') * 57
SQRT(144) + 72
my_fun(TO_CHAR(sysdate,'DD-MMM-YY'))
name COLLATE BINARY_CI

CASE Expressions
CASE expressions let you use IF ... THEN ... ELSE logic in SQL statements without having to
invoke procedures. The syntax is:

CASE
simple_case_expression

searched_case_expression

else_clause

END

simple_case_expression::=

expr WHEN comparison_expr THEN return_expr

searched_case_expression::=

WHEN condition THEN return_expr

else_clause::=

ELSE else_expr

In a simple CASE expression, Oracle Database searches for the first WHEN ... THEN pair for
which expr is equal to comparison_expr and returns return_expr. If none of the WHEN ... THEN pairs
meet this condition, and an ELSE clause exists, then Oracle returns else_expr. Otherwise, Oracle
returns null.

In a searched CASE expression, Oracle searches from left to right until it finds an occurrence of
condition that is true, and then returns return_expr. If no condition is found to be true, and an ELSE
clause exists, then Oracle returns else_expr. Otherwise, Oracle returns null.

Oracle Database uses short-circuit evaluation. For a simple CASE expression, the database
evaluates each comparison_expr value only before comparing it to expr, rather than evaluating all
comparison_expr values before comparing any of them with expr. Consequently, Oracle never
evaluates a comparison_expr if a previous comparison_expr is equal to expr. For a searched CASE
expression, the database evaluates each condition to determine whether it is true, and never
evaluates a condition if the previous condition was true.

For a simple CASE expression, the expr and all comparison_expr values must either have the same
data type (CHAR, VARCHAR2, NCHAR, or NVARCHAR2, NUMBER, BINARY_FLOAT, or

Chapter 5
CASE Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 45

BINARY_DOUBLE) or must all have a numeric data type. If all expressions have a numeric data
type, then Oracle determines the argument with the highest numeric precedence, implicitly
converts the remaining arguments to that data type, and returns that data type.

For both simple and searched CASE expressions, all of the return_exprs must either have the
same data type (CHAR, VARCHAR2, NCHAR, or NVARCHAR2, NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE) or must all have a numeric data type. If all return expressions have a numeric
data type, then Oracle determines the argument with the highest numeric precedence,
implicitly converts the remaining arguments to that data type, and returns that data type.

The maximum number of arguments in a CASE expression is 65535. All expressions count
toward this limit, including the initial expression of a simple CASE expression and the optional
ELSE expression. Each WHEN ... THEN pair counts as two arguments. To avoid exceeding this
limit, you can nest CASE expressions so that the return_expr itself is a CASE expression.

The comparison performed by the simple CASE expression is collation-sensitive if the
compared arguments have a character data type (CHAR, VARCHAR2, NCHAR, or NVARCHAR2).
The collation determination rules determine the collation to use.

See Also

• Table 2-9 for more information on implicit conversion

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation and determination rules for the CASE expression

• Numeric Precedence for information on numeric precedence

• COALESCE and NULLIF for alternative forms of CASE logic

• Oracle Database Data Warehousing Guide for examples using various forms of
the CASE expression

Simple CASE Example

For each customer in the sample oe.customers table, the following statement lists the credit limit
as "Low" if it equals $100, "High" if it equals $5000, and "Medium" if it equals anything else.

SELECT cust_last_name,
 CASE credit_limit WHEN 100 THEN 'Low'
 WHEN 5000 THEN 'High'
 ELSE 'Medium' END AS credit
 FROM customers
 ORDER BY cust_last_name, credit;

CUST_LAST_NAME CREDIT
-------------------- ------
Adjani Medium
Adjani Medium
Alexander Medium
Alexander Medium
Altman High
Altman Medium
. . .

Searched CASE Example

The following statement finds the average salary of the employees in the sample table
oe.employees, using $2000 as the lowest salary possible:

Chapter 5
CASE Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 45

SELECT AVG(CASE WHEN e.salary > 2000 THEN e.salary
 ELSE 2000 END) "Average Salary" FROM employees e;

Average Salary

 6461.68224

Column Expressions
A column expression, which is designated as column_expression in subsequent syntax diagrams,
is a limited form of expr. A column expression can be a simple expression, compound
expression, function expression, boolean expression, or expression list, but it can contain only
the following forms of expression:

• Columns of the subject table — the table being created, altered, or indexed

• Constants (strings or numbers)

• Deterministic functions — either SQL built-in functions or user-defined functions

No other expression forms described in this chapter are valid. In addition, compound
expressions using the PRIOR keyword are not supported, nor are aggregate functions.

You can use a column expression for these purposes:

• To create a function-based index.

• To explicitly or implicitly define a virtual column. When you define a virtual column, the
defining column_expression must refer only to columns of the subject table that have already
been defined, in the current statement or in a prior statement.

The combined components of a column expression must be deterministic. That is, the same
set of input values must return the same set of output values.

See Also

Simple Expressions , Compound Expressions , Function Expressions , and
Expression Lists for information on these forms of expr

CURSOR Expressions
A CURSOR expression returns a nested cursor. This form of expression is equivalent to the
PL/SQL REF CURSOR and can be passed as a REF CURSOR argument to a function.

CURSOR (subquery)

A nested cursor is implicitly opened when the cursor expression is evaluated. For example, if
the cursor expression appears in a select list, a nested cursor will be opened for each row
fetched by the query. The nested cursor is closed only when:

• The nested cursor is explicitly closed by the user

• The parent cursor is reexecuted

• The parent cursor is closed

Chapter 5
Column Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 45

• The parent cursor is cancelled

• An error arises during fetch on one of its parent cursors (it is closed as part of the clean-
up)

Restrictions on CURSOR Expressions

The following restrictions apply to CURSOR expressions:

• If the enclosing statement is not a SELECT statement, then nested cursors can appear only
as REF CURSOR arguments of a procedure.

• If the enclosing statement is a SELECT statement, then nested cursors can also appear in
the outermost select list of the query specification or in the outermost select list of another
nested cursor.

• Nested cursors cannot appear in views.

• You cannot perform BIND and EXECUTE operations on nested cursors.

Examples

The following example shows the use of a CURSOR expression in the select list of a query:

SELECT department_name, CURSOR(SELECT salary, commission_pct
 FROM employees e
 WHERE e.department_id = d.department_id)
 FROM departments d
 ORDER BY department_name;

The next example shows the use of a CURSOR expression as a function argument. The
example begins by creating a function in the sample OE schema that can accept the REF
CURSOR argument. (The PL/SQL function body is shown in italics.)

CREATE FUNCTION f(cur SYS_REFCURSOR, mgr_hiredate DATE)
 RETURN NUMBER IS
 emp_hiredate DATE;
 before number :=0;
 after number:=0;
begin
 loop
 fetch cur into emp_hiredate;
 exit when cur%NOTFOUND;
 if emp_hiredate > mgr_hiredate then
 after:=after+1;
 else
 before:=before+1;
 end if;
 end loop;
 close cur;
 if before > after then
 return 1;
 else
 return 0;
 end if;
end;
/

The function accepts a cursor and a date. The function expects the cursor to be a query
returning a set of dates. The following query uses the function to find those managers in the
sample employees table, most of whose employees were hired before the manager.

Chapter 5
CURSOR Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 45

SELECT e1.last_name FROM employees e1
 WHERE f(
 CURSOR(SELECT e2.hire_date FROM employees e2
 WHERE e1.employee_id = e2.manager_id),
 e1.hire_date) = 1
 ORDER BY last_name;

LAST_NAME

Cambrault
Higgins
Hunold
Kochhar
Mourgos
Zlotkey

Datetime Expressions
A datetime expression yields a value of one of the datetime data types.

datetime_expression::=

expr AT

LOCAL

TIME ZONE

’

+

–

hh : mi ’

DBTIMEZONE

SESSIONTIMEZONE

’ time_zone_name ’

expr

The initial expr is any expression, except a scalar subquery expression, that evaluates to a
value of data type TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME
ZONE. The DATE data type is not supported. If this expr is itself a datetime_expression, then it must
be enclosed in parentheses.

Datetimes and intervals can be combined according to the rules defined in Table 2-5. The three
combinations that yield datetime values are valid in a datetime expression.

If you specify AT LOCAL, then Oracle uses the current session time zone.

The settings for AT TIME ZONE are interpreted as follows:

• The string '[+|-]hh:mi ' specifies a time zone as an offset from UTC. For hh, specify the
number of hours. For mi, specify the number of minutes.

• DBTIMEZONE: Oracle uses the database time zone established (explicitly or by default)
during database creation.

• SESSIONTIMEZONE: Oracle uses the session time zone established by default or in the most
recent ALTER SESSION statement.

Chapter 5
Datetime Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 45

• time_zone_name: Oracle returns the datetime_value_expr in the time zone indicated by
time_zone_name. For a listing of valid time zone region names, query the V$TIMEZONE_NAMES
dynamic performance view.

Note

Time zone region names are needed by the daylight saving feature. These names
are stored in two types of time zone files: one large and one small. One of these
files is the default file, depending on your environment and the release of Oracle
Database you are using. For more information regarding time zone files and
names, see Oracle Database Globalization Support Guide.

See Also

• Oracle Database Globalization Support Guide for a complete listing of the time
zone region names in both files

• Oracle Database Reference for information on the dynamic performance views

• expr: If expr returns a character string with a valid time zone format, then Oracle returns the
input in that time zone. Otherwise, Oracle returns an error.

Example

The following example converts the datetime value of one time zone to another time zone:

SELECT FROM_TZ(CAST(TO_DATE('1999-12-01 11:00:00',
 'YYYY-MM-DD HH:MI:SS') AS TIMESTAMP), 'America/New_York')
 AT TIME ZONE 'America/Los_Angeles' "West Coast Time"
 FROM DUAL;

West Coast Time
--
01-DEC-99 08.00.00.000000 AM AMERICA/LOS_ANGELES

Function Expressions
You can use any built-in SQL function or user-defined function as an expression. Some valid
built-in function expressions are:

LENGTH('BLAKE')
ROUND(1234.567*43)
SYSDATE

See Also

About SQL Functions ' and Aggregate Functions for information on built-in functions

A user-defined function expression specifies a call to:

• A function in an Oracle-supplied package (see Oracle Database PL/SQL Packages and
Types Reference)

Chapter 5
Function Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 45

• A function in a user-defined package or type or in a standalone user-defined function (see
About User-Defined Functions)

• A user-defined function or operator (see CREATE OPERATOR , CREATE FUNCTION ,
and Oracle Database Data Cartridge Developer's Guide)

Some valid user-defined function expressions are:

circle_area(radius)
payroll.tax_rate(empno)
hr.employees.comm_pct@remote(dependents, empno)
DBMS_LOB.getlength(column_name)
my_function(a_column)

In a user-defined function being used as an expression, positional, named, and mixed notation
are supported. For example, all of the following notations are correct:

CALL my_function(arg1 => 3, arg2 => 4) ...

CALL my_function(3, 4) ...

CALL my_function(3, arg2 => 4) ...

Restriction on User-Defined Function Expressions

You cannot pass arguments of object type or XMLType to remote functions and procedures.

Interval Expressions
An interval expression yields a value of INTERVAL YEAR TO MONTH or INTERVAL DAY TO
SECOND.

interval_expression::=

(expr1 – expr2)

DAY

(leading_field_precision)

TO SECOND

(fractional_second_precision)

YEAR

(leading_field_precision)

TO MONTH

The expressions expr1 and expr2 can be any expressions that evaluate to values of data type
DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME ZONE.

Datetimes and intervals can be combined according to the rules defined in Table 2-5. The six
combinations that yield interval values are valid in an interval expression.

Both leading_field_precision and fractional_second_precision can be any integer from 0 to 9. If you omit
the leading_field_precision for either DAY or YEAR, then Oracle Database uses the default value of
2. If you omit the fractional_second_precision for second, then the database uses the default value
of 6. If the value returned by a query contains more digits that the default precision, then
Oracle Database returns an error. Therefore, it is good practice to specify a precision that you
know will be at least as large as any value returned by the query.

For example, the following statement subtracts the value of the order_date column in the sample
table orders (a datetime value) from the system timestamp (another datetime value) to yield an

Chapter 5
Interval Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 45

interval value expression. It is not known how many days ago the oldest order was placed, so
the maximum value of 9 for the DAY leading field precision is specified:

SELECT (SYSTIMESTAMP - order_date) DAY(9) TO SECOND FROM orders
 WHERE order_id = 2458;

JSON Object Access Expressions
A JSON object access expression is used only when querying a column of JSON data. It yields
a character string that contains one or more JSON values found in that data. The syntax for
this type of expression is called dot-notation syntax.

Just as for SQL/JSON query functions, the JSON column that you query must be known to
contain only well-formed JSON data. That is, it must be of data type JSON, VARCHAR2, CLOB, or
BLOB. If the type is not JSON then the column must have an IS JSON check constraint.

If you do not use an item method in your dot-notation query, then a SQL value representing
JSON data is returned as follows:

• If the queried data is of type JSON, then the returned value is also of type JSON .

• If the queried data is textual of type VARCHAR2, CLOB, or BLOB, then the returned data is of
type VARCHAR2(4000).

If a dot-notation query does not use an item method then the returned JSON data depends on
the targeted JSON data, as follows:

• If a single JSON value is targeted, then that value is returned, whether it is a JSON scalar,
object, or array.

• If multiple JSON values are targeted, then a JSON array, whose elements are those
values, is returned. (The order of the array elements is undefined.)

For details on querying JSON data using simple dot notation see Simple Dot-Notation Access
to JSON Data of the JSON Developer's Guide .

json_object_access_expr::=

table_alias . JSON_column

. JSON_object_key

array_step

array_step::=

[

integer

integer TO integer

,

*

]

The dot-notation syntax is a table alias (mandatory) followed by a dot, that is, a period (.), the
name of a JSON column, and one or more pairs of the form . json_field or . json_field followed by

Chapter 5
JSON Object Access Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 45

array_step, where json_field is a JSON field name and array_step is an array step expression as
described in Basic SQL/JSON Path Expression Syntax of the JSON Developer's Guide.

• For table_alias, specify the alias for the table that contains the column of JSON data. This
table alias is required and must be assigned to the table elsewhere in the SQL statement.

• For JSON_column, specify the name of the column of JSON data. The column must be of
data type VARCHAR2, CLOB, BLOB, or JSON.

Columns can have data of JSON data type if they are the result of JSON generation
functions, of JSON_QUERY, or TREAT .

To identify non JSON type data types you can define the IS JSON check constraint on the
column .

• You can optionally specify one or more JSON object keys. The object keys allow you to
target specific JSON values in the JSON data. The first JSON_object_key must be a case-
sensitive match to the key (property) name of an object member in the top level of the
JSON data. If the value of that object member is another JSON object, then you can
specify a second JSON_object_key that matches the key name of a member of that object, and
so on. If a JSON array is encountered during any of these iterations, and you do not
specify an array_step, then the array is implicitly unwrapped and the elements of the array
are evaluated using the JSON_object_key.

• If the JSON value is an array, then you can optionally specify one or more array_step
clauses. This allows you to access specific elements of the JSON array.

– Use integer to specify the element at index integer in a JSON array. Use integer TO integer to
specify the range of elements between the two index integer values, inclusive. If the
specified elements exist in the JSON array being evaluated, then the array step results
in a match to those elements. Otherwise, the array step does not result in a match.
The first element in a JSON array has index 0.

– Use the asterisk wildcard symbol (*) to specify all elements in a JSON array. If the
JSON array being evaluated contains at least one element, then the array step results
in a match to all elements in the JSON array. Otherwise, the array step does not result
in a match.

If you omit JSON_object_key, then the expression yields a character string that contains the JSON
data in its entirety. In this case, the character string is of the same data type as the column of
JSON data being queried.

A JSON object access expression cannot return a value larger than 4K bytes. If the value
surpasses this limit, then the expression returns null. To obtain the actual value, instead use
the JSON_QUERY function or the JSON_VALUE function and specify an appropriate return
type with the RETURNING clause.

The collation derivation rules for the JSON object access expression are the same as for the
JSON_QUERY function.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules for the JSON_QUERY function

Chapter 5
JSON Object Access Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 45

Examples

The following examples use the j_purchaseorder table, which is created in Creating a Table That
Contains a JSON Document: Example. This table contains a column of JSON data called
po_document. These examples return JSON values from column po_document.

The following statement returns the value of the property with key name PONumber. The value
returned, 1600, is a SQL number.

SELECT po.po_document.PONumber.number()
 FROM j_purchaseorder po;

PONumber

1600

The following statement first targets the property with key name ShippingInstructions, whose value
is a JSON object. The statement then targets the property with key name Phone within that
object. The statement returns the value of Phone, which is a JSON array.

SELECT po.po_document.ShippingInstructions.Phone
 FROM j_purchaseorder po;

SHIPPINGINSTRUCTIONS

[{"type":"Office","number":"909-555-7307"},{"type":"Mobile","number":"415-555-1234"}]

The following statement first targets the property with key name LineItems, whose value is a
JSON array. The expression implicitly unwraps the array and evaluates its elements, which are
JSON objects. Next, the statement targets the properties with key name Part, within the
unwrapped objects, and finds two objects. The statement then targets the properties with key
name Description within those two objects and finds string values. Because more than one value
is returned, the values are returned as elements of a JSON array.

SELECT po.po_document.LineItems.Part.Description
 FROM j_purchaseorder po;

LINEITEMS

[One Magic Christmas,Lethal Weapon]

See Also

Oracle Database JSON Developer’s Guide for more information on querying JSON
data using dot-notation syntax

Model Expressions
A model expression is used only in the model_clause of a SELECT statement and then only on the
right-hand side of a model rule. It yields a value for a cell in a measure column previously
defined in the model_clause. For additional information, refer to model_clause.

Chapter 5
Model Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 45

model_expression::=

measure_column [
condition

expr

,

]

aggregate_function [

condition

expr

,

single_column_for_loop

,

multi_column_for_loop

]

analytic_function

When you specify a measure column in a model expression, any conditions and expressions
you specify must resolve to single values.

When you specify an aggregate function in a model expression, the argument to the function is
a measure column that has been previously defined in the model_clause. An aggregate function
can be used only on the right-hand side of a model rule.

Specifying an analytic function on the right-hand side of the model rule lets you express
complex calculations directly in the model_clause. The following restrictions apply when using an
analytic function in a model expression:

• Analytic functions can be used only in an UPDATE rule.

• You cannot specify an analytic function on the right-hand side of the model rule if the left-
hand side of the rule contains a FOR loop or an ORDER BY clause.

• The arguments in the OVER clause of the analytic function cannot contain an aggregate.

• The arguments before the OVER clause of the analytic function cannot contain a cell
reference.

See Also

The MODEL clause: Examples for an example of using an analytic function on the
right-hand side of a model rule

When expr is itself a model expression, it is referred to as a nested cell reference. The
following restrictions apply to nested cell references:

• Only one level of nesting is allowed.

• A nested cell reference must be a single-cell reference.

• When AUTOMATIC ORDER is specified in the model_rules_clause, a nested cell reference can be
used on the left-hand side of a model rule only if the measures used in the nested cell
reference remain static.

Chapter 5
Model Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 45

The model expressions shown below are based on the model_clause of the following SELECT
statement:

SELECT country,prod,year,s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s[prod='Mouse Pad', year=2000] =
 s['Mouse Pad', 1998] + s['Mouse Pad', 1999],
 s['Standard Mouse', 2001] = s['Standard Mouse', 2000]
)
 ORDER BY country, prod, year;

The following model expression represents a single cell reference using symbolic notation. It
represents the sales of the Mouse Pad for the year 2000.

s[prod='Mouse Pad',year=2000]

The following model expression represents a multiple cell reference using positional notation,
using the CV function. It represents the sales of the current value of the dimension column prod
for the year 2001.

s[CV(prod), 2001]

The following model expression represents an aggregate function. It represents the sum of
sales of the Mouse Pad for the years between the current value of the dimension column year
less two and the current value of the dimension column year less one.

SUM(s)['Mouse Pad',year BETWEEN CV()-2 AND CV()-1]

See Also

CV and model_clause

Object Access Expressions
An object access expression specifies attribute reference and method invocation.

object_access_expression::=

table_alias . column .

object_table_alias .

(expr) .

attribute

.
. method (

argument

,

)

method (

argument

,

)

Chapter 5
Object Access Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 45

The column parameter can be an object or REF column. If you specify expr, then it must resolve
to an object type.

When a type's member function is invoked in the context of a SQL statement, if the SELF
argument is null, Oracle returns null and the function is not invoked.

Examples

The following example creates a table based on the sample oe.order_item_typ object type, and
then shows how you would update and select from the object column attributes.

CREATE TABLE short_orders (
 sales_rep VARCHAR2(25), item order_item_typ);

UPDATE short_orders s SET sales_rep = 'Unassigned';

SELECT o.item.line_item_id, o.item.quantity FROM short_orders o;

Placeholder Expressions
A placeholder expression provides a location in a SQL statement for which a third-generation
language bind variable will provide a value. You can specify the placeholder expression with an
optional indicator variable. This form of expression can appear only in embedded SQL
statements or SQL statements processed in an Oracle Call Interface (OCI) program.

placeholder_expression::=

: host_variable

INDICATOR

: indicator_variable

Some valid placeholder expressions are:

:employee_name INDICATOR :employee_name_indicator_var
:department_location

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules for the placeholder expression with a character data type

Scalar Subquery Expressions
A scalar subquery expression is a subquery that returns exactly one column value from one
row. The value of the scalar subquery expression is the value of the select list item of the
subquery. If the subquery returns 0 rows, then the value of the scalar subquery expression is
NULL. If the subquery returns more than one row, then Oracle returns an error.

You can use a scalar subquery expression in most syntax that calls for an expression (expr). In
all cases, a scalar subquery must be enclosed in its own parentheses, even if its syntactic
location already positions it within parentheses (for example, when the scalar subquery is used
as the argument to a built-in function).

Chapter 5
Placeholder Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 45

Scalar subqueries are not valid expressions in the following places:

• As default values for columns

• As hash expressions for clusters

• In the RETURNING clause of DML statements

• As the basis of a function-based index

• In CHECK constraints

• In GROUP BY clauses

• In statements that are unrelated to queries, such as CREATE PROFILE

Type Constructor Expressions
A type constructor expression specifies a call to a constructor method. The argument to the
type constructor is any expression. Type constructors can be invoked anywhere functions are
invoked.

type_constructor_expression::=

NEW schema .

type_name (

expr

,

)

The NEW keyword applies to constructors for object types but not for collection types. It
instructs Oracle to construct a new object by invoking an appropriate constructor. The use of
the NEW keyword is optional, but it is good practice to specify it.

If type_name is an object type, then the expressions must be an ordered list, where the first
argument is a value whose type matches the first attribute of the object type, the second
argument is a value whose type matches the second attribute of the object type, and so on.
The total number of arguments to the constructor must match the total number of attributes of
the object type.

If type_name is a varray or nested table type, then the expression list can contain zero or more
arguments. Zero arguments implies construction of an empty collection. Otherwise, each
argument corresponds to an element value whose type is the element type of the collection
type.

Restriction on Type Constructor Invocation

In an invocation of a type constructor method, the number of parameters (expr) specified cannot
exceed 999, even if the object type has more than 999 attributes. This limitation applies only
when the constructor is called from SQL. For calls from PL/SQL, the PL/SQL limitations apply.

See Also

Oracle Database Object-Relational Developer's Guide for additional information on
constructor methods and Oracle Database PL/SQL Language Reference for
information on PL/SQL limitations on calls to type constructors

Chapter 5
Type Constructor Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 45

Expression Example

This example uses the cust_address_typ type in the sample oe schema to show the use of an
expression in the call to a constructor method (the PL/SQL is shown in italics):

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;
DECLARE
 myaddr cust_address_typ := cust_address_typ(
 '500 Oracle Parkway', 94065, 'Redwood Shores', 'CA','USA');
 alladdr address_book_t := address_book_t();
BEGIN
 INSERT INTO customers VALUES (
 666999, 'Joe', 'Smith', myaddr, NULL, NULL, NULL, NULL,
 NULL, NULL, NULL, NULL, NULL, NULL, NULL);
END;
/

Subquery Example

This example uses the warehouse_typ type in the sample schema oe to illustrate the use of a
subquery in the call to the constructor method.

CREATE TABLE warehouse_tab OF warehouse_typ;

INSERT INTO warehouse_tab
 VALUES (warehouse_typ(101, 'new_wh', 201));

CREATE TYPE facility_typ AS OBJECT (
 facility_id NUMBER,
 warehouse_ref REF warehouse_typ);

CREATE TABLE buildings (b_id NUMBER, building facility_typ);

INSERT INTO buildings VALUES (10, facility_typ(102,
 (SELECT REF(w) FROM warehouse_tab w
 WHERE warehouse_name = 'new_wh')));

SELECT b.b_id, b.building.facility_id "FAC_ID",
 DEREF(b.building.warehouse_ref) "WH" FROM buildings b;

 B_ID FAC_ID WH(WAREHOUSE_ID, WAREHOUSE_NAME, LOCATION_ID)
---------- ---------- ---
 10 102 WAREHOUSE_TYP(101, 'new_wh', 201)

Expression Lists
An expression list is a combination of other expressions.

Chapter 5
Expression Lists

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 45

expression_list::=

expr

c_alias

position

,

(

expr

c_alias

position

,

)

Expression lists can appear in comparison and membership conditions and in GROUP BY
clauses of queries and subqueries. An expression lists in a comparision or membership
condition is sometimes referred to as a row value constructor or row constructor.

Comparison and membership conditions appear in the conditions of WHERE clauses. They can
contain either one or more comma-delimited expressions or one or more sets of expressions
where each set contains one or more comma-delimited expressions. In the latter case (multiple
sets of expressions):

• Each set is bounded by parentheses

• Each set must contain the same number of expressions

• The number of expressions in each set must match the number of expressions before the
operator in the comparison condition or before the IN keyword in the membership
condition.

A comma-delimited list of expressions can contain no more than 65,535 expressions. A
comma-delimited list of sets of expressions can contain any number of sets, but each set can
contain no more than 1000 expressions.

The following are some valid expression lists in conditions:

(10, 20, 40)
('SCOTT', 'BLAKE', 'TAYLOR')
(('Guy', 'Himuro', 'GHIMURO'),('Karen', 'Colmenares', 'KCOLMENA'))

In the third example, the number of expressions in each set must equal the number of
expressions in the first part of the condition. For example:

SELECT * FROM employees
 WHERE (first_name, last_name, email) IN
 (('Guy', 'Himuro', 'GHIMURO'),('Karen', 'Colmenares', 'KCOLMENA'))

See Also

Comparison Conditions and IN Condition conditions

In a simple GROUP BY clause, you can use either the upper or lower form of expression list:

Chapter 5
Expression Lists

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 45

SELECT department_id, MIN(salary) min, MAX(salary) max FROM employees
 GROUP BY department_id, salary
 ORDER BY department_id, min, max;

SELECT department_id, MIN(salary) min, MAX(salary) max FROM employees
 GROUP BY (department_id, salary)
 ORDER BY department_id, min, max;

In ROLLUP, CUBE, and GROUPING SETS clauses of GROUP BY clauses, you can combine
individual expressions with sets of expressions in the same expression list. The following
example shows several valid grouping sets expression lists in one SQL statement:

SELECT
prod_category, prod_subcategory, country_id, cust_city, count(*)
 FROM products, sales, customers
 WHERE sales.prod_id = products.prod_id
 AND sales.cust_id=customers.cust_id
 AND sales.time_id = '01-oct-00'
 AND customers.cust_year_of_birth BETWEEN 1960 and 1970
GROUP BY GROUPING SETS
 (
 (prod_category, prod_subcategory, country_id, cust_city),
 (prod_category, prod_subcategory, country_id),
 (prod_category, prod_subcategory),
 country_id
)
ORDER BY prod_category, prod_subcategory, country_id, cust_city;

See Also

SELECT

BOOLEAN Expressions
You can now use boolean value expressions within SQL expressions wherever an expression
appears in SQL syntax.

boolean_expression::=

condition

Chapter 5
BOOLEAN Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 45

condition::=

comparison_condition

floating_point_condition

logical_condition

model_condition

multiset_condition

pattern_matching_condition

range_condition

null_condition

XML_condition

JSON_condition

compound_condition

exists_condition

in_condition

is_of_type_condition

boolean_test_condition

simple_expression

boolean_test_condition::=

boolean_expression IS

NOT
TRUE

FALSE

NULL

Use boolean_expression to evalute the input and return one of the following boolean values :

• IS TRUE

• IS NOT TRUE

• IS FALSE

• IS NOT FALSE

• IS NULL

• IS NOT NULL

Chapter 5
BOOLEAN Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 45

See Also

About SQL Expressions

Chapter 5
BOOLEAN Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 45

6
Conditions

A condition specifies a combination of one or more expressions and logical (Boolean)
operators and returns a value of TRUE, FALSE, or UNKNOWN.

This chapter contains the following sections:

• About SQL Conditions

• Comparison Conditions

• Floating-Point Conditions

• Logical Conditions

• Model Conditions

• Multiset Conditions

• Pattern-matching Conditions

• Null Conditions

• XML Conditions

• SQL For JSON Conditions

• Compound Conditions

• BETWEEN Condition

• EXISTS Condition

• IN Condition

• IS OF type Condition

• BOOLEAN Test Condition

About SQL Conditions
Conditions can have several forms, as shown in the following syntax.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 42

condition::=

comparison_condition

floating_point_condition

logical_condition

model_condition

multiset_condition

pattern_matching_condition

range_condition

null_condition

XML_condition

JSON_condition

compound_condition

exists_condition

in_condition

is_of_type_condition

boolean_test_condition

simple_expression

If you have installed Oracle Text, then you can create conditions with the built-in operators that
are part of that product, including CONTAINS, CATSEARCH, and MATCHES. For more information
on these Oracle Text elements, refer to Oracle Text Reference.

The sections that follow describe the various forms of conditions. You must use appropriate
condition syntax whenever condition appears in SQL statements.

You can use a condition in the WHERE clause of these statements:

• DELETE

• SELECT

• UPDATE

You can use a condition in any of these clauses of the SELECT statement:

• WHERE

• START WITH

• CONNECT BY

• HAVING

A condition could be said to be of a logical data type, although Oracle Database does not
formally support such a data type.

The following simple condition always evaluates to TRUE:

1 = 1

Chapter 6
About SQL Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 42

The following more complex condition adds the salary value to the commission_pct value
(substituting the value 0 for null) and determines whether the sum is greater than the number
constant 25000:

NVL(salary, 0) + NVL(salary + (salary*commission_pct, 0) > 25000)

Logical conditions can combine multiple conditions into a single condition. For example, you
can use the AND condition to combine two conditions:

(1 = 1) AND (5 < 7)

Here are some valid conditions:

name = 'SMITH'
employees.department_id = departments.department_id
hire_date > '01-JAN-08'
job_id IN ('SA_MAN', 'SA_REP')
salary BETWEEN 5000 AND 10000
commission_pct IS NULL AND salary = 2100

Oracle Database does not accept all conditions in all parts of all SQL statements. Refer to the
section devoted to a particular SQL statement in this book for information on restrictions on the
conditions in that statement.

Condition Precedence
Precedence is the order in which Oracle Database evaluates different conditions in the same
expression. When evaluating an expression containing multiple conditions, Oracle evaluates
conditions with higher precedence before evaluating those with lower precedence. Oracle
evaluates conditions with equal precedence from left to right within an expression, with the
following exceptions:

• Left to right evaluation is not guaranteed for multiple conditions connected using AND

• Left to right evaluation is not guaranteed for multiple conditions connected using OR

Table 6-1 lists the levels of precedence among SQL condition from high to low. Conditions
listed on the same line have the same precedence. As the table indicates, Oracle evaluates
operators before conditions.

Table 6-1 SQL Condition Precedence

Type of Condition Purpose

SQL operators are evaluated before SQL conditions See Operator Precedence

=, !=, <, >, <=, >=, comparison

IS [NOT] NULL| TRUE|FALSE , LIKE, [NOT]
BETWEEN, [NOT] IN, EXISTS, IS OF type

comparison

NOT exponentiation, logical negation

AND conjunction

OR disjunction

Comparison Conditions
Comparison conditions compare one expression with another. The result of such a comparison
can be TRUE, FALSE, or UNKNOWN.

Chapter 6
Comparison Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 42

Large objects (LOBs) are not supported in comparison conditions. However, you can use
PL/SQL programs for comparisons on CLOB data.

When comparing numeric expressions, Oracle uses numeric precedence to determine whether
the condition compares NUMBER, BINARY_FLOAT, or BINARY_DOUBLE values. Refer to Numeric
Precedence for information on numeric precedence.

When comparing character expressions, Oracle uses the rules described in Data Type
Comparison Rules . The rules define how the character sets of the expressions are aligned
before the comparison, the use of binary or linguistic comparison (collation), the use of blank-
padded comparison semantics, and the restrictions resulting from limits imposed on collation
keys, including reporting of the error ORA-12742: unable to create the collation key.

Two objects of nonscalar type are comparable if they are of the same named type and there is
a one-to-one correspondence between their elements. In addition, nested tables of user-
defined object types, even if their elements are comparable, must have MAP methods defined
on them to be used in equality or IN conditions.

See Also

Oracle Database Object-Relational Developer's Guide for information on using MAP
methods to compare objects

Table 6-2 lists comparison conditions.

Table 6-2 Comparison Conditions

Type of Condition Purpose Example

= Equality test.
SELECT *
 FROM employees
 WHERE salary = 2500
 ORDER BY employee_id;

!=

^=

<>

Inequality test.
SELECT *
 FROM employees
 WHERE salary != 2500
 ORDER BY employee_id;

>

<

Greater-than and less-than tests.
SELECT * FROM employees
 WHERE salary > 2500
 ORDER BY employee_id;
SELECT * FROM employees
 WHERE salary < 2500
 ORDER BY employee_id;

>=

<=

Greater-than-or-equal-to and less-than-or-equal-to tests.
SELECT * FROM employees
 WHERE salary >= 2500
 ORDER BY employee_id;
SELECT * FROM employees
 WHERE salary <= 2500
 ORDER BY employee_id;

Chapter 6
Comparison Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 42

Table 6-2 (Cont.) Comparison Conditions

Type of Condition Purpose Example

op ANY

op SOME

"op" must be one of =, !=, >, <, <=, or >=.

op ANY compares a value on the left side either to each
value in a list, or to each value returned by a query,
whichever is specified on the right side, using the condition
op.

If any of these comparisons returns TRUE, op ANY returns
TRUE.

If all of these comparisons return FALSE, or the subquery
on the right side returns no rows, op ANY returns FALSE.
Otherwise, the return value is UNKNOWN.

op ANY and op SOME are synonymous.

SELECT * FROM employees
 WHERE salary = ANY
 (SELECT salary
 FROM employees
 WHERE department_id = 30)
 ORDER BY employee_id;

op ALL "op" must be one of =, !=, >, <, <=, or >=.

op ALL compares a value on the left side either to each
value in a list, or to each value returned by a subquery,
whichever is specified on the right side, using the condition
op.

If any of these comparisons returns FALSE, op ALL returns
FALSE.

If all of these comparisons return TRUE, or the subquery
on the right side returns no rows, op ALL returns TRUE .
Otherwise, the return value is UNKNOWN.

SELECT * FROM employees
 WHERE salary >=
 ALL (1400, 3000)
 ORDER BY employee_id;

Simple Comparison Conditions
A simple comparison condition specifies a comparison with expressions or subquery results.

simple_comparison_condition::=

expr

=

!=

^=

<>

>

<

>=

<=

expr

(expr

,

)

=

!=

^=

<>

(
expression_list

subquery
)

Chapter 6
Comparison Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 42

expression_list::=

expr

c_alias

position

,

(

expr

c_alias

position

,

)

If you use the lower form of this condition with a single expression to the left of the operator,
then you can use the upper or lower form of expression_list. If you use the lower form of this
condition with multiple expressions to the left of the operator, then you must use the lower form
of expression_list. In either case, the expressions in expression_list must match in number and data
type the expressions to the left of the operator. If you specify subquery, then the values returned
by the subquery must match in number and data type the expressions to the left of the
operator.

See Also

Expression Lists for more information about combining expressions and SELECT for
information about subqueries

Group Comparison Conditions
A group comparison condition specifies a comparison with any or all members in a list or
subquery.

Chapter 6
Comparison Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 42

group_comparison_condition::=

expr

=

!=

^=

<>

>

<

>=

<=

ANY

SOME

ALL

(
expression_list

subquery
)

(expr

,

)

=

!=

^=

<>

ANY

SOME

ALL

(
expression_list

’

subquery
)

expression_list::=

expr

c_alias

position

,

(

expr

c_alias

position

,

)

If you use the upper form of this condition (with a single expression to the left of the operator),
then you must use the upper form of expression_list. If you use the lower form of this condition
(with multiple expressions to the left of the operator), then you must use the lower form of
expression_list, and the expressions in each expression_list must match in number and data type the
expressions to the left of the operator. If you specify subquery, then the values returned by the
subquery must match in number and data type the expressions to the left of the operator.

Chapter 6
Comparison Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 42

See Also

• Expression Lists

• SELECT

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for comparison conditions

Floating-Point Conditions
The floating-point conditions let you determine whether an expression is infinite or is the
undefined result of an operation (is not a number or NaN).

floating_point_condition::=

expr IS

NOT NAN

INFINITE

In both forms of floating-point condition, expr must resolve to a numeric data type or to any data
type that can be implicitly converted to a numeric data type. Table 6-3 describes the floating-
point conditions.

Table 6-3 Floating-Point Conditions

Type of
Condition

Operation Example

IS [NOT] NAN Returns TRUE if expr is the special
value NaN when NOT is not specified.
Returns TRUE if expr is not the special
value NaN when NOT is specified.

SELECT COUNT(*) FROM employees
 WHERE commission_pct IS NOT NAN;

IS [NOT]
INFINITE

Returns TRUE if expr is the special
value +INF or -INF when NOT is not
specified. Returns TRUE if expr is
neither +INF nor -INF when NOT is
specified.

SELECT last_name FROM employees
 WHERE salary IS NOT INFINITE;

See Also

• Floating-Point Numbers for more information on the Oracle implementation of
floating-point numbers

• Implicit Data Conversion for more information on how Oracle converts floating-
point data types

Chapter 6
Floating-Point Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 42

Logical Conditions
A logical condition combines the results of two component conditions to produce a single result
based on them or to invert the result of a single condition. Table 6-4 lists logical conditions.

Table 6-4 Logical Conditions

Type of
Condition

Operation Examples

NOT Returns TRUE if the following
condition is FALSE. Returns FALSE if it
is TRUE. If it is UNKNOWN, then it
remains UNKNOWN.

SELECT *
 FROM employees
 WHERE NOT (job_id IS NULL)
 ORDER BY employee_id;
SELECT *
 FROM employees
 WHERE NOT
 (salary BETWEEN 1000 AND 2000)
 ORDER BY employee_id;

AND Returns TRUE if both component
conditions are TRUE. Returns FALSE
if either is FALSE. Otherwise returns
UNKNOWN.

SELECT *
 FROM employees
 WHERE job_id = 'PU_CLERK'
 AND department_id = 30
 ORDER BY employee_id;

OR Returns TRUE if either component
condition is TRUE. Returns FALSE if
both are FALSE. Otherwise returns
UNKNOWN.

SELECT *
 FROM employees
 WHERE job_id = 'PU_CLERK'
 OR department_id = 10
 ORDER BY employee_id;

Table 6-5 shows the result of applying the NOT condition to an expression.

Table 6-5 NOT Truth Table

-- TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

Table 6-6 shows the results of combining the AND condition to two expressions.

Table 6-6 AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Chapter 6
Logical Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 42

For example, in the WHERE clause of the following SELECT statement, the AND logical condition
is used to ensure that only those hired before 2004 and earning more than $2500 a month are
returned:

SELECT * FROM employees
WHERE hire_date < TO_DATE('01-JAN-2004', 'DD-MON-YYYY')
 AND salary > 2500
 ORDER BY employee_id;

Table 6-7 shows the results of applying OR to two expressions.

Table 6-7 OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

For example, the following query returns employees who have a 40% commission rate or a
salary greater than $20,000:

SELECT employee_id FROM employees
 WHERE commission_pct = .4 OR salary > 20000
 ORDER BY employee_id;

Model Conditions
Model conditions can be used only in the MODEL clause of a SELECT statement.

IS ANY Condition
The IS ANY condition can be used only in the model_clause of a SELECT statement. Use this
condition to qualify all values of a dimension column, including NULL.

is_any_condition::=

dimension_column IS

ANY

The condition always returns a Boolean value of TRUE in order to qualify all values of the
column.

See Also

model_clause and Model Expressions for information

Example

The following example sets sales for each product for year 2000 to 0:

Chapter 6
Model Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 42

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s[ANY, 2000] = 0
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 0
France Mouse Pad 2001 3269.09
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 0
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 0
Germany Mouse Pad 2001 9535.08
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 0
Germany Standard Mouse 2001 6456.13

16 rows selected.

The preceding example requires the view sales_view_ref. Refer to The MODEL clause: Examples
to create this view.

IS PRESENT Condition
is_present_condition::=

The IS PRESENT condition can be used only in the model_clause of a SELECT statement. Use this
condition to test whether the cell referenced is present prior to the execution of the model_clause.

cell_reference IS PRESENT

The condition returns TRUE if the cell exists prior to the execution of the model_clause and FALSE if
it does not.

See Also

model_clause and Model Expressions for information

Chapter 6
Model Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 42

Example

In the following example, if sales of the Mouse Pad for year 1999 exist, then sales of the
Mouse Pad for year 2000 is set to sales of the Mouse Pad for year 1999. Otherwise, sales of
the Mouse Pad for year 2000 is set to 0.

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s['Mouse Pad', 2000] =
 CASE WHEN s['Mouse Pad', 1999] IS PRESENT
 THEN s['Mouse Pad', 1999]
 ELSE 0
 END
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3678.69
France Mouse Pad 2001 3269.09
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 8346.44
Germany Mouse Pad 2001 9535.08
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13
16 rows selected.

The preceding example requires the view sales_view_ref. Refer to The MODEL clause: Examples
to create this view.

Multiset Conditions
Multiset conditions test various aspects of nested tables.

IS A SET Condition
Use IS A SET conditions to test whether a specified nested table is composed of unique
elements. The condition returns UNKNOWN if the nested table is NULL. Otherwise, it returns
TRUE if the nested table is a set, even if it is a nested table of length zero, and FALSE otherwise.

Chapter 6
Multiset Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 42

is_a_set_condition::=

nested_table IS

NOT

A SET

Example

The following example selects from the table customers_demo those rows in which the
cust_address_ntab nested table column contains unique elements:

SELECT customer_id, cust_address_ntab
 FROM customers_demo
 WHERE cust_address_ntab IS A SET
 ORDER BY customer_id;

CUSTOMER_ID CUST_ADDRESS_NTAB(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
--
 101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
 102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'))
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
 104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
 105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers_demo and a nested table column containing
data. Refer to "Multiset Operators " to create this table and nested table column.

IS EMPTY Condition
Use the IS [NOT] EMPTY conditions to test whether a specified nested table is empty. A nested
table that consists of a single value, a NULL, is not considered an empty nested table.

is_empty_condition::=

nested_table IS

NOT

EMPTY

The condition returns a Boolean value: TRUE for an IS EMPTY condition if the collection is empty,
and TRUE for an IS NOT EMPTY condition if the collection is not empty. If you specify NULL for
the nested table or varray, then the result is NULL.

Example

The following example selects from the sample table pm.print_media those rows in which the
ad_textdocs_ntab nested table column is not empty:

SELECT product_id, TO_CHAR(ad_finaltext) AS text
 FROM print_media
 WHERE ad_textdocs_ntab IS NOT EMPTY
 ORDER BY product_id, text;

Chapter 6
Multiset Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 42

MEMBER Condition
member_condition::=

expr

NOT

MEMBER

OF

nested_table

A member_condition is a membership condition that tests whether an element is a member of a
nested table. The return value is TRUE if expr is equal to a member of the specified nested table
or varray. The return value is NULL if expr is null or if the nested table is empty.

• expr must be of the same type as the element type of the nested table.

• The OF keyword is optional and does not change the behavior of the condition.

• The NOT keyword reverses the Boolean output: Oracle returns FALSE if expr is a member of
the specified nested table.

• The element types of the nested table must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example selects from the table customers_demo those rows in which the
cust_address_ntab nested table column contains the values specified in the WHERE clause:

SELECT customer_id, cust_address_ntab
 FROM customers_demo
 WHERE cust_address_typ('8768 N State Rd 37', 47404,
 'Bloomington', 'IN', 'US')
 MEMBER OF cust_address_ntab
 ORDER BY customer_id;

CUSTOMER_ID CUST_ADDRESS_NTAB(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
------------ ---
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers_demo and a nested table column containing
data. Refer to Multiset Operators to create this table and nested table column.

SUBMULTISET Condition
The SUBMULTISET condition tests whether a specified nested table is a submultiset of another
specified nested table.

The operator returns a Boolean value. TRUE is returned when nested_table1 is a submultiset of
nested_table2. nested_table1 is a submultiset of nested_table2 when one of the following conditions
occur:

• nested_table1 is not null and contains no rows. TRUE is returned even if nested_table2 is null
since an empty multiset is a submultiset of any non-null replacement for nested_table2.

• nested_table1 and nested_table2 are not null, nested_table1 does not contain a null element, and
there is a one-to-one mapping of each element in nested_table1 to an equal element in
nested_table2.

NULL is returned when one of the following conditions occurs:

Chapter 6
Multiset Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 42

• nested_table1 is null.

• nested_table2 is null, and nested_table1 is not null and not empty.

• nested_table1 is a submultiset of nested_table2 after modifying each null element of nested_table1
and nested_table2 to some non-null value, enabling a one-to-one mapping of each element in
nested_table1 to an equal element in nested_table2.

If none of the above conditions occur, then FALSE is returned.

submultiset_condition::=

nested_table1

NOT

SUBMULTISET

OF

nested_table2

• The OF keyword is optional and does not change the behavior of the operator.

• The NOT keyword reverses the Boolean output: Oracle returns FALSE if nested_table1 is a
subset of nested_table2.

• The element types of the nested table must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example selects from the customers_demo table those rows in which the
cust_address_ntab nested table is a submultiset of the cust_address2_ntab nested table:

SELECT customer_id, cust_address_ntab
 FROM customers_demo
 WHERE cust_address_ntab SUBMULTISET OF cust_address2_ntab
 ORDER BY customer_id;

The preceding example requires the table customers_demo and two nested table columns
containing data. Refer to Multiset Operators to create this table and nested table columns.

Pattern-matching Conditions
The pattern-matching conditions compare character data.

LIKE Condition
The LIKE conditions specify a test involving pattern matching. Whereas the equality operator
(=) exactly matches one character value to another, the LIKE conditions match a portion of one
character value to another by searching the first value for the pattern specified by the second.
LIKE calculates strings using characters as defined by the input character set. LIKEC uses
Unicode complete characters. LIKE2 uses UCS2 code points. LIKE4 uses UCS4 code points.

like_condition::=

char1

NOT

LIKE

LIKEC

LIKE2

LIKE4

char2

ESCAPE esc_char

Chapter 6
Pattern-matching Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 42

In this syntax:

• char1 is a character expression, such as a character column, called the search value.

• char2 is a character expression, usually a literal, called the pattern.

• esc_char is a character expression, usually a literal, called the escape character.

The LIKE condition is the best choice in almost all situations. Use the following guidelines to
determine whether any of the variations would be helpful in your environment:

• Use LIKE2 to process strings using UCS-2 semantics. LIKE2 treats a Unicode
supplementary character as two characters.

• Use LIKE4 to process strings using UCS-4 semantics. LIKE4 treats a Unicode
supplementary character as one character.

• Use LIKEC to process strings using Unicode complete character semantics. LIKEC treats a
composite character as one character.

For more on character length see the following:

• Oracle Database Globalization Support Guide

• Oracle Database SecureFiles and Large Objects Developer's Guide

If esc_char is not specified, then there is no default escape character. If any of char1, char2, or
esc_char is null, then the result is unknown. Otherwise, the escape character, if specified, must
be a character string of length 1.

All of the character expressions (char1, char2, and esc_char) can be of any of the data types CHAR,
VARCHAR2, NCHAR, or NVARCHAR2. If they differ, then Oracle converts all of them to the data
type of char1.

The pattern can contain special pattern-matching characters:

• An underscore (_) in the pattern matches exactly one character (as opposed to one byte in
a multibyte character set) in the value.

• A percent sign (%) in the pattern can match zero or more characters (as opposed to bytes
in a multibyte character set) in the value. The pattern '%' cannot match a null.

You can include the actual characters % or _ in the pattern by using the ESCAPE clause, which
identifies the escape character. If the escape character precedes the character % or _ in the
pattern, then Oracle interprets this character literally in the pattern rather than as a special
pattern-matching character. You can also search for the escape character itself by repeating it.
For example, if @ is the escape character, then you can use @@ to search for @.

Note

Only ASCII-equivalent underscore (_) and percent (%) characters are recognized as
pattern-matching characters. Their full-width variants, present in East Asian character
sets and in Unicode, are treated as normal characters.

Table 6-8 describes the LIKE conditions.

Chapter 6
Pattern-matching Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 42

Table 6-8 LIKE Condition

Type of
Condition

Operation Example

x [NOT] LIKE y
[ESCAPE 'z']

TRUE if x does [not] match the pattern y.
Within y, the character % matches any string
of zero or more characters except null. The
character _ matches any single character.
Any character can follow ESCAPE except
percent (%) and underbar (_). A wildcard
character is treated as a literal if preceded
by the escape character.

SELECT last_name
 FROM employees
 WHERE last_name
 LIKE '%A_B%' ESCAPE '\'
 ORDER BY last_name;

To process the LIKE conditions, Oracle divides the pattern into subpatterns consisting of one or
two characters each. The two-character subpatterns begin with the escape character and the
other character is %, or _, or the escape character.

Let P1, P2, ..., Pn be these subpatterns. The like condition is true if there is a way to partition
the search value into substrings S1, S2, ..., Sn so that for all i between 1 and n:

• If Pi is _, then Si is a single character.

• If Pi is %, then Si is any string.

• If Pi is two characters beginning with an escape character, then Si is the second character
of Pi.

• Otherwise, Pi = Si.

With the LIKE conditions, you can compare a value to a pattern rather than to a constant. The
pattern must appear after the LIKE keyword. For example, you can issue the following query to
find the salaries of all employees with names beginning with R:

SELECT salary
 FROM employees
 WHERE last_name LIKE 'R%'
 ORDER BY salary;

The following query uses the = operator, rather than the LIKE condition, to find the salaries of
all employees with the name 'R%':

SELECT salary
 FROM employees
 WHERE last_name = 'R%'
 ORDER BY salary;

The following query finds the salaries of all employees with the name 'SM%'. Oracle interprets
'SM%' as a text literal, rather than as a pattern, because it precedes the LIKE keyword:

SELECT salary
 FROM employees
 WHERE 'SM%' LIKE last_name
 ORDER BY salary;

Collation and Case Sensitivity

The LIKE condition is collation-sensitive. Oracle Database compares the subpattern Pi to the
substring Si in the processing algorithm above using the collation determined from the derived

Chapter 6
Pattern-matching Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 42

collations of char1 and char2. If this collation is case-insensitive, the pattern-matching is case-
insensitive as well.

See Also

Oracle Database Globalization Support Guide for more information on case- and
accent-insensitive collations and on collation determination rules for the LIKE condition

Pattern Matching on Indexed Columns

When you use LIKE to search an indexed column for a pattern, Oracle can use the index to
improve performance of a query if the leading character in the pattern is not % or _. In this
case, Oracle can scan the index by this leading character. If the first character in the pattern is
% or _, then the index cannot improve performance because Oracle cannot scan the index.

LIKE Condition: General Examples

This condition is true for all last_name values beginning with Ma:

last_name LIKE 'Ma%'

All of these last_name values make the condition true:

Mallin, Markle, Marlow, Marvins, Mavris, Matos

Case is significant, so last_name values beginning with MA, ma, and mA make the condition false.

Consider this condition:

last_name LIKE 'SMITH_'

This condition is true for these last_name values:

SMITHE, SMITHY, SMITHS

This condition is false for SMITH because the special underscore character (_) must match
exactly one character of the last_name value.

ESCAPE Clause Example

The following example searches for employees with the pattern A_B in their name:

SELECT last_name
 FROM employees
 WHERE last_name LIKE '%A_B%' ESCAPE '\'
 ORDER BY last_name;

The ESCAPE clause identifies the backslash (\) as the escape character. In the pattern, the
escape character precedes the underscore (_). This causes Oracle to interpret the underscore
literally, rather than as a special pattern matching character.

Patterns Without % Example

If a pattern does not contain the % character, then the condition can be true only if both
operands have the same length. Consider the definition of this table and the values inserted
into it:

Chapter 6
Pattern-matching Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 42

CREATE TABLE ducks (f CHAR(6), v VARCHAR2(6));
INSERT INTO ducks VALUES ('DUCK', 'DUCK');
SELECT '*'||f||'*' "char",
 '*'||v||'*' "varchar"
 FROM ducks;

char varchar
-------- --------
*DUCK * *DUCK*

Because Oracle blank-pads CHAR values, the value of f is blank-padded to 6 bytes. v is not
blank-padded and has length 4.

REGEXP_LIKE Condition
REGEXP_LIKE is similar to the LIKE condition, except REGEXP_LIKE performs regular expression
matching instead of the simple pattern matching performed by LIKE. This condition evaluates
strings using characters as defined by the input character set.

This condition complies with the POSIX regular expression standard and the Unicode Regular
Expression Guidelines. For more information, refer to Oracle Regular Expression Support.

regexp_like_condition::=

REGEXP_LIKE (source_char , pattern

, match_param

)

• source_char is a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of the data
types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512 bytes. If the data
type of pattern is different from the data type of source_char, Oracle converts pattern to the data
type of source_char. For a listing of the operators you can specify in pattern, refer to Oracle
Regular Expression Support.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets you
change the default matching behavior of the condition.

The value of match_param can include one or more of the following characters:

– 'i' specifies case-insensitive matching, even if the determined collation of the condition
is case-sensitive.

– 'c' specifies case-sensitive and accent-sensitive matching, even if the determined
collation of the condition is case-insensitive or accent-insensitive.

– 'n' allows the period (.), which is the match-any-character wildcard character, to match
the newline character. If you omit this parameter, then the period does not match the
newline character.

– 'm' treats the source string as multiple lines. Oracle interprets ^ and $ as the start and
end, respectively, of any line anywhere in the source string, rather than only at the start
or end of the entire source string. If you omit this parameter, then Oracle treats the
source string as a single line.

– 'x' ignores whitespace characters. By default, whitespace characters match
themselves.

Chapter 6
Pattern-matching Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 42

If the value of match_param contains multiple contradictory characters, then Oracle uses the
last character. For example, if you specify 'ic', then Oracle uses case-sensitive and accent-
sensitive matching. If the value contains a character other than those shown above, then
Oracle returns an error.

If you omit match_param, then:

– The default case and accent sensitivity are determined by the determined collation of
the REGEXP_LIKE condition.

– A period (.) does not match the newline character.

– The source string is treated as a single line.

Similar to the LIKE condition, the REGEXP_LIKE condition is collation-sensitive.

See Also

• LIKE Condition

• REGEXP_INSTR , REGEXP_REPLACE , and REGEXP_SUBSTR for functions
that provide regular expression support

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the REGEXP_LIKE condition

Examples

The following query returns the first and last names for those employees with a first name of
Steven or Stephen (where first_name begins with Ste and ends with en and in between is either v
or ph):

SELECT first_name, last_name
FROM employees
WHERE REGEXP_LIKE (first_name, '^Ste(v|ph)en$')
ORDER BY first_name, last_name;

FIRST_NAME LAST_NAME
-------------------- -------------------------
Steven King
Steven Markle
Stephen Stiles

The following query returns the last name for those employees with a double vowel in their last
name (where last_name contains two adjacent occurrences of either a, e, i, o, or u, regardless of
case):

SELECT last_name
FROM employees
WHERE REGEXP_LIKE (last_name, '([aeiou])\1', 'i')
ORDER BY last_name;

LAST_NAME

De Haan
Greenberg
Khoo
Gee
Greene
Lee

Chapter 6
Pattern-matching Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 42

Bloom
Feeney

Null Conditions
A NULL condition tests for nulls. This is the only condition that you should use to test for nulls.

null_condition::=

expr IS

NOT

NULL

Table 6-9 lists the null conditions.

Table 6-9 Null Condition

Type of
Condition

Operation Example

IS [NOT] NULL
Tests for nulls.

See Also: Nulls
SELECT last_name
 FROM employees
 WHERE commission_pct
 IS NULL
 ORDER BY last_name;

XML Conditions
XML conditions determine whether a specified XML resource can be found in a specified path.

EQUALS_PATH Condition
The EQUALS_PATH condition determines whether a resource in the Oracle XML database can
be found in the database at a specified path.

Use this condition in queries to RESOURCE_VIEW and PATH_VIEW. These public views provide a
mechanism for SQL access to data stored in the XML database repository. RESOURCE_VIEW
contains one row for each resource in the repository, and PATH_VIEW contains one row for each
unique path in the repository.

equals_path_condition::=

EQUALS_PATH (column , path_string

, correlation_integer

)

This condition applies only to the path as specified. It is similar to but more restrictive than
UNDER_PATH.

For path_string, specify the (absolute) path name to resolve. This can contain components that
are hard or weak resource links.

Chapter 6
Null Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 42

The optional correlation_integer argument correlates the EQUALS_PATH condition with its ancillary
functions DEPTH and PATH.

See Also

UNDER_PATH Condition , DEPTH , and PATH

Example

The view RESOURCE_VIEW computes the paths (in the any_path column) that lead to all XML
resources (in the res column) in the database repository. The following example queries the
RESOURCE_VIEW view to find the paths to the resources in the sample schema oe. The
EQUALS_PATH condition causes the query to return only the specified path:

SELECT ANY_PATH FROM RESOURCE_VIEW
 WHERE EQUALS_PATH(res, '/sys/schemas/OE/www.example.com')=1;

ANY_PATH

/sys/schemas/OE/www.example.com

Compare this example with that for UNDER_PATH Condition .

UNDER_PATH Condition
The UNDER_PATH condition determines whether resources specified in a column can be found
under a particular path specified by path_string in the Oracle XML database repository. The path
information is computed by the RESOURCE_VIEW view, which you query to use this condition.

Use this condition in queries to RESOURCE_VIEW and PATH_VIEW. These public views provide a
mechanism for SQL access to data stored in the XML database repository. RESOURCE_VIEW
contains one row for each resource in the repository, and PATH_VIEW contains one row for each
unique path in the repository.

under_path_condition::=

UNDER_PATH (column

, levels

, path_string

, correlation_integer

)

The optional levels argument indicates the number of levels down from path_string Oracle should
search. For levels, specify any nonnegative integer.

The optional correlation_integer argument correlates the UNDER_PATH condition with its ancillary
functions PATH and DEPTH.

See Also

The related condition EQUALS_PATH Condition and the ancillary functions DEPTH
and PATH

Chapter 6
XML Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 42

Example

The view RESOURCE_VIEW computes the paths (in the any_path column) that lead to all XML
resources (in the res column) in the database repository. The following example queries the
RESOURCE_VIEW view to find the paths to the resources in the sample schema oe. The query
returns the path of the XML schema that was created in XMLType Table Examples:

SELECT ANY_PATH FROM RESOURCE_VIEW
 WHERE UNDER_PATH(res, '/sys/schemas/OE/www.example.com')=1;

ANY_PATH
--
/sys/schemas/OE/www.example.com/xwarehouses.xsd

SQL For JSON Conditions
SQL for JSON conditions allow you to test JavaScript Object Notation (JSON) data as follows:

• IS JSON Condition lets you test whether an expression is syntactically correct JSON data.

• JSON_EQUAL Condition tests whether two JSON values are the same.

• JSON_EXISTS Condition lets you test whether a specified JSON value exists in JSON
data.

• JSON_TEXTCONTAINS Condition lets you test whether a specified character string exists
in JSON property values.

JSON_condition::=

is_JSON_condition

JSON_exists_condition

JSON_textcontains_condition

IS JSON Condition
SQL/JSON conditions is json and is not json are complementary. They test whether their
argument is syntactically correct, that is, well-formed, JSON data. With optional keyword
VALIDATE they test whether the data is also valid with respect to a given JSON schema.

• If the data tested is syntactically correct and keyword VALIDATE is not present, then IS JSON
returns true, and IS NOT JSON returns false.

• If keyword VALIDATE is present, then the data is tested to ensure that it is both well-formed
and valid with respect to the specified JSON schema. Keyword VALIDATE (optionally
followed by keyword USING) must be followed by a SQL string literal that is the JSON
schema to validate against.

• If an error occurs during parsing or validating, and the data is considered to not be well-
formed or not valid, then IS JSON returns false and IS NOT JSON returns true. Parsing and
validation errors are handled by the condition itself returning true or false. Other errors that
are neither from parsing or validation, these errors are raised.

• You can use IS JSON and IS NOT JSON in a CASE expression or the WHERE clause of a SELECT
statement. You can use IS JSON in a check constraint.

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 42

IS_JSON_condition::=

expr IS

NOT

JSON

IS_JSON_modifier_list

IS_JSON_args

(IS_JSON_modifier_list::=, IS_JSON_args::=)

IS_JSON_modifier_list::=

(IS_JSON_modifier

,

)

IS_JSON_modifier

IS_JSON_modifier::=

VALUE

JSON_type_modifier

JSON_type_modifier::=

ARRAY

OBJECT

SCALAR

JSON_scalar_modifier

#unique_106/unique_106_Connect_42_SECTION_J33_1SY_CGC

IS_JSON_args::=

FORMAT JSON
(

STRICT

LAX
)

ALLOW

DISALLOW
SCALARS

WITH

WITHOUT
UNIQUE KEYS

VALIDATE

CAST USING

schema

• Use expr to specify the JSON data to be evaluated. Specify an expression that evaluates to
a text literal. If expr is a column, then the column must be of data type VARCHAR2, CLOB, or
BLOB. If expr evaluates to null or a text literal of length zero, then this condition returns
UNKNOWN.

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 42

• LIMIT in json_modifier_spec applies to the entire JSON modifier specification.

• Specify ALLOW NULL in json_array_spec to allow a JSON single type scalar value of NULL.

• Specify DISALLOW NULL in json_array_spec to disallow a JSON single type scalar value of
NULL. This is the default.

• Specify SORT in json_array_spec to sort the JSON array elements in ascending order.

For more information see SQL/JSON Conditions IS JSON and IS NOT JSON of the JSON
Developer's Guide.

IS_JSON_Modifier

For JSON-type data, as an alternative to using VALIDATE with a simple JSON schema you can
use the IS JSON modifers OBJECT, ARRAY, or SCALAR, respectively.

For more see SQL JSON Condtions IS JSON and IS NOT JSON of the JSON Developers's
Guide.

is_json_args

• You must specify FORMAT JSON if expr is a column of data type BLOB.

• If you specify STRICT, then this condition considers only strict JSON syntax to be well-
formed JSON data. If you specify LAX, then this condition also considers lax JSON syntax
to be well-formed JSON data. The default is LAX.

For a full discussion of STRICT and LAX syntax see About Strict and Lax JSON Syntax, and
TYPE Clause for SQL Functions and Conditions

• If you specify WITH UNIQUE KEYS, then this condition considers JSON data to be well-
formed only if key names are unique within each object. If you specify WITHOUT UNIQUE
KEYS, then this condition considers JSON data to be well-formed even if duplicate key
names occur within an object. A WITHOUT UNIQUE KEYS test performs faster than a WITH
UNIQUE KEYS test. The default is WITHOUT UNIQUE KEYS.

• Specify the optional keyword VALIDATE to test that the data is also valid with respect to a
given JSON schema.

• To enforce that a JSON type value is a certain type, you can use JSON type modifiers. See
SQL/JSON Conditions IS JSON and IS NOT JSON of the JSON Developer's Guide.

JSON Schema Validation

A JSON schema typically specifies the allowed structure and data typing of other JSON
documents. You can therefore use a JSON schema to validate JSON data. You can validate
JSON data against a JSON schema in the following ways:

• Use condition IS JSON (or IS NOT JSON) with keyword VALIDATE and the name of a JSON
schema, to test whether targeted data is valid (or invalid) against that schema. The
schema can be provided as a literal string or a usage domain. (Keyword VALIDATE can
optionally be followed by keyword USING.)

You can use VALIDATE with condition is json anywhere you can use that condition. This
includes use in a WHERE clause, or as a check constraint to ensure that only valid data is
inserted in a column.

When used as a check constraint for a JSON-type column, you can alternatively omit is
json, and just use keyword VALIDATE directly. These two table creations are equivalent, for
a JSON-type column:

CREATE TABLE tab (jcol JSON VALIDATE '{"type" : "object"}’);

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 42

CREATE TABLE tab (jcol JSON CONSTRAINT jchk
 CHECK (jcol IS JSON VALIDATE '{"type" : "object"}’));

• Use a usage domain as a check constraint for JSON type data. For example:

CREATE DOMAIN jd AS JSON CONSTRAINT jchkd CHECK (jd IS JSON VALIDATE '{"type" : "object"});

CREATE TABLE jtab(jcol JSON DOMAIN jd);

When creating a domain from a schema, you can alternatively omit the constraint and is
json, and just use keyword VALIDATE directly. This domain creation is equivalent to the
previous one:

CREATE DOMAIN jd AS JSON VALIDATE '{"type" : "object"};

• For databases that support a binary JSON format, data can be encoded on the client. In
such cases, the database does not have to convert textual JSON to its binary
representation and hence validation using an extended data type can be performed.

If textual JSON is sent to the database, it is followed by an encoding process to a binary
representation (server-side encoding). In such circumstances, the schema validator can
operate in CAST mode. That is, the binary encoder can use the value specified for the
extended data type keyword in the JSON schema and encode the scalar field to its binary
representation. Only scaler types are eligible for casting.

CREATE TABLE jtab (
 id NUMBER(9) PRIMARY KEY,
 jcol JSON CHECK(jcol IS JSON VALIDATE CAST USING '{
 "type": "object",
 "properties": {
 "firstName": {
 "extendedType": "string",
 "maxLength": 50
 },
 "birthDate" : {
 "extendedType": "date"
 }
 },
 "required": ["firstName", "birthDate"]
 }'
)
);

The following textual JSON is a valid document per the above schema:

{
 "firstName": "Scott",
 "birthDate": "1990-04-02"
}

• Use PL/SQL functions explained fully in JSON Schema of the JSON Developer's Guide.

Static dictionary views DBA_JSON_SCHEMA_COLUMNS, ALL_JSON_SCHEMA_COLUMNS, and
USER_JSON_SCHEMA_COLUMNS describe a JSON schema that you is used as a check
constraint.

Each row of these views contains the name of the table, the JSON column, and the constraint
defined by the JSON schema, as well as the JSON schema itself and an indication of whether
the cast mode is specified for the JSON schema. Views DBA_JSON_SCHEMA_COLUMNS and
ALL_JSON_SCHEMA_COLUMNS also contain the name of the table owner.

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 42

Examples

IS JSON VALIDATE

The following exampe creates a schema jsontab1 with a JSON constraint jtlisj that has a JSON
validate check:

CREATE TABLE jsontab1(
 id NUMBER(4),
 j JSON CONSTRAINT jt1isj CHECK (j IS JSON VALIDATE USING
 '{
 "type":"object",
 "minProperties": 2
 }')
);

The following example shows the error when you try to insert values other than a JSON object:

INSERT INTO jsontab1(j) VALUES ('["a", "b"]');
INSERT INTO jsontab1(j) VALUES ('["a", "b"]')
*
ERROR at line 1:
ORA-02290: check constraint (SYS.JT1ISJ) violated

The following two examples shows a row added with valid input :

INSERT INTO jsontab1(j) VALUES ('{"a": "a", "b": "b"}');

 1 row created.

INSERT INTO jsontab1(jschd) VALUES (json('"a json string"'));

1 row created.

The following example adds another constraint jschdsv to table jsontab1:

ALTER TABLE jsontab1
ADD jschd JSON CONSTRAINT jschdsv
 CHECK (jschd IS JSON VALIDATE USING '{"type":"string"}');

Table altered.

SQL> INSERT INTO jsontab1(jschd) VALUES (json('3.1415'));
INSERT INTO jsontab1(jschd) VALUES (json('3.1415'))
*
ERROR at line 1:
ORA-02290: check constraint (SYS.JSCHDSV) violated

IS JSON VALIDATE in WHERE Clause

SELECT COUNT(1) FROM jsontab1 WHERE j IS JSON
VALIDATE
 '{"type" : "object",
 "properties" : {
 "id" : {
 "type" : "number"
 }
 }
 }';

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 42

Testing for STRICT or LAX JSON Syntax: Example

The following statement creates table t with column col1:

CREATE TABLE t (col1 VARCHAR2(100));

The following statements insert values into column col1 of table t:

INSERT INTO t VALUES ('["LIT192", "CS141", "HIS160"]');
INSERT INTO t VALUES ('{ "Name": "John" }');
INSERT INTO t VALUES ('{ "Grade Values" : { A : 4.0, B : 3.0, C : 2.0 } }');
INSERT INTO t VALUES ('{ "isEnrolled" : true }');
INSERT INTO t VALUES ('{ "isMatriculated" : False }');
INSERT INTO t VALUES (NULL);
INSERT INTO t VALUES ('This is not well-formed JSON data');

The following statement queries table t and returns col1 values that are well-formed JSON data.
Because neither the STRICT nor LAX keyword is specified, this example uses the default LAX
setting. Therefore, this query returns values that use strict or lax JSON syntax.

SELECT col1
 FROM t
 WHERE col1 IS JSON;

COL1
--
["LIT192", "CS141", "HIS160"]
{ "Name": "John" }
{ "Grade Values" : { A : 4.0, B : 3.0, C : 2.0 } }
{ "isEnrolled" : true }
{ "isMatriculated" : False }

The following statement queries table t and returns col1 values that are well-formed JSON data.
This example specifies the STRICT setting. Therefore, this query returns only values that use
strict JSON syntax.

SELECT col1
 FROM t
 WHERE col1 IS JSON STRICT;

COL1
--
["LIT192", "CS141", "HIS160"]
{ "Name": "John" }
{ "isEnrolled" : true }

The following statement queries table t and returns col1 values that use lax JSON syntax, but
omits col1 values that use strict JSON syntax. Therefore, this query returns only values that
contain the exceptions allowed in lax JSON syntax.

SELECT col1
 FROM t
 WHERE col1 IS NOT JSON STRICT AND col1 IS JSON LAX;

COL1
--
{ "Grade Values" : { A : 4.0, B : 3.0, C : 2.0 } }
{ "isMatriculated" : False }

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 42

Testing for Unique Keys: Example

The following statement creates table t with column col1:

CREATE TABLE t (col1 VARCHAR2(100));

The following statements insert values into column col1 of table t:

INSERT INTO t VALUES ('{a:100, b:200, c:300}');
INSERT INTO t VALUES ('{a:100, a:200, b:300}');
INSERT INTO t VALUES ('{a:100, b : {a:100, c:300}}');

The following statement queries table t and returns col1 values that are well-formed JSON data
with unique key names within each object:

SELECT col1 FROM t
 WHERE col1 IS JSON WITH UNIQUE KEYS;

COL1

{a:100, b:200, c:300}
{a:100, b : {a:100, c:300}}

The second row is returned because, while the key name a appears twice, it is in two different
objects.

The following statement queries table t and returns col1 values that are well-formed JSON data,
regardless of whether there are unique key names within each object:

SELECT col1 FROM t
 WHERE col1 IS JSON WITHOUT UNIQUE KEYS;

COL1

{a:100, b:200, c:300}
{a:100, a:200, b:300}
{a:100, b : {a:100, c:300}}

Using IS JSON as a Check Constraint: Example

The following statement creates table j_purchaseorder, which will store JSON data in column
po_document. The statement uses the IS JSON condition as a check constraint to ensure that only
well-formed JSON is stored in column po_document.

CREATE TABLE j_purchaseorder
 (id RAW (16) NOT NULL,
 date_loaded TIMESTAMP(6) WITH TIME ZONE,
 po_document CLOB CONSTRAINT ensure_json CHECK (po_document IS JSON));

See Also

Conditions IS JSON and IS NOT JSON of the JSON Developer's Guide.

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 42

JSON_EQUAL Condition
Syntax

JSON_EQUAL (expr , expr)

Purpose

The Oracle SQL condition JSON_EQUAL compares two JSON values and returns true if they are
equal. It returns false if the two values are not equal. The input values must be valid JSON data.

The comparison ignores insignificant whitespace and insignificant object member order. For
example, JSON objects are equal, if they have the same members, regardless of their order.

If either of the two compared inputs has one or more duplicate fields, then the value returned
by JSON_EQUAL is unspecified.

JSON_EQUAL supports ERROR ON ERROR, FALSE ON ERROR, and TRUE ON ERROR. The default is
FALSE ON ERROR. A typical example of an error is when the input expression is not valid JSON.

Examples

The following statements return TRUE:

JSON_EQUAL('{}', '{ }')

JSON_EQUAL('{a:1, b:2}', '{b:2 , a:1 }')

The following statement return FALSE:

JSON_EQUAL('{a:"1"}', '{a:1 }') -> FALSE

The following statement results in a ORA-40441 JSON syntax error

JSON_EQUAL('[1]', '[}' ERROR ON ERROR)

See Also

• Oracle Database JSON Developer’s Guide for more information.

JSON_EXISTS Condition
Use the SQL/JSON condition JSON_EXISTS to test whether a specified JSON value exists in
JSON data. This condition returns TRUE if the JSON value exists and FALSE if the JSON value
does not exist.

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 42

JSON_exists_condition::=

JSON_EXISTS (expr

FORMAT JSON

, JSON_basic_path_expression

JSON_passing_clause JSON_exists_on_error_clause
TYPE (

STRICT

LAX
)

JSON_exists_on_empty_clause

)

(JSON_basic_path_expression: See Oracle Database JSON Developer’s Guide)

JSON_passing_clause::=

PASSING expr AS identifier

,

JSON_exists_on_error_clause::=

ERROR

TRUE

FALSE

ON ERROR

JSON_exists_on_empty_clause::=

ERROR

TRUE

FALSE

ON EMPTY

expr

Use this clause to specify the JSON data to be evaluated. For expr, specify an expression that
evaluates to a text literal. If expr is a column, then the column must be of data type VARCHAR2,
CLOB, or BLOB. If expr evaluates to null or a text literal of length zero, then the condition returns
UNKNOWN.

If expr is not a text literal of well-formed JSON data using strict or lax syntax, then the condition
returns FALSE by default. You can use the JSON_exists_on_error_clause to override this default
behavior. Refer to the JSON_exists_on_error_clause.

FORMAT JSON

You must specify FORMAT JSON if expr is a column of data type BLOB.

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 42

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The condition uses the path
expression to evaluate expr and determine if a JSON value that matches, or satisfies, the path
expression exists. The path expression must be a text literal, but it can contain variables
whose values are passed to the path expression by the JSON_passing_clause. See Oracle
Database JSON Developer’s Guide for the full semantics of JSON_basic_path_expression.

JSON_passing_clause

Use this clause to pass values to the path expression. For expr, specify a value of data type
VARCHAR2, NUMBER, BINARY_DOUBLE, DATE, TIMESTAMP, or TIMESTAMP WITH TIME ZONE. The
result of evaluating expr is bound to the corresponding identifier in the JSON_basic_path_expression.

JSON_exists_on_error_clause

Use this clause to specify the value returned by this condition when expr is not well-formed
JSON data.

You can specify the following clauses:

• ERROR ON ERROR - Returns the appropriate Oracle error when expr is not well-formed JSON
data.

• TRUE ON ERROR - Returns TRUE when expr is not well-formed JSON data.

• FALSE ON ERROR - Returns FALSE when expr is not well-formed JSON data. This is the
default.

TYPE Clause

For a full discussion of STRICT and LAX syntax see About Strict and Lax JSON Syntax, and
TYPE Clause for SQL Functions and Conditions

JSON_exists_on_empty_clause

Use this clause to specify the value returned by this function if no match is found when the
JSON data is evaluated using the SQL/JSON path expression.

You can specify the following clauses:

• ERROR ON EMPTY - Returns the appropriate Oracle error when expr is not well-formed JSON
data.

• TRUE ON EMPTY - Returns TRUE when expr is not well-formed JSON data.

• FALSE ON EMPTY - Returns FALSE when expr is not well-formed JSON data. This is the
default.

Examples

The following statement creates table t with column name:

CREATE TABLE t (name VARCHAR2(100));

The following statements insert values into column name of table t:

INSERT INTO t VALUES ('[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]');
INSERT INTO t VALUES ('[{first:"Mary"}, {last:"Jones"}]');

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 42

INSERT INTO t VALUES ('[{first:"Jeff"}, {last:"Williams"}]');
INSERT INTO t VALUES ('[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]');
INSERT INTO t VALUES (NULL);
INSERT INTO t VALUES ('This is not well-formed JSON data');

The following statement queries column name in table t and returns JSON data that consists of
an array whose first element is an object with property name first. The ON ERROR clause is not
specified. Therefore, the JSON_EXISTS condition returns FALSE for values that are not well-
formed JSON data.

SELECT name FROM t
 WHERE JSON_EXISTS(name, '$[0].first');

NAME
--
[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Mary"}, {last:"Jones"}]
[{first:"Jeff"}, {last:"Williams"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

The following statement queries column name in table t and returns JSON data that consists of
an array whose second element is an object with property name middle. The ON ERROR clause is
not specified. Therefore, the JSON_EXISTS condition returns FALSE for values that are not well-
formed JSON data.

SELECT name FROM t
 WHERE JSON_EXISTS(name, '$[1].middle');

NAME
--
[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

The following statement is similar to the previous statement, except that the TRUE ON ERROR
clause is specified. Therefore, the JSON_EXISTS condition returns TRUE for values that are not
well-formed JSON data.

SELECT name FROM t
 WHERE JSON_EXISTS(name, '$[1].middle' TRUE ON ERROR);

NAME
--
[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]
This is not well-formed JSON data

The following statement queries column name in table t and returns JSON data that consists of
an array that contains an element that is an object with property name last. The wildcard symbol
(*) is specified for the array index. Therefore, the query returns arrays that contain such an
object, regardless of its index number in the array.

SELECT name FROM t
 WHERE JSON_EXISTS(name, '$[*].last');

NAME
--
[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 42

[{first:"Mary"}, {last:"Jones"}]
[{first:"Jeff"}, {last:"Williams"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

The following statement performs a filter expression using the passing clause. The SQL/JSON
variable $var1 in the comparison predicate (@.middle == $var1) gets its value from the bind
variable var1 of the PASSING clause.

Using bind variables for value comparisons avoids query re-compilation.

SELECT name FROM t

 WHERE JSON_EXISTS(name, '$[1]?(@.middle == $var1)' PASSING 'Anne' as "var1");

NAME

--

[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

See Also

Condition JSON_Exists

JSON_TEXTCONTAINS Condition
Use the SQL/JSON condition JSON_TEXTCONTAINS to test whether a specified character string
exists in JSON property values. You can use this condition to filter JSON data on a specific
word or number.

This condition takes the following arguments:

• A table or view column that contains JSON data. A JSON search index, which is an Oracle
Text index designed specifically for use with JSON data, must be defined on the column.
Each row of JSON data in the column is referred to as a JSON document.

• A SQL/JSON path expression. The path expression is applied to each JSON document in
an attempt to match a specific JSON object within the document. The path expression can
contain only JSON object steps; it cannot contain JSON array steps.

• A character string. The condition searches for the character string in all of the string and
numeric property values in the matched JSON object, including array values. The string
must exist as a separate word in the property value. For example, if you search for 'beth',
then a match will be found for string property value "beth smith", but not for "elizabeth
smith". If you search for '10', then a match will be found for numeric property value 10 or
string property value "10 main street", but a match will not be found for numeric property
value 110 or string property value "102 main street".

This condition returns TRUE if a match is found, and FALSE if a match is not found.

See Also

JSON Full text search queries

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 42

JSON_textcontains_condition::=

JSON_TEXTCONTAINS (column , JSON_basic_path_expression , string)

(JSON_basic_path_expression: See Oracle Database JSON Developer’s Guide)

column

Specify the name of the table or view column containing the JSON data to be tested. The
column must be of data type VARCHAR2, CLOB, or BLOB. A JSON search index, which is an
Oracle Text index designed specifically for use with JSON data, must be defined on the
column. If a column value is a null or a text literal of length zero, then the condition returns
UNKNOWN.

If a column value is not a text literal of well-formed JSON data using strict or lax syntax, then
the condition returns FALSE.

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The condition uses the path
expression to evaluate column and determine if a JSON value that matches, or satisfies, the
path expression exists. The path expression must be a text literal. See Oracle Database JSON
Developer’s Guide for the full semantics of JSON_basic_path_expression.

string

The condition searches for the character string specified by string. The string must be enclosed
in single quotation marks.

Examples

The following statement creates table families with column family_doc:

CREATE TABLE families (family_doc VARCHAR2(200));

The following statement creates a JSON search index on column family_doc:

CREATE INDEX ix
 ON families(family_doc)
 INDEXTYPE IS CTXSYS.CONTEXT
 PARAMETERS ('SECTION GROUP CTXSYS.JSON_SECTION_GROUP SYNC (ON COMMIT)');

The following statements insert JSON documents that describe families into column family_doc:

INSERT INTO families
VALUES ('{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}');

INSERT INTO families
VALUES ('{family : {id:11, ages:[42,40,10,5], address : {street : "200 East Street", apt : 20}}}');

INSERT INTO families
VALUES ('{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}');

The following statement commits the transaction:

COMMIT;

Chapter 6
SQL For JSON Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 42

The following query returns the JSON documents that contain 10 in any property value in the
document:

SELECT family_doc FROM families
 WHERE JSON_TEXTCONTAINS(family_doc, '$', '10');

FAMILY_DOC
--
{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}
{family : {id:11, ages:[42,40,10,5], address : {street : "200 East Street", apt : 20}}}
{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}

The following query returns the JSON documents that contain 10 in the id property value:

SELECT family_doc FROM families
 where json_textcontains(family_doc, '$.family.id', '10');

FAMILY_DOC
--
{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}

The following query returns the JSON documents that have a 10 in the array of values for the
ages property:

SELECT family_doc FROM families
 WHERE JSON_TEXTCONTAINS(family_doc, '$.family.ages', '10');

FAMILY_DOC
--
{family : {id:11, ages:[42,40,10,5], address : {street : "200 East Street", apt : 20}}}

The following query returns the JSON documents that have a 10 in the address property value:

SELECT family_doc FROM families
 WHERE JSON_TEXTCONTAINS(family_doc, '$.family.address', '10');

FAMILY_DOC
--
{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}
{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}

The following query returns the JSON documents that have a 10 in the apt property value:

SELECT family_doc FROM families
 WHERE JSON_TEXTCONTAINS(family_doc, '$.family.address.apt', '10');

FAMILY_DOC
--
{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}

Compound Conditions
A compound condition specifies a combination of other conditions.

Chapter 6
Compound Conditions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 42

compound_condition::=

(condition)

NOT condition

condition
AND

OR
condition

See Also

Logical Conditions for more information about NOT, AND, and OR conditions

BETWEEN Condition
A BETWEEN condition determines whether the value of one expression is in an interval defined
by two other expressions.

between_condition::=

expr1

NOT

BETWEEN expr2 AND expr3

All three expressions must be numeric, character, or datetime expressions. In SQL, it is
possible that expr1 will be evaluated more than once. If the BETWEEN expression appears in PL/
SQL, expr1 is guaranteed to be evaluated only once. If the expressions are not all the same
data type, then Oracle Database implicitly converts the expressions to a common data type. If
it cannot do so, then it returns an error.

See Also

Implicit Data Conversion for more information on SQL data type conversion

The value of

expr1 NOT BETWEEN expr2 AND expr3

is the value of the expression

NOT (expr1 BETWEEN expr2 AND expr3)

And the value of

expr1 BETWEEN expr2 AND expr3

is the value of the boolean expression:

expr2 <= expr1 AND expr1 <= expr3

Chapter 6
BETWEEN Condition

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 42

If expr3 < expr2, then the interval is empty. If expr1 is NULL, then the result is NULL. If expr1 is not
NULL, then the value is FALSE in the ordinary case and TRUE when the keyword NOT is used.

The boolean operator AND may produce unexpected results. Specifically, in the expression x
AND y, the condition x IS NULL is not sufficient to determine the value of the expression. The
second operand still must be evaluated. The result is FALSE if the second operand has the
value FALSE and NULL otherwise. See Logical Conditions for more information on AND.

Table 6-10 BETWEEN Condition

Type of
Condition

Operation Example

[NOT]
BETWEEN x
AND y

[NOT] (expr2 less than or equal to expr1
AND expr1 less than or equal to expr3)

SELECT * FROM employees
 WHERE salary
 BETWEEN 2000 AND 3000
 ORDER BY employee_id;

EXISTS Condition
An EXISTS condition tests for existence of rows in a subquery.

EXISTS (subquery)

Table 6-11 shows the EXISTS condition.

Table 6-11 EXISTS Condition

Type of
Condition

Operation Example

EXISTS TRUE if a subquery returns at
least one row.

SELECT department_id
 FROM departments d
 WHERE EXISTS
 (SELECT * FROM employees e
 WHERE d.department_id
 = e.department_id)
 ORDER BY department_id;

IN Condition
An in_condition is a membership condition. It tests a value for membership in a list of values or
subquery

Chapter 6
EXISTS Condition

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 42

in_condition::=

expr

NOT

IN (
expression_list

subquery
)

(expr

,

)

NOT

IN (
expression_list

,

subquery
)

expr

,
NOT

IN values_clause

expression_list::=

expr

c_alias

position

,

(

expr

c_alias

position

,

)

values_clause::=

(VALUES (expr

,

)

, (expr

,

)

)

AS

t_alias (c_alias

,

)

If you use the upper form of the in_condition condition (with a single expression to the left of the
operator), then you must use the upper form of expression_list. If you use the lower form of this
condition (with multiple expressions to the left of the operator), then you must use the lower
form of expression_list, and the expressions in each expression_list must match in number and data
type the expressions to the left of the operator. You can specify up to 65535 expressions in
expression_list.

Oracle Database does not always evaluate the expressions in an expression_list in the order in
which they appear in the IN list. However, expressions in the select list of a subquery are
evaluated in their specified order.

Chapter 6
IN Condition

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 42

See Also

Expression Lists

Table 6-12 lists the form of IN condition.

Table 6-12 IN Condition

Type of Condition Operation Example

IN
Equal-to-any-member-of test.
Equivalent to =ANY.

SELECT * FROM employees
 WHERE job_id IN
 ('PU_CLERK','SH_CLERK')
 ORDER BY employee_id;
SELECT * FROM employees
 WHERE salary IN
 (SELECT salary
 FROM employees
 WHERE department_id =30)
 ORDER BY employee_id;

NOT IN Equivalent to !=ALL. Evaluates to
FALSE if any member of the set is
NULL.

SELECT * FROM employees
 WHERE salary NOT IN
 (SELECT salary
 FROM employees
 WHERE department_id = 30)
 ORDER BY employee_id;
SELECT * FROM employees
 WHERE job_id NOT IN
 ('PU_CLERK', 'SH_CLERK')
 ORDER BY employee_id;

values_clause

For semantics of the values_clause please see the values_clause of the SELECT statement
values_clause .

If any item in the list following a NOT IN operation evaluates to null, then all rows evaluate to
FALSE or UNKNOWN, and no rows are returned. For example, the following statement returns
the string 'True' for each row:

SELECT 'True' FROM employees
 WHERE department_id NOT IN (10, 20);

However, the following statement returns no rows:

SELECT 'True' FROM employees
 WHERE department_id NOT IN (10, 20, NULL);

The preceding example returns no rows because the WHERE clause condition evaluates to:

department_id != 10 AND department_id != 20 AND department_id != null

Because the third condition compares department_id with a null, it results in an UNKNOWN, so the
entire expression results in FALSE (for rows with department_id equal to 10 or 20). This behavior
can easily be overlooked, especially when the NOT IN operator references a subquery.

Chapter 6
IN Condition

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 42

Moreover, if a NOT IN condition references a subquery that returns no rows at all, then all rows
will be returned, as shown in the following example:

SELECT 'True' FROM employees
 WHERE department_id NOT IN (SELECT 0 FROM DUAL WHERE 1=2);

For character arguments, the IN condition is collation-sensitive. The collation determination
rules determine the collation to use.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the IN condition

Restriction on LEVEL in WHERE Clauses

In a [NOT] IN condition in a WHERE clause, if the right-hand side of the condition is a subquery,
you cannot use LEVEL on the left-hand side of the condition. However, you can specify LEVEL
in a subquery of the FROM clause to achieve the same result. For example, the following
statement is not valid:

SELECT employee_id, last_name FROM employees
 WHERE (employee_id, LEVEL)
 IN (SELECT employee_id, 2 FROM employees)
 START WITH employee_id = 2
 CONNECT BY PRIOR employee_id = manager_id;

But the following statement is valid because it encapsulates the query containing the LEVEL
information in the FROM clause:

SELECT v.employee_id, v.last_name, v.lev FROM
 (SELECT employee_id, last_name, LEVEL lev
 FROM employees v
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id) v
 WHERE (v.employee_id, v.lev) IN
 (SELECT employee_id, 2 FROM employees);

IS OF type Condition
Use the IS OF type condition to test object instances based on their specific type information.

is_of_type_condition::=

expr IS

NOT

OF

TYPE

(

ONLY schema .

type

,

)

You must have EXECUTE privilege on all types referenced by type, and all types must belong to
the same type family.

This condition evaluates to null if expr is null. If expr is not null, then the condition evaluates to
true (or false if you specify the NOT keyword) under either of these circumstances:

Chapter 6
IS OF type Condition

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 42

• The most specific type of expr is the subtype of one of the types specified in the type list and
you have not specified ONLY for the type, or

• The most specific type of expr is explicitly specified in the type list.

The expr frequently takes the form of the VALUE function with a correlation variable.

The following example uses the sample table oe.persons, which is built on a type hierarchy in
Substitutable Table and Column Examples. The example uses the IS OF type condition to restrict
the query to specific subtypes:

SELECT * FROM persons p
 WHERE VALUE(p) IS OF TYPE (employee_t);

NAME SSN

Joe 32456
Tim 5678

SELECT * FROM persons p
 WHERE VALUE(p) IS OF (ONLY part_time_emp_t);

NAME SSN

Tim 5678

BOOLEAN Test Condition
Syntax

boolean_expression IS

NOT
TRUE

FALSE

NULL

Chapter 6
BOOLEAN Test Condition

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 42

7
Functions

Functions are similar to operators in that they manipulate data items and return a result.
Functions differ from operators in the format of their arguments. This format enables them to
operate on zero, one, two, or more arguments:

function(argument, argument, ...)

A function without any arguments is similar to a pseudocolumn (refer to Pseudocolumns).
However, a pseudocolumn typically returns a different value for each row in the result set,
whereas a function without any arguments typically returns the same value for each row.

This chapter contains these sections:

• About SQL Functions

• Single-Row Functions

– Numeric Functions

– Character Functions Returning Character Values

– Character Functions Returning Number Values

– Character Set Functions

– Collation Functions

– Datetime Functions

– General Comparison Functions

– Conversion Functions

– Large Object Functions

– Collection Functions

– Hierarchical Functions

– Oracle Machine Learning for SQL Functions

– XML Functions

– JSON Functions

– Encoding and Decoding Functions

– NULL-Related Functions

– Environment and Identifier Functions

• Aggregate Functions

• Analytic Functions

• Object Reference Functions

• Model Functions

• OLAP Functions

• Data Cartridge Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 521

• About User-Defined Functions

About SQL Functions
SQL functions are built into Oracle Database and are available for use in various appropriate
SQL statements. Do not confuse SQL functions with user-defined functions written in PL/SQL.

If you call a SQL function with an argument of a data type other than the data type expected by
the SQL function, then Oracle attempts to convert the argument to the expected data type
before performing the SQL function.

See Also

About User-Defined Functions for information on user functions and Data Conversion
for implicit conversion of data types

Nulls in SQL Functions

Most scalar functions return null when given a null argument. You can use the NVL function to
return a value when a null occurs. For example, the expression NVL(commission_pct,0) returns 0 if
commission_pct is null or the value of commission_pct if it is not null.

For information on how aggregate functions handle nulls, see Aggregate Functions .

Syntax for SQL Functions

In the syntax diagrams for SQL functions, arguments are indicated by their data types. When
the parameter function appears in SQL syntax, replace it with one of the functions described in
this section. Functions are grouped by the data types of their arguments and their return
values.

Note

When you apply SQL functions to LOB columns, Oracle Database creates temporary
LOBs during SQL and PL/SQL processing. You should ensure that temporary
tablespace quota is sufficient for storing these temporary LOBs for your application.

A SQL function may be collation-sensitive, which means that character value comparison or
matching that it performs is controlled by a collation. The particular collation to use by the
function is determined from the collations of the function's arguments.

If the result of a SQL function has a character data type, the collation derivation rules define
the collation to associate with the result.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation and determination rules for SQL functions

The syntax showing the categories of functions follows:

Chapter 7
About SQL Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 521

function::=

single_row_function

aggregate_function

analytic_function

object_reference_function

model_function

OLAP_function

data_cartridge_function

user_defined_function

single_row_function::=

numeric_function

character_function

datetime_function

comparison_function

conversion_function

large_object_function

collection_function

hierarchical_function

data_mining_function

XML_function

JSON_function

encoding_decoding_function

NULL_related_function

environment_id_function

The sections that follow list the built-in SQL functions in each of the groups illustrated in the
preceding diagrams except user-defined functions. All of the built-in SQL functions are then
described in alphabetical order.

See Also

About User-Defined Functions and CREATE FUNCTION

Chapter 7
About SQL Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 521

Aggregate Functions
Aggregate functions return a single result row based on groups of rows, rather than on single
rows. Aggregate functions can appear in select lists and in ORDER BY and HAVING clauses.
They are commonly used with the GROUP BY clause in a SELECT statement, where Oracle
Database divides the rows of a queried table or view into groups. In a query containing a
GROUP BY clause, the elements of the select list can be aggregate functions, GROUP BY
expressions, constants, or expressions involving one of these. Oracle applies the aggregate
functions to each group of rows and returns a single result row for each group.

If you omit the GROUP BY clause, then Oracle applies aggregate functions in the select list to all
the rows in the queried table or view. You use aggregate functions in the HAVING clause to
eliminate groups from the output based on the results of the aggregate functions, rather than
on the values of the individual rows of the queried table or view.

See Also

• Using the GROUP BY Clause: Examples and the HAVING Clause for more
information on the GROUP BY clause and HAVING clauses in queries and
subqueries

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for expressions in the ORDER BY clause of an aggregate
function

Many (but not all) aggregate functions that take a single argument accept these clauses:

• DISTINCT and UNIQUE, which are synonymous, cause an aggregate function to consider
only distinct values of the argument expression. The syntax diagrams for aggregate
functions in this chapter use the keyword DISTINCT for simplicity.

• ALL causes an aggregate function to consider all values, including all duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If you specify
neither, then the default is ALL.

Some aggregate functions allow the windowing_clause, which is part of the syntax of analytic
functions. Refer to windowing_clause for information about this clause.

All aggregate functions except COUNT(*), GROUPING, and GROUPING_ID ignore nulls. You can
use the NVL function in the argument to an aggregate function to substitute a value for a null.
COUNT and REGR_COUNT never return null, but return either a number or zero. For all the
remaining aggregate functions, if the data set contains no rows, or contains only rows with
nulls as arguments to the aggregate function, then the function returns null.

The aggregate functions MIN, MAX, SUM, AVG, COUNT, VARIANCE, and STDDEV, when followed
by the KEEP keyword, can be used in conjunction with the FIRST or LAST function to operate on
a set of values from a set of rows that rank as the FIRST or LAST with respect to a given sorting
specification. Refer to FIRST for more information.

You can nest aggregate functions. For example, the following example calculates the average
of the maximum salaries of all the departments in the sample schema hr:

SELECT AVG(MAX(salary))
 FROM employees

Chapter 7
Aggregate Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 521

 GROUP BY department_id;

AVG(MAX(SALARY))

 10926.3333

This calculation evaluates the inner aggregate (MAX(salary)) for each group defined by the
GROUP BY clause (department_id), and aggregates the results again.

ANY_VALUE
APPROX_COUNT
APPROX_COUNT_DISTINCT
APPROX_COUNT_DISTINCT_AGG
APPROX_COUNT_DISTINCT_DETAIL
APPROX_MEDIAN
APPROX_PERCENTILE
APPROX_PERCENTILE_AGG
APPROX_PERCENTILE_DETAIL
APPROX_RANK
APPROX_SUM
AVG
BIT_AND_AGG
BIT_OR_AGG
BIT_XOR_AGG
BOOLEAN_AND_AGG
BOOLEAN_OR_AGG
CHECKSUM
COLLECT
CORR
CORR_*
COUNT
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
EVERY
FIRST
GROUP_ID
GROUPING
GROUPING_ID
JSON_ARRAYAGG
JSON_OBJECTAGG
KURTOSIS_POP
KURTOSIS_SAMP
LAST
LISTAGG
MAX
MEDIAN
MIN
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC

Chapter 7
Aggregate Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 521

RANK
REGR_ (Linear Regression) Functions
SKEWNESS_POP
SKEWNESS_SAMP
STATS_BINOMIAL_TEST
STATS_CROSSTAB
STATS_F_TEST
STATS_KS_TEST
STATS_MODE
STATS_MW_TEST
STATS_ONE_WAY_ANOVA
STATS_T_TEST_*
STATS_WSR_TEST
STDDEV
STDDEV_POP
STDDEV_SAMP
SUM
SYS_OP_ZONE_ID
SYS_XMLAGG
TO_APPROX_COUNT_DISTINCT
TO_APPROX_PERCENTILE
VAR_POP
VAR_SAMP
VARIANCE
XMLAGG

Analytic Functions
Analytic functions compute an aggregate value based on a group of rows. They differ from
aggregate functions in that they return multiple rows for each group. The group of rows is
called a window and is defined by the analytic_clause. For each row, a sliding window of rows is
defined. The window determines the range of rows used to perform the calculations for the
current row. Window sizes can be based on either a physical number of rows or a logical
interval such as time.

Analytic functions are the last set of operations performed in a query except for the final ORDER
BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses are completed before the
analytic functions are processed. Therefore, analytic functions can appear only in the select list
or ORDER BY clause.

Analytic functions are commonly used to compute cumulative, moving, centered, and reporting
aggregates.

analytic_function::=

analytic_function (

arguments

) OVER
window_name

(analytic_clause)

Chapter 7
Analytic Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 521

analytic_clause::=

window_name

order_by_clause windowing_clause

query_partition_clause order_by_clause

windowing_clause

query_partition_clause::=

PARTITION BY

expr

,

(expr

,

)

order_by_clause::=

ORDER

SIBLINGS

BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

windowing_clause::=

ROWS

RANGE

GROUPS

BETWEEN

UNBOUNDED PRECEDING

CURRENT ROW

value_expr
PRECEDING

FOLLOWING

AND

UNBOUNDED FOLLOWING

CURRENT ROW

value_expr
PRECEDING

FOLLOWING

UNBOUNDED PRECEDING

CURRENT ROW

value_expr PRECEDING

EXCLUDE

CURRENT ROW

GROUPS

TIES

NO OTHERS

Chapter 7
Analytic Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 521

The semantics of this syntax are discussed in the sections that follow.

analytic_function

Specify the name of an analytic function (see the listing of analytic functions following this
discussion of semantics).

arguments

Analytic functions take 0 to 3 arguments. The arguments can be any numeric data type or any
nonnumeric data type that can be implicitly converted to a numeric data type. Oracle
determines the argument with the highest numeric precedence and implicitly converts the
remaining arguments to that data type. The return type is also that data type, unless otherwise
noted for an individual function.

See Also

Numeric Precedence for information on numeric precedence and Table 2-9 for more
information on implicit conversion

analytic_clause

Use OVER analytic_clause to indicate that the function operates on a query result set. This clause
is computed after the FROM, WHERE, GROUP BY, and HAVING clauses. You can specify analytic
functions with this clause in the select list or ORDER BY clause. To filter the results of a query
based on an analytic function, nest these functions within the parent query, and then filter the
results of the nested subquery.

Notes on the analytic_clause:

The following notes apply to the analytic_clause:

• You cannot nest analytic functions by specifying any analytic function in any part of the
analytic_clause. However, you can specify an analytic function in a subquery and compute
another analytic function over it.

• You can specify OVER analytic_clause with user-defined analytic functions as well as built-in
analytic functions. See CREATE FUNCTION .

• The PARTITION BY and ORDER BY clauses in the analytic_clause are collation-sensitive.

See Also

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the OVER (PARTITION BY ... ORDER BY ...) clause of an
analytic function

• window_clause in the SELECT statement

query_partition_clause

Use the PARTITION BY clause to partition the query result set into groups based on one or more
value_expr. If you omit this clause, then the function treats all rows of the query result set as a
single group.

Chapter 7
Analytic Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 521

To use the query_partition_clause in an analytic function, use the upper branch of the syntax
(without parentheses). To use this clause in a model query (in the model_column_clauses) or a
partitioned outer join (in the outer_join_clause), use the lower branch of the syntax (with
parentheses).

You can specify multiple analytic functions in the same query, each with the same or different
PARTITION BY keys.

If the objects being queried have the parallel attribute, and if you specify an analytic function
with the query_partition_clause, then the function computations are parallelized as well.

Valid values of value_expr are constants, columns, nonanalytic functions, function expressions,
or expressions involving any of these.

order_by_clause

Use the order_by_clause to specify how data is ordered within a partition. For all analytic functions
you can order the values in a partition on multiple keys, each defined by a value_expr and each
qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is especially
useful when using functions that rank values, because the second expression can resolve ties
between identical values for the first expression.

Whenever the order_by_clause results in identical values for multiple rows, the function behaves
as follows:

• CUME_DIST, DENSE_RANK, NTILE, PERCENT_RANK, and RANK return the same result for each
of the rows.

• ROW_NUMBER assigns each row a distinct value even if there is a tie based on the
order_by_clause. The value is based on the order in which the row is processed, which may
be nondeterministic if the ORDER BY does not guarantee a total ordering.

• For all other analytic functions, the result depends on the window specification. If you
specify a logical window with the RANGE keyword, then the function returns the same result
for each of the rows. If you specify a physical window with the ROWS keyword, then the
result is nondeterministic.

Restrictions on the ORDER BY Clause

The following restrictions apply to the ORDER BY clause:

• When used in an analytic function, the order_by_clause must take an expression (expr). The
SIBLINGS keyword is not valid (it is relevant only in hierarchical queries). Position (position)
and column aliases (c_alias) are also invalid. Otherwise this order_by_clause is the same as
that used to order the overall query or subquery.

• An analytic function that uses the RANGE keyword can use multiple sort keys in its ORDER
BY clause if it specifies any of the following windows:

– RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. The short form of this is
RANGE UNBOUNDED PRECEDING.

– RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

– RANGE BETWEEN CURRENT ROW AND CURRENT ROW

– RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Chapter 7
Analytic Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 521

Window boundaries other than these four can have only one sort key in the ORDER BY
clause of the analytic function. This restriction does not apply to window boundaries
specified by the ROW keyword.

ASC | DESC

Specify the ordering sequence (ascending or descending). ASC is the default.

NULLS FIRST | NULLS LAST

Specify whether returned rows containing nulls should appear first or last in the ordering
sequence.

NULLS LAST is the default for ascending order, and NULLS FIRST is the default for descending
order.

Analytic functions always operate on rows in the order specified in the order_by_clause of the
function. However, the order_by_clause of the function does not guarantee the order of the result.
Use the order_by_clause of the query to guarantee the final result ordering.

See Also

order_by_clause of SELECT for more information on this clause

windowing_clause

Some analytic functions allow the windowing_clause. In the listing of analytic functions at the end
of this section, the functions that allow the windowing_clause are followed by an asterisk (*).

ROWS | RANGE | GROUPS

The keywords ROWS, RANGE, and GROUPS are options to define a window frame unit used for
calculating the function result. The function is then applied to all the rows in the window. The
window moves through the query result set or partition from top to bottom.

• Use ROWS to specify the window frame extent by counting rows forward or backward from
the current row. ROWS allows any number of sort keys, of any ordered data types.

• Use RANGE to specify the window frame extent as a logical offset. RANGE allows only one
sort key, and its declared data type must allow addition and subtraction operations, for
example they must be numeric, datetime, or interval data types.

• Use GROUPS to specifiy the window frame extent with both ROWS and RANGE
characteristics. Like ROWS a GROUPS window can have any number of sort keys, or any
ordered types. Like RANGE, a GROUPS window does not make cutoffs between adjacent
rows with the same values in the sort keys.

You cannot specify this clause unless you have specified the order_by_clause. Some window
boundaries defined by the RANGE clause let you specify only one expression in the
order_by_clause. Refer to Restrictions on the ORDER BY Clause.

The value returned by an analytic function with a logical offset is always deterministic.
However, the value returned by an analytic function with a physical offset may produce
nondeterministic results unless the ordering expression results in a unique ordering. You may
have to specify multiple columns in the order_by_clause to achieve this unique ordering.

Chapter 7
Analytic Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 521

BETWEEN ... AND

Use the BETWEEN ... AND clause to specify a start point and end point for the window. The first
expression (before AND) defines the start point and the second expression (after AND) defines
the end point.

If you omit BETWEEN and specify only one end point, then Oracle considers it the start point,
and the end point defaults to the current row.

UNBOUNDED PRECEDING

Specify UNBOUNDED PRECEDING to indicate that the window starts at the first row of the
partition. This is the start point specification and cannot be used as an end point specification.

UNBOUNDED FOLLOWING

Specify UNBOUNDED FOLLOWING to indicate that the window ends at the last row of the
partition. This is the end point specification and cannot be used as a start point specification.

CURRENT ROW

As a start point, CURRENT ROW specifies that the window begins at the current row or value
(depending on whether you have specified ROW or RANGE, respectively). In this case the end
point cannot be value_expr PRECEDING.

As an end point, CURRENT ROW specifies that the window ends at the current row or value
(depending on whether you have specified ROW or RANGE, respectively). In this case the start
point cannot be value_expr FOLLOWING.

value_expr PRECEDING or value_expr FOLLOWING

For RANGE or ROW:

• If value_expr FOLLOWING is the start point, then the end point must be value_expr FOLLOWING.

• If value_expr PRECEDING is the end point, then the start point must be value_expr PRECEDING.

If you are defining a logical window defined by an interval of time in numeric format, then you
may need to use conversion functions.

See Also

NUMTOYMINTERVAL and NUMTODSINTERVAL for information on converting
numeric times into intervals

If you specified ROWS:

• value_expr is a physical offset. It must be a constant or expression and must evaluate to a
positive numeric value.

• If value_expr is part of the start point, then it must evaluate to a row before the end point.

If you specified RANGE:

• value_expr is a logical offset. It must be a constant or expression that evaluates to a positive
numeric value or an interval literal. Refer to Literals for information on interval literals.

• You can specify only one expression in the order_by_clause.

Chapter 7
Analytic Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 521

• If value_expr evaluates to a numeric value, then the ORDER BY expr must be a numeric or
DATE data type.

• If value_expr evaluates to an interval value, then the ORDER BY expr must be a DATE data
type.

If you omit the windowing_clause entirely, then the default is RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW.

EXCLUDE

You can remove rows, groups, and ties from the window frame with the EXCLUDE options:

• If you specify EXCLUDE CURRENT ROW, and the current row in in the window frame, then the
current row is removed from the window frame.

• If you specify EXCLUDE GROUP, then the current row and any peers of the current row are
removed from the window frame.

• If you specify EXCLUDE TIES, then the peers of the current row are removed from the
window frame. The current row is retained. Note, that if the current row is previously
removed from the window frame, it remains removed.

• If you specify EXCLUDE NO OTHERS, then no additional rows are removed from the window
frame. This is the default option.

Analytic functions are commonly used in data warehousing environments. In the list of analytic
functions that follows, functions followed by an asterisk (*) allow the full syntax, including the
windowing_clause.

AVG *
BIT_AND_AGG*
BIT_OR_AGG*
BIT_XOR_AGG*
BOOLEAN_AND_AGG*
BOOLEAN_OR_AGG*
CHECKSUM*
CLUSTER_DETAILS
CLUSTER_DISTANCE
CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
CORR *
COUNT *
COVAR_POP *
COVAR_SAMP *
CUME_DIST
DENSE_RANK
EVERY*
FEATURE_DETAILS
FEATURE_ID
FEATURE_SET
FEATURE_VALUE
FIRST
FIRST_VALUE *
KURTOSIS_POP*

Chapter 7
Analytic Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 521

KURTOSIS_SAMP*
LAG
LAST
LAST_VALUE *
LEAD
LISTAGG
MAX *
MEDIAN
MIN *
NTH_VALUE *
NTILE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
PREDICTION
PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions *
ROW_NUMBER
SKEWNESS_POP*
SKEWNESS_SAMP*
STDDEV *
STDDEV_POP *
STDDEV_SAMP *
SUM *
VAR_POP *
VAR_SAMP *
VARIANCE *

See Also

Oracle Database Data Warehousing Guide for more information on these functions
and for scenarios illustrating their use

Data Cartridge Functions
Data Cartridge functions are useful for Data Cartridge developers. The Data Cartridge
functions are:

DATAOBJ_TO_MAT_PARTITION
DATAOBJ_TO_PARTITION

Chapter 7
Data Cartridge Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 521

Model Functions
Model functions can be used only in the model_clause of the SELECT statement. The model
functions are:

CV
ITERATION_NUMBER
PRESENTNNV
PRESENTV
PREVIOUS

Object Reference Functions
Object reference functions manipulate REF values, which are references to objects of specified
object types. The object reference functions are:

DEREF
MAKE_REF
REF
REFTOHEX
VALUE

See Also

Oracle Database Object-Relational Developer's Guide for more information about REF
data types

OLAP Functions
OLAP functions returns data from a dimensional object in two-dimension relational format. The
OLAP function is:

CUBE_TABLE

Single-Row Functions
Single-row functions return a single result row for every row of a queried table or view. These
functions can appear in select lists, WHERE clauses, START WITH and CONNECT BY clauses, and
HAVING clauses.

Numeric Functions
Numeric functions accept numeric input and return numeric values. Most numeric functions
return NUMBER values that are accurate to 38 decimal digits. The transcendental functions COS,
COSH, EXP, LN, LOG, SIN, SINH, SQRT, TAN, and TANH are accurate to 36 decimal digits. The
transcendental functions ACOS, ASIN, ATAN, and ATAN2 are accurate to 30 decimal digits. The
numeric functions are:

ABS

Chapter 7
Model Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 521

ACOS
ASIN
ATAN
ATAN2
BITAND
CEIL (number)
COS
COSH
EXP
FLOOR (number)
LN
LOG
MOD
NANVL
POWER
REMAINDER
ROUND (number)
SIGN
SIN
SINH
SQRT
TAN
TANH
TRUNC (number)
WIDTH_BUCKET

Character Functions Returning Character Values
Character functions that return character values return values of the following data types
unless otherwise documented:

• If the input argument is CHAR or VARCHAR2, then the value returned is VARCHAR2.

• If the input argument is NCHAR or NVARCHAR2, then the value returned is NVARCHAR2.

The length of the value returned by the function is limited by the maximum length of the data
type returned.

• For functions that return CHAR or VARCHAR2, if the length of the return value exceeds the
limit, then Oracle Database truncates it and returns the result without an error message.

• For functions that return CLOB values, if the length of the return values exceeds the limit,
then Oracle raises an error and returns no data.

The character functions that return character values are:

CHR
CONCAT
INITCAP
LOWER
LPAD
LTRIM
NCHR
NLS_INITCAP

Chapter 7
Single-Row Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 521

NLS_LOWER
NLS_UPPER
NLSSORT
REGEXP_REPLACE
REGEXP_SUBSTR
REPLACE
RPAD
RTRIM
SOUNDEX
SUBSTR
TRANSLATE
TRANSLATE ... USING
TRIM
UPPER

Character Functions Returning Number Values
Character functions that return number values can take as their argument any character data
type. The character functions that return number values are:

ASCII
INSTR
LENGTH
REGEXP_COUNT
REGEXP_INSTR

Character Set Functions
The character set functions return information about the character set. The character set
functions are:

NLS_CHARSET_DECL_LEN
NLS_CHARSET_ID
NLS_CHARSET_NAME

Collation Functions
The collation functions return information about collation settings. The collation functions are:

COLLATION
NLS_COLLATION_ID
NLS_COLLATION_NAME

Datetime Functions
Datetime functions operate on date (DATE), timestamp (TIMESTAMP, TIMESTAMP WITH TIME
ZONE, and TIMESTAMP WITH LOCAL TIME ZONE), and interval (INTERVAL DAY TO SECOND,
INTERVAL YEAR TO MONTH) values.

Some of the datetime functions were designed for the Oracle DATE data type (ADD_MONTHS,
CURRENT_DATE, LAST_DAY, NEW_TIME, and NEXT_DAY). If you provide a timestamp value as
their argument, then Oracle Database internally converts the input type to a DATE value and
returns a DATE value. The exceptions are the MONTHS_BETWEEN function, which returns a

Chapter 7
Single-Row Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 521

number, and the ROUND and TRUNC functions, which do not accept timestamp or interval values
at all.

The remaining datetime functions were designed to accept any of the three types of data (date,
timestamp, and interval) and to return a value of one of these types.

All of the datetime functions that return current system datetime information, such as SYSDATE,
SYSTIMESTAMP, CURRENT_TIMESTAMP, and so forth, are evaluated once for each SQL
statement, regardless how many times they are referenced in that statement.

The datetime functions are:

ADD_MONTHS
CEIL (datetime)
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)
FLOOR (datetime)
FROM_TZ
LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME
NEXT_DAY
NUMTODSINTERVAL
NUMTOYMINTERVAL
ORA_DST_AFFECTED
ORA_DST_CONVERT
ORA_DST_ERROR
ROUND (datetime)
SESSIONTIMEZONE
SYS_EXTRACT_UTC
SYSDATE
SYSTIMESTAMP
TO_CHAR (datetime)
TO_DSINTERVAL
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TRUNC (datetime)
TZ_OFFSET

General Comparison Functions
The general comparison functions determine the greatest and or least value from a set of
values. The general comparison functions are:

GREATEST
LEAST

Chapter 7
Single-Row Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 521

Conversion Functions
Conversion functions convert a value from one data type to another. Generally, the form of the
function names follows the convention datatype TO datatype. The first data type is the input data
type. The second data type is the output data type. The SQL conversion functions are:

ASCIISTR
BIN_TO_NUM
CAST
CHARTOROWID
COMPOSE
CONVERT
DECOMPOSE
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
RAWTONHEX
ROWIDTOCHAR
ROWIDTONCHAR
SCN_TO_TIMESTAMP
TIMESTAMP_TO_SCN
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_BLOB (bfile)
TO_BLOB (raw)
TO_CHAR (bfile|blob)
TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_CLOB (bfile|blob)
TO_CLOB (character)
TO_DATE
TO_DSINTERVAL
TO_LOB
TO_MULTI_BYTE
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NCLOB
TO_NUMBER
TO_SINGLE_BYTE
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TREAT
UNISTR
VALIDATE_CONVERSION

Chapter 7
Single-Row Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 521

Large Object Functions
The large object functions operate on LOBs. The large object functions are:

BFILENAME
EMPTY_BLOB, EMPTY_CLOB

Collection Functions
The collection functions operate on nested tables and varrays. The SQL collection functions
are:

CARDINALITY
COLLECT
POWERMULTISET
POWERMULTISET_BY_CARDINALITY
SET

Hierarchical Functions
Hierarchical functions applies hierarchical path information to a result set. The hierarchical
function is:

SYS_CONNECT_BY_PATH

Oracle Machine Learning for SQL Functions
The Oracle Machine Learning for SQL functions use analytics to score data. The functions can
apply a mining model schema object to the data, or they can dynamically mine the data by
executing an analytic clause. The OML4SQL functions can be applied to models built using the
native algorithms of Oracle, as well as those built using R through the extensibility mechanism.

The Oracle Machine Learning for SQL functions are:

CLUSTER_DETAILS
CLUSTER_DISTANCE
CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
FEATURE_COMPARE
FEATURE_DETAILS
FEATURE_ID
FEATURE_SET
FEATURE_VALUE
ORA_DM_PARTITION_NAME
PREDICTION
PREDICTION_BOUNDS
PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET
VECTOR_EMBEDDING

Chapter 7
Single-Row Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 521

See Also

• Oracle Machine Learning for SQL Concepts to learn about Oracle Machine
Learning for SQL

• Oracle Machine Learning for SQL User’s Guide for information about scoring

XML Functions
The XML functions operate on or return XML documents or fragments. These functions use
arguments that are not defined as part of the ANSI/ISO/IEC SQL Standard but are defined as
part of the World Wide Web Consortium (W3C) standards. The processing and operations that
the functions perform are defined by the relevant W3C standards. The table below provides a
link to the appropriate section of the W3C standard for the rules and guidelines that apply to
each of these XML-related arguments. A SQL statement that uses one of these XML functions,
where any of the arguments does not conform to the relevant W3C syntax, will result in an
error. Of special note is the fact that not every character that is allowed in the value of a
database column is considered legal in XML.

Syntax Element W3C Standard URL

value_expr http://www.w3.org/TR/2006/REC-xml-20060816

Xpath_string http://www.w3.org/TR/1999/REC-xpath-19991116

XQuery_string http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/

http://www.w3.org/TR/xquery-update-10/

namespace_string http://www.w3.org/TR/2006/REC-xml-names-20060816/

identifier http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Nmtoken

For more information about selecting and querying XML data using these functions, including
information on formatting output, refer to Oracle XML DB Developer’s Guide

The SQL XML functions are:

DEPTH
EXISTSNODE
EXTRACT (XML)
EXTRACTVALUE
PATH
SYS_DBURIGEN
SYS_XMLAGG
SYS_XMLGEN
XMLAGG
XMLCAST
XMLCDATA
XMLCOLATTVAL
XMLCOMMENT
XMLCONCAT
XMLDIFF
XMLELEMENT
XMLEXISTS
XMLFOREST

Chapter 7
Single-Row Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 521

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Nmtoken

XMLISVALID
XMLPARSE
XMLPATCH
XMLPI
XMLQUERY
XMLSEQUENCE
XMLSERIALIZE
XMLTABLE
XMLTRANSFORM

JSON Functions
JavaScript Object Notation (JSON) functions allow you to query and generate JSON data.

The following SQL/JSON functions allow you to query JSON data:

JSON_QUERY
JSON_TABLE
JSON_VALUE

The following SQL/JSON functions allow you to generate JSON data:

JSON_ARRAY
JSON_ARRAYAGG
JSON_OBJECT
JSON_OBJECTAGG
JSON Type Constructor
JSON_SCALAR
JSON_SERIALIZE
JSON_TRANSFORM

The following Oracle SQL function creates a JSON data guide:

JSON_DATAGUIDE

Encoding and Decoding Functions
The encoding and decoding functions let you inspect and decode data in the database. The
encoding and decoding functions are:

DECODE
DUMP
ORA_HASH
STANDARD_HASH
VSIZE

NULL-Related Functions
The NULL-related functions facilitate null handling. The NULL-related functions are:

COALESCE
LNNVL
NANVL
NULLIF
NVL

Chapter 7
Single-Row Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 521

NVL2

Environment and Identifier Functions
The environment and identifier functions provide information about the instance and session.
The environment and identifier functions are:

CON_DBID_TO_ID
CON_GUID_TO_ID
CON_NAME_TO_ID
CON_UID_TO_ID
ORA_INVOKING_USER
ORA_INVOKING_USERID
SYS_CONTEXT
SYS_GUID
SYS_TYPEID
UID
USER
USERENV

Domain Functions
Purpose

Use the following domain functions to work with usecase domains more efficiently:

• DOMAIN_DISPLAY

• DOMAIN_ORDER

• DOMAIN_NAME

• DOMAIN_CHECK

• DOMAIN_CHECK_TYPE

Vector Functions
Purpose

You can use the following vector functions in Oracle AI Vector Search to create and manipulate
vectors:

Vector Distance Functions

• VECTOR_DISTANCE

• L1_DISTANCE

• L2_DISTANCE

• COSINE_DISTANCE

• INNER_PRODUCT

Vector Constructors

• TO_VECTOR

• VECTOR

Chapter 7
Single-Row Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 521

Vector Serializers

• FROM_VECTOR

• VECTOR_SERIALIZE

Other Common Vector Functions

• VECTOR_CHUNKS

• VECTOR_DIMS

• VECTOR_DIMENSION_COUNT

• VECTOR_DIMENSION_FORMAT

• VECTOR_EMBEDDING

• VECTOR_NORM

See Also

AI Vector Search User's Guide

UUID Functions
Use the UUID (Universally Unique Identifier) functions to generate UUIDs and operate on
them.

• UUID

• IS_UUID

• UUID_TO_RAW

• RAW_TO_UUID

ABS
Syntax

ABS (n)

Purpose

ABS returns the absolute value of n.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion

Chapter 7
ABS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 521

Examples

The following example returns the absolute value of -15:

SELECT ABS(-15) "Absolute"
 FROM DUAL;

 Absolute

 15

ACOS
Syntax

ACOS (n)

Purpose

ACOS returns the arc cosine of n. The argument n must be in the range of -1 to 1, and the
function returns a value in the range of 0 to pi, expressed in radians.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the arc cosine of .3:

SELECT ACOS(.3)"Arc_Cosine"
 FROM DUAL;

Arc_Cosine

1.26610367

ADD_MONTHS
Syntax

ADD_MONTHS (date , integer)

Chapter 7
ACOS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 521

Purpose

ADD_MONTHS returns the date date plus integer months. A month is defined by the session
parameter NLS_CALENDAR. The date argument can be a datetime value or any value that can
be implicitly converted to DATE. The integer argument can be an integer or any value that can be
implicitly converted to an integer. The return type is always DATE, regardless of the data type of
date. If date is the last day of the month or if the resulting month has fewer days than the day
component of date, then the result is the last day of the resulting month. Otherwise, the result
has the same day component as date.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the month after the hire_date in the sample table employees:

SELECT TO_CHAR(ADD_MONTHS(hire_date, 1), 'DD-MON-YYYY') "Next month"
 FROM employees
 WHERE last_name = 'Baer';

Next Month

07-JUL-2002

ANY_VALUE
Syntax

ANY_VALUE (

DISTINCT

ALL

expr)

Purpose

ANY_VALUE returns a single non-deterministic value of expr. You can use it as an aggregate
function.

Use ANY_VALUE to optimize a query that has a GROUP BY clause. ANY_VALUE returns a value of
an expression in a group. It is optimized to return the first value.

It ensures that there are no comparisons for any incoming row and also eliminates the
necessity to specify every column as part of the GROUP BY clause. Because it does not
compare values, ANY_VALUE returns a value more quickly than MIN or MAX in a GROUP BY
query.

Semantics

ALL, DISTINCT: These keywords are supported by ANY_VALUE although they have no effect on
the result of the query.

expr: The expression can be a column, constant, bind variable, or an expression involving them.

Chapter 7
ANY_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 521

NULL values in the expression are ignored.

Supports all of the data types, except for LONG, LOB, FILE, or COLLECTION.

If you use LONG, ORA-00997 is raised.

If you use LOB, FILE, or COLLECTION data types, ORA-00932 is raised.

ANY_VALUE follows the same rules as MIN and MAX.

Returns any value within each group based on the GROUP BY specification. Returns NULL if all
rows in the group have NULL expression values.

The result of ANY_VALUE is not deterministic.

Restrictions

XMLType and ANYDATA are not supported.

Example 7-1 Using ANY_VALUE As an Aggregate Function

This example uses ANY_VALUE as an aggregate function in a GROUP BY query of the SH
schema.

SELECT c.cust_id, ANY_VALUE(cust_last_name), SUM(amount_sold)
 FROM customers c, sales s
 WHERE s.cust_id = c.cust_id
 GROUP BY c.cust_id;

In the following result of the query, only the first eleven rows are shown.

CUST_ID ANY_VALUE(CUST_LAST_NAME) SUM(AMOUNT_SOLD)
------- -------------------------- ----------------
 6950 Sandburg 78
 17920 Oliver 3201
 66800 Case 2024
 37280 Edwards 2256
 109850 Lindegreen 757
 3910 Oddell 185
 84700 Marker 164.4
 26380 Remler 118
 11600 Oppy 158
 23030 Rothrock 533
 42780 Zanis 182
...
630 rows selected.

APPROX_COUNT
Syntax

APPROX_COUNT (
*

expr

, ’ MAX_ERROR ’

)

Chapter 7
APPROX_COUNT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 521

Purpose

APPROX_COUNT returns the approximate count of an expression. If you supply MAX_ERROR as
the second argument, then the function returns the maximum error between the actual and
approximate count.

You must use this function with a corresponding APPROX_RANK function in the HAVING clause. If
a query uses APPROX_COUNT, APPROX_SUM, or APPROX_RANK, then the query must not use any
other aggregation functions.

Examples

The following query returns the 10 most common jobs within every department:

SELECT department_id, job_id,
 APPROX_COUNT(*)
FROM employees
GROUP BY department_id, job_id
HAVING
 APPROX_RANK (
 PARTITION BY department_id
 ORDER BY APPROX_COUNT(*)
 DESC) <= 10;

APPROX_COUNT_DISTINCT
Syntax

APPROX_COUNT_DISTINCT (expr)

Purpose

APPROX_COUNT_DISTINCT returns the approximate number of rows that contain a distinct value
for expr.

This function provides an alternative to the COUNT (DISTINCT expr) function, which returns the
exact number of rows that contain distinct values of expr. APPROX_COUNT_DISTINCT processes
large amounts of data significantly faster than COUNT, with negligible deviation from the exact
result.

For expr, you can specify a column of any scalar data type other than BFILE, BLOB, CLOB, LONG,
LONG RAW, or NCLOB.

APPROX_COUNT_DISTINCT ignores rows that contain a null value for expr. This function returns a
NUMBER.

Chapter 7
APPROX_COUNT_DISTINCT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 521

See Also

• COUNT for more information on the COUNT (DISTINCT expr) function

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation APPROX_COUNT_DISTINCT uses to
compare character values for expr

Examples

The following statement returns the approximate number of rows with distinct values for
manager_id:

SELECT APPROX_COUNT_DISTINCT(manager_id) AS "Active Managers"
 FROM employees;

Active Managers

 18

The following statement returns the approximate number of distinct customers for each
product:

SELECT prod_id, APPROX_COUNT_DISTINCT(cust_id) AS "Number of Customers"
 FROM sales
 GROUP BY prod_id
 ORDER BY prod_id;

 PROD_ID Number of Customers
---------- -------------------
 13 2516
 14 2030
 15 2105
 16 2367
 17 2093
 18 2975
 19 2630
 20 3791
. . .

APPROX_COUNT_DISTINCT_AGG
Syntax

APPROX_COUNT_DISTINCT_AGG (detail)

Purpose

APPROX_COUNT_DISTINCT_AGG takes as its input a column of details containing information
about approximate distinct value counts, and enables you to perform aggregations of those
counts.

For detail, specify a column of details created by the APPROX_COUNT_DISTINCT_DETAIL function
or the APPROX_COUNT_DISTINCT_AGG function. This column is of data type BLOB.

Chapter 7
APPROX_COUNT_DISTINCT_AGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 521

You can specify this function in a SELECT statement with a GROUP BY clause to aggregate the
information contained in the details within each group of rows and return a single detail for
each group.

This function returns a BLOB value, called a detail, which contains information about the count
aggregations in a special format. You can store details returned by this function in a table or
materialized view, and then again use the APPROX_COUNT_DISTINCT_AGG function to further
aggregate those details, or use the TO_APPROX_COUNT_DISTINCT function to convert the detail
values to human-readable NUMBER values.

See Also

• APPROX_COUNT_DISTINCT_DETAIL

• TO_APPROX_COUNT_DISTINCT

Examples

Refer to APPROX_COUNT_DISTINCT_AGG: Examples for examples of using the
APPROX_COUNT_DISTINCT_AGG function in conjunction with the APPROX_COUNT_DISTINCT_DETAIL
and TO_APPROX_COUNT_DISTINCT functions.

APPROX_COUNT_DISTINCT_DETAIL
Syntax

APPROX_COUNT_DISTINCT_DETAIL (expr)

Purpose

APPROX_COUNT_DISTINCT_DETAIL calculates information about the approximate number of rows
that contain a distinct value for expr and returns a BLOB value, called a detail, which contains
that information in a special format.

For expr, you can specify a column of any scalar data type other than BFILE, BLOB, CLOB, LONG,
LONG RAW, or NCLOB. This function ignores rows for which the value of expr is null.

This function is commonly used with the GROUP BY clause in a SELECT statement. When used
in this way, it calculates approximate distinct value count information for expr within each group
of rows and returns a single detail for each group.

The details returned by APPROX_COUNT_DISTINCT_DETAIL can be used as input to the
APPROX_COUNT_DISTINCT_AGG function, which enables you to perform aggregations of the
details, or the TO_APPROX_COUNT_DISTINCT function, which converts a detail to a human-
readable distinct count value. You can use these three functions together to perform resource-
intensive approximate count calculations once, store the resulting details, and then perform
efficient aggregations and queries on those details. For example:

1. Use the APPROX_COUNT_DISTINCT_DETAIL function to calculate approximate distinct value
count information and store the resulting details in a table or materialized view. These
could be highly-granular details, such as city demographic counts or daily sales counts.

Chapter 7
APPROX_COUNT_DISTINCT_DETAIL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 521

2. Use the APPROX_COUNT_DISTINCT_AGG function to aggregate the details obtained in the
previous step and store the resulting details in a table or materialized view. These could be
details of lower granularity, such as state demographic counts or monthly sales counts.

3. Use the TO_APPROX_COUNT_DISTINCT function to convert the stored detail values to human-
readable NUMBER values. You can use the TO_APPROX_COUNT_DISTINCT function to query
detail values created by the APPROX_COUNT_DISTINCT_DETAIL function or the
APPROX_COUNT_DISTNCT_AGG function.

See Also

• APPROX_COUNT_DISTINCT_AGG

• TO_APPROX_COUNT_DISTINCT

Examples

The examples in this section demonstrate how to use the APPROX_COUNT_DISTINCT_DETAIL,
APPROX_COUNT_DISTINCT_AGG, and TO_APPROX_COUNT_DISTINCT functions together to perform
resource-intensive approximate count calculations once, store the resulting details, and then
perform efficient aggregations and queries on those details.

APPROX_COUNT_DISTINCT_DETAIL: Example

The following statement queries the tables sh.times and sh.sales for the approximate number of
distinct products sold each day. The APPROX_COUNT_DISTINCT_DETAIL function returns the
information in a detail, called daily_detail, for each day that products were sold. The returned
details are stored in a materialized view called daily_prod_count_mv.

CREATE MATERIALIZED VIEW daily_prod_count_mv AS
 SELECT t.calendar_year year,
 t.calendar_month_number month,
 t.day_number_in_month day,
 APPROX_COUNT_DISTINCT_DETAIL(s.prod_id) daily_detail
 FROM times t, sales s
 WHERE t.time_id = s.time_id
 GROUP BY t.calendar_year, t.calendar_month_number, t.day_number_in_month;

APPROX_COUNT_DISTINCT_AGG: Examples

The following statement uses the APPROX_COUNT_DISTINCT_AGG function to read the daily
details stored in daily_prod_count_mv and create aggregated details that contain the approximate
number of distinct products sold each month. These aggregated details are stored in a
materialized view called monthly_prod_count_mv.

CREATE MATERIALIZED VIEW monthly_prod_count_mv AS
 SELECT year,
 month,
 APPROX_COUNT_DISTINCT_AGG(daily_detail) monthly_detail
 FROM daily_prod_count_mv
 GROUP BY year, month;

The following statement is similar to the previous statement, except it creates aggregated
details that contain the approximate number of distinct products sold each year. These
aggregated details are stored in a materialized view called annual_prod_count_mv.

CREATE MATERIALIZED VIEW annual_prod_count_mv AS
 SELECT year,

Chapter 7
APPROX_COUNT_DISTINCT_DETAIL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 521

 APPROX_COUNT_DISTINCT_AGG(daily_detail) annual_detail
 FROM daily_prod_count_mv
 GROUP BY year;

TO_APPROX_COUNT_DISTINCT: Examples

The following statement uses the TO_APPROX_COUNT_DISTINCT function to query the daily detail
information stored in daily_prod_count_mv and return the approximate number of distinct products
sold each day:

SELECT year,
 month,
 day,
 TO_APPROX_COUNT_DISTINCT(daily_detail) "NUM PRODUCTS"
 FROM daily_prod_count_mv
 ORDER BY year, month, day;

 YEAR MONTH DAY NUM PRODUCTS
---------- ---------- ---------- ------------
 1998 1 1 24
 1998 1 2 25
 1998 1 3 11
 1998 1 4 34
 1998 1 5 10
 1998 1 6 8
 1998 1 7 37
 1998 1 8 26
 1998 1 9 25
 1998 1 10 38
. . .

The following statement uses the TO_APPROX_COUNT_DISTINCT function to query the monthly
detail information stored in monthly_prod_count_mv and return the approximate number of distinct
products sold each month:

SELECT year,
 month,
 TO_APPROX_COUNT_DISTINCT(monthly_detail) "NUM PRODUCTS"
 FROM monthly_prod_count_mv
 ORDER BY year, month;

 YEAR MONTH NUM PRODUCTS
---------- ---------- ------------
 1998 1 57
 1998 2 56
 1998 3 55
 1998 4 49
 1998 5 49
 1998 6 48
 1998 7 54
 1998 8 56
 1998 9 55
 1998 10 57
. . .

Chapter 7
APPROX_COUNT_DISTINCT_DETAIL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 521

The following statement uses the TO_APPROX_COUNT_DISTINCT function to query the annual
detail information stored in annual_prod_count_mv and return the approximate number of distinct
products sold each year:

SELECT year,
 TO_APPROX_COUNT_DISTINCT(annual_detail) "NUM PRODUCTS"
 FROM annual_prod_count_mv
 ORDER BY year;

 YEAR NUM PRODUCTS
---------- ------------
 1998 60
 1999 72
 2000 72
 2001 71

APPROX_MEDIAN
Syntax

APPROX_MEDIAN (expr

DETERMINISTIC
,

’ ERROR_RATE ’

’ CONFIDENCE ’

)

Purpose

APPROX_MEDIAN is an approximate inverse distribution function that assumes a continuous
distribution model. It takes a numeric or datetime value and returns an approximate middle
value or an approximate interpolated value that would be the middle value once the values are
sorted. Nulls are ignored in the calculation.

This function provides an alternative to the MEDIAN function, which returns the exact middle
value or interpolated value. APPROX_MEDIAN processes large amounts of data significantly
faster than MEDIAN, with negligible deviation from the exact result.

For expr, specify the expression for which the approximate median value is being calculated.
The acceptable data types for expr, and the return value data type for this function, depend on
the algorithm that you specify with the DETERMINISTIC clause.

DETERMINISTIC

This clause lets you specify the type of algorithm this function uses to calculate the
approximate median value.

• If you specify DETERMINISTIC, then this function calculates a deterministic approximate
median value. In this case, expr must evaluate to a numeric value, or to a value that can be
implicitly converted to a numeric value. The function returns the same data type as the
numeric data type of its argument.

• If you omit DETERMINSTIC, then this function calculates a nondeterministic approximate
median value. In this case, expr must evaluate to a numeric or datetime value, or to a value
that can be implicitly converted to a numeric or datetime value. The function returns the
same data type as the numeric or datetime data type of its argument.

ERROR_RATE | CONFIDENCE

Chapter 7
APPROX_MEDIAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 521

These clauses let you determine the accuracy of the value calculated by this function. If you
specify one of these clauses, then instead of returning the approximate median value for expr,
the function returns a decimal value from 0 to 1, inclusive, which represents one of the
following values:

• If you specify ERROR_RATE, then the return value represents the error rate for the
approximate median value calculation for expr.

• If you specify CONFIDENCE, then the return value represents the confidence level for the
error rate that is returned when you specify ERROR_RATE.

See Also

• MEDIAN

• APPROX_PERCENTILE which returns, for a given percentile, the approximate
value that corresponds to that percentile by way of interpolation. APPROX_MEDIAN
is the specific case of APPROX_PERCENTILE where the percentile value is 0.5.

Examples

The following query returns the deterministic approximate median salary for each department
in the hr.employees table:

SELECT department_id "Department",
 APPROX_MEDIAN(salary DETERMINISTIC) "Median Salary"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department Median Salary
---------- -------------
 10 4400
 20 6000
 30 2765
 40 6500
 50 3100
 60 4800
 70 10000
 80 9003
 90 17000
 100 7739
 110 8300
 7000

The following query returns the error rates for the approximate median salaries that were
returned by the previous query:

SELECT department_id "Department",
 APPROX_MEDIAN(salary DETERMINISTIC, 'ERROR_RATE') "Error Rate"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department Error Rate
---------- ----------
 10 .002718282
 20 .021746255
 30 .021746255

Chapter 7
APPROX_MEDIAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 521

 40 .002718282
 50 .019027973
 60 .019027973
 70 .002718282
 80 .021746255
 90 .021746255
 100 .019027973
 110 .019027973
 .002718282

The following query returns the confidence levels for the error rates that were returned by the
previous query:

SELECT department_id "Department",
 APPROX_MEDIAN(salary DETERMINISTIC, 'CONFIDENCE') "Confidence Level"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department Confidence Level
---------- ----------------
 10 .997281718
 20 .999660215
 30 .999660215
 40 .997281718
 50 .999611674
 60 .999611674
 70 .997281718
 80 .999660215
 90 .999660215
 100 .999611674
 110 .999611674
 .997281718

The following query returns the nondeterministic approximate median hire date for each
department in the hr.employees table:

SELECT department_id "Department",
 APPROX_MEDIAN(hire_date) "Median Hire Date"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department Median Hire Date
---------- ----------------
 10 17-SEP-03
 20 17-FEB-04
 30 24-JUL-05
 40 07-JUN-02
 50 15-MAR-06
 60 05-FEB-06
 70 07-JUN-02
 80 23-MAR-06
 90 17-JUN-03
 100 28-SEP-05
 110 07-JUN-02
 24-MAY-07

Chapter 7
APPROX_MEDIAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 521

APPROX_PERCENTILE
Syntax

APPROX_PERCENTILE (expr

DETERMINISTIC
,

’ ERROR_RATE ’

’ CONFIDENCE ’

)

WITHIN GROUP (ORDER BY expr

DESC

ASC

)

Purpose

APPROX_PERCENTILE is an approximate inverse distribution function. It takes a percentile value
and a sort specification, and returns the value that would fall into that percentile value with
respect to the sort specification. Nulls are ignored in the calculation

This function provides an alternative to the PERCENTILE_CONT and PERCENTILE_DISC functions,
which returns the exact results. APPROX_PERCENTILE processes large amounts of data
significantly faster than PERCENTILE_CONT and PERCENTILE_DISC, with negligible deviation from
the exact result.

The first expr is the percentile value, which must evaluate to a numeric value between 0 and 1.

The second expr, which is part of the ORDER BY clause, is a single expression over which this
function calculates the result. The acceptable data types for expr, and the return value data type
for this function, depend on the algorithm that you specify with the DETERMINISTIC clause.

DETERMINISTIC

This clause lets you specify the type of algorithm this function uses to calculate the return
value.

• If you specify DETERMINISTIC, then this function calculates a deterministic result. In this
case, the ORDER BY clause expression must evaluate to a numeric value, or to a value that
can be implicitly converted to a numeric value, in the range -2,147,483,648 through
2,147,483,647. The function rounds numeric input to the closest integer. The function
returns the same data type as the numeric data type of the ORDER BY clause expression.
The return value is not necessarily one of the values of expr

• If you omit DETERMINSTIC, then this function calculates a nondeterministic result. In this
case, the ORDER BY clause expression must evaluate to a numeric or datetime value, or to
a value that can be implicitly converted to a numeric or datetime value. The function
returns the same data type as the numeric or datetime data type of the ORDER BY clause
expression. The return value is one of the values of expr.

ERROR_RATE | CONFIDENCE

These clauses let you determine the accuracy of the result calculated by this function. If you
specify one of these clauses, then instead of returning the value that would fall into the
specified percentile value for expr, the function returns a decimal value from 0 to 1, inclusive,
which represents one of the following values:

Chapter 7
APPROX_PERCENTILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 521

• If you specify ERROR_RATE, then the return value represents the error rate for calculating
the value that would fall into the specified percentile value forexpr.

• If you specify CONFIDENCE, then the return value represents the confidence level for the
error rate that is returned when you specify ERROR_RATE.

DESC | ASC

Specify the sort specification for the calculating the value that would fall into the specified
percentile value. Specify DESC to sort the ORDER BY clause expression values in descending
order, or ASC to sort the values in ascending order. ASC is the default.

See Also

• PERCENTILE_CONT and PERCENTILE_DISC

• APPROX_MEDIAN, which is the specific case of APPROX_PERCENTILE where the
percentile value is 0.5

Examples

The following query returns the deterministic approximate 25th percentile, 50th percentile, and
75th percentile salaries for each department in the hr.employees table. The salaries are sorted in
ascending order for the interpolation calculation.

SELECT department_id "Department",
 APPROX_PERCENTILE(0.25 DETERMINISTIC)
 WITHIN GROUP (ORDER BY salary ASC) "25th Percentile Salary",
 APPROX_PERCENTILE(0.50 DETERMINISTIC)
 WITHIN GROUP (ORDER BY salary ASC) "50th Percentile Salary",
 APPROX_PERCENTILE(0.75 DETERMINISTIC)
 WITHIN GROUP (ORDER BY salary ASC) "75th Percentile Salary"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department 25th Percentile Salary 50th Percentile Salary 75th Percentile Salary
---------- ---------------------- ---------------------- ----------------------
 10 4400 4400 4400
 20 6000 6000 13000
 30 2633 2765 3100
 40 6500 6500 6500
 50 2600 3100 3599
 60 4800 4800 6000
 70 10000 10000 10000
 80 7400 9003 10291
 90 17000 17000 24000
 100 7698 7739 8976
 110 8300 8300 12006
 7000 7000 7000

The following query returns the error rates for the approximate 25th percentile salaries that
were calculated in the previous query:

SELECT department_id "Department",
 APPROX_PERCENTILE(0.25 DETERMINISTIC, 'ERROR_RATE')
 WITHIN GROUP (ORDER BY salary ASC) "Error Rate"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Chapter 7
APPROX_PERCENTILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 521

Department Error Rate
---------- ----------
 10 .002718282
 20 .021746255
 30 .021746255
 40 .002718282
 50 .019027973
 60 .019027973
 70 .002718282
 80 .021746255
 90 .021746255
 100 .019027973
 110 .019027973
 .002718282

The following query returns the confidence levels for the error rates that were calculated in the
previous query:

SELECT department_id "Department",
 APPROX_PERCENTILE(0.25 DETERMINISTIC, 'CONFIDENCE')
 WITHIN GROUP (ORDER BY salary ASC) "Confidence"
FROM employees
GROUP BY department_id
ORDER BY department_id;

Department Confidence
---------- ----------
 10 .997281718
 20 .999660215
 30 .999660215
 40 .997281718
 50 .999611674
 60 .999611674
 70 .997281718
 80 .999660215
 90 .999660215
 100 .999611674
 110 .999611674
 .997281718

The following query returns the nondeterministic approximate 25th percentile, 50th percentile,
and 75th percentile salaries for each department in the hr.employees table. The salaries are
sorted in ascending order for the interpolation calculation.

SELECT department_id "Department",
 APPROX_PERCENTILE(0.25)
 WITHIN GROUP (ORDER BY salary ASC) "25th Percentile Salary",
 APPROX_PERCENTILE(0.50)
 WITHIN GROUP (ORDER BY salary ASC) "50th Percentile Salary",
 APPROX_PERCENTILE(0.75)
 WITHIN GROUP (ORDER BY salary ASC) "75th Percentile Salary"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department 25th Percentile Salary 50th Percentile Salary 75th Percentile Salary
---------- ---------------------- ---------------------- ----------------------
 10 4400 4400 4400
 20 6000 6000 13000
 30 2600 2800 3100
 40 6500 6500 6500

Chapter 7
APPROX_PERCENTILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 521

 50 2600 3100 3600
 60 4800 4800 6000
 70 10000 10000 10000
 80 7300 8800 10000
 90 17000 17000 24000
 100 7700 7800 9000
 110 8300 8300 12008
 7000 7000 7000

APPROX_PERCENTILE_AGG
Syntax

APPROX_PERCENTILE_AGG (expr)

Purpose

APPROX_PERCENTILE_AGG takes as its input a column of details containing approximate
percentile information, and enables you to perform aggregations of that information.

For detail, specify a column of details created by the APPROX_PERCENT_DETAIL function or the
APPROX_PERCENTILE_AGG function. This column is of data type BLOB.

You can specify this function in a SELECT statement with a GROUP BY clause to aggregate the
information contained in the details within each group of rows and return a single detail for
each group.

This function returns a BLOB value, called a detail, which contains approximate percentile
information in a special format. You can store details returned by this function in a table or
materialized view, and then again use the APPROX_PERCENTILE_AGG function to further
aggregate those details, or use the TO_APPROX_PERCENTILE function to convert the details to
specified percentile values.

See Also

• APPROX_PERCENTILE_DETAIL

• TO_APPROX_PERCENTILE

Examples

Refer to APPROX_PERCENTILE_AGG: Examples for examples of using the
APPROX_PERCENTILE_AGG function in conjunction with the APPROX_PERCENTILE_DETAIL and
TO_APPROX_PERCENTILE functions.

APPROX_PERCENTILE_DETAIL
Syntax

APPROX_PERCENTILE_DETAIL (expr

DETERMINISTIC

)

Chapter 7
APPROX_PERCENTILE_AGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 521

Purpose

APPROX_PERCENTILE_DETAIL calculates approximate percentile information for the values of expr
and returns a BLOB value, called a detail, which contains that information in a special format.

The acceptable data types for expr depend on the algorithm that you specify with the
DETERMINISTIC clause. Refer to the DETERMINISTIC clause for more information.

This function is commonly used with the GROUP BY clause in a SELECT statement. It calculates
approximate percentile information for expr within each group of rows and returns a single detail
for each group.

The details returned by APPROX_PERCENTILE_DETAIL can be used as input to the
APPROX_PERCENTILE_AGG function, which enables you to perform aggregations of the details, or
the TO_APPROX_PERCENTILE function, which converts a detail to a specified percentile value.
You can use these three functions together to perform resource-intensive approximate
percentile calculations once, store the resulting details, and then perform efficient aggregations
and queries on those details. For example:

1. Use the APPROX_PERCENTILE_DETAIL function to perform approximate percentile
calculations and store the resulting details in a table or materialized view. These could be
highly-granular percentile details, such as income percentile information for cities.

2. Use the APPROX_PERCENTILE_AGG function to aggregate the details obtained in the
previous step and store the resulting details in a table or materialized view. These could be
details of lower granularity, such as income percentile information for states.

3. Use the TO_APPROX_PERCENTILE function to convert the stored detail values to percentile
values. You can use the TO_APPROX_PERCENTILE function to query detail values created by
the APPROX_PERCENTILE_DETAIL function or the APPROX_PERCENTILE_AGG function.

DETERMINISTIC

This clause lets you control the type of algorithm used to calculate the approximate percentile
values.

• If you specify DETERMINISTIC, then this function calculates deterministic approximate
percentile information. In this case, expr must evaluate to a numeric value, or to a value that
can be implicitly converted to a numeric value.

• If you omit DETERMINSTIC, then this function calculates nondeterministic approximate
percentile information. In this case, expr must evaluate to a numeric or datetime value, or to
a value that can be implicitly converted to a numeric or datetime value.

See Also

• APPROX_PERCENTILE_AGG

• TO_APPROX_PERCENTILE

Examples

The examples in this section demonstrate how to use the APPROX_PERCENTILE_DETAIL,
APPROX_PERCENTILE_AGG, and TO_APPROX_PERCENTILE functions together to perform resource-
intensive approximate percentile calculations once, store the resulting details, and then
perform efficient aggregations and queries on those details.

APPROX_PERCENTILE_DETAIL: Example

Chapter 7
APPROX_PERCENTILE_DETAIL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 521

The following statement queries the tables sh.customers and sh.sales for the monetary amounts for
products sold to each customer. The APPROX_PERCENTILE_DETAIL function returns the
information in a detail, called city_detail, for each city in which customers reside. The returned
details are stored in a materialized view called amt_sold_by_city_mv.

CREATE MATERIALIZED VIEW amt_sold_by_city_mv
ENABLE QUERY REWRITE AS
SELECT c.country_id country,
 c.cust_state_province state,
 c.cust_city city,
 APPROX_PERCENTILE_DETAIL(s.amount_sold) city_detail
FROM customers c, sales s
WHERE c.cust_id = s.cust_id
GROUP BY c.country_id, c.cust_state_province, c.cust_city;

APPROX_PERCENTILE_AGG: Examples

The following statement uses the APPROX_PERCENTILE_AGG function to read the details stored
in amt_sold_by_city_mv and create aggregated details that contain the monetary amounts for
products sold to customers in each state. These aggregated details are stored in a
materialized view called amt_sold_by_state_mv.

CREATE MATERIALIZED VIEW amt_sold_by_state_mv AS
SELECT country,
 state,
 APPROX_PERCENTILE_AGG(city_detail) state_detail
FROM amt_sold_by_city_mv
GROUP BY country, state;

The following statement is similar to the previous statement, except it creates aggregated
details that contain the approximate monetary amounts for products sold to customers in each
country. These aggregated details are stored in a materialized view called
amt_sold_by_country_mv.

CREATE MATERIALIZED VIEW amt_sold_by_country_mv AS
 SELECT country,
 APPROX_PERCENTILE_AGG(city_detail) country_detail
 FROM amt_sold_by_city_mv
 GROUP BY country;

TO_APPROX_PERCENTILE: Examples

The following statement uses the TO_APPROX_PERCENTILE function to query the details stored in
amt_sold_by_city_mv and return approximate 25th percentile, 50th percentile, and 75th percentile
values for monetary amounts for products sold to customers in each city:

SELECT country,
 state,
 city,
 TO_APPROX_PERCENTILE(city_detail, .25, 'NUMBER') "25th Percentile",
 TO_APPROX_PERCENTILE(city_detail, .50, 'NUMBER') "50th Percentile",
 TO_APPROX_PERCENTILE(city_detail, .75, 'NUMBER') "75th Percentile"
FROM amt_sold_by_city_mv
ORDER BY country, state, city;

COUNTRY STATE CITY 25th Percentile 50th Percentile 75th Percentile
------- ------------ -------------- --------------- --------------- ---------------
 52769 Kuala Lumpur Kuala Lumpur 19.29 38.1 53.84
 52769 Penang Batu Ferringhi 21.51 42.09 57.26
 52769 Penang Georgetown 19.15 33.25 56.12
 52769 Selangor Klang 18.08 32.06 51.29

Chapter 7
APPROX_PERCENTILE_DETAIL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 521

 52769 Selangor Petaling Jaya 19.29 35.43 60.2
. . .

The following statement uses the TO_APPROX_PERCENTILE function to query the details stored in
amt_sold_by_state_mv and return approximate 25th percentile, 50th percentile, and 75th percentile
values for monetary amounts for products sold to customers in each state:

SELECT country,
 state,
 TO_APPROX_PERCENTILE(state_detail, .25, 'NUMBER') "25th Percentile",
 TO_APPROX_PERCENTILE(state_detail, .50, 'NUMBER') "50th Percentile",
 TO_APPROX_PERCENTILE(state_detail, .75, 'NUMBER') "75th Percentile"
FROM amt_sold_by_state_mv
ORDER BY country, state;

COUNTRY STATE 25th Percentile 50th Percentile 75th Percentile
------- ------------ --------------- --------------- ---------------
 52769 Kuala Lumpur 19.29 38.1 53.84
 52769 Penang 20.19 36.84 56.12
 52769 Selangor 16.97 32.41 52.69
 52770 Drenthe 16.76 31.7 53.89
 52770 Flevopolder 20.38 39.73 61.81
. . .

The following statement uses the TO_APPROX_PERCENTILE function to query the details stored in
amt_sold_by_country_mv and return approximate 25th percentile, 50th percentile, and 75th
percentile values for monetary amounts for products sold to customers in each country:

SELECT country,
 TO_APPROX_PERCENTILE(country_detail, .25, 'NUMBER') "25th Percentile",
 TO_APPROX_PERCENTILE(country_detail, .50, 'NUMBER') "50th Percentile",
 TO_APPROX_PERCENTILE(country_detail, .75, 'NUMBER') "75th Percentile"
FROM amt_sold_by_country_mv
ORDER BY country;

 COUNTRY 25th Percentile 50th Percentile 75th Percentile
--------- --------------- --------------- ---------------
 52769 19.1 35.43 52.78
 52770 19.29 38.99 59.58
 52771 11.99 44.99 561.47
 52772 18.08 33.72 54.16
 52773 15.67 29.61 50.65
. . .

APPROX_PERCENTILE_AGG takes as its input a column of details containing approximate
percentile information, and enables you to perform aggregations of that information. The
following statement demonstrates how approximate percentile details can interpreted by
APPROX_PERCENTILE_AGG to provide an input to the TO_APPROX_PERCENTILE function. Like the
previous example, this query returns approximate 25th percentile values for monetary amounts
for products sold to customers in each country. Note that the results are identical to those
returned for the 25th percentile in the previous example.

SELECT country,
 TO_APPROX_PERCENTILE(APPROX_PERCENTILE_AGG(city_detail), .25, 'NUMBER') "25th Percentile"
FROM amt_sold_by_city_mv
GROUP BY country
ORDER BY country;

 COUNTRY 25th Percentile
---------- ---------------
 52769 19.1

Chapter 7
APPROX_PERCENTILE_DETAIL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 521

 52770 19.29
 52771 11.99
 52772 18.08
 52773 15.67
. . .

Query Rewrite and Materialized Views Based on Approximate Queries: Example

In APPROX_PERCENTILE_DETAIL: Example, the ENABLE QUERY REWRITE clause is specified
when creating the materialized view amt_sold_by_city_mv. This enables queries that contain
approximation functions, such as APPROX_MEDIAN or APPROX_PERCENTILE, to be rewritten using
the materialized view.

For example, ensure that query rewrite is enabled at either the database level or for the current
session, and run the following query:

SELECT c.country_id country,
 APPROX_MEDIAN(s.amount_sold) amount_median
FROM customers c, sales s
WHERE c.cust_id = s.cust_id
GROUP BY c.country_id;

Explain the plan by querying DBMS_XPLAN:

SET LINESIZE 300
SET PAGESIZE 0
COLUMN plan_table_output FORMAT A150

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(format=>'BASIC'));

As shown in the following plan, the optimizer used the materialized view amt_sold_by_city_mv for
the query:

EXPLAINED SQL STATEMENT:

SELECT c.country_id country, APPROX_MEDIAN(s.amount_sold)
amount_median FROM customers c, sales s WHERE c.cust_id = s.cust_id
GROUP BY c.country_id

Plan hash value: 2232676046

| Id | Operation | Name |

0	SELECT STATEMENT	
1	HASH GROUP BY APPROX	
2	MAT_VIEW REWRITE ACCESS FULL	AMT_SOLD_BY_CITY_MV

APPROX_RANK
Syntax

APPROX_RANK (expr

PARTITION BY partition_by_clause ORDER BY order_by_clause DESC

)

Purpose

APPROX_RANK returns the approximate value in a group of values.

Chapter 7
APPROX_RANK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 521

This function takes an optional PARTITION BY clause followed by a mandatory ORDER BY ... DESC
clause. The PARTITION BY key must be a subset of the GROUP BY key. The ORDER BY clause
must include either APPROX_COUNT or APPROX_SUM.

Examples

The query returns the jobs that are among the top 10 total salary per department. For each job,
the total salary and ranking is also given.

SELECT job_id,
 APPROX_SUM(sal),
 APPROX_RANK(PARTITION BY department_id ORDER BY APPROX_SUM(salary) DESC)
FROM employees
GROUP BY department_id, job_id
HAVING
 APPROX_RANK(
 PARTITION BY department_id
 ORDER BY APPROX_SUM (salary)
 DESC) <= 10;

APPROX_SUM
Syntax

APPROX_SUM (
*

expr

, ’ MAX_ERROR ’

)

Purpose

APPROX_SUM returns the approximate sum of an expression. If you supply MAX_ERROR as the
second argument, then the function returns the maximum error between the actual and
approximate sum.

You must use this function with a corresponding APPROX_RANK function in the HAVING clause. If
a query uses APPROX_COUNT, APPROX_SUM, or APPROX_RANK, then the query must not use any
other aggregation functions.

Note that APPROX_SUM returns an error when the input is a negative number.

Examples

The following query returns the 10 job types within every department that have the highest
aggregate salary:

SELECT department_id, job_id,
 APPROX_SUM(salary)
FROM employees
GROUP BY department_id, job_id
HAVING
 APPROX_RANK (
 PARTITION BY department_id
 ORDER BY APPROX_SUM(salary)
 DESC) <= 10;

Chapter 7
APPROX_SUM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 521

ASCII
Syntax

ASCII (char)

Purpose

ASCII returns the decimal representation in the database character set of the first character of
char.

char can be of data type CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The value returned is of data
type NUMBER. If your database character set is 7-bit ASCII, then this function returns an ASCII
value. If your database character set is EBCDIC Code, then this function returns an EBCDIC
value. There is no corresponding EBCDIC character function.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

Data Type Comparison Rules for more information

Examples

The following example returns employees whose last names begin with the letter L, whose
ASCII equivalent is 76:

SELECT last_name
 FROM employees
 WHERE ASCII(SUBSTR(last_name, 1, 1)) = 76
 ORDER BY last_name;

LAST_NAME

Ladwig
Landry
Lee
Livingston
Lorentz

ASCIISTR
Syntax

ASCIISTR (char)

Chapter 7
ASCII

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 521

Purpose

ASCIISTR takes as its argument a string, or an expression that resolves to a string, in any
character set and returns an ASCII version of the string in the database character set. Non-
ASCII characters are converted to the form \xxxx, where xxxx represents a UTF-16 code unit.

See Also

• Oracle Database Globalization Support Guide for information on Unicode
character sets and character semantics

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of ASCIISTR

Examples

The following example returns the ASCII string equivalent of the text string "ABÄCDE":

SELECT ASCIISTR('ABÄCDE')
 FROM DUAL;

ASCIISTR('

AB\00C4CDE

ASIN
Syntax

ASIN (n)

Purpose

ASIN returns the arc sine of n. The argument n must be in the range of -1 to 1, and the function
returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the arc sine of .3:

Chapter 7
ASIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 521

SELECT ASIN(.3) "Arc_Sine"
 FROM DUAL;

 Arc_Sine

.304692654

ATAN
Syntax

ATAN (n)

Purpose

ATAN returns the arc tangent of n. The argument n can be in an unbounded range and returns a
value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also

ATAN2 for information about the ATAN2 function and Table 2-9 for more information on
implicit conversion

Examples

The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent"
 FROM DUAL;

Arc_Tangent

.291456794

ATAN2
Syntax

ATAN2 (n1 , n2)

Purpose

ATAN2 returns the arc tangent of n1 and n2. The argument n1 can be in an unbounded range and
returns a value in the range of -pi to pi, depending on the signs of n1 and n2, expressed in
radians.

Chapter 7
ATAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 521

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. If any argument is BINARY_FLOAT or
BINARY_DOUBLE, then the function returns BINARY_DOUBLE. Otherwise the function returns
NUMBER.

See Also

ATAN for information on the ATAN function and Table 2-9 for more information on
implicit conversion

Examples

The following example returns the arc tangent of .3 and .2:

SELECT ATAN2(.3, .2) "Arc_Tangent2"
 FROM DUAL;

Arc_Tangent2

 .982793723

AVG
Syntax

AVG (

DISTINCT

ALL

expr)

OVER
window_name

(analytic_clause)

See Also

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

AVG returns average value of expr.

It takes as an argument any numeric data type or any nonnumeric data type that can be
implicitly converted to a numeric data type or an interval data type.

The function returns the same data type as the numeric data type of the argument. If the input
is an interval, this returns an interval with the same units as the input.

See Also

Table 2-9 for more information on implicit conversion

Chapter 7
AVG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 521

If you specify DISTINCT, then you can specify only the query_partition_clause of the analytic_clause.
The order_by_clause and windowing_clause are not allowed.

See Also

About SQL Expressions for information on valid forms of expr and Aggregate Functions

Vector Aggregate Operations

You can use AVG on vectors to return the average on non-null inputs.

expr must evaluate to VECTOR and must not be BINARY vectors. The returned vector has the
same number of dimensions as the input, and the format is always FLOAT64. For flexible
number of dimensions, all inputs must have the same number of dimensions within each
aggregation group.

NULL vectors are ignored. They are not counted when calculating the average vector. If all
inputs within an aggregation group are NULL, the result is NULL for that group. If a certain
dimension overflows when applying arithmetic operations, an error is raised.

Rules

• DISTINCT syntax is not allowed.

• Only GROUP BY and GROUP BY ROLLUP are supported.

• Analytic functions are not supported for input arguments of type VECTOR.

See Arithmetic Operatorsof the AI Vector Search User's Guide for examples.

Aggregate Example

The following example calculates the average salary of all employees in the hr.employees table:

SELECT AVG(salary) "Average"
 FROM employees;

 Average

 6461.83178

Analytic Example

The following example calculates, for each employee in the employees table, the average salary
of the employees reporting to the same manager who were hired in the range just before
through just after the employee:

SELECT manager_id, last_name, hire_date, salary,
 AVG(salary) OVER (PARTITION BY manager_id ORDER BY hire_date
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
 FROM employees
 ORDER BY manager_id, hire_date, salary;

MANAGER_ID LAST_NAME HIRE_DATE SALARY C_MAVG
---------- ------------------------- --------- ---------- ----------
 100 De Haan 13-JAN-01 17000 14000
 100 Raphaely 07-DEC-02 11000 11966.6667
 100 Kaufling 01-MAY-03 7900 10633.3333
 100 Hartstein 17-FEB-04 13000 9633.33333

Chapter 7
AVG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 521

 100 Weiss 18-JUL-04 8000 11666.6667
 100 Russell 01-OCT-04 14000 11833.3333
 100 Partners 05-JAN-05 13500 13166.6667
 100 Errazuriz 10-MAR-05 12000 11233.3333
. . .

BFILENAME
Syntax

BFILENAME (’ directory ’ , ’ filename ’)

Purpose

BFILENAME returns a BFILE locator that is associated with a physical LOB binary file on the
server file system.

• 'directory' is a database object that serves as an alias for a full path name on the server file
system where the files are actually located.

• 'filename' is the name of the file in the server file system.

You must create the directory object and associate a BFILE value with a physical file before you
can use them as arguments to BFILENAME in a SQL or PL/SQL statement, DBMS_LOB package,
or OCI operation.

You can use this function in two ways:

• In a DML statement to initialize a BFILE column

• In a programmatic interface to access BFILE data by assigning a value to the BFILE locator

The directory argument is case sensitive. You must ensure that you specify the directory object
name exactly as it exists in the data dictionary. For example, if an "Admin" directory object was
created using mixed case and a quoted identifier in the CREATE DIRECTORY statement, then
when using the BFILENAME function you must refer to the directory object as 'Admin'. You must
specify the filename argument according to the case and punctuation conventions for your
operating system.

See Also

• Oracle Database SecureFiles and Large Objects Developer's Guide and Oracle
Call Interface Developer's Guide for more information on LOBs and for examples
of retrieving BFILE data

• CREATE DIRECTORY

Examples

The following example inserts a row into the sample table pm.print_media. The example uses the
BFILENAME function to identify a binary file on the server file system in the directory /demo/schema/
product_media. The example shows how the directory database object media_dir was created in the
pm schema.

CREATE DIRECTORY media_dir AS '/demo/schema/product_media';

Chapter 7
BFILENAME

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 521

INSERT INTO print_media (product_id, ad_id, ad_graphic)
 VALUES (3000, 31001, BFILENAME('MEDIA_DIR', 'modem_comp_ad.gif'));

BIN_TO_NUM
Syntax

BIN_TO_NUM (expr

,

)

Purpose

BIN_TO_NUM converts a bit vector to its equivalent number. Each argument to this function
represents a bit in the bit vector. This function takes as arguments any numeric data type, or
any nonnumeric data type that can be implicitly converted to NUMBER. Each expr must evaluate
to 0 or 1. This function returns Oracle NUMBER.

BIN_TO_NUM is useful in data warehousing applications for selecting groups of interest from a
materialized view using grouping sets.

See Also

• group_by_clause for information on GROUPING SETS syntax

• Table 2-9 for more information on implicit conversion

• Oracle Database Data Warehousing Guide for information on data aggregation in
general

Examples

The following example converts a binary value to a number:

SELECT BIN_TO_NUM(1,0,1,0)
 FROM DUAL;

BIN_TO_NUM(1,0,1,0)

 10

The next example converts three values into a single binary value and uses BIN_TO_NUM to
convert that binary into a number. The example uses a PL/SQL declaration to specify the
original values. These would normally be derived from actual data sources.

SELECT order_status
 FROM orders
 WHERE order_id = 2441;

ORDER_STATUS

 5
DECLARE
 warehouse NUMBER := 1;
 ground NUMBER := 1;
 insured NUMBER := 1;

Chapter 7
BIN_TO_NUM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 521

 result NUMBER;
BEGIN
 SELECT BIN_TO_NUM(warehouse, ground, insured) INTO result FROM DUAL;
 UPDATE orders SET order_status = result WHERE order_id = 2441;
END;
/
PL/SQL procedure successfully completed.

SELECT order_status
 FROM orders
 WHERE order_id = 2441;

ORDER_STATUS

 7

Refer to the examples for BITAND for information on reversing this process by extracting
multiple values from a single column value.

BITAND
Syntax

BITAND (expr1 , expr2)

Purpose

The BITAND function treats its inputs and its output as vectors of bits; the output is the bitwise
AND of the inputs.

The types of expr1 and expr2 are NUMBER, and the result is of type NUMBER. If either argument to
BITAND is NULL, the result is NULL.

The arguments must be in the range -(2(n-1)) .. ((2(n-1))-1). If an argument is out of this range,
the result is undefined.

The result is computed in several steps. First, each argument A is replaced with the value
SIGN(A)*FLOOR(ABS(A)). This conversion has the effect of truncating each argument towards
zero. Next, each argument A (which must now be an integer value) is converted to an n-bit
two's complement binary integer value. The two bit values are combined using a bitwise AND
operation. Finally, the resulting n-bit two's complement value is converted back to NUMBER.

Notes on the BITAND Function

• The current implementation of BITAND defines n = 128.

• PL/SQL supports an overload of BITAND for which the types of the inputs and of the result
are all BINARY_INTEGER and for which n = 32.

Examples

The following example performs an AND operation on the numbers 6 (binary 1,1,0) and 3
(binary 0,1,1):

SELECT BITAND(6,3)
 FROM DUAL;

BITAND(6,3)

Chapter 7
BITAND

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 521

 2

This is the same as the following example, which shows the binary values of 6 and 3. The
BITAND function operates only on the significant digits of the binary values:

SELECT BITAND(
 BIN_TO_NUM(1,1,0),
 BIN_TO_NUM(0,1,1)) "Binary"
 FROM DUAL;

 Binary

 2

Refer to the example for BIN_TO_NUM for information on encoding multiple values in a single
column value.

The following example supposes that the order_status column of the sample table oe.orders
encodes several choices as individual bits within a single numeric value. For example, an order
still in the warehouse is represented by a binary value 001 (decimal 1). An order being sent by
ground transportation is represented by a binary value 010 (decimal 2). An insured package is
represented by a binary value 100 (decimal 4). The example uses the DECODE function to
provide two values for each of the three bits in the order_status value, one value if the bit is
turned on and one if it is turned off.

SELECT order_id, customer_id, order_status,
 DECODE(BITAND(order_status, 1), 1, 'Warehouse', 'PostOffice') "Location",
 DECODE(BITAND(order_status, 2), 2, 'Ground', 'Air') "Method",
 DECODE(BITAND(order_status, 4), 4, 'Insured', 'Certified') "Receipt"
 FROM orders
 WHERE sales_rep_id = 160
 ORDER BY order_id;

 ORDER_ID CUSTOMER_ID ORDER_STATUS Location Method Receipt
---------- ----------- ------------ ---------- ------ ---------
 2416 104 6 PostOffice Ground Insured
 2419 107 3 Warehouse Ground Certified
 2420 108 2 PostOffice Ground Certified
 2423 145 3 Warehouse Ground Certified
 2441 106 5 Warehouse Air Insured
 2455 145 7 Warehouse Ground Insured

For the Location column, BITAND first compares order_status with 1 (binary 001). Only significant bit
values are compared, so any binary value with a 1 in its rightmost bit (any odd number) will
evaluate positively and return 1. Even numbers will return 0. The DECODE function compares
the value returned by BITAND with 1. If they are both 1, then the location is "Warehouse". If they
are different, then the location is "PostOffice".

The Method and Receipt columns are calculated similarly. For Method, BITAND performs the AND
operation on order_status and 2 (binary 010). For Receipt, BITAND performs the AND operation on
order_status and 4 (binary 100).

Chapter 7
BITAND

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 521

BIT_AND_AGG
Syntax

BIT_AND_AGG (

DISTINCT

ALL

UNIQUE

expr)

Purpose

BIT_AND_AGG is a bitwise aggregation function that returns the result of a bitwise AND
operation.

You can use BIT_AND_AGG as part of a GROUP BY query, window function, or as an analytical
function. The return type of BIT_AND_AGG is always a number.

Semantics

The keywords DISTINCT or UNIQUE ensure that only unique values in expr are used for
computation. UNIQUE is an Oracle-specific keyword and not an ANSI standard.

NULL values in the expr column are ignored.

Returns NULL if all rows in the group have NULL expr values.

Floating point values are truncated to the integer prior to aggregation. For instance, the value
4.64 is converted to 4, and the value 4.4 is also converted to 4.

Negative numbers are represented in two’s complement form internally prior to performing an
aggregate operation. The resultant aggregate could be a negative value.

Range of inputs supported: -2 raised to 127 to (2 raised to 127) -1

Numbers are internally converted to a 128b decimal representation prior to aggregation. The
resultant aggregate is converted back into an Oracle Number.

For a given set of values, the result of a bitwise aggregate is always deterministic and
independent of ordering.

Example 7-2 Use the BIT_AND_AGG Function

Select two numbers and their bitwise representation:

SELECT '011' num, bin_to_num(0,1,1) bits FROM dual
 UNION ALL SELECT '101' num, bin_to_num(1,0,1) bits FROM dual;

NUM BITS
--- ----------
011 3
101 5

Perform the bitwise AND operation:

SELECT bit_and_agg(bits)
 FROM (SELECT '011' num, bin_to_num(0,1,1) bits FROM dual

Chapter 7
BIT_AND_AGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 521

 UNION ALL SELECT '101' num, bin_to_num(1,0,1) bits FROM dual);

BIT_AND_AGG(BITS)

 1

Only the first bit is identical in both rows, thus the result is 001, which is the number 1.

BITMAP_BIT_POSITION
Syntax

BITMAP_BIT_POSITION (expr)

Purpose

Use BITMAP_BIT_POSITION to construct the one-to-one mapping between a number and a bit
position.

The argument expr is of type NUMBER. It is the absolute bit position in the bitmap.

BITMAP_BIT_POSITION returns a NUMBER, the relative bit position.

If expr is NULL, the function returns NULL.

If expr is not an integer, you will see the following error message:

Invalid value has been passed to a BITMAP COUNT DISTINCT related operator.

BITMAP_BUCKET_NUMBER
Syntax

BITMAP_BUCKET_NUMBER (expr)

Purpose

Use BITMAP_BUCKET_NUMBER to construct a one-to-one mapping between a number and a bit
position in a bitmap.

The argument expr is of type NUMBER. It represents the absolute bit position in the bitmap.

BITMAP_BUCKET_NUMBER returns a NUMBER. It represents the relative bit position.

If expr is NULL, the function returns NULL.

If expr is not an integer, you will see the following error message:

Invalid value has been passed to a BITMAP COUNT DISTINCT related operator.

Chapter 7
BITMAP_BIT_POSITION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 521

BITMAP_CONSTRUCT_AGG
Syntax

BITMAP_CONSTRUCT_AGG (expr)

Purpose

BITMAP_CONSTRUCT_AGG is an aggregation function that operates on bit positions and returns
the bitmap representation of the set of all input bit positions. It essentially maintains a bitmap
and sets into it all the input bit positions. It returns the representation of the bitmap.

The argument expr is of type NUMBER.

The return type is of type BLOB.

If expr is NULL, the function returns NULL.

Restrictions

• The argument must be of NUMBER type. If the input value cannot be converted to a natural
number, error ORA-62575 is raised:

62575, 00000, "Invalid value has been passed to a BITMAP COUNT DISTINCT related operator."
// *Cause: An attempt was made to pass an invalid value to a BITMAP COUNT DISTINCT operator.
// *Action: Pass only natural number values to BITMAP_CONSTRUCT_AGG.

• If the bitmap exceeds the maximum value of a BLOB, you will see error ORA-62577:

62577, 00000, "The bitmap size exceeds maximum size of its SQL data type."
// *Cause: An attempt was made to construct a bitmap larger than its maximum SQL type size.
// *Action: Break the input to BITMAP_CONSTRUCT_AGG into smaller ranges.

BITMAP_COUNT
Syntax

BITMAP_COUNT (expr)

Purpose

BITMAP_COUNT is a scalar function that returns the 1-bit count for the input bitmap.

The argument expr is of type BLOB.

It returns a NUMBER representing the count of bits set in its input.

If expr is NULL, it returns 0.

Restrictions

Chapter 7
BITMAP_CONSTRUCT_AGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 521

The argument must be of type BLOBtype. The argument is expected to be a bitmap produced
by BITMAP_CONSTRUCT_AGG or, recursively, by BITMAP_OR_AGG. Any other input results in
ORA-62578:

62578, 00000, "The input is not a valid bitmap produced by BITMAP COUNT DISTINCT related operators."
// *Cause: An attempt was made to pass a bitmap that was not produced by one of the BITMAP COUNT DISTINCT
operators.
// *Action: Only pass bitmaps constructed via BITMAP_CONSTRUCT_AGG or BITMAP_OR_AGG to BITMAP
COUNT DISTINCT related operators.

BITMAP_OR_AGG
Syntax

BITMAP_OR_AGG (expr)

Purpose

BITMAP_OR_AGG is an aggregation function that operates on bitmaps and computes the OR of
its inputs.

The argument expr must be of type BLOB.

The return type is of type BLOB. It returns the bitmap representing the OR of all the bitmaps it
has aggregated.

The output of BITMAP_OR_AGG is not human-readable. It is meant to be processed by further
aggregations via BITMAP_OR_AGG or by the scalar function BITMAP_COUNT.

If expr is NULL, the function returns NULL.

Restrictions

The argument must be of type BLOB. The argument is expected to be a bitmap produced by
BITMAP_CONSTRUCT_AGG or, recursively, by BITMAP_OR_AGG. Any other input results in
ORA-62578:

62578, 00000, "The input is not a valid bitmap produced by BITMAP COUNT DISTINCT related operators."
// *Cause: An attempt was made to pass a bitmap that was not produced by one of the BITMAP COUNT DISTINCT
operators.
// *Action: Only pass bitmaps constructed via BITMAP_CONSTRUCT_AGG or BITMAP_OR_AGG to BITMAP
COUNT DISTINCT related operators.

BIT_OR_AGG
Syntax

Chapter 7
BITMAP_OR_AGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 521

BIT_OR_AGG (

DISTINCT

ALL

UNIQUE

expr)

Purpose

BIT_OR_AGG is a bitwise aggregation function that returns the result of a bitwise OR operation.

You can use BIT_OR_AGG as part of a GROUP BY query, window function, or as an analytical
function. The return type of BIT_OR_AGG is always a number.

Semantics

The keywords DISTINCT or UNIQUE ensure that only unique values in expr are used for
computation. UNIQUE is an Oracle-specific keyword and not an ANSI standard.

NULL values in the expr column are ignored.

Returns NULL if all rows in the group have NULL expr values.

Floating point values are truncated to the integer prior to aggregation. For instance, the value
4.64 is converted to 4 and the value 4.4 is also converted to 4.

Negative numbers are represented in two’s complement form internally prior to performing an
aggregate operation. The resultant aggregate could be a negative value.

Range of inputs supported: -2 raised to 127 to (2 raised to 127) -1

Numbers are internally converted to a 128b decimal representation prior to aggregation. The
resultant aggregate is converted back into an Oracle Number.

For a given set of values, the result of a bitwise aggregate is always deterministic and
independent of ordering.

BIT_XOR_AGG
Syntax

BIT_XOR_AGG (

DISTINCT

ALL

UNIQUE

expr)

Purpose

BIT_XOR_AGG is a bitwise aggregation function that returns the result of a bitwise XOR
operation.

You can use BIT_XOR_AGG as part of a GROUP BY query, window function, or as an analytical
function. The return type of BIT_XOR_AGG is always a number.

Chapter 7
BIT_XOR_AGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 521

Semantics

The keywords DISTINCT or UNIQUE ensure that only unique values in expr are used for
computation. BIT_XOR_AGG could potentially return a different value when DISTINCT is present.
UNIQUE is an Oracle-specific keyword and not an ANSI standard.

NULL values in the expr column are ignored.

Returns NULL if all rows in the group have NULL expr values.

Floating point values are truncated to the integer prior to aggregation. For instance, the value
4.64 is converted to 4 and the value 4.4 is also converted to 4.

Negative numbers are represented in two’s complement form internally prior to performing an
aggregate operation. The resultant aggregate could be a negative value.

Range of inputs supported: -2 raised to 127 to (2 raised to 127) -1

Numbers are internally converted to a 128b decimal representation prior to aggregation. The
resultant aggregate is converted back into an Oracle Number.

For a given set of values, the result of a bitwise aggregate is always deterministic and
independent of ordering.

BOOLEAN_AND_AGG
Syntax

BOOLEAN_AND_AGG (

DISTINCT

ALL

boolean_expr)

OVER
window_name

(analytic_clause)

Purpose

BOOLEAN_AND_AGG returns 'TRUE' if the boolean_expr evaluates to true for every row that
qualifies. Otherwise it returns 'FALSE'. You can use it as an aggregate or analytic function.

Examples

SELECT BOOLEAN_AND_AGG(c2)
 FROM t;

SELECT BOOLEAN_AND_AGG(c2)
 FROM t
 WHERE c1 = 0;

SELECT BOOLEAN_AND_AGG(c2)
 FROM t
 WHERE c2 IS FALSE;

SELECT BOOLEAN_AND_AGG(c2)
 FROM t
 WHERE c2 IS FALSE OR c2 IS NULL;

SELECT BOOLEAN_AND_AGG(c2)
 FROM t
 WHERE c2 IS NOT TRUE OR c2 IS NULL;

Chapter 7
BOOLEAN_AND_AGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 521

SELECT BOOLEAN_AND_AGG(c2)
 FROM t
 WHERE c2 IS NOT FALSE OR c2 IS NULL;

SELECT BOOLEAN_AND_AGG(c2 OR c2 OR (c2))
 FROM t
 WHERE c2 IS NOT FALSE OR c2 IS NULL;

BOOLEAN_OR_AGG
Syntax

BOOLEAN_OR_AGG (

DISTINCT

ALL

boolean_expr)

OVER
window_name

(analytic_clause)

Purpose

BOOLEAN_OR_AGG returns 'TRUE' if the boolean_expr evaluates to true for at least one row that
qualifies. Otherwise it returns 'FALSE'. You can use it as an aggregate or analytic function.

Examples

SELECT BOOLEAN_OR_AGG(c2)
 FROM t;

SELECT BOOLEAN_OR_AGG(c2)
 FROM t
 WHERE c1 = 0;

SELECT BOOLEAN_OR_AGG(c2)
 FROM t
 WHERE c2 IS TRUE;

SELECT BOOLEAN_OR_AGG(c2)
 FROM t
 WHERE c2 IS TRUE OR c2 IS NULL;

SELECT BOOLEAN_OR_AGG(c2)
 FROM t
 WHERE c2 IS NOT FALSE OR c2 IS NULL;

SELECT BOOLEAN_OR_AGG(c2)
 FROM t
 WHERE c2 IS NOT TRUE OR c2 IS NULL;

SELECT BOOLEAN_OR_AGG(c2 OR c2)
 FROM t
 WHERE c2 IS NOT TRUE OR c2 IS NULL;

Chapter 7
BOOLEAN_OR_AGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 521

CARDINALITY
Syntax

CARDINALITY (nested_table)

Purpose

CARDINALITY returns the number of elements in a nested table. The return type is NUMBER. If
the nested table is empty, or is a null collection, then CARDINALITY returns NULL.

Examples

The following example shows the number of elements in the nested table column
ad_textdocs_ntab of the sample table pm.print_media:

SELECT product_id, CARDINALITY(ad_textdocs_ntab) cardinality
 FROM print_media
 ORDER BY product_id;

PRODUCT_ID CARDINALITY
---------- -----------
 2056 3
 2268 3
 3060 3
 3106 3

CAST
Syntax

CAST (
expr

MULTISET (subquery)
AS

DOMAIN

type_name

domain_validate_clause

DEFAULT return_value ON CONVERSION ERROR , fmt

, ’ nlsparam ’

)

domain_validate_clause::=

VALIDATE

NOVALIDATE

Purpose

CAST lets you convert built-in data types or collection-typed values of one type into another
built-in data type or collection type. You can cast an unnamed operand (such as a date or the

Chapter 7
CARDINALITY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 521

result set of a subquery) or a named collection (such as a varray or a nested table) into a type-
compatible data type or named collection. The type_name must be the name of a built-in data
type, collection type, or domain name and the operand must be a built-in data type or must
evaluate to a collection value.

For the operand, expr can be either a built-in data type, a collection type, or an instance of an
ANYDATA type. If expr is an instance of an ANYDATA type, then CAST tries to extract the value of
the ANYDATA instance and return it if it matches the cast target type, otherwise, null will be
returned. MULTISET informs Oracle Database to take the result set of the subquery and return a
collection value. Table 7-1 shows which built-in data types can be cast into which other built-in
data types. (CAST does not support LONG, LONG RAW, or the Oracle-supplied types.)

CAST does not directly support any of the LOB data types. When you use CAST to convert a
CLOB value into a character data type or a BLOB value into the RAW data type, the database
implicitly converts the LOB value to character or raw data and then explicitly casts the resulting
value into the target data type. If the resulting value is larger than the target type, then the
database returns an error.

When you use CAST ... MULTISET to get a collection value, each select list item in the query
passed to the CAST function is converted to the corresponding attribute type of the target
collection element type.

The cells with an 'X' indicate the possible conversions from source to destination data type
using CAST.

Table 7-1 Casting Built-In Data Types

Destination
Data Type

from
BINARY_F
LOAT,
BINARY_D
OUBLE

from
CHAR,
VARCHAR
2

from
NUMBER/
INTEGER

from
DATETIME
/
INTERVAL
(Note 1)

from RAW from
ROWID,
UROWID
(Note 2)

from
NCHAR,
NVARCHA
R2

from
BOOLEAN

to
BINARY_FLO
AT,
BINARY_DO
UBLE

X (Note 3) X (Note 3) X (Note 3) -- -- -- X (Note 3) X(Note 4)

to CHAR,
VARCHAR2

X X X X X X X X (Note 5)

to NUMBER/
INTEGER

X (Note 3) X (Note 3) X (Note 3) -- -- -- X (Note 3) X(Note 4)

to DATETIME/
INTERVAL

-- X (Note 3) -- X (Note 3) -- -- -- --

to RAW -- X -- -- X -- X --

to ROWID,
UROWID

-- X -- -- -- X -- --

to NCHAR,
NVARCHAR2

X -- X X X X X X(Note 5)

to BOOLEAN X(Note 4) X(Note 6) x (Note 4) -- -- -- X(Note 6) X

Note 1: Datetime/interval includes DATE, TIMESTAMP, TIMESTAMP WITH TIMEZONE, TIMESTAMP
WITH LOCAL TIME ZONE, INTERVAL DAY TO SECOND, and INTERVAL YEAR TO MONTH.

Note 2: You cannot cast a UROWID to a ROWID if the UROWID contains the value of a ROWID of
an index-organized table.

Chapter 7
CAST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 521

Note 3: You can specify the DEFAULT return_value ON CONVERSION ERROR clause for this type of
conversion. You can specify the fmt and nlsparam clauses for this type of conversion with the
following exceptions: you cannot specify fmt when converting to INTERVAL DAY TO SECOND, and
you cannot specify fmt or nlsparam when converting to INTERVAL YEAR TO MONTH.

Note 4: Casting Between Boolean and Numeric

When casting BOOLEAN to numeric :

• If the boolean value is true, then resulting value is 1.

• If the boolean value is false, then resulting value is 0.

When casting numeric to BOOLEAN :

• If the numeric value is non-zero (e.g., 1, 2, -3, 1.2), then resulting value is true.

• If the numeric value is zero, then resulting value is false.

Note 5: Casting Between Boolean and Char(n), NCHAR(n)

When casting BOOLEAN to VARCHAR(n), NVARCHAR(n)

• If the boolean value is true and n is not less than 4, then resulting value is true.

• If the boolean value is false and n is not less than 5, then resulting value is false.

• Otherwise, a data exception error is raised.

Note 6: Casting Character Strings to Boolean

When casting a character string to boolean, you must trim both leading and trailing spaces of
the character string first. If the resulting character string is one of the accepted literals used to
determine a valid boolean value, then the result is that valid boolean value.

If you want to cast a named collection type into another named collection type, then the
elements of both collections must be of the same type.

See Also

• Boolean Data Type

• Implicit Data Conversion for information on how Oracle Database implicitly
converts collection type data into character data and Security Considerations for
Data Conversion

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of CAST
when it is a character value

MULTISET

If the result set of subquery can evaluate to multiple rows, then you must specify the MULTISET
keyword. The rows resulting from the subquery form the elements of the collection value into
which they are cast. Without the MULTISET keyword, the subquery is treated as a scalar
subquery.

Restriction on MULTISET

If you specify the MULTISET keyword, then you cannot specify the DEFAULT return_value ON
CONVERSION ERROR, fmt, or nlsparam clauses.

Chapter 7
CAST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 521

DOMAIN

The DOMAIN clause specifies that type_name is a domain. type_name must be the name of a
domain that the user has execute privileges on.

domain_validate_clause

This clause is only valid when casting to domain types. It controls whether domain constraints
are applied when converting expr to type_name. If type_name is a domain with constraints, and
domain_validate_clause is not specified, enabled constraints will be applied to expr. Any disabled
constraints are ignored.

VALIDATE

All the domain constraints are applied to expr, regardless of their state.

NOVALIDATE

None of the domain constraints are applied to expr, regardless of their state.

DEFAULT return_value ON CONVERSION ERROR

This clause allows you to specify the value returned by this function if an error occurs while
converting expr to type_name. This clause has no effect if an error occurs while evaluating expr.

This clause is valid if expr evaluates to a character string of type CHAR, VARCHAR2, NCHAR, or
NVARCHAR2, and type_name is BINARY_DOUBLE, BINARY_FLOAT, DATE, INTERVAL DAY TO SECOND,
INTERVAL YEAR TO MONTH, NUMBER, TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP
WITH LOCAL TIME ZONE.

The return_value can be a string literal, null, constant expression, or a bind variable, and must
evaluate to null or a character string of type CHAR, VARCHAR2, NCHAR, or NVARCHAR2. If
return_value cannot be converted to type_name, then the function returns an error.

fmt and nlsparam

The fmt argument lets you specify a format model and the nlsparam argument lets you specify
NLS parameters. If you specify these arguments, then they are applied when converting expr
and return_value, if specified, to type_name.

You can specify fmt and nlsparam if type_name is one of the following data types:

• BINARY_DOUBLE

If you specify BINARY_DOUBLE, then the optional fmt and nlsparam arguments serve the same
purpose as for the TO_BINARY_DOUBLE function. Refer to TO_BINARY_DOUBLE for more
information.

• BINARY_FLOAT

If you specify BINARY_FLOAT, then the optional fmt and nlsparam arguments serve the same
purpose as for the TO_BINARY_FLOAT function. Refer to TO_BINARY_FLOAT for more
information.

• DATE

If you specify DATE, then the optional fmt and nlsparam arguments serve the same purpose
as for the TO_DATE function. Refer to TO_DATE for more information.

• NUMBER

If you specify NUMBER, then the optional fmt and nlsparam arguments serve the same
purpose as for the TO_NUMBER function. Refer to TO_NUMBER for more information.

Chapter 7
CAST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 521

• TIMESTAMP

If you specify TIMESTAMP, then the optional fmt and nlsparam arguments serve the same
purpose as for the TO_TIMESTAMP function. If you omit fmt, then expr must be in the default
format of the TIMESTAMP data type, which is determined explicitly by the
NLS_TIMESTAMP_FORMAT parameter or implicitly by the NLS_TERRITORY parameter. Refer to
TO_TIMESTAMP for more information.

• TIMESTAMP WITH TIME ZONE

If you specify TIMESTAMP WITH TIME ZONE, then the optional fmt and nlsparam arguments
serve the same purpose as for the TO_TIMESTAMP_TZ function. If you omit fmt, then expr
must be in the default format of the TIMESTAMP WITH TIME ZONE data type, which is
determined explicitly by the NLS_TIMESTAMP_TZ_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. Refer to TO_TIMESTAMP_TZ for more information.

• TIMESTAMP WITH LOCAL TIME ZONE

If you specify TIMESTAMP WITH LOCAL TIME ZONE then the optional fmt and nlsparam
arguments serve the same purpose as for the TO_TIMESTAMP function. If you omit fmt, then
expr must be in the default format of the TIMESTAMP data type, , which is determined
explicitly by the NLS_TIMESTAMP_FORMAT parameter or implicitly by the NLS_TERRITORY
parameter. Refer to TO_TIMESTAMP for more information.

Built-In Data Type Examples

The following examples use the CAST function with scalar data types. The first example
converts text to a timestamp value by applying the format model provided in the session
parameter NLS_TIMESTAMP_FORMAT. If you want to avoid dependency on this NLS parameter,
then you can use the TO_DATE as shown in the second example.

SELECT CAST('22-OCT-1997'
 AS TIMESTAMP WITH LOCAL TIME ZONE)
 FROM DUAL;

SELECT CAST(TO_DATE('22-Oct-1997', 'DD-Mon-YYYY')
 AS TIMESTAMP WITH LOCAL TIME ZONE)
 FROM DUAL;

In the preceding example, TO_DATE converts from text to DATE, and CAST converts from DATE to
TIMESTAMP WITH LOCAL TIME ZONE, interpreting the date in the session time zone
(SESSIONTIMEZONE).

SELECT product_id, CAST(ad_sourcetext AS VARCHAR2(30)) text
 FROM print_media
 ORDER BY product_id;

The following examples return a default value if an error occurs while converting the specified
value to the specified data type. In these examples, the conversions occurs without error.

SELECT CAST(200
 AS NUMBER
 DEFAULT 0 ON CONVERSION ERROR)
 FROM DUAL;

SELECT CAST('January 15, 1989, 11:00 A.M.'
 AS DATE
 DEFAULT NULL ON CONVERSION ERROR,
 'Month dd, YYYY, HH:MI A.M.')
 FROM DUAL;

Chapter 7
CAST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 521

SELECT CAST('1999-12-01 11:00:00 -8:00'
 AS TIMESTAMP WITH TIME ZONE
 DEFAULT '2000-01-01 01:00:00 -8:00' ON CONVERSION ERROR,
 'YYYY-MM-DD HH:MI:SS TZH:TZM',
 'NLS_DATE_LANGUAGE = American')
 FROM DUAL;

In the following example, an error occurs while converting 'N/A' to a NUMBER value. Therefore,
the CAST function returns the default value of 0.

SELECT CAST('N/A'
 AS NUMBER
 DEFAULT '0' ON CONVERSION ERROR)
 FROM DUAL;

The following example converts data types VARCHAR2, NUMBER as BOOLEAN:

SELECT
 CAST ('yes' AS BOOLEAN),
 CAST (true AS NUMBER),
 CAST (false AS VARCHAR2(10)) ;

CAST('YES'ASBOOLEAN) CAST(TRUEASNUMBER) CAST(FALSE
-------------------- ------------------ ----------
 TRUE 1 FALSE

Collection Examples

The CAST examples that follow build on the cust_address_typ found in the sample order entry
schema, oe.

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;

CREATE TYPE address_array_t AS VARRAY(3) OF cust_address_typ;

CREATE TABLE cust_address (
 custno NUMBER,
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));

CREATE TABLE cust_short (custno NUMBER, name VARCHAR2(31));

CREATE TABLE states (state_id NUMBER, addresses address_array_t);

This example casts a subquery:

SELECT s.custno, s.name,
 CAST(MULTISET(SELECT ca.street_address,
 ca.postal_code,
 ca.city,
 ca.state_province,
 ca.country_id
 FROM cust_address ca
 WHERE s.custno = ca.custno)
 AS address_book_t)
 FROM cust_short s
 ORDER BY s.custno;

Chapter 7
CAST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 521

CAST converts a varray type column into a nested table:

SELECT CAST(s.addresses AS address_book_t)
 FROM states s
 WHERE s.state_id = 111;

The following objects create the basis of the example that follows:

CREATE TABLE projects
 (employee_id NUMBER, project_name VARCHAR2(10));

CREATE TABLE emps_short
 (employee_id NUMBER, last_name VARCHAR2(10));

CREATE TYPE project_table_typ AS TABLE OF VARCHAR2(10);

The following example of a MULTISET expression uses these objects:

SELECT e.last_name,
 CAST(MULTISET(SELECT p.project_name
 FROM projects p
 WHERE p.employee_id = e.employee_id
 ORDER BY p.project_name)
 AS project_table_typ)
 FROM emps_short e
 ORDER BY e.last_name;

The following example casts the string 'yes' to a boolean value, the boolean value true to a
NUMBER and the boolean value false to VARCHAR2(10):

SELECT
 CAST ('yes' AS BOOLEAN),
 CAST (true AS NUMBER),
 CAST (false AS VARCHAR2(10));

 CAST('YES'ASBOOLEAN) CAST(TRUEASNUMBER) CAST(FALSE
 -------------------- ------------------ ----------
 TRUE 1 FALSE

Domain Examples

The following example creates the domain DAY_OF_WEEK with a disabled check constraint. The
first query omits the domain_validate_clause, so uses the constraint state to determine whether to
verify the value. As this is disabled, the database does not check the value.

The second query uses the VALIDATE clause. This applies the constraint to "N/A", even though
it's disabled. The value "N/A" is not in the list permitted by the constraints, so CAST raises an
exception.

CREATE DOMAIN day_of_week AS VARCHAR2(3 CHAR)
 CONSTRAINT CHECK (day_of_week IN('MON','TUE','WED','THU','FRI','SAT','SUN'))
 DISABLE;

SELECT CAST ('N/A' AS day_of_week) use_constraint_state;

USE_CONSTRAINT_STATE

Chapter 7
CAST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 521

N/A

SELECT CAST ('N/A' AS day_of_week VALIDATE) apply_constraints;

ORA-11513: CAST AS DOMAIN has failed due to domain constraints.

The following example creates the domain DAY_OF_WEEK with an enabled check constraint.
The first query omits the domain_validate_clause, so uses the constraint state to determine whether
to verify the value. As this is enabled, the database applies the constraint to "N/A". This is not in
the list of permitted values so CAST raises an error.

The second query uses the NOVALIDATE clause. This ignores the constraint even though it is
enabled and the statement completes without error.

CREATE DOMAIN day_of_week AS VARCHAR2(3 CHAR)
 CONSTRAINT CHECK (day_of_week IN('MON','TUE','WED','THU','FRI','SAT','SUN'))
 ENABLE;

SELECT CAST ('N/A' AS day_of_week) use_constraint_state;

ORA-11513: CAST AS DOMAIN has failed due to domain constraints.

SELECT CAST ('N/A' AS DOMAIN day_of_week NOVALIDATE) ignore_constraints;

IGNORE_CONSTRAINTS

N/A

CEIL (datetime)
Syntax

CEIL (datetime

, fmt

)

Purpose

CEIL(datetime) returns the date or the timestamp rounded up to the unit specified by the second
argument fmt, the format model. If the input value is already truncated to the specified unit, then
the return value is the same as the input. That is, if datetime = TRUNC(datetime, fmt), then
CEIL(datetime, fmt) = datetime. For example, CEIL(DATE '2023-02-01', 'MONTH') returns February 1
2023.

This function is not sensitive to the NLS_CALENDAR session parameter. It operates according to
the rules of the Gregorian calendar. The value returned is always of data type DATE, even if you
specify a different datetime data type for the argument. If you do not specify the second
argument, the default format model 'DD' is used.

Chapter 7
CEIL (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 521

See Also

Refer to CEIL, FLOOR, ROUND, and TRUNC Date Functions for the permitted format
models to use in fmt.

Examples

For these examples NLS_DATE_FORMAT is set:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';

SELECT CEIL(TO_DATE ('28-FEB-2023','DD-MON-YYYY'), 'MM') AS month_ceiling;

MONTH_CEILING

01-MAR-2023 00:00:00

SELECT CEIL(TO_TIMESTAMP ('28-FEB-2023 14:10:10','DD-MON-YYYY HH24:MI:SS'),'HH24') AS hour_ceiling;

HOUR_CEILING

28-FEB-2023 15:00:00

CEIL (interval)
Syntax

CEIL (interval

, fmt

)

Purpose

CEIL(interval) returns the interval rounded up to the unit specified by the second argument fmt,
the format model. If the first argument is truncated to the units of fmt, the output equals the
input. For example, CEIL(INTERVAL '+123-0' YEAR(3) TO MONTH) returns 123 years and no months
(+123-00).

The result of CEIL(interval) is never smaller than interval. The result precision for year and day is
the input precision for year plus one and day plus one, since CEIL(interval) can have overflow. If
an interval already has the maximum precision for year and day, the statement compiles but
errors at runtime.

For INTERVAL YEAR TO MONTH, fmt can only be year. The default fmt is year.

For INTERVAL DAY TO SECOND, fmt can be day, hour, and minute. The default fmt is day. Note that
fmt does not support second.

CEIL(interval) supports the format models of ROUND and TRUNC.

Chapter 7
CEIL (interval)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 521

See Also

Refer to CEIL, FLOOR, ROUND, and TRUNC Date Functions for the permitted format
models to use in fmt.

Examples

SELECT CEIL(INTERVAL '+123-5' YEAR(3) TO MONTH) AS year_ceil;

YEAR_CEIL

+124-00

SELECT CEIL(INTERVAL '+99-11' YEAR(2) TO MONTH, 'YEAR');

YEAR_CEIL

+100-00

SELECT CEIL(INTERVAL '+999999999-11' YEAR(9) TO MONTH, 'YEAR') AS year_ceil;

ORA-01873: the leading precision of the interval is too small

SELECT CEIL(INTERVAL '+4 12:42:10.222' DAY(2) TO SECOND(3), 'DD') AS day_ceil;

DAY_CEIL

+05 00:00:00.000000

CEIL (number)
Syntax

CEIL (n)

Purpose

CEIL returns the smallest integer that is greater than or equal to n. The number n can always be
written as the difference of an integer k and a positive fraction f such that 0 <= f < 1 and n = k - f.
The value of CEIL is the integer k. Thus, the value of CEIL is n itself if and only if n is precisely an
integer.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion and FLOOR (number)

Chapter 7
CEIL (number)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 521

Examples

The following example returns the smallest integer greater than or equal to the order total of a
specified order:

SELECT order_total, CEIL(order_total)
 FROM orders
 WHERE order_id = 2434;

ORDER_TOTAL CEIL(ORDER_TOTAL)
----------- -----------------
 268651.8 268652

CHARTOROWID
Syntax

CHARTOROWID (char)

Purpose

CHARTOROWID converts a value from CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type to
ROWID data type.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

Data Type Comparison Rules for more information.

Examples

The following example converts a character rowid representation to a rowid. (The actual rowid
is different for each database instance.)

SELECT last_name
 FROM employees
 WHERE ROWID = CHARTOROWID('AAAFd1AAFAAAABSAA/');

LAST_NAME

Greene

CHECKSUM
Syntax

CHECKSUM (

DISTINCT

ALL

expr)

OVER
window_name

(analytic_clause)

Chapter 7
CHARTOROWID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 521

Purpose

Use CHECKSUM to detect changes in a table. The order of the rows in the table does not affect
the result. You can use CHECKSUM with DISTINCT, as part of a GROUP BY query, as a window
function, or an analytical function.

Semantics

ALL: Applies the aggregate function to all values. ALL is the default option.

DISTINCT or UNIQUE: Returns the checksum of unique values. UNIQUE is an Oracle-specific
keyword and not an ANSI standard.

expr: Can be a column, constant, bind variable, or an expression involving them. All data types
except ADT and JSON are supported.

The return data type is an Oracle number (converted from an (8-byte) signed long long)
regardless of the data type of expr.

NULL values in expr column are ignored.

It returns NULL if expr is NULL.

The output of the CHECKSUM function is deterministic and independent of the ordering of the
input rows.

CHR
Syntax

CHR (n

USING NCHAR_CS

)

Purpose

CHR returns the character having the binary equivalent to n as a VARCHAR2 value in either the
database character set or, if you specify USING NCHAR_CS, the national character set.

For single-byte character sets, if n > 256, then Oracle Database returns the binary equivalent of
n mod 256. For multibyte character sets, n must resolve to one entire code point. Invalid code
points are not validated, and the result of specifying invalid code points is indeterminate.

This function takes as an argument a NUMBER value, or any value that can be implicitly
converted to NUMBER, and returns a character.

Note

Use of the CHR function (either with or without the optional USING NCHAR_CS clause)
results in code that is not portable between ASCII- and EBCDIC-based machine
architectures.

Chapter 7
CHR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 521

See Also

• NCHR and Table 2-9 for more information on implicit conversion

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of CHR

Examples

The following example is run on an ASCII-based machine with the database character set
defined as WE8ISO8859P1:

SELECT CHR(67)||CHR(65)||CHR(84) "Dog"
 FROM DUAL;

Dog

CAT

To produce the same results on an EBCDIC-based machine with the WE8EBCDIC1047
character set, the preceding example would have to be modified as follows:

SELECT CHR(195)||CHR(193)||CHR(227) "Dog"
 FROM DUAL;

Dog

CAT

For multibyte character sets, this sort of concatenation gives different results. For example,
given a multibyte character whose hexadecimal value is a1a2 (a1 representing the first byte and
a2 the second byte), you must specify for n the decimal equivalent of 'a1a2', or 41378:

SELECT CHR(41378)
 FROM DUAL;

You cannot specify the decimal equivalent of a1 concatenated with the decimal equivalent of
a2, as in the following example:

SELECT CHR(161)||CHR(162)
 FROM DUAL;

However, you can concatenate whole multibyte code points, as in the following example, which
concatenates the multibyte characters whose hexadecimal values are a1a2 and a1a3:

SELECT CHR(41378)||CHR(41379)
 FROM DUAL;

The following example assumes that the national character set is UTF16:

SELECT CHR (196 USING NCHAR_CS)
 FROM DUAL;

CH
--
Ä

Chapter 7
CHR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 521

CLUSTER_DETAILS
Syntax

cluster_details::=

CLUSTER_DETAILS (

schema .

model

, cluster_id

, topN

DESC

ASC

ABS

mining_attribute_clause)

Analytic Syntax

cluster_details_analytic::=

CLUSTER_DETAILS (INTO n

, cluster_id

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER

window_name

(

window_name

mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

Chapter 7
CLUSTER_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 521

See Also

Analytic Functions for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

CLUSTER_DETAILS returns cluster details for each row in the selection. The return value is an
XML string that describes the attributes of the highest probability cluster or the specified
cluster_id.

topN

If you specify a value for topN, the function returns the N attributes that most influence the
cluster assignment (the score). If you do not specify topN, the function returns the 5 most
influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses its positive
or negative impact on cluster assignment. A positive weight indicates an increased likelihood of
assignment. A negative weight indicates a decreased likelihood of assignment.

By default, CLUSTER_DETAILS returns the attributes with the highest positive weights (DESC). If
you specify ASC, the attributes with the highest negative weights are returned. If you specify
ABS, the attributes with the greatest weights, whether negative or positive, are returned. The
results are ordered by absolute value from highest to lowest. Attributes with a zero weight are
not included in the output.

Syntax Choice

CLUSTER_DETAILS can score the data in one of two ways: It can apply a mining model object to
the data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined model.
Include INTO n, where n is the number of clusters to compute, and mining_analytic_clause,
which specifies if the data should be partitioned for multiple model builds. The
mining_analytic_clause supports a query_partition_clause and an order_by_clause. (See
analytic_clause::=.)

The syntax of the CLUSTER_DETAILS function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See mining_attribute_clause::=.)

Chapter 7
CLUSTER_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 521

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about clustering.

Note

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix A
in Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the attributes that have the greatest impact (more that 20% probability) on
cluster assignment for customer ID 100955. The query invokes the CLUSTER_DETAILS and
CLUSTER_SET functions, which apply the clustering model em_sh_clus_sample.

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- ---
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="-.003"rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

Analytic Example

This example divides the customer database into four segments based on common
characteristics. The clustering functions compute the clusters and return the score without a
predefined clustering model.

SELECT * FROM (
 SELECT cust_id,
 CLUSTER_ID(INTO 4 USING *) OVER () cls,
 CLUSTER_DETAILS(INTO 4 USING *) OVER () cls_details
 FROM mining_data_apply_v)
WHERE cust_id <= 100003

Chapter 7
CLUSTER_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 521

ORDER BY 1;

CUST_ID CLS CLS_DETAILS
------- --- ---
 100001 5 <Details algorithm="K-Means Clustering" cluster="5">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".349" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="0" weight=".33" rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="G: 130\,000 - 149\,999" weight=".291"
 rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".268" rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".179" rank="5"/>
 </Details>

 100002 6 <Details algorithm="K-Means Clustering" cluster="6">
 <Attribute name="CUST_GENDER" actualValue="F" weight=".945" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".856" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".468" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".012" rank="4"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above" weight=".009"
 rank="5"/>
 </Details>

 100003 7 <Details algorithm="K-Means Clustering" cluster="7">
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".862" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".423" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="0" weight=".113" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".007" rank="4"/>
 <Attribute name="CUST_ID" actualValue="100003" weight=".006" rank="5"/>
 </Details>

CLUSTER_DISTANCE
Syntax

cluster_distance::=

CLUSTER_DISTANCE (

schema .

model

, cluster_id

mining_attribute_clause)

Analytic Syntax

cluster_distance_analytic::=

CLUSTER_DISTANCE (INTO n

, cluster_id

mining_attribute_clause)

OVER

window_name

(

window_name

mining_analytic_clause)

Chapter 7
CLUSTER_DISTANCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 521

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

Analytic Functions for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

CLUSTER_DISTANCE returns a cluster distance for each row in the selection. The cluster
distance is the distance between the row and the centroid of the highest probability cluster or
the specified cluster_id. The distance is returned as BINARY_DOUBLE.

Syntax Choice

CLUSTER_DISTANCE can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined model.
Include INTO n, where n is the number of clusters to compute, and mining_analytic_clause,
which specifies if the data should be partitioned for multiple model builds. The
mining_analytic_clause supports a query_partition_clause and an order_by_clause. (See
analytic_clause::=.)

The syntax of the CLUSTER_DISTANCE function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, this data is also used for building the transient

Chapter 7
CLUSTER_DISTANCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 521

models. The mining_attribute_clause behaves as described for the PREDICTION function. (See
mining_attribute_clause::=.)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about clustering.

Note

The following example is excerpted from the Oracle Machine Learning for SQL sample
programs. For more information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example finds the 10 rows that are most anomalous as measured by their distance from
their nearest cluster centroid.

SELECT cust_id
 FROM (
 SELECT cust_id,
 rank() over
 (order by CLUSTER_DISTANCE(km_sh_clus_sample USING *) desc) rnk
 FROM mining_data_apply_v)
 WHERE rnk <= 11
 ORDER BY rnk;

 CUST_ID

 100579
 100050
 100329
 100962
 101251
 100179
 100382
 100713
 100629
 100787
 101478

CLUSTER_ID
Syntax

cluster_id::=

CLUSTER_ID (

schema .

model mining_attribute_clause)

Chapter 7
CLUSTER_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 521

Analytic Syntax

cluster_id_analytic::=

CLUSTER_ID (INTO n mining_attribute_clause) OVER

window_name

(

window_name

mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

Analytic Functions for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

CLUSTER_ID returns the identifier of the highest probability cluster for each row in the selection.
The cluster identifier is returned as an Oracle NUMBER.

Syntax Choice

CLUSTER_ID can score the data in one of two ways: It can apply a mining model object to the
data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined model.
Include INTO n, where n is the number of clusters to compute, and mining_analytic_clause,
which specifies if the data should be partitioned for multiple model builds. The

Chapter 7
CLUSTER_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 521

mining_analytic_clause supports a query_partition_clause and an order_by_clause. (See
analytic_clause::=.)

The syntax of the CLUSTER_ID function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See mining_attribute_clause::=.)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about clustering.

Note

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix A
in Oracle Machine Learning for SQL User’s Guide.

Example

The following example lists the clusters into which the customers in mining_data_apply_v have
been grouped.

SELECT CLUSTER_ID(km_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
 GROUP BY CLUSTER_ID(km_sh_clus_sample USING *)
 ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 2 580
 10 216
 6 186
 8 115
 19 110
 12 101
 18 81
 16 39
 17 38
 14 34

Analytic Example

This example divides the customer database into four segments based on common
characteristics. The clustering functions compute the clusters and return the score without a
predefined clustering model.

SELECT * FROM (
 SELECT cust_id,

Chapter 7
CLUSTER_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 521

 CLUSTER_ID(INTO 4 USING *) OVER () cls,
 CLUSTER_DETAILS(INTO 4 USING *) OVER () cls_details
 FROM mining_data_apply_v)
WHERE cust_id <= 100003
ORDER BY 1;

CUST_ID CLS CLS_DETAILS
------- --- ---
 100001 5 <Details algorithm="K-Means Clustering" cluster="5">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".349" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="0" weight=".33" rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="G: 130\,000 - 149\,999"
 weight=".291" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".268" rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".179" rank="5"/>
 </Details>

 100002 6 <Details algorithm="K-Means Clustering" cluster="6">
 <Attribute name="CUST_GENDER" actualValue="F" weight=".945" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".856" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".468" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".012" rank="4"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above"
 weight=".009" rank="5"/>
 </Details>

 100003 7 <Details algorithm="K-Means Clustering" cluster="7">
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".862" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".423" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="0" weight=".113" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".007" rank="4"/>
 <Attribute name="CUST_ID" actualValue="100003" weight=".006" rank="5"/>
 </Details>

CLUSTER_PROBABILITY
Syntax

cluster_probability::=

CLUSTER_PROBABILITY (

schema .

model

, cluster_id

mining_attribute_clause)

Analytic Syntax

cluster_prob_analytic::=

CLUSTER_PROBABILITY (INTO n

, cluster_id

mining_attribute_clause)

OVER

window_name

(

window_name

mining_analytic_clause)

Chapter 7
CLUSTER_PROBABILITY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 521

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

Analytic Functions for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

CLUSTER_PROBABILITY returns a probability for each row in the selection. The probability refers
to the highest probability cluster or to the specified cluster_id. The cluster probability is returned
as BINARY_DOUBLE.

Syntax Choice

CLUSTER_PROBABILITY can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined model.
Include INTO n, where n is the number of clusters to compute, and mining_analytic_clause,
which specifies if the data should be partitioned for multiple model builds. The
mining_analytic_clause supports a query_partition_clause and an order_by_clause. (See
analytic_clause::=.)

The syntax of the CLUSTER_PROBABILITY function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the

Chapter 7
CLUSTER_PROBABILITY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 521

transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See mining_attribute_clause::=.)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about clustering.

Note

The following example is excerpted from the Oracle Machine Learning for SQL sample
programs. For more information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

The following example lists the ten most representative customers, based on likelihood, of
cluster 2.

SELECT cust_id
 FROM (SELECT cust_id, rank() OVER (ORDER BY prob DESC, cust_id) rnk_clus2
 FROM (SELECT cust_id, CLUSTER_PROBABILITY(km_sh_clus_sample, 2 USING *) prob
 FROM mining_data_apply_v))
WHERE rnk_clus2 <= 10
ORDER BY rnk_clus2;

 CUST_ID

 100256
 100988
 100889
 101086
 101215
 100390
 100985
 101026
 100601
 100672

CLUSTER_SET
Syntax

cluster_set::=

CLUSTER_SET (

schema .

model

, topN

, cutoff

mining_attribute_clause)

Chapter 7
CLUSTER_SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 521

Analytic Syntax

cluster_set_analytic::=

CLUSTER_SET (INTO n

, topN

, cutoff

mining_attribute_clause)

OVER

window_name

(

window_name

mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

Analytic Functions for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

CLUSTER_SET returns a set of cluster ID and probability pairs for each row in the selection. The
return value is a varray of objects with field names CLUSTER_ID and PROBABILITY. The cluster
identifier is an Oracle NUMBER; the probability is BINARY_DOUBLE.

topN and cutoff

You can specify topN and cutoff to limit the number of clusters returned by the function. By
default, both topN and cutoff are null and all clusters are returned.

Chapter 7
CLUSTER_SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 521

• topN is the N most probable clusters. If multiple clusters share the Nth probability, then the
function chooses one of them.

• cutoff is a probability threshold. Only clusters with probability greater than or equal to cutoff
are returned. To filter by cutoff only, specify NULL for topN.

To return up to the N most probable clusters that are greater than or equal to cutoff, specify both
topN and cutoff.

Syntax Choice

CLUSTER_SET can score the data in one of two ways: It can apply a mining model object to the
data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined model.
Include INTO n, where n is the number of clusters to compute, and mining_analytic_clause,
which specifies if the data should be partitioned for multiple model builds. The
mining_analytic_clause supports a query_partition_clause and an order_by_clause. (See
analytic_clause::=.)

The syntax of the CLUSTER_SET function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See mining_attribute_clause::=.)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about clustering.

Note

The following example is excerpted from the Oracle Machine Learning for SQL sample
programs. For more information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the attributes that have the greatest impact (more that 20% probability) on
cluster assignment for customer ID 100955. The query invokes the CLUSTER_DETAILS and
CLUSTER_SET functions, which apply the clustering model em_sh_clus_sample.

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset

Chapter 7
CLUSTER_SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 521

 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- --
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="-.003"rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

COALESCE
Syntax

COALESCE (expr

,

)

Purpose

COALESCE returns the first non-null expr in the expression list. You must specify at least two
expressions. If all occurrences of expr evaluate to null, then the function returns null.

Oracle Database uses short-circuit evaluation. The database evaluates each expr value and
determines whether it is NULL, rather than evaluating all of the expr values before determining
whether any of them is NULL.

If all occurrences of expr are numeric data type or any nonnumeric data type that can be
implicitly converted to a numeric data type, then Oracle Database determines the argument
with the highest numeric precedence, implicitly converts the remaining arguments to that data
type, and returns that data type.

See Also

• Table 2-9 for more information on implicit conversion and Numeric Precedence for
information on numeric precedence

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
COALESCE when it is a character value

This function is a generalization of the NVL function.

Chapter 7
COALESCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 521

You can also use COALESCE as a variety of the CASE expression. For example,

COALESCE(expr1, expr2)

is equivalent to:

CASE WHEN expr1 IS NOT NULL THEN expr1 ELSE expr2 END

Similarly,

COALESCE(expr1, expr2, ..., exprn)

where n >= 3, is equivalent to:

CASE WHEN expr1 IS NOT NULL THEN expr1
 ELSE COALESCE (expr2, ..., exprn) END

See Also

NVL and CASE Expressions

Examples

The following example uses the sample oe.product_information table to organize a clearance sale
of products. It gives a 10% discount to all products with a list price. If there is no list price, then
the sale price is the minimum price. If there is no minimum price, then the sale price is "5":

SELECT product_id, list_price, min_price,
 COALESCE(0.9*list_price, min_price, 5) "Sale"
 FROM product_information
 WHERE supplier_id = 102050
 ORDER BY product_id;

PRODUCT_ID LIST_PRICE MIN_PRICE Sale
---------- ---------- ---------- ----------
 1769 48 43.2
 1770 73 73
 2378 305 247 274.5
 2382 850 731 765
 3355 5

COLLATION
Syntax

COLLATION (expr)

Purpose

COLLATION returns the name of the derived collation for expr. This function returns named
collations and pseudo-collations. If the derived collation is a Unicode Collation Algorithm (UCA)
collation, then the function returns the long form of its name. This function is evaluated during
compilation of the SQL statement that contains it. If the derived collation is undefined due to a
collation conflict while evaluating expr, then the function returns null.

Chapter 7
COLLATION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 521

expr must evaluate to a character string of type CHAR, VARCHAR2, LONG, NCHAR, or NVARCHAR2.

This function returns a VARCHAR2 value.

Note

The COLLATION function returns only the data-bound collation, and not the dynamic
collation set by the NLS_SORT parameter. Thus, for a column declared as COLLATE
USING_NLS_SORT, the function returns the character value 'USING_NLS_SORT', not the
actual value of the session parameter NLS_SORT. You can use the built-in function
SYS_CONTEXT('USERENV','NLS_SORT') to get the actual value of the session parameter
NLS_SORT.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
COLLATION

Examples

The following example returns the derived collation of columns name and id in table id_table:

CREATE TABLE id_table
 (name VARCHAR2(64) COLLATE BINARY_AI,
 id VARCHAR2(8) COLLATE BINARY_CI);

INSERT INTO id_table VALUES('Christopher', 'ABCD1234');

SELECT COLLATION(name), COLLATION(id)
 FROM id_table;

COLLATION COLLATION
--------- ---------
BINARY_AI BINARY_CI

COLLECT
Syntax

COLLECT (

DISTINCT

UNIQUE

column

ORDER BY expr

)

Purpose

COLLECT is an aggregate function that takes as its argument a column of any type and creates
a nested table of the input type out of the rows selected. To get accurate results from this
function you must use it within a CAST function.

Chapter 7
COLLECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 521

If column is itself a collection, then the output of COLLECT is a nested table of collections. If column
is of a user-defined type, then column must have a MAP or ORDER method defined on it in order
for you to use the optional DISTINCT, UNIQUE, and ORDER BY clauses.

See Also

• CAST and Aggregate Functions

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation COLLECT uses to compare character
values for the DISTINCT and ORDER BY clauses

Examples

The following example creates a nested table from the varray column of phone numbers in the
sample table oe.customers. The nested table includes only the phone numbers of customers with
an income level of L: 300,000 and above.

CREATE TYPE phone_book_t AS TABLE OF phone_list_typ;
/

SELECT CAST(COLLECT(phone_numbers) AS phone_book_t) "Income Level L Phone Book"
 FROM customers
 WHERE income_level = 'L: 300,000 and above';

Income Level L Phone Book
--
PHONE_BOOK_T(PHONE_LIST_TYP('+1 414 123 4307'), PHONE_LIST_TYP('+1 608 123 4344'
), PHONE_LIST_TYP('+1 814 123 4696'), PHONE_LIST_TYP('+1 215 123 4721'), PHONE_L
IST_TYP('+1 814 123 4755'), PHONE_LIST_TYP('+91 11 012 4817', '+91 11 083 4817')
, PHONE_LIST_TYP('+91 172 012 4837'), PHONE_LIST_TYP('+41 31 012 3569', '+41 31
083 3569'))

The following example creates a nested table from the column of warehouse names in the
sample table oe.warehouses. It uses ORDER BY to order the warehouse names.

CREATE TYPE warehouse_name_t AS TABLE OF VARCHAR2(35);
/

SELECT CAST(COLLECT(warehouse_name ORDER BY warehouse_name)
 AS warehouse_name_t) "Warehouses"
 FROM warehouses;

Warehouses
--
WAREHOUSE_NAME_TYP('Beijing', 'Bombay', 'Mexico City', 'New Jersey', 'San Franci
sco', 'Seattle, Washington', 'Southlake, Texas', 'Sydney', 'Toronto')

COMPOSE
Syntax

COMPOSE (char)

Chapter 7
COMPOSE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 521

Purpose

COMPOSE takes as its argument a character value char and returns the result of applying the
Unicode canonical composition, as described in the Unicode Standard definition D117, to it. If
the character set of the argument is not one of the Unicode character sets, COMPOSE returns
its argument unmodified.

COMPOSE does not directly return strings in any of the Unicode normalization forms. To get a
string in the NFC form, first call DECOMPOSE with the CANONICAL setting and then COMPOSE . To
get a string in the NFKC form, first call DECOMPOSE with the COMPATIBILITY setting and then
COMPOSE .

char can be of any of the data types: CHAR, VARCHAR2, NCHAR, or NVARCHAR2. Other data types
are allowed if they can be implicitly converted to VARCHAR2 or NVARCHAR2. The return value of
COMPOSE is in the same character set as its argument.

CLOB and NCLOB values are supported through implicit conversion. If char is a character LOB
value, then it is converted to a VARCHAR2 value before the COMPOSE operation. The operation
will fail if the size of the LOB value exceeds the supported length of the VARCHAR2 in the
particular execution environment.

See Also

• Oracle Database Globalization Support Guide for information on Unicode
character sets and character semantics

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of COMPOSE

• DECOMPOSE

Examples

The following example returns the o-umlaut code point:

SELECT COMPOSE('o' || UNISTR('\0308'))
 FROM DUAL;

CO
--
ö

See Also

UNISTR

CON_DBID_TO_ID
Syntax

CON_DBID_TO_ID (container_dbid)

Chapter 7
CON_DBID_TO_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 521

Purpose

CON_DBID_TO_ID takes as its argument a container DBID and returns the container ID. For
container_dbid, specify a NUMBER value or any value that can be implicitly converted to NUMBER.
The function returns a NUMBER value.

This function is useful in a multitenant container database (CDB). If you use this function in a
non-CDB, then it returns 0.

Example

The following query displays the ID and DBID for all containers in a CDB. The sample output
shown is for the purpose of this example.

SELECT CON_ID, DBID
 FROM V$CONTAINERS;

 CON_ID DBID
---------- ----------
 1 1930093401
 2 4054529501
 4 2256797992

The following statement returns the ID for the container with DBID 2256797992:

SELECT CON_DBID_TO_ID(2256797992) "Container ID"
 FROM DUAL;

Container ID

 4

CON_GUID_TO_ID
Syntax

CON_GUID_TO_ID (container_guid)

Purpose

CON_GUID_TO_ID takes as its argument a container GUID (globally unique identifier) and
returns the container ID. For container_guid, specify a raw value. The function returns a NUMBER
value.

This function is useful in a multitenant container database (CDB). If you use this function in a
non-CDB, then it returns 0.

Example

The following query displays the ID and GUID for all containers in a CDB. The GUID is stored
as a 16-byte RAW value in the V$CONTAINERS view. The query returns the 32-character
hexadecimal representation of the GUID. The sample output shown is for the purpose of this
example.

SELECT CON_ID, GUID
 FROM V$CONTAINERS;

Chapter 7
CON_GUID_TO_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 521

 CON_ID GUID
---------- --------------------------------
 1 DB0A9F33DF99567FE04305B4F00A667D
 2 D990C280C309591EE04305B4F00A593E
 4 D990F4BD938865C1E04305B4F00ACA18

The following statement returns the ID for the container whose GUID is represented by the
hexadecimal value D990F4BD938865C1E04305B4F00ACA18. The HEXTORAW function converts the
GUID's hexadecimal representation to a raw value.

SELECT CON_GUID_TO_ID(HEXTORAW('D990F4BD938865C1E04305B4F00ACA18')) "Container ID"
 FROM DUAL;

Container ID

 4

CON_ID_TO_CON_NAME
Syntax

CON_ID_TO_CON_NAME (container_id)

Purpose

CON_ID_TO_CON_NAME takes as an argument a container CON_ID and returns the container
NAME.

For CON_ID you must specify a number or an expression that resolves to a number. The
function returns a NUMBER value.

This function is useful in a multitentant container database (CDB). If you use this function in a
non-CDB, then it returns 0.

Example

SELECT CON_ID, NAME FROM V$CONTAINERS;
 CON_ID NAME
 –-------- –------------
 1 CDB$ROOT
 2 PDB$SEED
 3 CDB1_PDB1
 4 SALESPDB

The following statement returns the container NAME given the container CON_ID 4:

SELECT CON_ID_TO_CON_NAME(4) "CON_NAME" FROM DUAL;
 CON_NAME
 –-------
 SALESDB

CON_ID_TO_DBID
Syntax

Chapter 7
CON_ID_TO_CON_NAME

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 521

CON_ID_TO_DBID (container_id)

Purpose

CON_ID_TO_DBID takes as an argument a container CON_ID and returns the container DBID. For
CON_ID you must specify a number or an expression that resolves to a number. The function
returns a NUMBER value.

This function is useful in a multitentant container database (CDB). If you use this function in a
non-CDB, then it returns 0.

Example

SELECT CON_ID, NAME, DBID FROM V$CONTAINERS;

CON_ID NAME DBID
–------ –----------- –--------------
 1 CDB$ROOT 2048400776
 2 PDB$SEED 2929762556
 3 CDB1_PDB1 3483444080
 4 SALESPDB 2221053340

The following statement returns the container DBID given the container CON_ID 4:

SELECT CON_ID_TO_DBID(4) FROM DUAL;
 DBID
 –------------
 2221053340

CON_ID_TO_GUID
Syntax

CON_ID_TO_GUID (container_id)

Purpose

CON_ID_TO_GUID takes as an argument a container CON_ID and returns the container's GLOBAL
UNIQUE ID (GUID). For CON_ID you must specify a number or an expression that resolves to a
number. The function returns a NUMBER value.

This function is useful in a multitentant container database (CDB).

Example

The following query displays the CON_ID, NAME and GUID for all containers in a CDB:

SELECT CON_ID, NAME, GUID FROM V$CONTAINERS;

CON_ID NAME GUID
–------ –----------- –--------------
 1 CDB$ROOT A8C0E03CB11A132FE0532684E80A96B3
 2 PDB$SEED A8DA5D32F8F5590DE053C4E15A0A6EED
 3 CDB1_PDB1 A8DA63CEAD385A5BE053C4E15A0A774A
 4 SALESPDB A8DA9AB18CE85BD0E053C4E15A0AE2C3

Chapter 7
CON_ID_TO_GUID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 521

The following statement returns the container GUID given the container CON_ID 4:

SELECT CON_ID_TO_GUID(4) "CON_GUID" FROM DUAL;
 CON_GUID
 –----------------
 A8DA9AB18CE85BD0E053C4E15A0AE2C3

CON_ID_TO_UID
Syntax

CON_ID_TO_UID (container_id)

Purpose

CON_ID_TO_UID takes as an argument a container CON_ID and returns the container's UNIQUE ID
(UID). For CON_ID you must specify a number or an expression that resolves to a number. The
function returns a NUMBER value.

This function is useful in a multitentant container database (CDB).

Example

The following query displays the CON_ID, NAME and CON_UID for all containers in a CDB:

SELECT CON_ID, NAME, CON_UID FROM V$CONTAINERS;

CON_ID NAME CON_UID
–------ –----------- –--------------
 1 CDB$ROOT 1
 2 PDB$SEED 2929762556
 3 CDB1_PDB1 3483444080
 4 SALESPDB 2221053340

The following statement returns the container CON_UID given the container CON_ID 4:

SELECT CON_ID_TO_UID(4) "PDB_UID" FROM DUAL;
 PDB_UID
 –------------
 2221053340

CON_NAME_TO_ID
Syntax

CON_NAME_TO_ID (container_name)

Purpose

CON_NAME_TO_ID takes as its argument a container name and returns the container ID. For
container_name, specify a string, or an expression that resolves to a string, in any data type. The
function returns a NUMBER value.

Chapter 7
CON_ID_TO_UID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 94 of 521

This function is useful in a multitenant container database (CDB). If you use this function in a
non-CDB, then it returns 0.

Example

The following query displays the ID and name for all containers in a CDB. The sample output
shown is for the purpose of this example.

SELECT CON_ID, NAME
 FROM V$CONTAINERS;

 CON_ID NAME
---------- ----------
 1 CDB$ROOT
 2 PDB$SEED
 4 SALESPDB

The following statement returns the ID for the container named SALESPDB:

SELECT CON_NAME_TO_ID('SALESPDB') "Container ID"
 FROM DUAL;

Container ID

 4

CON_UID_TO_ID
Syntax

CON_UID_TO_ID (container_uid)

Purpose

CON_UID_TO_ID takes as its argument a container UID (unique identifier) and returns the
container ID. For container_uid, specify a NUMBER value or any value that can be implicitly
converted to NUMBER. The function returns a NUMBER value.

This function is useful in a multitenant container database (CDB). If you use this function in a
non-CDB, then it returns 0.

Example

The following query displays the ID and UID for all containers in a CDB. The sample output
shown is for the purpose of this example.

SELECT CON_ID, CON_UID
 FROM V$CONTAINERS;

 CON_ID CON_UID
---------- ----------
 1 1
 2 4054529501
 4 2256797992

The following query returns the ID for the container with UID 2256797992:

SELECT CON_UID_TO_ID(2256797992) "Container ID"
 FROM DUAL;

Chapter 7
CON_UID_TO_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 95 of 521

Container ID

 4

CONCAT
Syntax

CONCAT (char1 , char2

charN

,

)

Purpose

CONCAT takes as input two or more arguments and returns the concatenation of all arguments.

The arguments can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. Arguments of other data types are implicitly converted to VARCHAR2 before
concatenation.

The string returned is in the same character set as char1. Its data type depends on the data
types of the arguments.

In concatenations of two or more different data types, Oracle Database returns the data type
that results in a lossless conversion. Therefore, if one of the arguments is a LOB, then the
returned value is a LOB. If one of the arguments is a national data type, then the returned
value is a national data type.

Rules for the Data Types of Return Values

Among all arguments:

• if there is a NCLOB, or if there is a CLOB and a NVARCHAR2 /NCHAR, then the return
type is NCLOB.

• otherwise, if there is CLOB, then the return type is CLOB

• otherwise, if there is NVARCHAR2, or if there is a VARCHAR2 and a NCHAR, then the
return type is NVARCHAR2

• otherwise, if there is VARCHAR2, then the return type is VARCHAR2

• otherwise, if there is NCHAR, then the return type is NCHAR

• otherwise, the return type is CHAR

Examples of Data Types Returned

CONCAT(CLOB, NCLOB) returns NCLOB

CONCAT(CLOB, NCHAR) returns NCLOB

CONCAT(CLOB, CHAR) returns CLOB

CONCAT(VARCHAR2, NCHAR) returns NVARCHAR2

CONCAT(CHAR, VARCHAR2) returns VARCHAR2

CONCAT(CHAR, VARCHAR2, CLOB) returns CLOB

Chapter 7
CONCAT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 96 of 521

CONCAT(CHAR, NVARCHAR2, CLOB) returns NCLOB

This function is equivalent to the concatenation operator (||).

See Also

• Concatenation Operator for information on the CONCAT operator

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of CONCAT

Examples

This example concatenates three character strings:

SELECT CONCAT(last_name, '''s job category is ', job_id) "Job"
 FROM employees
 WHERE employee_id = 152;

Job
--
Hall's job category is SA_REP

CONVERT
Syntax

CONVERT (char , dest_char_set

, source_char_set

)

Purpose

CONVERT converts a character string from one character set to another.

• The char argument is the value to be converted. It can be any of the data types CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

• The dest_char_set argument is the name of the character set to which char is converted.

• The source_char_set argument is the name of the character set in which char is stored in the
database. The default value is the database character set.

The return value for CHAR and VARCHAR2 is VARCHAR2. For NCHAR and NVARCHAR2, it is
NVARCHAR2. For CLOB, it is CLOB, and for NCLOB, it is NCLOB.

Both the destination and source character set arguments can be either literals or columns
containing the name of the character set.

For complete correspondence in character conversion, it is essential that the destination
character set contains a representation of all the characters defined in the source character
set. Where a character does not exist in the destination character set, a replacement character
appears. Replacement characters can be defined as part of a character set definition.

Chapter 7
CONVERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 97 of 521

Note

Oracle discourages the use of the CONVERT function in the current Oracle Database
release. The return value of CONVERT has a character data type, so it should be either
in the database character set or in the national character set, depending on the data
type. Any dest_char_set that is not one of these two character sets is unsupported. The
char argument and the source_char_set have the same requirements. Therefore, the only
practical use of the function is to correct data that has been stored in a wrong
character set.

Values that are in neither the database nor the national character set should be
processed and stored as RAW or BLOB. Procedures in the PL/SQL packages UTL_RAW
and UTL_I18N—for example, UTL_RAW.CONVERT—allow limited processing of such
values. Procedures accepting a RAW argument in the packages UTL_FILE, UTL_TCP,
UTL_HTTP, and UTL_SMTP can be used to output the processed data.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
CONVERT

Examples

The following example illustrates character set conversion by converting a Latin-1 string to
ASCII. The result is the same as importing the same string from a WE8ISO8859P1 database
to a US7ASCII database.

SELECT CONVERT('Ä Ê Í Õ Ø A B C D E ', 'US7ASCII', 'WE8ISO8859P1')
 FROM DUAL;

CONVERT('ÄÊÍÕØABCDE'

A E I ? ? A B C D E ?

You can query the V$NLS_VALID_VALUES view to get a listing of valid character sets, as follows:

SELECT * FROM V$NLS_VALID_VALUES WHERE parameter = 'CHARACTERSET';

See Also

Oracle Database Globalization Support Guide for the list of character sets that Oracle
Database supports and Oracle Database Reference for information on the
V$NLS_VALID_VALUES view

Chapter 7
CONVERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 98 of 521

CORR
Syntax

CORR (expr1 , expr2)

OVER
window_name

(analytic_clause)

See Also

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

CORR returns the coefficient of correlation of a set of number pairs. You can use it as an
aggregate or analytic function.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type, and
returns that data type.

See Also

Table 2-9 for more information on implicit conversion and Numeric Precedence for
information on numeric precedence

Oracle Database applies the function to the set of (expr1, expr2) after eliminating the pairs for
which either expr1 or expr2 is null. Then Oracle makes the following computation:

COVAR_POP(expr1, expr2) / (STDDEV_POP(expr1) * STDDEV_POP(expr2))

The function returns a value of type NUMBER. If the function is applied to an empty set, then it
returns null.

Note

The CORR function calculates the Pearson's correlation coefficient, which requires
numeric expressions as arguments. Oracle also provides the CORR_S (Spearman's rho
coefficient) and CORR_K (Kendall's tau-b coefficient) functions to support
nonparametric or rank correlation.

Chapter 7
CORR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 99 of 521

See Also

Aggregate Functions , About SQL Expressions for information on valid forms of expr,
and CORR_* for information on the CORR_S and CORR_K functions

Aggregate Example

The following example calculates the coefficient of correlation between the list prices and
minimum prices of products by weight class in the sample table oe.product_information:

SELECT weight_class, CORR(list_price, min_price) "Correlation"
 FROM product_information
 GROUP BY weight_class
 ORDER BY weight_class, "Correlation";

WEIGHT_CLASS Correlation
------------ -----------
 1 .999149795
 2 .999022941
 3 .998484472
 4 .999359909
 5 .999536087

Analytic Example

The following example shows the correlation between duration at the company and salary by
the employee's position. The result set shows the same correlation for each employee in a
given job:

SELECT employee_id, job_id,
 TO_CHAR((SYSDATE - hire_date) YEAR TO MONTH) "Yrs-Mns", salary,
 CORR(SYSDATE-hire_date, salary)
 OVER(PARTITION BY job_id) AS "Correlation"
 FROM employees
 WHERE department_id in (50, 80)
 ORDER BY job_id, employee_id;

EMPLOYEE_ID JOB_ID Yrs-Mns SALARY Correlation
----------- ---------- ------- ---------- -----------
 145 SA_MAN +04-09 14000 .912385598
 146 SA_MAN +04-06 13500 .912385598
 147 SA_MAN +04-04 12000 .912385598
 148 SA_MAN +01-08 11000 .912385598
 149 SA_MAN +01-05 10500 .912385598
 150 SA_REP +04-05 10000 .80436755
 151 SA_REP +04-03 9500 .80436755
 152 SA_REP +03-10 9000 .80436755
 153 SA_REP +03-03 8000 .80436755
 154 SA_REP +02-07 7500 .80436755
 155 SA_REP +01-07 7000 .80436755
. . .

CORR_*
The CORR_* functions are:

• CORR_S

Chapter 7
CORR_*

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 100 of 521

• CORR_K

Syntax

correlation::=

CORR_K

CORR_S
(expr1 , expr2

, ’

COEFFICIENT

ONE_SIDED_SIG

ONE_SIDED_SIG_POS

ONE_SIDED_SIG_NEG

TWO_SIDED_SIG

’

)

Purpose

The CORR function (see CORR) calculates the Pearson's correlation coefficient and requires
numeric expressions as input. The CORR_* functions support nonparametric or rank correlation.
They let you find correlations between expressions that are ordinal scaled (where a ranking of
the values is possible). Correlation coefficients take on a value ranging from -1 to 1, where 1
indicates a perfect relationship, -1 a perfect inverse relationship (when one variable increases
as the other decreases), and a value close to 0 means no relationship.

These functions take two mandatory arguments, expr1 and expr2, and an optional third
argument. The return value of the functions is a NUMBER.

The mandatory arguments are the two variables being analyzed. They can be of any data type
that is comparable other than LONG, CLOB, BLOB, BFILE, or VECTOR. If the data type is a user-
defined type (UDT), it must have a MAP or ORDER method to be comparable.

The third argument specifies the variant of the result returned by the functions. It is of type
VARCHAR2 and must be a constant expression, for example, a character literal. If you omit the
third argument, then the default is 'COEFFICIENT'. The allowed argument values and their
meaning are shown in Table 7-2 Table 7-2:

See Also

• Table 2-9 for more information on implicit conversion and Numeric Precedence for
information on numeric precedence

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation CORR_K and CORR_S use to
compare characters from expr1 with characters from expr2

Table 7-2 CORR_* Return Values

Return Value Meaning

'COEFFICIENT' Coefficient of correlation

'ONE_SIDED_SIG' Positive one-tailed significance of the correlation

Chapter 7
CORR_*

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 101 of 521

Table 7-2 (Cont.) CORR_* Return Values

Return Value Meaning

'ONE_SIDED_SIG_POS' Same as ONE_SIDED_SIG

'ONE_SIDED_SIG_NEG' Negative one-tailed significance of the correlation

'TWO_SIDED_SIG' Two-tailed significance of the correlation

CORR_S
CORR_S calculates the Spearman's rho correlation coefficient. The input expressions should be
a set of (xi, yi) pairs of observations. The function first replaces each value with a rank. Each
value of xi is replaced with its rank among all the other xis in the sample, and each value of yi is
replaced with its rank among all the other yis. Thus, each xi and yi take on a value from 1 to n,
where n is the total number of pairs of values. Ties are assigned the average of the ranks they
would have had if their values had been slightly different. Then the function calculates the
linear correlation coefficient of the ranks.

CORR_S Example

Using Spearman's rho correlation coefficient, the following example derives a coefficient of
correlation for each of two different comparisons -- salary and commission_pct, and salary and
employee_id:

SELECT COUNT(*) count,
 CORR_S(salary, commission_pct) commission,
 CORR_S(salary, employee_id) empid
 FROM employees;

 COUNT COMMISSION EMPID
---------- ---------- ----------
 107 .735837022 -.04473016

CORR_K
CORR_K calculates the Kendall's tau-b correlation coefficient. As for CORR_S, the input
expressions are a set of (xi, yi) pairs of observations. To calculate the coefficient, the function
counts the number of concordant and discordant pairs. A pair of observations is concordant if
the observation with the larger x also has a larger value of y. A pair of observations is
discordant if the observation with the larger x has a smaller y.

The significance of tau-b is the probability that the correlation indicated by tau-b was due to
chance—a value of 0 to 1. A small value indicates a significant correlation for positive values of
tau-b (or anticorrelation for negative values of tau-b).

CORR_K Example

Using Kendall's tau-b correlation coefficient, the following example determines whether a
correlation exists between an employee's salary and commission percent:

SELECT CORR_K(salary, commission_pct, 'COEFFICIENT') coefficient,
 CORR_K(salary, commission_pct, 'TWO_SIDED_SIG') two_sided_p_value
 FROM employees;

COEFFICIENT TWO_SIDED_P_VALUE

Chapter 7
CORR_*

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 102 of 521

----------- -----------------
 .603079768 3.4702E-07

COS
Syntax

COS (n)

Purpose

COS returns the cosine of n (an angle expressed in radians).

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the cosine of 180 degrees:

SELECT COS(180 * 3.14159265359/180) "Cosine of 180 degrees"
 FROM DUAL;

Cosine of 180 degrees

 -1

COSH
Syntax

COSH (n)

Purpose

COSH returns the hyperbolic cosine of n.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

Chapter 7
COS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 103 of 521

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the hyperbolic cosine of zero:

SELECT COSH(0) "Hyperbolic cosine of 0"
 FROM DUAL;

Hyperbolic cosine of 0

 1

COUNT
Syntax

COUNT (

*

DISTINCT

ALL

expr

)

OVER
window_name

(analytic_clause)

See Also

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

COUNT returns the number of rows returned by the query. You can use it as an aggregate or
analytic function.

If you specify DISTINCT, then you can specify only the query_partition_clause of the analytic_clause.
The order_by_clause and windowing_clause are not allowed.

If you specify expr, then COUNT returns the number of rows where expr is not null. You can count
either all rows, or only distinct values of expr.

If you specify the asterisk (*), then this function returns all rows, including duplicates and nulls.
COUNT never returns null.

Chapter 7
COUNT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 104 of 521

Note

Before performing a COUNT (DISTINCT expr)operation on a large amount of data,
consider using one of the following methods to obtain approximate results more
quickly than exact results:

• Set the APPROX_FOR_COUNT_DISTINCT initialization parameter to true before using
the COUNT (DISTINCT expr) function. Refer to Oracle Database Reference for more
information on this parameter.

• Use the APPROX_COUNT_DISTINCT function instead of the COUNT (DISTINCT expr)
function. Refer to APPROX_COUNT_DISTINCT.

See Also

• "About SQL Expressions " for information on valid forms of expr and Aggregate
Functions

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation COUNT uses to compare character
values for the DISTINCT clause

Aggregate Examples

The following examples use COUNT as an aggregate function:

SELECT COUNT(*) "Total"
 FROM employees;

 Total

 107

SELECT COUNT(*) "Allstars"
 FROM employees
 WHERE commission_pct > 0;

 Allstars

 35

SELECT COUNT(commission_pct) "Count"
 FROM employees;

 Count

 35

SELECT COUNT(DISTINCT manager_id) "Managers"
 FROM employees;

 Managers

 18

Chapter 7
COUNT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 105 of 521

Analytic Example

The following example calculates, for each employee in the employees table, the moving count of
employees earning salaries in the range 50 less than through 150 greater than the employee's
salary.

SELECT last_name, salary,
 COUNT(*) OVER (ORDER BY salary RANGE BETWEEN 50 PRECEDING AND
 150 FOLLOWING) AS mov_count
 FROM employees
 ORDER BY salary, last_name;

LAST_NAME SALARY MOV_COUNT
------------------------- ---------- ----------
Olson 2100 3
Markle 2200 2
Philtanker 2200 2
Gee 2400 8
Landry 2400 8
Colmenares 2500 10
Marlow 2500 10
Patel 2500 10
. . .

COVAR_POP
Syntax

COVAR_POP (expr1 , expr2)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

COVAR_POP returns the population covariance of a set of number pairs. You can use it as an
aggregate or analytic function.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type, and
returns that data type.

See Also

Table 2-9 for more information on implicit conversion and Numeric Precedence for
information on numeric precedence

Chapter 7
COVAR_POP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 106 of 521

Oracle Database applies the function to the set of (expr1, expr2) pairs after eliminating all pairs
for which either expr1 or expr2 is null. Then Oracle makes the following computation:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n

where n is the number of (expr1, expr2) pairs where neither expr1 nor expr2 is null.

The function returns a value of type NUMBER. If the function is applied to an empty set, then it
returns null.

See Also

About SQL Expressions for information on valid forms of expr and Aggregate Functions

Aggregate Example

The following example calculates the population covariance and sample covariance for time
employed (SYSDATE - hire_date) and salary using the sample table hr.employees:

SELECT job_id,
 COVAR_POP(SYSDATE-hire_date, salary) AS covar_pop,
 COVAR_SAMP(SYSDATE-hire_date, salary) AS covar_samp
 FROM employees
 WHERE department_id in (50, 80)
 GROUP BY job_id
 ORDER BY job_id, covar_pop, covar_samp;

JOB_ID COVAR_POP COVAR_SAMP
---------- ----------- -----------
SA_MAN 660700 825875
SA_REP 579988.466 600702.34
SH_CLERK 212432.5 223613.158
ST_CLERK 176577.25 185870.789
ST_MAN 436092 545115

Analytic Example

The following example calculates cumulative sample covariance of the list price and minimum
price of the products in the sample schema oe:

SELECT product_id, supplier_id,
 COVAR_POP(list_price, min_price)
 OVER (ORDER BY product_id, supplier_id)
 AS CUM_COVP,
 COVAR_SAMP(list_price, min_price)
 OVER (ORDER BY product_id, supplier_id)
 AS CUM_COVS
 FROM product_information p
 WHERE category_id = 29
 ORDER BY product_id, supplier_id;

PRODUCT_ID SUPPLIER_ID CUM_COVP CUM_COVS
---------- ----------- ---------- ----------
 1774 103088 0
 1775 103087 1473.25 2946.5
 1794 103096 1702.77778 2554.16667
 1825 103093 1926.25 2568.33333
 2004 103086 1591.4 1989.25
 2005 103086 1512.5 1815

Chapter 7
COVAR_POP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 107 of 521

 2416 103088 1475.97959 1721.97619
. . .

COVAR_SAMP
Syntax

COVAR_SAMP (expr1 , expr2)

OVER
window_name

(analytic_clause)

See Also

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

COVAR_SAMP returns the sample covariance of a set of number pairs. You can use it as an
aggregate or analytic function.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type, and
returns that data type.

See Also

Table 2-9 for more information on implicit conversion and Numeric Precedence for
information on numeric precedence

Oracle Database applies the function to the set of (expr1, expr2) pairs after eliminating all pairs
for which either expr1 or expr2 is null. Then Oracle makes the following computation:

(SUM(expr1 * expr2) - SUM(expr1) * SUM(expr2) / n) / (n-1)

where n is the number of (expr1, expr2) pairs where neither expr1 nor expr2 is null.

The function returns a value of type NUMBER. If the function is applied to an empty set, then it
returns null.

See Also

About SQL Expressions for information on valid forms of expr and Aggregate Functions

Aggregate Example

Refer to the aggregate example for COVAR_POP .

Chapter 7
COVAR_SAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 108 of 521

Analytic Example

Refer to the analytic example for COVAR_POP .

CUBE_TABLE
Syntax

CUBE_TABLE

(’

schema . cube

HIERARCHY

HRR
dimension hierarchy

schema . dimension

HIERARCHY

HRR

dimension

hierarchy
’)

Purpose

CUBE_TABLE extracts data from a cube or dimension and returns it in the two-dimensional
format of a relational table, which can be used by SQL-based applications.

The function takes a single VARCHAR2 argument. The optional hierarchy clause enables you to
specify a dimension hierarchy. A cube can have multiple hierarchy clauses, one for each
dimension.

You can generate these different types of tables:

• A cube table contains a key column for each dimension and a column for each measure
and calculated measure in the cube. To create a cube table, you can specify the cube with
or without a cube hierarchy clause. For a dimension with multiple hierarchies, this clause
limits the return values to the dimension members and levels in the specified hierarchy.
Without a hierarchy clause, all dimension members and all levels are included.

• A dimension table contains a key column, and a column for each level and each attribute.
It also contains a MEMBER_TYPE column, which identifies each member with one of the
following codes:

– L - Loaded from a table, view, or synonym

– A - Loaded member and the single root of all hierarchies in the dimension, that is, the
"all" aggregate member

– C - Calculated member

All dimension members and all levels are included in the table. To create a dimension
table, specify the dimension without a dimension hierarchy clause.

• A hierarchy table contains all the columns of a dimension table plus a column for the
parent member and a column for each source level. It also contains a MEMBER_TYPE
column, as described for dimension tables. Any dimension members and levels that are
not part of the named hierarchy are excluded from the table. To create a hierarchy table,
specify the dimension with a dimension hierarchy clause.

Chapter 7
CUBE_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 109 of 521

CUBE_TABLE is a table function and is always used in the context of a SELECT statement with
this syntax:

SELECT ... FROM TABLE(CUBE_TABLE('arg'));

See Also

• Oracle OLAP User’s Guide for information about dimensional objects and about
the tables generated by CUBE_TABLE.

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to each character data type
column in the table generated by CUBE_TABLE

Examples

The following examples require Oracle Database with the OLAP option and the GLOBAL
sample schema. Refer to Oracle OLAP User’s Guide for information on downloading and
installing the GLOBAL sample schema.

The following SELECT statement generates a dimension table of CHANNEL in the GLOBAL
schema.

SELECT dim_key, level_name, long_description, channel_total_id tot_id,
 channel_channel_id chan_id, channel_long_description chan_desc,
 total_long_description tot_desc
 FROM TABLE(CUBE_TABLE('global.channel'));

DIM_KEY LEVEL_NAME LONG_DESCRIPTION TOT_ID CHAN_ID CHAN_DESC TOT_DESC
----------- ---------- ---------------- ------ ------- ------------ -------------
CHANNEL_CAT CHANNEL Catalog TOTAL CAT Catalog Total Channel
CHANNEL_DIR CHANNEL Direct Sales TOTAL DIR Direct Sales Total Channel
CHANNEL_INT CHANNEL Internet TOTAL INT Internet Total Channel
TOTAL_TOTAL TOTAL Total Channel TOTAL Total Channel

The next statement generates a cube table of UNITS_CUBE. It restricts the table to the MARKET
and CALENDAR hierarchies.

SELECT sales, units, cost, time, customer, product, channel
 FROM TABLE(CUBE_TABLE('global.units_cube HIERARCHY customer market HIERARCHY time calendar'))
 WHERE rownum < 20;

 SALES UNITS COST TIME CUSTOMER PRODUCT CHANNEL
---------- ---------- ---------- -------------------------- -------------- ----------- -----------
24538587.9 61109 22840853.7 CALENDAR_QUARTER_CY1998.Q1 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
24993273.3 61320 23147171 CALENDAR_QUARTER_CY1998.Q2 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
25080541.4 65265 23242535.4 CALENDAR_QUARTER_CY1998.Q3 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
 26258474 66122 24391020.6 CALENDAR_QUARTER_CY1998.Q4 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
 32785170 77589 30607218.1 CALENDAR_QUARTER_CY1999.Q1 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
. . .

Chapter 7
CUBE_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 110 of 521

CUME_DIST
Aggregate Syntax

cume_dist_aggregate::=

CUME_DIST (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

Analytic Syntax

cume_dist_analytic::=

CUME_DIST () OVER

window_name

(

window_name

query_partition_clause order_by_clause)

See Also

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

CUME_DIST calculates the cumulative distribution of a value in a group of values. The range of
values returned by CUME_DIST is >0 to <=1. Tie values always evaluate to the same cumulative
distribution value.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. Oracle Database determines the argument with
the highest numeric precedence, implicitly converts the remaining arguments to that data type,
makes the calculation, and returns NUMBER.

See Also

Table 2-9 for more information on implicit conversion and Numeric Precedence for
information on numeric precedence

Chapter 7
CUME_DIST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 111 of 521

• As an aggregate function, CUME_DIST calculates, for a hypothetical row r identified by the
arguments of the function and a corresponding sort specification, the relative position of
row r among the rows in the aggregation group. Oracle makes this calculation as if the
hypothetical row r were inserted into the group of rows to be aggregated over. The
arguments of the function identify a single hypothetical row within each aggregate group.
Therefore, they must all evaluate to constant expressions within each aggregate group.
The constant argument expressions and the expressions in the ORDER BY clause of the
aggregate match by position. Therefore, the number of arguments must be the same and
their types must be compatible.

• As an analytic function, CUME_DIST computes the relative position of a specified value in a
group of values. For a row r, assuming ascending ordering, the CUME_DIST of r is the
number of rows with values lower than or equal to the value of r, divided by the number of
rows being evaluated (the entire query result set or a partition).

Aggregate Example

The following example calculates the cumulative distribution of a hypothetical employee with a
salary of $15,500 and commission rate of 5% among the employees in the sample table
oe.employees:

SELECT CUME_DIST(15500, .05) WITHIN GROUP
 (ORDER BY salary, commission_pct) "Cume-Dist of 15500"
 FROM employees;

Cume-Dist of 15500

 .972222222

Analytic Example

The following example calculates the salary percentile for each employee in the purchasing
division. For example, 40% of clerks have salaries less than or equal to Himuro.

SELECT job_id, last_name, salary, CUME_DIST()
 OVER (PARTITION BY job_id ORDER BY salary) AS cume_dist
 FROM employees
 WHERE job_id LIKE 'PU%'
 ORDER BY job_id, last_name, salary, cume_dist;

JOB_ID LAST_NAME SALARY CUME_DIST
---------- ------------------------- ---------- ----------
PU_CLERK Baida 2900 .8
PU_CLERK Colmenares 2500 .2
PU_CLERK Himuro 2600 .4
PU_CLERK Khoo 3100 1
PU_CLERK Tobias 2800 .6
PU_MAN Raphaely 11000 1

CURRENT_DATE
Syntax

CURRENT_DATE

Chapter 7
CURRENT_DATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 112 of 521

Purpose

CURRENT_DATE returns the current date in the session time zone, in a value in the Gregorian
calendar of data type DATE.

Examples

The following example illustrates that CURRENT_DATE is sensitive to the session time zone:

ALTER SESSION SET TIME_ZONE = '-5:0';
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE
--------------- --------------------
-05:00 29-MAY-2000 13:14:03

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE
--------------- --------------------
-08:00 29-MAY-2000 10:14:33

CURRENT_TIMESTAMP
Syntax

CURRENT_TIMESTAMP

(precision)

Purpose

CURRENT_TIMESTAMP returns the current date and time in the session time zone, in a value of
data type TIMESTAMP WITH TIME ZONE. The time zone offset reflects the current local time of
the SQL session. If you omit precision, then the default is 6. The difference between this
function and LOCALTIMESTAMP is that CURRENT_TIMESTAMP returns a TIMESTAMP WITH TIME
ZONE value while LOCALTIMESTAMP returns a TIMESTAMP value.

In the optional argument, precision specifies the fractional second precision of the time value
returned.

See Also

LOCALTIMESTAMP

Examples

The following example illustrates that CURRENT_TIMESTAMP is sensitive to the session time
zone:

ALTER SESSION SET TIME_ZONE = '-5:0';
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

Chapter 7
CURRENT_TIMESTAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 113 of 521

SESSIONTIMEZONE CURRENT_TIMESTAMP
--------------- ---
-05:00 04-APR-00 01.17.56.917550 PM -05:00

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP
--------------- --
-08:00 04-APR-00 10.18.21.366065 AM -08:00

When you use the CURRENT_TIMESTAMP with a format mask, take care that the format mask
matches the value returned by the function. For example, consider the following table:

CREATE TABLE current_test (col1 TIMESTAMP WITH TIME ZONE);

The following statement fails because the mask does not include the TIME ZONE portion of the
type returned by the function:

INSERT INTO current_test VALUES
 (TO_TIMESTAMP_TZ(CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM'));

The following statement uses the correct format mask to match the return type of
CURRENT_TIMESTAMP:

INSERT INTO current_test VALUES
 (TO_TIMESTAMP_TZ(CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM TZH:TZM'));

CV
Syntax

CV (

dimension_column

)

Purpose

The CV function can be used only in the model_clause of a SELECT statement and then only on the
right-hand side of a model rule. It returns the current value of a dimension column or a
partitioning column carried from the left-hand side to the right-hand side of a rule. This function
is used in the model_clause to provide relative indexing with respect to the dimension column.
The return type is that of the data type of the dimension column. If you omit the argument, then
it defaults to the dimension column associated with the relative position of the function within
the cell reference.

The CV function can be used outside a cell reference. In this case, dimension_column is required.

See Also

• model_clause and Model Expressions for the syntax and semantics

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of CV when
it is a character value

Chapter 7
CV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 114 of 521

Examples

The following example assigns the sum of the sales of the product represented by the current
value of the dimension column (Mouse Pad or Standard Mouse) for years 1999 and 2000 to
the sales of that product for year 2001:

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s[FOR prod IN ('Mouse Pad', 'Standard Mouse'), 2001] =
 s[CV(), 1999] + s[CV(), 2000]
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 6679.41
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 3554.76
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 15721.9
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 8900.45

16 rows selected.

The preceding example requires the view sales_view_ref. Refer to The MODEL clause: Examples
to create this view.

DATAOBJ_TO_MAT_PARTITION
Syntax

DATAOBJ_TO_MAT_PARTITION (table , partition_id)

Purpose

DATAOBJ_TO_MAT_PARTITION is useful only to Data Cartridge developers who are performing
data maintenance or query operations on system-partitioned tables that are used to store
domain index data. The DML or query operations are triggered by corresponding operations on
the base table of the domain index.

Chapter 7
DATAOBJ_TO_MAT_PARTITION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 115 of 521

This function takes as arguments the name of the base table and the partition ID of the base
table partition, both of which are passed to the function by the appropriate ODCIIndex method.
The function returns the materialized partition number of the corresponding system-partitioned
table, which can be used to perform the operation (DML or query) on that partition of the
system-partitioned table.

If the base table is interval partitioned, then Oracle recommends that you use this function
instead of the DATAOBJ_TO_PARTITION function. The DATAOBJ_TO_PARTITION function determines
the absolute partition number, given the physical partition identifier. However, if the base table
is interval partitioned, then there might be holes in the partition numbers corresponding to
unmaterialized partitions. Because the system partitioned table only has materialized
partitions, DATAOBJ_TO_PARTITION numbers can cause a mis-match between the partitions of
the base table and the partitions of the underlying system partitioned index storage tables. The
DATAOBJ_TO_MAT_PARTITION function returns the materialized partition number (as opposed to
the absolute partition number) and helps keep the two tables in sync. Indextypes planning to
support local domain indexes on interval partitioned tables should migrate to the use of this
function.

See Also

• DATAOBJ_TO_PARTITION

• Oracle Database Data Cartridge Developer's Guide for information on the use of
the DATAOBJ_TO_MAT_PARTITION function, including examples

DATAOBJ_TO_PARTITION
Syntax

DATAOBJ_TO_PARTITION (table , partition_id)

Purpose

DATAOBJ_TO_PARTITION is useful only to Data Cartridge developers who are performing data
maintenance or query operations on system-partitioned tables that are used to store domain
index data. The DML or query operations are triggered by corresponding operations on the
base table of the domain index.

This function takes as arguments the name of the base table and the partition ID of the base
table partition, both of which are passed to the function by the appropriate ODCIIndex method.
The function returns the absolute partition number of the corresponding system-partitioned
table, which can be used to perform the operation (DML or query) on that partition of the
system-partitioned table.

Note

If the base table is interval partitioned, then Oracle recommends that you instead use
the DATAOBJ_TO_MAT_PARTITION function. Refer to DATAOBJ_TO_MAT_PARTITION
for more information.

Chapter 7
DATAOBJ_TO_PARTITION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 116 of 521

See Also

Oracle Database Data Cartridge Developer's Guide for information on the use of the
DATAOBJ_TO_PARTITION function, including examples

DBTIMEZONE
Syntax

DBTIMEZONE

Purpose

DBTIMEZONE returns the value of the database time zone. The return type is a time zone offset
(a character type in the format '[+|-]TZH:TZM') or a time zone region name, depending on how
the user specified the database time zone value in the most recent CREATE DATABASE or ALTER
DATABASE statement.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
DBTIMEZONE

Examples

The following example assumes that the database time zone is set to UTC time zone:

SELECT DBTIMEZONE
 FROM DUAL;

DBTIME

+00:00

DECODE
Syntax

DECODE (expr , search , result

,
, default

)

Chapter 7
DBTIMEZONE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 117 of 521

Purpose

DECODE compares expr to each search value one by one. If expr is equal to a search, then Oracle
Database returns the corresponding result. If no match is found, then Oracle returns default. If
default is omitted, then Oracle returns null.

• If expr and search are character data, then Oracle compares them using nonpadded
comparison semantics. expr, search, and result can be any of the data types CHAR, VARCHAR2,
NCHAR, or NVARCHAR2. The string returned is of VARCHAR2 data type and is in the same
character set as the first result parameter.

• If the first search-result pair are numeric, then Oracle compares all search-result expressions
and the first expr to determine the argument with the highest numeric precedence, implicitly
converts the remaining arguments to that data type, and returns that data type.

The search, result, and default values can be derived from expressions. Oracle Database uses
short-circuit evaluation. The database evaluates each search value only before comparing it to
expr, rather than evaluating all search values before comparing any of them with expr.
Consequently, Oracle never evaluates a search if a previous search is equal to expr.

Oracle automatically converts expr and each search value to the data type of the first search value
before comparing. Oracle automatically converts the return value to the same data type as the
first result. If the first result has the data type CHAR or if the first result is null, then Oracle converts
the return value to the data type VARCHAR2.

In a DECODE function, Oracle considers two nulls to be equivalent. If expr is null, then Oracle
returns the result of the first search that is also null.

The maximum number of components in the DECODE function, including expr, searches, results, and
default, is 255.

See Also

• Data Type Comparison Rules for information on comparison semantics

• Data Conversion for information on data type conversion in general

• Floating-Point Numbers for information on floating-point comparison semantics

• Implicit and Explicit Data Conversion for information on the drawbacks of implicit
conversion

• COALESCE and CASE Expressions , which provide functionality similar to that of
DECODE

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation DECODE uses to compare
characters from expr with characters from search, and for the collation derivation
rules, which define the collation assigned to the return value of this function when
it is a character value

Examples

This example decodes the value warehouse_id. If warehouse_id is 1, then the function returns
'Southlake'; if warehouse_id is 2, then it returns 'San Francisco'; and so forth. If warehouse_id is not 1, 2, 3,
or 4, then the function returns 'Non domestic'.

Chapter 7
DECODE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 118 of 521

SELECT product_id,
 DECODE (warehouse_id, 1, 'Southlake',
 2, 'San Francisco',
 3, 'New Jersey',
 4, 'Seattle',
 'Non domestic') "Location"
 FROM inventories
 WHERE product_id < 1775
 ORDER BY product_id, "Location";

DECOMPOSE
Syntax

DECOMPOSE (string

,
’ CANONICAL ’

’ COMPATIBILITY ’

)

Purpose

DECOMPOSE takes as its first argument a character value string and returns the result of applying
one of the Unicode decompositions to it. The decomposition to apply is determined by the
second, optional parameter. If the character set of the first argument is not one of the Unicode
character sets, DECOMPOSE returns the argument unmodified.

If the second argument to DECOMPOSE is the string CANONICAL (case-insensitively),
DECOMPOSE applies canonical decomposition, as described in the Unicode Standard definition
D68, and returns a string in the NFD normalization form. If the second argument is the string
COMPATIBILITY, DECOMPOSE applies compatibility decomposition, as described in the Unicode
Standard definition D65, and returns a string in the NFKD normalization form. The default
behavior is to apply the canonical decomposition.

In a pessimistic case, the return value of DECOMPOSE may be a few times longer than string. If a
string to be returned is longer than the maximum length VARCHAR2 value in a given runtime
environment, the value is silently truncated to the maximum VARCHAR2 length.

Both arguments to DECOMPOSE can be of any of the data types CHAR, VARCHAR2, NCHAR, or
NVARCHAR2. Other data types are allowed if they can be implicitly converted to VARCHAR2or
NVARCHAR2. The return value of DECOMPOSE is in the same character set as its first argument.

CLOB and NCLOB values are supported through implicit conversion. If string is a character LOB
value, then it is converted to a VARCHAR2 value before the DECOMPOSE operation. The
operation will fail if the size of the LOB value exceeds the supported length of the VARCHAR2 in
the particular execution environment.

Chapter 7
DECOMPOSE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 119 of 521

See Also

• Oracle Database Globalization Support Guide for information on Unicode
character sets and character semantics

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of DECOMPOSE

• COMPOSE

Examples

The following example decomposes the string "Châteaux" into its component code points:

SELECT DECOMPOSE ('Châteaux')
 FROM DUAL;

DECOMPOSE

Châteaux

Note

The results of this example can vary depending on the character set of your operating
system.

DENSE_RANK
Aggregate Syntax

dense_rank_aggregate::=

DENSE_RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

Chapter 7
DENSE_RANK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 120 of 521

Analytic Syntax

dense_rank_analytic::=

DENSE_RANK () OVER

window_name

(

window_name

query_partition_clause order_by_clause)

See Also

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

DENSE_RANK computes the rank of a row in an ordered group of rows and returns the rank as a
NUMBER. The ranks are consecutive integers beginning with 1. The largest rank value is the
number of unique values returned by the query. Rank values are not skipped in the event of
ties. Rows with equal values for the ranking criteria receive the same rank. This function is
useful for top-N and bottom-N reporting.

This function accepts as arguments any numeric data type and returns NUMBER.

• As an aggregate function, DENSE_RANK calculates the dense rank of a hypothetical row
identified by the arguments of the function with respect to a given sort specification. The
arguments of the function must all evaluate to constant expressions within each aggregate
group, because they identify a single row within each group. The constant argument
expressions and the expressions in the order_by_clause of the aggregate match by position.
Therefore, the number of arguments must be the same and types must be compatible.

• As an analytic function, DENSE_RANK computes the rank of each row returned from a query
with respect to the other rows, based on the values of the value_exprs in the order_by_clause.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation DENSE_RANK uses to compare character
values for the ORDER BY clause

Aggregate Example

The following example computes the ranking of a hypothetical employee with the
salary $15,500 and a commission of 5% in the sample table oe.employees:

SELECT DENSE_RANK(15500, .05) WITHIN GROUP
 (ORDER BY salary DESC, commission_pct) "Dense Rank"
 FROM employees;

Dense Rank

Chapter 7
DENSE_RANK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 121 of 521

 3

Analytic Example

The following statement ranks the employees in the sample hr schema in department 60 based
on their salaries. Identical salary values receive the same rank. However, no rank values are
skipped. Compare this example with the analytic example for RANK .

SELECT department_id, last_name, salary,
 DENSE_RANK() OVER (PARTITION BY department_id ORDER BY salary) DENSE_RANK
 FROM employees WHERE department_id = 60
 ORDER BY DENSE_RANK, last_name;

DEPARTMENT_ID LAST_NAME SALARY DENSE_RANK
------------- ------------------------- ---------- ----------
 60 Lorentz 4200 1
 60 Austin 4800 2
 60 Pataballa 4800 2
 60 Ernst 6000 3
 60 Hunold 9000 4

DEPTH
Syntax

DEPTH (correlation_integer)

Purpose

DEPTH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH conditions. It
returns the number of levels in the path specified by the UNDER_PATH condition with the same
correlation variable.

The correlation_integer can be any NUMBER integer. Use it to correlate this ancillary function with
its primary condition if the statement contains multiple primary conditions. Values less than 1
are treated as 1.

See Also

EQUALS_PATH Condition , UNDER_PATH Condition , and the related function PATH

Examples

The EQUALS_PATH and UNDER_PATH conditions can take two ancillary functions, DEPTH and
PATH. The following example shows the use of both ancillary functions. The example assumes
the existence of the XMLSchema warehouses.xsd (created in Using XML in SQL Statements).

SELECT PATH(1), DEPTH(2)
 FROM RESOURCE_VIEW
 WHERE UNDER_PATH(res, '/sys/schemas/OE', 1)=1
 AND UNDER_PATH(res, '/sys/schemas/OE', 2)=1;

PATH(1) DEPTH(2)
-------------------------------- --------

Chapter 7
DEPTH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 122 of 521

. . .
www.example.com 1
www.example.com/xwarehouses.xsd 2
. . .

DEREF
Syntax

DEREF (expr)

Purpose

DEREF returns the object reference of argument expr, where expr must return a REF to an object.
If you do not use this function in a query, then Oracle Database returns the object ID of the REF
instead, as shown in the example that follows.

See Also

MAKE_REF

Examples

The sample schema oe contains an object type cust_address_typ. The REF Constraint Examples
create a similar type, cust_address_typ_new, and a table with one column that is a REF to the type.
The following example shows how to insert into such a column and how to use DEREF to
extract information from the column:

INSERT INTO address_table VALUES
 ('1 First', 'G45 EU8', 'Paris', 'CA', 'US');

INSERT INTO customer_addresses
 SELECT 999, REF(a) FROM address_table a;

SELECT address
 FROM customer_addresses
 ORDER BY address;

ADDRESS
--
000022020876B2245DBE325C5FE03400400B40DCB176B2245DBE305C5FE03400400B40DCB1

SELECT DEREF(address)
 FROM customer_addresses;

DEREF(ADDRESS)(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
--
CUST_ADDRESS_TYP_NEW('1 First', 'G45 EU8', 'Paris', 'CA', 'US')

Chapter 7
DEREF

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 123 of 521

DOMAIN_CHECK
Syntax

DOMAIN_CHECK (

domain_owner .

domain_name , expr

,

)

Purpose

DOMAIN_CHECK first converts the data type of the arguments in expr to the data type of their
corresponding domain columns. It then applies the constraint conditions (not null or check
constraint) on domain_name to expr.

If the domain’s constraint is deferred or unvalidated, DOMAIN_CHECK still applies the conditions
to expr. If the domain's constraint is disabled, it is not checked as part of DOMAIN_CHECK.

See Also

Domain Functions

• domain_name must be an identifier and can be specified using domain_owner.domain_name. If you
specify it without domain_owner, it resolves first to the current user then as a public synonym.
If the name cannot be resolved, an error is raised.

• If domain_name refers to a non-existent domain or one that you do not have EXECUTE
privileges on, then DOMAIN_CHECK will raise an error.

• If the domain column data type is STRICT, then the value is converted to the domain
column's data type. For example, if the domain column data type is VARCHAR2(100) STRICT,
then the value is converted to VARCHAR2(100). Note that the conversion will not
automatically trim the input to the maximum length. If the value evaluates to 'abc' for some
row and the domain data type is CHAR(2 CHAR), the conversion will fail instead of returning
'ab'.

If the domain column data type is not STRICT, then the value is converted to the most
permissive variant of the domain column's data type in terms of length, scale, and
precision. For example, if the input value is a VARCHAR2(30), it is converted to a
VARCHAR2(100) because it is shorter than the domain length. If the input value is a
VARCHAR2(200), it remains a VARCHAR2(200) because this is larger than the domain length.

• If the data type conversion fails, the error is masked and DOMAIN_CHECK returns FALSE.
You can use DOMAIN_CHECK to filter out values that cannot be inserted into a column of the
given domain.

If the data type conversion succeeds and domain_name does not have any enabled constraint
associated with it, DOMAIN_CHECK returns TRUE.

• If the data type conversion succeeds and domain_name has enabled constraints that are all
satisfied for a given converted value, DOMAIN_CHECK returns TRUE. If any of the domain
constraints are not satisfied, it returns FALSE .

MULTI-COLUMN Domains

Chapter 7
DOMAIN_CHECK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 124 of 521

When calling DOMAIN_CHECK for multicolumn domains, the number if arguments for expr must
match the number of columns in the domain. If there is a mismatch, DOMAIN_CHECK raises an
error.

If domain D has n columns, then you should call DOMAIN_CHECK should be called with D+1
arguments, like DOMAIN_CHECK(D, arg1, ..., argn).

If D does not exist or you have no privilege to access D, then an error is raised. If all the checks
return true, TRUE is returned. This means that:

• arg1 is successfully converted to the data type of column 1 in D, arg2 is successfully
converted to the data type of column 2 in Dand so on to argn is successfully converted to
the data type of column n in D .

• All of D's enabled constraints are all satisfied with column 1 substituted by arg1 converted to
D's column 1 data type, column 2 substituted by arg2 converted to D's column 2 data type,
and so on to column n substituted by argn converted to D's column n data type .

Example

The following example creates a domain dgreater with two columns c1 and c2 of type NUMBER
and a check constraint that c1 be greater than c2:

CREATE DOMAIN dgreater AS (c1 AS NUMBER, c2 AS NUMBER) CHECK (c1 > c2);

Then DOMAIN_CHECK (dgreater, 1, 2) returns FALSE because c1 is less than c2 (the check condition
fails). DOMAIN_CHECK (dgreater, 2, 1) returns TRUE because because c1 is greater than c2 (the
check condition passes).

Flexible Domains

When calling DOMAIN_CHECK for flexible domains, the number of arguments for expr must
match the number of domain columns plus discriminant columns. If there is a mismatch
DOMAIN_CHECK raises an error.

Checking flexible domain constraints is equivalent to checking constraints of the corresponding
subdomain.

You must have the EXECUTE privilege on the flexible domain in order to use DOMAIN_CHECK.

Operations that require EXECUTE privilege on a flexible domain (such as when associating
columns with the flexible domain, or during DOMAIN_CHECK with the first argument the flexible
domain name) require EXECUTE privilege on the sub-domains. This is because a flexible
domain is translated during its creation to a multi-column domain. Therefore the following rules
apply:

• Associating columns to a flex domain is equivalent to associating them to the
corresponding multi-column domain.

• Checking flexible domain constraints is equivalent to checking constraints of the
corresponding multi-column domain.

• Evaluating flexible domain display and order properties is equivalent to evaluating
properties on the corresponding multi-column domain.

Examples

Example 1

The following example creates a strict domain of data type CHAR(3 CHAR):

Chapter 7
DOMAIN_CHECK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 125 of 521

CREATE DOMAIN three_chars AS CHAR(3 CHAR) STRICT;

Calling DOMAIN_CHECK returns true for strings three characters or shorter. For strings four
characters or more long it returns false:

SELECT DOMAIN_CHECK (three_chars, 'ab') two_chars,
 DOMAIN_CHECK (three_chars, 'abc') three_chars,
 DOMAIN_CHECK (three_chars, 'abcd') four_chars;

TWO_CHARS THREE_CHARS FOUR_CHARS
----------- ----------- -----------
TRUE TRUE FALSE

Example 2

The following example creates a domain dgreater with two columns c1 and c2 of type NUMBER
and a check constraint that c1 be greater than c2:

CREATE DOMAIN dgreater AS (
 c1 AS NUMBER, c2 AS NUMBER
)
 CHECK (c1 > c2);

The first query passes one expression value. This raises an error because there are two
columns in the domain:

SELECT DOMAIN_CHECK (dgreater, 1) one_expr;

ORA-11515: incorrect number of columns in domain association list

In the second query:

• first_lower is FALSE because this fails the domain constraint

• first_higher is TRUE because it passes the domain constraint

• letters is FALSE because the values cannot be converted to numbers

SELECT DOMAIN_CHECK (dgreater, 1, 2) first_lower,
 DOMAIN_CHECK (dgreater, 2, 1) first_higher,
 DOMAIN_CHECK (dgreater, 'b', 'a') letters;

FIRST_LOWER FIRST_HIGHER LETTERS
----------- ----------- -----------
FALSE TRUE FALSE

Example 3

The following example creates the domain DAY_OF_WEEK with no domain constraints. All calls
to DOMAIN_CHECK return true because all the input values can be converted to CHAR. It is a
non-strict domain, so there is no length check.

CREATE DOMAIN day_of_week AS CHAR(3 CHAR);

CREATE TABLE calendar_dates (

Chapter 7
DOMAIN_CHECK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 126 of 521

 calendar_date DATE,
 day_of_week_abbr day_of_week
);

INSERT INTO calendar_dates
VALUES(DATE'2023-05-01', 'MON'),
 (DATE'2023-05-02', 'tue'),
 (DATE'2023-05-05', 'fRI');

SELECT day_of_week_abbr,
 DOMAIN_CHECK(day_of_week, day_of_week_abbr) domain_column,
 DOMAIN_CHECK(day_of_week, calendar_date) nondomain_column,
 DOMAIN_CHECK(day_of_week, CAST('MON' AS day_of_week)) domain_value,
 DOMAIN_CHECK(day_of_week, 'mon') nondomain_value
 FROM calendar_dates;

DAY DOMAIN_COLUMN NONDOMAIN_COLUMN DOMAIN_VALUE NONDOMAIN_VALUE
--- --------------- ------------------ -------------- -----------------
FRI TRUE TRUE TRUE TRUE
mon TRUE TRUE TRUE TRUE
MON TRUE TRUE TRUE TRUE

Example 4

The following example creates the domain DAY_OF_WEEK with a constraint to ensure the values
are the uppercase day name abbreviations (MON, TUE, etc.). Validating this constraint is
deferred until commit, so you can insert invalid values.

Using DOMAIN_CHECK to test the values for the domain column DAY_OF_WEEK_ABBR returns
TRUE for the value that conforms to the constraint (MON) and FALSE for those that do not (tue,
fRI):

CREATE DOMAIN day_of_week AS CHAR(3 CHAR)
 CONSTRAINT CHECK(day_of_week IN ('MON','TUE','WED','THU','FRI','SAT','SUN'))
 INITIALLY DEFERRED;

CREATE TABLE calendar_dates (
 calendar_date DATE,
 day_of_week_abbr day_of_week
);

INSERT INTO calendar_dates
VALUES(DATE'2023-05-01', 'MON'),
 (DATE'2023-05-02', 'tue'),
 (DATE'2023-05-05', 'fRI');

SELECT day_of_week_abbr,
 DOMAIN_CHECK(day_of_week, day_of_week_abbr) domain_column,
 DOMAIN_CHECK(day_of_week, calendar_date) nondomain_column,
 DOMAIN_CHECK(day_of_week, CAST('MON' AS day_of_week)) domain_value,
 DOMAIN_CHECK(day_of_week, 'mon') nondomain_value
 FROM calendar_dates;

DAY DOMAIN_COLUMN NONDOMAIN_COLUMN DOMAIN_VALUE NONDOMAIN_VALUE
--- ------------- ---------------- ------------ -----------
MON TRUE FALSE TRUE FALSE
tue FALSE FALSE TRUE FALSE
fRI FALSE FALSE TRUE FALSE

Example 5

Chapter 7
DOMAIN_CHECK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 127 of 521

The following example creates the multicolumn domain currency with two deferred constraints:

CREATE DOMAIN currency AS (
 amount AS NUMBER(10, 2)
 currency_code AS CHAR(3 CHAR)
)
CONSTRAINT supported_currencies_c
 CHECK (currency_code IN ('USD', 'GBP', 'EUR', 'JPY'))
 DEFERRABLE INITIALLY DEFERRED
CONSTRAINT non_negative_amounts_c
 CHECK (amount >= 0)
 DEFERRABLE INITIALLY DEFERRED;

The columns AMOUNT and CURRENCY_CODE in the table ORDER_ITEMS are associated with
domain currency:

CREATE TABLE order_items (
 order_id INTEGER,
 product_id INTEGER,
 amount NUMBER(10, 2),
 currency_code CHAR(3 CHAR),
 DOMAIN currency(amount, currency_code)
);
INSERT INTO order_items
VALUES (1, 1, 9.99, 'USD'),
 (2, 2, 1234.56, 'GBP'),
 (3, 3, -999999, 'JPY'),
 (4, 4, 3141592, 'XXX') ,
 (5, 5, 2718281, '123');

The query makes four calls to DOMAIN_CHECK:

SELECT order_id,
 product_id,
 amount,
 currency_code,
 DOMAIN_CHECK(currency, order_id, product_id) order_product,
 DOMAIN_CHECK(currency, amount, currency_code) amount_currency,
 DOMAIN_CHECK(currency, currency_code, amount) currency_amount,
 DOMAIN_CHECK(currency, order_id, currency_code) order_currency
 FROM order_items;

 ORDER_ID PRODUCT_ID AMOUNT CUR ORDER_PRODUCT AMOUNT_CURRENCY CURRENCY_AMOUNT
ORDER_CURRENCY
---------- ---------- ---------- --- ------------- --------------- --------------- -----------
 1 1 9.99 USD FALSE TRUE FALSE TRUE
 2 2 1234.56 GBP FALSE TRUE FALSE TRUE
 3 3 -999999 JPY FALSE FALSE FALSE TRUE
 4 4 3141592 XXX FALSE FALSE FALSE FALSE
 5 5 2718281 123 FALSE FALSE FALSE FALSE

In the example above:

• ORDER_PRODUCT is FALSE for all rows because the values for PRODUCT_ID do not conform
to the supported_currencies_c constraint.

• AMOUNT_CURRENCY is FALSE for the rows with values that violate the constraints (AMOUNT
= -999999, and CURRENCY_CODE = "XXX" and "123"). It is TRUE for the valid values.

Chapter 7
DOMAIN_CHECK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 128 of 521

• CURRENCY_AMOUNT is FALSE for all rows. For the first four rows this is because the values
for the first argument, CURRENCY_CODE are all letters. These cannot be converted to the
type of the first column in the domain (NUMBER), leading to a type error. For the fifth row,
the amount (2718281) does not conform to the supported_currencies_c constraint.

• ORDER_CURRENCY is FALSE for the row with values that violate the constraints
(CURRENCY_CODE = "XXX" and "123"). It is TRUE for the valid values.

Example 6

The following statement tries to validate the string "raises an error" against the non-existent
domain NOT_A_DOMAIN. This raises an exception:

SELECT DOMAIN_CHECK(not_a_domain, 'raises an error');
ORA-11504: The domain specified does not exist or the user does not have privileges on the domain for the operation.

DOMAIN_CHECK_TYPE
Syntax

DOMAIN_CHECK_TYPE (

domain_owner .

domain_name , expr

,

)

Purpose

Use DOMAIN_CHECK_TYPE to convert the value expression to the data type of the domain
column without checking domain constraints. If you want to check constraints, you must use
DOMAIN_CHECK.

DOMAIN_CHECK_TYPE takes the same arguments as DOMAIN_CHECK and returns TRUE if the
data type of the arguments match the data types of the corresponding domain columns. If the
data type match fails, it returns FALSE.

See Also

Domain Functions

• domain_name must be an identifier and can be specified using domain_owner.domain_name. If you
specify it without domain_owner, it resolves first to the current user then as a public synonym.
If the name cannot be resolved, an error is raised.

• If domain_name refers to a non-existent domain or one that you do not have EXECUTE
privileges on, then DOMAIN_CHECK will raise an error.

• If the domain column data type is STRICT, then the value is converted to the domain
column's data type. For example, if the domain column data type is VARCHAR2(100) STRICT,
then the value is converted to VARCHAR2(100). Note that the conversion will not
automatically trim the input to the maximum length. If the value evaluates to 'abc' for some
row and the domain data type is CHAR(2 CHAR), the conversion will fail instead of returning
'ab'.

If the domain column data type is not STRICT, then the value is converted to the most
permissive variant of the domain column's data type in terms of length, scale and

Chapter 7
DOMAIN_CHECK_TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 129 of 521

precision. For example, if the input value is a VARCHAR2(30), it is converted to a
VARCHAR2(100) because it is shorter than the domain length. If the input value is a
VARCHAR2(200), it remains aVARCHAR2(200) because this is larger than the domain length.

• If the data type conversion fails, the error is masked and DOMAIN_CHECK_TYPE returns
FALSE. You can use DOMAIN_CHECK_TYPE to filter out values that cannot be inserted into a
column of the given domain..

MULTI-COLUMN Domains

When calling DOMAIN_CHECK_TYPE for multicolumn domains, the number of arguments for expr
must match the number of columns in the domain. If there is a mismatch DOMAIN_CHECK_TYPE
raises an error.

Flexible Domains

When calling DOMAIN_CHECK_TYPE for flexible domains, the number of arguments for expr must
match the number of domain columns plus discriminant columns. If there is a mismatch
DOMAIN_CHECK_TYPE raises an error.

Examples

Example 1

The following example creates a strict domain of data type CHAR(3 CHAR):

CREATE DOMAIN three_chars AS CHAR(3 CHAR) STRICT;

Calling DOMAIN_CHECK_TYPE returns true for strings three characters or shorter. For strings
four characters or more long it returns false:

SELECT DOMAIN_CHECK_TYPE (three_chars, 'ab') two_chars,
 DOMAIN_CHECK_TYPE (three_chars, 'abc') three_chars,
 DOMAIN_CHECK_TYPE (three_chars, 'abcd') four_chars;

TWO_CHARS THREE_CHARS FOUR_CHARS
----------- ----------- -----------
TRUE TRUE FALSE

Example 2

The following example creates a domain dgreater with two columns c1 and c2 of type NUMBER
and a check constraint that c1 be greater than c2:

CREATE DOMAIN dgreater AS (
 c1 AS NUMBER, c2 AS NUMBER
)
 CHECK (c1 > c2);

The first query passes one expression value. This raises an error because there are two
columns in the domain.

SELECT DOMAIN_CHECK_TYPE (dgreater, 1) one_expr;

ORA-11515: incorrect number of columns in domain association list

In the second query:

Chapter 7
DOMAIN_CHECK_TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 130 of 521

• first_lower and first_higher are both TRUE because the values are numbers. The domain
constraint is not checked.

• letters is FALSE because the values cannot be converted to numbers.

SELECT DOMAIN_CHECK_TYPE (dgreater, 1, 2) first_lower,
 DOMAIN_CHECK_TYPE (dgreater, 2, 1) first_higher,
 DOMAIN_CHECK_TYPE (dgreater, 'b', 'a') letters;

FIRST_LOWER FIRST_HIGHER LETTERS
----------- ----------- -----------
TRUE TRUE FALSE

Example 3

The following example creates the domain DAY_OF_WEEK with no domain constraints. All calls
to DOMAIN_CHECK_TYPE return true because all the input values can be converted to CHAR. It's
a non-strict domain, so there is no length check.

CREATE DOMAIN day_of_week AS CHAR(3 CHAR);

CREATE TABLE calendar_dates (
 calendar_date DATE,
 day_of_week_abbr day_of_week
);

INSERT INTO calendar_dates
VALUES(DATE'2023-05-01', 'MON'),
 (DATE'2023-05-02', 'tue'),
 (DATE'2023-05-05', 'fRI');

SELECT day_of_week_abbr,
 DOMAIN_CHECK_TYPE(day_of_week, day_of_week_abbr) domain_column,
 DOMAIN_CHECK_TYPE(day_of_week, calendar_date) nondomain_column,
 DOMAIN_CHECK_TYPE(day_of_week, CAST('MON' AS day_of_week)) domain_value,
 DOMAIN_CHECK_TYPE(day_of_week, 'mon') nondomain_value
 FROM calendar_dates;

DAY DOMAIN_COLUMN NONDOMAIN_COLUMN DOMAIN_VALUE NONDOMAIN_VALUE
--- --------------- ------------------ -------------- -----------------
MON TRUE TRUE TRUE TRUE
TUE TRUE TRUE TRUE TRUE
FRI TRUE TRUE TRUE TRUE
mon TRUE TRUE TRUE TRUE
MON TRUE TRUE TRUE TRUE

Example 4

The following example creates the domain DAY_OF_WEEK with a constraint to ensure the
values are the uppercase day name abbreviations (MON, TUE, etc.).

Validating this constraint is deferred until commit, so you can insert invalid values.

Using DOMAIN_CHECK_TYPE returns TRUE for all values because they all pass the type check:

CREATE DOMAIN day_of_week AS CHAR(3 CHAR)
 CONSTRAINT CHECK(day_of_week IN ('MON','TUE','WED','THU','FRI','SAT','SUN'))
 INITIALLY DEFERRED;

CREATE TABLE calendar_dates (

Chapter 7
DOMAIN_CHECK_TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 131 of 521

 calendar_date DATE,
 day_of_week_abbr day_of_week
);

INSERT INTO calendar_dates
VALUES(DATE'2023-05-01', 'MON'),
 (DATE'2023-05-02', 'tue'),
 (DATE'2023-05-05', 'fRI');

SELECT day_of_week_abbr,
 DOMAIN_CHECK_TYPE(day_of_week, day_of_week_abbr) domain_column,
 DOMAIN_CHECK_TYPE(day_of_week, calendar_date) nondomain_column,
 DOMAIN_CHECK_TYPE(day_of_week, CAST('MON' AS day_of_week)) domain_value,
 DOMAIN_CHECK_TYPE(day_of_week, 'mon') nondomain_value
 FROM calendar_dates;

DAY DOMAIN_COLUMN NONDOMAIN_COLUMN DOMAIN_VALUE NONDOMAIN_VALUE
--- ------------- ---------------- ------------ -----------
MON TRUE TRUE TRUE TRUE
tue FALSE TRUE TRUE TRUE
fRI FALSE TRUE TRUE TRUE

Example 5

The following example creates the multicolumn domain currency with two deferred constraints:

CREATE DOMAIN currency AS (
 amount AS NUMBER(10, 2)
 currency_code AS CHAR(3 CHAR)
)
CONSTRAINT supported_currencies_c
 CHECK (currency_code IN ('USD', 'GBP', 'EUR', 'JPY'))
 DEFERRABLE INITIALLY DEFERRED
CONSTRAINT non_negative_amounts_c
 CHECK (amount >= 0)
 DEFERRABLE INITIALLY DEFERRED;

The columns AMOUNT and CURRENCY_CODE in the table ORDER_ITEMS are associated with
domain currency:

CREATE TABLE order_items (
 order_id INTEGER,
 product_id INTEGER,
 amount NUMBER(10, 2),
 currency_code CHAR(3 CHAR),
 DOMAIN currency(amount, currency_code)
);
INSERT INTO order_items
VALUES (1, 1, 9.99, 'USD'),
 (2, 2, 1234.56, 'GBP'),
 (3, 3, -999999, 'JPY'),
 (4, 4, 3141592, 'XXX') ,
 (5, 5, 2718281, '123');

The query makes four calls to DOMAIN_CHECK_TYPE:

SELECT order_id,
 product_id,
 amount,
 currency_code,

Chapter 7
DOMAIN_CHECK_TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 132 of 521

 DOMAIN_CHECK_TYPE(currency, order_id, product_id) order_product,
 DOMAIN_CHECK_TYPE(currency, amount, currency_code) amount_currency,
 DOMAIN_CHECK_TYPE(currency, currency_code, amount) currency_amount,
 DOMAIN_CHECK_TYPE(currency, order_id, currency_code) order_currency
 FROM order_items;

 ORDER_ID PRODUCT_ID AMOUNT CUR ORDER_PRODUCT AMOUNT_CURRENCY CURRENCY_AMOUNT
ORDER_CURRENCY
---------- ---------- ---------- --- ------------- --------------- --------------- -----------
 1 1 9.99 USD TRUE TRUE FALSE TRUE
 2 2 1234.56 GBP TRUE TRUE FALSE TRUE
 3 3 -999999 JPY TRUE TRUE FALSE TRUE
 4 4 3141592 XXX TRUE TRUE FALSE TRUE
 5 5 2718281 123 TRUE TRUE TRUE TRUE

In the example above:

• ORDER_PRODUCT is TRUE for all rows because the values for ORDER_ID and PRODUCT_ID can
be converted to the corresponding column types in the domain (NUMBER and CHAR).

• AMOUNT_CURRENCY is TRUE for all rows because the table columns match the domain
columns.

• CURRENCY_AMOUNT is FALSE for the first four rows because the values for the first
argument, CURRENCY_CODE are all letters. These cannot be converted to the type of the
first column in the domain (NUMBER), leading to a type error. The fifth row is TRUE because
the amount (2718281) can be converted to CHAR.

• ORDER_CURRENCY is TRUE for all rows because the types for ORDER_ID and
CURRENCY_CODE match the corresponding domain column types (NUMBER and CHAR).

Example 6

The following statement tries to validate the string "raises an error" against the non-existent
domain NOT_A_DOMAIN. This raises an exception:

SELECT DOMAIN_CHECK_TYPE(not_a_domain, 'raises an error');
ORA-11504: The domain specified does not exist or the user does not have privileges on the domain for the operation.

DOMAIN_DISPLAY
Syntax

DOMAIN_DISPLAY (expr

,

)

Purpose

DOMAIN_DISPLAY returns expr formatted according to the domain's display expression. This
returns NULL if the arguments are not associated with a domain or the domain has no display
expression.

When calling DOMAIN_DISPLAY for multicolumn domains, all values of expr should be from the
same domain. It returns NULL if the number of expr arguments are different from the number of
domain columns or they are in a different order in the domain.

Chapter 7
DOMAIN_DISPLAY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 133 of 521

To get the display expression for a non-domain value, cast expr to the domain type. This is only
possible for single column domains.

See Also

• Domain Functions

Examples

The following example creates the domain DAY_OF_WEEK and associates it with the column
CALENDAR_DATES.DAY_OF_WEEK_ABBR. Passing this column to DOMAIN_DISPLAY returns it with
the first letter of each word capitalized and all other letters in lowercase. DOMAIN_DISPLAY also
returns this format when casting a string to the domain.

All other calls to DOMAIN_DISPLAY pass non-domain values, so return NULL.

CREATE DOMAIN day_of_week AS CHAR(3 CHAR)
 DISPLAY INITCAP(day_of_week);

CREATE TABLE calendar_dates (
 calendar_date DATE,
 day_of_week_abbr day_of_week
);

INSERT INTO calendar_dates
VALUES(DATE'2023-05-01', 'MON'),
 (DATE'2023-05-02', 'tue'),
 (DATE'2023-05-05', 'fRI');

SELECT day_of_week_abbr,
 DOMAIN_DISPLAY(day_of_week_abbr) domain_column,
 DOMAIN_DISPLAY(calendar_date) nondomain_column,
 DOMAIN_DISPLAY(CAST('MON' AS day_of_week)) domain_value,
 DOMAIN_DISPLAY('MON') nondomain_value
 FROM calendar_dates;

DAY_OF_WEEK_ABBR DOMAIN_COLUMN NONDOMAIN_COLUMN DOMAIN_VALUE NONDOMAIN_VALUE
---------------- ------------- ---------------- ------------ ---------------
MON Mon <null> Mon <null>
tue Tue <null> Mon <null>
fRI Fri <null> Mon <null>

The following example creates the multicolumn domain CURRENCY with a display expression.
The columns AMOUNT and CURRENCY_CODE in ORDER_ITEMS are associated with this domain.

In the query, only the domain_cols expression formats the columns according to the domain
expression. All other calls to DOMAIN_DISPLAY have a mismatch between its arguments and the
domain columns so return NULL:

CREATE DOMAIN currency AS (
 amount AS NUMBER(10, 2)
 currency_code AS CHAR(3 CHAR)
)
DISPLAY CASE currency_code

Chapter 7
DOMAIN_DISPLAY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 134 of 521

 WHEN 'USD' THEN '$'
 WHEN 'GBP' THEN '£'
 WHEN 'EUR' THEN '€'
 WHEN 'JPY' THEN '¥'
END || TO_CHAR(amount, '999,999,999.00');

CREATE TABLE order_items (
 order_id INTEGER,
 product_id INTEGER,
 amount NUMBER(10, 2),
 currency_code CHAR(3 CHAR),
 DOMAIN currency(amount, currency_code)
);

INSERT INTO order_items
VALUES (1, 1, 9.99, 'USD'),
 (2, 2, 1234.56, 'GBP'),
 (3, 3, 4321, 'EUR'),
 (4, 4, 3141592, 'JPY');

SELECT order_id,
 product_id,
 DOMAIN_DISPLAY(amount, currency_code) domain_cols,
 DOMAIN_DISPLAY(currency_code, amount) domain_cols_wrong_order,
 DOMAIN_DISPLAY(order_id, product_id) nondomain_cols,
 DOMAIN_DISPLAY(amount) domain_cols_subset
 FROM order_items;

 ORDER_ID PRODUCT_ID DOMAIN_COLS DOMAIN_COLS_WRONG_ORDER NONDOMAIN_COLS
DOMAIN_COLS_SUBSET
---------- ---------- ---------------- ----------------------- -------------- ------------------
 1 1 $ 9.99 <null> <null> <null>
 2 2 £ 1,234.56 <null> <null> <null>
 3 3 € 4,321.00 <null> <null> <null>
 4 4 ¥ 3,141,592.00 <null> <null> <null>

DOMAIN_NAME
Syntax

DOMAIN_NAME (expr

,

)

Purpose

DOMAIN_NAME returns the fully qualified name of the domain associated with expr. This returns
NULL if expr is associated with a domain.

When calling DOMAIN_NAME for multicolumn domains, all values of expr should be from the
same domain. It returns NULL if the number of expr arguments are different from the number of
domain columns or they are in a different order in the domain.

Chapter 7
DOMAIN_NAME

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 135 of 521

See Also

• Domain Functions

Examples

The following example creates the domain DAY_OF_WEEK in the schema HR and associates it
with the column HR.CALENDAR_DATES.DAY_OF_WEEK_ABBR. Passing this column to
DOMAIN_NAME returns the fully qualified name of the domain.

The query casts the string "MON" to DAY_OF_WEEK to get the domain name.

All other calls to DOMAIN_NAME return NULL.

CREATE DOMAIN hr.day_of_week AS CHAR(3 CHAR);

CREATE TABLE hr.calendar_dates (
 calendar_date DATE,
 day_of_week_abbr hr.day_of_week
);

INSERT INTO hr.calendar_dates
VALUES(DATE'2023-05-01', 'MON');

SELECT day_of_week_abbr,
 DOMAIN_NAME(day_of_week_abbr) domain_column,
 DOMAIN_NAME(calendar_date) nondomain_column,
 DOMAIN_NAME(CAST('MON' AS hr.day_of_week)) domain_value,
 DOMAIN_NAME('MON') nondomain_value
 FROM hr.calendar_dates;

DAY_OF_WEEK_ABBR DOMAIN_COLUMN NONDOMAIN_COLUMN DOMAIN_VALUE NONDOMAIN_VALUE
---------------- -------------- ---------------- -------------- ---------------
MON HR.DAY_OF_WEEK <null> HR.DAY_OF_WEEK <null>

The following example creates the multicolumn domain CURRENCY in the schema CO. The
columns AMOUNT and CURRENCY_CODE in CO.ORDER_ITEMS are associated with this domain.

In the query, the arguments for DOMAIN_NAME only match the domain definition for the
domain_cols expression. This returns the fully qualified name of the domain. All other calls to
DOMAIN_NAME have a mismatch between its arguments and the domain columns so return
NULL:

CREATE DOMAIN co.currency AS (
 amount AS NUMBER(10, 2)
 currency_code AS CHAR(3 CHAR)
);

CREATE TABLE co.order_items (
 order_id INTEGER,
 product_id INTEGER,
 amount NUMBER(10, 2),
 currency_code CHAR(3 CHAR),

Chapter 7
DOMAIN_NAME

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 136 of 521

 DOMAIN co.currency(amount, currency_code)
);

INSERT INTO co.order_items
VALUES (1, 1, 9.99, 'USD');

SELECT order_id,
 product_id,
 DOMAIN_NAME(amount, currency_code) domain_cols,
 DOMAIN_NAME(currency_code, amount) domain_cols_wrong_order,
 DOMAIN_NAME(order_id, product_id) nondomain_cols,
 DOMAIN_NAME(amount) domain_cols_subset
 FROM co.order_items
 ORDER BY domain_cols;

 ORDER_ID PRODUCT_ID DOMAIN_COLS DOMAIN_COLS_WRONG_ORDER NONDOMAIN_COLS
DOMAIN_COLS_SUBSET
---------- ---------- --------------- ------------------------- --------------- --------------------
 1 1 CO.CURRENCY <null> <null> <null>

DOMAIN_ORDER
Syntax

DOMAIN_ORDER (expr

,

)

Purpose

DOMAIN_ORDER returns expr formatted according to the domain's order expression. This
returns NULL if the arguments are not associated with a domain or the domain has no order
expression.

When calling DOMAIN_ORDER for multicolumn domains, all values of expr should be from the
same domain. It returns NULL if the number expr arguments are different from the number of
domain columns or they are in a different order in the domain.

To get the display expression for a non-domain value, cast expr to the domain type. This is only
possible for single column domains.

See Also

• Domain Functions

Examples

The following example creates the domain DAY_OF_WEEK and associates it with the column
CALENDAR_DATES.DAY_OF_WEEK_ABBR. Passing this column to DOMAIN_ORDER returns the
result of the ORDER expression (MON = 0, TUE = 1, etc.). Using this in the ORDER BY returns the
rows sorted by their position in the week instead of alphabetically.

The query casts the string "MON" to DAY_OF_WEEK to get its sort value.

Chapter 7
DOMAIN_ORDER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 137 of 521

All other calls to DOMAIN_ORDER pass non-domain values, so return NULL.

CREATE DOMAIN day_of_week AS CHAR(3 CHAR)
 ORDER CASE UPPER(day_of_week)
 WHEN 'MON' THEN 0
 WHEN 'TUE' THEN 1
 WHEN 'WED' THEN 2
 WHEN 'THU' THEN 3
 WHEN 'FRI' THEN 4
 WHEN 'SAT' THEN 5
 WHEN 'SUN' THEN 6
 ELSE 7
 END;

CREATE TABLE calendar_dates (
 calendar_date DATE,
 day_of_week_abbr day_of_week
);

INSERT INTO calendar_dates
VALUES(DATE'2023-05-01', 'MON'),
 (DATE'2023-05-02', 'TUE'),
 (DATE'2023-05-05', 'FRI'),
 (DATE'2023-05-08', 'mon');

SELECT day_of_week_abbr,
 DOMAIN_ORDER(day_of_week_abbr) domain_column,
 DOMAIN_ORDER(calendar_date) nondomain_column,
 DOMAIN_ORDER(CAST('MON' AS day_of_week)) domain_value,
 DOMAIN_ORDER('MON') nondomain_value
 FROM calendar_dates
 ORDER BY DOMAIN_ORDER(day_of_week_abbr);

DAY_OF_WEEK_ABBR DOMAIN_COLUMN NONDOMAIN_COLUMN DOMAIN_VALUE NONDOMAIN_VALUE
---------------- ------------- ---------------- ------------ ---------------
MON 0 <null> 0 <null>
mon 0 <null> 0 <null>
TUE 1 <null> 0 <null>
FRI 4 <null> 0 <null>

The following example creates the multicolumn domain CURRENCY with an order expression.
This sorts the values by currency then value. The columns AMOUNT and CURRENCY_CODE in
ORDER_ITEMS are associated with this domain.

In the query, only the domain_cols expression formats the columns according to the order
expression. All other calls to DOMAIN_ORDER have a mismatch between its arguments and the
domain columns so return NULL:

CREATE DOMAIN currency AS (
 amount AS NUMBER(10, 2)
 currency_code AS CHAR(3 CHAR)
)
ORDER currency_code || TO_CHAR(amount, '999999999.00');

CREATE TABLE order_items (
 order_id INTEGER,

Chapter 7
DOMAIN_ORDER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 138 of 521

 product_id INTEGER,
 amount NUMBER(10, 2),
 currency_code CHAR(3 CHAR),
 DOMAIN currency(amount, currency_code)
);

INSERT INTO order_items
VALUES (1, 1, 9.99, 'USD'),
 (2, 2, 1234.56, 'USD'),
 (3, 3, 4321, 'EUR'),
 (4, 4, 3141592, 'JPY'),
 (5, 5, 2718281, 'JPY');

SELECT order_id,
 product_id,
 DOMAIN_ORDER(amount, currency_code) domain_cols,
 DOMAIN_ORDER(currency_code, amount) domain_cols_wrong_order,
 DOMAIN_ORDER(order_id, product_id) nondomain_cols,
 DOMAIN_ORDER(amount) domain_cols_subset
 FROM order_items
 ORDER BY domain_cols;

 ORDER_ID PRODUCT_ID DOMAIN_COLS DOMAIN_COLS_WRONG_ORDER NONDOMAIN_COLS
DOMAIN_COLS_SUBSET
---------- ---------- ---------------- ----------------------- -------------- ------------------
 3 3 EUR 4321.00 <null> <null> <null>
 5 5 JPY 2718281.00 <null> <null> <null>
 4 4 JPY 3141592.00 <null> <null> <null>
 1 1 USD 9.99 <null> <null> <null>
 2 2 USD 1234.56 <null> <null> <null>

DUMP
Syntax

DUMP (expr

, return_fmt

, start_position

, length

)

Purpose

DUMP returns a VARCHAR2 value containing the data type code, length in bytes, and internal
representation of expr. The returned result is always in the database character set. For the data
type corresponding to each code, see Table 2-1.

The argument return_fmt specifies the format of the return value and can have any of the
following values:

• 8 returns result in octal notation.

• 10 returns result in decimal notation.

• 16 returns result in hexadecimal notation.

• 17 returns each byte printed as a character if and only if it can be interpreted as a printable
character in the character set of the compiler—typically ASCII or EBCDIC. Some ASCII

Chapter 7
DUMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 139 of 521

control characters may be printed in the form ^X as well. Otherwise the character is printed
in hexadecimal notation. All NLS parameters are ignored. Do not depend on any particular
output format for DUMP with return_fmt 17.

By default, the return value contains no character set information. To retrieve the character set
name of expr, add 1000 to any of the preceding format values. For example, a return_fmt of 1008
returns the result in octal and provides the character set name of expr.

The arguments start_position and length combine to determine which portion of the internal
representation to return. The default is to return the entire internal representation in decimal
notation.

If expr is null, then this function returns NULL.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

• Data Type Comparison Rules for more information

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of DUMP

Examples

The following examples show how to extract dump information from a string expression and a
column:

SELECT DUMP('abc', 1016)
 FROM DUAL;

DUMP('ABC',1016)
--
Typ=96 Len=3 CharacterSet=WE8DEC: 61,62,63

SELECT DUMP(last_name, 8, 3, 2) "OCTAL"
 FROM employees
 WHERE last_name = 'Hunold'
 ORDER BY employee_id;

OCTAL

Typ=1 Len=6: 156,157

SELECT DUMP(last_name, 10, 3, 2) "ASCII"
 FROM employees
 WHERE last_name = 'Hunold'
 ORDER BY employee_id;

ASCII
--
Typ=1 Len=6: 110,111

Chapter 7
DUMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 140 of 521

EMPTY_BLOB, EMPTY_CLOB
Syntax

empty_LOB::=

EMPTY_BLOB

EMPTY_CLOB
()

Purpose

EMPTY_BLOB and EMPTY_CLOB return an empty LOB locator that can be used to initialize a
LOB variable or, in an INSERT or UPDATE statement, to initialize a LOB column or attribute to
EMPTY. EMPTY means that the LOB is initialized, but not populated with data.

Note

An empty LOB is not the same as a null LOB, and an empty CLOB is not the same as a
LOB containing a string of 0 length. For more information, see Oracle Database
SecureFiles and Large Objects Developer's Guide.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of EMPTY_CLOB

Restriction on LOB Locators

You cannot use the locator returned from this function as a parameter to the DBMS_LOB
package or the OCI.

Examples

The following example initializes the ad_photo column of the sample pm.print_media table to EMPTY:

UPDATE print_media
 SET ad_photo = EMPTY_BLOB();

EVERY
Syntax

EVERY (

DISTINCT

ALL

boolean_expr)

OVER
window_name

(analytic_clause)

Chapter 7
EMPTY_BLOB, EMPTY_CLOB

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 141 of 521

Purpose

EVERY returns 'TRUE' if the boolean_expr evaluates to true for every row that qualifies. Otherwise it
returns 'FALSE'. You can use it as an aggregate or analytic function. It is the same as the
function BOOLEAN_AND_AGG.

EXISTSNODE

Note

The EXISTSNODE function is deprecated. It is still supported for backward compatibility.
However, Oracle recommends that you use the XMLEXISTS function instead. See
XMLEXISTS for more information.

Syntax

EXISTSNODE (XMLType_instance , XPath_string

, namespace_string

)

Purpose

EXISTSNODE determines whether traversal of an XML document using a specified path results
in any nodes. It takes as arguments the XMLType instance containing an XML document and a
VARCHAR2 XPath string designating a path. The optional namespace_string must resolve to a
VARCHAR2 value that specifies a default mapping or namespace mapping for prefixes, which
Oracle Database uses when evaluating the XPath expression(s).

The namespace_string argument defaults to the namespace of the root element. If you refer to any
subelement in Xpath_string, then you must specify namespace_string, and you must specify the
"who" prefix in both of these arguments.

See Also

Using XML in SQL Statements for examples that specify namespace_string and use the
"who" prefix.

The return value is NUMBER:

• 0 if no nodes remain after applying the XPath traversal on the document

• 1 if any nodes remain

Examples

The following example tests for the existence of the /Warehouse/Dock node in the XML path of the
warehouse_spec column of the sample table oe.warehouses:

SELECT warehouse_id, warehouse_name
 FROM warehouses
 WHERE EXISTSNODE(warehouse_spec, '/Warehouse/Docks') = 1

Chapter 7
EXISTSNODE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 142 of 521

 ORDER BY warehouse_id;

WAREHOUSE_ID WAREHOUSE_NAME
------------ -----------------------------------
 1 Southlake, Texas
 2 San Francisco
 4 Seattle, Washington

EXP
Syntax

EXP (n)

Purpose

EXP returns e raised to the nth power, where e = 2.71828183... . The function returns a value of
the same type as the argument.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns e to the 4th power:

SELECT EXP(4) "e to the 4th power"
 FROM DUAL;

e to the 4th power

 54.59815

Chapter 7
EXP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 143 of 521

EXTRACT (datetime)
Syntax

extract_datetime::=

EXTRACT (

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

TIMEZONE_HOUR

TIMEZONE_MINUTE

TIMEZONE_REGION

TIMEZONE_ABBR

FROM expr)

Purpose

EXTRACT extracts and returns the value of a specified datetime field from a datetime or interval
expression. The expr can be any expression that evaluates to a datetime or interval data type
compatible with the requested field:

• If YEAR or MONTH is requested, then expr must evaluate to an expression of data type DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, or INTERVAL
YEAR TO MONTH.

• If DAY is requested, then expr must evaluate to an expression of data type DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, or INTERVAL
DAY TO SECOND.

• If HOUR, MINUTE, or SECOND is requested, then expr must evaluate to an expression of data
type TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, or
INTERVAL DAY TO SECOND. DATE is not valid here, because Oracle Database treats it as
ANSI DATE data type, which has no time fields.

• If TIMEZONE_HOUR, TIMEZONE_MINUTE, TIMEZONE_ABBR, TIMEZONE_REGION, or
TIMEZONE_OFFSET is requested, then expr must evaluate to an expression of data type
TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME ZONE.

EXTRACT interprets expr as an ANSI datetime data type. For example, EXTRACT treats DATE not
as legacy Oracle DATE but as ANSI DATE, without time elements. Therefore, you can extract
only YEAR, MONTH, and DAY from a DATE value. Likewise, you can extract TIMEZONE_HOUR and
TIMEZONE_MINUTE only from the TIMESTAMP WITH TIME ZONE data type.

When you specify TIMEZONE_REGION or TIMEZONE_ABBR (abbreviation), the value returned is a
VARCHAR2 string containing the appropriate time zone region name or abbreviation. When you
specify any of the other datetime fields, the value returned is an integer value of NUMBER data
type representing the datetime value in the Gregorian calendar. When extracting from a

Chapter 7
EXTRACT (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 144 of 521

datetime with a time zone value, the value returned is in UTC. For a listing of time zone region
names and their corresponding abbreviations, query the V$TIMEZONE_NAMES dynamic
performance view.

This function can be very useful for manipulating datetime field values in very large tables, as
shown in the first example below.

Note

Time zone region names are needed by the daylight saving feature. These names are
stored in two types of time zone files: one large and one small. One of these files is
the default file, depending on your environment and the release of Oracle Database
you are using. For more information regarding time zone files and names, see Oracle
Database Globalization Support Guide.

Some combinations of datetime field and datetime or interval value expression result in
ambiguity. In these cases, Oracle Database returns UNKNOWN (see the examples that follow
for additional information).

See Also

• Oracle Database Globalization Support Guide for a complete listing of the time
zone region names in both files

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of EXTRACT

• Datetime/Interval Arithmetic for a description of datetime_value_expr and
interval_value_expr

• Oracle Database Reference for information on the dynamic performance views

Examples

The following example returns from the oe.orders table the number of orders placed in each
month:

SELECT EXTRACT(month FROM order_date) "Month", COUNT(order_date) "No. of Orders"
 FROM orders
 GROUP BY EXTRACT(month FROM order_date)
 ORDER BY "No. of Orders" DESC, "Month";

 Month No. of Orders
---------- -------------
 11 15
 6 14
 7 14
 3 11
 5 10
 2 9
 9 9
 8 7
 10 6
 1 5
 12 4

Chapter 7
EXTRACT (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 145 of 521

 4 1

12 rows selected.

The following example returns the year 1998.

SELECT EXTRACT(YEAR FROM DATE '1998-03-07')
 FROM DUAL;

EXTRACT(YEARFROMDATE'1998-03-07')

 1998

The following example selects from the sample table hr.employees all employees who were hired
after 2007:

SELECT last_name, employee_id, hire_date
 FROM employees
 WHERE EXTRACT(YEAR FROM hire_date) > 2007
 ORDER BY hire_date;

LAST_NAME EMPLOYEE_ID HIRE_DATE
------------------------- ----------- ---------
Johnson 179 04-JAN-08
Grant 199 13-JAN-08
Marvins 164 24-JAN-08
. . .

The following example results in ambiguity, so Oracle returns UNKNOWN:

SELECT EXTRACT(TIMEZONE_REGION FROM TIMESTAMP '1999-01-01 10:00:00 -08:00')
 FROM DUAL;

EXTRACT(TIMEZONE_REGIONFROMTIMESTAMP'1999-01-0110:00:00-08:00')
--
UNKNOWN

The ambiguity arises because the time zone numerical offset is provided in the expression, and
that numerical offset may map to more than one time zone region name.

EXTRACT (XML)

Note

The EXTRACT (XML) function is deprecated. It is still supported for backward
compatibility. However, Oracle recommends that you use the XMLQUERY function
instead. See XMLQUERY for more information.

Syntax

extract_xml::=

EXTRACT (XMLType_instance , XPath_string

, namespace_string

)

Chapter 7
EXTRACT (XML)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 146 of 521

Purpose

EXTRACT (XML) is similar to the EXISTSNODE function. It applies a VARCHAR2 XPath string and
returns an XMLType instance containing an XML fragment. You can specify an absolute
XPath_string with an initial slash or a relative XPath_string by omitting the initial slash. If you omit
the initial slash, then the context of the relative path defaults to the root node. The optional
namespace_string is required if the XML you are handling uses a namespace prefix. This argument
must resolve to a VARCHAR2 value that specifies a default mapping or namespace mapping for
prefixes, which Oracle Database uses when evaluating the XPath expression(s).

Examples

The following example extracts the value of the /Warehouse/Dock node of the XML path of the
warehouse_spec column in the sample table oe.warehouses:

SELECT warehouse_name,
 EXTRACT(warehouse_spec, '/Warehouse/Docks') "Number of Docks"
 FROM warehouses
 WHERE warehouse_spec IS NOT NULL
 ORDER BY warehouse_name;

WAREHOUSE_NAME Number of Docks
------------------------- -------------------------
New Jersey
San Francisco <Docks>1</Docks>
Seattle, Washington <Docks>3</Docks>
Southlake, Texas <Docks>2</Docks>

Compare this example with the example for EXTRACTVALUE , which returns the scalar value
of the XML fragment.

EXTRACTVALUE

Note

The EXTRACTVALUE function is deprecated. It is still supported for backward
compatibility. However, Oracle recommends that you use the XMLTABLE function, or
the XMLCAST and XMLQUERY functions instead. See XMLTABLE , XMLCAST, and
XMLQUERY for more information.

Syntax

EXTRACTVALUE (XMLType_instance , XPath_string

, namespace_string

)

The EXTRACTVALUE function takes as arguments an XMLType instance and an XPath
expression and returns a scalar value of the resultant node. The result must be a single node
and be either a text node, attribute, or element. If the result is an element, then the element
must have a single text node as its child, and it is this value that the function returns. You can
specify an absolute XPath_string with an initial slash or a relative XPath_string by omitting the initial
slash. If you omit the initial slash, the context of the relative path defaults to the root node.

Chapter 7
EXTRACTVALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 147 of 521

If the specified XPath points to a node with more than one child, or if the node pointed to has a
non-text node child, then Oracle returns an error. The optional namespace_string must resolve to a
VARCHAR2 value that specifies a default mapping or namespace mapping for prefixes, which
Oracle uses when evaluating the XPath expression(s).

For documents based on XML schemas, if Oracle can infer the type of the return value, then a
scalar value of the appropriate type is returned. Otherwise, the result is of type VARCHAR2. For
documents that are not based on XML schemas, the return type is always VARCHAR2.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
EXTRACTVALUE

Examples

The following example takes as input the same arguments as the example for EXTRACT
(XML) . Instead of returning an XML fragment, as does the EXTRACT function, it returns the
scalar value of the XML fragment:

SELECT warehouse_name, EXTRACTVALUE(e.warehouse_spec, '/Warehouse/Docks') "Docks"
 FROM warehouses e
 WHERE warehouse_spec IS NOT NULL
 ORDER BY warehouse_name;

WAREHOUSE_NAME Docks
-------------------- ------------
New Jersey
San Francisco 1
Seattle, Washington 3
Southlake, Texas 2

FEATURE_COMPARE
Syntax

feature_compare::=

FEATURE_COMPARE (

schema .

model mining_attribute_clause AND mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

Chapter 7
FEATURE_COMPARE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 148 of 521

Purpose

The FEATURE_COMPARE function uses a Feature Extraction model to compare two different
documents, including short ones such as keyword phrases or two attribute lists, for similarity or
dissimilarity. The FEATURE_COMPARE function can be used with Feature Extraction algorithms
such as Singular Value Decomposition (SVD), Principal Component Analysis PCA), Non-
Negative Matrix Factorization (NMF), and Explicit Semantic Analysis (ESA). This function is
applicable not only to documents, but also to numeric and categorical data.

The input to the FEATURE_COMPARE function is a single feature model built using the Feature
Extraction algorithms of Oracle Machine Learning for SQL, such as NMF, SVD, and ESA. The
double USING clause provides a mechanism to compare two different documents or constant
keyword phrases, or any combination of the two, for similarity or dissimilarity using the
extracted features in the model.

The syntax of the FEATURE_COMPARE function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for scoring. When
the function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
See mining_attribute_clause.

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring

• Oracle Machine Learning for SQL Concepts for information about clustering

Note

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix A
in Oracle Machine Learning for SQL User’s Guide.

Examples

An ESA model is built against a 2005 Wiki dataset rendering over 200,000 features. The
documents are mined as text and the document titles are considered as the Feature IDs.

The examples show the FEATURE_COMPARE function with the ESA algorithm, which compares a
similar set of texts and then a dissimilar set of texts.

Similar texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour golfers from South Africa' text AND USING 'Nick
Price won the 2002 Mastercard Colonial Open' text) similarity FROM DUAL;

SIMILARITY

 .258

Chapter 7
FEATURE_COMPARE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 149 of 521

The output metric shows the results of a distance calculation. Therefore, a smaller number
represents more similar texts. So 1 minus the distance in the queries represents a document
similarity metric.

Dissimilar texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour golfers from South Africa' text AND USING 'John
Elway played quarterback for the Denver Broncos' text) similarity FROM DUAL;

SIMILARITY

 .007

FEATURE_DETAILS
Syntax

feature_details::=

FEATURE_DETAILS (

schema .

model

, feature_id

, topN

DESC

ASC

ABS

mining_attribute_clause)

Analytic Syntax

feature_details_analytic::=

FEATURE_DETAILS (INTO n

, feature_id

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER

window_name

(

window_name

mining_analytic_clause)

Chapter 7
FEATURE_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 150 of 521

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

FEATURE_DETAILS returns feature details for each row in the selection. The return value is an
XML string that describes the attributes of the highest value feature or the specified feature_id.

topN

If you specify a value for topN, the function returns the N attributes that most influence the
feature value. If you do not specify topN, the function returns the 5 most influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses its positive
or negative impact on the value of the feature. A positive weight indicates a higher feature
value. A negative weight indicates a lower feature value.

By default, FEATURE_DETAILS returns the attributes with the highest positive weight (DESC). If
you specify ASC, the attributes with the highest negative weight are returned. If you specify
ABS, the attributes with the greatest weight, whether negative or positive, are returned. The
results are ordered by absolute value from highest to lowest. Attributes with a zero weight are
not included in the output.

Syntax Choice

FEATURE_DETAILS can score the data in one of two ways: It can apply a mining model object to
the data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

Chapter 7
FEATURE_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 151 of 521

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined model.
Include INTO n, where n is the number of features to extract, and mining_analytic_clause, which
specifies if the data should be partitioned for multiple model builds. The mining_analytic_clause
supports a query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_DETAILS function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See "mining_attribute_clause::=".)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix A
in Oracle Machine Learning for SQL User’s Guide.

Example

This example uses the feature extraction model nmf_sh_sample to score the data. The query
returns the three features that best represent customer 100002 and the attributes that most
affect those features.

SELECT S.feature_id fid, value val,
 FEATURE_DETAILS(nmf_sh_sample, S.feature_id, 5 using T.*) det
 FROM
 (SELECT v.*, FEATURE_SET(nmf_sh_sample, 3 USING *) fset
 FROM mining_data_apply_v v
 WHERE cust_id = 100002) T,
 TABLE(T.fset) S
ORDER BY 2 DESC;

 FID VAL DET
---- ------ --
 5 3.492 <Details algorithm="Non-Negative Matrix Factorization" feature="5">
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".077" rank="1"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".062" rank="2"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".001" rank="3"/>
 <Attribute name="OS_DOC_SET_KANJI" actualValue="0" weight="0" rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight="0" rank="5"/>
 </Details>
 3 1.928 <Details algorithm="Non-Negative Matrix Factorization" feature="3">

Chapter 7
FEATURE_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 152 of 521

 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".239" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above"
 weight=".051" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".02" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".006" rank="4"/>
 <Attribute name="AGE" actualValue="41" weight=".004" rank="5"/>
 </Details>
 8 .816 <Details algorithm="Non-Negative Matrix Factorization" feature="8">
 <Attribute name="EDUCATION" actualValue="Bach." weight=".211" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".143" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".137" rank="3"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".044" rank="4"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".032" rank="5"/>
 </Details>

Analytic Example

This example dynamically maps customer attributes into six features and returns the feature
mapping for customer 100001.

SELECT feature_id, value
 FROM (
 SELECT cust_id, feature_set(INTO 6 USING *) OVER () fset
 FROM mining_data_apply_v),
 TABLE (fset)
 WHERE cust_id = 100001
 ORDER BY feature_id;

FEATURE_ID VALUE
---------- --------
 1 2.670
 2 .000
 3 1.792
 4 .000
 5 .000
 6 3.379

FEATURE_ID
Syntax

feature_id::=

FEATURE_ID (

schema .

model mining_attribute_clause)

Analytic Syntax

feature_id_analytic::=

FEATURE_ID (INTO n mining_attribute_clause) OVER

window_name

(

window_name

mining_analytic_clause)

Chapter 7
FEATURE_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 153 of 521

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

FEATURE_ID returns the identifier of the highest value feature for each row in the selection. The
feature identifier is returned as an Oracle NUMBER.

Syntax Choice

FEATURE_ID can score the data in one of two ways: It can apply a mining model object to the
data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined model.
Include INTO n, where n is the number of features to extract, and mining_analytic_clause, which
specifies if the data should be partitioned for multiple model builds. The mining_analytic_clause
supports a query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_ID function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See "mining_attribute_clause::=".)

Chapter 7
FEATURE_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 154 of 521

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note

The following example is excerpted from the Oracle Machine Learning for SQL sample
programs. For more information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the features and corresponding count of customers in a data set.

SELECT FEATURE_ID(nmf_sh_sample USING *) AS feat, COUNT(*) AS cnt
 FROM nmf_sh_sample_apply_prepared
 GROUP BY FEATURE_ID(nmf_sh_sample USING *)
 ORDER BY cnt DESC, feat DESC;

 FEAT CNT
---------- ----------
 7 1443
 2 49
 3 6
 6 1
 1 1

FEATURE_SET
Syntax

feature_set::=

FEATURE_SET (

schema .

model

, topN

, cutoff

mining_attribute_clause)

Chapter 7
FEATURE_SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 155 of 521

Analytic Syntax

feature_set_analytic::=

FEATURE_SET (INTO n

, topN

, cutoff

mining_attribute_clause)

OVER

window_name

(

window_name

mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

FEATURE_SET returns a set of feature ID and feature value pairs for each row in the selection.
The return value is a varray of objects with field names FEATURE_ID and VALUE. The data type
of both fields is NUMBER.

topN and cutoff

You can specify topN and cutoff to limit the number of features returned by the function. By
default, both topN and cutoff are null and all features are returned.

Chapter 7
FEATURE_SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 156 of 521

• topN is the N highest value features. If multiple features have the Nth value, then the
function chooses one of them.

• cutoff is a value threshold. Only features that are greater than or equal to cutoff are returned.
To filter by cutoff only, specify NULL for topN.

To return up to N features that are greater than or equal to cutoff, specify both topN and cutoff.

Syntax Choice

FEATURE_SET can score the data in one of two ways: It can apply a mining model object to the
data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined model.
Include INTO n, where n is the number of features to extract, and mining_analytic_clause, which
specifies if the data should be partitioned for multiple model builds. The mining_analytic_clause
supports a query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_SET function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See "mining_attribute_clause::=".)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note

The following example is excerpted from the Oracle Machine Learning for SQL sample
programs. For more information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the top features corresponding to a given customer record and determines
the top attributes for each feature (based on coefficient > 0.25).

WITH
feat_tab AS (
SELECT F.feature_id fid,
 A.attribute_name attr,
 TO_CHAR(A.attribute_value) val,
 A.coefficient coeff

Chapter 7
FEATURE_SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 157 of 521

 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF('nmf_sh_sample')) F,
 TABLE(F.attribute_set) A
 WHERE A.coefficient > 0.25
),
feat AS (
SELECT fid,
 CAST(COLLECT(Featattr(attr, val, coeff))
 AS Featattrs) f_attrs
 FROM feat_tab
GROUP BY fid
),
cust_10_features AS (
SELECT T.cust_id, S.feature_id, S.value
 FROM (SELECT cust_id, FEATURE_SET(nmf_sh_sample, 10 USING *) pset
 FROM nmf_sh_sample_apply_prepared
 WHERE cust_id = 100002) T,
 TABLE(T.pset) S
)
SELECT A.value, A.feature_id fid,
 B.attr, B.val, B.coeff
 FROM cust_10_features A,
 (SELECT T.fid, F.*
 FROM feat T,
 TABLE(T.f_attrs) F) B
 WHERE A.feature_id = B.fid
ORDER BY A.value DESC, A.feature_id ASC, coeff DESC, attr ASC, val ASC;

 VALUE FID ATTR VAL COEFF
-------- ---- ------------------------- ------------------------ -------
 6.8409 7 YRS_RESIDENCE 1.3879
 6.8409 7 BOOKKEEPING_APPLICATION .4388
 6.8409 7 CUST_GENDER M .2956
 6.8409 7 COUNTRY_NAME United States of America .2848
 6.4975 3 YRS_RESIDENCE 1.2668
 6.4975 3 BOOKKEEPING_APPLICATION .3465
 6.4975 3 COUNTRY_NAME United States of America .2927
 6.4886 2 YRS_RESIDENCE 1.3285
 6.4886 2 CUST_GENDER M .2819
 6.4886 2 PRINTER_SUPPLIES .2704
 6.3953 4 YRS_RESIDENCE 1.2931
 5.9640 6 YRS_RESIDENCE 1.1585
 5.9640 6 HOME_THEATER_PACKAGE .2576
 5.2424 5 YRS_RESIDENCE 1.0067
 2.4714 8 YRS_RESIDENCE .3297
 2.3559 1 YRS_RESIDENCE .2768
 2.3559 1 FLAT_PANEL_MONITOR .2593

FEATURE_VALUE
Syntax

feature_value::=

FEATURE_VALUE (

schema .

model

, feature_id

mining_attribute_clause)

Chapter 7
FEATURE_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 158 of 521

Analytic Syntax

feature_value_analytic::=

FEATURE_VALUE (INTO n

, feature_id

mining_attribute_clause)

OVER

window_name

(

window_name

mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

FEATURE_VALUE returns a feature value for each row in the selection. The value refers to the
highest value feature or to the specified feature_id. The feature value is returned as
BINARY_DOUBLE.

Syntax Choice

FEATURE_VALUE can score the data in one of two ways: It can apply a mining model object to
the data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

Chapter 7
FEATURE_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 159 of 521

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined model.
Include INTO n, where n is the number of features to extract, and mining_analytic_clause, which
specifies if the data should be partitioned for multiple model builds. The mining_analytic_clause
supports a query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_VALUE function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, this data is also used for building the transient
models. The mining_attribute_clause behaves as described for the PREDICTION function. (See
"mining_attribute_clause::=".)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note

The following example is excerpted from the Oracle Machine Learning for SQL sample
programs. For more information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

The following example lists the customers that correspond to feature 3, ordered by match
quality.

SELECT *
 FROM (SELECT cust_id, FEATURE_VALUE(nmf_sh_sample, 3 USING *) match_quality
 FROM nmf_sh_sample_apply_prepared
 ORDER BY match_quality DESC)
 WHERE ROWNUM < 11;

 CUST_ID MATCH_QUALITY
---------- -------------
 100210 19.4101627
 100962 15.2482251
 101151 14.5685197
 101499 14.4186292
 100363 14.4037396
 100372 14.3335148
 100982 14.1716545
 101039 14.1079914
 100759 14.0913761
 100953 14.0799737

Chapter 7
FEATURE_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 160 of 521

FIRST
Syntax

first::=

aggregate_function KEEP

(DENSE_RANK FIRST ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

OVER

window_name

(

window_name

query_partition_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions of the
ORDER BY clause and OVER clause

Purpose

FIRST and LAST are very similar functions. Both are aggregate and analytic functions that
operate on a set of values from a set of rows that rank as the FIRST or LAST with respect to a
given sorting specification. If only one row ranks as FIRST or LAST, then the aggregate operates
on the set with only one element.

If you omit the OVER clause, then the FIRST and LAST functions are treated as aggregate
functions. You can use these functions as analytic functions by specifying the OVER clause.
The query_partition_clause is the only part of the OVER clause valid with these functions. If you
include the OVER clause but omit the query_partition_clause, then the function is treated as an
analytic function, but the window defined for analysis is the entire table.

These functions take as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

When you need a value from the first or last row of a sorted group, but the needed value is not
the sort key, the FIRST and LAST functions eliminate the need for self-joins or views and enable
better performance.

• The aggregate_function argument is any one of the MIN, MAX, SUM, AVG, COUNT, VARIANCE, or
STDDEV functions. It operates on values from the rows that rank either FIRST or LAST. If only
one row ranks as FIRST or LAST, then the aggregate operates on a singleton
(nonaggregate) set.

Chapter 7
FIRST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 161 of 521

• The KEEP keyword is for semantic clarity. It qualifies aggregate_function, indicating that only the
FIRST or LAST values of aggregate_function will be returned.

• DENSE_RANK FIRST or DENSE_RANK LAST indicates that Oracle Database will aggregate
over only those rows with the minimum (FIRST) or the maximum (LAST) dense rank (also
called olympic rank).

See Also

Table 2-9 for more information on implicit conversion and LAST

Aggregate Example

The following example returns, within each department of the sample table hr.employees, the
minimum salary among the employees who make the lowest commission and the maximum
salary among the employees who make the highest commission:

SELECT department_id,
 MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct) "Worst",
 MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct) "Best"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

DEPARTMENT_ID Worst Best
------------- ---------- ----------
 10 4400 4400
 20 6000 13000
 30 2500 11000
 40 6500 6500
 50 2100 8200
 60 4200 9000
 70 10000 10000
 80 6100 14000
 90 17000 24000
 100 6900 12008
 110 8300 12008
 7000 7000

Analytic Example

The next example makes the same calculation as the previous example but returns the result
for each employee within the department:

SELECT last_name, department_id, salary,
 MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
 OVER (PARTITION BY department_id) "Worst",
 MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
 OVER (PARTITION BY department_id) "Best"
 FROM employees
 ORDER BY department_id, salary, last_name;

LAST_NAME DEPARTMENT_ID SALARY Worst Best
------------------- ------------- ---------- ---------- ----------
Whalen 10 4400 4400 4400
Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
. . .
Gietz 110 8300 8300 12008

Chapter 7
FIRST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 162 of 521

Higgins 110 12008 8300 12008
Grant 7000 7000 7000

FIRST_VALUE
Syntax

FIRST_VALUE

(expr)

RESPECT

IGNORE
NULLS

(expr

RESPECT

IGNORE
NULLS

)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions, including
valid forms of expr

Purpose

FIRST_VALUE is an analytic function. It returns the first value in an ordered set of values. If the
first value in the set is null, then the function returns NULL unless you specify IGNORE NULLS.
This setting is useful for data densification.

Note

The two forms of this syntax have the same behavior. The top branch is the ANSI
format, which Oracle recommends for ANSI compatibility.

{RESPECT | IGNORE} NULLS determines whether null values of expr are included in or eliminated
from the calculation. The default is RESPECT NULLS. If you specify IGNORE NULLS, then
FIRST_VALUE returns the first non-null value in the set, or NULL if all values are null. Refer to
"Using Partitioned Outer Joins: Examples" for an example of data densification.

You cannot nest analytic functions by using FIRST_VALUE or any other analytic function for expr.
However, you can use other built-in function expressions for expr. Refer to "About SQL
Expressions " for information on valid forms of expr.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of FIRST_VALUE
when it is a character value

Chapter 7
FIRST_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 163 of 521

Examples

The following example selects, for each employee in Department 90, the name of the
employee with the lowest salary.

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 102 De Haan 17000 13-JAN-01 De Haan
 101 Kochhar 17000 21-SEP-05 De Haan
 100 King 24000 17-JUN-03 De Haan

The example illustrates the nondeterministic nature of the FIRST_VALUE function. Kochhar and
DeHaan have the same salary, so are in adjacent rows. Kochhar appears first because the
rows returned by the subquery are ordered by hire_date. However, if the rows returned by the
subquery are ordered by hire_date in descending order, as in the next example, then the function
returns a different value:

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER by hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 101 Kochhar 17000 21-SEP-05 Kochhar
 102 De Haan 17000 13-JAN-01 Kochhar
 100 King 24000 17-JUN-03 Kochhar

The following two examples show how to make the FIRST_VALUE function deterministic by
ordering on a unique key. By ordering within the function by both salary and the unique key
employee_id, you can ensure the same result regardless of the ordering in the subquery.

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC, employee_id ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 101 Kochhar 17000 21-SEP-05 Kochhar
 102 De Haan 17000 13-JAN-01 Kochhar
 100 King 24000 17-JUN-03 Kochhar

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC, employee_id ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90

Chapter 7
FIRST_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 164 of 521

 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 101 Kochhar 17000 21-SEP-05 Kochhar
 102 De Haan 17000 13-JAN-01 Kochhar
 100 King 24000 17-JUN-03 Kochhar

The following two examples show that the FIRST_VALUE function is deterministic when you use
a logical offset (RANGE instead of ROWS). When duplicates are found for the ORDER BY
expression, the FIRST_VALUE is the lowest value of expr:

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC RANGE UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 102 De Haan 17000 13-JAN-01 De Haan
 101 Kochhar 17000 21-SEP-05 De Haan
 100 King 24000 17-JUN-03 De Haan

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC RANGE UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 102 De Haan 17000 13-JAN-01 De Haan
 101 Kochhar 17000 21-SEP-05 De Haan
 100 King 24000 17-JUN-03 De Haan

FLOOR (datetime)
Syntax

FLOOR (datetime

, fmt

)

Purpose

FLOOR(datetime) returns the date or the timestamp rounded down to the unit specified by the
second argument fmt, the format model. This function is not sensitive to the NLS_CALENDAR
session parameter. It operates according to the rules of the Gregorian calendar. The value
returned is always of data type DATE, even if you specify a different datetime data type for the
first argument. If you do not specify the second argument, the default format model 'DD' is
used.

The FLOOR and TRUNC functions are synonymous for dates and timestamps.

Chapter 7
FLOOR (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 165 of 521

See Also

Refer to CEIL, FLOOR, ROUND, and TRUNC Date Functions for the permitted format
models to use in fmt.

Examples

For these examples NLS_DATE_FORMAT is set:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';

SELECT FLOOR(TO_DATE ('28-FEB-2023','DD-MON-YYYY'), 'MM') AS month_floor;

MONTH_FLOOR

01-FEB-2023 00:00:00

SELECT FLOOR(TO_TIMESTAMP ('28-FEB-2023 14:10:10','DD-MON-YYYY HH24:MI:SS'),'HH24') AS hour_floor;

HOUR_FLOOR

28-FEB-2023 14:00:00

FLOOR (interval)
Syntax

FLOOR (interval

, fmt

)

Purpose

FLOOR(interval) returns the interval rounded down to the unit specified by the second argument
fmt, the format model .

The result of FLOOR(interval) is never larger than interval . The result precision for year and day is
the input precision for year plus one and day plus one, since FLOOR(interval) can have overflow .
If an interval already has the maximum precision for year and day, the statement compiles but
errors at runtime.

For INTERVAL YEAR TO MONTH, fmt can only be year. The default fmt is year.

For INTERVAL DAY TO SECOND, fmt can be day, hour and minute. The default fmt is day. Note that
fmt does not support second.

FLOOR(interval) supports the format models of ROUND and TRUNC.

See Also

Refer to CEIL, FLOOR, ROUND, and TRUNC Date Functions for the permitted format
models to use in fmt.

Chapter 7
FLOOR (interval)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 166 of 521

Examples

SELECT FLOOR(INTERVAL '+123-5' YEAR(3) TO MONTH) as year_floor;

YEAR_FLOOR

+000000123-00

SELECT FLOOR(INTERVAL '+99-11' YEAR(2) TO MONTH, 'YEAR') as year_floor;

YEAR_FLOOR

+000000099-00

SELECT FLOOR(INTERVAL '+4 12:42:10.222' DAY(2) TO SECOND(3), 'DD') as year_floor;

YEAR_FLOOR

+000000004 00:00:00.000000000

FLOOR (number)
Syntax

FLOOR (n)

Purpose

FLOOR returns the largest integer equal to or less than n. The number n can always be written
as the sum of an integer k and a positive fraction f such that 0 <= f < 1 and n = k + f. The value
of FLOOR is the integer k. Thus, the value of FLOOR is n itself if and only if n is precisely an
integer.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion and CEIL (number)

Examples

The following example returns the largest integer equal to or less than 15.7:

SELECT FLOOR(15.7) "Floor"
 FROM DUAL;

 Floor

 15

Chapter 7
FLOOR (number)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 167 of 521

FROM_TZ
Syntax

FROM_TZ (timestamp_value , time_zone_value)

Purpose

FROM_TZ converts a timestamp value and a time zone to a TIMESTAMP WITH TIME ZONE value.
time_zone_value is a character string in the format 'TZH:TZM' or a character expression that returns
a string in TZR with optional TZD format.

Examples

The following example returns a timestamp value to TIMESTAMP WITH TIME ZONE:

SELECT FROM_TZ(TIMESTAMP '2000-03-28 08:00:00', '3:00')
 FROM DUAL;

FROM_TZ(TIMESTAMP'2000-03-2808:00:00','3:00')

28-MAR-00 08.00.000000000 AM +03:00

FROM_VECTOR
FROM_VECTOR takes a vector as input and returns a string of type VARCHAR2 or CLOB as output.

Syntax

FROM_VECTOR (expr

RETURNING

CLOB

VARCHAR2

(size

BYTE

CHAR

)

FORMAT
SPARSE

DENSE

)

Purpose

FROM_VECTOR optionally takes a RETURNING clause to specify the data type of the returned
value.

If VARCHAR2 is specified without size, the size of the returned value size is 32767.

You can optionally specify the text format of the output in the FORMAT clause, using the tokens
SPARSE or DENSE. Note that the input vector storage format does not need to match the
specified output format.

There is no support to convert to CHAR, NCHAR, and NVARCHAR2.

FROM_VECTOR is synonymous with VECTOR_SERIALIZE.

Chapter 7
FROM_TZ

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 168 of 521

Parameters

expr must evaluate to a vector. The function returns NULL if expr is NULL.

Examples

SELECT FROM_VECTOR(TO_VECTOR('[1, 2, 3]'));

FROM_VECTOR(TO_VECTOR('[1,2,3]'))
–---
[1.0E+000,2.0E+000,3.0E+000]

1 row selected.

SELECT FROM_VECTOR(TO_VECTOR('[1.1, 2.2, 3.3]', 3, FLOAT32));

FROM_VECTOR(TO_VECTOR('[1.1,2.2,3.3]',3,FLOAT32))
--
[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

SELECT FROM_VECTOR(TO_VECTOR('[1.1, 2.2, 3.3]', 3, FLOAT32) RETURNING VARCHAR2(1000));

FROM_VECTOR(TO_VECTOR('[1.1,2.2,3.3]',3,FLOAT32)RETURNINGVARCHAR2(1000))
--
[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

SELECT FROM_VECTOR(TO_VECTOR('[1.1, 2.2, 3.3]', 3, FLOAT32) RETURNING CLOB);

FROM_VECTOR(TO_VECTOR('[1.1,2.2,3.3]',3,FLOAT32)RETURNINGCLOB)
--
[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

SELECT FROM_VECTOR(TO_VECTOR('[5,[2,4],[1.0,2.0]]', 5, FLOAT64, SPARSE) RETURNING CLOB FORMAT SPARSE);

FROM_VECTOR(TO_VECTOR('[5,[2,4],[1.0,2.0]]',5,FLOAT64,SPARSE)RETURNINGCLOBFORMAT
--
[5,[2,4],[1.0E+000,2.0E+000]]

1 row selected.

SELECT FROM_VECTOR(TO_VECTOR('[5,[2,4],[1.0,2.0]]', 5, FLOAT64, SPARSE) RETURNING CLOB FORMAT DENSE);

FROM_VECTOR(TO_VECTOR('[5,[2,4],[1.0,2.0]]',5,FLOAT64,SPARSE)RETURNINGCLOBFORMAT
--
[0,1.0E+000,0,2.0E+000,0]

Chapter 7
FROM_VECTOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 169 of 521

1 row selected.

Note

• Applications using Oracle Client 23ai libraries or Thin mode drivers can fetch
vector data directly, as shown in the following example:

SELECT dataVec FROM vecTab;

• For applications using Oracle Client 23ai libraries prior to 23ai connected to Oracle
Database 23ai, use the FROM_VECTOR to fetch vector data, as shown by the
following example:

SELECT FROM_VECTOR(dataVec) FROM vecTab;

GREATEST
Syntax

GREATEST (expr

,

)

Purpose

GREATEST returns the greatest of a list of one or more expressions. Oracle Database uses the
first expr to determine the return type. If the first expr is numeric, then Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining arguments to
that data type before the comparison, and returns that data type. If the first expr is not numeric,
then each expr after the first is implicitly converted to the data type of the first expr before the
comparison.

Oracle Database compares each expr using nonpadded comparison semantics. The
comparison is binary by default and is linguistic if the NLS_COMP parameter is set to LINGUISTIC
and the NLS_SORT parameter has a setting other than BINARY. Character comparison is based
on the numerical codes of the characters in the database character set and is performed on
whole strings treated as one sequence of bytes, rather than character by character. If the value
returned by this function is character data, then its data type is VARCHAR2 if the first expr is a
character data type and NVARCHAR2 if the first expr is a national character data type.

Chapter 7
GREATEST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 170 of 521

See Also

• "Data Type Comparison Rules " for more information on character comparison

• Table 2-9 for more information on implicit conversion and "Floating-Point Numbers
" for information on binary-float comparison semantics

• "LEAST ", which returns the least of a list of one or more expressions

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation GREATEST uses to compare
character values for expr, and for the collation derivation rules, which define the
collation assigned to the return value of this function when it is a character value

Examples

The following statement selects the string with the greatest value:

SELECT GREATEST('HARRY', 'HARRIOT', 'HAROLD') "Greatest"
 FROM DUAL;

Greatest

HARRY

In the following statement, the first argument is numeric. Oracle Database determines that the
argument with the highest numeric precedence is the second argument, converts the
remaining arguments to the data type of the second argument, and returns the greatest value
as that data type:

SELECT GREATEST (1, '3.925', '2.4') "Greatest"
 FROM DUAL;

Greatest

 3.925

GROUP_ID
Syntax

GROUP_ID ()

Purpose

GROUP_ID distinguishes duplicate groups resulting from a GROUP BY specification. It is useful in
filtering out duplicate groupings from the query result. It returns an Oracle NUMBER to uniquely
identify duplicate groups. This function is applicable only in a SELECT statement that contains a
GROUP BY clause.

If n duplicates exist for a particular grouping, then GROUP_ID returns numbers in the range 0 to
n-1.

Chapter 7
GROUP_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 171 of 521

Examples

The following example assigns the value 1 to the duplicate co.country_region grouping from a
query on the sample tables sh.countries and sh.sales:

SELECT co.country_region, co.country_subregion,
 SUM(s.amount_sold) "Revenue", GROUP_ID() g
 FROM sales s, customers c, countries co
 WHERE s.cust_id = c.cust_id
 AND c.country_id = co.country_id
 AND s.time_id = '1-JAN-00'
 AND co.country_region IN ('Americas', 'Europe')
 GROUP BY GROUPING SETS ((co.country_region, co.country_subregion),
 (co.country_region, co.country_subregion))
 ORDER BY co.country_region, co.country_subregion, "Revenue", g;

COUNTRY_REGION COUNTRY_SUBREGION Revenue G
-------------------- ------------------------------ ---------- ----------
Americas Northern America 944.6 0
Americas Northern America 944.6 1
Europe Western Europe 566.39 0
Europe Western Europe 566.39 1

To ensure that only rows with GROUP_ID < 1 are returned, add the following HAVING clause to
the end of the statement :

HAVING GROUP_ID() < 1

GROUPING
Syntax

GROUPING (
expr

c_alias
)

Purpose

GROUPING distinguishes superaggregate rows from regular grouped rows. GROUP BY
extensions such as ROLLUP and CUBE produce superaggregate rows where the set of all values
is represented by null. Using the GROUPING function, you can distinguish a null representing the
set of all values in a superaggregate row from a null in a regular row.

The expr in the GROUPING function must match one of the expressions in the GROUP BY clause.
The function returns a value of 1 if the value of expr in the row is a null representing the set of
all values. Otherwise, it returns zero. The data type of the value returned by the GROUPING
function is Oracle NUMBER. Refer to the SELECT group_by_clause for a discussion of these
terms.

Examples

In the following example, which uses the sample tables hr.departments and hr.employees, if the
GROUPING function returns 1 (indicating a superaggregate row rather than a regular row from
the table), then the string "All Jobs" appears in the "JOB" column instead of the null that would
otherwise appear:

Chapter 7
GROUPING

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 172 of 521

SELECT
 DECODE(GROUPING(department_name), 1, 'ALL DEPARTMENTS', department_name)
 AS department,
 DECODE(GROUPING(job_id), 1, 'All Jobs', job_id) AS job,
 COUNT(*) "Total Empl",
 AVG(salary) * 12 "Average Sal"
 FROM employees e, departments d
 WHERE d.department_id = e.department_id
 GROUP BY ROLLUP (department_name, job_id)
 ORDER BY department, job;

DEPARTMENT JOB Total Empl Average Sal
------------------------------ ---------- ---------- -----------
ALL DEPARTMENTS All Jobs 106 77481.0566
Accounting AC_ACCOUNT 1 99600
Accounting AC_MGR 1 144096
Accounting All Jobs 2 121848
Administration AD_ASST 1 52800
Administration All Jobs 1 52800
Executive AD_PRES 1 288000
Executive AD_VP 2 204000
Executive All Jobs 3 232000
Finance All Jobs 6 103216
Finance FI_ACCOUNT 5 95040
. . .

GROUPING_ID
Syntax

GROUPING_ID (
expr

c_alias

,

)

Purpose

GROUPING_ID returns a number corresponding to the GROUPING bit vector associated with a
row. GROUPING_ID is applicable only in a SELECT statement that contains a GROUP BY extension,
such as ROLLUP or CUBE, and a GROUPING function. In queries with many GROUP BY
expressions, determining the GROUP BY level of a particular row requires many GROUPING
functions, which leads to cumbersome SQL. GROUPING_ID is useful in these cases.

GROUPING_ID is functionally equivalent to taking the results of multiple GROUPING functions and
concatenating them into a bit vector (a string of ones and zeros). By using GROUPING_ID you
can avoid the need for multiple GROUPING functions and make row filtering conditions easier to
express. Row filtering is easier with GROUPING_ID because the desired rows can be identified
with a single condition of GROUPING_ID = n. The function is especially useful when storing
multiple levels of aggregation in a single table.

Examples

The following example shows how to extract grouping IDs from a query of the sample table
sh.sales:

SELECT channel_id, promo_id, sum(amount_sold) s_sales,
 GROUPING(channel_id) gc,

Chapter 7
GROUPING_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 173 of 521

 GROUPING(promo_id) gp,
 GROUPING_ID(channel_id, promo_id) gcp,
 GROUPING_ID(promo_id, channel_id) gpc
 FROM sales
 WHERE promo_id > 496
 GROUP BY CUBE(channel_id, promo_id)
 ORDER BY channel_id, promo_id, s_sales, gc;

CHANNEL_ID PROMO_ID S_SALES GC GP GCP GPC
---------- ---------- ---------- ---------- ---------- ---------- ----------
 2 999 25797563.2 0 0 0 0
 2 25797563.2 0 1 1 2
 3 999 55336945.1 0 0 0 0
 3 55336945.1 0 1 1 2
 4 999 13370012.5 0 0 0 0
 4 13370012.5 0 1 1 2
 999 94504520.8 1 0 2 1
 94504520.8 1 1 3 3

HEXTORAW
Syntax

HEXTORAW (char)

Purpose

HEXTORAW converts char containing hexadecimal digits in the CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to a raw value.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

"Data Type Comparison Rules " for more information.

Examples

The following example creates a simple table with a raw column, and inserts a hexadecimal
value that has been converted to RAW:

CREATE TABLE test (raw_col RAW(10));

INSERT INTO test VALUES (HEXTORAW('7D'));

The following example converts hexadecimal digits to a raw value and casts the raw value to
VARCHAR2:

SELECT UTL_RAW.CAST_TO_VARCHAR2(HEXTORAW('4041424344'))
 FROM DUAL;

UTL_RAW.CAST_TO_VARCHAR2(HEXTORAW('4041424344'))
--
@ABCD

Chapter 7
HEXTORAW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 174 of 521

See Also

"RAW and LONG RAW Data Types " and RAWTOHEX

INITCAP
Syntax

INITCAP (char)

Purpose

INITCAP returns char, with the first letter of each word in uppercase, all other letters in
lowercase. Words are delimited by white space or characters that are not alphanumeric.

char can be of any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The return value
is the same data type as char. The database sets the case of the initial characters based on the
binary mapping defined for the underlying character set. For linguistic-sensitive uppercase and
lowercase, refer to NLS_INITCAP .

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of INITCAP

Examples

The following example capitalizes each word in the string:

SELECT INITCAP('the soap') "Capitals"
 FROM DUAL;

Capitals

The Soap

INSTR

Chapter 7
INITCAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 175 of 521

Syntax

INSTR

INSTRB

INSTRC

INSTR2

INSTR4

(string , substring

, position

, occurrence

)

Purpose

The INSTR functions search string for substring. The search operation is defined as comparing the
substring argument with substrings of string of the same length for equality until a match is found
or there are no more substrings left. Each consecutive compared substring of string begins one
character to the right (for forward searches) or one character to the left (for backward
searches) from the first character of the previous compared substring. If a substring that is
equal to substring is found, then the function returns an integer indicating the position of the first
character of this substring. If no such substring is found, then the function returns zero.

• position is an nonzero integer indicating the character of string where Oracle Database
begins the search—that is, the position of the first character of the first substring to
compare with substring. If position is negative, then Oracle counts backward from the end of
string and then searches backward from the resulting position.

• occurrence is an integer indicating which occurrence of substring in string Oracle should search
for. The value of occurrence must be positive. If occurrence is greater than 1, then the database
does not return on the first match but continues comparing consecutive substrings of string,
as described above, until match number occurrence has been found.

INSTR accepts and returns positions in characters as defined by the input character set, with
the first character of string having position 1. INSTRB uses bytes instead of characters. INSTRC
uses Unicode complete characters. INSTR2 uses UCS2 code points. INSTR4 uses UCS4 code
points.

string can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The
exceptions are INSTRC, INSTR2, and INSTR4, which do not allow string to be a CLOB or NCLOB.

substring can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

The value returned is of NUMBER data type.

Both position and occurrence must be of data type NUMBER, or any data type that can be implicitly
converted to NUMBER, and must resolve to an integer. The default values of both position and
occurrence are 1, meaning Oracle begins searching at the first character of string for the first
occurrence of substring. The return value is relative to the beginning of string, regardless of the
value of position.

Chapter 7
INSTR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 176 of 521

See Also

• Oracle Database Globalization Support Guide for more on character length.

• Oracle Database SecureFiles and Large Objects Developer's Guide for more on
character length.

• Table 2-9 for more information on implicit conversion

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation the INSTR functions use to compare
the substring argument with substrings of string

Examples

The following example searches the string CORPORATE FLOOR, beginning with the third
character, for the string "OR". It returns the position in CORPORATE FLOOR at which the second
occurrence of "OR" begins:

SELECT INSTR('CORPORATE FLOOR','OR', 3, 2) "Instring"
 FROM DUAL;

 Instring

 14

In the next example, Oracle counts backward from the last character to the third character from
the end, which is the first O in FLOOR. Oracle then searches backward for the second
occurrence of OR, and finds that this second occurrence begins with the second character in
the search string :

SELECT INSTR('CORPORATE FLOOR','OR', -3, 2) "Reversed Instring"
 FROM DUAL;

Reversed Instring

 2

The next example assumes a double-byte database character set.

SELECT INSTRB('CORPORATE FLOOR','OR',5,2) "Instring in bytes"
 FROM DUAL;

Instring in bytes

 27

ITERATION_NUMBER
Syntax

ITERATION_NUMBER

Chapter 7
ITERATION_NUMBER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 177 of 521

Purpose

The ITERATION_NUMBER function can be used only in the model_clause of the SELECT statement
and then only when ITERATE(number) is specified in the model_rules_clause. It returns an integer
representing the completed iteration through the model rules. The ITERATION_NUMBER function
returns 0 during the first iteration. For each subsequent iteration, the ITERATION_NUMBER
function returns the equivalent of iteration_number plus one.

See Also

model_clause and "Model Expressions" for the syntax and semantics

Examples

The following example assigns the sales of the Mouse Pad for the years 1998 and 1999 to the
sales of the Mouse Pad for the years 2001 and 2002 respectively:

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER ITERATE(2)
 (
 s['Mouse Pad', 2001 + ITERATION_NUMBER] =
 s['Mouse Pad', 1998 + ITERATION_NUMBER]
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 2509.42
France Mouse Pad 2002 3678.69
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 5827.87
Germany Mouse Pad 2002 8346.44
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13

18 rows selected.

The preceding example requires the view sales_view_ref. Refer to "The MODEL clause:
Examples" to create this view.

Chapter 7
ITERATION_NUMBER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 178 of 521

IS_UUID
Syntax

IS_UUID (uuid_string)

IS_UUID checks if the input argment is a valid UUID string of one of the following formats:

• xxxxxxxxxxxx4xxxBxxxxxxxxxxxxxxx,

• xxxxxxxx-xxxx-4xxx-Bxxx-xxxxxxxxxxxx,

• {xxxxxxxxxxxx4xxxBxxxxxxxxxxxxxxx},

• {xxxxxxxx-xxxx-4xxx-Bxxx-xxxxxxxxxxxx},

A string consisting of 32 '0's (zero) denoting a Nil UUID, or 32 'f's denoting a Universal UUID
where x is is a valid hexadecimal digit in upper or lower case. If the input is a string literal, then
it must be quoted just like any string literal.

If the input string conforms to these formats it returns TRUE, otherwise it returns FALSE.

It returns NULL if the input is NULL.

Example 1

SELECT IS_UUID('{e24e8de0-d663-428f-baaa-1be5f019cd25}') FROM DUAL;

The output is:

IS_UUID('{E

TRUE

Example 2

SELECT IS_UUID('{d20f8c3cde134b958d25eff3fbdb7e71}') FROM DUAL;

The output is:

IS_UUID('{D

FALSE

JSON_ARRAY
Syntax

JSON_ARRAY (JSON_ARRAY_content)

JSON [JSON_ARRAY_content]

Chapter 7
IS_UUID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 179 of 521

JSON_ARRAY_content

JSON_ARRAY_enumeration_content

JSON_ARRAY_query_content

JSON_ARRAY_enumeration_content::=

JSON_ARRAY_element

,
JSON_on_null_clause

JSON_returning_clause STRICT

JSON_ARRAY_element

expr

format_clause

JSON_on_null_clause::=

NULL

ABSENT

ON NULL

JSON_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

reference

value

JSON

JSON_type_specification

Chapter 7
JSON_ARRAY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 180 of 521

JSON_ARRAY_query_content::=

query_expression

JSON_on_null_clause

JSON_returning_clause STRICT

Purpose

The SQL/JSON function JSON_ARRAY takes as its input a sequence of SQL scalar expressions
or one collection type instance, VARRAY or NESTED TABLE.

It converts each expression to a JSON value, and returns a JSON array that contains those
JSON values.

If an ADT has a member which is a collection than the type mapping creates a JSON object for
the ADT with a nested JSON array for the collection member.

If a collection contains ADT instances then the type mapping will create a JSON array of JSON
objects.

Note

Generation of JSON Data Using SQL of the JSON Developer's Guide.

JSON_ARRAY_content

Use this clause to define the input to the JSON_ARRAY function.

JSON_ARRAY_element

• expr
For expr, you can specify any SQL expression that evaluates to a JSON object, a JSON
array, a numeric literal, a text literal, date, timestamp, or null. This function converts a
numeric literal to a JSON number value, and a text literal to a JSON string value. The date
and timestamp data types are printed in the generated JSON object or array as JSON
Strings following the ISO 8601 date format.

• format_clause
You can specify FORMAT JSON to indicate that the input string is JSON, and will therefore
not be quoted in the output.

JSON_on_null_clause

Use this clause to specify the behavior of this function when expr evaluates to null.

• NULL ON NULL - If you specify this clause, then the function returns the JSON null value.

• ABSENT ON NULL - If you specify this clause, then the function omits the value from the
JSON array. This is the default.

JSON_returning_clause

Use this clause to specify the type of return value. One of :

Chapter 7
JSON_ARRAY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 181 of 521

• BLOB to return a binary large object of the AL32UTF8 character set.

• CLOB to return a character large object containing single-byte or multi-byte characters.

• VARCHAR2 specifying the size as a number of bytes or characters. The default is bytes. If
you omit this clause, or specify the clause without specifying the size value, then
JSON_ARRAY returns a character string of type VARCHAR2(4000). Refer to VARCHAR2 Data
Type for more information. Note that when specifying the VARCHAR2 data type elsewhere in
SQL, you are required to specify a size. However, in the JSON_returning_clause you can omit
the size.

• BOOLEAN

• JSON

• VECTOR

STRICT

Specify the STRICT clause to verify that the output of the JSON generation function is correct
JSON. If the check fails, a syntax error is raised.

Refer to JSON_OBJECT for examples.

Examples

The following example constructs a JSON array from a JSON object, a JSON array, a numeric
literal, a text literal, and null:

SELECT JSON_ARRAY (
 JSON_OBJECT('percentage' VALUE .50),
 JSON_ARRAY(1,2,3),
 100,
 'California',
 null
 NULL ON NULL
) "JSON Array Example"
 FROM DUAL;

JSON Array Example
--
[{"percentage":0.5},[1,2,3],100,"California",null]

JSON_ARRAYAGG
Syntax

JSON_ARRAYAGG (expr

FORMAT JSON order_by_clause JSON_on_null_clause

JSON_returning_clause STRICT

)

(See order_by_clause::= in the documentation on SELECT for the syntax of this clause)

Chapter 7
JSON_ARRAYAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 182 of 521

Note

For JSON_ARRAYAGG, the order_by clause must refer to columns. Positional orders are
not supported.

JSON_on_null_clause::=

NULL

ABSENT

ON NULL

JSON_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

reference

value

JSON

JSON_type_specification

Purpose

The SQL/JSON function JSON_ARRAYAGG is an aggregate function. It takes as its input a
column of SQL expressions, converts each expression to a JSON value, and returns a single
JSON array that contains those JSON values.

expr

For expr, you can specify any SQL expression that evaluates to a JSON object, a JSON array, a
numeric literal, a text literal, or null. This function converts a numeric literal to a JSON number
value and a text literal to a JSON string value.

FORMAT JSON

Use this optional clause to indicate that the input string is JSON, and will therefore not be
quoted in the output.

order_by_clause

This clause allows you to order the JSON values within the JSON array returned by the
statement. Refer to the order_by_clause in the documentation on SELECT for the full semantics
of this clause.

JSON_on_null_clause

Use this clause to specify the behavior of this function when expr evaluates to null.

Chapter 7
JSON_ARRAYAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 183 of 521

• NULL ON NULL - If you specify this clause, then the function returns the JSON null value.

• ABSENT ON NULL - If you specify this clause, then the function omits the value from the
JSON array. This is the default.

JSON_returning_clause

Use this clause to specify the data type of the character string returned by this function. You
can specify the following data types:

• VARCHAR2[(size [BYTE,CHAR])]

When specifying the VARCHAR2 data type elsewhere in SQL, you are required to specify a
size. However, in this clause you can omit the size.

• CLOB to return a character large object containing single-byte or multi-byte characters.

• BLOB to return a binary large object of the AL32UTF8 character set.

• JSON to return JSON data.

You must set the database initialization parameter compatible to 20 or greater to use the
JSON type.

If you omit this clause, or if you specify VARCHAR2 but omit the size value, then JSON_ARRAYAGG
returns a character string of type VARCHAR2(4000).

Refer to "Data Types " for more information on the preceding data types.

STRICT

Specify the STRICT clause to verify that the output of the JSON generation function is correct
JSON. If the check fails, a syntax error is raised.

Refer to JSON_OBJECT for examples.

WITH UNIQUE KEYS

Specify WITH UNIQUE KEYS to guarantee that generated JSON objects have unique keys.

Examples

The following statements creates a table id_table, which contains ID numbers:

CREATE TABLE id_table (id NUMBER);
INSERT INTO id_table VALUES(624);
INSERT INTO id_table VALUES(null);
INSERT INTO id_table VALUES(925);
INSERT INTO id_table VALUES(585);

The following example constructs a JSON array from the ID numbers in table id_table:

SELECT JSON_ARRAYAGG(id ORDER BY id RETURNING VARCHAR2(100)) ID_NUMBERS
 FROM id_table;

ID_NUMBERS

[585,624,925]

Chapter 7
JSON_ARRAYAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 184 of 521

JSON_DATAGUIDE
Syntax

JSON_DATAGUIDE (expr

, format

, flag

)

Purpose

The aggregate function JSON_DATAGUIDE computes the data guide of a set of JSON data. The
data guide is returned as a CLOB which can be in either flat or hierarchical format depending on
the passing format parameter.

expr

expr is a SQL expression that evaluates to a JSON object or a JSON array. It can also be a
JSON column in a table.

format options

Use the format options to specify the format of the data guide that will be returned. It must be
one of the following values:

• dbms_json.format_flat for a flat format.

• dbms_json.format_hierarchical for a hierarchical format.

• dbms_json.format_schema for a data guide of a JSON schema that you can use to validate
JSON documents.

If the parameter is the absent, the default is dbms_json.format_flat.

See Data-Guide Formats and Ways of Creating a Data Guide of the JSON Developer's Guide.

flag options

flag can have the following values:

• Specify DBMS_JSON.PRETTY to improve readability of the returned data guide with
appropriate indentation.

• Specify DBMS_JSON.GEOJSON for the data guide to auto detect the GeoJSON type. The
corresponding view column created by the data guide will be of sdo_geometry type.

• Specify DBMS_JSON.GATHER_STATS for the data guide to collect statistical information. The
data guide report generated with DBMS_JSON.GATHER_STATS has a new field o:sample_size, in
addition to all of the other statistical fields that you get with DBMS_JSON.get_index_dataguide .

• Specify DBMS_JSON.DETECT_DATETIME for the data guide to detect temporal types. The data
guide reports a JSON field value that conforms to the ISO 8601 format as a timestamp
type, not a string type.

• All values DBMS_JSON.PRETTY, DBMS_JSON.GEOJSON, and DBMS_JSON.GATHER_STATS, and
DBMS_JSON.DETECT_DATETIME can be combined with a plus sign. For example,
DBMS_JSON.GEOJSON+DBMS_JSON.PRETTY, or
DBMS_JSON.GEOJSON+DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS.

Chapter 7
JSON_DATAGUIDE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 185 of 521

See Also

JSON Data Guide

Examples

The following example uses the j_purchaseorder table, which is created in "Creating a Table That
Contains a JSON Document: Example". This table contains a column of JSON data called
po_document. This example returns a flat data guide for each year group.

SELECT EXTRACT(YEAR FROM date_loaded) YEAR,
 JSON_DATAGUIDE(po_document) "DATA GUIDE"
 FROM j_purchaseorder
 GROUP BY extract(YEAR FROM date_loaded)
 ORDER BY extract(YEAR FROM date_loaded) DESC;

YEAR DATA GUIDE
---- --
2016 [
 {
 "o:path" : "$.PO_ID",
 "type" : "number",
 "o:length" : 4
 },
 {
 "o:path" : "$.PO_Ref",
 "type" : "string",
 "o:length" : 16
 },
 {
 "o:path" : "$.PO_Items",
 "type" : "array",
 "o:length" : 64
 },
 {
 "o:path" : "$.PO_Items.Part_No",
 "type" : "number",
 "o:length" : 16
 },
 {
 "o:path" : "$.PO_Items.Item_Quantity",
 "type" : "number",
 "o:length" : 2
 }
]
. . .

JSON_MERGEPATCH
Syntax

Chapter 7
JSON_MERGEPATCH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 186 of 521

JSON_MERGEPATCH (JSON_target_expr , JSON_patch_expr

JSON_returning_clause

PRETTY ASCII TRUNCATE JSON_on_error_clause

)

JSON_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

reference

value

JSON

JSON_type_specification

json_on_error_clause::=

ERROR

NULL

ON ERROR

Purpose

You can use the JSON_MERGEPATCH function to update specific portions of a JSON document.
You pass it a JSON Merge Patch document in JSON_patch_expr, which specifies the changes to
make to a specified JSON document, the JSON_target_expr.

JSON_MERGEPATCH evaluates the patch document against the target document to produce the
result document. If the target or the patch document is NULL, then the result is also NULL.

You can input any SQL data type that supports JSON data: JSON, VARCHAR2, CLOB, or BLOB.
The function returns any of the SQL data types as output.

Data type JSON is available only if database initialization parameter compatible is 20 or greater.

The default return type depends on the input data type. If the input type is JSON, then JSON is
also the default return type. Otherwise, VARCHAR2 is the default return type.

The JSON_returning_clause specifies the return type of the operator. The default return type is
VARCHAR2(4000).

The PRETTY keyword specifies that the result should be formatted for human readability.

The ASCII keyword specifies that non-ASCII characters should be output using JSON escape
sequences.

Chapter 7
JSON_MERGEPATCH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 187 of 521

The TRUNCATE keyword specifies that the result document should be truncated to fit in the
specified return type.

The JSON_on_error_clause optionally controls the handling of errors that occur during the
processing of the target and patch documents.

• NULL ON ERROR - Returns null when an error occurs. This is the default.

• ERROR ON ERROR - Returns the appropriate Oracle error when an error occurs.

See Also

• RFC 7396 JSON Merge Patch

• Updating a JSON Document with JSON Merge Patch

JSON_OBJECT
Syntax

JSON_OBJECT (JSON_OBJECT_content)

JSON { JSON_OBJECT_content }

json_object_content::=

*

entry

,

JSON_on_null_clause JSON_returning_clause

STRICT WITH UNIQUE KEYS

entry::=

regular_entry

format_clause

wildcard

regular_entry::=

Chapter 7
JSON_OBJECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 188 of 521

https://tools.ietf.org/html/rfc7396

KEY

string VALUE expr

expr

: expr

column

format_clause::=

FORMAT JSON

wildcard::=

id .

id . *

JSON_on_null_clause::=

NULL

ABSENT

ON NULL

JSON_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

reference

value

JSON

JSON_type_specification

Purpose

The SQL/JSON function JSON_OBJECT takes as its input either a sequence of key-value pairs or
one object type instance. A collection type cannot be passed to JSON_OBJECT.

It returns a JSON object that contains an object member for each of those key-value pairs.

entry

regular_entry: Use this clause to specify a property key-value pair.

Chapter 7
JSON_OBJECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 189 of 521

regular_entry

• KEY is optional and is provided for semantic clarity.

• Use the optional expr to specify the property key name as a case-sensitive text literal.

• Use expr to specify the property value. For expr, you can specify any expression that
evaluates to a SQL numeric literal, text literal, date, or timestamp. The date and timestamp
data types are printed in the generated JSON object or array as JSON strings following the
ISO date format. If expr evaluates to a numeric literal, then the resulting property value is a
JSON number value; otherwise, the resulting property value is a case-sensitive JSON
string value enclosed in double quotation marks.

You can use the colon to separate JSON_OBJECT entries.

Example

SELECT JSON_OBJECT(
'name' : first_name || ' ' || last_name,
'email' : email,
'phone' : phone_number,
'hire_date' : hire_date
)
FROM employees
WHERE employee_id = 140;

format_clause

Specify FORMAT JSON after an input expression to declare that the value that results from it
represents JSON data, and will therefore not be quoted in the output.

wildcard

Wildcard entries select multiple columns and can take the form of *, table.*, view.*, or t_alias.*.
Use wildcard entries to map all the columns from a table, subquery, or view to a JSON object
without explicitly naming all of the columns in the query. In this case wildcard entries are used
in the same way that they are used directly in a select_list.

Example 1

In the resulting JSON object, the key names are equal to the names of the corresponding
columns.

SELECT JSON_OBJECT(*)
FROM employees
WHERE employee_id = 140;

Output 1

{"EMPLOYEE_ID":140,"FIRST_NAME":"Joshua","LAST_NAME":"Patel","EMAIL":"JPAT
EL","PHONE_NUMBER":"650.121.1834","HIRE_DATE":"2006-04-
06T00:00:00","JOB_ID":"ST_CLERK","SALARY":2500,"COMMISSION_PCT":null,"MAN
AGER_ID":123,"DEPARTMENT_ID":50}

Example 2

Chapter 7
JSON_OBJECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 190 of 521

This query selects columns from a specific table in a join query.

SELECT JSON_OBJECT('NAME' VALUE first_name, d.*)
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND e.employee_id =140

Example 3

This query converts the departments table to a single JSON array value.

SELECT JSON_ARRAYAGG(JSON_OBJECT(*))
FROM departments

JSON_on_null_clause

Use this clause to specify the behavior of this function when expr evaluates to null.

• NULL ON NULL - When NULL ON NULL is specified, then a JSON NULL value is used as a
value for the given key.

SELECT JSON_OBJECT('key1' VALUE NULL) evaluates to {"key1" : null}

• ABSENT ON NULL - If you specify this clause, then the function omits the property key-value
pair from the JSON object.

JSON_returning_clause

Use this clause to specify the type of return value. One of :

• VARCHAR2 specifying the size as a number of bytes or characters. The default is bytes. If
you omit this clause, or specify the clause without specifying the size value, then
JSON_ARRAY returns a character string of type VARCHAR2(4000). Refer to VARCHAR2 Data
Type for more information. Note that when specifying the VARCHAR2 data type elsewhere in
SQL, you are required to specify a size. However, in the JSON_returning_clause you can omit
the size.

• CLOB to return a character large object containing single-byte or multi-byte characters.

• BLOB to return a binary large object of the AL32UTF8 character set.

• WITH TYPENAME

STRICT

Specify the STRICT clause to verify that the output of the JSON generation function is correct
JSON. If the check fails, a syntax error is raised.

Example 1: Output string appears within quotes, because FORMAT JSON is not used

SELECT JSON_OBJECT ('name' value 'Foo') FROM DUAL
Output:
JSON_OBJECT('NAME'VALUE'FOO'FORMATJSON)

{"name":"Foo"}

Chapter 7
JSON_OBJECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 191 of 521

Example 2: No quotes around output string when FORMAT JSON is used.

SELECT JSON_OBJECT ('name' value 'Foo' FORMAT JSON) FROM DUAL
Output:
JSON_OBJECT('NAME'VALUE'FOO'FORMATJSON)

{"name":Foo}

Example 3: JSON Syntax error when FORMAT JSON STRICT is used.

SELECT JSON_OBJECT ('name' value 'Foo' FORMAT JSON STRICT) FROM DUAL
Output:
ORA-40441: JSON syntax error

WITH UNIQUE KEYS

Specify WITH UNIQUE KEYS to guarantee that generated JSON objects have unique keys.

Example

The following example returns JSON objects that each contain two property key-value pairs:

SELECT JSON_OBJECT (
 KEY 'deptno' VALUE d.department_id,
 KEY 'deptname' VALUE d.department_name
) "Department Objects"
 FROM departments d
 ORDER BY d.department_id;

Department Objects
--
{"deptno":10,"deptname":"Administration"}
{"deptno":20,"deptname":"Marketing"}
{"deptno":30,"deptname":"Purchasing"}
{"deptno":40,"deptname":"Human Resources"}
{"deptno":50,"deptname":"Shipping"}
. . .

JSON_OBJECT Column Entries

In some cases you might want to have JSON object key names match the names of the table
columns to avoid repeating the column name in the key value expression. For example:

SELECT JSON_OBJECT(
'first_name' VALUE first_name,
'last_name' VALUE last_name,
'email' VALUE email,
'hire_date' VALUE hire_date
)
FROM employees
WHERE employee_id = 140;

{"first_name":"Joshua","last_name":"Patel","email":"JPATEL","hire_date":"2006-04-
06T00:00:00"}

Chapter 7
JSON_OBJECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 192 of 521

In such cases you can use a shortcut, where a single column value may be specified as input
and the corresponding object entry key is inferred from the name of the column. For example:

SELECT JSON_OBJECT(first_name, last_name, email, hire_date)
FROM employees
WHERE employee_id = 140;

{"first_name":"Joshua","last_name":"Patel","email":"JPATEL","hire_date":"2006-04-
06T00:00:00"}

You can use quoted or non-quoted identifiers for column names. If you use non-quoted
identifiers, then the case-sensitive value of the identifier, as written in the query, is used to
generate the corresponding object key value. However for the purpose of referencing the
column value, the identifier is still case-insensitive. For example:

SELECT JSON_OBJECT(eMail)
FROM employees
WHERE employee_id = 140

{"eMail":"JPATEL"}

Notice that the capital 'M' as typed in the column name is preserved.

See Also

Generation of JSON Data Using SQL

JSON_OBJECTAGG
Syntax

JSON_OBJECTAGG (

KEY

key_expr VALUE val_expr

JSON_on_null_clause

JSON_returning_clause STRICT WITH UNIQUE KEYS

)

JSON_on_null_clause::=

NULL

ABSENT

ON NULL

JSON_returning_clause::=

Chapter 7
JSON_OBJECTAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 193 of 521

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

reference

value

JSON

JSON_type_specification

Purpose

The SQL/JSON function JSON_OBJECTAGG is an aggregate function. It takes as its input a
property key-value pair. Typically, the property key, the property value, or both are columns of
SQL expressions. This function constructs an object member for each key-value pair and
returns a single JSON object that contains those object members.

[KEY] string VALUE expr

Use this clause to specify property key-value pairs.

• KEY is optional and is provided for semantic clarity.

• Use string to specify the property key name as a case-sensitive text literal.

• Use expr to specify the property value. For expr, you can specify any expression that
evaluates to a SQL numeric literal, text literal, date, or timestamp. The date and timestamp
data types are printed in the generated JSON object or array as JSON Strings following
the ISO 8601 date format. If expr evaluates to a numeric literal, then the resulting property
value is a JSON number value; otherwise, the resulting property value is a case-sensitive
JSON string value enclosed in double quotation marks.

FORMAT JSON

Use this optional clause to indicate that the input string is JSON, and will therefore not be
quoted in the output.

JSON_on_null_clause

Use this clause to specify the behavior of this function when expr evaluates to null.

• NULL ON NULL - When NULL ON NULL is specified, then a JSON NULL value is used as a
value for the given key.

• ABSENT ON NULL - If you specify this clause, then the function omits the property key-value
pair from the JSON object.

JSON_returning_clause

Use this clause to specify the data type of the character string returned by this function. You
can specify the following data types:

• VARCHAR2[(size [BYTE,CHAR])]

When specifying the VARCHAR2 data type elsewhere in SQL, you are required to specify a
size. However, in this clause you can omit the size.

Chapter 7
JSON_OBJECTAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 194 of 521

• CLOB to return a character large object containing single-byte or multi-byte characters.

• BLOB to return a binary large object of the AL32UTF8 character set.

• JSON to return JSON data.

You must set the database initialization parameter compatible to 20 or greater to use the
JSON data type.

If you omit this clause, or if you specify VARCHAR2 but omit the size value, then JSON_OBJECTAGG
returns a character string of type VARCHAR2(4000).

Refer to "Data Types " for more information on the preceding data types.

STRICT

Specify the STRICT clause to verify that the output of the JSON generation function is correct
JSON. If the check fails, a syntax error is raised.

Refer to JSON_OBJECT for examples.

WITH UNIQUE KEYS

Specify WITH UNIQUE KEYS to guarantee that generated JSON objects have unique keys.

Examples

The following example constructs a JSON object whose members contain department names
and department numbers:

SELECT JSON_OBJECTAGG(KEY department_name VALUE department_id) "Department Numbers"
 FROM departments
 WHERE department_id <= 30;

Department Numbers
--
{"Administration":10,"Marketing":20,"Purchasing":30}

JSON_QUERY
Syntax

JSON_QUERY (expr

FORMAT JSON

, JSON_basic_path_expression

JSON_passing_clause JSON_query_returning_clause JSON_query_wrapper_clause

JSON_query_quotes_clause JSON_query_on_error_clause JSON_query_on_empty_clause

JSON_query_on_mismatch_clause
TYPE (

STRICT

LAX
)

)

(JSON_basic_path_expression: See Oracle Database JSON Developer's Guide)

Chapter 7
JSON_QUERY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 195 of 521

JSON_query_returning_clause::=

RETURNING JSON_query_return_type

ALLOW

DISALLOW
SCALARS

PRETTY ASCII

JSON_query_return_type::=

VARCHAR2

(size

BYTE

CHAR

)

CLOB

BLOB

JSON

VECTOR

JSON_query_wrapper_clause::=

WITHOUT

ARRAY

WRAPPER

WITH

UNCONDITIONAL

CONDITIONAL ARRAY

WRAPPER

JSON_query_quotes_clause::=

KEEP

OMIT

QUOTES

ON SCALAR STRING

JSON_query_on_error_clause::=

ERROR

NULL

EMPTY

EMPTY ARRAY

EMPTY OBJECT

ON ERROR

Chapter 7
JSON_QUERY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 196 of 521

JSON_query_on_empty_clause::=

ERROR

NULL

EMPTY

EMPTY ARRAY

EMPTY OBJECT

ON EMPTY

JSON_query_on_mismatch_clause::=

ERROR

NULL

ON MISMATCH

Purpose

JSON_QUERY selects and returns one or more values from JSON data and returns those values.
You can use JSON_QUERY to retrieve fragments of a JSON document.

See Also

• Query JSON Data

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character value
returned by JSON_QUERY

expr

Use expr to specify the JSON data you want to query.

expr is a SQL expression that returns an instance of a SQL data type, one of JSON, VARCHAR2,
CLOB, or BLOB. It can be a table or view column value, a PL/SQLvariable, or a bind variable
with proper casting.

If expr is null, then the function returns null.

If expr is not a text literal of well-formed JSON data using strict or lax syntax, then the function
returns null by default. You can use the JSON_query_on_error_clause to override this default
behavior. Refer to JSON_query_on_error_clause.

FORMAT JSON

You must specify FORMAT JSON if expr is a column of data type BLOB.

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The function uses the path
expression to evaluate expr and find one or more JSON values that match, or satisfy the path

Chapter 7
JSON_QUERY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 197 of 521

expression. The path expression must be a text literal. See Oracle Database JSON
Developer's Guide for the full semantics of JSON_basic_path_expression.

JSON_query_returning_clause

Use this clause to specify the data type and format of the character string returned by this
function.

RETURNING

You can use the RETURNING clause to specify the data type of the returned instance, one of
JSON, VARCHAR2, CLOB, or BLOB.

The default return type depends on the input data type. If the input type is JSON, then JSON is
also the default return type. Otherwise VARCHAR2(4000) is the default return type.

When specifying the VARCHAR2 data type elsewhere in SQL, you are required to specify a size.
However, in this clause you can omit the size. In this case, JSON_QUERY returns a character
string of type VARCHAR2(4000).

Refer to "VARCHAR2 Data Type " for more information.

If the data type is not large enough to hold the return character string, then JSON_QUERY returns
null by default. You can use the JSON_query_on_error_clause to override this default behavior. Refer
to the JSON_query_on_error_clause.

PRETTY

Specify PRETTY to pretty-print the return character string by inserting newline characters and
indenting.

ASCII

Specify ASCII to automatically escape any non-ASCII Unicode characters in the return
character string, using standard ASCII Unicode escape sequences.

JSON_query_wrapper_clause

Use this clause to control whether this function wraps the values matched by the path
expression in an array wrapper—that is, encloses the sequence of values in square brackets
([]).

• Specify WITHOUT WRAPPER to omit the array wrapper. You can specify this clause only if
the path expression matches a single JSON object or JSON array. This is the default.

• Specify WITH WRAPPER to include the array wrapper. You must specify this clause if the
path expression matches a single scalar value (a value that is not a JSON object or JSON
array) or multiple values of any type.

• Specifying the WITH UNCONDITIONAL WRAPPER clause is equivalent to specifying the WITH
WRAPPER clause. The UNCONDITIONAL keyword is provided for semantic clarity.

• Specify WITH CONDITIONAL WRAPPER to include the array wrapper only if the path
expression matches a single scalar value or multiple values of any type. If the path
expression matches a single JSON object or JSON array, then the array wrapper is
omitted.

The ARRAY keyword is optional and is provided for semantic clarity.

If the function returns a single scalar value, or multiple values of any type, and you do not
specify WITH [UNCONDITIONAL | CONDITIONAL] WRAPPER, then the function returns null by

Chapter 7
JSON_QUERY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 198 of 521

default. You can use the JSON_query_on_error_clause to override this default behavior. Refer to the
JSON_query_on_error_clause.

JSON_query_on_error_clause

Use this clause to specify the value returned by this function when the following errors occur:

• expr is not well-formed JSON data using strict or lax JSON syntax

• No match is found when the JSON data is evaluated using the SQL/JSON path
expression. You can override the behavior for this type of error by specifying the
JSON_query_on_empty_clause.

• The return value data type is not large enough to hold the return character string

• The function matches a single scalar value or, multiple values of any type, and the WITH
[UNCONDITIONAL | CONDITIONAL] WRAPPER clause is not specified

You can specify the following clauses:

• NULL ON ERROR - Returns null when an error occurs. This is the default.

• ERROR ON ERROR - Returns the appropriate Oracle error when an error occurs.

• EMPTY ON ERROR - Specifying this clause is equivalent to specifying EMPTY ARRAY ON
ERROR.

• EMPTY ARRAY ON ERROR - Returns an empty JSON array ([]) when an error occurs.

• EMPTY OBJECT ON ERROR - Returns an empty JSON object ({}) when an error occurs.

JSON_query_on_empty_clause

Use this clause to specify the value returned by this function if no match is found when the
JSON data is evaluated using the SQL/JSON path expression. This clause allows you to
specify a different outcome for this type of error than the outcome specified with the
JSON_query_on_error_clause.

You can specify the following clauses:

• NULL ON EMPTY - Returns null when no match is found.

• ERROR ON EMPTY - Returns the appropriate Oracle error when no match is found.

• EMPTY ON EMPTY - Specifying this clause is equivalent to specifying EMPTY ARRAY ON
EMPTY.

• EMPTY ARRAY ON EMPTY - Returns an empty JSON array ([]) when no match is found.

• EMPTY OBJECT ON EMPTY - Returns an empty JSON object ({}) when no match is found.

If you omit this clause, then the JSON_query_on_error_clause determines the value returned when
no match is found.

TYPE Clause

For a full discussion of STRICT and LAX syntax see About Strict and Lax JSON Syntax, and
TYPE Clause for SQL Functions and Conditions

Examples

The following query returns the context item, or the specified string of JSON data. The path
expression matches a single JSON object, which does not require an array wrapper. Note that

Chapter 7
JSON_QUERY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 199 of 521

the JSON data is converted to strict JSON syntax in the returned value—that is, the object
property names are enclosed in double quotation marks.

SELECT JSON_QUERY('{a:100, b:200, c:300}', '$') AS value
 FROM DUAL;

VALUE
--
{"a":100,"b":200,"c":300}

The following query returns the value of the member with property name a. The path
expression matches a scalar value, which must be enclosed in an array wrapper. Therefore,
the WITH WRAPPER clause is specified.

SELECT JSON_QUERY('{a:100, b:200, c:300}', '$.a' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[100]

The following query returns the values of all object members. The path expression matches
multiple values, which together must be enclosed in an array wrapper. Therefore, the WITH
WRAPPER clause is specified.

SELECT JSON_QUERY('{a:100, b:200, c:300}', '$.*' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[100,200,300]

The following query returns the context item, or the specified string of JSON data. The path
expression matches a single JSON array, which does not require an array wrapper.

SELECT JSON_QUERY('[0,1,2,3,4]', '$') AS value
 FROM DUAL;

VALUE
--
[0,1,2,3,4]

The following query is similar to the previous query, except the WITH WRAPPER clause is
specified. Therefore, the JSON array is wrapped in an array wrapper.

SELECT JSON_QUERY('[0,1,2,3,4]', '$' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[[0,1,2,3,4]]

The following query returns all elements in a JSON array. The path expression matches
multiple values, which together must be enclosed in an array wrapper. Therefore, the WITH
WRAPPER clause is specified.

SELECT JSON_QUERY('[0,1,2,3,4]', '$[*]' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[0,1,2,3,4]

Chapter 7
JSON_QUERY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 200 of 521

The following query returns the elements at indexes 0, 3 through 5, and 7 in a JSON array. The
path expression matches multiple values, which together must be enclosed in an array
wrapper. Therefore, the WITH WRAPPER clause is specified.

SELECT JSON_QUERY('[0,1,2,3,4,5,6,7,8]', '$[0, 3 to 5, 7]' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[0,3,4,5,7]

The following query returns the fourth element in a JSON array. The path expression matches
a scalar value, which must be enclosed in an array wrapper. Therefore, the WITH WRAPPER
clause is specified.

SELECT JSON_QUERY('[0,1,2,3,4]', '$[3]' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[3]

The following query returns the first element in a JSON array. The WITH CONDITIONAL
WRAPPER clause is specified and the path expression matches a single JSON object.
Therefore, the value returned is not wrapped in an array. Note that the JSON data is converted
to strict JSON syntax in the returned value—that is, the object property name is enclosed in
double quotation marks.

SELECT JSON_QUERY('[{a:100},{b:200},{c:300}]', '$[0]'
 WITH CONDITIONAL WRAPPER) AS value
 FROM DUAL;

VALUE
--
{"a":100}

The following query returns all elements in a JSON array. The WITH CONDITIONAL WRAPPER
clause is specified and the path expression matches multiple JSON objects. Therefore, the
value returned is wrapped in an array.

SELECT JSON_QUERY('[{"a":100},{"b":200},{"c":300}]', '$[*]'
 WITH CONDITIONAL WRAPPER) AS value
 FROM DUAL;

VALUE
--
[{"a":100},{"b":200},{"c":300}]

The following query is similar to the previous query, except that the value returned is of data
type VARCHAR2(100).

SELECT JSON_QUERY('[{"a":100},{"b":200},{"c":300}]', '$[*]'
 RETURNING VARCHAR2(100) WITH CONDITIONAL WRAPPER) AS value
 FROM DUAL;

VALUE
--
[{"a":100},{"b":200},{"c":300}]

Chapter 7
JSON_QUERY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 201 of 521

The following query returns the fourth element in a JSON array. However, the supplied JSON
array does not contain a fourth element, which results in an error. The EMPTY ON ERROR clause
is specified. Therefore, the query returns an empty JSON array.

SELECT JSON_QUERY('[{"a":100},{"b":200},{"c":300}]', '$[3]'
 EMPTY ON ERROR) AS value
 FROM DUAL;

VALUE
--
[]

JSON_SCALAR
Syntax

JSON_SCALAR (expr

SQL

JSON NULL ON NULL NULL ON ERROR

ERROR ON ERROR EMPTY STRING ON NULL

)

Purpose

JSON_SCALAR accepts a SQL scalar value as input and returns a corresponding JSON scalar
value as a JSON type instance. The value can be an Oracle-specific JSON-language type, such
as a date, which is not part of the JSON standard.

To use JSON_SCALAR you must set the database initialization parameter compatible is at least 20.
Otherwise it raises an error.

The argument to JSON_SCALAR can be an instance of any of these SQL data types:
BINARY_DOUBLE, BINARY_FLOAT, BLOB, CLOB, DATE, INTERVAL YEAR TO MONTH, INTERVAL DAY
TO SECOND, JSON, NUMBER, RAW, TIMESTAMP, VARCHAR, VARCHAR2, or VECTOR.

The returned JSON type instance is a JSON-language scalar value supported by Oracle.

If the argument to JSON_SCALAR is a SQL NULL value, then you can obtain a return value as
follows:

• SQL NULL, the default behavior

• JSON null, using keywords NULL ON NULL

• An empty JSON string, " ", using keywords EMPTY STRING ON NULL

The default behavior of returning SQL NULL is the only exception to the rule that a JSON scalar
value is returned.

See Also

See Oracle SQL Function JSON_SCALAR of the JSON Developer's Guide.

Chapter 7
JSON_SCALAR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 202 of 521

JSON_SERIALIZE
Syntax

json_serialize

JSON_SERIALIZE (expr

JSON_returning_clause PRETTY ASCII

ORDERED TRUNCATE

NULL

ERROR

EMPTY
ARRAY

OBJECT

ON ERROR

)

json_returning_clause

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

reference

value

JSON

JSON_type_specification

Purpose

json_serialize takes JSON data of any SQL data type (BLOB,CLOB, JSON, or VARCHAR2) as input
and returns a textual representation of it. You typically use it to transform the result of a query.

You can use json_serialize to convert binary JSON data to textual form (CLOB or VARCHAR2), or to
transform textual JSON data by pretty-printing it or escaping non-ASCII Unicode characters in
it.

When Oracle SQL function vector_serialize is applied to a JSON type instance, any non- standard
Oracle scalar JSON value is returned as a standard JSON scalar value.

When you apply vector_serialize to a VECTOR type instance, it returns a textual JSON array of
numbers.

Chapter 7
JSON_SERIALIZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 203 of 521

Note

You can serialize a VECTOR instance to a textual JSON array of numbers using SQL
function vector_serialize. (Function json_serialize serializes only JSON data.) See
VECTOR_SERIALIZE

See Also

Oracle SQL Function JSON_SERIALIZE of the JSON Developer's Guide.

expr

expr is the input expression. Can be any one of type JSON, VARCHAR2, CLOB, or BLOB.

JSON_returning_clause::=

You can use the JSON_returning_clause to specify the return type of the function. One of BOOLEAN,
BLOB, CLOB, JSON, or VARCHAR2.

The default return type is VARCHAR2(4000).

If the return type is RAW or BLOB, it contains UTF8 encoded JSON text.

PRETTY

Specify PRETTY if you want the result to be formatted for human readability.

ASCII

Specify ASCII if you want non-ASCII characters to be output using JSON escape sequences.

ORDERED

Specify ORDERED if you want to reorder key-value pairs alphabetically in ascending order. You
can combine ORDERED with PRETTY and ASCII.

Example

SELECT JSON_SERIALIZE('{price:20, currency:" €"}' ASCII PRETTY ORDERED) from dual;
{
 "currency" : "\u20AC",
 "price" : 20
}

TRUNCATE

Specify TRUNCATE, if you want the textual output in the result document to fit into the buffer of
the specified return type .

JSON_on_error_clause::=

Specify JSON_on_error_clause to control the handling of processing errors.

ERROR ON ERROR is the default.

EMPTY ON ERROR is not supported.

Chapter 7
JSON_SERIALIZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 204 of 521

If you specify TRUNCATE with JSON_on_error_clause, then a value too large for the return type will
be truncated to fit into the buffer instead of raising an error.

Example

SELECT JSON_SERIALIZE ('{a:[1,2,3,4]}' RETURNING VARCHAR2(3) TRUNCATE ERROR ON ERROR) from dual
–-------
{"a

JSON_TABLE
Syntax

JSON_TABLE (expr

FORMAT JSON , JSON_basic_path_expression

JSON_table_on_error_clause
TYPE (

STRICT

LAX
)

JSON_table_on_empty_clause

JSON_columns_clause)

(JSON_basic_path_expression: See Oracle Database JSON Developer's Guide,
JSON_table_on_error_clause::=, JSON_columns_clause::=)

JSON_table_on_error_clause::=

ERROR

NULL

ON ERROR

JSON_table_on_empty_clause::=

ERROR

NULL

ON EMPTY

JSON_columns_clause::=

COLUMNS (JSON_column_definition

,

)

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 205 of 521

JSON_column_definition::=

JSON_exists_column

JSON_query_column

JSON_value_column

JSON_nested_path

ordinality_column

JSON_exists_column::=

column_name

JSON_value_return_type

EXISTS

PATH JSON_path

JSON_exists_on_error_clause JSON_exists_on_empty_clause

(JSON_value_return_type::=—part of JSON_VALUE, JSON_basic_path_expression: See Oracle
Database JSON Developer's Guide, JSON_exists_on_error_clause::=—part of JSON_EXISTS)

JSON_query_column::=

column_name

JSON_query_return_type FORMAT JSON

ALLOW

DISALLOW
SCALARS

JSON_query_wrapper_clause

PATH JSON_path JSON_query_on_error_clause

(JSON_query_return_type::=, JSON_query_wrapper_clause::=, and
JSON_query_on_error_clause::=—part of JSON_QUERY, JSON_basic_path_expression: See Oracle
Database JSON Developer's Guide)

JSON_value_column::=

column_name

JSON_value_return_type TRUNCATE PATH JSON_path

JSON_value_on_error_clause JSON_value_on_empty_clause JSON_value_on_mismatch_clause

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 206 of 521

(JSON_value_return_type::= and JSON_value_on_error_clause::=—part of JSON_VALUE,
JSON_basic_path_expression: See Oracle Database JSON Developer's Guide)

JSON_nested_path::=

NESTED

PATH

JSON_path JSON_columns_clause

(JSON_basic_path_expression: See Oracle Database JSON Developer's Guide,
JSON_columns_clause::=)

ordinality_column::=

column_name FOR ORDINALITY

JSON_path ::=

JSON_basic_path_expression

JSON_relative_object_access

JSON_relative_object_access ::=

JSON_object_key

array_step

. JSON_object_key

array_step

nested_clause ::=

table_reference NESTED

PATH

identifier

. JSON_object_key

array_step

, JSON_basic_path_expression

JSON_table_on_error_clause JSON_table_on_empty_clause

JSON_columns_clause

Purpose

The SQL/JSON function JSON_TABLE creates a relational view of JSON data. It maps the result
of a JSON data evaluation into relational rows and columns. You can query the result returned
by the function as a virtual relational table using SQL. The main purpose of JSON_TABLE is to
create a row of relational data for each object inside a JSON array and output JSON values
from within that object as individual SQL column values.

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 207 of 521

You must specify JSON_TABLE only in the FROM clause of a SELECT statement. The function first
applies a path expression, called a SQL/JSON row path expression, to the supplied JSON
data. The JSON value that matches the row path expression is called a row source in that it
generates a row of relational data. The COLUMNS clause evaluates the row source, finds
specific JSON values within the row source, and returns those JSON values as SQL values in
individual columns of a row of relational data.

The COLUMNS clause enables you to search for JSON values in different ways by using the
following clauses:

• JSON_exists_column - Evaluates JSON data in the same manner as the JSON_EXISTS condition,
that is, determines if a specified JSON value exists, and returns either a VARCHAR2 column
of values 'true' or 'false', or a NUMBER column of values 1 or 0.

• JSON_query_column - Evaluates JSON data in the same manner as the JSON_QUERY function,
that is, finds one or more specified JSON values, and returns a column of character strings
that contain those JSON values.

• JSON_value_column - Evaluates JSON data in the same manner as the JSON_VALUE function,
that is, finds a specified scalar JSON value, and returns a column of those JSON values as
SQL values.

• JSON_nested_path - Allows you to flatten JSON values in a nested JSON object or JSON array
into individual columns in a single row along with JSON values from the parent object or
array. You can use this clause recursively to project data from multiple layers of nested
objects or arrays into a single row.

• ordinality_column - Returns a column of generated row numbers.

The column definition clauses allow you to specify a name for each column of data that they
return. You can reference these column names elsewhere in the SELECT statement, such as in
the SELECT list and the WHERE clause.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to each character data type
column in the table generated by JSON_TABLE

expr

Use this clause to specify the JSON data to be evaluated. For expr, specify an expression that
evaluates to a text literal. If expr is a column, then the column must be of data type VARCHAR2,
CLOB, or BLOB. If expr is null, then the function returns null.

If expr is not a text literal of well-formed JSON data using strict or lax syntax, then the function
returns null by default. You can use the JSON_table_on_error_clause to override this default
behavior. Refer to JSON_table_on_error_clause.

FORMAT JSON

You must specify FORMAT JSON if expr is a column of data type BLOB.

PATH

Use the PATH clause to delineate a portion of the row that you want to use as the column
content. The absence of the PATH clause does not change the behavior with a path

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 208 of 521

of '$.<column-name>', where <column-name> is the column name. The name of the object field that
is targeted is taken implicitly as the column name. See Oracle Database JSON Developer's
Guide for the full semantics of PATH.

JSON_basic_path_expression

The JSON_basic_path_expression is a text literal. See Oracle Database JSON Developer's Guide for
the full semantics of this clause.

JSON_relative_object_access

Specify this row path expression to enable simple dot notation. The value of
JSON_relative_object_access is evaluated as a JSON/Path expression relative to the current row
item.

For more information on the JSON_object_key clause, refer to JSON Object Access Expressions .

JSON_table_on_error_clause

Use this clause to specify the value returned by the function when errors occur:

• NULL ON ERROR

– If the input is not well-formed JSON text, no more rows will be returned as soon as the
error is detected. Note that since JSON_TABLE supports streaming evaluation, rows may
be returned prior to encountering the portion of the input with the error.

– If no match is found when the row path expression is evaluated, no rows are returned.

– Sets the default error behavior for all column expressions to NULL ON ERROR

• ERROR ON ERROR

– If the input is not well-formed JSON text, an error will be raised.

– If no match is found when the row path expression is evaluated, an error will be raised

– Sets the default error behavior for all column expressions to ERROR ON ERROR

TYPE Clause

For a full discussion of STRICT and LAX syntax see About Strict and Lax JSON Syntax, and
TYPE Clause for SQL Functions and Conditions

JSON_table_on_empty_clause

Use this clause to specify the value returned by this function if no match is found when the
JSON data is evaluated using the SQL/JSON path expression. This clause allows you to
specify a different outcome for this type of error than the outcome specified with the
JSON_table_on_error_clause.

You can specify the following clauses:

• NULL ON EMPTY - Returns null when no match is found.

• ERROR ON EMPTY - Returns the appropriate Oracle error when no match is found.

• DEFAULT literal ON EMPTY - Returns literal when no match is found. The data type of literal
must match the data type of the value returned by this function.

If you omit this clause, then the JSON_table_on_error_clause determines the value returned when no
match is found.

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 209 of 521

JSON_columns_clause

Use the COLUMNS clause to define the columns in the virtual relational table returned by the
JSON_TABLE function.

JSON_exists_column

This clause evaluates JSON data in the same manner as the JSON_EXISTS condition, that is, it
determines if a specified JSON value exists. It returns either a VARCHAR2 column of values 'true'
or 'false', or a NUMBER column of values 1 or 0.

A value of 'true' or 1 indicates that the JSON value exists and a value of 'false' or 0 indicates that
the JSON value does not exist.

You can use the JSON_value_return_type clause to control the data type of the returned column. If
you omit this clause, then the data type is VARCHAR2(4000). Use column_name to specify the name
of the returned column. The rest of the clauses of JSON_exists_column have the same semantics
here as they have for the JSON_EXISTS condition. For full information on these clauses, refer to
"JSON_EXISTS Condition". Also see "Using JSON_exists_column: Examples" for an example.

JSON_query_column

This clause evaluates JSON data in the same manner as the JSON_QUERY function, that is, it
finds one or more specified JSON values, and returns a column of character strings that
contain those JSON values.

Use column_name to specify the name of the returned column. The rest of the clauses of
JSON_query_column have the same semantics here as they have for the JSON_QUERY function. For
full information on these clauses, refer to JSON_QUERY. Also see "Using
JSON_query_column: Examples" for an example.

JSON_value_column

This clause evaluates JSON data in the same manner as the JSON_VALUE function, that is, it
finds a specified scalar JSON value, and returns a column of those JSON values as SQL
values.

Use column_name to specify the name of the returned column. The rest of the clauses of
JSON_value_column have the same semantics here as they have for the JSON_VALUE function. For
full information on these clauses, refer to JSON_VALUE. Also see "Using
JSON_value_column: Examples" for an example.

JSON_nested_path

Use this clause to flatten JSON values in a nested JSON object or JSON array into individual
columns in a single row along with JSON values from the parent object or array. You can use
this clause recursively to project data from multiple layers of nested objects or arrays into a
single row.

Specify the JSON_basic_path_expression clause to match the nested object or array. This path
expression is relative to the SQL/JSON row path expression specified in the JSON_TABLE
function.

Use the COLUMNS clause to define the columns of the nested object or array to be returned.
This clause is recursive—you can specify the JSON_nested_path clause within another
JSON_nested_path clause. Also see "Using JSON_nested_path: Examples" for an example.

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 210 of 521

ordinality_column

This clause returns a column of generated row numbers of data type NUMBER. You can specify
at most one ordinality_column. Also see "Using JSON_value_column: Examples" for an example
of using the ordinality_column clause.

nested_clause

Use the nested_clause as a short-hand syntax for mapping JSON values to relational columns. It
reuses the syntax of the JSON_TABLE columns clause and is essentially equivalent to a left-
outer ANSI join with JSON_TABLE.

Example 1 using the nested_clause is equivalent to Example 2 using the left-outer join with
JSON_TABLE .

Example 1 Nested_Clause

SELECT t.*
FROM j_purchaseOrder
NESTED po_document COLUMNS(PONumber, Reference, Requestor) t;
PONUMBER REFERENCE REQUESTOR
--------------- ------------------------------ -----------------------------
1600 ABULL-20140421 Alexis Bull

Example 2 Left-Outer Join With JSON_TABLE

SELECT t.*
FROM j_purchaseOrder LEFT OUTER JOIN
JSON_TABLE(po_document COLUMNS(PONumber, Reference, Requestor)) t ON 1=1;

When using the nested_clause, the JSON column name following the NESTED keyword will not be
included in SELECT * expansion. For example:

SELECT *
FROM j_purchaseOrder
NESTED po_document.LineItems[*]
COLUMNS(ItemNumber, Quantity NUMBER);
ID DATE_LOADED ITEMN QUANTITY
------------------------ -- ------- -----------
6C5589E9A9156… 16-MAY-18 08.40.30.397688 AM -07:00 1 9
6C5589E9A9156… 16-MAY-18 08.40.30.397688 AM -07:00 2 5

The result does not include the JSON column name po_document as one of the columns in the
result.

When unnesting JSON column data, the recommendation is to use LEFT OUTER JOIN
semantics, so that JSON columns that produce no rows will not filter other non-JSON data
from the result. For example,a j_purchaseOrder row with a NULL po_document column will not filter
the possibly non-null relational columns id and date_loaded from the result.

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 211 of 521

The columns clause supports all the same features defined for JSON_TABLE including nested
columns. For example:

SELECT t.*
FROM j_purchaseorder
NESTED po_document COLUMNS(PONumber, Reference,
NESTED LineItems[*] COLUMNS(ItemNumber, Quantity)
) t
PONUMBER REFERENCE ITEMN QUANTITY
--------------- ------------------------------ ----- ------------
1600 ABULL-20140421 1 9
1600 ABULL-20140421 2 5

Examples

Creating a Table That Contains a JSON Document: Example

This example shows how to create and populate table j_purchaseorder, which is used in the rest of
the JSON_TABLE examples in this section.

The following statement creates table j_purchaseorder. Column po_document is for storing JSON
data and, therefore, has an IS JSON check constraint to ensure that only well-formed JSON is
stored in the column.

CREATE TABLE j_purchaseorder
 (id RAW (16) NOT NULL,
 date_loaded TIMESTAMP(6) WITH TIME ZONE,
 po_document CLOB CONSTRAINT ensure_json CHECK (po_document IS JSON));

The following statement inserts one row, or one JSON document, into table j_purchaseorder:

INSERT INTO j_purchaseorder
 VALUES (
 SYS_GUID(),
 SYSTIMESTAMP,
 '{"PONumber" : 1600,
 "Reference" : "ABULL-20140421",
 "Requestor" : "Alexis Bull",
 "User" : "ABULL",
 "CostCenter" : "A50",
 "ShippingInstructions" : {"name" : "Alexis Bull",
 "Address": {"street" : "200 Sporting Green",
 "city" : "South San Francisco",
 "state" : "CA",
 "zipCode" : 99236,
 "country" : "United States of America"},
 "Phone" : [{"type" : "Office", "number" : "909-555-7307"},
 {"type" : "Mobile", "number" : "415-555-1234"}]},
 "Special Instructions" : null,
 "AllowPartialShipment" : true,
 "LineItems" : [{"ItemNumber" : 1,
 "Part" : {"Description" : "One Magic Christmas",
 "UnitPrice" : 19.95,
 "UPCCode" : 13131092899},
 "Quantity" : 9.0},
 {"ItemNumber" : 2,
 "Part" : {"Description" : "Lethal Weapon",
 "UnitPrice" : 19.95,
 "UPCCode" : 85391628927},
 "Quantity" : 5.0}]}');

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 212 of 521

Using JSON_query_column: Examples

The statement in this example queries JSON data for a specific JSON property using the
JSON_query_column clause, and returns the property value in a column.

The statement first applies a SQL/JSON row path expression to column po_document, which
results in a match to the ShippingInstructions property. The COLUMNS clause then uses the
JSON_query_column clause to return the Phone property value in a VARCHAR2(100) column.

SELECT jt.phones
FROM j_purchaseorder,
JSON_TABLE(po_document, '$.ShippingInstructions'
COLUMNS
 (phones VARCHAR2(100) FORMAT JSON PATH '$.Phone')) AS jt;

PHONES

[{"type":"Office","number":"909-555-7307"},{"type":"Mobile","number":"415-555-1234"}]

Using JSON_value_column: Examples

The statement in this example refines the statement in the previous example by querying
JSON data for specific JSON values using the JSON_value_column clause, and returns the JSON
values as SQL values in relational rows and columns.

The statement first applies a SQL/JSON row path expression to column po_document, which
results in a match to the elements in the JSON array Phone. These elements are JSON objects
that contain two members named type and number. The statement uses the COLUMNS clause to
return the type value for each object in a VARCHAR2(10) column called phone_type, and the number
value for each object in a VARCHAR2(20) column called phone_num. The statement also returns an
ordinal column named row_number.

SELECT jt.*
FROM j_purchaseorder,
JSON_TABLE(po_document, '$.ShippingInstructions.Phone[*]'
COLUMNS (row_number FOR ORDINALITY,
 phone_type VARCHAR2(10) PATH '$.type',
 phone_num VARCHAR2(20) PATH '$.number'))
AS jt;

ROW_NUMBER PHONE_TYPE PHONE_NUM
---------- ---------- --------------------
 1 Office 909-555-7307
 2 Mobile 415-555-1234

Using JSON_exists_column: Examples

The statements in this example test whether a JSON value exists in JSON data using the
JSON_exists_column clause. The first example returns the result of the test as a 'true' or 'false' value
in a column. The second example uses the result of the test in the WHERE clause.

The following statement first applies a SQL/JSON row path expression to column po_document,
which results in a match to the entire context item, or JSON document. It then uses the
COLUMNS clause to return the requestor's name and a string value of 'true' or 'false' indicating
whether the JSON data for that requestor contains a zip code. The COLUMNS clause first uses
the JSON_value_column clause to return the Requestor value in a VARCHAR2(32) column called
requestor. It then uses the JSON_exists_column clause to determine if the zipCode object exists and
returns the result in a VARCHAR2(5) column called has_zip.

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 213 of 521

SELECT requestor, has_zip
FROM j_purchaseorder,
JSON_TABLE(po_document, '$'
COLUMNS
 (requestor VARCHAR2(32) PATH '$.Requestor',
 has_zip VARCHAR2(5) EXISTS PATH '$.ShippingInstructions.Address.zipCode'));

REQUESTOR HAS_ZIP
-------------------------------- -------
Alexis Bull true

The following statement is similar to the previous statement, except that it uses the value of
has_zip in the WHERE clause to determine whether to return the Requestor value:

SELECT requestor
FROM j_purchaseorder,
JSON_TABLE(po_document, '$'
COLUMNS
 (requestor VARCHAR2(32) PATH '$.Requestor',
 has_zip VARCHAR2(5) EXISTS PATH '$.ShippingInstructions.Address.zipCode'))
WHERE (has_zip = 'true');

REQUESTOR

Alexis Bull

Using JSON_nested_path: Examples

The following two simple statements demonstrate the functionality of the JSON_nested_path
clause. They operate on a simple JSON array that contains three elements. The first two
elements are numbers. The third element is a nested JSON array that contains two string
value elements.

The following statement does not use the JSON_nested_path clause. It returns the three elements
in the array in a single row. The nested array is returned in its entirety.

SELECT *
FROM JSON_TABLE('[1,2,["a","b"]]', '$'
COLUMNS (outer_value_0 NUMBER PATH '$[0]',
 outer_value_1 NUMBER PATH '$[1]',
 outer_value_2 VARCHAR2(20) FORMAT JSON PATH '$[2]'));

OUTER_VALUE_0 OUTER_VALUE_1 OUTER_VALUE_2
------------- ------------- --------------------
 1 2 ["a","b"]

The following statement is different from the previous statement because it uses the
JSON_nested_path clause to return the individual elements of the nested array in individual
columns in a single row along with the parent array elements.

SELECT *
FROM JSON_TABLE('[1,2,["a","b"]]', '$'
COLUMNS (outer_value_0 NUMBER PATH '$[0]',
 outer_value_1 NUMBER PATH '$[1]',
 NESTED PATH '$[2]'
 COLUMNS (nested_value_0 VARCHAR2(1) PATH '$[0]',
 nested_value_1 VARCHAR2(1) PATH '$[1]')));

OUTER_VALUE_0 OUTER_VALUE_1 NESTED_VALUE_0 NESTED_VALUE_1
------------- ------------- -------------- --------------
 1 2 a b

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 214 of 521

The previous example shows how to use JSON_nested_path with a nested JSON array. The
following example shows how to use the JSON_nested_path clause with a nested JSON object by
returning the individual elements of the nested object in individual columns in a single row
along with the parent object elements.

SELECT *
FROM JSON_TABLE('{a:100, b:200, c:{d:300, e:400}}', '$'
COLUMNS (outer_value_0 NUMBER PATH '$.a',
 outer_value_1 NUMBER PATH '$.b',
 NESTED PATH '$.c'
 COLUMNS (nested_value_0 NUMBER PATH '$.d',
 nested_value_1 NUMBER PATH '$.e')));

OUTER_VALUE_0 OUTER_VALUE_1 NESTED_VALUE_0 NESTED_VALUE_1
------------- ------------- -------------- --------------
 100 200 300 400

The following statement uses the JSON_nested_path clause when querying the j_purchaseorder table.
It first applies a row path expression to column po_document, which results in a match to the
entire context item, or JSON document. It then uses the COLUMNS clause to return the Requestor
value in a VARCHAR2(32) column called requestor. It then uses the JSON_nested_path clause to return
the property values of the individual objects in each member of the nested Phone array. Note
that a row is generated for each member of the nested array, and each row contains the
corresponding Requestor value.

SELECT jt.*
FROM j_purchaseorder,
JSON_TABLE(po_document, '$'
COLUMNS
 (requestor VARCHAR2(32) PATH '$.Requestor',
 NESTED PATH '$.ShippingInstructions.Phone[*]'
 COLUMNS (phone_type VARCHAR2(32) PATH '$.type',
 phone_num VARCHAR2(20) PATH '$.number')))
AS jt;

REQUESTOR PHONE_TYPE PHONE_NUM
-------------------- -------------------- ---------------
Alexis Bull Office 909-555-7307
Alexis Bull Mobile 415-555-1234

The following example shows the use of simple dot-notation in JSON_nested_path and its
equivalent without dot notation.

SELECT c.*
FROM customer t,
JSON_TABLE(t.json COLUMNS(
id, name, phone, address,
NESTED orders[*] COLUMNS(
updated, status,
NESTED lineitems[*] COLUMNS(
description, quantity NUMBER, price NUMBER
)
)
)) c;

The above statement in dot notation is equivalent to the following one without dot notation:

SELECT c.*
FROM customer t,
JSON_TABLE(t.json, '$' COLUMNS(

Chapter 7
JSON_TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 215 of 521

id PATH '$.id',
name PATH '$.name',
phone PATH '$.phone',
address PATH '$.address',
NESTED PATH '$.orders[*]' COLUMNS(
updated PATH '$.updated',
status PATH '$.status',
NESTED PATH '$.lineitems[*]' COLUMNS(
description PATH '$.description',
quantity NUMBER PATH '$.quantity',
price NUMBER PATH '$.price'
)
)
)) c;

JSON_TRANSFORM
Syntax

JSON_TRANSFORM (input_expr , operation

, TYPE (
STRICT

LAX
)

JSON_passing_clause JSON_TRANSFORM_returning_clause

)

(operation::=, JSON_TRANSFORM_returning_clause::=, JSON_passing_clause::=)

JSON_TRANSFORM_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

)

CLOB

BLOB

reference

value

JSON

BOOLEAN

JSON_passing_clause::=

For details on JSON_passing_clause see JSON_EXISTS Condition.

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 216 of 521

operation ::=

add_set_op

append_op

case_op

copy_op

insert_op

intersect_op

keep_op

merge_op

minus_op

nested_path_op

prepend_op

remove_op

remove_set_op

rename_op

replace_op

set_op

sort_op

union_op

(add_set_op::=,append_op::=,
case_op::=,copy_op::=,insert_op::=,intersect_op::=,keep_op::=,merge_op::=,minus_op::=,nest
ed_path_op::=,prepend_op::=,remove_op::=,rename_op::=,remove_set_op::=,replace_op::=,s
et_op,sort_op,union_op,)

add_set_op::=

ADD_SET path_expr = rhsExpr

IGNORE

ERROR

CREATE

ON MISSING

IGNORE

ERROR

NULL

ON NULL

IGNORE

ERROR

NULL

ON EMPTY

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 217 of 521

append_op ::=

APPEND path_expr = rhs_expr

IGNORE

ERROR

CREATE

NULL

ON MISSING

IGNORE

ERROR

REPLACE

CREATE

ON MISMATCH

IGNORE

ERROR

NULL

ON NULL

IGNORE

ERROR
ON EMPTY

rhs_expr::=

case_op::=

CASE (WHEN path_expr THEN

operation

,

)

ELSE (

operation

,

)

END

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 218 of 521

copy_op::=

COPY path_expr = rhsExpr

IGNORE

ERROR

CREATE

NULL

ON MISSING

IGNORE

ERROR

NULL

ON NULL IGNORE

ERROR
ON EMPTY

rhs_expr::=

insert_op ::=

INSERT path_expr = rhs_expr

IGNORE

ERROR

REPLACE

ON EXISTING

IGNORE

ERROR

REMOVE

NULL

ON NULL

IGNORE

ERROR

NULL

ON EMPTY

IGNORE

ERROR
ON ERROR

rhs_expr::=

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 219 of 521

intersect_op::=

INTERSECT path_expr = rhsExpr

IGNORE

ERROR

CREATE

NULL

ON MISSING

IGNORE

ERROR

NULL

ON NULL

rhs_expr::=

keep_op ::=

KEEP path_expr

,

IGNORE

ERROR
ON MISSING

merge_op::=

MERGE path_expr = rhsExpr

IGNORE

ERROR

CREATE

NULL

ON MISSING

IGNORE

ERROR
ON MISMATCH

IGNORE

ERROR

NULL

ON NULL IGNORE

ERROR
ON EMPTY

rhs_expr::=

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 220 of 521

minus_op::=

MINUS path_expr = rhsExpr

IGNORE

ERROR

CREATE

NULL

ON MISSING

IGNORE

ERROR

NULL

ON NULL

rhs_expr::=

nested_path_op::=

NESTED PATH path_expr (

operation

,

)

prepend_op::=

PREPEND path_expr = rhsExpr

IGNORE

ERROR

CREATE

NULL

ON MISSING

IGNORE

ERROR

REPLACE

CREATE

ON MISMATCH
IGNORE

ERROR

NULL

ON NULL

IGNORE

ERROR
ON EMPTY

rhs_expr::=

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 221 of 521

remove_op ::=

REMOVE path_expr

IGNORE

ERROR
ON MISSING

remove_set_op::=

REMOVE_SET path_expr = rhsExpr

IGNORE

ERROR
ON MISSING

IGNORE

ERROR

NULL

ON NULL

IGNORE

ERROR

NULL

ON EMPTY

rename_op ::=

RENAME path_expr WITH string_literal

IGNORE

ERROR
ON MISSING

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 222 of 521

replace_op ::=

REPLACE path_expr = rhs_expr

CREATE

IGNORE

ERROR

ON MISSING

IGNORE

ERROR

REMOVE

NULL

ON NULL

IGNORE

ERROR

NULL

ON EMPTY

IGNORE

ERROR
ON ERROR

rhs_expr::=

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 223 of 521

set_op ::=

SET path_expr = rhs_expr

IGNORE

ERROR

REPLACE

ON EXISTING

IGNORE

ERROR

CREATE

ON MISSING

IGNORE

ERROR

REMOVE

NULL

ON NULL

IGNORE

ERROR

NULL

ON EMPTY

IGNORE

ERROR
ON ERROR

rhs_expr::=

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 224 of 521

sort_op::=

SORT path_expr

REVERSE

REMOVE NULLS

ORDER BY path_expr

ASC

DESC

,

ASC

DESC UNIQUE REMOVE NULLS

IGNORE

ERROR

NULL

ON MISSING

IGNORE

ERROR

NULL

ON MISMATCH

IGNORE

ERROR
ON EMPTY

IGNORE

ERROR
ON ERROR

union_op::=

UNION path_expr = rhsExpr

IGNORE

ERROR

CREATE

NULL

ON MISSING

IGNORE

ERROR

NULL

ON NULL

rhs_expr::=

rhs_expr ::=

sql_expr

FORMAT JSON

PATH path_expr

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 225 of 521

Purpose

JSON_TRANSFORM modifies JSON documents. You specify operations to perform and SQL/
JSON path expressions that target the places to modify. The operations are applied to the input
data in the order specified: each operation acts on the data that results from applying all of the
preceding operations.

JSON_TRANSFORM either succeeds completely or not at all. If any of the specified operations
raises an error, then none of the operations take effect. JSON_TRANSFORM returns the original
data changed according to the operations specified.

You can use the JSON_TRANSFORM within the UPDATE statement to modify documents in a
JSON column.

You can use it in a SELECT list, to modify the selected documents. The modified documents can
be returned or processed further.

JSON_TRANSFORM can accept as input, and return as output, any SQL data type that supports
JSON data: JSON, VARCHAR2, CLOB, or BLOB. Note that data type JSON is available only if
database initialization parameter compatible is 20 or greater.

The default return (output) data type is the same as the input data type.

See Also

Oracle SQL Function JSON_TRANSFORM of the JSON Developer's Guide for a full
discussion with examples.

JSON_TRANSFORM Operations

• Use ADD_SET to add missing value to an array, as if adding an element to a set.

• Use APPEND to append the values that are specified by the RHS to the array that is
targeted by the LHS path expression.

APPEND has the effect of INSERT for an array position of last+1.

An error is raised if the LHS path expression targets an existing field whose value is not an
array.

If the RHS targets an array then the LHS array is updated by appending the elements of
the RHS array to it, in order.

• Use CASE to set conditions to perform a sequence of JSON_TRANSFORM operations.

This is a control operation that conditionally applies other operations, which in turn can
modify data.

The syntax is keyword CASE followed by one or more WHEN clauses, followed optionally by
an ELSE clause, followed by END.

A WHEN clause is keyword WHEN followed by a path expression, followed by a THEN
clause.

The path expression contains a filter condition, which checks for the existence of some
data.

A THEN or an ELSE clause is keyword THEN or ELSE, respectively, followed by parentheses
(()) containing zero or more JSON_TRANSFORM operations.

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 226 of 521

The operations of a THEN clause are performed if the condition of its WHEN clause is
satisfied. The operations of the optional ELSE clause are performed if the condition of no
WHEN clause is satisfied.

The syntax of the JSON_TRANSFORM CASE operation is thus essentially the same as an
Oracle SQL searched CASE expression, except that it is the predicate that is tested and the
resulting effect of each THEN/ELSE branch.

For SQL, the predicate tested is a SQL comparison. For JSON_TRANSFORM, the predicate is
a path expression that checks for the existence of some data. (The check is essentially
done using JSON_EXISTS.)

For SQL, each THEN/ELSE branch holds a SQL expression to evaluate, and its value is
returned as the result of the CASE expression. For json_transform, each THEN/ELSE branch
holds a (parenthesized) sequence of JSON_TRANSFORM operations, which are performed in
order.

The conditional path expressions of the WHEN clauses are tested in order, until one
succeeds (those that follow are not tested). The THEN operations for the successful WHEN
test are then performed, in order.

• Use COPY to replace the elements of the array that is targeted by the LHS path expression
with the values that are specified by the RHS. An error is raised if the LHS path expression
does not target an array. The operation can accept a sequence of multiple values matched
by the RHS path expression.

• INSERT Insert the value of the specified SQL expression at the location that's targeted by
the specified path expression that follows the equal sign (=), which must be either the field
of an object or an array position (otherwise, an error is raised). By default, an error is
raised if a targeted object field already exists.

INSERT for an object field has the effect of SET with clause CREATE ON MISSING (default for
SET), except that the default behavior for ON EXISTING is ERROR, not REPLACE.)

You can specify an array position past the current end of an array. In that case, the array is
lengthened to accommodate insertion of the value at the indicated position, and the
intervening positions are filled with JSON null values.

For example, if the input JSON data is {"a":["b"]} then INSERT '$.a[3]'=42 returns {"a":["b", null,
null 42]} as the modified data. The elements at array positions 1 and 2 are null.

• Use INTERSECT to remove all elements of the array that is targeted by the LHS path
expression that are not equal to any value specified by the RHS. Remove any duplicate
elements. Note that this is a set operation. The order of all array elements is undefined
after the operation.

• Use MERGE to add specified fields (name and value) matched by the RHS path expression
to the object that is targeted by the LHS path expression. Ignore any fields specified by the
RHS that are already in the targeted LHS object. If the same field is specified more than
once by the RHS then use only the last one in the sequence of matches.

• Use MINUS to remove all elements of the array that is targeted by the LHS path expression
that are equal to a value specified by the RHS. Remove any duplicate elements. Note that
this is a set operation. The order of all array elements is undefined after the operation.

• KEEP removes all parts of the input data that are not targeted by at least one of the
specified path expressions. A topmost object or array is not removed, it is emptied and
becomes an empty object ({}) or array ([]).

• Use NESTED PATH to define a scope (a particular part of your data) in which to apply a
sequence of operations.

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 227 of 521

• Use PREPEND to prepend the values that are specified by the RHS to the array that is
targeted by the LHS path expression. The operation can accept a sequence of multiple
values matched by the RHS path expression.

An error is raised if the LHS path expression targets an existing field whose value is not an
array.

When prepending a single value, PREPEND has the effect of INSERT for an array position of
0.

If the RHS targets an array then the LHS array is updated by prepending the elements of
the RHS array to it, in order.

• REMOVE Remove the input data that's targeted by the specified path expression. An error is
raised if you try to remove all of the data, for example you cannot use REMOVE '$'. By
default, no error is raised if the targeted data does not exist (IGNORE ON MISSING).

• Use REMOVE_SET to remove all occurrences of a value from an array, as if removing an
element from a set.

• RENAME renames the field that is targeted by the specified path expression to the value of
the SQL expression that follows the equal sign (=). By default, no error is raised if the
targeted field does not exist (IGNORE ON MISSING).

• REPLACE replaces the data that's targeted by the specified path expression with the value
of the specified SQL expression that follows the equal sign (=). By default, no error is
raised if the targeted data does not exist (IGNORE ON MISSING).

REPLACE has the effect of SET with clause IGNORE ON MISSING.

• SET Set what the LHS specifies to the value specified by what follows the equal sign (=).
The LHS can be either a SQL/JSON variable or a path expression that targets data. If the
RHS is a SQL expression then its value is assigned to the LHS variable. When the LHS
specifies a path expression, the default behavior is to replace existing targeted data with
the new value, or insert the new value at the targeted location if the path expression
matches nothing. (See operator INSERT about inserting an array element past the end of
the array.)

• When the LHS specifies a SQL/JSON variable, the variable is dynamically assigned to
whatever is specified by the RHS. (The variable is created if it does not yet exist.) The
variable continues to have that value until it is set to a different value by a subsequent SET
operation (in the same JSON_TRANSFORM invocation).

If the RHS is a path expression then its targeted data is assigned to the variable.

Setting a variable is a control operation; it can affect how subsequent operations modify
data, but it does not, itself, directly modify data.

When the LHS specifies a path expression, the default behavior is like that of SQL UPSERT:
replace existing targeted data with the new value, or insert the new value at the targeted
location if the path expression matches nothing. (See operator INSERT about inserting an
array element past the end of the array.)

• SORT sorts the elements of the array targeted by the specified path. The result includes all
elements of the array (none are dropped); the only possible change is that they are
reordered.

• Use UNION to add the values specified by the RHS to the array that is targeted by the LHS
path expression. Remove any duplicate elements. The operation can accept a sequence of
multiple values matched by the RHS path expression. Note that this is a set operation. The
order of all array elements is undefined after the operation.

Chapter 7
JSON_TRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 228 of 521

TYPE Clause

For a full discussion of STRICT and LAX syntax see About Strict and Lax JSON Syntax, and
TYPE Clause for SQL Functions and Conditions

JSON_passing_clause

You can use JSON_passing_clause to specify SQL bindings of bind variables to SQL/JSON
variables similar to the JSON_EXISTS condition and the SQL/JSON query functions.

JSON_TRANSFORM_returning_clause

After you specify the operations you can use JSON_TRANSFORM_returning_clause to specify the
return data type.

Examples

Example 1 : Update a JSON Column with a Timestamp

UPDATE t SET jcol = JSON_TRANSFORM(jcol, SET '$.lastUpdated' = SYSTIMESTAMP)

Example 2 : Remove a Social Security Number before Shipping JSON to a Client

SELECT JSON_TRANSFORM (jcol, REMOVE '$.ssn') FROM t WHERE …

JSON_TRANSFORM_returning_clause

If the input data is JSON, then the output data type is also JSON. For all other input types, the
default output data type is VARCHAR2(4000).

JSON_VALUE
Syntax

JSON_VALUE (expr

FORMAT JSON

, JSON_basic_path_expression

JSON_passing_clause JSON_value_returning_clause JSON_value_on_error_clause

JSON_value_on_empty_clause JSON_value_on_mismatch_clause
TYPE (

STRICT

LAX
)

)

JSON_basic_path_expression::=

(JSON_basic_path_expression: See SQL/JSON Path Expressions)

JSON_value_returning_clause::=

RETURNING JSON_value_return_type

ASCII

Chapter 7
JSON_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 229 of 521

JSON_value_return_type::=

VARCHAR2

(size

BYTE

CHAR

) TRUNCATE

CLOB

NUMBER

(precision

, scale

)

ALLOW

DISALLOW

BOOLEAN

TO NUMBER

CONVERSION

DATE

TRUNCATE

PRESERVE
TIME

TIMESTAMP

WITH TIMEZONE

BOOLEAN

SDO_GEOMETRY

JSON_value_return_object_instance

VECTOR

JSON_value_return_object_instance ::=

object_type_name

JSON_value_mapper_clause

JSON_value_mapper_clause ::=

USING CASE_SENSITIVE MAPPING

JSON_value_on_error_clause::=

ERROR

NULL

DEFAULT literal

ON ERROR

Chapter 7
JSON_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 230 of 521

JSON_value_on_empty_clause::=

ERROR

NULL

DEFAULT literal

ON EMPTY

JSON_value_on_mismatch_clause::=

IGNORE

ERROR

NULL

ON MISMATCH

(

MISSING DATA

EXTRA DATA

TYPE ERROR

,

)

Purpose

SQL/JSON function JSON_VALUE selects JSON data and returns a SQL scalar or an instance of
a user-defined SQL object type or SQL collection type (varray, nested table)

See Also

• JSON TRANSFORM of the JSON Developer's Guide.

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the value returned by this
function when it is a character value

expr

The first argument to JSON_VALUE expr is a SQL expression that returns an instance of a scalar
SQL data type (that is, not an object or collection data type). A scalar value returned
fromJSON_VALUE can be of any of these data types: BINARY_DOUBLE, BINARY_FLOAT, BOOLEAN,
CHAR, CLOB, DATE, INTERVAL DAY TO SECOND, INTERVAL YEAR TO MONTH, NCHAR, NCLOB,
NVARCHAR2, NUMBER, RAW1, SDO_GEOMETRY, TIMESTAMP, TIMESTAMP WITH TIME ZONE,
VARCHAR2, and VECTOR.

If expr is not a text literal of well-formed JSON data using strict or lax syntax, then the function
returns null by default. You can use the JSON_value_on_error_clause to override this default
behavior. Refer to the JSON_value_on_error_clause.

FORMAT JSON

You must specify FORMAT JSON if expr is a column of data type BLOB.

Chapter 7
JSON_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 231 of 521

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The function uses the path
expression to evaluate expr and find a scalar JSON value that matches, or satisfies, the path
expression. The path expression must be a text literal. See Oracle Database JSON
Developer's Guide for the full semantics of JSON_basic_path_expression.

JSON_value_returning_clause

Use this clause to specify the data type and format of the value returned by this function.

RETURNING

Use the RETURNING clause to specify the data type of the return value. If you omit this clause,
then JSON_VALUE returns a value of type VARCHAR2(4000).

JSON_value_return_type ::=

You can use JSON_value_return_type to specify the following data types:

• VARCHAR2[(size [BYTE,CHAR])]

If you specify this data type, then the scalar value returned by this function can be a
character or number value. A number value will be implicitly converted to a VARCHAR2.
When specifying the VARCHAR2 data type elsewhere in SQL, you are required to specify a
size. However, in this clause you can omit the size. In this case, JSON_VALUE returns a
value of type VARCHAR2(4000).

Specify the optional TRUNCATE clause immediately after VARCHAR2(N) to truncate the return
value to N characters, if the return value is greater than N characters.

Notes on the TRUNCATE clause :

– If the string value is too long, then ORA-40478 is raised.

– If TRUNCATE is present, and the return value is not a character type, then a compile
time error is raised.

– If TRUNCATE is present with FORMAT JSON, then the return value may contain data that
is not syntactically correct JSON.

– TRUNCATE does not work with EXISTS.

• CLOB

Specify this data type to return a character large object containing single-byte or multi-byte
characters.

• NUMBER[(precision [, scale])]

If you specify this data type, then the scalar value returned by this function must be a
number value. The scalar value returned can also be a JSON Boolean value. Note
however, that returning NUMBER for a JSON Boolean value is deprecated.

• DATE

If you specify this data type, then the scalar value returned by this function must be a
character value that can be implicitly converted to a DATE data type. If the JSON input
represents a date with a time component, specify DATE PRESERVE TIME to retain the time
component. If you do not want to retain the time component, specify DATE TRUNCATE TIME.

If you specify neither PRESERVE TIME nor TRUNCATE TIME, the time component is not
preserved.

Chapter 7
JSON_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 232 of 521

• TIMESTAMP

If you specify this data type, then the scalar value returned by this function must be a
character value that can be implicitly converted to a TIMESTAMP data type.

• TIMESTAMP WITH TIME ZONE

If you specify this data type, then the scalar value returned by this function must be a
character value that can be implicitly converted to a TIMESTAMP WITH TIME ZONE data type.

• BOOLEAN

Specify BOOLEAN to return true, false, or unknown.

• SDO_GEOMETRY

This data type is used for Oracle Spatial and Graph data. If you specify this data type, then
expr must evaluate to a text literal containing GeoJSON data, which is a format for encoding
geographic data in JSON. If you specify this data type, then the scalar value returned by
this function must be an object of type SDO_GEOMETRY.

• JSON_value_return_object_instance

If JSON_VALUE targets a JSON object, and you specify a user-defined SQL object type as
the return type, then JSON_VALUE returns an instance of that object type in
object_type_name.

For examples see Using JSON_VALUE To Instantiate a User-Defined Object Type
Instance of the JSON Developer's Guide.

See Also

• SQL/JSON Function JSON_VALUE for a conceptual understanding in the JSON
Developer's Guide.

• Refer to "Data Types " for more information on the preceding data types.

• If the data type is not large enough to hold the return value, then this function
returns null by default. You can use the JSON_value_on_error_clause to override this
default behavior. Refer to the JSON_value_on_error_clause.

ASCII

Specify ASCII to automatically escape any non-ASCII Unicode characters in the return value,
using standard ASCII Unicode escape sequences.

JSON_value_on_error_clause

Use this clause to specify the value returned by this function when the following errors occur:

• expr is not well-formed JSON data using strict or lax JSON syntax

• A nonscalar value is found when the JSON data is evaluated using the SQL/JSON path
expression

• No match is found when the JSON data is evaluated using the SQL/JSON path
expression. You can override the behavior for this type of error by specifying the
JSON_value_on_empty_clause.

• The return value data type is not large enough to hold the return value

You can specify the following clauses:

Chapter 7
JSON_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 233 of 521

• NULL ON ERROR - Returns null when an error occurs. This is the default.

• ERROR ON ERROR - Returns the appropriate Oracle error when an error occurs.

• DEFAULT literal ON ERROR - Returns literal when an error occurs. The data type of literal must
match the data type of the value returned by this function.

JSON_value_on_empty_clause

Use this clause to specify the value returned by this function if no match is found when the
JSON data is evaluated using the SQL/JSON path expression. This clause allows you to
specify a different outcome for this type of error than the outcome specified with the
JSON_value_on_error_clause.

You can specify the following clauses:

• NULL ON EMPTY - Returns null when no match is found.

• ERROR ON EMPTY - Returns the appropriate Oracle error when no match is found.

• DEFAULT literal ON EMPTY - Returns literal when no match is found. The data type of literal
must match the data type of the value returned by this function.

If you omit this clause, then the JSON_value_on_error_clause determines the value returned when
no match is found.

JSON_value_on_mismatch_clause

The JSON_value_on_mismatch_clause applies when a type conversion fails, for example when you try
to convert a JSON number to a SQL date.

If the return type of JSON_VALUE is a SQL scalar like NUMBER or DATE , then ON MISMATCH
applies for all type conversion errors - no further specification is required. ERROR and NULL are
valid options.

Example 1

select json_value('{a:"cat"}','$.a.number()' NULL ON EMPTY
 ERROR ON MISMATCH DEFAULT -1 ON ERROR) from dual;
 ORA-01722: invalid number

If the return type is an object type, then ON MISMATCH can be further specified with MISSING
DATA, EXTRA DATA and TYPE ERROR. You can use it generally to apply to all error cases, or you
can use it case by case by specifying different ON MISMATCH clauses for each case.

Example 2

IGNORE ON MISMATCH (EXTRA DATA)

ERROR ON MISMATCH (MISSING DATA, TYPE ERROR)

The option IGNORE is only valid when the return type is an object type.

TYPE Clause

For a full discussion of STRICT and LAX syntax see About Strict and Lax JSON Syntax, and
TYPE Clause for SQL Functions and Conditions

Chapter 7
JSON_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 234 of 521

Examples

The following query returns the value of the member with property name a. Because the
RETURNING clause is not specified, the value is returned as a VARCHAR2(4000) data type:

SELECT JSON_VALUE('{a:100}', '$.a') AS value
 FROM DUAL;

VALUE

100

The following query returns the value of the member with property name a. Because the
RETURNING NUMBER clause is specified, the value is returned as a NUMBER data type:

SELECT JSON_VALUE('{a:100}', '$.a' RETURNING NUMBER) AS value
 FROM DUAL;

 VALUE

 100

The following query returns the value of the member with property name b, which is in the
value of the member with property name a:

SELECT JSON_VALUE('{a:{b:100}}', '$.a.b') AS value
 FROM DUAL;

VALUE

100

The following query returns the value of the member with property name d in any object:

SELECT JSON_VALUE('{a:{b:100}, c:{d:200}, e:{f:300}}', '$.*.d') AS value
 FROM DUAL;

VALUE

200

The following query returns the value of the first element in an array:

SELECT JSON_VALUE('[0, 1, 2, 3]', '$[0]') AS value
 FROM DUAL;

VALUE

0

The following query returns the value of the third element in an array. The array is the value of
the member with property name a.

SELECT JSON_VALUE('{a:[5, 10, 15, 20]}', '$.a[2]') AS value
 FROM DUAL;

VALUE

15

Chapter 7
JSON_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 235 of 521

The following query returns the value of the member with property name a in the second object
in an array:

SELECT JSON_VALUE('[{a:100}, {a:200}, {a:300}]', '$[1].a') AS value
 FROM DUAL;

VALUE

200

The following query returns the value of the member with property name c in any object in an
array:

SELECT JSON_VALUE('[{a:100}, {b:200}, {c:300}]', '$[*].c') AS value
 FROM DUAL;

VALUE

300

The following query attempts to return the value of the member that has property name lastname.
However, such a member does not exist in the specified JSON data, resulting in no match.
Because the ON ERROR clause is not specified, the statement uses the default NULL ON ERROR
and returns null.

SELECT JSON_VALUE('{firstname:"John"}', '$.lastname') AS "Last Name"
 FROM DUAL;

Last Name

The following query results in an error because it attempts to return the value of the member
with property name lastname, which does not exist in the specified JSON. Because the ON ERROR
clause is specified, the statement returns the specified text literal.

SELECT JSON_VALUE('{firstname:"John"}', '$.lastname'
 DEFAULT 'No last name found' ON ERROR) AS "Last Name"
 FROM DUAL;

Last Name

No last name found

JSON Type Constructor
Syntax

JSON (expr)

Purpose

The JSON data type constructor, JSON, takes as input a textual JSON value (a scalar, object,
or array), parses it, and returns the value as an instance of JSON type. Alternatively, the input
can be an instance of SQL type VECTOR, a user-defined PL/SQL type, or a SQL aggregate
type.

Chapter 7
JSON Type Constructor

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 236 of 521

You can use the JSON data type constructor JSON to parse textual JSON input (a scalar,
object, or array), and return it as an instance of type JSON.

Input values must pass the IS JSON test. Input values that fail the IS JSON test are rejected with a
syntax error.

To filter out duplicate input values, you must run the IS JSON (WITH UNIQUE KEYS) check on the
textual JSON input before using the JSON constructor.

Prerequisites

You can use the constructor JSON only if database initialization parameter compatible is atleast 20.

See Also

JSON Data Type Constructor of the JSON Developer's Guide.

expr

The input in expr must be a syntactically valid textual representation of type VARCHAR2, CLOB
and BLOB. It can also be a literal SQL string. A SQL NULL input value results in a JSON type
instance of SQL NULL.

KURTOSIS_POP
Syntax

KURTOSIS_POP (

DISTINCT

ALL

UNIQUE

expr)

Purpose

The population kurtosis function KURTOSIS_POP is primarily used to determine the
characteristics of outliers in a given distribution.

NULL values in expr are ignored.

Returns NULL if all rows in the group have NULL expr values.

Returns 0 if there are one or two rows in expr.

For a given set of values, the result of population kurtosis (KURTOSIS_POP) and sample kurtosis
(KURTOSIS_SAMP) are always deterministic. However, the values of KURTOSIS_POP and
KURTOSIS_SAMP differ. As the number of values in the data set increases, the difference
between the computed values of KURTOSIS_SAMP and KURTOSIS_POP decreases.

Chapter 7
KURTOSIS_POP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 237 of 521

KURTOSIS_SAMP
Syntax

KURTOSIS_SAMP (

DISTINCT

ALL

UNIQUE

expr)

Purpose

The sample kurtosis function KURTOSIS_SAMP is primarily used to determine the characteristics
of outliers in a given distribution.

NULL values in expr are ignored.

Returns NULL if all rows in the group have NULL expr values.

Returns 0 if there are one or two rows in expr.

For a given set of values, the result of sample kurtosis (KURTOSIS_SAMP) and population
kurtosis (KURTOSIS_POP) are always deterministic. However, the values of KURTOSIS_SAMP and
KURTOSIS_POP differ. As the number of values in the data set increases, the difference between
the computed values of KURTOSIS_SAMP and KURTOSIS_POP decreases.

LAG
Syntax

LAG

(value_expr

, offset

, default

)

RESPECT

IGNORE
NULLS

(value_expr

RESPECT

IGNORE
NULLS

, offset

, default

)

OVER

window_name

(

window_name

query_partition_clause order_by_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions, including
valid forms of value_expr

Chapter 7
KURTOSIS_SAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 238 of 521

Purpose

LAG is an analytic function. It provides access to more than one row of a table at the same time
without a self join. Given a series of rows returned from a query and a position of the cursor,
LAG provides access to a row at a given physical offset prior to that position.

For the optional offset argument, specify an integer that is greater than zero. If you do not
specify offset, then its default is 1. The optional default value is returned if the offset goes beyond
the scope of the window. If you do not specify default, then its default is null.

{RESPECT | IGNORE} NULLS determines whether null values of value_expr are included in or
eliminated from the calculation. The default is RESPECT NULLS.

You cannot nest analytic functions by using LAG or any other analytic function for value_expr.
However, you can use other built-in function expressions for value_expr.

See Also

• "About SQL Expressions " for information on valid forms of expr and LEAD

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of LAG
when it is a character value

Examples

The following example provides, for each purchasing clerk in the employees table, the salary of
the employee hired just before:

SELECT hire_date, last_name, salary,
 LAG(salary, 1, 0) OVER (ORDER BY hire_date) AS prev_sal
 FROM employees
 WHERE job_id = 'PU_CLERK'
 ORDER BY hire_date;

HIRE_DATE LAST_NAME SALARY PREV_SAL
--------- ------------------------- ---------- ----------
18-MAY-03 Khoo 3100 0
24-JUL-05 Tobias 2800 3100
24-DEC-05 Baida 2900 2800
15-NOV-06 Himuro 2600 2900
10-AUG-07 Colmenares 2500 2600

Chapter 7
LAG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 239 of 521

LAST
Syntax

last::=

aggregate_function KEEP

(DENSE_RANK LAST ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

OVER

window_name

(

window_name

query_partition_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions of the
query_partitioning_clause

Purpose

FIRST and LAST are very similar functions. Both are aggregate and analytic functions that
operate on a set of values from a set of rows that rank as the FIRST or LAST with respect to a
given sorting specification. If only one row ranks as FIRST or LAST, then the aggregate operates
on the set with only one element.

Refer to FIRST for complete information on this function and for examples of its use.

LAST_DAY
Syntax

LAST_DAY (date)

Purpose

LAST_DAY returns the date of the last day of the month that contains date. The last day of the
month is defined by the session parameter NLS_CALENDAR. The return type is always DATE,
regardless of the data type of date.

Chapter 7
LAST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 240 of 521

Examples

The following statement determines how many days are left in the current month.

SELECT SYSDATE,
 LAST_DAY(SYSDATE) "Last",
 LAST_DAY(SYSDATE) - SYSDATE "Days Left"
 FROM DUAL;

SYSDATE Last Days Left
--------- --------- ----------
30-MAY-09 31-MAY-09 1

The following example adds 5 months to the hire date of each employee to give an evaluation
date:

SELECT last_name, hire_date,
 TO_CHAR(ADD_MONTHS(LAST_DAY(hire_date), 5)) "Eval Date"
 FROM employees
 ORDER BY last_name, hire_date;

LAST_NAME HIRE_DATE Eval Date
------------------------- --------- ---------
Abel 11-MAY-04 31-OCT-04
Ande 24-MAR-08 31-AUG-08
Atkinson 30-OCT-05 31-MAR-06
Austin 25-JUN-05 30-NOV-05
Baer 07-JUN-02 30-NOV-02
Baida 24-DEC-05 31-MAY-06
Banda 21-APR-08 30-SEP-08
Bates 24-MAR-07 31-AUG-07
. . .

LAST_VALUE
Syntax

LAST_VALUE

(expr)

RESPECT

IGNORE
NULLS

(expr

RESPECT

IGNORE
NULLS

)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions, including
valid forms of expr

Chapter 7
LAST_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 241 of 521

Purpose

LAST_VALUE is an analytic function that is useful for data densification. It returns the last value
in an ordered set of values.

Note

The two forms of this syntax have the same behavior. The top branch is the ANSI
format, which Oracle recommends for ANSI compatibility.

{RESPECT | IGNORE} NULLS determines whether null values of expr are included in or eliminated
from the calculation. The default is RESPECT NULLS. If the last value in the set is null, then the
function returns NULL unless you specify IGNORE NULLS. If you specify IGNORE NULLS, then
LAST_VALUE returns the last non-null value in the set, or NULL if all values are null. Refer to
"Using Partitioned Outer Joins: Examples" for an example of data densification.

You cannot nest analytic functions by using LAST_VALUE or any other analytic function for expr.
However, you can use other built-in function expressions for expr. Refer to "About SQL
Expressions " for information on valid forms of expr.

If you omit the windowing_clause of the analytic_clause, it defaults to RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW. This default sometimes returns an unexpected value, because
the last value in the window is at the bottom of the window, which is not fixed. It keeps
changing as the current row changes. For expected results, specify the windowing_clause as
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING. Alternatively, you can
specify the windowing_clause as RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of this function
when it is a character value

Examples

The following example returns, for each row, the hire date of the employee earning the lowest
salary:

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
 FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 13-JAN-01
 101 Kochhar 17000 21-SEP-05 13-JAN-01
 102 De Haan 17000 13-JAN-01 13-JAN-01

Chapter 7
LAST_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 242 of 521

This example illustrates the nondeterministic nature of the LAST_VALUE function. Kochhar and
De Haan have the same salary, so they are in adjacent rows. Kochhar appears first because
the rows in the subquery are ordered by hire_date. However, if the rows are ordered by hire_date
in descending order, as in the next example, then the function returns a different value:

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
 FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 21-SEP-05
 102 De Haan 17000 13-JAN-01 21-SEP-05
 101 Kochhar 17000 21-SEP-05 21-SEP-05

The following two examples show how to make the LAST_VALUE function deterministic by
ordering on a unique key. By ordering within the function by both salary and the unique key
employee_id, you can ensure the same result regardless of the ordering in the subquery.

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC, employee_id ROWS BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 13-JAN-01
 101 Kochhar 17000 21-SEP-05 13-JAN-01
 102 De Haan 17000 13-JAN-01 13-JAN-01

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC, employee_id ROWS BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 13-JAN-01
 101 Kochhar 17000 21-SEP-05 13-JAN-01
 102 De Haan 17000 13-JAN-01 13-JAN-01

The following two examples show that the LAST_VALUE function is deterministic when you use
a logical offset (RANGE instead of ROWS). When duplicates are found for the ORDER BY
expression, the LAST_VALUE is the highest value of expr:

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC RANGE BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90

Chapter 7
LAST_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 243 of 521

 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 21-SEP-05
 102 De Haan 17000 13-JAN-01 21-SEP-05
 101 Kochhar 17000 21-SEP-05 21-SEP-05

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC RANGE BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 21-SEP-05
 102 De Haan 17000 13-JAN-01 21-SEP-05
 101 Kochhar 17000 21-SEP-05 21-SEP-05

LEAD
Syntax

LEAD

(value_expr

, offset

, default

)

RESPECT

IGNORE
NULLS

(value_expr

RESPECT

IGNORE
NULLS

, offset

, default

)

OVER

window_name

(

window_name

query_partition_clause order_by_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions, including
valid forms of value_expr

Purpose

LEAD is an analytic function. It provides access to more than one row of a table at the same
time without a self join. Given a series of rows returned from a query and a position of the
cursor, LEAD provides access to a row at a given physical offset beyond that position.

Chapter 7
LEAD

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 244 of 521

If you do not specify offset, then its default is 1. The optional default value is returned if the offset
goes beyond the scope of the table. If you do not specify default, then its default value is null.

{RESPECT | IGNORE} NULLS determines whether null values of value_expr are included in or
eliminated from the calculation. The default is RESPECT NULLS.

You cannot nest analytic functions by using LEAD or any other analytic function for value_expr.
However, you can use other built-in function expressions for value_expr.

See Also

• "About SQL Expressions " for information on valid forms of expr and LAG

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of LEAD
when it is a character value

Examples

The following example provides, for each employee in Department 30 in the employees table, the
hire date of the employee hired just after:

SELECT hire_date, last_name,
 LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "NextHired"
 FROM employees
 WHERE department_id = 30
 ORDER BY hire_date;

HIRE_DATE LAST_NAME Next Hired
--------- ------------------------- ----------
07-DEC-02 Raphaely 18-MAY-03
18-MAY-03 Khoo 24-JUL-05
24-JUL-05 Tobias 24-DEC-05
24-DEC-05 Baida 15-NOV-06
15-NOV-06 Himuro 10-AUG-07
10-AUG-07 Colmenares

LEAST
Syntax

LEAST (expr

,

)

Purpose

LEAST returns the least of a list of one or more expressions. Oracle Database uses the first expr
to determine the return type. If the first expr is numeric, then Oracle determines the argument
with the highest numeric precedence, implicitly converts the remaining arguments to that data
type before the comparison, and returns that data type. If the first expr is not numeric, then each
expr after the first is implicitly converted to the data type of the first expr before the comparison.

Oracle Database compares each expr using nonpadded comparison semantics. The
comparison is binary by default and is linguistic if the NLS_COMP parameter is set to LINGUISTIC

Chapter 7
LEAST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 245 of 521

and the NLS_SORT parameter has a setting other than BINARY. Character comparison is based
on the numerical codes of the characters in the database character set and is performed on
whole strings treated as one sequence of bytes, rather than character by character. If the value
returned by this function is character data, then its data type is VARCHAR2 if the first expr is a
character data type and NVARCHAR2 if the first expr is a national character data type.

See Also

• "Data Type Comparison Rules " for more information on character comparison

• Table 2-9 for more information on implicit conversion and "Floating-Point Numbers
" for information on binary-float comparison semantics

• "GREATEST ", which returns the greatest of a list of one or more expressions

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation LEAST uses to compare character
values for expr, and for the collation derivation rules, which define the collation
assigned to the return value of this function when it is a character value

Examples

The following statement selects the string with the least value:

SELECT LEAST('HARRY','HARRIOT','HAROLD') "Least"
 FROM DUAL;

Least

HAROLD

In the following statement, the first argument is numeric. Oracle Database determines that the
argument with the highest numeric precedence is the third argument, converts the remaining
arguments to the data type of the third argument, and returns the least value as that data type:

SELECT LEAST (1, '2.1', '.000832') "Least"
 FROM DUAL;

Least

.000832

LENGTH
Syntax

length::=

LENGTH

LENGTHB

LENGTHC

LENGTH2

LENGTH4

(char)

Chapter 7
LENGTH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 246 of 521

Purpose

The LENGTH functions return the length of char. LENGTH calculates length using characters as
defined by the input character set. LENGTHB uses bytes instead of characters. LENGTHC uses
Unicode complete characters. LENGTH2 uses UCS2 code points. LENGTH4 uses UCS4 code
points.

char can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The
exceptions are LENGTHC, LENGTH2, and LENGTH4, which do not allow char to be a CLOB or
NCLOB. The return value is of data type NUMBER. If char has data type CHAR, then the length
includes all trailing blanks. If char is null, then this function returns null.

For more on character length see the following:

• Oracle Database Globalization Support Guide

• Oracle Database SecureFiles and Large Objects Developer's Guide

Restriction on LENGTHB

The LENGTHB function is supported for single-byte LOBs only. It cannot be used with CLOB and
NCLOB data in a multibyte character set.

Examples

The following example uses the LENGTH function using a single-byte database character set:

SELECT LENGTH('CANDIDE') "Length in characters"
 FROM DUAL;

Length in characters

 7

The next example assumes a double-byte database character set.

SELECT LENGTHB ('CANDIDE') "Length in bytes"
 FROM DUAL;

Length in bytes

 14

LISTAGG
Syntax

LISTAGG (

ALL

DISTINCT

measure_expr

, ’ delimiter ’ listagg_overflow_clause

)

WITHIN GROUP (order_by_clause)

OVER

window_name

(

window_name

query_partition_clause)

Chapter 7
LISTAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 247 of 521

(listagg_overflow_clause::=, order_by_clause::=, query_partition_clause::=)

listagg_overflow_clause::=

ON OVERFLOW ERROR

ON OVERFLOW TRUNCATE

’ truncation–indicator ’

WITH

WITHOUT

COUNT

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions of the
ORDER BY clause and OVER clause

Purpose

For a specified measure, LISTAGG orders data within each group specified in the ORDER BY
clause and then concatenates the values of the measure column.

• As a single-set aggregate function, LISTAGG operates on all rows and returns a single
output row.

• As a group-set aggregate, the function operates on and returns an output row for each
group defined by the GROUP BY clause.

• As an analytic function, LISTAGG partitions the query result set into groups based on one or
more expression in the query_partition_clause.

The arguments to the function are subject to the following rules:

• The ALL keyword is optional and is provided for semantic clarity.

• The measure_expr is the measure column and can be any expression. Null values in the
measure column are ignored.

• The delimiter designates the string that is to separate the measure column values. This
clause is optional and defaults to NULL.

If measure_expr is of type RAW, then the delimiter must be of type RAW. You can achieve this
by specifying the delimiter as a character string that can be implicitly converted to RAW, or
by explicitly converting the delimiter to RAW, for example, using the UTL_RAW.CAST_TO_RAW
function.

• The order_by_clause determines the order in which the concatenated values are returned.
The function is deterministic only if the ORDER BY column list achieved unique ordering.

• If you specify order_by_clause, you must also specify WITHIN GROUP and vice versa. These
two clauses must be specified together or not at all.

The DISTINCT keyword removes duplicate values from the list.

If the measure column is of type RAW, then the return data type is RAW. Otherwise, the return
data type is VARCHAR2.

The maximum length of the return data type depends on the value of the MAX_STRING_SIZE
initialization parameter. If MAX_STRING_SIZE = EXTENDED, then the maximum length is 32767

Chapter 7
LISTAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 248 of 521

bytes for the VARCHAR2 and RAW data types. If MAX_STRING_SIZE = STANDARD, then the
maximum length is 4000 bytes for the VARCHAR2 data type and 2000 bytes for the RAW data
type. A final delimiter is not included when determining if the return value fits in the return data
type.

See Also

• Extended Data Types for more information on the MAX_STRING_SIZE initialization
parameter

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of LISTAGG

• Database Data Warehousing Guide for details.

listagg_overflow_clause

This clause controls how the function behaves when the return value exceeds the maximum
length of the return data type.

ON OVERFLOW ERROR If you specify this clause, then the function returns an ORA-01489
error. This is the default.

ON OVERFLOW TRUNCATE If you specify this clause, then the function returns a truncated
list of measure values.

• The truncation_indicator designates the string that is to be appended to the truncated list of
measure values. If you omit this clause, then the truncation indicator is an ellipsis (...).

If measure_expr is of type RAW, then the truncation indicator must be of type RAW. You can
achieve this by specifying the truncation indicator as a character string that can be
implicitly converted to RAW, or by explicitly converting the truncation indicator to RAW, for
example, using the UTL_RAW.CAST_TO_RAW function.

• If you specify WITH COUNT, then after the truncation indicator, the database appends the
number of truncated values, enclosed in parentheses. In this case, the database truncates
enough measure values to allow space in the return value for a final delimiter, the
truncation indicator, and 24 characters for the number value enclosed in parentheses.

• If you specify WITHOUT COUNT, then the database omits the number of truncated values
from the return value. In this case, the database truncates enough measure values to allow
space in the return value for a final delimiter and the truncation indicator.

If you do not specify WITH COUNT or WITHOUT COUNT, then the default is WITH COUNT.

Aggregate Examples

The following single-set aggregate example lists all of the employees in Department 30 in the
hr.employees table, ordered by hire date and last name:

SELECT LISTAGG(last_name, '; ')
 WITHIN GROUP (ORDER BY hire_date, last_name) "Emp_list",
 MIN(hire_date) "Earliest"
 FROM employees
 WHERE department_id = 30;

Emp_list Earliest

Chapter 7
LISTAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 249 of 521

-- ---------
Raphaely; Khoo; Tobias; Baida; Himuro; Colmenares 07-DEC-02

The following group-set aggregate example lists, for each department ID in the hr.employees
table, the employees in that department in order of their hire date:

SELECT department_id "Dept.",
 LISTAGG(last_name, '; ') WITHIN GROUP (ORDER BY hire_date) "Employees"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Dept. Employees
------ --
 10 Whalen
 20 Hartstein; Fay
 30 Raphaely; Khoo; Tobias; Baida; Himuro; Colmenares
 40 Mavris
 50 Kaufling; Ladwig; Rajs; Sarchand; Bell; Mallin; Weiss; Davie
 s; Marlow; Bull; Everett; Fripp; Chung; Nayer; Dilly; Bissot
 ; Vollman; Stiles; Atkinson; Taylor; Seo; Fleaur; Matos; Pat
 el; Walsh; Feeney; Dellinger; McCain; Vargas; Gates; Rogers;
 Mikkilineni; Landry; Cabrio; Jones; Olson; OConnell; Sulliv
 an; Mourgos; Gee; Perkins; Grant; Geoni; Philtanker; Markle
 60 Austin; Hunold; Pataballa; Lorentz; Ernst
 70 Baer
. . .

The following example is identical to the previous example, except it contains the ON
OVERFLOW TRUNCATE clause. For the purpose of this example, assume that the maximum
length of the return value is an artificially small number of 200 bytes. Because the list of
employees for department 50 exceeds 200 bytes, the list is truncated and appended with a
final delimiter '; ', the specified truncation indicator '...', and the number of truncated values '(23)'.

SELECT department_id "Dept.",
 LISTAGG(last_name, '; ' ON OVERFLOW TRUNCATE '...')
 WITHIN GROUP (ORDER BY hire_date) "Employees"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Dept. Employees
------ --
 10 Whalen
 20 Hartstein; Fay
 30 Raphaely; Khoo; Tobias; Baida; Himuro; Colmenares
 40 Mavris
 50 Kaufling; Ladwig; Rajs; Sarchand; Bell; Mallin; Weiss; Davie
 s; Marlow; Bull; Everett; Fripp; Chung; Nayer; Dilly; Bissot
 ; Vollman; Stiles; Atkinson; Taylor; Seo; Fleaur; ... (23)
 70 Baer
. . .

Analytic Example

The following analytic example shows, for each employee hired earlier than September 1,
2003, the employee's department, hire date, and all other employees in that department also
hired before September 1, 2003:

SELECT department_id "Dept", hire_date "Date", last_name "Name",
 LISTAGG(last_name, '; ') WITHIN GROUP (ORDER BY hire_date, last_name)
 OVER (PARTITION BY department_id) as "Emp_list"

Chapter 7
LISTAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 250 of 521

 FROM employees
 WHERE hire_date < '01-SEP-2003'
 ORDER BY "Dept", "Date", "Name";

 Dept Date Name Emp_list
----- --------- --------------- ---
 30 07-DEC-02 Raphaely Raphaely; Khoo
 30 18-MAY-03 Khoo Raphaely; Khoo
 40 07-JUN-02 Mavris Mavris
 50 01-MAY-03 Kaufling Kaufling; Ladwig
 50 14-JUL-03 Ladwig Kaufling; Ladwig
 70 07-JUN-02 Baer Baer
 90 13-JAN-01 De Haan De Haan; King
 90 17-JUN-03 King De Haan; King
 100 16-AUG-02 Faviet Faviet; Greenberg
 100 17-AUG-02 Greenberg Faviet; Greenberg
 110 07-JUN-02 Gietz Gietz; Higgins
 110 07-JUN-02 Higgins Gietz; Higgins

LN
Syntax

LN (n)

Purpose

LN returns the natural logarithm of n, where n is greater than 0.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the natural logarithm of 95:

SELECT LN(95) "Natural log of 95"
 FROM DUAL;

Natural log of 95

 4.55387689

Chapter 7
LN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 251 of 521

LNNVL
Syntax

LNNVL (condition)

Purpose

LNNVL provides a concise way to evaluate a condition when one or both operands of the
condition may be null. The function can be used in the WHERE clause of a query, or as the
WHEN condition in a searched CASE expression. It takes as an argument a condition and
returns TRUE if the condition is FALSE or UNKNOWN and FALSE if the condition is TRUE. LNNVL
can be used anywhere a scalar expression can appear, even in contexts where the IS [NOT]
NULL, AND, or OR conditions are not valid but would otherwise be required to account for
potential nulls.

Oracle Database sometimes uses the LNNVL function internally in this way to rewrite NOT IN
conditions as NOT EXISTS conditions. In such cases, output from EXPLAIN PLAN shows this
operation in the plan table output. The condition can evaluate any scalar values but cannot be a
compound condition containing AND, OR, or BETWEEN.

The table that follows shows what LNNVL returns given that a = 2 and b is null.

Condition Truth of Condition LNNVL Return Value

a = 1 FALSE TRUE

a = 2 TRUE FALSE

a IS NULL FALSE TRUE

b = 1 UNKNOWN TRUE

b IS NULL TRUE FALSE

a = b UNKNOWN TRUE

Examples

Suppose that you want to know the number of employees with commission rates of less than
20%, including employees who do not receive commissions. The following query returns only
employees who actually receive a commission of less than 20%:

SELECT COUNT(*)
 FROM employees
 WHERE commission_pct < .2;

 COUNT(*)

 11

To include the 72 employees who receive no commission at all, you could rewrite the query
using the LNNVL function as follows:

SELECT COUNT(*)
 FROM employees
 WHERE LNNVL(commission_pct >= .2);

Chapter 7
LNNVL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 252 of 521

 COUNT(*)

 83

LOCALTIMESTAMP
Syntax

LOCALTIMESTAMP

(timestamp_precision)

Purpose

LOCALTIMESTAMP returns the current date and time in the session time zone in a value of data
type TIMESTAMP. The difference between this function and CURRENT_TIMESTAMP is that
LOCALTIMESTAMP returns a TIMESTAMP value while CURRENT_TIMESTAMP returns a TIMESTAMP
WITH TIME ZONE value.

The optional argument timestamp_precision specifies the fractional second precision of the time
value returned.

See Also

CURRENT_TIMESTAMP , "TIMESTAMP Data Type ", and "TIMESTAMP WITH TIME
ZONE Data Type "

Examples

This example illustrates the difference between LOCALTIMESTAMP and CURRENT_TIMESTAMP:

ALTER SESSION SET TIME_ZONE = '-5:00';
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP LOCALTIMESTAMP

04-APR-00 01.27.18.999220 PM -05:00 04-APR-00 01.27.19 PM

ALTER SESSION SET TIME_ZONE = '-8:00';
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP LOCALTIMESTAMP
----------------------------------- ------------------------------
04-APR-00 10.27.45.132474 AM -08:00 04-APR-00 10.27.451 AM

When you use the LOCALTIMESTAMP with a format mask, take care that the format mask
matches the value returned by the function. For example, consider the following table:

CREATE TABLE local_test (col1 TIMESTAMP WITH LOCAL TIME ZONE);

The following statement fails because the mask does not include the TIME ZONE portion of the
return type of the function:

INSERT INTO local_test
 VALUES (TO_TIMESTAMP(LOCALTIMESTAMP, 'DD-MON-RR HH.MI.SSXFF'));

Chapter 7
LOCALTIMESTAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 253 of 521

The following statement uses the correct format mask to match the return type of
LOCALTIMESTAMP:

INSERT INTO local_test
 VALUES (TO_TIMESTAMP(LOCALTIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM'));

LOG
Syntax

LOG (n2 , n1)

Purpose

LOG returns the logarithm, base n2, of n1. The base n2 can be any positive value other than 0 or
1 and n1 can be any positive value.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. If any argument is BINARY_FLOAT or
BINARY_DOUBLE, then the function returns BINARY_DOUBLE. Otherwise the function returns
NUMBER.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the log of 100:

SELECT LOG(10,100) "Log base 10 of 100"
 FROM DUAL;

Log base 10 of 100

 2

LOWER
Syntax

LOWER (char)

Purpose

LOWER returns char, with all letters lowercase. char can be any of the data types CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The return value is the same data type as
char. The database sets the case of the characters based on the binary mapping defined for the
underlying character set. For linguistic-sensitive lowercase, refer to NLS_LOWER .

Chapter 7
LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 254 of 521

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
LOWER

Examples

The following example returns a string in lowercase:

SELECT LOWER('MR. SCOTT MCMILLAN') "Lowercase"
 FROM DUAL;

Lowercase

mr. scott mcmillan

LPAD
Syntax

LPAD (expr1 , n

, expr2

)

Purpose

LPAD returns expr1, left-padded to length n characters with the sequence of characters in expr2.
This function is useful for formatting the output of a query.

Both expr1 and expr2 can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The string returned is of VARCHAR2 data type if expr1 is a character data type,
NVARCHAR2 if expr1 is a national character data type, and a LOB if expr1 is a LOB data type. The
string returned is in the same character set as expr1. The argument n must be a NUMBER integer
or a value that can be implicitly converted to a NUMBER integer.

If you do not specify expr2, then the default is a single blank. If expr1 is longer than n, then this
function returns the portion of expr1 that fits in n.

The argument n is the total length of the return value as it is displayed on your terminal screen.
In most character sets, this is also the number of characters in the return value. However, in
some multibyte character sets, the display length of a character string can differ from the
number of characters in the string.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
LPAD

Chapter 7
LPAD

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 255 of 521

Examples

The following example left-pads a string with the asterisk (*) and period (.) characters:

SELECT LPAD('Page 1',15,'*.') "LPAD example"
 FROM DUAL;

LPAD example

..*.*.*Page 1

LTRIM
Syntax

LTRIM (char

, set

)

Purpose

LTRIM removes from the left end of char all of the characters contained in set. If you do not
specify set, then it defaults to a single blank. Oracle Database begins scanning char from its first
character and removes all characters that appear in set until reaching a character not in set and
then returns the result.

Both char and set can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. The string returned is of VARCHAR2 data type if char is a character data type,
NVARCHAR2 if char is a national character data type, and a LOB if char is a LOB data type.

See Also

• RTRIM

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation LTRIM uses to compare characters
from set with characters from char, and for the collation derivation rules, which
define the collation assigned to the character return value of this function

Examples

The following example trims all the left-most occurrences of less than sign (<), greater than
sign (>) , and equal sign (=) from a string:

SELECT LTRIM('<=====>BROWNING<=====>', '<>=') "LTRIM Example"
 FROM DUAL;

LTRIM Example

BROWNING<=====>

Chapter 7
LTRIM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 256 of 521

MAKE_REF
Syntax

MAKE_REF (
table

view
, key

,

)

Purpose

MAKE_REF creates a REF to a row of an object view or a row in an object table whose object
identifier is primary key based. This function is useful, for example, if you are creating an object
view

See Also

Oracle Database Object-Relational Developer's Guide for more information about
object views and DEREF

Examples

The sample schema oe contains an object view oc_inventories based on inventory_typ. The object
identifier is product_id. The following example creates a REF to the row in the oc_inventories object
view with a product_id of 3003:

SELECT MAKE_REF (oc_inventories, 3003)
 FROM DUAL;

MAKE_REF(OC_INVENTORIES,3003)
--
00004A038A0046857C14617141109EE03408002082543600000014260100010001
00290090606002A00078401FE0000000B03C21F040000000000000000000000000
0000000000

MAX
Syntax

MAX (

DISTINCT

ALL

expr)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Chapter 7
MAKE_REF

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 257 of 521

Purpose

MAX returns maximum value of expr. You can use it as an aggregate or analytic function.

See Also

• "About SQL Expressions " for information on valid forms of expr, "Floating-Point
Numbers " for information on binary-float comparison semantics, and "Aggregate
Functions "

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation MAX uses to compare character
values for expr, and for the collation derivation rules, which define the collation
assigned to the return value of this function when it is a character value

Aggregate Example

The following example determines the highest salary in the hr.employees table:

SELECT MAX(salary) "Maximum"
 FROM employees;

 Maximum

 24000

Analytic Examples

The following example calculates, for each employee, the highest salary of the employees
reporting to the same manager as the employee.

SELECT manager_id, last_name, salary,
 MAX(salary) OVER (PARTITION BY manager_id) AS mgr_max
 FROM employees
 ORDER BY manager_id, last_name, salary;

MANAGER_ID LAST_NAME SALARY MGR_MAX
---------- ------------------------- ---------- ----------
 100 Cambrault 11000 17000
 100 De Haan 17000 17000
 100 Errazuriz 12000 17000
 100 Fripp 8200 17000
 100 Hartstein 13000 17000
 100 Kaufling 7900 17000
 100 Kochhar 17000 17000
. . .

If you enclose this query in the parent query with a predicate, then you can determine the
employee who makes the highest salary in each department:

SELECT manager_id, last_name, salary
 FROM (SELECT manager_id, last_name, salary,
 MAX(salary) OVER (PARTITION BY manager_id) AS rmax_sal
 FROM employees)
 WHERE salary = rmax_sal
 ORDER BY manager_id, last_name, salary;

MANAGER_ID LAST_NAME SALARY

Chapter 7
MAX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 258 of 521

---------- ------------------------- ----------
 100 De Haan 17000
 100 Kochhar 17000
 101 Greenberg 12008
 101 Higgins 12008
 102 Hunold 9000
 103 Ernst 6000
 108 Faviet 9000
 114 Khoo 3100
 120 Nayer 3200
 120 Taylor 3200
 121 Sarchand 4200
 122 Chung 3800
 123 Bell 4000
 124 Rajs 3500
 145 Tucker 10000
 146 King 10000
 147 Vishney 10500
 148 Ozer 11500
 149 Abel 11000
 201 Fay 6000
 205 Gietz 8300
 King 24000

22 rows selected.

MEDIAN
Syntax

MEDIAN (expr)

OVER (query_partition_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

MEDIAN is an inverse distribution function that assumes a continuous distribution model. It
takes a numeric or datetime value and returns the middle value or an interpolated value that
would be the middle value once the values are sorted. Nulls are ignored in the calculation.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. If you specify only expr, then the function returns
the same data type as the numeric data type of the argument. If you specify the OVER clause,
then Oracle Database determines the argument with the highest numeric precedence, implicitly
converts the remaining arguments to that data type, and returns that data type.

Chapter 7
MEDIAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 259 of 521

See Also

Table 2-9 for more information on implicit conversion and "Numeric Precedence " for
information on numeric precedence

The result of MEDIAN is computed by first ordering the rows. Using N as the number of rows in
the group, Oracle calculates the row number (RN) of interest with the formula RN = (1 +
(0.5*(N-1)). The final result of the aggregate function is computed by linear interpolation
between the values from rows at row numbers CRN = CEILING(RN) and FRN = FLOOR(RN).

The final result will be:

 if (CRN = FRN = RN) then
 (value of expression from row at RN)
 else
 (CRN - RN) * (value of expression for row at FRN) +
 (RN - FRN) * (value of expression for row at CRN)

You can use MEDIAN as an analytic function. You can specify only the query_partition_clause in its
OVER clause. It returns, for each row, the value that would fall in the middle among a set of
values within each partition.

Compare this function with these functions:

• PERCENTILE_CONT , which returns, for a given percentile, the value that corresponds to
that percentile by way of interpolation. MEDIAN is the specific case of PERCENTILE_CONT
where the percentile value defaults to 0.5.

• PERCENTILE_DISC , which is useful for finding values for a given percentile without
interpolation.

Aggregate Example

The following query returns the median salary for each department in the hr.employees table:

SELECT department_id, MEDIAN(salary)
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

DEPARTMENT_ID MEDIAN(SALARY)
------------- --------------
 10 4400
 20 9500
 30 2850
 40 6500
 50 3100
 60 4800
 70 10000
 80 8900
 90 17000
 100 8000
 110 10154
 7000

Analytic Example

The following query returns the median salary for each manager in a subset of departments in
the hr.employees table:

Chapter 7
MEDIAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 260 of 521

SELECT manager_id, employee_id, salary,
 MEDIAN(salary) OVER (PARTITION BY manager_id) "Median by Mgr"
 FROM employees
 WHERE department_id > 60
 ORDER BY manager_id, employee_id;

MANAGER_ID EMPLOYEE_ID SALARY Median by Mgr
---------- ----------- ---------- -------------
 100 101 17000 13500
 100 102 17000 13500
 100 145 14000 13500
 100 146 13500 13500
 100 147 12000 13500
 100 148 11000 13500
 100 149 10500 13500
 101 108 12008 12008
 101 204 10000 12008
 101 205 12008 12008
 108 109 9000 7800
 108 110 8200 7800
 108 111 7700 7800
 108 112 7800 7800
 108 113 6900 7800
 145 150 10000 8500
 145 151 9500 8500
 145 152 9000 8500
. . .

MIN
Syntax

MIN (

DISTINCT

ALL

expr)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

MIN returns minimum value of expr. You can use it as an aggregate or analytic function.

Chapter 7
MIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 261 of 521

See Also

• "About SQL Expressions " for information on valid forms of expr, "Floating-Point
Numbers " for information on binary-float comparison semantics, and "Aggregate
Functions "

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation MIN uses to compare character
values for expr, and for the collation derivation rules, which define the collation
assigned to the return value of this function when it is a character value

Aggregate Example

The following statement returns the earliest hire date in the hr.employees table:

SELECT MIN(hire_date) "Earliest"
 FROM employees;

Earliest

13-JAN-01

Analytic Example

The following example determines, for each employee, the employees who were hired on or
before the same date as the employee. It then determines the subset of employees reporting
to the same manager as the employee, and returns the lowest salary in that subset.

SELECT manager_id, last_name, hire_date, salary,
 MIN(salary) OVER(PARTITION BY manager_id ORDER BY hire_date
 RANGE UNBOUNDED PRECEDING) AS p_cmin
 FROM employees
 ORDER BY manager_id, last_name, hire_date, salary;

MANAGER_ID LAST_NAME HIRE_DATE SALARY P_CMIN
---------- ------------------------- --------- ---------- ----------
 100 Cambrault 15-OCT-07 11000 6500
 100 De Haan 13-JAN-01 17000 17000
 100 Errazuriz 10-MAR-05 12000 7900
 100 Fripp 10-APR-05 8200 7900
 100 Hartstein 17-FEB-04 13000 7900
 100 Kaufling 01-MAY-03 7900 7900
 100 Kochhar 21-SEP-05 17000 7900
 100 Mourgos 16-NOV-07 5800 5800
 100 Partners 05-JAN-05 13500 7900
 100 Raphaely 07-DEC-02 11000 11000
 100 Russell 01-OCT-04 14000 7900

. . .

MOD
Syntax

MOD (n2 , n1)

Chapter 7
MOD

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 262 of 521

Purpose

MOD returns the remainder of n2 divided by n1. Returns n2 if n1 is 0.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type, and
returns that data type.

See Also

Table 2-9 for more information on implicit conversion and "Numeric Precedence " for
information on numeric precedence

Examples

The following example returns the remainder of 11 divided by 4:

SELECT MOD(11,4) "Modulus"
 FROM DUAL;

 Modulus

 3

This function behaves differently from the classical mathematical modulus function, if the
product of n1 and n2 is negative. The classical modulus can be expressed using the MOD
function with this formula:

n2 - n1 * FLOOR(n2/n1)

The following table illustrates the difference between the MOD function and the classical
modulus:

n2 n1 MOD(n2,n1) Classical Modulus

11 4 3 3

11 -4 3 -1

-11 4 -3 1

-11 -4 -3 -3

See Also

FLOOR (number) and REMAINDER , which is similar to MOD, but uses ROUND in its
formula instead of FLOOR

Chapter 7
MOD

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 263 of 521

MONTHS_BETWEEN
Syntax

MONTHS_BETWEEN (date1 , date2)

Purpose

MONTHS_BETWEEN returns number of months between dates date1 and date2. The month and the
last day of the month are defined by the parameter NLS_CALENDAR. If date1 is later than date2,
then the result is positive. If date1 is earlier than date2, then the result is negative. If date1 and
date2 are either the same days of the month or both last days of months, then the result is
always an integer. Otherwise Oracle Database calculates the fractional portion of the result
based on a 31-day month and considers the difference in time components date1 and date2.

Examples

The following example calculates the months between two dates:

SELECT MONTHS_BETWEEN
 (TO_DATE('02-02-1995','MM-DD-YYYY'),
 TO_DATE('01-01-1995','MM-DD-YYYY')) "Months"
 FROM DUAL;

 Months

1.03225806

NANVL
Syntax

NANVL (n2 , n1)

Purpose

The NANVL function is useful only for floating-point numbers of type BINARY_FLOAT or
BINARY_DOUBLE. It instructs Oracle Database to return an alternative value n1 if the input value
n2 is NaN (not a number). If n2 is not NaN, then Oracle returns n2.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type, and
returns that data type.

See Also

Table 2-9 for more information on implicit conversion, "Floating-Point Numbers " for
information on binary-float comparison semantics, and "Numeric Precedence " for
information on numeric precedence

Chapter 7
MONTHS_BETWEEN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 264 of 521

Examples

Using table float_point_demo created for TO_BINARY_DOUBLE , insert a second entry into the
table:

INSERT INTO float_point_demo
 VALUES (0,'NaN','NaN');

SELECT *
 FROM float_point_demo;

 DEC_NUM BIN_DOUBLE BIN_FLOAT
---------- ---------- ----------
 1234.56 1.235E+003 1.235E+003
 0 Nan Nan

The following example returns bin_float if it is a number. Otherwise, 0 is returned.

SELECT bin_float, NANVL(bin_float,0)
 FROM float_point_demo;

 BIN_FLOAT NANVL(BIN_FLOAT,0)
---------- ------------------
1.235E+003 1.235E+003
 Nan 0

NCHR
Syntax

NCHR (number)

Purpose

NCHR returns the character having the binary equivalent to number in the national character set.
The value returned is always NVARCHAR2. This function is equivalent to using the CHR function
with the USING NCHAR_CS clause.

This function takes as an argument a NUMBER value, or any value that can be implicitly
converted to NUMBER, and returns a character.

See Also

• CHR

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of NCHR

Examples

The following examples return the nchar character 187:

SELECT NCHR(187)
 FROM DUAL;

Chapter 7
NCHR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 265 of 521

N
-
>

SELECT CHR(187 USING NCHAR_CS)
 FROM DUAL;

C
-
>

NEW_TIME
Syntax

NEW_TIME (date , timezone1 , timezone2)

Purpose

NEW_TIME returns the date and time in time zone timezone2 when date and time in time zone
timezone1 are date. Before using this function, you must set the NLS_DATE_FORMAT parameter to
display 24-hour time. The return type is always DATE, regardless of the data type of date.

Note

This function takes as input only a limited number of time zones. You can have access
to a much greater number of time zones by combining the FROM_TZ function and the
datetime expression. See FROM_TZ and the example for "Datetime Expressions ".

The arguments timezone1 and timezone2 can be any of these text strings:

• AST, ADT: Atlantic Standard or Daylight Time

• BST, BDT: Bering Standard or Daylight Time

• CST, CDT: Central Standard or Daylight Time

• EST, EDT: Eastern Standard or Daylight Time

• GMT: Greenwich Mean Time

• HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.

• MST, MDT: Mountain Standard or Daylight Time

• NST: Newfoundland Standard Time

• PST, PDT: Pacific Standard or Daylight Time

• YST, YDT: Yukon Standard or Daylight Time

Examples

The following example returns an Atlantic Standard time, given the Pacific Standard time
equivalent:

Chapter 7
NEW_TIME

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 266 of 521

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';

SELECT NEW_TIME(TO_DATE('11-10-09 01:23:45', 'MM-DD-YY HH24:MI:SS'), 'AST', 'PST')
 "New Date and Time"
 FROM DUAL;

New Date and Time

09-NOV-2009 21:23:45

NEXT_DAY
Syntax

NEXT_DAY (date , char)

Purpose

NEXT_DAY returns the date of the first weekday named by char that is later than the date date.
The return type is always DATE, regardless of the data type of date. The argument char must be
a day of the week in the date language of your session, either the full name or the
abbreviation. The minimum number of letters required is the number of letters in the
abbreviated version. Any characters immediately following the valid abbreviation are ignored.
The return value has the same hours, minutes, and seconds component as the argument date.

Examples

This example returns the date of the next Tuesday after October 15, 2009:

SELECT NEXT_DAY('15-OCT-2009','TUESDAY') "NEXT DAY"
 FROM DUAL;

NEXT DAY

20-OCT-2009 00:00:00

NLS_CHARSET_DECL_LEN
Syntax

NLS_CHARSET_DECL_LEN (byte_count , char_set_id)

Purpose

NLS_CHARSET_DECL_LEN returns the declaration length (in number of characters) of an NCHAR
column. The byte_count argument is the width of the column. The char_set_id argument is the
character set ID of the column.

Examples

The following example returns the number of characters that are in a 200-byte column when
you are using a multibyte character set:

Chapter 7
NEXT_DAY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 267 of 521

SELECT NLS_CHARSET_DECL_LEN(200, nls_charset_id('ja16eucfixed'))
 FROM DUAL;

NLS_CHARSET_DECL_LEN(200,NLS_CHARSET_ID('JA16EUCFIXED'))
--
 100

NLS_CHARSET_ID
Syntax

NLS_CHARSET_ID (string)

Purpose

NLS_CHARSET_ID returns the character set ID number corresponding to character set name
string. The string argument is a run-time VARCHAR2 value. The string value 'CHAR_CS' returns the
database character set ID number of the server. The string value 'NCHAR_CS' returns the
national character set ID number of the server.

Invalid character set names return null.

See Also

Oracle Database Globalization Support Guide for a list of character sets

Examples

The following example returns the character set ID of a character set:

SELECT NLS_CHARSET_ID('ja16euc')
 FROM DUAL;

NLS_CHARSET_ID('JA16EUC')

 830

NLS_CHARSET_NAME
Syntax

NLS_CHARSET_NAME (number)

Purpose

NLS_CHARSET_NAME returns the name of the character set corresponding to ID number number.
The character set name is returned as a VARCHAR2 value in the database character set. If
number is not recognized as a valid character set ID, then this function returns null.

This function returns a VARCHAR2 value.

Chapter 7
NLS_CHARSET_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 268 of 521

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
NLS_CHARSET_NAME

Examples

The following example returns the character set corresponding to character set ID number 2:

SELECT NLS_CHARSET_NAME(2)
 FROM DUAL;

NLS_CH

WE8DEC

NLS_COLLATION_ID
Syntax

NLS_COLLATION_ID (expr)

Purpose

NLS_COLLATION_ID takes as its argument a collation name and returns the corresponding
collation ID number. Collation IDs are used in the data dictionary tables and in Oracle Call
Interface (OCI). Collation names are used in SQL statements and data dictionary views

For expr, specify the collation name as a VARCHAR2 value. You can specify a valid named
collation or a pseudo-collation, in any combination of uppercase and lowercase letters.

This function returns a NUMBER value. If you specify an invalid collation name, then this
function returns null.

Examples

The following example returns the collation ID of collation BINARY_CI:

SELECT NLS_COLLATION_ID('BINARY_CI')
 FROM DUAL;

NLS_COLLATION_ID('BINARY_CI')

 147455

NLS_COLLATION_NAME
Syntax

NLS_COLLATION_NAME (expr

, flag

)

Chapter 7
NLS_COLLATION_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 269 of 521

Purpose

NLS_COLLATION_NAME takes as its argument a collation ID number and returns the
corresponding collation name. Collation IDs are used in the data dictionary tables and in
Oracle Call Interface (OCI). Collation names are used in SQL statements and data dictionary
views

For expr, specify the collation ID as a NUMBER value.

This function returns a VARCHAR2 value. If you specify an invalid collation ID, then this function
returns null.

The optional flag parameter applies only to Unicode Collation Algorithm (UCA) collations. This
parameter determines whether the function returns the short form or long form of the collation
name. The parameter must be a character expression evaluating to the value 'S', 's', 'L', or 'l',
with the following meaning:

• 'S' or 's' – Returns the short form of the collation name

• 'L' or 'l' – Returns the long form of the collation name

If you omit flag, then the default is 'L'.

See Also

• Oracle Database Globalization Support Guide for more information on UCA
collations

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of NLS_COLLATION_NAME

Examples

The following example returns the name of the collation corresponding to collation ID number
81919:

SELECT NLS_COLLATION_NAME(81919)
 FROM DUAL;

NLS_COLLA

BINARY_AI

The following example returns the short form of the name of the UCA collation corresponding
to collation ID number 208897:

SELECT NLS_COLLATION_NAME(208897,'S')
 FROM DUAL;

NLS_COLLATION

UCA0610_DUCET

The following example returns the long form of the name of the UCA collation corresponding to
collation ID number 208897:

SELECT NLS_COLLATION_NAME(208897,'L')
 FROM DUAL;

Chapter 7
NLS_COLLATION_NAME

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 270 of 521

NLS_COLLATION_NAME(208897,'L')
--
UCA0610_DUCET_S4_VS_BN_NY_EN_FN_HN_DN_MN

NLS_INITCAP
Syntax

NLS_INITCAP (char

, ’ nlsparam ’

)

Purpose

NLS_INITCAP returns char, with the first letter of each word in uppercase, all other letters in
lowercase. Words are delimited by white space or characters that are not alphanumeric.

Both char and 'nlsparam' can be any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2.
The string returned is of VARCHAR2 data type and is in the same character set as char.

The value of 'nlsparam' can have this form:

'NLS_SORT = sort'

where sort is a named collation. The collation handles special linguistic requirements for case
conversions. These requirements can result in a return value of a different length than the char.
If you omit 'nlsparam', then this function uses the determined collation of the function.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for NLS_INITCAP , and for the collation derivation rules, which
define the collation assigned to the character return value of this function

Examples

The following examples show how the linguistic sort sequence results in a different return value
from the function:

SELECT NLS_INITCAP('ijsland') "InitCap"
 FROM DUAL;

InitCap

Ijsland

SELECT NLS_INITCAP('ijsland', 'NLS_SORT = XDutch') "InitCap"
 FROM DUAL;

InitCap

Chapter 7
NLS_INITCAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 271 of 521

IJsland

See Also

Oracle Database Globalization Support Guide for information on collations

NLS_LOWER
Syntax

NLS_LOWER (char

, ’ nlsparam ’

)

Purpose

NLS_LOWER returns char, with all letters lowercase.

Both char and 'nlsparam' can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB. The string returned is of VARCHAR2 data type if char is a character data type
and a LOB if char is a LOB data type. The return string is in the same character set as char.

The 'nlsparam' can have the same form and serve the same purpose as in the NLS_INITCAP
function.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for NLS_LOWER, and for the collation derivation rules, which define
the collation assigned to the character return value of this function

Examples

The following statement returns the lowercase form of the character string 'NOKTASINDA' using
the XTurkish linguistic sort sequence. The Turkish uppercase I becoming a small, dotless i.

SELECT NLS_LOWER('NOKTASINDA', 'NLS_SORT = XTurkish') "Lowercase"
 FROM DUAL;

NLS_UPPER
Syntax

NLS_UPPER (char

, ’ nlsparam ’

)

Chapter 7
NLS_LOWER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 272 of 521

Purpose

NLS_UPPER returns char, with all letters uppercase.

Both char and 'nlsparam' can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB. The string returned is of VARCHAR2 data type if char is a character data type
and a LOB if char is a LOB data type. The return string is in the same character set as char.

The 'nlsparam' can have the same form and serve the same purpose as in the NLS_INITCAP
function.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for NLS_UPPER, and for the collation derivation rules, which define
the collation assigned to the character return value of this function

Examples

The following example returns a string with all the letters converted to uppercase:

SELECT NLS_UPPER('große') "Uppercase"
 FROM DUAL;

Upper

GROßE

SELECT NLS_UPPER('große', 'NLS_SORT = XGerman') "Uppercase"
 FROM DUAL;

Upperc

GROSSE

See Also

NLS_INITCAP

NLSSORT
Syntax

NLSSORT (char

, ’ nlsparam ’

)

Purpose

NLSSORT returns a collation key for the character value char and an explicitly or implicitly
specified collation. A collation key is a string of bytes used to sort char according to the
specified collation. The property of the collation keys is that mutual ordering of two such keys

Chapter 7
NLSSORT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 273 of 521

generated for the given collation when compared according to their binary order is the same as
mutual ordering of the source character values when compared according to the given
collation.

Both char and 'nlsparam' can be any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2.

The value of 'nlsparam' must have the form

'NLS_SORT = collation'

where collation is the name of a linguistic collation or BINARY. NLSSORT uses the specified
collation to generate the collation key. If you omit 'nlsparam', then this function uses the derived
collation of the argument char. If you specify BINARY, then this function returns the char value
itself cast to RAW and possibly truncated as described below.

If you specify 'nlsparam', then you can append to the linguistic collation name the suffix _ai to
request an accent-insensitive collation or _ci to request a case-insensitive collation. Refer to
Oracle Database Globalization Support Guide for more information on accent- and case-
insensitive sorting. Using accent-insensitive or case-insensitive collations with the ORDER BY
query clause is not recommended as it leads to a nondeterministic sort order.

The returned collation key is of RAW data type. The length of the collation key resulting from a
given char value for a given collation may exceed the maximum length of the RAW value
returned by NLSSORT. In this case, the behavior of NLSSORT depends on the value of the
initialization parameter MAX_STRING_SIZE. If MAX_STRING_SIZE = EXTENDED, then the maximum
length of the return value is 32767 bytes. If the collation key exceeds this limit, then the
function fails with the error "ORA-12742: unable to create the collation key". This error may
also be reported for short input strings if they contain a high percentage of Unicode characters
with very high decomposition ratios.

See Also

Oracle Database Globalization Support Guide for details of when the ORA-12742 error is
reported and how to prevent application availability issues that the error could cause

If MAX_STRING_SIZE = STANDARD, then the maximum length of the return value is 2000 bytes. If
the value to be returned exceeds the limit, then NLSSORT calculates the collation key for a
maximum prefix, or initial substring, of char so that the calculated result does not exceed the
maximum length. For monolingual collations, for example FRENCH, the prefix length is typically
1000 characters. For multilingual collations, for example GENERIC_M, the prefix is typically 500
characters. For Unicode Collation Algorithm (UCA) collations, for example UCA0610_DUCET, the
prefix is typically 285 characters. The exact length may be lower or higher depending on the
collation and the characters contained in char.

The behavior when MAX_STRING_SIZE = STANDARD implies that two character values whose
collation keys (NLSSORT results) are compared to find the linguistic ordering are considered
equal if they do not differ in the prefix even though they may differ at some further character
position. Because the NLSSORT function is used implicitly to find linguistic ordering for
comparison conditions, the BETWEEN condition, the IN condition, ORDER BY, GROUP BY, and
COUNT(DISTINCT), those operations may return results that are only approximate for long
character values. If you want guarantee that the results of those operations are exact, then
migrate your database to use MAX_STRING_SIZE = EXTENDED.

Refer to "Extended Data Types" for more information on the MAX_STRING_SIZE initialization
parameter.

Chapter 7
NLSSORT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 274 of 521

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for NLSSORT

Examples

This function can be used to specify sorting and comparison operations based on a linguistic
sort sequence rather than on the binary value of a string. The following example creates a test
table containing two values and shows how the values returned can be ordered by the
NLSSORT function:

CREATE TABLE test (name VARCHAR2(15));
INSERT INTO test VALUES ('Gaardiner');
INSERT INTO test VALUES ('Gaberd');
INSERT INTO test VALUES ('Gaasten');

SELECT *
 FROM test
 ORDER BY name;

NAME

Gaardiner
Gaasten
Gaberd

SELECT *
 FROM test
 ORDER BY NLSSORT(name, 'NLS_SORT = XDanish');

NAME

Gaberd
Gaardiner
Gaasten

The following example shows how to use the NLSSORT function in comparison operations:

SELECT *
 FROM test
 WHERE name > 'Gaberd'
 ORDER BY name;

no rows selected

SELECT *
 FROM test
 WHERE NLSSORT(name, 'NLS_SORT = XDanish') >
 NLSSORT('Gaberd', 'NLS_SORT = XDanish')
 ORDER BY name;

NAME

Chapter 7
NLSSORT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 275 of 521

Gaardiner
Gaasten

If you frequently use NLSSORT in comparison operations with the same linguistic sort sequence,
then consider this more efficient alternative: Set the NLS_COMP parameter (either for the
database or for the current session) to LINGUISTIC, and set the NLS_SORT parameter for the
session to the desired sort sequence. Oracle Database will use that sort sequence by default
for all sorting and comparison operations during the current session:

ALTER SESSION SET NLS_COMP = 'LINGUISTIC';
ALTER SESSION SET NLS_SORT = 'XDanish';

SELECT *
 FROM test
 WHERE name > 'Gaberd'
 ORDER BY name;

NAME

Gaardiner
Gaasten

See Also

Oracle Database Globalization Support Guide for information on sort sequences

NTH_VALUE
Syntax

NTH_VALUE (measure_expr , n)

FROM
FIRST

LAST

RESPECT

IGNORE
NULLS

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions of the
analytic_clause

Purpose

NTH_VALUE returns the measure_expr value of the nth row in the window defined by the
analytic_clause. The returned value has the data type of the measure_expr.

• {RESPECT | IGNORE} NULLS determines whether null values of measure_expr are included in or
eliminated from the calculation. The default is RESPECT NULLS.

Chapter 7
NTH_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 276 of 521

• n determines the nth row for which the measure value is to be returned. n can be a
constant, bind variable, column, or an expression involving them, as long as it resolves to a
positive integer. The function returns NULL if the data source window has fewer than n
rows. If n is null, then the function returns an error.

• FROM {FIRST | LAST} determines whether the calculation begins at the first or last row of the
window. The default is FROM FIRST.

If you omit the windowing_clause of the analytic_clause, it defaults to RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW. This default sometimes returns an unexpected value for
NTH_VALUE ... FROM LAST ... , because the last value in the window is at the bottom of the
window, which is not fixed. It keeps changing as the current row changes. For expected
results, specify the windowing_clause as RANGE BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING. Alternatively, you can specify the windowing_clause as RANGE BETWEEN
CURRENT ROW AND UNBOUNDED FOLLOWING.

See Also

• Oracle Database Data Warehousing Guide for more information on the use of this
function

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
NTH_VALUE when it is a character value

Examples

The following example shows the minimum amount_sold value for the second channel_id in
ascending order for each prod_id between 13 and 16:

SELECT prod_id, channel_id, MIN(amount_sold),
 NTH_VALUE(MIN(amount_sold), 2) OVER (PARTITION BY prod_id ORDER BY channel_id
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) nv
 FROM sales
 WHERE prod_id BETWEEN 13 and 16
 GROUP BY prod_id, channel_id;

 PROD_ID CHANNEL_ID MIN(AMOUNT_SOLD) NV
---------- ---------- ---------------- ----------
 13 2 907.34 906.2
 13 3 906.2 906.2
 13 4 842.21 906.2
 14 2 1015.94 1036.72
 14 3 1036.72 1036.72
 14 4 935.79 1036.72
 15 2 871.19 871.19
 15 3 871.19 871.19
 15 4 871.19 871.19
 16 2 266.84 266.84
 16 3 266.84 266.84
 16 4 266.84 266.84
 16 9 11.99 266.84

13 rows selected.

Chapter 7
NTH_VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 277 of 521

NTILE
Syntax

NTILE (expr) OVER

window_name

(

window_name

query_partition_clause order_by_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions, including
valid forms of expr

Purpose

NTILE is an analytic function. It divides an ordered data set into a number of buckets indicated
by expr and assigns the appropriate bucket number to each row. The buckets are numbered 1
through expr. The expr value must resolve to a positive constant for each partition. Oracle
Database expects an integer, and if expr is a noninteger constant, then Oracle truncates the
value to an integer. The return value is NUMBER.

The number of rows in the buckets can differ by at most 1. The remainder values (the
remainder of number of rows divided by buckets) are distributed one for each bucket, starting
with bucket 1.

If expr is greater than the number of rows, then a number of buckets equal to the number of
rows will be filled, and the remaining buckets will be empty.

You cannot nest analytic functions by using NTILE or any other analytic function for expr.
However, you can use other built-in function expressions for expr.

See Also

"About SQL Expressions " for information on valid forms of expr and Table 2-9 for more
information on implicit conversion

Examples

The following example divides into 4 buckets the values in the salary column of the oe.employees
table from Department 100. The salary column has 6 values in this department, so the two extra
values (the remainder of 6 / 4) are allocated to buckets 1 and 2, which therefore have one
more value than buckets 3 or 4.

SELECT last_name, salary, NTILE(4) OVER (ORDER BY salary DESC) AS quartile
 FROM employees
 WHERE department_id = 100
 ORDER BY last_name, salary, quartile;

Chapter 7
NTILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 278 of 521

LAST_NAME SALARY QUARTILE
------------------------- ---------- ----------
Chen 8200 2
Faviet 9000 1
Greenberg 12008 1
Popp 6900 4
Sciarra 7700 3
Urman 7800 2

NULLIF
Syntax

NULLIF (expr1 , expr2)

Purpose

NULLIF compares expr1 and expr2. If they are equal, then the function returns null. If they are not
equal, then the function returns expr1. You cannot specify the literal NULL for expr1.

If both arguments are numeric data types, then Oracle Database determines the argument with
the higher numeric precedence, implicitly converts the other argument to that data type, and
returns that data type. If the arguments are not numeric, then they must be of the same data
type, or Oracle returns an error.

The NULLIF function is logically equivalent to the following CASE expression:

CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END

See Also

• "CASE Expressions "

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation NULLIF uses to compare characters
from expr1 with characters from expr2, and for the collation derivation rules, which
define the collation assigned to the return value of this function when it is a
character value

Examples

The following example selects those employees from the sample schema hr who have
changed jobs since they were hired, as indicated by a job_id in the job_history table different from
the current job_id in the employees table:

SELECT e.last_name, NULLIF(j.job_id, e.job_id) "Old Job ID"
 FROM employees e, job_history j
 WHERE e.employee_id = j.employee_id
 ORDER BY last_name, "Old Job ID";

LAST_NAME Old Job ID
------------------------- ----------
De Haan IT_PROG
Hartstein MK_REP
Kaufling ST_CLERK

Chapter 7
NULLIF

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 279 of 521

Kochhar AC_ACCOUNT
Kochhar AC_MGR
Raphaely ST_CLERK
Taylor SA_MAN
Taylor
Whalen AC_ACCOUNT
Whalen

NUMTODSINTERVAL
Syntax

NUMTODSINTERVAL (n , ’ interval_unit ’)

Purpose

NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND literal. The argument n can be
any NUMBER value or an expression that can be implicitly converted to a NUMBER value. The
argument interval_unit can be of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The value
for interval_unit specifies the unit of n and must resolve to one of the following string values:

• 'DAY'

• 'HOUR'

• 'MINUTE'

• 'SECOND'

interval_unit is case insensitive. Leading and trailing values within the parentheses are ignored.
By default, the precision of the return is 9.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example uses NUMTODSINTERVAL in a COUNT analytic function to calculate, for
each employee, the number of employees hired by the same manager within the past 100
days from his or her hire date. Refer to "Analytic Functions " for more information on the syntax
of the analytic functions.

SELECT manager_id, last_name, hire_date,
 COUNT(*) OVER (PARTITION BY manager_id ORDER BY hire_date
 RANGE NUMTODSINTERVAL(100, 'day') PRECEDING) AS t_count
 FROM employees
 ORDER BY last_name, hire_date;

MANAGER_ID LAST_NAME HIRE_DATE T_COUNT
---------- ------------------------- --------- ----------
 149 Abel 11-MAY-04 1
 147 Ande 24-MAR-08 3
 121 Atkinson 30-OCT-05 2
 103 Austin 25-JUN-05 1
. . .

Chapter 7
NUMTODSINTERVAL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 280 of 521

 124 Walsh 24-APR-06 2
 100 Weiss 18-JUL-04 1
 101 Whalen 17-SEP-03 1
 100 Zlotkey 29-JAN-08 2

NUMTOYMINTERVAL
Syntax

NUMTOYMINTERVAL (n , ’ interval_unit ’)

Purpose

NUMTOYMINTERVAL converts number n to an INTERVAL YEAR TO MONTH literal. The argument n
can be any NUMBER value or an expression that can be implicitly converted to a NUMBER value.
The argument interval_unit can be of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The
value for interval_unit specifies the unit of n and must resolve to one of the following string
values:

• 'YEAR'

• 'MONTH'

interval_unit is case insensitive. Leading and trailing values within the parentheses are ignored.
By default, the precision of the return is 9.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example uses NUMTOYMINTERVAL in a SUM analytic function to calculate, for
each employee, the total salary of employees hired in the past one year from his or her hire
date. Refer to "Analytic Functions " for more information on the syntax of the analytic functions.

SELECT last_name, hire_date, salary,
 SUM(salary) OVER (ORDER BY hire_date
 RANGE NUMTOYMINTERVAL(1,'year') PRECEDING) AS t_sal
 FROM employees
 ORDER BY last_name, hire_date;

LAST_NAME HIRE_DATE SALARY T_SAL
------------------------- --------- ---------- ----------
Abel 11-MAY-04 11000 90300
Ande 24-MAR-08 6400 112500
Atkinson 30-OCT-05 2800 177000
Austin 25-JUN-05 4800 134700
. . .
Walsh 24-APR-06 3100 186200
Weiss 18-JUL-04 8000 70900
Whalen 17-SEP-03 4400 54000
Zlotkey 29-JAN-08 10500 119000

Chapter 7
NUMTOYMINTERVAL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 281 of 521

NVL
Syntax

NVL (expr1 , expr2)

Purpose

NVL lets you replace null (returned as a blank) with a string in the results of a query. If expr1 is
null, then NVL returns expr2. If expr1 is not null, then NVL returns expr1.

The arguments expr1 and expr2 can have any data type. If their data types are different, then
Oracle Database implicitly converts one to the other. If they cannot be converted implicitly, then
the database returns an error. The implicit conversion is implemented as follows:

• If expr1 is character data, then Oracle Database converts expr2 to the data type of expr1
before comparing them and returns VARCHAR2 in the character set of expr1.

• If expr1 is numeric, then Oracle Database determines which argument has the highest
numeric precedence, implicitly converts the other argument to that data type, and returns
that data type.

See Also

• Table 2-9 for more information on implicit conversion and "Numeric Precedence "
for information on numeric precedence

• "COALESCE " and "CASE Expressions ", which provide functionality similar to
that of NVL

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of NVL
when it is a character value

Examples

The following example returns a list of employee names and commissions, substituting "Not
Applicable" if the employee receives no commission:

SELECT last_name, NVL(TO_CHAR(commission_pct), 'Not Applicable') commission
 FROM employees
 WHERE last_name LIKE 'B%'
 ORDER BY last_name;

LAST_NAME COMMISSION
------------------------- --
Baer Not Applicable
Baida Not Applicable
Banda .1
Bates .15
Bell Not Applicable
Bernstein .25
Bissot Not Applicable

Chapter 7
NVL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 282 of 521

Bloom .2
Bull Not Applicable

NVL2
Syntax

NVL2 (expr1 , expr2 , expr3)

Purpose

NVL2 lets you determine the value returned by a query based on whether a specified
expression is null or not null. If expr1 is not null, then NVL2 returns expr2. If expr1 is null, then NVL2
returns expr3.

The argument expr1 can have any data type. The arguments expr2 and expr3 can have any data
types except LONG.

If the data types of expr2 and expr3 are different, then Oracle Database implicitly converts one to
the other. If they cannot be converted implicitly, then the database returns an error. If expr2 is
character or numeric data, then the implicit conversion is implemented as follows:

• If expr2 is character data, then Oracle Database converts expr3 to the data type of expr2
before returning a value unless expr3 is a null constant. In that case, a data type conversion
is not necessary, and the database returns VARCHAR2 in the character set of expr2.

• If expr2 is numeric data, then Oracle Database determines which argument has the highest
numeric precedence, implicitly converts the other argument to that data type, and returns
that data type.

See Also

• Table 2-9 for more information on implicit conversion and "Numeric Precedence "
for information on numeric precedence

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of NVL2
when it is a character value

Examples

The following example shows whether the income of some employees is made up of salary
plus commission, or just salary, depending on whether the commission_pct column of employees is
null or not.

SELECT last_name, salary,
 NVL2(commission_pct, salary + (salary * commission_pct), salary) income
 FROM employees
 WHERE last_name like 'B%'
 ORDER BY last_name;

LAST_NAME SALARY INCOME
------------------------- ---------- ----------
Baer 10000 10000
Baida 2900 2900

Chapter 7
NVL2

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 283 of 521

Banda 6200 6820
Bates 7300 8395
Bell 4000 4000
Bernstein 9500 11875
Bissot 3300 3300
Bloom 10000 12000
Bull 4100 4100

ORA_DM_PARTITION_NAME
Syntax

ORA_DM_PARTITION_NAME (

schema .

model mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

Purpose

ORA_DM_PARTITION_NAME is a single row function that works along with other existing
functions. This function returns the name of the partition associated with the input row. When
ORA_DM_PARTITION_NAME is used on a non-partitioned model, the result is NULL.

The syntax of the ORA_DM_PARTITION_NAME function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for scoring. When
the function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
See mining_attribute_clause.

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring

• Oracle Machine Learning for SQL Concepts for information about clustering

Chapter 7
ORA_DM_PARTITION_NAME

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 284 of 521

Note

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix A
in Oracle Machine Learning for SQL User’s Guide.

Example

SELECT prediction(mymodel using *) pred, ora_dm_partition_name(mymodel USING *) pname FROM customers;

ORA_DST_AFFECTED
Syntax

ORA_DST_AFFECTED (datetime_expr)

Purpose

ORA_DST_AFFECTED is useful when you are changing the time zone data file for your database.
The function takes as an argument a datetime expression that resolves to a TIMESTAMP WITH
TIME ZONE value or a VARRAY object that contains TIMESTAMP WITH TIME ZONE values. The
function returns 1 if the datetime value is affected by or will result in a "nonexisting time" or
"duplicate time" error with the new time zone data. Otherwise, it returns 0.

This function can be issued only when changing the time zone data file of the database and
upgrading the timestamp with the time zone data, and only between the execution of the
DBMS_DST.BEGIN_PREPARE and the DBMS_DST.END_PREPARE procedures or between the
execution of the DBMS_DST.BEGIN_UPGRADE and the DBMS_DST.END_UPGRADE procedures.

See Also

Oracle Database Globalization Support Guide for more information on time zone data
files and on how Oracle Database handles daylight saving time, and Oracle Database
PL/SQL Packages and Types Reference for information on the DBMS_DST package

ORA_DST_CONVERT
Syntax

ORA_DST_CONVERT (datetime_expr

, integer

, integer

)

Chapter 7
ORA_DST_AFFECTED

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 285 of 521

Purpose

ORA_DST_CONVERT is useful when you are changing the time zone data file for your database.
The function lets you specify error handling for a specified datetime expression.

• For datetime_expr, specify a datetime expression that resolves to a TIMESTAMP WITH TIME
ZONE value or a VARRAY object that contains TIMESTAMP WITH TIME ZONE values.

• The optional second argument specifies handling of "duplicate time" errors. Specify 0
(false) to suppress the error by returning the source datetime value. This is the default.
Specify 1 (true) to allow the database to return the duplicate time error.

• The optional third argument specifies handling of "nonexisting time" errors. Specify 0
(false) to suppress the error by returning the source datetime value. This is the default.
Specify 1 (true) to allow the database to return the nonexisting time error.

If no error occurs, this function returns a value of the same data type as datetime_expr (a
TIMESTAMP WITH TIME ZONE value or a VARRAY object that contains TIMESTAMP WITH TIME
ZONE values). The returned datetime value when interpreted with the new time zone file
corresponds to datetime_expr interpreted with the old time zone file.

This function can be issued only when changing the time zone data file of the database and
upgrading the timestamp with the time zone data, and only between the execution of the
DBMS_DST.BEGIN_UPGRADE and the DBMS_DST.END_UPGRADE procedures.

See Also

Oracle Database Globalization Support Guide for more information on time zone data
files and on how Oracle Database handles daylight saving time, and Oracle Database
PL/SQL Packages and Types Reference for information on the DBMS_DST package

ORA_DST_ERROR
Syntax

ORA_DST_ERROR (datetime_expr)

Purpose

ORA_DST_ERROR is useful when you are changing the time zone data file for your database.
The function takes as an argument a datetime expression that resolves to a TIMESTAMP WITH
TIME ZONE value or a VARRAY object that contains TIMESTAMP WITH TIME ZONE values, and
indicates whether the datetime value will result in an error with the new time zone data. The
return values are:

• 0: the datetime value does not result in an error with the new time zone data.

• 1878: the datetime value results in a "nonexisting time" error.

• 1883: the datetime value results in a "duplicate time" error.

This function can be issued only when changing the time zone data file of the database and
upgrading the timestamp with the time zone data, and only between the execution of the

Chapter 7
ORA_DST_ERROR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 286 of 521

DBMS_DST.BEGIN_PREPARE and the DBMS_DST.END_PREPARE procedures or between the
execution of the DBMS_DST.BEGIN_UPGRADE and the DBMS_DST.END_UPGRADE procedures.

See Also

Oracle Database Globalization Support Guide for more information on time zone data
files and on how Oracle Database handles daylight saving time, and Oracle Database
PL/SQL Packages and Types Reference for information on the DBMS_DST package

ORA_HASH
Syntax

ORA_HASH (expr

, max_bucket

, seed_value

)

Purpose

ORA_HASH is a function that computes a hash value for a given expression. Use this function to
analyze a subset of data and generate a random sample.

• The expr argument determines the data for which you want Oracle Database to compute a
hash value. There are no restrictions on the length of data represented by expr, which
commonly resolves to a column name. The expr cannot be a LONG or LOB type. It cannot
be a user-defined object type unless it is a nested table type. The hash value for nested
table types does not depend on the order of elements in the collection. All other data types
are supported for expr.

• The optional max_bucket argument determines the maximum bucket value returned by the
hash function. You can specify any value between 0 and 4294967295. The default is
4294967295.

Note that the default hash value is a 32 bit unsigned number. The default max_bucket of
2^32-1 simply returns this value.

Bucketing is done using a MOD function to the default value. If max_bucket = N, then the
bucket value is computed by (default hash value) MOD (N + 1), which results in a bucket
value between 0 and N.

Note that this technique does not result in a statistically uniform distribution of values
across buckets and is somewhat biased towards smaller bucket numbers, except when N
+ 1 is a power of 2. This is not noticeable when max_bucket (i.e N) is small relative to the
default (4294967295) but may be noticeable for max_bucket values that are very large,
especially within an order of magnitude of the default, say > 100M.

• The optional seed_value argument enables Oracle to produce many different results for the
same set of data. Oracle applies the hash function to the combination of expr and seed_value.
You can specify any value between 0 and 4294967295. The default is 0.

The function returns a NUMBER value.

Chapter 7
ORA_HASH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 287 of 521

Examples

The following example creates a hash value for each combination of customer ID and product
ID in the sh.sales table, divides the hash values into a maximum of 100 buckets, and returns the
sum of the amount_sold values in the first bucket (bucket 0). The third argument (5) provides a
seed value for the hash function. You can obtain different hash results for the same query by
changing the seed value.

SELECT SUM(amount_sold)
 FROM sales
 WHERE ORA_HASH(CONCAT(cust_id, prod_id), 99, 5) = 0;

SUM(AMOUNT_SOLD)

 989431.14

ORA_INVOKING_USER
Syntax

ORA_INVOKING_USER

Purpose

ORA_INVOKING_USER returns the name of the database user who invoked the current statement
or view. This function takes into account the BEQUEATH property of intervening views
referenced in the statement. If this function is invoked from within a definer's rights context,
then it returns the name of the owner of the definer's rights object. If the invoking user is a Real
Application Security user, then it returns user XS$NULL.

This function returns a VARCHAR2 value.

See Also

• BEQUEATH clause of the CREATE VIEW statement

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of ORA_INVOKING_USER

Examples

The following example returns the name of the database user who invoked the statement:

SELECT ORA_INVOKING_USER FROM DUAL;

ORA_INVOKING_USERID
Syntax

ORA_INVOKING_USERID

Chapter 7
ORA_INVOKING_USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 288 of 521

Purpose

ORA_INVOKING_USERID returns the identifier of the database user who invoked the current
statement or view. This function takes into account the BEQUEATH property of intervening views
referenced in the statement.

This function returns a NUMBER value.

See Also

• ORA_INVOKING_USER to learn how Oracle Database determines the database
user who invoked the current statement or view

• BEQUEATH clause of the CREATE VIEW statement

Examples

The following example returns the identifier of the database user who invoked the statement:

SELECT ORA_INVOKING_USERID FROM DUAL;

PATH
Syntax

PATH (correlation_integer)

Purpose

PATH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH conditions. It
returns the relative path that leads to the resource specified in the parent condition.

The correlation_integer can be any NUMBER integer and is used to correlate this ancillary function
with its primary condition. Values less than 1 are treated as 1.

See Also

• EQUALS_PATH Condition and UNDER_PATH Condition

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of PATH

Examples

Refer to the related function DEPTH for an example using both of these ancillary functions of
the EQUALS_PATH and UNDER_PATH conditions.

Chapter 7
PATH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 289 of 521

PERCENT_RANK
Aggregate Syntax

percent_rank_aggregate::=

PERCENT_RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

Analytic Syntax

percent_rank_analytic::=

PERCENT_RANK () OVER

window_name

(

window_name

query_partition_clause order_by_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

PERCENT_RANK is similar to the CUME_DIST (cumulative distribution) function. The range of
values returned by PERCENT_RANK is 0 to 1, inclusive. The first row in any set has a
PERCENT_RANK of 0. The return value is NUMBER.

See Also

Table 2-9 for more information on implicit conversion

• As an aggregate function, PERCENT_RANK calculates, for a hypothetical row r identified by
the arguments of the function and a corresponding sort specification, the rank of row r
minus 1 divided by the number of rows in the aggregate group. This calculation is made as
if the hypothetical row r were inserted into the group of rows over which Oracle Database
is to aggregate.

Chapter 7
PERCENT_RANK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 290 of 521

The arguments of the function identify a single hypothetical row within each aggregate
group. Therefore, they must all evaluate to constant expressions within each aggregate
group. The constant argument expressions and the expressions in the ORDER BY clause of
the aggregate match by position. Therefore the number of arguments must be the same
and their types must be compatible.

• As an analytic function, for a row r, PERCENT_RANK calculates the rank of r minus 1, divided
by 1 less than the number of rows being evaluated (the entire query result set or a
partition).

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation PERCENT_RANK uses to compare
character values for the ORDER BY clause

Aggregate Example

The following example calculates the percent rank of a hypothetical employee in the sample
table hr.employees with a salary of $15,500 and a commission of 5%:

SELECT PERCENT_RANK(15000, .05) WITHIN GROUP
 (ORDER BY salary, commission_pct) "Percent-Rank"
 FROM employees;

Percent-Rank

 .971962617

Analytic Example

The following example calculates, for each employee, the percent rank of the employee's
salary within the department:

SELECT department_id, last_name, salary, PERCENT_RANK()
 OVER (PARTITION BY department_id ORDER BY salary DESC) AS pr
 FROM employees
 ORDER BY pr, salary, last_name;

DEPARTMENT_ID LAST_NAME SALARY PR
------------- ------------------------- ---------- ----------
 10 Whalen 4400 0
 40 Mavris 6500 0
 Grant 7000 0
. . .
 80 Vishney 10500 .181818182
 80 Zlotkey 10500 .181818182
 30 Khoo 3100 .2
. . .
 50 Markle 2200 .954545455
 50 Philtanker 2200 .954545455
 50 Olson 2100 1
. . .

Chapter 7
PERCENT_RANK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 291 of 521

PERCENTILE_CONT
Syntax

PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY expr

DESC

ASC

)

OVER

window_name

(

window_name

query_partition_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions of the OVER
clause

Purpose

PERCENTILE_CONT is an inverse distribution function that assumes a continuous distribution
model. It takes a percentile value and a sort specification, and returns an interpolated value
that would fall into that percentile value with respect to the sort specification. Nulls are ignored
in the calculation.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion

The first expr must evaluate to a numeric value between 0 and 1, because it is a percentile
value. This expr must be constant within each aggregation group. The ORDER BY clause takes a
single expression that must be a numeric or datetime value, as these are the types over which
Oracle can perform interpolation.

The result of PERCENTILE_CONT is computed by linear interpolation between values after
ordering them. Using the percentile value (P) and the number of rows (N) in the aggregation
group, you can compute the row number you are interested in after ordering the rows with
respect to the sort specification. This row number (RN) is computed according to the formula
RN = (1+(P*(N-1)). The final result of the aggregate function is computed by linear interpolation
between the values from rows at row numbers CRN = CEILING(RN) and FRN = FLOOR(RN).

The final result will be:

Chapter 7
PERCENTILE_CONT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 292 of 521

 If (CRN = FRN = RN) then the result is
 (value of expression from row at RN)
 Otherwise the result is
 (CRN - RN) * (value of expression for row at FRN) +
 (RN - FRN) * (value of expression for row at CRN)

You can use the PERCENTILE_CONT function as an analytic function. You can specify only the
query_partitioning_clause in its OVER clause. It returns, for each row, the value that would fall into
the specified percentile among a set of values within each partition.

The MEDIAN function is a specific case of PERCENTILE_CONT where the percentile value
defaults to 0.5. For more information, refer to MEDIAN .

Note

Before processing a large amount of data with the PERCENTILE_CONT function,
consider using one of the following methods to obtain approximate results more
quickly than exact results:

• Set the APPROX_FOR_PERCENTILE initialization parameter to PERCENTILE_CONT or
ALL before using the PERCENTILE_CONT function. Refer to Oracle Database
Reference for more information on this parameter.

• Use the APPROX_PERCENTILE function instead of the PERCENTILE_CONT function.
Refer to APPROX_PERCENTILE.

Aggregate Example

The following example computes the median salary in each department:

SELECT department_id,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary DESC) "Median cont",
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary DESC) "Median disc"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

DEPARTMENT_ID Median cont Median disc
------------- ----------- -----------
 10 4400 4400
 20 9500 13000
 30 2850 2900
 40 6500 6500
 50 3100 3100
 60 4800 4800
 70 10000 10000
 80 8900 9000
 90 17000 17000
 100 8000 8200
 110 10154 12008
 7000 7000

PERCENTILE_CONT and PERCENTILE_DISC may return different results. PERCENTILE_CONT returns
a computed result after doing linear interpolation. PERCENTILE_DISC simply returns a value from
the set of values that are aggregated over. When the percentile value is 0.5, as in this
example, PERCENTILE_CONT returns the average of the two middle values for groups with even
number of elements, whereas PERCENTILE_DISC returns the value of the first one among the

Chapter 7
PERCENTILE_CONT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 293 of 521

two middle values. For aggregate groups with an odd number of elements, both functions
return the value of the middle element.

Analytic Example

In the following example, the median for Department 60 is 4800, which has a corresponding
percentile (Percent_Rank) of 0.5. None of the salaries in Department 30 have a percentile of 0.5,
so the median value must be interpolated between 2900 (percentile 0.4) and 2800 (percentile
0.6), which evaluates to 2850.

SELECT last_name, salary, department_id,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary DESC)
 OVER (PARTITION BY department_id) "Percentile_Cont",
 PERCENT_RANK()
 OVER (PARTITION BY department_id ORDER BY salary DESC) "Percent_Rank"
 FROM employees
 WHERE department_id IN (30, 60)
 ORDER BY last_name, salary, department_id;

LAST_NAME SALARY DEPARTMENT_ID Percentile_Cont Percent_Rank
------------------------- ---------- ------------- --------------- ------------
Austin 4800 60 4800 .5
Baida 2900 30 2850 .4
Colmenares 2500 30 2850 1
Ernst 6000 60 4800 .25
Himuro 2600 30 2850 .8
Hunold 9000 60 4800 0
Khoo 3100 30 2850 .2
Lorentz 4200 60 4800 1
Pataballa 4800 60 4800 .5
Raphaely 11000 30 2850 0
Tobias 2800 30 2850 .6

PERCENTILE_DISC
Syntax

PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY expr

DESC

ASC

)

OVER

window_name

(

window_name

query_partition_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions of the OVER
clause

Chapter 7
PERCENTILE_DISC

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 294 of 521

Purpose

PERCENTILE_DISC is an inverse distribution function that assumes a discrete distribution model.
It takes a percentile value and a sort specification and returns an element from the set. Nulls
are ignored in the calculation.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion

The first expr must evaluate to a numeric value between 0 and 1, because it is a percentile
value. This expression must be constant within each aggregate group. The ORDER BY clause
takes a single expression that can be of any type that can be sorted.

For a given percentile value P, PERCENTILE_DISC sorts the values of the expression in the
ORDER BY clause and returns the value with the smallest CUME_DIST value (with respect to the
same sort specification) that is greater than or equal to P.

Note

Before processing a large amount of data with the PERCENTILE_DISC function, consider
using one of the following methods to obtain approximate results more quickly than
exact results:

• Set the APPROX_FOR_PERCENTILE initialization parameter to PERCENTILE_DISC or
ALL before using the PERCENTILE_DISC function. Refer to Oracle Database
Reference for more information on this parameter.

• Use the APPROX_PERCENTILE function instead of the PERCENTILE_DISC function.
Refer to APPROX_PERCENTILE.

Aggregate Example

See aggregate example for PERCENTILE_CONT .

Analytic Example

The following example calculates the median discrete percentile of the salary of each
employee in the sample table hr.employees:

SELECT last_name, salary, department_id,
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary DESC)
 OVER (PARTITION BY department_id) "Percentile_Disc",
 CUME_DIST() OVER (PARTITION BY department_id
 ORDER BY salary DESC) "Cume_Dist"
 FROM employees
 WHERE department_id in (30, 60)
 ORDER BY last_name, salary, department_id;

LAST_NAME SALARY DEPARTMENT_ID Percentile_Disc Cume_Dist

Chapter 7
PERCENTILE_DISC

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 295 of 521

------------------------- ---------- ------------- --------------- ----------
Austin 4800 60 4800 .8
Baida 2900 30 2900 .5
Colmenares 2500 30 2900 1
Ernst 6000 60 4800 .4
Himuro 2600 30 2900 .833333333
Hunold 9000 60 4800 .2
Khoo 3100 30 2900 .333333333
Lorentz 4200 60 4800 1
Pataballa 4800 60 4800 .8
Raphaely 11000 30 2900 .166666667
Tobias 2800 30 2900 .666666667

The median value for Department 30 is 2900, which is the value whose corresponding
percentile (Cume_Dist) is the smallest value greater than or equal to 0.5. The median value for
Department 60 is 4800, which is the value whose corresponding percentile is the smallest
value greater than or equal to 0.5.

POWER
Syntax

POWER (n2 , n1)

Purpose

POWER returns n2 raised to the n1 power. The base n2 and the exponent n1 can be any numbers,
but if n2 is negative, then n1 must be an integer.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. If any argument is BINARY_FLOAT or
BINARY_DOUBLE, then the function returns BINARY_DOUBLE. Otherwise, the function returns
NUMBER.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns 3 squared:

SELECT POWER(3,2) "Raised"
 FROM DUAL;

 Raised

 9

Chapter 7
POWER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 296 of 521

POWERMULTISET
Syntax

POWERMULTISET (expr)

Purpose

POWERMULTISET takes as input a nested table and returns a nested table of nested tables
containing all nonempty subsets (called submultisets) of the input nested table.

• expr can be any expression that evaluates to a nested table.

• If expr resolves to null, then Oracle Database returns NULL.

• If expr resolves to a nested table that is empty, then Oracle returns an error.

• The element types of the nested table must be comparable. Refer to "Comparison
Conditions " for information on the comparability of nonscalar types.

Note

This function is not supported in PL/SQL.

Examples

First, create a data type that is a nested table of the cust_address_tab_type data type:

CREATE TYPE cust_address_tab_tab_typ
 AS TABLE OF cust_address_tab_typ;
/

Now, select the nested table column cust_address_ntab from the customers_demo table using the
POWERMULTISET function:

SELECT CAST(POWERMULTISET(cust_address_ntab) AS cust_address_tab_tab_typ)
 FROM customers_demo;

CAST(POWERMULTISET(CUST_ADDRESS_NTAB) AS CUST_ADDRESS_TAB_TAB_TYP)
 (STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
--
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP
 ('514 W Superior St', '46901', 'Kokomo', 'IN', 'US')))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP
 ('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US')))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP
 ('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US')))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP
 ('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US')))
. . .

The preceding example requires the customers_demo table and a nested table column containing
data. Refer to "Multiset Operators " to create this table and nested table columns.

Chapter 7
POWERMULTISET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 297 of 521

POWERMULTISET_BY_CARDINALITY
Syntax

POWERMULTISET_BY_CARDINALITY (expr , cardinality)

Purpose

POWERMULTISET_BY_CARDINALITY takes as input a nested table and a cardinality and returns a
nested table of nested tables containing all nonempty subsets (called submultisets) of the
nested table of the specified cardinality.

• expr can be any expression that evaluates to a nested table.

• cardinality can be any positive integer.

• If expr resolves to null, then Oracle Database returns NULL.

• If expr resolves to a nested table that is empty, then Oracle returns an error.

• The element types of the nested table must be comparable. Refer to "Comparison
Conditions " for information on the comparability of nonscalar types.

Note

This function is not supported in PL/SQL.

Examples

First, create a data type that is a nested table of the cust_address_tab_type data type:

CREATE TYPE cust_address_tab_tab_typ
 AS TABLE OF cust_address_tab_typ;
/

Next, duplicate the elements in all the nested table rows to increase the cardinality of the
nested table rows to 2:

UPDATE customers_demo
 SET cust_address_ntab = cust_address_ntab MULTISET UNION cust_address_ntab;

Now, select the nested table column cust_address_ntab from the customers_demo table using the
POWERMULTISET_BY_CARDINALITY function:

SELECT CAST(POWERMULTISET_BY_CARDINALITY(cust_address_ntab, 2)
 AS cust_address_tab_tab_typ)
 FROM customers_demo;

CAST(POWERMULTISET_BY_CARDINALITY(CUST_ADDRESS_NTAB,2) AS CUST_ADDRESS_TAB_TAB_TYP)
 (STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
--
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP
 (CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'),
 CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US')))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP
 (CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'),
 CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US')))

Chapter 7
POWERMULTISET_BY_CARDINALITY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 298 of 521

CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP
 (CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'),
 CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US')))
. . .

The preceding example requires the customers_demo table and a nested table column containing
data. Refer to "Multiset Operators " to create this table and nested table columns.

PREDICTION
Syntax

prediction::=

PREDICTION (

grouping_hint schema .

model

cost_matrix_clause

mining_attribute_clause)

prediction_ordered::=

PREDICTION (

grouping_hint schema .

model

cost_matrix_clause

mining_attribute_clause)

OVER (order_by_clause

,

)

Analytic Syntax

prediction_analytic::=

PREDICTION (
OF ANOMALY

FOR expr

cost_matrix_clause

mining_attribute_clause)

OVER

window_name

(

window_name

mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

Chapter 7
PREDICTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 299 of 521

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

PREDICTION returns a prediction for each row in the selection. The data type of the returned
prediction depends on whether the function performs Regression, Classification, or Anomaly
Detection.

• Regression: Returns the expected target value for each row. The data type of the return
value is the data type of the target.

• Classification: Returns the most probable target class (or lowest cost target class, if costs
are specified) for each row. The data type of the return value is the data type of the target.

• Anomaly Detection: Returns 1 or 0 for each row. Typical rows are classified as 1. Rows
that differ significantly from the rest of the data are classified as 0.

cost_matrix_clause

Costs are a biasing factor for minimizing the most harmful kinds of misclassifications. You can
specify cost_matrix_clause for Classification or Anomaly Detection. Costs are not relevant for
Regression. The cost_matrix_clause behaves as described for "PREDICTION_COST ".

Syntax Choice

PREDICTION can score data by applying a mining model object to the data, or it can dynamically
score the data by executing an analytic clause that builds and applies one or more transient
mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction syntax to score the data with a pre-defined model. Supply the
name of a model that performs classification, regression, or anomaly detection.

Chapter 7
PREDICTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 300 of 521

Use the prediction_ordered syntax for a model that requires ordered data, such as an MSET-
SPRT model. The prediction_ordered syntax requires an order_by_clause clause.

Restrictions on the prediction_ordered syntax are that you cannot use it in the WHERE clause of
a query. Also, you cannot use a query_partition_clause or a windowing_clause with the
prediction_ordered syntax.

For details about the order_by_clause, see "Analytic Functions ".

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined model.
The analytic syntax uses mining_analytic_clause , which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a query_partition_clause
and an order_by_clause. (See "analytic_clause::=".)

– For Regression, specify FOR expr, where expr is an expression that identifies a target
column that has a numeric data type.

– For Classification, specify FOR expr, where expr is an expression that identifies a target
column that has a character data type.

– For Anomaly Detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring.

• If you specify USING *, all the relevant attributes present in the input row are used.

• If you invoke the function with the analytic syntax, the mining_attribute_clause is used both for
building the transient models and for scoring.

• It you invoke the function with a pre-defined model, the mining_attribute_clause should include
all or some of the attributes that were used to create the model. The following conditions
apply:

– If mining_attribute_clause includes an attribute with the same name but a different data type
from the one that was used to create the model, then the data type is converted to the
type expected by the model.

– If you specify more attributes for scoring than were used to create the model, then the
extra attributes are silently ignored.

– If you specify fewer attributes for scoring than were used to create the model, then
scoring is performed on a best-effort basis.

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about predictive
Oracle Machine Learning for SQL.

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
PREDICTION when it is a character value

Chapter 7
PREDICTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 301 of 521

Note

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix A
in Oracle Machine Learning for SQL User’s Guide.

Example

In this example, the model dt_sh_clas_sample predicts the gender and age of customers who are
most likely to use an affinity card (target = 1). The PREDICTION function takes into account the
cost matrix associated with the model and uses marital status, education, and household size
as predictors.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

CUST_GENDER CNT AVG_AGE
------------ ---------- ----------
F 170 38
M 685 42

The cost matrix associated with the model dt_sh_clas_sample is stored in the table dt_sh_sample_costs.
The cost matrix specifies that the misclassification of 1 is 8 times more costly than the
misclassification of 0.

SQL> select * from dt_sh_sample_cost;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ------------
 0 0 .000000000
 0 1 1.000000000
 1 0 8.000000000
 1 1 .000000000

Analytic Example

In this example, dynamic regression is used to predict the age of customers who are likely to
use an affinity card. The query returns the 3 customers whose predicted age is most different
from the actual. The query includes information about the predictors that have the greatest
influence on the prediction.

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det FROM
 (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) desc) rnk FROM
 (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
 WHERE rnk <= 3;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- ---- -------- -------- -------- --
 100910 80 40.67 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>

Chapter 7
PREDICTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 302 of 521

 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight=".059"
 rank="5"/>
 </Details>

 101285 79 42.18 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.04 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

PREDICTION_BOUNDS
Syntax

PREDICTION_BOUNDS

(

schema .

model

, confidence_level

, class_value

mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

Chapter 7
PREDICTION_BOUNDS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 303 of 521

Purpose

PREDICTION_BOUNDS applies a Generalized Linear Model (GLM) to predict a class or a value
for each row in the selection. The function returns the upper and lower bounds of each
prediction in a varray of objects with fields UPPER and LOWER.

GLM can perform either regression or binary classification:

• The bounds for regression refer to the predicted target value. The data type of UPPER and
LOWER is the data type of the target.

• The bounds for binary classification refer to the probability of either the predicted target
class or the specified class_value. The data type of UPPER and LOWER is BINARY_DOUBLE.

If the model was built using ridge regression, or if the covariance matrix is found to be singular
during the build, then PREDICTION_BOUNDS returns NULL for both bounds.

confidence_level is a number in the range (0,1). The default value is 0.95. You can specify
class_value while leaving confidence_level at its default by specifying NULL for confidence_level.

The syntax of the PREDICTION_BOUNDS function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. This clause
behaves as described for the PREDICTION function. (Note that the reference to analytic syntax
does not apply.) See "mining_attribute_clause::=".

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring

• Oracle Machine Learning for SQL Concepts for information about Generalized
Linear Models

Note

The following example is excerpted from the Oracle Machine Learning for SQL sample
programs. For more information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

The following example returns the distribution of customers whose ages are predicted with
98% confidence to be greater than 24 and less than 46.

SELECT count(cust_id) cust_count, cust_marital_status
 FROM (SELECT cust_id, cust_marital_status
 FROM mining_data_apply_v
 WHERE PREDICTION_BOUNDS(glmr_sh_regr_sample,0.98 USING *).LOWER > 24 AND
 PREDICTION_BOUNDS(glmr_sh_regr_sample,0.98 USING *).UPPER < 46)
 GROUP BY cust_marital_status;

 CUST_COUNT CUST_MARITAL_STATUS

Chapter 7
PREDICTION_BOUNDS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 304 of 521

-------------- --------------------
 46 NeverM
 7 Mabsent
 5 Separ.
 35 Divorc.
 72 Married

PREDICTION_COST
Syntax

prediction_cost::=

PREDICTION_COST (

schema .

model

, class

cost_matrix_clause mining_attribute_clause)

prediction_cost_ordered::=

PREDICTION_COST (

schema .

model

, class

cost_matrix_clause

mining_attribute_clause) OVER (order_by_clause

,

)

Analytic Syntax

prediction_cost_analytic::=

PREDICTION_COST (
OF ANOMALY

FOR expr

, class

cost_matrix_clause

mining_attribute_clause) OVER

window_name

(

window_name

mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

Chapter 7
PREDICTION_COST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 305 of 521

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

PREDICTION_COST returns a cost for each row in the selection. The cost refers to the lowest cost
class or to the specified class. The cost is returned as BINARY_DOUBLE.

PREDICTION_COST can perform classification or anomaly detection. For classification, the
returned cost refers to a predicted target class. For anomaly detection, the returned cost refers
to a classification of 1 (for typical rows) or 0 (for anomalous rows).

You can use PREDICTION_COST in conjunction with the PREDICTION function to obtain the
prediction and the cost of the prediction.

cost_matrix_clause

Costs are a biasing factor for minimizing the most harmful kinds of misclassifications. For
example, false positives might be considered more costly than false negatives. Costs are
specified in a cost matrix that can be associated with the model or defined inline in a VALUES
clause. All classification algorithms can use costs to influence scoring.

Decision Tree is the only algorithm that can use costs to influence the model build. The cost
matrix used to build a Decision Tree model is also the default scoring cost matrix for the model.

The following cost matrix table specifies that the misclassification of 1 is five times more costly
than the misclassification of 0.

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 1

Chapter 7
PREDICTION_COST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 306 of 521

 1 0 5
 1 1 0

In cost_matrix_clause:

• COST MODEL indicates that scoring should be performed by taking into account the scoring
cost matrix associated with the model. If the cost matrix does not exist, then the function
returns an error.

• COST MODEL AUTO indicates that the existence of a cost matrix is unknown. If a cost matrix
exists, then the function uses it to return the lowest cost prediction. Otherwise the function
returns the highest probability prediction.

• The VALUES clause specifies an inline cost matrix for class_value. For example, you could
specify that the misclassification of 1 is five times more costly than the misclassification of 0
as follows:

 PREDICTION (nb_model COST (0,1) VALUES ((0, 1),(1, 5)) USING *)

If a model that has a scoring cost matrix is invoked with an inline cost matrix, then the
inline costs are used.

See Also

Oracle Machine Learning for SQL User’s Guide for more information about cost-
sensitive prediction.

Syntax Choice

PREDICTION_COST can score the data by applying a mining model object to the data, or it can
dynamically mine the data by executing an analytic clause that builds and applies one or more
transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_cost syntax to score the data with a pre-defined model. Supply
the name of a model that performs classification or anomaly detection.

Use the prediction_cost_ordered syntax for a model that requires ordered data, such as an
MSET-SPRT model. The prediction_cost_ordered syntax requires an order_by_clause clause.

Restrictions on the prediction_cost_ordered syntax are that you cannot use it in the WHERE
clause of a query. Also, you cannot use a query_partition_clause or a windowing_clause with the
prediction_ordered syntax.

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined model.
The analytic syntax uses mining_analytic_clause , which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a query_partition_clause
and an order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies a target
column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_COST function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the

Chapter 7
PREDICTION_COST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 307 of 521

transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See "mining_attribute_clause::=".)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about classification
with costs

Note

The following example is excerpted from the Oracle Machine Learning for SQL sample
programs. For more information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example predicts the ten customers in Italy who would respond to the least expensive
sales campaign (offering an affinity card).

SELECT cust_id
FROM (SELECT cust_id,rank()
 OVER (ORDER BY PREDICTION_COST(DT_SH_Clas_sample, 1 COST MODEL USING *)
 ASC, cust_id) rnk
 FROM mining_data_apply_v
 WHERE country_name = 'Italy')
 WHERE rnk <= 10
 ORDER BY rnk;

 CUST_ID

 100081
 100179
 100185
 100324
 100344
 100554
 100662
 100733
 101250
 101306

Chapter 7
PREDICTION_COST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 308 of 521

PREDICTION_DETAILS
Syntax

prediction_details::=

PREDICTION_DETAILS (

schema .

model

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause)

prediction_details_ordered::=

PREDICTION_DETAILS (

schema .

model

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause)

OVER (order_by_clause

,

)

Analytic Syntax

prediction_details_analytic::=

PREDICTION_DETAILS (
OF ANOMALY

FOR expr

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER

window_name

(

window_name

mining_analytic_clause)

Chapter 7
PREDICTION_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 309 of 521

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

PREDICTION_DETAILS returns prediction details for each row in the selection. The return value is
an XML string that describes the attributes of the prediction.

For regression, the returned details refer to the predicted target value. For classification and
anomaly detection, the returned details refer to the highest probability class or the specified
class_value.

topN

If you specify a value for topN, the function returns the N attributes that have the most influence
on the prediction (the score). If you do not specify topN, the function returns the 5 most
influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses its positive
or negative impact on the prediction. For regression, a positive weight indicates a higher value
prediction; a negative weight indicates a lower value prediction. For classification and anomaly
detection, a positive weight indicates a higher probability prediction; a negative weight
indicates a lower probability prediction.

By default, PREDICTION_DETAILS returns the attributes with the highest positive weight (DESC). If
you specify ASC, the attributes with the highest negative weight are returned. If you specify
ABS, the attributes with the greatest weight, whether negative or positive, are returned. The
results are ordered by absolute value from highest to lowest. Attributes with a zero weight are
not included in the output.

Chapter 7
PREDICTION_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 310 of 521

Syntax Choice

PREDICTION_DETAILS can score the data by applying a mining model object to the data, or it can
dynamically mine the data by executing an analytic clause that builds and applies one or more
transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_details syntax to score the data with a pre-defined model. Supply
the name of a model that performs classification, regression, or anomaly detection.

Use the prediction_details_ordered syntax for a model that requires ordered data, such as an
MSET-SPRT model. The prediction_details_ordered syntax requires an order_by_clause clause.

Restrictions on the prediction_details_ordered syntax are that you cannot use it in the WHERE
clause of a query. Also, you cannot use a query_partition_clause or a windowing_clause with the
prediction_details_ordered syntax.

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined model.
The analytic syntax uses mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a query_partition_clause
and an order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies a target
column that has a character data type.

– For regression, specify FOR expr, where expr is an expression that identifies a target
column that has a numeric data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_DETAILS function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See "mining_attribute_clause::=".)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about predictive
Oracle Machine Learning for SQL.

Note

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix A
in Oracle Machine Learning for SQL User’s Guide.

Chapter 7
PREDICTION_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 311 of 521

Example

This example uses the model svmr_sh_regr_sample to score the data. The query returns the three
attributes that have the greatest influence on predicting a higher value for customer age.

SELECT PREDICTION_DETAILS(svmr_sh_regr_sample, null, 3 USING *) prediction_details
 FROM mining_data_apply_v
 WHERE cust_id = 100001;

PREDICTION_DETAILS

<Details algorithm="Support Vector Machines">
<Attribute name="CUST_MARITAL_STATUS" actualValue="Widowed" weight=".361" rank="1"/>
<Attribute name="CUST_GENDER" actualValue="F" weight=".14" rank="2"/>
<Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".135" rank="3"/>
</Details>

Analytic Syntax

This example dynamically identifies customers whose age is not typical for the data. The query
returns the attributes that predict or detract from a typical age.

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det
 FROM (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk
 FROM (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
 WHERE rnk <= 5;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- --- -------- -------- --
 100910 80 40.67 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight=".059"
 rank="5"/>
 </Details>

 101285 79 42.18 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.04 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"

Chapter 7
PREDICTION_DETAILS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 312 of 521

 weight=".059" rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

 100308 81 45.33 35.67 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".059"
 rank="5"/>
 </Details>

 101256 90 54.39 35.61 <Details algorithm="Support Vector Machines">
 <Attribute name="YRS_RESIDENCE" actualValue="9" weight=".059"
 rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="2"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

PREDICTION_PROBABILITY
Syntax

prediction_probability::=

PREDICTION_PROBABILITY (

schema .

model

, class

mining_attribute_clause)

prediction_probability_ordered::=

PREDICTION_PROBABILITY (

schema .

model

, class

mining_attribute_clause)

OVER (order_by_clause

,

)

Chapter 7
PREDICTION_PROBABILITY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 313 of 521

Analytic Syntax

prediction_probability_analytic::=

PREDICTION_PROBABILITY (
OF ANOMALY

FOR expr

, class

mining_attribute_clause)

OVER

window_name

(

window_name

mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

PREDICTION_PROBABILITY returns a probability for each row in the selection. The probability
refers to the highest probability class or to the specified class. The data type of the returned
probability is BINARY_DOUBLE.

PREDICTION_PROBABILITY can perform classification or anomaly detection. For classification,
the returned probability refers to a predicted target class. For anomaly detection, the returned
probability refers to a classification of 1 (for typical rows) or 0 (for anomalous rows).

You can use PREDICTION_PROBABILITY in conjunction with the PREDICTION function to obtain the
prediction and the probability of the prediction.

Chapter 7
PREDICTION_PROBABILITY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 314 of 521

Syntax Choice

PREDICTION_PROBABILITY can score the data by applying a mining model object to the data, or
it can dynamically mine the data by executing an analytic clause that builds and applies one or
more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_probability syntax to score the data with a pre-defined model.
Supply the name of a model that performs classification or anomaly detection.

Use the prediction_probability_ordered syntax for a model that requires ordered data, such as an
MSET-SPRT model. The prediction_probability_ordered syntax requires an order_by_clause clause.

Restrictions on the prediction_probability_ordered syntax are that you cannot use it in the WHERE
clause of a query. Also, you cannot use a query_partition_clause or a windowing_clause with the
prediction_probability_ordered syntax.

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined model.
The analytic syntax uses mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a query_partition_clause
and an order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies a target
column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_PROBABILITY function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See "mining_attribute_clause::=".)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about predictive
Oracle Machine Learning for SQL.

Note

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

The following example returns the 10 customers living in Italy who are most likely to use an
affinity card.

Chapter 7
PREDICTION_PROBABILITY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 315 of 521

SELECT cust_id FROM (
 SELECT cust_id
 FROM mining_data_apply_v
 WHERE country_name = 'Italy'
 ORDER BY PREDICTION_PROBABILITY(DT_SH_Clas_sample, 1 USING *)
 DESC, cust_id)
 WHERE rownum < 11;

 CUST_ID

 100081
 100179
 100185
 100324
 100344
 100554
 100662
 100733
 101250
 101306

Analytic Example

This example identifies rows that are most atypical in the data in mining_data_one_class_v. Each
type of marital status is considered separately so that the most anomalous rows per marital
status group are returned.

The query returns three attributes that have the most influence on the determination of
anomalous rows. The PARTITION BY clause causes separate models to be built and applied for
each marital status. Because there is only one record with status Mabsent, no model is created
for that partition (and no details are provided).

SELECT cust_id, cust_marital_status, rank_anom, anom_det FROM
 (SELECT cust_id, cust_marital_status, anom_det,
 rank() OVER (PARTITION BY CUST_MARITAL_STATUS
 ORDER BY ANOM_PROB DESC,cust_id) rank_anom FROM
 (SELECT cust_id, cust_marital_status,
 PREDICTION_PROBABILITY(OF ANOMALY, 0 USING *)
 OVER (PARTITION BY CUST_MARITAL_STATUS) anom_prob,
 PREDICTION_DETAILS(OF ANOMALY, 0, 3 USING *)
 OVER (PARTITION BY CUST_MARITAL_STATUS) anom_det
 FROM mining_data_one_class_v
))
 WHERE rank_anom < 3 order by 2, 3;

CUST_ID CUST_MARITAL_STATUS RANK_ANOM ANOM_DET
------- ------------------- ---------- ---
102366 Divorc. 1 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="United Kingdom"
 weight=".069" rank="1"/>
 <Attribute name="AGE" actualValue="28" weight=".013"
 rank="2"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4"
 weight=".006" rank="3"/>
 </Details>

101817 Divorc. 2 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="YRS_RESIDENCE" actualValue="8"
 weight=".018" rank="1"/>
 <Attribute name="EDUCATION" actualValue="PhD" weight=".007"
 rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="K:

Chapter 7
PREDICTION_PROBABILITY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 316 of 521

 250\,000 - 299\,999" weight=".006" rank="3"/>
 </Details>

101713 Mabsent 1

101790 Married 1 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="Canada"
 weight=".063" rank="1"/>
 <Attribute name="EDUCATION" actualValue="7th-8th"
 weight=".011" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="4-5"
 weight=".011" rank="3"/>
 </Details>
. . .

PREDICTION_SET
Syntax

prediction_set::=

PREDICTION_SET (

schema .

model

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause)

prediction_set_ordered::=

PREDICTION_SET (

schema .

model

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause) OVER (order_by_clause

,

)

Analytic Syntax

prediction_set_analytic::=

PREDICTION_SET (
OF ANOMALY

FOR expr

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause) OVER

window_name

(

window_name

mining_analytic_clause)

Chapter 7
PREDICTION_SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 317 of 521

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

mining_analytic_clause::-

query_partition_clause order_by_clause

See Also

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

PREDICTION_SET returns a set of predictions with either probabilities or costs for each row in the
selection. The return value is a varray of objects with field names PREDICTION_ID and
PROBABILITY or COST. The prediction identifier has the data type of the target; the probability
and cost fields are BINARY_DOUBLE.

PREDICTION_SET can perform classification or anomaly detection. For classification, the return
value refers to a predicted target class. For anomaly detection, the return value refers to a
classification of 1 (for typical rows) or 0 (for anomalous rows).

bestN and cutoff

You can specify bestN and cutoff to limit the number of predictions returned by the function. By
default, both bestN and cutoff are null and all predictions are returned.

Chapter 7
PREDICTION_SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 318 of 521

• bestN is the N predictions that are either the most probable or the least costly. If multiple
predictions share the Nth probability or cost, then the function chooses one of them.

• cutoff is a value threshold. Only predictions with probability greater than or equal to cutoff, or
with cost less than or equal to cutoff, are returned. To filter by cutoff only, specify NULL for
bestN. If the function uses a cost_matrix_clause with COST MODEL AUTO, then cutoff is ignored.

You can specify bestN with cutoff to return up to the N most probable predictions that are greater
than or equal to cutoff. If costs are used, specify bestN with cutoff to return up to the N least costly
predictions that are less than or equal to cutoff.

cost_matrix_clause

You can specify cost_matrix_clause as a biasing factor for minimizing the most harmful kinds of
misclassifications. cost_matrix_clause behaves as described for "PREDICTION_COST ".

Syntax Choice

PREDICTION_SET can score the data by applying a mining model object to the data, or it can
dynamically mine the data by executing an analytic clause that builds and applies one or more
transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_set syntax to score the data with a pre-defined model. Supply the
name of a model that performs classification or anomaly detection.

Use the prediction_set_ordered syntax for a model that requires ordered data, such as an
MSET-SPRT model. The prediction_set_ordered syntax requires an order_by_clause clause.

Restrictions on the prediction_set_ordered syntax are that you cannot use it in the WHERE
clause of a query. Also, you cannot use a query_partition_clause or a windowing_clause with the
prediction_set_ordered syntax.

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined model.
The analytic syntax uses mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a query_partition_clause
and an order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies a target
column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_SET function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring. When the
function is invoked with the analytic syntax, these predictors are also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION function.
(See "mining_attribute_clause::=".)

See Also

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about predictive
Oracle Machine Learning for SQL.

Chapter 7
PREDICTION_SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 319 of 521

Note

The following example is excerpted from the Oracle Machine Learning for SQL sample
programs. For more information about the sample programs, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the probability and cost that customers with ID less than 100006 will use an
affinity card. This example has a binary target, but such a query is also useful for multiclass
classification such as low, medium, and high.

SELECT T.cust_id, S.prediction, S.probability, S.cost
 FROM (SELECT cust_id,
 PREDICTION_SET(dt_sh_clas_sample COST MODEL USING *) pset
 FROM mining_data_apply_v
 WHERE cust_id < 100006) T,
 TABLE(T.pset) S
ORDER BY cust_id, S.prediction;

 CUST_ID PREDICTION PROBABILITY COST
---------- ---------- ------------ ------------
 100001 0 .966183575 .270531401
 100001 1 .033816425 .966183575
 100002 0 .740384615 2.076923077
 100002 1 .259615385 .740384615
 100003 0 .909090909 .727272727
 100003 1 .090909091 .909090909
 100004 0 .909090909 .727272727
 100004 1 .090909091 .909090909
 100005 0 .272357724 5.821138211
 100005 1 .727642276 .272357724

PRESENTNNV
Syntax

PRESENTNNV (cell_reference , expr1 , expr2)

Purpose

The PRESENTNNV function can be used only in the model_clause of the SELECT statement and then
only on the right-hand side of a model rule. It returns expr1 when cell_reference exists prior to the
execution of the model_clause and is not null when PRESENTNNV is evaluated. Otherwise it returns
expr2. This function differs from NVL2 in that NVL2 evaluates the data at the time it is executed,
rather than evaluating the data as it was prior to the execution of the model_clause.

Chapter 7
PRESENTNNV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 320 of 521

See Also

• model_clause and "Model Expressions" for the syntax and semantics

• NVL2 for comparison

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
PRESENTNNV when it is a character value

Examples

In the following example, if a row containing sales for the Mouse Pad for the year 2002 exists,
and the sales value is not null, then the sales value remains unchanged. If the row exists and
the sales value is null, then the sales value is set to 10. If the row does not exist, then the row
is created with the sales value set to 10.

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (s['Mouse Pad', 2002] =
 PRESENTNNV(s['Mouse Pad', 2002], s['Mouse Pad', 2002], 10)
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 3269.09
France Mouse Pad 2002 10
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 9535.08
Germany Mouse Pad 2002 10
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13

18 rows selected.

The preceding example requires the view sales_view_ref. Refer to "Examples" to create this view.

Chapter 7
PRESENTNNV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 321 of 521

PRESENTV
Syntax

PRESENTV (cell_reference , expr1 , expr2)

Purpose

The PRESENTV function can be used only within the model_clause of the SELECT statement and
then only on the right-hand side of a model rule. It returns expr1 when, prior to the execution of
the model_clause, cell_reference exists. Otherwise it returns expr2.

See Also

• model_clause and "Model Expressions" for the syntax and semantics

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
PRESENTV when it is a character value

Examples

In the following example, if a row containing sales for the Mouse Pad for the year 2000 exists,
then the sales value for the Mouse Pad for the year 2001 is set to the sales value for the
Mouse Pad for the year 2000. If the row does not exist, then a row is created with the sales
value for the Mouse Pad for year 20001 set to 0.

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s['Mouse Pad', 2001] =
 PRESENTV(s['Mouse Pad', 2000], s['Mouse Pad', 2000], 0)
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 3000.72
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44

Chapter 7
PRESENTV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 322 of 521

Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 7375.46
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13

16 rows selected.

The preceding example requires the view sales_view_ref. Refer to "The MODEL clause:
Examples" to create this view.

PREVIOUS
Syntax

PREVIOUS (cell_reference)

Purpose

The PREVIOUS function can be used only in the model_clause of the SELECT statement and then
only in the ITERATE ... [UNTIL] clause of the model_rules_clause. It returns the value of cell_reference
at the beginning of each iteration.

See Also

• model_clause and "Model Expressions" for the syntax and semantics

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
PREVIOUS when it is a character value

Examples

The following example repeats the rules, up to 1000 times, until the difference between the
values of cur_val at the beginning and at the end of an iteration is less than one:

SELECT dim_col, cur_val, num_of_iterations
 FROM (SELECT 1 AS dim_col, 10 AS cur_val FROM dual)
 MODEL
 DIMENSION BY (dim_col)
 MEASURES (cur_val, 0 num_of_iterations)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES ITERATE (1000) UNTIL (PREVIOUS(cur_val[1]) - cur_val[1] < 1)
 (
 cur_val[1] = cur_val[1]/2,
 num_of_iterations[1] = num_of_iterations[1] + 1
);

 DIM_COL CUR_VAL NUM_OF_ITERATIONS
---------- ---------- -----------------
 1 .625 4

Chapter 7
PREVIOUS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 323 of 521

RANK
Aggregate Syntax

rank_aggregate::=

RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

Analytic Syntax

rank_analytic::=

RANK () OVER

window_name

(

window_name

query_partition_clause order_by_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

RANK calculates the rank of a value in a group of values. The return type is NUMBER.

See Also

Table 2-9 for more information on implicit conversion and "Numeric Precedence " for
information on numeric precedence

Rows with equal values for the ranking criteria receive the same rank. Oracle Database then
adds the number of tied rows to the tied rank to calculate the next rank. Therefore, the ranks
may not be consecutive numbers. This function is useful for top-N and bottom-N reporting.

• As an aggregate function, RANK calculates the rank of a hypothetical row identified by the
arguments of the function with respect to a given sort specification. The arguments of the
function must all evaluate to constant expressions within each aggregate group, because

Chapter 7
RANK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 324 of 521

they identify a single row within each group. The constant argument expressions and the
expressions in the ORDER BY clause of the aggregate match by position. Therefore, the
number of arguments must be the same and their types must be compatible.

• As an analytic function, RANK computes the rank of each row returned from a query with
respect to the other rows returned by the query, based on the values of the value_exprs in the
order_by_clause.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation RANK uses to compare character values
for the ORDER BY clause

Aggregate Example

The following example calculates the rank of a hypothetical employee in the sample table
hr.employees with a salary of $15,500 and a commission of 5%:

SELECT RANK(15500, .05) WITHIN GROUP
 (ORDER BY salary, commission_pct) "Rank"
 FROM employees;

 Rank

 105

Similarly, the following query returns the rank for a $15,500 salary among the employee
salaries:

SELECT RANK(15500) WITHIN GROUP
 (ORDER BY salary DESC) "Rank of 15500"
 FROM employees;

Rank of 15500

 4

Analytic Example

The following statement ranks the employees in the sample hr schema in department 60 based
on their salaries. Identical salary values receive the same rank and cause nonconsecutive
ranks. Compare this example with the analytic example for DENSE_RANK .

SELECT department_id, last_name, salary,
 RANK() OVER (PARTITION BY department_id ORDER BY salary) RANK
 FROM employees WHERE department_id = 60
 ORDER BY RANK, last_name;

DEPARTMENT_ID LAST_NAME SALARY RANK
------------- ------------------------- ---------- ----------
 60 Lorentz 4200 1
 60 Austin 4800 2
 60 Pataballa 4800 2
 60 Ernst 6000 4
 60 Hunold 9000 5

Chapter 7
RANK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 325 of 521

RATIO_TO_REPORT
Syntax

RATIO_TO_REPORT (expr) OVER

window_name

(

window_name

query_partition_clause

)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions, including
valid forms of expr

Purpose

RATIO_TO_REPORT is an analytic function. It computes the ratio of a value to the sum of a set of
values. If expr evaluates to null, then the ratio-to-report value also evaluates to null.

The set of values is determined by the query_partition_clause. If you omit that clause, then the
ratio-to-report is computed over all rows returned by the query.

You cannot nest analytic functions by using RATIO_TO_REPORT or any other analytic function for
expr. However, you can use other built-in function expressions for expr. Refer to "About SQL
Expressions " for information on valid forms of expr.

Examples

The following example calculates the ratio-to-report value of each purchasing clerk's salary to
the total of all purchasing clerks' salaries:

SELECT last_name, salary, RATIO_TO_REPORT(salary) OVER () AS rr
 FROM employees
 WHERE job_id = 'PU_CLERK'
 ORDER BY last_name, salary, rr;

LAST_NAME SALARY RR
------------------------- ---------- ----------
Baida 2900 .208633094
Colmenares 2500 .179856115
Himuro 2600 .18705036
Khoo 3100 .223021583
Tobias 2800 .201438849

RAWTOHEX
Syntax

RAWTOHEX (raw)

Chapter 7
RATIO_TO_REPORT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 326 of 521

Purpose

RAWTOHEX converts raw to a character value containing its hexadecimal representation.

As a SQL built-in function, RAWTOHEX accepts an argument of any scalar data type other than
LONG, LONG RAW, CLOB, NCLOB, BLOB, or BFILE. If the argument is of a data type other than
RAW, then this function converts the argument value, which is represented using some number
of data bytes, into a RAW value with the same number of data bytes. The data itself is not
modified in any way, but the data type is recast to a RAW data type.

This function returns a VARCHAR2 value with the hexadecimal representation of bytes that
make up the value of raw. Each byte is represented by two hexadecimal digits.

Note

RAWTOHEX functions differently when used as a PL/SQL built-in function. Refer to
Oracle Database Development Guide for more information.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
RAWTOHEX

Examples

The following hypothetical example returns the hexadecimal equivalent of a RAW column value:

SELECT RAWTOHEX(raw_column) "Graphics"
 FROM graphics;

Graphics

7D

See Also

"RAW and LONG RAW Data Types " and HEXTORAW

RAWTONHEX
Syntax

RAWTONHEX (raw)

Chapter 7
RAWTONHEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 327 of 521

Purpose

RAWTONHEX converts raw to a character value containing its hexadecimal representation.
RAWTONHEX(raw) is equivalent to TO_NCHAR(RAWTOHEX(raw)). The value returned is always in
the national character set.

Note

RAWTONHEX functions differently when used as a PL/SQL built-in function. Refer to
Oracle Database Development Guide for more information.

Examples

The following hypothetical example returns the hexadecimal equivalent of a RAW column value:

SELECT RAWTONHEX(raw_column),
 DUMP (RAWTONHEX (raw_column)) "DUMP"
 FROM graphics;

RAWTONHEX(RA) DUMP
----------------------- ------------------------------
7D Typ=1 Len=4: 0,55,0,68

RAW_TO_UUID
Syntax

RAW_TO_UUID (uuid_string)

RAW_TO_UUID converts the input argument uuid_string into canonical format of 36 bytes which
consists of 32 hexadecimal bytes and 4 hyphens. uuid_string must be of datatype RAW(16).

If the input is NULL, it returns NULL.

Example

 SELECT RAW_TO_UUID(UUID()) FROM DUAL;

The output is:

RAW_TO_UUID(UUID())

81f9b934-5028-4f8c-bf05-f082e9b72e0f

REF
Syntax

REF (correlation_variable)

Chapter 7
RAW_TO_UUID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 328 of 521

Purpose

REF takes as its argument a correlation variable (table alias) associated with a row of an object
table or an object view. A REF value is returned for the object instance that is bound to the
variable or row.

Examples

The sample schema oe contains a type called cust_address_typ, described as follows:

 Attribute Type
 ----------------------------- ----------------
 STREET_ADDRESS VARCHAR2(40)
 POSTAL_CODE VARCHAR2(10)
 CITY VARCHAR2(30)
 STATE_PROVINCE VARCHAR2(10)
 COUNTRY_ID CHAR(2)

The following example creates a table based on the sample type oe.cust_address_typ, inserts a row
into the table, and retrieves a REF value for the object instance of the type in the addresses
table:

CREATE TABLE addresses OF cust_address_typ;

INSERT INTO addresses VALUES (
 '123 First Street', '4GF H1J', 'Our Town', 'Ourcounty', 'US');

SELECT REF(e) FROM addresses e;

REF(E)

00002802097CD1261E51925B60E0340800208254367CD1261E51905B60E034080020825436010101820000

See Also

Oracle Database Object-Relational Developer's Guide for information on REFs

REFTOHEX
Syntax

REFTOHEX (expr)

Purpose

REFTOHEX converts argument expr to a character value containing its hexadecimal equivalent.
expr must return a REF.

Examples

The sample schema oe contains a warehouse_typ. The following example builds on that type to
illustrate how to convert the REF value of a column to a character value containing its
hexadecimal equivalent:

Chapter 7
REFTOHEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 329 of 521

CREATE TABLE warehouse_table OF warehouse_typ
 (PRIMARY KEY (warehouse_id));

CREATE TABLE location_table
 (location_number NUMBER, building REF warehouse_typ
 SCOPE IS warehouse_table);

INSERT INTO warehouse_table VALUES (1, 'Downtown', 99);

INSERT INTO location_table SELECT 10, REF(w) FROM warehouse_table w;

SELECT REFTOHEX(building) FROM location_table;

REFTOHEX(BUILDING)
--
0000220208859B5E9255C31760E034080020825436859B5E9255C21760E034080020825436

REGEXP_COUNT
Syntax

REGEXP_COUNT (source_char , pattern

, position

, match_param

)

Purpose

REGEXP_COUNT complements the functionality of the REGEXP_INSTR function by returning the
number of times a pattern occurs in a source string. The function evaluates strings using
characters as defined by the input character set. It returns an integer indicating the number of
occurrences of pattern. If no match is found, then the function returns 0.

• source_char is a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of the data
types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512 bytes. If the data
type of pattern is different from the data type of source_char, then Oracle Database converts
pattern to the data type of source_char.

REGEXP_COUNT ignores subexpression parentheses in pattern. For example, the pattern
'(123(45))' is equivalent to '12345'. For a listing of the operators you can specify in pattern, refer
to Oracle Regular Expression Support.

• position is a positive integer indicating the character of source_char where Oracle should begin
the search. The default is 1, meaning that Oracle begins the search at the first character of
source_char. After finding the first occurrence of pattern, the database searches for a second
occurrence beginning with the first character following the first occurrence.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets you
change the default matching behavior of the function.

The value of match_param can include one or more of the following characters:

– 'i' specifies case-insensitive matching, even if the determined collation of the condition
is case-sensitive.

Chapter 7
REGEXP_COUNT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 330 of 521

– 'c' specifies case-sensitive and accent-sensitive matching, even if the determined
collation of the condition is case-insensitive or accent-insensitive.

– 'n' allows the period (.), which is the match-any-character character, to match the
newline character. If you omit this parameter, then the period does not match the
newline character.

– 'm' treats the source string as multiple lines. Oracle interprets the caret (^) and dollar
sign ($) as the start and end, respectively, of any line anywhere in the source string,
rather than only at the start or end of the entire source string. If you omit this
parameter, then Oracle treats the source string as a single line.

– 'x' ignores whitespace characters. By default, whitespace characters match
themselves.

If the value of match_param contains multiple contradictory characters, then Oracle uses the
last character. For example, if you specify 'ic', then Oracle uses case-sensitive and accent-
sensitive matching. If the value contains a character other than those shown above, then
Oracle returns an error.

If you omit match_param, then:

– The default case and accent sensitivity are determined by the determined collation of
the REGEXP_COUNT function.

– A period (.) does not match the newline character.

– The source string is treated as a single line.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation REGEXP_COUNT uses to compare
characters from source_char with characters from pattern

Examples

The following example shows that subexpressions parentheses in pattern are ignored:

SELECT REGEXP_COUNT('123123123123123', '(12)3', 1, 'i') REGEXP_COUNT
 FROM DUAL;

REGEXP_COUNT

 5

In the following example, the function begins to evaluate the source string at the third
character, so skips over the first occurrence of pattern:

SELECT REGEXP_COUNT('123123123123', '123', 3, 'i') COUNT FROM DUAL;

 COUNT

 3

REGEXP_COUNT simple matching: Examples

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters:

Chapter 7
REGEXP_COUNT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 331 of 521

select regexp_count('ABC123', '[A-Z]'), regexp_count('A1B2C3', '[A-Z]') from dual;

REGEXP_COUNT('ABC123','[A-Z]') REGEXP_COUNT('A1B2C3','[A-Z]')
------------------------------ ------------------------------
 3 3

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by a single digit number:

select regexp_count('ABC123', '[A-Z][0-9]'), regexp_count('A1B2C3', '[A-Z][0-9]') from dual;

REGEXP_COUNT('ABC123','[A-Z][0-9]') REGEXP_COUNT('A1B2C3','[A-Z][0-9]')
----------------------------------- -----------------------------------
 1 3

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by a single digit number only at the beginning
of the string:

select regexp_count('ABC123', '[A-Z][0-9]'), regexp_count('A1B2C3', '[A-Z][0-9]') from dual;

REGEXP_COUNT('ABC123','^[A-Z][0-9]') REGEXP_COUNT('A1B2C3','^[A-Z][0-9]')
------------------------------------ ------------------------------------
 0 1

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by two digits of number only contained within
the string:

select regexp_count('ABC123', '[A-Z][0-9]{2}'), regexp_count('A1B2C3', '[A-Z][0-9]{2}') from dual;

REGEXP_COUNT('ABC123','[A-Z][0-9]{2}') REGEXP_COUNT('A1B2C3','[A-Z][0-9]{2}')
-------------------------------------- --------------------------------------
 1 0

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by a single digit number within the first two
occurrences from the beginning of the string:

select regexp_count('ABC123', '([A-Z][0-9]){2}'), regexp_count('A1B2C3', '([A-Z][0-9]){2}') from dual;

REGEXP_COUNT('ABC123','([A-Z][0-9]){2}') REGEXP_COUNT('A1B2C3','([A-Z][0-9]){2}')
-- --
 0 1

Live SQL

View and run related examples on Oracle Live SQL at REGEXP_COUNT simple
matching

REGEXP_COUNT advanced matching: Examples

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters:

select regexp_count('ABC123', '[A-Z]') Match_char_ABC_count,
regexp_count('A1B2C3', '[A-Z]') Match_char_ABC_count from dual;

MATCH_CHAR_ABC_COUNT MATCH_CHAR_ABC_COUNT

Chapter 7
REGEXP_COUNT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 332 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/simple-match.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/simple-match.html

-------------------- --------------------
 3 3

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by a single digit number:

select regexp_count('ABC123', '[A-Z][0-9]') Match_string_C1_count,
regexp_count('A1B2C3', '[A-Z][0-9]') Match_strings_A1_B2_C3_count from dual;

MATCH_STRING_C1_COUNT MATCH_STRINGS_A1_B2_C3_COUNT
--------------------- ----------------------------
 1 3

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by a single digit number only at the beginning
of the string:

select regexp_count('ABC123A5', '^[A-Z][0-9]') Char_num_like_A1_at_start,
regexp_count('A1B2C3', '^[A-Z][0-9]') Char_num_like_A1_at_start from dual;

CHAR_NUM_LIKE_A1_AT_START CHAR_NUM_LIKE_A1_AT_START
------------------------- -------------------------
 0 1

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by two digits of number only contained within
the string:

select regexp_count('ABC123', '[A-Z][0-9]{2}') Char_num_like_A12_anywhere,
regexp_count('A1B2C34', '[A-Z][0-9]{2}') Char_num_like_A12_anywhere from dual;

CHAR_NUM_LIKE_A12_ANYWHERE CHAR_NUM_LIKE_A12_ANYWHERE
-------------------------- --------------------------
 1 1

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by a single digit number within the first two
occurrences from the beginning of the string:

select regexp_count('ABC12D3', '([A-Z][0-9]){2}') Char_num_within_2_places,
regexp_count('A1B2C3', '([A-Z][0-9]){2}') Char_num_within_2_places from dual;

CHAR_NUM_WITHIN_2_PLACES CHAR_NUM_WITHIN_2_PLACES
------------------------ ------------------------
 0 1

Live SQL

View and run related examples on Oracle Live SQL at REGEXP_COUNT advanced
matching

REGEXP_COUNT case-sensitive matching: Examples

The following statements create a table regexp_temp and insert values into it:

CREATE TABLE regexp_temp(empName varchar2(20));

INSERT INTO regexp_temp (empName) VALUES ('John Doe');
INSERT INTO regexp_temp (empName) VALUES ('Jane Doe');

Chapter 7
REGEXP_COUNT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 333 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/advanced-match.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/advanced-match.html

In the following example, the statement queries the employee name column and searches for
the lowercase of character ‘E’:

SELECT empName, REGEXP_COUNT(empName, 'e', 1, 'c') "CASE_SENSITIVE_E" From regexp_temp;

EMPNAME CASE_SENSITIVE_E
-------------------- ----------------
John Doe 1
Jane Doe 2

In the following example, the statement queries the employee name column and searches for
the lowercase of character ‘O’:

SELECT empName, REGEXP_COUNT(empName, 'o', 1, 'c') "CASE_SENSITIVE_O" From regexp_temp;

EMPNAME CASE_SENSITIVE_O
-------------------- ----------------
John Doe 2
Jane Doe 1

In the following example, the statement queries the employee name column and searches for
the lowercase or uppercase of character ‘E’:

SELECT empName, REGEXP_COUNT(empName, 'E', 1, 'i') "CASE_INSENSITIVE_E" From regexp_temp;

EMPNAME CASE_INSENSITIVE_E
-------------------- ------------------
John Doe 1
Jane Doe 2

In the following example, the statement queries the employee name column and searches for
the lowercase of string ‘DO’:

SELECT empName, REGEXP_COUNT(empName, 'do', 1, 'i') "CASE_INSENSITIVE_STRING" From regexp_temp;

EMPNAME CASE_INSENSITIVE_STRING
-------------------- -----------------------
John Doe 1
Jane Doe 1

In the following example, the statement queries the employee name column and searches for
the lowercase or uppercase of string ‘AN’:

SELECT empName, REGEXP_COUNT(empName, 'an', 1, 'c') "CASE_SENSITIVE_STRING" From regexp_temp;

EMPNAME CASE_SENSITIVE_STRING
-------------------- ---------------------
John Doe 0
Jane Doe 1

Live SQL

View and run related examples on Oracle Live SQL at REGEXP_COUNT case-
sensitive matching

Chapter 7
REGEXP_COUNT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 334 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/case-sensitive-match.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/case-sensitive-match.html

REGEXP_INSTR
Syntax

REGEXP_INSTR (source_char , pattern

, position

, occurrence

, return_opt

, match_param

, subexpr

)

Purpose

REGEXP_INSTR extends the functionality of the INSTR function by letting you search a string for a
regular expression pattern. The function evaluates strings using characters as defined by the
input character set. It returns an integer indicating the beginning or ending position of the
matched substring, depending on the value of the return_option argument. If no match is found,
then the function returns 0.

This function complies with the POSIX regular expression standard and the Unicode Regular
Expression Guidelines. For more information, refer to Oracle Regular Expression Support.

• source_char is a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of the data
types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512 bytes. If the data
type of pattern is different from the data type of source_char, then Oracle Database converts
pattern to the data type of source_char. For a listing of the operators you can specify in pattern,
refer to Oracle Regular Expression Support.

• position is a positive integer indicating the character of source_char where Oracle should begin
the search. The default is 1, meaning that Oracle begins the search at the first character of
source_char.

• occurrence is a positive integer indicating which occurrence of pattern in source_char Oracle
should search for. The default is 1, meaning that Oracle searches for the first occurrence of
pattern. If occurrence is greater than 1, then the database searches for the second occurrence
beginning with the first character following the first occurrence of pattern, and so forth. This
behavior is different from the INSTR function, which begins its search for the second
occurrence at the second character of the first occurrence.

• return_option lets you specify what Oracle should return in relation to the occurrence:

– If you specify 0, then Oracle returns the position of the first character of the
occurrence. This is the default.

– If you specify 1, then Oracle returns the position of the character following the
occurrence.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets you
change the default matching behavior of the function. The behavior of this parameter is the

Chapter 7
REGEXP_INSTR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 335 of 521

same for this function as for REGEXP_COUNT. Refer to REGEXP_COUNT for detailed
information.

• For a pattern with subexpressions, subexpr is an integer from 0 to 9 indicating which
subexpression in pattern is the target of the function. The subexpr is a fragment of pattern
enclosed in parentheses. Subexpressions can be nested. Subexpressions are numbered
in order in which their left parentheses appear in pattern. For example, consider the
following expression:

0123(((abc)(de)f)ghi)45(678)

This expression has five subexpressions in the following order: "abcdefghi" followed by
"abcdef", "abc", "de" and "678".

If subexpr is zero, then the position of the entire substring that matches the pattern is
returned. If subexpr is greater than zero, then the position of the substring fragment that
corresponds to subexpression number subexpr in the matched substring is returned. If pattern
does not have at least subexpr subexpressions, the function returns zero. A null subexpr value
returns NULL. The default value for subexpr is zero.

See Also

• INSTR and REGEXP_SUBSTR

• REGEXP_REPLACE and REGEXP_LIKE Condition

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation REGEXP_INSTR uses to compare
characters from source_char with characters from pattern

Examples

The following example examines the string, looking for occurrences of one or more non-blank
characters. Oracle begins searching at the first character in the string and returns the starting
position (default) of the sixth occurrence of one or more non-blank characters.

SELECT
 REGEXP_INSTR('500 Oracle Parkway, Redwood Shores, CA',
 '[^]+', 1, 6) "REGEXP_INSTR"
 FROM DUAL;

REGEXP_INSTR

 37

The following example examines the string, looking for occurrences of words beginning with s,
r, or p, regardless of case, followed by any six alphabetic characters. Oracle begins searching
at the third character in the string and returns the position in the string of the character
following the second occurrence of a seven-letter word beginning with s, r, or p, regardless of
case.

SELECT
 REGEXP_INSTR('500 Oracle Parkway, Redwood Shores, CA',
 '[s|r|p][[:alpha:]]{6}', 3, 2, 1, 'i') "REGEXP_INSTR"
 FROM DUAL;

REGEXP_INSTR

 28

Chapter 7
REGEXP_INSTR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 336 of 521

The following examples use the subexpr argument to search for a particular subexpression in
pattern. The first statement returns the position in the source string of the first character in the
first subexpression, which is '123':

SELECT REGEXP_INSTR('1234567890', '(123)(4(56)(78))', 1, 1, 0, 'i', 1)
"REGEXP_INSTR" FROM DUAL;

REGEXP_INSTR

1

The next statement returns the position in the source string of the first character in the second
subexpression, which is '45678':

SELECT REGEXP_INSTR('1234567890', '(123)(4(56)(78))', 1, 1, 0, 'i', 2)
"REGEXP_INSTR" FROM DUAL;

REGEXP_INSTR

4

The next statement returns the position in the source string of the first character in the fourth
subexpression, which is '78':

SELECT REGEXP_INSTR('1234567890', '(123)(4(56)(78))', 1, 1, 0, 'i', 4)
"REGEXP_INSTR" FROM DUAL;

REGEXP_INSTR

7

REGEXP_INSTR pattern matching: Examples

The following statements create a table regexp_temp and insert values into it:

CREATE TABLE regexp_temp(empName varchar2(20), emailID varchar2(20));

INSERT INTO regexp_temp (empName, emailID) VALUES ('John Doe', 'johndoe@example.com');
INSERT INTO regexp_temp (empName, emailID) VALUES ('Jane Doe', 'janedoe');

In the following example, the statement queries the email column and searches for valid email
addresses:

SELECT emailID, REGEXP_INSTR(emailID, '\w+@\w+(\.\w+)+') "IS_A_VALID_EMAIL" FROM regexp_temp;

EMAILID IS_A_VALID_EMAIL
-------------------- ----------------
johndoe@example.com 1
example.com 0

In the following example, the statement queries the email column and returns the count of valid
email addresses:

EMPNAME Valid Email FIELD_WITH_VALID_EMAIL
-------- ------------------- ----------------------
John Doe johndoe@example.com 1
Jane Doe

Chapter 7
REGEXP_INSTR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 337 of 521

Live SQL

View and run related examples on Oracle Live SQL at REGEXP_INSTR pattern
matching

REGEXP_REPLACE
Syntax

REGEXP_REPLACE (source_char , pattern

, replace_string

, position

, occurrence

, match_param

)

Purpose

REGEXP_REPLACE extends the functionality of the REPLACE function by letting you search a
string for a regular expression pattern. By default, the function returns source_char with every
occurrence of the regular expression pattern replaced with replace_string. The string returned is
in the same character set as source_char. The function returns VARCHAR2 if the first argument is
not a LOB and returns CLOB if the first argument is a LOB.

This function complies with the POSIX regular expression standard and the Unicode Regular
Expression Guidelines. For more information, refer to Oracle Regular Expression Support.

• source_char is a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of the data
types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512 bytes. If the data
type of pattern is different from the data type of source_char, then Oracle Database converts
pattern to the data type of source_char. For a listing of the operators you can specify in pattern,
refer to Oracle Regular Expression Support.

• replace_string can be of any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. If replace_string is a CLOB or NCLOB, then Oracle truncates replace_string to 32K. The
replace_string can contain up to 500 backreferences to subexpressions in the form \n, where n
is a number from 1 to 9. If you want to include a backslash (\) in replace_string, then you must
precede it with the escape character, which is also a backslash. For example, to replace \2
you would enter \\2. For more information on backreference expressions, refer to the notes
to " Oracle Regular Expression Support", Table D-1.

• position is a positive integer indicating the character of source_char where Oracle should begin
the search. The default is 1, meaning that Oracle begins the search at the first character of
source_char.

• occurrence is a nonnegative integer indicating the occurrence of the replace operation:

Chapter 7
REGEXP_REPLACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 338 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_instr/find-location.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_instr/find-location.html

– If you specify 0, then Oracle replaces all occurrences of the match.

– If you specify a positive integer n, then Oracle replaces the nth occurrence.

If occurrence is greater than 1, then the database searches for the second occurrence
beginning with the first character following the first occurrence of pattern, and so forth. This
behavior is different from the INSTR function, which begins its search for the second
occurrence at the second character of the first occurrence.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets you
change the default matching behavior of the function. The behavior of this parameter is the
same for this function as for REGEXP_COUNT. Refer to REGEXP_COUNT for detailed
information.

See Also

• REPLACE

• REGEXP_INSTR , REGEXP_SUBSTR , and REGEXP_LIKE Condition

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation REGEXP_REPLACE uses to compare
characters from source_char with characters from pattern, and for the collation
derivation rules, which define the collation assigned to the character return value
of this function

Examples

The following example examines phone_number, looking for the pattern xxx.xxx.xxxx. Oracle
reformats this pattern with (xxx) xxx-xxxx.

SELECT
 REGEXP_REPLACE(phone_number,
 '([[:digit:]]{3})\.([[:digit:]]{3})\.([[:digit:]]{4})',
 '(\1) \2-\3') "REGEXP_REPLACE"
 FROM employees
 ORDER BY "REGEXP_REPLACE";

REGEXP_REPLACE
--
(515) 123-4444
(515) 123-4567
(515) 123-4568
(515) 123-4569
(515) 123-5555
. . .

The following example examines country_name. Oracle puts a space after each non-null
character in the string.

SELECT
 REGEXP_REPLACE(country_name, '(.)', '\1 ') "REGEXP_REPLACE"
 FROM countries;

REGEXP_REPLACE
--
A r g e n t i n a
A u s t r a l i a
B e l g i u m
B r a z i l

Chapter 7
REGEXP_REPLACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 339 of 521

C a n a d a
. . .

The following example examines the string, looking for two or more spaces. Oracle replaces
each occurrence of two or more spaces with a single space.

SELECT
 REGEXP_REPLACE('500 Oracle Parkway, Redwood Shores, CA',
 '(){2,}', ' ') "REGEXP_REPLACE"
 FROM DUAL;

REGEXP_REPLACE

500 Oracle Parkway, Redwood Shores, CA

REGEXP_REPLACE pattern matching: Examples

The following statements create a table regexp_temp and insert values into it:

CREATE TABLE regexp_temp(empName varchar2(20), emailID varchar2(20));

INSERT INTO regexp_temp (empName, emailID) VALUES ('John Doe', 'johndoe@example.com');
INSERT INTO regexp_temp (empName, emailID) VALUES ('Jane Doe', 'janedoe@example.com');

The following statement replaces the string ‘Jane’ with ‘John’:

SELECT empName, REGEXP_REPLACE (empName, 'Jane', 'John') "STRING_REPLACE" FROM regexp_temp;

EMPNAME STRING_REPLACE
-------- --------------
John Doe John Doe
Jane Doe John Doe

The following statement replaces the string ‘John’ with ‘Jane’:

SELECT empName, REGEXP_REPLACE (empName, 'Jane', 'John') "STRING_REPLACE" FROM regexp_temp;

EMPNAME STRING_REPLACE
-------- --------------
John Doe Jane Doe
Jane Doe Jane Doe

Live SQL

View and run a related example on Oracle Live SQL at REGEXP_REPLACE - Pattern
Matching

REGEXP_REPLACE: Examples

The following statement replaces all the numbers in a string:

WITH strings AS (
 SELECT 'abc123' s FROM dual union all
 SELECT '123abc' s FROM dual union all
 SELECT 'a1b2c3' s FROM dual
)
 SELECT s "STRING", regexp_replace(s, '[0-9]', '') "MODIFIED_STRING"
 FROM strings;

Chapter 7
REGEXP_REPLACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 340 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_replace/match-replace1.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_replace/match-replace1.html

 STRING MODIFIED_STRING
-------------------- --------------------
abc123 abc
123abc abc
a1b2c3 abc

The following statement replaces the first numeric occurrence in a string:

WITH strings AS (
 SELECT 'abc123' s from DUAL union all
 SELECT '123abc' s from DUAL union all
 SELECT 'a1b2c3' s from DUAL
)
 SELECT s "STRING", REGEXP_REPLACE(s, '[0-9]', '', 1, 1) "MODIFIED_STRING"
 FROM strings;

 STRING MODIFIED_STRING
-------------------- --------------------
abc123 abc23
123abc 23abc
a1b2c3 ab2c3

The following statement replaces the second numeric occurrence in a string:

WITH strings AS (
 SELECT 'abc123' s from DUAL union all
 SELECT '123abc' s from DUAL union all
 SELECT 'a1b2c3' s from DUAL
)
 SELECT s "STRING", REGEXP_REPLACE(s, '[0-9]', '', 1, 2) "MODIFIED_STRING"
 FROM strings;

STRING MODIFIED_STRING
-------------------- --------------------
abc123 abc13
123abc 13abc
a1b2c3 a1bc3

The following statement replaces multiple spaces in a string with a single space:

WITH strings AS (
 SELECT 'Hello World' s FROM dual union all
 SELECT 'Hello World' s FROM dual union all
 SELECT 'Hello, World !' s FROM dual
)
 SELECT s "STRING", regexp_replace(s, ' {2,}', ' ') "MODIFIED_STRING"
 FROM strings;

 STRING MODIFIED_STRING
-------------------- --------------------
Hello World Hello World
Hello World Hello World
Hello, World ! Hello, World !

Chapter 7
REGEXP_REPLACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 341 of 521

The following statement converts camel case strings to a string containing lower case words
separated by an underscore:

WITH strings as (
 SELECT 'AddressLine1' s FROM dual union all
 SELECT 'ZipCode' s FROM dual union all
 SELECT 'Country' s FROM dual
)
 SELECT s "STRING",
 lower(regexp_replace(s, '([A-Z0-9])', '_\1', 2)) "MODIFIED_STRING"
 FROM strings;

 STRING MODIFIED_STRING
-------------------- --------------------
AddressLine1 address_line_1
ZipCode zip_code
Country country

The following statement converts the format of a date:

WITH date_strings AS (
 SELECT '2015-01-01' d from dual union all
 SELECT '2000-12-31' d from dual union all
 SELECT '900-01-01' d from dual
)
 SELECT d "STRING",
 regexp_replace(d, '([[:digit:]]+)-([[:digit:]]{2})-([[:digit:]]{2})', '\3.\2.\1') "MODIFIED_STRING"
 FROM date_strings;

 STRING MODIFIED_STRING
-------------------- --------------------
2015-01-01 01.01.2015
2000-12-31 31.12.2000
900-01-01 01.01.900

The following statement replaces all the letters in a string with ‘1’:

WITH strings as (
 SELECT 'NEW YORK' s FROM dual union all
 SELECT 'New York' s FROM dual union all
 SELECT 'new york' s FROM dual
)
 SELECT s "STRING",
 regexp_replace(s, '[a-z]', '1', 1, 0, 'i') "CASE_INSENSITIVE",
 regexp_replace(s, '[a-z]', '1', 1, 0, 'c') "CASE_SENSITIVE",
 regexp_replace(s, '[a-zA-Z]', '1', 1, 0, 'c') "CASE_SENSITIVE_MATCHING"
 FROM strings;

 STRING CASE_INSEN CASE_SENSI CASE_SENSI
---------- ---------- ---------- ----------
NEW YORK 111 1111 NEW YORK 111 1111
New York 111 1111 N11 Y111 111 1111
new york 111 1111 111 1111 111 1111

Chapter 7
REGEXP_REPLACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 342 of 521

Live SQL

View and run a related example on Oracle Live SQL at REGEXP_REPLACE

REGEXP_SUBSTR
Syntax

REGEXP_SUBSTR (source_char , pattern

, position

, occurrence

, match_param

subexpr

)

Purpose

REGEXP_SUBSTR extends the functionality of the SUBSTR function by letting you search a string
for a regular expression pattern. It is also similar to REGEXP_INSTR, but instead of returning the
position of the substring, it returns the substring itself. This function is useful if you need the
contents of a match string but not its position in the source string. The function returns the
string as VARCHAR2 or CLOB data in the same character set as source_char.

This function complies with the POSIX regular expression standard and the Unicode Regular
Expression Guidelines. For more information, refer to Oracle Regular Expression Support.

• source_char is a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of the data
types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512 bytes. If the data
type of pattern is different from the data type of source_char, then Oracle Database converts
pattern to the data type of source_char. For a listing of the operators you can specify in pattern,
refer to Oracle Regular Expression Support.

• position is a positive integer indicating the character of source_char where Oracle should begin
the search. The default is 1, meaning that Oracle begins the search at the first character of
source_char.

• occurrence is a positive integer indicating which occurrence of pattern in source_char Oracle
should search for. The default is 1, meaning that Oracle searches for the first occurrence of
pattern.

If occurrence is greater than 1, then the database searches for the second occurrence
beginning with the first character following the first occurrence of pattern, and so forth. This
behavior is different from the SUBSTR function, which begins its search for the second
occurrence at the second character of the first occurrence.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets you
change the default matching behavior of the function. The behavior of this parameter is the

Chapter 7
REGEXP_SUBSTR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 343 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_replace/regexp-replace1.html

same for this function as for REGEXP_COUNT. Refer to REGEXP_COUNT for detailed
information.

• For a pattern with subexpressions, subexpr is a nonnegative integer from 0 to 9 indicating
which subexpression in pattern is to be returned by the function. This parameter has the
same semantics that it has for the REGEXP_INSTR function. Refer to REGEXP_INSTR for
more information.

See Also

• SUBSTR and REGEXP_INSTR

• REGEXP_REPLACE , and REGEXP_LIKE Condition

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation REGEXP_SUBSTR uses to compare
characters from source_char with characters from pattern, and for the collation
derivation rules, which define the collation assigned to the character return value
of this function

Examples

The following example examines the string, looking for the first substring bounded by commas.
Oracle Database searches for a comma followed by one or more occurrences of non-comma
characters followed by a comma. Oracle returns the substring, including the leading and
trailing commas.

SELECT
 REGEXP_SUBSTR('500 Oracle Parkway, Redwood Shores, CA',
 ',[^,]+,') "REGEXPR_SUBSTR"
 FROM DUAL;

REGEXPR_SUBSTR

, Redwood Shores,

The following example examines the string, looking for http:// followed by a substring of one or
more alphanumeric characters and optionally, a period (.). Oracle searches for a minimum of
three and a maximum of four occurrences of this substring between http:// and either a slash (/)
or the end of the string.

SELECT
 REGEXP_SUBSTR('http://www.example.com/products',
 'http://([[:alnum:]]+\.?){3,4}/?') "REGEXP_SUBSTR"
 FROM DUAL;

REGEXP_SUBSTR

http://www.example.com/

The next two examples use the subexpr argument to return a specific subexpression of pattern.
The first statement returns the first subexpression in pattern:

SELECT REGEXP_SUBSTR('1234567890', '(123)(4(56)(78))', 1, 1, 'i', 1)
"REGEXP_SUBSTR" FROM DUAL;

REGEXP_SUBSTR

123

Chapter 7
REGEXP_SUBSTR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 344 of 521

The next statement returns the fourth subexpression in pattern:

SELECT REGEXP_SUBSTR('1234567890', '(123)(4(56)(78))', 1, 1, 'i', 4)
"REGEXP_SUBSTR" FROM DUAL;

REGEXP_SUBSTR

78

REGEXP_SUBSTR pattern matching: Examples

The following statements create a table regexp_temp and insert values into it:

CREATE TABLE regexp_temp(empName varchar2(20), emailID varchar2(20));

INSERT INTO regexp_temp (empName, emailID) VALUES ('John Doe', 'johndoe@example.com');
INSERT INTO regexp_temp (empName, emailID) VALUES ('Jane Doe', 'janedoe');

In the following example, the statement queries the email column and searches for valid email
addresses:

SELECT empName, REGEXP_SUBSTR(emailID, '[[:alnum:]]+\@[[:alnum:]]+\.[[:alnum:]]+') "Valid Email" FROM regexp_temp;

EMPNAME Valid Email
-------- -------------------
John Doe johndoe@example.com
Jane Doe

In the following example, the statement queries the email column and returns the count of valid
email addresses:

SELECT empName, REGEXP_SUBSTR(emailID, '[[:alnum:]]+\@[[:alnum:]]+\.[[:alnum:]]+') "Valid Email",
REGEXP_INSTR(emailID, '\w+@\w+(\.\w+)+') "FIELD_WITH_VALID_EMAIL" FROM regexp_temp;

EMPNAME Valid Email FIELD_WITH_VALID_EMAIL
-------- ------------------- ----------------------
John Doe johndoe@example.com 1
Jane Doe

Live SQL

View and run related examples on Oracle Live SQL at REGEXP_SUBSTR pattern
matching

In the following example, numbers and alphabets are extracted from a string:

with strings as (
 select 'ABC123' str from dual union all
 select 'A1B2C3' str from dual union all
 select '123ABC' str from dual union all
 select '1A2B3C' str from dual
)
 select regexp_substr(str, '[0-9]') First_Occurrence_of_Number,
 regexp_substr(str, '[0-9].*') Num_Followed_by_String,
 regexp_substr(str, '[A-Z][0-9]') Letter_Followed_by_String
 from strings;

FIRST_OCCURRENCE_OF_NUMB NUM_FOLLOWED_BY_STRING LETTER_FOLLOWED_BY_STRIN
------------------------ ------------------------ ------------------------
1 123 C1

Chapter 7
REGEXP_SUBSTR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 345 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/find-pattern-email.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/find-pattern-email.html

1 1B2C3 A1
1 123ABC
1 1A2B3C A2

Live SQL

View and run a related example on Oracle Live SQL at REGEXP_SUBSTR - Extract
Numbers and Alphabets

In the following example, passenger names and flight information are extracted from a string:

with strings as (
 select 'LHRJFK/010315/JOHNDOE' str from dual union all
 select 'CDGLAX/050515/JANEDOE' str from dual union all
 select 'LAXCDG/220515/JOHNDOE' str from dual union all
 select 'SFOJFK/010615/JANEDOE' str from dual
)
 SELECT regexp_substr(str, '[A-Z]{6}') String_of_6_characters,
 regexp_substr(str, '[0-9]+') First_Matching_Numbers,
 regexp_substr(str, '[A-Z].*$') Letter_by_other_characters,
 regexp_substr(str, '/[A-Z].*$') Slash_letter_and_characters
 FROM strings;

STRING_OF_6_CHARACTERS FIRST_MATCHING_NUMBERS LETTER_BY_OTHER_CHARACTERS
SLASH_LETTER_AND_CHARACTERS
---------------------- ---------------------- -------------------------- ---------------------------
LHRJFK 010315 LHRJFK/010315/JOHNDOE /JOHNDOE
CDGLAX 050515 CDGLAX/050515/JANEDOE /JANEDOE
LAXCDG 220515 LAXCDG/220515/JOHNDOE /JOHNDOE
SFOJFK 010615 SFOJFK/010615/JANEDOE /JANEDOE

Live SQL

View and run a related example on Oracle Live SQL at REGEXP_SUBSTR - Extract
Passenger Names and Flight Information

REGR_ (Linear Regression) Functions
The linear regression functions are:

• REGR_SLOPE

• REGR_INTERCEPT

• REGR_COUNT

• REGR_R2

• REGR_AVGX

• REGR_AVGY

• REGR_SXX

• REGR_SYY

• REGR_SXY

Chapter 7
REGR_ (Linear Regression) Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 346 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/extract1.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/extract1.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/extract2.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/extract2.html

Syntax

linear_regr::=

REGR_SLOPE

REGR_INTERCEPT

REGR_COUNT

REGR_R2

REGR_AVGX

REGR_AVGY

REGR_SXX

REGR_SYY

REGR_SXY

(expr1 , expr2)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

The linear regression functions fit an ordinary-least-squares regression line to a set of number
pairs. You can use them as both aggregate and analytic functions.

See Also

"Aggregate Functions " and "About SQL Expressions " for information on valid forms of
expr

These functions take as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type, and
returns that data type.

See Also

Table 2-9 for more information on implicit conversion and "Numeric Precedence " for
information on numeric precedence

Oracle applies the function to the set of (expr1, expr2) pairs after eliminating all pairs for which
either expr1 or expr2 is null. Oracle computes all the regression functions simultaneously during a
single pass through the data.

Chapter 7
REGR_ (Linear Regression) Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 347 of 521

expr1 is interpreted as a value of the dependent variable (a y value), and expr2 is interpreted as a
value of the independent variable (an x value).

• REGR_SLOPE returns the slope of the line. The return value is a numeric data type and can
be null. After the elimination of null (expr1, expr2) pairs, it makes the following computation:

COVAR_POP(expr1, expr2) / VAR_POP(expr2)

• REGR_INTERCEPT returns the y-intercept of the regression line. The return value is a
numeric data type and can be null. After the elimination of null (expr1, expr2) pairs, it makes
the following computation:

AVG(expr1) - REGR_SLOPE(expr1, expr2) * AVG(expr2)

• REGR_COUNT returns an integer that is the number of non-null number pairs used to fit the
regression line.

• REGR_R2 returns the coefficient of determination (also called R-squared or goodness of fit)
for the regression. The return value is a numeric data type and can be null. VAR_POP(expr1)
and VAR_POP(expr2) are evaluated after the elimination of null pairs. The return values are:

 NULL if VAR_POP(expr2) = 0

 1 if VAR_POP(expr1) = 0 and
 VAR_POP(expr2) != 0

POWER(CORR(expr1,expr),2) if VAR_POP(expr1) > 0 and
 VAR_POP(expr2 != 0

All of the remaining regression functions return a numeric data type and can be null:

• REGR_AVGX evaluates the average of the independent variable (expr2) of the regression
line. It makes the following computation after the elimination of null (expr1, expr2) pairs:

AVG(expr2)

• REGR_AVGY evaluates the average of the dependent variable (expr1) of the regression line.
It makes the following computation after the elimination of null (expr1, expr2) pairs:

AVG(expr1)

REGR_SXY, REGR_SXX, REGR_SYY are auxiliary functions that are used to compute various
diagnostic statistics.

• REGR_SXX makes the following computation after the elimination of null (expr1, expr2) pairs:

REGR_COUNT(expr1, expr2) * VAR_POP(expr2)

• REGR_SYY makes the following computation after the elimination of null (expr1, expr2) pairs:

REGR_COUNT(expr1, expr2) * VAR_POP(expr1)

• REGR_SXY makes the following computation after the elimination of null (expr1, expr2) pairs:

REGR_COUNT(expr1, expr2) * COVAR_POP(expr1, expr2)

The following examples are based on the sample tables sh.sales and sh.products.

General Linear Regression Example

The following example provides a comparison of the various linear regression functions used in
their analytic form. The analytic form of these functions can be useful when you want to use
regression statistics for calculations such as finding the salary predicted for each employee by
the model. The sections that follow on the individual linear regression functions contain
examples of the aggregate form of these functions.

Chapter 7
REGR_ (Linear Regression) Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 348 of 521

SELECT job_id, employee_id ID, salary,
REGR_SLOPE(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) slope,
REGR_INTERCEPT(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) intcpt,
REGR_R2(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) rsqr,
REGR_COUNT(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) count,
REGR_AVGX(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) avgx,
REGR_AVGY(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) avgy
 FROM employees
 WHERE department_id in (50, 80)
 ORDER BY job_id, employee_id;

JOB_ID ID SALARY SLOPE INTCPT RSQR COUNT AVGX AVGY
---------- ----- ---------- ----- --------- ----- ------ ---------- ---------
SA_MAN 145 14000 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 146 13500 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 147 12000 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 148 11000 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 149 10500 .355 -1707.035 .832 5 12200.000 2626.589
SA_REP 150 10000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 151 9500 .257 404.763 .647 29 8396.552 2561.244
SA_REP 152 9000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 153 8000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 154 7500 .257 404.763 .647 29 8396.552 2561.244
SA_REP 155 7000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 156 10000 .257 404.763 .647 29 8396.552 2561.244
. . .

REGR_SLOPE and REGR_INTERCEPT Examples

The following example calculates the slope and regression of the linear regression model for
time employed (SYSDATE - hire_date) and salary using the sample table hr.employees. Results are
grouped by job_id.

SELECT job_id,
REGR_SLOPE(SYSDATE-hire_date, salary) slope,
REGR_INTERCEPT(SYSDATE-hire_date, salary) intercept
 FROM employees
 WHERE department_id in (50,80)
 GROUP BY job_id
 ORDER BY job_id;

JOB_ID SLOPE INTERCEPT
---------- ----- ------------
SA_MAN .355 -1707.030762
SA_REP .257 404.767151
SH_CLERK .745 159.015293
ST_CLERK .904 134.409050
ST_MAN .479 -570.077291

REGR_COUNT Examples

The following example calculates the count of by job_id for time employed (SYSDATE - hire_date)
and salary using the sample table hr.employees. Results are grouped by job_id.

SELECT job_id,
REGR_COUNT(SYSDATE-hire_date, salary) count

Chapter 7
REGR_ (Linear Regression) Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 349 of 521

 FROM employees
 WHERE department_id in (30, 50)
 GROUP BY job_id
 ORDER BY job_id, count;

JOB_ID COUNT
---------- ----------
PU_CLERK 5
PU_MAN 1
SH_CLERK 20
ST_CLERK 20
ST_MAN 5

REGR_R2 Examples

The following example calculates the coefficient of determination the linear regression of time
employed (SYSDATE - hire_date) and salary using the sample table hr.employees:

SELECT job_id,
REGR_R2(SYSDATE-hire_date, salary) Regr_R2
 FROM employees
 WHERE department_id in (80, 50)
 GROUP by job_id
 ORDER BY job_id, Regr_R2;

JOB_ID REGR_R2
---------- ----------
SA_MAN .83244748
SA_REP .647007156
SH_CLERK .879799698
ST_CLERK .742808493
ST_MAN .69418508

REGR_AVGY and REGR_AVGX Examples

The following example calculates the average values for time employed (SYSDATE - hire_date)
and salary using the sample table hr.employees. Results are grouped by job_id:

SELECT job_id,
REGR_AVGY(SYSDATE-hire_date, salary) avgy,
REGR_AVGX(SYSDATE-hire_date, salary) avgx
 FROM employees
 WHERE department_id in (30,50)
 GROUP BY job_id
 ORDER BY job_id, avgy, avgx;

JOB_ID AVGY AVGX
---------- ---------- ----------
PU_CLERK 2950.3778 2780
PU_MAN 4026.5778 11000
SH_CLERK 2773.0778 3215
ST_CLERK 2872.7278 2785
ST_MAN 3140.1778 7280

REGR_SXY, REGR_SXX, and REGR_SYY Examples

The following example calculates three types of diagnostic statistics for the linear regression of
time employed (SYSDATE - hire_date) and salary using the sample table hr.employees:

SELECT job_id,
REGR_SXY(SYSDATE-hire_date, salary) regr_sxy,
REGR_SXX(SYSDATE-hire_date, salary) regr_sxx,

Chapter 7
REGR_ (Linear Regression) Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 350 of 521

REGR_SYY(SYSDATE-hire_date, salary) regr_syy
 FROM employees
 WHERE department_id in (80, 50)
 GROUP BY job_id
 ORDER BY job_id;

JOB_ID REGR_SXY REGR_SXX REGR_SYY
---------- ---------- ----------- ----------
SA_MAN 3303500 9300000.0 1409642
SA_REP 16819665.5 65489655.2 6676562.55
SH_CLERK 4248650 5705500.0 3596039
ST_CLERK 3531545 3905500.0 4299084.55
ST_MAN 2180460 4548000.0 1505915.2

REMAINDER
Syntax

REMAINDER (n2 , n1)

Purpose

REMAINDER returns the remainder of n2 divided by n1.

This function takes as arguments any numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type, and
returns that data type.

The MOD function is similar to REMAINDER except that it uses FLOOR in its formula, whereas
REMAINDER uses ROUND. Refer to MOD .

See Also

Table 2-9 for more information on implicit conversion and "Numeric Precedence " for
information on numeric precedence

• If n1 = 0 or n2 = infinity, then Oracle returns

– An error if the arguments are of type NUMBER

– NaN if the arguments are BINARY_FLOAT or BINARY_DOUBLE.

• If n1 != 0, then the remainder is n2 - (n1*N) where N is the integer nearest n2/n1. If n2/n1
equals x.5, then N is the nearest even integer.

• If n2 is a floating-point number, and if the remainder is 0, then the sign of the remainder is
the sign of n2. Remainders of 0 are unsigned for NUMBER values.

Examples

Using table float_point_demo, created for the TO_BINARY_DOUBLE "Examples", the following
example divides two floating-point numbers and returns the remainder of that operation:

SELECT bin_float, bin_double, REMAINDER(bin_float, bin_double)
 FROM float_point_demo;

Chapter 7
REMAINDER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 351 of 521

 BIN_FLOAT BIN_DOUBLE REMAINDER(BIN_FLOAT,BIN_DOUBLE)
---------- ---------- -------------------------------
1.235E+003 1.235E+003 5.859E-005

REPLACE
Syntax

REPLACE (char , search_string

, replacement_string

)

Purpose

REPLACE returns char with every occurrence of search_string replaced with replacement_string. If
replacement_string is omitted or null, then all occurrences of search_string are removed. If search_string
is null, then char is returned.

Both search_string and replacement_string, as well as char, can be any of the data types CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The string returned is in the same character
set as char. The function returns VARCHAR2 if the first argument is not a LOB and returns CLOB if
the first argument is a LOB.

REPLACE provides functionality related to that provided by the TRANSLATE function. TRANSLATE
provides single-character, one-to-one substitution. REPLACE lets you substitute one string for
another as well as to remove character strings.

See Also

• TRANSLATE

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation REPLACE uses to compare
characters from char with characters from search_string, and for the collation
derivation rules, which define the collation assigned to the character return value
of this function

Examples

The following example replaces occurrences of J with BL:

SELECT REPLACE('JACK and JUE','J','BL') "Changes"
 FROM DUAL;

Changes

BLACK and BLUE

Chapter 7
REPLACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 352 of 521

ROUND (datetime)
Syntax

round_datetime::=

ROUND (datetime

, fmt

)

Purpose

ROUND returns datetime rounded to the unit specified by the format model fmt.

This function is not sensitive to the NLS_CALENDAR session parameter. It operates according to
the rules of the Gregorian calendar. The value returned is always of data type DATE, even if you
specify a different datetime data type for date. If you omit fmt, then date is rounded to the nearest
day. The date expression must resolve to a DATE value.

See Also

"CEIL, FLOOR, ROUND, and TRUNC Date Functions" for the permitted format
models to use in fmt

Examples

The following example rounds a date to the first day of the following year:

SELECT ROUND (TO_DATE ('27-OCT-00'),'YEAR')
 "New Year" FROM DUAL;

New Year

01-JAN-01

ROUND (interval)
Syntax

ROUND (interval

, fmt

)

Purpose

ROUND(interval) returns the interval rounded up to the unit specified by the second argument fmt,
the format model .

For INTERVAL YEAR TO MONTH, fmt can only be year. The default fmt is year.

Chapter 7
ROUND (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 353 of 521

For INTERVAL DAY TO SECOND, fmt can be day, hour and minute. The default fmt is day. Note that
fmt does not support second.

ROUND(interval) rounds up on the mid value of next part of fmt as follows:

• If fmt is year, ROUND(interval) rounds up on the mid value of month which is 6.

• If fmt is day, ROUND(interval) rounds up on the mid value of hour which is 12.

• If fmt is hour, ROUND(interval) rounds up on the mid value of minute which is 30.

• If fmt is minute, ROUND(interval) rounds up on the mid value of second which is 30.

The result precision for year and day is the input precision for year plus one and day plus one
respectively, since ROUND(interval) can have overflow. If an interval already has the maximum
precision for year and day, the statement compiles but errors at runtime.

See Also

Refer to CEIL, FLOOR, ROUND, and TRUNC Date Functions for the permitted format
models to use in fmt.

Examples

SELECT ROUND(INTERVAL '+123-06' YEAR(3) TO MONTH) AS year_round;

YEAR_ROUND

+124-00

SELECT ROUND(INTERVAL '+99-11' YEAR(2) TO MONTH, 'YEAR') AS year_round;

YEAR_ROUND

+100-00

SELECT ROUND(INTERVAL '-999999999-11' YEAR(9) TO MONTH, 'YEAR')AS year_round;

ORA-01873: the leading precision of the interval is too small

SELECT ROUND(INTERVAL '+4 12:42:10.222' DAY(2) TO SECOND(3), 'DD') AS day_round;

DAY_ROUND

+05 00:00:00.000000

ROUND (number)
Syntax

round_number::=

ROUND (n

, integer

)

Chapter 7
ROUND (number)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 354 of 521

Purpose

ROUND returns n rounded to integer places to the right of the decimal point. If you omit integer,
then n is rounded to zero places. If integer is negative, then n is rounded off to the left of the
decimal point.

n can be any numeric data type or any nonnumeric data type that can be implicitly converted to
a numeric data type. If you omit integer, then the function returns the value ROUND(n, 0) in the
same data type as the numeric data type of n. If you include integer, then the function returns
NUMBER.

ROUND is implemented using the following rules:

1. If n is 0, then ROUND always returns 0 regardless of integer.

2. If n is negative, then ROUND(n, integer) returns -ROUND(-n, integer).

3. If n is positive, then

ROUND(n, integer) = FLOOR(n * POWER(10, integer) + 0.5) * POWER(10, -integer)

ROUND applied to a NUMBER value may give a slightly different result from ROUND applied to the
same value expressed in floating-point. The different results arise from differences in internal
representations of NUMBER and floating point values. The difference will be 1 in the rounded
digit if a difference occurs.

See Also

• Table 2-9 for more information on implicit conversion

• "Floating-Point Numbers " for more information on how Oracle Database handles
BINARY_FLOAT and BINARY_DOUBLE values

• FLOOR (number) and CEIL (number), TRUNC (number) and MOD for information
on functions that perform related operations

Examples

The following example rounds a number to one decimal point:

SELECT ROUND(15.193,1) "Round" FROM DUAL;

 Round

 15.2

The following example rounds a number one digit to the left of the decimal point:

SELECT ROUND(15.193,-1) "Round" FROM DUAL;

 Round

 20

Chapter 7
ROUND (number)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 355 of 521

ROUND_TIES_TO_EVEN (number)
Syntax

round_ties_to_even ::=

ROUND_TIES_TO_EVEN (n

, integer

)

Purpose

ROUND_TIES_TO_EVEN is a rounding function that takes two parameters: n and integer. The
function returns n rounded to integer places according to the following rules:

1. If integer is positive, n is rounded to integer places to the right of the decimal point.

2. If integer is not specified, then n is rounded to 0 places.

3. If integer is negative, then n is rounded to integer places to the left of the decimal point.

Restrictions

The function does not support the following types: BINARY_FLOAT and BINARY_DOUBLE.

Examples

The following example rounds a number to one decimal point to the right:

SELECT ROUND_TIES_TO_EVEN (0.05, 1) from DUAL

ROUND_TIES_TO_EVEN(0.05,1)

 0

The following example rounds a number to one decimal point to the left:

SELECT ROUND_TIES_TO_EVEN(45.177,-1) "ROUND_EVEN" FROM DUAL;

ROUND_TIES_TO_EVEN(45.177,-1)

 50

ROW_NUMBER
Syntax

ROW_NUMBER () OVER

window_name

(

window_name

query_partition_clause order_by_clause)

Chapter 7
ROUND_TIES_TO_EVEN (number)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 356 of 521

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

ROW_NUMBER is an analytic function. It assigns a unique number to each row to which it is
applied (either each row in the partition or each row returned by the query), in the ordered
sequence of rows specified in the order_by_clause, beginning with 1.

By nesting a subquery using ROW_NUMBER inside a query that retrieves the ROW_NUMBER
values for a specified range, you can find a precise subset of rows from the results of the inner
query. This use of the function lets you implement top-N, bottom-N, and inner-N reporting. For
consistent results, the query must ensure a deterministic sort order.

Examples

The following example finds the three highest paid employees in each department in the
hr.employees table. Fewer than three rows are returned for departments with fewer than three
employees.

SELECT department_id, first_name, last_name, salary
FROM
(
 SELECT
 department_id, first_name, last_name, salary,
 ROW_NUMBER() OVER (PARTITION BY department_id ORDER BY salary desc) rn
 FROM employees
)
WHERE rn <= 3
ORDER BY department_id, salary DESC, last_name;

The following example is a join query on the sh.sales table. It finds the sales amounts in 2000 of
the five top-selling products in 1999 and compares the difference between 2000 and 1999. The
ten top-selling products are calculated within each distribution channel.

SELECT sales_2000.channel_desc, sales_2000.prod_name,
 sales_2000.amt amt_2000, top_5_prods_1999_year.amt amt_1999,
 sales_2000.amt - top_5_prods_1999_year.amt amt_diff
FROM
/* The first subquery finds the 5 top-selling products per channel in year 1999. */
 (SELECT channel_desc, prod_name, amt
 FROM
 (
 SELECT channel_desc, prod_name, sum(amount_sold) amt,
 ROW_NUMBER () OVER (PARTITION BY channel_desc
 ORDER BY SUM(amount_sold) DESC) rn
 FROM sales, times, channels, products
 WHERE sales.time_id = times.time_id
 AND times.calendar_year = 1999
 AND channels.channel_id = sales.channel_id
 AND products.prod_id = sales.prod_id
 GROUP BY channel_desc, prod_name
)
 WHERE rn <= 5
) top_5_prods_1999_year,
/* The next subquery finds sales per product and per channel in 2000. */
 (SELECT channel_desc, prod_name, sum(amount_sold) amt
 FROM sales, times, channels, products

Chapter 7
ROW_NUMBER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 357 of 521

 WHERE sales.time_id = times.time_id
 AND times.calendar_year = 2000
 AND channels.channel_id = sales.channel_id
 AND products.prod_id = sales.prod_id
 GROUP BY channel_desc, prod_name
) sales_2000
WHERE sales_2000.channel_desc = top_5_prods_1999_year.channel_desc
 AND sales_2000.prod_name = top_5_prods_1999_year.prod_name
ORDER BY sales_2000.channel_desc, sales_2000.prod_name
;
CHANNEL_DESC PROD_NAME AMT_2000 AMT_1999 AMT_DIFF
--------------- --------------==-------------------------------- ---------- ---------- ----------
Direct Sales 17" LCD w/built-in HDTV Tuner 628855.7 1163645.78 -534790.08
Direct Sales Envoy 256MB - 40GB 502938.54 843377.88 -340439.34
Direct Sales Envoy Ambassador 2259566.96 1770349.25 489217.71
Direct Sales Home Theatre Package with DVD-Audio/Video Play 1235674.15 1260791.44 -25117.29
Direct Sales Mini DV Camcorder with 3.5" Swivel LCD 775851.87 1326302.51 -550450.64
Internet 17" LCD w/built-in HDTV Tuner 31707.48 160974.7 -129267.22
Internet 8.3 Minitower Speaker 404090.32 155235.25 248855.07
Internet Envoy 256MB - 40GB 28293.87 154072.02 -125778.15
Internet Home Theatre Package with DVD-Audio/Video Play 155405.54 153175.04 2230.5
Internet Mini DV Camcorder with 3.5" Swivel LCD 39726.23 189921.97 -150195.74
Partners 17" LCD w/built-in HDTV Tuner 269973.97 325504.75 -55530.78
Partners Envoy Ambassador 1213063.59 614857.93 598205.66
Partners Home Theatre Package with DVD-Audio/Video Play 700266.58 520166.26 180100.32
Partners Mini DV Camcorder with 3.5" Swivel LCD 404265.85 520544.11 -116278.26
Partners Unix/Windows 1-user pack 374002.51 340123.02 33879.49

15 rows selected.

ROWIDTOCHAR
Syntax

ROWIDTOCHAR (rowid)

Purpose

ROWIDTOCHAR converts a rowid value to VARCHAR2 data type. The result of this conversion is
always 18 characters long.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
ROWIDTOCHAR

Examples

The following example converts a rowid value in the employees table to a character value.
(Results vary for each build of the sample database.)

SELECT ROWID FROM employees
 WHERE ROWIDTOCHAR(ROWID) LIKE '%JAAB%'
 ORDER BY ROWID;

Chapter 7
ROWIDTOCHAR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 358 of 521

ROWID

AAAFfIAAFAAAABSAAb

ROWIDTONCHAR
Syntax

ROWIDTONCHAR (rowid)

Purpose

ROWIDTONCHAR converts a rowid value to NVARCHAR2 data type. The result of this conversion
is always in the national character set and is 18 characters long.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
ROWIDTONCHAR

Examples

The following example converts a rowid value to an NVARCHAR2 string:

SELECT LENGTHB(ROWIDTONCHAR(ROWID)) Length, ROWIDTONCHAR(ROWID)
 FROM employees
 ORDER BY length;

 LENGTH ROWIDTONCHAR(ROWID
---------- ------------------
 36 AAAL52AAFAAAABSABD
 36 AAAL52AAFAAAABSABV
. . .

RPAD
Syntax

RPAD (expr1 , n

, expr2

)

Purpose

RPAD returns expr1, right-padded to length n characters with expr2, replicated as many times as
necessary. This function is useful for formatting the output of a query.

Both expr1 and expr2 can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The string returned is of VARCHAR2 data type if expr1 is a character data type,

Chapter 7
ROWIDTONCHAR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 359 of 521

NVARCHAR2 if expr1 is a national character data type, and a LOB if expr1 is a LOB data type. The
string returned is in the same character set as expr1. The argument n must be a NUMBER integer
or a value that can be implicitly converted to a NUMBER integer.

expr1 cannot be null. If you do not specify expr2, then it defaults to a single blank. If expr1 is
longer than n, then this function returns the portion of expr1 that fits in n.

The argument n is the total length of the return value as it is displayed on your terminal screen.
In most character sets, this is also the number of characters in the return value. However, in
some multibyte character sets, the display length of a character string can differ from the
number of characters in the string.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
RPAD

Examples

The following example creates a simple chart of salary amounts by padding a single space
with asterisks:

SELECT last_name, RPAD(' ', salary/1000/1, '*') "Salary"
 FROM employees
 WHERE department_id = 80
 ORDER BY last_name, "Salary";

LAST_NAME Salary
------------------------- ---------------
Abel **********
Ande *****
Banda *****
Bates ******
Bernstein ********
Bloom *********
Cambrault **********
Cambrault ******
Doran ******
Errazuriz ***********
Fox ********
Greene ********
Hall ********
Hutton *******
Johnson *****
King *********
. . .

RTRIM
Syntax

RTRIM (char

, set

)

Chapter 7
RTRIM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 360 of 521

Purpose

RTRIM removes from the right end of char all of the characters that appear in set. This function is
useful for formatting the output of a query.

If you do not specify set, then it defaults to a single blank. RTRIM works similarly to LTRIM.

Both char and set can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. The string returned is of VARCHAR2 data type if char is a character data type,
NVARCHAR2 if char is a national character data type, and a LOB if char is a LOB data type.

See Also

• LTRIM

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation RTRIM uses to compare characters
from set with characters from char, and for the collation derivation rules, which
define the collation assigned to the character return value of this function

Examples

The following example trims all the right-most occurrences of less than sign (<), greater than
sign (>) , and equal sign (=) from a string:

SELECT RTRIM('<=====>BROWNING<=====>', '<>=') "RTRIM Example"
 FROM DUAL;

RTRIM Example

<=====>BROWNING

SCN_TO_TIMESTAMP
Syntax

SCN_TO_TIMESTAMP (number)

Purpose

SCN_TO_TIMESTAMP takes as an argument a number that evaluates to a system change
number (SCN), and returns the approximate timestamp associated with that SCN. The
returned value is of TIMESTAMP data type. This function is useful any time you want to know the
timestamp associated with an SCN. For example, it can be used in conjunction with the
ORA_ROWSCN pseudocolumn to associate a timestamp with the most recent change to a row.

Chapter 7
SCN_TO_TIMESTAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 361 of 521

Notes

• The usual precision of the result value is 3 seconds.

• The association between an SCN and a timestamp when the SCN is generated is
remembered by the database for a limited period of time. This period is the
maximum of the auto-tuned undo retention period, if the database runs in the
Automatic Undo Management mode, and the retention times of all flashback
archives in the database, but no less than 120 hours. The time for the association
to become obsolete elapses only when the database is open. An error is returned
if the SCN specified for the argument to SCN_TO_TIMESTAMP is too old.

See Also

ORA_ROWSCN Pseudocolumn and TIMESTAMP_TO_SCN

Examples

The following example uses the ORA_ROWSCN pseudocolumn to determine the system change
number of the last update to a row and uses SCN_TO_TIMESTAMP to convert that SCN to a
timestamp:

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) FROM employees
 WHERE employee_id = 188;

You could use such a query to convert a system change number to a timestamp for use in an
Oracle Flashback Query:

SELECT salary FROM employees WHERE employee_id = 188;
 SALARY

 3800

UPDATE employees SET salary = salary*10 WHERE employee_id = 188;
COMMIT;

SELECT salary FROM employees WHERE employee_id = 188;
 SALARY

 38000

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) FROM employees
 WHERE employee_id = 188;
SCN_TO_TIMESTAMP(ORA_ROWSCN)

28-AUG-03 01.58.01.000000000 PM

FLASHBACK TABLE employees TO TIMESTAMP
 TO_TIMESTAMP('28-AUG-03 01.00.00.000000000 PM');

SELECT salary FROM employees WHERE employee_id = 188;
 SALARY

 3800

Chapter 7
SCN_TO_TIMESTAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 362 of 521

SESSIONTIMEZONE
Syntax

SESSIONTIMEZONE

Purpose

SESSIONTIMEZONE returns the time zone of the current session. The return type is a time zone
offset (a character type in the format '[+|-]TZH:TZM') or a time zone region name, depending on
how the user specified the session time zone value in the most recent ALTER SESSION
statement.

Note

The default client session time zone is an offset even if the client operating system
uses a named time zone. If you want the default session time zone to use a named
time zone, then set the ORA_SDTZ variable in the client environment to an Oracle time
zone region name. Refer to Oracle Database Globalization Support Guide for more
information on this variable.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
SESSIONTIMEZONE

Examples

The following example returns the time zone of the current session:

SELECT SESSIONTIMEZONE FROM DUAL;

SESSION

-08:00

SET
Syntax

SET (nested_table)

Chapter 7
SESSIONTIMEZONE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 363 of 521

Purpose

SET converts a nested table into a set by eliminating duplicates. The function returns a nested
table whose elements are distinct from one another. The returned nested table is of the same
type as the input nested table.

The element types of the nested table must be comparable. Refer to "Comparison Conditions "
for information on the comparability of nonscalar types.

Examples

The following example selects from the customers_demo table the unique elements of the
cust_address_ntab nested table column:

SELECT customer_id, SET(cust_address_ntab) address
 FROM customers_demo
 ORDER BY customer_id;

CUSTOMER_ID ADDRESS(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
----------- --
 101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
 102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'))
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
 104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
 105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))
. . .

The preceding example requires the table customers_demo and a nested table column containing
data. Refer to "Multiset Operators " to create this table and nested table column.

SIGN
Syntax

SIGN (n)

Purpose

SIGN returns the sign of n. This function takes as an argument any numeric data type, or any
nonnumeric data type that can be implicitly converted to NUMBER, and returns NUMBER.

For value of NUMBER type, the sign is:

• -1 if n<0

• 0 if n=0

• 1 if n>0

For binary floating-point numbers (BINARY_FLOAT and BINARY_DOUBLE), this function returns
the sign bit of the number. The sign bit is:

• -1 if n<0

• +1 if n>=0 or n=NaN

Examples

The following example indicates that the argument of the function (-15) is <0:

Chapter 7
SIGN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 364 of 521

SELECT SIGN(-15) "Sign" FROM DUAL;

 Sign

 -1

SIN
Syntax

SIN (n)

Purpose

SIN returns the sine of n (an angle expressed in radians).

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the sine of 30 degrees:

SELECT SIN(30 * 3.14159265359/180)
 "Sine of 30 degrees" FROM DUAL;

Sine of 30 degrees

 .5

SINH
Syntax

SINH (n)

Purpose

SINH returns the hyperbolic sine of n.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

Chapter 7
SIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 365 of 521

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the hyperbolic sine of 1:

SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL;

Hyperbolic sine of 1

 1.17520119

SKEWNESS_POP
Syntax

SKEWNESS_POP

DISTINCT

ALL

UNIQUE

(expr)

Purpose

SKEWNESS_POP is an aggregate function that is primarily used to determine symmetry in a given
distribution.

NULL values in expr are ignored.

Returns NULL if all rows in the group have NULL expr values.

Returns 0 if there are one or two rows in expr.

For a given set of values, the result of population skewness (SKEWNESS_POP) and sample
skewness (SKEWNESS_SAMP) are always deterministic. However, the values of SKEWNESS_POP
and SKEWNESS_SAMP differ. As the number of values in the data set increases, the difference
between the computed values of SKEWNESS_SAMP and SKEWNESS_POP decreases.

SKEWNESS_SAMP
Syntax

SKEWNESS_SAMP

DISTINCT

ALL

UNIQUE

(expr)

Purpose

SKEWNESS_SAMP is an aggregate function that is primarily used to determine symmetry in a
given distribution.

Chapter 7
SKEWNESS_POP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 366 of 521

NULL values in expr are ignored.

Returns NULL if all rows in the group have NULL expr values.

Returns 0 if there are one or two rows in expr.

For a given set of values, the result of population skewness (SKEWNESS_POP) and sample
skewness (SKEWNESS_SAMP) are always deterministic. However, the values of SKEWNESS_POP
and SKEWNESS_SAMP differ. As the number of values in the data set increases, the difference
between the computed values of SKEWNESS_SAMP and SKEWNESS_POP decreases.

SOUNDEX
Syntax

SOUNDEX (char)

Purpose

SOUNDEX returns a character string containing the phonetic representation of char. This function
lets you compare words that are spelled differently, but sound alike in English.

The phonetic representation is defined in The Art of Computer Programming, Volume 3:
Sorting and Searching, by Donald E. Knuth, as follows:

1. Retain the first letter of the string and remove all other occurrences of the following letters:
a, e, h, i, o, u, w, y.

2. Assign numbers to the remaining letters (after the first) as follows:

b, f, p, v = 1
c, g, j, k, q, s, x, z = 2
d, t = 3
l = 4
m, n = 5
r = 6

3. If two or more letters with the same number were adjacent in the original name (before
step 1), or adjacent except for any intervening h and w, then retain the first letter and omit
rest of all the adjacent letters with same number.

4. Return the first four bytes padded with 0.

char can be of any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The return value
is the same data type as char.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of SOUNDEX

Chapter 7
SOUNDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 367 of 521

Examples

The following example returns the employees whose last names are a phonetic representation
of "Smyth":

SELECT last_name, first_name
 FROM hr.employees
 WHERE SOUNDEX(last_name)
 = SOUNDEX('SMYTHE')
 ORDER BY last_name, first_name;

LAST_NAME FIRST_NAME
---------- ----------
Smith Lindsey
Smith William

SQRT
Syntax

SQRT (n)

Purpose

SQRT returns the square root of n.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion

• If n resolves to a NUMBER, then the value n cannot be negative. SQRT returns a real number.

• If n resolves to a binary floating-point number (BINARY_FLOAT or BINARY_DOUBLE):

– If n >= 0, then the result is positive.

– If n = -0, then the result is -0.

– If n < 0, then the result is NaN.

Examples

The following example returns the square root of 26:

SELECT SQRT(26) "Square root" FROM DUAL;

Square root

5.09901951

Chapter 7
SQRT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 368 of 521

STANDARD_HASH
Syntax

STANDARD_HASH (expr

, ’ method ’

)

Purpose

STANDARD_HASH computes a hash value for a given expression using one of several hash
algorithms that are defined and standardized by the National Institute of Standards and
Technology. This function is useful for performing authentication and maintaining data integrity
in security applications such as digital signatures, checksums, and fingerprinting.

You can use the STANDARD_HASH function to create an index on an extended data type
column. Refer to "Creating an Index on an Extended Data Type Column" for more information.

• The expr argument determines the data for which you want Oracle Database to compute a
hash value. There are no restrictions on the length of data represented by expr, which
commonly resolves to a column name. The expr cannot be a LONG or LOB type. It cannot
be a user-defined object type. All other data types are supported for expr.

• The optional method argument lets you specify the name of the hash algorithm to be used.
Valid algorithms are SHA1, SHA256, SHA384, SHA512 and MD5. If you omit this argument, then
SHA1 is used.

The function returns a RAW value.

Note

The STANDARD_HASH function is not identical to the one used internally by Oracle
Database for hash partitioning.

STATS_BINOMIAL_TEST
Syntax

STATS_BINOMIAL_TEST (expr1 , expr2 , p

, ’

TWO_SIDED_PROB

EXACT_PROB

ONE_SIDED_PROB_OR_MORE

ONE_SIDED_PROB_OR_LESS

’

)

Chapter 7
STANDARD_HASH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 369 of 521

Purpose

STATS_BINOMIAL_TEST is an exact probability test used for dichotomous variables, where only
two possible values exist. It tests the difference between a sample proportion and a given
proportion. The sample size in such tests is usually small.

This function takes three required arguments: expr1 is the sample being examined, expr2
contains the values for which the proportion is expected to be, and p is a proportion to test
against. The optional fourth argument lets you specify the meaning of the NUMBER value
returned by this function, as shown in Table 7-3. For this argument, you can specify a text
literal, or a bind variable or expression that evaluates to a constant character value. If you omit
the fourth argument, then the default is 'TWO_SIDED_PROB'.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_BINOMIAL_TEST

Table 7-3 STATS_BINOMIAL Return Values

Argument Return Value Meaning

'TWO_SIDED_PROB' The probability that the given population proportion, p, could
result in the observed proportion or a more extreme one.

'EXACT_PROB' The probability that the given population proportion, p, could
result in exactly the observed proportion.

'ONE_SIDED_PROB_OR_MORE' The probability that the given population proportion, p, could
result in the observed proportion or a larger one.

'ONE_SIDED_PROB_OR_LESS' The probability that the given population proportion, p, could
result in the observed proportion or a smaller one.

'EXACT_PROB' gives the probability of getting exactly proportion p. In cases where you want to
test whether the proportion found in the sample is significantly different from a 50-50 split, p
would normally be 0.50. If you want to test only whether the proportion is different, then use the
return value 'TWO_SIDED_PROB'. If your test is whether the proportion is more than the value of
expr2, then use the return value 'ONE_SIDED_PROB_OR_MORE'. If the test is to determine whether
the proportion of expr2 is less, then use the return value 'ONE_SIDED_PROB_OR_LESS'.

STATS_BINOMIAL_TEST Example

The following example determines the probability that reality exactly matches the number of
men observed under the assumption that 69% of the population is composed of men:

SELECT AVG(DECODE(cust_gender, 'M', 1, 0)) real_proportion,
 STATS_BINOMIAL_TEST
 (cust_gender, 'M', 0.68, 'EXACT_PROB') exact,
 STATS_BINOMIAL_TEST
 (cust_gender, 'M', 0.68, 'ONE_SIDED_PROB_OR_LESS') prob_or_less
 FROM sh.customers;

Chapter 7
STATS_BINOMIAL_TEST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 370 of 521

STATS_CROSSTAB
Syntax

STATS_CROSSTAB (expr1 , expr2

, ’

CHISQ_OBS

CHISQ_SIG

CHISQ_DF

PHI_COEFFICIENT

CRAMERS_V

CONT_COEFFICIENT

COHENS_K

’

)

Purpose

Crosstabulation (commonly called crosstab) is a method used to analyze two nominal
variables. The STATS_CROSSTAB function takes two required arguments: expr1 and expr2 are the
two variables being analyzed. The optional third argument lets you specify the meaning of the
NUMBER value returned by this function, as shown in Table 7-4. For this argument, you can
specify a text literal, or a bind variable or expression that evaluates to a constant character
value. If you omit the third argument, then the default is 'CHISQ_SIG'.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_CROSSTAB

Table 7-4 STATS_CROSSTAB Return Values

Argument Return Value Meaning

'CHISQ_OBS' Observed value of chi-squared

'CHISQ_SIG' Significance of observed chi-squared

'CHISQ_DF' Degree of freedom for chi-squared

'PHI_COEFFICIENT' Phi coefficient

'CRAMERS_V' Cramer's V statistic

'CONT_COEFFICIENT' Contingency coefficient

'COHENS_K' Cohen's kappa

STATS_CROSSTAB Example

The following example determines the strength of the association between gender and income
level:

Chapter 7
STATS_CROSSTAB

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 371 of 521

SELECT STATS_CROSSTAB
 (cust_gender, cust_income_level, 'CHISQ_OBS') chi_squared,
 STATS_CROSSTAB
 (cust_gender, cust_income_level, 'CHISQ_SIG') p_value,
 STATS_CROSSTAB
 (cust_gender, cust_income_level, 'PHI_COEFFICIENT') phi_coefficient
 FROM sh.customers;

CHI_SQUARED P_VALUE PHI_COEFFICIENT
----------- ---------- ---------------
 251.690705 1.2364E-47 .067367056

STATS_F_TEST
Syntax

STATS_F_TEST (expr1 , expr2

,

’

STATISTIC

DF_NUM

DF_DEN

ONE_SIDED_SIG

’ , expr3

’ TWO_SIDED_SIG ’

)

Purpose

STATS_F_TEST tests whether two variances are significantly different. The observed value of f is
the ratio of one variance to the other, so values very different from 1 usually indicate significant
differences.

This function takes two required arguments: expr1 is the grouping or independent variable and
expr2 is the sample of values. The optional third argument lets you specify the meaning of the
NUMBER value returned by this function, as shown in Table 7-5. For this argument, you can
specify a text literal, or a bind variable or expression that evaluates to a constant character
value. If you omit the third argument, then the default is 'TWO_SIDED_SIG'.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_F_TEST

Table 7-5 STATS_F_TEST Return Values

Argument Return Value Meaning

'STATISTIC' The observed value of f

'DF_NUM' Degree of freedom for the numerator

'DF_DEN' Degree of freedom for the denominator

'ONE_SIDED_SIG' One-tailed significance of f

Chapter 7
STATS_F_TEST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 372 of 521

Table 7-5 (Cont.) STATS_F_TEST Return Values

Argument Return Value Meaning

'TWO_SIDED_SIG' Two-tailed significance of f

The one-tailed significance is always in relation to the upper tail. The final argument, expr3,
indicates which of the two groups specified by expr1 is the high value or numerator (the value
whose rejection region is the upper tail).

The observed value of f is the ratio of the variance of one group to the variance of the second
group. The significance of the observed value of f is the probability that the variances are
different just by chance—a number between 0 and 1. A small value for the significance
indicates that the variances are significantly different. The degree of freedom for each of the
variances is the number of observations in the sample minus 1.

STATS_F_TEST Example

The following example determines whether the variance in credit limit between men and
women is significantly different. The results, a p_value not close to zero, and an f_statistic
close to 1, indicate that the difference between credit limits for men and women are not
significant.

SELECT VARIANCE(DECODE(cust_gender, 'M', cust_credit_limit, null)) var_men,
 VARIANCE(DECODE(cust_gender, 'F', cust_credit_limit, null)) var_women,
 STATS_F_TEST(cust_gender, cust_credit_limit, 'STATISTIC', 'F') f_statistic,
 STATS_F_TEST(cust_gender, cust_credit_limit) two_sided_p_value
 FROM sh.customers;

 VAR_MEN VAR_WOMEN F_STATISTIC TWO_SIDED_P_VALUE
---------- ---------- ----------- -----------------
12879896.7 13046865 1.01296348 .311928071

STATS_KS_TEST
Syntax

STATS_KS_TEST (expr1 , expr2

, ’
STATISTIC

SIG
’

)

Purpose

STATS_KS_TEST is a Kolmogorov-Smirnov function that compares two samples to test whether
they are from the same population or from populations that have the same distribution. It does
not assume that the population from which the samples were taken is normally distributed.

This function takes two required arguments: expr1 classifies the data into the two samples and
expr2 contains the values for each of the samples. If expr1 classifies the data into only one
sample or into more than two samples, then an error is raised. The optional third argument lets
you specify the meaning of the NUMBER value returned by this function, as shown in Table 7-6.
For this argument, you can specify a text literal, or a bind variable or expression that evaluates
to a constant character value. If you omit the third argument, then the default is 'SIG'.

Chapter 7
STATS_KS_TEST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 373 of 521

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_KS_TEST

Table 7-6 STATS_KS_TEST Return Values

Argument Return Value Meaning

'STATISTIC' Observed value of D

'SIG' Significance of D

STATS_KS_TEST Example

Using the Kolmogorov Smirnov test, the following example determines whether the distribution
of sales between men and women is due to chance:

SELECT stats_ks_test(cust_gender, amount_sold, 'STATISTIC') ks_statistic,
 stats_ks_test(cust_gender, amount_sold) p_value
 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id;

KS_STATISTIC P_VALUE
------------ ----------
 .003841396 .004080006

STATS_MODE
Syntax

STATS_MODE (expr)

Purpose

STATS_MODE takes as its argument a set of values and returns the value that occurs with the
greatest frequency. If more than one mode exists, then Oracle Database chooses one and
returns only that one value.

To obtain multiple modes (if multiple modes exist), you must use a combination of other
functions, as shown in the hypothetical query:

SELECT x FROM (SELECT x, COUNT(x) AS cnt1
 FROM t GROUP BY x)
 WHERE cnt1 =
 (SELECT MAX(cnt2) FROM (SELECT COUNT(x) AS cnt2 FROM t GROUP BY x));

Chapter 7
STATS_MODE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 374 of 521

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation STATS_MODE uses to compare character
values for expr , and for the collation derivation rules, which define the collation
assigned to the return value of this function when it is a character value

Examples

The following example returns the mode of salary per department in the hr.employees table:

SELECT department_id, STATS_MODE(salary) FROM employees
 GROUP BY department_id
 ORDER BY department_id, stats_mode(salary);

DEPARTMENT_ID STATS_MODE(SALARY)
------------- ------------------
 10 4400
 20 6000
 30 2500
 40 6500
 50 2500
 60 4800
 70 10000
 80 9500
 90 17000
 100 6900
 110 8300
 7000

If you need to retrieve all of the modes (in cases with multiple modes), you can do so using a
combination of other functions, as shown in the next example:

SELECT commission_pct FROM
 (SELECT commission_pct, COUNT(commission_pct) AS cnt1 FROM employees
 GROUP BY commission_pct)
 WHERE cnt1 =
 (SELECT MAX (cnt2) FROM
 (SELECT COUNT(commission_pct) AS cnt2
 FROM employees GROUP BY commission_pct))
 ORDER BY commission_pct;

COMMISSION_PCT

 .2
 .3

Chapter 7
STATS_MODE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 375 of 521

STATS_MW_TEST
Syntax

STATS_MW_TEST (expr1 , expr2

,

’ STATISTIC ’

’ U_STATISTIC ’

’ ONE_SIDED_SIG , expr3

’ TWO_SIDED_SIG ’

)

Purpose

A Mann Whitney test compares two independent samples to test the null hypothesis that two
populations have the same distribution function against the alternative hypothesis that the two
distribution functions are different.

The STATS_MW_TEST does not assume that the differences between the samples are normally
distributed, as do the STATS_T_TEST_* functions. This function takes two required arguments:
expr1 classifies the data into groups and expr2 contains the values for each of the groups. The
optional third argument lets you specify the meaning of the NUMBER value returned by this
function, as shown in Table 7-7. For this argument, you can specify a text literal, or a bind
variable or expression that evaluates to a constant character value. If you omit the third
argument, then the default is 'TWO_SIDED_SIG'.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_MW_TEST

Table 7-7 STATS_MW_TEST Return Values

Argument Return Value Meaning

'STATISTIC' The observed value of Z

'U_STATISTIC' The observed value of U

'ONE_SIDED_SIG' One-tailed significance of Z

'TWO_SIDED_SIG' Two-tailed significance of Z

The significance of the observed value of Z or U is the probability that the variances are
different just by chance—a number between 0 and 1. A small value for the significance
indicates that the variances are significantly different. The degree of freedom for each of the
variances is the number of observations in the sample minus 1.

The one-tailed significance is always in relation to the upper tail. The final argument, expr3,
indicates which of the two groups specified by expr1 is the high value (the value whose
rejection region is the upper tail).

Chapter 7
STATS_MW_TEST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 376 of 521

STATS_MW_TEST computes the probability that the samples are from the same distribution by
checking the differences in the sums of the ranks of the values. If the samples come from the
same distribution, then the sums should be close in value.

STATS_MW_TEST Example

Using the Mann Whitney test, the following example determines whether the distribution of
sales between men and women is due to chance:

SELECT STATS_MW_TEST
 (cust_gender, amount_sold, 'STATISTIC') z_statistic,
 STATS_MW_TEST
 (cust_gender, amount_sold, 'ONE_SIDED_SIG', 'F') one_sided_p_value
 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id;

Z_STATISTIC ONE_SIDED_P_VALUE
----------- -----------------
 -1.4011509 .080584471

STATS_ONE_WAY_ANOVA
Syntax

STATS_ONE_WAY_ANOVA (expr1 , expr2

, ’

SUM_SQUARES_BETWEEN

SUM_SQUARES_WITHIN

DF_BETWEEN

DF_WITHIN

MEAN_SQUARES_BETWEEN

MEAN_SQUARES_WITHIN

F_RATIO

SIG

’

)

Purpose

The one-way analysis of variance function (STATS_ONE_WAY_ANOVA) tests differences in means
(for groups or variables) for statistical significance by comparing two different estimates of
variance. One estimate is based on the variances within each group or category. This is known
as the mean squares within or mean square error. The other estimate is based on the
variances among the means of the groups. This is known as the mean squares between. If
the means of the groups are significantly different, then the mean squares between will be
larger than expected and will not match the mean squares within. If the mean squares of the
groups are consistent, then the two variance estimates will be about the same.

STATS_ONE_WAY_ANOVA takes two required arguments: expr1 is an independent or grouping
variable that divides the data into a set of groups and expr2 is a dependent variable (a numeric
expression) containing the values corresponding to each member of a group. The optional third
argument lets you specify the meaning of the NUMBER value returned by this function, as
shown in Table 7-8. For this argument, you can specify a text literal, or a bind variable or
expression that evaluates to a constant character value. If you omit the third argument, then
the default is 'SIG'.

Chapter 7
STATS_ONE_WAY_ANOVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 377 of 521

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_ONE_WAY_ANOVA

Table 7-8 STATS_ONE_WAY_ANOVA Return Values

Argument Return Value Meaning

'SUM_SQUARES_BETEEN' Sum of squares between groups

'SUM_SQUARES_WITHIN' Sum of squares within groups

’DF_BETWEEN' Degree of freedom between groups

'DF_WITHIN' Degree of freedom within groups

'MEAN_SQUARES_BETWEEN' Mean squares between groups

'MEAN_SQUARES_WITHIN' Mean squares within groups

'F_RATIO' Ratio of the mean squares between to the mean squares within (MSB/
MSW)

'SIG' Significance

The significance of one-way analysis of variance is determined by obtaining the one-tailed
significance of an f-test on the ratio of the mean squares between and the mean squares
within. The f-test should use one-tailed significance, because the mean squares between can
be only equal to or larger than the mean squares within. Therefore, the significance returned
by STATS_ONE_WAY_ANOVA is the probability that the differences between the groups happened
by chance—a number between 0 and 1. The smaller the number, the greater the significance
of the difference between the groups. Refer to the STATS_F_TEST for information on
performing an f-test.

STATS_ONE_WAY_ANOVA Example

The following example determines the significance of the differences in mean sales within an
income level and differences in mean sales between income levels. The results, p_values
close to zero, indicate that, for both men and women, the difference in the amount of goods
sold across different income levels is significant.

SELECT cust_gender,
 STATS_ONE_WAY_ANOVA(cust_income_level, amount_sold, 'F_RATIO') f_ratio,
 STATS_ONE_WAY_ANOVA(cust_income_level, amount_sold, 'SIG') p_value
 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id
 GROUP BY cust_gender
 ORDER BY cust_gender;

C F_RATIO P_VALUE
- ---------- ----------
F 5.59536943 4.7840E-09
M 9.2865001 6.7139E-17

STATS_T_TEST_*
The t-test functions are:

Chapter 7
STATS_T_TEST_*

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 378 of 521

• STATS_T_TEST_ONE: A one-sample t-test

• STATS_T_TEST_PAIRED: A two-sample, paired t-test (also known as a crossed t-test)

• STATS_T_TEST_INDEP: A t-test of two independent groups with the same variance (pooled
variances)

• STATS_T_TEST_INDEPU: A t-test of two independent groups with unequal variance (unpooled
variances)

Syntax

stats_t_test::=

STATS_T_TEST_ONE (expr1

, expr2

STATS_T_TEST_PAIRED

STATS_T_TEST_INDEP

STATS_T_TEST_INDEPU

(expr1 , expr2

,

’
STATISTIC

ONE_SIDED_SIG
’ , expr3

’ TWO_SIDED_SIG ’

’ DF ’

)

Purpose

The t-test measures the significance of a difference of means. You can use it to compare the
means of two groups or the means of one group with a constant. Each t-test function takes two
expression arguments, although the second expression is optional for the one-sample function
(STATS_T_TEST_ONE). Each t-test function takes an optional third argument, which lets you
specify the meaning of the NUMBER value returned by the function, as shown in Table 7-9. For
this argument, you can specify a text literal, or a bind variable or expression that evaluates to a
constant character value. If you omit the third argument, then the default is 'TWO_SIDED_SIG'.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the STATS_T_TEST_* functions

Table 7-9 STATS_T_TEST_* Return Values

Argument Return Value Meaning

'STATISTIC' The observed value of t

'DF' Degree of freedom

'ONE_SIDED_SIG' One-tailed significance of t

'TWO_SIDED_SIG' Two-tailed significance of t

The two independent STATS_T_TEST_* functions can take a fourth argument (expr3) if the third
argument is specified as 'STATISTIC' or 'ONE_SIDED_SIG'. In this case, expr3 indicates which value
of expr1 is the high value, or the value whose rejection region is the upper tail.

Chapter 7
STATS_T_TEST_*

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 379 of 521

The significance of the observed value of t is the probability that the value of t would have been
obtained by chance—a number between 0 and 1. The smaller the value, the more significant
the difference between the means. One-sided significance is always respect to the upper tail.
For one-sample and paired t-test, the high value is the first expression. For independent t-test,
the high value is the one specified by expr3.

The degree of freedom depends on the type of t-test that resulted in the observed value of t.
For example, for a one-sample t-test (STATS_T_TEST_ONE), the degree of freedom is the number
of observations in the sample minus 1.

STATS_T_TEST_ONE
In the STATS_T_TEST_ONE function, expr1 is the sample and expr2 is the constant mean against
which the sample mean is compared. For this t-test only, expr2 is optional; the constant mean
defaults to 0. This function obtains the value of t by dividing the difference between the sample
mean and the known mean by the standard error of the mean (rather than the standard error of
the difference of the means, as for STATS_T_TEST_PAIRED).

STATS_T_TEST_ONE Example

The following example determines the significance of the difference between the average list
price and the constant value 60:

SELECT AVG(prod_list_price) group_mean,
 STATS_T_TEST_ONE(prod_list_price, 60, 'STATISTIC') t_observed,
 STATS_T_TEST_ONE(prod_list_price, 60) two_sided_p_value
 FROM sh.products;

GROUP_MEAN T_OBSERVED TWO_SIDED_P_VALUE
---------- ---------- -----------------
139.545556 2.32107746 .023158537

STATS_T_TEST_PAIRED
In the STATS_T_TEST_PAIRED function, expr1 and expr2 are the two samples whose means are
being compared. This function obtains the value of t by dividing the difference between the
sample means by the standard error of the difference of the means (rather than the standard
error of the mean, as for STATS_T_TEST_ONE).

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU
In the STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU functions, expr1 is the grouping column
and expr2 is the sample of values. The pooled variances version (STATS_T_TEST_INDEP) tests
whether the means are the same or different for two distributions that have similar variances.
The unpooled variances version (STATS_T_TEST_INDEPU) tests whether the means are the same
or different even if the two distributions are known to have significantly different variances.

Before using these functions, it is advisable to determine whether the variances of the samples
are significantly different. If they are, then the data may come from distributions with different
shapes, and the difference of the means may not be very useful. You can perform an f-test to
determine the difference of the variances. If they are not significantly different, use
STATS_T_TEST_INDEP. If they are significantly different, use STATS_T_TEST_INDEPU. Refer to
STATS_F_TEST for information on performing an f-test.

Chapter 7
STATS_T_TEST_*

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 380 of 521

STATS_T_TEST_INDEP Example

The following example determines the significance of the difference between the average sales
to men and women where the distributions are assumed to have similar (pooled) variances:

SELECT SUBSTR(cust_income_level, 1, 22) income_level,
 AVG(DECODE(cust_gender, 'M', amount_sold, null)) sold_to_men,
 AVG(DECODE(cust_gender, 'F', amount_sold, null)) sold_to_women,
 STATS_T_TEST_INDEP(cust_gender, amount_sold, 'STATISTIC', 'F') t_observed,
 STATS_T_TEST_INDEP(cust_gender, amount_sold) two_sided_p_value
 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id
 GROUP BY ROLLUP(cust_income_level)
 ORDER BY income_level, sold_to_men, sold_to_women, t_observed;

INCOME_LEVEL SOLD_TO_MEN SOLD_TO_WOMEN T_OBSERVED TWO_SIDED_P_VALUE
---------------------- ----------- ------------- ---------- -----------------
A: Below 30,000 105.28349 99.4281447 -1.9880629 .046811482
B: 30,000 - 49,999 102.59651 109.829642 3.04330875 .002341053
C: 50,000 - 69,999 105.627588 110.127931 2.36148671 .018204221
D: 70,000 - 89,999 106.630299 110.47287 2.28496443 .022316997
E: 90,000 - 109,999 103.396741 101.610416 -1.2544577 .209677823
F: 110,000 - 129,999 106.76476 105.981312 -.60444998 .545545304
G: 130,000 - 149,999 108.877532 107.31377 -.85298245 .393671218
H: 150,000 - 169,999 110.987258 107.152191 -1.9062363 .056622983
I: 170,000 - 189,999 102.808238 107.43556 2.18477851 .028908566
J: 190,000 - 249,999 108.040564 115.343356 2.58313425 .009794516
K: 250,000 - 299,999 112.377993 108.196097 -1.4107871 .158316973
L: 300,000 and above 120.970235 112.216342 -2.0642868 .039003862
 107.121845 113.80441 .686144393 .492670059
 106.663769 107.276386 1.08013499 .280082357
14 rows selected.

STATS_T_TEST_INDEPU Example

The following example determines the significance of the difference between the average sales
to men and women where the distributions are known to have significantly different (unpooled)
variances:

SELECT SUBSTR(cust_income_level, 1, 22) income_level,
 AVG(DECODE(cust_gender, 'M', amount_sold, null)) sold_to_men,
 AVG(DECODE(cust_gender, 'F', amount_sold, null)) sold_to_women,
 STATS_T_TEST_INDEPU(cust_gender, amount_sold, 'STATISTIC', 'F') t_observed,
 STATS_T_TEST_INDEPU(cust_gender, amount_sold) two_sided_p_value
 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id
 GROUP BY ROLLUP(cust_income_level)
 ORDER BY income_level, sold_to_men, sold_to_women, t_observed;

INCOME_LEVEL SOLD_TO_MEN SOLD_TO_WOMEN T_OBSERVED TWO_SIDED_P_VALUE
---------------------- ----------- ------------- ---------- -----------------
A: Below 30,000 105.28349 99.4281447 -2.0542592 .039964704
B: 30,000 - 49,999 102.59651 109.829642 2.96922332 .002987742
C: 50,000 - 69,999 105.627588 110.127931 2.3496854 .018792277
D: 70,000 - 89,999 106.630299 110.47287 2.26839281 .023307831
E: 90,000 - 109,999 103.396741 101.610416 -1.2603509 .207545662
F: 110,000 - 129,999 106.76476 105.981312 -.60580011 .544648553
G: 130,000 - 149,999 108.877532 107.31377 -.85219781 .394107755
H: 150,000 - 169,999 110.987258 107.152191 -1.9451486 .051762624
I: 170,000 - 189,999 102.808238 107.43556 2.14966921 .031587875
J: 190,000 - 249,999 108.040564 115.343356 2.54749867 .010854966

Chapter 7
STATS_T_TEST_*

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 381 of 521

K: 250,000 - 299,999 112.377993 108.196097 -1.4115514 .158091676
L: 300,000 and above 120.970235 112.216342 -2.0726194 .038225611
 107.121845 113.80441 .689462437 .490595765
 106.663769 107.276386 1.07853782 .280794207
14 rows selected.

STATS_WSR_TEST
Syntax

STATS_WSR_TEST (expr1 , expr2

, ’

STATISTIC

ONE_SIDED_SIG

TWO_SIDED_SIG

’

)

Purpose

STATS_WSR_TEST is a Wilcoxon Signed Ranks test of paired samples to determine whether the
median of the differences between the samples is significantly different from zero. The
absolute values of the differences are ordered and assigned ranks. Then the null hypothesis
states that the sum of the ranks of the positive differences is equal to the sum of the ranks of
the negative differences.

This function takes two required arguments: expr1 and expr2 are the two samples being
analyzed. The optional third argument lets you specify the meaning of the NUMBER value
returned by this function, as shown in Table 7-10. For this argument, you can specify a text
literal, or a bind variable or expression that evaluates to a constant character value. If you omit
the third argument, then the default is 'TWO_SIDED_SIG'.

Table 7-10 STATS_WSR_TEST_* Return Values

Argument Return Value Meaning

'STATISTIC' The observed value of Z

'ONE_SIDED_SIG' One-tailed significance of Z

'TWO_SIDED_SIG' Two-tailed significance of Z

One-sided significance is always with respect to the upper tail. The high value (the value
whose rejection region is the upper tail) is expr1.

STDDEV
Syntax

STDDEV (

DISTINCT

ALL

expr)

OVER
window_name

(analytic_clause)

Chapter 7
STATS_WSR_TEST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 382 of 521

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

STDDEV returns the sample standard deviation of expr, a set of numbers. You can use it as both
an aggregate and analytic function. It differs from STDDEV_SAMP in that STDDEV returns zero
when it has only 1 row of input data, whereas STDDEV_SAMP returns null.

Oracle Database calculates the standard deviation as the square root of the variance defined
for the VARIANCE aggregate function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion

If you specify DISTINCT, then you can specify only the query_partition_clause of the analytic_clause.
The order_by_clause and windowing_clause are not allowed.

See Also

• "Aggregate Functions ", VARIANCE , and STDDEV_SAMP

• "About SQL Expressions " for information on valid forms of expr

Aggregate Examples

The following example returns the standard deviation of the salaries in the sample hr.employees
table:

SELECT STDDEV(salary) "Deviation"
 FROM employees;

 Deviation

3909.36575

Analytic Examples

The query in the following example returns the cumulative standard deviation of the salaries in
Department 80 in the sample table hr.employees, ordered by hire_date:

SELECT last_name, salary,
 STDDEV(salary) OVER (ORDER BY hire_date) "StdDev"
 FROM employees
 WHERE department_id = 30
 ORDER BY last_name, salary, "StdDev";

Chapter 7
STDDEV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 383 of 521

LAST_NAME SALARY StdDev
------------------------- ---------- ----------
Baida 2900 4035.26125
Colmenares 2500 3362.58829
Himuro 2600 3649.2465
Khoo 3100 5586.14357
Raphaely 11000 0
Tobias 2800 4650.0896

STDDEV_POP
Syntax

STDDEV_POP (expr)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

STDDEV_POP computes the population standard deviation and returns the square root of the
population variance. You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion

This function is the same as the square root of the VAR_POP function. When VAR_POP returns
null, this function returns null.

See Also

• "Aggregate Functions " and VAR_POP

• "About SQL Expressions " for information on valid forms of expr

Aggregate Example

The following example returns the population and sample standard deviations of the amount of
sales in the sample table sh.sales:

Chapter 7
STDDEV_POP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 384 of 521

SELECT STDDEV_POP(amount_sold) "Pop",
 STDDEV_SAMP(amount_sold) "Samp"
 FROM sales;

 Pop Samp
---------- ----------
896.355151 896.355592

Analytic Example

The following example returns the population standard deviations of salaries in the sample
hr.employees table by department:

SELECT department_id, last_name, salary,
 STDDEV_POP(salary) OVER (PARTITION BY department_id) AS pop_std
 FROM employees
 ORDER BY department_id, last_name, salary, pop_std;

DEPARTMENT_ID LAST_NAME SALARY POP_STD
------------- ------------------------- ---------- ----------
 10 Whalen 4400 0
 20 Fay 6000 3500
 20 Hartstein 13000 3500
 30 Baida 2900 3069.6091
. . .
 100 Urman 7800 1644.18166
 110 Gietz 8300 1850
 110 Higgins 12000 1850
 Grant 7000 0

STDDEV_SAMP
Syntax

STDDEV_SAMP (expr)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

STDDEV_SAMP computes the cumulative sample standard deviation and returns the square root
of the sample variance. You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

Chapter 7
STDDEV_SAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 385 of 521

See Also

Table 2-9 for more information on implicit conversion

This function is same as the square root of the VAR_SAMP function. When VAR_SAMP returns
null, this function returns null.

See Also

• "Aggregate Functions " and VAR_SAMP

• "About SQL Expressions " for information on valid forms of expr

Aggregate Example

Refer to the aggregate example for STDDEV_POP .

Analytic Example

The following example returns the sample standard deviation of salaries in the employees table
by department:

SELECT department_id, last_name, hire_date, salary,
 STDDEV_SAMP(salary) OVER (PARTITION BY department_id
 ORDER BY hire_date
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cum_sdev
 FROM employees
 ORDER BY department_id, last_name, hire_date, salary, cum_sdev;

DEPARTMENT_ID LAST_NAME HIRE_DATE SALARY CUM_SDEV
------------- --------------- --------- ---------- ----------
 10 Whalen 17-SEP-03 4400
 20 Fay 17-AUG-05 6000 4949.74747
 20 Hartstein 17-FEB-04 13000
 30 Baida 24-DEC-05 2900 4035.26125
 30 Colmenares 10-AUG-07 2500 3362.58829
 30 Himuro 15-NOV-06 2600 3649.2465
 30 Khoo 18-MAY-03 3100 5586.14357
 30 Raphaely 07-DEC-02 11000
. . .
 100 Greenberg 17-AUG-02 12008 2126.9772
 100 Popp 07-DEC-07 6900 1804.13155
 100 Sciarra 30-SEP-05 7700 1929.76233
 100 Urman 07-MAR-06 7800 1788.92504
 110 Gietz 07-JUN-02 8300 2621.95194
 110 Higgins 07-JUN-02 12008
 Grant 24-MAY-07 7000

Chapter 7
STDDEV_SAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 386 of 521

SUBSTR
Syntax

substr::=

SUBSTR

SUBSTRB

SUBSTRC

SUBSTR2

SUBSTR4

(char , position

, substring_length

)

Purpose

The SUBSTR functions return a portion of char, beginning at character position, substring_length
characters long. SUBSTR calculates lengths using characters as defined by the input character
set. SUBSTRB uses bytes instead of characters. SUBSTRC uses Unicode complete characters.
SUBSTR2 uses UCS2 code points. SUBSTR4 uses UCS4 code points.

• If position is 0, then it is treated as 1.

• If position is positive, then Oracle Database counts from the beginning of char to find the first
character.

• If position is negative, then Oracle counts backward from the end of char.

• If substring_length is omitted, then Oracle returns all characters to the end of char. If
substring_length is less than 1, then Oracle returns null.

char can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The
exceptions are SUBSTRC, SUBSTR2, and SUBSTR4, which do not allow char to be a CLOB or
NCLOB. Both position and substring_length must be of data type NUMBER, or any data type that can
be implicitly converted to NUMBER, and must resolve to an integer. The return value is the
same data type as char, except that for a CHAR argument a VARCHAR2 value is returned, and for
an NCHAR argument an NVARCHAR2 value is returned. Floating-point numbers passed as
arguments to SUBSTR are automatically converted to integers.

See Also

• For a complete description of character length see Oracle Database Globalization
Support Guide and Oracle Database SecureFiles and Large Objects Developer's
Guide

• Oracle Database Globalization Support Guide for more information about SUBSTR
functions and length semantics in different locales

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of SUBSTR

Chapter 7
SUBSTR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 387 of 521

Examples

The following example returns several specified substrings of "ABCDEFG":

SELECT SUBSTR('ABCDEFG',3,4) "Substring"
 FROM DUAL;

Substring

CDEF

SELECT SUBSTR('ABCDEFG',-5,4) "Substring"
 FROM DUAL;

Substring

CDEF

Assume a double-byte database character set:

SELECT SUBSTRB('ABCDEFG',5,4.2) "Substring with bytes"
 FROM DUAL;

Substring with bytes

CD

SUM
Syntax

SUM (

DISTINCT

ALL

expr)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

SUM returns the sum of values of expr. You can use it as an aggregate or analytic function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

Release 23 adds support for INTERVAL interval data types. However interval data types cannot
be implicitly converted to a numeric data type. If the input is an INTERVAL, the function returns
an INTERVAL with the same units as the input.

Chapter 7
SUM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 388 of 521

See Also

Table 2-9 for more information on implicit conversion

If you specify DISTINCT, then you can specify only the query_partition_clause of the analytic_clause.
The order_by_clause and windowing_clause are not allowed.

See Also

"About SQL Expressions " for information on valid forms of expr and "Aggregate
Functions "

Vector Aggregate Operations

You can use SUM to perform vector addition operations on non-null inputs.

expr must evaluate to VECTOR and must not be BINARY vectors. The returned vector has the
same number of dimensions as the input, and the format is always FLOAT64. For flexible
number of dimensions, all inputs must have the same number of dimensions within each
aggregation group.

NULL vectors are ignored. They are not counted when calculating the average vector. If all
inputs within an aggregation group are NULL, the result is NULL for that group. If a certain
dimension overflows when applying arithmetic operations, an error is raised.

Rules

• DISTINCT syntax is not allowed.

• Only GROUP BY and GROUP BY ROLLUP are supported.

• Analytic functions are not supported for input arguments of type VECTOR.

See Arithmetic Operatorsof the AI Vector Search User's Guide for examples.

Aggregate Example

The following example calculates the sum of all salaries in the sample hr.employees table:

SELECT SUM(salary) "Total"
 FROM employees;

 Total

 691400

Analytic Example

The following example calculates, for each manager in the sample table hr.employees, a
cumulative total of salaries of employees who answer to that manager that are equal to or less
than the current salary. You can see that Raphaely and Cambrault have the same cumulative
total. This is because Raphaely and Cambrault have the identical salaries, so Oracle Database
adds together their salary values and applies the same cumulative total to both rows.

SELECT manager_id, last_name, salary,
 SUM(salary) OVER (PARTITION BY manager_id ORDER BY salary

Chapter 7
SUM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 389 of 521

 RANGE UNBOUNDED PRECEDING) l_csum
 FROM employees
 ORDER BY manager_id, last_name, salary, l_csum;

MANAGER_ID LAST_NAME SALARY L_CSUM
---------- ------------------------- ---------- ----------
 100 Cambrault 11000 68900
 100 De Haan 17000 155400
 100 Errazuriz 12000 80900
 100 Fripp 8200 36400
 100 Hartstein 13000 93900
 100 Kaufling 7900 20200
 100 Kochhar 17000 155400
 100 Mourgos 5800 5800
 100 Partners 13500 107400
 100 Raphaely 11000 68900
 100 Russell 14000 121400
. . .
 149 Hutton 8800 39000
 149 Johnson 6200 6200
 149 Livingston 8400 21600
 149 Taylor 8600 30200
 201 Fay 6000 6000
 205 Gietz 8300 8300
 King 24000 24000

SYS_CONNECT_BY_PATH
Syntax

SYS_CONNECT_BY_PATH (column , char)

Purpose

SYS_CONNECT_BY_PATH is valid only in hierarchical queries. It returns the path of a column
value from root to node, with column values separated by char for each row returned by
CONNECT BY condition.

Both column and char can be any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The
string returned is of VARCHAR2 data type and is in the same character set as column.

See Also

• "Hierarchical Queries " for more information about hierarchical queries and
CONNECT BY conditions

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of SYS_CONNECT_BY_PATH

Examples

The following example returns the path of employee names from employee Kochhar to all
employees of Kochhar (and their employees):

Chapter 7
SYS_CONNECT_BY_PATH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 390 of 521

SELECT LPAD(' ', 2*level-1)||SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 START WITH last_name = 'Kochhar'
 CONNECT BY PRIOR employee_id = manager_id;

Path

 /Kochhar/Greenberg/Chen
 /Kochhar/Greenberg/Faviet
 /Kochhar/Greenberg/Popp
 /Kochhar/Greenberg/Sciarra
 /Kochhar/Greenberg/Urman
 /Kochhar/Higgins/Gietz
 /Kochhar/Baer
 /Kochhar/Greenberg
 /Kochhar/Higgins
 /Kochhar/Mavris
 /Kochhar/Whalen
 /Kochhar

SYS_CONTEXT
Syntax

SYS_CONTEXT (’ namespace ’ , ’ parameter ’

, length

)

Purpose

SYS_CONTEXT returns the value of parameter associated with the context namespace at the current
instant. You can use this function in both SQL and PL/SQL statements. SYS_CONTEXT must be
executed locally.

For namespace and parameter, you can specify either a string or an expression that resolves to a
string designating a namespace or an attribute. If you specify literal arguments for namespace
and parameter, and you are using SYS_CONTEXT explicitly in a SQL statement—rather than in a
PL/SQL function that in turn is in mentioned in a SQL statement—then Oracle Database
evaluates SYS_CONTEXT only once per SQL statement execution for each call site that invokes
the SYS_CONTEXT function.

The context namespace must already have been created, and the associated parameter and its
value must also have been set using the DBMS_SESSION.set_context procedure. The namespace
must be a valid identifier. The parameter name can be any string. It is not case sensitive, but it
cannot exceed 30 bytes in length.

The data type of the return value is VARCHAR2. The default maximum size of the return value is
256 bytes. You can override this default by specifying the optional length parameter, which must
be a NUMBER or a value that can be implicitly converted to NUMBER. The valid range of values
is 1 to 4000 bytes. If you specify an invalid value, then Oracle Database ignores it and uses the
default.

Oracle provides the following built-in namespaces:

• USERENV - Describes the current session. The predefined parameters of namespace
USERENV are listed in Table 7-11.

Chapter 7
SYS_CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 391 of 521

• SYS_SESSION_ROLES - Indicates whether a specified role is currently enabled for the
session. Oracle Database evaluates the SYS_SESSION_ROLES context for the current user,
and assumes the defining user's role when it evaluates SYS_SESSION_ROLES within a
definer's rights procedure or function. An alternative to using SYS_SESSION_ROLES to find the
login user's enabled roles in a definer’s rights procedure is to use the
DBMS_SESSION:SESSION_IS_ROLE_ENABLED function. Invoker's rights, procedures or
functions, and/or code based access control (CBAC) are also alternatives.

See Also

• Using Code Based Access Control for Definer's Rights and Invoker's Rights

• Oracle Database Security Guide for information on using the application context
feature in your application development

• CREATE CONTEXT for information on creating user-defined context namespaces

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_SESSION.set_context procedure

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of SYS_CONTEXT

Examples

The following statement returns the name of the user who logged onto the database:

CONNECT OE
Enter password: password

SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER')
 FROM DUAL;

SYS_CONTEXT ('USERENV', 'SESSION_USER')

OE

The following example queries the SESSION_ROLES data dictionary view to show that RESOURCE
is the only role currently enabled for the session. It then uses the SYS_CONTEXT function to
show that the RESOURCE role is currently enabled for the session and the DBA role is not.

CONNECT OE
Enter password: password

SELECT role FROM session_roles;

ROLE

RESOURCE

SELECT SYS_CONTEXT('SYS_SESSION_ROLES', 'RESOURCE')
 FROM DUAL

SYS_CONTEXT('SYS_SESSION_ROLES','RESOURCE')

TRUE

SELECT SYS_CONTEXT('SYS_SESSION_ROLES', 'DBA')

Chapter 7
SYS_CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 392 of 521

 FROM DUAL;

SYS_CONTEXT('SYS_SESSION_ROLES','DBA')

FALSE

Note

For simplicity in demonstrating this feature, these examples do not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide for
password management guidelines and other security recommendations.

The following hypothetical example returns the group number that was set as the value for the
attribute group_no in the PL/SQL package that was associated with the context hr_apps when
hr_apps was created:

SELECT SYS_CONTEXT ('hr_apps', 'group_no') "User Group"
 FROM DUAL;

Starting with Oracle Database 23ai, users authenticating to the database using the legacy
RADIUS API are not granted administrative privileges such as SYSDBA or SYSBACKUP.

In Oracle Database 23ai Oracle introduces a new RADIUS API that uses the latest standards
to grant administrative privileges to users.

You must ensure that the database connection to the database uses the new RADIUS API and
that you are using the Oracle Database 23ai client to connect to the Oracle Database 23ai
server.

Table 7-11 Predefined Parameters of Namespace USERENV

Parameter Return Value

ACTION Identifies the position in the module (application name) and is set through the
DBMS_APPLICATION_INFO package or OCI.

AUDITED_CURSORID Returns the cursor ID of the SQL that triggered the audit. This parameter is not valid in a
fine-grained auditing environment. If you specify it in such an environment, then Oracle
Database always returns null.

Chapter 7
SYS_CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 393 of 521

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

AUTHENTICATED_IDENTITY Returns the identity used in authentication. In the list that follows, the type of user is
followed by the value returned:

• Kerberos-authenticated enterprise user: kerberos principal name
• Kerberos-authenticated external user : kerberos principal name; same as the

schema name
• SSL-authenticated enterprise user: the DN in the user's PKI certificate
• SSL-authenticated external user: the DN in the user's PKI certificate
• Password-authenticated enterprise user: nickname; same as the login name
• Password-authenticated database user: the database username; same as the

schema name
• OS-authenticated external user: the external operating system user name
• Radius-authenticated external user: the schema name
• Proxy with DN : Oracle Internet Directory DN of the client
• Proxy with certificate: certificate DN of the client
• For single session proxy or dual session proxy without client authentication:

database user name if proxy is a local database user; nickname if proxy is an
enterprise user.

For dual session proxy with client authentication: database user name if client is a
local database user; nickname if client is an enterprise user.

• SYSDBA/SYSOPER using Password File: login name
• SYSDBA/SYSOPER using OS authentication: operating system user name

AUTHENTICATION_DATA Data being used to authenticate the login user. For X.503 certificate authenticated
sessions, this field returns the context of the certificate in HEX2 format.

Note: You can change the return value of the AUTHENTICATION_DATA attribute using
the length parameter of the syntax. Values of up to 4000 are accepted. This is the only
attribute of USERENV for which Oracle Database implements such a change.

Chapter 7
SYS_CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 394 of 521

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

AUTHENTICATION_METHOD Returns the method of authentication. In the list that follows, the type of user is followed
by the method returned:

• Password-authenticated enterprise user, local database user, or user with the
SYSDBA or SYSOPER administrative privilege using a password file; proxy with
username using password: PASSWORD

• Password-authenticated enterprise user, local database user, or user with the
SYSDBA or SYSOPER administrative privilege using a password file; proxy with
username using password: PASSWORD_GLOBAL

• Kerberos-authenticated enterprise user or external user (with no administrative
privileges): KERBEROS

• Kerberos-authenticated enterprise user (with administrative privileges):
KERBEROS_GLOBAL

• Kerberos-authenticated external user (with administrative privileges):
KERBEROS_EXTERNAL

• SSL-authenticated enterprise or external user (with no administrative privileges):
SSL

• SSL-authenticated enterprise user (with administrative privileges): SSL_GLOBAL
• SSL-authenticated external user (with administrative privileges): SSL_EXTERNAL
• Radius-authenticated external user: RADIUS
• OS-authenticated external user or use with the SYSDBA or SYSOPER administrative

privilege: OS
• Proxy authentication: AUTHENTICATION_METHOD used during authentication of

PROXY USER with "_PROXY" added at end. For example, if a proxy user uses
PASSWORD to connect to the database, then the AUTHENTICATION_METHOD will
be PASSWORD_PROXY.

In the case of dual session proxy without client authentication:
PROXYUSER_AUTHENTICATED_PROXY

• Background process (job queue slave process): JOB
• Parallel Query Slave process: PQ_SLAVE
For non-administrative connections, you can use IDENTIFICATION_TYPE to distinguish
between external and enterprise users when the authentication method is PASSWORD,
KERBEROS, or SSL. For administrative connections, AUTHENTICATION_METHOD is
sufficient for the PASSWORD, SSL_EXTERNAL, and SSL_GLOBAL authentication
methods.

BG_JOB_ID Job ID of the current session if it was established by an Oracle Database background
process. Null if the session was not established by a background process.

CDB_DOMAIN CDB_DOMAIN is the DB_DOMAIN of the CDB and is the same for all the PDBs
associated with it.

CDB_NAME If queried while connected to a multitenant container database (CDB), returns the name
of the CDB. Otherwise, returns null.

CLIENT_IDENTIFIER Returns an identifier that is set by the application through the
DBMS_SESSION.SET_IDENTIFIER procedure, the OCI attribute
OCI_ATTR_CLIENT_IDENTIFIER, or Oracle Dynamic Monitoring Service (DMS). This
attribute is used by various database components to identify lightweight application
users who authenticate as the same database user.

CLIENT_INFO Returns up to 64 bytes of user session information that can be stored by an application
using the DBMS_APPLICATION_INFO package.

CLIENT_PROGRAM_NAME The name of the program used for the database session.

Chapter 7
SYS_CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 395 of 521

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

CLOUD_MIGRATION_MODE The session parameter to specify ON when CLOUD_MIGRATION_MODE is TRUE, else
OFF.

CLOUD_SERVICE Only valid for cloud implementations.

Returns DWCS on autonomous database management systems (ADW), OLTP on
autonomous transaction processing systems (ATP), and JDCS on autonomous JSON
database systems.

CON_ID Returns the current container ID that the session is connected to.

CON_NAME Returns the current container name that the session is connected to.

CURRENT_BIND The bind variables for fine-grained auditing. You can specify this attribute only inside the
event handler for the fine-grained auditing feature.

CURRENT_EDITION_ID The identifier of the current edition.

CURRENT_EDITION_NAME The name of the current edition.

CURRENT_SCHEMA The name of the currently active default schema. This value may change during the
duration of a session through use of an ALTER SESSION SET CURRENT_SCHEMA
statement. This may also change during the duration of a session to reflect the owner of
any active definer's rights object. When used directly in the body of a view definition, this
returns the default schema used when executing the cursor that is using the view; it does
not respect views used in the cursor as being definer's rights.

Note: Oracle recommends against issuing the SQL statement ALTER SESSION SET
CURRENT_SCHEMA from within all types of stored PL/SQL units except logon triggers.

CURRENT_SCHEMAID Identifier of the currently active default schema.

CURRENT_SQL

CURRENT_SQLn

CURRENT_SQL returns the first 4K bytes of the current SQL that triggered the fine-
grained auditing event. The CURRENT_SQLn attributes return subsequent 4K-byte
increments, where n can be an integer from 1 to 7, inclusive. CURRENT_SQL1 returns
bytes 4K to 8K; CURRENT_SQL2 returns bytes 8K to 12K, and so forth. You can specify
these attributes only inside the event handler for the fine-grained auditing feature.

CURRENT_SQL_LENGTH The length of the current SQL statement that triggers fine-grained audit or row-level
security (RLS) policy functions or event handlers. You can specify this attribute only
inside the event handler for the fine-grained auditing feature.

CURRENT_USER The name of the database user whose privileges are currently active. This may change
during the duration of a database session as Real Application Security sessions are
attached or detached, or to reflect the owner of any active definer's rights object. When
no definer's rights object is active, CURRENT_USER returns the same value as
SESSION_USER. When used directly in the body of a view definition, this returns the user
that is executing the cursor that is using the view; it does not respect views used in the
cursor as being definer's rights. For enterprise users, returns schema. If a Real
Application Security user is currently active, returns user XS$NULL.

CURRENT_USERID The identifier of the database user whose privileges are currently active.

DATABASE_ROLE The database role using the SYS_CONTEXT function with the USERENV namespace.

The role is one of the following: PRIMARY, PHYSICAL STANDBY, LOGICAL STANDBY,
SNAPSHOT STANDBY, TRUE CACHE .

DB_DOMAIN Domain of the database as specified in the DB_DOMAIN initialization parameter.

DB_NAME Name of the database as specified in the DB_NAME initialization parameter.

Chapter 7
SYS_CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 396 of 521

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

DB_SUPPLEMENTAL_LOG_LEVE
L

If supplemental logging is enabled, returns a string containing the list of enabled
supplemental logging levels. Possible values are: ALL_COLUMN, FOREIGN_KEY,
MINIMAL, PRIMARY_KEY, PROCEDURAL, and UNIQUE_INDEX. If supplemental logging
is not enabled, returns null.

DB_UNIQUE_NAME Name of the database as specified in the DB_UNIQUE_NAME initialization parameter.

DBLINK_INFO Returns the source of a database link session. Specifically, it returns a string of the form:

SOURCE_GLOBAL_NAME=dblink_src_global_name, DBLINK_NAME=dblink_name,
SOURCE_AUDIT_SESSIONID=dblink_src_audit_sessionid

For a multitenant database, it returns the string above with an additional field
SOURCE_DB_NAME :

SOURCE_GLOBAL_NAME=dblink_src_global_name, SOURCE_DB_NAME=source_database_name,
DBLINK_NAME=dblink_name, SOURCE_AUDIT_SESSIONID=dblink_src_audit_sessionid

where:

• dblink_src_global_name is the unique global name of the source database
• dblink_name is the name of the database link on the source database
• dblink_src_audit_sessionid is the audit session ID of the session on the source

database that initiated the connection to the remote database using dblink_name
• SOURCE_DB_NAME is the database identifier of the source database

DRAIN_STATUS Displays the draining status for the current session. Returns DRAINING if the session is
a candidate for drain else returns NONE.

ENTRYID The current audit entry number. The audit entryid sequence is shared between fine-
grained audit records and regular audit records. You cannot use this attribute in
distributed SQL statements. The correct auditing entry identifier can be seen only
through an audit handler for standard or fine-grained audit.

ENTERPRISE_IDENTITY Returns the user's enterprise-wide identity:

• For enterprise users: the Oracle Internet Directory DN.
• For external users: the external identity (Kerberos principal name, Radius schema

names, OS user name, Certificate DN).
• For local users and SYSDBA/SYSOPER logins: NULL.
The value of the attribute differs by proxy method:

• For a proxy with DN: the Oracle Internet Directory DN of the client
• For a proxy with certificate: the certificate DN of the client for external users; the

Oracle Internet Directory DN for global users
• For a proxy with username: the Oracle Internet Directory DN if the client is an

enterprise users; Null if the client is a local database user.

FG_JOB_ID If queried from within a job that was created using the DBMS_JOB package: Returns the
job ID of the current session if it was established by a client foreground process. Null if
the session was not established by a foreground process.

Otherwise: Returns 0.

GLOBAL_CONTEXT_MEMORY Returns the number being used in the System Global Area by the globally accessed
context.

GLOBAL_UID Returns the global user ID (GUID) from Active Directory for Centrally Managed Users
(CMU) logins, or from Oracle Internet Directory for Enterprise User Security (EUS)
logins. Returns null for all other logins.

HOST Name of the host machine from which the client has connected.

Chapter 7
SYS_CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 397 of 521

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

IDENTIFICATION_TYPE Returns the way the user's schema was created in the database. Specifically, it reflects
the IDENTIFIED clause in the CREATE/ALTER USER syntax. In the list that follows, the
syntax used during schema creation is followed by the identification type returned:

• IDENTIFIED BY password: LOCAL
• IDENTIFIED EXTERNALLY: EXTERNAL
• IDENTIFIED GLOBALLY: GLOBAL SHARED
• IDENTIFIED GLOBALLY AS DN: GLOBAL PRIVATE
• GLOBAL EXCLUSIVE for exclusive global user mapping.
• GLOBAL SHARED for shared user mapping.
• NONE when the schema is created with no authentication.

INSTANCE The instance identification number of the current instance.

INSTANCE_NAME The name of the instance.

IP_ADDRESS IP address of the machine from which the client is connected. If the client and server are
on the same machine and the connection uses IPv6 addressing, then ::1 is returned.

IS_APPLY_SERVER Returns TRUE if queried from within a SQL Apply server in a logical standby database.
Otherwise, returns FALSE.

IS_DG_ROLLING_UPGRADE Returns TRUE if a rolling upgrade of the database software in a Data Guard
configuration, initiated by way of the DBMS_ROLLING package, is active. Otherwise,
returns FALSE.

ISDBA Returns TRUE if the user has been authenticated as having DBA privileges either
through the operating system or through a password file.

LANG The abbreviated name for the language, a shorter form than the existing 'LANGUAGE'
parameter.

LANGUAGE The language and territory currently used by your session, along with the database
character set, in this form:

language_territory.characterset

LDAP_SERVER_TYPE Returns the configured LDAP server type, one of OID, AD(Active Directory), OID_G,
OPENLDAP.

MODULE The application name (module) set through the DBMS_APPLICATION_INFO package or
OCI.

MULTIFACTOR_AUTHENTICATIO
N_METHODS

Returns the methods of authentication used as additional factors. It can have the
following values:

• CERT_AUTH: If certificate-based authentication is configured.
• OMA_PUSH: If Oracle Mobile Authenticator is configured.
• NULL: If multi-factor authentication is not configured.

NETWORK_PROTOCOL Network protocol being used for communication, as specified in the 'PROTOCOL=protocol'
portion of the connect string.

NLS_CALENDAR The current calendar of the current session.

NLS_CURRENCY The currency of the current session.

NLS_DATE_FORMAT The date format for the session.

NLS_DATE_LANGUAGE The language used for expressing dates.

NLS_SORT BINARY or the linguistic sort basis.

NLS_TERRITORY The territory of the current session.

Chapter 7
SYS_CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 398 of 521

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

ORACLE_HOME The full path name for the Oracle home directory.

OS_USER Operating system user name of the client process that initiated the database session.

PID Oracle process ID.

PLATFORM_SLASH The slash character that is used as the file path delimiter for your platform.

POLICY_INVOKER The invoker of row-level security (RLS) policy functions.

PROXY_ENTERPRISE_IDENTITY Returns the Oracle Internet Directory DN when the proxy user is an enterprise user.

PROXY_USER Name of the database user who opened the current session on behalf of
SESSION_USER.

PROXY_USERID Identifier of the database user who opened the current session on behalf of
SESSION_USER.

RESET_STATE RESET_STATE can be set using DBMS_APP_CONT_ADMIN.ENABLE_RESET_STATE()
procedure call and is related to Application Continuity.

SCHEDULER_JOB Returns Y if the current session belongs to a foreground job or background job.
Otherwise, returns N.

SERVER_HOST The host name of the machine on which the instance is running.

SERVICE_NAME The name of the service to which a given session is connected.

SESSION_DEFAULT_COLLATION The default collation for the session, which is set by the ALTER SESSION SET
DEFAULT_COLLATION ... statement.

SESSION_EDITION_ID The identifier of the session edition.

SESSION_EDITION_NAME The name of the session edition.

SESSION_USER The name of the session user (the user who logged on). This may change during the
duration of a database session as Real Application Security sessions are attached or
detached. If a Real Application Security session is currently attached to the database
session, returns user XS$NULL.

SESSION_USERID The identifier of the session user (the user who logged on).

SESSIONID The auditing session identifier. You cannot use this attribute in distributed SQL
statements.

SID The session ID.

STANDBY_MAX_DATA_DELAY The session parameter to specify allowed time limit to elapse between when changes
are committed on primary database and when those changes can be queried on the
standby database. If not set, returns null.

STATEMENTID The auditing statement identifier. STATEMENTID represents the number of SQL
statements audited in a given session. You cannot use this attribute in distributed SQL
statements. The correct auditing statement identifier can be seen only through an audit
handler for standard or fine-grained audit.

TERMINAL The operating system identifier for the client of the current session. In distributed SQL
statements, this attribute returns the identifier for your local session. In a distributed
environment, this is supported only for remote SELECT statements, not for remote
INSERT, UPDATE, or DELETE operations. (The return length of this parameter may vary
by operating system.)

TLS_CIPHERSUITE Used to retrieve the ciphersuite negotiated during the TLS.

Valid ciphersuite values can be found in the TLS chapter of the Database Security
Guide.

Chapter 7
SYS_CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 399 of 521

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

TLS_VERSION Used to retrieve the TLS version negotiated during the TLS session.

UNIFIED_AUDIT_SESSIONID If queried while connected to a database that uses unified auditing or mixed mode
auditing, returns the unified audit session ID.

If queried while connected to a database that uses traditional auditing, returns null.

SYS_DBURIGEN
Syntax

SYS_DBURIGEN (
column

attribute

rowid

,

, ’ text () ’

)

Purpose

SYS_DBURIGen takes as its argument one or more columns or attributes, and optionally a rowid,
and generates a URL of data type DBURIType to a particular column or row object. You can then
use the URL to retrieve an XML document from the database.

All columns or attributes referenced must reside in the same table. They must perform the
function of a primary key. They need not actually match the primary key of the table, but they
must reference a unique value. If you specify multiple columns, then all but the final column
identify the row in the database, and the last column specified identifies the column within the
row.

By default the URL points to a formatted XML document. If you want the URL to point only to
the text of the document, then specify the optional 'text()'.

Note

In this XML context, the lowercase text is a keyword, not a syntactic placeholder.

If the table or view containing the columns or attributes does not have a schema specified in
the context of the query, then Oracle Database interprets the table or view name as a public
synonym.

See Also

Oracle XML DB Developer's Guide for information on the DBURIType data type and
XML documents in the database

Chapter 7
SYS_DBURIGEN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 400 of 521

Examples

The following example uses the SYS_DBURIGen function to generate a URL of data type
DBURIType to the email column of the row in the sample table hr.employees where the employee_id =
206:

SELECT SYS_DBURIGEN(employee_id, email)
 FROM employees
 WHERE employee_id = 206;

SYS_DBURIGEN(EMPLOYEE_ID,EMAIL)(URL, SPARE)
--
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID=''206'']/EMAIL', NULL)

SYS_EXTRACT_UTC
Syntax

SYS_EXTRACT_UTC (datetime_with_timezone)

Purpose

SYS_EXTRACT_UTC extracts the UTC (Coordinated Universal Time—formerly Greenwich Mean
Time) from a datetime value with time zone offset or time zone region name. If a time zone is
not specified, then the datetime is associated with the session time zone.

Examples

The following example extracts the UTC from a specified datetime:

SELECT SYS_EXTRACT_UTC(TIMESTAMP '2000-03-28 11:30:00.00 -08:00')
 FROM DUAL;

SYS_EXTRACT_UTC(TIMESTAMP'2000-03-2811:30:00.00-08:00')

28-MAR-00 07.30.00 PM

SYS_GUID
Syntax

SYS_GUID ()

Purpose

SYS_GUID generates and returns a globally unique identifier (RAW value) made up of 16 bytes.
On most platforms, the generated identifier consists of a host identifier, a process or thread
identifier of the process or thread invoking the function, and a nonrepeating value (sequence of
bytes) for that process or thread.

Chapter 7
SYS_EXTRACT_UTC

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 401 of 521

Examples

The following example adds a column to the sample table hr.locations, inserts unique identifiers
into each row, and returns the 32-character hexadecimal representation of the 16-byte RAW
value of the global unique identifier:

ALTER TABLE locations ADD (uid_col RAW(16));

UPDATE locations SET uid_col = SYS_GUID();

SELECT location_id, uid_col FROM locations
 ORDER BY location_id, uid_col;

LOCATION_ID UID_COL
----------- --
 1000 09F686761827CF8AE040578CB20B7491
 1100 09F686761828CF8AE040578CB20B7491
 1200 09F686761829CF8AE040578CB20B7491
 1300 09F68676182ACF8AE040578CB20B7491
 1400 09F68676182BCF8AE040578CB20B7491
 1500 09F68676182CCF8AE040578CB20B7491
. . .

SYS_OP_ZONE_ID
Syntax

SYS_OP_ZONE_ID (

schema .

table .

t_alias .

rowid

, scale

)

Purpose

SYS_OP_ZONE_ID takes as its argument a rowid and returns a zone ID. The rowid identifies a
row in a table. The zone ID identifies the set of contiguous disk blocks, called the zone, that
contains the row. The function returns a NUMBER value.

The SYS_OP_ZONE_ID function is used when creating a zone map with the CREATE
MATERIALIZED ZONEMAP statement. You must specify SYS_OP_ZONE_ID in the SELECT and
GROUP BY clauses of the defining subquery of the zone map.

For rowid, specify the ROWID pseudocolumn of the fact table of the zone map.

Use schema and table to specify the schema and name of the fact table, or t_alias to specify the
table alias for the fact table. The specification of these parameters depends on the FROM
clause in the defining subquery of the zone map:

• If the FROM clause specifies a table alias for the fact table, then you must also specify the
table alias (t_alias) in SYS_OP_ZONE_ID.

• If the FROM clause does not specify a table alias for the fact table, then use table to specify
the name of the fact table. You can use the schema qualifier if the fact table is in a schema
other than your own. If you omit schema, then the database assumes the fact table is in your
own schema. If the FROM clause specifies only one table (the fact table) then you need not
specify schema or table.

Chapter 7
SYS_OP_ZONE_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 402 of 521

The optional scale parameter represents the scale of the zone map. It is not necessary to
specify this parameter because, by default, SYS_OP_ZONE_ID uses the scale of the zone map
being created. If you do specify scale, then it must match the scale of the zone map being
created. Refer to the SCALE clause of CREATE MATERIALIZED ZONEMAP for information on
specifying the scale of a zone map.

See Also

CREATE MATERIALIZED ZONEMAP for more information on creating zone maps

Examples

The following example uses the SYS_OP_ZONE_ID function when creating a basic zone map that
tracks the column time_id of the fact table sales. The scale of the zone map is the default value of
10. Therefore, the SYS_OP_ZONE_ID function will default to a scale value of 10.

CREATE MATERIALIZED ZONEMAP sales_zmap
AS
 SELECT SYS_OP_ZONE_ID(rowid), MIN(time_id), MAX(time_id)
 FROM sales
 GROUP BY SYS_OP_ZONE_ID(rowid);

The following example is similar to the previous example, except that the scale of the zone
map being created is specified as 8. Therefore, the SYS_OP_ZONE_ID function will default to a
scale value of 8.

CREATE MATERIALIZED ZONEMAP sales_zmap
SCALE 8
AS
 SELECT SYS_OP_ZONE_ID(rowid), MIN(time_id), MAX(time_id)
 FROM sales
 GROUP BY SYS_OP_ZONE_ID(rowid);

The following example returns an error because the scale of the zone map being created is
specified as 8, which does not match the scale argument of 12 specified in the SYS_OP_ZONE_ID
function.

CREATE MATERIALIZED ZONEMAP sales_zmap
SCALE 8
AS
 SELECT SYS_OP_ZONE_ID(rowid,12), MIN(time_id), MAX(time_id)
 FROM sales
 GROUP BY SYS_OP_ZONE_ID(rowid,12);

The following example creates a join zone map. The fact table is sales and the dimension tables
are products and customers. Because the table alias s is specified for the fact table in the FROM
clause, the table alias s is also specified in the SYS_OP_ZONE_ID function.

CREATE MATERIALIZED ZONEMAP sales_zmap
AS
 SELECT SYS_OP_ZONE_ID(s.rowid),
 MIN(prod_category), MAX(prod_category),
 MIN(country_id), MAX(country_id)
 FROM sales s, products p, customers c
 WHERE s.prod_id = p.prod_id(+) AND
 s.cust_id = c.cust_id(+)
 GROUP BY SYS_OP_ZONE_ID(s.rowid);

Chapter 7
SYS_OP_ZONE_ID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 403 of 521

SYS_ROW_ETAG
Syntax

SYS_ROW_ETAG (

schema_name .

table_name .

column_name

,

)

Purpose

You can use ETAGs with table data, for lock-free row updates using SQL. To do that, use
function SYS_ROW_ETAG, to obtain the current state of a given set of columns in a table row as
an ETAG hash value. Function SYS_ROW_ETAG calculates an etag (128 bits hash value) for a row
using the values of a set of columns in the row that you want the etag to be computed on. You
can pass the function the names of the columns in any order.

Function SYS_ROW_ETAG calculates the ETAG value for a row using only the values of those
columns in the row: you pass it the names of all columns that you want to be sure no other
session tries to update concurrently. This includes the columns that the current session intends
to update, but also any other columns on whose value that updating operation logically
depends for your application. (The order in which you pass the columns to SYS_ROW_ETAG as
arguments is irrelevant.)

Example

The example below creates table foo with columns c1, c2, and c3 of type NUMBER, and inserts
values into the table. It then passes columns c2 and c1 to SYS_ROW_ETAG to get the etag for c2
and c1:

CREATE TABLE foo (c1 NUMBER, c2 NUMBER, c3 NUMBER);

Table created.

INSERT INTO foo VALUES (1, 2, 3);

1 row created.

SELECT SYS_ROW_ETAG(c2, c1) FROM foo;

SYS_ROW_ETAG(C2,C1)

3B978191AD0C828DA0E6A53EDF0B278A

See Also

Example 4.18 in the JSON-Relational Duality Developer's Guide Using Function
SYS_ROW_ETAG To Optimistically Control Concurrent Table Updates

Chapter 7
SYS_ROW_ETAG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 404 of 521

SYS_TYPEID
Syntax

SYS_TYPEID (object_type_value)

Purpose

SYS_TYPEID returns the typeid of the most specific type of the operand. This value is used
primarily to identify the type-discriminant column underlying a substitutable column. For
example, you can use the value returned by SYS_TYPEID to build an index on the type-
discriminant column.

You can use this function only on object type operands. All final root object types—final types
not belonging to a type hierarchy—have a null typeid. Oracle Database assigns to all types
belonging to a type hierarchy a unique non-null typeid.

See Also

Oracle Database Object-Relational Developer's Guide for more information on typeids

Examples

The following examples use the tables persons and books, which are created in "Substitutable
Table and Column Examples". The first query returns the most specific types of the object
instances stored in the persons table.

SELECT name, SYS_TYPEID(VALUE(p)) "Type_id" FROM persons p;

NAME Type_id
------------------------- --------------------------------
Bob 01
Joe 02
Tim 03

The next query returns the most specific types of authors stored in the table books:

SELECT b.title, b.author.name, SYS_TYPEID(author)
 "Type_ID" FROM books b;

TITLE AUTHOR.NAME Type_ID
------------------------- -------------------- -------------------
An Autobiography Bob 01
Business Rules Joe 02
Mixing School and Work Tim 03

You can use the SYS_TYPEID function to create an index on the type-discriminant column of a
table. For an example, see "Indexing on Substitutable Columns: Examples".

Chapter 7
SYS_TYPEID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 405 of 521

SYS_XMLAGG
Syntax

SYS_XMLAGG (expr

, fmt

)

Purpose

SYS_XMLAgg aggregates all of the XML documents or fragments represented by expr and
produces a single XML document. It adds a new enclosing element with a default name
ROWSET. If you want to format the XML document differently, then specify fmt, which is an
instance of the XMLFormat object.

See Also

SYS_XMLGEN and "XML Format Model " for using the attributes of the XMLFormat type
to format SYS_XMLAgg results

Examples

The following example uses the SYS_XMLGen function to generate an XML document for each
row of the sample table employees where the employee's last name begins with the letter R, and
then aggregates all of the rows into a single XML document in the default enclosing element
ROWSET:

SELECT SYS_XMLAGG(SYS_XMLGEN(last_name)) XMLAGG
 FROM employees
 WHERE last_name LIKE 'R%'
 ORDER BY xmlagg;

XMLAGG
--
<?xml version="1.0"?>
<ROWSET>
<LAST_NAME>Rajs</LAST_NAME>
<LAST_NAME>Raphaely</LAST_NAME>
<LAST_NAME>Rogers</LAST_NAME>
<LAST_NAME>Russell</LAST_NAME>
</ROWSET>

SYS_XMLGEN

Note

The SYS_XMLGen function is deprecated. It is still supported for backward compatibility.
However, Oracle recommends that you use the SQL/XML generation functions
instead. See Oracle XML DB Developer's Guide for more information.

Chapter 7
SYS_XMLAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 406 of 521

Syntax

SYS_XMLGEN (expr

, fmt

)

Purpose

SYS_XMLGen takes an expression that evaluates to a particular row and column of the
database, and returns an instance of type XMLType containing an XML document. The expr can
be a scalar value, a user-defined type, or an XMLType instance.

• If expr is a scalar value, then the function returns an XML element containing the scalar
value.

• If expr is a type, then the function maps the user-defined type attributes to XML elements.

• If expr is an XMLType instance, then the function encloses the document in an XML element
whose default tag name is ROW.

By default the elements of the XML document match the elements of expr. For example, if expr
resolves to a column name, then the enclosing XML element will be the same column name. If
you want to format the XML document differently, then specify fmt, which is an instance of the
XMLFormat object.

See Also

"XML Format Model " for a description of the XMLFormat type and how to use its
attributes to format SYS_XMLGen results

Examples

The following example retrieves the employee email ID from the sample table oe.employees
where the employee_id value is 205, and generates an instance of an XMLType containing an XML
document with an EMAIL element.

SELECT SYS_XMLGEN(email)
 FROM employees
 WHERE employee_id = 205;

SYS_XMLGEN(EMAIL)

<?xml version="1.0"?>
<EMAIL>SHIGGINS</EMAIL>

SYSDATE
Syntax

SYSDATE

Chapter 7
SYSDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 407 of 521

Purpose

SYSDATE returns the current date and time set for the operating system on which the database
server resides. The data type of the returned value is DATE, and the format returned depends
on the value of the NLS_DATE_FORMAT initialization parameter. The function requires no
arguments. In distributed SQL statements, this function returns the date and time set for the
operating system of your local database. You cannot use this function in the condition of a
CHECK constraint.

In a multitenant setup existing PDBs and PDBs created later inherit the timezone of the
system.

If you want SYSDATE to return the timezone of the PDB, then you must set the initialization
parameter TIME_AT_DBTIMEZONE to TRUE before starting the PDB.

You can change the timezone using ALTER SYSTEM SET TIME_ZONE or ALTER DATABASE db_name
SET TIME_ZONE.

You can set SYSTIMESTAMP to return system time by setting the initialization parameter
TIME_AT_DBTIMEZONE to FALSE and restarting the database.

Note

• For more see TIME_AT_DBTIMEZONE of the Oracle Database Reference.

• The FIXED_DATE initialization parameter enables you to set a constant date and
time that SYSDATE will always return instead of the current date and time. This
parameter is useful primarily for testing. Refer to Oracle Database Reference for
more information on the FIXED_DATE initialization parameter.

Examples

The following example returns the current operating system date and time:

SELECT TO_CHAR
 (SYSDATE, 'MM-DD-YYYY HH24:MI:SS') "NOW"
 FROM DUAL;

NOW

04-13-2001 09:45:51

SYSTIMESTAMP
Syntax

SYSTIMESTAMP

Purpose

SYSTIMESTAMP returns the system date, including fractional seconds and time zone, of the
system on which the database resides. The return type is TIMESTAMP WITH TIME ZONE.

Chapter 7
SYSTIMESTAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 408 of 521

In a multitenant setup existing PDBs and PDBs created later inherit the timezone of the
system.

If you want SYSTIMESTAMP to return the timezone of the PDB, then you must set the
initialization parameter TIME_AT_DBTIMEZONE to TRUE before starting the PDB.

You can change the timezone using ALTER SYSTEM SET TIME_ZONE or ALTER DATABASE db_name
SET TIME_ZONE.

You can set SYSTIMESTAMP to return system time by setting the initialization parameter
TIME_AT_DBTIMEZONE to FALSE and restarting the database.

Note

For more see TIME_AT_DBTIMEZONE of the Oracle Database Reference.

Examples

The following example returns the system timestamp:

SELECT SYSTIMESTAMP FROM DUAL;

SYSTIMESTAMP
--
28-MAR-00 12.38.55.538741 PM -08:00

The following example shows how to explicitly specify fractional seconds:

SELECT TO_CHAR(SYSTIMESTAMP, 'SSSSS.FF') FROM DUAL;

TO_CHAR(SYSTIME

55615.449255

The following example returns the current timestamp in a specified time zone:

SELECT SYSTIMESTAMP AT TIME ZONE 'UTC' FROM DUAL;

SYSTIMESTAMPATTIMEZONE'UTC'

08-07-21 20:39:52,743557 UTC

The output format in this example depends on the NLS_TIMESTAMP_TZ_FORMAT for the session.

TAN
Syntax

TAN (n)

Purpose

TAN returns the tangent of n (an angle expressed in radians).

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the

Chapter 7
TAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 409 of 521

function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the tangent of 135 degrees:

SELECT TAN(135 * 3.14159265359/180)
 "Tangent of 135 degrees" FROM DUAL;

Tangent of 135 degrees

 - 1

TANH
Syntax

TANH (n)

Purpose

TANH returns the hyperbolic tangent of n.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following example returns the hyperbolic tangent of .5:

SELECT TANH(.5) "Hyperbolic tangent of .5"
 FROM DUAL;

Hyperbolic tangent of .5

 .462117157

Chapter 7
TANH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 410 of 521

TIMESTAMP_TO_SCN
Syntax

TIMESTAMP_TO_SCN (timestamp)

Purpose

TIMESTAMP_TO_SCN takes as an argument a timestamp value and returns the approximate
system change number (SCN) associated with that timestamp. The returned value is of data
type NUMBER. This function is useful any time you want to know the SCN associated with a
particular timestamp.

Note

The association between an SCN and a timestamp when the SCN is generated is
remembered by the database for a limited period of time. This period is the maximum
of the auto-tuned undo retention period, if the database runs in the Automatic Undo
Management mode, and the retention times of all flashback archives in the database,
but no less than 120 hours. The time for the association to become obsolete elapses
only when the database is open. An error is returned if the timestamp specified for the
argument to TIMESTAMP_TO_SCN is too old.

See Also

SCN_TO_TIMESTAMP for information on converting SCNs to timestamp

Examples

The following example inserts a row into the oe.orders table and then uses TIMESTAMP_TO_SCN to
determine the system change number of the insert operation. (The actual SCN returned will
differ on each system.)

INSERT INTO orders (order_id, order_date, customer_id, order_total)
 VALUES (5000, SYSTIMESTAMP, 188, 2345);
1 row created.

COMMIT;
Commit complete.

SELECT TIMESTAMP_TO_SCN(order_date) FROM orders
 WHERE order_id = 5000;

TIMESTAMP_TO_SCN(ORDER_DATE)

 574100

Chapter 7
TIMESTAMP_TO_SCN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 411 of 521

TIME_BUCKET (datetime)
Syntax

TIME_BUCKET

(datetime , stride , origin

,
START

END timebucket_optional_clause

)

timebucket_optional_clause::=

ON OVERFLOW

ROUND

ERROR

LAST DAY OF MONTH

Purpose

Use TIME_BUCKET(datetime) to obtain the datetime over an interval that you specify.

TIME_BUCKET has three required arguments, and two optional arguments .

• The first argument datetime is the input to the bucket.

The third argument origin is an anchor to which all buckets are aligned.

datetime and origin can be DATE, TIMESTAMP, TIMESTAMP WITH TIMEZONE, TIMESTAMP WITH
LOCAL TIMEZONE, EPOCH TIME, BINARY_FLOAT, BINARY_DOUBLE, CHAR, expression, or a
bind variable.

EPOCH TIME is represented by Oracle type NUMBER, which is the number of seconds that
have elapsed since 00:00:00 UTC on 1 January 1970. The supported EPOCH TIME range is
from SB8MINVAL(- 9223372036854775808, inclusive) to SB8MAXVAL(9223372036854775807,
inclusive).

There are implicit conversions for datetime and origin:

– If it is BINARY_FLOAT or BINARY_DOUBLE, it will be converted to NUMBER implicitly. Note
that you must account for the loss in precision from implicit conversions.

– If it is CHAR, it will be converted to TIMESTAMP implicitly. Note that CHAR should match
the session NLS_TIMESTAMP_FORMAT. Otherwise an error is raised.

Fractional second is supported only if datetime and origin are EPOCH TIME, BINARY_FLOAT or
BINARY_DOUBLE.

The valid range for datetime and origin is from -4712-01-01 00:00:00 inclusive to 9999-12-31
23:59:59:00 inclusive.

• The second argument stride is a positive Oracle INTERVAL, ISO 8601 time interval string,
expression or bind variable. Fractional second is supported only if datetime and origin are
EPOCH TIME, BINARY_FLOAT or BINARY_DOUBLE.

Chapter 7
TIME_BUCKET (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 412 of 521

Oracle INTERVAL has two types of valid intervals: INTERVAL YEAR TO MONTH and INTERVAL
DAY TO SECOND. If year or month is specified, all other units are ignored, if specified.

For the ISO 8601 time interval string, years, months, days, hours, minutes and seconds
are integers between 0 and 999999999. frac_secs is the fractional part of seconds between .0
and .999999999.

The ISO 8601 time interval string that you specify should match the definition of Oracle
INTERVAL. P is required, and no blanks are allowed in the value. If you specify T, then you
must specify at least one of hours, minutes, or seconds. hours are based on 24-hour time.

For example, P100DT05H indicates 100 days and 5 hours. P1Y2M'indicates 1 year and 2
months. P1M1DT5H30M30S is equivalent to P1M which indicates 1 month.

The syntax of the ISO 8601 time interval string:

Use only postive values for stride. (Although the Oracle INTERVAL and ISO 8601 time
interval string can be positive or negative.)

If datetime or origin is EPOCH TIME, BINARY_FLOAT or BINARY_DOUBLE, then stride cannot
contain YEAR or MONTH. This is because month is variable and could be one of 28, 29, 30 or
31.

• The fourth argument is optional and specifies whether the start or the end of the time
bucket is returned. Specify START to return the start value of the time bucket or END to
return the end value . The values are case-insensitive. The default value is START.

• The fifth argument is optional and controls how the buckets (strides) are determined.

ON OVERFLOW ROUND (default): The buckets will be cut on the same day as origin in the
corresponding month. For a month that does not have that day, the bucket is rounded to
the last day of the month.

ON OVERFLOW ERROR: The buckets will be cut on the same day as origin in the
corresponding month. For a month that does not have that day will error out.

LAST DAY OF MONTH: If origin is the last day of the month and stride only contains MONTH
and/or YEAR , the buckets will be cut on the corresponding last day of the month.

For example, if origin is '1991-11-30' and stride is 'P1M', then:

– For ON OVERFLOW ROUND, the start of each bucket will be:

..., 1991-11-30, 1991-12-30, 1992-01-30, 1992-02-29, 1992-03-30, 1992-04-30,...

– For ON OVERFLOW ERROR, the start of each bucket will be:

..., 1991-11-30, 1991-12-30, 1992-01-30, error (or 1992-02-30), 1992-03-30, 1992-04-30,...

– For LAST DAY OF MONTH, the start of each bucket will be:

..., 1991-11-30, 1991-12-31, 1992-01-31, 1992-02-29, 1992-03-31, 1992-04-30, ...

Chapter 7
TIME_BUCKET (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 413 of 521

Rules

• The end of each bucket is the same as the beginning of the following bucket. For example,
if the bucket is 2 years and the start of the slice is 2000-01-01, then the end of the bucket will
be 2002-01- 01, not 2001-12-31. In other words, the bucket contains datetime greater than or
equal to the start and less than (but not equal to) the end.

• In general, START of a bucket is always less than END of the bucket. But for the bucket on
the two sides of the valid time range, START can be equal to END.

• origin and datetime can be positive or negative as long as it is in the valid range. Errors are
raised if origin or datetime is outside of the valid range, or if the return value is outside of the
valid range.

• If the input value is of type TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME
ZONE, then a time bucket might cross the daylight saving time boundaries. In this case, the
duration of the time bucket is still the same as any other time bucket.

• If origin and datetime are TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME ZONE,
all arithmetic calculations are based in UTC time.

Examples

The following examples use the NLS_DATE_FORMAT YYYY-MM-DD. Set the date format with
ALTER SESSION:

ALTER SESSION SET NLS_DATE_FORMAT='YYYY-MM-DD';

Example 1

SELECT TIME_BUCKET (DATE ‘2022-06-29’, INTERVAL ‘5’ YEAR, DATE ‘2000-01-01’, START);

The result is:

2020-01-01

The 5-year time bucket that contains 2022-06-29 is from 2020-01-01(start) to 2025- 01-01(end). The
fourth argument START is used, so the start of the time bucket 2020-01-01 is returned.

Example 2

The following two queries are equivalent:

SELECT TIME_BUCKET (DATE ‘-2022-06-29’, ‘P5M’, DATE ‘-2022-01-01’, END);

Or:

SELECT TIME_BUCKET (DATE ‘-2022-06-29’, INTERVAL ‘5’ MONTH, DATE ‘-2022-01-01’, END);

The result is:

-2022-11-01

The 5-month time bucket that contains -2022-06-29 is from 2022-06-01(start) to -2022- 11-01(end).
The fourth argument END is used, so the end of the time bucket 2022-11-01 is returned.

Chapter 7
TIME_BUCKET (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 414 of 521

Example 3

SELECT TIME_BUCKET (DATE ‘2005-03-10’, 'P1Y', DATE ‘2004-02-29’ ON OVERFLOW ERROR);

The result is:

 ORA-01839: date not valid for month specified

The one-year time bucket that contains ‘2005-03-10’ is from error (or ‘2005-02-29’) (start) to error
(or ‘2006-02-29’) (end). Default fourth argument START is used, so the start of the time bucket
should be returned which is an error.

Example 4

SELECT TIME_BUCKET (DATE ‘2005-03-10’, 'P1Y', DATE ‘2004-02-29’ ON OVERFLOW ROUND);

The result is:

2005-02-28

The one-year time bucket that contains ‘2005-03-10’ is from ‘2005-02-28’(start) to ‘2006- 02-28’(end)
since February 29 is rounded to February 28. Default fourth argument START is used, so the
start of the time bucket is returned: ‘2005-02-28’.

Example 5

SELECT TIME_BUCKET (DATE ‘2004-04-02’, ‘P1Y’, DATE ‘2003-02-28’ LAST DAY OF MONTH);

The result is:

2004-02-29

The one-year time bucket that contains ‘2003-02-28’ is from ‘2004-02-29’(start) to ‘2005- 02-28’(end)
since ‘2004-02-28’ is rounded to the last day of that month which is ‘2004-02-29’. Default fourth
argument START is used, so the start of the time bucket is returned: ‘2004-02- 29’.

TO_APPROX_COUNT_DISTINCT
Syntax

TO_APPROX_COUNT_DISTINCT (detail)

Purpose

TO_APPROX_COUNT_DISTINCT takes as its input a detail containing information about an
approximate distinct value count, and converts it to a NUMBER value.

For detail, specify a detail of type BLOB, which was created by the
APPROX_COUNT_DISTINCT_DETAIL function or the APPROX_COUNT_DISTINCT_AGG function.

Chapter 7
TO_APPROX_COUNT_DISTINCT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 415 of 521

See Also

• APPROX_COUNT_DISTINCT_DETAIL

• TO_APPROX_COUNT_DISTINCT

Examples

Refer to TO_APPROX_COUNT_DISTINCT: Examples for examples of using the
TO_APPROX_COUNT_DISTINCT function in conjunction with the APPROX_COUNT_DISTINCT_DETAIL
and APPROX_COUNT_DISTINCT_AGG functions.

TO_APPROX_PERCENTILE
Syntax

TO_APPROX_PERCENTILE (detail , expr , ’ datatype ’

,

’ DESC ’

’ ASC ’

’ ERROR_RATE ’

’ CONFIDENCE ’

)

(datatype::=)

Purpose

TO_APPROX_PERCENTILE takes as its input a detail containing approximate percentile
information, a percentile value, and a sort specification, and returns an approximate
interpolated value that would fall into that percentile value with respect to the sort specification.

For detail, specify a detail of type BLOB, which was created by the APPROX_PERCENTILE_DETAIL
function or the APPROX_PERCENTLE_AGG function.

For expr, specify a percentile value, which must evaluate to a numeric value between 0 and 1. If
you specify the ERROR_RATE or CONFIDENCE clause, then the percentile value does not apply. In
this case, for expr you must specify null or a numeric value between 0 and 1. However, the
value will be ignored.

For datatype, specify the data type of the approximate percentile information in the detail. This is
the data type of the expression supplied to the APPROX_PERCENTILE_DETAIL function that
originated the detail. Valid data types are NUMBER, BINARY_FLOAT, BINARY_DOUBLE, DATE,
TIMESTAMP, INTERVAL YEAR TO MONTH, and INTERVAL DAY TO SECOND.

DESC | ASC

Specify the sort specification for the interpolation. Specify DESC for a descending sort order, or
ASC for an ascending sort order. ASC is the default.

ERROR_RATE | CONFIDENCE

Chapter 7
TO_APPROX_PERCENTILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 416 of 521

These clauses let you determine the accuracy of the percentile evaluation of the detail. If you
specify one of these clauses, then instead of returning the approximate interpolated value, the
function returns a decimal value from 0 to 1, inclusive, which represents one of the following
values:

• If you specify ERROR_RATE, then the return value represents the error rate of the percentile
evaluation for the detail.

• If you specify CONFIDENCE, then the return value represents the confidence level for the
error rate returned when you specify ERROR_RATE.

If you specify ERROR_RATE or CONFIDENCE, then the percentile value expr is ignored.

See Also

• APPROX_PERCENTILE_DETAIL

• APPROX_PERCENTILE_AGG

Examples

Refer to APPROX_PERCENTILE_AGG: Examples for examples of using the
TO_APPROX_PERCENTILE function in conjunction with the APPROX_PERCENTILE_DETAIL and
APPROX_PERCENTILE_AGG functions.

TO_BINARY_DOUBLE
Syntax

TO_BINARY_DOUBLE (expr

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_BINARY_DOUBLE converts expr to a double-precision floating-point number.

• expr can be any expression that evaluates to a character string of type CHAR, VARCHAR2,
NCHAR, or NVARCHAR2, a numeric value of type NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE,BOOLEAN, or null. If expr is BINARY_DOUBLE, then the function returns expr.
If expr evaluates to null, then the function returns null. Otherwise, the function converts expr
to a BINARY_DOUBLE value.

• The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify the
value returned by this function if an error occurs while converting expr to BINARY_DOUBLE.
This clause has no effect if an error occurs while evaluating expr. The return_value can be an
expression or a bind variable, and must evaluate to a character string of type CHAR,
VARCHAR2, NCHAR, or NVARCHAR2, a numeric value of type NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE, or null. The function converts return_value to BINARY_DOUBLE in the same

Chapter 7
TO_BINARY_DOUBLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 417 of 521

way it converts expr to BINARY_DOUBLE. If return_value cannot be converted to
BINARY_DOUBLE, then the function returns an error.

• The optional 'fmt' and 'nlsparam' arguments serve the same purpose as for the TO_NUMBER
function. If you specify these arguments, then expr and return_value, if specified, must each
be a character string or null. If either is a character string, then the function uses the fmt
and nlsparam arguments to convert the character string to a BINARY_DOUBLE value.

If expr or return_value evaluate to the following character strings, then the function converts them
as follows:

• The case-insensitive string 'INF' is converted to positive infinity.

• The case-insensitive string '-INF' is converted to negative identity.

• The case-insensitive string 'NaN' is converted to NaN (not a number).

You cannot use a floating-point number format element (F, f, D, or d) in a character string expr.

Conversions from character strings or NUMBER to BINARY_DOUBLE can be inexact, because the
NUMBER and character types use decimal precision to represent the numeric value, and
BINARY_DOUBLE uses binary precision.

Conversions from BINARY_FLOAT to BINARY_DOUBLE are exact.

If you specify an expr of type BOOLEAN, then TRUE will be converted to 1 and FALSE will be
converted to 0.

See Also

TO_CHAR (number) and "Floating-Point Numbers "

Examples

The examples that follow are based on a table with three columns, each with a different
numeric data type:

CREATE TABLE float_point_demo
 (dec_num NUMBER(10,2), bin_double BINARY_DOUBLE, bin_float BINARY_FLOAT);

INSERT INTO float_point_demo
 VALUES (1234.56,1234.56,1234.56);

SELECT * FROM float_point_demo;

 DEC_NUM BIN_DOUBLE BIN_FLOAT
---------- ---------- ----------
 1234.56 1.235E+003 1.235E+003

The following example converts a value of data type NUMBER to a value of data type
BINARY_DOUBLE:

SELECT dec_num, TO_BINARY_DOUBLE(dec_num)
 FROM float_point_demo;

 DEC_NUM TO_BINARY_DOUBLE(DEC_NUM)
---------- -------------------------
 1234.56 1.235E+003

Chapter 7
TO_BINARY_DOUBLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 418 of 521

The following example compares extracted dump information from the dec_num and bin_double
columns:

SELECT DUMP(dec_num) "Decimal",
 DUMP(bin_double) "Double"
 FROM float_point_demo;

Decimal Double
--------------------------- ---
Typ=2 Len=4: 194,13,35,57 Typ=101 Len=8: 192,147,74,61,112,163,215,10

The following example returns the default value of 0 because the specified expression cannot
be converted to a BINARY_DOUBLE value:

SELECT TO_BINARY_DOUBLE('2oo' DEFAULT 0 ON CONVERSION ERROR) "Value"
 FROM DUAL;

 Value

 0

TO_BINARY_FLOAT
Syntax

TO_BINARY_FLOAT (expr

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_BINARY_FLOAT converts expr to a single-precision floating-point number.

• expr can be any expression that evaluates to a character string of type CHAR, VARCHAR2,
NCHAR, or NVARCHAR2, a numeric value of type NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE,BOOLEAN, or null. If expr is BINARY_FLOAT, then the function returns expr. If
expr evaluates to null, then the function returns null. Otherwise, the function converts expr to
a BINARY_FLOAT value.

• The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify the
value returned by this function if an error occurs while converting expr to BINARY_FLOAT.
This clause has no effect if an error occurs while evaluating expr. The return_value can be an
expression or a bind variable, and must evaluate to a character string of type CHAR,
VARCHAR2, NCHAR, or NVARCHAR2, a numeric value of type NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE, or null. The function converts return_value to BINARY_FLOAT in the same
way it converts expr to BINARY_FLOAT. If return_value cannot be converted to BINARY_FLOAT,
then the function returns an error.

• The optional 'fmt' and 'nlsparam' arguments serve the same purpose as for the TO_NUMBER
function. If you specify these arguments, then expr and return_value, if specified, must each
be a character string or null. If either is a character string, then the function uses the fmt
and nlsparam arguments to convert the character string to a BINARY_FLOAT value.

Chapter 7
TO_BINARY_FLOAT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 419 of 521

If expr or return_value evaluate to the following character strings, then the function converts them
as follows:

• The case-insensitive string 'INF' is converted to positive infinity.

• The case-insensitive string '-INF' is converted to negative identity.

• The case-insensitive string 'NaN' is converted to NaN (not a number).

You cannot use a floating-point number format element (F, f, D, or d) in a character string expr.

Conversions from character strings or NUMBER to BINARY_FLOAT can be inexact, because the
NUMBER and character types use decimal precision to represent the numeric value and
BINARY_FLOAT uses binary precision.

Conversions from BINARY_DOUBLE to BINARY_FLOAT are inexact if the BINARY_DOUBLE value
uses more bits of precision than supported by the BINARY_FLOAT.

If you specify an expr of type BOOLEAN, then TRUE will be converted to 1 and FALSE will be
converted to 0.

See Also

TO_CHAR (number) and "Floating-Point Numbers "

Examples

Using table float_point_demo created for TO_BINARY_DOUBLE , the following example converts
a value of data type NUMBER to a value of data type BINARY_FLOAT:

SELECT dec_num, TO_BINARY_FLOAT(dec_num)
 FROM float_point_demo;

 DEC_NUM TO_BINARY_FLOAT(DEC_NUM)
---------- ------------------------
 1234.56 1.235E+003

The following example returns the default value of 0 because the specified expression cannot
be converted to a BINARY_FLOAT value:

SELECT TO_BINARY_FLOAT('2oo' DEFAULT 0 ON CONVERSION ERROR) "Value"
 FROM DUAL;

 Value

 0

TO_BLOB (bfile)
Syntax

to_blob_bfile::=

TO_BLOB (bfile

, ’ mime_type ’

)

Chapter 7
TO_BLOB (bfile)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 420 of 521

Purpose

TO_BLOB (bfile) converts a BFILE value to a BLOB value.

For mime_type, specify the MIME type to be set on the BLOB value returned by this function. If
you omit mime_type, then a MIME type will not be set on the BLOB value.

Example

The following hypothetical example returns the BLOB of a BFILE column value media_col in table
media_tab. It sets the MIME type to JPEG on the resulting BLOB.

SELECT TO_BLOB(media_col, 'JPEG') FROM media_tab;

TO_BLOB (raw)
Syntax

to_blob::=

TO_BLOB (raw_value)

Purpose

Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

TO_BLOB (raw) converts LONG RAW and RAW values to BLOB values.

From within a PL/SQL package, you can use TO_BLOB (raw) to convert RAW and BLOB values
to BLOB.

Examples

The following hypothetical example returns the BLOB of a RAW column value:

SELECT TO_BLOB(raw_column) blob FROM raw_table;

BLOB

00AADD343CDBBD

Chapter 7
TO_BLOB (raw)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 421 of 521

TO_BOOLEAN
Syntax

TO_BOOLEAN (expr

DEFAULT return_value ON CONVERSION ERROR

)

Purpose

Use TO_BOOLEAN to explicitly convert character value expressions or numeric value
expressions to boolean values.

If expr is a string, it must evaluate to the allowed string inputs. See Table 2-6.

expr can take one of the following types, or null:

• A character string of type CHAR, VARCHAR2, NCHAR, NVARCHAR2

• A numeric value of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE

• A boolean value of type BOOLEAN.

Examples

SELECT TO_BOOLEAN(0), TO_BOOLEAN('true'), TO_BOOLEAN('no');

The output is:

TO_BOOLEAN(TO_BOOLEAN(TO_BOOLEAN(
----------- ----------- -----------
FALSE TRUE FALSE

SELECT TO_BOOLEAN(1) FROM DUAL;

The output is:

TO_BOOLEAN(

TRUE

See Also

• CAST for conversion rules.

• Boolean Data Type for more details on the built-in boolean data type.

Chapter 7
TO_BOOLEAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 422 of 521

TO_CHAR (bfile|blob)
Syntax

to_char_bfile_blob::=

TO_CHAR (
bfile

blob

, csid

)

Purpose

TO_CHAR (bfile|blob) converts BFILE or BLOB data to the database character set. The value
returned is always VARCHAR2. If the value returned is too large to fit into the VARCHAR2 data
type, then the data is truncated.

For csid, specify the character set ID of the BFILE or BLOB data. If the character set of the BFILE
or BLOB data is the database character set, then you can specify a value of 0 for csid, or omit
csid altogether.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
this function

Example

The following hypothetical example takes as its input a BFILE column media_col in table media_tab,
which uses the character set with ID 873. The example returns a VARCHAR2 value that uses the
database character set.

SELECT TO_CHAR(media_col, 873) FROM media_tab;

TO_CHAR (boolean)
Syntax

TO_CHAR (boolean)

Purpose

Use TO_CHAR(boolean) to explicitly convert a boolean value to a character value of 'TRUE' or
'FALSE'.

Chapter 7
TO_CHAR (bfile|blob)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 423 of 521

See Also

• CAST for conversion rules.

• Boolean Data Type for more details on the built-in boolean data type.

TO_CHAR (character)
Syntax

to_char_char::=

TO_CHAR (

nchar

clob

nclob

)

Purpose

TO_CHAR (character) converts NCHAR, NVARCHAR2, CLOB, or NCLOB data to the database
character set. The value returned is always VARCHAR2.

When you use this function to convert a character LOB into the database character set, if the
LOB value to be converted is larger than the target type, then the database returns an error.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
this function

Examples

The following example interprets a simple string as character data:

SELECT TO_CHAR('01110') FROM DUAL;

TO_CH

01110

Compare this example with the first example for TO_CHAR (number) .

The following example converts some CLOB data from the pm.print_media table to the database
character set:

SELECT TO_CHAR(ad_sourcetext) FROM print_media
 WHERE product_id = 2268;

TO_CHAR(AD_SOURCETEXT)
--

Chapter 7
TO_CHAR (character)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 424 of 521

TIGER2 2268...Standard Hayes Compatible Modem
Product ID: 2268
The #1 selling modem in the universe! Tiger2's modem includes call management
and Internet voicing. Make real-time full duplex phone calls at the same time
you're online.

TO_CHAR (character) Function: Example

The following statements create a table named empl_temp and populate it with employee details:

CREATE TABLE empl_temp
 (
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 hire_date DATE DEFAULT SYSDATE,
 job_id VARCHAR2(10),
 clob_column CLOB
);

INSERT INTO empl_temp
VALUES(111,'John','Doe','example.com','10-JAN-2015','1001','Experienced Employee');

INSERT INTO empl_temp
VALUES(112,'John','Smith','example.com','12-JAN-2015','1002','Junior Employee');

INSERT INTO empl_temp
VALUES(113,'Johnnie','Smith','example.com','12-JAN-2014','1002','Mid-Career Employee');

INSERT INTO empl_temp
VALUES(115,'Jane','Doe','example.com','15-JAN-2015','1005','Executive Employee');

The following statement converts CLOB data to the database character set:

SELECT To_char(clob_column) "CLOB_TO_CHAR"
FROM empl_temp
WHERE employee_id IN (111, 112, 115);

CLOB_TO_CHAR

Experienced Employee
Junior Employee
Executive Employee

Live SQL

View and run a related example on Oracle Live SQL at Using the TO_CHAR Function

Chapter 7
TO_CHAR (character)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 425 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/tochar_basic.html

TO_CHAR (datetime)
Syntax

to_char_date::=

TO_CHAR (
datetime

interval

, fmt

, ’ nlsparam ’

)

Purpose

TO_CHAR (datetime) converts a datetime or interval value of DATE, TIMESTAMP, TIMESTAMP WITH
TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL DAY TO SECOND, or INTERVAL YEAR
TO MONTH data type to a value of VARCHAR2 data type in the format specified by the date
format fmt. If you omit fmt, then date is converted to a VARCHAR2 value as follows:

• DATE values are converted to values in the default date format.

• TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE values are converted to values in the
default timestamp format.

• TIMESTAMP WITH TIME ZONE values are converted to values in the default timestamp with
time zone format.

• Interval values are converted to the numeric representation of the interval literal.

Refer to "Format Models " for information on datetime formats.

The 'nlsparam' argument specifies the language in which month and day names and
abbreviations are returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

If you omit 'nlsparam', then this function uses the default date language for your session.

See Also

"Security Considerations for Data Conversion"

You can use this function in conjunction with any of the XML functions to generate a date in the
database format rather than the XML Schema standard format.

Chapter 7
TO_CHAR (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 426 of 521

See Also

• Oracle XML DB Developer's Guide for information about formatting of XML dates
and timestamps, including examples

• "XML Functions " for a listing of the XML functions

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of this function

Examples

The following example uses this table:

CREATE TABLE date_tab (
 ts_col TIMESTAMP,
 tsltz_col TIMESTAMP WITH LOCAL TIME ZONE,
 tstz_col TIMESTAMP WITH TIME ZONE);

The example shows the results of applying TO_CHAR to different TIMESTAMP data types. The
result for a TIMESTAMP WITH LOCAL TIME ZONE column is sensitive to session time zone,
whereas the results for the TIMESTAMP and TIMESTAMP WITH TIME ZONE columns are not
sensitive to session time zone:

ALTER SESSION SET TIME_ZONE = '-8:00';
INSERT INTO date_tab VALUES (
 TIMESTAMP'1999-12-01 10:00:00',
 TIMESTAMP'1999-12-01 10:00:00',
 TIMESTAMP'1999-12-01 10:00:00');
INSERT INTO date_tab VALUES (
 TIMESTAMP'1999-12-02 10:00:00 -8:00',
 TIMESTAMP'1999-12-02 10:00:00 -8:00',
 TIMESTAMP'1999-12-02 10:00:00 -8:00');

SELECT TO_CHAR(ts_col, 'DD-MON-YYYY HH24:MI:SSxFF') AS ts_date,
 TO_CHAR(tstz_col, 'DD-MON-YYYY HH24:MI:SSxFF TZH:TZM') AS tstz_date
 FROM date_tab
 ORDER BY ts_date, tstz_date;

TS_DATE TSTZ_DATE
------------------------------ -------------------------------------
01-DEC-1999 10:00:00.000000 01-DEC-1999 10:00:00.000000 -08:00
02-DEC-1999 10:00:00.000000 02-DEC-1999 10:00:00.000000 -08:00

SELECT SESSIONTIMEZONE,
 TO_CHAR(tsltz_col, 'DD-MON-YYYY HH24:MI:SSxFF') AS tsltz
 FROM date_tab
 ORDER BY sessiontimezone, tsltz;

SESSIONTIM TSLTZ
---------- ------------------------------
-08:00 01-DEC-1999 10:00:00.000000
-08:00 02-DEC-1999 10:00:00.000000

ALTER SESSION SET TIME_ZONE = '-5:00';
SELECT TO_CHAR(ts_col, 'DD-MON-YYYY HH24:MI:SSxFF') AS ts_col,
 TO_CHAR(tstz_col, 'DD-MON-YYYY HH24:MI:SSxFF TZH:TZM') AS tstz_col
 FROM date_tab

Chapter 7
TO_CHAR (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 427 of 521

 ORDER BY ts_col, tstz_col;

TS_COL TSTZ_COL
------------------------------ -------------------------------------
01-DEC-1999 10:00:00.000000 01-DEC-1999 10:00:00.000000 -08:00
02-DEC-1999 10:00:00.000000 02-DEC-1999 10:00:00.000000 -08:00

SELECT SESSIONTIMEZONE,
TO_CHAR(tsltz_col, 'DD-MON-YYYY HH24:MI:SSxFF') AS tsltz_col
 FROM date_tab
 ORDER BY sessiontimezone, tsltz_col;
 2 3 4
SESSIONTIM TSLTZ_COL
---------- ------------------------------
-05:00 01-DEC-1999 13:00:00.000000
-05:00 02-DEC-1999 13:00:00.000000

The following example converts an interval literal into a text literal:

SELECT TO_CHAR(INTERVAL '123-2' YEAR(3) TO MONTH) FROM DUAL;

TO_CHAR

+123-02

Using TO_CHAR to Format Dates and Numbers: Example

The following statement converts date values to the format specified in the TO_CHAR function:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual
)
SELECT d "Original Date",
 to_char(d, 'dd-mm-yyyy') "Day-Month-Year",
 to_char(d, 'hh24:mi') "Time in 24-hr format",
 to_char(d, 'iw-iyyy') "ISO Year and Week of Year"
FROM dates;

The following statement converts date and timestamp values to the format specified in the
TO_CHAR function:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:44:32' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual
)
SELECT d "Original Date",
 to_char(d, 'dd-mm-yyyy') "Day-Month-Year",
 to_char(d, 'hh24:mi') "Time in 24-hr format",
 to_char(d, 'iw-iyyy') "ISO Year and Week of Year",
 to_char(d, 'Month') "Month Name",
 to_char(d, 'Year') "Year"
FROM dates;

The following statement extracts the datetime fields specified in the EXTRACT function from the
input datetime expressions:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union

Chapter 7
TO_CHAR (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 428 of 521

 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:44:32' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual
)
SELECT extract(minute from d) minutes,
 extract(hour from d) hours,
 extract(day from d) days,
 extract(month from d) months,
 extract(year from d) years
FROM dates;

The following statement displays the input numbers as per the format specified in the TO_CHAR
function:

WITH nums AS (
 SELECT 10 n FROM dual union
 SELECT 9.99 n FROM dual union
 SELECT 1000000 n FROM dual --one million
)
SELECT n "Input Number N",
 to_char(n),
 to_char(n, '9,999,999.99') "Number with Commas",
 to_char(n, '0,000,000.000') "Zero-padded Number",
 to_char(n, '9.9EEEE') "Scientific Notation"
FROM nums;

The following statement converts the input numbers as per the format specified in the TO_CHAR
function:

WITH nums AS (
 SELECT 10 n FROM dual union
 SELECT 9.99 n FROM dual union
 SELECT .99 n FROM dual union
 SELECT 1000000 n FROM dual --one million
)
SELECT n "Input Number N",
 to_char(n),
 to_char(n, '9,999,999.99') "Number with Commas",
 to_char(n, '0,000,000.000') "Zero_padded Number",
 to_char(n, '9.9EEEE') "Scientific Notation",
 to_char(n, '$9,999,990.00') Monetary,
 to_char(n, 'X') "Hexadecimal Value"
FROM nums;

The following statement converts the input numbers as per the format specified in the TO_CHAR
function:

WITH nums AS (
 SELECT 10 n FROM dual union
 SELECT 9.99 n FROM dual union
 SELECT .99 n FROM dual union
 SELECT 1000000 n FROM dual --one million
)
SELECT n "Input Number N",
 to_char(n),
 to_char(n, '9,999,999.99') "Number with Commas",
 to_char(n, '0,000,000.000') "Zero_padded Number",
 to_char(n, '9.9EEEE') "Scientific Notation",
 to_char(n, '$9,999,990.00') Monetary,
 to_char(n, 'XXXXXX') "Hexadecimal Value"
FROM nums;

Chapter 7
TO_CHAR (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 429 of 521

Live SQL

View and run a related example on Oracle Live SQL at Using TO_CHAR to Format
Dates and Numbers

TO_CHAR (datetime) Function: Example

The following statements create a table named empl_temp and populate it with employee details:

CREATE TABLE empl_temp
 (
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 hire_date DATE DEFAULT SYSDATE,
 job_id VARCHAR2(10),
 clob_column CLOB
);

INSERT INTO empl_temp
VALUES(111,'John','Doe','example.com','10-JAN-2015','1001','Experienced Employee');

INSERT INTO empl_temp
VALUES(112,'John','Smith','example.com','12-JAN-2015','1002','Junior Employee');

INSERT INTO empl_temp
VALUES(113,'Johnnie','Smith','example.com','12-JAN-2014','1002','Mid-Career Employee');

INSERT INTO empl_temp
VALUES(115,'Jane','Doe','example.com','15-JAN-2015','1005','Executive Employee');

The following statement displays dates by using the short and long formats:

SELECT hire_date "Default",
 TO_CHAR(hire_date,'DS') "Short",
 TO_CHAR(hire_date,'DL') "Long"FROM empl_temp
WHERE employee_id IN (111, 112, 115);

Default Short Long
---------- ---------- --------------------------
10-JAN-15 1/10/2015 Saturday, January 10, 2015
12-JAN-15 1/12/2015 Monday, January 12, 2015
15-JAN-15 1/15/2015 Thursday, January 15, 2015

Live SQL

View and run a related example on Oracle Live SQL at Using the TO_CHAR Function

Chapter 7
TO_CHAR (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 430 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/dates-numbers.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/dates-numbers.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/tochar_basic.html

TO_CHAR (number)
Syntax

to_char_number::=

TO_CHAR (n

, fmt

, ’ nlsparam ’

)

Purpose

TO_CHAR (number) converts n to a value of VARCHAR2 data type, using the optional number
format fmt. The value n can be of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE. If you omit
fmt, then n is converted to a VARCHAR2 value exactly long enough to hold its significant digits.

If n is negative, then the sign is applied after the format is applied. Thus TO_CHAR(-1, '$9') returns
-$1, rather than $-1.

Refer to "Format Models " for information on number formats.

The 'nlsparam' argument specifies these characters that are returned by number format
elements:

• Decimal character

• Group separator

• Local currency symbol

• International currency symbol

This argument can have this form:

'NLS_NUMERIC_CHARACTERS = ''dg''
 NLS_CURRENCY = ''text''
 NLS_ISO_CURRENCY = territory '

The characters d and g represent the decimal character and group separator, respectively.
They must be different single-byte characters. Within the quoted string, you must use two
single quotation marks around the parameter values. Ten characters are available for the
currency symbol.

If you omit 'nlsparam' or any one of the parameters, then this function uses the default parameter
values for your session.

See Also

• "Security Considerations for Data Conversion"

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of this function

Chapter 7
TO_CHAR (number)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 431 of 521

Examples

The following statement uses implicit conversion to combine a string and a number into a
number:

SELECT TO_CHAR('01110' + 1) FROM DUAL;

TO_C

1111

Compare this example with the first example for TO_CHAR (character) .

In the next example, the output is blank padded to the left of the currency symbol. In the
optional number format fmt, L designates local currency symbol and MI designates a trailing
minus sign. See Table 2-16 for a complete listing of number format elements. The example
shows the output in a session in which the session parameter NLS_TERRITORY is set to
AMERICA.

SELECT TO_CHAR(-10000,'L99G999D99MI') "Amount"
 FROM DUAL;

Amount

 $10,000.00-

In the next example, NLS_CURRENCY specifies the string to use as the local currency symbol for
the L number format element. NLS_NUMERIC_CHARACTERS specifies comma as the character to
use as the decimal separator for the D number format element and period as the character to
use as the group separator for the G number format element. These characters are expected in
many countries, for example in Germany.

SELECT TO_CHAR(-10000,'L99G999D99MI',
 'NLS_NUMERIC_CHARACTERS = '',.''
 NLS_CURRENCY = ''AusDollars'' ') "Amount"
 FROM DUAL;

Amount

AusDollars10.000,00-

In the next example, NLS_ISO_CURRENCY instructs the database to use the international
currency symbol for the territory of POLAND for the C number format element:

SELECT TO_CHAR(-10000,'99G999D99C',
 'NLS_NUMERIC_CHARACTERS = '',.''
 NLS_ISO_CURRENCY=POLAND') "Amount"
 FROM DUAL;

Amount

 -10.000,00PLN

TO_CHAR (number) Function: Example

The following statements create a table named empl_temp and populate it with employee details:

CREATE TABLE empl_temp
 (
 employee_id NUMBER(6),

Chapter 7
TO_CHAR (number)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 432 of 521

 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 hire_date DATE DEFAULT SYSDATE,
 job_id VARCHAR2(10),
 clob_column CLOB
);

INSERT INTO empl_temp
VALUES(111,'John','Doe','example.com','10-JAN-2015','1001','Experienced Employee');

INSERT INTO empl_temp
VALUES(112,'John','Smith','example.com','12-JAN-2015','1002','Junior Employee');

INSERT INTO empl_temp
VALUES(113,'Johnnie','Smith','example.com','12-JAN-2014','1002','Mid-Career Employee');

INSERT INTO empl_temp
VALUES(115,'Jane','Doe','example.com','15-JAN-2015','1005','Executive Employee');

The following statement converts numeric data to the database character set:

SELECT To_char(employee_id) "NUM_TO_CHAR"
FROM empl_temp
WHERE employee_id IN (111, 112, 113, 115);

NUM_TO_CHAR

111
112
113
115

Live SQL

View and run a related example on Oracle Live SQL at Using the TO_CHAR Function

TO_CLOB (bfile|blob)
Syntax

TO_CLOB (
bfile

blob

, csid , ’ mime_type ’

)

Purpose

TO_CLOB (bfile|blob) converts BFILE or BLOB data to the database character set and returns the
data as a CLOB value.

Chapter 7
TO_CLOB (bfile|blob)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 433 of 521

https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/tochar_basic.html

For csid, specify the character set ID of the BFILE or BLOB data. If the character set of the BFILE
or BLOB data is the database character set, then you can specify a value of 0 for csid, or omit
csid altogether.

For mime_type, specify the MIME type to be set on the CLOB value returned by this function. If
you omit mime_type, then a MIME type will not be set on the CLOB value.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
this function

Example

The following hypothetical example returns the CLOB of a BFILE column value docu in table
media_tab, which uses the character set with ID 873. It sets the MIME type to text/xml for the
resulting CLOB.

SELECT TO_CLOB(docu, 873, 'text/xml') FROM media_tab;

TO_CLOB (character)
Syntax

TO_CLOB (
lob_column

char
)

Purpose

TO_CLOB (character) converts NCLOB values in a LOB column or other character strings to
CLOB values. char can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. Oracle Database executes this function by converting the underlying LOB data from
the national character set to the database character set.

From within a PL/SQL package, you can use the TO_CLOB (character) function to convert RAW,
CHAR, VARCHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB values to CLOB or NCLOB
values.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
this function

Chapter 7
TO_CLOB (character)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 434 of 521

Examples

The following statement converts NCLOB data from the sample pm.print_media table to CLOB and
inserts it into a CLOB column, replacing existing data in that column.

UPDATE PRINT_MEDIA
 SET AD_FINALTEXT = TO_CLOB (AD_FLTEXTN);

TO_DATE
Syntax

TO_DATE (char

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_DATE converts char to a value of DATE data type.

For char, you can specify any expression that evaluates to a character string of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 data type.

Note

This function does not convert data to any of the other datetime data types. For
information on other datetime conversions, refer to TO_TIMESTAMP ,
TO_TIMESTAMP_TZ , TO_DSINTERVAL , and TO_YMINTERVAL .

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify the value
this function returns if an error occurs while converting char to DATE. This clause has no effect if
an error occurs while evaluating char. The return_value can be an expression or a bind variable,
and it must evaluate to a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type,
or null. The function converts return_value to DATE using the same method it uses to convert char
to DATE. If return_value cannot be converted to DATE, then the function returns an error.

The fmt is a datetime model format specifying the format of char. If you omit fmt, then char must
be in the default date format. The default date format is determined implicitly by the
NLS_TERRITORY initialization parameter or can be set explicitly by the NLS_DATE_FORMAT
parameter. If fmt is J, for Julian, then char must be an integer.

Chapter 7
TO_DATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 435 of 521

Caution

It is good practice always to specify a format mask (fmt) with TO_DATE, as shown in the
examples in the section that follow, if char is a literal or an expression that evaluates to
a known, fixed format, independent of the locale (NLS) configuration of the session.
When TO_DATE is used without a format mask, the function is valid only if char uses the
same format as is determined by the NLS_TERRITORY and NLS_DATE_FORMAT
parameters.

However, if char corresponds to user input provided by an application, for example, in a
bind variable, and the user input is expected to follow the locale (NLS) conventions set
for the session provided in the NLS_DATE_FORMAT parameter, then the format mask
should not be specified.

The 'nlsparam' argument specifies the language of the text string that is being converted to a
date. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

Do not use the TO_DATE function with a DATE value for the char argument. The first two digits of
the returned DATE value can differ from the original char, depending on fmt or the default date
format.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

"Datetime Format Models " and "Data Type Comparison Rules " for more information

Examples

The following example converts a character string into a date:

SELECT TO_DATE(
 'January 15, 1989, 11:00 A.M.',
 'Month dd, YYYY, HH:MI A.M.',
 'NLS_DATE_LANGUAGE = American')
 FROM DUAL;

TO_DATE('

15-JAN-89

The value returned reflects the default date format if the NLS_TERRITORY parameter is set to
'AMERICA'. Different NLS_TERRITORY values result in different default date formats:

ALTER SESSION SET NLS_TERRITORY = 'KOREAN';

SELECT TO_DATE(
 'January 15, 1989, 11:00 A.M.',
 'Month dd, YYYY, HH:MI A.M.',
 'NLS_DATE_LANGUAGE = American')

Chapter 7
TO_DATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 436 of 521

 FROM DUAL;

TO_DATE(

89/01/15

The following example returns the default value because the specified expression cannot be
converted to a DATE value, due to a misspelling of the month:

SELECT TO_DATE('Febuary 15, 2016, 11:00 A.M.'
 DEFAULT 'January 01, 2016 12:00 A.M.' ON CONVERSION ERROR,
 'Month dd, YYYY, HH:MI A.M.') "Value"
 FROM DUAL;

Value

01-JAN-16

TO_DSINTERVAL
Syntax

TO_DSINTERVAL (’
sql_format

ds_iso_format
’

DEFAULT return_value ON CONVERSION ERROR

)

sql_format::=

+

–

days hours : minutes : seconds

. frac_secs

ds_iso_format::=

–

P

days D

T

hours H minutes M seconds

. frac_secs

S

Chapter 7
TO_DSINTERVAL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 437 of 521

Note

In earlier releases, the TO_DSINTERVAL function accepted an optional nlsparam clause.
This clause is still accepted for backward compatibility, but has no effect.

Purpose

TO_DSINTERVAL converts its argument to a value of INTERVAL DAY TO SECOND data type.

For the argument, you can specify any expression that evaluates to a character string of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 data type.

TO_DSINTERVAL accepts argument in one of the two formats:

• SQL interval format compatible with the SQL standard (ISO/IEC 9075)

• ISO duration format compatible with the ISO 8601:2004 standard

In the SQL format, days is an integer between 0 and 999999999, hours is an integer between 0
and 23, and minutes and seconds are integers between 0 and 59. frac_secs is the fractional part of
seconds between .0 and .999999999. One or more blanks separate days from hours.
Additional blanks are allowed between format elements.

In the ISO format, days, hours, minutes and seconds are integers between 0 and 999999999. frac_secs
is the fractional part of seconds between .0 and .999999999. No blanks are allowed in the
value. If you specify T, then you must specify at least one of the hours, minutes, or seconds values.

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify the value
this function returns if an error occurs while converting the argument to an INTERVAL DAY TO
SECOND type. This clause has no effect if an error occurs while evaluating the argument. The
return_value can be an expression or a bind variable, and it must evaluate to a character string of
CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. It can be in either the SQL format or ISO
format, and need not be in the same format as the function argument. If return_value cannot be
converted to an INTERVAL DAY TO SECOND type, then the function returns an error.

Examples

The following example uses the SQL format to select from the hr.employees table the employees
who had worked for the company for at least 100 days on November 1, 2002:

SELECT employee_id, last_name FROM employees
 WHERE hire_date + TO_DSINTERVAL('100 00:00:00')
 <= DATE '2002-11-01'
 ORDER BY employee_id;

EMPLOYEE_ID LAST_NAME
----------- ---------------
 102 De Haan
 203 Mavris
 204 Baer
 205 Higgins
 206 Giet

The following example uses the ISO format to display the timestamp 100 days and 5 hours
after the beginning of the year 2009:

SELECT TO_CHAR(TIMESTAMP '2009-01-01 00:00:00' + TO_DSINTERVAL('P100DT05H'),
 'YYYY-MM-DD HH24:MI:SS') "Time Stamp"
 FROM DUAL;

Chapter 7
TO_DSINTERVAL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 438 of 521

Time Stamp

2009-04-11 05:00:00

The following example returns the default value because the specified expression cannot be
converted to an INTERVAL DAY TO SECOND value:

SELECT TO_DSINTERVAL('1o 1:02:10'
 DEFAULT '10 8:00:00' ON CONVERSION ERROR) "Value"
 FROM DUAL;

Value

+000000010 08:00:00.000000000

TO_LOB
Syntax

TO_LOB (long_column)

Purpose

Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

TO_LOB converts LONG or LONG RAW values in the column long_column to LOB values. You can
apply this function only to a LONG or LONG RAW column, and only in the select list of a subquery
in an INSERT statement.

Before using this function, you must create a LOB column to receive the converted LONG
values. To convert LONG values, create a CLOB column. To convert LONG RAW values, create a
BLOB column.

You cannot use the TO_LOB function to convert a LONG column to a LOB column in the
subquery of a CREATE TABLE ... AS SELECT statement if you are creating an index-organized
table. Instead, create the index-organized table without the LONG column, and then use the
TO_LOB function in an INSERT ... AS SELECT statement.

You cannot use this function within a PL/SQL package. Instead use the TO_CLOB (character) or
TO_BLOB (raw) functions.

Chapter 7
TO_LOB

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 439 of 521

See Also

• the modify_col_properties clause of ALTER TABLE for an alternative method of
converting LONG columns to LOB

• INSERT for information on the subquery of an INSERT statement

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of this function

Examples

The following syntax shows how to use the TO_LOB function on your LONG data in a
hypothetical table old_table:

CREATE TABLE new_table (col1, col2, ... lob_col CLOB);
INSERT INTO new_table (select o.col1, o.col2, ... TO_LOB(o.old_long_col)
 FROM old_table o;

TO_MULTI_BYTE
Syntax

TO_MULTI_BYTE (char)

Purpose

TO_MULTI_BYTE returns char with all of its single-byte characters converted to their
corresponding multibyte characters. char can be of data type CHAR, VARCHAR2, NCHAR, or
NVARCHAR2. The value returned is in the same data type as char.

Any single-byte characters in char that have no multibyte equivalents appear in the output string
as single-byte characters. This function is useful only if your database character set contains
both single-byte and multibyte characters.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of TO_MULTI_BYTE

Examples

The following example illustrates converting from a single byte A to a multibyte A in UTF8:

SELECT dump(TO_MULTI_BYTE('A')) FROM DUAL;

Chapter 7
TO_MULTI_BYTE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 440 of 521

DUMP(TO_MULTI_BYTE('A'))

Typ=1 Len=3: 239,188,161

TO_NCHAR (boolean)
Syntax

TO_NCHAR (boolean)

Purpose

Use TO_NCHAR(boolean) to explicitly convert a boolean value to a character value of 'TRUE' or
'FALSE'.

See Also

• CAST for conversion rules.

• Boolean Data Type for more details on the built-in boolean data type.

TO_NCHAR (character)
Syntax

to_nchar_char::=

TO_NCHAR (

char

clob

nclob

)

Purpose

TO_NCHAR (character) converts a character string, CHAR, VARCHAR2, CLOB, or NCLOB value to
the national character set. The value returned is always NVARCHAR2. This function is equivalent
to the TRANSLATE ... USING function with a USING clause in the national character set.

See Also

• "Data Conversion " and TRANSLATE ... USING

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of this function

Chapter 7
TO_NCHAR (boolean)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 441 of 521

Examples

The following example converts VARCHAR2 data from the oe.customers table to the national
character set:

SELECT TO_NCHAR(cust_last_name) FROM customers
 WHERE customer_id=103;

TO_NCHAR(CUST_LAST_NAME)
--
Taylor

TO_NCHAR (datetime)
Syntax

to_nchar_date::=

TO_NCHAR (
datetime

interval

, fmt

, ’ nlsparam ’

)

Purpose

TO_NCHAR (datetime) converts a datetime or interval value of DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO YEAR, or INTERVAL
DAY TO SECOND data type from the database character set to the national character set.

See Also

• "Security Considerations for Data Conversion"

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of this function

Examples

The following example converts the order_date of all orders whose status is 9 to the national
character set:

SELECT TO_NCHAR(ORDER_DATE) AS order_date
 FROM ORDERS
 WHERE ORDER_STATUS > 9
 ORDER BY order_date;

ORDER_DATE
--
06-DEC-99 02.22.34.225609 PM
13-SEP-99 10.19.00.654279 AM
14-SEP-99 09.53.40.223345 AM
26-JUN-00 10.19.43.190089 PM
27-JUN-00 09.53.32.335522 PM

Chapter 7
TO_NCHAR (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 442 of 521

TO_NCHAR (number)
Syntax

to_nchar_number::=

TO_NCHAR (n

, fmt

, ’ nlsparam ’

)

Purpose

TO_NCHAR (number) converts n to a string in the national character set. The value n can be of
type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE. The function returns a value of the same
type as the argument. The optional fmt and 'nlsparam' corresponding to n can be of DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH
TO YEAR, or INTERVAL DAY TO SECOND data type.

See Also

• "Security Considerations for Data Conversion"

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of this function

Examples

The following example converts the customer_id values from the sample table oe.orders to the
national character set:

SELECT TO_NCHAR(customer_id) "NCHAR_Customer_ID" FROM orders
 WHERE order_status > 9
 ORDER BY "NCHAR_Customer_ID";

NCHAR_Customer_ID
--
102
103
148
148
149

TO_NCLOB
Syntax

TO_NCLOB (
lob_column

char
)

Chapter 7
TO_NCHAR (number)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 443 of 521

Purpose

TO_NCLOB converts CLOB values in a LOB column or other character strings to NCLOB values.
char can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.
Oracle Database implements this function by converting the character set of char from the
database character set to the national character set.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
this function

Examples

The following example inserts some character data into an NCLOB column of the pm.print_media
table by first converting the data with the TO_NCLOB function:

INSERT INTO print_media (product_id, ad_id, ad_fltextn)
 VALUES (3502, 31001,
 TO_NCLOB('Placeholder for new product description'));

TO_NUMBER
Syntax

TO_NUMBER (expr

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_NUMBER converts expr to a value of NUMBER data type.

expr can be any expression that evaluates to a character string of type CHAR, VARCHAR2,
NCHAR, or NVARCHAR2, a numeric value of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE,
BOOLEAN, or null. If expr is NUMBER, then the function returns expr. If expr evaluates to null, then
the function returns null. Otherwise, the function converts expr to a NUMBER value.

• If you specify an expr of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, then you can
optionally specify the format model fmt.

• If you specify an expr of BINARY_FLOAT or BINARY_DOUBLE data type, then you cannot
specify a format model because a float can be interpreted only by its internal
representation.

• If you specify an expr of type BOOLEAN, then TRUE will be converted to 1 and FALSE will be
converted to 0. You cannot specify a format model with inputs of type BOOLEAN.

Refer to "Format Models " for information on number formats.

Chapter 7
TO_NUMBER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 444 of 521

The 'nlsparam' argument in this function has the same purpose as it does in the TO_CHAR
function for number conversions. Refer to TO_CHAR (number) for more information.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

"Data Type Comparison Rules " for more information.

Examples

The following examples convert character string data into a number:

UPDATE employees SET salary = salary +
 TO_NUMBER('100.00', '9G999D99')
 WHERE last_name = 'Perkins';

SELECT TO_NUMBER('-AusDollars100','L9G999D99',
 ' NLS_NUMERIC_CHARACTERS = '',.''
 NLS_CURRENCY = ''AusDollars''
 ') "Amount"
 FROM DUAL;

 Amount

 -100

The following example returns the default value of 0 because the specified expression cannot
be converted to a NUMBER value:

SELECT TO_NUMBER('2,00' DEFAULT 0 ON CONVERSION ERROR) "Value"
 FROM DUAL;

 Value

 0

TO_SINGLE_BYTE
Syntax

TO_SINGLE_BYTE (char)

Purpose

TO_SINGLE_BYTE returns char with all of its multibyte characters converted to their
corresponding single-byte characters. char can be of data type CHAR, VARCHAR2, NCHAR, or
NVARCHAR2. The value returned is in the same data type as char.

Any multibyte characters in char that have no single-byte equivalents appear in the output as
multibyte characters. This function is useful only if your database character set contains both
single-byte and multibyte characters.

Chapter 7
TO_SINGLE_BYTE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 445 of 521

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of TO_SINGLE_BYTE

Examples

The following example illustrates going from a multibyte A in UTF8 to a single byte ASCII A:

SELECT TO_SINGLE_BYTE(CHR(15711393)) FROM DUAL;

T
-
A

TO_TIMESTAMP
Syntax

TO_TIMESTAMP (char

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_TIMESTAMP converts char to a value of TIMESTAMP data type.

For char, you can specify any expression that evaluates to a character string of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 data type.

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify the value
this function returns if an error occurs while converting char to TIMESTAMP. This clause has no
effect if an error occurs while evaluating char. The return_value can be an expression or a bind
variable, and it must evaluate to a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
data type, or null. The function converts return_value to TIMESTAMP using the same method it
uses to convert char to TIMESTAMP. If return_value cannot be converted to TIMESTAMP, then the
function returns an error.

The optional fmt specifies the format of char. If you omit fmt, then char must be in the default
format of the TIMESTAMP data type, which is determined by the NLS_TIMESTAMP_FORMAT
initialization parameter. The optional 'nlsparam' argument has the same purpose in this function
as in the TO_CHAR function for date conversion.

Chapter 7
TO_TIMESTAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 446 of 521

Caution

It is good practice always to specify a format mask (fmt) with TO_TIMESTAMP, as shown
in the examples in the section that follow, if char is a literal or an expression that
evaluates to a known, fixed format, independent of the locale (NLS) configuration of
the session. When TO_TIMESTAMP is used without a format mask, the function is valid
only if char uses the same format as is determined by the NLS_TERRITORY and
NLS_TIMESTAMP_FORMAT parameters.

However, if char corresponds to user input provided by an application, for example, in a
bind variable, and the user input is expected to follow the locale (NLS) conventions set
for the session provided in the NLS_TIMESTAMP_FORMAT parameter, then the format
mask should not be specified.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

"Data Type Comparison Rules " for more information.

Examples

The following example converts a character string to a timestamp. The character string is not in
the default TIMESTAMP format, so the format mask must be specified:

SELECT TO_TIMESTAMP ('10-Sep-02 14:10:10.123000', 'DD-Mon-RR HH24:MI:SS.FF')
 FROM DUAL;

TO_TIMESTAMP('10-SEP-0214:10:10.123000','DD-MON-RRHH24:MI:SS.FF')

10-SEP-02 02.10.10.123000000 PM

The following example returns the default value of NULL because the specified expression
cannot be converted to a TIMESTAMP value, due to an invalid month specification:

SELECT TO_TIMESTAMP ('10-Sept-02 14:10:10.123000'
 DEFAULT NULL ON CONVERSION ERROR,
 'DD-Mon-RR HH24:MI:SS.FF',
 'NLS_DATE_LANGUAGE = American') "Value"
 FROM DUAL;

See Also

NLS_TIMESTAMP_FORMAT initialization parameter for information on the default
TIMESTAMP format and "Datetime Format Models " for information on specifying the
format mask

Chapter 7
TO_TIMESTAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 447 of 521

TO_TIMESTAMP_TZ
Syntax

TO_TIMESTAMP_TZ (char

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_TIMESTAMP_TZ converts char to a value of TIMESTAMP WITH TIME ZONE data type.

For char, you can specify any expression that evaluates to a character string of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 data type.

Note

This function does not convert character strings to TIMESTAMP WITH LOCAL TIME ZONE.
To do this, use a CAST function, as shown in CAST .

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify the value
this function returns if an error occurs while converting char to TIMESTAMP WITH TIME ZONE. This
clause has no effect if an error occurs while evaluating char. The return_value can be an
expression or a bind variable, and it must evaluate to a character string of CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 data type, or null. The function converts return_value to TIMESTAMP WITH
TIME ZONE using the same method it uses to convert char to TIMESTAMP WITH TIME ZONE. If
return_value cannot be converted to TIMESTAMP WITH TIME ZONE, then the function returns an
error.

The optional fmt specifies the format of char. If you omit fmt, then char must be in the default
format of the TIMESTAMP WITH TIME ZONE data type. The optional 'nlsparam' has the same
purpose in this function as in the TO_CHAR function for date conversion.

Chapter 7
TO_TIMESTAMP_TZ

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 448 of 521

Caution

It is good practice always to specify a format mask (fmt) with TO_TIMESTAMP_TZ, as
shown in the examples in the section that follow, if char is a literal or an expression that
evaluates to a known, fixed format, independent of the locale (NLS) configuration of
the session. When TO_TIMESTAMP_TZ is used without a format mask, the function is
valid only if char uses the same format as is determined by the NLS_TERRITORY and
NLS_TIMESTAMP_TZ_FORMAT parameters.

However, if char corresponds to user input provided by an application, for example, in a
bind variable, and the user input is expected to follow the locale (NLS) conventions set
for the session provided in the NLS_TIMESTAMP_TZ_FORMAT parameter, then the format
mask should not be specified.

Examples

The following example converts a character string to a value of TIMESTAMP WITH TIME ZONE:

SELECT TO_TIMESTAMP_TZ('1999-12-01 11:00:00 -8:00',
 'YYYY-MM-DD HH:MI:SS TZH:TZM') FROM DUAL;

TO_TIMESTAMP_TZ('1999-12-0111:00:00-08:00','YYYY-MM-DDHH:MI:SSTZH:TZM')
--
01-DEC-99 11.00.00.000000000 AM -08:00

The following example casts a null column in a UNION operation as TIMESTAMP WITH LOCAL
TIME ZONE using the sample tables oe.order_items and oe.orders:

SELECT order_id, line_item_id,
 CAST(NULL AS TIMESTAMP WITH LOCAL TIME ZONE) order_date
 FROM order_items
UNION
SELECT order_id, to_number(null), order_date
 FROM orders;

 ORDER_ID LINE_ITEM_ID ORDER_DATE
---------- ------------ -----------------------------------
 2354 1
 2354 2
 2354 3
 2354 4
 2354 5
 2354 6
 2354 7
 2354 8
 2354 9
 2354 10
 2354 11
 2354 12
 2354 13
 2354 14-JUL-00 05.18.23.234567 PM
 2355 1
 2355 2
. . .

Chapter 7
TO_TIMESTAMP_TZ

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 449 of 521

The following example returns the default value of NULL because the specified expression
cannot be converted to a TIMESTAMP WITH TIME ZONE value, due to an invalid month
specification:

SELECT TO_TIMESTAMP_TZ('1999-13-01 11:00:00 -8:00'
 DEFAULT NULL ON CONVERSION ERROR,
 'YYYY-MM-DD HH:MI:SS TZH:TZM') "Value"
 FROM DUAL;

TO_UTC_TIMESTAMP_TZ
Syntax

TO_UTC_TIMESTAMP_TZ (varchar)

Purpose

The SQL function TO_UTC_TIMESTAMP_TZ takes an ISO 8601 date format string as the varchar
input and returns an instance of SQL data type TIMESTAMP WITH TIMEZONE. It normalizes the
input to UTC time (Coordinated Universal Time, formerly Greenwich Mean Time). Unlike SQL
function TO_TIMESTAMP_TZ , the new function assumes that the input string uses the ISO 8601
date format, defaulting the time zone to UTC 0.

A typical use of this function would be to provide its output to SQL function SYS_EXTRACT_UTC,
obtaining a UTC time that is then passed as a SQL bind variable to SQL/JSON condition
JSON_EXISTS, to perform a time-stamp range comparison.

This is the allowed syntax for dates and times:

• Date (only): YYYY-MM-DD

• Date with time: YYYY-MM-DDThh:mm:ss[.s[s[s[s[s[s]]]]][Z|(+|-)hh:mm]

where:

• YYYY specifies the year, as four decimal digits.

• MM specifies the month, as two decimal digits, 00 to 12.

• DD specifies the day, as two decimal digits, 00 to 31.

• hh specifies the hour, as two decimal digits, 00 to 23.

• mm specifies the minutes, as two decimal digits, 00 to 59.

• ss[.s[s[s[s[s]]]]] specifies the seconds, as two decimal digits, 00 to 59, optionally followed by a
decimal point and 1 to 6 decimal digits (representing the fractional part of a second).

• Z specifies UTC time (time zone 0). (It can also be specified by +00:00, but not by –00:00.)

• (+|-)hh:mm specifies the time-zone as difference from UTC. (One of + or – is required.)

For a time value, the time-zone part is optional. If it is absent then UTC time is assumed.

No other ISO 8601 date-time syntax is supported. In particular:

• Negative dates (dates prior to year 1 BCE), which begin with a hyphen (e.g. –2018–10–
26T21:32:52), are not supported.

Chapter 7
TO_UTC_TIMESTAMP_TZ

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 450 of 521

• Hyphen and colon separators are required: so-called “basic” format, YYYYMMDDThhmmss, is
not supported.

• Ordinal dates (year plus day of year, calendar week plus day number) are not supported.

• Using more than four digits for the year is not supported.

Supported dates and times include the following:

• 2018–10–26T21:32:52

• 2018-10-26T21:32:52+02:00

• 2018-10-26T19:32:52Z

• 2018-10-26T19:32:52+00:00

• 2018-10-26T21:32:52.12679

Unsupported dates and times include the following:

• 2018-10-26T21:32 (if a time is specified then all of its parts must be present)

• 2018-10-26T25:32:52+02:00 (the hours part, 25, is out of range)

• 18-10-26T21:32 (the year is not specified fully)

Examples

SELECT TO_UTC_TIMESTAMP_TZ('1998-01-01') FROM DUAL;

TO_UTC_TIMESTAMP_TZ('1998-01-01')

01-JAN-98 12.00.00.000000000 AM +00:00

SELECT TO_UTC_TIMESTAMP_TZ('2000-01-02T12:34:56.789') FROM DUAL;

TO_UTC_TIMESTAMP_TZ('2000-01-02T12:34:56.789')

02-JAN-00 12.34.56.789000000 PM +00:00

SELECT TO_UTC_TIMESTAMP_TZ('2016-05-05T00:00:00.000Z') FROM DUAL;

TO_UTC_TIMESTAMP_TZ('2016-05-05T00:00:00.000Z')

05-MAY-16 12.00.00.000000000 AM +00:00

SELECT TO_UTC_TIMESTAMP_TZ('2016-05-05T02:04:35.4678Z') FROM DUAL;

TO_UTC_TIMESTAMP_TZ('2016-05-05T02:04:35.4678Z')

05-MAY-16 02.04.35.467800000 AM +00:00

See Also

• ISO 8601 standard

• ISO 8601 at Wikipedia

Chapter 7
TO_UTC_TIMESTAMP_TZ

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 451 of 521

https://en.wikipedia.org/wiki/ISO_8601

TO_VECTOR
TO_VECTOR is a constructor that takes a string of type VARCHAR2, CLOB, BLOB, or JSON as input,
converts it to a vector, and returns a vector as output. TO_VECTOR also takes another vector as
input, adjusts its format, and returns the adjusted vector as output. TO_VECTOR is synonymous
with VECTOR.

Syntax

TO_VECTOR (expr

, number_of_dimensions

, format

, storage_format

)

Parameters

• expr must evaluate to one of:

– A string (of character types or CLOB) that represents a vector.

– A VECTOR.

– A BLOB. The BLOB must represent the vector's binary bytes.

– A JSON array. All elements in the array must be numeric.

If expr is NULL, the result is NULL.

The string representation of the vector must be in the form of an array of non-null numbers
enclosed with a bracket and separated by commas, such as [1, 3.4, -05.60, 3e+4]. TO_VECTOR
converts a valid string representation of a vector to a vector in the format specified. If no
format is specified the default format is used.

• number_of_dimensions must be a numeric value that describes the number of dimensions of
the vector to construct. The number of dimensions may also be specified as an asterisk (*),
in which case the dimension is determined by expr.

• format must be one of the following tokens: INT8, FLOAT32, FLOAT64, BINARY, or *. This is the
target internal storage format of the vector. If * is used, the format will be FLOAT32.

Note that this behavior is different from declaring a vector column. When you declare a
column of type VECTOR(3, *), then all inserted vectors will be stored as is without a change
in format.

• storage_format must be one of the following tokens: DENSE, SPARSE, or *. If no storage format
is specified or if * is used, the following will be observed depending on the input type:

– Textual input: the storage format will default to DENSE.

– JSON input: the storage format will default to DENSE.

– VECTOR input: there is no default and the storage format is not changed.

– BLOB input: there is no default and the storage format is not changed.

Examples

SELECT TO_VECTOR('[34.6, 77.8]');

Chapter 7
TO_VECTOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 452 of 521

TO_VECTOR('[34.6,77.8]')

[3.45999985E+001,7.78000031E+001]

SELECT TO_VECTOR('[34.6, 77.8]', 2, FLOAT32);

TO_VECTOR('[34.6,77.8]',2,FLOAT32)

[3.45999985E+001,7.78000031E+001]

SELECT TO_VECTOR('[34.6, 77.8, -89.34]', 3, FLOAT32);

TO_VECTOR('[34.6,77.8,-89.34]',3,FLOAT32)

[3.45999985E+001,7.78000031E+001,-8.93399963E+001]

SELECT TO_VECTOR('[34.6, 77.8, -89.34]', 3, FLOAT32, DENSE);

TO_VECTOR('[34.6,77.8,-89.34]',3,FLOAT32,DENSE)

[3.45999985E+001,7.78000031E+001,-8.93399963E+001]

Note

• For applications using Oracle Client libraries prior to 23ai connected to Oracle
Database 23ai, use the TO_VECTOR function to insert vector data. For example:

INSERT INTO vecTab VALUES(TO_VECTOR('[1.1, 2.9, 3.14]'));

• Applications using Oracle Client 23ai libraries or Thin mode drivers can insert
vector data directly as a string or a CLOB. For example:

INSERT INTO vecTab VALUES ('[1.1, 2.9, 3.14]');

TO_YMINTERVAL
Syntax

TO_YMINTERVAL (’

+

–

years – months

ym_iso_format
’

DEFAULT return_value ON CONVERSION ERROR

)

Chapter 7
TO_YMINTERVAL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 453 of 521

ym_iso_format::=

–

P

years Y months M days D

T

hours H minutes M seconds

. frac_secs

S

Purpose

TO_YMINTERVAL converts its argument to a value of INTERVAL MONTH TO YEAR data type.

For the argument, you can specify any expression that evaluates to a character string of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 data type.

TO_YMINTERVAL accepts argument in one of the two formats:

• SQL interval format compatible with the SQL standard (ISO/IEC 9075)

• ISO duration format compatible with the ISO 8601:2004 standard

In the SQL format, years is an integer between 0 and 999999999, and months is an integer
between 0 and 11. Additional blanks are allowed between format elements.

In the ISO format, years and months are integers between 0 and 999999999. Days, hours,
minutes, seconds, and frac_secs are non-negative integers, and are ignored, if specified. No
blanks are allowed in the value. If you specify T, then you must specify at least one of the hours,
minutes, or seconds values.

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify the value
this function returns if an error occurs while converting the argument to an INTERVAL MONTH TO
YEAR type. This clause has no effect if an error occurs while evaluating the argument. The
return_value can be an expression or a bind variable, and it must evaluate to a character string of
CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. It can be in either the SQL format or ISO
format, and need not be in the same format as the function argument. If return_value cannot be
converted to an INTERVAL MONTH TO YEAR type, then the function returns an error.

Examples

The following example calculates for each employee in the sample hr.employees table a date one
year two months after the hire date:

SELECT hire_date, hire_date + TO_YMINTERVAL('01-02') "14 months"
 FROM employees;

HIRE_DATE 14 months
--------- ---------
17-JUN-03 17-AUG-04
21-SEP-05 21-NOV-06
13-JAN-01 13-MAR-02
20-MAY-08 20-JUL-09
21-MAY-07 21-JUL-08

. . .

Chapter 7
TO_YMINTERVAL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 454 of 521

The following example makes the same calculation using the ISO format:

SELECT hire_date, hire_date + TO_YMINTERVAL('P1Y2M') FROM employees;

The following example returns the default value because the specified expression cannot be
converted to an INTERVAL MONTH TO YEAR value:

SELECT TO_YMINTERVAL('1x-02'
 DEFAULT '00-00' ON CONVERSION ERROR) "Value"
 FROM DUAL;

Value

+000000000-00

TRANSLATE
Syntax

TRANSLATE (expr , from_string , to_string)

Purpose

TRANSLATE returns expr with all occurrences of each character in from_string replaced by its
corresponding character in to_string. Characters in expr that are not in from_string are not replaced.
The argument from_string can contain more characters than to_string. In this case, the extra
characters at the end of from_string have no corresponding characters in to_string. If these extra
characters appear in expr, then they are removed from the return value.

If a character appears multiple times in from_string, then the to_string mapping corresponding to
the first occurrence is used.

You cannot use an empty string for to_string to remove all characters in from_string from the return
value. Oracle Database interprets the empty string as null, and if this function has a null
argument, then it returns null. To remove all characters in from_string, concatenate another
character to the beginning of from_string and specify this character as the to_string. For example,
TRANSLATE(expr, 'x0123456789', 'x') removes all digits from expr.

TRANSLATE provides functionality related to that provided by the REPLACE function. REPLACE
lets you substitute a single string for another single string, as well as remove character strings.
TRANSLATE lets you make several single-character, one-to-one substitutions in one operation.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

• "Data Type Comparison Rules " for more information and REPLACE

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation TRANSLATE uses to compare
characters from expr with characters from from_string, and for the collation derivation
rules, which define the collation assigned to the character return value of
TRANSLATE

Chapter 7
TRANSLATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 455 of 521

Examples

The following statement translates a book title into a string that could be used (for example) as
a filename. The from_string contains four characters: a space, asterisk, slash, and apostrophe
(with an extra apostrophe as the escape character). The to_string contains only three
underscores. This leaves the fourth character in the from_string without a corresponding
replacement, so apostrophes are dropped from the returned value.

SELECT TRANSLATE('SQL*Plus User''s Guide', ' */''', '___') FROM DUAL;

TRANSLATE('SQL*PLUSU

SQL_Plus_Users_Guide

TRANSLATE ... USING
Syntax

TRANSLATE (char USING
CHAR_CS

NCHAR_CS
)

Purpose

TRANSLATE ... USING converts char into the character set specified for conversions between the
database character set and the national character set.

Note

The TRANSLATE ... USING function is supported primarily for ANSI compatibility. Oracle
recommends that you use the TO_CHAR and TO_NCHAR functions, as appropriate, for
converting data to the database or national character set. TO_CHAR and TO_NCHAR can
take as arguments a greater variety of data types than TRANSLATE ... USING, which
accepts only character data.

The char argument is the expression to be converted.

• Specifying the USING CHAR_CS argument converts char into the database character set. The
output data type is VARCHAR2.

• Specifying the USING NCHAR_CS argument converts char into the national character set. The
output data type is NVARCHAR2.

This function is similar to the Oracle CONVERT function, but must be used instead of CONVERT if
either the input or the output data type is being used as NCHAR or NVARCHAR2. If the input
contains UCS2 code points or backslash characters (\), then use the UNISTR function.

Chapter 7
TRANSLATE ... USING

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 456 of 521

See Also

• CONVERT and UNISTR

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of TRANSLATE ... USING

Examples

The following statements use data from the sample table oe.product_descriptions to show the use of
the TRANSLATE ... USING function:

CREATE TABLE translate_tab (char_col VARCHAR2(100),
 nchar_col NVARCHAR2(50));
INSERT INTO translate_tab
 SELECT NULL, translated_name
 FROM product_descriptions
 WHERE product_id = 3501;

SELECT * FROM translate_tab;

CHAR_COL NCHAR_COL
-------------------- --
. . .
 C pre SPNIX4.0 - Sys
 C pro SPNIX4.0 - Sys
 C til SPNIX4.0 - Sys
 C voor SPNIX4.0 - Sys
. . .

UPDATE translate_tab
 SET char_col = TRANSLATE (nchar_col USING CHAR_CS);

SELECT * FROM translate_tab;

CHAR_COL NCHAR_COL
------------------------- -------------------------
. . .
C per a SPNIX4.0 - Sys C per a SPNIX4.0 - Sys
C pro SPNIX4.0 - Sys C pro SPNIX4.0 - Sys
C for SPNIX4.0 - Sys C for SPNIX4.0 - Sys
C til SPNIX4.0 - Sys C til SPNIX4.0 - Sys
. . .

TREAT
Syntax

TREAT (expr AS

REF schema .

type

JSON
)

Chapter 7
TREAT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 457 of 521

Purpose

You can use the TREAT function to change the declared type of an expression.

Use the keywords AS JSON when you want the expression to return JSON data. This is useful
when you want to force some text to be interpreted as JSON data. For example, you can use it
to interpret a VARCHAR2 value of {} as an empty JSON object instead of a string.

You must have the EXECUTE object privilege on type to use this function.

• In expr AS JSON , expr is a SQL data type containing JSON, for example CLOB.

• In expr AS type , expr and type must be a user-defined object types, excluding top-level
collections.

• type must be some supertype or subtype of the declared type of expr. If the most specific
type of expr is type (or some subtype of type), then TREAT returns expr. If the most specific
type of expr is not type (or some subtype of type), then TREAT returns NULL.

• You can specify REF only if the declared type of expr is a REF type.

• If the declared type of expr is a REF to a source type of expr, then type must be some subtype
or supertype of the source type of expr. If the most specific type of DEREF(expr) is type (or a
subtype of type), then TREAT returns expr. If the most specific type of DEREF(expr) is not type
(or a subtype of type), then TREAT returns NULL.

See Also

"Data Type Comparison Rules " for more information

Examples

The following statement uses the table oe.persons, which is created in "Substitutable Table and
Column Examples". The example retrieves the salary attribute of all people in the persons table,
the value being null for instances of people that are not employees.

SELECT name, TREAT(VALUE(p) AS employee_t).salary salary
 FROM persons p;

NAME SALARY
------------------------- ----------
Bob
Joe 100000
Tim 1000

You can use the TREAT function to create an index on the subtype attributes of a substitutable
column. For an example, see "Indexing on Substitutable Columns: Examples".

Chapter 7
TREAT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 458 of 521

TRIM
Syntax

TRIM (

LEADING

TRAILING

BOTH

trim_character

trim_character

FROM

trim_source)

Purpose

TRIM enables you to trim leading or trailing characters (or both) from a character string. If
trim_character or trim_source is a character literal, then you must enclose it in single quotation
marks.

• If you specify LEADING, then Oracle Database removes any leading characters equal to
trim_character.

• If you specify TRAILING, then Oracle removes any trailing characters equal to trim_character.

• If you specify BOTH or none of the three, then Oracle removes leading and trailing
characters equal to trim_character.

• If you do not specify trim_character, then the default value is a blank space.

• If you specify only trim_source, then Oracle removes leading and trailing blank spaces.

• The function returns a value with data type VARCHAR2. The maximum length of the value is
the length of trim_source.

• If either trim_source or trim_character is null, then the TRIM function returns null.

Both trim_character and trim_source can be VARCHAR2 or any data type that can be implicitly
converted to VARCHAR2. The string returned is a VARCHAR2 (NVARCHAR2) data type if trim_source
is a CHAR or VARCHAR2 (NCHAR or NVARCHAR2) data type, and a CLOB if trim_source is a CLOB
data type. The return string is in the same character set as trim_source.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation TRIM uses to compare characters from
trim_character with characters from trim_source, and for the collation derivation rules, which
define the collation assigned to the character return value of this function

Examples

This example trims leading zeros from the hire date of the employees in the hr schema:

SELECT employee_id,
 TO_CHAR(TRIM(LEADING 0 FROM hire_date))
 FROM employees
 WHERE department_id = 60

Chapter 7
TRIM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 459 of 521

 ORDER BY employee_id;

EMPLOYEE_ID TO_CHAR(T
----------- ---------
 103 20-MAY-08
 104 21-MAY-07
 105 25-JUN-05
 106 5-FEB-06
 107 7-FEB-07

TRUNC (datetime)
Syntax

trunc_datetime::=

TRUNC (datetime

, fmt

)

Purpose

The TRUNC (datetime) function returns date with the time portion of the day truncated to the unit
specified by the format model fmt.

This function is not sensitive to the NLS_CALENDAR session parameter. It operates according to
the rules of the Gregorian calendar. The value returned is always of data type DATE, even if you
specify a different datetime data type for date. If you do not specify the second argument fmt,
then the default format model ‘DD' is used and the value returned is date truncated to the day
with a time of midnight.

The TRUNC and FLOOR functions are synonymous for dates and timestamps.

Refer to "CEIL, FLOOR, ROUND, and TRUNC Date Functions" for the permitted format
models to use in fmt.

Examples

The following example truncates a date:

SELECT TRUNC(TO_DATE('27-OCT-92','DD-MON-YY'), 'YEAR')
 "New Year" FROM DUAL;

New Year

01-JAN-92

Formatting Dates using TRUNC: Examples

In the following example, the TRUNC function returns the input date with the time portion of the
day truncated as specified in the format model:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:45:00' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual
)

Chapter 7
TRUNC (datetime)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 460 of 521

SELECT d "Original Date",
 trunc(d) "Nearest Day, Time Removed",
 trunc(d, 'ww') "Nearest Week",
 trunc(d, 'iw') "Start of Week",
 trunc(d, 'mm') "Start of Month",
 trunc(d, 'year') "Start of Year"
FROM dates;

In the following example, the input date values are truncated and the TO_CHAR function is used
to obtain the minute component of the truncated date values:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:45:00' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual
)
SELECT d "Original Date",
 trunc(d) "Date with Time Removed",
 to_char(trunc(d, 'mi'), 'dd-mon-yyyy hh24:mi') "Nearest Minute",
 trunc(d, 'iw') "Start of Week",
 trunc(d, 'mm') "Start of Month",
 trunc(d, 'year') "Start of Year"
FROM dates;

The following statement alters the date format for the current session:

ALTER SESSION SET nls_date_format = 'dd-mon-yyyy hh24:mi';

In the following example, the data is displayed in the new date format:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:44:32' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual
)
SELECT d "Original Date",
 trunc(d) "Date, time removed",
 to_char(trunc(d, 'mi'), 'dd-mon-yyyy hh24:mi') "Nearest Minute",
 trunc(d, 'iw') "Start of Week",
 trunc(d, 'mm') "Start of Month",
 trunc(d, 'year') "Start of Year"
FROM dates;

TRUNC (interval)
Syntax

TRUNC (interval

, fmt

)

Purpose

TRUNC(interval) returns the interval rounded down to the unit specified by the second argument
fmt, the format model .

Chapter 7
TRUNC (interval)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 461 of 521

The absolute value of TRUNC(interval) is never greater than the absolute value of interval. The
result precision is the same as the input precision, since there is no overflow issue for
TRUNC(interval).

For INTERVAL YEAR TO MONTH, fmt can only be year. The default fmt is year.

For INTERVAL DAY TO SECOND, fmt can be day, hour and minute. The default fmt is day. Note that
fmt does not support second.

See Also

Refer to CEIL, FLOOR, ROUND, and TRUNC Date Functions for the permitted format
models to use in fmt.

Examples

SELECT TRUNC(INTERVAL '+123-06' YEAR(3) TO MONTH) AS year_trunc;

YEAR_TRUNC

+123-00

SELECT TRUNC(INTERVAL '+99-11' YEAR(2) TO MONTH, 'YEAR') AS year_trunc;

YEAR_TRUNC

+99-00

SELECT TRUNC(INTERVAL '+4 12:42:10.222' DAY(2) TO SECOND(3), 'DD') AS day_trunc;

DAY_TRUNC

+04 00:00:00.000000

TRUNC (number)
Syntax

trunc_number::=

TRUNC (n1

, n2

)

Purpose

The TRUNC (number) function returns n1 truncated to n2 decimal places. If n2 is omitted, then n1
is truncated to 0 places. n2 can be negative to truncate (make zero) n2 digits left of the decimal
point.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If you omit n2, then the function returns the

Chapter 7
TRUNC (number)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 462 of 521

same data type as the numeric data type of the argument. If you include n2, then the function
returns NUMBER.

See Also

Table 2-9 for more information on implicit conversion

Examples

The following examples truncate numbers:

SELECT TRUNC(15.79,1) "Truncate" FROM DUAL;

 Truncate

 15.7

SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL;

 Truncate

 10

TZ_OFFSET
Syntax

TZ_OFFSET (

’ time_zone_name ’

’
+

–
hh : mi ’

SESSIONTIMEZONE

DBTIMEZONE

)

Purpose

TZ_OFFSET returns the time zone offset corresponding to the argument based on the date the
statement is executed. You can enter a valid time zone region name, a time zone offset from
UTC (which simply returns itself), or the keyword SESSIONTIMEZONE or DBTIMEZONE. For a
listing of valid values for time_zone_name, query the TZNAME column of the V$TIMEZONE_NAMES
dynamic performance view.

Note

Time zone region names are needed by the daylight saving feature. These names are
stored in two types of time zone files: one large and one small. One of these files is
the default file, depending on your environment and the release of Oracle Database
you are using. For more information regarding time zone files and names, see Oracle
Database Globalization Support Guide.

Chapter 7
TZ_OFFSET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 463 of 521

See Also

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of TZ_OFFSET

Examples

The following example returns the time zone offset of the US/Eastern time zone from UTC:

SELECT TZ_OFFSET('US/Eastern') FROM DUAL;

TZ_OFFS

-04:00

UID
Syntax

UID

Purpose

UID returns an integer that uniquely identifies the session user (the user who logged on).

See Also

USER to learn how Oracle Database determines the session user

Examples

The following example returns the UID of the session user:

SELECT UID FROM DUAL;

UNISTR
Syntax

UNISTR (string)

Purpose

UNISTR takes as its argument a text literal or an expression that resolves to character data and
returns it in the national character set. The national character set of the database can be either
AL16UTF16 or UTF8. UNISTR provides support for Unicode string literals by letting you specify

Chapter 7
UID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 464 of 521

the Unicode encoding value of characters in the string. This is useful, for example, for inserting
data into NCHAR columns.

The Unicode encoding value has the form '\xxxx' where 'xxxx' is the hexadecimal value of a
character in UCS-2 encoding format. Supplementary characters are encoded as two code
units, the first from the high-surrogates range (U+D800 to U+DBFF), and the second from the
low-surrogates range (U+DC00 to U+DFFF). To include the backslash in the string itself,
precede it with another backslash (\\).

For portability and data preservation, Oracle recommends that in the UNISTR string argument
you specify only ASCII characters and the Unicode encoding values.

See Also

• Oracle Database Globalization Support Guide for information on Unicode and
national character sets

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of UNISTR

Examples

The following example passes both ASCII characters and Unicode encoding values to the
UNISTR function, which returns the string in the national character set:

SELECT UNISTR('abc\00e5\00f1\00f6') FROM DUAL;

UNISTR

abcåñö

UPPER
Syntax

UPPER (char)

Purpose

UPPER returns char, with all letters uppercase. char can be any of the data types CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The return value is the same data type as
char. The database sets the case of the characters based on the binary mapping defined for the
underlying character set. For linguistic-sensitive uppercase, refer to NLS_UPPER .

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
UPPER

Chapter 7
UPPER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 465 of 521

Examples

The following example returns each employee's last name in uppercase:

SELECT UPPER(last_name) "Uppercase"
 FROM employees;

USER
Syntax

USER

Purpose

USER returns the name of the session user (the user who logged on). This may change during
the duration of a database session as Real Application Security sessions are attached or
detached. If a Real Application Security session is currently attached to the database session,
then it returns user XS$NULL.

This function returns a VARCHAR2 value.

Oracle Database compares values of this function with blank-padded comparison semantics.

In a distributed SQL statement, the UID and USER functions together identify the user on your
local database. You cannot use these functions in the condition of a CHECK constraint.

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
USER

Examples

The following example returns the session user and the user's UID:

SELECT USER, UID FROM DUAL;

USERENV
Syntax

USERENV (’ parameter ’)

Chapter 7
USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 466 of 521

Purpose

Note

USERENV is a legacy function that is retained for backward compatibility. Oracle
recommends that you use the SYS_CONTEXT function with the built-in USERENV
namespace for current functionality. See SYS_CONTEXT for more information.

USERENV returns information about the current session. This information can be useful for
writing an application-specific audit trail table or for determining the language-specific
characters currently used by your session. You cannot use USERENV in the condition of a
CHECK constraint. Table 7-12 describes the values for the parameter argument.

All calls to USERENV return VARCHAR2 data except for calls with the SESSIONID, SID, and
ENTRYID parameters, which return NUMBER.

Table 7-12 Parameters of the USERENV Function

Parameter Return Value

CLIENT_INF
O

CLIENT_INFO returns up to 64 bytes of user session information that can be stored by an
application using the DBMS_APPLICATION_INFO package.

Caution: Some commercial applications may be using this context value. Refer to the
applicable documentation for those applications to determine what restrictions they may
impose on use of this context area.

See Also: Oracle Database Security Guide for more information on application context,
CREATE CONTEXT, and SYS_CONTEXT

ENTRYID The current audit entry number. The audit entryid sequence is shared between fine-
grained audit records and regular audit records. You cannot use this attribute in distributed
SQL statements.

ISDBA ISDBA returns 'TRUE' if the user has been authenticated as having DBA privileges either
through the operating system or through a password file.

LANG LANG returns the ISO abbreviation for the language name, a shorter form than the existing
'LANGUAGE' parameter.

LANGUAGE LANGUAGE returns the language and territory used by the current session along with the
database character set in this form:

language_territory.characterset

SESSIONID SESSIONID returns the auditing session identifier. You cannot specify this parameter in
distributed SQL statements.

SID SID returns the session ID.

TERMINAL TERMINAL returns the operating system identifier for the terminal of the current session.
In distributed SQL statements, this parameter returns the identifier for your local session.
In a distributed environment, this parameter is supported only for remote SELECT
statements, not for remote INSERT, UPDATE, or DELETE operations.

Chapter 7
USERENV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 467 of 521

See Also

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
USERENV

Examples

The following example returns the LANGUAGE parameter of the current session:

SELECT USERENV('LANGUAGE') "Language" FROM DUAL;

Language

AMERICAN_AMERICA.WE8ISO8859P1

UUID
Syntax

UUID ()

UUID returns a version 4 variant 1 UUID as a RAW(16) value in the format:

xxxxxxxx-xxxx-4xxx-Bxxx-xxxxxxxxxxxx where x is a hexadecimal digit.

UUID can optionally take as input a version_specifier of NUMBER type. UUID(0) and UUID(4) are
equivalent to UUID() in that in both cases a version 4 variant 1 UUID is returned.

Versions other than 4 and 0 return an error.

Example

SELECT UUID() from dual;

The output is:

UUID()

848DC57A12AA4F81BFB42EA509879467

Note: RAW(16) is converted into printable form.

UUID_TO_RAW
Syntax

UUID_TO_RAW (uuid_string)

Chapter 7
UUID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 468 of 521

UUID_TO_RAW converts the input argument uuid_string into internal format of RAW(16) if it passes
the check of IS_UUID(uuid_string). If the validation fails, it returns an error.

uuid_string must be in the ASCII character set. The string may optionally enclosed in '{' and '}'. It
may also contain hyphens. If hyphens are present all four of the must be present and they
must in character positions 9, 14, 19, 24 after discarding any braces.

If the input is NULL, it returns NULL.

Example 1

SELECT UUID_TO_RAW ('{82e19137-f810-44ad-b26e-379d828408a1}') FROM DUAL;

The output is:

UUID_TO_RAW('{82E19137-F810-44AD

82E19137F81044ADB26E379D828408A1

Note that RAW(16) is converted into printable form.

Example 2

SELECT UUID_TO_RAW('{d20f8c3c-de13-4b95-8d25-eff3fbdb7e71}') FROM DUAL;

The output is:

ERROR at line 1:

ORA-62432: {d20f8c3c-de13-4b95-8d25-eff3fbdb7e71} is not a valid UUID value

VALIDATE_CONVERSION
Syntax

VALIDATE_CONVERSION (expr AS type_name

, fmt

, ’ nlsparam ’

)

Purpose

VALIDATE_CONVERSION determines whether expr can be converted to the specified data type. If
expr can be successfully converted, then this function returns 1; otherwise, this function returns
0. If expr evaluates to null, then this function returns 1. If an error occurs while evaluating expr,
then this function returns the error.

For expr, specify a SQL expression. The acceptable data types for expr, and the purpose of the
optional fmt and nlsparam arguments, depend on the data type you specify for type_name.

For type_name, specify the data type to which you want to convert expr. You can specify the
following data types:

• BINARY_DOUBLE

Chapter 7
VALIDATE_CONVERSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 469 of 521

If you specify BINARY_DOUBLE, then expr can be any expression that evaluates to a
character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, or a numeric value
of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE. The optional fmt and nlsparam
arguments serve the same purpose as for the TO_BINARY_DOUBLE function. Refer to
TO_BINARY_DOUBLE for more information.

• BINARY_FLOAT

If you specify BINARY_FLOAT, then expr can be any expression that evaluates to a character
string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, or a numeric value of type
NUMBER, BINARY_FLOAT, or BINARY_DOUBLE. The optional fmt and nlsparam arguments serve
the same purpose as for the TO_BINARY_FLOAT function. Refer to TO_BINARY_FLOAT for
more information.

• DATE

If you specify DATE, then expr can be any expression that evaluates to a character string of
CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The optional fmt and nlsparam arguments
serve the same purpose as for the TO_DATE function. Refer to TO_DATE for more
information.

• INTERVAL DAY TO SECOND

If you specify INTERVAL DAY TO SECOND, then expr can be any expression that evaluates to
a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, and must contain
a value in either the SQL interval format or the ISO duration format. The optional fmt and
nlsparam arguments do not apply for this data type. Refer to TO_DSINTERVAL for more
information on the SQL interval format and the ISO duration format.

• INTERVAL YEAR TO MONTH

If you specify INTERVAL YEAR TO MONTH, then expr can be any expression that evaluates to
a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, and must contain
a value in either the SQL interval format or the ISO duration format. The optional fmt and
nlsparam arguments do not apply for this data type. Refer to TO_YMINTERVAL for more
information on the SQL interval format and the ISO duration format.

• NUMBER

If you specify NUMBER, then expr can be any expression that evaluates to a character string
of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, a numeric value of type NUMBER,
BINARY_FLOAT, or BINARY_DOUBLE or value of type BOOLEAN. The optional fmt and nlsparam
arguments serve the same purpose as for the TO_NUMBER function. Refer to TO_NUMBER
for more information.

If expr is a value of type NUMBER, then the VALIDATE_CONVERSION function verifies that expr
is a legal numeric value. If expr is not a legal numeric value, then the function returns 0.
This enables you to identify corrupt numeric values in your database.

• TIMESTAMP

If you specify TIMESTAMP, then expr can be any expression that evaluates to a character
string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The optional fmt and nlsparam
arguments serve the same purpose as for the TO_TIMESTAMP function. If you omit fmt, then
expr must be in the default format of the TIMESTAMP data type, which is determined by the
NLS_TIMESTAMP_FORMAT initialization parameter. Refer to TO_TIMESTAMP for more
information.

• TIMESTAMP WITH TIME ZONE

If you specify TIMESTAMP WITH TIME ZONE, then expr can be any expression that evaluates
to a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The optional fmt

Chapter 7
VALIDATE_CONVERSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 470 of 521

and nlsparam arguments serve the same purpose as for the TO_TIMESTAMP_TZ function. If
you omit fmt, then expr must be in the default format of the TIMESTAMP WITH TIME ZONE data
type, which is determined by the NLS_TIMESTAMP_TZ_FORMAT initialization parameter. Refer
to TO_TIMESTAMP_TZ for more information.

• TIMESTAMP WITH LOCAL TIME ZONE

If you specify TIMESTAMP, then expr can be any expression that evaluates to a character
string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The optional fmt and nlsparam
arguments serve the same purpose as for the TO_TIMESTAMP function. If you omit fmt, then
expr must be in the default format of the TIMESTAMP data type, which is determined by the
NLS_TIMESTAMP_FORMAT initialization parameter. Refer to TO_TIMESTAMP for more
information.

• BOOLEAN

BOOLEAN is supported as a target type. It supports NUMBER type family, VARCHAR type
family, and BOOLEAN itself as input.

Examples

In each of the following statements, the specified value can be successfully converted to the
specified data type. Therefore, each of these statements returns a value of 1.

SELECT VALIDATE_CONVERSION(1000 AS BINARY_DOUBLE)
 FROM DUAL;

SELECT VALIDATE_CONVERSION('1234.56' AS BINARY_FLOAT)
 FROM DUAL;

SELECT VALIDATE_CONVERSION('July 20, 1969, 20:18' AS DATE,
 'Month dd, YYYY, HH24:MI', 'NLS_DATE_LANGUAGE = American')
 FROM DUAL;

SELECT VALIDATE_CONVERSION('200 00:00:00' AS INTERVAL DAY TO SECOND)
 FROM DUAL;

SELECT VALIDATE_CONVERSION('P1Y2M' AS INTERVAL YEAR TO MONTH)
 FROM DUAL;

SELECT VALIDATE_CONVERSION('$100,00' AS NUMBER,
 '$999D99', 'NLS_NUMERIC_CHARACTERS = '',.''')
 FROM DUAL;

SELECT VALIDATE_CONVERSION('29-Jan-02 17:24:00' AS TIMESTAMP,
 'DD-MON-YY HH24:MI:SS')
 FROM DUAL;

SELECT VALIDATE_CONVERSION('1999-12-01 11:00:00 -8:00'
 AS TIMESTAMP WITH TIME ZONE, 'YYYY-MM-DD HH:MI:SS TZH:TZM')
 FROM DUAL;

SELECT VALIDATE_CONVERSION('11-May-16 17:30:00'
 AS TIMESTAMP WITH LOCAL TIME ZONE, 'DD-MON-YY HH24:MI:SS')
 FROM DUAL;

The following statement returns 0, because the specified value cannot be converted to
BINARY_FLOAT:

SELECT VALIDATE_CONVERSION('$29.99' AS BINARY_FLOAT)
 FROM DUAL;

Chapter 7
VALIDATE_CONVERSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 471 of 521

The following statement returns 1, because the specified number format model enables the
value to be converted to BINARY_FLOAT:

SELECT VALIDATE_CONVERSION('$29.99' AS BINARY_FLOAT, '$99D99')
 FROM DUAL;

VALUE
Syntax

VALUE (correlation_variable)

Purpose

VALUE takes as its argument a correlation variable (table alias) associated with a row of an
object table and returns object instances stored in the object table. The type of the object
instances is the same type as the object table.

Examples

The following example uses the sample table oe.persons, which is created in "Substitutable Table
and Column Examples":

SELECT VALUE(p) FROM persons p;

VALUE(P)(NAME, SSN)

PERSON_T('Bob', 1234)
EMPLOYEE_T('Joe', 32456, 12, 100000)
PART_TIME_EMP_T('Tim', 5678, 13, 1000, 20)

See Also

"IS OF type Condition " for information on using IS OF type conditions with the VALUE
function

VAR_POP
Syntax

VAR_POP (expr)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Chapter 7
VALUE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 472 of 521

Purpose

VAR_POP returns the population variance of a set of numbers after discarding the nulls in this
set. You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion

If the function is applied to an empty set, then it returns null. The function makes the following
calculation:

SUM((expr - (SUM(expr) / COUNT(expr)))2) / COUNT(expr)

See Also

"About SQL Expressions " for information on valid forms of expr and "Aggregate
Functions "

Aggregate Example

The following example returns the population variance of the salaries in the employees table:

SELECT VAR_POP(salary) FROM employees;

VAR_POP(SALARY)

 15141964.9

Analytic Example

The following example calculates the cumulative population and sample variances in the sh.sales
table of the monthly sales in 1998:

SELECT t.calendar_month_desc,
 VAR_POP(SUM(s.amount_sold))
 OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
 VAR_SAMP(SUM(s.amount_sold))
 OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
 FROM sales s, times t
 WHERE s.time_id = t.time_id AND t.calendar_year = 1998
 GROUP BY t.calendar_month_desc
 ORDER BY t.calendar_month_desc, "Var_Pop", "Var_Samp";

CALENDAR Var_Pop Var_Samp
-------- ---------- ----------
1998-01 0
1998-02 2269111326 4538222653
1998-03 5.5849E+10 8.3774E+10
1998-04 4.8252E+10 6.4336E+10
1998-05 6.0020E+10 7.5025E+10

Chapter 7
VAR_POP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 473 of 521

1998-06 5.4091E+10 6.4909E+10
1998-07 4.7150E+10 5.5009E+10
1998-08 4.1345E+10 4.7252E+10
1998-09 3.9591E+10 4.4540E+10
1998-10 3.9995E+10 4.4439E+10
1998-11 3.6870E+10 4.0558E+10
1998-12 4.0216E+10 4.3872E+10

VAR_SAMP
Syntax

VAR_SAMP (expr)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

VAR_SAMP returns the sample variance of a set of numbers after discarding the nulls in this set.
You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion

If the function is applied to an empty set, then it returns null. The function makes the following
calculation:

(SUM(expr - (SUM(expr) / COUNT(expr)))2) / (COUNT(expr) - 1)

This function is similar to VARIANCE, except that given an input set of one element, VARIANCE
returns 0 and VAR_SAMP returns null.

See Also

"About SQL Expressions " for information on valid forms of expr and "Aggregate
Functions "

Chapter 7
VAR_SAMP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 474 of 521

Aggregate Example

The following example returns the sample variance of the salaries in the sample employees table.

SELECT VAR_SAMP(salary) FROM employees;

VAR_SAMP(SALARY)

 15284813.7

Analytic Example

Refer to the analytic example for VAR_POP .

VARIANCE
Syntax

VARIANCE (

DISTINCT

ALL

expr)

OVER
window_name

(analytic_clause)

See Also

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

VARIANCE returns the variance of expr. You can use it as an aggregate or analytic function.

Oracle Database calculates the variance of expr as follows:

• 0 if the number of rows in expr = 1

• VAR_SAMP if the number of rows in expr > 1

If you specify DISTINCT, then you can specify only the query_partition_clause of the analytic_clause.
The order_by_clause and windowing_clause are not allowed.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type as
the numeric data type of the argument.

See Also

Table 2-9 for more information on implicit conversion, "About SQL Expressions " for
information on valid forms of expr and "Aggregate Functions "

Aggregate Example

The following example calculates the variance of all salaries in the sample employees table:

Chapter 7
VARIANCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 475 of 521

SELECT VARIANCE(salary) "Variance"
 FROM employees;

 Variance

15283140.5

Analytic Example

The following example returns the cumulative variance of salary values in Department 30
ordered by hire date.

SELECT last_name, salary, VARIANCE(salary)
 OVER (ORDER BY hire_date) "Variance"
 FROM employees
 WHERE department_id = 30
 ORDER BY last_name, salary, "Variance";

LAST_NAME SALARY Variance
------------------------- ---------- ----------
Baida 2900 16283333.3
Colmenares 2500 11307000
Himuro 2600 13317000
Khoo 3100 31205000
Raphaely 11000 0
Tobias 2800 21623333.3

VECTOR
VECTOR is synonymous with TO_VECTOR.

Syntax

VECTOR (expr

, number_of_dimensions

, format

, storage_format

)

Purpose

See TO_VECTOR for semantics and examples.

Note

Applications using Oracle Client 23ai libraries or Thin mode drivers can insert vector
data directly as a string or a CLOB. For example:

INSERT INTO vecTab VALUES ('[1.1, 2.9, 3.14]');

Examples

SELECT VECTOR('[34.6, 77.8]');

Chapter 7
VECTOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 476 of 521

VECTOR('[34.6,77.8]')

[3.45999985E+001,7.78000031E+001]

SELECT VECTOR('[34.6, 77.8]', 2, FLOAT32);

VECTOR('[34.6,77.8]',2,FLOAT32)

[3.45999985E+001,7.78000031E+001]

SELECT VECTOR('[34.6, 77.8, -89.34]', 3, FLOAT32);

VECTOR('[34.6,77.8,-89.34]',3,FLOAT32)

[3.45999985E+001,7.78000031E+001,-8.93399963E+001]

VECTOR_CHUNKS
Use VECTOR_CHUNKS to split plain text into smaller chunks to generate vector embeddings that
can be used with vector indexes or hybrid vector indexes.

Syntax

VECTOR_CHUNKS (chunks_table_arguments)

chunks_table_arguments::=

text_document

chunking_spec

chunking_spec::=

BY chunking_mode MAX integer_literal OVERLAP integer_literal

SPLIT

BY

split_characters_list LANGUAGE language_name

NORMALIZE normalization_spec EXTENDED

Chapter 7
VECTOR_CHUNKS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 477 of 521

split_characters_list::=

NONE

BLANKLINE

NEWLINE

SPACE

RECURSIVELY

SENTENCE

CUSTOM custom_split_characters_list

custom_split_characters_list

(string_literal

,

)

normalization_spec

NONE

ALL

custom_normalization_spec

custom_normalization_spec

(normalization_mode

,

)

normalization_mode

WHITESPACE

PUNCTUATION

WIDECHAR

chunking_mode::=

WORDS

CHARS

CHARACTERS

VOCABULARY vocabulary_name

Chapter 7
VECTOR_CHUNKS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 478 of 521

Purpose

VECTOR_CHUNKS takes a character value as the text_document argument and splits it into chunks
using a process controlled by the chunking parameters given in the optional chunking_spec. The
chunks are returned as rows of a virtual relational table. Therefore, VECTOR_CHUNKS can only
appear in the FROM clause of a subquery.

The returned virtual table has the following columns:

• CHUNK_OFFSET of data type NUMBER is the position of each chunk in the source document,
relative to the start of the document, which has a position of 1.

• CHUNK_LENGTH of data type NUMBER is the length of each chunk.

• CHUNK_TEXT is a segment of text that has been split off from text_document.

The data type of the CHUNK_TEXT column and the length unit used by the values of
CHUNK_OFFSET and CHUNK_LENGTH depend on the data type of text_document as listed in the
following table:

Table 7-13 Input and Output Data Type Details

Input Data Type Output Data Type Offset and Length Unit

VARCHAR2 VARCHAR2 byte

CHAR VARCHAR2 byte

CLOB VARCHAR2 character

NVARCHAR2 NVARCHAR2 byte

NCHAR NVARCHAR2 byte

NCLOB NVARCHAR2 character

Note

• For more information about data types, see Data Types in the SQL Reference
Manual.

• The VARCHAR2 input data type is limited to 4000 bytes unless the MAX_STRING_SIZE
parameter is set to EXTENDED, which increases the limit to 32767.

Parameters

All chunking parameters are optional, and the default chunking specifications are automatically
applied to your chunk data.

When specifying chunking parameters for this API, ensure that you provide these parameters
only in the listed order.

Chapter 7
VECTOR_CHUNKS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 479 of 521

Table 7-14 Chunking Parameters Table

Parameter Description and Acceptable Values

BY Specifies the mode for splitting your data, that is, to split by counting the number of characters, words, or
vocabulary tokens.

Valid values:

• CHARACTERS (or CHARS):

Splits by counting the number of characters.
• WORDS:

Splits by counting the number of words.

Words are defined as sequences of alphabetic characters, sequences of digits, individual
punctuation marks, or symbols. For segmented languages without whitespace word boundaries
(such as Chinese, Japanese, or Thai), each native character is considered a word (that is, unigram).

• VOCABULARY:

Splits by counting the number of vocabulary tokens.

Vocabulary tokens are words or word pieces, recognized by the vocabulary of the tokenizer that your
embedding model uses. You can load your vocabulary file using the VECTOR_CHUNKS helper API
DBMS_VECTOR_CHAIN.CREATE_VOCABULARY.

Note: For accurate results, ensure that the chosen model matches the vocabulary file used for
chunking. If you are not using a vocabulary file, then ensure that the input length is defined within the
token limits of your model.

Default value: WORDS

MAX Specifies a limit on the maximum size of each chunk. This setting splits the input text at a fixed point
where the maximum limit occurs in the larger text. The units of MAX correspond to the BY mode, that is,
to split data when it reaches the maximum size limit of a certain number of characters, words, numbers,
punctuation marks, or vocabulary tokens.

Valid values:

• BY CHARACTERS: 50 to 4000 characters
• BY WORDS: 10 to 1000 words
• BY VOCABULARY: 10 to 1000 tokens

Default value: 100

Chapter 7
VECTOR_CHUNKS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 480 of 521

Table 7-14 (Cont.) Chunking Parameters Table

Parameter Description and Acceptable Values

SPLIT [BY] Specifies where to split the input text when it reaches the maximum size limit. This helps to keep related
data together by defining appropriate boundaries for chunks.

Valid values:

• NONE:

Splits at the MAX limit of characters, words, or vocabulary tokens.
• NEWLINE, BLANKLINE, and SPACE:

These are single-split character conditions that split at the last split character before the MAX value.

Use NEWLINE to split at the end of a line of text. Use BLANKLINE to split at the end of a blank line
(sequence of characters, such as two newlines). Use SPACE to split at the end of a blank space.

• RECURSIVELY:

This is a multiple-split character condition that breaks the input text using an ordered list of
characters (or sequences).

RECURSIVELY is predefined as BLANKLINE, NEWLINE, SPACE, NONE in this order:

1. If the input text is more than the MAX value, then split by the first split character.

2. If that fails, then split by the second split character.

3. And so on.

4. If no split characters exist, then split by MAX wherever it appears in the text.
• SENTENCE:

This is an end-of-sentence split condition that breaks the input text at a sentence boundary.

This condition automatically determines sentence boundaries by using knowledge of the input
language's sentence punctuation and contextual rules. This language-specific condition relies mostly
on end-of-sentence (EOS) punctuations and common abbreviations.

Contextual rules are based on word information, so this condition is only valid when splitting the text
by words or vocabulary (not by characters).

Note: This condition obeys the BY WORD and MAX settings, and thus may not determine accurate
sentence boundaries in some cases. For example, when a sentence is larger than the MAX value, it
splits the sentence at MAX. Similarly, it includes multiple sentences in the text only when they fit
within the MAX limit.

• CUSTOM:

Splits based on a custom list of characters strings, for example, markup tags. You can provide
custom sequences up to a limit of 16 split character strings, with a maximum length of 10 bytes
each.

Provide valid text literals as follows:

VECTOR_CHUNKS(c. doc, BY character SPLIT CUSTOM ('<html>' , '</html>')) vc

Default value: RECURSIVELY

OVERLAP Specifies the amount (as a positive integer literal or zero) of the preceding text that the chunk should
contain, if any. This helps in logically splitting up related text (such as a sentence) by including some
amount of the preceding chunk text.

The amount of overlap depends on how the maximum size of the chunk is measured (in characters,
words, or vocabulary tokens). The overlap begins at the specified SPLIT condition (for example, at
NEWLINE).

Valid value: 5% to 20% of MAX

Default value: 0

Chapter 7
VECTOR_CHUNKS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 481 of 521

Table 7-14 (Cont.) Chunking Parameters Table

Parameter Description and Acceptable Values

LANGUAGE Specifies the language of your input data.

This clause is important, especially when your text contains certain characters (for example, punctuations
or abbreviations) that may be interpreted differently in another language.

Valid values:

• NLS-supported language name or its abbreviation, as listed in Oracle Database Globalization
Support Guide.

• Custom language name or its abbreviation, as listed in Supported Languages and Data File
Locations. You use the DBMS_VECTOR_CHAIN.CREATE_LANG_DATA chunker helper API to load
language-specific data (abbreviation tokens) into the database, for your specified language.

You must use double quotation marks (") for any language name with spaces. For example:

LANGUAGE "simplified chinese"
For one-word language names, quotation marks are not needed. For example:

LANGUAGE american

Default value: NLS_LANGUAGE from session

NORMALIZE Automatically pre-processes or post-processes issues (such as multiple consecutive spaces and smart
quotes) that may arise when documents are converted into text. Oracle recommends you to use a
normalization mode to extract high-quality chunks.

Valid values:

• NONE:

Applies no normalization.
• ALL:

Normalizes multi-byte (Unicode) punctuation to standard single-byte.
• Applies all supported normalization modes: PUNCTUATION, WHITESPACE, and WIDECHAR.

– PUNCTUATION:

Converts quotes, dashes, and other punctuation characters supported in the character set of the
text to their common ASCII form. For example:

* U+2013 (En Dash) maps to U+002D (Hyphen-Minus)
* U+2018 (Left Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+2019 (Right Single Quotation Mark) maps to U+0027 (Apostrophe)
* U+201B (Single High-Reversed-9 Quotation Mark) maps to U+0027 (Apostrophe)

– WHITESPACE:

Minimizes whitespace by eliminating unnecessary characters.

For example, retain blanklines, but remove any extra newlines and interspersed spaces or tabs:
" \n \n " => "\n\n"

– WIDECHAR:

Normalizes wide, multi-byte digits and (a-z) letters to single-byte.

These are multi-byte equivalents for 0-9 and a-z A-Z, which can show up in Chinese, Japanese,
or Korean text.

Default value: NONE

EXTENDED Increases the output limit of a VARCHAR2 string to 32767 bytes, without requiring you to set the
MAX_STRING_SIZE parameter to EXTENDED.

If EXTENDED is present in chunking_spec, the maximum length of a CHUNK_TEXT column value is 32767
bytes. If it is absent, the maximum length is 4000 bytes if MAX_STRING_SIZE is set to STANDARD and
32767 bytes if MAX_STRING_SIZE is set to EXTENDED.

Chapter 7
VECTOR_CHUNKS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 482 of 521

Examples

VECTOR_CHUNKS can be called for a single character value provided in a character literal or a
bind variable as shown in the following example:

COLUMN chunk_offset HEADING Offset FORMAT 999
COLUMN chunk_length HEADING Len FORMAT 999
COLUMN chunk_text HEADING Text FORMAT a60

VARIABLE txt VARCHAR2(4000)
EXECUTE :txt := 'An example text value to split with VECTOR_CHUNKS, having over 10 words because the minimum MAX
value is 10';

SELECT * FROM VECTOR_CHUNKS(:txt BY WORDS MAX 10);

SELECT * FROM VECTOR_CHUNKS('Another example text value to split with VECTOR_CHUNKS, having over 10 words
because the minimum MAX value is 10' BY WORDS MAX 10);

To chunk values of a table column, the table needs to be joined with the VECTOR_CHUNKS call
using left correlation as shown in the following example:

CREATE TABLE documentation_tab (
 id NUMBER,
 text VARCHAR2(2000));

INSERT INTO documentation_tab
 VALUES(1, 'sample');

COMMIT;

SET LINESIZE 100;
SET PAGESIZE 20;
COLUMN pos FORMAT 999;
COLUMN siz FORMAT 999;
COLUMN txt FORMAT a60;

PROMPT SQL VECTOR_CHUNKS
SELECT D.id id, C.chunk_offset pos, C.chunk_length siz, C.chunk_text txt
FROM documentation_tab D, VECTOR_CHUNKS(D.text
 BY words
 MAX 200
 OVERLAP 10
 SPLIT BY recursively
 LANGUAGE american
 NORMALIZE all) C;

See Also

• For a complete set of examples on each of the chunking parameters listed in the
preceding table, see Explore Chunking Techniques and Examples of the AI Vector
Search User's Guide.

• To run an end-to-end example scenario using this function, see Convert Text to
Chunks With Custom Chunking Specifications of the AI Vector Search User's
Guide.

Chapter 7
VECTOR_CHUNKS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 483 of 521

VECTOR_DISTANCE
VECTOR_DISTANCE is the main function that you can use to calculate the distance between two
vectors.

Syntax

VECTOR_DISTANCE (expr1 , expr2

, metric

)

Purpose

VECTOR_DISTANCE takes two vectors as parameters. You can optionally specify a distance
metric to calculate the distance. If you do not specify a distance metric, then the default
distance metric is cosine. If the input vectors are BINARY vectors, the default metric is
hamming.

You can optionally use the following shorthand vector distance functions:

• L1_DISTANCE

• L2_DISTANCE

• COSINE_DISTANCE

• INNER_PRODUCT

• HAMMING_DISTANCE

• JACCARD_DISTANCE

All the vector distance functions take two vectors as input and return the distance between
them as a BINARY_DOUBLE.

Note the following caveats:

• If you specify a metric as the third argument, then that metric is used.

• If you do not specify a metric, then the following rules apply:

– If there is a single column referenced in expr1 and expr2 as in:
VECTOR_DISTANCE(vec1, :bind), and if there is a vector index defined on vec1, then the
metric used when defining the vector index is used.

If no vector index is defined on vec1, then the COSINE metric is used.

– If there are multiple columns referenced in expr1 and expr2 as in: VECTOR_DISTANCE(vec1,
vec2), or VECTOR_DISTANCE(vec1+vec2, :bind), then for all indexed columns, if their metrics
used in the definitions of the indexes are the same, then that metric is used.

On the other hand, if the indexed columns do not have a common metric, or none of
the columns have an index defined, then the COSINE metric is used.

• In a similarity search query, if expr1 or expr2 reference an indexed column and you specify a
distance metric that conflicts with the metric specified in the vector index, then the vector
index is not used and the metric you specified is used to perform an exact search.

• Approximate (index-based) searches can be done if only one column is referenced by
either expr1 or expr2, and this column has a vector index defined, and the metric that is

Chapter 7
VECTOR_DISTANCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 484 of 521

specified in the vector_distance matches the metric used in the definition of the vector
index.

Parameters

• expr1 and expr2 must evaluate to vectors and have the same format and number of
dimensions.

If you use JACCARD_DISTANCE or the JACCARD metric, then expr1 and expr2 must evaluate to
BINARY vectors.

• This function returns NULL if either expr1 or expr2 is NULL.

• metric must be one of the following tokens :

– COSINE metric is the default metric. It calculates the cosine distance between two
vectors.

– DOT metric calculates the negated dot product of two vectors. The INNER_PRODUCT
function calculates the dot product, as in the negation of this metric.

– EUCLIDEAN metric, also known as L2 distance, calculates the Euclidean distance
between two vectors.

– EUCLIDEAN_SQUARED metric, also called L2_SQUARED, is the Euclidean distance without
taking the square root.

– HAMMING metric calculates the hamming distance between two vectors by counting
the number dimensions that differ between the two vectors.

– MANHATTAN metric, also known as L1 distance or taxicab distance, calculates the
Manhattan distance between two vectors.

– JACCARD metric calculates the Jaccard distance. The two vectors used in the query
must be BINARY vectors.

Shorthand Operators for Distances

Syntax

• expr1 <-> expr2

<-> is the Euclidean distance operator: expr1 <-> expr2 is equivalent to L2_DISTANCE(expr1,
expr2) or VECTOR_DISTANCE(expr1, expr2, EUCLIDEAN)

• expr1 <=> expr2

<=> is the cosine distance operator: expr1 <=> expr2 is equivalent to COSINE_DISTANCE(expr1,
expr2) or VECTOR_DISTANCE(expr1, expr2, COSINE)

• expr1 <#> expr2

<#> is the negative dot product operator: expr1 <#> expr2 is equivalent to
-1*INNER_PRODUCT(expr1, expr2) or VECTOR_DISTANCE(expr1, expr2, DOT)

Examples Using Shorthand Operators for Distances

 '[1, 2]' <-> '[0,1]'

v1 <-> '[' || '1,2,3' || ']' is equivalent to v1 <-> '[1, 2, 3]'

v1 <-> '[1,2]' is equivalent to L2_DISTANCE(v1, '[1,2]')

v1 <=> v2 is equivalent to COSINE_DISTANCE(v1, v2)

 v1 <#> v2 is equivalent to -1*INNER_PRODUCT(v1, v2)

Chapter 7
VECTOR_DISTANCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 485 of 521

Examples

VECTOR_DISTANCE with metric EUCLIDEAN is equivalent to L2_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, EUCLIDEAN);

L2_DISTANCE(expr1, expr2);

VECTOR_DISTANCE with metric COSINE is equivalent to COSINE_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, COSINE);

COSINE_DISTANCE(expr1, expr2);

VECTOR_DISTANCE with metric DOT is equivalent to -1 * INNER_PRODUCT:

VECTOR_DISTANCE(expr1, expr2, DOT);

-1*INNER_PRODUCT(expr1, expr2);

VECTOR_DISTANCE with metric MANHATTAN is equivalent to L1_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, MANHATTAN);

L1_DISTANCE(expr1, expr2);

VECTOR_DISTANCE with metric HAMMING is equivalent to HAMMING_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, HAMMING);

HAMMING_DISTANCE(expr1, expr2);

VECTOR_DISTANCE with metric JACCARD is equivalent to JACCARD_DISTANCE:

VECTOR_DISTANCE(expr1, expr2, JACCARD);

JACCARD_DISTANCE(expr1, expr2);

L1_DISTANCE
L1_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
distance between two vectors. It takes two vectors as input and returns the distance between
them as a BINARY_DOUBLE.

Syntax

L1_DISTANCE (expr1 , expr2)

Chapter 7
VECTOR_DISTANCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 486 of 521

Parameters

• expr1 and expr2 must evaluate to vectors and have the same format and number of
dimensions.

• L1_DISTANCE returns NULL, if either expr1 or expr2 is NULL.

L2_DISTANCE
L2_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
distance between two vectors. It takes two vectors as input and returns the distance between
them as a BINARY_DOUBLE.

Syntax

L2_DISTANCE (expr1 , expr2)

Parameters

• expr1 and expr2 must evaluate to vectors that have the same format and number of
dimensions.

• L2_DISTANCE returns NULL, if either expr1 or expr2 is NULL.

COSINE_DISTANCE
COSINE_DISTANCE is a shorthand version of the VECTOR_DISTANCE function that calculates the
distance between two vectors. It takes two vectors as input and returns the distance between
them as a BINARY_DOUBLE.

Syntax

COSINE_DISTANCE (expr1 , expr2)

Parameters

• expr1 and expr2 must evaluate to vectors that have the same format and number of
dimensions.

• COSINE_DISTANCE returns NULL, if either expr1 or expr2 is NULL.

INNER_PRODUCT
INNER_PRODUCT calculates the inner product of two vectors. It takes two vectors as input and
returns the inner product as a BINARY_DOUBLE. INNER_PRODUCT(<expr1>, <expr2>) is equivalent to
-1 * VECTOR_DISTANCE(<expr1>, <expr2>, DOT).

Syntax

INNER_PRODUCT (expr1 , expr2)

Chapter 7
VECTOR_DISTANCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 487 of 521

Parameters

• expr1 and expr2 must evaluate to vectors that have the same format and number of
dimensions.

• INNER_PRODUCT returns NULL, if either expr1 or expr2 is NULL.

VECTOR_DIMS
VECTOR_DIMS returns the number of dimensions of a vector as a NUMBER. VECTOR_DIMS is
synonymous with VECTOR_DIMENSION_COUNT.

Syntax

VECTOR_DIMS (expr)

Purpose

Refer to VECTOR_DIMENSION_COUNT for full semantics.

VECTOR_DIMENSION_COUNT
VECTOR_DIMENSION_COUNT returns the number of dimensions of a vector as a NUMBER.

Syntax

VECTOR_DIMENSION_COUNT (expr)

Purpose

VECTOR_DIMENSION_COUNT is synonymous with VECTOR_DIMS.

Parameters

expr must evaluate to a vector.

If expr is NULL, NULL is returned.

Example

SELECT VECTOR_DIMENSION_COUNT(TO_VECTOR('[34.6, 77.8]', 2, FLOAT64));

VECTOR_DIMENSION_COUNT(TO_VECTOR('[34.6,77.8]',2,FLOAT64))
--
2

Chapter 7
VECTOR_DIMS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 488 of 521

VECTOR_DIMENSION_FORMAT
VECTOR_DIMENSION_FORMAT returns the storage format of the vector. It returns a VARCHAR2,
which can be one of the following values: INT8, FLOAT32, FLOAT64, or BINARY.

Syntax

VECTOR_DIMENSION_FORMAT (expr)

Parameters

expr must evaluate to a vector.

If expr is NULL, NULL is returned.

Examples

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8]', 2, FLOAT64));

VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6,77.8]',2,
--
FLOAT64

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8, 9]', 3, FLOAT32));

VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6,77.8,9]',
--
FLOAT32

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8, 9.10]', 3, INT8));

VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6,77.8,9.10
--
INT8

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[206, 32]', 16, BINARY));

VECTOR_DIMENSION_FORMAT(TO_VECTOR('[206,32]',16,BI
--
BINARY

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8, 9, 10]', 3, INT8));

SELECT VECTOR_DIMENSION_FORMAT(TO_VECTOR('[34.6, 77.8, 9, 10]', 3, INT8))
 *
ERROR at line 1:
ORA-51803: Vector dimension count must match the dimension count specified in
the column definition (expected 3 dimensions, specified 4 dimensions).

Chapter 7
VECTOR_DIMENSION_FORMAT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 489 of 521

VECTOR_EMBEDDING
Use VECTOR_EMBEDDING to generate a single vector embedding for different data types using
embedding or feature extraction machine learning models.

Syntax

VECTOR_EMBEDDING (

schema .

model_name USING mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS

alias

,

Purpose

The function accepts the following types as input:

VARCHAR2 for text embedding models. Oracle automatically converts any other type to
VARCHAR2 except for NCLOB, which is automatically converted to NVARCHAR2. Oracle does not
expect values whose textual representation exceeds the maximum size of a VARCHAR2, since
embedding models support only text that translates to a couple of thousand tokens. An
attribute with a type that has no conversion to VARCHAR2 results in a SQL compilation error.

For feature extraction models Oracle Machine Learning for SQL supports standard Oracle data
types except DATE, TIMESTAMP, RAW, and LONG. Oracle Machine Learning supports date type
(datetime, date, timestamp) for case_id, CLOB/BLOB/FILE that are interpreted as text columns,
and the following collection types as well:

• DM_NESTED_CATEGORICALS

• DM_NESTED_NUMERICALS

• DM_NESTED_BINARY_DOUBLES

• DM_NESTED_BINARY_FLOATS

The function always returns a VECTOR type, whose dimension is dictated by the model itself.
The model stores the dimension information in metadata within the data dictionary.

You can use VECTOR_EMBEDDING in SELECT clauses, in predicates, and as an operand for SQL
operations accepting a VECTOR type.

Chapter 7
VECTOR_EMBEDDING

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 490 of 521

Parameters

model_name refers to the name of the imported embedding model that implements the
embedding machine learning function.

mining_attribute_clause

• The mining_attribute_clause argument identifies the column attributes to use as predictors for
scoring. This is used as a convenience, as the embedding operator only accepts single
input value.

• USING * : all the relevant attributes present in the input (supplied in JSON metadata) are
used. This is used as a convenience. For an embedding model, the operator only takes
one input value as embedding models have only one column.

• USING expr [AS alias] [, expr [AS alias]] : all the relevant attributes present in the comma-
separated list of column expressions are used. This syntax is consistent with the syntax of
other machine learning operators. You may specify more than one attribute, however, the
embedding model only takes one relevant input. Therefore, you must specify a single
mining attribute.

Example

The following example generates vector embeddings with "hello" as the input, utilizing the
pretrained ONNX format model my_embedding_model.onnx imported into the Database. For
complete example, see Import ONNX Models and Generate Embeddings

SELECT TO_VECTOR(VECTOR_EMBEDDING(model USING 'hello' as data)) AS embedding;
--
[-9.76553112E-002,-9.89954844E-002,7.69771636E-003,-4.16760892E-003,-9.69305634E-002,
-3.01141385E-002,-2.63396613E-002,-2.98553891E-002,5.96499592E-002,4.13885899E-002,
5.32859489E-002,6.57707453E-002,-1.47056757E-002,-4.18472625E-002,4.1588001E-002,
-2.86354572E-002,-7.56499246E-002,-4.16395674E-003,-1.52879998E-001,6.60010576E-002,
-3.9013084E-002,3.15719917E-002,1.2428958E-002,-2.47651711E-002,-1.16851285E-001,
-7.82847106E-002,3.34323719E-002,8.03267583E-002,1.70483496E-002,-5.42407483E-002,
6.54291287E-002,-4.81935125E-003,6.11041225E-002,6.64106477E-003,-5.47

See Also

• Data Requirements for Machine Learning

• Vector Distance Metrics

VECTOR_NORM
VECTOR_NORM returns the Euclidean norm of a vector (SQRT(SUM((xi-yi)2))) as a
BINARY_DOUBLE. This value is also called magnitude or size and represents the Euclidean
distance between the vector and the origin.

Syntax

VECTOR_NORM (expr)

Chapter 7
VECTOR_NORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 491 of 521

Parameters

expr must evaluate to a vector.

If expr is NULL, NULL is returned.

Example

SELECT VECTOR_NORM(TO_VECTOR('[4, 3]', 2, FLOAT32));

VECTOR_NORM(TO_VECTOR('[4,3]',2,FLOAT32))

5.0E+000

VECTOR_SERIALIZE
VECTOR_SERIALIZE is synonymous with FROM_VECTOR.

Syntax

VECTOR_SERIALIZE (expr

RETURNING

CLOB

VARCHAR2

(size

BYTE

CHAR

)

FORMAT
SPARSE

DENSE

)

Purpose

See FROM_VECTOR for semantics and examples.

Examples

SELECT VECTOR_SERIALIZE(VECTOR('[1.1,2.2,3.3]',3,FLOAT32));

VECTOR_SERIALIZE(VECTOR('[1.1,2.2,3.3]',3,FLOAT32))

[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

SELECT VECTOR_SERIALIZE(VECTOR('[1.1, 2.2, 3.3]',3,FLOAT32) RETURNING VARCHAR2(1000));

VECTOR_SERIALIZE(VECTOR('[...]',3,FLOAT32)RETURNINGVARCHAR2(1000))
--
[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

SELECT VECTOR_SERIALIZE(VECTOR('[1.1, 2.2, 3.3]',3,FLOAT32) RETURNING CLOB);

Chapter 7
VECTOR_SERIALIZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 492 of 521

VECTOR_SERIALIZE(VECTOR('[1.1, 2.2, 3.3]',3,FLOAT32)RETURNINGCLOB)
--
[1.10000002E+000,2.20000005E+000,3.29999995E+000]

1 row selected.

SELECT VECTOR_SERIALIZE(TO_VECTOR('[5,[2,4],[1.0,2.0]]', 5, FLOAT64, SPARSE) RETURNING CLOB FORMAT
SPARSE);

VECTOR_SERIALIZE(TO_VECTOR('[5,[2,4],[1.0,2.0]]',5,FLOAT64,SPARSE)RETURNINGCLOBF
--
[5,[2,4],[1.0E+000,2.0E+000]]

1 row selected.

SELECT VECTOR_SERIALIZE(TO_VECTOR('[5,[2,4],[1.0,2.0]]', 5, FLOAT64, SPARSE) RETURNING CLOB FORMAT
DENSE);

VECTOR_SERIALIZE(TO_VECTOR('[5,[2,4],[1.0,2.0]]',5,FLOAT64,SPARSE)RETURNINGCLOBF
--
[0,1.0E+000,0,2.0E+000,0]

1 row selected.

VSIZE
Syntax

VSIZE (expr)

Purpose

VSIZE returns the number of bytes in the internal representation of expr. If expr is null, then this
function returns null.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also

"Data Type Comparison Rules " for more information

Examples

The following example returns the number of bytes in the last_name column of the employees in
department 10:

SELECT last_name, VSIZE (last_name) "BYTES"
 FROM employees
 WHERE department_id = 10
 ORDER BY employee_id;

Chapter 7
VSIZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 493 of 521

LAST_NAME BYTES
--------------- ----------
Whalen 6

WIDTH_BUCKET
Syntax

WIDTH_BUCKET (expr , min_value , max_value , num_buckets)

Purpose

WIDTH_BUCKET lets you construct equiwidth histograms, in which the histogram range is
divided into intervals that have identical size. (Compare this function with NTILE, which creates
equiheight histograms.) Ideally each bucket is a closed-open interval of the real number line.
For example, a bucket can be assigned to scores between 10.00 and 19.999 ... to indicate that
10 is included in the interval and 20 is excluded. This is sometimes denoted [10, 20).

For a given expression, WIDTH_BUCKET returns the bucket number into which the value of this
expression would fall after being evaluated.

• expr is the expression for which the histogram is being created. This expression must
evaluate to a numeric or datetime value or to a value that can be implicitly converted to a
numeric or datetime value. If expr evaluates to null, then the expression returns null.

• min_value and max_value are expressions that resolve to the end points of the acceptable
range for expr. Both of these expressions must also evaluate to numeric or datetime values,
and neither can evaluate to null.

• num_buckets is an expression that resolves to a constant indicating the number of buckets.
This expression must evaluate to a positive integer.

See Also

Table 2-9 for more information on implicit conversion

When needed, Oracle Database creates an underflow bucket numbered 0 and an overflow
bucket numbered num_buckets+1. These buckets handle values less than min_value and more than
max_value and are helpful in checking the reasonableness of endpoints.

Examples

The following example creates a ten-bucket histogram on the credit_limit column for customers
in Switzerland in the sample table oe.customers and returns the bucket number ("Credit Group")
for each customer. Customers with credit limits greater than or equal to the maximum value are
assigned to the overflow bucket, 11:

SELECT customer_id, cust_last_name, credit_limit,
 WIDTH_BUCKET(credit_limit, 100, 5000, 10) "Credit Group"
 FROM customers WHERE nls_territory = 'SWITZERLAND'
 ORDER BY "Credit Group", customer_id, cust_last_name, credit_limit;

CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT Credit Group
----------- -------------------- ------------ ------------

Chapter 7
WIDTH_BUCKET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 494 of 521

 825 Dreyfuss 500 1
 826 Barkin 500 1
 827 Siegel 500 1
 853 Palin 400 1
 843 Oates 700 2
 844 Julius 700 2
 835 Eastwood 1200 3
 836 Berenger 1200 3
 837 Stanton 1200 3
 840 Elliott 1400 3
 841 Boyer 1400 3
 842 Stern 1400 3
 848 Olmos 1800 4
 849 Kaurusmdki 1800 4
 828 Minnelli 2300 5
 829 Hunter 2300 5
 850 Finney 2300 5
 851 Brown 2300 5
 852 Tanner 2300 5
 830 Dutt 3500 7
 831 Bel Geddes 3500 7
 832 Spacek 3500 7
 833 Moranis 3500 7
 834 Idle 3500 7
 838 Nicholson 3500 7
 839 Johnson 3500 7
 845 Fawcett 5000 11
 846 Brando 5000 11
 847 Streep 5000 11

XMLAGG
Syntax

XMLAGG (XMLType_instance

order_by_clause

)

Purpose

XMLAgg is an aggregate function. It takes a collection of XML fragments and returns an
aggregated XML document. Any arguments that return null are dropped from the result.

XMLAgg is similar to SYS_XMLAgg except that XMLAgg returns a collection of nodes but it does
not accept formatting using the XMLFormat object. Also, XMLAgg does not enclose the output in
an element tag as does SYS_XMLAgg.

Within the order_by_clause, Oracle Database does not interpret number literals as column
positions, as it does in other uses of this clause, but simply as number literals.

See Also

XMLELEMENT and SYS_XMLAGG

Chapter 7
XMLAGG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 495 of 521

Examples

The following example produces a Department element containing Employee elements with
employee job ID and last name as the contents of the elements:

SELECT XMLELEMENT("Department",
 XMLAGG(XMLELEMENT("Employee",
 e.job_id||' '||e.last_name)
 ORDER BY last_name))
 as "Dept_list"
 FROM employees e
 WHERE e.department_id = 30;

Dept_list

<Department>
 <Employee>PU_CLERK Baida</Employee>
 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Tobias</Employee>
</Department>

The result is a single row, because XMLAgg aggregates the rows. You can use the GROUP BY
clause to group the returned set of rows into multiple groups:

SELECT XMLELEMENT("Department",
 XMLAGG(XMLELEMENT("Employee", e.job_id||' '||e.last_name)))
 AS "Dept_list"
 FROM employees e
 GROUP BY e.department_id;

Dept_list

<Department>
 <Employee>AD_ASST Whalen</Employee>
</Department>

<Department>
 <Employee>MK_MAN Hartstein</Employee>
 <Employee>MK_REP Fay</Employee>
</Department>

<Department>
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_CLERK Tobias</Employee>
 <Employee>PU_CLERK Baida</Employee>
 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
</Department>
. . .

XMLCAST
Syntax

XMLCAST (value_expression AS datatype)

Chapter 7
XMLCAST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 496 of 521

(datatype::=)

Purpose

XMLCast casts value_expression to the scalar SQL data type specified by datatype. The value_expression
argument is a SQL expression that is evaluated.

datatype

The datatype argument can be of data type NUMBER, VARCHAR2, VARCHAR, CHAR, CLOB, BLOB,
REF XMLTYPE, and any of the datetime data types.

BLOB, or CLOB with options reference or value. The default is reference.

See Also

• Oracle XML DB Developer's Guide for more information on uses for this function
and examples

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
XMLCAST when it is a character value

XMLCDATA
Syntax

XMLCDATA (value_expr)

Purpose

XMLCData generates a CDATA section by evaluating value_expr. The value_expr must resolve to a
string. The value returned by the function takes the following form:

<![CDATA[string]]>

If the resulting value is not a valid XML CDATA section, then the function returns an error.The
following conditions apply to XMLCData:

• The value_expr cannot contain the substring]]>.

• If value_expr evaluates to null, then the function returns null.

See Also

Oracle XML DB Developer's Guide for more information on this function

Examples

The following statement uses the DUAL table to illustrate the syntax of XMLCData:

SELECT XMLELEMENT("PurchaseOrder",
 XMLAttributes(dummy as "pono"),

Chapter 7
XMLCDATA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 497 of 521

 XMLCdata('<!DOCTYPE po_dom_group [
 <!ELEMENT po_dom_group(student_name)*>
 <!ELEMENT po_purch_name (#PCDATA)>
 <!ATTLIST po_name po_no ID #REQUIRED>
 <!ATTLIST po_name trust_1 IDREF #IMPLIED>
 <!ATTLIST po_name trust_2 IDREF #IMPLIED>
]>')) "XMLCData" FROM DUAL;

XMLCData
--
<PurchaseOrder pono="X"><![CDATA[
<!DOCTYPE po_dom_group [
 <!ELEMENT po_dom_group(student_name)*>
 <!ELEMENT po_purch_name (#PCDATA)>
 <!ATTLIST po_name po_no ID #REQUIRED>
 <!ATTLIST po_name trust_1 IDREF #IMPLIED>
 <!ATTLIST po_name trust_2 IDREF #IMPLIED>
]>
]]>
</PurchaseOrder>

XMLCOLATTVAL
Syntax

XMLCOLATTVAL (value_expr

AS
c_alias

EVALNAME value_expr

,

)

Purpose

XMLColAttVal creates an XML fragment and then expands the resulting XML so that each XML
fragment has the name column with the attribute name.

You can use the AS clause to change the value of the name attribute to something other than the
column name. You can do this by specifying c_alias, which is a string literal, or by specifying
EVALNAME value_expr. In the latter case, the value expression is evaluated and the result, which
must be a string literal, is used as the alias. The alias can be up to 4000 characters if the
initialization parameter MAX_STRING_SIZE = STANDARD, and 32767 characters if
MAX_STRING_SIZE = EXTENDED. See "Extended Data Types" for more information.

You must specify a value for value_expr. If value_expr is null, then no element is returned.

Restriction on XMLColAttVal

You cannot specify an object type column for value_expr.

Examples

The following example creates an Emp element for a subset of employees, with nested
employee_id, last_name, and salary elements as the contents of Emp. Each nested element is named
column and has a name attribute with the column name as the attribute value:

SELECT XMLELEMENT("Emp",
 XMLCOLATTVAL(e.employee_id, e.last_name, e.salary)) "Emp Element"

Chapter 7
XMLCOLATTVAL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 498 of 521

 FROM employees e
 WHERE employee_id = 204;

Emp Element
--
<Emp>
 <column name="EMPLOYEE_ID">204</column>
 <column name="LAST_NAME">Baer</column>
 <column name="SALARY">10000</column>
</Emp>

Refer to the example for XMLFOREST to compare the output of these two functions.

XMLCOMMENT
Syntax

XMLCOMMENT (value_expr)

Purpose

XMLComment generates an XML comment using an evaluated result of value_expr. The value_expr
must resolve to a string. It cannot contain two consecutive dashes (hyphens). The value
returned by the function takes the following form:

<!--string-->

If value_expr resolves to null, then the function returns null.

See Also

Oracle XML DB Developer's Guide for more information on this function

Examples

The following example uses the DUAL table to illustrate the XMLComment syntax:

SELECT XMLCOMMENT('OrderAnalysisComp imported, reconfigured, disassembled')
 AS "XMLCOMMENT" FROM DUAL;

XMLCOMMENT
--
<!--OrderAnalysisComp imported, reconfigured, disassembled-->

XMLCONCAT
Syntax

XMLCONCAT (XMLType_instance

,

)

Chapter 7
XMLCOMMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 499 of 521

Purpose

XMLConcat takes as input a series of XMLType instances, concatenates the series of elements for
each row, and returns the concatenated series. XMLConcat is the inverse of XMLSequence.

Null expressions are dropped from the result. If all the value expressions are null, then the
function returns null.

See Also

XMLSEQUENCE

Examples

The following example creates XML elements for the first and last names of a subset of
employees, and then concatenates and returns those elements:

SELECT XMLCONCAT(XMLELEMENT("First", e.first_name),
 XMLELEMENT("Last", e.last_name)) AS "Result"
 FROM employees e
 WHERE e.employee_id > 202;

Result
--
<First>Susan</First>
<Last>Mavris</Last>

<First>Hermann</First>
<Last>Baer</Last>

<First>Shelley</First>
<Last>Higgins</Last>

<First>William</First>
<Last>Gietz</Last>

4 rows selected.

XMLDIFF
Syntax

XMLDiff

(XMLType_document , XMLType_document

, integer , string

)

Purpose

The XMLDiff function is the SQL interface for the XmlDiff C API. This function compares two
XML documents and captures the differences in XML conforming to an Xdiff schema. The diff
document is returned as an XMLType document.

Chapter 7
XMLDIFF

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 500 of 521

• For the first two arguments, specify the names of two XMLType documents.

• For the integer, specify a number representing the hashLevel for a C function XmlDiff. If you
do not want hashing, set this argument to 0 or omit it entirely. If you do not want hashing,
but you want to specify flags, then you must set this argument to 0.

• For string, specify the flags that control the behavior of the function. These flags are
specified by one or more names separated by semicolon. The names are the same as the
names of constants for XmlDiff function.

See Also

Oracle XML Developer's Kit Programmer's Guide for more information on using this
function, including examples, and Oracle Database XML C API Reference for
information on the XML APIs for C

Examples

The following example compares two XML documents and returns the difference as an
XMLType document:

SELECT XMLDIFF(
XMLTYPE('<?xml version="1.0"?>
<bk:book xmlns:bk="http://example.com">
 <bk:tr>
 <bk:td>
 <bk:chapter>
 Chapter 1.
 </bk:chapter>
 </bk:td>
 <bk:td>
 <bk:chapter>
 Chapter 2.
 </bk:chapter>
 </bk:td>
 </bk:tr>
</bk:book>'),
XMLTYPE('<?xml version="1.0"?>
<bk:book xmlns:bk="http://example.com">
 <bk:tr>
 <bk:td>
 <bk:chapter>
 Chapter 1.
 </bk:chapter>
 </bk:td>
 <bk:td/>
 </bk:tr>
</bk:book>')
)
FROM DUAL;

Chapter 7
XMLDIFF

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 501 of 521

XMLELEMENT
Syntax

XMLELEMENT (

ENTITYESCAPING

NOENTITYESCAPING
NAME

identifier

EVALNAME value_expr

, XML_attributes_clause , value_expr

AS

c_alias

)

XML_attributes_clause::=

XMLATTRIBUTES

(

ENTITYESCAPING

NOENTITYESCAPING

SCHEMACHECK

NOSCHEMACHECK

value_expr

AS

c_alias

AS EVALNAME value_expr

,

)

Purpose

XMLElement takes an element name for identifier or evaluates an element name for EVALNAME
value_expr, an optional collection of attributes for the element, and arguments that make up the
content of the element. It returns an instance of type XMLType. XMLElement is similar to
SYS_XMLGen except that XMLElement can include attributes in the XML returned, but it does not
accept formatting using the XMLFormat object.

The XMLElement function is typically nested to produce an XML document with a nested
structure, as in the example in the following section.

For an explanation of the ENTITYESCAPING and NONENTITYESCAPING keywords, refer to Oracle
XML DB Developer's Guide.

You must specify a value for Oracle Database to use an the enclosing tag. You can do this by
specifying identifier, which is a string literal, or by specifying EVALNAME value_expr. In the latter
case, the value expression is evaluated and the result, which must be a string literal, is used as
the identifier. The identifier does not have to be a column name or column reference. It cannot

Chapter 7
XMLELEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 502 of 521

be an expression or null. It can be up to 4000 characters if the initialization parameter
MAX_STRING_SIZE = STANDARD, and 32767 characters if MAX_STRING_SIZE = EXTENDED.

The objects that make up the element content follow the XMLATTRIBUTES keyword. In the
XML_attributes_clause, if the value_expr is null, then no attribute is created for that value expression.
The type of value_expr cannot be an object type or collection. If you specify an alias for value_expr
using the AS clause, then the c_alias or the evaluated value expression (EVALNAME value_expr)
can be up to 4000 characters if the initialization parameter MAX_STRING_SIZE = STANDARD, and
32767 characters if MAX_STRING_SIZE = EXTENDED.

See Also

"Extended Data Types" for more information on MAX_STRING_SIZE

For the optional value_expr that follows the XML_attributes_clause in the diagram:

• If value_expr is a scalar expression, then you can omit the AS clause, and Oracle uses the
column name as the element name.

• If value_expr is an object type or collection, then the AS clause is mandatory, and Oracle uses
the specified c_alias as the enclosing tag.

• If value_expr is null, then no element is created for that value expression.

See Also

SYS_XMLGEN

Examples

The following example produces an Emp element for a series of employees, with nested
elements that provide the employee's name and hire date:

SELECT XMLELEMENT("Emp", XMLELEMENT("Name",
 e.job_id||' '||e.last_name),
 XMLELEMENT("Hiredate", e.hire_date)) as "Result"
 FROM employees e WHERE employee_id > 200;

Result

<Emp>
 <Name>MK_MAN Hartstein</Name>
 <Hiredate>2004-02-17</Hiredate>
</Emp>

<Emp>
 <Name>MK_REP Fay</Name>
 <Hiredate>2005-08-17</Hiredate>
</Emp>

<Emp>
 <Name>HR_REP Mavris</Name>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

<Emp>

Chapter 7
XMLELEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 503 of 521

 <Name>PR_REP Baer</Name>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

<Emp>
 <Name>AC_MGR Higgins</Name>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

<Emp>
 <Name>AC_ACCOUNT Gietz</Name>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

6 rows selected.

The following similar example uses the XMLElement function with the XML_attributes_clause to
create nested XML elements with attribute values for the top-level element:

SELECT XMLELEMENT("Emp",
 XMLATTRIBUTES(e.employee_id AS "ID", e.last_name),
 XMLELEMENT("Dept", e.department_id),
 XMLELEMENT("Salary", e.salary)) AS "Emp Element"
 FROM employees e
 WHERE e.employee_id = 206;

Emp Element

<Emp ID="206" LAST_NAME="Gietz">
 <Dept>110</Dept>
 <Salary>8300</Salary>
</Emp>

Notice that the AS identifier clause was not specified for the last_name column. As a result, the
XML returned uses the column name last_name as the default.

Finally, the next example uses a subquery within the XML_attributes_clause to retrieve information
from another table into the attributes of an element:

SELECT XMLELEMENT("Emp", XMLATTRIBUTES(e.employee_id, e.last_name),
 XMLELEMENT("Dept", XMLATTRIBUTES(e.department_id,
 (SELECT d.department_name FROM departments d
 WHERE d.department_id = e.department_id) as "Dept_name")),
 XMLELEMENT("salary", e.salary),
 XMLELEMENT("Hiredate", e.hire_date)) AS "Emp Element"
 FROM employees e
 WHERE employee_id = 205;

Emp Element

<Emp EMPLOYEE_ID="205" LAST_NAME="Higgins">
 <Dept DEPARTMENT_ID="110" Dept_name="Accounting"/>
 <salary>12008</salary>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

Chapter 7
XMLELEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 504 of 521

XMLEXISTS
Syntax

XMLEXISTS (XQuery_string

XML_passing_clause

)

XML_passing_clause::=

PASSING

BY VALUE

expr

AS identifier

,

Purpose

XMLExists checks whether a given XQuery expression returns a nonempty XQuery sequence. If
so, the function returns TRUE; otherwise, it returns FALSE. The argument XQuery_string is a literal
string, but it can contain XQuery variables that you bind using the XML_passing_clause.

The expr in the XML_passing_clause is an expression returning an XMLType or an instance of a SQL
scalar data type that is used as the context for evaluating the XQuery expression. You can
specify only one expr in the PASSING clause without an identifier. The result of evaluating each
expr is bound to the corresponding identifier in the XQuery_string. If any expr that is not followed by
an AS clause, then the result of evaluating that expression is used as the context item for
evaluating the XQuery_string. If expr is a relational column, then its declared collation is ignored by
Oracle XML DB.

See Also

Oracle XML DB Developer's Guide for more information on uses for this function and
examples

XMLFOREST
Syntax

XMLFOREST (value_expr

AS
c_alias

EVALNAME value_expr

,

)

Chapter 7
XMLEXISTS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 505 of 521

Purpose

XMLForest converts each of its argument parameters to XML, and then returns an XML fragment
that is the concatenation of these converted arguments.

• If value_expr is a scalar expression, then you can omit the AS clause, and Oracle Database
uses the column name as the element name.

• If value_expr is an object type or collection, then the AS clause is mandatory, and Oracle uses
the specified expression as the enclosing tag.

You can do this by specifying c_alias, which is a string literal, or by specifying EVALNAME
value_expr. In the latter case, the value expression is evaluated and the result, which must
be a string literal, is used as the identifier. The identifier does not have to be a column
name or column reference. It cannot be an expression or null. It can be up to 4000
characters if the initialization parameter MAX_STRING_SIZE = STANDARD, and 32767
characters if MAX_STRING_SIZE = EXTENDED. See "Extended Data Types" for more
information.

• If value_expr is null, then no element is created for that value_expr.

Examples

The following example creates an Emp element for a subset of employees, with nested
employee_id, last_name, and salary elements as the contents of Emp:

SELECT XMLELEMENT("Emp",
 XMLFOREST(e.employee_id, e.last_name, e.salary))
 "Emp Element"
 FROM employees e WHERE employee_id = 204;

Emp Element
--
<Emp>
 <EMPLOYEE_ID>204</EMPLOYEE_ID>
 <LAST_NAME>Baer</LAST_NAME>
 <SALARY>10000</SALARY>
</Emp>

Refer to the example for XMLCOLATTVAL to compare the output of these two functions.

XMLISVALID
Syntax

XMLISVALID (XMLType_instance

, XMLSchema_URL

, element

)

Purpose

XMLISVALID checks whether the input XMLType_instance conforms to the relevant XML schema. It
does not change the validation status recorded for XMLType_instance.

If the input XML document is determined to be valid, then XMLISVALID returns 1; otherwise, it
returns 0. If you provide XMLSchema_URL as an argument, then that is used to check

Chapter 7
XMLISVALID

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 506 of 521

conformance. Otherwise, the XML schema specified by the XML document is used to check
conformance.

• XMLType_instance is the XMLType instance to be validated.

• XMLSchema_URL is the URL of the XML schema against which to check conformance.

• element is the element of the specified schema against which to check conformance. Use
this if you have an XML schema that defines more than one top level element, and you
want to check conformance against a specific one of those elements.

See Also

Oracle XML DB Developer's Guide for information on the use of this function, including
examples

XMLPARSE
Syntax

XMLPARSE (
DOCUMENT

CONTENT
value_expr

WELLFORMED

)

Purpose

XMLParse parses and generates an XML instance from the evaluated result of value_expr. The
value_expr must resolve to a string. If value_expr resolves to null, then the function returns null.

• If you specify DOCUMENT, then value_expr must resolve to a singly rooted XML document.

• If you specify CONTENT, then value_expr must resolve to a valid XML value.

• When you specify WELLFORMED, you are guaranteeing that value_expr resolves to a well-
formed XML document, so the database does not perform validity checks to ensure that
the input is well formed.

See Also

Oracle XML DB Developer's Guide for more information on this function

Examples

The following example uses the DUAL table to illustrate the syntax of XMLParse:

SELECT XMLPARSE(CONTENT '124 <purchaseOrder poNo="12435">
 <customerName> Acme Enterprises</customerName>
 <itemNo>32987457</itemNo>
 </purchaseOrder>'
WELLFORMED) AS PO FROM DUAL;

PO

Chapter 7
XMLPARSE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 507 of 521

124 <purchaseOrder poNo="12435">
 <customerName> Acme Enterprises</customerName>
 <itemNo>32987457</itemNo>
 </purchaseOrder>

XMLPATCH
Syntax

XMLPatch (XMLType_document , XMLType_document)

Purpose

The XMLPatch function is the SQL interface for the XmlPatch C API. This function patches an
XML document with the changes specified. A patched XMLType document is returned.

• For the first argument, specify the name of the input XMLType document.

• For the second argument, specify the XMLType document containing the changes to be
applied to the first document. The changes should conform to the Xdiff XML schema. You
can supply the XML output from the Oracle XML Developer's Kit Java method diff().

See Also

Oracle XML Developer's Kit Programmer's Guide for more information on using this
function, including examples, and Oracle Database XML C API Reference for
information on the XML APIs for C

Examples

The following example patches an XMLType document with the changes specified in another
XMLType and returns a patched XMLType document:

SELECT XMLPATCH(
XMLTYPE('<?xml version="1.0"?>
<bk:book xmlns:bk="http://example.com">
 <bk:tr>
 <bk:td>
 <bk:chapter>
 Chapter 1.
 </bk:chapter>
 </bk:td>
 <bk:td>
 <bk:chapter>
 Chapter 2.
 </bk:chapter>
 </bk:td>
 </bk:tr>
</bk:book>'),
XMLTYPE('<?xml version="1.0"?>
<xd:xdiff xsi:schemaLocation="http://xmlns.oracle.com/xdb/xdiff.xsd
 http://xmlns.oracle.com/xdb/xdiff.xsd"
 xmlns:xd="http://xmlns.oracle.com/xdb/xdiff.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:bk="http://example.com">

Chapter 7
XMLPATCH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 508 of 521

 <?oracle-xmldiff operations-in-docorder="true" output-model="snapshot"
 diff-algorithm="global"?>
 <xd:delete-node xd:node-type="element"
 xd:xpath="/bk:book[1]/bk:tr[1]/bk:td[2]/bk:chapter[1]"/>
</xd:xdiff>')
)
FROM DUAL;

XMLPI
Syntax

XMLPI (

NAME

identifier

EVALNAME value_expr

, value_expr

)

Purpose

XMLPI generates an XML processing instruction using identifier and optionally the evaluated
result of value_expr. A processing instruction is commonly used to provide to an application
information that is associated with all or part of an XML document. The application uses the
processing instruction to determine how best to process the XML document.

You must specify a value for Oracle Database to use an the enclosing tag. You can do this by
specifying identifier, which is a string literal, or by specifying EVALNAME value_expr. In the latter
case, the value expression is evaluated and the result, which must be a string literal, is used as
the identifier. The identifier does not have to be a column name or column reference. It cannot
be an expression or null. It can be up to 4000 characters if the initialization parameter
MAX_STRING_SIZE = STANDARD, and 32767 characters if MAX_STRING_SIZE = EXTENDED. See
"Extended Data Types" for more information.

The optional value_expr must resolve to a string. If you omit the optional value_expr, then a zero-
length string is the default. The value returned by the function takes this form:

<?identifier string?>

XMLPI is subject to the following restrictions:

• The identifier must be a valid target for a processing instruction.

• You cannot specify xml in any case combination for identifier.

• The identifier cannot contain the consecutive characters ?>.

See Also

Oracle XML DB Developer's Guide for more information on this function

Examples

The following statement uses the DUAL table to illustrate the use of the XMLPI syntax:

SELECT XMLPI(NAME "Order analysisComp", 'imported, reconfigured, disassembled')
 AS "XMLPI" FROM DUAL;

Chapter 7
XMLPI

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 509 of 521

XMLPI
--
<?Order analysisComp imported, reconfigured, disassembled?>

XMLQUERY
Syntax

XMLQUERY

(XQuery_string

XML_passing_clause

RETURNING CONTENT

NULL ON EMPTY

)

XML_passing_clause::=

PASSING

BY VALUE

expr

AS identifier

,

Purpose

XMLQUERY lets you query XML data in SQL statements. It takes an XQuery expression as a
string literal, an optional context item, and other bind variables and returns the result of
evaluating the XQuery expression using these input values.

• XQuery_string is a complete XQuery expression, including prolog.

• The expr in the XML_passing_clause is an expression returning an XMLType or an instance of a
SQL scalar data type that is used as the context for evaluating the XQuery expression. You
can specify only one expr in the PASSING clause without an identifier. The result of
evaluating each expr is bound to the corresponding identifier in the XQuery_string. If any expr
that is not followed by an AS clause, then the result of evaluating that expression is used as
the context item for evaluating the XQuery_string. If expr is a relational column, then its
declared collation is ignored by Oracle XML DB.

• RETURNING CONTENT indicates that the result from the XQuery evaluation is either an XML
1.0 document or a document fragment conforming to the XML 1.0 semantics.

• If the result set is empty, then the function returns the SQL NULL value. The NULL ON
EMPTY keywords are implemented by default and are shown for semantic clarity.

See Also

Oracle XML DB Developer's Guide for more information on this function

Chapter 7
XMLQUERY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 510 of 521

Examples

The following statement specifies the warehouse_spec column of the oe.warehouses table in the
XML_passing_clause as a context item. The statement returns specific information about the
warehouses with area greater than 50K.

SELECT warehouse_name,
EXTRACTVALUE(warehouse_spec, '/Warehouse/Area'),
XMLQuery(
 'for $i in /Warehouse
 where $i/Area > 50000
 return <Details>
 <Docks num="{$i/Docks}"/>
 <Rail>
 {
 if ($i/RailAccess = "Y") then "true" else "false"
 }
 </Rail>
 </Details>' PASSING warehouse_spec RETURNING CONTENT) "Big_warehouses"
 FROM warehouses;

WAREHOUSE_ID Area Big_warehouses
------------ --------- --
 1 25000
 2 50000
 3 85700 <Details><Docks></Docks><Rail>false</Rail></Details>
 4 103000 <Details><Docks num="3"></Docks><Rail>true</Rail></Details>
 . . .

XMLSEQUENCE

Note

The XMLSEQUENCE function is deprecated. It is still supported for backward
compatibility. However, Oracle recommends that you use the XMLTABLE function
instead. See XMLTABLE for more information.

Syntax

XMLSEQUENCE (

XMLType_instance

sys_refcursor_instance

, fmt)

Purpose

XMLSequence has two forms:

• The first form takes as input an XMLType instance and returns a varray of the top-level
nodes in the XMLType. This form is effectively superseded by the SQL/XML standard
function XMLTable, which provides for more readable SQL code. Prior to Oracle Database
10g Release 2, XMLSequence was used with SQL function TABLE to do some of what can
now be done better with the XMLTable function.

Chapter 7
XMLSEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 511 of 521

• The second form takes as input a REFCURSOR instance, with an optional instance of the
XMLFormat object, and returns as an XMLSequence type an XML document for each row of
the cursor.

Because XMLSequence returns a collection of XMLType, you can use this function in a TABLE
clause to unnest the collection values into multiple rows, which can in turn be further
processed in the SQL query.

See Also

Oracle XML DB Developer's Guide for more information on this function, and
XMLTABLE

Examples

The following example shows how XMLSequence divides up an XML document with multiple
elements into VARRAY single-element documents. In this example, the TABLE keyword instructs
Oracle Database to consider the collection a table value that can be used in the FROM clause
of the subquery:

SELECT EXTRACT(warehouse_spec, '/Warehouse') as "Warehouse"
 FROM warehouses WHERE warehouse_name = 'San Francisco';

Warehouse
--
<Warehouse>
 <Building>Rented</Building>
 <Area>50000</Area>
 <Docks>1</Docks>
 <DockType>Side load</DockType>
 <WaterAccess>Y</WaterAccess>
 <RailAccess>N</RailAccess>
 <Parking>Lot</Parking>
 <VClearance>12 ft</VClearance>
</Warehouse>

1 row selected.

SELECT VALUE(p)
 FROM warehouses w,
 TABLE(XMLSEQUENCE(EXTRACT(warehouse_spec, '/Warehouse/*'))) p
 WHERE w.warehouse_name = 'San Francisco';

VALUE(P)
--
<Building>Rented</Building>
<Area>50000</Area>
<Docks>1</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Lot</Parking>
<VClearance>12 ft</VClearance>

8 rows selected.

Chapter 7
XMLSEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 512 of 521

XMLSERIALIZE
Syntax

XMLSERIALIZE (
DOCUMENT

CONTENT
value_expr

AS datatype

ENCODING xml_encoding_spec VERSION string_literal

NO INDENT

INDENT

SIZE = number
HIDE

SHOW
DEFAULTS

)

(datatype::=)

Purpose

XMLSerialize creates a string or LOB containing the contents of value_expr.

Any lob returned by XMLSERIALIZE will be read-only.

If you specify DOCUMENT, then the value_expr must be a valid XML document.

If you specify CONTENT, then the value_expr need not be a singly rooted XML document.
However it must be valid XML content.

datatype

The datatype specified can be:

• VARCHAR2 or VARCHAR, but not NVARCHAR2

• BLOB, or CLOB with options reference or value. The default is reference.

• With BLOB, you can specify the ENCODING clause to use the specified encoding in the
prolog. The xml_encoding_spec is an XML encoding declaration (encoding="...").

The default type is CLOB.

Specify the VERSION clause to use the version you provide as string_literal in the XML
declaration (<?xml version="..." ...?>).

Specify NO INDENT to strip all insignificant whitespace from the output. Specify INDENT SIZE = N,
where N is a whole number, for output that is pretty-printed using a relative indentation of N
spaces. If N is 0, then pretty-printing inserts a newline character after each element, placing
each element on a line by itself, but omitting all other insignificant whitespace in the output. If
INDENT is present without a SIZE specification, then 2-space indenting is used. If you omit this
clause, then the behavior (pretty-printing or not) is indeterminate.

HIDE DEFAULTS and SHOW DEFAULTS apply only to XML schema-based data. If you specify
SHOW DEFAULTS and the input data is missing any optional elements or attributes for which the
XML schema defines default values, then those elements or attributes are included in the

Chapter 7
XMLSERIALIZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 513 of 521

output with their default values. If you specify HIDE DEFAULTS, then no such elements or
attributes are included in the output. HIDE DEFAULTS is the default behavior.

See Also

• Oracle XML DB Developer's Guide for more information on this function

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value
of XMLSERIALIZE

Examples

The following statement uses the DUAL table to illustrate the syntax of XMLSerialize:

SELECT XMLSERIALIZE(CONTENT XMLTYPE('<Owner>Grandco</Owner>')) AS xmlserialize_doc
 FROM DUAL;

XMLSERIALIZE_DOC

<Owner>Grandco</Owner>

XMLTABLE
Syntax

XMLTABLE (

XMLnamespaces_clause ,

XQuery_string XMLTABLE_options)

XMLnamespaces_clause::=

XMLNAMESPACES (
string AS identifier

DEFAULT string

,

)

Note

You can specify at most one DEFAULT string clause.

XMLTABLE_options::=

XML_passing_clause RETURNING SEQUENCE BY REF COLUMNS XML_table_column

,

Chapter 7
XMLTABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 514 of 521

XML_passing_clause::=

PASSING

BY VALUE

expr

AS identifier

,

XML_table_column::=

column

FOR ORDINALITY

datatype

XMLTYPE

(SEQUENCE) BY REF

PATH string DEFAULT expr

(datatype::=)

Purpose

XMLTable maps the result of an XQuery evaluation into relational rows and columns. You can
query the result returned by the function as a virtual relational table using SQL.

• The XMLNAMESPACES clause contains a set of XML namespace declarations. These
declarations are referenced by the XQuery expression (the evaluated XQuery_string), which
computes the row, and by the XPath expression in the PATH clause of XML_table_column,
which computes the columns for the entire XMLTable function. If you want to use qualified
names in the PATH expressions of the COLUMNS clause, then you need to specify the
XMLNAMESPACES clause.

• XQuery_string is a literal string. It is a complete XQuery expression and can include prolog
declarations. The value of XQuery_string serves as input to the XMLTable function; it is this
XQuery result that is decomposed and stored as relational data.

• The expr in the XML_passing_clause is an expression returning an XMLType or an instance of a
SQL scalar data type that is used as the context for evaluating the XQuery expression. You
can specify only one expr in the PASSING clause without an identifier. The result of
evaluating each expr is bound to the corresponding identifier in the XQuery_string. If any expr
that is not followed by an AS clause, then the result of evaluating that expression is used as
the context item for evaluating the XQuery_string. This clause supports only passing by value,
not passing by reference. Therefore, the BY VALUE keywords are optional and are provided
for semantic clarity.

• The optional RETURNING SEQUENCE BY REF clause causes the result of the XQuery
evaluation to be returned by reference. This allows you to refer to any part of the source
data in the XML_table_column clause.

If you omit this clause, then the result of the XQuery evaluation is returned by value. That
is, a copy of the targeted nodes is returned instead of a reference to the actual nodes. In
this case, you cannot refer to any data that is not in the returned copy in the

Chapter 7
XMLTABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 515 of 521

XML_table_column clause. In particular, you cannot refer to data that precedes the targeted
nodes in the source data.

• The optional COLUMNS clause defines the columns of the virtual table to be created by
XMLTable.

– If you omit the COLUMNS clause, then XMLTable returns a row with a single XMLType
pseudocolumn named COLUMN_VALUE.

– FOR ORDINALITY specifies that column is to be a column of generated row numbers.
There must be at most one FOR ORDINALITY clause. It is created as a NUMBER column.

– For each resulting column except the FOR ORDINALITY column, you must specify the
column data type, which can be XMLType or any other data type.

If the column data type is XMLType, then specify the XMLTYPE clause. If you specify the
optional (SEQUENCE) BY REF clause, then a reference to the source data targeted by the
PATH expression is returned as the column content. Otherwise, column contains a copy
of that targeted data.

Returning the XMLType data by reference lets you specify other columns whose paths
target nodes in the source data that are outside those targeted by the PATH expression
for column.

If the column data type is any other data type, then specify datatype_clause.

datatype

The datatype specified can be:

* BLOB, or CLOB with options reference or value. The default is reference.

* Any other data type.

– The optional PATH clause specifies that the portion of the XQuery result that is
addressed by XQuery expression string is to be used as the column content.

If you omit PATH, then the XQuery expression column is assumed. For example:

XMLTable(... COLUMNS xyz)

is equivalent to

XMLTable(... COLUMNS xyz PATH 'XYZ')

You can use different PATH clauses to split the XQuery result into different virtual-table
columns.

– The optional DEFAULT clause specifies the value to use when the PATH expression
results in an empty sequence. Its expr is an XQuery expression that is evaluated to
produce the default value.

See Also

• Oracle XML DB Developer's Guide for more information on the XMLTable function,
including additional examples, and on XQuery in general

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to each character data type
column in the table generated by XMLTABLE

Chapter 7
XMLTABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 516 of 521

Examples

The following example converts the result of applying the XQuery '/Warehouse' to each value in
the warehouse_spec column of the warehouses table into a virtual relational table with columns Water
and Rail:

SELECT warehouse_name warehouse,
 warehouse2."Water", warehouse2."Rail"
 FROM warehouses,
 XMLTABLE('/Warehouse'
 PASSING warehouses.warehouse_spec
 COLUMNS
 "Water" varchar2(6) PATH 'WaterAccess',
 "Rail" varchar2(6) PATH 'RailAccess')
 warehouse2;

WAREHOUSE Water Rail
----------------------------------- ------ ------
Southlake, Texas Y N
San Francisco Y N
New Jersey N N
Seattle, Washington N Y

XMLTRANSFORM
Syntax

XMLTRANSFORM (XMLType_instance ,
XMLType_instance

string
)

Purpose

XMLTransform takes as arguments an XMLType instance and an XSL style sheet, which is itself a
form of XMLType instance. It applies the style sheet to the instance and returns an XMLType.

This function is useful for organizing data according to a style sheet as you are retrieving it
from the database.

See Also

Oracle XML DB Developer's Guide for more information on this function

Examples

The XMLTransform function requires the existence of an XSL style sheet. Here is an example of
a very simple style sheet that alphabetizes elements within a node:

CREATE TABLE xsl_tab (col1 XMLTYPE);

INSERT INTO xsl_tab VALUES (
 XMLTYPE.createxml(
 '<?xml version="1.0"?>
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >

Chapter 7
XMLTRANSFORM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 517 of 521

 <xsl:output encoding="utf-8"/>
 <!-- alphabetizes an xml tree -->
 <xsl:template match="*">
 <xsl:copy>
 <xsl:apply-templates select="*|text()">
 <xsl:sort select="name(.)" data-type="text" order="ascending"/>
 </xsl:apply-templates>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="text()">
 <xsl:value-of select="normalize-space(.)"/>
 </xsl:template>
 </xsl:stylesheet> '));

1 row created.

The next example uses the xsl_tab XSL style sheet to alphabetize the elements in one
warehouse_spec of the sample table oe.warehouses:

SELECT XMLTRANSFORM(w.warehouse_spec, x.col1).GetClobVal()
 FROM warehouses w, xsl_tab x
 WHERE w.warehouse_name = 'San Francisco';

XMLTRANSFORM(W.WAREHOUSE_SPEC,X.COL1).GETCLOBVAL()
--
<Warehouse>
 <Area>50000</Area>
 <Building>Rented</Building>
 <DockType>Side load</DockType>
 <Docks>1</Docks>
 <Parking>Lot</Parking>
 <RailAccess>N</RailAccess>
 <VClearance>12 ft</VClearance>
 <WaterAccess>Y</WaterAccess>
</Warehouse>

CEIL, FLOOR, ROUND, and TRUNC Date Functions
Table 7-15 lists the format models you can use with the CEIL, FLOOR, ROUND, and TRUNC date
functions and the units to which they round and truncate dates. The default model, 'DD',
returns the date rounded or truncated to the day with a time of midnight.

Table 7-15 Date Format Models for the CEIL, FLOOR, ROUND, and TRUNC Date
Functions

Format Model Rounding or Truncating Unit

CC
SCC

One greater than the first two digits of a four-digit year

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (rounds up on July 1)

Chapter 7
CEIL, FLOOR, ROUND, and TRUNC Date Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 518 of 521

Table 7-15 (Cont.) Date Format Models for the CEIL, FLOOR, ROUND, and TRUNC Date
Functions

Format Model Rounding or Truncating Unit

IYYY
IY
IY
I

Year containing the calendar week, as defined by the ISO 8601 standard

Q
Quarter (rounds up on the sixteenth day of the second month of the quarter)

MONTH
MON
MM
RM

Month (rounds up on the sixteenth day)

WW
Same day of the week as the first day of the year

IW
Same day of the week as the first day of the calendar week as defined by the ISO
8601 standard, which is Monday

W
Same day of the week as the first day of the month

DDD
DD
J

Day

DAY
DY
D

Starting day of the week

HH
HH12
HH24

Hour

MI
Minute

The starting day of the week used by the format models DAY, DY, and D is specified implicitly
by the initialization parameter NLS_TERRITORY.

See Also

Oracle Database Reference and Oracle Database Globalization Support Guide for
information on this parameter

Chapter 7
CEIL, FLOOR, ROUND, and TRUNC Date Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 519 of 521

About User-Defined Functions
You can write user-defined functions in PL/SQL, Java, or C to provide functionality that is not
available in SQL or SQL built-in functions. User-defined functions can appear in a SQL
statement wherever an expression can occur.

For example, user-defined functions can be used in the following:

• The select list of a SELECT statement

• The condition of a WHERE clause

• CONNECT BY, START WITH, ORDER BY, and GROUP BY clauses

• The VALUES clause of an INSERT statement

• The SET clause of an UPDATE statement

user_defined_function::=

schema .
package .

function

user_defined_operator

@ dblink . (

DISTINCT

ALL

expr

,

)

The optional expression list must match attributes of the function, package, or operator.

Restriction on User-defined Functions

The DISTINCT and ALL keywords are valid only with a user-defined aggregate function.

See Also

• CREATE FUNCTION for information on creating functions, including restrictions
on user-defined functions

• Oracle Database Development Guide for a complete discussion of the creation
and use of user functions

Prerequisites
User-defined functions must be created as top-level functions or declared with a package
specification before they can be named within a SQL statement.

To use a user function in a SQL expression, you must own or have EXECUTE privilege on the
user function. To query a view defined with a user function, you must have the READ or SELECT
privilege on the view. No separate EXECUTE privileges are needed to select from the view.

Chapter 7
About User-Defined Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 520 of 521

See Also

CREATE FUNCTION for information on creating top-level functions and CREATE
PACKAGE for information on specifying packaged functions

Name Precedence
Within a SQL statement, the names of database columns take precedence over the names of
functions with no parameters. For example, if the Human Resources manager creates the
following two objects in the hr schema:

CREATE TABLE new_emps (new_sal NUMBER, ...);
CREATE FUNCTION new_sal RETURN NUMBER IS BEGIN ... END;

then in the following two statements, the reference to new_sal refers to the column
new_emps.new_sal:

SELECT new_sal FROM new_emps;
SELECT new_emps.new_sal FROM new_emps;

To access the function new_sal, you would enter:

SELECT hr.new_sal FROM new_emps;

Here are some sample calls to user functions that are allowed in SQL expressions:

circle_area (radius)
payroll.tax_rate (empno)
hr.employees.tax_rate (dependent, empno)@remote

Example

To call the tax_rate user function from schema hr, execute it against the ss_no and sal columns in
tax_table, specify the following:

SELECT hr.tax_rate (ss_no, sal)
 INTO income_tax
 FROM tax_table WHERE ss_no = tax_id;

The INTO clause is PL/SQL that lets you place the results into the variable income_tax.

Naming Conventions
If only one of the optional schema or package names is given, then the first identifier can be
either a schema name or a package name. For example, to determine whether PAYROLL in the
reference PAYROLL.TAX_RATE is a schema or package name, Oracle Database proceeds as
follows:

1. Check for the PAYROLL package in the current schema.

2. If a PAYROLL package is not found, then look for a schema name PAYROLL that contains a
top-level TAX_RATE function. If no such function is found, then return an error.

3. If the PAYROLL package is found in the current schema, then look for a TAX_RATE function
in the PAYROLL package. If no such function is found, then return an error.

You can also refer to a stored top-level function using any synonym that you have defined for it.

Chapter 7
About User-Defined Functions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 521 of 521

8
Common SQL DDL Clauses

This chapter describes some SQL data definition clauses that appear in multiple SQL
statements.

This chapter contains these sections:

• allocate_extent_clause

• constraint

• deallocate_unused_clause

• file_specification

• logging_clause

• parallel_clause

• physical_attributes_clause

• size_clause

• storage_clause

• annotations_clause

allocate_extent_clause
Purpose

Use the allocate_extent_clause clause to explicitly allocate a new extent for a database object.

Explicitly allocating an extent with this clause does not change the values of the NEXT and
PCTINCREASE storage parameters, so does not affect the size of the next extent to be allocated
implicitly by Oracle Database. Refer to storage_clause for information about the NEXT and
PCTINCREASE storage parameters.

You can allocate an extent in the following SQL statements:

• ALTER CLUSTER (see ALTER CLUSTER)

• ALTER INDEX: to allocate an extent to the index, an index partition, or an index subpartition
(see ALTER INDEX)

• ALTER MATERIALIZED VIEW: to allocate an extent to the materialized view, one of its
partitions or subpartitions, or the overflow segment of an index-organized materialized view
(see ALTER MATERIALIZED VIEW)

• ALTER MATERIALIZED VIEW LOG (see ALTER MATERIALIZED VIEW LOG)

• ALTER TABLE: to allocate an extent to the table, a table partition, a table subpartition, the
mapping table of an index-organized table, the overflow segment of an index-organized
table, or a LOB storage segment (see ALTER TABLE)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 63

Syntax

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

Semantics

This section describes the parameters of the allocate_extent_clause. For additional information,
refer to the SQL statement in which you set or reset these parameters for a particular database
object.

You cannot specify the allocate_extent_clause and the deallocate_unused_clause in the same statement.

SIZE

Specify the size of the extent in bytes. The value of integer can be 0 through 2147483647. To
specify a larger extent size, use an integer within this range with K, M, G, or T to specify the
extent size in kilobytes, megabytes, gigabytes, or terabytes.

For a table, index, materialized view, or materialized view log, if you omit SIZE, then Oracle
Database determines the size based on the values of the storage parameters of the object.
However, for a cluster, Oracle does not evaluate the cluster's storage parameters, so you must
specify SIZE if you do not want Oracle to use a default value.

DATAFILE 'filename'

Specify one of the data files in the tablespace of the table, cluster, index, materialized view, or
materialized view log to contain the new extent. If you omit DATAFILE, then Oracle chooses the
data file.

INSTANCE integer

Use this parameter only if you are using Oracle Real Application Clusters.

Specifying INSTANCE integer makes the new extent available to the freelist group associated with
the specified instance. If the instance number exceeds the maximum number of freelist groups,
then Oracle divides the specified number by the maximum number and uses the remainder to
identify the freelist group to be used. An instance is identified by the value of its initialization
parameter INSTANCE_NUMBER.

If you omit this parameter, then the space is allocated to the table, cluster, index, materialized
view, or materialized view log but is not drawn from any particular freelist group. Instead,
Oracle uses the master freelist and allocates space as needed.

Chapter 8
allocate_extent_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 63

Note

If you are using automatic segment-space management, then the INSTANCE parameter
of the allocate_extent_clause may not reserve the newly allocated space for the specified
instance, because automatic segment-space management does not maintain rigid
affinity between extents and instances.

constraint
Purpose

Use a constraint to define an integrity constraint—a rule that restricts the values in a database.
Oracle Database lets you create six types of constraints and lets you declare them in two
ways.

The six types of integrity constraint are described briefly here and more fully in "Semantics":

• A NOT NULL constraint prohibits a database value from being null.

• A unique constraint prohibits multiple rows from having the same value in the same
column or combination of columns but allows some values to be null.

• A primary key constraint combines a NOT NULL constraint and a unique constraint in a
single declaration. It prohibits multiple rows from having the same value in the same
column or combination of columns and prohibits values from being null.

• A foreign key constraint requires values in one table to match values in another table.

• A check constraint requires a value in the database to comply with a specified condition.

• A REF column by definition references an object in another object type or in a relational
table. A REF constraint lets you further describe the relationship between the REF column
and the object it references.

You can define constraints syntactically in two ways:

• As part of the definition of an individual column or attribute. This is called inline
specification.

• As part of the table definition. This is called out-of-line specification.

NOT NULL constraints must be declared inline. All other constraints can be declared either
inline or out of line.

Constraint clauses can appear in the following statements:

• CREATE TABLE (see CREATE TABLE)

• ALTER TABLE (see ALTER TABLE)

• CREATE VIEW (see CREATE VIEW)

• ALTER VIEW (see ALTER VIEW)

View Constraints

Oracle Database does not enforce view constraints. However, you can enforce constraints on
views through constraints on base tables.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 63

You can specify only unique, primary key, and foreign key constraints on views, and they are
supported only in DISABLE NOVALIDATE mode. You cannot define view constraints on attributes
of an object column.

See Also

View Constraints for additional information on view constraints and "DISABLE Clause"
for information on DISABLE NOVALIDATE mode

External Table Constraints

You can specify only NOT NULL, unique, primary key, and foreign key constraints on external
tables. Unique, primary key, and foreign key constraints are supported only in RELY DISABLE
mode.

See Also

DISABLE Clause for information on RELY and DISABLE.

Prerequisites

You must have the privileges necessary to issue the statement in which you are defining the
constraint.

To create a foreign key constraint, in addition, the parent table or view must be in your own
schema or you must have the REFERENCES privilege on the columns of the referenced key in
the parent table or view.

Syntax

constraint::=

inline_constraint

out_of_line_constraint

inline_ref_constraint

out_of_line_ref_constraint

(inline_constraint::=, out_of_line_constraint::=, inline_ref_constraint::=,
out_of_line_ref_constraint::=)

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 63

inline_constraint::=

CONSTRAINT constraint_name

NOT

NULL

UNIQUE

PRIMARY KEY

references_clause

constraint_state

CHECK (condition)

constraint_state precheck_state

(references_clause::=)

precheck_state::=

PRECHECK

NOPRECHECK

out_of_line_constraint::=

CONSTRAINT constraint_name

UNIQUE (column

,

)

PRIMARY KEY (column

,

)

FOREIGN KEY (column

,

) references_clause

constraint_state

CHECK (condition)

constraint_state precheck_state

(references_clause::=, constraint_state::=)

inline_ref_constraint::=

SCOPE IS

schema .

scope_table

WITH ROWID

CONSTRAINT constraint_name

references_clause

constraint_state

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 63

(references_clause::=, constraint_state::=)

out_of_line_ref_constraint::=

SCOPE FOR (
ref_col

ref_attr
) IS

schema .

scope_table

REF (
ref_col

ref_attr
) WITH ROWID

CONSTRAINT constraint_name

FOREIGN KEY (

ref_col

,

ref_attr

,) references_clause

constraint_state

(references_clause::=, constraint_state::=)

references_clause::=

REFERENCES

schema .

object

(column

,

)
ON DELETE

CASCADE

SET NULL

constraint_state::=

NOT

DEFERRABLE

INITIALLY
DEFERRED

IMMEDIATE

INITIALLY
DEFERRED

IMMEDIATE

NOT

DEFERRABLE

RELY

NORELY

using_index_clause

ENABLE

DISABLE

VALIDATE

NOVALIDATE exceptions_clause

(using_index_clause::=, exceptions_clause::=)

using_index_clause::=

USING INDEX

schema .

index

(create_index_statement)

index_properties

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 63

(create_index::=, index_properties::=)

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

(global_partitioned_index::=, local_partitioned_index::=--part of CREATE INDEX,
index_attributes::=. The INDEXTYPE IS ... clause is not valid when defining a constraint.)

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

index_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

partial_index_clause

parallel_clause

annotations_clause

(physical_attributes_clause::=, logging_clause::=, index_compression::=,
partial_index_clause::=--all part of CREATE INDEX, parallel_clause: not supported in
using_index_clause)

exceptions_clause::=

EXCEPTIONS INTO

schema .

table

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 63

Semantics

This section describes the semantics of constraint. For additional information, refer to the SQL
statement in which you define or redefine a constraint for a table or view.

Oracle Database does not support constraints on columns or attributes whose type is a user-
defined object, nested table, VARRAY, REF, or LOB, with two exceptions:

• NOT NULL constraints are supported for a column or attribute whose type is user-defined
object, VARRAY, REF, or LOB.

• NOT NULL, foreign key, and REF constraints are supported on a column of type REF.

CONSTRAINT constraint_name

Specify a name for the constraint. The name must satisfy the requirements listed in "Database
Object Naming Rules ". If you omit this identifier, then Oracle Database generates a name with
the form SYS_Cn. Oracle stores the name and the definition of the integrity constraint in the
USER_, ALL_, and DBA_CONSTRAINTS data dictionary views (in the CONSTRAINT_NAME and
SEARCH_CONDITION columns, respectively).

See Also

Oracle Database Reference for information on the data dictionary views

NOT NULL Constraints

A NOT NULL constraint prohibits a column from containing nulls. The NULL keyword by itself
does not actually define an integrity constraint, but you can specify it to explicitly permit a
column to contain nulls. You must define NOT NULL and NULL using inline specification. If you
specify neither NOT NULL nor NULL, then the default is NULL.

NOT NULL constraints are the only constraints you can specify inline on XMLType and VARRAY
columns.

To satisfy a NOT NULL constraint, every row in the table must contain a value for the column.

Note

Oracle Database does not index table rows in which all key columns are null except in
the case of bitmap indexes. Therefore, if you want an index on all rows of a table, then
you must either specify NOT NULL constraints for at least one of the index key columns
or create a bitmap index.

Restrictions on NOT NULL Constraints

NOT NULL constraints are subject to the following restrictions:

• You cannot specify NULL or NOT NULL in a view constraint.

• You cannot specify NULL or NOT NULL for an attribute of an object. Instead, use a CHECK
constraint with the IS [NOT] NULL condition.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 63

See Also

"Attribute-Level Constraints Example" and "NOT NULL Example"

Unique Constraints

A unique constraint designates a column as a unique key. A composite unique key
designates a combination of columns as the unique key. When you define a unique constraint
inline, you need only the UNIQUE keyword. When you define a unique constraint out of line, you
must also specify one or more columns. You must define a composite unique key out of line.

To satisfy a unique constraint, no two rows in the table can have the same value for the unique
key. However, the unique key made up of a single column can contain nulls. To satisfy a
composite unique key, no two rows in the table or view can have the same combination of
values in the key columns. Any row that contains nulls in all key columns automatically
satisfies the constraint. However, two rows that contain nulls for one or more key columns and
the same combination of values for the other key columns violate the constraint.

Unique constraints are sensitive to declared collations of their key columns. See Collation
Sensitivity of Constraints for more details.

When you specify a unique constraint on one or more columns, Oracle implicitly creates an
index on the unique key. If you are defining uniqueness for purposes of query performance,
then Oracle recommends that you instead create the unique index explicitly using a CREATE
UNIQUE INDEX statement. You can also use the CREATE UNIQUE INDEX statement to create a
unique function-based index that defines a conditional unique constraint. See "Using a
Function-based Index to Define Conditional Uniqueness: Example" for more information.

When you specify an enabled unique constraint on an extended data type column, you may
receive a "maximum key length exceeded" error when Oracle tries to create the index to
enforce uniqueness for the enabled constraint. See "Creating an Index on an Extended Data
Type Column" for information on how to work around this issue.

Restrictions on Unique Constraints

Unique constraints are subject to the following restrictions:

• None of the columns in the unique key can be of LOB, LONG, LONG RAW, VARRAY, NESTED
TABLE, OBJECT, REF, TIMESTAMP WITH TIME ZONE, or user-defined type. However, the
unique key can contain a column of TIMESTAMP WITH LOCAL TIME ZONE.

• A composite unique key cannot have more than 32 columns.

• You cannot designate the same column or combination of columns as both a primary key
and a unique key.

• You cannot specify a unique key when creating a subview in an inheritance hierarchy. The
unique key can be specified only for the top-level (root) view.

• When you specify a unique constraint for an external table, you must specify the RELY and
DISABLE constraint states. See External Table Constraints for more information.

See Also

"Unique Key Example" and Composite Unique Key Example

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 63

Primary Key Constraints

A primary key constraint designates a column as the primary key of a table or view. A
composite primary key designates a combination of columns as the primary key. When you
define a primary key constraint inline, you need only the PRIMARY KEY keywords. When you
define a primary key constraint out of line, you must also specify one or more columns. You
must define a composite primary key out of line.

To satisfy a primary key constraint:

• No primary key value can appear in more than one row in the table.

• No column that is part of the primary key can contain a null.

When you create a primary key constraint:

• Oracle Database uses an existing index if it contains a unique set of values before
enforcing the primary key constraint. The existing index can be defined as unique or
nonunique. When a DML operation is performed, the primary key constraint is enforced
using this existing index.

• If no existing index can be used, then Oracle Database generates a unique index.

When you drop a primary key constraint:

• If the primary key was created using an existing index, then the index is not dropped.

• If the primary key was created using a system-generated index, then the index is dropped.

When you designate an extended data type column as an enabled primary key, you may
receive a "maximum key length exceeded" error when Oracle tries to create the index to
enforce uniqueness for the enabled constraint. See "Creating an Index on an Extended Data
Type Column" for information on how to work around this issue.

Primary key constraints are sensitive to declared collations of their key columns. See Collation
Sensitivity of Constraints for more details.

Restrictions on Primary Key Constraints

Primary constraints are subject to the following restrictions:

• A table or view can have only one primary key.

• None of the columns in the primary key can be LOB, LONG, LONG RAW, VARRAY, NESTED
TABLE, BFILE, REF, TIMESTAMP WITH TIME ZONE, or user-defined type. However, the primary
key can contain a column of TIMESTAMP WITH LOCAL TIME ZONE.

• The size of the primary key cannot exceed approximately one database block.

• A composite primary key cannot have more than 32 columns.

• You cannot designate the same column or combination of columns as both a primary key
and a unique key.

• You cannot specify a primary key when creating a subview in an inheritance hierarchy. The
primary key can be specified only for the top-level (root) view.

• When you specify a primary key constraint for an external table, you must specify the RELY
and DISABLE constraint states. See External Table Constraints for more information.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 63

See Also

"Primary Key Example" and "Composite Primary Key Example"

Foreign Key Constraints

A foreign key constraint (also called a referential integrity constraint) designates a column
as the foreign key and establishes a relationship between that foreign key and a specified
primary or unique key, called the referenced key. A composite foreign key designates a
combination of columns as the foreign key.

The table or view containing the foreign key is called the child object, and the table or view
containing the referenced key is called the parent object. The foreign key and the referenced
key can be in the same table or view. In this case, the parent and child tables are the same. If
you identify only the parent table or view and omit the column name, then the foreign key
automatically references the primary key of the parent table or view. The corresponding
column or columns of the foreign key and the referenced key must match in order, data types,
and declared collations.

Foreign key constraints are sensitive to declared collations of the referenced primary or unique
key columns. See Collation Sensitivity of Constraints for more details.

You can define a foreign key constraint on a single key column either inline or out of line. You
must specify a composite foreign key and a foreign key on an attribute out of line.

To satisfy a composite foreign key constraint, the composite foreign key must refer to a
composite unique key or a composite primary key in the parent table or view, or the value of at
least one of the columns of the foreign key must be null.

You can designate the same column or combination of columns as both a foreign key and a
primary or unique key. You can also designate the same column or combination of columns as
both a foreign key and a cluster key.

You can define multiple foreign keys in a table or view. Also, a single column can be part of
more than one foreign key.

Restrictions on Foreign Key Constraints

Foreign key constraints are subject to the following restrictions:

• None of the columns in the foreign key can be of LOB, LONG, LONG RAW, VARRAY, NESTED
TABLE, BFILE, REF, TIMESTAMP WITH TIME ZONE, or user-defined type. However, the primary
key can contain a column of TIMESTAMP WITH LOCAL TIME ZONE.

• The referenced unique or primary key constraint on the parent table or view must already
be defined.

• A composite foreign key cannot have more than 32 columns.

• The child and parent tables must be on the same database. To enable referential integrity
constraints across nodes of a distributed database, you must use database triggers. See
CREATE TRIGGER .

• If either the child or parent object is a view, then the constraint is subject to all restrictions
on view constraints. See "View Constraints ".

• You cannot define a foreign key constraint in a CREATE TABLE statement that contains an
AS subquery clause. Instead, you must create the table without the constraint and then add it
later with an ALTER TABLE statement.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 63

• When a table has a foreign key, and the parent of the foreign key is an index-organized
table, a session that updates a row that contains the foreign key can hang when another
session is updating a non-key column in the parent table.

• When you specify a foreign key constraint for an external table, you must specify the RELY
and DISABLE constraint states. See External Table Constraints for more information.

See Also

• Oracle Database Development Guide for more information on using constraints

• "Foreign Key Constraint Example" and "Composite Foreign Key Constraint
Example"

references_clause

Foreign key constraints use the references_clause syntax. When you specify a foreign key
constraint inline, you need only the references_clause. When you specify a foreign key constraint
out of line, you must also specify the FOREIGN KEY keywords and one or more columns.

ON DELETE Clause

The ON DELETE clause lets you determine how Oracle Database automatically maintains
referential integrity if you remove a referenced primary or unique key value. If you omit this
clause, then Oracle does not allow you to delete referenced key values in the parent table that
have dependent rows in the child table.

• Specify CASCADE if you want Oracle to remove dependent foreign key values.

• Specify SET NULL if you want Oracle to convert dependent foreign key values to NULL. You
cannot specify this clause for a virtual column, because the values in a virtual column
cannot be updated directly. Rather, the values from which the virtual column are derived
must be updated.

Restriction on ON DELETE

You cannot specify this clause for a view constraint.

See Also

"ON DELETE Example"

Check Constraints

A check constraint lets you specify a condition that each row in the table must satisfy. To satisfy
the constraint, each row in the table must make the condition either TRUE or unknown (due to a
null). When Oracle evaluates a check constraint condition for a particular row, any column
names in the condition refer to the column values in that row.

The syntax for inline and out-of-line specification of check constraints is the same. However,
inline specification can refer only to the column (or the attributes of the column if it is an object
column) currently being defined, whereas out-of-line specification can refer to multiple columns
or attributes.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 63

Oracle does not verify that conditions of check constraints are not mutually exclusive.
Therefore, if you create multiple check constraints for a column, design them carefully so their
purposes do not conflict. Do not assume any particular order of evaluation of the conditions.

You can specify a check constraint with a precheck state of PRECHECK, if you want to be able to
validate the constraint outside of the database using an external JSON schema validator.

The SQL conditions used in CHECK constraints that have an equivalent condition in the JSON
schema vocabulary are supported.

You can specify PRECHECK with existing constraint states ENABLE and VALIDATE at the same
time.

If you do not specify PRECHECK or NOPRECHECK explicitly, Oracle sets the value of PRECHECK or
NOPRECHECK automatically, based on whether a check constraint can be expressed as JSON
schema.

The precheck state is independent from existing constraint states. You can use it with an
exisiting constraint to indicate that the constraint can be prevalidated outside the database
using the JSON schema.

You can remove the PRECHECK constraint state by setting it to NOPRECHECK using ALTER TABLE
MODIFY CONSTRAINT.

If the condition of a check constraint depends on NLS parameters, such as NLS_DATE_FORMAT,
Oracle evaluates the condition using the database values of the parameters, not the session
values. You can find the database values of the NLS parameters in the data dictionary view
NLS_DATABASE_PARAMETERS. These values are associated with a database by the DDL
statement CREATE DATABASE and never change afterwards.

Restrictions on Check Constraints

Check constraints are subject to the following restrictions:

• You cannot specify a check constraint for a view. However, you can define the view using
the WITH CHECK OPTION clause, which is equivalent to specifying a check constraint for the
view.

• The condition of a check constraint can refer to any column in the table, but it cannot refer
to columns of other tables.

• Conditions of check constraints cannot contain the following constructs:

– Subqueries and scalar subquery expressions

– Calls to the functions that are not deterministic (CURRENT_DATE, CURRENT_TIMESTAMP,
DBTIMEZONE, LOCALTIMESTAMP, SESSIONTIMEZONE, SYSDATE, SYSTIMESTAMP, UID,
USER, and USERENV)

– Calls to user-defined functions

– Dereferencing of REF columns (for example, using the DEREF function)

– Nested table columns or attributes

– The pseudocolumns CURRVAL, NEXTVAL, LEVEL, or ROWNUM

– Date constants that are not fully specified

– You cannot specify a check constraint for an external table.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 63

See Also

• Conditions for additional information and syntax

• "Check Constraint Examples" and "Attribute-Level Constraints Example"

• PRECHECK Using JSON Schema

• CHECK Constraint Examples

REF Constraints

REF constraints let you describe the relationship between a column of type REF and the object it
references.

ref_constraint

REF constraints use the ref_constraint syntax. You define a REF constraint either inline or out of
line. Out-of-line specification requires you to specify the REF column or attribute you are further
describing.

• For ref_column, specify the name of a REF column of an object or relational table.

• For ref_attribute, specify an embedded REF attribute within an object column of a relational
table.

Both inline and out-of-line specification let you define a scope constraint, a rowid constraint, or
a referential integrity constraint on a REF column.

If the scope table or referenced table of the REF column has a primary-key-based object
identifier, then the REF column is a user-defined REF column.

See Also

• Oracle Database Object-Relational Developer's Guide for more information on REF
data types

• "Foreign Key Constraints", and "REF Constraint Examples"

SCOPE REF Constraints

In a table with a REF column, each REF value in the column can conceivably reference a row in
a different object table. The SCOPE clause restricts the scope of references to a single table,
scope_table. The values in the REF column or attribute point to objects in scope_table, in which
object instances of the same type as the REF column are stored.

Specify the SCOPE clause to restrict the scope of references in the REF column to a single table.
For you to specify this clause, scope_table must be in your own schema, or you must have the
READ or SELECT privilege on scope_table, or you must have the READ ANY TABLE or SELECT ANY
TABLE system privilege. You can specify only one scope table for each REF column.

Restrictions on Scope Constraints

Scope constraints are subject to the following restrictions:

• You cannot add a scope constraint to an existing column unless the table is empty.

• You cannot specify a scope constraint for the REF elements of a VARRAY column.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 63

• You must specify this clause if you specify AS subquery and the subquery returns user-
defined REF data types.

• You cannot subsequently drop a scope constraint from a REF column.

• You cannot specify a scope constraint for an external table.

Rowid REF Constraints

Specify WITH ROWID to store the rowid along with the REF value in ref_column or ref_attribute.
Storing the rowid with the REF value can improve the performance of dereferencing operations,
but will also use more space. Default storage of REF values is without rowids.

See Also

The function DEREF for an example of dereferencing

Restrictions on Rowid Constraints

Rowid constraints are subject to the following restrictions:

• You cannot define a rowid constraint for the REF elements of a VARRAY column.

• You cannot subsequently drop a rowid constraint from a REF column.

• If the REF column or attribute is scoped, then this clause is ignored and the rowid is not
stored with the REF value.

• You cannot specify a rowid constraint for an external table.

Referential Integrity Constraints on REF Columns

The references_clause of the ref_constraint syntax lets you define a foreign key constraint on the REF
column. This clause also implicitly restricts the scope of the REF column or attribute to the
referenced table. However, whereas a foreign key constraint on a non-REF column references
an actual column in the parent table, a foreign key constraint on a REF column references the
implicit object identifier column of the parent table.

If you do not specify a constraint name, then Oracle generates a system name for the
constraint of the form SYS_Cn.

If you add a referential integrity constraint to an existing REF column that is already scoped,
then the referenced table must be the same as the scope table of the REF column. If you later
drop the referential integrity constraint, then the REF column will remain scoped to the
referenced table.

As is the case for foreign key constraints on other types of columns, you can use the
references_clause alone for inline declaration. For out-of-line declaration you must also specify the
FOREIGN KEY keywords plus one or more REF columns or attributes.

See Also

Oracle Database Object-Relational Developer's Guide for more information on object
identifiers

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 63

Restrictions on Foreign Key Constraints on REF Columns

Foreign key constraints on REF columns have the following additional restrictions:

• Oracle implicitly adds a scope constraint when you add a referential integrity constraint to
an existing unscoped REF column. Therefore, all the restrictions that apply for scope
constraints also apply in this case.

• You cannot specify a column after the object name in the references_clause.

Collation Sensitivity of Constraints

Starting with Oracle Database 12c Release 2 (12.2), primary key, unique, and foreign key
constraints are sensitive to declared collations of their key columns. A primary or unique key
character column value from a new or updated row is compared with values in existing rows
using the declared collation of the key column. For example, if the declared collation of the key
column is the case-insensitive collation BINARY_CI, a new or updated row may be rejected if the
new key column value differs from some existing key value only by case. The collation
BINARY_CI treats character values differing only by case as equal.

A foreign key character column value is compared to parent primary or unique key column
values using the declared collation of the parent key column. For example, if the declared
collation of the key column is the case-insensitive collation BINARY_CI, a new or updated child
row may be accepted even if there is no identical parent key value for the corresponding
foreign key value, provided there exists a value differing only by case.

The declared collation of a foreign key column must be the same as the collation of the
corresponding parent key column.

Columns in a composite key of a constraint may have different declared collations.

When the declared collation of a key column of a constraint is a pseudo-collation, the
constraint uses a corresponding variant of the collation BINARY. Pseudo-collations cannot be
used directly to compare values for a constraint, because constraints are static and cannot
depend on session NLS parameters on which the pseudo-collations depend. Therefore:

• The pseudo-collations USING_NLS_COMP, USING_NLS_SORT, and USING_NLS_SORT_CS use the
collation BINARY.

• The pseudo-collation USING_NLS_COMP_CI uses the collation BINARY_CI.

• The pseudo-collation USING_NLS_COMP_AI uses the collation BINARY_AI.

When the effective collation used by a primary or unique key column is not BINARY, Oracle
creates a hidden virtual column for this column. The expression of the virtual column calculates
collation keys for character values of the original key column. The primary key or unique
constraint is internally created on the virtual column instead of the original column. The virtual
column is visible in the data dictionary views of the *_TAB_COLS family. For each of these
hidden virtual columns, the COLLATED_COLUMN_ID of the *_TAB_COLS views contains the
internal sequence number pointing to the corresponding original key column. The hidden
virtual columns count to the 1000-column limit of a table, i.e. 1000 if the MAX_COLUMNS
initialization parameter is set to STANDARD, or 4096 columns if MAX_COLUMNS is set to
EXTENDED.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 63

See Also

• See Oracle Database Reference for more on the MAX_COLUMNS initialization
parameter.

• Case-Insensitive Constraints Example

• Oracle Database Globalization Support Guide for more details about collations

Specifying Constraint State

You can specify how and when Oracle should enforce the constraint when you define the
constraint.

constraint_state

You can use constraint_state with both inline and out-of-line specification. Except for the clauses
DEFERRABLE and INITIALLY, that may be specified in any order, you must specify the rest of the
component clauses in the order shown, and each clause only once.

DEFERRABLE Clause

The DEFERRABLE and NOT DEFERRABLE parameters indicate whether or not, in subsequent
transactions, constraint checking can be deferred until the end of the transaction using the SET
CONSTRAINT(S) statement. If you omit this clause, then the default is NOT DEFERRABLE.

• Specify NOT DEFERRABLE to indicate that in subsequent transactions you cannot use the
SET CONSTRAINT[S] clause to defer checking of this constraint until the transaction is
committed. The checking of a NOT DEFERRABLE constraint can never be deferred to the
end of the transaction.

If you declare a new constraint NOT DEFERRABLE, then it must be valid at the time the
CREATE TABLE or ALTER TABLE statement is committed or the statement will fail.

• Specify DEFERRABLE to indicate that in subsequent transactions you can use the SET
CONSTRAINT[S] clause to defer checking of this constraint until a COMMIT statement is
submitted. If the constraint check fails, then the database returns an error and the
transaction is not committed. This setting in effect lets you disable the constraint
temporarily while making changes to the database that might violate the constraint until all
the changes are complete.

Note

The optimizer does not consider indexes on deferrable constraints as usable.

You cannot alter the deferrability of a constraint. Whether you specify either of these
parameters, or make the constraint NOT DEFERRABLE implicitly by specifying neither of them,
you cannot specify this clause in an ALTER TABLE statement. You must drop the constraint and
re-create it.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 63

See Also

• SET CONSTRAINT[S] for information on setting constraint checking for a
transaction

• Oracle Database Administrator's Guide and Oracle Database Concepts for more
information about deferred constraints

• "DEFERRABLE Constraint Examples"

Restriction on [NOT] DEFERRABLE

You cannot specify either of these parameters for a view constraint.

INITIALLY Clause

The INITIALLY clause establishes the default checking behavior for constraints that are
DEFERRABLE. The INITIALLY setting can be overridden by a SET CONSTRAINT(S) statement in a
subsequent transaction.

• Specify INITIALLY IMMEDIATE to indicate that Oracle should check this constraint at the end
of each subsequent SQL statement. If you do not specify INITIALLY at all, then the default
is INITIALLY IMMEDIATE.

If you declare a new constraint INITIALLY IMMEDIATE, then it must be valid at the time the
CREATE TABLE or ALTER TABLE statement is committed or the statement will fail.

• Specify INITIALLY DEFERRED to indicate that Oracle should check this constraint at the end
of subsequent transactions.

This clause is not valid if you have declared the constraint to be NOT DEFERRABLE, because a
NOT DEFERRABLE constraint is automatically INITIALLY IMMEDIATE and cannot ever be
INITIALLY DEFERRED.

RELY Clause

The RELY and NORELY parameters specify whether a constraint in NOVALIDATE mode is to be
taken into account for query rewrite. Specify RELY to activate a constraint in NOVALIDATE mode
for query rewrite in an unenforced query rewrite integrity mode. The constraint is in
NOVALIDATE mode, so Oracle does not enforce it. The default is NORELY.

Unenforced constraints are generally useful only with materialized views and query rewrite.
Depending on the QUERY_REWRITE_INTEGRITY mode, query rewrite can use only constraints
that are in VALIDATE mode, or that are in NOVALIDATE mode with the RELY parameter set, to
determine join information.

Restriction on the RELY Clause

You cannot set a nondeferrable NOT NULL constraint to RELY.

See Also

Oracle Database Data Warehousing Guide for more information on materialized views
and query rewrite

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 63

Using Indexes to Enforce Constraints

When defining the state of a unique or primary key constraint, you can specify an index for
Oracle to use to enforce the constraint, or you can instruct Oracle to create the index used to
enforce the constraint.

using_index_clause

You can specify the using_index_clause only when enabling unique or primary key constraints. You
can specify the clauses of the using_index_clause in any order, but you can specify each clause
only once.

• If you specify schema.index, then Oracle attempts to enforce the constraint using the specified
index. If Oracle cannot find the index or cannot use the index to enforce the constraint,
then Oracle returns an error.

• If you specify the create_index_statement, then Oracle attempts to create the index and use it to
enforce the constraint. If Oracle cannot create the index or cannot use the index to enforce
the constraint, then Oracle returns an error.

• If you neither specify an existing index nor create a new index, then Oracle creates the
index. In this case:

– The index receives the same name as the constraint.

– If table is partitioned, then you can specify a locally or globally partitioned index for the
unique or primary key constraint.

Restrictions on the using_index_clause

The following restrictions apply to the using_index_clause:

• You cannot specify this clause for a view constraint.

• You cannot specify this clause for a NOT NULL, foreign key, or check constraint.

• You cannot specify an index (schema.index) or create an index (create_index_statement) when
enabling the primary key of an index-organized table.

• You cannot specify the parallel_clause of index_attributes.

• The INDEXTYPE IS ... clause of index_properties is not valid in the definition of a constraint.

See Also

• CREATE INDEX for a description of index_attributes, the global_partitioned_index
and local_partitioned_index clauses, and for a description of NOSORT and the
logging_clause in relation to indexes

• physical_attributes_clause and PCTFREE parameters and storage_clause

• "Explicit Index Control Example"

ENABLE Clause

Specify ENABLE if you want the constraint to be applied to the data in the table.

If you enable a unique or primary key constraint, and if no index exists on the key, then Oracle
Database creates a unique index. Unless you specify KEEP INDEX when subsequently disabling

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 63

the constraint, this index is dropped and the database rebuilds the index every time the
constraint is reenabled.

You can also avoid rebuilding the index and eliminate redundant indexes by creating new
primary key and unique constraints initially disabled. Then create (or use existing) nonunique
indexes to enforce the constraint. Oracle does not drop a nonunique index when the constraint
is disabled, so subsequent ENABLE operations are facilitated.

• ENABLE VALIDATE specifies that all old and new data also complies with the constraint. An
enabled validated constraint guarantees that all data is and will continue to be valid.

If any row in the table violates the integrity constraint, then the constraint remains disabled
and Oracle returns an error. If all rows comply with the constraint, then Oracle enables the
constraint. Subsequently, if new data violates the constraint, then Oracle does not execute
the statement and returns an error indicating the integrity constraint violation.

If you place a primary key constraint in ENABLE VALIDATE mode, then the validation
process will verify that the primary key columns contain no nulls. To avoid this overhead,
mark each column in the primary key NOT NULL before entering data into the column and
before enabling the primary key constraint of the table.

• ENABLE NOVALIDATE ensures that all new DML operations on the constrained data comply
with the constraint. This clause does not ensure that existing data in the table complies
with the constraint.

If you specify neither VALIDATE nor NOVALIDATE, then the default is VALIDATE.

If you change the state of any single constraint from ENABLE NOVALIDATE to ENABLE VALIDATE,
then the operation can be performed in parallel, and does not block reads, writes, or other DDL
operations.

Restriction on the ENABLE Clause

You cannot enable a foreign key that references a disabled unique or primary key.

DISABLE Clause

Specify DISABLE to disable the integrity constraint. Disabled integrity constraints appear in the
data dictionary along with enabled constraints. If you do not specify this clause when creating a
constraint, then Oracle automatically enables the constraint.

• DISABLE VALIDATE disables the constraint and drops the index on the constraint, but keeps
the constraint valid. This feature is most useful in data warehousing situations, because it
lets you load large amounts of data while also saving space by not having an index. This
setting lets you load data from a nonpartitioned table into a partitioned table using the
exchange_partition_subpart clause of the ALTER TABLE statement or using SQL*Loader. All other
modifications to the table (inserts, updates, and deletes) by other SQL statements are
disallowed.

See Also

Oracle Database Data Warehousing Guide for more information on using this
setting

• DISABLE NOVALIDATE signifies that Oracle makes no effort to maintain the constraint
(because it is disabled) and cannot guarantee that the constraint is true (because it is not
being validated).

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 63

You cannot drop a table whose primary key is being referenced by a foreign key even if the
foreign key constraint is in DISABLE NOVALIDATE state. Further, the optimizer can use
constraints in DISABLE NOVALIDATE state.

See Also

Oracle Database SQL Tuning Guide for information on when to use this setting

If you specify neither VALIDATE nor NOVALIDATE, then the default is NOVALIDATE.

If you disable a unique or primary key constraint that is using a unique index, then Oracle
drops the unique index. Refer to the CREATE TABLE enable_disable_clause for additional notes
and restrictions.

VALIDATE | NOVALIDATE

The behavior of VALIDATE and NOVALIDATE depends on whether the constraint is enabled or
disabled, either explicitly or by default. Therefore, the VALIDATE and NOVALIDATE keywords are
described in the context of "ENABLE Clause" and "DISABLE Clause".

Note on Foreign Key Constraints in NOVALIDATE Mode

When a foreign key constraint is in NOVALIDATE mode, if existing data in the table does not
comply with the constraint and the QUERY_REWRITE_INTEGRITY parameter is not set to
ENFORCED, then the optimizer may use join elimination during queries on the table. In this case,
a query may return table rows with noncompliant foreign key values even if the query contains
a join condition that should filter out those rows.

Handling Constraint Exceptions

When defining the state of a constraint, you can specify a table into which Oracle places the
rowids of all rows violating the constraint.

exceptions_clause

Use the exceptions_clause syntax to define exception handling. If you omit schema, then Oracle
assumes the exceptions table is in your own schema. If you omit this clause altogether, then
Oracle assumes that the table is named EXCEPTIONS. The EXCEPTIONS table or the table you
specify must exist on your local database.

You can create the EXCEPTIONS table using one of these scripts:

• UTLEXCPT.SQL uses physical rowids. Therefore it can accommodate rows from
conventional tables but not from index-organized tables. (See the Note that follows.)

• UTLEXPT1.SQL uses universal rowids, so it can accommodate rows from both conventional
and index-organized tables.

If you create your own exceptions table, then it must follow the format prescribed by one of
these two scripts.

If you are collecting exceptions from index-organized tables based on primary keys (rather
than universal rowids), then you must create a separate exceptions table for each index-
organized table to accommodate its primary-key storage. You create multiple exceptions tables
with different names by modifying and resubmitting the script.

Restrictions on the exceptions_clause

The following restrictions apply to the exceptions_clause:

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 63

• You cannot specify this clause for a view constraint.

• You cannot specify this clause in a CREATE TABLE statement, because no rowids exist until
after the successful completion of the statement.

See Also

– The DBMS_IOT package in Oracle Database PL/SQL Packages and Types
Reference for information on the SQL scripts

– Oracle Database Performance Tuning Guide for information on eliminating
migrated and chained rows

View Constraints

Oracle does not enforce view constraints. However, operations on views are subject to the
integrity constraints defined on the underlying base tables. This means that you can enforce
constraints on views through constraints on base tables.

Notes on View Constraints

View constraints are a subset of table constraints and are subject to the following restrictions:

• You can specify only unique, primary key, and foreign key constraints on views. However,
you can define the view using the WITH CHECK OPTION clause, which is equivalent to
specifying a check constraint for the view.

• View constraints are supported only in DISABLE NOVALIDATE mode. You cannot specify any
other mode. You must specify the keyword DISABLE when you declare the view constraint.
You need not specify NOVALIDATE explicitly, as it is the default.

• The RELY and NORELY parameters are optional. View constraints, because they are
unenforced, are usually specified with the RELY parameter to make them more useful. The
RELY or NORELY keyword must precede the DISABLE keyword.

• Because view constraints are not enforced directly, you cannot specify INITIALLY
DEFERRED or DEFERRABLE.

• You cannot specify the using_index_clause, the exceptions_clause clause, or the ON DELETE clause
of the references_clause.

• You cannot define view constraints on attributes of an object column.

External Table Constraints

Starting with Oracle Database 12c Release 2 (12.2), you can specify NOT NULL, unique,
primary key, and foreign key constraints on external tables.

NOT NULL constraints on external tables are enforced and prohibit columns from containing
nulls.

Unique, primary key, and foreign key constraints are supported on external tables only in RELY
DISABLE mode. You must specify the keywords RELY and DISABLE when you create these
constraints. These constraints are declarative and are not enforced. They can increase query
performance and reduce resource consumption because more optimizer transformations can
be taken into account. In order for the optimizer to utilize these RELY DISABLE constraints, the
QUERY_REWRITE_INTEGRITY initialization parameter must be set to either trusted or stale_tolerated.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 63

Examples

Unique Key Example

The following statement is a variation of the statement that created the sample table
sh.promotions. It defines inline and implicitly enables a unique key on the promo_id column (other
constraints are not shown):

CREATE TABLE promotions_var1
 (promo_id NUMBER(6)
 CONSTRAINT promo_id_u UNIQUE
 , promo_name VARCHAR2(20)
 , promo_category VARCHAR2(15)
 , promo_cost NUMBER(10,2)
 , promo_begin_date DATE
 , promo_end_date DATE
) ;

The constraint promo_id_u identifies the promo_id column as a unique key. This constraint ensures
that no two promotions in the table have the same ID. However, the constraint does allow
promotions without identifiers.

Alternatively, you can define and enable this constraint out of line:

CREATE TABLE promotions_var2
 (promo_id NUMBER(6)
 , promo_name VARCHAR2(20)
 , promo_category VARCHAR2(15)
 , promo_cost NUMBER(10,2)
 , promo_begin_date DATE
 , promo_end_date DATE
 , CONSTRAINT promo_id_u UNIQUE (promo_id)
 USING INDEX PCTFREE 20
 TABLESPACE stocks
 STORAGE (INITIAL 8M));

The preceding statement also contains the using_index_clause, which specifies storage
characteristics for the index that Oracle creates to enable the constraint.

Composite Unique Key Example

The following statement defines and enables a composite unique key on the combination of
the warehouse_id and warehouse_name columns of the oe.warehouses table:

ALTER TABLE warehouses
 ADD CONSTRAINT wh_unq UNIQUE (warehouse_id, warehouse_name)
 USING INDEX PCTFREE 5
 EXCEPTIONS INTO wrong_id;

The wh_unq constraint ensures that the same combination of warehouse_id and warehouse_name
values does not appear in the table more than once.

The ADD CONSTRAINT clause also specifies other properties of the constraint:

• The USING INDEX clause specifies storage characteristics for the index Oracle creates to
enable the constraint.

• The EXCEPTIONS INTO clause causes Oracle to write to the wrong_id table information about
any rows currently in the warehouses table that violate the constraint. If the wrong_id
exceptions table does not already exist, then this statement will fail.

Primary Key Example

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 63

The following statement is a variation of the statement that created the sample table hr.locations.
It creates the locations_demo table and defines and enables a primary key on the location_id
column (other constraints from the hr.locations table are omitted):

CREATE TABLE locations_demo
 (location_id NUMBER(4) CONSTRAINT loc_id_pk PRIMARY KEY
 , street_address VARCHAR2(40)
 , postal_code VARCHAR2(12)
 , city VARCHAR2(30)
 , state_province VARCHAR2(25)
 , country_id CHAR(2)
) ;

The loc_id_pk constraint, specified inline, identifies the location_id column as the primary key of
the locations_demo table. This constraint ensures that no two locations in the table have the same
location number and that no location identifier is NULL.

Alternatively, you can define and enable this constraint out of line:

CREATE TABLE locations_demo
 (location_id NUMBER(4)
 , street_address VARCHAR2(40)
 , postal_code VARCHAR2(12)
 , city VARCHAR2(30)
 , state_province VARCHAR2(25)
 , country_id CHAR(2)
 , CONSTRAINT loc_id_pk PRIMARY KEY (location_id));

NOT NULL Example

The following statement alters the locations_demo table (created in "Primary Key Example") to
define and enable a NOT NULL constraint on the country_id column:

ALTER TABLE locations_demo
 MODIFY (country_id CONSTRAINT country_nn NOT NULL);

The constraint country_nn ensures that no location in the table has a null country_id.

Composite Primary Key Example

The following statement defines a composite primary key on the combination of the prod_id and
cust_id columns of the sample table sh.sales:

ALTER TABLE sales
 ADD CONSTRAINT sales_pk PRIMARY KEY (prod_id, cust_id) DISABLE;

This constraint identifies the combination of the prod_id and cust_id columns as the primary key
of the sales table. The constraint ensures that no two rows in the table have the same
combination of values for the prod_id column and cust_id columns.

The constraint clause (PRIMARY KEY) also specifies the following properties of the constraint:

• The constraint definition does not include a constraint name, so Oracle generates a name
for the constraint.

• The DISABLE clause causes Oracle to define the constraint but not enable it.

Foreign Key Constraint Example

The following statement creates the dept_20 table and defines and enables a foreign key on the
department_id column that references the primary key on the department_id column of the departments
table:

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 63

CREATE TABLE dept_20
 (employee_id NUMBER(4),
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4),
 hire_date DATE,
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id CONSTRAINT fk_deptno
 REFERENCES departments(department_id));

The constraint fk_deptno ensures that all departments given for employees in the dept_20 table
are present in the departments table. However, employees can have null department numbers,
meaning they are not assigned to any department. To ensure that all employees are assigned
to a department, you could create a NOT NULL constraint on the department_id column in the
dept_20 table in addition to the REFERENCES constraint.

Before you define and enable this constraint, you must define and enable a constraint that
designates the department_id column of the departments table as a primary or unique key.

The foreign key constraint definition does not use the FOREIGN KEY clause, because the
constraint is defined inline. The data type of the department_id column is not needed, because
Oracle automatically assigns to this column the data type of the referenced key.

The constraint definition identifies both the parent table and the columns of the referenced key.
Because the referenced key is the primary key of the parent table, the referenced key column
names are optional.

Alternatively, you can define this foreign key constraint out of line:

CREATE TABLE dept_20
 (employee_id NUMBER(4),
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4),
 hire_date DATE,
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id,
 CONSTRAINT fk_deptno
 FOREIGN KEY (department_id)
 REFERENCES departments(department_id));

The foreign key definitions in both variations of this statement omit the ON DELETE clause,
causing Oracle to prevent the deletion of a department if any employee works in that
department.

ON DELETE Example

This statement creates the dept_20 table, defines and enables two referential integrity
constraints, and uses the ON DELETE clause:

CREATE TABLE dept_20
 (employee_id NUMBER(4) PRIMARY KEY,
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4) CONSTRAINT fk_mgr
 REFERENCES employees ON DELETE SET NULL,
 hire_date DATE,
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id NUMBER(2) CONSTRAINT fk_deptno

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 63

 REFERENCES departments(department_id)
 ON DELETE CASCADE);

Because of the first ON DELETE clause, if manager number 2332 is deleted from the employees
table, then Oracle sets to null the value of manager_id for all employees in the dept_20 table who
previously had manager 2332.

Because of the second ON DELETE clause, Oracle cascades any deletion of a department_id value
in the departments table to the department_id values of its dependent rows of the dept_20 table. For
example, if Department 20 is deleted from the departments table, then Oracle deletes all of the
employees in Department 20 from the dept_20 table.

Composite Foreign Key Constraint Example

The following statement defines and enables a foreign key on the combination of the employee_id
and hire_date columns of the dept_20 table:

ALTER TABLE dept_20
 ADD CONSTRAINT fk_empid_hiredate
 FOREIGN KEY (employee_id, hire_date)
 REFERENCES hr.job_history(employee_id, start_date)
 EXCEPTIONS INTO wrong_emp;

The constraint fk_empid_hiredate ensures that all the employees in the dept_20 table have
employee_id and hire_date combinations that exist in the employees table. Before you define and
enable this constraint, you must define and enable a constraint that designates the
combination of the employee_id and hire_date columns of the employees table as a primary or unique
key.

The EXCEPTIONS INTO clause causes Oracle to write information to the wrong_emp table about
any rows in the dept_20 table that violate the constraint. If the wrong_emp exceptions table does
not already exist, then this statement will fail.

Check Constraint Examples

The following statement creates a divisions table and defines a check constraint in each column of
the table:

CREATE TABLE divisions
 (div_no NUMBER CONSTRAINT check_divno
 CHECK (div_no BETWEEN 10 AND 99)
 DISABLE,
 div_name VARCHAR2(9) CONSTRAINT check_divname
 CHECK (div_name = UPPER(div_name))
 DISABLE,
 office VARCHAR2(10) CONSTRAINT check_office
 CHECK (office IN ('DALLAS','BOSTON',
 'PARIS','TOKYO'))
 DISABLE);

Each constraint restricts the values of the column in which it is defined:

• check_divno ensures that no division numbers are less than 10 or greater than 99.

• check_divname ensures that all division names are in uppercase.

• check_office restricts office locations to Dallas, Boston, Paris, or Tokyo.

Because each CONSTRAINT clause contains the DISABLE clause, Oracle only defines the
constraints and does not enable them.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 63

The following statement creates the dept_20 table, defining out of line and implicitly enabling a
check constraint:

CREATE TABLE dept_20
 (employee_id NUMBER(4) PRIMARY KEY,
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4),
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id NUMBER(2),
 CONSTRAINT check_sal CHECK (salary * commission_pct <= 5000));

This constraint uses an inequality condition to limit an employee's total commission, the
product of salary and commission_pct, to $5000:

• If an employee has non-null values for both salary and commission, then the product of
these values must not exceed $5000 to satisfy the constraint.

• If an employee has a null salary or commission, then the result of the condition is unknown
and the employee automatically satisfies the constraint.

Because the constraint clause in this example does not supply a constraint name, Oracle
generates a name for the constraint.

The following statement defines and enables a primary key constraint, two foreign key
constraints, a NOT NULL constraint, and two check constraints:

CREATE TABLE order_detail
 (CONSTRAINT pk_od PRIMARY KEY (order_id, part_no),
 order_id NUMBER
 CONSTRAINT fk_oid
 REFERENCES oe.orders(order_id),
 part_no NUMBER
 CONSTRAINT fk_pno
 REFERENCES oe.product_information(product_id),
 quantity NUMBER
 CONSTRAINT nn_qty NOT NULL
 CONSTRAINT check_qty CHECK (quantity > 0),
 cost NUMBER
 CONSTRAINT check_cost CHECK (cost > 0));

The constraints enable the following rules on table data:

• pk_od identifies the combination of the order_id and part_no columns as the primary key of the
table. To satisfy this constraint, no two rows in the table can contain the same combination
of values in the order_id and the part_no columns, and no row in the table can have a null in
either the order_id or the part_no column.

• fk_oid identifies the order_id column as a foreign key that references the order_id column in the
orders table in the sample schema oe. All new values added to the column order_detail.order_id
must already appear in the column oe.orders.order_id.

• fk_pno identifies the product_id column as a foreign key that references the product_id column
in the product_information table owned by oe. All new values added to the column
order_detail.product_id must already appear in the column oe.product_information.product_id.

• nn_qty forbids nulls in the quantity column.

• check_qty ensures that values in the quantity column are always greater than zero.

• check_cost ensures the values in the cost column are always greater than zero.

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 63

This example also illustrates the following points about constraint clauses and column
definitions:

• Out-of-line constraint definition can appear before or after the column definitions. In this
example, the out-of-line definition of the pk_od constraint precedes the column definitions.

• A column definition can contain multiple inline constraint definitions. In this example, the
definition of the quantity column contains the definitions of both the nn_qty and check_qty
constraints.

• A table can have multiple CHECK constraints. Multiple CHECK constraints, each with a
simple condition enforcing a single business rule, are preferable to a single CHECK
constraint with a complicated condition enforcing multiple business rules. When a
constraint is violated, Oracle returns an error identifying the constraint. Such an error more
precisely identifies the violated business rule if the identified constraint enables a single
business rule.

Create a Table with PRECHECK: Example

The following example creates a table Product with PRECHECK constraints on columns Price, Color,
Description, constant NUMBER, and constraint TC1 :

CREATE TABLE Product(
 Id NUMBER NOT NULL PRIMARY KEY,
 Name VARCHAR2(50),
 Price NUMBER CHECK (mod(price,4) = 0 and 10 <> price) PRECHECK,
 Color NUMBER CHECK (Color >= 10 and Color <=50 and mod(color,2) = 0)
 PRECHECK,
 Description VARCHAR2(50) CHECK (Length(Description) <= 40) PRECHECK,
 Constant NUMBER CHECK (Constant=10) PRECHECK,
 CONSTRAINT TC1 CHECK (Color > 0 AND Price > 10) PRECHECK,
 CONSTRAINT TC2 CHECK (CATEGORY IN ('Home', 'Apparel') AND Price > 10)
);
Table PRODUCT created.

Add Precheck State to a New Constraint using ALTER TABLE:

ALTER TABLE Product MODIFY (Name VARCHAR2(50) CHECK
 (regexp_like(Name, '^Product')) PRECHECK);

Add Precheck to an Existing Costraint State :

ALTER TABLE Product MODIFY CONSTRAINT TC2 PRECHECK;

Remove an Existing Precheck State:

ALTER TABLE Product MODIFY CONSTRAINT TC1 NOPRECHECK;

Check PRECHECK State in USER_CONSTRAINTS: Example

Given the following table Product:

SQL> CREATE TABLE Product(
 Id NUMBER NOT NULL PRIMARY KEY,
 Name VARCHAR2(50),
 Category VARCHAR2(10) NOT NULL,
 Price NUMBER CHECK (mod(price,4) = 0 and 10 <> price),
 Color NUMBER CHECK (Color >= 10 and Color <=50) PRECHECK,

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 63

 Description VARCHAR2(50) CHECK (Length(Description) <= 40),
 Created_At DATE,
 Updated_At DATE,
 CONSTRAINT TC1 CHECK (Color > 0 AND Price > 10),
 CONSTRAINT TC2 CHECK (CATEGORY IN ('Home', 'Apparel')) NOPRECHECK,
 CONSTRAINT TC3 CHECK (Created_At > Updated_At)
);

Table PRODUCT created.

You can check the PRECHECK state in USER_CONSTRAINTS as follows:

SELECT CONSTRAINT_NAME, SEARCH_CONDITION, PRECHECK
 FROM USER_CONSTRAINTS
 WHERE table_name='PRODUCT' and constraint_type='C';

The result is:

CONSTRAINT_NAME SEARCH_CONDITION PRECHECK
__________________ ___________________________________ _____________
SYS_C008676 "ID" IS NOT NULL
SYS_C008677 "CATEGORY" IS NOT NULL
SYS_C008678 mod(price,4) = 0 and 10 <> price PRECHECK
SYS_C008679 Color >= 10 and Color <=50 PRECHECK
SYS_C008680 Length(Description) <= 40 PRECHECK
TC1 Color > 0 AND Price > 10 PRECHECK
TC2 CATEGORY IN ('Home', 'Apparel') NOPRECHECK
TC3 Created_At > Updated_At NOPRECHECK

8 rows selected.

Several constraints are automatically set to a value in both inline and out-of-line constraints.

Case-Insensitive Constraints Example

The following statements create two tables in a parent-child relationship. The parent table is a
product description table and the child table is a product component description table. Unique
constraints are defined to assure that product and description values are unambiguous. For
illustrative purposes, the product and component ID are case-insensitive character values. (In
real-world applications, primary key IDs are usually numeric or case-normalized.)

CREATE TABLE products
 (product_id VARCHAR2(20) COLLATE BINARY_CI
 CONSTRAINT product_pk PRIMARY KEY
 , description VARCHAR2(1000) COLLATE BINARY_CI
 CONSTRAINT product_description_unq UNIQUE
);

CREATE TABLE product_components
 (component_id VARCHAR2(40) COLLATE BINARY_CI
 CONSTRAINT product_component_pk PRIMARY KEY
 , product_id CONSTRAINT product_component_fk REFERENCES products(product_id)
 , description VARCHAR2(1000) COLLATE BINARY_CI
 CONSTRAINT product_component_descr_unq UNIQUE
);

Note that if you do not specify the data type or the collation for a foreign key column, then they
are inherited from the parent key column.

The following statements add a product and its components into the tables:

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 63

INSERT INTO products(product_id, description)
 VALUES('BICY0001', 'Men''s bicycle, fr 21", wh 24", gear 3x7');
INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_FRAME01', 'BICY0001', 'Aluminium frame 21"');
INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_WHEEL01', 'bicy0001', 'Wheels 24"');
INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_GEAR01', 'Bicy0001', 'Front derailleur 3 chainrings');
INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_gear02', 'BiCy0001', 'Rear derailleur 7 chainrings');

Note the different case of the product ID in different component rows. Because the primary key
on the product ID is declared as case-insensitive, all possible letter case combinations of the
same ID are considered equal.

The following statement demonstrates that it is not possible to enter another product with the
same description differing only by case. It fails with the error ORA-00001: unique constraint
(schema.PRODUCT_DESCRIPTION_UNQ) violated.

INSERT INTO products(product_id, description)
 VALUES('BICY0002', 'MEN''S BICYCLE, fr 21", wh 24", gear 3x7');

Similarly, the following statement demonstrates that the primary key contraint of the product
table is case-insensitive and does not allow values differing only by case. It fails with the error
ORA-00001: unique constraint (schema.PRODUCT_PK) violated.

INSERT INTO products(component_id, product_id, description)
 VALUES('bicy0001', 'Women''s bicycle, fr 21", wh 24", gear 2x6');

The following statement demonstrates that it is not possible to enter another component with
the same description differing only by case. It fails with the error ORA-00001: unique constraint
(schema.PRODUCT_COMPONENT_DESCR_UNQ) violated.

INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_gear03', 'BiCy0001', 'REAR DERAILLEUR 7 CHAINRINGS');

Attribute-Level Constraints Example

The following example guarantees that a value exists for both the first_name and last_name
attributes of the name column in the students table:

CREATE TYPE person_name AS OBJECT
 (first_name VARCHAR2(30), last_name VARCHAR2(30));
/

CREATE TABLE students (name person_name, age INTEGER,
 CHECK (name.first_name IS NOT NULL AND
 name.last_name IS NOT NULL));

REF Constraint Examples

The following example creates a duplicate of the sample schema object type cust_address_typ,
and then creates a table containing a REF column with a SCOPE constraint:

CREATE TYPE cust_address_typ_new AS OBJECT
 (street_address VARCHAR2(40)
 , postal_code VARCHAR2(10)
 , city VARCHAR2(30)
 , state_province VARCHAR2(10)
 , country_id CHAR(2)
);
/

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 63

CREATE TABLE address_table OF cust_address_typ_new;

CREATE TABLE customer_addresses (
 add_id NUMBER,
 address REF cust_address_typ_new
 SCOPE IS address_table);

The following example creates the same table but with a referential integrity constraint on the
REF column that references the object identifier column of the parent table:

CREATE TABLE customer_addresses (
 add_id NUMBER,
 address REF cust_address_typ REFERENCES address_table);

The following example uses the type department_typ and the table departments_obj_t, created in
"Creating Object Tables: Examples". A table with a scoped REF is then created.

CREATE TABLE employees_obj
 (e_name VARCHAR2(100),
 e_number NUMBER,
 e_dept REF department_typ SCOPE IS departments_obj_t);

The following statement creates a table with a REF column which has a referential integrity
constraint defined on it:

CREATE TABLE employees_obj
 (e_name VARCHAR2(100),
 e_number NUMBER,
 e_dept REF department_typ REFERENCES departments_obj_t);

Explicit Index Control Example

The following statement shows another way to create a unique (or primary key) constraint that
gives you explicit control over the index (or indexes) Oracle uses to enforce the constraint:

CREATE TABLE promotions_var3
 (promo_id NUMBER(6)
 , promo_name VARCHAR2(20)
 , promo_category VARCHAR2(15)
 , promo_cost NUMBER(10,2)
 , promo_begin_date DATE
 , promo_end_date DATE
 , CONSTRAINT promo_id_u UNIQUE (promo_id, promo_cost)
 USING INDEX (CREATE UNIQUE INDEX promo_ix1
 ON promotions_var3 (promo_id, promo_cost))
 , CONSTRAINT promo_id_u2 UNIQUE (promo_cost, promo_id)
 USING INDEX promo_ix1);

This example also shows that you can create an index for one constraint and use that index to
create and enable another constraint in the same statement.

DEFERRABLE Constraint Examples

The following statement creates table games with a NOT DEFERRABLE INITIALLY IMMEDIATE
constraint check (by default) on the scores column:

CREATE TABLE games (scores NUMBER CHECK (scores >= 0));

To define a unique constraint on a column as INITIALLY DEFERRED DEFERRABLE, issue the
following statement:

Chapter 8
constraint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 63

CREATE TABLE games
 (scores NUMBER, CONSTRAINT unq_num UNIQUE (scores)
 INITIALLY DEFERRED DEFERRABLE);

deallocate_unused_clause
Purpose

Use the deallocate_unused_clause to explicitly deallocate unused space at the end of a database
object segment and make the space available for other segments in the tablespace.

You can deallocate unused space using the following statements:

• ALTER CLUSTER (see ALTER CLUSTER)

• ALTER INDEX: to deallocate unused space from the index, an index partition, or an index
subpartition (see ALTER INDEX)

• ALTER MATERIALIZED VIEW: to deallocate unused space from the overflow segment of an
index-organized materialized view (see ALTER MATERIALIZED VIEW)

• ALTER TABLE: to deallocate unused space from the table, a table partition, a table
subpartition, the mapping table of an index-organized table, the overflow segment of an
index-organized table, or a LOB storage segment (see ALTER TABLE)

Syntax

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

(size_clause::=)

Semantics

This section describes the semantics of the deallocate_unused_clause. For additional information,
refer to the SQL statement in which you set or reset this clause for a particular database
object.

You cannot specify both the deallocate_unused_clause and the allocate_extent_clause in the same
statement.

Oracle Database frees only unused space above the high water mark (the point beyond which
database blocks have not yet been formatted to receive data). Oracle deallocates unused
space beginning from the end of the object and moving toward the beginning of the object to
the high water mark.

If an extent is completely contained in the deallocation, then the whole extent is freed for
reuse. If an extent is partially contained in the deallocation, then the used part up to the high
water mark becomes the extent, and the remaining unused space is freed for reuse.

Oracle credits the amount of the released space to the user quota for the tablespace in which
the deallocation occurs.

The exact amount of space freed depends on the values of the INITIAL, MINEXTENTS, and NEXT
storage parameters. Refer to the storage_clause for a description of these parameters.

Chapter 8
deallocate_unused_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 63

KEEP integer

Specify the number of bytes above the high water mark that the segment of the database
object is to have after deallocation.

• If you omit KEEP and the high water mark is above the size of INITIAL and MINEXTENTS,
then all unused space above the high water mark is freed. When the high water mark is
less than the size of INITIAL or MINEXTENTS, then all unused space above MINEXTENTS is
freed.

• If you specify KEEP, then the specified amount of space is kept and the remaining space is
freed. When the remaining number of extents is less than MINEXTENTS, then Oracle
adjusts MINEXTENTS to the new number of extents. If the initial extent becomes smaller
than INITIAL, then Oracle adjusts INITIAL to the new size.

• In either case, Oracle sets the value of the NEXT storage parameter to the size of the last
extent that was deallocated.

file_specification
Purpose

Use one of the file_specification forms to specify a file as a data file or temp file, or to specify a
group of one or more files as a redo log file group. If you are storing your files in Oracle
Automatic Storage Management (Oracle ASM) disk groups, then you can further specify the
file as a disk group file.

A file_specification can appear in the following statements:

• CREATE CONTROLFILE (see CREATE CONTROLFILE)

• CREATE DATABASE (see CREATE DATABASE)

• ALTER DATABASE (see ALTER DATABASE)

• CREATE TABLESPACE (see CREATE TABLESPACE)

• ALTER TABLESPACE (see ALTER TABLESPACE)

• ALTER DISKGROUP (see ALTER DISKGROUP)

Prerequisites

You must have the privileges necessary to issue the statement in which the file specification
appears.

Syntax

file_specification::=

datafile_tempfile_spec

redo_log_file_spec

datafile_tempfile_spec::=

’

filename

ASM_filename

’

SIZE size_clause REUSE autoextend_clause

Chapter 8
file_specification

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 63

(size_clause::=)

redo_log_file_spec::=

’
filename

ASM_filename
’

(’
filename

ASM_filename
’

,

)

SIZE size_clause BLOCKSIZE size_clause REUSE

(size_clause::=)

ASM_filename::=

fully_qualified_file_name

numeric_file_name

incomplete_file_name

alias_file_name

fully_qualified_file_name::=

+ diskgroup_name / db_name / file_type / file_type_tag . filenumber . incarnation_number

numeric_file_name::=

+ diskgroup_name . filenumber . incarnation_number

incomplete_file_name::=

+ diskgroup_name

(template_name)

alias_file_name::=

+ diskgroup_name

(template_name)

/ alias_name

Chapter 8
file_specification

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 63

autoextend_clause::=

AUTOEXTEND

OFF

ON

NEXT size_clause maxsize_clause

(size_clause::=)

maxsize_clause::=

MAXSIZE

UNLIMITED

size_clause

(size_clause::=)

Semantics

This section describes the semantics of file_specification. For additional information, refer to the
SQL statement in which you specify a data file, temp file, redo log file, or Oracle ASM disk
group or disk group file.

datafile_tempfile_spec

Use this clause to specify the attributes of data files and temp files if your database storage is
in a file system or in Oracle ASM disk groups.

redo_log_file_spec

Use this clause to specify the attributes of redo log files if your database storage is in a file
system or in Oracle ASM disk groups.

filename

Use filename for files stored in a file system. The filename can specify either a new file or an
existing file. For a new file:

• If you are not using Oracle Managed Files, then you must specify both filename and the SIZE
clause or the statement fails. When you specify a filename without a size, Oracle attempts
to reuse an existing file and returns an error if the file does not exist.

• If you are using Oracle Managed Files, then filename is optional, as are the remaining
clauses of the specification. In this case, Oracle Database creates a unique name for the
file and saves it in the directory specified by one of the following initialization parameters:

– The DB_RECOVERY_FILE_DEST (for logfiles and control files)

– The DB_CREATE_FILE_DEST initialization parameter (for any type of file)

– The DB_CREATE_ONLINE_LOG_DEST_n initialization parameter, which takes precedence
over DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST for log files.

For an existing file, specify the name of either a data file, temp file, or a redo log file member.
The filename can contain only single-byte characters from 7-bit ASCII or EBCDIC character sets.
Multibyte characters are not valid.

Chapter 8
file_specification

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 63

The filename can include a path prefix. If you do not specify such a path prefix, then the
database adds the path prefix for the default storage location, which is platform dependent.

A redo log file group can have one or more members (copies). Each filename must be fully
specified according to the conventions for your operating system.

The way the database interprets filename also depends on whether you specify it with the SIZE
and REUSE clauses.

• If you specify filename only, or with the REUSE clause but without the SIZE clause, then the file
must already exist.

• If you specify filename with SIZE but without REUSE, then the file must be a new file.

• If you specify filename with both SIZE and REUSE, then the file can be either new or existing. If
the file exists, then it is reused with the new size. If it does not exist, then the database
ignores the REUSE keyword and creates a new file of the specified size.

See Also

Oracle Automatic Storage Management Administrator's Guide for more information on
Oracle Managed Files, "Specifying a Data File: Example", and "Specifying a Log File:
Example"

ASM_filename

Use a form of ASM_filename for files stored in Oracle ASM disk groups. You can create or refer to
data files, temp files, and redo log files with this syntax.

All forms of ASM_filename begin with the plus sign (+) followed by the name of the disk group.
You can determine the names of all Oracle ASM disk groups by querying the
V$ASM_DISKGROUP view.

See Also

Oracle Automatic Storage Management Administrator's Guide for information on using
Oracle ASM

fully_qualified_file_name

When you create a file in an Oracle ASM disk group, the file receives a system-generated fully
qualified Oracle ASM filename. You can use this form only when referring to an existing Oracle
ASM file. Therefore, if you are using this form during file creation, you must also specify REUSE.

• db_name is the value of the DB_UNIQUE_NAME initialization parameter. This name is
equivalent to the name of the database on which the file resides, but the parameter
distinguishes between primary and standby databases, if both exist.

• file_type and file_type_tag indicate the type of database file. Table 8-1 lists all of the file types
and their corresponding Oracle ASM tags.

• filenumber and incarnation_number are system-generated identifiers to guarantee uniqueness.

You can determine the fully qualified names of Oracle ASM files by querying the dynamic
performance view appropriate for the file type (for example V$DATAFILE for data files,

Chapter 8
file_specification

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 63

V$CONTROLFILE for control files, and so on). You can also obtain the filenumber and
incarnation_number portions of the fully qualified names by querying the V$ASM_FILE view.

Table 8-1 Oracle File Types and Oracle ASM File Type Tags

Oracle ASM file_type Description Oracle ASM file_type_tag Comments

CONTROLFILE Control files and backup
control files

Current

Backup

—

DATAFILE Data files and data file copies tsname Tablespace into which the file
is added

ONLINELOG Online logs group_group# —

ARCHIVELOG Archive logs thread_thread#_seq_sequence# —

TEMPFILE Temp files tsname Tablespace into which the file
is added

BACKUPSET Data file and archive log
backup pieces; data file
incremental backup pieces

hasspfile_timestamp hasspfile can take one of two
values: s indicates that the
backup set includes the spfile;
n indicates that the backup
set does not include the spfile.

PARAMETERFILE Persistent parameter files spfile —

DATAGUARDCONFIG Data Guard configuration file db_unique_name Data Guard uses the value of
the DB_UNIQUE_NAME
initialization parameter.

FLASHBACK Flashback logs log_log# —

CHANGETRACKING Block change tracking data ctf Used during incremental
backups

DUMPSET Data Pump dumpset user_obj#_file# Dump set files encode the
user name, the job number
that created the dump set,
and the file number as part of
the tag.

XTRANSPORT Data file convert tsname —

AUTOBACKUP Automatic backup files hasspfile_timestamp hasspfile can take one of two
values: s indicates that the
backup set includes the spfile;
n indicates that the backup
set does not include the spfile.

numeric_file_name

A numeric Oracle ASM filename is similar to a fully qualified filename except that it uses only
the unique filenumber.incarnation_number string. You can use this form only to refer to an existing
file. Therefore, if you are using this form during file creation, you must also specify REUSE.

incomplete_file_name

Incomplete Oracle ASM filenames are used during file creation only. If you specify the disk
group name alone, then Oracle ASM uses the appropriate default template for the file type. For
example, if you are creating a data file in a CREATE TABLESPACE statement, Oracle ASM uses
the default DATAFILE template to create an Oracle ASM data file. If you specify the disk group

Chapter 8
file_specification

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 63

name with a template, then Oracle ASM uses the specified template to create the file. In both
cases, Oracle ASM also creates a fully qualified filename.

template_name

A template is a named collection of attributes. You can create templates and apply them to files
in a disk group. You can determine the names of all Oracle ASM template names by querying
the V$ASM_TEMPLATE data dictionary view. Refer to diskgroup_template_clauses for
instructions on creating Oracle ASM templates.

You can specify template only during file creation. It appears in the incomplete and alias name
forms of the ASM_filename diagram:

• If you specify template immediately after the disk group name, then Oracle ASM uses the
specified template to create the file, and gives the file a fully qualified filename.

• If you specify template after specifying an alias, then Oracle ASM uses the specified
template to create the file, gives the file a fully qualified filename, and also creates the alias
so that you can subsequently use it to refer to the file. If the alias you specify refers to an
existing file, then Oracle ASM ignores the template specification unless you also specify
REUSE.

See Also

diskgroup_template_clauses for information about the default templates

alias_file_name

An alias is a user-friendly name for an Oracle ASM file. You can use alias filenames during file
creation or reference. You can specify a template with an alias, but only during file creation. To
determine the alias names for Oracle ASM files, query the V$ASM_ALIAS data dictionary view.

If you are specifying an alias during file creation, then refer to diskgroup_directory_clauses and
diskgroup_alias_clauses for instructions on specifying the full alias name.

SIZE Clause

Specify the size of the file in bytes. Use K, M, G, or T to specify the size in kilobytes,
megabytes, gigabytes, or terabytes.

• For undo tablespaces, you must specify the SIZE clause for each data file. For other
tablespaces, you can omit this parameter if the file already exists, or if you are creating an
Oracle Managed File.

• If you omit this clause when creating an Oracle Managed File, then Oracle creates a 100M
file.

• The size of a tablespace must be one block greater than the sum of the sizes of the
objects contained in it.

See Also

Oracle Database Administrator's Guide for information on automatic undo
management and undo tablespaces and "Adding a Log File: Example"

Chapter 8
file_specification

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 63

BLOCKSIZE Clause

Specify BLOCKSIZE to override the operating system-dependent sector size. If you omit this
clause, then the database uses the operating system-dependent sector size as the block size.

When you add a redo log file to a 512-byte sector disk or to a 4KB sector disk with 512-byte
emulation, the blocksize of the new file must be the original platform base block size or 4KB.

• If the redo log file is being added to a 512-byte sector disk, then you must specify 512 or
1024 (or 1K) as the block size, depending on your platform.

• If the redo log file is being added to a 4KB sector disk (native), then you must specify either
4096 or 4K as the block size.

• If the redo log file is being added to a 4KB sector disk with 512-byte emulation, then you
can specify either 512, 1024 (or 1K), or 4096 (or 4K) as the block size, depending on your
platform.

All logs within a log group must have the same block size. Two log groups created on separate
disks can have different block sizes. However, the mixed configuration introduces overhead at
every log switch. Oracle recommends that you create all log files with the same block size.

This clause is useful when the 4K sector size is in use, but you want to optimize disk space
use rather than performance. In such a case you can override the operating system sector size
by specifying BLOCKSIZE 512 or, for HP-UX, BLOCKSIZE 1024.

See Also

"Adding a Log File: Example"

REUSE

Specify REUSE to allow Oracle to reuse an existing file.

• If the file already exists, then Oracle reuses the filename and applies the new size (if you
specify SIZE) or retains the original size.

• If the file does not exist, then Oracle ignores this clause and creates the file.

Restriction on the REUSE Clause

You cannot specify REUSE unless you have specified filename.

Whenever Oracle uses an existing file, the previous contents of the file are lost.

See Also

"Adding a Data File: Example" and "Adding a Log File: Example"

autoextend_clause

The autoextend_clause is valid for data files and temp files but not for redo log files. Use this clause
to enable or disable the automatic extension of a new or existing data file or temp file. If you
omit this clause, then:

• For Oracle Managed Files:

Chapter 8
file_specification

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 63

– If you specify SIZE, then Oracle Database creates a file of the specified size with
AUTOEXTEND disabled.

– If you do not specify SIZE, then the database creates a 100M file with AUTOEXTEND
enabled. When autoextension is required, the database extends the file by its original
size or 100MB, whichever is smaller. You can override this default behavior by
specifying the NEXT clause.

• For user-managed files, with or without SIZE specified, Oracle creates a file with
AUTOEXTEND disabled.

ON

Specify ON to enable autoextend.

OFF

Specify OFF to turn off autoextend if is turned on. When you turn off autoextend, the values of
NEXT and MAXSIZE are set to zero. If you turn autoextend back on in a subsequent statement,
then you must reset these values.

NEXT

Use the NEXT clause to specify the size in bytes of the next increment of disk space to be
allocated automatically when more extents are required. The default is the size of one data
block.

MAXSIZE

Use the MAXSIZE clause to specify the maximum disk space allowed for automatic extension of
the data file.

UNLIMITED

Use the UNLIMITED clause if you do not want to limit the disk space that Oracle can allocate to
the data file or temp file.

Restriction on the autoextend_clause

You cannot specify this clause as part of the datafile_tempfile_spec in a CREATE CONTROLFILE
statement or in an ALTER DATABASE CREATE DATAFILE clause.

Examples

Specifying a Log File: Example

The following statement creates a database named payable that has two redo log file groups,
each with two members, and one data file:

CREATE DATABASE payable
 LOGFILE GROUP 1 ('diska:log1.log', 'diskb:log1.log') SIZE 50K,
 GROUP 2 ('diska:log2.log', 'diskb:log2.log') SIZE 50K
 DATAFILE 'diskc:dbone.dbf' SIZE 30M;

The first file specification in the LOGFILE clause specifies a redo log file group with the GROUP
value 1. This group has members named 'diska:log1.log' and 'diskb:log1.log', each 50 kilobytes in
size.

The second file specification in the LOGFILE clause specifies a redo log file group with the
GROUP value 2. This group has members named 'diska:log2.log' and 'diskb:log2.log', also 50
kilobytes in size.

Chapter 8
file_specification

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 63

The file specification in the DATAFILE clause specifies a data file named 'diskc:dbone.dbf', 30
megabytes in size.

Each file specification specifies a value for the SIZE parameter and omits the REUSE clause, so
none of these files can already exist. Oracle must create them.

Adding a Log File: Example

The following statement adds another redo log file group with two members to the payable
database:

ALTER DATABASE payable
 ADD LOGFILE GROUP 3 ('diska:log3.log', 'diskb:log3.log')
 SIZE 50K REUSE;

The file specification in the ADD LOGFILE clause specifies a new redo log file group with the
GROUP value 3. This new group has members named 'diska:log3.log' and 'diskb:log3.log', each 50
kilobytes in size. Because the file specification specifies the REUSE clause, each member can
(but need not) already exist.

The following statement adds a logfile group 5 with member log files on migration target disks
4k_disk_a and 4k_disk_b. After executing this statement, you can switch existing log files on disks
with 512-byte block size to logs with 4K block size using the switch_logfile_clause.

ALTER DATABASE ADD LOGFILE GROUP 5
 ('4k_disk_a:log5.log', '4k_disk_b:log5.log')
 SIZE 100M BLOCKSIZE 4096 REUSE;

Specifying a Data File: Example

The following statement creates a tablespace named stocks that has three data files:

CREATE TABLESPACE stocks
 DATAFILE 'stock1.dbf' SIZE 10M,
 'stock2.dbf' SIZE 10M,
 'stock3.dbf' SIZE 10M;

The file specifications for the data files specify files named 'diskc:stock1.dbf', 'diskc:stock2.dbf', and
'diskc:stock3.dbf'.

Adding a Data File: Example

The following statement alters the stocks tablespace and adds a new data file:

ALTER TABLESPACE stocks
 ADD DATAFILE 'stock4.dbf' SIZE 10M REUSE;

The file specification specifies a data file named 'stock4.dbf'. If the filename does not exist, then
Oracle simply ignores the REUSE keyword.

Using a Fully Qualified Oracle ASM Data File Name: Example

When using Oracle ASM, the following syntax shows how to use the fully_qualified_file_name
clause to bring online a data file in a hypothetical database, testdb:

ALTER DATABASE testdb
 DATAFILE '+dgroup_01/testdb/datafile/system.261.1' ONLINE;

Chapter 8
file_specification

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 63

logging_clause
Purpose

The logging_clause lets you specify whether certain DML operations will be logged in the redo log
file (LOGGING) or not (NOLOGGING).

You can specify the logging_clause in the following statements:

• CREATE TABLE and ALTER TABLE: for logging of the table, a table partition, a LOB segment,
or the overflow segment of an index-organized table (see CREATE TABLE and ALTER
TABLE).

Note

Logging specified for a LOB column can differ from logging set at the table level. If
you specify LOGGING at the table level and NOLOGGING for a LOB column, then
DML changes to the base table row are logged, but DML changes to the LOB data
are not logged.

• CREATE INDEX and ALTER INDEX: for logging of the index or an index partition (see
CREATE INDEX and ALTER INDEX).

• CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW: for logging of the materialized
view, one of its partitions, or a LOB segment (see CREATE MATERIALIZED VIEW and
ALTER MATERIALIZED VIEW).

• CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG: for logging of the
materialized view log or one of its partitions (see CREATE MATERIALIZED VIEW LOG and
ALTER MATERIALIZED VIEW LOG).

• CREATE TABLESPACE and ALTER TABLESPACE: to set or modify the default logging
characteristics for all objects created in the tablespace (see CREATE TABLESPACE and
ALTER TABLESPACE).

• CREATE PLUGGABLE DATABASE and ALTER PLUGGABLE DATABASE: to set or modify the
default logging characteristics for all tablespaces created in the pluggable database (PDB)
(see CREATE PLUGGABLE DATABASE and ALTER PLUGGABLE DATABASE).

You can also specify LOGGING or NOLOGGING for the following operations:

• Rebuilding an index (using CREATE INDEX ... REBUILD)

• Moving a table (using ALTER TABLE ... MOVE)

Syntax

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

Chapter 8
logging_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 63

Semantics

This section describes the semantics of the logging_clause. For additional information, refer to the
SQL statement in which you set or reset logging characteristics for a particular database
object.

• If you specify LOGGING, then the creation of a database object, as well as subsequent
inserts into the object, will be logged in the redo log file.

• If you specify NOLOGGING, then the creation of a database object, as well as subsequent
conventional inserts, will be logged in the redo log file. Direct-path inserts will not be
logged.

– For a nonpartitioned object, the value specified for this clause is the actual physical
attribute of the segment associated with the object.

– For partitioned objects, the value specified for this clause is the default physical
attribute of the segments associated with all partitions specified in the CREATE
statement (and in subsequent ALTER ... ADD PARTITION statements), unless you specify
the logging attribute in the PARTITION description.

– For SecureFiles LOBs, the NOLOGGING setting is converted internally to
FILESYSTEM_LIKE_LOGGING.

– CACHE NOLOGGING is not allowed for BasicFiles LOBs.

• The FILESYSTEM_LIKE_LOGGING clause is valid only for logging of SecureFiles LOB
segments. You cannot specify this setting for BasicFiles LOBs. Specify this setting if you
want to log only metadata changes. This setting is similar to the metadata journaling of file
systems, which reduces mean time to recovery from failures. The LOGGING setting, for
SecureFiles LOBs, is similar to the data journaling of file systems. Both the LOGGING and
FILESYSTEM_LIKE_LOGGING settings provide a complete transactional file system by way of
SecureFiles.

Note

For LOB segments, with the NOLOGGING and FILESYSTEM_LIKE_LOGGING settings it is
possible for data to be changed on disk during a backup operation, resulting in an
inconsistent backup. To avoid this situation, ensure that changes to LOB segments are
saved in the redo log file by setting LOGGING for LOB storage. Alternatively, change
the database to FORCE LOGGING mode so that changes to all LOB segments are saved
in the redo.

If the object for which you are specifying the logging attributes resides in a database or
tablespace in force logging mode, then Oracle Database ignores any NOLOGGING setting until
the database or tablespace is taken out of force logging mode.

If the database is running in ARCHIVELOG mode, then media recovery from a backup made
before the LOGGING operation re-creates the object. However, media recovery from a backup
made before the NOLOGGING operation does not re-create the object.

The size of a redo log generated for an operation in NOLOGGING mode is significantly smaller
than the log generated in LOGGING mode.

In NOLOGGING mode, data is modified with minimal logging (to mark new extents INVALID and
to record dictionary changes). When applied during media recovery, the extent invalidation

Chapter 8
logging_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 63

records mark a range of blocks as logically corrupt, because the redo data is not fully logged.
Therefore, if you cannot afford to lose the database object, then you should take a backup after
the NOLOGGING operation.

NOLOGGING is supported in only a subset of the locations that support LOGGING. Only the
following operations support the NOLOGGING mode:

DML:

• Direct-path INSERT (serial or parallel) resulting either from an INSERT or a MERGE statement.
NOLOGGING is not applicable to any UPDATE operations resulting from the MERGE
statement.

• Direct Loader (SQL*Loader)

DDL:

• CREATE TABLE ... AS SELECT (In NOLOGGING mode, the creation of the table will be logged,
but direct-path inserts will not be logged.)

• CREATE TABLE ... LOB_storage_clause ... LOB_parameters ... CACHE | NOCACHE | CACHE READS

• ALTER TABLE ... LOB_storage_clause ... LOB_parameters ... CACHE | NOCACHE | CACHE READS (to
specify logging of newly created LOB columns)

• ALTER TABLE ... modify_LOB_storage_clause ... modify_LOB_parameters ... CACHE | NOCACHE | CACHE
READS (to change logging of existing LOB columns)

• ALTER TABLE ... MOVE

• ALTER TABLE ... (all partition operations that involve data movement)

– ALTER TABLE ... ADD PARTITION (hash partition only)

– ALTER TABLE ... MERGE PARTITIONS

– ALTER TABLE ... SPLIT PARTITION

– ALTER TABLE ... MOVE PARTITION

– ALTER TABLE ... MODIFY PARTITION ... ADD SUBPARTITION

– ALTER TABLE ... MODIFY PARTITION ... COALESCE SUBPARTITION

• CREATE INDEX

• ALTER INDEX ... REBUILD

• ALTER INDEX ... REBUILD [SUB]PARTITION

• ALTER INDEX ... SPLIT PARTITION

For objects other than LOBs, if you omit this clause, then the logging attribute of the object
defaults to the logging attribute of the tablespace in which it resides.

For LOBs, if you omit this clause, then:

• If you specify CACHE, then LOGGING is used (because you cannot have CACHE
NOLOGGING).

• If you specify NOCACHE or CACHE READS, then the logging attribute defaults to the logging
attribute of the tablespace in which it resides.

NOLOGGING does not apply to LOBs that are stored internally (in the table with row data). If you
specify NOLOGGING for LOBs with values less than 4000 bytes and you have not disabled

Chapter 8
logging_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 63

STORAGE IN ROW, then Oracle ignores the NOLOGGING specification and treats the LOB data the
same as other table data.

parallel_clause
Purpose

The parallel_clause lets you parallelize the creation of a database object and set the default
degree of parallelism for subsequent queries of and DML operations on the object.

You can specify the parallel_clause in the following statements:

• CREATE TABLE: to set parallelism for the table (see CREATE TABLE).

• ALTER TABLE (see ALTER TABLE):

– To change parallelism for the table

– To parallelize the operations of adding, coalescing, exchanging, merging, splitting,
truncating, dropping, or moving a table partition

• CREATE CLUSTER and ALTER CLUSTER: to set or alter parallelism for a cluster (see CREATE
CLUSTER and ALTER CLUSTER).

• CREATE INDEX: to set parallelism for the index (see CREATE INDEX).

• ALTER INDEX (see ALTER INDEX):

– To change parallelism for the index

– To parallelize the rebuilding of the index or the splitting of an index partition

• CREATE MATERIALIZED VIEW: to set parallelism for the materialized view (see CREATE
MATERIALIZED VIEW).

• ALTER MATERIALIZED VIEW (see ALTER MATERIALIZED VIEW):

– To change parallelism for the materialized view

– To parallelize the operations of adding, coalescing, exchanging, merging, splitting,
truncating, dropping, or moving a materialized view partition

– To parallelize the operations of adding or moving materialized view subpartitions

• CREATE MATERIALIZED VIEW LOG: to set parallelism for the materialized view log (see
CREATE MATERIALIZED VIEW LOG).

• ALTER MATERIALIZED VIEW LOG (see ALTER MATERIALIZED VIEW LOG):

– To change parallelism for the materialized view log

– To parallelize the operations of adding, coalescing, exchanging, merging, splitting,
truncating, dropping, or moving a materialized view log partition

• ALTER DATABASE ... RECOVER: to recover the database (see ALTER DATABASE).

• ALTER DATABASE ... standby_database_clauses: to parallelize operations on the standby database
(see ALTER DATABASE).

• CREATE VECTOR INDEX: (see CREATE VECTOR INDEX).

Chapter 8
parallel_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 63

See Also

Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_PARALLEL_EXECUTE package, which provides methods to apply table changes in
chunks of rows. Changes to each chunk are independently committed when there are
no errors.

Syntax

parallel_clause::=

NOPARALLEL

PARALLEL

integer

Semantics

This section describes the semantics of the parallel_clause. For additional information, refer to the
SQL statement in which you set or reset parallelism for a particular database object or
operation.

Note

The syntax of the parallel_clause supersedes syntax appearing in earlier releases of
Oracle. The superseded syntax is still supported for backward compatibility, but may
result in slightly different behavior from that documented.

The database interprets the parallel_clause based on the setting of the PARALLEL_DEGREE_POLICY
initialization parameter. When that parameter is set to AUTO, the parallel_clause is ignored
entirely, and the optimizer determines the best degree of parallelism for all statements. When
PARALLEL_DEGREE_POLICY is set to either MANUAL or LIMITED, the parallel_clause is interpreted
as follows:

NOPARALLEL

Specify NOPARALLEL for serial execution. This is the default.

PARALLEL

Specify PARALLEL for parallel execution.

• If PARALLEL_DEGREE_POLICY is set to MANUAL, then the optimizer calculates a degree of
parallelism equal to the number of CPUs available on all participating instances times the
value of the PARALLEL_THREADS_PER_CPU initialization parameter.

• If PARALLEL_DEGREE_POLICY is set to LIMITED, then the optimizer determines the best
degree of parallelism.

PARALLEL integer

Chapter 8
parallel_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 63

Specification of integer indicates the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use one or two parallel
execution servers.

Notes on the parallel_clause

The following notes apply to the parallel_clause:

• Parallelism is disabled for DML operations on tables on which you have defined a trigger or
referential integrity constraint.

• Parallelism is not supported for UPDATE or DELETE operations on index-organized tables.

• When you specify the parallel_clause during creation of a table, if the table contains any
columns of LOB or user-defined object type, then subsequent INSERT, UPDATE, DELETE or
MERGE operations that modify the LOB or object type column are executed serially without
notification. Subsequent queries, however, will be executed in parallel.

• A parallel hint overrides the effect of the parallel_clause.

• DML statements and CREATE TABLE ... AS SELECT statements that reference remote objects
can run in parallel. However, the remote object must really be on a remote database. The
reference cannot loop back to an object on the local database, for example, by way of a
synonym on the remote database pointing back to an object on the local database.

• DML operations on tables with LOB columns can be parallelized. However, intrapartition
parallelism is not supported.

See Also

Oracle Database VLDB and Partitioning Guide for more information on parallelized
operations, and "Creating a Table: Parallelism Examples"

physical_attributes_clause
Purpose

The physical_attributes_clause lets you specify the value of the PCTFREE, PCTUSED, and INITRANS
parameters and the storage characteristics of a table, cluster, index, or materialized view.

You can specify the physical_attributes_clause in the following statements:

• CREATE CLUSTER and ALTER CLUSTER: to set or change the physical attributes of the cluster
and all tables in the cluster (see CREATE CLUSTER and ALTER CLUSTER).

• CREATE TABLE: to set the physical attributes of the table, a table partition, the OIDINDEX of
an object table, or the overflow segment of an index-organized table (see CREATE
TABLE).

• ALTER TABLE: to change the physical attributes of the table, the default physical attributes
of future table partitions, or the physical attributes of existing table partitions (see ALTER
TABLE). The following restrictions apply:

– You cannot specify physical attributes for a temporary table.

– You cannot specify physical attributes for a clustered table. Tables in a cluster inherit
the physical attributes of the cluster.

Chapter 8
physical_attributes_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 63

• CREATE INDEX: to set the physical attributes of an index or index partition (see CREATE
INDEX).

• ALTER INDEX: to change the physical attributes of the index, the default physical attributes
of future index partitions, or the physical attributes of existing index partitions (see ALTER
INDEX).

• CREATE MATERIALIZED VIEW: to set the physical attributes of the materialized view, one of
its partitions, or the index Oracle Database generates to maintain the materialized view
(see CREATE MATERIALIZED VIEW).

• ALTER MATERIALIZED VIEW: to change the physical attributes of the materialized view, the
default physical attributes of future partitions, the physical attributes of an existing partition,
or the index Oracle creates to maintain the materialized view (see ALTER MATERIALIZED
VIEW).

• CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG: to set or change the
physical attributes of the materialized view log (see CREATE MATERIALIZED VIEW LOG
and ALTER MATERIALIZED VIEW LOG).

Syntax

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

Semantics

This section describes the parameters of the physical_attributes_clause. For additional information,
refer to the SQL statement in which you set or reset these parameters for a particular database
object.

PCTFREE integer

Specify a whole number representing the percentage of space in each data block of the
database object reserved for future updates to rows of the object. The value of PCTFREE must
be a value from 0 to 99. A value of 0 means that the entire block can be filled by inserts of new
rows. The default value is 10. This value reserves 10% of each block for updates to existing
rows and allows inserts of new rows to fill a maximum of 90% of each block.

PCTFREE has the same function in the statements that create and alter tables, partitions,
clusters, indexes, materialized views, materialized view logs, and zone maps. The combination
of PCTFREE and PCTUSED determines whether new rows will be inserted into existing data
blocks or into new blocks. See "How PCTFREE and PCTUSED Work Together".

Restriction on the PCTFREE Clause

When altering an index, you can specify this parameter only in the modify_index_default_attrs
clause and the split_index_partition clause.

PCTUSED integer

Chapter 8
physical_attributes_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 63

Specify a whole number representing the minimum percentage of used space that Oracle
maintains for each data block of the database object. PCTUSED is specified as a positive integer
from 0 to 99 and defaults to 40.

PCTUSED has the same function in the statements that create and alter tables, partitions,
clusters, materialized views, materialized view logs, and zone maps.

PCTUSED is not a valid table storage characteristic for an index-organized table.

The sum of PCTFREE and PCTUSED must be equal to or less than 100. You can use PCTFREE and
PCTUSED together to utilize space within a database object more efficiently. See "How
PCTFREE and PCTUSED Work Together".

Restrictions on the PCTUSED Clause

The PCTUSED parameter is subject to the following restrictions:

• You cannot specify this parameter for an index or for the index segment of an index-
organized table.

• This parameter is not useful and is ignored for objects with automatic segment-space
management.

See Also

Oracle Database Performance Tuning Guide for information on the performance
effects of different values of PCTUSED and PCTFREE and CREATE TABLESPACE
segment_management_clause for information on automatic segment-space
management

How PCTFREE and PCTUSED Work Together

In a newly allocated data block, the space available for inserts is the block size minus the sum
of the block overhead and free space (PCTFREE). Updates to existing data can use any
available space in the block. Therefore, updates can reduce the available space of a block to
less than PCTFREE.

After a data block is filled to the limit determined by PCTFREE, Oracle Database considers the
block unavailable for the insertion of new rows until the percentage of that block falls beneath
the parameter PCTUSED. Until this value is achieved, Oracle Database uses the free space of
the data block only for updates to rows already contained in the data block. A block becomes a
candidate for row insertion when its used space falls below PCTUSED.

See Also

FREELISTS for information on how PCTUSED and PCTFREE work with freelist segment
space management

INITRANS integer

Specify the initial number of concurrent transaction entries allocated within each data block
allocated to the database object. This value can range from 1 to 255 and defaults to 1, with the
following exceptions:

Chapter 8
physical_attributes_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 63

• The default INITRANS value for a cluster is 2 or the default INITRANS value of the
tablespace in which the cluster resides, whichever is greater.

• The default value for an index is 2.

In general, you should not change the INITRANS value from its default.

Each transaction that updates a block requires a transaction entry in the block. This parameter
ensures that a minimum number of concurrent transactions can update the block and helps
avoid the overhead of dynamically allocating a transaction entry.

The INITRANS parameter serves the same purpose in the statements that create and alter
tables, partitions, clusters, indexes, materialized views, and materialized view logs.

MAXTRANS Parameter

In earlier releases, the MAXTRANS parameter determined the maximum number of concurrent
update transactions allowed for each data block in the segment. This parameter has been
deprecated. Oracle now automatically allows up to 255 concurrent update transactions for any
data block, depending on the available space in the block. Note that the maximum number of
concurrent update transactions is based on the size of the block

Existing objects for which a value of MAXTRANS has already been set retain that setting.
However, if you attempt to change the value for MAXTRANS, Oracle ignores the new
specification and substitutes the value 255 without returning an error.

storage_clause

The storage_clause lets you specify storage characteristics for the table, object table OIDINDEX,
partition, LOB data segment, or index-organized table overflow data segment. This clause has
performance ramifications for large tables. Storage should be allocated to minimize dynamic
allocation of additional space. Refer to the storage_clause for more information.

size_clause
Purpose

The size_clause lets you specify a number of bytes, kilobytes (K), megabytes (M), gigabytes (G),
terabytes (T), petabytes (P), or exabytes (E) in any statement that lets you establish amounts
of disk or memory space.

Syntax

size_clause::=

integer

K

M

G

T

P

E

Chapter 8
size_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 63

Semantics

Use the size_clause to specify a number or multiple of bytes. If you do not specify any of the
multiple abbreviations, then the integer is interpreted as bytes.

Note

Not all multiples of bytes are appropriate in all cases, and context-sensitive limitations
may apply. In the latter case, Oracle issues an error message.

storage_clause
Purpose

The storage_clause lets you specify how Oracle Database should store a permanent database
object. Storage parameters for temporary segments always use the default storage parameters
for the associated tablespace. Storage parameters affect both how long it takes to access data
stored in the database and how efficiently space in the database is used.

See Also

Oracle Automatic Storage Management Administrator's Guide for a discussion of the
effects of the storage parameters

When you create a cluster, index, materialized view, materialized view log, rollback segment,
table, LOB, varray, nested table, or partition, you can specify values for the storage parameters
for the segments allocated to these objects. If you omit any storage parameter, then Oracle
uses the value of that parameter specified for the tablespace in which the object resides. If no
value was specified for the tablespace, then the database uses default values.

Note

The specification of storage parameters for objects in locally managed tablespaces is
supported for backward compatibility. If you are using locally managed tablespaces,
then you can omit these storage parameter when creating objects in those
tablespaces.

When you alter a cluster, index, materialized view, materialized view log, rollback segment,
table, varray, nested table, or partition, you can change the values of storage parameters. The
new values affect only future extent allocations.

The storage_clause is part of the physical_attributes_clause, so you can specify this clause in any of the
statements where you can specify the physical attributes clause (see
physical_attributes_clause). In addition, you can specify the storage_clause in the following
statements:

• CREATE CLUSTER and ALTER CLUSTER: to set or change the storage characteristics of the
cluster and all tables in the cluster (see CREATE CLUSTER and ALTER CLUSTER).

Chapter 8
storage_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 63

• CREATE INDEX and ALTER INDEX: to set or change the storage characteristics of an index
segment created for a table index or index partition or an index segment created for
an index used to enforce a primary key or unique constraint (see CREATE INDEX and
ALTER INDEX).

• The ENABLE ... USING INDEX clause of CREATE TABLE or ALTER TABLE: to set or change the
storage characteristics of an index created by the system to enforce a primary key or
unique constraint.

• CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW: to set or change the storage
characteristics of a materialized view, one of its partitions, or the index Oracle
generates to maintain the materialized view (see CREATE MATERIALIZED VIEW and
ALTER MATERIALIZED VIEW).

• CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG: to set or change the
storage characteristics of the materialized view log (see CREATE MATERIALIZED VIEW
LOG and ALTER MATERIALIZED VIEW LOG).

• CREATE ROLLBACK SEGMENT and ALTER ROLLBACK SEGMENT: to set or change the storage
characteristics of a rollback segment (see CREATE ROLLBACK SEGMENT and ALTER
ROLLBACK SEGMENT).

• CREATE TABLE and ALTER TABLE: to set the storage characteristics of a LOB or varray
data segment of the nonclustered table or one of its partitions or subpartitions, or the
storage table of a nested table (see CREATE TABLE and ALTER TABLE).

• CREATE TABLESPACE and ALTER TABLESPACE: to set or change the default storage
characteristics for objects created in the tablespace (see CREATE TABLESPACE and
ALTER TABLESPACE). Changes to tablespace storage parameters affect only new
objects created in the tablespace or new extents allocated for a segment.

• constraint: to specify storage for the index (and its partitions, if it is a partitioned index)
used to enforce the constraint (see constraint).

Prerequisites

To change the value of a STORAGE parameter, you must have the privileges necessary to use
the appropriate CREATE or ALTER statement.

Chapter 8
storage_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 63

Syntax

storage_clause::=

STORAGE (

INITIAL size_clause

NEXT size_clause

MINEXTENTS integer

MAXEXTENTS
integer

UNLIMITED

maxsize_clause

PCTINCREASE integer

FREELISTS integer

FREELIST GROUPS integer

OPTIMAL

size_clause

NULL

BUFFER_POOL

KEEP

RECYCLE

DEFAULT

FLASH_CACHE

KEEP

NONE

DEFAULT

CELL_FLASH_CACHE

KEEP

NONE

DEFAULT

ENCRYPT

)

(size_clause::=)

maxsize_clause::=

MAXSIZE

UNLIMITED

size_clause

(size_clause::=)

Chapter 8
storage_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 63

Semantics

This section describes the parameters of the storage_clause. For additional information, refer to
the SQL statement in which you set or reset these storage parameters for a particular
database object.

Note

The storage_clause is interpreted differently for locally managed tablespaces. For locally
managed tablespaces, Oracle Database uses INITIAL, NEXT, PCTINCREASE, and
MINEXTENTS to compute how many extents are allocated when the object is first
created. After object creation, these parameters are ignored. For more information,
see CREATE TABLESPACE .

See Also

"Specifying Table Storage Attributes: Example"

INITIAL

Specify the size of the first extent of the object. Oracle allocates space for this extent when you
create the schema object. Refer to size_clause for information on that clause.

In locally managed tablespaces, Oracle uses the value of INITIAL, in conjunction with the type
of local management—AUTOALLOCATE or UNIFORM—and the values of MINEXTENTS, NEXT and
PCTINCREASE, to determine the initial size of the segment.

• With AUTOALLOCATE extent management, Oracle uses the INITIAL setting to optimize the
number of extents allocated. Extents of 64K, 1M, 8M, and 64M can be allocated. During
segment creation, the system chooses the greatest of these four sizes that is equal to or
smaller than INITIAL, and allocates as many extents of that size as are needed to reach the
INITIAL setting. For example, if you set INITIAL to 4M, then the database creates four 1M
extents.

• For UNIFORM extent management, the number of extents is determined from initial
segment size and the uniform extent size specified at tablespace creation time. For
example, in a uniform locally managed tablespace with 1M extents, if you specify an
INITIAL value of 5M, then Oracle creates five 1M extents.

Consider this comparison: With AUTOALLOCATE, if you set INITAL to 72K, then the initial
segment size will be 128K (greater than INITIAL). The database cannot allocate an extent
smaller than 64K, so it must allocate two 64K extents. If you set INITIAL to 72K with a
UNIFORM extent size of 24K, then the database will allocate three 24K extents to equal
72K.

In dictionary managed tablespaces, the default initial extent size is 5 blocks, and all
subsequent extents are rounded to 5 blocks. If MINIMUM EXTENT was specified at tablespace
creation time, then the extent sizes are rounded to the value of MINIMUM EXTENT.

Restriction on INITIAL

You cannot specify INITIAL in an ALTER statement.

NEXT

Chapter 8
storage_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 63

Specify in bytes the size of the next extent to be allocated to the object. Refer to size_clause
for information on that clause.

In locally managed tablespaces, any user-supplied value for NEXT is ignored and the size of
NEXT is determined by Oracle if the tablespace is set for autoallocate extent management. In
UNIFORM tablespaces, the size of NEXT is the uniform extent size specified at tablespace
creation time.

In dictionary-managed tablespaces, the default value is the size of 5 data blocks. The minimum
value is the size of 1 data block. The maximum value depends on your operating system.
Oracle rounds values up to the next multiple of the data block size for values less than 5 data
blocks. For values greater than 5 data blocks, Oracle rounds up to a value that minimizes
fragmentation.

See Also

Oracle Database Concepts for information on how Oracle minimizes fragmentation

PCTINCREASE

In locally managed tablespaces, Oracle Database uses the value of PCTINCREASE during
segment creation to determine the initial segment size and ignores this parameter during
subsequent space allocation.

In dictionary-managed tablespaces, specify the percent by which the third and subsequent
extents grow over the preceding extent. The default value is 50, meaning that each
subsequent extent is 50% larger than the preceding extent. The minimum value is 0, meaning
all extents after the first are the same size. The maximum value depends on your operating
system. Oracle rounds the calculated size of each new extent to the nearest multiple of the
data block size. If you change the value of the PCTINCREASE parameter by specifying it in an
ALTER statement, then Oracle calculates the size of the next extent using this new value and
the size of the most recently allocated extent.

Restriction on PCTINCREASE

You cannot specify PCTINCREASE for rollback segments. Rollback segments always have a
PCTINCREASE value of 0.

MINEXTENTS

In locally managed tablespaces, Oracle Database uses the value of MINEXTENTS in conjunction
with PCTINCREASE, INITIAL and NEXT to determine the initial segment size.

In dictionary-managed tablespaces, specify the total number of extents to allocate when the
object is created. The default and minimum value is 1, meaning that Oracle allocates only the
initial extent, except for rollback segments, for which the default and minimum value is 2. The
maximum value depends on your operating system.

• In a locally managed tablespace, MINEXTENTS is used to compute the initial amount of
space allocated, which is equal to INITIAL * MINEXTENTS. Thereafter this value is set to 1,
which is reflected in the DBA_SEGMENTS view.

• In a dictionary-managed tablespace, MINEXTENTS is simply the minimum number of
extents that must be allocated to the segment.

If the MINEXTENTS value is greater than 1, then Oracle calculates the size of subsequent
extents based on the values of the INITIAL, NEXT, and PCTINCREASE storage parameters.

Chapter 8
storage_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 63

When changing the value of MINEXTENTS by specifying it in an ALTER statement, you can
reduce the value from its current value, but you cannot increase it. Resetting MINEXTENTS to a
smaller value might be useful, for example, before a TRUNCATE ... DROP STORAGE statement, if
you want to ensure that the segment will maintain a minimum number of extents after the
TRUNCATE operation.

Restrictions on MINEXTENTS

The MINEXTENTS storage parameter is subject to the following restrictions:

• MINEXTENTS is not applicable at the tablespace level.

• You cannot change the value of MINEXTENTS in an ALTER statement or for an object that
resides in a locally managed tablespace.

MAXEXTENTS

This storage parameter is valid only for objects in dictionary-managed tablespaces. Specify the
total number of extents, including the first, that Oracle can allocate for the object. The minimum
value is 1 except for rollback segments, which always have a minimum of 2. The default value
depends on your data block size.

Restriction on MAXEXTENTS

MAXEXTENTS is ignored for objects residing in a locally managed tablespace, unless the value
of ALLOCATION_TYPE is USER for the tablespace in the DBA_TABLESPACES data dictionary view.

See Also

Oracle Database Reference for more information on the DBA_TABLESPACES data
dictionary view

UNLIMITED

Specify UNLIMITED if you want extents to be allocated automatically as needed. Oracle
recommends this setting as a way to minimize fragmentation.

Do not use this clause for rollback segments. Doing so allows the possibility that long-running
rogue DML transactions will continue to create new extents until a disk is full.

Note

A rollback segment that you create without specifying the storage_clause has the same
storage parameters as the tablespace in which the rollback segment is created. Thus,
if you create a tablespace with MAXEXTENTS UNLIMITED, then the rollback segment will
have this same default.

MAXSIZE

The MAXSIZE clause lets you specify the maximum size of the storage element. For LOB
storage, MAXSIZE has the following effects

• If you specify RETENTION MAX in LOB_parameters, then the LOB segment increases to the
specified size before any space can be reclaimed from undo space.

Chapter 8
storage_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 63

• If you specify RETENTION AUTO, MIN, or NONE in LOB_parameters, then the specified size is a
hard limit on the LOB segment size and has no bearing on undo retention.

UNLIMITED

Use the UNLIMITED clause if you do not want to limit the disk space of the storage element.
This clause is not compatible with a specification of RETENTION MAX in LOB_parameters. If you
specify both, then the database uses RETENTION AUTO and MAXSIZE UNLIMITED.

FREELISTS

In tablespaces with manual segment-space management, Oracle Database uses the
FREELISTS storage parameter to improve performance of space management in OLTP systems
by increasing the number of insert points in the segment. In tablespaces with automatic
segment-space management, this parameter is ignored, because the database adapts to
varying workload.

In tablespaces with manual segment-space management, for objects other than tablespaces
and rollback segments, specify the number of free lists for each of the free list groups for the
table, partition, cluster, or index. The default and minimum value for this parameter is 1,
meaning that each free list group contains one free list. The maximum value of this parameter
depends on the data block size. If you specify a FREELISTS value that is too large, then Oracle
returns an error indicating the maximum value.

This clause is not valid or useful if you have specified the SECUREFILE parameter of
LOB_parameters. If you specify both the SECUREFILE parameter and FREELISTS, then the
database silently ignores the FREELISTS specification.

Restriction on FREELISTS

You can specify FREELISTS in the storage_clause of any statement except when creating or altering
a tablespace or rollback segment.

FREELIST GROUPS

In tablespaces with manual segment-space management, Oracle Database uses the value of
this storage parameter to statically partition the segment free space in an Oracle Real
Application Clusters environment. This partitioning improves the performance of space
allocation and deallocation by avoiding inter instance transfer of segment metadata. In
tablespaces with automatic segment-space management, this parameter is ignored, because
Oracle dynamically adapts to inter instance workload.

In tablespaces with manual segment-space management, specify the number of groups of free
lists for the database object you are creating. The default and minimum value for this
parameter is 1. Oracle uses the instance number of Oracle Real Application Clusters (Oracle
RAC) instances to map each instance to one free list group.

Each free list group uses one database block. Therefore:

• If you do not specify a large enough value for INITIAL to cover the minimum value plus one
data block for each free list group, then Oracle increases the value of INITIAL the
necessary amount.

• If you are creating an object in a uniform locally managed tablespace, and the extent size
is not large enough to accommodate the number of freelist groups, then the create
operation will fail.

This clause is not valid or useful if you have specified the SECUREFILE parameter of
LOB_parameters. If you specify both the SECUREFILE parameter and FREELIST GROUPS, then
the database silently ignores the FREELIST GROUPS specification.

Chapter 8
storage_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 63

Restriction on FREELIST GROUPS

You can specify the FREELIST GROUPS parameter only in CREATE TABLE, CREATE CLUSTER,
CREATE MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, and CREATE INDEX statements.

OPTIMAL

The OPTIMAL keyword is relevant only to rollback segments. It specifies an optimal size in
bytes for a rollback segment. Refer to size_clause for information on that clause.

Oracle tries to maintain this size for the rollback segment by dynamically deallocating extents
when their data is no longer needed for active transactions. Oracle deallocates as many
extents as possible without reducing the total size of the rollback segment below the OPTIMAL
value.

The value of OPTIMAL cannot be less than the space initially allocated by the MINEXTENTS,
INITIAL, NEXT, and PCTINCREASE parameters. The maximum value depends on your operating
system. Oracle rounds values up to the next multiple of the data block size.

NULL

Specify NULL for no optimal size for the rollback segment, meaning that Oracle never
deallocates the extents of the rollback segment. This is the default behavior.

BUFFER_POOL

The BUFFER_POOL clause lets you specify a default buffer pool or cache for a schema object.
All blocks for the object are stored in the specified cache.

• If you define a buffer pool for a partitioned table or index, then the partitions inherit the
buffer pool from the table or index definition unless overridden by a partition-level
definition.

• For an index-organized table, you can specify a buffer pool separately for the index
segment and the overflow segment.

Restrictions on the BUFFER_POOL Parameter

BUFFER_POOL is subject to the following restrictions:

• You cannot specify this clause for a cluster table. However, you can specify it for a cluster.

• You cannot specify this clause for a tablespace or a rollback segment.

KEEP

Specify KEEP to put blocks from the segment into the KEEP buffer pool. Maintaining an
appropriately sized KEEP buffer pool lets Oracle retain the schema object in memory to avoid
I/O operations. KEEP takes precedence over any NOCACHE clause you specify for a table,
cluster, materialized view, or materialized view log.

RECYCLE

Specify RECYCLE to put blocks from the segment into the RECYCLE pool. An appropriately sized
RECYCLE pool reduces the number of objects whose default pool is the RECYCLE pool from
taking up unnecessary cache space.

DEFAULT

Specify DEFAULT to indicate the default buffer pool. This is the default for objects not assigned
to KEEP or RECYCLE.

Chapter 8
storage_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 63

See Also

Oracle Database Performance Tuning Guide for more information about using multiple
buffer pools

FLASH_CACHE

The FLASH_CACHE clause lets you override the automatic buffer cache policy and specify how
specific schema objects are cached in flash memory. To use this clause, Database Smart Flash
Cache (flash cache) must be configured on your system. The flash cache is an extension of
the database buffer cache that is stored on a flash disk, a storage device that uses flash
memory. Because flash memory is faster than magnetic disks, the database can improve
performance by caching buffers in the flash cache instead of reading from magnetic disk.

KEEP

Specify KEEP if you want the schema object buffers to remain cached in the flash cache as long
as the flash cache is large enough.

NONE

Specify NONE to ensure that the schema object buffers are never cached in the flash cache.
This allows you to reserve the flash cache space for more frequently accessed objects.

DEFAULT

Specify DEFAULT if you want the schema object buffers to be written to the flash cache when
they are aged out of main memory, and then be aged out of the flash cache with the standard
buffer cache replacement algorithm. This is the default if flash cache is configured and you do
not specify KEEP or NONE.

Note

Database Smart Flash Cache is available only in Solaris and Oracle Linux.

See Also

• Oracle Database Concepts for more information about Database Smart Flash
Cache

• Oracle Database Administrator's Guide to learn how to configure Database Smart
Flash Cache

ENCRYPT

This clause is valid only when you are creating a tablespace. Specify ENCRYPT to encrypt the
entire tablespace. You must also specify the ENCRYPTION clause in the CREATE TABLESPACE
statement.

Chapter 8
storage_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 63

Note

The ENCRYPT clause is supported for backward compatibility. However, beginning with
Oracle Database 12c Release 2 (12.2), you can instead specify ENCRYPT in the
tablespace_encryption_clause. Refer to the tablespace_encryption_clause of CREATE
TABLESPACE for more information.

Example

Specifying Table Storage Attributes: Example

The following statement creates a table and provides storage parameter values:

CREATE TABLE divisions
 (div_no NUMBER(2),
 div_name VARCHAR2(14),
 location VARCHAR2(13))
 STORAGE (INITIAL 8M MAXSIZE 1G);

The following statement queries the table for the size of the first extent:

SELECT INITIAL_EXTENT FROM USER_TABLES WHERE TABLE_NAME='DIVISIONS';

INITIAL_EXTENT

 8388608

Oracle allocates space for the table based on the STORAGE parameter values as follows:

• The INITIAL value is 8M, so the size of the first extent is 8 megabytes.

• The MAXSIZE value is 1G, so the maximum size of the storage element is 1 gigabyte.

annotations_clause
Purpose

Annotations provide a mechanism to store application metadata centrally in the database, so
that they can be shared across applications, modules and microservices.

You can add annotations to any supported schema objects that you own at creation time via
CREATE statements.

On supported schema objects that you have alter privileges on, you can add and drop
annotations via ALTER statements. You do not need to qualify the annotation name with the
schema name. Whenever a schema object drops an annotation, or when a schema object is
dropped altogether, the usage of the annotation is updated to reflect the drop.

An individual annotation has a name and an optional value. Both the name and the value are
freeform text fields. Annotations are additive, meaning that multiple annotations can be
specified for the same schema object in a single DDL.

When an annotation name is specified for a schema object for the first time, an annotation is
automatically created. Supported schema objects include tables, views, materialized views,
and indexes. The annotation is represented as a subordinate element to the database object to
which it has been added. Whenever a schema object drops an annotation, or when a schema
object is dropped altogether, the usage of the annotation is updated to reflect the drop.

Chapter 8
annotations_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 63

Dictionary views track the list of annotations and their usage across all schema objects. You
can query dictionary views USER|ALL|DBA_ANNOTATIONS_USAGE to list the annotations for a
schema object.

Prerequisites

You must own the schema object or have ALTER privileges on the schema object in order to
specify annotations on the object.

Syntax

annotations_clause::=

ANNOTATIONS (annotations_list)

annotations_list::=

ADD

IF NOT EXISTS

OR REPLACE

DROP

IF EXISTS

REPLACE

annotation

,

annotation::=

annotation_name

annotation_value

annotation_name::=

identifier

annotation_value::=

character_string_literal

Chapter 8
annotations_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 63

Semantics

annotations_clause

Specify ADD, DROP, or REPLACE to create, remove, or change annotations respectively.

• ADD creates annotation_name. This is the default when no keyword is specified before
annotation. If the object already has an annotation with this name, the statement raises an
error.

Use ADD IF NOT EXISTS to allow the statement to complete without error. If annotation_name is
already present, it keeps its original value when using the IF NOT EXISTS clause.

ADD [IF NOT EXISTS] is the only valid option to use with CREATE statements.

• DROP removes annotation_name from the object. If the object has no annotation with this
name, the statement raises an error. Use DROP IF EXISTS to allow the statement to complete
without error. This clause is only valid in ALTER statements.

• REPLACE changes annotation_value for annotation_name to the supplied value. If you omit the
value, this removes any existing value for annotation_name. If annotation_name does not exist the
statement will raise an error. This clause is only valid in ALTER statements.

The annotation_name is an identifier that can have up to 1024 characters. If the annotation name
is a reserved word it must be provided in double quotes. When a double quoted identifier is
used, the identifier can also contain whitespace characters. However, identifiers that contain
only whitespace characters are not accepted.

An annotation is either a name-value pair or a name by itself. The name and the optional value
are freeform text fields. Value can have a maximum of 4000 characters. An annotation
Display_Label, ‘Employee Salary’ has a name and a value, whereas an annotation UI_Hidden has only
a name and it does not need a value. UI_Hidden is a standalone annotation used to specify that
the column should be hidden.

Examples

Add Annotations to a Table

The following example adds two operations with values Sort and Group, and a standalone Hidden
without a value, to table t1:

CREATE TABLE t1 (T NUMBER) ANNOTATIONS(Operations '["Sort", "Group"]', Hidden);

The annotation can be preceded by the keyword ADD which is the default operation if nothing
is specified as the following example shows:

CREATE TABLE t1 (T NUMBER) ANNOTATIONS (ADD Hidden);

Alter Annotations at the Table Level

The following example drops all annotations from t1:

ALTER TABLE t1 ANNOTATIONS(DROP Operations, DROP Hidden);

Add Annotations to Table Columns

CREATE TABLE t1 (T NUMBER ANNOTATIONS(Operations 'Sort' , Hidden));

Add Annotations to Table and Columns

CREATE TABLE employee (

Chapter 8
annotations_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 63

 id NUMBER(5)
 ANNOTATIONS(Identity, Display 'Employee ID', "Group" 'Emp_Info'),
 ename VARCHAR2(50)
 ANNOTATIONS(Display 'Employee Name', "Group" 'Emp_Info'),
 sal NUMBER
 ANNOTATIONS(Display 'Employee Salary', UI_Hidden)
) ANNOTATIONS (Display 'Employee Table');

Alter Annotations at the Column Level

ALTER TABLE employee
 MODIFY ename ANNOTATIONS (
 DROP "Group",
 DROP IF EXISTS missing_annotation,
 REPLACE Display 'Emp name'
);

Chapter 8
annotations_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 63

9
SQL Queries and Subqueries

This chapter describes SQL queries and subqueries.

This chapter contains these sections:

• About Queries and Subqueries

• Creating Simple Queries

• Hierarchical Queries

• The Set Operators

• Sorting Query Results

• Joins

• Using Subqueries

• Unnesting of Nested Subqueries

• Selecting from the DUAL Table

• Distributed Queries

About Queries and Subqueries
A query is an operation that retrieves data from one or more tables or views. In this reference,
a top-level SELECT statement is called a query, and a query nested within another SQL
statement is called a subquery.

This section describes some types of queries and subqueries and how to use them. The top
level of the syntax is shown in this chapter. Refer to SELECT for the full syntax of all the
clauses and the semantics of this statement.

select::=

subquery

for_update_clause

;

subquery::=

query_block

subquery

UNION

INTERSECT

MINUS

EXCEPT

ALL

subquery

(subquery)

order_by_clause row_limiting_clause

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 19

query_block::=

with_clause

SELECT

hint

DISTINCT

UNIQUE

ALL

select_list

FROM

table_reference

join_clause

(join_clause)

inline_analytic_view

,

where_clause hierarchical_query_clause

group_by_clause

model_clause

window_clause

Creating Simple Queries
The list of expressions that appears after the SELECT keyword and before the FROM clause is
called the select list. Within the select list, you specify one or more columns in the set of rows
you want Oracle Database to return from one or more tables, views, or materialized views. The
number of columns, as well as their data type and length, are determined by the elements of
the select list.

If two or more tables have some column names in common, then you must qualify column
names with names of tables. Otherwise, fully qualified column names are optional. However, it
is always a good idea to qualify table and column references explicitly. Oracle often does less
work with fully qualified table and column names.

You can use a column alias, c_alias, to label the immediately preceding expression in the select
list so that the column is displayed with a new heading. The alias effectively renames the select
list item for the duration of the query. The alias can be used in the ORDER BY clause, but not
other clauses in the query.

You can use comments in a SELECT statement to pass instructions, or hints, to the Oracle
Database optimizer. The optimizer uses hints to choose an execution plan for the statement.
Refer to "Hints " for more information on hints.

Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order using the
hierarchical query clause:

Chapter 9
Creating Simple Queries

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 19

hierarchical_query_clause::=

CONNECT BY

NOCYCLE

condition

START WITH condition

START WITH condition CONNECT BY

NOCYCLE

condition

condition can be any condition as described in Conditions.

START WITH specifies the root row(s) of the hierarchy.

CONNECT BY specifies the relationship between parent rows and child rows of the hierarchy.

• The NOCYCLE parameter instructs Oracle Database to return rows from a query even if a
CONNECT BY loop exists in the data. Use this parameter along with the
CONNECT_BY_ISCYCLE pseudocolumn to see which rows contain the loop. Refer to
CONNECT_BY_ISCYCLE Pseudocolumn for more information.

• In a hierarchical query, one expression in condition must be qualified with the PRIOR operator
to refer to the parent row. For example,

... PRIOR expr = expr
or
... expr = PRIOR expr

If the CONNECT BY condition is compound, then only one condition requires the PRIOR
operator, although you can have multiple PRIOR conditions. For example:

CONNECT BY last_name != 'King' AND PRIOR employee_id = manager_id ...
CONNECT BY PRIOR employee_id = manager_id and
 PRIOR account_mgr_id = customer_id ...

PRIOR is a unary operator and has the same precedence as the unary + and - arithmetic
operators. It evaluates the immediately following expression for the parent row of the
current row in a hierarchical query.

PRIOR is most commonly used when comparing column values with the equality operator.
(The PRIOR keyword can be on either side of the operator.) PRIOR causes Oracle to use the
value of the parent row in the column. Operators other than the equal sign (=) are
theoretically possible in CONNECT BY clauses. However, the conditions created by these
other operators can result in an infinite loop through the possible combinations. In this case
Oracle detects the loop at run time and returns an error.

Both the CONNECT BY condition and the PRIOR expression can take the form of an uncorrelated
subquery. However, CURRVAL and NEXTVAL are not valid PRIOR expressions, so the PRIOR
expression cannot refer to a sequence.

You can further refine a hierarchical query by using the CONNECT_BY_ROOT operator to qualify a
column in the select list. This operator extends the functionality of the CONNECT BY [PRIOR]
condition of hierarchical queries by returning not only the immediate parent row but all ancestor
rows in the hierarchy.

Chapter 9
Hierarchical Queries

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 19

See Also

CONNECT_BY_ROOT for more information about this operator and "Hierarchical
Query Examples"

Oracle processes hierarchical queries as follows:

• A join, if present, is evaluated first, whether the join is specified in the FROM clause or with
WHERE clause predicates.

• The CONNECT BY condition is evaluated.

• Any remaining WHERE clause predicates are evaluated.

Oracle then uses the information from these evaluations to form the hierarchy using the
following steps:

1. Oracle selects the root row(s) of the hierarchy—those rows that satisfy the START WITH
condition.

2. Oracle selects the child rows of each root row. Each child row must satisfy the condition of
the CONNECT BY condition with respect to one of the root rows.

3. Oracle selects successive generations of child rows. Oracle first selects the children of the
rows returned in step 2, and then the children of those children, and so on. Oracle always
selects children by evaluating the CONNECT BY condition with respect to a current parent
row.

4. If the query contains a WHERE clause without a join, then Oracle eliminates all rows from
the hierarchy that do not satisfy the condition of the WHERE clause. Oracle evaluates this
condition for each row individually, rather than removing all the children of a row that does
not satisfy the condition.

5. Oracle returns the rows in the order shown in Figure 9-1. In the diagram, children appear
below their parents. For an explanation of hierarchical trees, see Figure 3-1.

Figure 9-1 Hierarchical Queries

1 7 8

R
O

O
T

2
9

3
4

1
0

1
2

1
1

6
5

To find the children of a parent row, Oracle evaluates the PRIOR expression of the CONNECT BY
condition for the parent row and the other expression for each row in the table. Rows for which
the condition is true are the children of the parent. The CONNECT BY condition can contain other
conditions to further filter the rows selected by the query.

Chapter 9
Hierarchical Queries

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 19

If the CONNECT BY condition results in a loop in the hierarchy, then Oracle returns an error. A
loop occurs if one row is both the parent (or grandparent or direct ancestor) and a child (or a
grandchild or a direct descendent) of another row.

Note

In a hierarchical query, do not specify either ORDER BY or GROUP BY, as they will
override the hierarchical order of the CONNECT BY results. If you want to order rows of
siblings of the same parent, then use the ORDER SIBLINGS BY clause. See
order_by_clause.

Hierarchical Query Examples
CONNECT BY Example

The following hierarchical query uses the CONNECT BY clause to define the relationship
between employees and managers:

SELECT employee_id, last_name, manager_id
 FROM employees
 CONNECT BY PRIOR employee_id = manager_id;

EMPLOYEE_ID LAST_NAME MANAGER_ID
----------- ------------------------- ----------
 101 Kochhar 100
 108 Greenberg 101
 109 Faviet 108
 110 Chen 108
 111 Sciarra 108
 112 Urman 108
 113 Popp 108
 200 Whalen 101
 203 Mavris 101
 204 Baer 101
. . .

LEVEL Example

The next example is similar to the preceding example, but uses the LEVEL pseudocolumn to
show parent and child rows:

SELECT employee_id, last_name, manager_id, LEVEL
 FROM employees
 CONNECT BY PRIOR employee_id = manager_id;

EMPLOYEE_ID LAST_NAME MANAGER_ID LEVEL
----------- ------------------------- ---------- ----------
 101 Kochhar 100 1
 108 Greenberg 101 2
 109 Faviet 108 3
 110 Chen 108 3
 111 Sciarra 108 3
 112 Urman 108 3
 113 Popp 108 3
 200 Whalen 101 2
 203 Mavris 101 2
 204 Baer 101 2

Chapter 9
Hierarchical Queries

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 19

 205 Higgins 101 2
 206 Gietz 205 3
 102 De Haan 100 1
...

START WITH Examples

The next example adds a START WITH clause to specify a root row for the hierarchy and an
ORDER BY clause using the SIBLINGS keyword to preserve ordering within the hierarchy:

SELECT last_name, employee_id, manager_id, LEVEL
 FROM employees
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id
 ORDER SIBLINGS BY last_name;

LAST_NAME EMPLOYEE_ID MANAGER_ID LEVEL
------------------------- ----------- ---------- ----------
King 100 1
Cambrault 148 100 2
Bates 172 148 3
Bloom 169 148 3
Fox 170 148 3
Kumar 173 148 3
Ozer 168 148 3
Smith 171 148 3
De Haan 102 100 2
Hunold 103 102 3
Austin 105 103 4
Ernst 104 103 4
Lorentz 107 103 4
Pataballa 106 103 4
Errazuriz 147 100 2
Ande 166 147 3
Banda 167 147 3
...

In the hr.employees table, the employee Steven King is the head of the company and has no
manager. Among his employees is John Russell, who is the manager of department 80. If you
update the employees table to set Russell as King's manager, you create a loop in the data:

UPDATE employees SET manager_id = 145
 WHERE employee_id = 100;

SELECT last_name "Employee",
 LEVEL, SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 WHERE level <= 3 AND department_id = 80
 START WITH last_name = 'King'
 CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 4;

ERROR:
ORA-01436: CONNECT BY loop in user data

The NOCYCLE parameter in the CONNECT BY condition causes Oracle to return the rows in spite
of the loop. The CONNECT_BY_ISCYCLE pseudocolumn shows you which rows contain the cycle:

SELECT last_name "Employee", CONNECT_BY_ISCYCLE "Cycle",
 LEVEL, SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 WHERE level <= 3 AND department_id = 80
 START WITH last_name = 'King'

Chapter 9
Hierarchical Queries

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 19

 CONNECT BY NOCYCLE PRIOR employee_id = manager_id AND LEVEL <= 4
 ORDER BY "Employee", "Cycle", LEVEL, "Path";

Employee Cycle LEVEL Path
------------------------- ---------- ---------- -------------------------
Abel 0 3 /King/Zlotkey/Abel
Ande 0 3 /King/Errazuriz/Ande
Banda 0 3 /King/Errazuriz/Banda
Bates 0 3 /King/Cambrault/Bates
Bernstein 0 3 /King/Russell/Bernstein
Bloom 0 3 /King/Cambrault/Bloom
Cambrault 0 2 /King/Cambrault
Cambrault 0 3 /King/Russell/Cambrault
Doran 0 3 /King/Partners/Doran
Errazuriz 0 2 /King/Errazuriz
Fox 0 3 /King/Cambrault/Fox
...

CONNECT_BY_ISLEAF Example

The following statement shows how you can use a hierarchical query to turn the values in a
column into a comma-delimited list:

SELECT LTRIM(SYS_CONNECT_BY_PATH (warehouse_id,','),',') FROM
 (SELECT ROWNUM r, warehouse_id FROM warehouses)
 WHERE CONNECT_BY_ISLEAF = 1
 START WITH r = 1
 CONNECT BY r = PRIOR r + 1
 ORDER BY warehouse_id;

LTRIM(SYS_CONNECT_BY_PATH(WAREHOUSE_ID,','),',')
--
1,2,3,4,5,6,7,8,9

CONNECT_BY_ROOT Examples

The following example returns the last name of each employee in department 110, each
manager at the highest level above that employee in the hierarchy, the number of levels
between manager and employee, and the path between the two:

SELECT last_name "Employee", CONNECT_BY_ROOT last_name "Manager",
 LEVEL-1 "Pathlen", SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 WHERE LEVEL > 1 and department_id = 110
 CONNECT BY PRIOR employee_id = manager_id
 ORDER BY "Employee", "Manager", "Pathlen", "Path";

Employee Manager Pathlen Path
--------------- --------------- ---------- ------------------------------
Gietz Higgins 1 /Higgins/Gietz
Gietz King 3 /King/Kochhar/Higgins/Gietz
Gietz Kochhar 2 /Kochhar/Higgins/Gietz
Higgins King 2 /King/Kochhar/Higgins
Higgins Kochhar 1 /Kochhar/Higgins

The following example uses a GROUP BY clause to return the total salary of each employee in
department 110 and all employees above that employee in the hierarchy:

SELECT name, SUM(salary) "Total_Salary" FROM (
 SELECT CONNECT_BY_ROOT last_name as name, Salary
 FROM employees
 WHERE department_id = 110

Chapter 9
Hierarchical Queries

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 19

 CONNECT BY PRIOR employee_id = manager_id)
 GROUP BY name
 ORDER BY name, "Total_Salary";

NAME Total_Salary
------------------------- ------------
Gietz 8300
Higgins 20300
King 20300
Kochhar 20300

See Also

• LEVEL Pseudocolumn and CONNECT_BY_ISCYCLE Pseudocolumn for a
discussion of how these pseudocolumns operate in a hierarchical query

• SYS_CONNECT_BY_PATH for information on retrieving the path of column
values from root to node

• order_by_clause for more information on the SIBLINGS keyword of ORDER BY
clauses

• subquery_factoring_clause, which supports recursive subquery factoring
(recursive WITH) and lets you query hierarchical data. This feature is more
powerful than CONNECT BY in that it provides depth-first search and breadth-first
search, and supports multiple recursive branches.

The Set Operators
You can combine multiple queries using the set operators UNION, UNION ALL, INTERSECT,
INTERSECT ALL, EXCEPT, EXCEPT ALL, MINUS, and MINUS ALL. All set operators have equal
precedence. If a SQL statement contains multiple set operators, then Oracle Database
evaluates them from the left to right unless parentheses explicitly specify another order.

The corresponding expressions in the select lists of the component queries of a compound
query must match in number and must be in the same data type group (such as numeric or
character).

If component queries select character data, then the data type of the return values are
determined as follows:

• If both queries select values of data type CHAR of equal length, then the returned values
have data type CHAR of that length. If the queries select values of CHAR with different
lengths, then the returned value is VARCHAR2 with the length of the larger CHAR value.

• If either or both of the queries select values of data type VARCHAR2, then the returned
values have data type VARCHAR2.

If component queries select numeric data, then the data type of the return values is determined
by numeric precedence:

• If any query selects values of type BINARY_DOUBLE, then the returned values have data
type BINARY_DOUBLE.

• If no query selects values of type BINARY_DOUBLE but any query selects values of type
BINARY_FLOAT, then the returned values have data type BINARY_FLOAT.

Chapter 9
The Set Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 19

• If all queries select values of type NUMBER, then the returned values have data type
NUMBER.

In queries using set operators, Oracle does not perform implicit conversion across data type
groups. Therefore, if the corresponding expressions of component queries resolve to both
character data and numeric data, Oracle returns an error.

The INTERSECT operator with the keyword ALL returns the result of two or more SELECT
statements in which rows appear in all result sets. Null values that are common across the
component queries of INTERSECT ALL are returned at the end of the result set.

The MINUS operator with the keyword ALL returns the result of two SELECT statements in which
rows appear in the first result set but not in the second result set.

If the first query has x nulls and the second query has y nulls, and x is greater than y, then x
minus y NULLS are returned at the end of the result query set. MINUS ALL returns no rows if
the result set returned by the first SELECTstatement is a subset of the result set returned by the
second SELECT.

The EXCEPT operator is a synonym for MINUS and has the exact same semantics. EXCEPT ALL
returns rows that are present in the first result set but not in the second. However, duplicates
may be present in the final result.

EXCEPT ALL, MINUS ALL INTERSECT ALL return equivalent instead of the original value, when
NLS_SORT=BINARY_CI[AI] is acceptable for the SQL standard.

See Also

Table 2-9 for more information on implicit conversion and "Numeric Precedence " for
information on numeric precedence

Examples for Valid and Invalid Data Type Conversions for Set Operators

The following query is valid:

SELECT 3 FROM DUAL
 INTERSECT
SELECT 3f FROM DUAL;

This is implicitly converted to the following compound query:

SELECT TO_BINARY_FLOAT(3) FROM DUAL
 INTERSECT
SELECT 3f FROM DUAL;

The following query returns an error:

SELECT '3' FROM DUAL
 INTERSECT
SELECT 3f FROM DUAL;

Restrictions on the Set Operators

The set operators are subject to the following restrictions:

• The set operators are not valid on columns of type BLOB, CLOB, BFILE, VARRAY, or nested
table.

• The UNION, INTERSECT, EXCEPT, and MINUS operators are not valid on LONG columns.

Chapter 9
The Set Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 19

• If the select list preceding the set operator contains an expression, then you must provide
a column alias for the expression in order to refer to it in the order_by_clause.

• You cannot also specify the for_update_clause with the set operators.

• You cannot specify the order_by_clause in the subquery of these operators.

• You cannot use these operators in SELECT statements containing TABLE collection
expressions.

Note

To follow the SQL standard, a future release might give the INTERSECT operator
greater precedence than the other set operators. Therefore, you should use
parentheses to specify order of evaluation in queries that use the INTERSECT operator
with other set operators.

UNION Example

The following statement combines the results of two queries with the UNION operator, which
eliminates duplicate selected rows. This statement shows that you must match data type
(using the TO_CHAR function) when columns do not exist in one or the other table:

SELECT location_id, department_name "Department",
 TO_CHAR(NULL) "Warehouse" FROM departments
 UNION
 SELECT location_id, TO_CHAR(NULL) "Department", warehouse_name
 FROM warehouses;

LOCATION_ID Department Warehouse
----------- ------------------------------ ---------------------------
 1400 IT
 1400 Southlake, Texas
 1500 Shipping
 1500 San Francisco
 1600 New Jersey
 1700 Accounting
 1700 Administration
 1700 Benefits
 1700 Construction
 1700 Contracting
 1700 Control And Credit
...

UNION ALL Example

The UNION operator returns only distinct rows that appear in either result, while the UNION ALL
operator returns all rows. The UNION ALL operator does not eliminate duplicate selected rows:

SELECT product_id FROM order_items
UNION
SELECT product_id FROM inventories
ORDER BY product_id;

SELECT location_id FROM locations
UNION ALL
SELECT location_id FROM departments
ORDER BY location_id;

Chapter 9
The Set Operators

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 19

A location_id value that appears multiple times in either or both queries (such as '1700') is
returned only once by the UNION operator, but multiple times by the UNION ALL operator.

INTERSECT Example

The following statement combines the results with the INTERSECT operator, which returns only
those unique rows returned by both queries:

SELECT product_id FROM inventories
INTERSECT
SELECT product_id FROM order_items
ORDER BY product_id;

MINUS Example

The following statement combines results with the MINUS operator, which returns only unique
rows returned by the first query but not by the second:

SELECT product_id FROM inventories
MINUS
SELECT product_id FROM order_items
ORDER BY product_id;

EXCEPT Example

You can use EXCEPT or MINUS when you want to exclude a result set from the final result set. In
this example, the result of the second query is ignored.

The following statement combines results with the EXCEPT operator, which returns only unique
rows returned by the first query but not by the second:

SELECT product_id FROM inventories
EXCEPT
SELECT product_id FROM order_items
ORDER BY product_id;

Sorting Query Results
Use the ORDER BY clause to order the rows selected by a query. Sorting by position is useful in
the following cases:

• To order by a lengthy select list expression, you can specify its position in the ORDER BY
clause rather than duplicate the entire expression.

• For compound queries containing set operators UNION, INTERSECT, MINUS, or UNION ALL,
the ORDER BY clause must specify positions or aliases rather than explicit expressions.
Also, the ORDER BY clause can appear only in the last component query. The ORDER BY
clause orders all rows returned by the entire compound query.

The ordering method by which Oracle Database sorts character values for the ORDER BY
clause, also known as the collation, is determined for each ORDER BY clause expression
separately using the collation derivation rules.

If the determined collation of an expression is not the collation BINARY, then the character
values are compared linguistically. In this case, they are first transformed to collation keys and
then compared like RAW values. The collation keys are generated implicitly using the same
method that the SQL function NLSSORT uses. Generated collation keys are subject to the same
restrictions that are described in "NLSSORT". As a result of these restrictions, if the initialization
parameter MAX_STRING_SIZE is set to STANDARD, two values may compare as linguistically
equal if they do not differ in the prefix that was used to produce the collation key, even if they

Chapter 9
Sorting Query Results

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 19

differ in the rest of the value. If the parameter's value is EXTENDED, then the error "ORA-12742:
unable to create the collation key" may be reported under certain circumstances. See the links below
for further information on the restrictions.

See Also

• Collation Derivation

• Linguistic Sorting and Matching

• Default Values for NLS Parameters in SQL Functions

• NLSSORT

Joins
A join is a query that combines rows from two or more tables, views, or materialized views.
Oracle Database performs a join whenever multiple tables appear in the FROM clause of the
query. The select list of the query can select any columns from any of these tables. If any two
of these tables have a column name in common, then you must qualify all references to these
columns throughout the query with table names to avoid ambiguity.

Join Conditions
Most join queries contain at least one join condition, either in the FROM clause or in the
WHERE clause. The join condition compares two columns, each from a different table. To
execute a join, Oracle Database combines pairs of rows, each containing one row from each
table, for which the join condition evaluates to TRUE. The columns in the join conditions need
not also appear in the select list.

To execute a join of three or more tables, Oracle first joins two of the tables based on the join
conditions comparing their columns and then joins the result to another table based on join
conditions containing columns of the joined tables and the new table. Oracle continues this
process until all tables are joined into the result. The optimizer determines the order in which
Oracle joins tables based on the join conditions, indexes on the tables, and, any available
statistics for the tables.

A WHERE clause that contains a join condition can also contain other conditions that refer to
columns of only one table. These conditions can further restrict the rows returned by the join
query.

Note

You cannot specify LOB columns in the WHERE clause if the WHERE clause contains
the join condition. The use of LOBs in WHERE clauses is also subject to other
restrictions. See Oracle Database SecureFiles and Large Objects Developer's Guide
for more information.

Equijoins
An equijoin is a join with a join condition containing an equality operator. An equijoin combines
rows that have equivalent values for the specified columns. Depending on the internal

Chapter 9
Joins

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 19

algorithm the optimizer chooses to execute the join, the total size of the columns in the equijoin
condition in a single table may be limited to the size of a data block minus some overhead. The
size of a data block is specified by the initialization parameter DB_BLOCK_SIZE.

See Also

"Using Join Queries: Examples"

Band Joins
A band join is a special type of nonequijoin in which key values in one data set must fall within
the specified range (“band”) of the second data set. The same table can serve as both the first
and second data sets.

See Also

• Database SQL Tuning Guide for more information on band joins

• USE_BAND Hint

• NO_USE_BAND Hint

Self Joins
A self join is a join of a table to itself. This table appears twice in the FROM clause and is
followed by table aliases that qualify column names in the join condition. To perform a self join,
Oracle Database combines and returns rows of the table that satisfy the join condition.

See Also

"Using Self Joins: Example"

Cartesian Products
If two tables in a join query have no join condition, then Oracle Database returns their
Cartesian product. Oracle combines each row of one table with each row of the other. A
Cartesian product always generates many rows and is rarely useful. For example, the
Cartesian product of two tables, each with 100 rows, has 10,000 rows. Always include a join
condition unless you specifically need a Cartesian product. If a query joins three or more tables
and you do not specify a join condition for a specific pair, then the optimizer may choose a join
order that avoids producing an intermediate Cartesian product.

Inner Joins
An inner join (sometimes called a simple join) is a join of two or more tables that returns only
those rows that satisfy the join condition.

Chapter 9
Joins

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 19

Outer Joins
An outer join extends the result of a simple join. An outer join returns all rows that satisfy the
join condition and also returns some or all of those rows from one table for which no rows from
the other satisfy the join condition.

• To write a query that performs an outer join of tables A and B and returns all rows from A
(a left outer join), use the LEFT [OUTER] JOIN syntax in the FROM clause, or apply the outer
join operator (+) to all columns of B in the join condition in the WHERE clause. For all rows
in A that have no matching rows in B, Oracle Database returns null for any select list
expressions containing columns of B.

• To write a query that performs an outer join of tables A and B and returns all rows from B
(a right outer join), use the RIGHT [OUTER] JOIN syntax in the FROM clause, or apply the
outer join operator (+) to all columns of A in the join condition in the WHERE clause. For all
rows in B that have no matching rows in A, Oracle returns null for any select list
expressions containing columns of A.

• To write a query that performs an outer join and returns all rows from A and B, extended
with nulls if they do not satisfy the join condition (a full outer join), use the FULL [OUTER]
JOIN syntax in the FROM clause.

You cannot compare a column with a subquery in the WHERE clause of any outer join,
regardless which form you specify.

You can use outer joins to fill gaps in sparse data. Such a join is called a partitioned outer
join and is formed using the query_partition_clause of the join_clause syntax. Sparse data is data
that does not have rows for all possible values of a dimension such as time or department. For
example, tables of sales data typically do not have rows for products that had no sales on a
given date. Filling data gaps is useful in situations where data sparsity complicates analytic
computation or where some data might be missed if the sparse data is queried directly.

See Also

• join_clause for more information about using outer joins to fill gaps in sparse data

• Oracle Database Data Warehousing Guide for a complete discussion of group
outer joins and filling gaps in sparse data

Oracle recommends that you use the FROM clause OUTER JOIN syntax rather than the Oracle
join operator. Outer join queries that use the Oracle join operator (+) are subject to the
following rules and restrictions, which do not apply to the FROM clause OUTER JOIN syntax:

• You cannot specify the (+) operator in a query block that also contains FROM clause join
syntax.

• The (+) operator can appear only in the WHERE clause or, in the context of left-correlation
(when specifying the TABLE clause) in the FROM clause, and can be applied only to a
column of a table or view.

• If A and B are joined by multiple join conditions, then you must use the (+) operator in all of
these conditions. If you do not, then Oracle Database will return only the rows resulting
from a simple join, but without a warning or error to advise you that you do not have the
results of an outer join.

Chapter 9
Joins

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 19

• The (+) operator does not produce an outer join if you specify one table in the outer query
and the other table in an inner query.

• You cannot use the (+) operator to outer-join a table to itself, although self joins are valid.
For example, the following statement is not valid:

-- The following statement is not valid:
SELECT employee_id, manager_id
 FROM employees
 WHERE employees.manager_id(+) = employees.employee_id;

However, the following self join is valid:

SELECT e1.employee_id, e1.manager_id, e2.employee_id
 FROM employees e1, employees e2
 WHERE e1.manager_id(+) = e2.employee_id
 ORDER BY e1.employee_id, e1.manager_id, e2.employee_id;

• The (+) operator can be applied only to a column, not to an arbitrary expression. However,
an arbitrary expression can contain one or more columns marked with the (+) operator.

• A WHERE condition containing the (+) operator cannot be combined with another condition
using the OR logical operator.

• A WHERE condition cannot use the IN comparison condition to compare a column marked
with the (+) operator with an expression.

If the WHERE clause contains a condition that compares a column from table B with a constant,
then the (+) operator must be applied to the column so that Oracle returns the rows from table
A for which it has generated nulls for this column. Otherwise Oracle returns only the results of
a simple join.

In previous releases of Oracle Database, in a query that performed outer joins of more than
two pairs of tables, a single table could be the null-generated table for only one other table.
Beginning with Oracle Database 12c, a single table can be the null-generated table for multiple
tables. For example, the following statement is allowed in Oracle Database 12c:

SELECT * FROM A, B, D
 WHERE A.c1 = B.c2(+) and D.c3 = B.c4(+);

In this example, B, the null-generated table, is outer-joined to two tables, A and D. Refer to
SELECT for the syntax for an outer join.

Antijoins
An antijoin returns rows from the left side of the predicate for which there are no corresponding
rows on the right side of the predicate. It returns rows that fail to match (NOT IN) the subquery
on the right side.

See Also

"Using Antijoins: Example"

Semijoins
A semijoin returns rows that match an EXISTS subquery without duplicating rows from the left
side of the predicate when multiple rows on the right side satisfy the criteria of the subquery.

Chapter 9
Joins

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 19

Semijoin and antijoin transformation cannot be done if the subquery is on an OR branch of the
WHERE clause.

See Also

"Using Semijoins: Example"

Using Subqueries
A subquery answers multiple-part questions. For example, to determine who works in Taylor's
department, you can first use a subquery to determine the department in which Taylor works.
You can then answer the original question with the parent SELECT statement. A subquery in the
FROM clause of a SELECT statement is also called an inline view. you can nest any number of
subqueries in an inline view. A subquery in the WHERE clause of a SELECT statement is also
called a nested subquery. You can nest up to 255 levels of subqueries in a nested subquery.

A subquery can contain another subquery. Oracle Database imposes no limit on the number of
subquery levels in the FROM clause of the top-level query. You can nest up to 255 levels of
subqueries in the WHERE clause.

If columns in a subquery have the same name as columns in the containing statement, then
you must prefix any reference to the column of the table from the containing statement with the
table name or alias. To make your statements easier to read, always qualify the columns in a
subquery with the name or alias of the table, view, or materialized view.

Oracle performs a correlated subquery when a nested subquery references a column from a
table referred to a parent statement one or more levels above the subquery or nested
subquery. The parent statement can be a SELECT, UPDATE, or DELETE statement in which the
subquery is nested. A correlated subquery conceptually is evaluated once for each row
processed by the parent statement. However, the optimizer may choose to rewrite the query as
a join or use some other technique to formulate a query that is semantically equivalent. Oracle
resolves unqualified columns in the subquery by looking in the tables named in the subquery
and then in the tables named in the parent statement.

A correlated subquery answers a multiple-part question whose answer depends on the value in
each row processed by the parent statement. For example, you can use a correlated subquery
to determine which employees earn more than the average salaries for their departments. In
this case, the correlated subquery specifically computes the average salary for each
department.

See Also

"Using Correlated Subqueries: Examples"

Use subqueries for the following purposes:

• To define the set of rows to be inserted into the target table of an INSERT or CREATE TABLE
statement

• To define the set of rows to be included in a view or materialized view in a CREATE VIEW or
CREATE MATERIALIZED VIEW statement

• To define one or more values to be assigned to existing rows in an UPDATE statement

Chapter 9
Using Subqueries

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 19

• To provide values for conditions in a WHERE clause, HAVING clause, or START WITH clause
of SELECT, UPDATE, and DELETE statements

• To define a table to be operated on by a containing query

You do this by placing the subquery in the FROM clause of the containing query as you
would a table name. You may use subqueries in place of tables in this way as well in
INSERT, UPDATE, and DELETE statements.

Subqueries so used can employ correlation variables, both defined within the subquery
itself and those defined in query blocks containing the subquery. Refer to
table_collection_expression for more information.

Scalar subqueries, which return a single column value from a single row, are a valid form
of expression. You can use scalar subquery expressions in most of the places where expr is
called for in syntax. Refer to "Scalar Subquery Expressions " for more information.

Unnesting of Nested Subqueries
The term subquery refers to a sub-query block that appears in the WHERE and HAVING clauses.
A sub-query that appears in the FROM clause is called a view or derived table.

A WHERE clause subquery belongs to one of the following types: SINGLE-ROW, EXISTS, NOT
EXISTS, ANY, or ALL. A single-row subquery must return at most one row, whereas the other
types of subquery can return zero or more rows.

ANY and ALL subqueries are used with relational comparison operators: =, >,>=, <, <=, and <>.

In SQL, the set operator IN is used as a shorthand for =ANY and the set operator NOT IN is
used as a shorthand for <>ALL.

Example: Correlated EXISTS Subquery

The subquery in the example is correlated, because the column C.cust_id comes from the table
customers, that is not defined by the subquery.

SELECT C.cust_last_name, C.country_id
 FROM customers C
 WHERE EXISTS (SELECT 1
 FROM sales S
 WHERE S.quantity_sold > 1000 and
 S.cust_id = C.cust_id);

Nested subqueries are those subqueries that appear in the WHERE and HAVING clauses of a
parent statement like SELECT. When Oracle Database evaluates a statement with a nested
subquery, it must evaluate the subquery portion multiple times and may overlook more efficient
access paths or joins.

Subquery unnesting is an optimization that converts a subquery into a join in the outer query
and allows the optimizer to consider subquery tables during access path, join method, and join
order selection. Unnesting either merges the subquery into the body of the outer query block or
turns it into an inline view.

When a subquery is unnested, it is merged into the statement that contains it, allowing the
optimizer to consider them together when evaluating access paths and joins. The optimizer
can unnest most subqueries, with some exceptions. Those exceptions include hierarchical
subqueries and subqueries that contain a ROWNUM pseudocolumn, one of the set operators, a

Chapter 9
Unnesting of Nested Subqueries

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 19

nested aggregate function, or a correlated reference to a query block that is not the immediate
outer query block of the subquery.

Assuming no restrictions exist, the optimizer automatically unnests some (but not all) of the
following nested subqueries:

• Uncorrelated IN subqueries

• IN and EXISTS correlated subqueries, as long as they do not contain aggregate functions or
a GROUP BY clause

You can enable extended subquery unnesting by instructing the optimizer to unnest
additional types of subqueries:

• You can unnest an uncorrelated NOT IN subquery by specifying the HASH_AJ or MERGE_AJ
hint in the subquery.

• You can unnest other subqueries by specifying the UNNEST hint in the subquery.

See Also

"Hints " for information on hints

Example: Uncorrelated ANY Subquery

SELECT C.cust_last_name, C.country_id
 FROM customers C
 WHERE C.cust_id =ANY (SELECT S.cust_id
 FROM sales S
 WHERE S.quantity_sold > 1000);

Example: NOT EXISTS Subquery

SELECT C.cust_last_name, C.country_id
FROM customers C
WHERE NOT EXISTS (SELECT 1
 FROM sales S, products P
 WHERE P.prod_id = S.prod_id and
 P.prod_min_price > 90 and
 S.cust_id = C.cust_id);

Selecting from the DUAL Table
DUAL is a table automatically created by Oracle Database along with the data dictionary. DUAL
is in the schema of the user SYS but is accessible by the name DUAL to all users. It has one
column, DUMMY, defined to be VARCHAR2(1), and contains one row with a value X. Selecting
from the DUAL table is useful for computing a constant expression with the SELECT statement.
Because DUAL has only one row, the constant is returned only once. Alternatively, you can
select a constant, pseudocolumn, or expression from any table, but the value will be returned

Chapter 9
Selecting from the DUAL Table

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 19

as many times as there are rows in the table. Refer to "About SQL Functions " for many
examples of selecting a constant value from DUAL.

Beginning with Oracle Database Release 23, it is now optional to select expressions using the
FROM DUAL clause.

Note

Beginning with Oracle Database 10g Release 1, logical I/O is not performed on the
DUAL table when computing an expression that does not include the DUMMY column.
This optimization is listed as FAST DUAL in the execution plan. If you SELECT the
DUMMY column from DUAL, then this optimization does not take place and logical I/O
occurs.

Distributed Queries
The Oracle distributed database management system architecture lets you access data in
remote databases using Oracle Net and an Oracle Database server. You can identify a remote
table, view, or materialized view by appending @dblink to the end of its name. The dblink must
be a complete or partial name for a database link to the database containing the remote table,
view, or materialized view.

See Also

References to Objects in Remote Databases for more information on referring to
database links

Restrictions on Distributed Queries

Distributed queries are currently subject to the restriction that all tables locked by a FOR UPDATE
clause and all tables with LONG columns selected by the query must be located on the same
database. In addition, Oracle Database currently does not support distributed queries that
select user-defined types or object REF data types on remote tables.

Chapter 9
Distributed Queries

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 19

10
SQL Statements: ADMINISTER KEY
MANAGEMENT to ALTER JSON
RELATIONAL DUALITY VIEW

This chapter lists the various types of SQL statements and then describes the first set (in
alphabetical order) of SQL statements. The remaining SQL statements appear in alphabetical
order in the subsequent chapters.

This chapter contains the following sections:

• Types of SQL Statements

• How the SQL Statement Chapters are Organized

• ADMINISTER KEY MANAGEMENT

• ALTER ANALYTIC VIEW

• ALTER ATTRIBUTE DIMENSION

• ALTER AUDIT POLICY (Unified Auditing)

• ALTER CLUSTER

• ALTER DATABASE

• ALTER DATABASE DICTIONARY

• ALTER DATABASE LINK

• ALTER DIMENSION

• ALTER DISKGROUP

• ALTER DOMAIN

• ALTER FLASHBACK ARCHIVE

• ALTER FUNCTION

• ALTER HIERARCHY

• ALTER INDEX

• ALTER INDEXTYPE

• ALTER INMEMORY JOIN GROUP

• ALTER JAVA

• ALTER JSON RELATIONAL DUALITY VIEW

Types of SQL Statements
The lists in the following sections provide a functional summary of SQL statements and are
divided into these categories:

• Data Definition Language (DDL) Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 177

• Data Manipulation Language (DML) Statements

• Transaction Control Statements

• Session Control Statements

• System Control Statements

• Embedded SQL Statements

Data Definition Language (DDL) Statements
Data definition language (DDL) statements let you to perform these tasks:

• Create, alter, and drop schema objects

• Grant and revoke privileges and roles

• Analyze information on a table, index, or cluster

• Establish auditing options

• Add comments to the data dictionary

The CREATE, ALTER, and DROP commands require exclusive access to the specified object. For
example, an ALTER TABLE statement fails if another user has an open transaction on the
specified table.

The GRANT, REVOKE, ANALYZE, AUDIT, and COMMENT commands do not require exclusive
access to the specified object. For example, you can analyze a table while other users are
updating the table.

Oracle Database implicitly commits the current transaction before and after every DDL
statement.

A DDL statement is either blocking or nonblocking, and both types of DDL statements require
exclusive locks on internal structures.

See Also

Oracle Database Development Guide to learn about the difference between blocking
and nonblocking DDL

Many DDL statements may cause Oracle Database to recompile or reauthorize schema
objects. For information on how Oracle Database recompiles and reauthorizes schema objects
and the circumstances under which a DDL statement would cause this, see Oracle Database
Concepts.

DDL statements are supported by PL/SQL with the use of the DBMS_SQL package.

See Also

Oracle Database PL/SQL Packages and Types Reference for more information about
this package

The DDL statements are:

Chapter 10
Types of SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 177

ALTER ... (All statements beginning with ALTER, except ALTER SESSION and ALTER SYSTEM—
see "Session Control Statements " and "System Control Statements")
ANALYZE
ASSOCIATE STATISTICS

AUDIT
COMMENT
CREATE ... (All statements beginning with CREATE)

DISASSOCIATE STATISTICS

DROP ... (All statements beginning with DROP)

FLASHBACK ... (All statements beginning with FLASHBACK)
GRANT
NOAUDIT
PURGE
RENAME
REVOKE
TRUNCATE

Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements access and manipulate data in existing schema
objects. These statements do not implicitly commit the current transaction. The data
manipulation language statements are:

CALL
DELETE
EXPLAIN PLAN
INSERT
LOCK TABLE
MERGE
SELECT
UPDATE

The SELECT statement is a limited form of DML statement in that it can only access data in the
database. It cannot manipulate data stored in the database, although it can manipulate the
accessed data before returning the results of the query.

The SELECT statement is supported in PL/SQL only when executed dynamically. However, you
can use the similar PL/SQL statement SELECT INTO in PL/SQL code, and you do not have to
execute it dynamically. The CALL and EXPLAIN PLAN statements are supported in PL/SQL only
when executed dynamically. All other DML statements are fully supported in PL/SQL.

Transaction Control Statements
Transaction control statements manage changes made by DML statements. The transaction
control statements are:

COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION

SET CONSTRAINT

Chapter 10
Types of SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 177

All transaction control statements, except certain forms of the COMMIT and ROLLBACK
commands, are supported in PL/SQL. For information on the restrictions, see COMMIT and
ROLLBACK .

Session Control Statements
Session control statements dynamically manage the properties of a user session. These
statements do not implicitly commit the current transaction.

PL/SQL does not support session control statements. The session control statements are:

ALTER SESSION
SET ROLE

System Control Statements
• Use ADMINISTER KEY MANAGEMENT to manage software and hardware keystores,

encryption keys, and secrets.

• Use ALTER SYSTEM to dynamically manage the properties of an Oracle Database instance.

This statement does not implicitly commit the current transaction and is not supported in
PL/SQL.

Embedded SQL Statements
Embedded SQL statements place DDL, DML, and transaction control statements within a
procedural language program. Embedded SQL is supported by the Oracle precompilers and is
documented in the following books:

• Pro*COBOL Programmer's Guide

• Pro*C/C++ Programmer's Guide

How the SQL Statement Chapters are Organized
All SQL statements in this book are organized into the following sections:

Syntax

The syntax diagrams show the keywords and parameters that make up the statement.

Note

Not all keywords and parameters are valid in all circumstances. Be sure to refer to the
"Semantics" section of each statement and clause to learn about any restrictions on
the syntax.

Purpose

The "Purpose" section describes the basic uses of the statement.

Chapter 10
How the SQL Statement Chapters are Organized

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 177

Prerequisites

The "Prerequisites" section lists privileges you must have and steps that you must take before
using the statement. In addition to the prerequisites listed, most statements also require that
the database be opened by your instance, unless otherwise noted.

Semantics

The "Semantics" section describes the purpose of the keywords, parameters, and clauses that
make up the syntax, as well as restrictions and other usage notes that may apply to them. (The
conventions for keywords and parameters used in this chapter are explained in the "Preface"
of this reference.)

Examples

The "Examples" section shows how to use the various clauses and parameters of the
statement.

ADMINISTER KEY MANAGEMENT
Purpose

The ADMINISTER KEY MANAGEMENT statement provides a unified key management interface
for Transparent Data Encryption. Use this statement to:

• Manage software and hardware keystores

• Manage encryption keys

• Manage secrets

For an application PDB, the key management operation can only be performed outside an
application action (install, uninstall, upgrade, or patch).

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) decryption libraries
for the GOST and SEED algorithms are deprecated, and encryption to GOST and SEED are
desupported.

Prerequisites

You must have the ADMINISTER KEY MANAGEMENT or SYSKM system privilege.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root and you must have
the commonly granted ADMINISTER KEY MANAGEMENT or SYSKM privilege.

Syntax

administer_key_management::=

ADMINISTER KEY MANAGEMENT

keystore_management_clauses

key_management_clauses

secret_management_clauses

zero_downtime_software_patching_clauses

;

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 177

(keystore_management_clauses::=, key_management_clauses::=,
secret_management_clauses::=)

keystore_management_clauses::=

create_keystore

open_keystore

close_keystore

backup_keystore

alter_keystore_password

merge_into_new_keystore

merge_into_existing_keystore

isolate_keystore

unite_keystore

(create_keystore::=, open_keystore::=, close_keystore::=, backup_keystore::=,
alter_keystore_password::=, merge_into_new_keystore::=, merge_into_existing_keystore::=)

create_keystore::=

CREATE

KEYSTORE

’ keystore_location ’

LOCAL

AUTO_LOGIN KEYSTORE FROM KEYSTORE

’ keystore_location ’

IDENTIFIED BY keystore_password

open_keystore::=

SET KEYSTORE OPEN

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

CONTAINER =
ALL

CURRENT

close_keystore::=

SET KEYSTORE CLOSE

IDENTIFIED BY
EXTERNAL STORE

keystore_password
CONTAINER =

ALL

CURRENT

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 177

backup_keystore::=

BACKUP KEYSTORE

USING ’ backup_identifier ’ FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

TO ’ keystore_location ’

alter_keystore_password::=

ALTER KEYSTORE PASSWORD

FORCE KEYSTORE

IDENTIFIED BY old_keystore_password

SET new_keystore_password WITH BACKUP

USING ’ backup_identifier ’

merge_into_new_keystore::=

MERGE KEYSTORE ’ keystore1_location ’

IDENTIFIED BY keystore1_password

AND KEYSTORE ’ keystore2_location ’

IDENTIFIED BY keystore2_password

INTO NEW KEYSTORE ’ keystore3_location ’ IDENTIFIED BY

EXTERNAL STORE

keystore3_password

merge_into_existing_keystore::=

MERGE KEYSTORE ’ keystore1_location ’

IDENTIFIED BY keystore1_password

INTO EXISTING KEYSTORE ’ keystore2_location ’ IDENTIFIED BY

EXTERNAL STORE

keystore2_password

WITH BACKUP

USING ’ backup_identifier ’

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 177

isolate_keystore::=

FORCE

ISOLATE KEYSTORE IDENTIFIED BY isolated_keystore_password FROM ROOT KEYSTORE

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

united_keystore_password

WITH BACKUP

USING ’ backup_identifier ’

unite_keystore ::=

UNITE KEYSTORE IDENTIFIED BY isolated_keystore_password WITH ROOT KEYSTORE

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

united_keystore_password
WITH BACKUP

USING ’ backup_identifier ’

key_management_clauses::=

set_key

create_key

use_key

set_key_tag

export_keys

import_keys

migrate_key

reverse_migrate_key

move_keys

(set_key::=, create_key::=, use_key::=, set_key_tag::=, export_keys::=, import_keys::=,
migrate_key::=, reverse_migrate_key::=)

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 177

set_key::=

SET

ENCRYPTION

KEY

mkid:mk

mk USING TAG ’ tag ’

USING ALGORITHM ’ encrypt_algorithm ’ FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password
WITH BACKUP

USING ’ backup_identifier ’

CONTAINER =
ALL

CURRENT

create_key::=

CREATE

ENCRYPTION

KEY

mkid:mk

mk USING TAG ’ tag ’

USING ALGORITHM ’ encrypt_algorithm ’ FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password
WITH BACKUP

USING ’ backup_identifier ’

CONTAINER =
ALL

CURRENT

use_key::=

USE

ENCRYPTION

KEY ’ key_id ’

USING TAG ’ tag ’ FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password
WITH BACKUP

USING ’ backup_identifier ’

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 177

set_key_tag::=

SET TAG ’ tag ’ FOR ’ key_id ’

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

WITH BACKUP

USING ’ backup_identifier ’

export_keys::=

EXPORT

ENCRYPTION

KEYS WITH SECRET secret TO ’ filename ’

FORCE KEYSTORE

IDENTIFIED BY keystore_password

WITH IDENTIFIER IN
’ key_id ’

,

(subquery)

import_keys::=

IMPORT

ENCRYPTION

KEYS WITH SECRET secret FROM ’ filename ’

FORCE KEYSTORE

IDENTIFIED BY keystore_password

WITH BACKUP

USING ’ backup_identifier ’

migrate_key::=

USE

SET

ENCRYPTION

KEY

’ key_id ’

IDENTIFIED BY OKV_password

FORCE KEYSTORE

MIGRATE USING software_keystore_password

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 177

reverse_migrate_key::=

SET

ENCRYPTION

KEY IDENTIFIED BY software_keystore_password

FORCE KEYSTORE

REVERSE MIGRATE USING
HSM_auth_string

OKV_password

WITH BACKUP

USING ’ backup_identifier ’

move_keys ::=

MOVE

ENCRYPTION

KEYS TO NEW KEYSTORE keystore_location1

IDENTIFIED BY keystore1_password FROM

FORCE

KEYSTORE IDENTIFIED BY keystore_password

WITH IDENTIFIER IN
’ key_identifier ’

,

subquery

WITH BACKUP

USING ’ backup_identifier ’

secret_management_clauses::=

add_update_secret

delete_secret

add_update_secret_seps

delete_secret_seps

(add_update_secret::=, delete_secret::=)

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 177

add_update_secret::=

ADD

UPDATE
SECRET ’ secret ’ FOR CLIENT ’ client_identifier ’

USING TAG ’ tag ’

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

WITH BACKUP

USING ’ backup_identifier ’

delete_secret::=

DELETE SECRET FOR CLIENT ’ client_identifier ’

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password
WITH BACKUP

USING ’ backup_identifier ’

add_update_secret_seps::=

ADD

UPDATE
SECRET ’ secret ’ FOR CLIENT ’ client_identifier ’

USING TAG ’ tag ’

TO

LOCAL

AUTO_LOGIN KEYSTORE directory

delete_secret_seps::=

DELETE SECRET FOR CLIENT ’ client_identifier ’

FROM

LOCAL

AUTO_LOGIN KEYSTORE directory

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 177

zero_downtime_software_patching_clauses::=

SWITCHOVER LIBRARY path FOR ALL CONTAINERS

Semantics

keystore_management_clauses

Use these clauses to perform the following keystore management operations:

• Create a software keystore

• Open and close a software keystore or a hardware keystore

• Back up a password-protected software keystore

• Change the password of a password-protected software keystore

• Merge two existing software keystores into a new password-protected software keystore

• Merge one existing software keystore into an existing password-protected software
keystore

• Isolate the keystore of a Pluggable Database (PDB) from the Container Database (CDB)
so that the PDB can manage its own keystore.

• Unite the keystore of a PDB with the CDB.

create_keystore

This clause lets you create the following types of software keystores: password-protected
software keystores and auto-login software keystores. To issue this clause in a multitenant
environment, you must be connected to the root.

CREATE KEYSTORE

Specify this clause to create a password-protected software keystore.

• For keystore_location, specify the full path name of the software keystore directory. The
keystore will be created in this directory in a file named ewallet.p12. This clause is optional if
the WALLET_ROOT parameter has been set. Refer to Transparent Data Encryption to learn
how to determine the software keystore directory for your system.

• Use the IDENTIFIED BY clause to set the password for the keystore. Refer to "Notes on
Specifying Keystore Passwords" for more information.

CREATE [LOCAL] AUTO_LOGIN KEYSTORE

Specify this clause to create an auto-login software keystore. An auto-login software keystore
is created from an existing password-protected software keystore. The auto-login keystore has
a system-generated password. It is stored in a PKCS#12-based file named cwallet.sso in the
same directory as the password-protected software keystore.

• By default, Oracle creates an auto-login keystore, which can be opened from computers
other than the computer on which the keystore resides. If you specify the LOCAL keyword,
then Oracle Database creates a local auto-login keystore, which can be opened only from
the computer on which the keystore resides.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 177

• For keystore_location, specify the full path name of the directory in which the existing
password-protected software keystore resides. The password-protected software keystore
can be open or closed.

• Use the IDENTIFIED BY clause to specify the password for the existing password-protected
software keystore. Refer to "Notes on Specifying Keystore Passwords" for more
information.

Restriction on Creating Keystores

You can create at most one password-protected software keystore and one auto-login software
keystore, either local or not, in any single directory.

See Also

Transparent Data Encryption for more information on creating software keystores

open_keystore

This clause lets you open a password-protected software keystore or Oracle Key Vault.

Note

You do not need to use this clause to open auto-login and local auto-login software
keystores because they are opened automatically when they are required—that is,
when the master encryption key is accessed.

• The FORCE KEYSTORE clause is useful when opening a keystore in a PDB. It ensures that
the CDB root keystore is open before opening the PDB keystore. Refer to "Notes on the
FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to "Notes on
Specifying Keystore Passwords" for more information.

• The CONTAINER clause applies when you are connected to a CDB.

If the current container is a pluggable database (PDB), then specify CONTAINER = CURRENT
to open the keystore in the PDB. The keystore must be open in the root before you open it
in the PDB.

If the current container is the root, then specify CONTAINER = CURRENT to open the keystore
in the root, or specify CONTAINER = ALL to open the keystore in the root and in all PDBs.

If you omit this clause, then CONTAINER = CURRENT is the default.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 177

See Also

• Transparent Data Encryption Managing Keystores and TDE Master Encryption
Keys in United Mode

• Transparent Data Encryption Managing Keystores and TDE Master Encryption
Keys in Isolated Mode

• Transparent Data Encryption for more information on opening password-based
software keystores and hardware keystores

close_keystore

This clause lets you close a password-protected software keystore, an auto-login software
keystore, or a hardware keystore. Closing a keystore disables all encryption and decryption
operations. Any attempt to encrypt or decrypt data or access encrypted data results in an error.

• To close a password-protected software keystore or a hardware keystore, specify the
IDENTIFIED BY clause. Refer to "Notes on Specifying Keystore Passwords" for more
information.

• To close an auto-login keystore, do not specify the IDENTIFIED BY clause. Before you close
an auto-login keystore, check the WALLET_TYPE column of the V$ENCRYPTION_WALLET
view. If it returns AUTOLOGIN, then you can close the keystore. Otherwise, if you attempt to
close the keystore, then an error occurs.

• The CONTAINER clause applies when you are connected to a CDB.

If the current container is a PDB, then specify CONTAINER = CURRENT to close the keystore
in the PDB.

If the current container is the root, then the CONTAINER = CURRENT and CONTAINER = ALL
clauses have the same effect; both clauses close the keystore in the root and in all PDBs.

If you omit this clause, then CONTAINER = CURRENT is the default.

See Also

Transparent Data Encryption for more information on closing keystores

backup_keystore

This clause lets you back up a password-protected software keystore. The keystore must be
open.

• By default, Oracle Database creates a backup file with a name of the form
ewallet_timestamp.p12, where timestamp is the file creation timestamp in UTC format. The
optional USING 'backup_identifier' clause lets you specify a backup identifier which is added to
the backup file name. For example, if you specify a backup identifier of 'Backup1', then
Oracle Database creates a backup file with a name of the form ewallet_timestamp_Backup1.p12.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to "Notes on
Specifying Keystore Passwords" for more information.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 177

• The optional TO 'keystore_location' clause lets you specify the directory in which the backup
file is created. If you omit this clause, then the backup is created in the same directory as
the keystore that you are backing up.

See Also

Transparent Data Encryption for more information on backing up password-based
software keystores

alter_keystore_password

This clause lets you change the password for a password-protected software keystore. The
keystore must be open.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• For old_keystore_password, specify the old password for the keystore. For new_keystore_password,
specify the new password for the keystore. Refer to "Notes on Specifying Keystore
Passwords" for more information.

• The optional WITH BACKUP clause instructs the database to create a backup of the
keystore before changing the password. Refer to "Notes on the WITH BACKUP Clause"
for more information.

See Also

Transparent Data Encryption for more information on changing a password-based
software keystore password

merge_into_new_keystore

This clause lets you merge two software keystores into a new keystore. The keys and
attributes in the two constituent keystores are added to the new keystore. The constituent
keystores can be password-based or auto-login (including local auto-login) software keystores;
they can be open or closed. The new keystore is a password-protected software keystore. It is
in a closed state when the merge completes. Any or none of the keystores specified in this
clause can be the keystore configured for use by the database.

• For keystore1_location, specify the full path name of the directory in which the first keystore
resides.

• Specify IDENTIFIED BY keystore1_password only if the first keystore is a password-based
software keystore. Refer to "Notes on Specifying Keystore Passwords" for more
information.

• For keystore2_location, specify the full path name of the directory in which the second keystore
resides.

• Specify IDENTIFIED BY keystore2_password only if the second keystore is a password-based
software keystore.

• For keystore3_location, specify the full path name of the directory in which the new keystore is
created.

• For keystore3_password, specify the password for the new keystore.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 177

See Also

Transparent Data Encryption for more information on merging software keystores

merge_into_existing_keystore

This clause lets you merge a software keystore into another existing software keystore. The
keys and attributes in the keystore from which you merge are added to the keystore into which
you merge. The keystore from which you merge can be a password-protected or auto-login
(including local auto-login) software keystore; it can be open or closed. The keystore into which
you merge must be a password-based software keystore. It can be open or closed when the
merge begins. However, it will be in a closed state when the merge completes. Either or
neither of the keystores specified in this clause can be the keystore configured for use by the
database.

• For keystore1_location, specify the full path name of the directory in which the keystore from
which you merge resides.

• Specify IDENTIFIED BY keystore1_password only if the keystore from which you merge is a
password-based software keystore.

• For keystore2_location, specify the full path name of the directory in which the keystore into
which you merge resides.

• For keystore2_password, specify the password for the keystore into which you merge.

• The optional WITH BACKUP clause instructs the database to create a backup of the
keystore into which you merge before performing the merge. Refer to "Notes on the WITH
BACKUP Clause" for more information.

See Also

Transparent Data Encryption for more information on merging software keystores

isolate_keystore

Pluggable Databases (PDB) within a Container Database (CDB) can create and manage their
own keystore. The isolate_keystore clause allows a tenant to:

• Manage its Transparent Data Encryption keys independently from those of the CDB.

• Create a password for its independent keystore.

Within the CDB environment you can choose how the keys of a given PDB are protected.
PDBs can either protect their keys with an independent password, or use the united password
of the CDB.

• Use the IDENTIFIED BY clause to specify the password for the keystore.

• The isolated_keystore_password refers to the independent password of the PDB keystore.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• The united_keystore_password refers to the password of the CDB keystore.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 177

• The optional WITH BACKUP clause instructs the database to create a backup of the
keystore before changing the password. Refer to "Notes on the WITH BACKUP Clause"
for more information.

FORCE Clause with isolate_keystore

The FORCE clause of the ADMINISTER KEY MANAGEMENT FORCE ISOLATE KEYSTORE command is
used when a clone of the PDB is using the master key being isolated. This command copies
the keys from the CDB keystore into the isolated PDB keystore. For example:

ADMINISTER KEY MANAGEMENT
FORCE ISOLATE KEYSTORE
IDENTIFIED BY <isolated_keystore_password>
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | <united_keystore_password>]
[WITH BACKUP [USING <backup_identifier>]

unite_keystore

The unite_keystore clause allows a PDB that was independently managing its keystore to change
its keystore management mode to united. In united mode CDB$ROOT keystore password is used
to manage PDBs within the CDB.

• Use the IDENTIFIED BY clause to specify the password for the keystore.

• The isolated_keystore_password refers to the independent password of the PDB keystore.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• The united_keystore_password refers to the password of the CDB keystore.

• The optional WITH BACKUP clause instructs the database to create a backup of the
keystore before changing the password. Refer to "Notes on the WITH BACKUP Clause"
for more information.

For example:

ADMINISTER KEY MANAGEMENT
UNITE KEYSTORE
IDENTIFIED BY <isolated_keystore_password>
WITH ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | <united_keystore_password>]
[WITH BACKUP [USING <backup_identifier>]

key_management_clauses

Use these clauses to perform the following key management operations:

• Create and activate a master encryption key

• Set the tag for an encryption key

• Export encryption keys from a keystore into a file

• Import encryption keys from a file into a keystore

• Migrate from a password-protected software keystore to a hardware keystore

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 177

• Migrate from a hardware keystore to a password-protected software keystore

set_key

This clause creates a new master encryption key and activates it. You can use this clause to
create the first master encryption key in a keystore or to rotate (change) the master encryption
key. If a master encryption key is active when you use this clause, then it is deactivated before
the new master encryption key is activated. The keystore that contains the key can be a
password-protected software keystore or a hardware keystore. The keystore must be open.

If you specify CONTAINER = ALL, you must ensure that all the PDBs are open. Otherwise the
command fails.

Specify the desired value for your TDE Master Key ID (MKID) and desired value of the TDE
Master Encryption Key (MK) to create your own TDE Master Encryption Key.

If you do not specify MKID or MK, the default keys used are the system generated MKID and
MK.

• In TDE encrypted databases, the TDE Master Key ID(MKID) is used to keep track of which
TDE Master Encryption Key is in use. The MKID:MK option allows both the MKID and the
MK to be specified.

• If only the MK is specified, the database generates a MKID for you, so that you can keep
track of the TDE Master Encryption Key having the MK value that you specified.

• If the MKID is invalid, for example if it is the wrong length, or if it is a string of zeroes, you
will see the following error: ORA-46685: invalid master key identifier or master key value.

• If the MKID you specified is the same as the MKID of an existing TDE Master Encryption
Key in the keystore, you will see the following error: ORA-46684: master key identifier exists in the
keystore.

• If either the MKID or the MK is invalid, you will see the following error: ORA-46685: invalid master
key identifier or master key value.

• You must specify both MKID:MK for the set_key clause and create_key clause.

• For the use_key clause, you need to only specify MKID.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• Specify the optional USING TAG clause to associate a tag to the new master encryption key.
Refer to "Notes on the USING TAG Clause" for more information.

• If you specify the USING ALGORITHM clause, then the database creates a master encryption
key that conforms to the specified encryption algorithm. For encrypt_algorithm, you can
specify AES256, ARIA256, GOST256, or SEED128. To specify this clause, the COMPATIBLE
initialization parameter must be set to 12.2 or higher. If you omit this clause, then the default
is AES256.

The ARIA, SEED, and GOST algorithms are country-specific national and government
standards for encryption and hashing. See Oracle Database Security Guide for more
information.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to "Notes on
Specifying Keystore Passwords" for more information.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 177

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause, to create
a backup of the keystore before the new master encryption key is created. Refer to "Notes
on the WITH BACKUP Clause" for more information.

• The CONTAINER clause applies when you are connected to a CDB.

If the current container is a PDB, then specify CONTAINER = CURRENT to create and activate
a new master encryption key in the PDB. A master encryption key must exist in the root
before you create a master encryption key in the PDB.

If the current container is the root, then specify CONTAINER = CURRENT to create and
activate a new master encryption key in the root, or specify CONTAINER = ALL to create and
activate new master encryption keys in the root and in all PDBs.

If you omit this clause, then CONTAINER = CURRENT is the default.

See Also

• Transparent Data Encryption Managing Keystores and TDE Master Encryption
Keys in United Mode

• Transparent Data Encryption Managing Keystores and TDE Master Encryption
Keys in Isolated Mode

• Transparent Data Encryption for more information on creating and activating a
master encryption key

create_key

For details on specifying the MKID:MK option, see the semantics for the set_key clause.

This clause lets you create a master encryption key for later use. You can subsequently
activate the key by using the use_key clause. The keystore that contains the key can be a
password-protected software keystore or a hardware keystore. The keystore must be open.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• Specify the optional USING TAG clause to associate a tag to the encryption key. Refer to
"Notes on the USING TAG Clause" for more information.

• If you specify the USING ALGORITHM clause, then the database creates a master encryption
key that conforms to the specified encryption algorithm. For encrypt_algorithm, you can
specify AES256, ARIA256, GOST256, or SEED128. To specify this clause, the COMPATIBLE
initialization parameter must be set to 12.2 or higher. If you omit this clause, then the default
is AES256.

The ARIA, SEED, and GOST algorithms are country-specific national and government
standards for encryption and hashing. See Oracle Database Security Guide for more
information.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore in which the key will
be created. Refer to "Notes on Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause, to create
a backup of the keystore before the key is created. Refer to "Notes on the WITH BACKUP
Clause" for more information.

• The CONTAINER clause applies when you are connected to a CDB.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 177

If the current container is a PDB, then specify CONTAINER = CURRENT to create a master
encryption key in the PDB. A master encryption key must exist in the root before you
create a master encryption key in the PDB

If the current container is the root, then specify CONTAINER = CURRENT to create a master
encryption key in the root, or specify CONTAINER = ALL to create master encryption keys in
the root and in all PDBs.

If you omit this clause, then CONTAINER = CURRENT is the default.

See Also

Transparent Data Encryption for more information on creating a master encryption key
for later use

use_key

This clause lets you activate a master encryption key that has already been created. If a
master encryption key is active when you use this clause, then it is deactivated before the new
master encryption key is activated. The keystore that contains the key can be a password-
based software keystore or a hardware keystore. The keystore must be open.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• For key_id, specify the identifier of the key that you want to activate. You can find the key
identifier by querying the KEY_ID column of the V$ENCRYPTION_KEYS view.

• Specify the optional USING TAG clause to associate a tag to the encryption key. Refer to
"Notes on the USING TAG Clause" for more information.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore that contains the
key. Refer to "Notes on Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause, to create
a backup of the keystore before the key is activated. Refer to "Notes on the WITH
BACKUP Clause" for more information.

See Also

Transparent Data Encryption for more information on activating a master encryption
key

set_key_tag

This clause lets you set the tag for the specified encryption key. The tag is an optional, user-
defined descriptor for the key. If the key has no tag, then use this clause to create a tag. If the
key already has a tag, then use this clause to replace the tag. You can view encryption key
tags by querying the TAG column of the V$ENCRYPTION_KEYS view. The keystore must be open.

• For tag, specify an alphanumeric string. Enclose tag in single quotation marks.

• For key_id, specify the identifier of the encryption key. You can find the key identifier by
querying the KEY_ID column of the V$ENCRYPTION_KEYS view.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 177

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore that contains the
key. Refer to "Notes on Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause, to create
a backup of the keystore before you set the key tag. Refer to "Notes on the WITH
BACKUP Clause" for more information.

See Also

Transparent Data Encryption for more information on setting a key tag

export_keys

Use this clause to export one or more encryption keys from a password-protected software
keystore into a file. The keystore must be open. Each encryption key is exported together with
its key identifier and key attributes. The exported keys are protected in the file with a password
(secret). You can subsequently import one or more of the keys into a password-protected
software keystore by using the import_keys clause.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• Specify secret to set the password (secret) that protects the keys in the file. The secret is an
alphanumeric string. You can optionally enclose the secret in double quotation marks.
Quoted and nonquoted secrets are case sensitive.

• For filename, specify the full path name of the file to which the keys are to be exported.
Enclose filename in single quotation marks.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore that contains the
keys you want to export. Refer to "Notes on the WITH BACKUP Clause" for more
information.

• Use the WITH IDENTIFIER IN clause to specify one or more encryption keys that you would
like to export using one of the following methods:

– Use key_id to specify the identifier of the encryption key you would like to export. You
can specify more than one key_id in a comma-separated list. You can find key identifiers
by querying the KEY_ID column of the V$ENCRYPTION_KEYS view.

– Use subquery to specify a query that returns a list of key identifiers for the encryption
keys you would like to export. For example, the following subquery returns the key
identifiers for all encryption keys in the database whose tags begin with the string
mytag:

SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE TAG LIKE 'mytag%'

Be aware that Oracle Database executes subquery within the current user's rights and
not with definer's rights.

– If you omit the WITH IDENTIFIER IN clause, then all encryption keys in the database are
exported.

Restriction on the WITH IDENTIFIER IN Clause

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 177

In a multitenant environment, you cannot specify WITH IDENTIFIER IN when exporting keys from
a PDB. This ensures that all of the keys in the PDB are exported, along with metadata about
the active encryption key. If you subsequently clone the PDB, or unplug and plug in the PDB,
then you can use the export file to import the keys into the cloned or newly plugged-in PDB
and preserve information about the active encryption key.

Note, that the keystores on Automatic Storage Management (ASM) disk groups or regular file
systems can be merged with MERGE statements. The export files used in the EXPORT and the
IMPORT statements can only be a regular operating system file and cannot be located on an
ASM disk group.

ADMINISTER KEY MANAGEMENT export_keys and import_keys do not support wallet files in ASM.

See Also

Transparent Data Encryption for more information on exporting encryption keys

import_keys

Use this clause to import one or more encryption keys from a file into a password-based
software keystore. The keystore must be open. Each encryption key is imported together with
its key identifier and key attributes. The keys must have been previously exported to the file by
using the export_keys clause. You cannot re-import keys that have already been imported into
the keystore.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• For secret, specify the password (secret) that protects the keys in the file. The secret is an
alphanumeric string. You can optionally enclose the secret in double quotation marks.
Quoted and nonquoted secrets are case sensitive.

• For filename, specify the full path name of the file from which the keys are to be imported.
Enclose filename in single quotation marks.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore into which you want
to import the keys. Refer to "Notes on the WITH BACKUP Clause" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause, to create
a backup of the keystore before the keys are imported. Refer to "Notes on the WITH
BACKUP Clause" for more information.

Note, that the keystores on Automatic Storage Management (ASM) disk groups or regular file
systems can be merged with MERGE statements. The export files used in the EXPORT and the
IMPORT statements can only be a regular operating system file and cannot be located on an
ASM disk group.

ADMINISTER KEY MANAGEMENT export_keys and import_keys do not support wallet files in ASM.

See Also

Transparent Data Encryption for more information on importing encryption keys

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 177

migrate_key

Use this clause to migrate from a password-protected software keystore to a hardware
keystore. This clause decrypts existing table encryption keys and tablespace encryption keys
with the master encryption key in the software keystore and then re-encrypts them with the
newly created master encryption key in the hardware keystore.

You can use use_key with migrate_key to migrate an exisiting key to a hardware keystore.

You must specify the key_id with use_key as follows:

ADMINISTER KEY MANAGEMENT
 USE ENCRYPTION KEY '0673C1262AA1D04F14BF26D720480C55B2'
 IDENTIFIED BY "external_keystore_password"
 MIGRATE USING software_keystore_password;

Note

The use of this clause is only one step in a series of steps for migrating from a
password-protected software keystore to a hardware keystore. Refer to Transparent
Data Encryption for the complete set of steps before you use this clause.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• For HSM_auth_string, specify the hardware keystore password. Refer to "Notes on Specifying
Keystore Passwords" for more information.

• The FORCE KEYSTORE clause enables this operation even if the keystores are closed. Refer
to "Notes on the FORCE KEYSTORE Clause" for more information.

• For software_keystore_password., specify the password-based software keystore password.
Refer to "Notes on Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause, to create
a backup of the keystore before the migration occurs. Refer to "Notes on the WITH
BACKUP Clause" for more information.

reverse_migrate_key

Use this clause to migrate from a hardware keystore to a password-protected software
keystore. This clause decrypts existing table encryption keys and tablespace encryption keys
with the master encryption key in the hardware keystore and then re-encrypts them with the
newly created master encryption key in the password-protected software keystore.

Note

The use of this clause is only one step in a series of steps for migrating from a
hardware keystore to a password-protected software keystore. Refer to Transparent
Data Encryption for the complete set of steps before you use this clause.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• For software_keystore_password., specify the password-based software keystore password.
Refer to "Notes on Specifying Keystore Passwords" for more information.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 177

• The FORCE KEYSTORE clause enables this operation even if the keystores are closed. Refer
to "Notes on the FORCE KEYSTORE Clause" for more information.

• For HSM_auth_string, specify the hardware keystore password. Refer to "Notes on Specifying
Keystore Passwords" for more information.

move_keys

Use the move_keys clause to move an encryption key into a new keystore. You must be a user
with the ADMINISTER KEY MANAGEMENT or SYSKM privileges to log into the database. You must
query the KEY_IDcolumn of the V$ENCRYPTION_KEYS view to find the key identifier of the
keystore that you want to move the keys to.

keystore_location1 is the path to the wallet directory that will store the new keystore .p12 file. By
default, this directory is in $ORACLE_BASE/admin/db_unique_name/wallet.

keystore1_password is the password for the new keystore.

keystore_password is the password for the keystore from which the key is moving.

key_identifier is the key identifier that you find from querying the KEY_ID column of the
V$ENCRYPTION_KEYS view. Enclose this setting in single quotation marks (' ').

subquery can be used to find the exact key identifier that you want.

backup_identifier is an optional description of the backup. Enclose backup_identifier in single
quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT MOVE KEYS
TO NEW KEYSTORE $ORACLE_BASE/admin/orcl/wallet
IDENTIFIED BY keystore_password
FROM FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH IDENTIFIER IN
(SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM < 2);

secret_management_clauses

Use these clauses to add, update, and delete secrets in password-protected software
keystores or hardware keystores.

See Also

Transparent Data Encryption for more information on adding, updating, and deleting
secrets

add_update_secret

This clause lets you add a secret to a keystore or update an existing secret in a keystore. The
keystore must be open.

• Specify ADD to add a secret to a keystore.

• Specify UPDATE to update an existing secret in a keystore.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 177

• For secret, specify the secret to be added or updated. The secret is an alphanumeric string.
Enclose the secret in single quotation marks.

• For client_identifier, specify an alphanumeric string used to identify the secret. Enclose
client_identifier in single quotation marks. This value is case-sensitive. You can enter any of
the following fixed values:

– TDE_WALLET if the keystore was configured as FILE

– OKV_PASSWORD if the keystore was configured as Oracle Key Vault.

– HSM_PASSWORD if the keystore was configured for a third-party HSM

• Specify the optional USING TAG clause to associate a tag to secret. The tag is an optional,
user-defined descriptor for the secret. Enclose the tag in single quotation marks. You can
view secret tags by querying the SECRET_TAG column of the V$CLIENT_SECRETS view.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to "Notes on
Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause, to create
a backup of the keystore before adding or updating the secret in a password-based
software keystore. Refer to "Notes on the WITH BACKUP Clause" for more information.

delete_secret

This clause lets you delete a secret from a keystore. The keystore must be open.

• For client_identifier, specify an alphanumeric string used to identify the secret. Enclose
client_identifier in single quotation marks. You can view client identifiers by querying the
CLIENT column of the V$CLIENT_SECRETS view.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to "Notes on
Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause, to create
a backup of the keystore before deleting the secret from a password-based software
keystore. Refer to "Notes on the WITH BACKUP Clause" for more information.

Notes on the USING TAG Clause

Many ADMINISTER KEY MANAGEMENT operations include the USING TAG clause, which lets you
associate a tag to an encryption key. The tag is an optional, user-defined descriptor for the key.
It is a character string enclosed in single quotation marks.

You can view encryption key tags by querying the TAG column of the V$ENCRYPTION_KEYS view.

Notes on the FORCE KEYSTORE Clause

When a auto-login wallet exists, the FORCE KEYSTORE clause enables a keystore operation
even if the keystore is closed.. The behavior of this clause depends on whether you are
connected to a non-CDB, a CDB root, or a PDB.

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 177

Note

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers to
a non-CDB from a previous release.

• When you are connected to a non-CDB:

– If the password-protected software or hardware keystore is closed, then the database
opens the password-protected software or hardware keystore while the operation is
performed and leaves it open, and then updates the auto-login keystore, if one exists,
with the new information.

– If the auto-login keystore is open, then the database opens the password-protected
software or hardware keystore temporarily while the operation is performed and
updates the auto-login keystore with the new information, without switching out the
auto-login keystore.

– If the password-protected software or hardware keystore is open, then the FORCE
KEYSTORE clause is not necessary and has no effect.

• When you are connected to the CDB root:

– To perform an operation on the CDB root keystore (CONTAINER=CURRENT), the CDB
root keystore must be open. Therefore, the behavior described for a non-CDB applies
to the CDB root.

– To perform an operation on the CDB root keystore and all PDB keystores
(CONTAINER=ALL), the CDB root keystore and all PDB keystores must be open.
Therefore, the behavior described for a non-CDB applies to the CDB root and each
PDB.

• When you are connected to a PDB:

– To perform an operation on a PDB keystore, the CDB root keystore and the keystore
for that PDB must be open. Therefore, the behavior described for a non-CDB applies
to the CDB root and that PDB.

Notes on Specifying Keystore Passwords

Specify keystore passwords as follows:

• For a password-protected software keystore, specify the password as a character string.
You can optionally enclose the password in double quotation marks. Quoted and
nonquoted passwords are case sensitive. Keystore passwords adhere to the same rules
as database user passwords. Refer to the BY password clause of CREATE USER for the
complete details.

• For a hardware keystore, specify the password as a string of the form "user_id:password"
where:

– user_id is the user ID created for the database using the HSM management interface

– password is the password created for the user ID using the HSM management interface

Enclose the user_id:password string in double quotation marks (" ") and separate user_id and
password with a colon (:).

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 177

• If you specify EXTERNAL STORE, then the database uses the keystore password stored in
the external store to perform the operation. This feature enables you to store the password
in a separate location where it can be centrally managed and accessed. To use this
functionality, you must create a directory WALLET_ROOT/tde_seps for the database to auto-
discover this wallet.Refer to Database Transparent Data Encryption for more information
on configuring an external store for a keystore password.

Notes on the WITH BACKUP Clause

Many ADMINISTER KEY MANAGEMENT operations include the WITH BACKUP clause. This clause
applies only to password-protected software keystores. It indicates that the keystore must be
backed up before the operation is performed.

You must either specify WITH BACKUP when performing the operation, or issue ADMINISTER KEY
MANAGEMENT with WITH BACKUP immediately before performing the operation.

You can also back up the auto-login wallet using WITH BACKUP.

When you specify the WITH BACKUP clause, Oracle Database creates a backup file with a
name of the form ewallet_timestamp.p12, where timestamp is the file creation timestamp in UTC
format. The backup file is created in the same directory as the keystore you are backing up.

The optional USING 'backup_identifier' clause lets you specify a backup identifier, which is added to
the backup file name. For example, if you specify a backup identifier of 'Backup1', then Oracle
Database creates a backup file with a name of the form ewallet_timestamp_Backup1.p12.

The WITH BACKUP clause is mandatory for password-protected software keystores, but optional
for hardware keystores.

add_update_secret_seps

Specify this clause to manage keys in a secure external password store (SEPS) also known as
a SEPS wallet. The semantics of this clause is the same as the add_update_secret clause.

delete_secret_seps

Specify this clause to delete keys in a secure external password store (SEPS) also known as a
SEPS wallet. The semantics of this clause is the same as the delete_secret clause.

zero_downtime_software_patching_clauses

Specify this clause to switch over to a new PKCS#11 endpoint library. Afterward, you can
switch over to the updated PKCS#11 endpoint shared library by executing the following
statement:

ADMINISTER KEY MANAGEMENT SWITCHOVER TO LIBRARY 'updated_fully_qualified_file_name_of_library' FOR ALL
CONTAINERS

See Also

Managing Updates to the PKCS#11 Library

Examples

Creating a Keystore: Examples

The following statement creates a password-protected software keystore in directory /etc/
ORACLE/WALLETS/orcl:

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 177

ADMINISTER KEY MANAGEMENT
 CREATE KEYSTORE '/etc/ORACLE/WALLETS/orcl'
 IDENTIFIED BY password;

The following statement creates an auto-login software keystore from the keystore created in
the previous statement:

ADMINISTER KEY MANAGEMENT
 CREATE AUTO_LOGIN KEYSTORE FROM KEYSTORE '/etc/ORACLE/WALLETS/orcl'
 IDENTIFIED BY password;

Opening a Keystore: Examples

The following statement opens a password-protected software keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE OPEN
 IDENTIFIED BY password;

If you are connected to a CDB, then the following statement opens a password-protected
software keystore in the current container:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE OPEN
 IDENTIFIED BY password
 CONTAINER = CURRENT;

The following statement opens a hardware keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE OPEN
 IDENTIFIED BY "user_id:password";

The following statement opens a keystore whose password is stored in the external store:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE OPEN
 IDENTIFIED BY EXTERNAL STORE;

Closing a Keystore: Examples

The following statement closes a password-protected software keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE CLOSE
 IDENTIFIED BY password;

The following statement closes an auto-login software keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE CLOSE;

The following statement closes a hardware keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE CLOSE
 IDENTIFIED BY "user_id:password";

The following statement closes a keystore whose password is stored in the external store:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE CLOSE
 IDENTIFIED BY EXTERNAL STORE;

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 177

Backing Up a Keystore: Example

The following statement creates a backup of a password-protected software keystore. The
backup is stored in directory /etc/ORACLE/KEYSTORE/DB1 and the backup file name contains the
tag hr.emp_keystore.

ADMINISTER KEY MANAGEMENT
 BACKUP KEYSTORE USING 'hr.emp_keystore'
 IDENTIFIED BY password
 TO '/etc/ORACLE/KEYSTORE/DB1/';

Changing a Keystore Password: Example

The following statement changes the password for a password-protected software keystore. It
also creates a backup of the keystore, with the tag pwd_change, before changing the password.

ADMINISTER KEY MANAGEMENT
 ALTER KEYSTORE PASSWORD IDENTIFIED BY old_password
 SET new_password WITH BACKUP USING 'pwd_change';

Merging Two Keystores Into a New Keystore: Example

The following statement merges an auto-login software keystore with a password-protected
software keystore to create a new password-protected software keystore at a new location:

ADMINISTER KEY MANAGEMENT
 MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
 AND KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
 IDENTIFIED BY existing_keystore_password
 INTO NEW KEYSTORE '/etc/ORACLE/KEYSTORE/DB3'
 IDENTIFIED BY new_keystore_password;

Merging a Keystore Into an Existing Keystore: Example

The following statement merges an auto-login software keystore into a password-protected
software keystore. It also creates a backup of the password-protected software keystore before
performing the merge.

ADMINISTER KEY MANAGEMENT
 MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
 INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
 IDENTIFIED BY existing_keystore_password
 WITH BACKUP;

Creating and Activating a Master Encryption Key: Examples

The following statement creates and activates a master encryption key in a password-
protected software keystore. It encrypts the key using the SEED128 algorithm. It also creates a
backup of the keystore before creating the new master encryption key.

ADMINISTER KEY MANAGEMENT
 SET KEY USING ALGORITHM 'SEED128'
 IDENTIFIED BY password
 WITH BACKUP;

The following statement creates a master encryption key in a password-protected software
keystore, but does not activate the key. It also creates a backup of the keystore before creating
the new master encryption key.

ADMINISTER KEY MANAGEMENT
 CREATE KEY USING TAG 'mykey1'

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 177

 IDENTIFIED BY password
 WITH BACKUP;

The following query displays the key identifier for the master encryption key that was created in
the previous statement:

SELECT TAG, KEY_ID
 FROM V$ENCRYPTION_KEYS
 WHERE TAG = 'mykey1';

TAG KEY_ID
--- --
mykey1 ARgEtzPxpE/Nv8WdPu8LJJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

The following statement activates the master encryption key that was queried in the previous
statement. It also creates a backup of the keystore before activating the new master encryption
key.

ADMINISTER KEY MANAGEMENT
 USE KEY 'ARgEtzPxpE/Nv8WdPu8LJJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
 IDENTIFIED BY password
 WITH BACKUP;

Setting a Key Tag: Example

This example assumes that the keystore is closed. The following statement temporarily opens
the keystore and changes the tag to mykey2 for the master encryption key that was activated in
the previous example. It also creates a backup of the keystore before changing the tag.

ADMINISTER KEY MANAGEMENT
 SET TAG 'mykey2' FOR 'ARgEtzPxpE/Nv8WdPu8LJJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
 FORCE KEYSTORE
 IDENTIFIED BY password
 WITH BACKUP;

Exporting Keys: Examples

The following statement exports two master encryption keys from a password-protected
software keystore to file /etc/TDE/export.exp. The statement encrypts the master encryption keys
in the file using the secret my_secret. The identifiers of the master encryption keys to be exported
are provided as a comma-separated list.

ADMINISTER KEY MANAGEMENT
 EXPORT KEYS WITH SECRET "my_secret"
 TO '/etc/TDE/export.exp'
 IDENTIFIED BY password
 WITH IDENTIFIER IN 'AdoxnJ0uH08cv7xkz83ovwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA',
 'AW5z3CoyKE/yv3cNT5CWCXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA';

The following statement exports master encryption keys from a password-protected software
keystore to file /etc/TDE/export.exp. Only the keys whose tags are mytag1 or mytag2 are exported.
The master encryption keys in the file are encrypted using the secret my_secret. The key
identifiers are found by querying the V$ENCRYPTION_KEYS view.

ADMINISTER KEY MANAGEMENT
 EXPORT KEYS WITH SECRET "my_secret"
 TO '/etc/TDE/export.exp'
 IDENTIFIED BY password
 WITH IDENTIFIER IN
 (SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE TAG IN ('mytag1', 'mytag2'));

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 177

The following statement exports all master encryption keys of the database to file /etc/TDE/
export.exp. The master encryption keys in the file are encrypted using the secret my_secret.

ADMINISTER KEY MANAGEMENT
 EXPORT KEYS WITH SECRET "my_secret"
 TO '/etc/TDE/export.exp'
 IDENTIFIED BY password;

In a multitenant environment, the following statements exports all master encryption keys of
the PDB salespdb, along with metadata, to file /etc/TDE/salespdb.exp. The master encryption keys in
the file are encrypted using the secret my_secret. If the PDB is subsequently cloned, or
unplugged and plugged back in, then the export file created by this statement can be used to
import the keys into the cloned or newly plugged-in PDB.

ALTER SESSION SET CONTAINER = salespdb;
ADMINISTER KEY MANAGEMENT
 EXPORT KEYS WITH SECRET "my_secret"
 TO '/etc/TDE/salespdb.exp'
 IDENTIFIED BY password;

Importing Keys: Example

The following statement imports the master encryption keys, encrypted with secret my_secret,
from file /etc/TDE/export.exp to a password-protected software keystore. It also creates a backup
of the password-protected software keystore before importing the keys.

ADMINISTER KEY MANAGEMENT
 IMPORT KEYS WITH SECRET "my_secret"
 FROM '/etc/TDE/export.exp'
 IDENTIFIED BY password
 WITH BACKUP;

Migrating a Keystore: Example

The following statement migrates from a password-protected software keystore to a hardware
keystore. It also creates a backup of the password-protected software keystore before
performing the migration.

ADMINISTER KEY MANAGEMENT
 SET ENCRYPTION KEY IDENTIFIED BY "user_id:password"
 MIGRATE USING software_keystore_password
 WITH BACKUP;

Reverse Migrating a Keystore: Example

The following statement reverse migrates from a hardware keystore to a password-protected
software keystore:

ADMINISTER KEY MANAGEMENT
 SET ENCRYPTION KEY IDENTIFIED BY software_keystore_password
 REVERSE MIGRATE USING "user_id:password";

Adding a Secret to a Keystore: Examples

The following statement adds secret secret1, with the tag My first secret, for client client1 to a
password-protected software keystore. It also creates a backup of the password-protected
software keystore before adding the secret.

ADMINISTER KEY MANAGEMENT
 ADD SECRET 'secret1' FOR CLIENT 'client1'
 USING TAG 'My first secret'

Chapter 10
ADMINISTER KEY MANAGEMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 177

 IDENTIFIED BY password
 WITH BACKUP;

The following statement adds a similar secret to a hardware keystore:

ADMINISTER KEY MANAGEMENT
 ADD SECRET 'secret2' FOR CLIENT 'client2'
 USING TAG 'My second secret'
 IDENTIFIED BY "user_id:password";

Updating a Secret in a Keystore: Examples

The following statement updates the secret that was created in the previous example in a
password-based software keystore. It also creates a backup of the password-protected
software keystore before updating the secret.

ADMINISTER KEY MANAGEMENT
 UPDATE SECRET 'secret1' FOR CLIENT 'client1'
 USING TAG 'New Tag 1'
 IDENTIFIED BY password
 WITH BACKUP;

The following statement updates the secret that was created in the previous example in a
hardware keystore:

ADMINISTER KEY MANAGEMENT
 UPDATE SECRET 'secret2' FOR CLIENT 'client2'
 USING TAG 'New Tag 2'
 IDENTIFIED BY "user_id:password";

Deleting a Secret from a Keystore: Examples

The following statement deletes the secret that was updated in the previous example from a
password-protected software keystore. It also creates a backup of the password-protected
software keystore before deleting the secret.

ADMINISTER KEY MANAGEMENT
 DELETE SECRET FOR CLIENT 'client1'
 IDENTIFIED BY password
 WITH BACKUP;

The following statement deletes the secret that was updated in the previous example from a
hardware keystore:

ADMINISTER KEY MANAGEMENT
 DELETE SECRET FOR CLIENT 'client2'
 IDENTIFIED BY "user_id:password";

ALTER ANALYTIC VIEW
Purpose

Use the ALTER ANALYTIC VIEW statement to rename or compile an analytic view. Additionally,
you can modify grouping level caches by adding or dropping a new level grouping cache to a
specifed analytic view.

For other alterations, use CREATE OR REPLACE ANALYTIC VIEW.

Chapter 10
ALTER ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 177

Prerequisites

To alter an analytic view in your own schema, you must have the ALTER ANALYTIC VIEW system
privilege. To alter an analytic view in another user's schema, you must have the ALTER ANY
ANALYTIC VIEW system privilege or ALTER ANY TABLE granted on the analytic view.

Syntax

alter_analytic_view::=

ALTER ANALYTIC VIEW

IF EXISTS schema .

analytic_view_name

RENAME TO new_av_name

COMPILE

alter_add_cache_clause

alter_drop_cache_clause

alter_add_cache_clause::=

ADD CACHE MEASURE GROUP

ALL

meas_name

,

LEVELS

dim_alias .

hier_alias .

level

,

alter_drop_cache_clause::=

DROP CACHE MEASURE GROUP

ALL

meas_name

,

LEVELS

dim_alias .

hier_alias .

level

,

Chapter 10
ALTER ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 177

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema in which the analytic view exists. If you do not specify a schema, then
Oracle Database looks for the analytic view in your own schema.

analytic_view_name

Specify the name of the analytic view.

RENAME TO

Specify RENAME TO to change the name of the analytic view. For new_av_name, specify a new
name for the analytic view.

COMPILE

Specify COMPILE to compile the analytic view.

alter_add_cache_clause

Use this clause to add a new level grouping cache to a specified analytic view like the measure
group, level clause and the cache type. Before you add a new level grouping cache, you must
ensure that it does not match a previously defined cache with the same measures and levels.

alter_drop_cache_clause

Use this clause to drop an existent level grouping cache from an analytic view. You must
specify the attributes of the level grouping you are about to drop, like the measure group and
the level clause.

Example: Change the Name of an Analytic View

ALTER ANALYTIC VIEW sales_av RENAME TO mysales_av;

Example: Add a New Level Grouping Cache to an Analytic View

ALTER ANALYTIC VIEW TKHCSGL308_UNITS_AVIEW_CACHE ADD CACHE
 MEASURE GROUP (sales, units, cost)
 LEVELS (TIME.FISCAL.FISCAL_QUARTER, WAREHOUSE);

ALTER ATTRIBUTE DIMENSION
Purpose

Use the ALTER ATTRIBUTE DIMENSION statement to rename or compile an attribute dimension.
For other alterations, use CREATE OR REPLACE ATTRIBUTE DIMENSION.

Chapter 10
ALTER ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 177

Prerequisites

To alter an attribute dimension in your own schema, you must have the ALTER ATTRIBUTE
DIMENSION system privilege. To alter an attribute dimension in another user's schema, you
must have the ALTER ANY ATTRIBUTE DIMENSION system privilege or have been granted ALTER
on the attribute dimension directly.

Syntax

alter_attribute_dimension::=

ALTER ATTRIBUTE DIMENSION

IF EXISTS schema .

attr_dim_name

RENAME TO new_attr_dim_name

COMPILE

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema in which the attribute dimension exists. If you do not specify a schema,
then Oracle Database looks for the attribute dimension in your own schema.

attr_dim_name

Specify the name of the attribute dimension.

RENAME TO

Specify RENAME TO to change the name of the attribute dimension. For new_attr_dim_name,
specify a new name for the attribute dimension.

COMPILE

Specify COMPILE to compile the attribute dimension.

Example

The following statement changes the name of an attribute dimension:

ALTER ATTRIBUTE DIMENSION product_attr_dim RENAME TO my_product_attr_dim;

Chapter 10
ALTER ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 177

ALTER AUDIT POLICY (Unified Auditing)
This section describes the ALTER AUDIT POLICY statement for unified auditing. This type of
auditing is new beginning with Oracle Database 12c and provides a full set of enhanced
auditing features. Refer to Oracle Database Security Guide for more information on unified
auditing.

Purpose

Use the ALTER AUDIT POLICY statement to modify a unified audit policy.

See Also

• CREATE AUDIT POLICY (Unified Auditing)

• DROP AUDIT POLICY (Unified Auditing)

• AUDIT (Unified Auditing)

• NOAUDIT (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

If you are connected to a multitenant container database (CDB), then to modify a common
unified audit policy, the current container must be the root and you must have the commonly
granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role. To modify a local unified
audit policy, the current container must be the container in which the audit policy was created
and you must have the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN
common role, or you must have the locally granted AUDIT SYSTEM privilege or the AUDIT_ADMIN
local role in the container.

After you alter an unified audit policy with object audit options, the new audit settings take
place immediately, for both the active and subsequent user sessions. If you alter an unified
audit policy with system audit options, or audit conditions, then they become effective only for
new user sessions, but not for the current user session.

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 177

Syntax

alter_audit_policy::=

ALTER AUDIT POLICY policy

ADD

privilege_audit_clause action_audit_clause role_audit_clause

ONLY TOPLEVEL

DROP

privilege_audit_clause action_audit_clause role_audit_clause

ONLY TOPLEVEL

CONDITION

DROP

’ audit_condition ’ EVALUATE PER

STATEMENT

SESSION

INSTANCE

;

Note

If you specify the ADD or DROP clause, then you must specify at least one of the
clauses privilege_audit_clause, action_audit_clause, or role_audit_clause.

(privilege_audit_clause::=, action_audit_clause::=, role_audit_clause::=)

privilege_audit_clause::=

PRIVILEGES system_privilege

,

action_audit_clause::=

standard_actions

component_actions

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 177

standard_actions::=

ACTIONS

object_action

ALL

(column

,

)

ON

DIRECTORY directory_name

MINING MODEL

schema .

object_name

schema .

object_name

system_action

ALL

,

component_actions::=

ACTIONS COMPONENT =

DATAPUMP

DIRECT_LOAD

OLS

XS

component_action

,

DV component_action ON object_name

,

SQL_FIREWALL

SQL

CONTEXT
VIOLATION

ALL

ON user_name

PROTOCOL

FTP

HTTP

AUTHENTICATION

role_audit_clause::=

ROLES role

,

Semantics

policy

Specify the name of the unified audit policy to be modified. The policy must have been created
using the CREATE AUDIT POLICY statement. You can find descriptions of all unified audit policies
by querying the AUDIT_UNIFIED_POLICIES view.

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 177

See Also

• CREATE AUDIT POLICY (Unified Auditing)

• Oracle Database Reference for more information on the AUDIT_UNIFIED_POLICIES
view

ADD | DROP

Use the ADD clause to add privileges to be audited to policy.

Use the DROP clause to remove privileges to be audited from policy.

Refer to privilege_audit_clause, action_audit_clause, and role_audit_clause of CREATE AUDIT
POLICY for the full semantics of these clauses.

CONDITION

Use this clause to drop, add, or replace the audit condition for policy.

Specify DROP to drop the audit condition from policy.

Specify 'audit_condition' ... to add or replace the audit condition for policy.

Refer to audit_condition, EVALUATE PER STATEMENT, EVALUATE PER SESSION, and
EVALUATE PER INSTANCE of CREATE AUDIT POLICY for the full semantics of these clauses.

ONLY TOPLEVEL

Specify this clause to change the existing unified audit policy to audit only the top level SQL
statements issued by the user.

Example: Add Top Level Auditing

The example changes the HR audit policy hr_audit_policy to capture only top level statements.

ALTER AUDIT POLICY hr_audit_policy ADD ONLY TOPLEVEL

You can drop top level auditing from an existing audit policy auditing the top level SQL
statements.

Example: Drop Top Level Auditing

ALTER AUDIT POLICY hr_audit_policy DROP ONLY TOPLEVEL

See Database Security Guide for more information.

Examples

The following examples modify unified audit policies that were created in the CREATE AUDIT
POLICY "Examples".

Adding Privileges, Actions, and Roles to a Unified Audit Policy: Examples

The following statement adds the system privileges CREATE ANY TABLE and DROP ANY TABLE to
unified audit policy dml_pol:

ALTER AUDIT POLICY dml_pol
 ADD PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE;

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 177

The following statement adds the system actions CREATE JAVA, ALTER JAVA, and DROP JAVA to
unified audit policy java_pol:

ALTER AUDIT POLICY java_pol
 ADD ACTIONS CREATE JAVA, ALTER JAVA, DROP JAVA;

The following statement adds the role dba to unified audit policy table_pol:

ALTER AUDIT POLICY table_pol
 ADD ROLES dba;

The following statement adds multiple system privileges, actions, and roles to unified audit
policy security_pol:

ALTER AUDIT POLICY security_pol
 ADD PRIVILEGES CREATE ANY LIBRARY, DROP ANY LIBRARY
 ACTIONS DELETE on hr.employees,
 INSERT on hr.employees,
 UPDATE on hr.employees,
 ALL on hr.departments
 ROLES dba, connect;

Dropping Privileges, Actions, and Roles from a Unified Audit Policy: Examples

The following statement drops the system privilege CREATE ANY TABLE from unified audit policy
table_pol:

ALTER AUDIT POLICY table_pol
 DROP PRIVILEGES CREATE ANY TABLE;

The following statement drops the INSERT and UPDATE actions on hr.employees from unified audit
policy dml_pol:

ALTER AUDIT POLICY dml_pol
 DROP ACTIONS INSERT on hr.employees,
 UPDATE on hr.employees;

The following statement drops the role java_deploy from unified audit policy java_pol:

ALTER AUDIT POLICY java_pol
 DROP ROLES java_deploy;

The following statement drops a system privilege, an action, and a role from unified audit policy
hr_admin_pol:

ALTER AUDIT POLICY hr_admin_pol
 DROP PRIVILEGES CREATE ANY TABLE
 ACTIONS LOCK TABLE
 ROLES audit_viewer;

Adding and Dropping Actions for a Unified Audit Policy: Example

The following statement adds EXPORT actions for Oracle Data Pump to unified audit policy
dp_actions_pol and drops IMPORT actions for Oracle Data Pump:

ALTER AUDIT POLICY dp_actions_pol
 ADD ACTIONS COMPONENT = datapump EXPORT
 DROP ACTIONS COMPONENT = datapump IMPORT;

Dropping the Audit Condition from a Unified Audit Policy: Example

The following statement drops the audit condition from unified audit policy order_updates_pol:

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 177

ALTER AUDIT POLICY order_updates_pol
 CONDITION DROP;

Modifying the Audit Condition for a Unified Audit Policy: Example

The following statement modifies the audit condition for unified audit policy emp_updates_pol so
that the policy is enforced only when the auditable statement is issued by a user whose UID is
102:

ALTER AUDIT POLICY emp_updates_pol
 CONDITION 'UID = 102'
 EVALUATE PER STATEMENT;

Altering an Audit Policy at the Column Level: Example

The audit policy employee_audit_policy generates audit records only when the select operation is
performed on the sal column in the emp table.

CREATE AUDIT POLICY employee_audit_policy ACTIONS SELECT(sal) on scott.emp;

The example alters the employee_audit_policy so that audit records are generated also when insert
operations are done in the dname column of the dept table.

ALTER AUDIT POLICY employee_audit_policy ACTIONS ADD INSERT(dname) on scott.dept;

ALTER CLUSTER
Purpose

Use the ALTER CLUSTER statement to redefine storage and parallelism characteristics of a
cluster.

Note

You cannot use this statement to change the number or the name of columns in the
cluster key, and you cannot change the tablespace in which the cluster is stored.

See Also

CREATE CLUSTER for information on creating a cluster, DROP CLUSTER and DROP
TABLE for information on removing tables from a cluster, and CREATE TABLE ...
physical_properties for information on adding a table to a cluster

Prerequisites

The cluster must be in your own schema or you must have the ALTER ANY CLUSTER system
privilege.

Chapter 10
ALTER CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 177

Syntax

alter_cluster::=

ALTER CLUSTER

IF EXISTS schema .

cluster

physical_attributes_clause

SIZE size_clause

MODIFY PARTITION partition

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

parallel_clause

;

(physical_attributes_clause::, size_clause::=, MODIFY PARTITION, allocate_extent_clause::=,
deallocate_unused_clause::=, parallel_clause::=)

physical_attributes_clause::

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

Chapter 10
ALTER CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 177

(size_clause::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the cluster. If you omit schema, then Oracle Database assumes
the cluster is in your own schema.

cluster

Specify the name of the cluster to be altered.

physical_attributes_clause

Use this clause to change the values of the PCTUSED, PCTFREE, and INITRANS parameters of the
cluster.

Use the STORAGE clause to change the storage characteristics of the cluster.

See Also

• physical_attributes_clause for information on the parameters

• storage_clause for a full description of that clause

Restriction on Physical Attributes

You cannot change the values of the storage parameters INITIAL and MINEXTENTS for a cluster.

SIZE

integer

Use the SIZE clause to specify the number of cluster keys that will be stored in data blocks
allocated to the cluster.

Restriction on SIZE

You can change the SIZE parameter only for an indexed cluster, not for a hash cluster.

Chapter 10
ALTER CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 177

See Also

CREATE CLUSTER for a description of the SIZE parameter and "Modifying a Cluster:
Example"

MODIFY PARTITION

Specify MODIFY PARTITION partition allocate_extent_clause to explicitly allocate a new extent for a
cluster partition. This operation is valid only for range-partitioned hash clusters. For partition,
specify the cluster partition name.

allocate_extent_clause

Specify allocate_extent_clause to explicitly allocate a new extent for a cluster. This operation is valid
only for indexed clusters and nonpartitioned hash clusters.

When you explicitly allocate an extent with the allocate_extent_clause, Oracle Database does not
evaluate the storage parameters of the cluster and determine a new size for the next extent to
be allocated (as it does when you create a table). Therefore, specify SIZE if you do not want
Oracle Database to use a default value.

See Also

allocate_extent_clause for a full description of this clause

deallocate_unused_clause

Use the deallocate_unused_clause to explicitly deallocate unused space at the end of the cluster and
make the freed space available for other segments.

See Also

deallocate_unused_clause for a full description of this clause and "Deallocating
Unused Space: Example"

parallel_clause

Specify the parallel_clause to change the default degree of parallelism for queries on the cluster.

See Also

parallel_clause in the documentation on CREATE TABLE for complete information on
this clause

Examples

The following examples modify the clusters that were created in the CREATE CLUSTER
"Examples".

Chapter 10
ALTER CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 177

Modifying a Cluster: Example

The next statement alters the personnel cluster:

ALTER CLUSTER personnel
 SIZE 1024 CACHE;

Oracle Database allocates 1024 bytes for each cluster key value and enables the cache
attribute. Assuming a data block size of 2 kilobytes, future data blocks within this cluster
contain 2 cluster keys in each data block, or 2 kilobytes divided by 1024 bytes.

Deallocating Unused Space: Example

The following statement deallocates unused space from the language cluster, keeping 30
kilobytes of unused space for future use:

ALTER CLUSTER language
 DEALLOCATE UNUSED KEEP 30 K;

Altering Clusters: Example

The following statement creates a cluster with the default key size (600):

CREATE CLUSTER EMP_DEPT (DEPTNO NUMBER(3))
 SIZE 600
 TABLESPACE USERS
 STORAGE (INITIAL 200K
 NEXT 300K
 MINEXTENTS 2
 PCTINCREASE 33);

The following statement queries USER_CLUSTERS to display the cluster metadata:

SELECT CLUSTER_NAME, TABLESPACE_NAME, KEY_SIZE, CLUSTER_TYPE, AVG_BLOCKS_PER_KEY,
MIN_EXTENTS, MAX_EXTENTS FROM USER_CLUSTERS;

CLUSTER_NAME TABLESPACE_NAME KEY_SIZE CLUST AVG_BLOCKS_PER_KEY
MIN_EXTENTS MAX_EXTENTS
--------------- ------------------------------ ---------- ----- ------------------ ----------- -----------
EMP_DEPT USERS 600 INDEX 1 2147483645

The following statement modifies the cluster key size:

ALTER CLUSTER EMP_DEPT SIZE 1024;

The following statement displays the metadata of the modified cluster:

SELECT CLUSTER_NAME, TABLESPACE_NAME, KEY_SIZE, CLUSTER_TYPE, AVG_BLOCKS_PER_KEY,
MIN_EXTENTS, MAX_EXTENTS FROM USER_CLUSTERS;

CLUSTER_NAME TABLESPACE_NAME KEY_SIZE CLUST AVG_BLOCKS_PER_KEY
MIN_EXTENTS MAX_EXTENTS
--------------- ------------------------------ ---------- ----- ------------------ ----------- -----------
EMP_DEPT USERS 1024 INDEX 1 2147483645

Chapter 10
ALTER CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 177

The following statement deallocates unused space from the EMP_DEPT cluster, keeping 30
kilobytes of unused space for future use:

ALTER CLUSTER EMP_DEPT DEALLOCATE UNUSED KEEP 30 K;

The following statement displays the metadata of the modified cluster:

SELECT CLUSTER_NAME, TABLESPACE_NAME, KEY_SIZE, CLUSTER_TYPE, AVG_BLOCKS_PER_KEY,
MIN_EXTENTS, MAX_EXTENTS FROM USER_CLUSTERS;

CLUSTER_NAME TABLESPACE_NAME KEY_SIZE CLUST AVG_BLOCKS_PER_KEY
MIN_EXTENTS MAX_EXTENTS
--------------- ------------------------------ ---------- ----- ------------------ ----------- -----------
EMP_DEPT USERS 1024 INDEX 1 2147483645

Live SQL

View and run a related example on Oracle Live SQL at Creating and Altering Clusters

ALTER DATABASE
Purpose

Use the ALTER DATABASE statement to modify, maintain, or recover an existing database.

See Also

• Oracle Database Backup and Recovery User's Guide for examples of performing
media recovery

• Oracle Data Guard Concepts and Administration for additional information on
using the ALTER DATABASE statement to maintain standby databases

• CREATE DATABASE for information on creating a database

Prerequisites

You must have the ALTER DATABASE system privilege.

To specify the startup_clauses, you must also be connected AS SYSDBA, AS SYSOPER, AS
SYSBACKUP, or AS SYSDG.

To specify the general_recovery clause, you must also have the SYSDBA or SYSBACKUP system
privilege.

To specify the DEFAULT EDITION clause, you must also have the USE object privilege WITH
GRANT OPTION on the specified edition.

If you are connected to a multitenant container database (CDB):

• To modify the entire CDB, the current container must be the root and you must have the
commonly granted ALTER DATABASE privilege.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 177

https://livesql.oracle.com/apex/livesql/docs/sqlrf/alter-cluster/key-size.html

• To modify a container, it must be the current container and you must have the ALTER
DATABASE privilege, either granted commonly or granted locally in the container.

Notes on Using ALTER DATABASE in a CDB

When you issue the ALTER DATABASE statement while connected to a CDB, the behavior of the
statement depends on the current container and the clause(s) you specify.

If the current container is the root, then ALTER DATABASE statements with the following clauses
modify the entire CDB. In order to specify these clauses, you must have the commonly granted
ALTER DATABASE privilege:

• startup_clauses

• recovery_clauses

Note: A subset of the recovery_clauses are supported to back up and recover an individual
pluggable database (PDB). In order to specify these clauses, you must have the ALTER
DATABASE privilege, either granted commonly or granted locally in the PDB. Refer to "Notes
on Using the recovery_clauses in a CDB" for more information.

• logfile_clauses

• controlfile_clauses

• standby_database_clauses

• instance_clauses

• security_clause

• RENAME GLOBAL_NAME TO

• ENABLE BLOCK CHANGE TRACKING

• DISABLE BLOCK CHANGE TRACKING

• undo_mode_clause

If the current container is the root, then ALTER DATABASE statements with the following clauses
modify only the root. In order to specify these clauses, you must have the ALTER DATABASE
privilege, either granted commonly or granted locally in the root:

• database_file_clauses

• DEFAULT EDITION

• DEFAULT TABLESPACE

If the current container is the root, then ALTER DATABASE statements with the following clauses
modify the root and set default values for the PDBs. In order to specify these clauses, you
must have the commonly granted ALTER DATABASE privilege:

• DEFAULT [LOCAL] TEMPORARY TABLESPACE

• flashback_mode_clause

• SET DEFAULT { BIGFILE | SMALLFILE } TABLESPACE

• set_time_zone_clause

If the current container is a PDB, then ALTER DATABASE statements modify that PDB. In this
case, you can issue only ALTER DATABASE clauses that are also supported by the ALTER
PLUGGABLE DATABASE statement. This functionality is provided to maintain backward
compatibility for applications that have been migrated to a CDB environment. The exception is
modifying PDB storage limits, for which you must use the pdb_storage_clause of ALTER PLUGGABLE

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 177

DATABASE. Refer to the documentation on ALTER PLUGGABLE DATABASE for complete
information on these clauses.

Syntax

alter_database::=

ALTER database_clause

startup_clauses

recovery_clauses

database_file_clauses

logfile_clauses

controlfile_clauses

standby_database_clauses

default_settings_clauses

instance_clauses

security_clause

prepare_clause

drop_mirror_copy

lost_write_protection

cdb_fleet_clauses

property_clause

replay_upgrade_clause

;

Groups of ALTER DATABASE syntax:

• startup_clauses::=

• recovery_clauses::=

• database_file_clauses::=

• logfile_clauses::=

• controlfile_clauses::=

• standby_database_clauses::=

• default_settings_clauses::=

• instance_clauses::=

• security_clause::=

database_clause::=

DATABASE

db_name

PLUGGABLE DATABASE

pdb_name

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 177

startup_clauses::=

MOUNT

STANDBY

CLONE

DATABASE

OPEN

READ WRITE

RESETLOGS

NORESETLOGS

UPGRADE

DOWNGRADE

READ ONLY

recovery_clauses::=

general_recovery

managed_standby_recovery

BEGIN

END
BACKUP

(general_recovery::=, managed_standby_recovery::=)

general_recovery::=

RECOVER

AUTOMATIC FROM ’ location ’

full_database_recovery

partial_database_recovery

LOGFILE ’ filename ’

TEST

ALLOW integer CORRUPTION

parallel_clause

CONTINUE

DEFAULT

CANCEL

(full_database_recovery::=, partial_database_recovery::=, parallel_clause::=)

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 177

full_database_recovery::=

STANDBY

DATABASE

UNTIL

CANCEL

TIME date

CHANGE integer

CONSISTENT

USING BACKUP CONTROLFILE

partial_database_recovery::=

TABLESPACE tablespace

,

DATAFILE
’ filename ’

filenumber

,

parallel_clause::=

NOPARALLEL

PARALLEL

integer

managed_standby_recovery::=

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 177

RECOVER

MANAGED STANDBY DATABASE

USING ARCHIVED LOGFILE

DISCONNECT

FROM SESSION

NODELAY

UNTIL CHANGE integer

UNTIL CONSISTENT

USING INSTANCES
ALL

integer

parallel_clause

FINISH

CANCEL

TO LOGICAL STANDBY
db_name

KEEP IDENTITY

(parallel_clause::=)

Note

Several subclauses of managed_standby_recovery are no longer needed and have been
deprecated. These clauses no longer appear in the syntax diagrams. Refer to the
semantics of managed_standby_recovery.

database_file_clauses::=

RENAME FILE ’ filename ’

,

TO ’ filename ’

create_datafile_clause

alter_datafile_clause

alter_tempfile_clause

move_datafile_clause

(create_datafile_clause::=, alter_datafile_clause::=, alter_tempfile_clause::=,
move_datafile_clause::=)

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 177

create_datafile_clause::=

CREATE DATAFILE
’ filename ’

filenumber

,
AS

file_specification

,

NEW

(file_specification::=)

alter_datafile_clause::=

DATAFILE

’ filename ’

filenumber

,

ONLINE

OFFLINE

FOR DROP

RESIZE size_clause

autoextend_clause

END BACKUP

ENCRYPT

DECRYPT

(autoextend_clause::=, size_clause::=)

alter_tempfile_clause::=

TEMPFILE

’ filename ’

filenumber

,

RESIZE size_clause

autoextend_clause

DROP

INCLUDING DATAFILES

ONLINE

OFFLINE

(autoextend_clause::=, size_clause::=)

move_datafile_clause::=

MOVE DATAFILE

’

filename

ASM_filename

’

file_number

TO ’

filename

ASM_filename

’

REUSE KEEP

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 177

ASM_filename::=

fully_qualified_file_name

numeric_file_name

incomplete_file_name

alias_file_name

autoextend_clause::=

AUTOEXTEND

OFF

ON

NEXT size_clause maxsize_clause

maxsize_clause::=

MAXSIZE

UNLIMITED

size_clause

(size_clause::=)

logfile_clauses::=

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 177

ARCHIVELOG

MANUAL

NOARCHIVELOG

NO

FORCE LOGGING

SET STANDBY NOLOGGING FOR
DATA AVAILABILITY

LOAD PERFORMANCE

RENAME FILE ’ filename ’

,

TO ’ filename ’

CLEAR

UNARCHIVED

LOGFILE logfile_descriptor

,
UNRECOVERABLE DATAFILE

add_logfile_clauses

drop_logfile_clauses

switch_logfile_clause

supplemental_db_logging

(logfile_descriptor::=, add_logfile_clauses::=, drop_logfile_clauses::=, switch_logfile_clause::=,
supplemental_db_logging::=)

add_logfile_clauses::=

ADD

STANDBY

LOGFILE

INSTANCE ’ instance_name ’

THREAD integer GROUP integer

redo_logfile_spec

,

MEMBER ’ filename ’

REUSE

,

TO logfile_descriptor

,

(redo_log_file_spec::=, logfile_descriptor::=)

drop_logfile_clauses::=

DROP

STANDBY

LOGFILE

logfile_descriptor

,

MEMBER ’ filename ’

,

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 177

(logfile_descriptor::=)

switch_logfile_clause::=

SWITCH ALL LOGFILES TO BLOCKSIZE integer

supplemental_db_logging::=

ADD

DROP
SUPPLEMENTAL LOG

DATA

supplemental_id_key_clause

supplemental_plsql_clause

supplemental_subset_replication_clause

(supplemental_id_key_clause::=)

supplemental_id_key_clause::=

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

supplemental_plsql_clause::=

DATA FOR PROCEDURAL REPLICATION

supplemental_subset_replication_clause

DATA SUBSET DATABASE REPLICATION

logfile_descriptor::=

GROUP integer

(’ filename ’

,

)

’ filename ’

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 177

controlfile_clauses::=

CREATE

LOGICAL

PHYSICAL

STANDBY

FAR SYNC INSTANCE

CONTROLFILE AS ’ filename ’

REUSE

BACKUP CONTROLFILE TO

’ filename ’

REUSE

trace_file_clause

(trace_file_clause::=)

trace_file_clause::=

TRACE

AS ’ filename ’

REUSE
RESETLOGS

NORESETLOGS

standby_database_clauses::=

activate_standby_db_clause

maximize_standby_db_clause

register_logfile_clause

commit_switchover_clause

start_standby_clause

stop_standby_clause

convert_database_clause

parallel_clause

switchover_clause

failover_clause

(activate_standby_db_clause::=, maximize_standby_db_clause::=, register_logfile_clause::=,
commit_switchover_clause::=, start_standby_clause::=, stop_standby_clause::=,
convert_database_clause::=, parallel_clause::=, switchover_clause::=, failover_clause::=)

activate_standby_db_clause::=

ACTIVATE

PHYSICAL

LOGICAL

STANDBY DATABASE

FINISH APPLY

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 177

maximize_standby_db_clause::=

SET STANDBY DATABASE TO MAXIMIZE

PROTECTION

AVAILABILITY

PERFORMANCE

register_logfile_clause::=

REGISTER

OR REPLACE

PHYSICAL

LOGICAL

LOGFILE

file_specification

,

FOR logminer_session_name

(file_specification::=)

switchover_clause::=

SWITCHOVER TO target_db_name

VERIFY

FORCE

failover_clause::=

FAILOVER TO target_db_name

FORCE

commit_switchover_clause::=

PREPARE

COMMIT

TO SWITCHOVER

TO

PHYSICAL

LOGICAL

PRIMARY

PHYSICAL

STANDBY

WITH

WITHOUT

SESSION SHUTDOWN

WAIT

NOWAIT

LOGICAL STANDBY

CANCEL

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 177

start_standby_clause::=

START LOGICAL STANDBY APPLY

IMMEDIATE NODELAY

NEW PRIMARY dblink

INITIAL

scn_value

SKIP FAILED TRANSACTION

FINISH

stop_standby_clause::=

STOP

ABORT

LOGICAL STANDBY APPLY

convert_database_clause::=

CONVERT TO

PHYSICAL

SNAPSHOT

STANDBY

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 177

default_settings_clauses::=

DEFAULT EDITION = edition_name

SET DEFAULT
BIGFILE

SMALLFILE
TABLESPACE

DEFAULT TABLESPACE tablespace

DEFAULT

LOCAL

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

RENAME GLOBAL_NAME TO database . domain

ENABLE BLOCK CHANGE TRACKING

USING FILE ’ filename ’

REUSE

DISABLE BLOCK CHANGE TRACKING

NO

FORCE FULL DATABASE CACHING

CONTAINERS DEFAULT TARGET =
(container_name)

NONE

flashback_mode_clause

undo_mode_clause

set_time_zone_clause

(flashback_mode_clause::=, undo_mode_clause::=, set_time_zone_clause::=)

flashback_mode_clause::=

FLASHBACK

ON

OFF

undo_mode_clause::=

LOCAL UNDO

ON

OFF

set_time_zone_clause::=

SET TIME_ZONE = ’

+

–
hh : mi

time_zone_region

’

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 177

instance_clauses::=

ENABLE

DISABLE

INSTANCE ’ instance_name ’

security_clause::=

GUARD

ALL

STANDBY

NONE

prepare_clause::=

PREPARE MIRROR COPY copy_name

WITH

UNPROTECTED

MIRROR

HIGH

REDUNDANCY

FOR DATABASE target_cdb_name

drop_mirror_copy::=

DROP MIRROR COPY mirror_name

lost_write_protection ::=

ENABLE

REMOVE

SUSPEND

LOST WRITE PROTECTION

cdb_fleet_clauses::=

lead_cdb_clause

lead_cdb_uri_clause

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 177

lead_cdb_clause::=

SET LEAD_CDB =

TRUE

FALSE

lead_cdb_uri_clause::=

SET LEAD_CDB_URI = uri_string

property_clause

PROPERTY
SET

REMOVE
DEFAULT_CREDENTIAL = qualified_credential_name

replay_upgrade_clause::=

UPGRADE SYNC

ON

OFF

Semantics

database_clause

Specify the DATABASE option for a non-container database.

db_name

Specify the name of the database to be altered. If you omit db_name, then Oracle Database
alters the database identified by the value of the initialization parameter DB_NAME. You can
alter only the database whose control files are specified by the initialization parameter
CONTROL_FILES. The database identifier is not related to the Oracle Net database specification.

startup_clauses

The startup_clauses let you mount and open the database so that it is accessible to users.

MOUNT Clause

Use the MOUNT clause to mount the database. Do not use this clause when the database is
already mounted.

MOUNT STANDBY DATABASE

You can specify MOUNT STANDBY DATABASE to mount a physical standby database. The
keywords STANDBY DATABASE are optional, because Oracle Database determines

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 177

automatically whether the database to be mounted is a primary or standby database. As soon
as this statement executes, the standby instance can receive redo data from the primary
instance.

See Also

Oracle Data Guard Concepts and Administration for more information on standby
databases

MOUNT CLONE DATABASE

Specify MOUNT CLONE DATABASE to mount the clone database.

OPEN Clause

Use the OPEN clause to make the database available for normal use. You must mount the
database before you can open it.

If you specify only OPEN without any other keywords, then the default is OPEN READ WRITE
NORESETLOGS on a primary database, logical standby database, or snapshot standby database
and OPEN READ ONLY on a physical standby database.

OPEN READ WRITE

Specify OPEN READ WRITE to open the database in read/write mode, allowing users to generate
redo logs. This is the default if you are opening a primary database. You cannot specify this
clause for a physical standby database.

See Also

"READ ONLY / READ WRITE: Example"

RESETLOGS | NORESETLOGS

This clause determines whether Oracle Database resets the current log sequence number to
1, archives any unarchived logs (including the current log), and discards any redo information
that was not applied during recovery, ensuring that it will never be applied. Oracle Database
uses NORESETLOGS automatically except in the following specific situations, which require a
setting for this clause:

• You must specify RESETLOGS:

– After performing incomplete media recovery or media recovery using a backup control
file

– After a previous OPEN RESETLOGS operation that did not complete

– After a FLASHBACK DATABASE operation

• If a created control file is mounted, then you must specify RESETLOGS if the online logs are
lost, or you must specify NORESETLOGS if they are not lost.

UPGRADE | DOWNGRADE

Use these OPEN clause parameters only if you are upgrading or downgrading a database. This
clause instructs Oracle Database to modify system parameters dynamically as required for

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 177

upgrade and downgrade, respectively. You can achieve the same result using the SQL*Plus
STARTUP UPGRADE or STARTUP DOWNGRADE command.

When you use the UPGRADE or DOWNGRADE parameters for a CDB, the root container is
opened in the specified mode, but all other containers are opened in READ WRITE mode.

See Also

• Oracle Database Upgrade Guide for information on the steps required to upgrade
or downgrade a database from one release to another

• SQL*Plus User's Guide and Reference for information on the SQL*Plus STARTUP
command

OPEN READ ONLY

Specify OPEN READ ONLY to restrict users to read-only transactions, preventing them from
generating redo logs. This setting is the default when you are opening a physical standby
database, so that the physical standby database is available for queries even while archive
logs are being copied from the primary database site.

Restrictions on Opening a Database

The following restrictions apply to opening a database:

• You cannot open a database in READ ONLY mode if it is currently opened in READ WRITE
mode by another instance.

• You cannot open a database in READ ONLY mode if it requires recovery.

• You cannot take tablespaces offline while the database is open in READ ONLY mode.
However, you can take data files offline and online, and you can recover offline data files
and tablespaces while the database is open in READ ONLY mode.

See Also

Oracle Data Guard Concepts and Administration for additional information about
opening a physical standby database

recovery_clauses

The recovery_clauses include post-backup operations. For all of these clauses, Oracle Database
recovers the database using any incarnations of data files and log files that are known to the
current control file.

See Also

Oracle Database Backup and Recovery User's Guide for information on backing up
the database and "Database Recovery: Examples"

Notes on Using the recovery_clauses in a CDB

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 177

When the current container is the root, you can specify all of the recovery_clauses to back up and
recover the entire CDB.

When the current container is a PDB, you can specify the following subclauses of the
recovery_clauses to back up and recover the PDB:

• BEGIN BACKUP

• END BACKUP

• full_database_recovery: You can specify only the DATABASE keyword

• partial_database_recovery

• The LOGFILE and CONTINUE clauses of general_recovery

You can also specify the preceding subclauses using the pdb_recovery_clauses of ALTER
PLUGGABLE DATABASE. Refer to the syntax diagram pdb_recovery_clauses of ALTER
PLUGGABLE DATABASE.

general_recovery

The general_recovery clause lets you control media recovery for the database or standby
database or for specified tablespaces or files. You can use this clause when your instance has
the database mounted, open or closed, and the files involved are not in use.

Note

Parallelism is enabled by default during full or partial database recovery and logfile
recovery. The database computes the degree of parallelism. You can disable
parallelism of these operations by specifying NOPARALLEL, or specify a degree of
parallelism with PARALLEL integer, as shown in the respective syntax diagrams.

Restrictions on General Database Recovery

General recovery is subject to the following restrictions:

• You can recover the entire database only when the database is closed.

• Your instance must have the database mounted in exclusive mode.

• You can recover tablespaces or data files when the database is open or closed, if the
tablespaces or data files to be recovered are offline.

• You cannot perform media recovery if you are connected to Oracle Database through the
shared server architecture.

See Also

• Oracle Database Backup and Recovery User's Guide for more information on
RMAN media recovery and user-defined media recovery

• SQL*Plus User's Guide and Reference for information on the SQL*Plus RECOVER
command

AUTOMATIC

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 177

Specify AUTOMATIC if you want Oracle Database to automatically generate the name of the
next archived redo log file needed to continue the recovery operation. If the
LOG_ARCHIVE_DEST_n parameters are defined, then Oracle Database scans those that are valid
and enabled for the first local destination. It uses that destination in conjunction with
LOG_ARCHIVE_FORMAT to generate the target redo log filename. If the LOG_ARCHIVE_DEST_n
parameters are not defined, then Oracle Database uses the value of the LOG_ARCHIVE_DEST
parameter instead.

If the resulting file is found, then Oracle Database applies the redo contained in that file. If the
file is not found, then Oracle Database prompts you for a filename, displaying the generated
filename as a suggestion.

If you specify neither AUTOMATIC nor LOGFILE, then Oracle Database prompts you for a
filename, displaying the generated filename as a suggestion. You can then accept the
generated filename or replace it with a fully qualified filename. If you know that the archived
filename differs from what Oracle Database would generate, then you can save time by using
the LOGFILE clause.

FROM 'location'

Specify FROM 'location' to indicate the location from which the archived redo log file group is
read. The value of location must be a fully specified file location following the conventions of
your operating system. If you omit this parameter, then Oracle Database assumes that the
archived redo log file group is in the location specified by the initialization parameter
LOG_ARCHIVE_DEST or LOG_ARCHIVE_DEST_1.

full_database_recovery

The full_database_recovery clause lets you recover an entire database.

DATABASE

Specify the DATABASE clause to recover the entire database. This is the default. You can use
this clause only when the database is closed.

STANDBY DATABASE

Specify the STANDBY DATABASE clause to manually recover a physical standby database using
the control file and archived redo log files copied from the primary database. The standby
database must be mounted but not open.

This clause recovers only online data files.

• Use the UNTIL clause to specify the duration of the recovery operation.

– CANCEL indicates cancel-based recovery. This clause recovers the database until you
issue the ALTER DATABASE statement with the RECOVER CANCEL clause.

– TIME indicates time-based recovery. This parameter recovers the database to the time
specified by the date. The date must be a character literal in the format 'YYYY-MM-
DD:HH24:MI:SS'.

– CHANGE indicates change-based recovery. This parameter recovers the database to a
transaction-consistent state immediately before the system change number specified
by integer.

– CONSISTENT recovers the database until all online files are brought to a consistent SCN
point so that the database can be open in read only mode. This clauses requires the
controlfile to be a backup controlfile.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 177

• Specify USING BACKUP CONTROLFILE if you want to use a backup control file instead of the
current control file.

partial_database_recovery

The partial_database_recovery clause lets you recover individual tablespaces and data files.

TABLESPACE

Specify the TABLESPACE clause to recover only the specified tablespaces. You can use this
clause if the database is open or closed, provided the tablespaces to be recovered are offline.

See Also

"Using Parallel Recovery Processes: Example"

DATAFILE

Specify the DATAFILE clause to recover the specified data files. You can use this clause when
the database is open or closed, provided the data files to be recovered are offline.

You can identify the data file by name or by number. If you identify it by number, then filenumber
is an integer representing the number found in the FILE# column of the V$DATAFILE dynamic
performance view or in the FILE_ID column of the DBA_DATA_FILES data dictionary view.

STANDBY {TABLESPACE | DATAFILE}

In earlier releases, you could specify STANDBY TABLESPACE or STANDBY DATAFILE to recover
older backups of a specific tablespace or a specific data file on the standby to be consistent
with the rest of the standby database. These two clauses are now desupported. Instead, to
recover the standby database to a consistent point, but no further, use the statement ALTER
DATABASE RECOVER MANAGED STANDBY DATABASE UNTIL CONSISTENT.

LOGFILE

Specify the LOGFILE 'filename' to continue media recovery by applying the specified redo log file.

TEST

Use the TEST clause to conduct a trial recovery. A trial recovery is useful if a normal recovery
procedure has encountered some problem. It lets you look ahead into the redo stream to
detect possible additional problems. The trial recovery applies redo in a way similar to normal
recovery, but it does not write changes to disk, and it rolls back its changes at the end of the
trial recovery.

You can use this clause only if you have restored a backup taken since the last RESETLOGS
operation. Otherwise, Oracle Database returns an error.

ALLOW ... CORRUPTION

The ALLOW integer CORRUPTION clause lets you specify, in the event of logfile corruption, the
number of corrupt blocks that can be tolerated while allowing recovery to proceed.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 177

See Also

• Oracle Database Backup and Recovery User's Guide for information on database
recovery in general

• Oracle Data Guard Concepts and Administration for information on managed
recovery of standby databases

CONTINUE

Specify CONTINUE to continue multi-instance recovery after it has been interrupted to disable a
thread.

Specify CONTINUE DEFAULT to continue recovery using the redo log file that Oracle Database
would automatically generate if no other logfile were specified. This clause is equivalent to
specifying AUTOMATIC, except that Oracle Database does not prompt for a filename.

CANCEL

Specify CANCEL to terminate cancel-based recovery.

managed_standby_recovery

Use the managed_standby_recovery clause to start and stop Redo Apply on a physical standby
database. Redo Apply keeps the standby database transactionally consistent with the primary
database by continuously applying redo received from the primary database.

A primary database transmits its redo data to standby sites. As the redo data is written to redo
log files at the physical standby site, the log files become available for use by Redo Apply. You
can use the managed_standby_recovery clause when your standby instance has the database
mounted or is opened read-only.

Note

Beginning with Oracle Database 12c, real-time apply is enabled by default during
Redo Apply. Real-time apply recovers redo from the standby redo log files as soon as
they are written, without requiring them to be archived first at the physical standby
database. You can disable real-time apply with the USING ARCHIVED LOGFILE clause.
Refer to:

• Oracle Data Guard Concepts and Administration for more information on real-time
apply

• USING ARCHIVED LOGFILE Clause

Note

Parallelism is enabled by default during Redo Apply. The database computes the
degree of parallelism. You can disable parallelism of these operations by specifying
NOPARALLEL, or specify a degree of parallelism with PARALLEL integer, as shown in the
respective syntax diagrams.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 177

Restrictions on Managed Standby Recovery

The same restrictions listed under general_recovery apply to this clause.

See Also

Oracle Data Guard Concepts and Administration for more information on the use of
this clause

USING ARCHIVED LOGFILE Clause

Specify USING ARCHIVED LOGFILE to start Redo Apply without enabling real-time apply.

DISCONNECT

Specify DISCONNECT to indicate that Redo Apply should be performed in the background,
leaving the current session available for other tasks. The FROM SESSION keywords are optional
and are provided for semantic clarity.

NODELAY

The NODELAY clause overrides the DELAY attribute on the LOG_ARCHIVE_DEST_n parameter on
the primary database. If you do not specify the NODELAY clause, then application of the
archived redo log file is delayed according to the DELAY attribute of the LOG_ARCHIVE_DEST_n
setting (if any). If the DELAY attribute was not specified on that parameter, then the archived
redo log file is applied immediately to the standby database.

If you specify real-time apply with the USING CURRENT LOGFILE clause, then any DELAY value
specified for the LOG_ARCHIVE_DEST_n parameter at the primary for this standby is ignored, and
NODELAY is the default.

UNTIL CHANGE Clause

Use this clause to instruct Redo Apply to recover redo data up to, but not including, the
specified system change number.

UNTIL CONSISTENT

Use this clause to recover the standby database to a consistent SCN point so that the standby
database can be opened in read only mode.

USING INSTANCES

This clause is applicable only for Oracle Real Application Clusters (Oracle RAC) or Oracle
RAC One Node databases and allows you to start apply processes on multiple instances of the
standby that are started in the same mode (MOUNTED or READ ONLY) as the instance on which
the command is executed. Specify USING INSTANCES ALL to perform Redo Apply on all
instances in an Oracle RAC standby database started in the same mode. Specify USING
INSTANCES integer to perform Redo Apply on the specified number of instances that are started
in the same mode. For integer, specify an integer value from 1 to the number of instances in the
standby database. The database chooses the instances on which to perform Redo Apply; you
cannot specify particular instances. For example, if you specify 4 instances from an instance
that is MOUNTED and only 3 instances of the standby are running in the MOUNTED mode, then
Redo Apply will only be started on 3 instances. If you omit the USING INSTANCES clause, then
Oracle Database performs Redo Apply only on the instance where the command was
executed.

FINISH

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 177

Specify FINISH to complete applying all available redo data in preparation for a failover.

Use the FINISH clause only in the event of the failure of the primary database. This clause
overrides any specified delay intervals and applies all available redo immediately. After the
FINISH command completes, this database can no longer run in the standby database role, and
it must be converted to a primary database by issuing the ALTER DATABASE COMMIT TO
SWITCHOVER TO PRIMARY statement.

CANCEL

Specify CANCEL to stop Redo Apply immediately. Control is returned as soon as Redo Apply
stops.

TO LOGICAL STANDBY Clause

Use this clause to convert a physical standby database into a logical standby database.

db_name

Specify a database name to identify the new logical standby database. If you are using a
server parameter file (spfile) at the time you issue this statement, then the database will update
the file with appropriate information about the new logical standby database. If you are not
using an spfile, then the database issues a message reminding you to set the name of the
DB_NAME parameter after shutting down the database. In addition, you must invoke the
DBMS_LOGSTDBY.BUILD PL/SQL procedure on the primary database before using this clause on
the standby database.

See Also

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_LOGSTDBY.BUILD procedure

KEEP IDENTITY

Use this clause if you want to use the rolling upgrade feature provided by a logical standby and
also revert to the original configuration of a primary database and a physical standby. A logical
standby database created using this clause provides only limited support for switchover and
failover. Therefore, do not use this clause create a general-purpose logical standby database.

See Also

Oracle Data Guard Concepts and Administration for more information on rolling
upgrade

Deprecated Managed Standby Recovery Clauses

The following clauses appeared in the syntax of earlier releases. They have been deprecated
and are no longer needed. Oracle recommends that you do not use these clauses.

FINISH FORCE, FINISH WAIT, FINISH NOWAIT

These optional forms of the FINISH clause are deprecated. Their semantics are presented here
for backward compatibility:

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 177

• FORCE terminates inactive redo transport sessions that would otherwise prevent FINISH
processing from beginning.

• NOWAIT returns control to the foreground process before the recovery completes

• WAIT (the default) returns control to the foreground process after recovery completes

When specified, these clauses are ignored. Terminal recovery now runs in the foreground and
always terminates all redo transport sessions. Therefore control is not returned to the user until
recovery completes.

CANCEL IMMEDIATE, CANCEL WAIT, CANCEL NOWAIT

These optional forms of the CANCEL clause are deprecated. Their semantics are presented
here for backward compatibility:

• Include the IMMEDIATE keyword to stop Redo Apply before completely applying the current
redo log file. Session control returns when Redo Apply actually stops.

• Include the NOWAIT keyword to return session control without waiting for the CANCEL
operation to complete.

When specified, these clauses are ignored. Redo Apply is now always cancelled immediately
and control returns to the session only after the operation completes.

USING CURRENT LOGFILE Clause

The USING CURRENT LOGFILE clause is deprecated. It invokes real-time apply during Redo
Apply. However, this is now the default behavior and this clause is no longer useful.

BACKUP Clauses

Use these clauses to move all the data files in the database into or out of online backup mode
(also called hot backup mode).

See Also

ALTER TABLESPACE for information on moving all data files in an individual
tablespace into and out of online backup mode

BEGIN BACKUP Clause

Specify BEGIN BACKUP to move all data files in the database into online backup mode. The
database must be mounted and open, and media recovery must be enabled (the database
must be in ARCHIVELOG mode).

While the database is in online backup mode, you cannot shut down the instance normally,
begin backup of an individual tablespace, or take any tablespace offline or make it read only.

This clause has no effect on data files that are in offline or on read-only tablespaces.

END BACKUP Clause

Specify END BACKUP to take out of online backup mode any data files in the database currently
in online backup mode. The database must be mounted (either open or closed) when you
perform this operation.

After a system failure, instance failure, or SHUTDOWN ABORT operation, Oracle Database does
not know whether the files in online backup mode match the files at the time the system

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 177

crashed. If you know the files are consistent, then you can take either individual data files or all
data files out of online backup mode. Doing so avoids media recovery of the files upon startup.

• To take an individual data file out of online backup mode, use the ALTER DATABASE
DATAFILE ... END BACKUP statement. See database_file_clauses .

• To take all data files in a tablespace out of online backup mode, use an ALTER
TABLESPACE ... END BACKUP statement.

database_file_clauses

The database_file_clauses let you modify data files and temp files. You can use any of the following
clauses when your instance has the database mounted, open or closed, and the files involved
are not in use. The exception is the move_datafile_clause, which allows you to move a data file that
is in use.

RENAME FILE Clause

Use the RENAME FILE clause to rename data files, temp files, or redo log file members. You
must create each filename using the conventions for filenames on your operating system
before specifying this clause.

• To use this clause for a data file or temp file, the database must be mounted. The database
can also be open, but the data file or temp file being renamed must be offline. In addition,
you must first rename the file on the file system to the new name.

• To use this clause for logfiles, the database must be mounted but not open.

• If you have enabled block change tracking, then you can use this clause to rename the
block change tracking file. The database must be mounted but not open when you rename
the block change tracking file.

This clause renames only files in the control file. It does not actually rename them on your
operating system. The operating system files continue to exist, but Oracle Database no longer
uses them.

See Also

• Oracle Database Backup and Recovery User's Guide for information on recovery
of data files and temp files

• "Renaming a Log File Member: Example" and "Manipulating Temp Files: Example"

create_datafile_clause

Use the CREATE DATAFILE clause to create a new empty data file in place of an old one. You
can use this clause to re-create a data file that was lost with no backup. The filename or filenumber
must identify a file that is or was once part of the database. If you identify the file by number,
then filenumber is an integer representing the number found in the FILE# column of the
V$DATAFILE dynamic performance view or in the FILE_ID column of the DBA_DATA_FILES data
dictionary view.

• Specify AS NEW to create an Oracle-managed data file with a system-generated filename,
the same size as the file being replaced, in the default file system location for data files.

• Specify AS file_specification to assign a file name (and optional size) to the new data file. Use
the datafile_tempfile_spec form of file_specification (see file_specification) to list regular data files
and temp files in an operating system file system or to list Oracle Automatic Storage
Management (Oracle ASM) disk group files.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 177

If the original file (filename or filenumber) is an existing Oracle-managed data file, then Oracle
Database attempts to delete the original file after creating the new file. If the original file is an
existing user-managed data file, then Oracle Database does not attempt to delete the original
file.

If you omit the AS clause entirely, then Oracle Database creates the new file with the same
name and size as the file specified by filename or filenumber.

During recovery, all archived redo logs written to since the original data file was created must
be applied to the new, empty version of the lost data file.

Oracle Database creates the new file in the same state as the old file when it was created. You
must perform media recovery on the new file to return it to the state of the old file at the time it
was lost.

Restrictions on Creating New Data Files

The creation of new data files is subject to the following restrictions:

• You cannot create a new file based on the first data file of the SYSTEM tablespace.

• You cannot specify the autoextend_clause of datafile_tempfile_spec in this CREATE DATAFILE clause.

See Also

• "DATAFILE Clause" of CREATE DATABASE for information on the result of this
clause if you do not specify a name for the new data file

• file_specification for a full description of the file specification (datafile_tempfile_spec)
and "Creating a New Data File: Example"

alter_datafile_clause

The DATAFILE clause lets you manipulate a file that you identify by name or by number. If you
identify it by number, then filenumber is an integer representing the number found in the FILE#
column of the V$DATAFILE dynamic performance view or in the FILE_ID column of the
DBA_DATA_FILES data dictionary view. The DATAFILE clauses affect your database files as
follows:

ONLINE

Specify ONLINE to bring the data file online.

OFFLINE

Specify OFFLINE to take the data file offline. If the database is open, then you must perform
media recovery on the data file before bringing it back online, because a checkpoint is not
performed on the data file before it is taken offline.

FOR DROP

If the database is in NOARCHIVELOG mode, then you must specify FOR DROP clause to take a
data file offline. However, this clause does not remove the data file from the database. To do
that, you must use an operating system command or drop the tablespace in which the data file
resides. Until you do so, the data file remains in the data dictionary with the status RECOVER or
OFFLINE.

If the database is in ARCHIVELOG mode, then Oracle Database ignores the FOR DROP clause.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 177

RESIZE

Specify RESIZE if you want Oracle Database to attempt to increase or decrease the size of the
data file to the specified absolute size in bytes. There is no default, so you must specify a size.
You can also use this command to resize datafiles in shadow tablespaces, that store lost write
data.

If sufficient disk space is not available for the increased size, or if the file contains data beyond
the specified decreased size, then Oracle Database returns an error.

See Also

"Resizing a Data File: Example"

END BACKUP

Specify END BACKUP to take the data file out of online backup mode. The END BACKUP clause is
described more fully at the top level of the syntax of ALTER DATABASE. See "END BACKUP
Clause".

ENCRYPT | DECRYPT

Use these clauses to perform offline encryption or decryption of the data file using Transparent
Data Encryption (TDE). In any given tablespace, either all data files must be encrypted or all
data files must be unencrypted.

Before issuing either of these clauses, the database must be mounted. The database can also
be open, but the tablespace that contains the data file being encrypted or decrypted must be
offline. The TDE master key must be loaded into database memory.

• Specify ENCRYPT to encrypt an unencrypted data file. The data file is encrypted using the
AES128 algorithm.

• Specify DECRYPT to decrypt a data file. The data file must have been previously encrypted
with the ALTER DATABASE DATAFILE ... ENCRYPT statement.

Restrictions on Encrypting and Decrypting Data Files

The following restrictions apply to the ENCRYPT and DECRYPT clauses:

• You cannot encrypt or decrypt a temporary data file of a temporary tablespace. Instead,
you must drop the temporary tablespace and recreate it as an encrypted tablespace.

• Oracle recommends against encrypting the data files of an undo tablespace. Doing so
prevents the keystore from being closed, which prevents the database from functioning.
Furthermore, this practice is unnecessary because all undo records that are associated
with an encrypted tablespace are already automatically encrypted in the undo tablespace.

Note

The use of the ENCRYPT or DECRYPT clause is only one step in a series of steps for
performing offline encryption or decryption of a data file. Refer to Transparent Data
Encryption for the complete set of steps before you use either of these clauses.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 177

alter_tempfile_clause

Use the TEMPFILE clause to resize your temporary data file or specify the autoextend_clause, with
the same effect as for a permanent data file. The database must be open. You can identify the
temp file by name or by number. If you identify it by number, then filenumber is an integer
representing the number found in the FILE# column of the V$TEMPFILE dynamic performance
view.

Note

On some operating systems, Oracle does not allocate space for a temp file until the
temp file blocks are actually accessed. This delay in space allocation results in faster
creation and resizing of temp files, but it requires that sufficient disk space is available
when the temp files are later used. To avoid potential problems, before you create or
resize a temp file, ensure that the available disk space exceeds the size of the new
temp file or the increased size of a resized temp file. The excess space should allow
for anticipated increases in disk space use by unrelated operations as well. Then
proceed with the creation or resizing operation.

DROP

Specify DROP to drop tempfile from the database. The tablespace remains.

If you specify INCLUDING DATAFILES, then Oracle Database also deletes the associated
operating system files and writes a message to the alert log for each such deleted file. You can
achieve the same result using an ALTER TABLESPACE ... DROP TEMPFILE statement. Refer to the
ALTER TABLESPACE DROP Clause for more information.

move_datafile_clause

Use the MOVE DATAFILE clause to move an online data file to a new location. The database can
be open and accessing the data file when you perform this operation. The database creates a
copy of the data file when it is performing this operation. Ensure that there is adequate disk
space for the original data file and the copy before using this clause.

You can specify the original data file using the file_name, ASM_filename, or file_number. Refer to
ASM_filename for information on ASM file names. If you identify the file by number, then
file_number is an integer representing the number found in the FILE# column of the V$DATAFILE
dynamic performance view or in the FILE_ID column of the DBA_DATA_FILES data dictionary
view.

Use the TO clause to specify the new file_name or ASM_filename. If you are using Oracle Managed
Files, then you can omit the TO clause. In this case, Oracle Database creates a unique name
for the data file and saves it in the directory specified by the DB_CREATE_FILE_DEST initialization
parameter.

If you specify REUSE, then the new data file is created even if it already exists.

If you specify KEEP, then the original data file will be kept after the MOVE DATAFILE operation.
You cannot specify KEEP if the original data file is an Oracle Managed File. You can specify
KEEP if the new data file is an Oracle Managed File.

autoextend_clause

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 177

Use the autoextend_clause to enable or disable the automatic extension of a new or existing data
file or temp file. Refer to file_specification for information about this clause.

logfile_clauses

The logfile clauses let you add, drop, or modify log files.

ARCHIVELOG

Specify ARCHIVELOG if you want the contents of a redo log file group to be archived before the
group can be reused. This mode prepares for the possibility of media recovery. Use this clause
only after shutting down your instance normally, or immediately with no errors, and then
restarting it and mounting the database.

MANUAL

Specify MANUAL to indicate that Oracle Database should create redo log files, but the archiving
of the redo log files is controlled entirely by the user. This clause is provided for backward
compatibility, for example for users who archive directly to tape. If you specify MANUAL, then:

• Oracle Database does not archive redo log files when a log switch occurs. You must
handle this manually.

• You cannot have specified a standby database as an archivelog destinations. As a result,
the database cannot be in MAXIMUM PROTECTION or MAXIMUM AVAILABILITY standby
protection mode.

If you omit this clause, then Oracle Database automatically archives the redo log files to the
destination specified in the LOG_ARCHIVE_DEST_n initialization parameters.

NOARCHIVELOG

Specify NOARCHIVELOG if you do not want the contents of a redo log file group to be archived
so that the group can be reused. This mode does not prepare for recovery after media failure.
Use this clause only if your instance has the database mounted but not open.

[NO] FORCE LOGGING

Use this clause to put the database into or take the database out of FORCE LOGGING mode. The
database must be mounted or open.

In FORCE LOGGING mode, Oracle Database logs all changes in the database except changes in
temporary tablespaces and temporary segments. This setting takes precedence over and is
independent of any NOLOGGING or FORCE LOGGING settings you specify for individual
tablespaces and any NOLOGGING settings you specify for individual database objects.

If you specify FORCE LOGGING, then Oracle Database waits for all ongoing unlogged operations
to finish.

See Also

Oracle Database Administrator's Guide for information on when to use FORCE LOGGING
mode

SET STANDBY NOLOGGING

Standby nologging instructs the database to not log operations that qualify to be done without
logging. The database sends the data blocks created by the operation to each qualifying

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 177

standby database in the Data Guard configuration, to prevent missed data on the standby and
keep it in sync with the primary.

Use this clause to determine how nonlogged tasks are handled . You can choose one of two
logging modes for a database when you create the database, and you can change the logging
mode of a database from one mode to the other.

• SET STANDBY NOLOGGING FOR LOAD PERFORMANCE to put the database into standby
nologging for load performance mode. In this mode, the data loaded as part of the
nonlogged task is sent to the qualifying standbys via a private network connection,
provided that doing so will not slow down the load process. If the load process slows, then
the data is not sent but automatically fetched from the primary as each standby encounters
the invalidation redo and will be retried until the data blocks are eventually received.

• Specify SET STANDBY NOLOGGING FOR DATA AVAILABILITY to put the database into standby
nologging for data availability mode. In this mode the data loaded as part of the nonlogged
task is sent to the qualifying standbys either via a network connection or via block images
in the redo, in case the network connection fails. That is to say, in this mode the load will
switch to be done in a logged fashion if the network connection or related processes
prevent the sending of the data over the private network connection.

For the standby nologging modes, a qualifying standby is one that is open for read, running
managed recovery and receiving redo into standby redo logs.

Restrictions on Setting Standby Nologging

TheSET STANDBY NOLOGGING clause cannot be used at the same time as FORCE LOGGING.

RENAME FILE Clause

This clause has the same function for logfiles that it has for data files and temp files. See
"RENAME FILE Clause".

CLEAR LOGFILE Clause

Use the CLEAR LOGFILE clause to reinitialize an online redo log, optionally without archiving the
redo log. CLEAR LOGFILE is similar to adding and dropping a redo log, except that the statement
may be issued even if there are only two logs for the thread and may be issued for the current
redo log of a closed thread.

For a standby database, if the STANDBY_FILE_MANAGEMENT initialization parameter is set to
AUTO, and if any of the log files are Oracle Managed Files, Oracle Database will create as
many Oracle-managed log files as are in the control file. The log file members will reside in the
current default log file destination.

• You must specify UNARCHIVED if you want to reuse a redo log that was not archived.

Note

Specifying UNARCHIVED makes backups unusable if the redo log is needed for
recovery.

• You must specify UNRECOVERABLE DATAFILE if you have taken the data file offline with the
database in ARCHIVELOG mode (that is, you specified ALTER DATABASE ... DATAFILE
OFFLINE without the DROP keyword), and if the unarchived log to be cleared is needed to
recover the data file before bringing it back online. In this case, you must drop the data file
and the entire tablespace once the CLEAR LOGFILE statement completes.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 177

Do not use CLEAR LOGFILE to clear a log needed for media recovery. If it is necessary to
clear a log containing redo after the database checkpoint, then you must first perform
incomplete media recovery. The current redo log of an open thread can be cleared. The
current log of a closed thread can be cleared by switching logs in the closed thread.

If the CLEAR LOGFILE statement is interrupted by a system or instance failure, then the
database may hang. In this case, reissue the statement after the database is restarted. If
the failure occurred because of I/O errors accessing one member of a log group, then that
member can be dropped and other members added.

See Also

"Clearing a Log File: Example"

add_logfile_clauses

Use these clauses to add redo log file groups to the database and to add new members to
existing redo log file groups.

ADD LOGFILE Clause

Use the ADD LOGFILE clause to add one or more redo log file groups to the online redo log or
standby redo log.

See Also

• "LOGFILE Clause" of CREATE DATABASE for information on the result of this clause
for Oracle Managed Files if you do not specify a name for the new log file group

• "Adding Redo Log File Groups: Examples"

• Oracle Data Guard Concepts and Administration for more information on standby
redo logs

STANDBY

Use the STANDBY clause to add a redo log file group to the standby redo log. If you do not
specify this clause, then a log file group is added to the online redo log.

INSTANCE

The INSTANCE clause is applicable only for Oracle Real Application Clusters (Oracle RAC) or
Oracle RAC One Node databases. Specify the name of the instance for which you want to add
a redo log file group. The instance name is a string of up to 80 characters. Oracle Database
automatically uses the thread that is mapped to the specified instance. If no thread is mapped
to the specified instance, then Oracle Database automatically acquires an available unmapped
thread and assigns it to that instance. If you do not specify this clause, then Oracle Database
executes the command as if you had specified the current instance. If the specified instance
has no current thread mapping and there are no available unmapped threads, then Oracle
Database returns an error.

THREAD

When adding a redo log file group to the standby redo log, use the THREAD clause to assign
the log file group to a specific primary database redo thread. Query the V$INSTANCE view on

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 177

the primary database to determine which redo threads have been opened, and specify one of
these thread numbers.

You can also use the THREAD clause to assign a log file group to a specific redo thread when
adding the log file group to the online redo log. This usage has been deprecated. The
INSTANCE clause achieves the same purpose and is easier to use.

GROUP

The GROUP clause uniquely identifies the redo log file group among all groups in all threads
and can range from 1 to the value specified for MAXLOGFILES in the CREATE DATABASE
statement. You cannot add multiple redo log file groups having the same GROUP value. If you
omit this parameter, then Oracle Database generates its value automatically. You can examine
the GROUP value for a redo log file group through the dynamic performance view V$LOG.

redo_log_file_spec

Each redo_log_file_spec specifies a redo log file group containing one or more members (copies).
If you do not specify a filename for the new log file, then Oracle Database creates Oracle
Managed Files according to the rules described in the "LOGFILE Clause" of CREATE DATABASE.

See Also

• file_specification

• Oracle Database Reference for information on dynamic performance views

ADD LOGFILE MEMBER Clause

Use the ADD LOGFILE MEMBER clause to add new members to existing redo log file groups.
Each new member is specified by 'filename'. If the file already exists, then it must be the same
size as the other group members and you must specify REUSE. If the file does not exist, then
Oracle Database creates a file of the correct size. You cannot add a member to a group if all of
the members of the group have been lost through media failure.

STANDBY

You must specify STANDBY when adding a member to a standby redo log file group. Otherwise,
Oracle Database returns an error.

You can use the logfile_descriptor clause to specify an existing redo log file group in one of two
ways:

GROUP integer

Specify the value of the GROUP parameter that identifies the redo log file group.

filename(s)

List all members of the redo log file group. You must fully specify each filename according to
the conventions of your operating system.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 177

See Also

• "LOGFILE Clause" of CREATE DATABASE for information on the result of this clause
for Oracle Managed Files if you do not specify a name for the new log file group

• "Adding Redo Log File Group Members: Example"

drop_logfile_clauses

Use these clauses to drop redo log file groups or redo log file members.

DROP LOGFILE Clause

Use the DROP LOGFILE clause to drop all members of a redo log file group. If you use this
clause to drop Oracle Managed Files, then Oracle Database also removes all log file members
from disk. Specify a redo log file group as indicated for the ADD LOGFILE MEMBER clause.

• To drop the current log file group, you must first issue an ALTER SYSTEM SWITCH LOGFILE
statement.

• You cannot drop a redo log file group if it needs archiving.

• You cannot drop a redo log file group if doing so would cause the redo thread to contain
less than two redo log file groups.

See Also

ALTER SYSTEM and "Dropping Log File Members: Example"

DROP LOGFILE MEMBER Clause

Use the DROP LOGFILE MEMBER clause to drop one or more redo log file members. Each
'filename' must fully specify a member using the conventions for filenames on your operating
system.

• To drop a log file in the current log, you must first issue an ALTER SYSTEM SWITCH LOGFILE
statement. Refer to ALTER SYSTEM for more information.

• You cannot use this clause to drop all members of a redo log file group that contains valid
data. To perform that operation, use the DROP LOGFILE clause.

See Also

"Dropping Log File Members: Example"

switch_logfile_clause

This clause is useful when you are migrating the database to disks with a different block size
that the block size of the current database. Use this clause to switch logfiles to a different block
size for all externally enabled threads, including both open and closed threads. If you are
migrating the database to use 4KB sector disks, then you must specify 4096 for integer. If you
are unmigrating the database back to using 512B sector disks, then you must specify 512 for
integer.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 177

This clause is an extension of the existing ALTER SYSTEM SWITCH LOGFILE statement. That
statement switches logs for a single thread. This clause switches logfiles for all externally
enabled threads, including both open and closed threads.

Before using this clause, you must already have created at least two redo log groups with the
same target block size on the migration target disk.

See Also

Oracle Database Administrator's Guide for more information on migrating the
database to disks with a different block size, and "Adding a Log File: Example"

supplemental_db_logging

Use these clauses to instruct Oracle Database to add or stop adding supplemental data into
the log stream.

ADD SUPPLEMENTAL LOG Clause

Specify ADD SUPPLEMENTAL LOG DATA to enable minimal supplemental logging. Specify ADD
SUPPLEMENTAL LOG supplemental_id_key_clause to enable column data logging in addition to
minimal supplemental logging. Specify ADD SUPPLEMENTAL LOG supplemental_plsql_clause to
enable supplemental logging of PL/SQL calls. Oracle Database does not enable either minimal
supplemental logging or supplemental logging by default.

Minimal supplemental logging ensures that LogMiner (and any products building on LogMiner
technology) will have sufficient information to support chained rows and various storage
arrangements such as cluster tables.

If the redo generated on one database is to be the source of changes (to be mined and
applied) at another database, as is the case with logical standby, then the affected rows need
to be identified using column data (as opposed to rowids). In this case, you should specify the
supplemental_id_key_clause.

You can query the appropriate columns in the V$DATABASE view to determine whether any
supplemental logging has already been enabled.

You can use this clause when the database is open. However, Oracle Database will invalidate
all DML cursors in the cursor cache, which will have an effect on performance until the cache is
repopulated.

If you use this clause in a CDB, then the current container must be the root and the operation
will be performed on the entire CDB.

You can enable supplemental logging levels at PDB without minimal supplemental logging
enabled at CDB$ROOT. Dropping all supplemental logging from CDB$ROOT will not disable
supplemental logging enabled at the PDB level.

For a full discussion of the supplemental_id_clause, refer to supplemental_id_key_clause in the
documentation on CREATE TABLE.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 177

See Also

• Oracle Data Guard Concepts and Administration for information on supplemental
logging on the primary database to support a logical standby database

• Oracle Database Utilities for examples using the supplemental_db_logging clause
syntax

DROP SUPPLEMENTAL LOG Clause

Use this clause to stop supplemental logging.

• Specify DROP SUPPLEMENTAL LOG DATA to instruct Oracle Database to stop placing minimal
additional log information into the redo log stream whenever an update operation occurs. If
Oracle Database is doing column data supplemental logging specified with the
supplemental_id_key_clause, then you must first stop the column data supplemental logging with
the DROP SUPPLEMENTAL LOG supplemental_id_key_clause and then specify this clause.

• Specify DROP SUPPLEMENTAL LOG supplemental_id_key_clause to drop some or all of the system-
generated supplemental log groups. You must specify the supplemental_id_key_clause if the
supplemental log groups you want to drop were added using that clause.

• Specify DROP SUPPLEMENTAL LOG supplemental_plsql_clause disable supplemental logging of
PL/SQL calls.

If you use this clause in a CDB, then the current container must be the root and the operation
will be performed on the entire CDB.

ADD SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION of ALTER DATABASE
enables low impact minimal supplemental logging.

• You can execute this DDL only when the enable_goldengate_replication parameter is TRUE, and
database compatible is 19.0 or higher.

• This DDL implicitly adds DB-level minimal supplemental logging, similar to other DB-level
supplemental logging DDLs.

• In case of CDB, this DDL can be executed in both CDB$ROOT and pluggable databases.

• When executed in CDB$ROOT, it enables low impact minimal supplemental logging for
entire database. Low impact minimal supplemental logging will be enabled for all the
pluggable databases regardless of the PDB level setting for subset database replication.

• When executed in pluggable database, it’s same as ALTER PLUGGABLE DATABASE ADD
SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION. See ALTER PLUGGABLE
DATABASE for details.

DROP SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION of ALTER
DATABASE disables low impact minimal supplemental logging.

• You can execute this DDL only when theenable_goldengate_replication parameter is TRUE, and
database compatible should be 19.0 or higher.

• You must have explicitly enabled other supplemental log data. This restriction ensures that
disabling low impact minimal supplemental logging never disables minimal supplemental
logging.

• Once this DDL is executed, the minimal supplemental logging will go back to its current
behavior.

• In case of CDB, this DDL can be executed in both CDB$ROOT and pluggable databases.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 177

• When executed in CDB$ROOT , it disables low impact minimal supplemental logging at the
database level. For each pluggable database, whether low impact supplemental logging is
enabled depends on the PDB-level setting for subset database replication.

• When executed in pluggable database, the behavior is the same as ALTER PLUGGABLE
DATABASE DROP SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION. See ALTER
PLUGGABLE DATABASE for details.

See Also

Oracle Data Guard Concepts and Administration for information on supplemental
logging

controlfile_clauses

The controlfile_clauses let you create or back up a control file.

CREATE CONTROLFILE Clause

The CREATE CONTROLFILE clause lets you create a control file.

• Specify PHYSICAL STANDBY to create a control file to be used to maintain a physical
database. This is the default if you specify STANDBY and do not specify PHYSICAL or
LOGICAL.

• Specify LOGICAL STANDBY to create a control file to be used to maintain a logical database.

• Specify FAR SYNC INSTANCE to create a control file to be used to maintain a Data Guard far
sync instance.

If the file already exists, then you must specify REUSE. In an Oracle RAC environment, the
control file must be on shared storage.

See Also

Oracle Data Guard Concepts and Administration for more information on creating
control files

BACKUP CONTROLFILE Clause

Use the BACKUP CONTROLFILE clause to back up the current control file. The database must be
open or mounted when you specify this clause.

TO 'filename'

Use this clause to specify a binary backup of the control file. You must fully specify the filename
using the conventions for your operating system. If the specified file already exists, then you
must specify REUSE. In an Oracle RAC environment, filename must be on shared storage.

A binary backup contains information that is not captured if you specify TO TRACE, such as the
archived log history, offline range for read-only and offline tablespaces, and backup sets and
copies (if you use RMAN). If the COMPATIBLE initialization parameter is 10.2 or higher, binary
control file backups include temp file entries.

TO TRACE

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 177

Specify TO TRACE if you want Oracle Database to write SQL statements to a trace file rather
than making a physical backup of the control file. You can use SQL statements written to the
trace file to start up the database, re-create the control file, and recover and open the database
appropriately, based on the created control file. If you issue an ALTER DATABASE BACKUP
CONTROLFILE TO TRACE statement while block change tracking is enabled, then the resulting
trace file will contain a command to reenable block change tracking.

This statement issues an implicit ALTER DATABASE REGISTER LOGFILE statement, which creates
incarnation records if the archived log files reside in the current archivelog destinations.

The trace file will also include ALTER DATABASE REGISTER LOGFILE statements for existing
logfiles that reside in the current archivelog destinations. This will implicitly create database
incarnation records for the branches of redo to which the logfiles apply.

You can copy the statements from the trace file into a script file, edit the statements as
necessary, and use the script if all copies of the control file are lost (or to change the size of the
control file).

• Specify AS filename if you want Oracle Database to place the trace output into a file called
filename rather than into the standard trace file.

• Specify REUSE to allow Oracle Database to overwrite any existing file called filename.

• RESETLOGS indicates that the SQL statement written to the trace file for starting the
database is ALTER DATABASE OPEN RESETLOGS. This setting is valid only if the online logs
are unavailable.

• NORESETLOGS indicates that the SQL statement written to the trace file for starting the
database is ALTER DATABASE OPEN NORESETLOGS. This setting is valid only if all the online
logs are available.

If you cannot predict the future state of the online logs, then specify neither RESETLOGS nor
NORESETLOGS. In this case, Oracle Database puts both versions of the script into the trace file,
and you can choose which version is appropriate when the script becomes necessary.

The trace files are stored in a subdirectory determined by the DIAGNOSTIC_DEST initialization
parameter. You can find the name and location of the trace file to which the CREATE
CONTROLFILE statements were written by looking in the alert log. You can also find the directory
for trace files by querying the NAME and VALUE columns of the V$DIAG_INFO dynamic
performance view.

See Also

Oracle Database Administrator's Guide for information on viewing the alert log

standby_database_clauses

Use these clauses to activate the standby database or to specify whether it is in protected or
unprotected mode.

See Also

Oracle Data Guard Concepts and Administration for descriptions of the physical and
logical standby database and for information on maintaining and using standby
databases

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 177

activate_standby_db_clause

Use the ACTIVATE STANDBY DATABASE clause to convert a standby database into a primary
database.

Note

Before using this command, refer to Oracle Data Guard Concepts and Administration
for important usage information.

PHYSICAL

Specify PHYSICAL to activate a physical standby database. This is the default.

LOGICAL

Specify LOGICAL to activate a logical standby database. If you have more than one logical
standby database, then you should first ensure that the same log data is available on all the
standby systems.

FINISH APPLY

This clause applies only to logical standby databases. Use it to initiate terminal apply, which
is the application of any remaining redo to bring the logical standby database to the same state
as the primary database. When terminal apply is complete, the database completes the
switchover from logical standby to primary database.

If you require immediate restoration of the database in spite of data loss, then omit this clause.
The database will execute the switchover from logical standby to primary database
immediately without terminal apply.

maximize_standby_db_clause

Use this clause to specify the level of protection for the data in your database environment.
You specify this clause from the primary database.

Note

The PROTECTED and UNPROTECTED keywords have been replaced for clarity but are still
supported. PROTECTED is equivalent to TO MAXIMIZE PROTECTION. UNPROTECTED is
equivalent to TO MAXIMIZE PERFORMANCE.

TO MAXIMIZE PROTECTION

This setting establishes maximum protection mode and offers the highest level of data
protection. A transaction does not commit until all data needed to recover that transaction has
been written to at least one physical standby database that is configured to use the SYNC log
transport mode. If the primary database is unable to write the redo records to at least one such
standby database, then the primary database is shut down. This mode guarantees zero data
loss, but it has the greatest potential impact on the performance and availability of the primary
database.

Restriction on Establishing Maximum Protection Mode

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 177

You can specify TO MAXIMIZE PROTECTION on an open database only if the current data
protection mode is MAXIMUM AVAILABILITY and there is at least one synchronized standby
database.

TO MAXIMIZE AVAILABILITY

This setting establishes maximum availability mode and offers the next highest level of data
protection. A transaction does not commit until all data needed to recover that transaction has
been written to at least one physical or logical standby database that is configured to use the
SYNC log transport mode. Unlike maximum protection mode, the primary database does not
shut down if it is unable to write the redo records to at least one such standby database.
Instead, the protection is lowered to maximum performance mode until the fault has been
corrected and the standby database has caught up with the primary database. This mode
guarantees zero data loss unless the primary database fails while in maximum performance
mode. Maximum availability mode provides the highest level of data protection that is possible
without affecting the availability of the primary database.

TO MAXIMIZE PERFORMANCE

This setting establishes maximum performance mode and is the default setting. A
transaction commits before the data needed to recover that transaction has been written to a
standby database. Therefore, some transactions may be lost if the primary database fails and
you are unable to recover the redo records from the primary database. This mode provides the
highest level of data protection that is possible without affecting the performance of the primary
database.

To determine the current mode of the database, query the PROTECTION_MODE column of the
V$DATABASE dynamic performance view.

See Also

Oracle Data Guard Concepts and Administration for full information on using these
standby database settings

register_logfile_clause

Specify the REGISTER LOGFILE clause from the standby database to manually register log files
from the failed primary. Use the redo_log_file_spec form of file_specification (see file_specification) to
list regular redo log files in an operating system file system or to list Oracle ASM disk group
redo log files.

When a log file is from an unknown incarnation, the REGISTER LOGFILE clause causes an
incarnation record to be added to the V$DATABASE_INCARNATION view. If the newly registered
log file belongs to an incarnation having a higher RESETLOGS_TIME than the current
RECOVERY_TARGET_INCARNATION#, then the REGISTER LOGFILE clause also causes
RECOVERY_TARGET_INCARNATION# to be changed to correspond to the newly added incarnation
record.

OR REPLACE

Specify OR REPLACE to allow an existing archivelog entry in the standby database to be
updated, for example, when its location or file specification changes. The system change
numbers of the entries must match exactly, and the original entry must have been created by
the managed standby log transmittal mechanism.

FOR logminer_session_name

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 177

This clause is useful in a Streams environment. It lets you register the log file with one
specified LogMiner session.

switchover_clause

Caution

Before using this command, refer to Oracle Data Guard Concepts and Administration
for complete usage information.

Use this clause to perform a switchover to a physical standby database. Specify this clause
from the primary database. For target_db_name, specify the DB_UNIQUE_NAME of the standby
database.

VERIFY

Use this clause to verify that a physical standby database is ready for a switchover. Specify
this clause from the primary database. For target_db_name, specify the DB_UNIQUE_NAME of the
standby database. If the standby database is ready for a switchover, then the "Database
Altered" message is returned. Otherwise, an error message that will assist you in preparing the
standby database for a switchover is returned.

FORCE

Use this clause if a previous switchover command failed and created a configuration with no
primary database. Specify this clause from the physical standby database that you want to
convert to the primary database. For target_db_name, specify the DB_UNIQUE_NAME of the
database that you want to convert to the primary database.

failover_clause

Caution

Before using this command, refer to Oracle Data Guard Concepts and Administration
for complete usage information.

Use this clause to perform a failover to a physical standby database. Specify this clause from
the standby database. For target_db_name, specify the DB_UNIQUE_NAME of the standby
database.

FORCE

This clause has meaning only when the failover target is serviced by a Data Guard far sync
instance. Use this clause when a previous failover command failed and the reason for the
failure cannot be resolved. It instructs the failover to ignore any failures encountered when
interacting with the Data Guard far sync instance and proceed with the failover, if at all
possible.

commit_switchover_clause

Use this clause to perform database role transitions in a Data Guard configuration.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 177

Caution

Before using this command, refer to Oracle Data Guard Concepts and Administration
for complete usage information.

PREPARE TO SWITCHOVER

This clause prepares a primary database to become a logical standby database or a logical
standby database to become a primary database.

• Specify PREPARE TO SWITCHOVER TO LOGICAL STANDBY on a primary database.

• Specify PREPARE TO SWITCHOVER TO PRIMARY DATABASE on a logical standby database.

COMMIT TO SWITCHOVER

This clause switches a primary database to a standby database role or switches a standby
database to the primary database role.

• Specify COMMIT TO SWITCHOVER TO PHYSICAL STANDBY or COMMIT TO SWITCHOVER TO
LOGICAL STANDBY on a primary database.

• Specify COMMIT TO SWITCHOVER TO PRIMARY DATABASE on a standby database.

PHYSICAL

This clause is always optional. Use of this clause with the COMMIT TO SWITCHOVER TO PRIMARY
clause has been deprecated.

LOGICAL

This clause is specified with the PREPARE TO SWITCHOVER or COMMIT TO SWITCHOVER clauses
when switching a primary database to the logical standby database role. Use of this clause
with the COMMIT TO SWITCHOVER TO PRIMARY clause has been deprecated.

WITH SESSION SHUTDOWN

This clause causes all database sessions to be closed and uncommitted transactions to be
rolled back before performing a database role transition.

WITHOUT SESSION SHUTDOWN

This clause prevents a requested role transition from occurring if there are any database
sessions. This is the default.

WAIT

Specify this clause to wait for a role transition to complete before returning control to the user.

NOWAIT

Specify this clause to return control to the user without waiting for a role transition to complete.
This is the default.

CANCEL

Specify this clause to reverse the effect of a previously specified PREPARE TO SWITCHOVER
statement.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 177

See Also

Oracle Data Guard Concepts and Administration for full information on switchover
between primary and standby databases

start_standby_clause

Specify the START LOGICAL STANDBY APPLY clause to begin applying redo logs to a logical
standby database. This clause enables primary key, unique index, and unique constraint
supplemental logging as well as PL/SQL call logging.

• Specify IMMEDIATE to apply redo data from the current standby redo log file.

• Specify NODELAY if you want Oracle Database to ignore a delay for this apply. This is
useful if the primary database is no longer present, which would otherwise require a
PL/SQL call to be made.

• Specify INITIAL the first time you apply the logs to the standby database.

• The NEW PRIMARY clause is needed in two situations:

– On a failover to a logical standby, specify this clause on a logical standby not
participating in the failover operation, and on the old primary database after it has been
reinstated as a logical standby database.

– During a rolling upgrade using a logical standby database (which uses an unprepared
switchover operation), specify this clause after the original primary database has been
upgraded to the new database software.

• Specify SKIP FAILED [TRANSACTION] to skip the last transaction in the events table and
restart the apply.

• Specify FINISH to force the standby redo logfile information into archived logs. If the primary
database becomes disabled, then you can then apply the data in the redo log files.

stop_standby_clause

Use this clause to stop the log apply services. This clause applies only to logical standby
databases, not to physical standby databases. Use the STOP clause to stop the apply in an
orderly fashion.

convert_database_clause

Use this clause to convert a database from one form to another.

• Specify CONVERT TO PHYSICAL STANDBY to convert a primary database, a logical standby
database, or a snapshot standby database into a physical standby database.

Perform these steps before specifying this clause:

– On an Oracle Real Application Clusters (Oracle RAC) database, shut down all but one
instance.

– Ensure that the database is mounted, but not open.

The database is dismounted after conversion and must be restarted.

• Specify CONVERT TO SNAPSHOT STANDBY to convert a physical standby database into a
snapshot standby database.

Ensure that redo apply is stopped before specifying this clause.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 177

Note

A snapshot standby database must be opened at least once in read/write mode before
it can be converted into a physical standby database.

See Also

Oracle Data Guard Concepts and Administration for more information about standby
databases

default_settings_clauses

Use these clauses to modify the default settings of the database.

DEFAULT EDITION Clause

Use this clause to designate the specified edition as the default edition for the database. The
specified edition must already have been created and must be USABLE. The change takes
place immediately and is visible to all nodes in an Oracle RAC environment. New database
sessions automatically start out in the specified edition. The new setting persists across
database shutdown and startup.

When you designate an edition as the database default edition, all users can use the edition,
as though the USE object privilege were granted on the specified edition to the role PUBLIC.

You can determine the current default edition of the database with the following query:

SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES
 WHERE PROPERTY_NAME = 'DEFAULT_EDITION';

See Also

CREATE EDITION for more information on editions and Oracle Database PL/SQL
Language Reference for information on how editions are designated as USABLE

CHARACTER SET, NATIONAL CHARACTER SET

You can no longer change the database character set or the national character set using the
ALTER DATABASE statement. Refer to Oracle Database Globalization Support Guide for
information on database character set migration.

SET DEFAULT TABLESPACE Clause

Use this clause to specify or change the default type of subsequently created tablespaces.
Specify BIGFILE or SMALLFILE to indicate whether the tablespaces should be bigfile or smallfile
tablespaces.

• A bigfile tablespace contains only one data file or temp file, which can contain up to
approximately 4 billion (232) blocks. The maximum size of the single data file or temp file is
128 terabytes (TB) for a tablespace with 32K blocks and 32TB for a tablespace with 8K
blocks.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 177

• A smallfile tablespace is a traditional Oracle tablespace, which can contain 1022 data
files or temp files, each of which can contain up to approximately 4 million (222) blocks.

See Also

• Oracle Database Administrator's Guide for more information about bigfile
tablespaces

• "Setting the Default Type of Tablespaces: Example"

DEFAULT TABLESPACE Clause

Specify this clause to establish or change the default permanent tablespace of the database.
The tablespace you specify must already have been created. After this operation completes,
Oracle Database automatically reassigns to the new default tablespace all non-SYSTEM users.
All objects subsequently created by those users will by default be stored in the new default
tablespace. If you are replacing a previously specified default tablespace, then you can move
the previously created objects from the old to the new default tablespace, and then drop the
old default tablespace if you want to.

DEFAULT [LOCAL] TEMPORARY TABLESPACE Clause

Specify this clause to change the default shared temporary tablespace of the database to a
new tablespace or tablespace group, or to change the default local temporary tablespace to a
new tablespace.

• Specify tablespace to indicate the new default temporary tablespace for the database. After
this operation completes, Oracle Database automatically reassigns to the new default
temporary tablespace all users who had been assigned to the old default temporary
tablespace. You can then drop the old default temporary tablespace if you want to. Specify
DEFAULT TEMPORARY TABLESPACE to change the default shared temporary tablespace.
Specify DEFAULT LOCAL TEMPORARY TABLESPACE to change the default local temporary
tablespace.

• Specify tablespace_group_name to indicate that all tablespaces in the tablespace group
specified by tablespace_group_name are now default shared temporary tablespaces for the
database. After this operation completes, users who have not been explicitly assigned a
default temporary tablespace can create temporary segments in any of the tablespaces
that are part of tablespace_group_name. You cannot drop an old default temporary tablespace if
it is part of the default temporary tablespace group. Local temporary tablespaces cannot
be part of a tablespace group.

To learn the name of the current default temporary tablespace or default temporary tablespace
group, query the TEMPORARY_TABLESPACE column of the ALL_, DBA_, or USER_USERS data
dictionary views.

Restrictions on Default Temporary Tablespaces

Default temporary tablespaces are subject to the following restrictions:

• The tablespace you assign or reassign as the default temporary tablespace must have a
standard block size.

• If the SYSTEM tablespace is locally managed, then the tablespace you specify as the
default temporary tablespace must also be locally managed.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 177

See Also

• Oracle Database Administrator's Guide for information on tablespace groups

• "Changing the Default Temporary Tablespace: Examples"

instance_clauses

In an Oracle Real Application Clusters environment, specify ENABLE INSTANCE to enable the
thread that is mapped to the specified database instance. The thread must have at least two
redo log file groups, and the database must be open.

Specify DISABLE INSTANCE to disable the thread that is mapped to the specified database
instance. The name of the instance is a string of up to 80 characters. If no thread is currently
mapped to the specified instance, then Oracle Database returns an error. The database must
be open, but you cannot disable a thread if an instance using it has the database mounted.

See Also

Oracle Real Application Clusters Administration and Deployment Guide for more
information on enabling and disabling instances

RENAME GLOBAL_NAME Clause

Specify RENAME GLOBAL_NAME to change the global name of the database. The database
must be open. The database is the new database name and can be as long as eight bytes. The
optional domain specifies where the database is effectively located in the network hierarchy. If
you specify a domain name, then the components of the domain name must be legal
identifiers. See "Database Object Naming Rules " for information on valid identifiers.

Note

Renaming your database does not change global references to your database from
existing database links, synonyms, and stored procedures and functions on remote
databases. Changing such references is the responsibility of the administrator of the
remote databases.

See Also

"Changing the Global Database Name: Example"

BLOCK CHANGE TRACKING Clauses

The block change tracking feature causes Oracle Database to keep track of the physical
locations of all database updates on both the primary database and any physical standby
database. You must enable block change tracking on each database for which you want
tracking to be performed. The tracking information is maintained in a separate file called the
block change tracking file. If you are using Oracle Managed Files, then Oracle Database
automatically creates the block change tracking file in the location specified by

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 177

DB_CREATE_FILE_DEST. If you are not using Oracle Managed Files, then you must specify the
change tracking filename. Oracle Database uses change tracking data for some internal tasks,
such as increasing the performance of incremental backups. You can enable or disable block
change tracking with the database either open or mounted, in either archivelog or
NOARCHIVELOG mode.

ENABLE BLOCK CHANGE TRACKING

This clause enables block change tracking and causes Oracle Database to create a block
change tracking file.

• Specify USING FILE 'filename' if you want to name the block change tracking file instead of
letting Oracle Database generate a name for it. You must specify this clause if you are not
using Oracle Managed Files.

• Specify REUSE to allow Oracle Database to overwrite an existing block change tracking file
of the same name.

Note

On a standby database, the block change tracking only becomes effective when the
managed recovery starts. If the recovery is already active on the standby database
when you issue the command, the recovery must be stopped and then started again to
benefit from the fast incremental backups.

DISABLE BLOCK CHANGE TRACKING

Specify this clause if you want Oracle Database to stop tracking changes and delete the
existing block change tracking file.

See Also

Oracle Database Backup and Recovery User's Guide for information on setting up
block change tracking and "Enabling and Disabling Block Change Tracking:
Examples"

[NO] FORCE FULL DATABASE CACHING

Use this clause to enable or disable the force full database caching mode. In contrast to the
default mode, which is automatic, the force full database caching mode considers the entire
database, including NOCACHE LOBs, as eligible for caching in the buffer cache.

The database must be mounted but not open. In an Oracle RAC environment, the database
must be mounted but not open in the current instance and unmounted in all other instances.

• Specify FORCE FULL DATABASE CACHING to enable the force full database caching mode.

• Specify NO FORCE FULL DATABASE CACHING to disable the force full database caching
mode. This is the default mode.

You can determine whether the force full database caching mode is enabled by querying the
FORCE_FULL_DB_CACHING column of the V$DATABASE dynamic performance view.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 177

See Also

• Oracle Database Concepts for more information on the force full database caching
mode

• Oracle Database Administrator's Guide to learn how to enable the force full
database caching mode

• Oracle Database Reference for more information on the V$DATABASE dynamic
performance view

CONTAINERS DEFAULT TARGET

Use this clause to specify the default container for DML statements in a CDB. You must be
connect to the CDB root.

• For container_name, specify the name of the default container. The default container can be
any container in the CDB, including the CDB root, a PDB, an application root, or an
application PDB. You can specify only one default container.

• If you specify NONE, then the default container is the CDB root. This is the default.

When a DML statement is issued in a CDB root without specifying containers in the WHERE
clause, the DML statement affects the default container for the CDB.

flashback_mode_clause

Use this clause to put the database in or take the database out of FLASHBACK mode. You can
specify this clause only if the database is in ARCHIVELOG mode and you have already prepared
a fast recovery area for the database. You can specify this clause when the database is
mounted or open. This clause cannot be specified on a physical standby database if redo
apply is active.

See Also

Oracle Database Backup and Recovery User's Guide for information on preparing the
fast recovery area for Flashback operations

FLASHBACK ON

Use this clause to put the database in FLASHBACK mode. When the database is in FLASHBACK
mode, Oracle Database automatically creates and manages Flashback Database logs in the
fast recovery area. Users with SYSDBA system privilege can then issue a FLASHBACK DATABASE
statement.

FLASHBACK OFF

Use this clause to take the database out of FLASHBACK mode. Oracle Database stops logging
Flashback data and deletes all existing Flashback Database logs. Any attempt to issue a
FLASHBACK DATABASE will fail with an error.

undo_mode_clause

This clause is valid only when you are connected to a CDB. It lets you change the undo mode
for the CDB. The CDB must be in OPEN UPGRADE mode.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 94 of 177

• Specify LOCAL UNDO ON to change the CDB to use local undo mode.

• Specify LOCAL UNDO OFF to change the CDB to use shared undo mode.

See Also

• CREATE DATABASE undo_mode_clause for the full semantics of this clause

• Oracle Database Administrator's Guide for the complete steps for configuring a
CDB to use local undo mode or shared undo mode

set_time_zone_clause

This clause has the same semantics in CREATE DATABASE and ALTER DATABASE statements.
When used in with ALTER DATABASE, this clause resets the time zone of the database. To
determine the time zone of the database, query the built-in function DBTIMEZONE . After
setting or changing the time zone with this clause, you must restart the database for the new
time zone to take effect.

Oracle Database normalizes all new TIMESTAMP WITH LOCAL TIME ZONE data to the time zone
of the database when the data is stored on disk.Oracle Database does not automatically
update existing data in the database to the new time zone. Therefore, you cannot reset the
database time zone if there is any TIMESTAMP WITH LOCAL TIME ZONE data in the database.
You must first delete or export the TIMESTAMP WITH LOCAL TIME ZONE data and then reset the
database time zone. For this reason, Oracle does not encourage you to change the time zone
of a database that contains data.

For a full description of this clause, refer to set_time_zone_clause in the documentation on
CREATE DATABASE.

security_clause

Use the security_clause (GUARD) to protect data in the database from being changed. You can
override this setting for a current session using the ALTER SESSION DISABLE GUARD statement.
Refer to ALTER SESSION for more information.

ALL

Specify ALL to prevent all users other than SYS from making any changes to the database.

STANDBY

Specify STANDBY to prevent all users other than SYS from making changes to any database
object being maintained by logical standby. This setting is useful if you want report operations
to be able to modify data as long as it is not being replicated by logical standby.

See Also

Oracle Data Guard Concepts and Administration for information on logical standby

NONE

Specify NONE if you want normal security for all data in the database.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 95 of 177

Note

Oracle strongly recommends that you not use this setting on a logical standby
database.

prepare_clause

• Use this clause to prepare mirror copies of the database. You must provide a mirror_name to
identify the filegroup that is created. The filegroup contains all the prepared files.

• Specify the number of copies to be prepared by the REDUNDANCY options: EXTERNAL,
NORMAL, or HIGH.

• If you do not specify the redundancy of the mirror, the redundancy of the source database
is used.

Prepare a Database : Example

ALTER DATABASE db_name PREPARE MIRROR COPY mirror_name WITH HIGH REDUNDANCY

drop_mirror_copy

Use this clause to discard mirror copies of data created by the prepare statement. You must
specify the same mirror name that you used for the prepare operation.

You cannot use this clause to drop a database that has already been split by the CREATE
DATABASE or CREATE PLUGGABLE DATABASE statement.

lost_write_protection

Specify this clause to enable lost write protection for data files. You can enable, remove, and
suspend lost write protection for data files.

Example: Turn on Lost Write for a Datafile

The example turns on lost write on datafile td_file.df.

 ALTER DATABASE DATAFILE td_file.df ENABLE LOST WRITE PROTECTION

Note that the lost write database is zeroed out. It is not initialized with the contents of the
current data file.

You can turn off lost write protection for a datafile in two ways, with the REMOVE or SUSPEND
options.

1. The REMOVE option stops lost write protection for the data file. Additionally, it removes all
references to lost write protection including tracking data from the shadow tablespace.

Example: Remove Lost Write for a Datafile

 ALTER DATABASE DATAFILE td_file.df REMOVE LOST WRITE PROTECTION

2. The SUSPEND option disables updates and lost write checking, but leaves the tracking data
in the shadow tablespace. If you suspend lost write protection for a short time, lost write
protection for the data file is stopped during the suspended period. This means that no lost
write data is gathered, and no blocks are checked. If you turn on lost write protection for
the data file later, there will be no records of SCN updates made to the blocks in the
datafile during the suspended period. Note that the SUSPEND option does not deallocate the
lost write storage.

Example: Suspend Lost Write for a Datafile

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 96 of 177

 ALTER DATABASE DATAFILE td_file.df SUSPEND LOST WRITE PROTECTION

You can enable lost write protection for container databases and pluggable databases.

Example: Turn on Lost Write for a Database

 ALTER DATABASE ENABLE LOST WRITE PROTECTION

Example: Turn off Lost Write for a Database

 ALTER DATABASE DISABLE LOST WRITE PROTECTION

Note that disabling lost write for the database does not deallocate the lost write storage. You
must use the DROP TABLESPACE statement to deallocate lost write storage.

cdb_fleet_clauses

Specify the cdb_fleet_clauses to set a Lead CDB in a collection of different CDBs.

lead_cdb_clause

Use this clause to designate a CDB as the Lead CDB in a CDB fleet. The database property
LEAD_CDB indicates that the current CDB is a Lead CDB, and can be found in
DATABASE_PROPERTIES view.

There is a new parameter in SYS_CONTEXT named IS_LEAD_CDB which can be used to
determine if the current session is connected to a Lead CDB in a CDB fleet.

lead_cdb_uri_clause

Use this clause to specify the connection URI for the Lead CDB in a CDB fleet. It is used to
register a Member CDB with the Lead CDB of the fleet.

The database link name specified in dblink must exist in the CDB ROOT of the Member CDB
joining the CDB fleet. It is used to synchronize PDB metadata with the Lead CDB in the fleet.

The uri_string specified is stored as a database property named LEAD_CDB_URI and can be
found in DATABASE_PROPERTIES view.

There is a new parameter in SYS_CONTEXT named IS_LEAD_CDB which can be used to
determine if the current session is connected to a Member CDB in a CDB fleet.

property_clause

Specify this clause to set or remove database properties visible through DATABASE_PROPERTIES
or CDB_PROPERTIES views.

replay_upgrade_clause

Use this clause to enable or disable replay upgrade on the database.

If UPGRADE SYNC is ON, then replay upgrade and upgrade on open is enabled.

Examples

READ ONLY / READ WRITE: Example

The following statement opens the database in read-only mode:

ALTER DATABASE OPEN READ ONLY;

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 97 of 177

The following statement opens the database in read/write mode and clears the online redo
logs:

ALTER DATABASE OPEN READ WRITE RESETLOGS;

Using Parallel Recovery Processes: Example

The following statement performs tablespace recovery using parallel recovery processes:

ALTER DATABASE
 RECOVER TABLESPACE tbs_03
 PARALLEL;

Adding Redo Log File Groups: Examples

The following statement adds a redo log file group with two members and identifies it with a
GROUP parameter value of 3:

ALTER DATABASE
 ADD LOGFILE GROUP 3
 ('diska:log3.log' ,
 'diskb:log3.log') SIZE 50K;

The following statement adds a redo log file group containing two members to thread 5 (in a
Real Application Clusters environment) and assigns it a GROUP parameter value of 4:

ALTER DATABASE
 ADD LOGFILE THREAD 5 GROUP 4
 ('diska:log4.log',
 'diskb:log4:log');

Adding Redo Log File Group Members: Example

The following statement adds a member to the redo log file group added in the previous
example:

ALTER DATABASE
 ADD LOGFILE MEMBER 'diskc:log3.log'
 TO GROUP 3;

Dropping Log File Members: Example

The following statement drops one redo log file member added in the previous example:

ALTER DATABASE
 DROP LOGFILE MEMBER 'diskb:log3.log';

The following statement drops all members of the redo log file group 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

Renaming a Log File Member: Example

The following statement renames a redo log file member:

ALTER DATABASE
 RENAME FILE 'diskc:log3.log' TO 'diskb:log3.log';

The preceding statement only changes the member of the redo log group from one file to
another. The statement does not actually change the name of the file diskc:log3.log to
diskb:log3.log. Before issuing this statement, you must change the name of the file through your
operating system.

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 98 of 177

Setting the Default Type of Tablespaces: Example

The following statement specifies that subsequently created tablespaces be created as bigfile
tablespaces by default:

ALTER DATABASE
 SET DEFAULT BIGFILE TABLESPACE;

Changing the Default Temporary Tablespace: Examples

The following statement makes the tbs_05 tablespace (created in "Creating a Temporary
Tablespace: Example") the default temporary tablespace of the database. This statement
either establishes a default temporary tablespace if none was specified at create time, or
replaces an existing default temporary tablespace with tbs_05:

ALTER DATABASE
 DEFAULT TEMPORARY TABLESPACE tbs_05;

Alternatively, a group of tablespaces can be defined as the default temporary tablespace by
using a tablespace group. The following statement makes the tablespaces in the tablespace
group tbs_group_01 (created in "Adding a Temporary Tablespace to a Tablespace Group:
Example") the default temporary tablespaces of the database:

ALTER DATABASE
 DEFAULT TEMPORARY TABLESPACE tbs_grp_01;

Creating a New Data File: Example

The following statement creates a new data file tbs_f04.dbf based on the file tbs_f03.dbf. Before
creating the new data file, you must take the existing data file (or the tablespace in which it
resides) offline.

ALTER DATABASE
 CREATE DATAFILE 'tbs_f03.dbf'
 AS 'tbs_f04.dbf';

Manipulating Temp Files: Example

The following takes offline the temp file temp02.dbf created in Adding and Dropping Data Files
and Temp Files: Examples and then renames the temp file:

ALTER DATABASE TEMPFILE 'temp02.dbf' OFFLINE;

ALTER DATABASE RENAME FILE 'temp02.dbf' TO 'temp03.dbf';

The statement renaming the temp file requires that you first create the file temp03.dbf on the
operating system.

Changing the Global Database Name: Example

The following statement changes the global name of the database and includes both the
database name and domain:

ALTER DATABASE
 RENAME GLOBAL_NAME TO demo.world.example.com;

Enabling and Disabling Block Change Tracking: Examples

The following statement enables block change tracking and causes Oracle Database to create
a block change tracking file named tracking_file and overwrite the file if it already exists:

Chapter 10
ALTER DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 99 of 177

ALTER DATABASE
 ENABLE BLOCK CHANGE TRACKING
 USING FILE 'tracking_file' REUSE;

The following statement disables block change tracking and deletes the existing block change
tracking file:

ALTER DATABASE
 DISABLE BLOCK CHANGE TRACKING;

Resizing a Data File: Example

The following statement attempts to change the size of data file diskb:tbs_f5.dbf:

ALTER DATABASE
 DATAFILE 'diskb:tbs_f5.dbf' RESIZE 10 M;

Clearing a Log File: Example

The following statement clears a log file:

ALTER DATABASE
 CLEAR LOGFILE 'diskc:log3.log';

Database Recovery: Examples

The following statement performs complete recovery of the entire database, letting Oracle
Database generate the name of the next archived redo log file needed:

ALTER DATABASE
 RECOVER AUTOMATIC DATABASE;

The following statement explicitly names a redo log file for Oracle Database to apply:

ALTER DATABASE
 RECOVER LOGFILE 'diskc:log3.log';

The following statement performs time-based recovery of the database:

ALTER DATABASE
 RECOVER AUTOMATIC UNTIL TIME '2001-10-27:14:00:00';

Oracle Database recovers the database until 2:00 p.m. on October 27, 2001.

For an example of recovering a tablespace, see "Using Parallel Recovery Processes:
Example".

ALTER DATABASE DICTIONARY
Purpose

To encrypt obfuscated database link passwords and use the TDE framework to manage the
encryption key.

A LOB locator (pointer to the location of a large object (LOB) value) can be assigned a
signature to secure the LOB.

Prerequisites

• The TDE keystore must exist. The DDL first checks that the TDE:

– Keystore exists.

Chapter 10
ALTER DATABASE DICTIONARY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 100 of 177

– Keystore is open.

– Master Encryption Key exists in the TDE keystore.

If any of the checks fail, the DDL fails. When this happens you must create a TDE
keystore and provision a TDE Master Key. For more see the Database Security Guide.

• The instance initialization parameter COMPATIBLE must be set to 12.2.0.2.

• You must have SYSKM privileges to execute the command.

Syntax

alter_database_dictionary::=

ALTER DATABASE DICTIONARY

ENCRYPT CREDENTIALS

REKEY CREDENTIALS

DELETE CREDENTIALS KEY

;

Semantics

alter_database_dictionary_encrypt_credentials::=

This DDL encrypts existing and future obfuscated sensitive information in data dictionaries, for
example database link passwords stored in SYS.LINKS$.

It performs the following actions:

• Inserts a new entry in ENC$ corresponding to SYS.LINK$.

• It creates and initializes the SGA variable.

• De-obfuscates obfuscated passwords in SYS.LINK$.

• Encrypts the de-obfuscated passwords using the generated encryption key in ENC$ for
SYS.LINK$.

• Sets the flag to indicate a valid/usable dblink entry in SYS.LINK$.

When you use this DDL with LOB locator signature keys, they are always encrypted. A LOB
locator (pointer to the location of a large object (LOB) value) can be assigned a signature to
secure the LOB.

alter_database_dictionary_rekey_credentials::=

This DDL is used to change the data encryption key. It is applied to SYS.LINK$ and any other
tables covered under the data dictionary encryption framework.

You can also use this DDL to regenerate the LOB locator signature key for LOB locators. If the
database is in restricted mode, then Oracle Database regenerates a new LOB signature key
and encrypts it with the new encryption key. If the database is in non-restricted mode, then a
new signature key is not regenerated but instead, Oracle Database uses a new encryption key
to encrypt the existing LOB signature key.

alter_database_dictionary_delete_credentials_key::=

This DDL marks encrypted passwords unusuable. That means that current password entries in
SYS.LINK$ are marked unusable. It deletes the key in ENC$ that was used to encrypt the
credentials, and clears the SGA variable to prevent future encryption.

Chapter 10
ALTER DATABASE DICTIONARY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 101 of 177

You can also use this DDL to delete the encrypted LOB locator signature key and then
regenerate a new LOB signature key in obfuscated form.

See Also

Managing Security for Application Developers in the Database Security Guide

ALTER DATABASE LINK
Purpose

Use the ALTER DATABASE LINK statement to modify a fixed-user database link when the
password of the connection or authentication user changes.

Note

• You cannot use this statement to change the connection or authentication user
associated with the database link. To change user, you must re-create the
database link.

• You cannot use this statement to change the password of a connection or
authentication user. You must use the ALTER USER statement for this purpose,
and then alter the database link with the ALTER DATABASE LINK statement.

• This statement is valid only for fixed-user database links, not for connected-user or
current user database links. See CREATE DATABASE LINK for more information
on these two types of database links.

Prerequisites

To alter a private database link, you must have the ALTER DATABASE LINK system privilege. To
alter a public database link, you must have the ALTER PUBLIC DATABASE LINK system privilege.

Syntax

alter_database_link::=

ALTER

SHARED PUBLIC

DATABASE LINK

IF EXISTS

dblink_name

CONNECT
TO user IDENTIFIED BY password

dblink_authentication

WITH credential

dblink_authentication

;

Chapter 10
ALTER DATABASE LINK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 102 of 177

dblink_authentication

AUTHENTICATED BY user IDENTIFIED BY password

WITH CREDENTIAL

Semantics

The ALTER DATABASE LINK statement is intended only to update fixed-user database links with
the current passwords of connection and authentication users. Therefore, any clauses valid in
a CREATE DATABASE LINK statement that do not appear in the syntax diagram above are not
valid in an ALTER DATABASE LINK statement. The semantics of all of the clauses permitted in
this statement are the same as the semantics for those clauses in CREATE DATABASE LINK.
Refer to CREATE DATABASE LINK for this information.

IF EXISTS

Specify IF EXISTS to alter an existing database link.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

IDENTIFIED BY

You can set the password length to a maximum length of 1024 bytes.

Examples

The following statements show the valid variations of the ALTER DATABASE LINK statement:

ALTER DATABASE LINK private_link
 CONNECT TO hr IDENTIFIED BY hr_new_password;

ALTER PUBLIC DATABASE LINK public_link
 CONNECT TO scott IDENTIFIED BY scott_new_password;

ALTER SHARED PUBLIC DATABASE LINK shared_pub_link
 CONNECT TO scott IDENTIFIED BY scott_new_password
 AUTHENTICATED BY hr IDENTIFIED BY hr_new_password;

ALTER SHARED DATABASE LINK shared_pub_link
 CONNECT TO scott IDENTIFIED BY scott_new_password;

ALTER DIMENSION
Purpose

Use the ALTER DIMENSION statement to change the hierarchical relationships or dimension
attributes of a dimension.

See Also

CREATE DIMENSION and DROP DIMENSION

Chapter 10
ALTER DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 103 of 177

Prerequisites

The dimension must be in your schema or you must have the ALTER ANY DIMENSION system
privilege to use this statement.

A dimension is always altered under the rights of the owner.

Syntax

alter_dimension::=

ALTER DIMENSION

schema .

dimension

ADD

level_clause

hierarchy_clause

attribute_clause

extended_attribute_clause

DROP

LEVEL level

RESTRICT

CASCADE

HIERARCHY hierarchy

ATTRIBUTE attribute

LEVEL level

COLUMN column

,

COMPILE

;

(level_clause::=, hierarchy_clause::=, attribute_clause::=, extended_attribute_clause::=)

level_clause::=

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

SKIP WHEN NULL

hierarchy_clause::=

HIERARCHY hierarchy (child_level CHILD OF parent_level

dimension_join_clause

)

Chapter 10
ALTER DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 104 of 177

(dimension_join_clause::=)

dimension_join_clause::=

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

attribute_clause::=

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

extended_attribute_clause::=

ATTRIBUTE attribute LEVEL level DETERMINES

dependent_column

(dependent_column

,

)

Semantics

The following keywords, parameters, and clauses have meaning unique to ALTER DIMENSION.
Keywords, parameters, and clauses that do not appear here have the same functionality that
they have in the CREATE DIMENSION statement. Refer to CREATE DIMENSION for more
information.

schema

Specify the schema of the dimension you want to modify. If you do not specify schema, then
Oracle Database assumes the dimension is in your own schema.

dimension

Specify the name of the dimension. This dimension must already exist.

ADD

The ADD clauses let you add a level, hierarchy, or attribute to the dimension. Adding one of
these elements does not invalidate any existing materialized view.

Oracle Database processes ADD LEVEL clauses prior to any other ADD clauses.

Chapter 10
ALTER DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 105 of 177

DROP

The DROP clauses let you drop a level, hierarchy, or attribute from the dimension. Any level,
hierarchy, or attribute you specify must already exist.

Within one attribute, you can drop one or more level-to-column relationships associated with
one level.

Restriction on DROP

If any attributes or hierarchies reference a level, then you cannot drop the level until you either
drop all the referencing attributes and hierarchies or specify CASCADE.

CASCADE

Specify CASCADE if you want Oracle Database to drop any attributes or hierarchies that
reference the level, along with the level itself.

RESTRICT

Specify RESTRICT if you want to prevent Oracle Database from dropping a level that is
referenced by any attributes or hierarchies. This is the default.

COMPILE

Specify COMPILE to explicitly recompile an invalidated dimension. Oracle Database
automatically compiles a dimension when you issue an ADD clause or DROP clause. However, if
you alter an object referenced by the dimension (for example, if you drop and then re-create a
table referenced in the dimension), Oracle Database invalidates, and you must recompile it
explicitly.

Examples

Modifying a Dimension: Examples

The following examples modify the customers_dim dimension in the sample schema sh:

ALTER DIMENSION customers_dim
 DROP ATTRIBUTE country;

ALTER DIMENSION customers_dim
 ADD LEVEL zone IS customers.cust_postal_code
 ADD ATTRIBUTE zone DETERMINES (cust_city);

ALTER DISKGROUP

Note

This SQL statement is valid only if you are using Oracle ASM and you have started an
Oracle ASM instance. You must issue this statement from within the Oracle ASM
instance, not from a normal database instance. For information on starting an Oracle
ASM instance, refer to Oracle Automatic Storage Management Administrator's Guide.

Purpose

The ALTER DISKGROUP statement lets you perform a number of operations on a disk group or
on the disks in a disk group.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 106 of 177

See Also

• CREATE DISKGROUP for information on creating disk groups

• Oracle Automatic Storage Management Administrator's Guide for information on
Oracle ASM and using disk groups to simplify database administration

Prerequisites

You must have an Oracle ASM instance started from which you issue this statement. The disk
group to be modified must be mounted.

You can issue all ALTER DISKGROUP clauses if you have the SYSASM system privilege. You can
issue specific clauses as follows:

• The SYSOPER privilege permits the following subset of the ALTER DISKGROUP operations:
diskgroup_availability, rebalance_diskgroup_clause, check_diskgroup_clause (without the REPAIR option).

• If you are connected as SYSDBA, you have limited privileges to use this statement. The
following operations are always granted to users connected as SYSDBA:

– ALTER DISKGROUP ... ADD DIRECTORY

– ALTER DISKGROUP ... ADD/ALTER/DROP TEMPLATE (nonsystem templates only)

– ALTER DISKGROUP ... ADD USERGROUP

– SELECT

– SHOW PARAMETER

Table 10-1 shows additional privileges granted to users connected as SYSDBA under the
conditions shown:

Table 10-1 Conditional Diskgroup Privileges for SYSDBA

ALTER DISKGROUP
Operation

Condition

DROP FILE User must have read-write permission on the file.

ADD ALIAS User must have read-write permission on the related file.

RENAME ALIAS User must have read-write permission on the related file.

DROP ALIAS User must have read-write permission on the related file.

RENAME DIRECTORY Directory must contain only aliases and no files. User must have DROP
ALIAS permissions on all aliases under the directory.

DROP DIRECTORY Directory must contain only aliases and no files. User must have DROP
ALIAS permissions on all aliases under the directory.

DROP USERGROUP User must be the owner of the user group.

MODIFY USERGROUP ADD
MEMBER

User must be the owner of the user group.

MODIFY USERGROUP DROP
MEMBER

User must be the owner of the user group.

SET PERMISSION User must be the owner of the file.

SET OWNER GROUP User must be the owner of the file and a member of the user group.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 107 of 177

Syntax

alter_diskgroup::=

ALTER DISKGROUP

diskgroup_name

add_disk_clause

drop_disk_clause

resize_disk_clause

rebalance_diskgroup_clause

replace_disk_clause

rename_disk_clause

disk_online_clause

disk_offline_clause

rebalance_diskgroup_clause

check_diskgroup_clause

diskgroup_template_clauses

diskgroup_directory_clauses

diskgroup_alias_clauses

diskgroup_volume_clauses

diskgroup_attributes

drop_diskgroup_file_clause

convert_redundancy_clause

usergroup_clauses

user_clauses

file_permissions_clause

file_owner_clause

scrub_clause

quotagroup_clauses

filegroup_clauses

diskgroup_name

,

ALL

undrop_disk_clause

diskgroup_availability

enable_disable_volume

;

(add_disk_clause::=, drop_disk_clause::=, resize_disk_clause::=, replace_disk_clause::=,
rename_disk_clause::=, disk_online_clause::=, disk_offline_clause::=,
rebalance_diskgroup_clause::=, check_diskgroup_clause::=, diskgroup_template_clauses::=,
diskgroup_directory_clauses::=, diskgroup_alias_clauses::=, diskgroup_volume_clauses::=,
diskgroup_attributes::=, modify_diskgroup_file::=, drop_diskgroup_file_clause::=,
convert_redundancy_clause::=, usergroup_clauses::=, user_clauses::=,
file_permissions_clause::=, file_owner_clause::=, scrub_clause::=, quotagroup_clauses::=,

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 108 of 177

filegroup_clauses::=, undrop_disk_clause::=, diskgroup_availability::=,
enable_disable_volume::=)

add_disk_clause::=

ADD

SITE site_name

QUORUM

REGULAR FAILGROUP failgroup_name

DISK qualified_disk_clause

,

(qualified_disk_clause::=)

qualified_disk_clause::=

search_string

NAME disk_name SIZE size_clause

FORCE

NOFORCE

(size_clause::=)

drop_disk_clause::=

DROP

QUORUM

REGULAR

DISK disk_name

FORCE

NOFORCE

,

DISKS IN

QUORUM

REGULAR

FAILGROUP failgroup_name

FORCE

NOFORCE

,

resize_disk_clause::=

RESIZE ALL

SIZE size_clause

(size_clause::=)

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 109 of 177

replace_disk_clause::=

REPLACE DISK disk_name WITH ’ path_name ’

FORCE

NOFORCE

,

POWER integer

WAIT

NOWAIT

rename_disk_clause::=

RENAME

DISK old_disk_name TO new_disk_name

,

DISKS ALL

disk_online_clause::=

ONLINE

QUORUM

REGULAR

DISK disk_name

,

DISKS IN

QUORUM

REGULAR

FAILGROUP failgroup_name

,

ALL

POWER integer

WAIT

NOWAIT

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 110 of 177

disk_offline_clause::=

OFFLINE

QUORUM

REGULAR

DISK disk_name

,

DISKS IN

QUORUM

REGULAR

FAILGROUP failgroup_name

,

timeout_clause

WAIT

NOWAIT

timeout_clause::=

DROP AFTER integer
M

H

rebalance_diskgroup_clause::=

REBALANCE

WITH

WITHOUT
phase

POWER integer

WAIT

NOWAIT

MODIFY POWER

integer

check_diskgroup_clause::=

CHECK

REPAIR

NOREPAIR

diskgroup_template_clauses::=

ADD

MODIFY
TEMPLATE template_name qualified_template_clause

,

DROP TEMPLATE template_name

,

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 111 of 177

(qualified_template_clause::=)

qualified_template_clause::=

ATTRIBUTE (redundancy_clause striping_clause)

redundancy_clause::=

MIRROR

HIGH

UNPROTECTED

PARITY

DOUBLE

striping_clause::=

FINE

COARSE

diskgroup_directory_clauses::=

ADD DIRECTORY ’ filename ’

,

DROP DIRECTORY ’ filename ’

FORCE

NOFORCE

,

RENAME DIRECTORY ’ old_dir_name ’ TO ’ new_dir_name ’

,

diskgroup_alias_clauses::=

ADD ALIAS ’ alias_name ’ FOR ’ filename ’

,

DROP ALIAS ’ alias_name ’

,

RENAME ALIAS ’ old_alias_name ’ TO ’ new_alias_name ’

,

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 112 of 177

diskgroup_volume_clauses::=

add_volume_clause

modify_volume_clause

RESIZE VOLUME asm_volume SIZE size_clause

DROP VOLUME asm_volume

(add_volume_clause::=, modify_volume_clause::=

add_volume_clause::=

ADD VOLUME asm_volume SIZE size_clause

redundancy_clause

STRIPE_WIDTH integer
K

M STRIPE_COLUMNS integer

(size_clause::=, redundancy_clause::=,)

size_clause::=

integer

K

M

G

T

P

E

modify_volume_clause::=

MODIFY VOLUME asm_volume

MOUNTPATH ’ mountpath_name ’

USAGE ’ usage_name ’

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 113 of 177

diskgroup_attributes::=

SET ATTRIBUTE ’ attribute_name ’ = ’ attribute_value ’

modify_diskgroup_file::=

MODIFY FILE ’ filename ’ ATTRIBUTE (disk_region_clause)

,

drop_diskgroup_file_clause::=

DROP FILE ’ filename ’

,

convert_redundancy_clause::=

CONVERT REDUNDANCY TO FLEX

usergroup_clauses::=

ADD USERGROUP ’ usergroup ’ WITH MEMBER ’ user ’

,

MODIFY USERGROUP ’ usergroup ’
ADD

DROP
MEMBER ’ user ’

,

DROP USERGROUP ’ usergroup ’

user_clauses::=

ADD USER ’ user ’

,

DROP USER ’ user ’

,
CASCADE

REPLACE USER ’ old_user ’ WITH ’ new_user ’

,

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 114 of 177

file_permissions_clause::=

SET PERMISSION

OWNER

GROUP

OTHER

=

NONE

READ ONLY

READ WRITE

,

FOR FILE ’ filename ’

,

file_owner_clause::=

SET OWNERSHIP
OWNER = ’ user ’

GROUP = ’ usergroup ’

,

FOR FILE ’ filename ’

,

scrub_clause::=

SCRUB

FILE ’ ASM_filename ’

DISK disk_name

REPAIR

NOREPAIR

POWER

AUTO

LOW

HIGH

MAX

WAIT

NOWAIT

FORCE

NOFORCE STOP

quotagroup_clauses::=

ADD QUOTAGROUP quotagroup_name

SET property_name = property_value

MODIFY QUOTAGROUP quotagroup_name SET property_name = property_value

MOVE FILEGROUP filegroup_name TO quotagroup_name

DROP QUOTAGROUP quotagroup_name

filegroup_clauses::=

add_filegroup_clause

modify_filegroup_clause

move_to_filegroup_clause

drop_filegroup_clause

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 115 of 177

(add_filegroup_clause::=, modify_filegroup_clause::=, move_to_filegroup_clause::=,
drop_filegroup_clause::=)

add_filegroup_clause::=

ADD FILEGROUP filegroup_name

DATABASE database_name

CLUSTER cluster_name

VOLUME asm_volume

TEMPLATE

FROM TEMPLATE template_name

SET ’

file_type .

property_name ’ = ’ property_value ’

modify_filegroup_clause::=

MODIFY FILEGROUP filegroup_name

SET ’

file_type .

property_name ’ = ’ property_value ’

move_to_filegroup_clause::=

MOVE FILE ’ ASM_filename ’ TO FILEGROUP filegroup_name

drop_filegroup_clause::=

DROP FILEGROUP filegroup_name

CASCADE

FOR

PLUGGABLE DATABASE pdb_name

DATABASE db_unique_name

undrop_disk_clause::=

UNDROP DISKS

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 116 of 177

diskgroup_availability::=

MOUNT

RESTRICTED

NORMAL

FORCE

NOFORCE

DISMOUNT

FORCE

NOFORCE

enable_disable_volume::=

ENABLE

DISABLE

VOLUME

asm_volume

,

ALL

Semantics

diskgroup_name

Specify the name of the disk group you want to modify. To determine the names of existing disk
groups, query the V$ASM_DISKGROUP dynamic performance view.

add_disk_clause

Use this clause to add one or more disks to the disk group and specify attributes for the newly
added disk. Oracle ASM automatically rebalances the disk group as part of this operation.

You cannot use this clause to change the failure group of a disk. Instead you must drop the
disk from the disk group and then add the disk back into the disk group as part of the new
failure group.

To determine the names of the disks already in this disk group, query the V$ASM_DISK dynamic
performance view.

QUORUM | REGULAR

The semantics of these keyword are the same as the semantics in a CREATE DISKGROUP
statement. See QUORUM | REGULAR for more information on these keywords.

You cannot change this qualifier for an existing disk or disk group. Therefore, you cannot
specify in this clause a keyword different from the keyword that was specified when the disk
group was created.

See Also

Oracle Automatic Storage Management Administrator's Guide for more information
about the use of these keywords

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 117 of 177

FAILGROUP Clause

Use this clause to assign the newly added disk to a failure group. If you omit this clause and
you are adding the disk to a normal or high redundancy disk group, then Oracle Database
automatically adds the newly added disk to its own failure group. The implicit name of the
failure group is the same as the operating system independent disk name (see "NAME
Clause").

You cannot specify this clause if you are creating an external redundancy disk group.

qualified_disk_clause

This clause has the same semantics in CREATE DISKGROUP and ALTER DISKGROUP statements.
For complete information on this clause, refer to qualified_disk_clause in the documentation on
CREATE DISKGROUP.

drop_disk_clause

Use this clause to drop one or more disks from the disk group.

DROP DISK

The DROP DISK clause lets you drop one or more disks from the disk group and automatically
rebalance the disk group. When you drop a disk, Oracle ASM relocates all the data from the
disk and clears the disk header so that it no longer is part of the disk group. The disk header is
not cleared if you specify the FORCE keyword.

Specify disk_name as shown in the NAME column of the V$ASM_DISK dynamic performance view.

If a disk to be dropped is a quorum disk or belongs to a quorum failure group, then you must
specify QUORUM in order to drop the disk. See QUORUM | REGULAR.

DROP DISKS IN FAILGROUP

The DROP DISKS IN FAILGROUP clause lets you drop all the disks in the specified failure group.
The behavior is otherwise the same as that for the DROP DISK clause.

If the specified failure group is a quorum failure group, then you must specify the QUORUM
keyword in order to drop the disks. See QUORUM | REGULAR.

FORCE | NOFORCE

These keywords let you specify when the disk is considered to be no longer part of the disk
group. The default and recommended setting is NOFORCE.

• When you specify NOFORCE, Oracle ASM reallocates all of the extents of the disk to other
disks and then expels the disk from the disk group and rebalances the disk group.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 118 of 177

Note

DROP DISK ... NOFORCE returns control to the user before the disk can be safely
reused or removed from the system. To ensure that the drop disk operation has
completed, query the V$ASM_DISK view to verify that HEADER_STATUS has the value
FORMER. Do not attempt to remove or reuse a disk if STATE has the value
DROPPING. Query the V$ASM_OPERATION view for approximate information on how
long it will take to complete the rebalance resulting from dropping the disk.If you
also specify REBALANCE ... WAIT (see rebalance_diskgroup_clause), then the
statement will not return until the rebalance operation is complete and the disk has
been cleared. However, you should always verify that the HEADER_STATUS column
of V$ASM_DISK is FORMER, because of the unlikely event the rebalance operations
fails.

• When you specify FORCE, Oracle Database expels the disk from the disk group
immediately. It then reconstructs the data from the redundant copies on other disks,
reallocates the data to other disks, and rebalances the disk group.

The FORCE clause can be useful, for example, if Oracle ASM can no longer read the disk to
be dropped. However, it is more time consuming than a NOFORCE drop, and it can leave
portions of a file with reduced protection. You cannot specify FORCE for an external
redundancy disk group at all, because in the absence of redundant data on the disk,
Oracle ASM must read the data from the disk before it can be dropped.

The rebalance operation invoked when a disk is dropped is time consuming, whether or not
you specify FORCE or NOFORCE. You can monitor the progress by querying the
V$ASM_OPERATION dynamic performance view. Refer to rebalance_diskgroup_clause for more
information on rebalance operations.

resize_disk_clause

Use this clause to specify a new size for every disk in a disk group. This clause lets you
override the size returned by the operating system or the size you specified previously for the
disks.

SIZE

Specify the new size in kilobytes, megabytes, gigabytes, or terabytes. You cannot specify a
size greater than the capacity of the disk. If you specify a size smaller than the disk capacity,
then you limit the amount of disk space Oracle ASM will use. If you omit this clause, then
Oracle ASM attempts programatically to determine the size of the disks.

replace_disk_clause

Use this clause to replace one or more disks in the disk group. This clause allows you to
replace disks with a single operation, which is more efficient than dropping and adding each
disk.

For disk_name, specify the name of the disk you want to replace. This name is assigned to the
replacement disk. You can view disk names by querying the NAME column of the V$ASM_DISK
dynamic performance view.

For path_name, specify the full path name for the replacement disk.

FORCE

Specify FORCE if you want Oracle ASM to add the replacement disk to the disk group even if
the replacement disk is already a member of a disk group.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 119 of 177

Note

Using FORCE in this way may destroy existing disk groups.

NOFORCE

Specify NOFORCE if you want Oracle ASM to return an error if the replacement disk is already a
member of a disk group. NOFORCE is the default.

POWER

The POWER clause has the same semantics here as for a manual rebalancing of a disk group,
except that the power value cannot be set to 0. See POWER.

WAIT | NOWAIT

The WAIT and NOWAIT keywords have the same semantics here as for a manual rebalancing of
a disk group. See WAIT | NOWAIT.

rename_disk_clause

Use this clause to rename one or more disks in the disk group. The disk group must be in the
MOUNT RESTRICTED state and all disks in the disk group must be online.

RENAME DISK

Specify this clause to rename one or more disks. For each disk, specify the old_disk_name and
new_disk_name. If new_disk_name already exists, then this operation fails.

RENAME DISKS ALL

Specify this clause to rename all disks in the disk group to a name of the form
diskgroupname_####, where #### is the disk number. Disk names that are already in the
diskgroupname_#### format are not changed.

disk_online_clause

Use this clause to bring one or more disks online and rebalance the disk group.

ONLINE DISK

The ONLINE DISK clause lets you bring one or more specified disks online and rebalance the
disk group.

Specify disk_name as shown in the NAME column of the V$ASM_DISK dynamic performance view.

The QUORUM and REGULAR keywords have the same semantics here as they have when
adding a disk to a disk group. See QUORUM | REGULAR.

ONLINE DISKS IN FAILGROUP

The ONLINE DISKS IN FAILGROUP clause lets you bring all disks in the specified failure group
online and rebalance the disk group.

If the specified failure group is a quorum failure group, then you must specify the QUORUM
keyword in order to bring the disks online. See QUORUM | REGULAR.

ALL

The ALL clause lets you bring all disks in the disk group online and rebalance the disk group.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 120 of 177

POWER

The POWER clause has the same semantics here as for a manual rebalancing of a disk group.
See POWER

WAIT | NOWAIT

The WAIT and NOWAIT keywords have the same semantics here as for a manual rebalancing of
a disk group. See WAIT | NOWAIT.

disk_offline_clause

Use the disk_offline_clause to take one or more disks offline. This clause fails if the redundancy
level of the disk group would be violated by taking the specified disks offline.

OFFLINE DISK

The OFFLINE DISK clause lets you take one or more specified disks offline.

Specify disk_name as shown in the NAME column of the V$ASM_DISK dynamic performance view.

The QUORUM and REGULAR keywords have the same semantics here as they have when
adding a disk to a disk group. See QUORUM | REGULAR.

OFFLINE DISKS IN FAILGROUP

The OFFLINE DISKS IN FAILGROUP clause lets you take all disks in the specified failure group
offline.

If the specified failure group is a quorum failure group, then you must specify the QUORUM
keyword in order to take the disks offline. See QUORUM | REGULAR.

timeout_clause

By default, Oracle ASM drops a disk shortly after it is taken offline. You can delay this
operation by specifying the timeout_clause, which gives you the opportunity to repair the disk and
bring it back online. You can specify the timeout value in units of minute or hour. If you omit the
unit, then the default is hour.

You can change the timeout period by specifying this clause multiple times. Each time you
specify it, Oracle ASM measures the time from the most recent previous disk_offline_clause while
the disk group is mounted. To learn how much time remains before Oracle ASM will drop an
offline disk, query the REPAIR_TIMER column of V$ASM_DISK.

This clause overrides any previous setting of the disk_repair_time attribute. Refer to Table 13-2 for
more information about disk group attributes.

See Also

Oracle Automatic Storage Management Administrator's Guide for more information
about taking Oracle ASM disks online and offline

WAIT | NOWAIT

Specify WAIT for all disk handles to close all instances before offline returns. The default wait
timeout is 300 seconds (5 minutes).

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 121 of 177

rebalance_diskgroup_clause

Use this clause to manually rebalance the disk group. During a rebalance operation, Oracle
ASM redistributes data files evenly across all drives. This clause is rarely necessary, because
Oracle ASM allocates files evenly and automatically rebalances disk groups when the storage
configuration changes. However, it is useful if you want to perform a controlled rebalance
operation. It allows you to include or exclude certain phases of a rebalance operation, pause
and restart a rebalance operation, and adjust the power of a rebalance operation.

WITH | WITHOUT

A rebalance operation consists of the following phases: RESTORE (includes the RESYNC,
RESILVER, or REBUILD phases), BALANCE, PREPARE, and COMPACT.

You can use the WITH or WITHOUT clause to instruct Oracle ASM to include or exclude specific
phases of a rebalance operation. For example, if you have time constraints, you can include
only the RESTORE phase. Or, if you are using flash storage disk groups or disk groups with flash
cache, you can exclude the COMPACT phase, which is not beneficial for such disk groups.

• Use the WITH clause to include only the specified phases of a rebalance operation. You
can specify any of phases RESTORE, BALANCE, PREPARE, and COMPACT. It is acceptable, but
not necessary, to specify RESTORE, because the RESTORE phase always occurs.

• Use the WITHOUT clause to exclude the specified phases of a rebalance operation. You
can specify any of the phases BALANCE, PREPARE, and COMPACT. You cannot specify
RESTORE, because the RESTORE phase must always occur.

The order in which you specify multiple phases in the WITH or WITHOUT clause does not matter.
Oracle ASM will perform the phases of the rebalance operation in the proper order. You cannot
specify the RESYNC, RESILVER, or REBUILD phases; they are part of the RESTORE phase.

If you omit the WITH and WITHOUT clauses, then Oracle ASM performs all phases of the
rebalance operation.

You can monitor the progress of the rebalance operation by querying the V$ASM_OPERATION
dynamic performance view.

See Oracle Automatic Storage Management Administrator's Guide for more information on the
phases of a rebalance operation.

POWER

This clause lets you specify the power, or speed, of the rebalance operation. It also lets you
stop the rebalance operation.

For integer, specify a value from 0 to 1024:

• A value of 1 through 1024 specifies the power at which Oracle ASM is to perform the
rebalance operation, with 1 representing the lowest possible power and 1024 representing
the highest possible power.

• A value of 0 stops an active rebalance operation. No further rebalancing will occur until the
start of another manual or automatic rebalance operation on the disk group, and at that
time the rebalance operation will start from the beginning. If you would like to have the
option of later resuming the rebalance operation from where it left off, then instead stop the
rebalance operation by specifying MODIFY POWER 0. See the clause MODIFY POWER for
more information.

If you omit the POWER clause, then the default power is determined as follows:

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 122 of 177

• For flex disk groups, Oracle ASM rebalances each file group according the value of its
POWER_LIMIT property. If the POWER_LIMIT property is not set for a file group, then Oracle
ASM uses the value of the ASM_POWER_LIMIT initialization parameter for the file group.

• For all other types of disk groups, if you omit the POWER clause, then Oracle ASM
rebalances the disk group according to the value of the ASM_POWER_LIMIT initialization
parameter.

WAIT | NOWAIT

Use this clause to specify when, in the course of the rebalance operation, control should be
returned to the user.

• Specify WAIT if you want control returned to the user after the rebalance operation has
finished. You can explicitly terminate a rebalance operation running in WAIT mode,
although doing so does not undo any completed disk add, drop, or resize operations in the
same statement.

• Specify NOWAIT if you want control returned to the user immediately after the statement is
issued. This is the default.

MODIFY POWER

Use this clause to pause, resume, or change the power of an active rebalance operation.

You can specify integer as follows:

• Specify 0 to pause the rebalance operation. When you pause a rebalance operation in this
manner, you can subsequently resume the operation from the phase where it left off by
issuing an ALTER DISKGROUP ... MODIFY POWER ... statement. If you subsequently start a
manual rebalance operation on the disk group using the clause POWER, or an automatic
rebalance operation for the disk group occurs, then the rebalance operation will start at the
beginning.

• Specify 1 through 1024 to specify the power of the rebalance operation, with 1 representing
the lowest possible power and 1024 representing the highest possible power. If a rebalance
operation is running, then Oracle ASM changes the power without interrupting the
operation. If a rebalance operation was previously paused with the MODIFY POWER 0
clause, then the rebalance operation resumes at the specified power.

• Omit integer to specify the default power. If a rebalance operation is running, then Oracle
ASM changes the power to the default power without interrupting the operation. If a
rebalance operation was previously paused with the MODIFY POWER 0 clause, then the
rebalance operation resumes at the default power. Refer to the clause POWER for
information on how the default power is determined.

See Also

• Oracle Database Reference for more information on the ASM_POWER_LIMIT
initialization parameter and the V$ASM_OPERATION dynamic performance view

• Rebalancing a Disk Group: Example

check_diskgroup_clause

The check_diskgroup_clause lets you verify the internal consistency of Oracle ASM disk group
metadata. The disk group must be mounted. Oracle ASM displays summary errors and writes
the details of the detected errors in the alert log.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 123 of 177

The CHECK keyword performs the following operations:

• Checks the consistency of the disk.

• Cross checks all the file extent maps and allocation tables for consistency.

• Checks that the alias metadata directory and file directory are linked correctly.

• Checks that the alias directory tree is linked correctly.

• Checks that Oracle ASM metadata directories do not have unreachable allocated blocks.

REPAIR | NOREPAIR

This clause lets you instruct Oracle ASM whether or not to attempt to repair any errors found
during the consistency check. The default is NOREPAIR. The NOREPAIR setting is useful if you
want to be alerted to any inconsistencies but do not want Oracle ASM to take any automatic
action to resolve them.

Deprecated Clauses

In earlier releases, you could specify CHECK for ALL, DISK, DISKS IN FAILGROUP, or FILE. Those
clauses have been deprecated as they are no longer needed. If you specify them, then their
behavior is the same as in earlier releases and a message is added to the alert log. However,
Oracle recommends that you do not introduce these clauses into your new code, as they are
scheduled for desupport. The deprecated clauses are these:

• ALL checks all disks and files in the disk group.

• DISK checks one or more specified disks in the disk group.

• DISKS IN FAILGROUP checks all disks in a specified failure group.

• FILE checks one or more specified files in the disk group. You must use one of the
reference forms of the filename. Refer to ASM_filename for information on the reference
forms of Oracle ASM filenames.

diskgroup_template_clauses

A template is a named collection of attributes. When you create a disk group, Oracle ASM
associates a set of initial system default templates with that disk group. The attributes defined
by the template are applied to all files in the disk group. Table 10-2 lists the system default
templates and the attributes they apply to the various file types. The diskgroup_template_clauses
described following the table let you change the template attributes and create new templates.

You cannot use this clause to change the attributes of a disk group file after it has been
created. Instead, you must use Recovery Manager (RMAN) to copy the file into a new file with
the new attributes.

Table 10-2 Oracle Automatic Storage Management System Default File Group Templates

Template Name File Type Mirroring Level
in External
Redundancy
Disk Groups

Mirroring Level
in Normal
Redundancy
Disk Groups

Mirroring Level
in High
Redundancy
Disk Groups

Striped

CONTROLFILE Control files Unprotected 3-way mirror 3-way mirror FINE

DATAFILE Data Files and copies Unprotected 2-way mirror 3-way mirror COARSE

ONLINELOG Online logs Unprotected 2-way mirror 3-way mirror COARSE

ARCHIVELOG Archive logs Unprotected 2-way mirror 3-way mirror COARSE

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 124 of 177

Table 10-2 (Cont.) Oracle Automatic Storage Management System Default File Group Templates

Template Name File Type Mirroring Level
in External
Redundancy
Disk Groups

Mirroring Level
in Normal
Redundancy
Disk Groups

Mirroring Level
in High
Redundancy
Disk Groups

Striped

TEMPFILE Temp files Unprotected 2-way mirror 3-way mirror COARSE

BACKUPSET Data File backup pieces,
data file incremental
backup pieces, and
archive log backup pieces

Unprotected 2-way mirror 3-way mirror COARSE

PARAMETERFILE SPFILE Unprotected 2-way mirror 3-way mirror COARSE

DATAGUARDCONFIG Disaster recovery
configurations (used in
standby databases)

Unprotected 2-way mirror 3-way mirror COARSE

FLASHBACK Flashback logs Unprotected 2-way mirror 3-way mirror COARSE

CHANGETRACKING Block change tracking
data (used during
incremental backups)

Unprotected 2-way mirror 3-way mirror COARSE

DUMPSET Data Pump dumpset Unprotected 2-way mirror 3-way mirror COARSE

XTRANSPORT Cross-platform converted
data file

Unprotected 2-way mirror 3-way mirror COARSE

AUTOBACKUP Automatic backup files Unprotected 2-way mirror 3-way mirror COARSE

ASMPARAMETERFILE SPFILE Unprotected 2-way mirror 3-way mirror COARSE

OCRFILE Oracle Cluster Registry
file

Unprotected 2-way mirror 3-way mirror COARSE

ADD TEMPLATE

Use this clause to add one or more named templates to a disk group. To determine the names
of existing templates, query the V$ASM_TEMPLATE dynamic performance view.

MODIFY TEMPLATE

Use this clause to modify the attributes of a system default or user-defined disk group
template. Only the specified attributes are altered. Unspecified properties retain their current
values.

Note

In earlier releases, the keywords ALTER TEMPLATE were used instead of MODIFY
TEMPLATE. The ALTER keyword is still supported for backward compatibility, but is
replaced with MODIFY for consistency with other Oracle SQL.

template_name

Specify the name of the template to be added or modified. The maximum length of a template
name is 30 characters. The name must satisfy the requirements listed in "Database Object
Naming Rules ".

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 125 of 177

redundancy_clause

Specify PARITY for single parity protection for write-once file types like archive logs and backup
sets. If parity protection is not specified, the default redundancy for write-once file types will
continue to be derived from system templates.

Specify DOUBLE for double parity for write-once file types like archive logs and backup sets. If
parity protection is not specified, the default redundancy for write-once file types will continue
to be derived from system templates.

Example:

ALTER DISKGROUP <diskgroup_name> MODIFY TEMPLATE <archivelog> ATTRIBUTE (DOUBLE)

The redundancy of write-once file types may be changed to support parity protection later as
needed.

Specify the redundancy level of the newly added or modified template:

• MIRROR: Files to which this template are applied are protected by mirroring their data
blocks. In normal redundancy disk groups, each primary extent has one mirror extent (2-
way mirroring). For high redundancy disk groups, each primary extent has two mirror
extents (3-way mirroring). You cannot specify MIRROR for templates in external redundancy
disk groups.

• HIGH: Files to which this template are applied are protected by mirroring their data blocks.
Each primary extent has two mirror extents (3-way mirroring) for both normal redundancy
and high redundancy disk groups. You cannot specify HIGH for templates in external
redundancy disk groups.

• UNPROTECTED: Files to which this template are applied are not protected by Automated
Storage Management from media failures. Disks taken offline, either through system action
or by user command, can cause loss of unprotected files. UNPROTECTED is the only valid
setting for external redundancy disk groups. UNPROTECTED may not be specified for
templates in high redundancy disk groups. Oracle discourages the use of unprotected files
in high and normal redundancy disk groups.

• PARITY: Specify the property PARITY for single parity for write-once file types only.

If you omit the redundancy clause, then the value defaults to MIRROR for a normal redundancy
disk group, HIGH for a high redundancy disk group, and UNPROTECTED for an external
redundancy disk group.

striping_clause

Specify how the files to which this template are applied will be striped:

• FINE: Files to which this template are applied are striped every 128KB. This striping mode
is not valid for an Oracle ASM spfile.

• COARSE: Files to which this template are applied are striped every 1MB. This is the default
value.

DROP TEMPLATE

Use this clause to drop one or more templates from the disk group. You can use this clause to
drop only user-defined templates, not system default templates.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 126 of 177

diskgroup_directory_clauses

Before you can create alias names for Oracle ASM filenames (see diskgroup_alias_clauses),
you must specify the full directory structure in which the alias name will reside. The
diskgroup_directory_clauses let you create and manipulate such a directory structure.

ADD DIRECTORY

Use this clause to create a new directory path for hierarchically named aliases. Use a slash (/)
to separate components of the directory. Each directory component can be up to 48 bytes in
length and must not contain the slash character. You cannot use a space for the first or last
character of any component. The total length of the directory path cannot exceed 256 bytes
minus the length of any alias name you intend to create in this directory (see
diskgroup_alias_clauses).

DROP DIRECTORY

Use this clause to drop a directory for hierarchically named aliases. Oracle ASM will not drop
the directory if it contains any alias definitions unless you also specify FORCE. This clause is not
valid for dropping directories created as part of a system alias. Such directories are labeled
with the value Y in the SYSTEM_CREATED column of the V$ASM_ALIAS dynamic performance
view.

RENAME DIRECTORY

Use this clause to change the name of a directory for hierarchically named aliases. This clause
is not valid for renaming directories created as part of a system alias. Such directories are
labeled with the value Y in the SYSTEM_CREATED column of the V$ASM_ALIAS dynamic
performance view.

diskgroup_alias_clauses

When an Oracle ASM file is created, either implicitly or by user specification, Oracle ASM
assigns to the file a fully qualified name ending in a dotted pair of numbers (see
file_specification). The diskgroup_alias_clauses let you create more user-friendly alias names for
the Oracle ASM filenames. You cannot specify an alias name that ends in a dotted pair of
numbers, as this format is indistinguishable from an Oracle ASM filename.

Before specifying this clause, you must first create the directory structure appropriate for your
naming conventions (see diskgroup_directory_clauses). The total length of the alias name,
including the directory prefix, is limited to 256 bytes. Alias names are case insensitive but case
retentive.

ADD ALIAS

Use this clause to create an alias name for an Oracle ASM filename. The alias_name consists of
the full directory path and the alias itself. To determine the names of existing Oracle ASM
aliases, query the V$ASM_ALIAS dynamic performance view. Refer to ASM_filename for
information on Oracle ASM filenames.

DROP ALIAS

Use this clause to remove an alias name from the disk group directory. Each alias name
consists of the full directory path and the alias itself. The underlying file to which the alias
refers remains unchanged.

RENAME ALIAS

Use this clause to change the name of an existing alias. The alias_name consists of the full
directory path and the alias itself.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 127 of 177

Restriction on Dropping and Renaming Aliases

You cannot drop or rename a system-generated alias. To determine whether an alias was
system generated, query the SYSTEM_CREATED column of the V$ASM_ALIAS dynamic
performance view.

diskgroup_volume_clauses

Use these clauses to manipulate logical Oracle ASM Dynamic Volume Manager (Oracle
ADVM) volumes corresponding to physical volume devices. To use these clauses, Oracle ASM
must be started and the disk group being modified must be mounted.

See Also

Oracle Automatic Storage Management Administrator's Guide for more information
about disk group volumes, including examples

add_volume_clause

Use this clause to add a volume to the disk group.

For asm_volume, specify the name of the volume. The name can contain only alphanumeric
characters and the first character must be alphabetic. The maximum length of the name is
platform dependent. Refer to Oracle Automatic Storage Management Administrator's Guide for
more information.

For size_clause, specify the size of the Oracle ADVM volume. The Oracle ASM instance
determines whether sufficient space exists to create the volume. If sufficient space does not
exist, then the Oracle ASM instance returns an error. If sufficient space does exist, then all
nodes in the cluster with an Oracle ASM instance running and the disk group mounted are
notified of the addition. Oracle ASM creates and enables on those nodes a volume device that
can be used to create and mount file systems.

The following optional settings are also available:

• In the redundancy_clause, specify the redundancy level of the Oracle ADVM volume. You can
specify this clause only when creating a volume in a normal redundancy disk group. You
can specify the following volume redundancy levels:

– MIRROR: 2-way mirroring of the volume. This is the default.

– HIGH: 3-way mirroring of the volume.

– UNPROTECTED: No mirroring of the volume.

You cannot specify the redundancy_clause when creating a volume in a high redundancy disk
group or an external redundancy disk group. If you do so, then an error will result. In high
redundancy disk groups, Oracle Database automatically sets the volume redundancy to
HIGH (3-way mirroring). In external redundancy disk groups, Oracle Database
automatically sets the volume redundancy to UNPROTECTED (no mirroring).

• In the STRIPE_WIDTH clause, specify a stripe width for the Oracle ADVM volume. The valid
range is from 4KB to 1MB, at intervals of the power of 2. The default value is 128K.

• In the STRIPE_COLUMNS clause, specify the number of stripes in a stripe set of the Oracle
ADVM volume. The valid range is 1 to 8. The default is 4. If STRIPE_COLUMNS is set to 1,
then striping becomes disabled. In this case, the stripe width is the extent size of the
volume. This volume extent size is 64 times the allocation unit (AU) size of the disk group.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 128 of 177

modify_volume_clause

Use this clause to modify the characteristics of an existing Oracle ADVM volume. You must
specify at least one of the following clauses:

• In the MOUNTPATH clause, specify the mountpath name associated with the volume. The
mountpath_name can be up to 1024 characters.

• In the USAGE clause, specify the usage name associated with the volume. The usage_name
can be up to 30 characters.

RESIZE VOLUME Clause

Use this clause to change the size of an existing Oracle ADVM volume. In an Oracle ASM
cluster, the new size is propagated to all nodes. If an Oracle Advanced Cluster File System
(ACFS) exists on the volume, then you must use the acfsutil size command instead of the ALTER
DISKGROUP statement.

See Also

Oracle Automatic Storage Management Administrator's Guide for more information
about the acfsutil size command

DROP VOLUME Clause

Use this clause to remove the Oracle ASM file that is the storage container for an existing
Oracle ADVM volume. In an Oracle ASM cluster, all nodes with an Oracle ASM instance
running and with this disk group open are notified of the drop operation, which results in
removal of the volume device. If the volume file is open, then this clause returns an error.

diskgroup_attributes

Use this clause to specify attributes for the disk group. Table 13-2 lists the attributes you can
set with this clause. Refer to the CREATE DISKGROUP "ATTRIBUTE Clause " for information on
the behavior of this clause.

drop_diskgroup_file_clause

Use this clause to drop a file from the disk group. Oracle ASM also drops all aliases associated
with the file being dropped. You must use one of the reference forms of the filename. Most
Oracle ASM files do not need to be manually deleted because, as Oracle Managed Files, they
are removed automatically when they are no longer needed. Refer to ASM_filename for
information on the reference forms of Oracle ASM filenames.

You cannot drop a disk group file it if is the spfile that was used to start up the current instance
or any instance in the Oracle ASM cluster.

convert_redundancy_clause

You can use this clause to convert a NORMAL REDUNDANCY or HIGH REDUNDANCY disk group
to a FLEX REDUNDANCY disk group. The disk group must have at least three failure groups
before you start the conversion.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 129 of 177

usergroup_clauses

Use these clauses to add a user group to the disk group, remove a user group from the disk
group, or to add a member to or drop a member from an existing user group.

See Also

Oracle Automatic Storage Management Administrator's Guide for detailed information
about user groups and members, including examples

ADD USERGROUP

Use this clause to add a user group to the disk group. You must have SYSASM or SYSDBA
privilege to create a user group. The maximum length of a user group name is 63 bytes. If you
specify the user name, then it must be in the OS password file and its length cannot exceed 32
characters.

MODIFY USERGROUP

Use these clauses to add a member to or drop a member from an existing user group. You
must be an Oracle ASM administrator (with SYSASM privilege) or the creator (with SYSDBA
privilege) of the user group to use these clauses. The user name must be an existing user in
the OS password file.

DROP USERGROUP

Use this clause to drop an existing user group from the disk group. You must be an Oracle
ASM administrator (with SYSASM privilege) or the creator (with SYSDBA privilege) of the user
group to use this clause. Dropping a user group may leave a disk group file without a valid user
group. In this case, you can update the disk group file manually to add a new, valid group using
the file_permissions_clause.

user_clauses

Use these clauses to add a user to, drop a user from, or replace a user in a disk group.

Note

When administering users with SQL*Plus, the users must be existing operating system
users and their user names must have corresponding operating system user IDs.
However, only users in the same cluster as the Oracle ASM instance can be validated.

ADD USER

Use this clause to add one or more operating system (OS) users to an Oracle ASM disk group
and give those users access privileges on the disk group. A user name must be an existing
user in the OS password file and its length cannot exceed 32 characters. If a specified user
already exists in the disk group, as shown by V$ASM_USER, then the command records an error
and continues to add other users, if any have been specified. This command is seldom
needed, because the OS user running the database instance is added to a disk group
automatically when the instance accesses the disk group. However, this clause is useful when
adding users that are not associated with a particular database instance.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 130 of 177

DROP USER

Use this clause to drop one or more users from the disk group. If a specified user is not in the
disk group, then this clause records an error and continues to drop other users, if any are
specified. If the user owns any files, then you must specify the CASCADE keyword, which drops
the user and all the user's files. If any files owned by the user are open, then DROP USER
CASCADE fails with an error.

To delete a user without deleting the files owned by that user, change the owner of each of
these files to another user and then issue an ALTER DISKGROUP ... DROP USER statement on the
user. Alternatively, you can issue an ALTER DISKGROUP ... REPLACE USER statement to replace
the user you want to drop with a user that currently does not exist in the disk group. This
operation has the side effect of making the new user the owner of files that were previously
owned by the dropped user.

REPLACE USER

Use this clause to replace old_user with new_user in the disk group. All files that are currently
owned by old_user will become owned by new_user, and old_user will be dropped from the disk
group. old_user must exist in the disk group and new_user must not exist in the disk group.

file_permissions_clause

Use this clause to change the permission settings of a disk group file. The three classes of
permissions are owner, user group, and other. You must be the file owner or the Oracle ASM
administrator to use this clause.

If you change the permission settings of an open file, then the operation currently running on
the file will complete using the old permission settings. The new permission settings will take
effect when re-authentication is required.

file_owner_clause

Use this clause to set the owner or user group for a specified file. You must be the Oracle ASM
administrator to change the owner of the file. You must be the owner of the file or the Oracle
ASM administrator to change the user group of a file. In addition, to change the associated
user group of a file, the specified user group must already exist in the disk group, and the
owner of the file must be a member of that user group.

If you use this clause on an open file, then the following conditions apply:

• If you change the owner or user group of an open file, then the operation currently running
on the file will complete using the old owner or user group. The new owner or user group
will take effect when re-authentication is required.

• If you change the owner of an open file, then the new owner of the file cannot be dropped
from the disk group until the instance has been restarted. In an Oracle ASM cluster, the
new owner of the file cannot be dropped until all instances in the cluster have been
restarted.

• If you change the owner of an open file, then the old owner cannot be dropped while the
file is still open, even after the ownership of the file has changed.

scrub_clause

Use this clause to scrub a disk group. The scrub operation checks for logical data corruptions
and repairs the corruptions automatically in normal and high redundancy disks groups.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 131 of 177

• Use the FILE clause to scrub the specified Oracle ASM file in the disk group. You must use
one of the reference forms of the ASM_filename. Refer to ASM_filename for information on
the reference forms of Oracle ASM filenames.

• Use the DISK clause to scrub the specified disk in the disk group.

• If you do not specify FILE or DISK, then all files and disks in the disk group are scrubbed.

REPAIR | NOREPAIR

Specify REPAIR to attempt to repair any errors found during the logical data corruption check.
Specify NOREPAIR to be alerted of any corruptions; Oracle ASM will not take any action to
resolve them. The default is NOREPAIR.

POWER

Use the POWER clause to specify the power level of the scrub operation. Valid values are AUTO,
LOW, HIGH, and MAX. If you omit this clause, then the power level defaults to AUTO and the
power adjusts to the optimum level for the system.

WAIT | NOWAIT

Specify WAIT to allow the scrub operation to complete before returning control to the user.
Specify NOWAIT to add the operation to the scrubbing queue and return control to the user
immediately. The default is NOWAIT.

FORCE | NOFORCE

Specify FORCE to process the command even if the system I/O load is high or scrubbing has
been disabled at the system level. Specify NOFORCE to process the command normally. The
default is NOFORCE.

STOP

Specify STOP if you want to stop an ongoing scrub operation.

You can monitor the progress of the scrub operation by querying the V$ASM_ OPERATION
dynamic performance view.

See Also

Oracle Automatic Storage Management Administrator's Guide for more information on
scrubbing disk groups and "Scrubbing a Disk Group: Example"

quotagroup_clauses

Use these clauses to add a quota group to the disk group, modify a quota group, move a file
group into a quota group, or drop a quota group.

A quota group is a collection of file groups. A file group is a container for all files of a database
within one disk group. A quota group has a specified quota limit, which is the maximum amount
of storage space that its file groups can collectively use. Therefore, a quota group enables you
to define the quota limit for a group of databases within a disk group. The sum of the quota
limits for all quota groups in a disk group can exceed the storage capacity of the disk group.

Each disk group contains a default quota group named GENERIC. If you create a file group and
do not specify its quota group, then the file group belongs to the GENERIC quota group. Oracle
ASM automatically creates the GENERIC quota group when you create a disk group with the
compatible.asm attribute set to 12.2 or higher, or when you set compatible.asm to 12.2 or higher for an

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 132 of 177

existing disk group. Initially, the quota limit for GENERIC is UNLIMITED. You can subsequently
modify this quota limit with the MODIFY QUOTAGROUP clause.

ADD QUOTAGROUP

Use this clause to create a quota group and add it to the disk group. For quotagroup_name, specify
the name of the new quota group.

The SET clause allows you to set the quota limit for the quota group.

• For property_name, specify QUOTA.

• For property_value, specify one of the following clauses:

– Specify size_clause to set a number of bytes for the quota limit. The minimum value you
can specify is 1 byte. You can specify a value that is greater than the storage size of
the disk group. In this case, storage use is limited by the current size of the disk group.
However, if you subsequently increase the storage space for the disk group to a size
that exceeds the quota limit, then the quota limit will be enforced. Refer to size_clause
for the syntax and semantics of this clause. Note that specifying 0 bytes is equivalent
to specifying UNLIMITED.

– Specify UNLIMITED if you do not want to set a quota limit. In this case, storage use is
limited by the storage size of the disk group.

If you omit the SET clause, then the default is SET QUOTA=UNLIMITED.

MODIFY QUOTAGROUP

Use this clause to modify the quota limit for a quota group. For quotagroup_name, specify the
name of the quota group you want to modify. You can modify the quota limit for any quota
group, including the GENERIC quota group. The SET clause has the same semantics here as for
the ADD QUOTAGROUP clause. The quota limit can be set below the amount of space currently
used by the quota group. This action prevents any additional space from being allocated for
files described by file groups associated with this quota group.

MOVE FILEGROUP

Use this clause to move a file group from one quota group to another. For filegroup_name, specify
the file group you want to move. For quotagroup_name, specify the name of the destination quota
group. If the move operation causes the amount of used storage space in the destination quota
group to exceed the quota limit, then the operation succeeds, but no new storage allocations
can take place in the file groups within the quota group. This capability enables you to stop any
files described by a specific file group from allocating additional space.

DROP QUOTAGROUP

Use this clause to drop a quota group from the disk group. For quotagroup_name, specify the
quota group you want to drop. The quota group must not contain any file groups. You cannot
drop the quota group GENERIC.

See Also

Automatic Storage Management Administrator's Guide for more information on quota
groups

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 133 of 177

filegroup_clauses

The filegroup_clauses are valid only for flex disk groups. Use these clauses to create a file group,
modify a file group, move a file into a file group, or drop a file group. A file group is a container
for all files of a database within one disk group. A file group must belong to a quota group.

Each disk group has a default file group with FILEGROUP_NUMBER = 0.

add_filegroup_clause

Use this clause to create a file group.

For filegroup_name, specify the name of the new file group. The maximum length of a file group
name is 127 characters. The name must satisfy the requirements listed in "Database Object
Naming Rules ", with the following addition: File group names are not case sensitive, even if
you specify them with quotation marks. They are always stored internally as uppercase. File
group names must be unique within a disk group.

• Use the DATABASE clause to specify the database (non-CDB, CDB, or PDB) with which the
file group is associated.

• Use the CLUSTER clause to specify the cluster with which the file group is associated.

• Use the VOLUME clause to specify the volume with which the file group is associated.

• Use the TEMPLATE clause to create a file group template with which the file group is
associated. You can use the template to customize a set of file group properties, that can
then be inherited by one or more databases.

You cannot associate more than one file group in the same disk group with the same database,
cluster, volume, or template. If the database, cluster, volume, or template does not exist at the
time of file group creation, then the file group will be automatically associated with it when it is
subsequently created. Database, cluster, volume, and template names must satisfy the
requirements listed in "Database Object Naming Rules ".

The SET clause allows you to set properties for the file group. If you do not specify the SET
clause for a property, then the default value is assigned. You can specify the file_type for any
property for which a file type applies. If you do not specify file_type for such a property, then the
property applies to all file types. For complete information on file group properties and their
default values, see Oracle Automatic Storage Management Administrator's Guide.

Example 1: Create a file group from a file group template to inherit properties from the
template

ALTER DISKGROUP hmdg ADD FILEGROUP fgtem TEMPLATE SET 'datafile.redundancy'='unprotected'
 ALTER DISKGROUP hmdg ADD FILEGROUP fgdb DATABASE NONE FROM TEMPLATE fgtem

Example 2: Create a file group or a tablespace from a file group template to inherit
properties from the template

ALTER DISKGROUP hmdg ADD FILEGROUP fgtem2 TEMPLATE
 CREATE TABLESPACE tbs1 datafile '+hmdg(fg$fgtem2)/dbs/tbs1.f' size 1M

modify_filegroup_clause

 Use this clause to modify file group properties. For filegroup_name, specify the name of the file
group you want to modify. You can modify properties for any file group, including the default file
group. Any that you do not specify with this clause remain unchanged. The SET clause has the
same semantics here as for the add_filegroup_clause.

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 134 of 177

move_to_filegroup_clause

Use this clause to move a file to a file group. If the file is currently associated with a different
file group, then it is disassociated from that file group. The target file group must have enough
space available to contain the file. You must be the owner of the file and the target file group.

drop_filegroup_clause

Use this clause to drop an empty file group. For filegroup_name, specify the name of the file group
you want to drop.

CASCADE

Use the keyword CASCADE to drop a file group that is not empty. When a file group is dropped
with the keyword CASCADE, every file associated with the file group is automatically dropped.

FOR DATABASE Clause

• If the file group being dropped is associated with a pluggable database, then the FOR
PLUGGABLE DATABASE clause names the pluggable database in pdb_name. You must then
specify the FOR DATABASE clause with db_unique_name, the name of the container database
that contains the pluggable database.

• If the file group being dropped is associated with a non-CDB database, then the FOR
DATABASE clause names the non-CDB database in db_unique_name.

• You can specify the CASCADE clause with FOR PLUGGABLE DATABASE and FOR DATABASE.

Use the CASCADE option to delete every file associated with the file group as part of the file
group drop.

When a file group of type DATABASE is dropped using the CASCADE option, ASM checks the
OMF (Oracle Managed File) file name of the files being deleted to verify that they belong to
the database or pluggable database that is associated with the file group being dropped.

See Also

Automatic Storage Management Administrator's Guide for more information on file
groups

undrop_disk_clause

Use this clause to cancel the drop of disks from the disk group. You can cancel the pending
drop of all the disks in one or more disk groups (by specifying diskgroup_name) or of all the disks
in all disk groups (by specifying ALL).

This clause is not relevant for disks that have already been completely dropped from the disk
group or for disk groups that have been completely dropped. This clause results in a long-
running operation. You can see the status of the operation by querying the V$ASM_OPERATION
dynamic performance view.

See Also

V$ASM_OPERATION for more information on the details of long-running Oracle ASM
operations

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 135 of 177

diskgroup_availability

Use this clause to make one or more disk groups available or unavailable to the database
instances running on the same node as the Oracle ASM instance. This clause does not affect
the status of the disk group on other nodes in a cluster.

MOUNT

Specify MOUNT to mount the disk groups in the local Oracle ASM instance. Specify ALL MOUNT
to mount all disk groups specified in the ASM_DISKGROUPS initialization parameter. File
operations can only be performed when a disk group is mounted. If Oracle ASM is running in a
cluster or a standalone server managed by Oracle Grid Infrastructure for a standalone server,
then the MOUNT clause automatically brings the corresponding resource online.

RESTRICTED | NORMAL

Use these clauses to determine the manner in which the disk groups are mounted.

• In the RESTRICTED mode, the disk group is mounted in single-instance exclusive mode. No
other Oracle ASM instance in the same cluster can mount that disk group. In this mode the
disk group is not usable by any Oracle ASM client.

• In the NORMAL mode, the disk group is mounted in shared mode, so that other Oracle ASM
instances and clients can access the disk group. This is the default.

FORCE | NOFORCE

Use these clauses to determine the circumstances under which the disk groups are mounted.

• In the FORCE mode, Oracle ASM attempts to mount the disk group even if it cannot
discover all of the devices that belong to the disk group. This setting is useful if some of the
disks in a normal or high redundancy disk group became unavailable while the disk group
was dismounted. When MOUNT FORCE succeeds, Oracle ASM takes the missing disks
offline.

If Oracle ASM discovers all of the disks in the disk group, then MOUNT FORCE fails.
Therefore, use the MOUNT FORCE setting only if some disks are unavailable. Otherwise,
use NOFORCE.

In normal- and high-redundancy disk groups, disks from one failure group can be
unavailable and MOUNT FORCE will succeed. Also in high-redundancy disk groups, two
disks in two different failure groups can be unavailable and MOUNT FORCE will succeed.
Any other combination of unavailable disks causes the operation to fail, because Oracle
ASM cannot guarantee that a valid copy of all user data or metadata exists on the
available disks.

• In the NOFORCE mode, Oracle ASM does not attempt to mount the disk group unless it can
discover all the member disks. This is the default.

See Also

ASM_DISKGROUPS for more information about adding disk group names to the
initialization parameter file

DISMOUNT

Specify DISMOUNT to dismount the specified disk groups. Oracle ASM returns an error if any
file in the disk group is open unless you also specify FORCE. Specify ALL DISMOUNT to dismount

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 136 of 177

all currently mounted disk groups. File operations can only be performed when a disk group is
mounted. If Oracle ASM is running in a cluster or a standalone server managed by Oracle Grid
Infrastructure for a standalone server, then the DISMOUNT clause automatically takes the
corresponding resource offline.

FORCE

Specify FORCE if you want Oracle ASM to dismount the disk groups even if some files in the
disk group are open.

enable_disable_volume

Use this clause to enable or disable one or more volumes in the disk group.

• For each volume you enable, Oracle ASM creates a volume device file on the local node
that can be used to create or mount the file system.

• For each volume you disable, Oracle ASM deletes the device file on the local node. If the
volume file is open on the local node, then the DISABLE clause returns an error.

Use the ALL keyword to enable or disable all volumes in the disk group. If you specify ALTER
DISKGROUP ALL ..., then you must use the ALL keyword in this clause as well.

See Also

Oracle Automatic Storage Management Administrator's Guide for more information
about disk group volumes

Examples

The following examples require a disk group called dgroup_01. They assume that
ASM_DISKSTRING is set to /devices/disks/*. In addition, they assume the Oracle user has read/write
permission to /devices/disks/d100. Refer to "Creating a Diskgroup: Example" to create dgroup_01.

Adding a Disk to a Disk Group: Example

To add a disk, d100, to a disk group, dgroup_01, issue the following statement:

ALTER DISKGROUP dgroup_01
 ADD DISK '/devices/disks/d100';

Dropping a Disk from a Disk Group: Example

To drop a disk, dgroup_01_0000, from a disk group, dgroup_01, issue the following statement:

ALTER DISKGROUP dgroup_01
 DROP DISK dgroup_01_0000;

Undropping a Disk from a Disk Group: Example

To cancel the drop of disks from a disk group, dgroup_01, issue the following statement:

ALTER DISKGROUP dgroup_01
 UNDROP DISKS;

Resizing a Disk Group: Example

To resize every disk in a disk group, dgroup_01, issue the following statement:

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 137 of 177

ALTER DISKGROUP dgroup_01
 RESIZE ALL
 SIZE 36G;

Rebalancing a Disk Group: Example

To manually rebalance a disk group, dgroup_01, and permit Oracle ASM to execute the
rebalance as fast as possible, issue the following statement:

ALTER DISKGROUP dgroup_01
 REBALANCE POWER 11 WAIT;

The WAIT keyword causes the database to wait for the disk group to be rebalanced before
returning control to the user.

Verifying the Internal Consistency of Disk Group Metadata: Example

To verify the internal consistency of Oracle ASM disk group metadata and instruct Oracle ASM
to repair any errors found, issue the following statement:

ALTER DISKGROUP dgroup_01
 CHECK ALL
 REPAIR;

Adding a Named Template to a Disk Group: Example

To add a named template, template_01 to a disk group, dgroup_01, issue the following statement:

ALTER DISKGROUP dgroup_01
 ADD TEMPLATE template_01
 ATTRIBUTES (UNPROTECTED COARSE);

Changing the Attributes of a Disk Group Template: Example

To modify the attributes of a system default or user-defined disk group template, template_01,
issue the following statement:

ALTER DISKGROUP dgroup_01
 MODIFY TEMPLATE template_01
 ATTRIBUTES (FINE);

Dropping a User-Defined Template from a Disk Group: Example

To drop a user-defined template, template_01, from a disk group, dgroup_01, issue the following
statement:

ALTER DISKGROUP dgroup_01
 DROP TEMPLATE template_01;

Creating a Directory Path for Hierarchically Named Aliases: Example

To specify the directory structure in which alias names will reside, issue the following
statement:

ALTER DISKGROUP dgroup_01
 ADD DIRECTORY '+dgroup_01/alias_dir';

Creating an Alias Name for an Oracle ASM Filename: Example

To create a user alias by specifying the numeric Oracle ASM filename, issue the following
statement:

Chapter 10
ALTER DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 138 of 177

ALTER DISKGROUP dgroup_01
 ADD ALIAS '+dgroup_01/alias_dir/datafile.dbf'
 FOR '+dgroup_01.261.1';

Scrubbing a Disk Group: Example

To scrub a disk group, dgroup_01, issue the following statement. This statement attempts to
repair any errors found during the logical data corruption check and allows the scrub operation
to complete before returning control to the user.

ALTER DISKGROUP dgroup_01
 SCRUB REPAIR WAIT;

Dismounting a Disk Group: Example

To dismount a disk group, dgroup_01, issue the following statement. This statement dismounts
the disk group even if one or more files are active:

ALTER DISKGROUP dgroup_01
 DISMOUNT FORCE;

Mounting a Disk Group: Example

To mount a disk group, dgroup_01, issue the following statement:

ALTER DISKGROUP dgroup_01
 MOUNT;

ALTER DOMAIN
Purpose

Use this statement to make changes to a domain. When you alter a domain note that checks
and catalog changes are made on objects dependent on the domain.

Prerequisites

The domain must be in your own schema, or you must have ALTER object privilege on the
domain, or you must have ALTER ANY DOMAIN system privilege.

Syntax

alter_domain ::=

ALTER

USECASE

DOMAIN

IF EXISTS schema .

domain_name

ADD

MODIFY
DISPLAY display_expression

DROP DISPLAY

ADD

MODIFY
ORDER order_expression

DROP ORDER

annotations_clause

Chapter 10
ALTER DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 139 of 177

annotations_clause

For the full syntax and semantics of the annotations_clause see annotations_clause.

Semantics

USECASE

This keyword is optional and is provided for semantic clarity. It indicates that the domain is to
describe a data use case.

IF EXISTS

Specify IF EXISTS to alter an existing domain.

Specifying IF NOT EXISTS with ALTER DOMAIN results in the error: Incorrect IF EXISTS clause for
ALTER/DROP statement.

ADD DISPLAY

Adds the display_expression to the domain. Raises an error if the domain already has a
display_expression .

Invalidates all SQL statements referencing DOMAIN_DISPLAY for an expression of the given
domain.

For domain functions see Domain Functions

MODIFY DISPLAY

Changes the domain's display expression to display_expression and invalidates all SQL statements
referencing DOMAIN_DISPLAY for an expression of the given domain.

Raises an error if the domain does not have an associated display expression

Invalidates all SQL statements referencing DOMAIN_DISPLAY for an expression of the given
domain.

Both ALTER DOMAIN ADD DISPLAY and ALTER DOMAIN MODIFY DISPLAY type-check the display
expression against all the allowed data types of the domain.

DROP DISPLAY

Raises an error if the domain does not have a display expression. Raises an error If the
domain has dependent flexible domain.

Otherwise it removes the display expression from the domain's description, and invalidates all
SQL statements referencing DOMAIN_DISPLAY for an expression of the given domain.

ADD MODIFY DROP ORDER

The semantics of these DDLs are the same as for DISPLAY, when translated to the ORDER
expression and DOMAIN_ORDER function.

annotations_clause

Chapter 10
ALTER DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 140 of 177

See Also

• For the full semantics of the annotations clause see annotations_clause.

• CREATE DOMAIN

Examples

The following statement changes the display expression of the domain day_of_week. It raises an
error if the domain does not have a display expression:

ALTER DOMAIN day_of_week
 MODIFY DISPLAY LOWER(day_of_week);

The following statement removes the display expression from the domain day_of_week. It raises
an error if the domain does not have a display expression:

ALTER DOMAIN day_of_week
 DROP DISPLAY;

The following statement an display expression to the domain day_of_week. It raises an error if the
domain already has a display expression:

ALTER DOMAIN day_of_week
 ADD DISPLAY INITCAP(day_of_week);

The following statement changes the order expression of the domain year_of_birth. It raises an
error if the domain does not have an order expression:

ALTER DOMAIN year_of_birth
 MODIFY ORDER MOD(year_of_birth,100);

The following statement removes the order expression from the domain year_of_birth. It raises an
error if the domain does not have an order expression:

ALTER DOMAIN year_of_birth
 DROP ORDER;

The following statement an order expression to the domain year_of_birth. It raises an error if the
domain already has an order expression:

ALTER DOMAIN year_of_birth
 ADD ORDER FLOOR(year_of_birth/100);

The following example adds the annotation Display with the value "day_of_week" to the domain. If
the domain already has the Display annotation it raises an error:

ALTER DOMAIN day_of_week
 ANNOTATIONS(Display 'Day of week');

ALTER FLASHBACK ARCHIVE
Purpose

Use the ALTER FLASHBACK ARCHIVE statement for these operations:

• Designate a flashback archive as the default flashback archive for the system

• Add a tablespace for use by the flashback archive

Chapter 10
ALTER FLASHBACK ARCHIVE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 141 of 177

• Change the quota of a tablespace used by the flashback archive

• Remove a tablespace from use by the flashback archive

• Change the retention period of the flashback archive

• Purge the flashback archive of old data that is no longer needed

See Also

Oracle Database Development Guide and CREATE FLASHBACK ARCHIVE for more
information on using Flashback Time Travel

Prerequisites

You must have the FLASHBACK ARCHIVE ADMINISTER system privilege to alter a flashback
archive in any way. You must also have appropriate privileges on the affected tablespaces to
add, modify, or remove a flashback archive tablespace.

Syntax

alter_flashback_archive::=

ALTER FLASHBACK ARCHIVE flashback_archive

SET DEFAULT

ADD

MODIFY
TABLESPACE tablespace

flashback_archive_quota

REMOVE TABLESPACE tablespace_name

MODIFY RETENTION flashback_archive_retention

PURGE

ALL

BEFORE
SCN expr

TIMESTAMP expr

NO

OPTIMIZE DATA

;

flashback_archive_quota::=

QUOTA integer

M

G

T

P

E

Chapter 10
ALTER FLASHBACK ARCHIVE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 142 of 177

flashback_archive_retention::=

RETENTION integer

YEAR

MONTH

DAY

Semantics

flashback_archive

Specify the name of an existing flashback archive.

SET DEFAULT

You must be logged in as SYSDBA to specify this clause. Use this clause to designate this
flashback archive as the default flashback archive for the system. When a CREATE TABLE or
ALTER TABLE statement specifies the flashback_archive_clause without specifying a flashback
archive name, the database uses the default flashback archive to store data from that table.

This statement overrides any previous designation of a different flashback archive as the
default.

See Also

The CREATE TABLE flashback_archive_clause for more information

ADD TABLESPACE

Use this clause to add a tablespace to the flashback archive. You can use the
flashback_archive_quota clause to specify the amount of space that can be used by the flashback
archive in the new tablespace. If you omit that clause, then the flashback archive has unlimited
space in the newly added tablespace.

MODIFY TABLESPACE

Use this clause to change the tablespace quota of a tablespace already used by the flashback
archive.

REMOVE TABLESPACE

Use this clause to remove a tablespace from use by the flashback archive. You cannot remove
the last remaining tablespace used by the flashback archive.

If the tablespace to be removed contains any data within the retention period of the flashback
archive, then that data will be dropped as well. Therefore, you should move your data to
another tablespace before removing the tablespace with this clause.

MODIFY RETENTION

Use this clause to change the retention period of the flashback archive.

Chapter 10
ALTER FLASHBACK ARCHIVE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 143 of 177

PURGE

Use this clause to purge data from the flashback archive.

• Specify PURGE ALL to remove all data from the flashback archive. This historical
information can be retrieved using a flashback query only if the SCN or timestamp
specified in the flashback query is within the undo retention duration.

• Specify PURGE BEFORE SCN to remove all data from the flashback archive before the
specified system change number.

• Specify PURGE BEFORE TIMESTAMP to remove all data from the flashback archive before the
specified timestamp.

[NO] OPTIMIZE DATA

This clause has the same semantics as the [NO] OPTIMIZE DATA clause of CREATE
FLASHBACK ARCHIVE.

See Also

CREATE FLASHBACK ARCHIVE for information on creating flashback archives and
for some simple examples of using flashback archives

ALTER FUNCTION
Purpose

Functions are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the ALTER FUNCTION statement to recompile an invalid standalone stored function. Explicit
recompilation eliminates the need for implicit run-time recompilation and prevents associated
run-time compilation errors and performance overhead.

This statement does not change the declaration or definition of an existing function. To
redeclare or redefine a function, use the CREATE FUNCTION statement with the OR REPLACE
clause. See CREATE FUNCTION .

Prerequisites

The function must be in your own schema or you must have ALTER ANY PROCEDURE system
privilege.

Syntax

alter_function::=

ALTER FUNCTION

IF EXISTS schema .

function_name

function_compile_clause

EDITIONABLE

NONEDITIONABLE

Chapter 10
ALTER FUNCTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 144 of 177

(function_compile_clause: See Oracle Database PL/SQL Language Reference for the syntax of this
clause.)

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the function. If you omit schema, then Oracle Database assumes
the function is in your own schema.

function_name

Specify the name of the function to be recompiled.

function_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of this
clause and for complete information on creating and compiling functions.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the function becomes an editioned or noneditioned
object if editioning is later enabled for the schema object type FUNCTION in schema. The default
is EDITIONABLE. For information about altering editioned and noneditioned objects, see Oracle
Database Development Guide.

ALTER HIERARCHY
Purpose

Use the ALTER HIERARCHY statement to rename or compile a hierarchy. For other alterations,
use CREATE OR REPLACE HIERARCHY.

Prerequisites

To alter a hierarchy in your own schema, you must have the ALTER HIERARCHY system
privilege. To alter a hierarchy in another user's schema, you must have the ALTER ANY
HIERARCHY system privilege or have been granted ALTER directly on the hierarchy.

Syntax

alter_hierarchy::=

ALTER HIERARCHY

IF EXISTS schema .

hierarchy_name
RENAME TO new_hier_name

COMPILE

Chapter 10
ALTER HIERARCHY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 145 of 177

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema in which the hierarchy exists. If you do not specify a schema, then Oracle
Database looks for the hierarchy in your own schema.

hierarchy_name

Specify the name of the hierarchy.

RENAME TO

Specify RENAME TO to change the name of the hierarchy.

COMPILE

Specify COMPILE to compile the hierarchy.

new_hier_name

Specify a new name for the hierarchy.

Example

The following statement changes the name of a hierarchy:

ALTER HIERARCHY product_hier RENAME TO myproduct_hier;

ALTER INDEX
Purpose

Use the ALTER INDEX statement to change or rebuild an existing index.

See Also

CREATE INDEX for information on creating an index

Prerequisites

The index must be in your own schema or you must have the ALTER ANY INDEX system
privilege.

To execute the MONITORING USAGE clause, the index must be in your own schema.

To modify a domain index, you must have EXECUTE object privilege on the indextype of the
index.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 146 of 177

Object privileges are granted on the parent index, not on individual index partitions or
subpartitions.

You must have tablespace quota to modify, rebuild, or split an index partition or to modify or
rebuild an index subpartition.

Syntax

alter_index::=

ALTER INDEX

schema .

index_name

index_ilm_clause

deallocate_unused_clause

allocate_extent_clause

shrink_clause

parallel_clause

physical_attributes_clause

logging_clause

partial_index_clause

rebuild_clause

DEFERRED

IMMEDIATE
INVALIDATION

PARAMETERS (’ ODCI_parameters ’)

COMPILE

ENABLE

DISABLE

UNUSABLE

ONLINE

DEFERRED

IMMEDIATE
INVALIDATION

VISIBLE

INVISIBLE

RENAME TO new_name

COALESCE

CLEANUP ONLY parallel_clause

MONITORING

NOMONITORING
USAGE

UPDATE BLOCK REFERENCES

alter_index_partitioning

annotations_clause

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 147 of 177

(deallocate_unused_clause::=, allocate_extent_clause::=, shrink_clause::=, parallel_clause::=,
physical_attributes_clause::=, logging_clause::=, partial_index_clause::=, rebuild_clause::=,
alter_index_partitioning::=)

(The ODCI_parameters are documented in Oracle Database Data Cartridge Developer's Guide.)

index_ilm_clause::=

ILM

ADD POLICY

policy_clause

DELETE POLICY policy_name

policy_clause::=

OPTIMIZE condition_clause

tiering_clause

PLSQL_function_name

tiering_clause::=

TIER TO LOW_COST_TBS

condition_clause::=

tracking_statistics_clause

ON PLSQL_function_name

tracking_statistics_clause::=

AFTER time_interval

DAYS

MONTHS

YEARS

OF

NO
ACCESS

MODIFICATION

CREATION

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

(size_clause::=)

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 148 of 177

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

shrink_clause::=

SHRINK SPACE

COMPACT CASCADE

parallel_clause::=

NOPARALLEL

PARALLEL

integer

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 149 of 177

partial_index_clause::=

INDEXING

PARTIAL

FULL

rebuild_clause::=

REBUILD

PARTITION partition

SUBPARTITION subpartition

REVERSE

NOREVERSE

parallel_clause

TABLESPACE tablespace

PARAMETERS (’ ODCI_parameters ’)

XMLIndex_parameters_clause

ONLINE

physical_attributes_clause

index_compression

logging_clause

partial_index_clause

(parallel_clause::=, physical_attributes_clause::=, index_compression::=, logging_clause::=,
partial_index_clause::=)

(The ODCI_parameters are documented in Oracle Database Data Cartridge Developer's Guide.
The XMLIndex_parameters_clause is documented in Oracle XML DB Developer's Guide.

index_compression::=

prefix_compression

advanced_index_compression

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 150 of 177

advanced_index_compression::=

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

annotations_clause::=

For the full syntax and semantics of the annotations_clause see annotations_clause.

alter_index_partitioning::=

modify_index_default_attrs

add_hash_index_partition

modify_index_partition

rename_index_partition

drop_index_partition

split_index_partition

coalesce_index_partition

modify_index_subpartition

(modify_index_default_attrs::=, add_hash_index_partition::=, modify_index_partition::=,
rename_index_partition::=, drop_index_partition::=, split_index_partition::=,
coalesce_index_partition::=, modify_index_subpartition::=)

modify_index_default_attrs::=

MODIFY DEFAULT ATTRIBUTES

FOR PARTITION partition

physical_attributes_clause

TABLESPACE
tablespace

DEFAULT

logging_clause

(physical_attributes_clause::=, logging_clause::=)

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 151 of 177

add_hash_index_partition::=

ADD PARTITION

partition TABLESPACE tablespace index_compression parallel_clause

(index_compression::=, parallel_clause::=)

coalesce_index_partition::=

COALESCE PARTITION

parallel_clause

(parallel_clause::=)

modify_index_partition::=

MODIFY PARTITION partition

deallocate_unused_clause

allocate_extent_clause

physical_attributes_clause

logging_clause

index_compression

PARAMETERS (’ ODCI_parameters ’)

COALESCE

CLEANUP ONLY parallel_clause

UPDATE BLOCK REFERENCES

UNUSABLE

(deallocate_unused_clause::=, allocate_extent_clause::=, physical_attributes_clause::=,
logging_clause::=, index_compression::=)

rename_index_partition::=

RENAME
PARTITION partition

SUBPARTITION subpartition
TO new_name

drop_index_partition::=

DROP PARTITION partition_name

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 152 of 177

split_index_partition::=

SPLIT PARTITION partition_name_old AT (literal

,

)

INTO (index_partition_description , index_partition_description) parallel_clause

(parallel_clause::=)

index_partition_description::=

PARTITION

partition

segment_attributes_clause

index_compression

PARAMETERS (’ ODCI_parameters ’)

USABLE

UNUSABLE

(segment_attributes_clause::=, index_compression::=)

Note

The USABLE and UNUSABLE keywords are not supported when index_partition_description is
specified for the split_index_partition clause.

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

(physical_attributes_clause::=, TABLESPACE SET: not supported with ALTER INDEX,
logging_clause::=)

modify_index_subpartition::=

MODIFY SUBPARTITION subpartition

UNUSABLE

allocate_extent_clause

deallocate_unused_clause

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 153 of 177

(allocate_extent_clause::=, deallocate_unused_clause::=)

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing index.

Specifying IF NOT EXISTS with ALTER INDEX results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the index. If you omit schema, then Oracle Database assumes
the index is in your own schema.

index_name

Specify the name of the index to be altered.

Restrictions on Modifying Indexes

The modification of indexes is subject to the following restrictions:

• If index is a domain index, then you can specify only the PARAMETERS clause, the RENAME
clause, the rebuild_clause (with or without the PARAMETERS clause), the parallel_clause, or the
UNUSABLE clause. No other clauses are valid.

• You cannot alter or rename a domain index that is marked LOADING or FAILED. If an index
is marked FAILED, then the only clause you can specify is REBUILD.

See Also

Oracle Database Data Cartridge Developer's Guide for information on the LOADING
and FAILED states of domain indexes

index_ilm_clause

Please refer to index_ilm_clause in CREATE INDEX for full semantics.

deallocate_unused_clause

Use the deallocate_unused_clause to explicitly deallocate unused space at the end of the index and
make the freed space available for other segments in the tablespace.

If index is range-partitioned or hash-partitioned, then Oracle Database deallocates unused
space from each index partition. If index is a local index on a composite-partitioned table, then
Oracle Database deallocates unused space from each index subpartition.

Restrictions on Deallocating Space

Deallocation of space is subject to the following restrictions:

• You cannot specify this clause for an index on a temporary table.

• You cannot specify this clause and also specify the rebuild_clause.

Refer to deallocate_unused_clause for a full description of this clause.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 154 of 177

KEEP integer

The KEEP clause lets you specify the number of bytes above the high water mark that the index
will have after deallocation. If the number of remaining extents is less than MINEXTENTS, then
MINEXTENTS is set to the current number of extents. If the initial extent becomes smaller than
INITIAL, then INITIAL is set to the value of the current initial extent. If you omit KEEP, then all
unused space is freed.

Refer to ALTER TABLE for a complete description of this clause.

allocate_extent_clause

The allocate_extent_clause lets you explicitly allocate a new extent for the index. For a local index
on a hash-partitioned table, Oracle Database allocates a new extent for each partition of the
index.

Restriction on Allocating Extents

You cannot specify this clause for an index on a temporary table or for a range-partitioned or
composite-partitioned index.

Refer to allocate_extent_clause for a full description of this clause.

shrink_clause

Use this clause to compact the index segments. Specifying ALTER INDEX ... SHRINK SPACE
COMPACT is equivalent to specifying ALTER INDEX ... COALESCE.

For complete information on this clause, refer to shrink_clause in the documentation on CREATE
TABLE.

Restriction on Shrinking Index Segments

You cannot specify this clause for a bitmap join index or for a function-based index.

parallel_clause

Use the PARALLEL clause to change the default degree of parallelism for queries and DML on
the index.

Restriction on Parallelizing Indexes

You cannot specify this clause for an index on a temporary table.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

See Also

"Enabling Parallel Queries: Example"

physical_attributes_clause

Use the physical_attributes_clause to change the values of parameters for a nonpartitioned index, all
partitions and subpartitions of a partitioned index, a specified partition, or all subpartitions of a
specified partition.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 155 of 177

See Also

• the physical attributes parameters in CREATE TABLE

• "Modifying Real Index Attributes: Example" and "Changing MAXEXTENTS:
Example"

Restrictions on Index Physical Attributes

Index physical attributes are subject to the following restrictions:

• You cannot specify this clause for an index on a temporary table.

• You cannot specify the PCTUSED parameter at all when altering an index.

• You can specify the PCTFREE parameter only as part of the rebuild_clause, the
modify_index_default_attrs clause, or the split_index_partition clause.

storage_clause

Use the storage_clause to change the storage parameters for a nonpartitioned index, index
partition, or all partitions of a partitioned index, or default values of these parameters for a
partitioned index. Refer to storage_clause for complete information on this clause.

logging_clause

Use the logging_clause to change the logging attribute of the index. If you also specify the
REBUILD clause, then this new setting affects the rebuild operation. If you specify a different
value for logging in the REBUILD clause, then Oracle Database uses the last logging value
specified as the logging attribute of the index and of the rebuild operation.

An index segment can have logging attributes different from those of the base table and
different from those of other index segments for the same base table.

Restriction on Index Logging

You cannot specify this clause for an index on a temporary table.

See Also

• logging_clause for a full description of this clause

• Oracle Database VLDB and Partitioning Guide for more information about parallel
DML

partial_index_clause

Use the partial_index_clause to change the index to a full index or a partial index. Specify
INDEXING FULL to change the index to a full index. Specify INDEXING PARTIAL to change the
index to a partial index. This clause is valid only for indexes on partitioned tables. Refer to the
partial_index_clause of CREATE INDEX for the full semantics of this clause.

RECOVERABLE | UNRECOVERABLE

These keywords are deprecated and have been replaced with LOGGING and NOLOGGING,
respectively. Although RECOVERABLE and UNRECOVERABLE are supported for backward

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 156 of 177

compatibility, Oracle strongly recommends that you use the LOGGING and NOLOGGING
keywords.

RECOVERABLE is not a valid keyword for creating partitioned tables or LOB storage
characteristics. UNRECOVERABLE is not a valid keyword for creating partitioned or index-
organized tables. Also, it can be specified only with the AS subquery clause of CREATE INDEX.

rebuild_clause

Use the rebuild_clause to re-create an existing index or one of its partitions or subpartitions. If
index is marked UNUSABLE, then a successful rebuild will mark it USABLE. For a function-based
index, this clause also enables the index. If the function on which the index is based does not
exist, then the rebuild statement will fail.

Note

When you rebuild the secondary index of an index-organized table, Oracle Database
preserves the primary key columns contained in the logical rowid when the index was
created. Therefore, if the index was created with the COMPATIBLE initialization
parameter set to less than 10.0.0, the rebuilt index will contain the index key and any
of the primary key columns of the table that are not also in the index key. If the index
was created with the COMPATIBLE initialization parameter set to 10.0.0 or greater, then
the rebuilt index will contain the index key and all the primary key columns of the table,
including those also in the index key.

Restrictions on Rebuilding Indexes

The rebuilding of indexes is subject to the following restrictions:

• You cannot rebuild an index on a temporary table.

• You cannot rebuild a bitmap index that is marked INVALID. Instead, you must drop and then
re-create it.

• You cannot rebuild an entire partitioned index. You must rebuild each partition or
subpartition, as described for the PARTITION clause.

• You cannot specify the deallocate_unused_clause in the same statement as the rebuild_clause.

• You cannot change the value of the PCTFREE parameter for the index as a whole (ALTER
INDEX) or for a partition (ALTER INDEX ... MODIFY PARTITION). You can specify PCTFREE in all
other forms of the ALTER INDEX statement.

• For a domain index:

– You can specify only the PARAMETERS clause (either for the index or for a partition of
the index) or the parallel_clause. No other rebuild clauses are valid.

– You can rebuild an index only if the index is not marked IN_PROGRESS.

– You can rebuild an index partition only if the index is not marked IN_PROGRESS or
FAILED and the partition is not marked IN_PROGRESS.

• You cannot rebuild a local index, but you can rebuild a partition of a local index (ALTER
INDEX ... REBUILD PARTITION).

• For a local index on a hash partition or subpartition, the only parameter you can specify is
TABLESPACE.

• You cannot rebuild an online index that is used to enforce a deferrable unique constraint.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 157 of 177

PARTITION Clause

Use the PARTITION clause to rebuild one partition of an index. You can also use this clause to
move an index partition to another tablespace or to change a create-time physical attribute.

The storage of partitioned database entities in tablespaces of different block sizes is subject to
several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a discussion of
these restrictions.

Restriction on Rebuilding Partitions

You cannot specify this clause for a local index on a composite-partitioned table. Instead, use
the REBUILD SUBPARTITION clause.

See Also

Oracle Database VLDB and Partitioning Guide for more information about partition
maintenance operations and "Rebuilding Unusable Index Partitions: Example"

SUBPARTITION Clause

Use the SUBPARTITION clause to rebuild one subpartition of an index. You can also use this
clause to move an index subpartition to another tablespace. If you do not specify TABLESPACE,
then the subpartition is rebuilt in the same tablespace.

The storage of partitioned database entities in tablespaces of different block sizes is subject to
several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a discussion of
these restrictions.

Restriction on Modifying Index Subpartitions

The only parameters you can specify for a subpartition are TABLESPACE, ONLINE, and the
parallel_clause.

REVERSE | NOREVERSE

Indicate whether the bytes of the index block are stored in reverse order:

• REVERSE stores the bytes of the index block in reverse order and excludes the rowid when
the index is rebuilt.

• NOREVERSE stores the bytes of the index block without reversing the order when the index
is rebuilt. Rebuilding a REVERSE index without the NOREVERSE keyword produces a rebuilt,
reverse-keyed index.

Restrictions on Reverse Indexes

Reverse indexes are subject to the following restrictions:

• You cannot reverse a bitmap index or an index-organized table.

• You cannot specify REVERSE or NOREVERSE for a partition or subpartition.

See Also

"Storing Index Blocks in Reverse Order: Example"

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 158 of 177

parallel_clause

Use the parallel_clause to parallelize the rebuilding of the index and to change the degree of
parallelism for the index itself. All subsequent operations on the index will be executed with the
degree of parallelism specified by this clause, unless overridden by a subsequent data
definition language (DDL) statement with the parallel_clause. The following exceptions apply:

• If ALTER SESSION DISABLE PARALLEL DDL was specified before rebuilding the index, then
the index will be rebuilt serially and the degree of parallelism for the index will be changed
to 1.

• If ALTER SESSION FORCE PARALLEL DDL was specified before rebuilding the index, then the
index will be rebuilt in parallel and the degree of parallelism for the index will be changed to
the value that was specified in the ALTER SESSION statement, or DEFAULT if no value was
specified.

See Also

"Rebuilding an Index in Parallel: Example"

TABLESPACE Clause

Specify the tablespace where the rebuilt index, index partition, or index subpartition will be
stored. The default is the default tablespace where the index or partition resided before you
rebuilt it.

index_compression

Use the index_compression clauses to enable or disable index compression for the index. Specify
the prefix_compression clause to enable or disable prefix compression for the index. Specify the
advanced_index_compression clause to enable or disable advanced index compression for the index.

The index_compression clauses have the same semantics for CREATE INDEX and ALTER INDEX. For
full information on these clauses, refer to index_compression in the documentation on CREATE
INDEX.

ONLINE Clause

Specify ONLINE to allow DML operations on the table or partition during rebuilding of the index.

Restrictions on Online Indexes

Online indexes are subject to the following restrictions:

• Parallel DML is not supported during online index building. If you specify ONLINE and
subsequently issue parallel DML statements, then Oracle Database returns an error.

• You cannot specify ONLINE for a bitmap join index or a cluster index.

• For a nonunique secondary index on an index-organized table, the number of index key
columns plus the number of primary key columns that are included in the logical rowid in
the index-organized table cannot exceed 32. The logical rowid excludes columns that are
part of the index key.

logging_clause

Specify whether the ALTER INDEX ... REBUILD operation will be logged.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 159 of 177

Refer to the logging_clause for a full description of this clause.

PARAMETERS Clause

This clause is valid only for domain indexes in a top-level ALTER INDEX statement and in the
rebuild_clause. This clause specifies the parameter string that is passed uninterpreted to the
appropriate ODCI indextype routine.

The maximum length of the parameter string is 1000 characters.

If you are altering or rebuilding an entire index, then the string must refer to index-level
parameters. If you are rebuilding a partition of the index, then the string must refer to partition-
level parameters.

If index is marked UNUSABLE, then modifying the parameters alone does not make it USABLE.
You must also rebuild the UNUSABLE index to make it usable.

If you have installed Oracle Text, then you can rebuild your Oracle Text domain indexes using
parameters specific to that product. For more information on those parameters, refer to Oracle
Text Reference.

Restriction on the PARAMETERS Clause

You can modify index partitions only if index is not marked IN_PROGRESS or FAILED, no index
partitions are marked IN_PROGRESS, and the partition being modified is not marked FAILED.

See Also

• Oracle Database Data Cartridge Developer's Guide for more information on
indextype routines for domain indexes

• CREATE INDEX for more information on domain indexes

XMLIndex_parameters_clause

This clause is valid only for XMLIndex indexes. This clause specifies the parameter string that
defines the XMLIndex implementation.

The maximum length of the parameter string is 1000 characters.

If you are altering or rebuilding an entire index, then the string must refer to index-level
parameters. If you are rebuilding a partition of the index, then the string must refer to partition-
level parameters.

If index is marked UNUSABLE, then modifying the parameters alone does not make it USABLE.
You must also rebuild the UNUSABLE index to make it usable.

See Also

Oracle XML DB Developer's Guide for more information on XMLIndex, including the
syntax and semantics of the XMLIndex_parameters_clause

Restriction on the XMLIndex_parameters_clause

You can modify index partitions only if index is not marked IN_PROGRESS or FAILED, no index
partitions are marked IN_PROGRESS, and the partition being modified is not marked FAILED.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 160 of 177

{ DEFERRED | IMMEDIATE } INVALIDATION

This clause lets you control when the database invalidates dependent cursors while rebuilding
an index or while marking an index UNUSABLE.

• If you specify DEFERRED INVALIDATION, then the database avoids or defers invalidating
dependent cursors, when possible.

• If you specify IMMEDIATE INVALIDATION, then the database immediately invalidates
dependent cursors, as it did in Oracle Database 12c Release 1 (12.1) and prior releases.
This is the default.

If you omit this clause, then the value of the CURSOR_INVALIDATION initialization parameter
determines when cursors are invalidated.

See Also

• Oracle Database SQL Tuning Guide for more information on cursor invalidation

• Oracle Database Reference for more information in the CURSOR_INVALIDATION
initialization parameter

COMPILE Clause

Use this clause to recompile an invalid index explicitly. For domain indexes, this clause is
useful when the underlying indextype has been altered to support system-managed domain
indexes, so that the existing domain index has been marked INVALID. In this situation, this
ALTER INDEX statement migrates the domain index from a user-managed domain index to a
system-managed domain index. For all types of indexes, this clause is useful when an index
has been marked INVALID by an ALTER TABLE statement. In this situation, this ALTER INDEX
statement revalidates the index without rebuilding it.

See Also

The CREATE INDEXTYPE storage_table_clause and Oracle Database Data Cartridge
Developer's Guide for information on creating system-managed domain indexes

ENABLE Clause

ENABLE applies only to a function-based index that has been disabled, either by an ALTER
INDEX ... DISABLE statement, or because a user-defined function used by the index was
dropped or replaced. This clause enables such an index if these conditions are true:

• The function is currently valid.

• The signature of the current function matches the signature of the function when the index
was created.

• The function is currently marked as DETERMINISTIC.

Restrictions on Enabling Function-based Indexes

The ENABLE clause is subject to the following restrictions:

• You cannot specify any other clauses of ALTER INDEX in the same statement with ENABLE.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 161 of 177

• You cannot specify this clause for an index on a temporary table. Instead, you must drop
and recreate the index. You can retrieve the creation DDL for the index using the
DBMS_METADATA package.

DISABLE Clause

DISABLE applies only to a function-based index. This clause lets you disable the use of a
function-based index. You might want to do so, for example, while working on the body of the
function. Afterward you can either rebuild the index or specify another ALTER INDEX statement
with the ENABLE keyword.

USABLE | UNUSABLE

Specify UNUSABLE to mark the index or index partition(s) or index subpartition(s) UNUSABLE.
The space allocated for an index or index partition or subpartition is freed immediately when
the object is marked UNUSABLE. An unusable index must be rebuilt, or dropped and re-created,
before it can be used. While one partition is marked UNUSABLE, the other partitions of the index
are still valid. You can execute statements that require the index if the statements do not
access the unusable partition. You can also split or rename the unusable partition before
rebuilding it. Refer to CREATE INDEX ... USABLE | UNUSABLE for more information.

ONLINE

Specify ONLINE to indicate that DML operations on the table or partition will be allowed while
marking the index UNUSABLE. If you specify this clause, then the database will not drop the
index segments.

Restrictions on Marking Indexes Unusable

The following restrictions apply to marking indexes unusable:

• You cannot specify UNUSABLE for an index on a temporary table.

• When a global index is marked UNUSABLE during a partition maintenance operation, the
database does not drop the unusable index segments.

VISIBLE | INVISIBLE

Use this clause to specify whether the index is visible or invisible to the optimizer. Refer to
"VISIBLE | INVISIBLE" in CREATE INDEX for a full description of this clause.

RENAME Clause

Use this clause to rename an index. The new_index_name is a single identifier and does not
include the schema name.

Restriction on Renaming Indexes

For a domain index, neither index nor any partitions of index should be in IN_PROGRESS or FAILED
state.

See Also

• Building Domain Indexes of the Data Cartridge Developer's Guide.

• Extensible Indexing Interface of the Data Cartridge Developer's Guide.

• Renaming an Index: Example

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 162 of 177

COALESCE Clause

Specify COALESCE to instruct Oracle Database to merge the contents of index blocks where
possible to free blocks for reuse.

CLEANUP

Specify CLEANUP to remove orphaned index entries for records that were previously dropped or
truncated by a table partition maintenance operation.

To determine whether an index contains orphaned index entries, you can query the
ORPHANED_ENTRIES column of the USER_, DBA_, ALL_INDEXES data dictionary views. Refer to
Oracle Database Reference for more information.

ONLY

Specify ONLY when you want to clean up the index without coalescing the index blocks.

parallel_clause

Use the parallel_clause to specify whether to parallelize the coalesce operation.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

Restrictions on Coalescing Index Blocks

Coalescing of index blocks is subject to the following restrictions:

• You cannot specify this clause for an index on a temporary table.

• Do not specify this clause for the primary key index of an index-organized table. Instead
use the COALESCE clause of ALTER TABLE.

See Also

• Oracle Database Administrator's Guide for more information on space
management and coalescing indexes

• COALESCE Clause for information on coalescing the space of an index-organized
table

• shrink_clause for an alternative method of compacting index segments

MONITORING USAGE | NOMONITORING USAGE

Use this clause to determine whether Oracle Database should monitor index use.

• Specify MONITORING USAGE to begin monitoring the index. Oracle Database first clears
existing information on index use, and then monitors the index for use until a subsequent
ALTER INDEX ... NOMONITORING USAGE statement is executed.

• To terminate monitoring of the index, specify NOMONITORING USAGE.

To see whether the index has been used since this ALTER INDEX ... NOMONITORING USAGE
statement was issued, query the USED column of the USER_OBJECT_USAGE data dictionary view.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 163 of 177

See Also

Oracle Database Reference for information on the USER_OBJECT_USAGE data dictionary
view

UPDATE BLOCK REFERENCES Clause

The UPDATE BLOCK REFERENCES clause is valid only for normal and domain indexes on index-
organized tables. Specify this clause to update all the stale guess data block addresses stored
as part of the index row with the correct database address for the corresponding block
identified by the primary key.

For a domain index, Oracle Database executes the ODCIIndexAlter routine with the alter_option
parameter set to AlterIndexUpdBlockRefs. This routine enables the cartridge code to update the
stale guess data block addresses in the index.

Restriction on UPDATE BLOCK REFERENCES

You cannot combine this clause with any other clause of ALTER INDEX.

annotations_clause

For the full semantics of the annotations clause see annotations_clause.

alter_index_partitioning

The partitioning clauses of the ALTER INDEX statement are valid only for partitioned indexes.

The storage of partitioned database entities in tablespaces of different block sizes is subject to
several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a discussion of
these restrictions.

Restrictions on Modifying Index Partitions

Modifying index partitions is subject to the following restrictions:

• You cannot specify any of these clauses for an index on a temporary table.

• You can combine several operations on the base index into one ALTER INDEX statement
(except RENAME and REBUILD), but you cannot combine partition operations with other
partition operations or with operations on the base index.

modify_index_default_attrs

Specify new values for the default attributes of a partitioned index.

Restriction on Modifying Partition Default Attributes

The only attribute you can specify for a hash-partitioned global index or for an index on a hash-
partitioned table is TABLESPACE.

TABLESPACE

Specify the default tablespace for new partitions of an index or subpartitions of an index
partition.

logging_clause

Specify the default logging attribute of a partitioned index or an index partition.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 164 of 177

Refer to logging_clause for a full description of this clause.

FOR PARTITION

Use the FOR PARTITION clause to specify the default attributes for the subpartitions of a partition
of a local index on a composite-partitioned table.

Restriction on FOR PARTITION

You cannot specify FOR PARTITION for a list partition.

See Also

"Modifying Default Attributes: Example"

add_hash_index_partition

Use this clause to add a partition to a global hash-partitioned index. Oracle Database adds
hash partitions and populates them with index entries rehashed from an existing hash partition
of the index, as determined by the hash function. If you omit the partition name, then Oracle
Database assigns a name of the form SYS_Pn. If you omit the TABLESPACE clause, then Oracle
Database places the partition in the tablespace specified for the index. If no tablespace is
specified for the index, then Oracle Database places the partition in the default tablespace of
the user, if one has been specified, or in the system default tablespace.

modify_index_partition

Use the modify_index_partition clause to modify the real physical attributes, logging attribute, or
storage characteristics of index partition partition or its subpartitions. For a hash-partitioned
global index, the only subclause of this clause you can specify is UNUSABLE.

COALESCE

Specify this clause to merge the contents of index partition blocks where possible to free
blocks for reuse.

CLEANUP

Specify CLEANUP to remove orphaned index entries for records that were previously dropped or
truncated by a table partition maintenance operation.

To determine whether an index partition contains orphaned index entries, you can query the
ORPHANED_ENTRIES column of the USER_, DBA_, ALL_PART_INDEXES data dictionary views. Refer
to Oracle Database Reference for more information.

UPDATE BLOCK REFERENCES

The UPDATE BLOCK REFERENCES clause is valid only for normal indexes on index-organized
tables. Use this clause to update all stale guess data block addresses stored in the secondary
index partition.

Restrictions on UPDATE BLOCK REFERENCES

This clause is subject to the following restrictions:

• You cannot specify the physical_attributes_clause for an index on a hash-partitioned table.

• You cannot specify UPDATE BLOCK REFERENCES with any other clause in ALTER INDEX.

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 165 of 177

Note

If the index is a local index on a composite-partitioned table, then the changes you
specify here will override any attributes specified earlier for the subpartitions of index,
as well as establish default values of attributes for future subpartitions of that partition.
To change the default attributes of the partition without overriding the attributes of
subpartitions, use ALTER TABLE ... MODIFY DEFAULT ATTRIBUTES FOR PARTITION.

See Also

"Marking an Index Unusable: Examples"

UNUSABLE Clause

This clause has the same function for index partitions that it has for the index as a whole. Refer
to "USABLE | UNUSABLE".

index_compression

This clause is relevant for composite-partitioned indexes. Use this clause to change the
compression attribute for the partition and every subpartition in that partition. Oracle Database
marks each index subpartition in the partition UNUSABLE and you must then rebuild these
subpartitions. Prefix compression must already have been specified for the index before you
can specify the prefix_compression clause for a partition, or advanced index compression must
have already been specified for the index before you can specify the advanced_index_compression
clause for a partition. You can specify this clause only at the partition level. You cannot change
the compression attribute for an individual subpartition.

You can use this clause for noncomposite index partitions. However, it is more efficient to use
the rebuild_clause for noncomposite partitions, which lets you rebuild and set the compression
attribute in one step.

rename_index_partition

Use the rename_index_partition clauses to rename index partition or subpartition to new_name.

Restrictions on Renaming Index Partitions

Renaming index partitions is subject to the following restrictions:

• You cannot rename the subpartition of a list partition.

• For a partition of a domain index, index cannot be marked IN_PROGRESS or FAILED, none of
the partitions can be marked IN_PROGRESS, and the partition you are renaming cannot be
marked FAILED.

See Also

"Renaming an Index Partition: Example"

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 166 of 177

drop_index_partition

Use the drop_index_partition clause to remove a partition and the data in it from a partitioned
global index. When you drop a partition of a global index, Oracle Database marks the next
index partition UNUSABLE. You cannot drop the highest partition of a global index.

See Also

"Dropping an Index Partition: Example"

split_index_partition

Use the split_index_partition clause to split a partition of a global range-partitioned index into two
partitions, adding a new partition to the index. This clause is not valid for hash-partitioned
global indexes. Instead, use the add_hash_index_partition clause.

Splitting a partition marked UNUSABLE results in two partitions, both marked UNUSABLE. You
must rebuild the partitions before you can use them.

Splitting a partition marked USABLE results in two partitions populated with index data. Both
new partitions are marked USABLE.

AT Clause

Specify the new noninclusive upper bound for split_partition_1. The value_list must evaluate to less
than the presplit partition bound for partition_name_old and greater than the partition bound for the
next lowest partition (if there is one).

INTO Clause

Specify (optionally) the name and physical attributes of each of the two partitions resulting from
the split.

See Also

"Splitting a Partition: Example"

coalesce_index_partition

This clause is valid only for hash-partitioned global indexes. Oracle Database reduces by one
the number of index partitions. Oracle Database selects the partition to coalesce based on the
requirements of the hash function. Use this clause if you want to distribute index entries of a
selected partition into one of the remaining partitions and then remove the selected partition.

modify_index_subpartition

Use the modify_index_subpartition clause to mark UNUSABLE or allocate or deallocate storage for a
subpartition of a local index on a composite-partitioned table. All other attributes of such a
subpartition are inherited from partition-level default attributes.

Examples

Storing Index Blocks in Reverse Order: Example

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 167 of 177

The following statement rebuilds index ord_customer_ix (created in "Creating an Index: Example")
so that the bytes of the index block are stored in reverse order:

ALTER INDEX ord_customer_ix REBUILD REVERSE;

Rebuilding an Index in Parallel: Example

The following statement causes the index to be rebuilt from the existing index by using parallel
execution processes to scan the old and to build the new index:

ALTER INDEX ord_customer_ix REBUILD PARALLEL;

Modifying Real Index Attributes: Example

The following statement alters the oe.cust_lname_ix index so that future data blocks within this
index use 5 initial transaction entries:

ALTER INDEX oe.cust_lname_ix
 INITRANS 5;

If the oe.cust_lname_ix index were partitioned, then this statement would also alter the default
attributes of future partitions of the index. Partitions added in the future would then use 5 initial
transaction entries and an incremental extent of 100K.

Enabling Parallel Queries: Example

The following statement sets the parallel attributes for index upper_ix (created in "Creating a
Function-Based Index: Example") so that scans on the index will be parallelized:

ALTER INDEX upper_ix PARALLEL;

Renaming an Index: Example

The following statement renames an index:

ALTER INDEX upper_ix RENAME TO upper_name_ix;

Marking an Index Unusable: Examples

The following statements use the cost_ix index, which was created in "Creating a Range-
Partitioned Global Index: Example". Partition p1 of that index was dropped in "Dropping an
Index Partition: Example". The first statement marks index partition p2 as UNUSABLE:

ALTER INDEX cost_ix
 MODIFY PARTITION p2 UNUSABLE;

The next statement marks the entire index cost_ix as UNUSABLE:

ALTER INDEX cost_ix UNUSABLE;

Rebuilding Unusable Index Partitions: Example

The following statements rebuild partitions p2 and p3 of the cost_ix index, making the index once
more usable: The rebuilding of partition p3 will not be logged:

ALTER INDEX cost_ix
 REBUILD PARTITION p2;
ALTER INDEX cost_ix
 REBUILD PARTITION p3 NOLOGGING;

Changing MAXEXTENTS: Example

Chapter 10
ALTER INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 168 of 177

The following statement changes the maximum number of extents for partition p3 and changes
the logging attribute:

/* This example will fail if the tablespace in which partition p3
 resides is locally managed.
*/
ALTER INDEX cost_ix MODIFY PARTITION p3
 STORAGE(MAXEXTENTS 30) LOGGING;

Renaming an Index Partition: Example

The following statement renames an index partition of the cost_ix index (created in "Creating a
Range-Partitioned Global Index: Example"):

ALTER INDEX cost_ix
 RENAME PARTITION p3 TO p3_Q3;

Splitting a Partition: Example

The following statement splits partition p2 of index cost_ix (created in "Creating a Range-
Partitioned Global Index: Example") into p2a and p2b:

ALTER INDEX cost_ix
 SPLIT PARTITION p2 AT (1500)
 INTO (PARTITION p2a TABLESPACE tbs_01 LOGGING,
 PARTITION p2b TABLESPACE tbs_02);

Dropping an Index Partition: Example

The following statement drops index partition p1 from the cost_ix index:

ALTER INDEX cost_ix
 DROP PARTITION p1;

Modifying Default Attributes: Example

The following statement alters the default attributes of local partitioned index prod_idx, which
was created in "Creating an Index on a Hash-Partitioned Table: Example". Partitions added in
the future will use 5 initial transaction entries:

ALTER INDEX prod_idx
 MODIFY DEFAULT ATTRIBUTES INITRANS 5;

ALTER INDEXTYPE
Purpose

Use the ALTER INDEXTYPE statement to add or drop an operator of the indextype or to modify
the implementation type or change the properties of the indextype.

Prerequisites

The indextype must be in your own schema or you must have the ALTER ANY INDEXTYPE
system privilege.

To add a new operator, you must have the EXECUTE object privilege on the operator.

To change the implementation type, you must have the EXECUTE object privilege on the new
implementation type.

Chapter 10
ALTER INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 169 of 177

Syntax

alter_indextype::=

ALTER INDEXTYPE

IF EXISTS schema .

indextype

ADD

DROP

schema .

operator (parameter_types)

,

using_type_clause

COMPILE

WITH LOCAL

RANGE

PARTITION storage_table_clause

(using_type_clause::=, storage_table_clause)

using_type_clause::=

USING

schema .

implementation_type

array_DML_clause

(array_DML_clause)

array_DML_clause

WITH

WITHOUT

ARRAY DML

(

schema .

type

,

schema .

varray_type

)

,

storage_table_clause

WITH

SYSTEM

USER

MANAGED STORAGE TABLES

Chapter 10
ALTER INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 170 of 177

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the name of the schema in which the indextype resides. If you omit schema, then Oracle
Database assumes the indextype is in your own schema.

indextype

Specify the name of the indextype to be modified.

ADD | DROP

Use the ADD or DROP clause to add or drop an operator.

No special privilege needed to drop.

• For schema, specify the schema containing the operator. If you omit schema, then Oracle
assumes the operator is in your own schema.

• For operator, specify the name of the operator supported by the indextype.

All the operators listed in this clause must be valid operators.

• For parameter_type, list the types of parameters to the operator.

using_type_clause

The USING clause lets you specify a new type to provide the implementation for the indextype.

array_DML_clause

Use this clause to modify the indextype to support the array interface for the ODCIIndexInsert
method.

type and varray_type

If the data type of the column to be indexed is a user-defined object type, then you must
specify this clause to identify the varray varray_type that Oracle should use to hold column values
of type. If the indextype supports a list of types, then you can specify a corresponding list of
varray types. If you omit schema for either type or varray_type, then Oracle assumes the type is in
your own schema.

If the data type of the column to be indexed is a built-in system type, then any varray type
specified for the indextype takes precedence over the ODCI types defined by the system.

COMPILE

Use this clause to recompile the indextype explicitly. This clause is required only after some
upgrade operations, because Oracle Database normally recompiles the indextype
automatically.

Chapter 10
ALTER INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 171 of 177

storage_table_clause

This clause has the same behavior when altering an indextype that it has when you are
creating an indextype. Refer to the CREATE INDEXTYPE storage_table_clause for more
information.

WITH LOCAL PARTITION

This clause has the same behavior when altering an indextype that it has when you create an
indextype. Refer to the CREATE INDEXTYPE clause WITH LOCAL PARTITION for more
information.

Examples

Altering an Indextype: Example

The following example compiles the position_indextype indextype created in "Creating an
Indextype: Example".

ALTER INDEXTYPE position_indextype COMPILE;

ALTER INMEMORY JOIN GROUP
Purpose

Use the ALTER INMEMORY JOIN GROUP statement to add a table column to a join group or
remove a table column from a join group.

See Also

• CREATE INMEMORY JOIN GROUP and DROP INMEMORY JOIN GROUP

• Oracle Database In-Memory Guide for more information on join groups

Prerequisites

If the join group is not in your own schema, or if the column you want to add to or remove from
the join group is in a table that is not in your own schema, then you must have the ALTER ANY
TABLE system privilege.

Syntax

alter_inmemory_join_group::=

ALTER INMEMORY JOIN GROUP

IF EXISTS schema .

join_group

ADD

REMOVE
(

schema .

table (column))

Chapter 10
ALTER INMEMORY JOIN GROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 172 of 177

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the join group. If you omit schema, then the database assumes
the join group is in your own schema.

join_group

Specify the name of the join group to be modified.

You can view existing join groups by querying the DBA_JOINGROUPS or USER_JOINGROUPS data
dictionary view. Refer to Oracle Database Reference for more information on these views.

ADD

Specify ADD to add a table column to the join group. A join group can contain a maximum of
255 columns.

REMOVE

Specify REMOVE to remove a table column from the join group. A join group must contain at
least 2 columns.

schema

Specify the schema of the table that contains the column to be added to or removed from the
join group. If you omit schema, then Oracle Database assumes the table is in your own schema.

table

Specify the name of the table that contains the column to be added to or removed from the join
group.

column

Specify the name of the column to be added to or removed from the join group.

Examples

The following example adds a column to the prod_id1 join group created in Examples in the
documentation on CREATE INMEMORY JOIN GROUP:

ALTER INMEMORY JOIN GROUP prod_id1
 ADD(product_descriptions(product_id));

The following example removes a column from the prod_id1 join group:

ALTER INMEMORY JOIN GROUP prod_id1
 REMOVE(product_descriptions(product_id));

Chapter 10
ALTER INMEMORY JOIN GROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 173 of 177

ALTER JAVA
Purpose

Use the ALTER JAVA statement to force the resolution of a Java class schema object or
compilation of a Java source schema object. (You cannot call the methods of a Java class
before all its external references to Java names are associated with other classes.)

See Also

Oracle Database Java Developer's Guide for more information on resolving Java
classes and compiling Java sources

Prerequisites

The Java source or class must be in your own schema, or you must have the ALTER ANY
PROCEDURE system privilege. You must also have the EXECUTE object privilege on Java
classes.

Syntax

alter_java::=

ALTER JAVA

IF EXISTS SOURCE

CLASS

schema .

object_name

RESOLVER ((match_string

, schema_name

–
))

COMPILE

RESOLVE

invoker_rights_clause

(invoker_rights_clause::=)

invoker_rights_clause::=

AUTHID

CURRENT_USER

DEFINER

Chapter 10
ALTER JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 174 of 177

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

JAVA SOURCE

Use ALTER JAVA SOURCE to compile a Java source schema object.

JAVA CLASS

Use ALTER JAVA CLASS to resolve a Java class schema object.

object_name

Specify a previously created Java class or source schema object. Use double quotation marks
to preserve lower- or mixed-case names.

RESOLVER

The RESOLVER clause lets you specify how schemas are searched for referenced fully specified
Java names, using the mapping pairs specified when the Java class or source was created.

See Also

CREATE JAVA and "Resolving a Java Class: Example"

RESOLVE | COMPILE

RESOLVE and COMPILE are synonymous keywords. They let you specify that Oracle Database
should attempt to resolve the primary Java class schema object.

• When applied to a class, resolution of referenced names to other class schema objects
occurs.

• When applied to a source, source compilation occurs.

invoker_rights_clause

The invoker_rights_clause lets you specify whether the methods of the class execute with the
privileges and in the schema of the user who defined it or with the privileges and in the schema
of CURRENT_USER.

This clause also determines how Oracle Database resolves external names in queries, DML
operations, and dynamic SQL statements in the member functions and procedures of the type.

AUTHID CURRENT_USER

Specify CURRENT_USER if you want the methods of the class to execute with the privileges of
CURRENT_USER. This clause is the default and creates an invoker-rights class.

Chapter 10
ALTER JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 175 of 177

This clause also specifies that external names in queries, DML operations, and dynamic SQL
statements resolve in the schema of CURRENT_USER. External names in all other statements
resolve in the schema in which the methods reside.

AUTHID DEFINER

Specify DEFINER if you want the methods of the class to execute with the privileges of the user
who defined the class.

This clause also specifies that external names resolve in the schema where the methods
reside.

See Also

Oracle Database PL/SQL Language Reference for information on how CURRENT_USER
is determined

Examples

Resolving a Java Class: Example

The following statement forces the resolution of a Java class:

ALTER JAVA CLASS "Agent"
 RESOLVER (("/usr/bin/bfile_dir/*" pm)(* public))
 RESOLVE;

ALTER JSON RELATIONAL DUALITY VIEW
Use ALTER JSON RELATIONAL DUALITY VIEW to alter various options for a duality view like logical
replication.

Prerequisites

You must have one of the following privileges to use this statement:

• The view must be in your own schema

• You must have the ALTER ANY TABLE system privilege

• You must have the OGG_CAPTURE role

Syntax

ALTER JSON

RELATIONAL

DUALITY VIEW

IF EXISTS

view_name

duality_view_replication_clause

duality_view_replication_clause

DISABLE

ENABLE

LOGICAL REPLICATION

Chapter 10
ALTER JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 176 of 177

Semantics

duality_view_replication_clause

Steps to Enable Duality View Replication

• You can enable logical replication for the duality view using ALTER JSON RELATIONAL
DUALITY VIEW ENABLE LOGICAL REPLICATION.

You can also enable logical replication with the command CREATE JSON RELATIONAL
DUALITY VIEW

• Minimal (or subset database replication) supplemental logging must be enabled at the
database or container level using ALTER PLUGGABLE DATABASE ADD SUPPLEMENTAL LOG
DATA DDL.

• Database compatible parameter must be 23.4 or higher

• Database parameter at the CDB level enable_goldengate_replication must be TRUE

To disable logical replication on a duality view use ALTER JSON RELATIONAL DUALITY VIEW
DISABLE LOGICAL REPLICATION

Note

On a multi instance RAC database, you must run the ALTER SYSTEM ENABLE RAC
TWO_STAGE ROLLING UPDATES ALL DDL, before you can enable or disable logical
replication.

After you run ALTER SYSTEM ENABLE RAC TWO_STAGE ROLLING UPDATES ALL you cannot
perform an online downgrade (unpatch) of your RAC database to DBRU23.5 or lower.
You must take a downtime.

On a single instance database, you do not need to run ALTER SYSTEM ENABLE RAC
TWO_STAGE ROLLING UPDATES ALL.

Chapter 10
ALTER JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 177 of 177

11
SQL Statements: ALTER LIBRARY to ALTER
SESSION

This chapter contains the following SQL statements:

• ALTER LIBRARY

• ALTER LOCKDOWN PROFILE

• ALTER MATERIALIZED VIEW

• ALTER MATERIALIZED VIEW LOG

• ALTER MATERIALIZED ZONEMAP

• ALTER OPERATOR

• ALTER OUTLINE

• ALTER PACKAGE

• ALTER PLUGGABLE DATABASE

• ALTER PROCEDURE

• ALTER PROFILE

• ALTER RESOURCE COST

• ALTER ROLE

• ALTER ROLLBACK SEGMENT

• ALTER SEQUENCE

• ALTER SESSION

ALTER LIBRARY
Purpose

The ALTER LIBRARY statement explicitly recompiles a library. Explicit recompilation eliminates
the need for implicit run-time recompilation and prevents associated run-time compilation
errors and performance overhead.

Note

This statement does not change the declaration or definition of an existing library. To
redeclare or redefine a library, use the "CREATE LIBRARY " with the OR REPLACE
clause.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 120

Prerequisites

If the library is in the SYS schema, you must be connected as SYSDBA. Otherwise, the library
must be in your own schema or you must have the ALTER ANY LIBRARY system privilege.

Syntax

alter_library::=

ALTER LIBRARY

IF EXISTS schema .

library_name

library_compile_clause

EDITIONABLE

NONEDITIONABLE

(library_compile_clause: See Oracle Database PL/SQL Language Reference for the syntax of this
clause.)

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the library. If you omit schema, then Oracle Database assumes
the procedure is in your own schema.

library_name

Specify the name of the library to be recompiled.

library_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of this
clause and for complete information on creating and compiling libraries.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the library becomes an editioned or noneditioned object
if editioning is later enabled for the schema object type LIBRARY in schema. The default is
EDITIONABLE. For information about altering editioned and noneditioned objects, see Oracle
Database Development Guide.

ALTER LOCKDOWN PROFILE
Purpose

Use the ALTER LOCKDOWN PROFILE statement to alter a PDB lockdown profile. You can use
PDB lockdown profiles in a multitenant environment to restrict user operations in pluggable
databases (PDBs).

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 120

Immediately after you create a lockdown profile with the CREATE LOCKDOWN PROFILE
statement, all user operations are enabled for the profile. You can then use the ALTER
LOCKDOWN PROFILE statement to disable certain user operations for the profile. When a
lockdown profile is applied to a CDB, application container, or PDB, users cannot perform the
operations that are the disabled for the profile. If you later would like to reenable some of the
disabled user operations, you can use the ALTER LOCKDOWN PROFILE statement to do so.

The ALTER LOCKDOWN PROFILE statement allows you to disable or enable:

• User operations associated with certain database features (using the lockdown_features
clause)

• User operations associated with certain database options (using the lockdown_options clause)

• The issuance of certain SQL statements (using the lockdown_statements clause)

See Also

• CREATE LOCKDOWN PROFILE and DROP LOCKDOWN PROFILE

• Oracle Database Security Guide for more information on PDB lockdown profiles

Prerequisites

• You must issue the ALTER LOCKDOWN PROFILE statement from the CDB Root or Application
Root.

• You must have the ALTER LOCKDOWN PROFILE system privilege in the container in which
you issue the statement.

Syntax

alter_lockdown_profile::=

ALTER LOCKDOWN PROFILE profile_name

lockdown_features

lockdown_options

lockdown_statements

;

lockdown_features::=

DISABLE

ENABLE
FEATURE

= (’ feature ’

,

)

ALL

EXCEPT = (’ feature ’

,

)

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 120

lockdown_options::=

DISABLE

ENABLE
OPTION

= (’ option ’

,

)

ALL

EXCEPT = (’ option ’

,

)

lockdown_statements::=

DISABLE

ENABLE
STATEMENT

= (’ SQL_statement ’

,

)

= (’ SQL_statement ’) statement_clauses

ALL

EXCEPT = (’ SQL_statement ’

,

)

statement_clauses::=

CLAUSE

= (’ clause ’

,

)

= (’ clause ’) clause_options

ALL

EXCEPT = (’ clause ’

,

)

clause_options::=

OPTION

= (’
clause_option

clause_option_pattern ’

,

)

= (’ clause_option ’) option_values

ALL

EXCEPT = (’
clause_option

clause_option_pattern
’

,

)

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 120

option_values::=

VALUE = (’ option_value ’

,

)

MINVALUE = ’ option_value ’

MAXVALUE = ’ option_value ’

Semantics

profile_name

Specify the name of the PDB lockdown profile to be altered.

You can find the names of existing PDB lockdown profiles by querying the
DBA_LOCKDOWN_PROFILES data dictionary view.

lockdown_features

This clause lets you disable or enable user operations associated with certain database
features.

• Specify DISABLE to add a restriction for the specified features. Users will be restricted from
performing these operations in any PDB to which the profile applies.

• Specify ENABLE to remove a restriction for the specified features. Users will be allowed to
perform these operations in any PDB to which the profile applies.

• Use feature to specify the features whose operations you want to disable or enable.
Table 11-1 lists the features you can specify and describes the operations associated with
each feature. The table also indicates a feature bundle for each feature. For feature, you can
specify a feature bundle name to disable or enable user operations for all features in that
bundle, or you can specify an individual feature name. You can specify feature bundle
names and feature names in any combination of uppercase and lowercase letters.

• Use ALL to specify all features listed in the table.

• Use ALL EXCEPT to specify all features listed in the table except the specified features.

If you omit this clause, then the default is ENABLE ALL.

Note

• The Oracle Text type FILE_DATASTORE is deprecated. Oracle recommends that you
replace FILE_DATASTORE indexes with the DIRECTORY_DATASTORE index type for
greater security as it enables file access to be based on directory objects.

• The Oracle Text type URL_DATASTORE is deprecated. Oracle recommeds that you
replace URL_DATASTORE with NETWORK_DATASTORE, which uses ACLs to control
access to specific servers.

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 120

Table 11-1 PDB Lockdown Profile Features

Feature Bundle Feature Operations

AWR_ACCESS AWR_ACCESS The PDB taking manual and automatic
Automatic Workload Repository (AWR)
snapshots

COMMON_SCHEMA_ACCESS COMMON_USER_LOCAL_SCHEMA_ACC
ESS

A common user invoking an invoker’s rights
code unit or accessing a BEQUEATH
CURRENT_USER view owned by any local
user in the PDB

COMMON_SCHEMA_ACCESS LOCAL_USER_COMMON_SCHEMA_ACC
ESS

• A local user with an ANY system privilege
(for example, CREATE ANY TABLE)
creating or accessing objects in a
common user’s schema for which the
privilege applies. Note: Disabling the
LOCAL_USER_COMMON_SCHEMA_ACCE
SS feature does not prevent a local user
with the SYSDBA privilege or specific
object privileges from creating or
accessing objects in a common user’s
schema. Therefore, Oracle recommends
against granting such privileges to local
users.

• A local user with the BECOME USER
system privilege becoming a common
user

• A local user altering a common user by
issuing an ALTER USER statement

• A local user using a common user for
proxy connections

COMMON_SCHEMA_ACCESS SECURITY_POLICIES Creation of certain security policies by a local
user on a common object, including:

• Data Redaction
• Fine Grained Auditing (FGA)
• Real Application Security (RAS)
• Virtual Private Database (VPD)

CONNECTIONS COMMON_USER_CONNECT A common user connecting to the PDB
directly. If this feature is disabled, then in
order to connect to the PDB, a common user
must first connect to the CDB root and then
switch to the desired PDB using the ALTER
SESSION SET CONTAINER statement.

CONNECTIONS LOCAL_SYSOPER_RESTRICTED_MODE_
CONNECT

A local user with the SYSOPER privilege
connecting to a PDB that is open in
RESTRICTED mode

CTX_LOGGING CTX_LOGGING Use logging in Oracle Text PL/SQL
procedures such as
CTX_OUTPUT.START_LOG and
CTX_OUTPUT.START_QUERY_LOG

JAVA JAVA Java as a whole. If this feature is disabled,
then all options and features of the database
that depend on Java will be disabled.

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 120

Table 11-1 (Cont.) PDB Lockdown Profile Features

Feature Bundle Feature Operations

JAVA_RUNTIME JAVA_RUNTIME Operations through Java that require
java.lang.RuntimePermission

NETWORK_ACCESS AQ_PROTOCOLS Using HTTP, SMTP, and OCI notification
features.

NETWORK_ACCESS CTX_PROTOCOLS • Operations that access the Oracle Text
datastore types DIRECTORY_DATASTORE
and NETWORK_DATASTORE.

The type DIRECTORY_DATASTORE has
an attribute called DIRECTORY which is
the directory object whose data is to be
indexed. The default value of this attribute
is null.

The DIRECTORY_DATASTORE type
replaces the FILE_DATASTORE type,
which is deprecated.

The NETWORK_DATASTORE type
replaces the URL_DATASTORE type,
which is deprecated.

The type NETWORK_DATASTORE
conforms to the standard database
security model for providing URL access
based on access control lists (ACLs),
which support the HTTP and HTTPS
protocols.

The URL_DATASTORE type did not
support HTTPS.

• Printing tokens as part of CTX logging
with events
EVENT_INDEX_PRINT_TOKEN and
EVENT_OPT_PRINT_TOKEN

NETWORK_ACCESS DBMS_DEBUG_JDWP Using the DBMS_DEBUG_JDWP PL/SQL
package

NETWORK_ACCESS UTL_HTTP Using the UTL_HTTP PL/SQL package

NETWORK_ACCESS UTL_INADDR Using the UTL_INADDR PL/SQL package

NETWORK_ACCESS UTL_SMTP Using the UTL_SMTP PL/SQL package

NETWORK_ACCESS UTL_TCP Using the UTL_TCP PL/SQL package

NETWORK_ACCESS XDB_PROTOCOLS Using HTTP, FTP, and other network protocols
through XDB

OS_ACCESS DROP_TABLESPACE_KEEP_DATAFILES Dropping a tablespace in the PDB without
specifying the INCLUDING CONTENTS AND
DATAFILES clause in DROP TABLESPACE
statement

OS_ACCESS EXTERNAL_FILE_ACCESS Using external files or directory objects in the
PDB when PATH_PREFIX is not set for the
PDB

OS_ACCESS EXTERNAL_PROCEDURES Using external procedure agent extproc in the
PDB

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 120

Table 11-1 (Cont.) PDB Lockdown Profile Features

Feature Bundle Feature Operations

OS_ACCESS FILE_TRANSFER Using the DBMS_FILE_TRANSFER package

OS_ACCESS JAVA_OS_ACCESS Using java.io.FilePermission from Java

OS_ACCESS LOB_FILE_ACCESS Using BFILE and CFILE data types

OS_ACCESS TRACE_VIEW_ACCESS Using the following trace views:

• [G]V$DIAG_OPT_TRACE_RECORDS
• [G]V$DIAG_SQL_TRACE_RECORDS
• [G]V$DIAG_TRACE_FILE_CONTENTS
• V$DIAG_SESS_OPT_TRACE_RECORDS
• V$DIAG_SESS_SQL_TRACE_RECORDS

OS_ACCESS UTL_FILE Using UTL_FILE. If this feature is disabled,
then the database blocks use of the
UTL_FILE.FOPEN function.

lockdown_options

This clause lets you disable or enable user operations associate with certain database options.

• Specify DISABLE to disable user operations for the specified options. Users will be
restricted from performing these operations in any PDB to which the profile applies.

• Specify ENABLE to enable user operations for the specified options. Users will be allowed
to perform these operations in any PDB to which the profile applies.

• For option, you can specify the following database options in any combination of uppercase
and lowercase letters:

– DATABASE QUEUING – Represents user operations associated with the Oracle
Database Advanced Queuing option

– PARTITIONING – Represents user operations associated with the Oracle Partitioning
option

• Use ALL to specify all options in the preceding list.

• Use ALL EXCEPT to specify all options in the preceding list except the specified options.

If you omit this clause, then the default is ENABLE OPTION ALL.

lockdown_statements

This clause lets you disable or enable the issuance of certain SQL statements.

• Specify DISABLE to disable the issuance of the specified SQL statements. Users will be
restricted from issuing these statements in any PDB to which the profile applies.

• Specify ENABLE to enable the issuance of the specified SQL statements. Users will be
allowed to issue these statements in any PDB to which the profile applies.

• For SQL_statement, you can specify the following statements in any combination of uppercase
and lowercase letters:

– ADMINISTER KEY MANAGEMENT

– ALTER DATABASE

– ALTER PLUGGABLE DATABASE

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 120

– ALTER SESSION

– ALTER SYSTEM

– ALTER TABLE

– ALTER INDEX

– ALTER TABLESPACE

– ALTER PROFILE

– CREATE TABLE

– CREATE INDEX

– CREATE TABLESPACE

– CREATE PROFILE

– CREATE DATABASE LINK

– DROP TABLE

– DROP INDEX

– DROP TABLESPACE

– DROP PROFILE

• Use ALL to specify all statements in the preceding list.

• Use ALL EXCEPT to specify all statements in the preceding list except the specified
statements.

If you omit this clause, then the default is ENABLE STATEMENT ALL.

statement_clauses

This clause lets you disable or enable specific clauses of the specified SQL statement.

• Use clause to specify the SQL keywords that form the clause you want to disable or enable.
You can specify a clause in any combination of uppercase and lowercase letters.

• Use ALL to specify all clauses for the SQL statement.

• Use ALL EXCEPT to specify all clauses for the SQL statement except the specified clauses.

For clause, you must specify at least enough keywords to unambiguously identify a single clause
for the SQL statement. The following are some examples of how to specify clause for the ALTER
SYSTEM statement:

• To specify the archive_log_clause::=, specify ARCHIVE. This is sufficient because no other
ALTER SYSTEM clause begins with the keyword ARCHIVE. Alternatively, you can specify
ARCHIVE LOG for semantic clarity, but the LOG keyword is unnecessary.

• To specify either of the rolling_migration_clauses::=, you must specify START ROLLING
MIGRATION or STOP ROLLING MIGRATION in order to distinguish these clauses from the
similarly named rolling_patch_clauses::= START ROLLING PATCH and STOP ROLLING PATCH.

• You cannot specify the single keyword FLUSH, because several ALTER SYSTEM clauses
begin with this keyword. You must instead specify each clause separately, such as FLUSH
SHARED_POOL or FLUSH GLOBAL CONTEXT.

There is no need to specify optional keywords within a clause, because they have no effect.
For example:

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 120

• The archive_log_clause::= has an optional INSTANCE keyword. However, you cannot
enable or disable only ARCHIVE LOG clauses that contain the INSTANCE keyword.
Specifying ARCHIVE LOG INSTANCE is equivalent to specifying ARCHIVE or ARCHIVE LOG.

There is no need to specify parameter values within a clause, because they have no effect. For
example:

• The shutdown_dispatcher_clause::= requires you to specify a dispatcher_name. However, you
cannot enable or disable SHUTDOWN clauses that contain a specific dispatcher name.
Specifying SHUTDOWN dispatcher1 is equivalent to specifying SHUTDOWN.

See Also

ALTER DATABASE , ALTER PLUGGABLE DATABASE, ALTER SESSION , and
ALTER SYSTEM for complete information on the clauses for these statements

clause_options

This clause is valid only when you specify one of the following for lockdown_statements and
statement_clauses:

{ DISABLE | ENABLE } STATEMENT = ('ALTER SESSION') CLAUSE = ('SET')
{ DISABLE | ENABLE } STATEMENT = ('ALTER SYSTEM') CLAUSE = ('SET')

This clause lets you disable or enable the setting or modification of specific options with the
ALTER SESSION SET or ALTER SYSTEM SET statements.

• Use clause_option to specify the option you want to disable or enable.

• Use clause_option_pattern to specify a pattern that matches multiple options. Within the
pattern, specify a percent sign (%) to match zero or more characters in an option name.
For example, specifying 'QUERY_REWRITE_%' is equivalent to specifying both the
QUERY_REWRITE_ENABLED and QUERY_REWRITE_INTEGRITY options.

• You can specify clause_option and clause_option_pattern in any combination of uppercase and
lowercase letters.

• Use ALL to specify all options.

• Use ALL EXCEPT to specify all options except the specified options.

See Also

The alter_session_set_clause clause of ALTER SESSION and the
alter_system_set_clause clause of ALTER SYSTEM for complete information on the
options you can specify for these statements

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 120

option_values

This clause is valid only when you specify one of the following for lockdown_statements,
statement_clauses, and clause_options:

DISABLE STATEMENT = ('ALTER SESSION') CLAUSE = ('SET') OPTION = clause_option
DISABLE STATEMENT = ('ALTER SYSTEM') CLAUSE = ('SET') OPTION = clause_option

This clause lets you specify a default value for an option when disabling the setting of that
option. For options that take numeric values, this clause also lets you restrict users from setting
an option to certain values.

• The VALUE clause lets you specify a default option_value for clause_option, which will go into
effect for any PDB to which the profile applies after you close and reopen the PDB. If
clause_option accepts multiple default values, then you can specify more than one option_value
in a comma-separated list. The purpose of using this clause is to simultaneously set a
default value for an option and restrict users from setting or modifying the value.

• The MINVALUE clause lets you restricts users from setting the value of clause_option to a
value less than option_value. You can specify this clause only for options that take a numeric
value.

• The MAXVALUE clause lets you restricts users from setting the value of clause_option to a
value greater than option_value. You can specify this clause only for options that take a
numeric value.

• You can specify both the MINVALUE and MAXVALUE clauses together to restrict users from
setting the value of clause_options to any value less than MINVALUE or greater than
MAXVALUE.

• MINVALUE and MAXVALUE settings take effect immediately when the lockdown profile is
assigned to a PDB; you need not close and reopen the PDB.

See Also

Oracle Database Reference for complete information on the values allowed for the
various options

USERS Clause

As a CDB administrator or an Application administrator you can use the USERS clause to
configure lockdown rules for a specific set of users.

The values for USERS in a CDB$ROOT lockdown profile are as follows:

• USERS = ALL means that the lockdown rule applies to all users in the PDB.

• USERS = COMMON means that the lockdown rule applies only to CDB COMMON users in the
PDB.

• USERS = LOCAL means that the lockdown rule applies only to local users in the PDB.
Application common users are considered local users at the CDB level.

The values for USERS in an Application ROOT lockdown profile are as follows:

• USERS = ALL means that the lockdown rule applies to all users in the PDB.

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 120

• USERS = COMMON means that the lockdown rule applies only to Application COMMON users
in the PDB.

• USERS = LOCAL means that the lockdown rule applies only to local users in the PDB.

Note that the Application lockdown profile rules should not affect CDB common users.

• ALL users means Application common users and local users in the PDB.

• COMMON users means Application common users in the PDB.

Examples

The following statement creates PDB lockdown profile hr_prof:

CREATE LOCKDOWN PROFILE hr_prof;

The remaining examples in this section alter hr_prof.

Disabling Features for PDB Lockdown Profiles: Examples

The following statement disables all features in the feature bundle NETWORK_ACCESS:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE FEATURE = ('NETWORK_ACCESS');

The following statement disables the LOB_FILE_ACCESS and TRACE_VIEW ACCESS features:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE FEATURE = ('LOB_FILE_ACCESS', 'TRACE_VIEW_ACCESS');

The following statement disables all features except the
COMMON_USER_LOCAL_SCHEMA_ACCESS and LOCAL_USER_COMMON_SCHEMA_ACCESS features:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE FEATURE ALL EXCEPT = ('COMMON_USER_LOCAL_SCHEMA_ACCESS',
'LOCAL_USER_COMMON_SCHEMA_ACCESS');

The following statement disables all features:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE FEATURE ALL;

Enabling Features for PDB Lockdown Profiles: Examples

The following statement enables the UTL_HTTP and UTL_SMTP features, as well as all features
in the feature bundle OS_ACCESS:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE FEATURE = ('UTL_HTTP', 'UTL_SMTP', 'OS_ACCESS');

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 120

The following statement enables all features except the AQ_PROTOCOLS and CTX_PROTOCOLS
features:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE FEATURE ALL EXCEPT = ('AQ_PROTOCOLS', 'CTX_PROTOCOLS');

The following statement enables all features:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE FEATURE ALL;

Disabling Options for PDB Lockdown Profiles: Examples

The following statement disables user operations associated with the Oracle Database
Advanced Queuing option:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE OPTION = ('DATABASE QUEUING');

The following statement disables user operations associated with the Oracle Partitioning
option:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE OPTION = ('PARTITIONING');

Enabling Options for PDB Lockdown Profiles: Examples

The following statement enables user operations associated with the Oracle Database
Advanced Queuing option:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE OPTION = ('DATABASE QUEUING');

The following statement enables user operations associated both with the Oracle Database
Advanced Queuing option and the Oracle Partitioning option:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE OPTION ALL;

Disabling SQL Statements for PBB Lockdown Profiles: Examples

The following statement disables the ALTER DATABASE statement:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER DATABASE');

The following statement disables the ALTER SYSTEM SUSPEND and ALTER SYSTEM RESUME
statements:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SUSPEND', 'RESUME');

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 120

The following statement disables all clauses of the ALTER PLUGGABLE DATABASE statement,
except DEFAULT TABLESPACE and DEFAULT TEMPORARY TABLESPACE:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER PLUGGABLE DATABASE')
 CLAUSE ALL EXCEPT = ('DEFAULT TABLESPACE', 'DEFAULT TEMPORARY TABLESPACE');

The following statement disables using the ALTER SESSION statement to set or modify
COMMIT_WAIT or CURSOR_SHARING:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SESSION')
 CLAUSE = ('SET')
 OPTION = ('COMMIT_WAIT', 'CURSOR_SHARING');

The following statement disables using the ALTER SYSTEM statement to set or modify the value
of PDB_FILE_NAME_CONVERT. It also sets the default value for PDB_FILE_NAME_CONVERT to
'cdb1_pdb0', 'cdb1_pdb1'. This default value will take effect the next time the PDB is closed and
reopened.

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SET')
 OPTION = ('PDB_FILE_NAME_CONVERT')
 VALUE = ('cdb1_pdb0', 'cdb1_pdb1');

The following statement disables using the ALTER SYSTEM statement to set or modify the value
of CPU_COUNT to a value less than 8:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SET')
 OPTION = ('CPU_COUNT')
 MINVALUE = '8';

The following statement disables using the ALTER SYSTEM statement to set or modify the value
of CPU_COUNT to a value greater than 2:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SET')
 OPTION = ('CPU_COUNT')
 MAXVALUE = '2';

The following statement disables using the ALTER SYSTEM statement to set or modify the value
of CPU_COUNT to a value less than 2 or greater than 6:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SET')
 OPTION = ('CPU_COUNT')

Chapter 11
ALTER LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 120

 MINVALUE = '2'
 MAXVALUE = '6';

Enabling SQL Statements for PBB Lockdown Profiles: Examples

The following statement enables all statements except ALTER DATABASE:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE STATEMENT ALL EXCEPT = ('ALTER DATABASE');

The following statement enables the ALTER DATABASE MOUNT and ALTER DATABASE OPEN
statements:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE STATEMENT = ('ALTER DATABASE')
 CLAUSE = ('MOUNT', 'OPEN');

The following statement enables all clauses of the ALTER PLUGGABLE DATABASE statement,
except DEFAULT TABLESPACE and DEFAULT TEMPORARY TABLESPACE:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE STATEMENT = ('ALTER PLUGGABLE DATABASE')
 CLAUSE ALL EXCEPT = ('DEFAULT TABLESPACE', 'DEFAULT TEMPORARY TABLESPACE');

The following statement enables using the ALTER SESSION statement to set or modify
COMMIT_WAIT or CURSOR_SHARING:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE STATEMENT = ('ALTER SESSION')
 CLAUSE = ('SET')
 OPTION = ('COMMIT_WAIT', 'CURSOR_SHARING');

ALTER MATERIALIZED VIEW
Purpose

A materialized view is a database object that contains the results of a query. The FROM clause
of the query can name tables, views, and other materialized views. Collectively these source
objects are called master tables (a replication term) or detail tables (a data warehousing
term). This reference uses the term master tables for consistency. The databases containing
the master tables are called the master databases.

Use the ALTER MATERIALIZED VIEW statement to modify an existing materialized view in one or
more of the following ways:

• To change its storage characteristics

• To change its refresh method, mode, or time

• To alter its structure so that it is a different type of materialized view

• To enable or disable query rewrite

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 120

Note

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

See Also

• CREATE MATERIALIZED VIEW for more information on creating materialized
views

• Oracle Database Administrator’s Guide for information on materialized views in a
replication environment

• Oracle Database Data Warehousing Guide for information on materialized views
in a data warehousing environment

Prerequisites

The materialized view must be in your own schema, or you must have the ALTER ANY
MATERIALIZED VIEW system privilege.

To enable a materialized view for query rewrite:

• If all of the master tables in the materialized view are in your schema, then you must have
the QUERY REWRITE privilege.

• If any of the master tables are in another schema, then you must have the GLOBAL QUERY
REWRITE privilege.

• If the materialized view is in another user's schema, then both you and the owner of that
schema must have the appropriate QUERY REWRITE privilege, as described in the
preceding two items. In addition, the owner of the materialized view must have SELECT
access to any master tables that the materialized view owner does not own.

To specify an edition in the evaluation_edition_clause or the unusable_editions_clause, you must have the
USE privilege on the edition.

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 120

Syntax

alter_materialized_view::=

ALTER MATERIALIZED VIEW

IF EXISTS schema .

materialized_view

physical_attributes_clause

modify_mv_column_clause

table_compression

inmemory_table_clause

LOB_storage_clause

,

modify_LOB_storage_clause

,

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

shrink_clause

CACHE

NOCACHE alter_iot_clauses

USING INDEX physical_attributes_clause

MODIFY scoped_table_ref_constraint

alter_mv_refresh

evaluation_edition_clause

ENABLE

DISABLE
ON QUERY COMPUTATION

ENABLE

DISABLE
CONCURRENT REFRESH

alter_query_rewrite_clause

COMPILE

CONSIDER FRESH

annotations_clause

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 120

(physical_attributes_clause::=, modify_mv_column_clause::=, table_compression::=,
inmemory_table_clause::=, LOB_storage_clause::= , modify_LOB_storage_clause::=,
alter_table_partitioning::= (part of ALTER TABLE), parallel_clause::=, logging_clause::=,
allocate_extent_clause::=, deallocate_unused_clause::=, shrink_clause::=,
alter_iot_clauses::=, scoped_table_ref_constraint::=, alter_mv_refresh::=,
evaluation_edition_clause::=, alter_query_rewrite_clause::=, annotations_clause)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

modify_mv_column_clause::=

MODIFY (column

ENCRYPT encryption_spec

DECRYPT

)

table_compression::=

COMPRESS

ROW STORE COMPRESS

BASIC

ADVANCED

COLUMN STORE COMPRESS

FOR

QUERY

ARCHIVE

LOW

HIGH

NO

ROW LEVEL LOCKING

NOCOMPRESS

inmemory_table_clause::=

INMEMORY

inmemory_attributes

NO INMEMORY inmemory_column_clause

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 120

(inmemory_attributes::=, inmemory_column_clause::=)

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

(inmemory_memcompress::=, inmemory_priority::=, inmemory_distribute::=,
inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

inmemory_distribute::=

DISTRIBUTE

AUTO

BY

ROWID RANGE

PARTITION

SUBPARTITION

FOR SERVICE

DEFAULT

ALL

service_name

NONE

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 120

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

inmemory_column_clause::=

INMEMORY

(ALL) inmemory_memcompress

NO INMEMORY

(ALL) (column

,

)

(inmemory_memcompress::=)

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

(LOB_storage_parameters::=)

LOB_storage_parameters::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

LOB_parameters

storage_clause

storage_clause

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 120

(TABLESPACE SET: not supported with ALTER MATERIALIZED VIEW, LOB_parameters::=,
storage_clause::=)

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

(storage_clause::=, logging_clause::=)

modify_LOB_storage_clause::=

MODIFY LOB (LOB_item) (modify_LOB_parameters)

(modify_LOB_parameters::=)

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 120

modify_LOB_parameters::=

storage_clause

PCTVERSION

FREEPOOLS
integer

REBUILD FREEPOOLS

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

(storage_clause::=, LOB_retention_clause::=, LOB_compression_clause::=, logging_clause::=,
allocate_extent_clause::=, shrink_clause::=, deallocate_unused_clause::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

allocate_extent_clause::=

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 120

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

(size_clause::=)

shrink_clause::=

SHRINK SPACE

COMPACT CASCADE

annotations_clause::=

ANNOTATIONS (annotations_list)

annotations_list::=

ADD

IF NOT EXISTS

OR REPLACE

DROP

IF EXISTS

REPLACE

annotation

,

annotation::=

annotation_name

annotation_value

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 120

annotation_name::=

identifier

annotation_value::=

character_string_literal

alter_iot_clauses::=

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

(index_org_table_clause::=, alter_overflow_clause::=, alter_mapping_table_clauses: not supported
with materialized views)

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

prefix_compression

iot_advanced_compression index_org_overflow_clause

(mapping_table_clause: not supported with materialized views, prefix_compression: not supported for
altering materialized views, index_org_overflow_clause::=)

index_org_overflow_clause::=

INCLUDING column_name

OVERFLOW

segment_attributes_clause

(segment_attributes_clause::=—part of ALTER TABLE)

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 120

alter_overflow_clause::=

add_overflow_clause

OVERFLOW

segment_attributes_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

(allocate_extent_clause::=, shrink_clause::=, deallocate_unused_clause::=)

add_overflow_clause::=

ADD OVERFLOW

segment_attributes_clause (PARTITION

segment_attributes_clause

,

)

(segment_attributes_clause::=--part of ALTER TABLE)

scoped_table_ref_constraint::=

SCOPE FOR (
ref_column

ref_attribute
) IS

schema . scope_table_name

c_alias

alter_mv_refresh::=

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 120

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH PRIMARY KEY

USING
DEFAULT MASTER ROLLBACK SEGMENT

MASTER ROLLBACK SEGMENT rollback_segment

USING
ENFORCED

TRUSTED
CONSTRAINTS

evaluation_edition_clause::=

EVALUATE USING

CURRENT EDITION

EDITION edition

NULL EDITION

alter_query_rewrite_clause::=

ENABLE

DISABLE

QUERY REWRITE

unusable_editions_clause

Note

You cannot specify only QUERY REWRITE. You must specify at least one of the
following: ENABLE, DISABLE, or a subclause of the unusable_editions_clause.

unusable_editions_clause::=

UNUSABLE BEFORE

CURRENT EDITION

EDITION edition

UNUSABLE BEGINNING WITH

CURRENT EDITION

EDITION edition

NULL EDITION

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 120

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing materialized view.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the materialized view. If you omit schema, then Oracle Database
assumes the materialized view is in your own schema.

materialized_view

Specify the name of the materialized view to be altered.

physical_attributes_clause

Specify new values for the PCTFREE, PCTUSED, and INITRANS parameters (or, when used in the
USING INDEX clause, for the INITRANS parameter only) and the storage characteristics for the
materialized view. Refer to ALTER TABLE for information on the PCTFREE, PCTUSED, and
INITRANS parameters and to storage_clause for information about storage characteristics.

modify_mv_column_clause

Use this clause to encrypt or decrypt this column of the materialized view. Refer to the CREATE
TABLE clause encryption_spec for information on this clause.

table_compression

Use the table_compression clause to instruct Oracle Database whether to compress data
segments to reduce disk and memory use. Refer to the table_compression clause of CREATE
TABLE for the full semantics of this clause.

inmemory_table_clause

Use the inmemory_table_clause to enable or disable the materialized view or its columns for the In-
Memory Column Store (IM column store), or to change the In-Memory attributes for the
materialized view or its columns. This clause has the same semantics here as it has for the
ALTER TABLE statement. Refer to the inmemory_table_clause of ALTER TABLE for the full
semantics of this clause.

LOB_storage_clause

The LOB_storage_clause lets you specify the storage characteristics of a new LOB. LOB storage
behaves for materialized views exactly as it does for tables. Refer to the LOB_storage_clause
(in CREATE TABLE) for information on the LOB storage parameters.

modify_LOB_storage_clause

The modify_LOB_storage_clause lets you modify the physical attributes of the LOB attribute LOB_item
or the LOB object attribute. Modification of LOB storage behaves for materialized views exactly
as it does for tables.

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 120

See Also

The modify_LOB_storage_clause of ALTER TABLE for information on the LOB storage
parameters that can be modified

alter_table_partitioning

The syntax and general functioning of the partitioning clauses for materialized views is the
same as for partitioned tables. Refer to alter_table_partitioning in the documentation on ALTER
TABLE.

Restriction on Altering Materialized View Partitions

You cannot specify the LOB_storage_clause or modify_LOB_storage_clause within any of the
partitioning_clauses.

Note

If you want to keep the contents of the materialized view synchronized with those of
the master table, then Oracle recommends that you manually perform a complete
refresh of all materialized views dependent on the table after dropping or truncating a
table partition.

MODIFY PARTITION UNUSABLE LOCAL INDEXES

Use this clause to mark UNUSABLE all the local index partitions associated with partition.

MODIFY PARTITION REBUILD UNUSABLE LOCAL INDEXES

Use this clause to rebuild the unusable local index partitions associated with partition.

parallel_clause

The parallel_clause lets you change the default degree of parallelism for the materialized view.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

logging_clause

Specify or change the logging characteristics of the materialized view. Refer to the
logging_clause for a full description of this clause.

allocate_extent_clause

The allocate_extent_clause lets you explicitly allocate a new extent for the materialized view. Refer
to the allocate_extent_clause for a full description of this clause.

deallocate_unused_clause

Use the deallocate_unused_clause to explicitly deallocate unused space at the end of the
materialized view and make the freed space available for other segments. Refer to the
deallocate_unused_clause for a full description of this clause.

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 120

shrink_clause

Use this clause to compact the materialized view segments. For complete information on this
clause, refer to shrink_clause in the documentation on CREATE TABLE.

CACHE | NOCACHE

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for this table
are placed at the most recently used end of the LRU list in the buffer cache when a full table
scan is performed. This attribute is useful for small lookup tables. NOCACHE specifies that the
blocks are placed at the least recently used end of the LRU list. Refer to "CACHE | NOCACHE
| CACHE READS" in the documentation on CREATE TABLE for more information about this
clause.

annotations_clause

The annotation_name is an identifier that can have up to 4000 characters. If the annotation name
is a reserved word it must be provided in double quotes. When a double quoted identifier is
used, the identifier can also contain whitespace characters. However, identifiers that contain
only whitespace characters are not accepted.

You can only change annotations at the view level with the ALTER statement. To drop column-
level annotations, you must drop and recreate the view.

For the full semantics of the annotations clause see annotations_clause of CREATE TABLE.

alter_iot_clauses

Use the alter_iot_clauses to change the characteristics of an index-organized materialized view.
The keywords and parameters of the components of the alter_iot_clauses have the same
semantics as in ALTER TABLE, with the restrictions that follow.

Restrictions on Altering Index-Organized Materialized Views

You cannot specify the mapping_table_clause or the prefix_compression clause of the
index_org_table_clause.

See Also

index_org_table_clause of CREATE MATERIALIZED VIEW for information on creating an
index-organized materialized view

USING INDEX Clause

Use this clause to change the value of INITRANS and STORAGE parameters for the index Oracle
Database uses to maintain the materialized view data.

Restriction on the USING INDEX clause

You cannot specify the PCTUSED or PCTFREE parameters in this clause.

MODIFY scoped_table_ref_constraint

Use the MODIFY scoped_table_ref_constraint clause to rescope a REF column or attribute to a new
table or to an alias for a new column.

Restrictions on Rescoping REF Columns

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 120

You can rescope only one REF column or attribute in each ALTER MATERIALIZED VIEW
statement, and this must be the only clause in this statement.

alter_mv_refresh

Use the alter_mv_refresh clause to change the default method and mode and the default times for
automatic refreshes. If the contents of the master tables of a materialized view are modified,
then the data in the materialized view must be updated to make the materialized view
accurately reflect the data currently in its master table(s). This clause lets you schedule the
times and specify the method and mode for Oracle Database to refresh the materialized view.

See Also

• This clause only sets the default refresh options. For instructions on actually
implementing the refresh, refer to Oracle Database Administrator’s Guide and
Oracle Database Data Warehousing Guide.

• Oracle Database Data Warehousing Guide to learn how to use refresh statistics to
monitor the performance of materialized view refresh operations

FAST Clause

Specify FAST for the fast refresh method, which performs the refresh according to the changes
that have occurred to the master tables. The changes are stored either in the materialized view
log associated with the master table (for conventional DML changes) or in the direct loader log
(for direct-path INSERT operations).

For both conventional DML changes and for direct-path INSERT operations, other conditions
may restrict the eligibility of a materialized view for fast refresh.

When you change the refresh method to FAST in an ALTER MATERIALIZED VIEW statement,
Oracle Database does not perform this verification. If the materialized view is not eligible for
fast refresh, then Oracle Database returns an error when you attempt to refresh this view.

See Also

• Oracle Database Administrator’s Guide for restrictions on fast refresh in replication
environments

• Oracle Database Data Warehousing Guide for restrictions on fast refresh in data
warehouse environments

• "Automatic Refresh: Examples"

COMPLETE Clause

Specify COMPLETE for the complete refresh method, which is implemented by executing the
defining query of the materialized view. If you specify a complete refresh, then Oracle
Database performs a complete refresh even if a fast refresh is possible.

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 120

See Also

"Complete Refresh: Example"

FORCE Clause

Specify FORCE if, when a refresh occurs, you want Oracle Database to perform a fast refresh if
one is possible or a complete refresh otherwise.

ON COMMIT Clause

Specify ON COMMIT if you want a refresh to occur whenever Oracle Database commits a
transaction that operates on a master table of the materialized view.

You cannot specify both ON COMMIT and ON DEMAND. If you specify ON COMMIT, then you
cannot also specify START WITH or NEXT.

Restriction on ON COMMIT

This clause is supported only for materialized join views and single-table materialized
aggregate views.

ON DEMAND Clause

Specify ON DEMAND if you want the materialized view to be refreshed on demand by calling
one of the three DBMS_MVIEW refresh procedures. If you omit both ON COMMIT and ON
DEMAND, then ON DEMAND is the default.

You cannot specify both ON COMMIT and ON DEMAND. START WITH and NEXT take precedence
over ON DEMAND. Therefore, in most circumstances it is not meaningful to specify ON DEMAND
when you have specified START WITH or NEXT.

See Also

• Oracle Database PL/SQL Packages and Types Reference for information on these
procedures

• Oracle Database Data Warehousing Guide on the types of materialized views you
can create by specifying REFRESH ON DEMAND

START WITH Clause

Specify START WITH date to indicate a date for the first automatic refresh time.

NEXT Clause

Specify NEXT to indicate a date expression for calculating the interval between automatic
refreshes.

Both the START WITH and NEXT values must evaluate to a time in the future. If you omit the
START WITH value, then Oracle Database determines the first automatic refresh time by
evaluating the NEXT expression with respect to the creation time of the materialized view. If you
specify a START WITH value but omit the NEXT value, then Oracle Database refreshes the
materialized view only once. If you omit both the START WITH and NEXT values, or if you omit
the alter_mv_refresh entirely, then Oracle Database does not automatically refresh the
materialized view.

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 120

WITH PRIMARY KEY Clause

Specify WITH PRIMARY KEY to change a rowid materialized view to a primary key materialized
view. Primary key materialized views allow materialized view master tables to be reorganized
without affecting the ability of the materialized view to continue to fast refresh.

For you to specify this clause, the master table must contain an enabled primary key constraint
and must have defined on it a materialized view log that logs primary key information.

See Also

• Oracle Database Administrator’s Guide for detailed information about primary key
materialized views

• "Primary Key Materialized View: Example"

USING ROLLBACK SEGMENT Clause

This clause is not valid if your database is in automatic undo mode, because in that mode
Oracle Database uses undo tablespaces instead of rollback segments. Oracle strongly
recommends that you use automatic undo mode. This clause is supported for backward
compatibility with replication environments containing older versions of Oracle Database that
still use rollback segments.

For complete information on this clause, refer to CREATE MATERIALIZED VIEW ... "USING
ROLLBACK SEGMENT Clause".

USING ... CONSTRAINTS Clause

This clause has the same semantics in CREATE MATERIALIZED VIEW and ALTER MATERIALIZED
VIEW statements. For complete information, refer to "USING ... CONSTRAINTS Clause" in the
documentation on CREATE MATERIALIZED VIEW.

evaluation_edition_clause

Use this clause to change the evaluation edition for the materialized view. This clause has the
same semantics in CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW statements.
For complete information on this clause, refer to evaluation_edition_clause in the
documentation on CREATE MATERIALIZED VIEW.

Notes on Changing the Evaluation Edition of a Materialized View

The following notes apply when changing the evaluation edition of a materialized view:

• If you change the evaluation edition of a refresh-on-commit materialized view, then Oracle
Database performs a complete refresh of the materialized view unless you specify
CONSIDER FRESH.

• If you change the evaluation edition of a refresh-on-demand materialized view, then Oracle
Database sets the staleness state of the materialized view to STALE unless you specify
CONSIDER FRESH.

• For both refresh-on-commit and refresh-on-demand materialized views: If you change the
evaluation edition and specify CONSIDER FRESH, then Oracle Database does not update the
staleness state of the materialized view and does not rebuild the materialized view.
Therefore, you can specify CONSIDER FRESH to indicate that, although the evaluation edition
has changed, there is no difference in the results that subquery will produce. If the
materialized view is stale and in need of either a fast refresh or a complete refresh before

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 120

this statement is issued, then the state will not be changed and the materialized view may
contain bad data.

{ ENABLE | DISABLE } ON QUERY COMPUTATION

This clause lets you control whether the materialized view is a real-time materialized view or a
regular materialized view.

• Specify ENABLE ON QUERY COMPUTATION to convert a regular materialized view into a real-
time materialized view by enabling on-query computation.

• Specify DISABLE ON QUERY COMPUTATION to convert a real-time materialized view into a
regular materialized view by disabling on-query computation.

This clause has the same semantics in CREATE MATERIALIZED VIEW and ALTER MATERIALIZED
VIEW statements. For complete information on this clause, refer to { ENABLE | DISABLE } ON
QUERY COMPUTATION in the documentation on CREATE MATERIALIZED VIEW.

alter_query_rewrite_clause

Use this clause to specify whether the materialized view is eligible to be used for query rewrite.

ENABLE Clause

Specify ENABLE to enable the materialized view for query rewrite. If you currently specify, or
previously specified, the unusable_editions_clause for the materialized view, then it is not enabled
for query rewrite in the unusable editions.

See Also

• "Enabling Query Rewrite: Example"

• Oracle Database Data Warehousing Guide to learn how to use refresh statistics to
monitor the performance of materialized view refresh operations

Restrictions on Enabling Materialized Views

Enabling materialized views is subject to the following restrictions:

• If the materialized view is in an invalid or unusable state, then it is not eligible for query
rewrite in spite of the ENABLE mode.

• You cannot enable query rewrite if the materialized view was created totally or in part from
a view.

• You can enable query rewrite only if all user-defined functions in the materialized view are
DETERMINISTIC.

See Also

CREATE FUNCTION

• You can enable query rewrite only if expressions in the statement are repeatable. For
example, you cannot include CURRENT_TIME or USER.

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 120

See Also

Oracle Database Data Warehousing Guide for more information on query rewrite

DISABLE Clause

Specify DISABLE if you do not want the materialized view to be eligible for use by query rewrite.
If a materialized view is in the invalid state, then it is not eligible for use by query rewrite,
whether or not it is disabled. However, a disabled materialized view can be refreshed.

unusable_editions_clause

Use this clause to specify the editions in which the materialized view is not eligible for query
rewrite. This clause has the same semantics in CREATE MATERIALIZED VIEW and ALTER
MATERIALIZED VIEW statements. For complete information on this clause, refer to
unusable_editions_clause in the documentation on CREATE MATERIALIZED VIEW.

Cursors that use the materialized view for query rewrite and were compiled in an edition that is
made unusable will be invalidated.

ENABLE | DISABLE CONCURRENT REFRESH

Enable concurrent refresh to refresh the same on-commit atomic materialized view across
mulitple sessions. Multiple sessions which have DML on a base table can refresh the MV
concurrently. There are no limitations on how many materialized views can be refreshed.

Concurrent refresh is disabled by default. You must explictly enable it on the materialized view.
Note that you can enable it only on on-commit materialized views.

See Also

Refreshing Materialized Views of the Oracle Database Data Warehousing Guide.

COMPILE

Specify COMPILE to explicitly revalidate a materialized view. If an object upon which the
materialized view depends is dropped or altered, then the materialized view remains
accessible, but it is invalid for query rewrite. You can use this clause to explicitly revalidate the
materialized view to make it eligible for query rewrite.

If the materialized view fails to revalidate, then it cannot be refreshed or used for query rewrite.

See Also

"Compiling a Materialized View: Example"

CONSIDER FRESH

This clause lets you manage the staleness state of a materialized view after changes have
been made to its master tables. CONSIDER FRESH directs Oracle Database to consider the
materialized view fresh and therefore eligible for query rewrite in the TRUSTED or
STALE_TOLERATED modes.

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 120

Caution

The CONSIDER FRESH clause also directs Oracle Database to no longer apply any rows
in a materialized view log or Partition Change Tracking changes to the materialized
view prior to the issuance of the CONSIDER FRESH clause. In other words, the pending
changes will be ignored and deleted, not applied to the materialized view. This may
result in the materialized view containing more or less data than the base table.

Because Oracle Database cannot guarantee the freshness of the materialized view, query
rewrite in ENFORCED mode is not supported. This clause also sets the staleness state of the
materialized view to UNKNOWN. The staleness state is displayed in the STALENESS column of
the ALL_MVIEWS, DBA_MVIEWS, and USER_MVIEWS data dictionary views.

A materialized view is stale if changes have been made to the contents of any of its master
tables. This clause directs Oracle Database to assume that the materialized view is fresh and
that no such changes have been made. Therefore, actual updates to those tables pending
refresh are purged with respect to the materialized view.

See Also

• Oracle Database Data Warehousing Guide for more information on query rewrite
and the implications of performing partition maintenance operations on master
tables

• "CONSIDER FRESH: Example"

Examples

Automatic Refresh: Examples

The following statement changes the default refresh method for the sales_by_month_by_state
materialized view (created in "Creating Materialized Aggregate Views: Example") to FAST:

ALTER MATERIALIZED VIEW sales_by_month_by_state
 REFRESH FAST;

The next automatic refresh of the materialized view will be a fast refresh provided it is a simple
materialized view and its master table has a materialized view log that was created before the
materialized view was created or last refreshed.

Because the REFRESH clause does not specify START WITH or NEXT values, Oracle Database
will use the refresh intervals established by the REFRESH clause when the sales_by_month_by_state
materialized view was created or last altered.

The following statement establishes a new interval between automatic refreshes for the
sales_by_month_by_state materialized view:

ALTER MATERIALIZED VIEW sales_by_month_by_state
 REFRESH NEXT SYSDATE+7;

Because the REFRESH clause does not specify a START WITH value, the next automatic refresh
occurs at the time established by the START WITH and NEXT values specified when the
sales_by_month_by_state materialized view was created or last altered.

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 120

At the time of the next automatic refresh, Oracle Database refreshes the materialized view,
evaluates the NEXT expression SYSDATE+7 to determine the next automatic refresh time, and
continues to refresh the materialized view automatically once a week. Because the REFRESH
clause does not explicitly specify a refresh method, Oracle Database continues to use the
refresh method specified by the REFRESH clause of the CREATE MATERIALIZED VIEW or most
recent ALTER MATERIALIZED VIEW statement.

CONSIDER FRESH: Example

The following statement instructs Oracle Database that materialized view sales_by_month_by_state
should be considered fresh. This statement allows sales_by_month_by_state to be eligible for query
rewrite in TRUSTED mode even after you have performed partition maintenance operations on
the master tables of sales_by_month_by_state:

ALTER MATERIALIZED VIEW sales_by_month_by_state CONSIDER FRESH;

As a result of the preceding statement, any partition maintenance operations that were done to
the base table since the last refresh of the materialized view will not be applied to the
materialized view. For example, the add, drop, or change of data in a partition in the base table
will not be reflected in the materialized view if CONSIDER FRESH is used before the next refresh
of the materialized view. Refer to CONSIDER FRESH for more information.

See Also

"Splitting Table Partitions: Examples" for a partitioning maintenance example that
would require this ALTER MATERIALIZED VIEW example

Complete Refresh: Example

The following statement specifies a new refresh method, a new NEXT refresh time, and a new
interval between automatic refreshes of the emp_data materialized view (created in "Periodic
Refresh of Materialized Views: Example"):

ALTER MATERIALIZED VIEW emp_data
 REFRESH COMPLETE
 START WITH TRUNC(SYSDATE+1) + 9/24
 NEXT SYSDATE+7;

The START WITH value establishes the next automatic refresh for the materialized view to be
9:00 a.m. tomorrow. At that point, Oracle Database performs a complete refresh of the
materialized view, evaluates the NEXT expression, and subsequently refreshes the materialized
view every week.

Enabling Query Rewrite: Example

The following statement enables query rewrite on the materialized view emp_data and implicitly
revalidates it:

ALTER MATERIALIZED VIEW emp_data
 ENABLE QUERY REWRITE;

Primary Key Materialized View: Example

The following statement changes the rowid materialized view order_data (created in "Creating
Rowid Materialized Views: Example") to a primary key materialized view. This example
requires that you have already defined a materialized view log with a primary key on order_data.

Chapter 11
ALTER MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 120

ALTER MATERIALIZED VIEW order_data
 REFRESH WITH PRIMARY KEY;

Compiling a Materialized View: Example

The following statement revalidates the materialized view store_mv:

ALTER MATERIALIZED VIEW order_data COMPILE;

Drop Annotation from View: Example

The following example drops annotation Snapshot from view MView1:

ALTER MATERIALIZED VIEW MView1 ANNOTATIONS(DROP Snapshot);

ALTER MATERIALIZED VIEW LOG
Purpose

A materialized view log is a table associated with the master table of a materialized view. Use
the ALTER MATERIALIZED VIEW LOG statement to alter the storage characteristics or type of an
existing materialized view log.

Note

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

See Also

• CREATE MATERIALIZED VIEW LOG for information on creating a materialized
view log

• ALTER MATERIALIZED VIEW for more information on materialized views,
including refreshing them

• CREATE MATERIALIZED VIEW for a description of the various types of
materialized views

Prerequisites

You must be the owner of the master table, or you must have the READ or SELECT privilege on
the master table and the ALTER privilege on the materialized view log.

See Also

Oracle Database Administrator’s Guide for detailed information about the prerequisites
for ALTER MATERIALIZED VIEW LOG

Chapter 11
ALTER MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 120

Syntax

alter_materialized_view_log::=

ALTER MATERIALIZED VIEW LOG

IF EXISTS FORCE

ON

schema .

table

physical_attributes_clause

add_mv_log_column_clause

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

shrink_clause

move_mv_log_clause

CACHE

NOCACHE mv_log_augmentation mv_log_purge_clause for_refresh_clause

(physical_attributes_clause::=, add_mv_log_column_clause::=, alter_table_partitioning::= (in
ALTER TABLE), parallel_clause::=, logging_clause::=, allocate_extent_clause::=,
shrink_clause::=, move_mv_log_clause::=, mv_log_augmentation::=, mv_log_purge_clause::=,
for_refresh_clause::=)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

storage_clause::=

add_mv_log_column_clause::=

ADD (column)

Chapter 11
ALTER MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 120

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

shrink_clause::=

SHRINK SPACE

COMPACT CASCADE

move_mv_log_clause::=

MOVE segment_attributes_clause

parallel_clause

parallel_clause::=

NOPARALLEL

PARALLEL

integer

mv_log_augmentation::=

ADD

OBJECT ID

PRIMARY KEY

ROWID

SEQUENCE

(column

,

)

(column

,

)

,

new_values_clause

Chapter 11
ALTER MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 120

(new_values_clause::=

new_values_clause::=

INCLUDING

EXCLUDING

NEW VALUES

mv_log_purge_clause::=

PURGE

IMMEDIATE

SYNCHRONOUS

ASYNCHRONOUS

START WITH datetime_expr

NEXT datetime_expr

REPEAT INTERVAL interval_expr

START WITH datetime_expr NEXT datetime_expr

REPEAT INTERVAL interval_expr

for_refresh_clause::=

FOR
SYNCHRONOUS REFRESH USING staging_log_name

FAST REFRESH

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

FORCE

If you specify FORCE and any items specified with the ADD clause have already been specified
for the materialized view log, then Oracle Database does not return an error, but silently
ignores the existing elements and adds to the materialized view log any items that do not
already exist in the log. Likewise, if you specify INCLUDING NEW VALUES and that attribute has
already been specified for the materialized view log, Oracle Database ignores the redundancy
and does not return an error.

schema

Specify the schema containing the master table. If you omit schema, then Oracle Database
assumes the materialized view log is in your own schema.

Chapter 11
ALTER MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 120

table

Specify the name of the master table associated with the materialized view log to be altered.

physical_attributes_clause

The physical_attributes_clause lets you change the value of the PCTFREE, PCTUSED, and INITRANS
parameters and the storage characteristics for the materialized view log, the partition, the
overflow data segment, or the default characteristics of a partitioned materialized view log.

Restriction on Materialized View Log Physical Attributes

You cannot use the storage_clause to modify extent parameters if the materialized view log
resides in a locally managed tablespace. Refer to CREATE TABLE for a description of these
parameters.

add_mv_log_column_clause

When you add a column to the master table of the materialized view log, the database does
not automatically add a column to the materialized view log. Therefore, use this clause to add
a column to the materialized view log. Oracle Database will encrypt the newly added column if
the corresponding column of the master table is encrypted.

alter_table_partitioning

The syntax and general functioning of the partitioning clauses is the same as described for the
ALTER TABLE statement. Refer to alter_table_partitioning in the documentation on ALTER TABLE.

Restrictions on Altering Materialized View Log Partitions

Altering materialized view log partitions is subject to the following restrictions:

• You cannot use the LOB_storage_clause or modify_LOB_storage_clause when modifying partitions of
a materialized view log.

• If you attempt to drop, truncate, or exchange a materialized view log partition, then Oracle
Database raises an error.

parallel_clause

The parallel_clause lets you specify whether parallel operations will be supported for the
materialized view log.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

logging_clause

Specify the logging attribute of the materialized view log. Refer to the logging_clause for a full
description of this clause.

allocate_extent_clause

Use the allocate_extent_clause to explicitly allocate a new extent for the materialized view log.
Refer to allocate_extent_clause for a full description of this clause.

shrink_clause

Use this clause to compact the materialized view log segments. For complete information on
this clause, refer to shrink_clause in the documentation on CREATE TABLE.

Chapter 11
ALTER MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 120

move_mv_log_clause

Use the MOVE clause to move the materialized view log table to a different tablespace, to
change other segment or storage attributes of the materialized view log, or to change the
parallelism of the materialized view log.

Restriction on Moving Materialized View Logs

The ENCRYPT clause of the storage_clause of segment_attributes is not valid for materialized view logs.

CACHE | NOCACHE Clause

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for this log
are placed at the most recently used end of the LRU list in the buffer cache when a full table
scan is performed. This attribute is useful for small lookup tables. NOCACHE specifies that the
blocks are placed at the least recently used end of the LRU list. Refer to "CACHE | NOCACHE
| CACHE READS" in the documentation on CREATE TABLE for more information about this
clause.

mv_log_augmentation

Use the ADD clause to augment the materialized view log so that it records the primary key
values, rowid values, object ID values, or a sequence when rows in the materialized view
master table are changed. This clause can also be used to record additional columns.

To stop recording any of this information, you must first drop the materialized view log and then
re-create it. Dropping the materialized view log and then re-creating it forces a complete
refresh for each of the existing materialized views that depend on the master table on its next
refresh.

Restriction on Augmenting Materialized View Logs

You can specify only one PRIMARY KEY, one ROWID, one OBJECT ID, one SEQUENCE, and each
column in the column list once for each materialized view log. You can specify only a single
occurrence of PRIMARY KEY, ROWID, OBJECT ID, SEQUENCE, and column list within this ALTER
statement. Also, if any of these values was specified at create time (either implicitly or
explicitly), you cannot specify that value in this ALTER statement unless you use the FORCE
option.

OBJECT ID

Specify OBJECT ID if you want the appropriate object identifier of all rows that are changed to be
recorded in the materialized view log.

Restriction on the OBJECT ID clause

You can specify OBJECT ID only for logs on object tables, and you cannot specify it for storage
tables.

PRIMARY KEY

Specify PRIMARY KEY if you want the primary key values of all rows that are changed to be
recorded in the materialized view log.

ROWID

Specify ROWID if you want the rowid values of all rows that are changed to be recorded in the
materialized view log.

SEQUENCE

Chapter 11
ALTER MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 120

Specify SEQUENCE to indicate that a sequence value providing additional ordering information
should be recorded in the materialized view log.

column

Specify the additional columns whose values you want to be recorded in the materialized view
log for all rows that are changed. Typically these columns are filter columns (non-primary-key
columns referenced by subquery materialized views) and join columns (non-primary-key
columns that define a join in the WHERE clause of the subquery).

See Also

• CREATE MATERIALIZED VIEW for details on explicit and implicit inclusion of
materialized view log values

• Oracle Database Administrator’s Guide for more information about filter columns
and join columns

• "Rowid Materialized View Log: Example"

NEW VALUES Clause

The NEW VALUES clause lets you specify whether Oracle Database saves both old and new
values for update DML operations in the materialized view log. The value you set in this clause
applies to all columns in the log, not only to columns you may have added in this ALTER
MATERIALIZED VIEW LOG statement.

INCLUDING

Specify INCLUDING to save both new and old values in the log. If this log is for a table on which
you have a single-table materialized aggregate view, and if you want the materialized view to
be eligible for fast refresh, then you must specify INCLUDING.

EXCLUDING

Specify EXCLUDING to disable the recording of new values in the log. You can use this clause
to avoid the overhead of recording new values.

If you have a fast-refreshable single-table materialized aggregate view defined on this table,
then do not specify EXCLUDING NEW VALUES unless you first change the refresh mode of the
materialized view to something other than FAST.

See Also

"Materialized View Log EXCLUDING NEW VALUES: Example"

mv_log_purge_clause

Use this clause alter the purge attributes of the materialized view log in the following ways:

• Change the purge from IMMEDIATE SYNCHRONOUS to IMMEDIATE ASYNCHRONOUS or from
IMMEDIATE ASYNCHRONOUS to IMMEDIATE SYNCHRONOUS

• Change the purge from IMMEDIATE to scheduled or from scheduled to IMMEDIATE

• Specify a new start time and a new next time and interval

Chapter 11
ALTER MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 120

If you are altering purge from scheduled to IMMEDIATE, then the scheduled purged job
associated with that materialized view log is dropped. If you are altering purge from IMMEDIATE
to scheduled, then a purge job is created with the attributes provided. If you are altering
scheduled purge attributes, then only those attributes specified will be changed in the
scheduler purge job.

You must specify FORCE if you are altering log purge to its current state (that is, you are not
making any change), unless you are changing scheduled purge attributes.

To learn whether the purge time or interval has already been set for this materialized view log,
query the *_MVIEW_LOGS data dictionary views. See the CREATE MATERIALIZED VIEW LOG
clause mv_log_purge_clause for the full semantics of this clause.

for_refresh_clause

Use this clause to change the refresh method for which the materialized view log will be used.

FOR SYNCHRONOUS REFRESH

Specify this clause to change from fast refresh to synchronous refresh, or complete refresh to
synchronous refresh. A staging log will be created.

If you are changing from fast refresh, then ensure that the following conditions are satisfied
before using this clause:

• All changes in the materialized view log have been consumed.

• Any refresh-on-demand materialized views associated with the master table have been
refreshed.

• Any refresh-on-commit materialized views associated with the master table have been
converted to refresh-on-demand materialized views.

After you use this clause, you cannot perform DML operations directly on the master table. You
must use the procedures in the DBMS_SYNC_REFRESH package to prepare and execute change
data operations.

FOR FAST REFRESH

Specify this clause to change from synchronous refresh to fast refresh, or complete refresh to
fast refresh. A materialized view log will be created.

If you are changing from synchronous refresh to fast refresh, then ensure that all changes in
the staging log have been consumed before using this clause.

After you use this clause, you can perform DML operations directly on the master table.

See the CREATE MATERIALIZED VIEW LOG clause for_refresh_clause for the full semantics of
this clause.

Examples

Rowid Materialized View Log: Example

The following statement alters an existing primary key materialized view log to also record
rowid information:

ALTER MATERIALIZED VIEW LOG ON order_items ADD ROWID;

Materialized View Log EXCLUDING NEW VALUES: Example

The following statement alters the materialized view log on hr.employees by adding a filter column
and excluding new values. Any materialized aggregate views that use this log will no longer be

Chapter 11
ALTER MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 120

fast refreshable. However, if fast refresh is no longer needed, this action avoids the overhead
of recording new values:

ALTER MATERIALIZED VIEW LOG ON employees
 ADD (commission_pct)
 EXCLUDING NEW VALUES;

ALTER MATERIALIZED ZONEMAP
Purpose

Use the ALTER MATERIALIZED ZONEMAP statement to modify an existing zone map in one of the
following ways:

• To change its attributes

• To change its default refresh method and mode

• To enable or disable its use for pruning

• To compile it, rebuild it, or make it unusable

See Also

• CREATE MATERIALIZED ZONEMAP for information on creating zone maps

• Oracle Database Data Warehousing Guide for more information on zone maps

Prerequisites

The zone map must be in your own schema or you must have the ALTER ANY MATERIALIZED
VIEW system privilege.

The user who owns the schema containing the zone map must have access to any base tables
of the zone map that reside outside of that schema, either through a READ or SELECT object
privilege on each of the tables, or through the READ ANY TABLE or SELECT ANY TABLE system
privilege.

Syntax

alter_materialized_zonemap::=

ALTER MATERIALIZED ZONEMAP

IF EXISTS schema .

zonemap_name

alter_zonemap_attributes

zonemap_refresh_clause

ENABLE

DISABLE
PRUNING

COMPILE

REBUILD

UNUSABLE

Chapter 11
ALTER MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 120

alter_zonemap_attributes::=

PCTFREE integer

PCTUSED integer

CACHE

NOCACHE

zonemap_refresh_clause::=

REFRESH

FAST

COMPLETE

FORCE

ON

DEMAND

COMMIT

LOAD

DATA MOVEMENT

LOAD DATA MOVEMENT

Note

When specifying the zonemap_refresh_clause, you must specify at least one clause after
the REFRESH keyword.

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the zone map. If you omit schema, then Oracle Database
assumes the zone map is in your own schema.

zonemap_name

Specify the name of the zone map to be altered.

alter_zonemap_attributes

Use this clause to modify the following attributes for the zone map: PCTFREE, PCTUSED, and
CACHE or NOCACHE. These attributes have the same semantics for ALTER MATERIALIZED
ZONEMAP and CREATE MATERIALIZED ZONEMAP. For complete information on these attributes,
refer to PCTFREE, PCTUSED, and CACHE | NOCACHE in the documentation on CREATE
MATERIALIZED ZONEMAP.

Chapter 11
ALTER MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 120

zonemap_refresh_clause

Use this clause to modify the default refresh method and mode for the zone map. This clause
has the same semantics for ALTER MATERIALIZED ZONEMAP and CREATE MATERIALIZED
ZONEMAP. For complete information on this clause, refer to zonemap_refresh_clause in the
documentation on CREATE MATERIALIZED ZONEMAP.

ENABLE | DISABLE PRUNING

Use this clause to enable or disable use of the zone map for pruning. This clause has the
same semantics for ALTER MATERIALIZED ZONEMAP and CREATE MATERIALIZED ZONEMAP. For
complete information on this clause, refer to ENABLE | DISABLE PRUNING in the
documentation on CREATE MATERIALIZED ZONEMAP

COMPILE

This clause lets you explicitly compile the zone map. This operation validates the zone map
after a DDL operation changes the structure of one or more of its base tables. It is usually not
necessary to issue this clause because Oracle database automatically compiles a zone map
that requires compilation before using it. However, if you would like to explicitly compile a zone
map, then you can use this clause to do so.

The result of compiling a zone map depends on whether a base table is changed in a way that
affects the zone map. For example, if a column is added to a base table, then the zone map
will be valid after compilation because the change does not affect the zone map. However, if a
column that is included in the defining subquery of the zone map is dropped from a base table,
then the zone map will be invalid after compilation.

You can determine if a zone map requires compilation by querying the COMPILE_STATE column
of the ALL_, DBA_, and USER_ZONEMAPS data dictionary views. If the value of the column is
NEEDS_COMPILE, then the zone map requires compilation.

REBUILD

This clause lets you explicitly rebuild the zone map. This operation refreshes the data in the
zone map. This clause is useful in the following situations:

• You can use this clause to refresh the data for a refresh-on-demand zone map. Refer to
the ON DEMAND clause in the documentation on CREATE MATERIALIZED ZONEMAP for
more information.

• You must issue this clause after an EXCHANGE PARTITION operation on one of the base
tables of a zone map, regardless of the default refresh mode of the zone map.

• If a zone map is marked unusable, then you must issue this clause to mark it usable. You
can determine if a zone map is marked unusable by querying the UNUSABLE column of the
ALL_, DBA_, and USER_ZONEMAPS data dictionary views.

UNUSABLE

Specify this clause to make the zone map unusable. Subsequent queries will not use the zone
map and the database will no longer maintain the zone map. You can make the zone map
usable again by issuing an ALTER MATERIALIZED ZONEMAP ... REBUILD statement.

Examples

Modifying Zone Map Attributes: Example

Chapter 11
ALTER MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 120

The following statement modifies the PCTFREE and PCTUSED attributes of zone map sales_zmap,
and modifies the zone map so that it does not use caching:

ALTER MATERIALIZED ZONEMAP sales_zmap
 PCTFREE 20 PCTUSED 50 NOCACHE;

Modifying the Default Refresh Method and Mode for a Zone Map: Example

The following statement changes the default refresh method to FAST and the default refresh
mode to ON COMMIT for zone map sales_zmap:

ALTER MATERIALIZED ZONEMAP sales_zmap
 REFRESH FAST ON COMMIT;

Disabling Use of a Zone Map for Pruning: Example

The following statement disables use of zone map sales_zmap for pruning:

ALTER MATERIALIZED ZONEMAP sales_zmap
 DISABLE PRUNING;

Compiling a Zone Map: Example

The following statement compiles zone map sales_zmap:

ALTER MATERIALIZED ZONEMAP sales_zmap
 COMPILE;

Rebuilding a Zone Map: Example

The following statement rebuilds zone map sales_zmap:

ALTER MATERIALIZED ZONEMAP sales_zmap
 REBUILD;

Making a Zone Map Unusable: Example

The following statement makes zone map sales_zmap unusable:

ALTER MATERIALIZED ZONEMAP sales_zmap
 UNUSABLE;

ALTER MLE ENV
Purpose

Use ALTER MLE ENV to alter an exisiting MLE environment. You can add, remove, and alter
mappings for import names and set language options.

Prerequisites

You must have the ALTER ANY MLE privilege to alter an environment in schemas other than
your own. No privilege is needed to alter an environment in your own schema.

Chapter 11
ALTER MLE ENV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 120

Syntax

ALTER MLE ENV

IF EXISTS schema .

name

ADD IMPORTS (import_name MODULE

schema .

mle_module_name

,

DROP IMPORTS (import_name

,

ALTER IMPORTS (import_name MODULE

schema .

mle_module_name

,

)

SET LANGUAGE OPTIONS option_string

COMPILE

Semantics

IF EXISTS

The ALTER MLE MODULE statement raises an ORA-04103 error if the module does not exist, or an
ORA-00922 error if an invalid attribute is specified.

schema

Specify the schema containing the MLE module. If you do not specify the schema, then Oracle
Database assumes that the module is in your own schema.

ADD IMPORTS Clause

Use ADD IMPORTS to add new mappings from import names to MLE module schema objects.
Mappings to be added are specified as a comma-separated list enclosed in parentheses. Each
element in the list is of the form: import-name MODULE [schema]. mle-module-name.

The following cases produce errors:

• If the environment already contains one or more of the import names, an ORA-04109 error is
thrown.

• If one or more of the MLE modules does not reside in the same schema as the
environment, an ORA-01031 error is thrown.

DROP IMPORTS Clause

Use DROP IMPORTS to remove import names from the environment.

If the environment does nnot contain one or more of the specified import names, an ORA -04110
error is thrown.

ALTER IMPORTS Clause

Use ALTER IMPORTS to update import mappings for each of the specified import names.

The following cases produce errors:

Chapter 11
ALTER MLE ENV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 120

• If the environment does not contain one or more of the import names, an ORA-04110 error is
thrown.

• If one or more of the new MLE modules does not reside in the same schema as the
environment, an ORA-01031 error is thrown.

SET LANGUAGE OPTIONS Clause

Use LANGUAGE OPTIONS to specify language options for all execution contexts created with this
environment. Language options are specified as a string literal consisting of comma-separated
key-value pairs. Language options are only parsed at runtime when an execution context is
created using the MLE environment.

If at context creation the language options string turns out to be invalid (invalid format,
unsupported options), an ORA-04152 error is thrown.

Example

The following example modifies an exisiting environment myenv by enabling JavaScript in strict
mode:

ALTER MLE ENV scott."myenv" SET LANGUAGE OPTIONS ’js.strict=
true ’;

COMPILE Clause

Use COMPILE to explicitly recompile an MLE environment. You can use this clause to revalidate
an environment that has become invalid and thereby catch errors before run time.

See Also

• MLE JavaScript Modules and Environments

• CREATE MLE ENV

• DROP MLE ENV

ALTER MLE MODULE
Purpose

Use ALTER MLE MODULE to add metadata to existing MLE modules in the database.

Prerequisites

To alter MLE modules in another schema you need the ALTER ANY MLE system privilege. No
privileges are required to alter MLE modules in your own schema.

Syntax

ALTER MLE MODULE

IF EXISTS schema .

module_name

SET METADATA USING CLOB

(

CLOB

)

Chapter 11
ALTER MLE MODULE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 120

Semantics

IF EXISTS

The ALTER MLE MODULE statement raises an ORA-04103 error if the module does not exist, or an
ORA-00922 error if an invalid attribute is specified.

schema

Specify the schema containing the MLE module. If you do not specify the schema, then Oracle
Database assumes that the module is in your own schema.

module_name

module_name refers to the name of the MLE module.

CLOB

CLOB refers to the text you can attach to an MLE module. You can use it to refer to a commit in
a version control system or as a part of a Software Bill of Materials. The CLOB contents are
freeform metadata that can be attached to the MLE module. The metadata does not impact
module functionality in any way. Oracle recommends that the metadata be used to record
version information for the MLE module, e.g., the commit in a version control system that
corresponds to the deployed version of the module, or a Software Bill of Materials for the
module, for example the contents of package-lock.json for a bundled JavaScript module.

Examples

The following example attaches metadata as JSON to MLE module myMLEModule:

ALTER MLE MODULE myMLEModule
SET METADATA USING CLOB (
SELECT JSON(
 '{
 "name": "value",
 "version": "1.2.0",
 "commitHash": "23fas4h",
 "projectName": "Database Backend"
 }')
)

See Also

• MLE JavaScript Modules and Environments

• CREATE MLE MODULE

• DROP MLE MODULE

ALTER OPERATOR
Purpose

Use the ALTER OPERATOR statement to add bindings to, drop bindings from, or compile an
existing operator.

Chapter 11
ALTER OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 120

See Also

CREATE OPERATOR

Prerequisites

The operator must already have been created by a previous CREATE OPERATOR statement. The
operator must be in your own schema or you must have the ALTER ANY OPERATOR system
privilege. You must have the EXECUTE object privilege on the operators and functions
referenced in the ALTER OPERATOR statement.

Syntax

alter_operator::=

ALTER OPERATOR

IF EXISTS schema .

operator

add binding_clause

drop_binding_clause

COMPILE

(add_binding_clause::=, drop_binding_clause::=)

add_binding_clause::=

ADD BINDING (parameter_type

,

) RETURN (return_type)

implementation_clause

using_function_clause

(implementation_clause::=, using_function_clause::=)

implementation_clause::=

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause

(context_clause::=)

Chapter 11
ALTER OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 120

context_clause::=

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type

COMPUTE ANCILLARY DATA

WITH COLUMN CONTEXT

using_function_clause::=

USING

schema .

package .

type .

function_name

drop_binding_clause::=

DROP BINDING (parameter_type

,

)

FORCE

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the operator. If you omit this clause, then Oracle Database
assumes the operator is in your own schema.

operator

Specify the name of the operator to be altered.

add_binding_clause

Use this clause to add an operator binding and specify its parameter data types and return
type. The signature must be different from the signature of any existing binding for this
operator.

If a binding of an operator is associated with an indextype and you add another binding to the
operator, then Oracle Database does not automatically associate the new binding with the
indextype. If you want to make such an association, then you must issue an explicit ALTER
INDEXTYPE ... ADD OPERATOR statement.

Chapter 11
ALTER OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 120

implementation_clause

This clause has the same semantics in CREATE OPERATOR and ALTER OPERATOR statements.
For full information, refer to implementation_clause in the documentation on CREATE OPERATOR.

context_clause

This clause has the same semantics in CREATE OPERATOR and ALTER OPERATOR statements.
For full information, refer to context_clause in the documentation on CREATE OPERATOR.

using_function_clause

This clause has the same semantics in CREATE OPERATOR and ALTER OPERATOR statements.
For full information, refer to using_function_clause in the documentation on CREATE OPERATOR.

drop_binding_clause

Use this clause to specify the list of parameter data types of the binding you want to drop from
the operator. You must specify FORCE if the binding has any dependent objects, such as an
indextype or an ancillary operator binding. If you specify FORCE, then Oracle Database marks
INVALID all objects that are dependent on the binding. The dependent objects are revalidated
the next time they are referenced in a DDL or DML statement or a query.

You cannot use this clause to drop the only binding associated with this operator. Instead you
must use the DROP OPERATOR statement. Refer to DROP OPERATOR for more information.

COMPILE

Specify COMPILE to cause Oracle Database to recompile the operator.

Examples

Compiling a User-defined Operator: Example

The following example compiles the operator eq_op (which was created in "Creating User-
Defined Operators: Example"):

ALTER OPERATOR eq_op COMPILE;

Chapter 11
ALTER OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 120

ALTER OUTLINE
Purpose

Note

Stored outlines are deprecated. They are still supported for backward compatibility.
However, Oracle recommends that you use SQL plan management instead. SQL plan
management creates SQL plan baselines, which offer superior SQL performance
stability compared with stored outlines.

You can migrate existing stored outlines to SQL plan baselines by using the
MIGRATE_STORED_OUTLINE function of the DBMS_SPM package or Enterprise Manager
Cloud Control. When the migration is complete, the stored outlines are marked as
migrated and can be removed. You can drop all migrated stored outlines on your
system by using the DROP_MIGRATED_STORED_OUTLINE function of the DBMS_SPM
package.

See Also: Oracle Database SQL Tuning Guide for more information about SQL plan
management and Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SPM package

Use the ALTER OUTLINE statement to rename a stored outline, reassign it to a different
category, or regenerate it by compiling the outline's SQL statement and replacing the old
outline data with the outline created under current conditions.

See Also

CREATE OUTLINE for information on creating an outline

Prerequisites

To modify an outline, you must have the ALTER ANY OUTLINE system privilege.

Syntax

alter_outline::=

ALTER OUTLINE

PUBLIC

PRIVATE

outline

REBUILD

RENAME TO new_outline_name

CHANGE CATEGORY TO new_category_name

ENABLE

DISABLE

;

Chapter 11
ALTER OUTLINE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 120

Semantics

PUBLIC | PRIVATE

Specify PUBLIC if you want to modify the public version of this outline. This is the default.

Specify PRIVATE if you want to modify an outline that is private to the current session and
whose data is stored in the current parsing schema.

outline

Specify the name of the outline to be modified.

REBUILD

Specify REBUILD to regenerate the execution plan for outline using current conditions.

See Also

"Rebuilding an Outline: Example"

RENAME TO Clause

Use the RENAME TO clause to specify an outline name to replace outline.

CHANGE CATEGORY TO Clause

Use the CHANGE CATEGORY TO clause to specify the name of the category into which the outline
will be moved.

ENABLE | DISABLE

Use this clause to selectively enable or disable this outline. Outlines are enabled by default.
The DISABLE keyword lets you disable one outline without affecting the use of other outlines.

Examples

Rebuilding an Outline: Example

The following statement regenerates a stored outline called salaries by compiling the text of the
outline and replacing the old outline data with the outline created under current conditions.

ALTER OUTLINE salaries REBUILD;

ALTER PACKAGE
Purpose

Packages are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the ALTER PACKAGE statement to explicitly recompile a package specification, body, or
both. Explicit recompilation eliminates the need for implicit run-time recompilation and prevents
associated run-time compilation errors and performance overhead.

Chapter 11
ALTER PACKAGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 120

Because all objects in a package are stored as a unit, the ALTER PACKAGE statement
recompiles all package objects together. You cannot use the ALTER PROCEDURE statement or
ALTER FUNCTION statement to recompile individually a procedure or function that is part of a
package.

Note

This statement does not change the declaration or definition of an existing package.
To redeclare or redefine a package, use the CREATE PACKAGE or the CREATE
PACKAGE BODY statement with the OR REPLACE clause.

Prerequisites

For you to modify a package, the package must be in your own schema or you must have
ALTER ANY PROCEDURE system privilege.

Syntax

alter_package::=

ALTER PACKAGE

IF EXISTS schema .

package_name

package_compile_clause

EDITIONABLE

NONEDITIONABLE

(package_compile_clause: See Oracle Database PL/SQL Language Reference for the syntax of this
clause.)

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the package. If you omit schema, then Oracle Database assumes
the package is in your own schema.

package_name

Specify the name of the package to be recompiled.

package_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of this
clause and for complete information on creating and compiling packages.

Chapter 11
ALTER PACKAGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 120

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the package becomes an editioned or noneditioned
object if editioning is later enabled for the schema object type PACKAGE in schema. The default is
EDITIONABLE. For information about altering editioned and noneditioned objects, see Oracle
Database Development Guide.

ALTER PLUGGABLE DATABASE
Purpose

Use the ALTER PLUGGABLE DATABASE statement to modify a pluggable database (PDB). The
PDB can be a traditional PDB, an application container, or an application PDB.

This statement enables you to perform the following tasks:

• Unplug a PDB from a multitenant container database (CDB) (using the pdb_unplug_clause)

• Modify the settings of a PDB (using the pdb_settings_clauses)

• Bring PDB data files online or take them offline (using the pdb_datafile_clause)

• Back up and recover a PDB (using the pdb_recovery_clauses)

• Modify the state of a PDB (using the pdb_change_state clause)

• Modify the state of multiple PDBs within a CDB (using the pdb_change_state_from_root clause)

• Perform operations on applications in an application container (using the application_clauses)

• Create and manage PDB snapshots using the snapshot_clauses

Note

You can perform all ALTER PLUGGABLE DATABASE tasks by connecting to a PDB and
running the corresponding ALTER DATABASE statement. This functionality is provided to
maintain backward compatibility for applications that have been migrated to a CDB
environment. The exception is modifying PDB storage limits, for which you must use
the pdb_storage_clause of ALTER PLUGGABLE DATABASE.

See Also

CREATE PLUGGABLE DATABASE for information on creating PDBs

Prerequisites

You must be connected to a CDB.

To specify the pdb_unplug_clause, the current container must be the root or the application root,
you must be authenticated AS SYSDBA or AS SYSOPER, and the SYSDBA or SYSOPER privilege
must be either granted to you commonly, or granted to you locally in the root and locally in the
PDB you want to unplug.

To specify the pdb_settings_clauses, the current container must be the PDB whose settings you
want to modify and you must have the ALTER DATABASE privilege, either granted commonly or

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 120

granted locally in the PDB. To specify the pdb_logging_clauses or the RENAME GLOBAL_NAME
clause, you must also have the RESTRICTED SESSION privilege, either granted commonly or
granted locally in the PDB being renamed, and the PDB must be in READ WRITE RESTRICTED
mode.

To specify the pdb_datafile_clause, the current container must be the PDB whose datafiles you
want to bring online or take offline and you must have the ALTER DATABASE privilege, either
granted commonly or granted locally in the PDB.

To specify the pdb_recovery_clauses, the current container must be the PDB you want to back up or
recover and you must have the ALTER DATABASE privilege, either granted commonly or granted
locally in the PDB.

To specify the pdb_change_state clause, the current container must be the PDB whose state you
want to change and you must be authenticated AS SYSBACKUP, AS SYSDBA, AS SYSDG, or AS
SYSOPER.

To specify the pdb_change_state_from_root clause, the current container must be the root or the
application root, you must be authenticated AS SYSBACKUP, AS SYSDBA, AS SYSDG, or AS
SYSOPER, and the SYSBACKUP, SYSDBA, SYSDG, or SYSOPER privilege must be either granted to
you commonly, or granted to you locally in the root or application root, and locally in the PDB(s)
whose state(s) you want to change.

To specify the application_clauses, the current container must be an application container, you
must be authenticated AS SYSBACKUP or AS SYSDBA, and the SYSBACKUP or SYSDBA privilege
must be either granted to you commonly, or granted to you locally in the application root and
locally in the application PDB(s) in which you want to perform application operations.

Syntax

alter_pluggable_database::=

ALTER database_clause

pdb_unplug_clause

pdb_settings_clauses

pdb_datafile_clause

pdb_recovery_clauses

pdb_change_state

pdb_change_state_from_root

application_clauses

snapshot_clauses

prepare_clause

drop_mirror_copy

lost_write_protection

pdb_managed_recovery

ENABLE

DISABLE

BACKUP

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 120

(pdb_unplug_clause::=, pdb_settings_clauses::=, pdb_datafile_clause::=,
pdb_recovery_clauses, pdb_change_state::=, pdb_change_state_from_root::=,
application_clauses::=)

database_clause::=

DATABASE

db_name

PLUGGABLE DATABASE

pdb_name

pdb_unplug_clause::=

pdb_name UNPLUG INTO ’ filename ’

pdb_unplug_encrypt

pdb_unplug_encrypt::=

ENCRYPT USING transport_secret

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 120

pdb_settings_clauses::=

pdb_name

DEFAULT EDITION = edition_name

SET DEFAULT
BIGFILE

SMALLFILE
TABLESPACE

DEFAULT TABLESPACE tablespace_name

DEFAULT TEMPORARY TABLESPACE
tablespace

tablespace_group_name

RENAME GLOBAL_NAME TO database . domain

set_time_zone_clause

database_file_clauses

supplemental_db_logging

pdb_storage_clause

pdb_logging_clauses

pdb_refresh_mode_clause

pdb_refresh_switchover_clause

REFRESH

PRIORITY value

NONE

SET CONTAINER_MAP = ’ map_object ’

CONTAINERS

DEFAULT TARGET =
(container_name)

NONE

HOST = ’ hostname ’

PORT = number

(set_time_zone_clause::=, database_file_clauses::=, supplemental_db_logging::=,
pdb_storage_clause::=, pdb_logging_clauses::=, pdb_refresh_mode_clause::=)

pdb_storage_clause::=

STORAGE

(

MAXSIZE

MAX_AUDIT_SIZE

MAX_DIAG_SIZE

UNLIMITED

size_clause
)

UNLIMITED

(size_clause::=)

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 120

pdb_logging_clauses::=

logging_clause

pdb_force_logging_clause

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

pdb_force_logging_clause::=

ENABLE

DISABLE

FORCE

LOGGING

NOLOGGING

SET STANDBY NOLOGGING FOR

DATA AVAILABILITY

LOAD PERFORMANCE

pdb_refresh_mode_clause::=

REFRESH MODE

MANUAL

EVERY refresh_interval

HOURS

MINUTES

NONE

pdb_refresh_switchover_clause ::=

FROM source_pdb_name @ dblink SWITCHOVER

pdb_datafile_clause::=

pdb_name

DATAFILE

’ filename ’

filenumber

,

ALL

ONLINE

OFFLINE

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 120

pdb_recovery_clauses

pdb_name

pdb_general_recovery

BEGIN

END
BACKUP

ENABLE

DISABLE
RECOVERY

pdb_general_recovery::=

RECOVER

AUTOMATIC FROM ’ location ’

DATABASE

TABLESPACE tablespace

,

DATAFILE
’ filename ’

filenumber

,

LOGFILE ’ filename ’

CONTINUE

DEFAULT

pdb_change_state::=

pdb_name
pdb_open

pdb_close

pdb_save_or_discard_state

(pdb_open::=, pdb_close::=, pdb_save_or_discard_state::=)

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 120

pdb_open::=

OPEN

READ WRITE

READ ONLY

HYBRID READ ONLY RESTRICTED FORCE

READ WRITE

UPGRADE

RESTRICTED

RESETLOGS

instances_clause services_clause

instances_clause::=

INSTANCES =

(’ instance_name ’

,

)

ALL

EXCEPT (’ instance_name ’

,

)

services_clause::=

SERVICES =

(’ service_name ’

,

)

ALL

EXCEPT (’ service_name ’

,

)

pdb_close::=

CLOSE

IMMEDIATE

instances_clause

relocate_clause

ABORT instances_clause

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 120

relocate_clause::=

RELOCATE

TO ’ instance_name ’

NORELOCATE

pdb_save_or_discard_state::=

SAVE

DISCARD

STATE

instances_clause

pdb_change_state_from_root::=

pdb_name

,

ALL

EXCEPT pdb_name

,

pdb_open

pdb_close

pdb_save_or_discard_state

(pdb_open::=, pdb_close::=, pdb_save_or_discard_state::=)

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 120

application_clauses::=

APPLICATION

app_name

BEGIN INSTALL ’ app_version ’

COMMENT ’ comment ’

END INSTALL

’ app_version ’

BEGIN PATCH number

MINIMUM VERSION ’ app_version ’ COMMENT ’ comment ’

END PATCH

number

BEGIN UPGRADE

’ start_app_version ’

TO ’ end_app_version ’

COMMENT ’ comment ’

END UPGRADE

TO ’ end_app_version ’

BEGIN UNINSTALL

END UNINSTALL

SET PATCH number

SET VERSION ’ app_version ’

SET COMPATIBILITY VERSION
’ app_version ’

CURRENT

SYNC TO
’ app_version ’

PATCH patch_number

app_name

,

SYNC

ALL

EXCEPT app_name

,

SYNC

snapshot_clauses ::=

pdb_snapshot_clause

materialize_clause

create_snapshot_clause

drop_snapshot_clause

set_max_pdb_snapshots_clause

pdb_snapshot_clause ::=

SNAPSHOT

MANUAL

EVERY snapshot_interval
HOURS

MINUTES

NONE

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 120

materialize_clause::=

MATERIALIZE

create_snapshot_clause::=

SNAPSHOT snapshot_name

drop_snapshot_clause::=

DROP SNAPSHOT snapshot_name

set_max_pdb_snapshots::=

SET max_pdb_snapshots = max_number_of_snapshots

prepare_clause::=

PREPARE MIRROR COPY copy_name

WITH

UNPROTECTED

MIRROR

HIGH

REDUNDANCY

FOR DATABASE target_cdb_name

drop_mirror_copy::=

DROP MIRROR COPY mirror_name

lost_write_protection ::=

The usage for the lost_write_protection clause with the ALTER PLUGGABLE DATABASE statement is
identical to the ALTER DATABASE statement. Look here ALTER DATABASE for syntax details.

pdb_managed_recovery ::=

RECOVER MANAGED STANDBY DATABASE

CANCEL

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 120

Semantics

database_clause

Specify the PLUGGABLE DATABASE option for a container database.

pdb_name

Specify the name of the database to be altered. If you omit db_name, then Oracle Database
alters the database identified by the value of the initialization parameter DB_NAME. You can
alter only the database whose control files are specified by the initialization parameter
CONTROL_FILES. The database identifier is not related to the Oracle Net database specification.

pdb_unplug_clause

This clause lets you unplug a PDB from a CDB. When you unplug a PDB, Oracle stores
information about the PDB in a file on your operating system. You can subsequently use this
file to plug the PDB into a CDB.

For pdb_name, specify the name of the PDB you want to unplug. The PDB must be closed—that
is, the open mode must be MOUNTED. In an Oracle Real Application Clusters (Oracle RAC)
environment, the PDB must be closed in all Oracle RAC instances

For filename, specify the full path name of the operating system file in which to store information
about the PDB. The file name that you specify determines the type of information stored and
how it is stored.

• If you specify a file name that ends with the extension .xml, then Oracle creates an XML
file containing metadata about the PDB. You can then copy the XML file and the PDB's
data files to a new location and specify the XML file name when plugging the PDB into a
CDB. In this case, you must copy the PDB's data files separately.

• If you specify a file name that ends with the extension .pdb, then Oracle creates a .pdb
archive file. This is a compressed file that includes an XML file containing metadata about
the PDB, as well as the PDB's data files. You can then copy this single archive file to a new
location and specify the archive file name when plugging the PDB into a CDB. This
eliminates having to copy the PDB's data files separately. When you use a .pdb archive file
when plugging in a PDB, this file is extracted when you plug in the PDB, and the PDB’s
files are placed in the same directory as the .pdb archive file.

After a PDB is unplugged, it remains in the CDB with an open mode of MOUNTED and a status
of UNPLUGGED. The only operation you can perform on an unplugged PDB is DROP PLUGGABLE
DATABASE, which will remove it from the CDB. You must drop the PDB before you can plug it
into the same CDB or another CDB.

See Also

• Oracle Database Administrator's Guide for more information on unplugging a PDB

• The create_pdb_from_xml clause of CREATE PLUGGABLE DATABASE for information
on plugging a PDB into a CDB

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 120

pdb_unplug_encrypt

You must have the SYSKM privilege to execute this command.

United PDBs

• ENCRYPT USING transport_secret is optional.

• If TDE is in use, you must specify this clause. If TDE is not in use, the statement throws
the following error ORA-46680:master keys of the container database must be exported.

• The wallet must be open in ROOT if TDE is in use.

• Keys are encrypted using the provided transport secret and exported into the .XML or archive
file

Unplugging a PDB Into an XML Metadata File: Example

ALTER PLUGGABLE DATABASE CDB1_PDB2 UNPLUG INTO '/tmp/cdb1_pdb2.xml' ENCRYPT USING transport_secret

Unplugging a PDB Into an Archive File: Example

ALTER PLUGGABLE DATABASE CDB1_PDB1_1 UNPLUG INTO '/tmp/CDB1_PDB1_1.pdb' ENCRYPT USING
transport_secret

For PDBs in isolated mode, you need not specify ENCRYPT USING transport_secret. This is not
required because the wallet file of the PDB is copied during the creation of the pluggable
database from an XML file. If you are unplugging a PDB as an archive file, the wallet file of the
PDB is added to the zipped archive with the .pdb extension.

If the ewallet.p12 file already exists at the destination, a backup is automatically initiated. The
backup file has the following format: ewallet_PLGDB_2017090517455564.p12.

pdb_settings_clauses

These clauses lets you modify various settings for a PDB.

pdb_name

You can optionally use pdb_name to specify the name of the PDB whose settings you want to
modify.

DEFAULT EDITION Clause

Use this clause to designate the specified edition as the default edition for the PDB. For the full
semantics of this clause, refer to "DEFAULT EDITION Clause" in the ALTER DATABASE
documentation.

SET DEFAULT TABLESPACE Clause

Use this clause to specify or change the default type of tablespaces subsequently created in
the PDB. For the full semantics of this clause, refer to "SET DEFAULT TABLESPACE Clause"
in the ALTER DATABASE documentation.

DEFAULT TABLESPACE Clause

Use this clause to establish or change the default permanent tablespace of the PDB. For the
full semantics of this clause, refer to "DEFAULT TABLESPACE Clause" in the ALTER DATABASE
documentation.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 120

DEFAULT TEMPORARY TABLESPACE Clause

Use this clause to change the default temporary tablespace of the PDB to a new tablespace or
tablespace group. For the full semantics of this clause, refer to "DEFAULT [LOCAL]
TEMPORARY TABLESPACE Clause" in the ALTER DATABASE documentation.

RENAME GLOBAL_NAME TO Clause

Use this clause to change the global name of the PDB. The new global name must be unique
within the CDB. For an Oracle Real Application Clusters (Oracle RAC) database, the PDB
must be open in READ WRITE RESTRICTED mode on the current instance only. The PDB must be
closed on all other instances. For the full semantics of this clause, refer to "RENAME
GLOBAL_NAME Clause" in the ALTER DATABASE documentation.

Note

When you change the global name of a PDB, be sure to change the PLUGGABLE
DATABASE property for database services that are used to connect to the PDB.

set_time_zone_clause

Use this clause to modify the time zone setting for the PDB. For the full semantics of this
clause, refer to set_time_zone_clause in the ALTER DATABASE documentation.

database_file_clauses

Use this clause to modify data files and temp files for the PDB. For the full semantics of this
clause, refer to database_file_clauses in the ALTER DATABASE documentation.

supplemental_db_logging

Use these clauses to instruct Oracle Database to add or stop adding supplemental data into
the log stream for the PDB.

• Specify the ADD SUPPLEMENTAL LOG clause to add supplemental data into the log stream
for the PDB. In order to issue this clause, supplemental logging must have been enabled
for the CDB root with the ALTER DATABASE ... ADD SUPPLEMENTAL LOG ... statement. The
level of supplemental logging that you specify for the PDB does not need to match that of
the CDB root. That is, you can specify any of the clauses DATA, supplemental_id_key_clause, or
supplemental_plsql_clause for the PDB, regardless of which clause was specified when enabling
supplemental logging for the CDB root.

• Specify the DROP SUPPLEMENTAL LOG clause to stop adding supplemental data into the log
stream for the PDB.

ADD SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION, of ALTER
PLUGGABLE DATABASE enables low impact minimal supplemental logging on the PDB.

• You can only execute this DDL on a pluggable database.

• You can execute this DDL only when the enable_goldengate_replication parameter is TRUE, and
database compatible is 19.0 or higher.

• You must enable minimal supplemental logging in CDB$ROOT to run this command.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 120

• After you execute this DDL, minimal supplemental logging will become low impact for the
pluggable database. SYS.PROP$ will be updated to indicate that low impact minimal
supplemental logging is enabled at the PDB level for this pluggable database.

DROP SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION, of ALTER
PLUGGABLE DATABASE disables low impact minimal supplemental logging on the PDB.

• You can only execute this DDL on a pluggable database.

• You can execute this DDL only when the enable_goldengate_replication parameter is TRUE, and
database compatible is 19.0 or higher.

• You must enable minimal supplemental logging in CDB$ROOT to run this command.

• SYS.PROP$ will be updated to indicate that supplemental logging for subset database
replication is disabled at the PDB level for this pluggable database. If supplemental logging
for subset database replication is also disabled at CDB$ROOT (CDB level), then low impact
minimal supplemental logging will be disabled for this pluggable database.

For the full semantics of this clause, refer to supplemental_db_logging in the ALTER DATABASE
documentation.

pdb_storage_clause

Use this clause to modify the storage limits for a PDB.

This clause has the same semantics as the pdb_storage_clause in the CREATE PLUGGABLE
DATABASE documentation, with the following additions:

• If you specify MAXSIZE size_clause, then the value you specify for size_clause must be greater
than or equal to the combined size of the existing tablespaces belonging to the PDB.
Otherwise, an error occurs.

• If you specify MAX_AUDIT_SIZE size_clause, then the value you specify for size_clause must be
greater than or equal to the amount of storage used by the existing unified audit OS
spillover (.bin format) files in the PDB. Otherwise, an error occurs.

• If you specify MAX_DIAG_SIZE size_clause, then the value you specify for size_clause must be
greater than or equal to the amount of storage for diagnostics in the Automatic Diagnostic
Repository (ADR) that is currently used by the PDB. Otherwise an error occurs.

pdb_logging_clauses

Use these clauses to set or change the logging characteristics of the PDB.

logging_clause

Use this clause to change the default logging attribute for tablespaces subsequently created
within the PDB. This clause has the same semantics as the logging_clause in the CREATE
PLUGGABLE DATABASE documentation.

pdb_force_logging_clause

Use this clause to place a PDB into, or take it out of, one of four logging modes.

Force logging mode instructs the database to log all changes in the PDB, except changes in
temporary tablespaces and temporary segments. Force nologging mode instructs the database
to not log any changes in the PDB.

Standby nologging instructs the database to not log operations that qualify to be done without
logging. The database sends the data blocks that were created by the operation to each

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 120

qualifying standby database in the Data Guard configuration, typically resulting in those
standbys not having invalid blocks.

CDB-wide force logging mode takes precedence over any other setting. PDB-level force
logging mode and force nologging mode take precedence over and are independent of any
LOGGING, NOLOGGING, or FORCE LOGGING settings you specify for individual tablespaces in the
PDB and any LOGGING or NOLOGGING settings you specify for individual database objects in
the PDB.

• Specify ENABLE FORCE LOGGING to place the PDB in force logging mode. If the PDB is
currently in force nologging mode, then specifying this clause results in an error. You must
first specify DISABLE FORCE NOLOGGING.

• Specify DISABLE FORCE LOGGING to take the PDB out of force logging mode. If the PDB is
not currently in force logging mode, then specifying this clause results in an error.

• Specify ENABLE FORCE NOLOGGING to place the PDB in force nologging mode. If the PDB is
currently in force logging mode, then specifying this clause results in an error. You must
first specify DISABLE FORCE LOGGING. The nonlogged operations will use classic
invalidation redo, even if the CDB has a standby nologging mode set.

• Specify DISABLE FORCE NOLOGGING to take the PDB out of force nologging mode. If the
PDB is not currently in force nologging mode, then specifying this clause results in an
error.

• Specify SET STANDBY NOLOGGING FOR LOAD PERFORMANCE to put the PDB into standby
nologging for load performance mode. In this mode the data loaded as part of the
nonlogged task is sent to the qualifying standbys via a private network connection,
provided that doing so will not slow down the load process. If a slow down occurs, then the
data is not sent but fetched automatically from the primary as each standby encounters the
invalidation redo and will be retried until the data blocks are eventually received.

• Specify SET STANDBY NOLOGGING FOR DATA AVAILABILITY to put the PDB into standby
nologging for data availability mode. In this mode the data loaded as part of the nonlogged
task is sent to the qualifying standbys either via a network connection to them, or if that
fails, via block images in the redo. That is to say, in this mode the load will switch to be
done in a logged fashion if the network connection or related processes prevent the
sending of the data over the private network connection.

For the standby nologging modes a qualifying standby is one that is open for read, running
managed recovery, and receiving redo into standby redo logs.

This clause does not change the default LOGGING or NOLOGGING mode of the PDB specified by
the logging_clause.

pdb_refresh_mode_clause

Use this clause to change the refresh mode of a PDB. You can specify this clause only for a
refreshable PDB, that is, a PDB whose current refresh mode is MANUAL or EVERY refresh_interval
MINUTES or HOURS. You can switch a PDB from manual refresh to automatic refresh, or from
automatic refresh to manual refresh. You can also use this clause to change the number of
minutes between automatic refreshes. You can switch a PDB from manual or automatic refresh
to no refresh, but you cannot enable manual or automatic refresh for a PDB that is not
refreshable. For the complete semantics of this clause, refer to the pdb_refresh_mode_clause
in the documentation on CREATE PLUGGABLE DATABASE.

REFRESH

Specify this clause to perform a manual refresh of a refreshable PDB, that is, a PDB whose
current refresh mode is MANUAL or EVERY number MINUTES. The PDB must be closed. For more

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 120

information on refreshable PDBs, refer to the pdb_refresh_mode_clause in the documentation
on CREATE PLUGGABLE DATABASE.

pdb_refresh_switchover_clause

Use this clause to reverse roles between a refreshable clone PDB and a primary PDB. This
clause makes the refreshable clone PDB into a primary PDB, which can be opened in read
write mode. The former primary PDB becomes the refreshable clone..

• This command must be executed from the primary PDB .

• REFRESH MODE NONE may not be specified when issuing this statement.

• The dblink should point to the Root of the CDB where the refreshable clone PDB currently
resides.

• After this operation, the current PDB will become the refreshable clone and can only be
opened in READ ONLY mode.

• The database link user must exist in the primary PDB, if the refreshable clone exists in a
different CDB.

PRIORITY

You can control the order of operations on PDBs by assigning a PRIORITY to the PDB. The
priorityvalue should be a whole number greater than 0 and less than 4099. A value outside this
range throws an error.

The following ordering rules apply to manage different kinds of PDBs:

• PDBs are processed in an ascending order of priority. A PDB with a lower priority value will
be processed before a PDB with a higher priority value.

• PDBs with the same priority may be processed in any order. However, if App PDBs and the
App Root have the same priority or have no priority, App PDBs will still be opened after the
App Root.

• PDBs have no priority are considered to be the lowest priority.

• PDB priority for a given PDB is applicable to all RAC instances, i.e priority is NOT specific
to a given RAC instance.

• Priority will not be copied from source PDB to target PDB by plug, unplug or refreshable
clone.

• App PDBs cannot have a higher priority than App Root.

• App Root clones have the same priority as App Roots, and cannot be explicitly given a
PDB priority.

• The priority of CDB$ROOT and PDB$SEED is determined internally by Oracle RDBMS and is
not subject to PDB priority .

Use PRIORITY NONE to reset priority settings on the PDB.

SET CONTAINER_MAP

Use this clause to specify the CONTAINER_MAP database property for an application container.
The current container must be the application root. The map_object is of the form [schema.]table.
For schema, specify the schema containing table. If you omit schema, then the database assumed
that the table is in your own schema. For table, specify a range-, list-, or hash-partitioned table.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 120

CONTAINERS DEFAULT TARGET

Use this clause to specify the default container for DML statements in an application container.
You must be connect to the application root.

• For container_name, specify the name of the default container. The default container can be
any container in the application container, including the application root or an application
PDB. You can specify only one default container.

• If you specify NONE, then the default container is the CDB root. This is the default.

When a DML statement is issued in the application root without specifying containers in the
WHERE clause, the DML statement affects the default container for the application container.

CONTAINERS HOST and PORT

Use the HOST and PORT clauses if you want to create a PDB that you plan to reference from a
proxy PDB. This type of PDB is called a referenced PDB.

The following statements can be executed within a PDB:

ALTER PLUGGABLE DATABASE CONTAINERS HOST='myhost.example.com';

ALTER PLUGGABLE DATABASE CONTAINERS PORT=1599;

The following statements can be executed within CDB Root, Application Root, or within a
PDB :

ALTER PLUGGABLE DATABASE <pdbname> CONTAINERS HOST='myhost.example.com';

ALTER PLUGGABLE DATABASE <pdbname> CONTAINERS PORT=1599;

pdbname must meet the following criteria:

• If the statement is executed in Application Root, then pdbname has to match the name of
Application Root or the name of one of its Application PDBs.

• If the statement is executed in CDB Root, then pdbname has to match the name of one of
the PDBs in the CDB.

• If the statement is executed in a PDB, then pdbname has to match the name of the current
PDB.

See Also

HOST and PORT of CREATE PLUGGABLE DATABASE for the full semantics of HOST and
PORT

pdb_datafile_clause

This clause lets you bring data files associated with a PDB online or take them offline. The
PDB must be closed when you issue this clause.

• For pdb_name, specify the name of the PDB. If the current container is the PDB, then you
can omit pdb_name.

• The DATAFILE clauses let you specify the data files you want to bring online or take offline.
Use filename or filenumber to identify specific data files by name or by number. You can view

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 120

data file names and numbers by querying the NAME and FILE# columns of the V$DATAFILE
dynamic performance view. Use ALL to specify all datafiles associated with the PDB.

• Specify ONLINE to bring the data files online or OFFLINE to take the data files offline.

pdb_recovery_clauses

Use the pdb_recovery_clauses to back up and recover a PDB.

pdb_name

You can optionally use pdb_name to specify the name of the PDB you want to back up or
recover.

pdb_general_recovery

This clause lets you control media recovery for the PDB or standby database or for specified
tablespaces or files. The pdb_general_recovery clause has the same semantics as the
general_recovery clause of ALTER DATABASE. Refer to the general_recovery clause of ALTER
DATABASE for more information.

BACKUP Clauses

Use these clauses to move all of the data files in the PDB into or out of online backup mode
(also called hot backup mode). These clauses have the same semantics in ALTER PLUGGABLE
DATABASE and ALTER DATABASE. Refer to the "BACKUP Clauses" of ALTER DATABASE for more
information.

RECOVERY Clauses

Use these clauses to enable or disable a PDB for recovery. The PDB must be closed—that is,
the open mode must be MOUNTED.

• Specify ENABLE RECOVERY to bring all data files that belong to a PDB online and enable the
PDB for recovery.

• Specify DISABLE RECOVERY to take all data files that belong to a PDB offline and disable
the PDB for recovery.

See Also

Oracle Data Guard Concepts and Administration for more information on the
RECOVERY clauses

pdb_change_state

This clause enables you to change the state, or open mode, of a PDB. Table 11-2 lists the
open modes of a PDB.

• Specify the pdb_open clause to change the open mode to READ WRITE, READ ONLY, or
MIGRATE.

• Specify the pdb_close clause to change the open mode to MOUNTED.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 120

Table 11-2 PDB Open Modes

Open Mode Description

READ WRITE A PDB in open read/write mode allows queries and user transactions
to proceed and allows users to generate redo logs.

READ ONLY A PDB in open read-only mode allows queries but does not allow user
changes.

MIGRATE When a PDB is in open migrate mode, you can run database upgrade
scripts on the PDB.

MOUNTED When a PDB is in mounted mode, it behaves like a non-CDB in
mounted mode. It does not allow changes to any objects, and it is
accessible only to database administrators. It cannot read from or write
to data files. Information about the PDB is removed from memory
caches. Cold backups of the PDB are possible.

You can view the open mode of a PDB by querying the OPEN_MODE column of the V$PDBS view.

See Also

Oracle Database Administrator's Guide for a complete description of PDB open modes

pdb_name

You can optionally use pdb_name to specify the name of the PDB whose open mode you want to
change.

pdb_open

This clause lets you change the open mode of a PDB to READ WRITE, READ ONLY, or MIGRATE.
When you specify this clause, the PDB must be in MOUNTED mode unless you specify the
FORCE keyword.

If you do not specify READ WRITE or READ ONLY, then the default is READ WRITE. The exception
is when the PDB belongs to a CDB that is used as a physical standby database, in which case
the default is READ ONLY.

READ WRITE

Specify this clause to change the open mode to READ WRITE.

READ ONLY

Specify this clause to change the open mode to READ ONLY.

HYBRID READ ONLY

Specify this clause to open a PDB in READ ONLY and READ WRITE mode depending on the type
of user that connects to it. When a local user connects to the PDB, the PDB operates in READ
ONLY mode. The PDB operates in READ WRITE mode for common users.

[READ WRITE] UPGRADE

Specify this clause to change the open mode to MIGRATE. The READ WRITE keywords are
optional and are provided for semantic clarity.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 120

RESTRICTED

If you specify the optional RESTRICTED keyword, then the PDB is accessible only to users with
the RESTRICTED SESSION privilege in the PDB.

If the PDB is in READ WRITE or READ ONLY mode, and you specify the RESTRICTED and FORCE
keywords while changing the open mode, then all sessions connected to the PDB that do not
have the RESTRICTED SESSION privilege in the PDB are terminated, and their transactions are
rolled back.

FORCE

Specify this keyword to change the open mode of a PDB from READ WRITE to READ ONLY, or
from READ ONLY to READ WRITE. The FORCE keyword allows users to remain connected to the
PDB while the open mode is changed.

When you specify FORCE to change the open mode of a PDB from READ WRITE to READ ONLY,
any READ WRITE transaction that is open when you change the open mode will not be allowed
to perform any more DML operations or to COMMIT.

Restriction on FORCE

You cannot specify the FORCE keyword if the PDB is currently in MIGRATE mode, and you
cannot specify the FORCE keyword to change a currently open PDB to MIGRATE mode.

RESETLOGS

Specify this clause to create a new PDB incarnation and open the PDB in READ WRITE mode
after point-in-time recovery of the PDB.

See Also

Oracle Database Backup and Recovery User's Guide for more information on
performing point-in-time recovery of CDBs and PDBs

instances_clause

In an Oracle Real Application Clusters environment, use this clause to modify the state of the
PDB in the specified Oracle RAC instances. If you omit this clause, then the state of the PDB is
modified only in the current instance.

• Use instance_name to specify one or more instance names, in a comma-separated list
enclosed in parenthesis. This modifies the state of the PDB only in those instances.

• Specify ALL to modify the state of the PDB in all instances.

• Specify ALL EXCEPT to modify the state of the PDB in all instances except the specified
instances.

If the PDB is already open in one or more instances, then you can open it in additional
instances, but it must be opened in the same mode as in the instances in which it is already
open.

services_clause

• Use service_name to specify one or more services, in a comma-separated list enclosed in
parenthesis.

• Specify ALL to specify all services on the PDB.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 120

• Specify ALL EXCEPT to specify all services except the services specifed.

pdb_close

This clause lets you change the open mode of a PDB to MOUNTED. When you specify this
clause, the PDB must be in READ WRITE, READ ONLY, or MIGRATE mode. This clause is the
PDB equivalent of the SQL*Plus SHUTDOWN command.

IMMEDIATE

If you specify the optional IMMEDIATE keyword, then this clause is the PDB equivalent of the
SQL*Plus SHUTDOWN command with the immediate mode. Otherwise, the PDB is shut down
with the normal mode.

See Also

SQL*Plus User's Guide and Reference for more information on the SQL*Plus
SHUTDOWN command

ABORT

Specify ABORT to forcibly shut down the PDB.

instances_clause

In an Oracle Real Application Clusters environment, use this clause to modify the state of the
PDB in the specified Oracle RAC instances. You can close a PDB in some instances and leave
it open in others. Refer to the instances_clause for the full semantics of this clause.

relocate_clause

In an Oracle Real Application Clusters environment, use this clause to instruct the database to
reopen the PDB on a different Oracle RAC instance.

• Specify RELOCATE to reopen the PDB on a different instance that is selected by Oracle
Database.

• Specify RELOCATE TO 'instance_name' to reopen the PDB in the specified instance.

• Specify NORELOCATE to close the PDB in the current instance. This is the default.

pdb_save_or_discard_state

Use this clause to instruct the database to save or discard the open mode of the PDB when the
CDB restarts.

• If you specify SAVE, then the PDB's open mode after the CDB restarts will be identical to its
open mode just before the CDB restarted.

• If you specify DISCARD, then the PDB's open mode after the CDB restarts will be MOUNTED.
This is the default.

instances_clause

In an Oracle Real Application Clusters environment, use this clause to instruct the database to
save or discard the open mode of the PDB in the specified Oracle RAC instances. If you omit
this clause, then the database applies the SAVE or DISCARD setting only to the PDB in the
current instance.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 120

• Use instance_name to specify one or more instance names, in a comma-separated list
enclosed in parenthesis. This applies the SAVE or DISCARD setting to the PDB only in those
instances.

• Specify ALL to apply the SAVE or DISCARD setting to the PDB in all instances.

• Specify ALL EXCEPT to apply the SAVE or DISCARD setting to the PDB in all instances except
the specified instances.

pdb_change_state_from_root

This clause enables you to modify the state of one or more PDBs.

• Specify the pdb_name for one or more PDBs whose state you want to modify.

• Specify ALL to modify the state of all PDBs in the CDB.

• Specify ALL EXCEPT to modify the state of all PDBs in the CDB except those specified by
using pdb_name.

If a PDB is already in the specified state, then the PDB's state is unchanged and no error is
returned. If the state of a PDB cannot be changed, then an error occurs only for that PDB.

application_clauses

Use the APPLICATION clauses to:

• Install, patch, upgrade, and uninstall applications

• Register application versions and patch numbers

• Sync operations on applications

See Also

Oracle Database Administrator’s Guide for more information on administering
application containers

Specifying Application Names

Most of the application_clauses require you to specify an application name. The maximum length
of an application name is 30 bytes. The name must satisfy the requirements listed in
"Database Object Naming Rules ". The application name must be unique within an application
container.

Specifying Application Versions

Several of the application_clauses require you to specify an application version. The application
version can be up to 30 bytes in length and can contain alphanumeric characters, punctuations
marks, and spaces. The application version is case-sensitive and must be enclosed in single
quotation marks.

Specifying Comments

Several of the application_clauses allow you to specify a comment to associate with an application
install, patch, or upgrade operation. For comment, enter a character string enclosed in single
quotation marks.

INSTALL Clauses

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 120

Use the INSTALL clauses when installing an application in an application container. The current
container must be the application root, not an application PDB.

• Specify the BEGIN INSTALL clause before you start installing the application.

– Use app_name to assign a name to the application.

– Use app_version to assign a version to the application.

– The optional COMMENT clause allows you to enter a comment to be associated with
the application version created by this installation.

• Specify the END INSTALL clause after you have finished installing the application.

– You must specify the same app_name that you specified for the corresponding BEGIN
INSTALL clause.

– You need not specify app_version, but if you do, then you must specify the same version
that you specified for the corresponding BEGIN INSTALL clause.

PATCH Clauses

Use the PATCH clauses when patching an application in an application container. The current
container must be the application root, not an application PDB.

• Specify the BEGIN PATCH clause before you start patching the application.

– For app_name, specify the name of the application you want to patch.

– For number, specify the patch number.

– The optional MINIMUM VERSION clause allows you to specify the minimum version at
which the application must be before the patch can be applied. For app_version, specify
the minimum application version. If the current application version is lower than the
minimum application version, then an error occurs. If you omit this clause, then the
minimum version is the current application version.

– The optional COMMENT clause allows you to enter a comment to be associated with
the patch.

• Specify the END PATCH clause after you finish patching the application.

– You must specify the same app_name that you specified for the corresponding BEGIN
PATCH clause.

– You need not specify number, but if you do, then you must specify the same value that
you specified for the corresponding BEGIN PATCH clause.

UPGRADE Clauses

Use the UPGRADE clauses when upgrading an application in an application container. The
current container must be the application root, not an application PDB.

If the application root is using TDE, then you must configure an external store before upgrading
the application.

• Specify the BEGIN UPGRADE clause before you start upgrading the application.

– For app_name, specify the name of the application you want to upgrade.

– For start_app_version, specify the version from which you are upgrading the application. If
this version does not match the current application version, then an error occurs.

– For end_app_version, specify the version to which you are upgrading the application.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 120

– The optional COMMENT clause allows you to enter a comment to be associated with
the upgrade.

• Specify the END UPGRADE clause after you finish upgrading the application.

– You must specify the same app_name that you specified for the corresponding BEGIN
UPGRADE clause.

– You need not specify TO end_app_version, but if you do, then you must specify the same
version that you specified for the corresponding BEGIN UPGRADE clause.

UNINSTALL Clauses

Use the UNINSTALL clauses when uninstalling an application from an application container. The
current container must be the application root, not an application PDB.

• Specify the BEGIN UNINSTALL clause before you start uninstalling the application.

– For app_name, specify the name of the application you want to uninstall.

• Specify the END UNINSTALL clause after you have finished uninstalling the application.

– You must specify the same app_name that you specified for the corresponding BEGIN
UNINSTALL clause.

SET PATCH

Use the SET PATCH clause to register the patch number of an application that is already
installed in an application container. This clause allows you to assign a patch number to an
application that was not patched using the PATCH clauses. This is useful if the application was
migrated from a PDB in an earlier Oracle Database release, when the PATCH clauses were not
available. The current container can be the application root or an application PDB.

• For app_name, specify the name of an existing application.

• Use number to assign a patch number to the existing application.

SET VERSION

Use the SET VERSION clause to register the version of an application that is already installed in
an application container. This clause allows you to assign a name and a version to an
application that was not installed using the INSTALL clauses. This is useful if the application
was migrated from a PDB in an earlier Oracle Database release, when the INSTALL clauses
were not available. The current container can be the application root or an application PDB.

• Use app_name to assign a name to the existing application.

• Use app_version to assign a version to the existing application.

SET COMPATIBILITY VERSION

Use the SET COMPATIBILITY VERSION clause to set the compatibility version for an application.

The compatibility version of an application is the earliest version of the application possible for
the application PDBs that belong to the application container. The current container must be
the application root, not an application PDB.

Note

You cannot plug in an application PDB that uses an application version earlier than the
compatibility setting of the application container.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 120

• Use app_name to specify the name of the application.

• Use app_version to specify the compatibility version for the application.

• If you specify CURRENT, then the compatibility version is set to the version of the
application in the application root.

The compatibility version is enforced when the compatibility version is set and when an
application PDB is created. If there are application root clones that resulted from application
upgrades, then all application root clones that correspond to versions earlier than the
compatibility version are implicitly dropped.

SYNC TO

You can synchronize an application to a particular version or a patch number. There are two
variations:

1. SYNC TO version_string

2. SYNC TO PATCH patch_number

Example

Assume that you perform the following operations on application salesapp :

1. Install version 1.0

2. Patch 101

3. Upgrade to version 2.0

4. Patch 102

5. Upgrade to 3.0

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC TO 2.0 replays all statements up to and
including ' Upgrade to version 2.0'.

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC TO PATCH 102 replays all statements up
to and including ' Patch 102'.

Restrictions on SYNC TO

You can use SYNC TO only with an individual application.

You cannot use SYNC TO with the ALL SYNC clause.

You cannot use SYNC TO with the SYNC clause, in the case when you are synchronizing multiple
applications in a single statement.

SYNC

Use the SYNC clause to synchronize an application in an application PDB to the version and
patch level of the same application in the application root. The current container must be an
application PDB.

app_name specifies the name of an application that exists in the application root. The application
may or may not exist in the application PDB.

Starting with Oracle Database Release 21c you can synchronize mutiple applications in one
statement with SYNC . This is necessary to preserve functional correctness for applications that
depend on one another.

Example

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 120

ALTER PLUGGABLE DATABASE APPLICATION hrapp payrollapp employeesapp SYNC

Restrictions on Synchronizing Multiple Applications Using SYNC

• You cannot use the SYNC TO version_string clause while synchronizing multiple applications
with SYNC.

• You cannot use the SYNC TO PATCH patch_number clause while synchronizing multiple
applications with SYNC.

ALL SYNC

Use the ALL SYNC clause to sync all applications in an application PDB with all applications in
the application root. This clause is useful, if you have recently added the application PDB to
the CDB and would like to sync its applications with the CDB. The current container must be
an application PDB.

With Release 21c you can use EXCEPT to exclude applications from ALL SYNC.

Example

ALTER PLUGGABLE DATABASE APPLICATION ALL EXCEPT hrapp payrollapp SYNC

Restrictions on Excluding Multiple Applications Using ALL SYNC

• You cannot use the SYNC TO version_string clause while excluding multiple applications with
ALL EXCEPT SYNC.

• You cannot use the SYNC TO PATCH patch_number clause while excluding multiple applications
with ALL EXCEPT SYNC.

snapshot_clauses

The snapshot clauses allow you to create and manage snapshots of the PDB for the lifetime of
the PDB.

pdb_snapshot_clause

Specify this clause to enable the creation of PDB snapshots. You can also specify this clause
in the CREATE PLUGGABLE DATABASE statement.

• NONE is the default and means that no snapshots of the PDB can be created.

• MANUAL means that a snapshot of the PDB can be created only manually.

• If snapshot_interval is specified, PDB snapshots will be created automatically at the interval
specified. In addition, a user will also be able to create PDB snapshots manually.

• If expressed in minutes, the snapshot_interval must be less than 3000.

• If expressed in hours, the snapshot_interval must be less than 2000.

materialize_clause

Use this clause to convert a snapshot PDB into a full PDB clone. You can delete and purge a
PDB snapshot using the clause in this way.

• This clause can only be specified for PDBs created as a snapshot.

• All blocks in all datafiles belonging to the PDB will be copied.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 120

create_snapshot_clause

Use this clause to manually create a PDB snapshot after connecting to the PDB.

• This statement may be issued even if the PDB was set to have PDB snapshots created
automatically.

• If a PDB Snapshot with the specified name already exists, an error will be reported.

• A PDB Snapshot with specified name will be created.

drop_snapshot_clause

Use this clause to manually drop a PDB snapshot after connecting to the PDB.

• If this snapshot is being used by some PDB, an error will be reported.

set_max_pdb_snapshots

Use this clause to increase or decrease the maximum number of snapshots for a given PDB.
You must first connect to the PDB.

• If the PDB is not open in read/write mode when issuing the statement, an error is raised.

• You can drop all PDB snapshots by setting the the max number to 0.

• The maximum number of snapshots that you can set per PDB is 8.

prepare_clause

• Use this clause to prepare mirror copies of the database. You must provide a mirror_name to
identify the filegroup that is created. The created filegroup contains all the prepared files.

• Specify the number of copies to be prepared by the REDUNDANCY options: EXTERNAL,
NORMAL, or HIGH.

• If you do not specify the redundancy of the mirror, the redundancy of the source database
is used.

• Use the FOR DATABASE clause to specify the new name of the CDB. This name should be
unique. It will be used in the create_pdb_from_mirror_copy clause of the CREATE PLUGGABLE
DATABASE statement.

Prepare a Pluggable Database By Name: Example

If you specify the name (pdb_name) of the pluggable database, it checks if pdb_name matches
with the current PDB. If it matches, it runs.

ALTER PLUGGABLE DATABASE pdb_name PREPARE MIRROR COPY mirror_name WITH HIGH REDUNDANCY

Prepare a Pluggable Database Without a Name: Example

If you do not specify the name (pdb_name) of the pluggable database, the statement runs on the
current PDB.

ALTER PLUGGABLE DATABASE PREPARE MIRROR COPY mirror_name WITH HIGH REDUNDANCY

drop_mirror_copy

Use this clause to discard mirror copies of data and metadata created by the prepare
statement. You must specify the same mirror name that you used for the prepare operation.

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 120

You cannot use this clause to drop a database that has already been split by the CREATE
DATABASE or CREATE PLUGGABLE DATABASE statement.

lost_write_protection

Turn on Lost Write for a Pluggable Database : Example

 ALTER PLUGGABLE DATABASE
 ENABLE LOST WRITE PROTECTION

Turn off Lost Write for a Pluggable Database : Example

 ALTER PLUGGABLE DATABASE
 DISABLE LOST WRITE PROTECTION

Note that disabling lost write for the database does not deallocate the lost write storage. You
must use the DROP TABLESPACE statement to deallocate lost write storage.

pdb_managed_recovery

Specify this clause to recover a PDB in instances where the PDB is within a physical standby
CDB.

ENABLE | DISABLE BACKUP

PDB backup is enabled by default. To exclude the PDB from the backup, you can specify
disable.

Examples

Unplugging a PDB from a CDB: Example

The following statement unplugs PDB pdb1 and stores metadata for the PDB into XML file /
oracle/data/pdb1.xml:

ALTER PLUGGABLE DATABASE pdb1
 UNPLUG INTO '/oracle/data/pdb1.xml';

Modifying the Settings of a PDB: Example

The following statement changes the limit for the amount of storage used by all tablespaces in
PDB pdb2 to 500M:

ALTER PLUGGABLE DATABASE pdb2
 STORAGE (MAXSIZE 500M);

Taking the Data Files of a PDB Offline: Example

The following statement takes the data files associated with PDB pdb3 offline:

ALTER PLUGGABLE DATABASE pdb3
 DATAFILE ALL OFFLINE;

Changing the State of a PDB: Examples

Assume that PDB pdb4 is closed—that is, its open mode is MOUNTED. The following statement
opens pdb4 with open mode READ ONLY:

ALTER PLUGGABLE DATABASE pdb4
 OPEN READ ONLY;

Chapter 11
ALTER PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 120

The following statement uses the FORCE keyword to change the open mode of pdb4 from READ
ONLY to READ WRITE:

ALTER PLUGGABLE DATABASE pdb4
 OPEN READ WRITE FORCE;

The following statement closes PDB pdb4:

ALTER PLUGGABLE DATABASE pdb4
 CLOSE;

The following statement opens PDB pdb4 with open mode READ ONLY. Because the
RESTRICTED keyword is specified, the PDB is accessible only to users with the RESTRICTED
SESSION privilege in the PDB.

ALTER PLUGGABLE DATABASE pdb4
 OPEN READ ONLY RESTRICTED;

Assume that PDB pdb5 is closed—that is, its open mode is MOUNTED. In an Oracle Real
Application Clusters environment, the following statement opens PDB pdb5 with open mode
READ WRITE in instances ORCLDB_1 and ORCLDB_2:

ALTER PLUGGABLE DATABASE pdb5
 OPEN READ WRITE INSTANCES = ('ORCLDB_1', 'ORCLDB_2');

In an Oracle Real Application Clusters environment, the following statement closes PDB pdb6 in
the current instance and instructs the database to reopen pdb6 in instance ORCLDB_3:

ALTER PLUGGABLE DATABASE pdb6
 CLOSE RELOCATE TO 'ORCLDB_3';

Changing the State of All PDBs in a CDB: Example

Assume that the current container is the root. The following statement opens all PDBs in the
CDB with open mode READ ONLY:

ALTER PLUGGABLE DATABASE ALL
 OPEN READ ONLY;

ALTER PMEM FILESTORE
Purpose

Use this command to change the attributes of a PMEM file store.

Prerequisites

You cannot change the block size of a PMEM file store.

Syntax

alter_pmem_filestore

Chapter 11
ALTER PMEM FILESTORE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 120

ALTER PMEM FILESTORE filestore_name

RESIZE size_clause

autoextend_clause

MOUNT

MOUNTPOINT file_path

BACKINGFILE file_name FORCE

DISMOUNT

Semantics

MOUNT

Use this command to mount a PMEM file store. If you have already specified the mount point
and backing file paths in the init.ora file you can issue the command like this:

ALTER PMEM FILESTORE 'filestore_name' MOUNT

You can also specify the mount point and backing file paths in the command line. In this case,
you must ensure that there is no mismatch between the values in the init.ora file and the values
you specify in the command line. The command fails when a mismatch occurs, unless you
specify FORCE to override the values in the init.ora file. The paths on the command line become
the new paths for the PMEM file store.

If you use a spfile, then the parameters are automatically updated with the new paths specified
on the command line.

Use the mount PMEM file store command in cases when the PMEM file store was not already
automatically mounted during database startup.

Specify the mount point path or the backing file path on the command line when:

• You have not specified either the mount point path or the backing file path in the init.ora file

• You want to specify new values for either the mount point path or the backing file path

Before you can change the mount point and the backing file, you must first dismount the file
store.

DISMOUNT

Use this command to dismount a PMEM file store. You must ensure that the database instance
is in NOMOUNT mode.

Examples

Example 1: Resize File Store Named cloud_db_1

ALTER PMEM FILESTORE cloud_db_1 RESIZE 5T

Example 2: Mount File Store Named cloud_db_1

ALTER PMEM FILESTORE cloud_db_1 MOUNT MOUNTPOINT ‘/corp/db/cloud_db_1’
 BACKINGFILE ‘/var/pmem/foo_1’

Example 3: Dismount File Store Named cloud_db_1

ALTER PMEM FILESTORE cloud_db_1 DISMOUNT

Chapter 11
ALTER PMEM FILESTORE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 120

ALTER PROCEDURE
Purpose

Packages are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the ALTER PROCEDURE statement to explicitly recompile a standalone stored procedure.
Explicit recompilation eliminates the need for implicit run-time recompilation and prevents
associated run-time compilation errors and performance overhead.

To recompile a procedure that is part of a package, recompile the entire package using the
ALTER PACKAGE statement (see ALTER PACKAGE).

Note

This statement does not change the declaration or definition of an existing procedure.
To redeclare or redefine a procedure, use the CREATE PROCEDURE statement with the
OR REPLACE clause (see CREATE PROCEDURE).

The ALTER PROCEDURE statement is quite similar to the ALTER FUNCTION statement. Refer to
ALTER FUNCTION for more information.

Prerequisites

The procedure must be in your own schema or you must have ALTER ANY PROCEDURE system
privilege.

Syntax

alter_procedure::=

ALTER PROCEDURE

IF EXISTS schema .

procedure_name

procedure_compile_clause

EDITIONABLE

NONEDITIONABLE

(procedure_compile_clause: See Oracle Database PL/SQL Language Reference for the syntax of
this clause.)

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

Chapter 11
ALTER PROCEDURE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 120

schema

Specify the schema containing the procedure. If you omit schema, then Oracle Database
assumes the procedure is in your own schema.

procedure_name

Specify the name of the procedure to be recompiled.

procedure_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of this
clause and for complete information on creating and compiling procedures.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the procedure becomes an editioned or noneditioned
object if editioning is later enabled for the schema object type PROCEDURE in schema. The default
is EDITIONABLE. For information about altering editioned and noneditioned objects, see Oracle
Database Development Guide.

ALTER PROFILE
Purpose

Use the ALTER PROFILE statement to add, modify, or remove a resource limit or password
management parameter in a profile.

Changes made to a profile with an ALTER PROFILE statement affect users only in their
subsequent sessions, not in their current sessions.

See Also

CREATE PROFILE for information on creating a profile

Prerequisites

You must have the ALTER PROFILE system privilege.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root. To specify
CONTAINER = CURRENT, the current container must be a pluggable database (PDB).

Syntax

alter_profile::=

ALTER PROFILE profile LIMIT
resource_parameters

password_parameters

CONTAINER =
CURRENT

ALL

;

Chapter 11
ALTER PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 120

(resource_parameters::=, password_parameters::=)

resource_parameters::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

size_clause

UNLIMITED

DEFAULT

(size_clause::=)

password_parameters::=

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

INACTIVE_ACCOUNT_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

PASSWORD_ROLLOVER_TIME
expr

DEFAULT

Chapter 11
ALTER PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 120

Semantics

The keywords, parameters, and clauses common to ALTER PROFILE and CREATE PROFILE have
the same meaning. For full semantics of these keywords, parameters, and clauses refer to
CREATE PROFILE .

Only common users who have been commonly granted the ALTER PROFILE system privilege
can alter or drop the mandatory profile, and only from the CDB root.

You cannot remove a limit from the DEFAULT profile.

Examples

Making a Password Unavailable: Example

The following statement makes the password of the new_profile profile (created in "Creating a
Profile: Example") unavailable for reuse for 90 days:

ALTER PROFILE new_profile
 LIMIT PASSWORD_REUSE_TIME 90
 PASSWORD_REUSE_MAX UNLIMITED;

Setting Default Password Values: Example

The following statement defaults the PASSWORD_REUSE_TIME value of the app_user profile
(created in "Setting Profile Resource Limits: Example") to its defined value in the DEFAULT
profile:

ALTER PROFILE app_user
 LIMIT PASSWORD_REUSE_TIME DEFAULT
 PASSWORD_REUSE_MAX UNLIMITED;

Limiting Login Attempts and Password Lock Time: Example

The following statement alters profile app_user with FAILED_LOGIN_ATTEMPTS set to 5 and
PASSWORD_LOCK_TIME set to 1:

ALTER PROFILE app_user LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

This statement causes any user account to which the app_user profile is assigned to become
locked for one day after five consecutive unsuccessful login attempts.

Changing Password Lifetime and Grace Period: Example

The following statement modifies the profile app_user2 PASSWORD_LIFE_TIME to 90 days and
PASSWORD_GRACE_TIME to 5 days:

ALTER PROFILE app_user2 LIMIT
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 5;

Limiting Account Inactivity: Example

The following statement modifies the profile app_user2 INACTIVE_ACCOUNT_TIME to 30
consecutive days:

ALTER PROFILE app_user2 LIMIT
 INACTIVE_ACCOUNT_TIME 30;

Chapter 11
ALTER PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 120

If the account has already been inactive for a certain number of days, then those days count
toward the new 30 day limit.

Limiting Concurrent Sessions: Example

This statement defines a new limit of 5 concurrent sessions for the app_user profile:

ALTER PROFILE app_user LIMIT SESSIONS_PER_USER 5;

If the app_user profile does not currently define a limit for SESSIONS_PER_USER, then the preceding
statement adds the limit of 5 to the profile. If the profile already defines a limit, then the
preceding statement redefines it to 5. Any user assigned the app_user profile is subsequently
limited to 5 concurrent sessions.

Removing Profile Limits: Example

This statement removes the IDLE_TIME limit from the app_user profile:

ALTER PROFILE app_user LIMIT IDLE_TIME DEFAULT;

Any user assigned the app_user profile is subject in their subsequent sessions to the IDLE_TIME
limit defined in the DEFAULT profile.

Limiting Profile Idle Time: Example

This statement defines a limit of 2 minutes of idle time for the DEFAULT profile:

ALTER PROFILE default LIMIT IDLE_TIME 2;

This IDLE_TIME limit applies to these users:

• Users who are not explicitly assigned any profile

• Users who are explicitly assigned a profile that does not define an IDLE_TIME limit

This statement defines unlimited idle time for the app_user2 profile:

ALTER PROFILE app_user2 LIMIT IDLE_TIME UNLIMITED;

Any user assigned the app_user2 profile is subsequently permitted unlimited idle time.

Enable Gradual Password Rollover: Example

This statement sets the password rollover time to 2 days in the profile usr_prof:

ALTER PROFILE usr_prof LIMIT PASSWORD_ROLLOVER_TIME 2 ;

ALTER PROPERTY GRAPH
Purpose

Changes to the underlying objects of the property graph may cause the property graph to be in
an invalid state.You can revalidate a graph with ALTER PROPERTY GRAPH COMPILE.

Prerequistes

To alter a property graph in any schema except SYS and AUDSYS, you must have the ALTER
ANY PROPERTY GRAPH privilege.

Chapter 11
ALTER PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 120

Syntax

alter_property_graph::=

ALTER PROPERTY GRAPH

IF EXISTS schema .

graph_name COMPILE

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing property graph.

If you specify IF NOT EXISTS with ALTER, the command fails with the error message: Incorrect IF
EXISTS clause for ALTER/DROP statement.

COMPILE

Use ALTER PROPERTY GRAPH COMPILE to revalidate a graph that reports an invalid state even
though it is actually valid. This happens because the dependencies of the graph to its
underlying objects may be too coarse. In such cases, it may be enough to use ALTER PROPERTY
GRAPH COMPILE to revalidate the property graph.

Example: How a Valid Graph May Falsely Report an Invalid State

SQL> create table tbl1(c1 number primary key, c2 number, c3 number, c4 as (c2/c3), c5 as (1 / (c2+c3)));

Table created.

SQL> create property graph g vertex tables(tbl1 properties(c2, c3, c5));

Property graph created.

SQL> select object_name, object_type, status from user_objects where object_type in ('PROPERTY GRAPH',
'TABLE');

OBJECT_NAME OBJECT_TYPE STATUS
-------------------- ----------------------- -------
G PROPERTY GRAPH VALID
TBL1 TABLE VALID

SQL> alter table tbl1 drop column c4;

Table altered.

SQL> select object_name, object_type, status from user_objects where object_type in ('PROPERTY GRAPH',
'TABLE');

OBJECT_NAME OBJECT_TYPE STATUS
-------------------- ----------------------- -------
G PROPERTY GRAPH INVALID
TBL1 TABLE VALID

SQL> alter property graph g compile;

Chapter 11
ALTER PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 120

Property graph altered.

SQL> select object_name, object_type, status from user_objects where object_type in ('PROPERTY GRAPH',
'TABLE');

OBJECT_NAME OBJECT_TYPE STATUS
-------------------- ----------------------- -------
G PROPERTY GRAPH VALID
TBL1 TABLE VALID

SQL>

If ALTER PROPERTY GRAPH COMPILE fails to revalidate the graph, then the graph enters the error
state. You must then redefine the graph with CREATE OR REPLACE PROPERTY GRAPH .

ALTER RESOURCE COST
Purpose

Use the ALTER RESOURCE COST statement to specify or change the formula by which Oracle
Database calculates the total resource cost used in a session.

Although Oracle Database monitors the use of other resources, only the four resources shown
in the syntax can contribute to the total resource cost for a session.

This statement lets you apply weights to the four resources. Oracle Database then applies the
weights to the value of these resources that were specified for a profile to establish a formula
for calculating total resource cost. You can limit this cost for a session with the
COMPOSITE_LIMIT parameter of the CREATE PROFILE statement. If the resource cost of a session
exceeds the limit, then Oracle Database aborts the session and returns an error. If you use the
ALTER RESOURCE COST statement to change the weight assigned to each resource, then Oracle
Database uses these new weights to calculate the total resource cost for all current and
subsequent sessions.

See Also

CREATE PROFILE for information on all resources and on establishing resource limits

Prerequisites

You must have the ALTER RESOURCE COST system privilege.

Syntax

alter_resource_cost::=

ALTER RESOURCE COST

CPU_PER_SESSION

CONNECT_TIME

LOGICAL_READS_PER_SESSION

PRIVATE_SGA

integer ;

Chapter 11
ALTER RESOURCE COST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 94 of 120

Semantics

Oracle Database calculates the total resource cost by first multiplying the amount of each
resource used in the session by the weight of the resource, and then summing the products for
all four resources. For any session, this cost is limited by the value of the COMPOSITE_LIMIT
parameter in the user's profile. Both the products and the total cost are expressed in units
called service units.

CPU_PER_SESSION

Use this keyword to apply a weight to the CPU_PER_SESSION resource.

CONNECT_TIME

Use this keyword to apply a weight to the CONNECT_TIME resource.

LOGICAL_READS_PER_SESSION

Use this clause to apply a weight to the LOGICAL_READS_PER_SESSION resource. Logical reads
include blocks read from both memory and disk.

PRIVATE_SGA

Use this clause to apply a weight to the PRIVATE_SGA resource. This limit applies only if you are
using shared server architecture and allocating private space in the SGA for your session.

integer

Specify the weight of each resource. The weight that you assign to each resource determines
how much the use of that resource contributes to the total resource cost. If you do not assign a
weight to a resource, then the weight defaults to 0, and use of the resource subsequently does
not contribute to the cost. The weights you assign apply to all subsequent sessions in the
database.

Examples

Altering Resource Costs: Examples

The following statement assigns weights to the resources CPU_PER_SESSION and
CONNECT_TIME:

ALTER RESOURCE COST
 CPU_PER_SESSION 100
 CONNECT_TIME 1;

The weights establish this cost formula for a session:

cost = (100 * CPU_PER_SESSION) + (1 * CONNECT_TIME)

In this example, the values of CPU_PER_SESSION and CONNECT_TIME are either values in the
DEFAULT profile or in the profile of the user of the session.

Because the preceding statement assigns no weight to the resources
LOGICAL_READS_PER_SESSION and PRIVATE_SGA, these resources do not appear in the formula.

If a user is assigned a profile with a COMPOSITE_LIMIT value of 500, then a session exceeds
this limit whenever cost exceeds 500. For example, a session using 0.04 seconds of CPU time
and 101 minutes of elapsed time exceeds the limit. A session using 0.0301 seconds of CPU
time and 200 minutes of elapsed time also exceeds the limit.

Chapter 11
ALTER RESOURCE COST

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 95 of 120

You can subsequently change the weights with another ALTER RESOURCE statement:

ALTER RESOURCE COST
 LOGICAL_READS_PER_SESSION 2
 CONNECT_TIME 0;

These new weights establish a new cost formula:

cost = (100 * CPU_PER_SESSION) + (2 * LOGICAL_READ_PER_SECOND)

where the values of CPU_PER_SESSION and LOGICAL_READS_PER_SECOND are either the values
in the DEFAULT profile or in the profile of the user of this session.

This ALTER RESOURCE COST statement changes the formula in these ways:

• The statement omits a weight for the CPU_PER_SESSION resource. That resource was
already assigned a weight, so the resource remains in the formula with its original weight.

• The statement assigns a weight to the LOGICAL_READS_PER_SESSION resource, so this
resource now appears in the formula.

• The statement assigns a weight of 0 to the CONNECT_TIME resource, so this resource no
longer appears in the formula.

• The statement omits a weight for the PRIVATE_SGA resource. That resource was not already
assigned a weight, so the resource still does not appear in the formula.

ALTER ROLE
Purpose

Use the ALTER ROLE statement to change the authorization needed to enable a role.

See Also

• CREATE ROLE for information on creating a role

• SET ROLE for information on enabling or disabling a role for your session

Prerequisites

You must either have been granted the role with the ADMIN OPTION or have ALTER ANY ROLE
system privilege.

Before you alter a role to IDENTIFIED GLOBALLY, you must:

• Revoke all grants of roles identified externally to the role and

• Revoke the grant of the role from all users, roles, and PUBLIC.

The one exception to this rule is that you should not revoke the role from the user who is
currently altering the role.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root. To specify
CONTAINER = CURRENT, the current container must be a pluggable database (PDB).

Chapter 11
ALTER ROLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 96 of 120

Syntax

alter_role::=

ALTER ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

USING

schema .

package

EXTERNALLY

GLOBALLY AS ’

domain_name_of directory_group

AZURE_ROLE = value

IAM_GROUP_NAME = value

’

CONTAINER =
CURRENT

ALL

;

Semantics

The keywords, parameters, and clauses in the ALTER ROLE statement all have the same
meaning as in the CREATE ROLE statement.

Specify GLOBALLY with AS to map a directory group to a global role when using centrally
managed users. The directory group is identified by its domain name.

Restriction on Altering a Role

You cannot alter a NOT IDENTIFIED role to any of the IDENTIFIED types if it is granted to another
role.

Notes on Altering a Role:

• User sessions in which the role is already enabled are not affected.

• If you change a role identified by password to an application role (with the USING package
clause), then password information associated with the role is lost. Oracle Database will
use the new authentication mechanism the next time the role is to be enabled.

• If you have the ALTER ANY ROLE system privilege and you change a role that is IDENTIFIED
GLOBALLY to IDENTIFIED BY password, IDENTIFIED EXTERNALLY, or NOT IDENTIFIED, then
Oracle Database grants you the altered role with the ADMIN OPTION, as it would have if you
had created the role identified nonglobally.

For more information, refer to CREATE ROLE and to the examples that follow.

Examples

Changing Role Identification: Example

The following statement changes the role warehouse_user (created in "Creating a Role: Example")
to NOT IDENTIFIED:

ALTER ROLE warehouse_user NOT IDENTIFIED;

Changing a Role Password: Example

This statement changes the password on the dw_manager role (created in "Creating a Role:
Example") to data:

Chapter 11
ALTER ROLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 97 of 120

ALTER ROLE dw_manager
 IDENTIFIED BY data;

Users granted the dw_manager role must subsequently use the new password data to enable the
role.

Application Roles: Example

The following example changes the dw_manager role to an application role using the hr.admin
package:

ALTER ROLE dw_manager IDENTIFIED USING hr.admin;

ALTER ROLLBACK SEGMENT

Note

Oracle strongly recommends that you run your database in automatic undo
management mode instead of using rollback segments. Do not use rollback segments
unless you must do so for compatibility with earlier versions of Oracle Database. Refer
to Oracle Database Administrator's Guide for information on automatic undo
management.

Purpose

Use the ALTER ROLLBACK SEGMENT statement to bring a rollback segment online or offline,
change its storage characteristics, or shrink it to an optimal or specified size.

This section assumes that your database is running in rollback undo mode (the
UNDO_MANAGEMENT initialization parameter is set to MANUAL or not set at all). If your database
is running in automatic undo mode (the UNDO_MANAGEMENT initialization parameter is set to
AUTO, which is the default), then user-created rollback segments are irrelevant.

See Also

• CREATE ROLLBACK SEGMENT for information on creating a rollback segment

• Oracle Database Reference for information on the UNDO_MANAGEMENT parameter

Prerequisites

You must have the ALTER ROLLBACK SEGMENT system privilege.

Chapter 11
ALTER ROLLBACK SEGMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 98 of 120

Syntax

alter_rollback_segment::=

ALTER ROLLBACK SEGMENT rollback_segment

ONLINE

OFFLINE

storage_clause

SHRINK

TO size_clause

;

(storage_clause , size_clause::=)

Semantics

rollback_segment

Specify the name of an existing rollback segment.

ONLINE

Specify ONLINE to bring the rollback segment online. When you create a rollback segment, it is
initially offline and not available for transactions. This clause brings the rollback segment
online, making it available for transactions by your instance. You can also bring a rollback
segment online when you start your instance with the initialization parameter
ROLLBACK_SEGMENTS.

See Also

"Bringing a Rollback Segment Online: Example"

OFFLINE

Specify OFFLINE to take the rollback segment offline.

• If the rollback segment does not contain any information needed to roll back an active
transaction, then Oracle Database takes it offline immediately.

• If the rollback segment does contain information for active transactions, then the database
makes the rollback segment unavailable for future transactions and takes it offline after all
the active transactions are committed or rolled back.

When the rollback segment is offline, it can be brought online by any instance.

To see whether a rollback segment is online or offline, query STATUS column of the data
dictionary view DBA_ROLLBACK_SEGS. Online rollback segments have a value of IN_USE. Offline
rollback segments have a value of AVAILABLE.

Restriction on Taking Rollback Segments Offline

You cannot take the SYSTEM rollback segment offline.

Chapter 11
ALTER ROLLBACK SEGMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 99 of 120

storage_clause

Use the storage_clause to change the storage characteristics of the rollback segment.

Restrictions on Rollback Segment Storage

You cannot change the value of INITIAL parameter. If the rollback segment is in a locally
managed tablespace, then the only storage parameter you can change is OPTIMAL. If the
rollback segment is in a dictionary-managed tablespace, then the only storage parameters you
can change are NEXT, MINEXTENTS, MAXEXTENTS and OPTIMAL.

See Also

storage_clause for syntax and additional information

SHRINK Clause

Specify SHRINK if you want Oracle Database to attempt to shrink the rollback segment to an
optimal or specified size. The success and amount of shrinkage depend on the available free
space in the rollback segment and how active transactions are holding space in the rollback
segment.

If you do not specify TO size_clause, then the size defaults to the OPTIMAL value of the
storage_clause of the CREATE ROLLBACK SEGMENT statement that created the rollback segment. If
OPTIMAL was not specified, then the size defaults to the MINEXTENTS value of the storage_clause
of the CREATE ROLLBACK SEGMENT statement.

Regardless of whether you specify TO size_clause:

• The value to which Oracle Database shrinks the rollback segment is valid for the execution
of the statement. Thereafter, the size reverts to the OPTIMAL value of the CREATE ROLLBACK
SEGMENT statement.

• The rollback segment cannot shrink to less than two extents.

To determine the actual size of a rollback segment after attempting to shrink it, query the
BYTES, BLOCKS, and EXTENTS columns of the DBA_SEGMENTS view.

Restriction on Shrinking Rollback Segments

In an Oracle Real Application Clusters environment, you can shrink only rollback segments
that are online to your instance.

See Also

size_clause for information on that clause, and "Resizing a Rollback Segment:
Example"

Examples

The following examples use the rbs_one rollback segment, which was created in "Creating a
Rollback Segment: Example".

Bringing a Rollback Segment Online: Example

Chapter 11
ALTER ROLLBACK SEGMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 100 of 120

This statement brings the rollback segment rbs_one online:

ALTER ROLLBACK SEGMENT rbs_one ONLINE;

Resizing a Rollback Segment: Example

This statement shrinks the rollback segment rbs_one:

ALTER ROLLBACK SEGMENT rbs_one
 SHRINK TO 100M;

ALTER SEQUENCE
Purpose

Use the ALTER SEQUENCE statement to change the increment, minimum and maximum values,
cached numbers, and behavior of an existing sequence. This statement affects only future
sequence numbers.

See Also

CREATE SEQUENCE for additional information on sequences

Prerequisites

The sequence must be in your own schema, or you must have the ALTER object privilege on
the sequence, or you must have the ALTER ANY SEQUENCE system privilege.

Chapter 11
ALTER SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 101 of 120

Syntax

alter_sequence::=

ALTER SEQUENCE

IF EXISTS schema .

sequence

INCREMENT BY

START WITH integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

RESTART

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

KEEP

NOKEEP

SCALE
EXTEND

NOEXTEND

NOSCALE

SHARD
EXTEND

NOEXTEND

NOSHARD

SESSION

GLOBAL

Semantics

The keywords and parameters in this statement serve the same purposes they serve when you
create a sequence.

• If you change the INCREMENT BY value before the first invocation of NEXTVAL, then some
sequence numbers will be skipped. Therefore, if you want to retain the original START WITH
value, you must drop the sequence and re-create it with the original START WITH value and
the new INCREMENT BY value.

• Specify RESTART to reset NEXTVAL to MINVALUE for an ascending sequence. For a
descending sequence RESTART resets NEXTVAL to MAXVALUE.

Chapter 11
ALTER SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 102 of 120

• To restart the sequence at a different number, specify RESTART with the START WITH clause
to set the value at which the sequence restarts.

• If you alter the sequence by specifying the KEEP or NOKEEP clause between runtime and
failover of a request, then the original value of NEXTVAL is not retained during replay for
Application Continuity for that request.

• Oracle Database performs some validations. For example, a new MAXVALUE cannot be
imposed that is less than the current sequence number.

See Also

CREATE SEQUENCE for information on creating a sequence and DROP
SEQUENCE for information on dropping and re-creating a sequence

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

SCALE

Use SCALE to enable sequence scalability. When SCALE is specified, a numeric offset is affixed
to the beginning of the sequence which removes all duplicates in generated values.

EXTEND

If you specify EXTEND with SCALE the generated sequence values are all of length (x+y), where
x is the length of the scalable offset (default value is 6), and y is the maximum number of digits
in the sequence (maxvalue/minvalue).

When you use SCALE it is highly recommended that you not use ORDER simultaneously on the
sequence.

NOEXTEND

NOEXTEND is the default setting for the SCALE clause. With the NOEXTEND setting, the
generated sequence values are at most as wide as the maximum number of digits in the
sequence (maxvalue/minvalue). This setting is useful for integration with existing applications
where sequences are used to populate fixed width columns.

SHARD

Use this clause to generate unique sequence numbers across shards.

The sequence object is created as a global, all-shards sharded object that returns unique
sequence values across all shards. The sequence object is also created at the catalog
database that returns unique sequence values relative to the shard databases.

The EXTEND and NOEXTEND keywords define the behavior of a sharded sequence.

EXTEND

When you specify EXTEND with the SHARD clause, the generated sequence values are all of
length (x + y), where x is the length of an(a) SHARD offset of size 3. The size 3 corresponds to

Chapter 11
ALTER SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 103 of 120

the width of the maximum number of shards i.e. 1000 affixed at the beginning of the sequence
values. y is the maximum number of digits in the sequence maxvalue/minvalue.

NOEXTEND

The default setting for the SHARD clause is NOEXTEND.

When you specify NOEXTEND, the generated sequence values are at most as wide as the
maximum number of digits in the sequence maxvalue/minvalue. This setting is useful for integration
with existing applications where sequences are used to populate fixed width columns.

If you call NEXTVAL on a sequence with SHARD NOEXTEND specified, a user error is thrown, if
the generated value requires more digits of representation than the maxvalue/minvalue of the
sequence.

Sequence with SHARD and SCALE

If you specify the SCALE and the SHARD clauses together, the sequence generates scalable,
globally unique values within a shard database for multiple instances and sessions.

If you specify EXTEND with the SCALE and SHARD clauses, the generated sequence values are
all of length (x+y+z), where x is the length of a SHARD offset with a default value of size 4, y is
the length of the scalable offset with a default value of 6(5), and z is the maximum number of
digits in the sequence maxvalue/minvalue .

If you specify EXTEND or NOEXTEND with the SHARD and SCALE clauses, it applies to both
SHARD and SCALE. You do not need to specify EXTEND or NOEXTEND separately. If you specify
the EXTEND or NOEXTEND option separately for both the SHARD and SCALE clauses, with the
same or different value, a parsing error results, with a message of a duplicate or conflicting
EXTEND clause.

When you use SHARD it is highly recommended that you not use ORDER simultaneously on the
sequence.

You can use SHARD with CACHE and NOCACHE modes of operation.

Note

• Starting with Oracle Database Release 23 a sharded sequence without scale will
have the leading "1" of the offset removed.

• Starting with Oracle Database Release 23 a sharded sequence with scale will
have the leading "1" of the offset removed.

Prior to Release 23, a a sharded sequence with scale had one leading "1" for the
combined offset. This leading "1" is removed from Release 23 onwards.

Examples

Modifying a Sequence: Examples

This statement sets a new maximum value for the customers_seq sequence, which was created in
"Creating a Sequence: Example":

ALTER SEQUENCE customers_seq
 MAXVALUE 1500;

This statement turns on CYCLE and CACHE for the customers_seq sequence:

Chapter 11
ALTER SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 104 of 120

ALTER SEQUENCE customers_seq
 CYCLE
 CACHE 5;

ALTER SESSION
Purpose

Use the ALTER SESSION statement to set or modify any of the conditions or parameters that
affect your connection to the database. The statement stays in effect until you disconnect from
the database.

Prerequisites

To enable and disable the SQL trace facility, you must have ALTER SESSION system privilege.

To enable or disable resumable space allocation, you must have the RESUMABLE system
privilege.

You do not need any privileges to perform the other operations of this statement unless
otherwise indicated.

Syntax

alter_session::=

ALTER SESSION

ADVISE

COMMIT

ROLLBACK

NOTHING

CLOSE DATABASE LINK dblink

ENABLE

DISABLE
COMMIT IN PROCEDURE

ENABLE

DISABLE
GUARD

ENABLE

DISABLE

FORCE

PARALLEL

DML

DDL

QUERY

PARALLEL integer

ENABLE RESUMABLE

TIMEOUT integer NAME string

DISABLE RESUMABLE

ENABLE

DISABLE
SHARD DDL

SYNC WITH PRIMARY

alter_session_set_clause

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 105 of 120

alter_session_set_clause::=

SET

parameter_name = parameter_value

EDITION = edition_name

CONTAINER = container_name

SERVICE = service_name

ROW ARCHIVAL VISIBILITY =
ACTIVE

ALL

DEFAULT_COLLATION =
collation_name

NONE

Semantics

ADVISE Clause

The ADVISE clause sends advice to a remote database to force a distributed transaction. The
advice appears in the ADVICE column of the DBA_2PC_PENDING view on the remote database
(the values are 'C' for COMMIT, 'R' for ROLLBACK, and ' ' for NOTHING). If the transaction
becomes in doubt, then the administrator of that database can use this advice to decide
whether to commit or roll back the transaction.

You can send different advice to different remote databases by issuing multiple ALTER SESSION
statements with the ADVISE clause in a single transaction. Each such statement sends advice
to the databases referenced in the following statements in the transaction until another such
statement is issued.

See Also

"Forcing a Distributed Transaction: Example"

CLOSE DATABASE LINK Clause

Specify CLOSE DATABASE LINK to close the database link dblink. When you issue a statement
that uses a database link, Oracle Database creates a session for you on the remote database
using that link. The connection remains open until you end your local session or until the
number of database links for your session exceeds the value of the initialization parameter
OPEN_LINKS. If you want to reduce the network overhead associated with keeping the link
open, then use this clause to close the link explicitly if you do not plan to use it again in your
session.

See Also

Closing a Database Link: Example

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 106 of 120

ENABLE | DISABLE COMMIT IN PROCEDURE

Procedures and stored functions written in PL/SQL can issue COMMIT and ROLLBACK
statements. If your application would be disrupted by a COMMIT or ROLLBACK statement not
issued directly by the application itself, then specify DISABLE COMMIT IN PROCEDURE clause to
prevent procedures and stored functions called during your session from issuing these
statements.

You can subsequently allow procedures and stored functions to issue COMMIT and ROLLBACK
statements in your session by issuing the ENABLE COMMIT IN PROCEDURE.

Some applications automatically prohibit COMMIT and ROLLBACK statements in procedures and
stored functions. Refer to your application documentation for more information.

ENABLE | DISABLE GUARD

The security_clause of ALTER DATABASE lets you prevent anyone other than the SYS user from
making any changes to data or database objects on the primary or standby database. This
clause lets you override that setting for the current session.

See Also

security_clause for more information on the GUARD setting

PARALLEL DML | DDL | QUERY

The PARALLEL parameter determines whether all subsequent DML, DDL, or query statements
in the session will be considered for parallel execution. This clause enables you to override the
degree of parallelism of tables during the current session without changing the tables
themselves. Uncommitted transactions must either be committed or rolled back prior to
executing this clause for DML.

See Also

"Enabling Parallel DML: Example"

ENABLE Clause

Specify ENABLE to execute subsequent statements in the session in parallel. This is the default
for DDL and query statements.

• DML: DML statements are executed in parallel mode if a parallel hint or a parallel clause is
specified.

• DDL: DDL statements are executed in parallel mode if a parallel clause is specified.

• QUERY: Queries are executed in parallel mode if a parallel hint or a parallel clause is
specified.

Restriction on the ENABLE clause

You cannot specify the optional PARALLEL integer with ENABLE.

DISABLE Clause

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 107 of 120

Specify DISABLE to execute subsequent statements in the session serially. This is the default
for DML statements.

• DML: DML statements are executed serially.

• DDL: DDL statements are executed serially.

• QUERY: Queries are executed serially.

Restriction on the DISABLE clause

You cannot specify the optional PARALLEL integer with DISABLE.

FORCE Clause

FORCE forces parallel execution of subsequent statements in the session. If no parallel clause
or hint is specified, then a default degree of parallelism is used. This clause overrides any
parallel_clause specified in subsequent statements in the session but is overridden by a parallel
hint.

• DML: Provided no parallel DML restrictions are violated, subsequent DML statements in
the session are executed with the default degree of parallelism, unless a degree is
specified in this clause.

• DDL: Subsequent DDL statements in the session are executed with the default degree of
parallelism, unless a degree is specified in this clause. Resulting database objects will
have associated with them the prevailing degree of parallelism.

Specifying FORCE DDL automatically causes all tables created in this session to be created
with a default level of parallelism. The effect is the same as if you had specified the
parallel_clause (with the default degree) in the CREATE TABLE statement.

• QUERY: Subsequent queries are executed with the default degree of parallelism, unless a
degree is specified in this clause.

PARALLEL integer

Specify an integer to explicitly specify a degree of parallelism:

• For FORCE DDL, the degree overrides any parallel clause in subsequent DDL statements.

• For FORCE DML and QUERY, the degree overrides the degree currently stored for the table
in the data dictionary.

• A degree specified in a statement through a hint will override the degree being forced.

The following types of DML operations are not parallelized regardless of this clause:

• Operations on cluster tables

• Operations with embedded functions that either write or read database or package states

• Operations on tables with triggers that could fire

• Operations on tables or schema objects containing object types, or LONG or LOB data
types

RESUMABLE Clauses

These clauses let you enable and disable resumable space allocation. This feature allows an
operation to be suspended in the event of an out-of-space error condition and to resume
automatically from the point of interruption when the error condition is fixed.

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 108 of 120

Note

Resumable space allocation is fully supported for operations on locally managed
tablespaces. Some restrictions apply if you are using dictionary-managed tablespaces.
For information on these restrictions, refer to Oracle Database Administrator's Guide.

ENABLE RESUMABLE

This clause enables resumable space allocation for the session.

TIMEOUT

TIMEOUT lets you specify (in seconds) the time during which an operation can remain
suspended while waiting for the error condition to be fixed. If the error condition is not fixed
within the TIMEOUT period, then Oracle Database aborts the suspended operation.

NAME

NAME lets you specify a user-defined text string to help users identify the statements issued
during the session while the session is in resumable mode. Oracle Database inserts the text
string into the USER_RESUMABLE and DBA_RESUMABLE data dictionary views. If you do not
specify NAME, then Oracle Database inserts the default string 'User username(userid), Session
sessionid, Instance instanceid'.

See Also

Oracle Database Reference for information on the data dictionary views

DISABLE RESUMABLE

This clause disables resumable space allocation for the session.

SHARD DDL Clauses

These clauses are valid only if you are connected to a sharded database. They let you control
whether DDLs issued in the session are issued against the shard catalog database and all
shards, or against only the shard catalog database.

• If you specify ENABLE SHARD DDL, then DDLs issued in the session are issued against the
shard catalog database and all shards. This mode is the default for the SDB user—a user
that exists in the shard catalog database and in all shards.

• If you specify DISABLE SHARD DDL, then DDLs issued in the session are issued against
only the shard catalog database. This mode is the default for a local user—a user that
exists only in the shard catalog database.

See Also

Using Oracle Sharding

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 109 of 120

SYNC WITH PRIMARY

Use this clause to synchronize redo apply on a physical standby database with the primary
database. An ALTER SESSION statement with this clause blocks until redo apply has applied all
redo data received by the standby at the time the statement is issued. This clause returns an
error, and synchronization does not occur, if the redo transport state for the standby database
is not SYNCHRONIZED or if redo apply is not active.

See Also

Oracle Data Guard Concepts and Administration for more information on this session
parameter

alter_session_set_clause

Use the alter_session_set_clause to set initialization parameter values or to set an edition for the
current session.

Initialization Parameters

You can set two types of parameters using this clause:

• Initialization parameters that are dynamic in the scope of the ALTER SESSION statement
(listed in "Initialization Parameters and ALTER SESSION")

• Session parameters (listed in "Session Parameters and ALTER SESSION ")

You can set values for multiple parameters in the same alter_session_set_clause.

EDITION

Specify EDITION = edition to set the specified edition as the edition in the database session. You
must have the USE object privilege on edition, edition must already have been created, and it
must be USABLE.

When this statement is successful, the database discards PL/SQL package state
corresponding to editionable packages but retains package state corresponding to packages
that are not editionable.

You can also set the edition for the current session at startup with the EDITION parameter of the
SQL*Plus CONNECT command. However, you cannot specify an ALTER SESSION SET EDITION
statement in a recursive SQL or PL/SQL block.

You can determine the edition in use by the current session with the following query:

SELECT SYS_CONTEXT('USERENV', 'CURRENT_EDITION_NAME') FROM DUAL;

See Also

CREATE EDITION for more information on editions and Oracle Database PL/SQL
Language Reference for information on how editions are designated as USABLE

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 110 of 120

CONTAINER

Use this clause in a multitenant container database (CDB) to switch to the container specified
by container_name.

To use this clause, you must be a common user with the SET CONTAINER privilege, either
granted commonly or granted locally in container_name.

For container_name, specify one of the following:

• CDB$ROOT to switch to the root

• PDB$SEED to switch to the seed

• A pluggable database (PDB) name to switch to that PDB. You can view the names of the
PDBs in a CDB by querying the DBA_PDBS view.

You can determine the container to which the current session is connected by using the
SQL*Plus SHOW CON_NAME command or with the following SQL query:

SELECT SYS_CONTEXT('USERENV', 'CON_NAME') FROM DUAL;

SERVICE

By default, when you switch to a container, the session uses the default service for the
container. Specify the SERVICE clause to use a different service for the container. For
service_name, specify the name of the service you want to use.

See Also

Oracle Database Administrator's Guide for more information on switching to a
container

ROW ARCHIVAL VISIBILITY

Use this clause to configure row archival visibility for the session. This clause lets you
implement In-Database Archiving, which allows you to designate table rows as active or
archived. You can then perform queries on only the active rows within the table.

• If you specify ACTIVE, then the database will consider only active rows when performing
queries on tables that are enabled for row archival. This is the default.

• If you specify ALL, then the database will consider all rows when performing queries on
tables that are enabled for row archival.

This clause has no effect on queries on tables that are not enabled for row archival.

See Also

• The CREATE TABLE ROW ARCHIVAL clause to learn how to enable a new table for
row archival

• The ALTER TABLE [NO] ROW ARCHIVAL clause to learn how to enable or disable
an existing table for row archival

• Oracle Database VLDB and Partitioning Guide for more information on In-
Database Archiving

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 111 of 120

DEFAULT_COLLATION

Use this clause to set the default collation for the session.

• Use collation_name to specify the default collation for the session. You can specify the name
of any valid named collation or pseudo-collation. This collation becomes the effective
schema default collation. This collation is assigned to tables, views, and materialized views
that are subsequently created in any schema for the duration of the session. The default
collation for the session does not get propagated to any remote sessions connected to the
current session using DB links.

• If you specify NONE, then there is no default collation for the session. In this case, the
default collation for a particular schema becomes the effective schema default collation for
that schema. That default collation is assigned to tables, views, and materialized views that
are subsequently created in the schema for the duration of the session.

In either of the preceding cases, you can override the effective schema default collation and
assign a default collation to a particular table, materialized view, or view by specifying the
DEFAULT COLLATION clause of the CREATE or ALTER statement for the table, materialized view,
or view.

The effective schema default collation also affects the DDL statements CREATE FUNCTION,
CREATE PACKAGE, CREATE PROCEDURE, CREATE TRIGGER, and CREATE TYPE. Refer to Oracle
Database PL/SQL Language Reference for more details on these statements.

You can query the default collation for a session with the following statement:

SELECT SYS_CONTEXT('USERENV', 'SESSION_DEFAULT_COLLATION') FROM DUAL;

You can specify the SET DEFAULT_COLLATION clause only if the COMPATIBLE initialization
parameter is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to
EXTENDED.

See Also

The DEFAULT COLLATION Clause clause of CREATE USER for more information on the
default collation of a schema

Note

The effective schema default collation for a session should not be confused with the
session parameter NLS_SORT. The effective schema default collation is used by DDL
statements to decide the default data-bound collation of tables, views, and
materialized views when they are created. The session parameter NLS_SORT points to
a named collation that is used when Oracle executes a query, a DML statement, or
PL/SQL code containing a SQL operation whose determined collation is a pseudo-
collation, such as USING_NLS_COMP or USING_NLS_SORT. Refer to Oracle Database
Globalization Support Guide for more information.

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 112 of 120

Initialization Parameters and ALTER SESSION
Some initialization parameter are dynamic in the scope of ALTER SESSION. When you set these
parameters using ALTER SESSION, the value you set persists only for the duration of the current
session.To determine whether a parameter can be altered using an ALTER SESSION statement,
query the ISSES_MODIFIABLE column of the V$PARAMETER dynamic performance view.

Note

Before changing the values of initialization parameters, refer to their full description in
Oracle Database Reference.

A number of parameters that can be set using ALTER SESSION are not initialization parameters.
You can set them only with ALTER SESSION, not in an initialization parameter file. Those session
parameters are described in "Session Parameters and ALTER SESSION ".

Session Parameters and ALTER SESSION
The following parameters are session parameters only, not initialization parameters:

CONSTRAINT[S]

Syntax:

CONSTRAINT[S] = { IMMEDIATE | DEFERRED | DEFAULT }

The CONSTRAINT[S] parameter determines when conditions specified by a deferrable constraint
are enforced.

• IMMEDIATE indicates that the conditions specified by the deferrable constraint are checked
immediately after each DML statement. This setting is equivalent to issuing the SET
CONSTRAINTS ALL IMMEDIATE statement at the beginning of each transaction in your
session.

• DEFERRED indicates that the conditions specified by the deferrable constraint are checked
when the transaction is committed. This setting is equivalent to issuing the SET
CONSTRAINTS ALL DEFERRED statement at the beginning of each transaction in your
session.

• DEFAULT restores all constraints at the beginning of each transaction to their initial state of
DEFERRED or IMMEDIATE.

CURRENT_SCHEMA

Syntax:

CURRENT_SCHEMA = schema

The CURRENT_SCHEMA parameter changes the current schema of the session to the specified
schema. Subsequent unqualified references to schema objects during the session will resolve
to objects in the specified schema. The setting persists for the duration of the session or until
you issue another ALTER SESSION SET CURRENT_SCHEMA statement.

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 113 of 120

This setting offers a convenient way to perform operations on objects in a schema other than
that of the current user without having to qualify the objects with the schema name. This
setting changes the current schema, but it does not change the session user or the current
user, nor does it give the session user any additional system or object privileges for the
session.

ERROR_ON_OVERLAP_TIME

Syntax:

ERROR_ON_OVERLAP_TIME = {TRUE | FALSE}

The ERROR_ON_OVERLAP_TIME parameter determines how Oracle Database should handle an
ambiguous boundary datetime value—a case in which it is not clear whether the datetime is in
standard or daylight saving time.

• Specify TRUE to return an error for the ambiguous overlap timestamp.

• Specify FALSE to default the ambiguous overlap timestamp to the standard time. This is the
default.

Refer to "Support for Daylight Saving Times " for more information on boundary datetime
values.

FLAGGER

Syntax:

FLAGGER = { ENTRY | OFF }

The FLAGGER parameter specifies FIPS flagging (as specified in Federal Information
Processing Standard 127-2), which causes an error message to be generated when a SQL
statement issued is an extension of the Entry Level of SQL-92 (officially, ANSI X3.135-1992, a
standard that is now superseded by SQL:2016). FLAGGER is a session parameter only, not an
initialization parameter.

After flagging is set in a session, a subsequent ALTER SESSION SET FLAGGER statement will
work, but generates the message, ORA-00097. This allows FIPS flagging to be altered without
disconnecting the session. OFF turns off flagging.

See Also

Oracle and Standard SQL, for more information about Oracle compliance with current
ANSI SQL standards

Starting with Oracle Database 23ai, several parameters associated with FIPS_140 are
deprecated.

FIPS_140 in FIPS.ORA can be used to enable FIPS for all features starting with Oracle
Database 23ai. The following FIPS parameters are deprecated:

• SQLNET.ORA: FIPS_140 to enable FIPS for native network encryption

• FIPS.ORA: SSLFIPS_140 to enable FIPS for TLS

• Initialization parameter: DBFIPS_140 to enable FIPS for TDE and DBMS_CRYPTO

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 114 of 120

INSTANCE

Syntax:

INSTANCE = integer

Setting the INSTANCE parameter lets you access another instance as if you were connected to
your own instance. INSTANCE is a session parameter only, not an initialization parameter. In an
Oracle Real Application Clusters (Oracle RAC) environment, each Oracle RAC instance
retains static or dynamic ownership of disk space for optimal DML performance based on the
setting of this parameter.

ISOLATION_LEVEL

Syntax:

ISOLATION_LEVEL = {SERIALIZABLE | READ COMMITTED}

The ISOLATION_LEVEL parameter specifies how transactions containing database modifications
are handled. ISOLATION_LEVEL is a session parameter only, not an initialization parameter.

• SERIALIZABLE indicates that transactions in the session use the serializable transaction
isolation mode as specified in the SQL standard. If a serializable transaction attempts to
execute a DML statement that updates rows currently being updated by another
uncommitted transaction at the start of the serializable transaction, then the DML
statement fails. A serializable transaction can see its own updates.

• READ COMMITTED indicates that transactions in the session will use the default Oracle
Database transaction behavior. If the transaction contains DML that requires row locks
held by another transaction, then the DML statement will wait until the row locks are
released.

Note

Serializable transactions do not work with deferred segment creation or interval
partitioning. Trying to insert data into an empty table with no segment created, or into a
partition of an interval partitioned table that does not yet have a segment, causes an
error.

STANDBY_MAX_DATA_DELAY

Syntax:

STANDBY_MAX_DATA_DELAY = { integer | NONE }

In an Active Data Guard environment, this session parameter can be used to specify a
session-specific apply lag tolerance, measured in seconds, for queries issued by non-
administrative users to a physical standby database that is in real-time query mode. This
capability allows queries to be safely offloaded from the primary database to a physical
standby database, because it is possible to detect if the standby database has become
unacceptably stale.

If STANDBY_MAX_DATA_DELAY is set to the default value of NONE, queries issued to a physical
standby database will be executed regardless of the apply lag on that database.

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 115 of 120

If STANDBY_MAX_DATA_DELAY is set to a nonzero value, a query issued to a physical standby
database will be executed only if the apply lag is less than or equal to
STANDBY_MAX_DATA_DELAY. Otherwise, an ORA-3172 error is returned to alert the client that the
apply lag is too large.

If STANDBY_MAX_DATA_DELAY is set to 0, a query issued to a physical standby database is
guaranteed to return the exact same result as if the query were issued on the primary
database, unless the standby database is lagging behind the primary database, in which case
an ORA-3172 error is returned.

See Also

Oracle Data Guard Concepts and Administration for more information on Active Data
Guard and using this session parameter

TIME_ZONE

Syntax:

TIME_ZONE = '[+ | -] hh:mi'
 | LOCAL
 | DBTIMEZONE
 | 'time_zone_region'

The TIME_ZONE parameter specifies the default local time zone offset or region name for the
current SQL session. TIME_ZONE is a session parameter only, not an initialization parameter. To
determine the time zone of the current session, query the built-in function SESSIONTIMEZONE
(see SESSIONTIMEZONE).

• Specify a format mask ('[+|-]hh:mi') indicating the hours and minutes before or after UTC
(Coordinated Universal Time—formerly Greenwich Mean Time). The valid range for hh:mi is
-12:00 to +14:00.

• Specify LOCAL to set the default local time zone offset of the current SQL session to the
original default local time zone offset that was established when the current SQL session
was started.

• Specify DBTIMEZONE to set the current session time zone to match the value set for the
database time zone. If you specify this setting, then the DBTIMEZONE function will return the
database time zone as a UTC offset or a time zone region, depending on how the
database time zone has been set.

• Specify a valid time_zone_region. To see a listing of valid time zone region names, query the
TZNAME column of the V$TIMEZONE_NAMES dynamic performance view. If you specify this
setting, then the SESSIONTIMEZONE function will return the region name.

Note

Time zone region names are needed by the daylight saving feature. These names are
stored in two types of time zone files: one large and one small. One of these files is
the default file, depending on your environment and the release of Oracle Database
you are using. For more information regarding time zone files and names, see Oracle
Database Globalization Support Guide.

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 116 of 120

See Also

Oracle Database Globalization Support Guide for a complete listing of the time zone
region names in both files

Note

You can also set the default client session time zone using the ORA_SDTZ environment
variable. Refer to Oracle Database Globalization Support Guide for more information
on this variable.

USE_PRIVATE_OUTLINES

Syntax:

USE_PRIVATE_OUTLINES = { TRUE | FALSE | category_name }

The USE_PRIVATE_OUTLINES parameter lets you control the use of private outlines. When this
parameter is enabled and an outlined SQL statement is issued, the optimizer retrieves the
outline from the session private area rather than the public area used when
USE_STORED_OUTLINES is enabled. If no outline exists in the session private area, then the
optimizer will not use an outline to compile the statement. USE_PRIVATE_OUTLINES is not an
initialization parameter.

• TRUE causes the optimizer to use private outlines stored in the DEFAULT category when
compiling requests.

• FALSE specifies that the optimizer should not use stored private outlines. This is the default.
If USE_STORED_OUTLINES is enabled, then the optimizer will use stored public outlines.

• category_name causes the optimizer to use outlines stored in the category_name category when
compiling requests.

Restriction on USE_PRIVATE_OUTLINES

You cannot enable this parameter if USE_STORED_OUTLINES is enabled.

USE_STORED_OUTLINES

Note

Stored outlines are deprecated. They are still supported for backward compatibility.
However, Oracle recommends that you use SQL plan management instead. Refer to
Oracle Database SQL Tuning Guide for more information about SQL plan
management.

Syntax:

USE_STORED_OUTLINES = { TRUE | FALSE | category_name }

The USE_STORED_OUTLINES parameter determines whether the optimizer will use stored public
outlines to generate execution plans. USE_STORED_OUTLINES is not an initialization parameter.

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 117 of 120

• TRUE causes the optimizer to use outlines stored in the DEFAULT category when compiling
requests.

• FALSE specifies that the optimizer should not use stored outlines. This is the default.

• category_name causes the optimizer to use outlines stored in the category_name category when
compiling requests.

Restriction on USED_STORED_OUTLINES

You cannot enable this parameter if USE_PRIVATE_OUTLINES is enabled.

Examples

Enabling Parallel DML: Example

Issue the following statement to enable parallel DML mode for the current session:

ALTER SESSION ENABLE PARALLEL DML;

Forcing a Distributed Transaction: Example

The following transaction inserts an employee record into the employees table on the database
identified by the database link remote and deletes an employee record from the employees table
on the database identified by local:

ALTER SESSION
 ADVISE COMMIT;

INSERT INTO employees@remote
 VALUES (8002, 'Juan', 'Fernandez', 'juanf@example.com', NULL,
 TO_DATE('04-OCT-1992', 'DD-MON-YYYY'), 'SA_CLERK', 3000,
 NULL, 121, 20);

ALTER SESSION
 ADVISE ROLLBACK;

DELETE FROM employees@local
 WHERE employee_id = 8002;

COMMIT;

This transaction has two ALTER SESSION statements with the ADVISE clause. If the transaction
becomes in doubt, then remote is sent the advice 'COMMIT' by virtue of the first ALTER SESSION
statement and local is sent the advice 'ROLLBACK' by virtue of the second statement.

Closing a Database Link: Example

This statement updates the jobs table on the local database using a database link, commits the
transaction, and explicitly closes the database link:

UPDATE jobs@local SET min_salary = 3000
 WHERE job_id = 'SH_CLERK';

COMMIT;

ALTER SESSION
 CLOSE DATABASE LINK local;

Changing the Date Format Dynamically: Example

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 118 of 120

The following statement dynamically changes the default date format for your session to 'YYYY
MM DD-HH24:MI:SS':

ALTER SESSION
 SET NLS_DATE_FORMAT = 'YYYY MM DD HH24:MI:SS';

Oracle Database uses the new default date format:

SELECT TO_CHAR(SYSDATE) Today
 FROM DUAL;

TODAY

2001 04 12 12:30:38

Changing the Date Language Dynamically: Example

The following statement changes the language for date format elements to French:

ALTER SESSION
 SET NLS_DATE_LANGUAGE = French;

SELECT TO_CHAR(SYSDATE, 'Day DD Month YYYY') Today
 FROM DUAL;

TODAY

Jeudi 12 Avril 2001

Changing the ISO Currency: Example

The following statement dynamically changes the ISO currency symbol to the ISO currency
symbol for the territory America:

ALTER SESSION
 SET NLS_ISO_CURRENCY = America;

SELECT TO_CHAR(SUM(salary), 'C999G999D99') Total
 FROM employees;

TOTAL

 USD694,900.00

Changing the Decimal Character and Group Separator: Example

The following statement dynamically changes the decimal character to comma (,) and the
group separator to period (.):

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ',.' ;

Oracle Database returns these new characters when you use their number format elements:

ALTER SESSION SET NLS_CURRENCY = 'FF';

SELECT TO_CHAR(SUM(salary), 'L999G999D99') Total FROM employees;

TOTAL

 FF694.900,00

Changing the NLS Currency: Example

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 119 of 120

The following statement dynamically changes the local currency symbol to 'DM':

ALTER SESSION
 SET NLS_CURRENCY = 'DM';

SELECT TO_CHAR(SUM(salary), 'L999G999D99') Total
 FROM employees;

TOTAL

 DM694.900,00

Changing the NLS Language: Example

The following statement dynamically changes to French the language in which error messages
are displayed:

ALTER SESSION
 SET NLS_LANGUAGE = FRENCH;

Session modifiee.

SELECT * FROM DMP;

ORA-00942: Table ou vue inexistante

Changing the Linguistic Sort Sequence: Example

The following statement dynamically changes the linguistic sort sequence to Spanish:

ALTER SESSION
 SET NLS_SORT = XSpanish;

Oracle Database sorts character values based on their position in the Spanish linguistic sort
sequence.

Enabling Query Rewrite: Example

This statement enables query rewrite in the current session for all materialized views that have
not been explicitly disabled:

ALTER SESSION
 SET QUERY_REWRITE_ENABLED = TRUE;

Chapter 11
ALTER SESSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 120 of 120

12
SQL Statements: ALTER SYNONYM to
COMMENT

This chapter contains the following SQL statements:

• ALTER SYNONYM

• ALTER SYSTEM

• ALTER TABLE

• ALTER TABLESPACE

• ALTER TABLESPACE SET

• ALTER TRIGGER

• ALTER TYPE

• ALTER USER

• ALTER VIEW

• ANALYZE

• ASSOCIATE STATISTICS

• AUDIT (Traditional Auditing)

• AUDIT (Unified Auditing)

• CALL

• COMMENT

ALTER SYNONYM

Purpose

Use the ALTER SYNONYM statement to modify an existing synonym.

Prerequisites

To modify a private synonym in another user's schema, you must have the CREATE ANY
SYNONYM and DROP ANY SYNONYM system privileges.

To modify a PUBLIC synonym, you must have the CREATE PUBLIC SYNONYM and DROP PUBLIC
SYNONYM system privileges.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 244

Syntax

alter_synonym::=

ALTER

PUBLIC

SYNONYM

IF EXISTS schema .

synonym

EDITIONABLE

NONEDITIONABLE

COMPILE

Semantics

PUBLIC

Specify PUBLIC if synonym is a public synonym. You cannot use this clause to change a public
synonym to a private synonym, or vice versa.

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the synonym. If you omit schema, then Oracle Database
assumes the synonym is in your own schema.

synonym

Specify the name of the synonym to be altered.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the synonym becomes an editioned or noneditioned
object if editioning is later enabled for the schema object type SYNONYM in schema. The default
is EDITIONABLE. For information about altering editioned and noneditioned objects, see Oracle
Database Development Guide.

Restriction on EDITIONABLE | NONEDITIONABLE

You cannot specify these clauses for a public synonym because editioning is always enabled
for the object type SYNONYM in the PUBLIC schema.

COMPILE

Use this clause to compile synonym. A synonym places a dependency on its target object and
becomes invalid if the target object is changed or dropped. When you compile an invalid
synonym, it becomes valid again.

Note

You can determine if a synonym is valid or invalid by querying the STATUS column of
the ALL_, DBA_, and USER_OBJECTS data dictionary views.

Chapter 12
ALTER SYNONYM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 244

Examples

The following examples modify synonyms that were created in the CREATE SYNONYM
"Examples".

The following statement compiles synonym offices:

ALTER SYNONYM offices COMPILE;

The following statement compiles public synonym emp_table:

ALTER PUBLIC SYNONYM emp_table COMPILE;

The following statement causes synonym offices to remain a noneditioned object if editioning is
later enabled for schema object type SYNONYM in the schema that contains the synonym offices:

ALTER SYNONYM offices NONEDITIONABLE;

ALTER SYSTEM
Purpose

Use the ALTER SYSTEM statement to dynamically alter your Oracle Database instance. The
settings stay in effect as long as the database is mounted.

When you use the ALTER SYSTEM statement in a multitenant container database (CDB), you
can specify some clauses to alter the CDB as a whole and other clauses to alter a specific
pluggable database (PDB).

See Also

Oracle Database Administrator's Guide for complete information on using the ALTER
SYSTEM statement in a CDB

Prerequisites

To specify the RELOCATE CLIENT clause, you must be authenticated AS SYSASM.

To specify all other clauses, you must have the ALTER SYSTEM system privilege.

If you are connected to a CDB:

• To alter the CDB as a whole, the current container must be the root and you must have the
commonly granted ALTER SYSTEM privilege.

• To alter a PDB, the current container must be the PDB and you must have the ALTER
SYSTEM privilege, either granted commonly or granted locally in the PDB.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 244

Syntax

alter_system::=

ALTER SYSTEM

archive_log_clause

checkpoint_clause

check_datafiles_clause

distributed_recov_clauses

flush_clause

end_session_clauses

SWITCH LOGFILE

SUSPEND

RESUME

quiesce_clauses

rolling_migration_clauses

rolling_patch_clauses

security_clauses

affinity_clauses

shutdown_dispatcher_clause

REGISTER

SET alter_system_set_clause

RESET alter_system_reset_clause

RELOCATE CLIENT client_id

cancel_sql_clause

(archive_log_clause::=, checkpoint_clause::=, check_datafiles_clause::=,
distributed_recov_clauses::=, end_session_clauses::=, quiesce_clauses::=,
rolling_migration_clauses::=, rolling_patch_clauses::=, security_clauses::=,
shutdown_dispatcher_clause::=, alter_system_set_clause::=, alter_system_reset_clause::=,
cancel_sql_clause)

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 244

archive_log_clause::=

ARCHIVE LOG

INSTANCE ’ instance_name ’

SEQUENCE integer

CHANGE integer

CURRENT

NOSWITCH

GROUP integer

LOGFILE ’ filename ’

USING BACKUP CONTROLFILE

NEXT

ALL

TO ’ location ’

checkpoint_clause::=

CHECKPOINT

GLOBAL

LOCAL

check_datafiles_clause::=

CHECK DATAFILES

GLOBAL

LOCAL

distributed_recov_clauses::=

ENABLE

DISABLE

DISTRIBUTED RECOVERY

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 244

flush_clause

FLUSH

SQL_MONITOR

QUERY_HISTORY

SHARED_POOL

GLOBAL CONTEXT

BUFFER_CACHE

FLASH_CACHE

LOCAL

GLOBAL

REDO TO target_db_name

NO

CONFIRM APPLY

PASSWORDFILE_METADATA_CACHE

end_session_clauses::=

DISCONNECT SESSION ’ session_id , serial_number ’

POST_TRANSACTION

KILL SESSION ’ session_id , serial_number

, @ instance_id

’

IMMEDIATE

FORCE

NOREPLAY TIMEOUT integer

quiesce_clauses::=

QUIESCE RESTRICTED

UNQUIESCE

rolling_migration_clauses::=

START ROLLING MIGRATION TO ’ ASM_version ’

STOP ROLLING MIGRATION

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 244

rolling_patch_clauses::=

START ROLLING PATCH

STOP ROLLING PATCH

security_clauses::=

ENABLE

DISABLE

RESTRICTED SESSION

affinity_clauses::=

ENABLE AFFINITY

schema .

table

SERVICE service_name

DISABLE AFFINITY

schema .

table

shutdown_dispatcher_clause::=

SHUTDOWN

IMMEDIATE

dispatcher_name

alter_system_set_clause::=

set_parameter_clause

USE_STORED_OUTLINES =

TRUE

FALSE

category_name

GLOBAL_TOPIC_ENABLED =
TRUE

FALSE

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 244

set_parameter_clause::=

parameter_name = parameter_value

,
COMMENT = string DEFERRED

CONTAINER =
CURRENT

ALL

SCOPE =

MEMORY

SPFILE

BOTH

SID =
’ sid ’

’ * ’

alter_system_reset_clause::=

parameter_name

SCOPE =

MEMORY

SPFILE

BOTH

SID =
’ sid ’

’ * ’

cancel_sql_clause::=

CANCEL SQL ’ session_id , serial_number

, @ instance_id , sql_id

’

Semantics

archive_log_clause

The archive_log_clause manually archives redo log files or enables or disables automatic
archiving. To use this clause, your instance must have the database mounted. The database
can be either open or closed unless otherwise noted.

INSTANCE Clause

This clause is relevant only if you are using Oracle Real Application Clusters (Oracle RAC).
Specify the name of the instance for which you want the redo log file group to be archived. The
instance name is a string of up to 80 characters. Oracle Database automatically determines
the thread that is mapped to the specified instance and archives the corresponding redo log file
group. If no thread is mapped to the specified instance, then Oracle Database returns an error.

SEQUENCE Clause

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 244

Specify SEQUENCE to manually archive the online redo log file group identified by the log
sequence number integer in the specified thread. If you omit the THREAD parameter, then Oracle
Database archives the specified group from the thread assigned to your instance.

CHANGE Clause

Specify CHANGE to manually archive the online redo log file group containing the redo log entry
with the system change number (SCN) specified by integer in the specified thread. If the SCN is
in the current redo log file group, then Oracle Database performs a log switch. If you omit the
THREAD parameter, then Oracle Database archives the groups containing this SCN from all
enabled threads.

You can use this clause only when your instance has the database open.

CURRENT Clause

Specify CURRENT to manually archive the current redo log file group of the specified thread,
forcing a log switch. If you omit the THREAD parameter, then Oracle Database archives all redo
log file groups from all enabled threads, including logs previous to current logs. You can specify
CURRENT only when the database is open.

NOSWITCH

Specify NOSWITCH if you want to manually archive the current redo log file group without
forcing a log switch. This setting is used primarily with standby databases to prevent data
divergence when the primary database shuts down. Divergence implies the possibility of data
loss in case of primary database failure.

You can use the NOSWITCH clause only when your instance has the database mounted but not
open. If the database is open, then this operation closes the database automatically. You must
then manually shut down the database before you can reopen it.

GROUP Clause

Specify GROUP to manually archive the online redo log file group with the GROUP value specified
by integer. You can determine the GROUP value for a redo log file group by querying the dynamic
performance view V$LOG. If you specify both the THREAD and GROUP parameters, then the
specified redo log file group must be in the specified thread.

LOGFILE Clause

Specify LOGFILE to manually archive the online redo log file group containing the redo log file
member identified by 'filename'. If you specify both the THREAD and LOGFILE parameters, then
the specified redo log file group must be in the specified thread.

If the database was mounted with a backup control file, then specify USING BACKUP
CONTROLFILE to permit archiving of all online logfiles, including the current logfile.

Restriction on the LOGFILE clause

You must archive redo log file groups in the order in which they are filled. If you specify a redo
log file group for archiving with the LOGFILE parameter, and earlier redo log file groups are not
yet archived, then Oracle Database returns an error.

NEXT Clause

Specify NEXT to manually archive the next online redo log file group from the specified thread
that is full but has not yet been archived. If you omit the THREAD parameter, then Oracle
Database archives the earliest unarchived redo log file group from any enabled thread.

ALL Clause

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 244

Specify ALL to manually archive all online redo log file groups from the specified thread that
are full but have not been archived. If you omit the THREAD parameter, then Oracle Database
archives all full unarchived redo log file groups from all enabled threads.

TO location Clause

Specify TO 'location' to indicate the primary location to which the redo log file groups are
archived. The value of this parameter must be a fully specified file location following the
conventions of your operating system. If you omit this parameter, then Oracle Database
archives the redo log file group to the location specified by the initialization parameters
LOG_ARCHIVE_DEST or LOG_ARCHIVE_DEST_n.

checkpoint_clause

Specify CHECKPOINT to explicitly force Oracle Database to perform a checkpoint, ensuring that
all changes made by committed transactions are written to data files on disk. You can specify
this clause only when your instance has the database open. Oracle Database does not return
control to you until the checkpoint is complete.

GLOBAL

In an Oracle Real Application Clusters (Oracle RAC) environment, this setting causes Oracle
Database to perform a checkpoint for all instances that have opened the database. This is the
default.

LOCAL

In an Oracle RAC environment, this setting causes Oracle Database to perform a checkpoint
only for the thread of redo log file groups for the instance from which you issue the statement.

See Also

"Forcing a Checkpoint: Example"

check_datafiles_clause

In a distributed database system, such as an Oracle RAC environment, this clause updates an
instance's SGA from the database control file to reflect information on all online data files.

• Specify GLOBAL to perform this synchronization for all instances that have opened the
database. This is the default.

• Specify LOCAL to perform this synchronization only for the local instance.

Your instance should have the database open.

distributed_recov_clauses

The DISTRIBUTED RECOVERY clause lets you enable or disable distributed recovery. To use this
clause, your instance must have the database open.

ENABLE

Specify ENABLE to enable distributed recovery. In a single-process environment, you must use
this clause to initiate distributed recovery.

You may need to issue the ENABLE DISTRIBUTED RECOVERY statement more than once to
recover an in-doubt transaction if the remote node involved in the transaction is not accessible.
In-doubt transactions appear in the data dictionary view DBA_2PC_PENDING.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 244

See Also

"Enabling Distributed Recovery: Example"

DISABLE

Specify DISABLE to disable distributed recovery.

FLUSH SHARED_POOL Clause

The FLUSH SHARED_POOL clause lets you clear data from the shared pool in the system global
area (SGA). The shared pool stores:

• Cached data dictionary information and

• Shared SQL and PL/SQL areas for SQL statements, stored procedures, functions,
packages, and triggers.

This statement does not clear global application context information, nor does it clear shared
SQL and PL/SQL areas for items that are currently being executed. You can use this clause
regardless of whether your instance has the database dismounted or mounted, open or closed.

See Also

"Clearing the Shared Pool: Example"

FLUSH GLOBAL CONTEXT Clause

The FLUSH GLOBAL CONTEXT clause lets you flush all global application context information
from the shared pool in the system global area (SGA). You can use this clause regardless of
whether your instance has the database dismounted or mounted, open or closed.

FLUSH BUFFER_CACHE Clause

The FLUSH BUFFER_CACHE clause lets you clear all data from the buffer cache in the system
global area (SGA), including the KEEP, RECYCLE, and DEFAULT buffer pools.

Specify LOCAL if you only want to flush the local instance. To flush the buffer cache of all
instances, specify GLOBAL. GLOBAL is the default.

Note

This clause is intended for use only on a test database. Do not use this clause on a
production database, because as a result of this statement, subsequent queries will
have no hits, only misses.

This clause is useful if you need to measure the performance of rewritten queries or a suite of
queries from identical starting points.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 244

FLUSH FLASH_CACHE Clause

Use the FLUSH FLASH_CACHE clause to flush the Database Smart Flash Cache. This clause can
be useful if you need to measure the performance of rewritten queries or a suite of queries
from identical starting points, or if there might be corruption in the cache.

Specify LOCAL if you only want to flush the local instance. To flush the flash cache of all
instances, specify GLOBAL. GLOBAL is the default.

FLUSH REDO Clause

Use the FLUSH REDO clause to flush redo data from a primary database to a standby database
and to optionally wait for the flushed redo data to be applied to a physical or logical standby
database.

This clause can allow a failover to be performed on the target standby database without data
loss, even if the primary database is not in a zero data loss data protection mode, provided that
all redo data that has been generated by the primary database can be flushed to the standby
database.

The FLUSH REDO clause must be issued on a mounted, but not open, primary database.

target_db_name

For target_db_name, specify the DB_UNIQUE_NAME of the standby database that is to receive the
redo data flushed from the primary database.

The value of the LOG_ARCHIVE_DEST_n database initialization parameter that corresponds to
the target standby database must contain the DB_UNIQUE_NAME attribute, and the value of that
attribute must match the DB_UNIQUE_NAME of the target standby database.

NO CONFIRM APPLY

If you specify this clause, then the ALTER SYSTEM statement will not complete until the standby
database has received all of the flushed redo data. You must specify this clause if the target
standby database is a snapshot standby database.

CONFIRM APPLY

If you specify this clause, then the ALTER SYSTEM statement will not complete until the target
standby database has received and applied all flushed redo data. This is the default behavior
unless you specify NO CONFIRM APPLY. You cannot specify this clause if the target standby
database is a snapshot standby database.

See Also

Oracle Data Guard Concepts and Administration for more information about the FLUSH
REDO clause and failovers

FLUSH PASSWORDFILE_METADATA_CACHE

If the location or the name of the password file changes, you must notify the database that a
change has occurred. The command ALTER SYSTEM FLUSH PASSWORDFILE_METADATA_CACHE
flushes the password file metadata cache stored in the SGA and informs the database that a
change has occurred.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 244

The command also flushes the cache from all the RAC instances if it is run in a cluster
environment. Note the delay in propagating the change across all instances. Until the flush is
fully propagated, some instances might continue to use the old password file.

end_session_clauses

The end_session_clauses give you several ways to end the current session.

DISCONNECT SESSION Clause

Use the DISCONNECT SESSION clause to disconnect the current session by destroying the
dedicated server process (or virtual circuit if the connection was made by way of a Shared
Server). To use this clause, your instance must have the database open. You must identify the
session with both of the following values from the V$SESSION view:

• For session_id, specify the value of the SID column.

• For serial_number, specify the value of the SERIAL# column.

If system parameters are appropriately configured, then application failover will take effect.

• The POST_TRANSACTION setting allows ongoing transactions to complete before the session
is disconnected. If the session has no ongoing transactions, then this clause has the same
effect described for as KILL SESSION.

• The IMMEDIATE setting disconnects the session and recovers the entire session state
immediately, without waiting for ongoing transactions to complete.

– If you also specify POST_TRANSACTION and the session has ongoing transactions, then
the IMMEDIATE keyword is ignored.

– If you do not specify POST_TRANSACTION, or you specify POST_TRANSACTION but the
session has no ongoing transactions, then this clause has the same effect as
described for KILL SESSION IMMEDIATE.

See Also

"Disconnecting a Session: Example"

KILL SESSION Clause

The KILL SESSION clause lets you mark a session as terminated, roll back ongoing transactions,
release all session locks, and partially recover session resources. To use this clause, your
instance must have the database open. Your session and the session to be terminated must be
on the same instance unless you specify integer3.You must identify the session with the
following values from the V$SESSION view:

• For session_id, specify the value of the SID column.

• For serial_number, specify the value of the SERIAL# column.

• For the optional instance_id, specify the ID of the instance where the target session to be
killed exists. You can find the instance ID by querying the GV$ tables.

If the session is performing some activity that must be completed, such as waiting for a reply
from a remote database or rolling back a transaction, then Oracle Database waits for this
activity to complete, marks the session as terminated, and then returns control to you. If the
waiting lasts a minute, then Oracle Database marks the session to be terminated and returns
control to you with a message that the session is marked to be terminated. The PMON
background process then marks the session as terminated when the activity is complete.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 244

Whether or not the session has an ongoing transaction, Oracle Database does not recover the
entire session state until the session user issues a request to the session and receives a
message that the session has been terminated.

See Also

"Terminating a Session: Example"

IMMEDIATE

Specify IMMEDIATE to instruct Oracle Database to roll back ongoing transactions, release all
session locks, recover the entire session state, and return control to you immediately.

Note that IMMEDIATE only returns control immediately, if TIMEOUT is not specified.

IMMEDIATE is similar to the case when the session is deleted without a modifier in that it waits
until the activity completes. Once the activity completes, the full session is deleted without
waiting for the session user and the connection is closed.

FORCE

FORCE is similar to IMMEDIATE except that FORCE will forcefully terminate the connection if a
timeout occurs.

Example

ALTER SYSTEM KILL SESSION '20,1' FORCE;

NOREPLAY

This clause is valid if you are using Application Continuity. When connected to a service with
Application Continuity enabled (that is, FAILOVER_TYPE = TRANSACTION), the session is
recovered after the session fails or is killed. If you do not want to recover a session after it is
terminated, then specify NOREPLAY.

TIMEOUT

Specify TIMEOUT to set the maximum amount of time (in seconds) to wait before terminating
the session. It overrides the default timeout.

The current default timeout values are:

• 60 seconds when no modifier is specified

• 0 seconds when the modifier IMMEDIATE is specified

• 5 seconds when the modifier FORCE is specified

The action that occurs at TIMEOUT is different for IMMEDIATE, which marks the session for
termination and FORCE , which forcefully terminates the session.

Example

ALTER SYSTEM KILL SESSION '20,1' TIMEOUT 20;

SWITCH LOGFILE Clause

The SWITCH LOGFILE clause lets you explicitly force Oracle Database to begin writing to a new
redo log file group, regardless of whether the files in the current redo log file group are full.
When you force a log switch, Oracle Database begins to perform a checkpoint but returns

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 244

control to you immediately rather than when the checkpoint is complete. To use this clause,
your instance must have the database open.

See Also

"Forcing a Log Switch: Example"

SUSPEND | RESUME

The SUSPEND clause lets you suspend all I/O (data file, control file, and file header) as well as
queries, in all instances, enabling you to make copies of the database without having to handle
ongoing transactions.

Restrictions on SUSPEND and RESUME

SUSPEND and RESUME are subject to the following restrictions:

• Do not use this clause unless you have put the database tablespaces in hot backup mode.

• Do not terminate the session that issued the ALTER SYSTEM SUSPEND statement. An
attempt to reconnect while the system is suspended may fail because of recursive SQL
that is running during the SYS login.

• If you start a new instance while the system is suspended, then that new instance will not
be suspended.

The RESUME clause lets you make the database available once again for queries and I/O.

quiesce_clauses

Use the QUIESCE RESTRICTED and UNQUIESCE clauses to put the database in and take it out of
the quiesced state. This state enables database administrators to perform administrative
operations that cannot be safely performed in the presence of concurrent transactions, queries,
or PL/SQL operations.

Note

The QUIESCE RESTRICTED clause is valid only if the Database Resource Manager is
installed and only if the Resource Manager has been on continuously since database
startup in any instances that have opened the database.

If multiple QUIESCE RESTRICTED or UNQUIESCE statements issue at the same time from different
sessions or instances, then all but one will receive an error.

QUIESCE RESTRICTED

Specify QUIESCE RESTRICTED to put the database in the quiesced state. For all instances with
the database open, this clause has the following effect:

• Oracle Database instructs the Database Resource Manager in all instances to prevent all
inactive sessions (other than SYS and SYSTEM) from becoming active. No user other than
SYS and SYSTEM can start a new transaction, a new query, a new fetch, or a new PL/SQL
operation.

• Oracle Database waits for all existing transactions in all instances that were initiated by a
user other than SYS or SYSTEM to finish (either commit or abort). Oracle Database also

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 244

waits for all running queries, fetches, and PL/SQL procedures in all instances that were
initiated by users other than SYS or SYSTEM and that are not inside transactions to finish. If
a query is carried out by multiple successive OCI fetches, then Oracle Database does not
wait for all fetches to finish. It waits for the current fetch to finish and then blocks the next
fetch. Oracle Database also waits for all sessions (other than those of SYS or SYSTEM) that
hold any shared resources (such as enqueues) to release those resources. After all these
operations finish, Oracle Database places the database into quiesced state and finishes
executing the QUIESCE RESTRICTED statement.

• If an instance is running in shared server mode, then Oracle Database instructs the
Database Resource Manager to block logins (other than SYS or SYSTEM) on that instance.
If an instance is running in non-shared-server mode, then Oracle Database does not
impose any restrictions on user logins in that instance.

During the quiesced state, you cannot change the Resource Manager plan in any instance.

UNQUIESCE

Specify UNQUIESCE to take the database out of quiesced state. Doing so permits transactions,
queries, fetches, and PL/SQL procedures that were initiated by users other than SYS or SYSTEM
to be undertaken once again. The UNQUIESCE statement does not have to originate in the same
session that issued the QUIESCE RESTRICTED statement.

rolling_migration_clauses

Use these clauses in a clustered Oracle Automatic Storage Management (Oracle ASM)
environment to migrate one node at a time to a different Oracle ASM version without affecting
the overall availability of the Oracle ASM cluster or the database clusters using Oracle ASM for
storage.

START ROLLING MIGRATION

When starting rolling upgrade, for ASM_version, you must specify the following string:

'<version_num>, <release_num>, <update_num>,<port_release_num>,<port_update_num>'

ASM_version must be equal to or greater than 11.1.0.0.0. The surrounding single quotation marks
are required. Oracle ASM first verifies that the current release is compatible for migration to the
specified release, and then goes into limited functionality mode. Oracle ASM then determines
whether any rebalance operations are under way anywhere in the cluster. If there are any such
operations, then the statement fails and must be reissued after the rebalance operations are
complete.

Rolling upgrade mode is a cluster-wide In-Memory persistent state. The cluster continues to be
in this state until there is at least one Oracle ASM instance running in the cluster. Any new
instance joining the cluster switches to migration mode immediately upon startup. If all the
instances in the cluster terminate, then subsequent startup of any Oracle ASM instance will not
be in rolling upgrade mode until you reissue this statement to restart rolling upgrade of the
Oracle ASM instances.

STOP ROLLING MIGRATION

Use this clause to stop rolling upgrade and bring the cluster back into normal operation.
Specify this clause only after all instances in the cluster have migrated to the same software
version. The statement will fail if the cluster is not in rolling upgrade mode.

When you specify this clause, the Oracle ASM instance validates that all the members of the
cluster are at the same software version, takes the instance out of rolling upgrade mode, and
returns to full functionality of the Oracle ASM cluster. If any rebalance operations are pending

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 244

because disks have gone offline, then those operations are restarted if the ASM_POWER_LIMIT
parameter would not be violated by such a restart.

See Also

Oracle Automatic Storage Management Administrator's Guide for more information
about rolling upgrade

rolling_patch_clauses

Use these clauses in a clustered Oracle Automatic Storage Management (Oracle ASM)
environment to update one node at a time to the latest patch level without affecting the overall
availability of the Oracle ASM cluster or the database clusters using Oracle ASM for storage.

START ROLLING PATCH

Use this clause to start the rolling patch operation. Oracle ASM first verifies that all live nodes
in the cluster are at the same version, and then goes into rolling patch mode, which is a
cluster-wide In-Memory persistent state. The cluster continues to be in this state until all live
nodes have been patched to the latest patch level.

Any nodes that are down during this operation are not patched. This does not affect the
success of the rolling patch operation. However, you must patch these nodes before they are
started. Otherwise, they will not be allowed to join the cluster.

STOP ROLLING PATCH

use this clause to stop the rolling patch operation and bring the cluster back into normal
operation. Specify this clause only after all live nodes in the cluster have been patched to the
latest patch level. The statement will fail if the cluster is not in rolling patch mode.

When you specify this clause, the Oracle ASM instance validates that all members of the
cluster are at the same patch level, takes the instance out of rolling patch mode, and returns
full functionality of the Oracle ASM cluster. If any members of the cluster are not at the latest
patch level, then this operation fails and the cluster goes into limited functionality mode.

The following queries display information about rolling patches. In order to run these queries,
you must be connected to the Oracle ASM instance in the Grid home, and the Grid
Infrastructure home must be configured with the Oracle Clusterware option for an Oracle RAC
environment.

• You can determine whether a cluster is in rolling patch mode with the following query:

SELECT SYS_CONTEXT('SYS_CLUSTER_PROPERTIES', 'CLUSTER_STATE') FROM DUAL;

• You can determine the patch level of a cluster with the following query:

SELECT SYS_CONTEXT('SYS_CLUSTER_PROPERTIES', 'CURRENT_PATCHLVL') FROM DUAL;

• You can display a list of patches applied on the Oracle ASM instance, by querying the
V$PATCHES dynamic performance view. Refer to Oracle Database Reference for more
information.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 244

See Also

Oracle Automatic Storage Management Administrator's Guide for more information
about rolling patches

security_clauses

The security_clauses let you control access to the instance. They also allow you to enable or
disable access to the encrypted data in the instance.

RESTRICTED SESSION

The RESTRICTED SESSION clause lets you restrict logon to Oracle Database. You can use this
clause regardless of whether your instance has the database dismounted or mounted, open or
closed.

• Specify ENABLE to allow only users with RESTRICTED SESSION system privilege to log on to
Oracle Database. Existing sessions are not terminated.

This clause applies only to the current instance. Therefore, in an Oracle RAC environment,
authorized users without the RESTRICTED SESSION system privilege can still access the
database by way of other instances.

• Specify DISABLE to reverse the effect of the ENABLE RESTRICTED SESSION clause, allowing
all users with CREATE SESSION system privilege to log on to Oracle Database. This is the
default.

See Also

• "Restricting Sessions: Example"

• The description of the CREATE TABLE "encryption_spec " for information on using
that feature to encrypt table columns

• "Establishing a Wallet and Encryption Key: Examples"

affinity_clauses

Use the affinity clauses to enable data-dependent routing to provide cache affinity on a RAC
database. The affinity logically partitions data across RAC instances so that a distinct subset of
data is assigned to each instance. When data is accessed with a sharding key, the request will
be routed to the instance that holds the corresponding subset of data. The benefits of affinity
are:

• Sharded access for shard-aware applications and transparency for non-sharded
applications

• Better cache utilization and reduced block pings

shutdown_dispatcher_clause

The SHUTDOWN clause is relevant only if your system is using the shared server architecture of
Oracle Database. It shuts down a dispatcher identified by dispatcher_name.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 244

Note

Do not confuse this clause with the SQL*Plus command SHUTDOWN, which is used to
shut down the entire database.

The dispatcher_name must be a string of the form 'Dxxx', where xxx indicates the number of the
dispatcher. For a listing of dispatcher names, query the NAME column of the V$DISPATCHER
dynamic performance view.

• If you specify IMMEDIATE, then the dispatcher stops accepting new connections
immediately and Oracle Database terminates all existing connections through that
dispatcher. After all sessions are cleaned up, the dispatcher process shuts down.

• If you do not specify IMMEDIATE, then the dispatcher stops accepting new connections
immediately but waits for all its users to disconnect and for all its database links to
terminate. Then it shuts down.

REGISTER Clause

Specify REGISTER to instruct the PMON background process to register the instance with the
listeners immediately. If you do not specify this clause, then registration of the instance does
not occur until the next time PMON executes the discovery routine. As a result, clients may not
be able to access the services for as long as 60 seconds after the listener is started.

See Also

Oracle Database Concepts and Oracle Database Net Services Administrator's Guide
for information on the PMON background process and listeners

alter_system_set_clause

This clause allows you to change parameter values. The set_parameter_clause allows you to
change the value of a specified initialization parameter. The USE_STORED_OUTLINES and
GLOBAL_TOPIC_ENABLED clauses allow you to change the value of those system parameters.

set_parameter_clause

You can change the value of many initialization parameters for the current instance, whether
you have started the database with a traditional plain-text parameter file (pfile) or with a server
parameter file (spfile). Oracle Database Reference indicates these parameters in the
"Modifiable" category of each parameter description. If you are using a pfile, then the change
will persist only for the duration of the instance. However, if you have started the database with
an spfile, then you can change the value of the parameter in the spfile itself, so that the new
value will occur in subsequent instances.

Oracle Database Reference documents all initialization parameters in full. The parameters fall
into three categories:

• Basic parameters: Database administrators should be familiar with and consider the
setting for all of the basic parameters.

• Functional categories: Oracle Database Reference also lists the initialization parameters
by their functional category.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 244

• Alphabetical listing: The Table of Contents of Oracle Database Reference contains all
initialization parameters in alphabetical order.

The ability to change initialization parameter values depends on whether you have started up
the database with a traditional plain-text initialization parameter file (pfile) or with a server
parameter file (spfile). To determine whether you can change the value of a particular
parameter, query the ISSYS_MODIFIABLE column of the V$PARAMETER dynamic performance
view.

If you want to enforce case on parameter values that are string literals, you must enclose them
within single quotes.

You can enforce the minimum password length for database user accounts across the entire
CDB or individual PDBs by setting the MANDATORY_USER_PROFILE parameter in the init.ora file.

Example

This statement sets the MANDATORY_USER_PROFILE parameter to the mandatory profile
c##cdb_profile for all the PDBs in the CDB:

ALTER SYSTEM SET MANDATORY_USER_PROFILE=c##cdb_profile;

Only a common user who has been commonly granted the ALTER SYSTEM privilege or has
theSYSDBA administrative privilege can modify the MANDTORY_USER_PROFILE in the init.ora file.

See Also

• CREATE PROFILE

• Managing Security for Oracle Databases

When setting a parameter value, you can specify additional settings as follows:

COMMENT

The COMMENT clause lets you associate a comment string with this change in the value of the
parameter. The comment string cannot contain control characters or a line break. If you also
specify SPFILE, then this comment will appear in the parameter file to indicate the most recent
change made to this parameter.

DEFERRED

The DEFERRED keyword sets or modifies the value of the parameter for future sessions that
connect to the database. Current sessions retain the old value.

You must specify DEFERRED if the value of the ISSYS_MODIFIABLE column of V$PARAMETER for
this parameter is DEFERRED. If the value of that column is IMMEDIATE, then the DEFERRED
keyword in this clause is optional. If the value of that column is FALSE, then you cannot specify
DEFERRED in this ALTER SYSTEM statement.

See Also

Oracle Database Reference for information on the V$PARAMETER dynamic
performance view

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 244

CONTAINER

You can specify the CONTAINER clause when you set a parameter value in a CDB. A CDB uses
an inheritance model for initialization parameters in which PDBs inherit initialization parameter
values from the root. In this case, inheritance means that the value of a particular parameter in
the root applies to a particular PDB.

A PDB can override the root's setting for some parameters, which means that a PDB has an
inheritance property for each initialization parameter that is either true or false. The inheritance
property is true for a parameter when the PDB inherits the root's value for the parameter. The
inheritance property is false for a parameter when the PDB does not inherit the root's value for
the parameter.

The inheritance property for some parameters must be true. For other parameters, you can
change the inheritance property by running the ALTER SYSTEM SET statement to set the
parameter when the current container is the PDB. If ISPDB_MODIFIABLE is TRUE for an
initialization parameter in the V$SYSTEM_PARAMETER view, then the inheritance property can be
false for the parameter.

• If you specify CONTAINER = ALL, then the parameter setting applies to all containers in the
CDB, including the root and all of the PDBs. The current container must be the root.

Specifying ALL sets the inheritance property to true for the parameter in all PDBs.

• If you specify CONTAINER = CURRENT, then the parameter setting applies only to the current
container. When the current container is the root, the parameter setting applies to the root
and to any PDB with an inheritance property of true for the parameter.

If you omit this clause, then CONTAINER = CURRENT is the default.

See Also

Oracle Database Administrator's Guide for more information on modifying parameters
in a CDB

SCOPE

The SCOPE clause lets you specify when the change takes effect. The behavior of this clause
depends on whether you are connected to a non-CDB, a CDB root, or a PDB.

When you issue the ALTER SYSTEM statement while connected to a non-CDB or a CDB
root, the scope depends on whether you started up the database using a traditional plain-text
parameter file (pfile) or server parameter file (spfile).

• MEMORY indicates that the change is made in memory, takes effect immediately, and
persists until the database is shut down. If you started up the database using a parameter
file (pfile), then this is the only scope you can specify.

Note that MEMORY makes changes in memory of all the instances and overwrites values
set individually on the instance.

• SPFILE indicates that the change is made in the server parameter file. The new setting
takes effect when the database is next shut down and started up again. You must specify
SPFILE when changing the value of a static parameter that is described as not modifiable in
Oracle Database Reference.

Note that SPFILE makes no changes in memory, which means that the instance parameter
set individually on the instance takes precedence over global.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 244

• BOTH indicates that the change is made in memory and in the server parameter file. The
new setting takes effect immediately and persists after the database is shut down and
started up again.

Note that BOTH makes changes in memory of all the instances and overwrites values set
individually on the instance, until the instance is restarted. When the instance is restarted,
the spfile is read and then the instance parameter takes precedence.

If a server parameter file was used to start up the database, then BOTH is the default. If a
parameter file was used to start up the database, then MEMORY is the default, as well as the
only scope you can specify.

When you issue the ALTER SYSTEM statement while connected to a PDB, you can
modify only initialization parameters for which the ISPDB_MODIFIABLE column is TRUE in the
V$SYSTEM_PARAMETER view. The initialization parameter value takes effect only for the PDB.
For any initialization parameter that is not set explicitly for a PDB, the PDB inherits the CDB
root's parameter value.

• MEMORY indicates that the change is made in memory and takes effect immediately in the
PDB. The setting reverts to the value set in the CDB root in the any of the following cases:

– An ALTER SYSTEM SET statement sets the value of the parameter in the root with SCOPE
equal to BOTH or MEMORY, and the PDB is closed and reopened. The parameter value
in the PDB is not changed if SCOPE is equal to SPFILE, and the PDB is closed and
reopened.

– The PDB is closed and reopened.

– The CDB is shut down and reopened.

• SPFILE indicates that the change is made for the PDB and stored persistently. The new
setting affects only the PDB and takes effect in either of the following cases:

– The PDB is closed and reopened.

– The CDB is shut down and reopened.

• BOTH indicates that the change is made in memory, made for the PDB, and stored
persistently. The new setting takes effect immediately in the PDB and persists after the
PDB is closed and reopened or the CDB is shut down and reopened. The new setting
affects only the PDB.

When a PDB is unplugged from a CDB, the values of the initialization parameters that were
specified for the PDB with SCOPE=BOTH or SCOPE=SPFILE are added to the PDB's XML metadata
file. These values are restored for the PDB when it is plugged in to a CDB.

Note

Oracle may internally adjust the parameter value passed in ALTER SYSTEM SET before it
is set in memory or the spfile. For example, if you input a non-prime number when the
paramenter value should be a prime number, Oracle will adjust the value to the next
prime number. You can query the parameter value from parameter views
V$PARAMETER, V$SYSTEM_PARAMETER, and V$SPPARAMETER.

SID

The SID clause lets you specify the SID of the instance where the value will take effect.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 244

• Specify SID = '*' if you want Oracle Database to change the value of the parameter for all
instances that do not already have an explicit setting for this parameter.

• Specify SID = 'sid' if you want Oracle Database to change the value of the parameter only
for the instance sid. This setting takes precedence over previous and subsequent ALTER
SYSTEM SET statements that specify SID = '*'.

If you do not specify this clause, then:

• If the instance was started up with a pfile (traditional plain-text initialization parameter file),
then Oracle Database assumes the SID of the current instance.

• If the instance was started up with an spfile (server parameter file), then Oracle Database
assumes SID = '*'.

If you specify an instance other than the current instance, then Oracle Database sends a
message to that instance to change the parameter value in the memory of that instance.

USE_STORED_OUTLINES Clause

Note

Stored outlines are deprecated. They are still supported for backward compatibility.
However, Oracle recommends that you use SQL plan management instead. Refer to
Oracle Database SQL Tuning Guide for more information about SQL plan
management.

USE_STORED_OUTLINES is a system parameter, not an initialization parameter. You cannot set it
in a pfile or spfile, but you can set it with an ALTER SYSTEM statement. This parameter
determines whether the optimizer will use stored public outlines to generate execution plans.

• TRUE causes the optimizer to use outlines stored in the DEFAULT category when compiling
requests.

• FALSE specifies that the optimizer should not use stored outlines. This is the default.

• category_name causes the optimizer to use outlines stored in the category_name category when
compiling requests.

GLOBAL_TOPIC_ENABLED

GLOBAL_TOPIC_ENABLED is a system parameter, not an initialization parameter. You cannot set
it in a pfile or spfile, but you can set it with an ALTER SYSTEM statement. If
GLOBAL_TOPIC_ENABLED = TRUE when a queue table is created, altered, or dropped, then the
corresponding Lightweight Directory Access Protocol (LDAP) entry is also created, altered or
dropped.

The parameter works the same way for the Java Message Service (JMS). If a database has
been configured to use LDAP and the GLOBAL_TOPIC_ENABLED parameter has been set to
TRUE, then all JMS queues and topics are automatically registered with the LDAP server when
they are created. The administrator can also create aliases to the queues and topics registered
in LDAP. Queues and topics that are registered in LDAP can be looked up through JNDI using
the name or alias of the queue or topic.

Shared Server Parameters

When you start your instance, Oracle Database creates shared server processes and
dispatcher processes for the shared server architecture based on the values of the
SHARED_SERVERS and DISPATCHERS initialization parameters. You can also set the

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 244

SHARED_SERVERS and DISPATCHERS parameters with ALTER SYSTEM to perform one of the
following operations while the instance is running:

• Create additional shared server processes by increasing the minimum number of shared
server processes.

• Terminate existing shared server processes after their current calls finish processing.

• Create more dispatcher processes for a specific protocol, up to a maximum across all
protocols specified by the initialization parameter MAX_DISPATCHERS.

• Terminate existing dispatcher processes for a specific protocol after their current user
processes disconnect from the instance.

See Also

• Oracle Real Application Clusters Administration and Deployment Guide for
information on setting parameter values for an individual instance in an Oracle
Real Application Clusters environment

• The following examples of using the ALTER SYSTEM statement: "Changing
Licensing Parameters: Examples", "Enabling Query Rewrite: Example", "Enabling
Resource Limits: Example", "Shared Server Parameters", and "Changing Shared
Server Settings: Examples"

alter_system_reset_clause

This clause lets you reset an initialization parameter.

The semantics of this clause are similar to the set_parameter_clause, except instead of changing
the value of an initialization parameter, this clause removes the setting of an initialization
parameter. Refer to the set_parameter_clause to learn about the parameters you can reset,
and for the full semantics of the SCOPE and SID clauses.

RELOCATE CLIENT

This clause is valid only if you are using Oracle Flex ASM. You must issue this clause from
within an Oracle ASM instance, not from a normal database instance.

Use this clause to relocate the specified client to the least loaded Oracle ASM instance. When
you issue this clause, the connection to the client is terminated and the client fails over to the
least loaded instance. If the client is currently connected to the least loaded instance, then the
connection to the client is terminated and the client fails over to that same instance.

For client_id, specify a string of the following form enclosed in single quotation marks:

instance_name:db_name

where instance_name is the identifier for the client and db_name is the database name for the client.
You can find these values by querying the INSTANCE_NAME and DB_NAME columns of the
V$ASM_CLIENT dynamic performance view.

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 244

See Also

• Oracle Automatic Storage Management Administrator's Guide for more
information on managing Oracle Flex ASM

• Oracle Database Reference for more information on the V$ASM_CLIENT dynamic
performance view

cancel_sql_clause

Use this clause to terminate a SQL operation that is consuming excessive resources, including
parallel servers. You must provide the session id and the session serial number of the session
whose active SQL statement you want to cancel. If the session is idle (no actively running SQL
statement), the next SQL statement will be canceled. To avoid the next SQL statement from
getting canceled, specify the sql_id in the arguments to identify the SQL statement to be
canceled.

• session_id is required and stands for the session identifier.

• serial_number is required and stands for the serial number of the session.

• instance_id is optional. If this argument is omitted, the instance id of the current session is
used.

• sql_id is optional. If this argument is specified, the sql_id will be matched with the actively-
running SQL statement in the session before terminating the SQL. If the session is
executing a SQL statement other than the one specified in the sql_id argument, an error is
raised.

Examples

Archiving Redo Logs Manually: Examples

The following statement manually archives the redo log file group containing the redo log entry
with the SCN 9356083:

ALTER SYSTEM ARCHIVE LOG CHANGE 9356083;

The following statement manually archives the redo log file group containing a member named
'diskl:log6.log' to an archived redo log file in the location 'diska:[arch$]':

ALTER SYSTEM ARCHIVE LOG
 LOGFILE 'diskl:log6.log'
 TO 'diska:[arch$]';

Enabling Query Rewrite: Example

This statement enables query rewrite in all sessions for all materialized views for which query
rewrite has not been explicitly disabled:

ALTER SYSTEM SET QUERY_REWRITE_ENABLED = TRUE;

Restricting Sessions: Example

You might want to restrict sessions if you are performing application maintenance and you
want only application developers with RESTRICTED SESSION system privilege to log on. To
restrict sessions, issue the following statement:

ALTER SYSTEM
 ENABLE RESTRICTED SESSION;

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 244

You can then terminate any existing sessions using the KILL SESSION clause of the ALTER
SYSTEM statement.

After performing maintenance on your application, issue the following statement to allow any
user with CREATE SESSION system privilege to log on:

ALTER SYSTEM
 DISABLE RESTRICTED SESSION;

Establishing a Wallet and Encryption Key: Examples

The following statements load information from the server wallet into memory and set the
Transparent Data Encryption master key:

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password";
ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "password";

These statements assume that you have initialized the security module and created a wallet
with password.

Closing a Wallet: Examples

The following statement removes password-based wallet information from memory:

ALTER SYSTEM SET ENCRYPTION WALLET CLOSE IDENTIFIED BY "password";

The following statement removes password-based wallet information and auto-login
information, if present, from memory:

ALTER SYSTEM SET ENCRYPTION WALLET CLOSE;

Clearing the Shared Pool: Example

You might want to clear the shared pool before beginning performance analysis. To clear the
shared pool, issue the following statement:

ALTER SYSTEM FLUSH SHARED_POOL;

Forcing a Checkpoint: Example

The following statement forces a checkpoint:

ALTER SYSTEM CHECKPOINT;

Enabling Resource Limits: Example

This ALTER SYSTEM statement dynamically enables resource limits:

ALTER SYSTEM SET RESOURCE_LIMIT = TRUE;

Changing Shared Server Settings: Examples

The following statement changes the minimum number of shared server processes to 25:

ALTER SYSTEM SET SHARED_SERVERS = 25;

If there are currently fewer than 25 shared server processes, then Oracle Database creates
more. If there are currently more than 25, then Oracle Database terminates some of them
when they are finished processing their current calls if the load could be managed by the
remaining 25.

The following statement dynamically changes the number of dispatcher processes for the
TCP/IP protocol to 5 and the number of dispatcher processes for the ipc protocol to 10:

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 244

ALTER SYSTEM
 SET DISPATCHERS =
 '(INDEX=0)(PROTOCOL=TCP)(DISPATCHERS=5)',
 '(INDEX=1)(PROTOCOL=ipc)(DISPATCHERS=10)';

If there are currently fewer than 5 dispatcher processes for TCP, then Oracle Database creates
new ones. If there are currently more than 5, then Oracle Database terminates some of them
after the connected users disconnect.

If there are currently fewer than 10 dispatcher processes for ipc, then Oracle Database creates
new ones. If there are currently more than 10, then Oracle Database terminates some of them
after the connected users disconnect.

If there are currently existing dispatchers for another protocol, then the preceding statement
does not affect the number of dispatchers for that protocol.

Changing Licensing Parameters: Examples

The following statement dynamically changes the limit on sessions for your instance to 64 and
the warning threshold for sessions on your instance to 54:

ALTER SYSTEM
 SET LICENSE_MAX_SESSIONS = 64
 LICENSE_SESSIONS_WARNING = 54;

If the number of sessions reaches 54, then Oracle Database writes a warning message to the
ALERT file for each subsequent session. Also, users with RESTRICTED SESSION system privilege
receive warning messages when they begin subsequent sessions.

If the number of sessions reaches 64, then only users with RESTRICTED SESSION system
privilege can begin new sessions until the number of sessions falls below 64 again.

The following statement dynamically disables the limit for sessions on your instance. After you
issue this statement, Oracle Database no longer limits the number of sessions on your
instance.

ALTER SYSTEM SET LICENSE_MAX_SESSIONS = 0;

The following statement dynamically changes the limit on the number of users in the database
to 200. After you issue the preceding statement, Oracle Database prevents the number of
users in the database from exceeding 200.

ALTER SYSTEM SET LICENSE_MAX_USERS = 200;

Forcing a Log Switch: Example

You might want to force a log switch to drop or rename the current redo log file group or one of
its members, because you cannot drop or rename a file while Oracle Database is writing to it.
The forced log switch affects only the redo log thread of your instance. The following statement
forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

Enabling Distributed Recovery: Example

The following statement enables distributed recovery:

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;

You might want to disable distributed recovery for demonstration or testing purposes. You can
disable distributed recovery in both single-process and multiprocess mode with the following
statement:

Chapter 12
ALTER SYSTEM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 244

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

When your demonstration or testing is complete, you can then enable distributed recovery
again by issuing an ALTER SYSTEM statement with the ENABLE DISTRIBUTED RECOVERY clause.

Terminating a Session: Example

You might want to terminate the session of a user that is holding resources needed by other
users. The user receives an error message indicating that the session has been terminated.
That user can no longer make calls to the database without beginning a new session. Consider
this data from the V$SESSION dynamic performance table, when the users SYS and oe both have
open sessions:

SELECT sid, serial#, username
 FROM V$SESSION;

 SID SERIAL# USERNAME
---------- ---------- ------------------------------
 29 85 SYS
 33 1
 35 8
 39 23 OE
 40 1
. . .

The following statement terminates the session of the user scott using the SID and SERIAL#
values from V$SESSION:

ALTER SYSTEM KILL SESSION '39, 23';

Disconnecting a Session: Example

The following statement disconnects user scott's session, using the SID and SERIAL# values from
V$SESSION:

ALTER SYSTEM DISCONNECT SESSION '13, 8' POST_TRANSACTION;

ALTER TABLE
Purpose

Use the ALTER TABLE statement to alter the definition of a nonpartitioned table, a partitioned
table, a table partition, or a table subpartition. For object tables or relational tables with object
columns, use ALTER TABLE to convert the table to the latest definition of its referenced type
after the type has been altered.

Note

Oracle recommends that you use the ALTER MATERIALIZED VIEW LOG statement,
rather than ALTER TABLE, whenever possible for operations on materialized view log
tables.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 244

See Also

• CREATE TABLE for information on creating tables

• Oracle Text Reference for information on ALTER TABLE statements in conjunction
with Oracle Text

Prerequisites

The table must be in your own schema, or you must have ALTER object privilege on the table,
or you must have ALTER ANY TABLE system privilege.

Additional Prerequisites for Partitioning Operations

If you are not the owner of the table, then you need the DROP ANY TABLE privilege in order to
use the d_table_partition or truncate_table_partition clause.

You must also have space quota in the tablespace in which space is to be acquired in order to
use the add_table_partition, modify_table_partition, move_table_partition, and split_table_partition clauses.

When a partitioning operation cascades to reference-partitioned child tables, privileges are not
required on the reference-partitioned child tables.

When using the exchange_partition_subpart clause, if the table data being exchanged contains an
identity column and you are not the owner of both tables involved in the exchange, then you
must have the ALTER ANY SEQUENCE system privilege.

You cannot partition a non-partitioned table that has an object type.

Additional Prerequisites for Constraints and Triggers

To enable a unique or primary key constraint, you must have the privileges necessary to create
an index on the table. You need these privileges because Oracle Database creates an index
on the columns of the unique or primary key in the schema containing the table.

To enable or disable triggers, the triggers must be in your schema or you must have the ALTER
ANY TRIGGER system privilege.

See Also

CREATE INDEX for information on the privileges needed to create indexes

Additional Prerequisites When Using Object Types

To use an object type in a column definition when modifying a table, either that object must
belong to the same schema as the table being altered, or you must have either the EXECUTE
ANY TYPE system privilege or the EXECUTE object privilege for the object type.

Additional Prerequisites for Flashback Data Archive Operations

To use the flashback_archive_clause to enable historical tracking for the table, you must have the
FLASHBACK ARCHIVE object privilege on the flashback data archive that will contain the
historical data. To use the flashback_archive_clause to disable historical tracking for the table, you
must have the FLASHBACK ARCHIVE ADMINSTER system privilege or you must be logged in as
SYSDBA.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 244

Additional Prerequisite for Referring to Editioned Objects

To specify an edition in the evaluation_edition_clause or the unusable_editions_clause, you must have the
USE privilege on the edition.

Syntax

alter_table::=

ALTER TABLE

IF EXISTS schema .

table

memoptimize_read_clause memoptimize_write_clause

alter_table_properties

column_clauses

constraint_clauses

alter_table_partitioning

DEFERRED

IMMEDIATE
INVALIDATION

alter_table_partitionset

alter_external_table

move_table_clause

modify_to_partitioned

modify_opaque_type

immutable_table_clauses

 blockchain_table_clauses

duplicated_table_refresh

enable_disable_clause

ENABLE

DISABLE

TABLE LOCK

ALL TRIGGERS

CONTAINER_MAP

CONTAINERS_DEFAULT

Note

You must specify some clause after table. None of the clauses after table are required,
but you must specify at least one of them.

Groups of ALTER TABLE syntax:

• alter_table_properties::=

• column_clauses::=

• constraint_clauses::=

• alter_table_partitioning::=

• alter_table_partitionset::=

• alter_external_table::=

• move_table_clause::=

• modify_to_partitioned::=

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 244

• modify_opaque_type::=

• immutable_table_clauses

• blockchain_table_clauses

• duplicated_table_refresh::=

• enable_disable_clause::=

After each clause you will find links to its component subclauses.

memoptimize_read_clause::=

MEMOPTIMIZE FOR READ

NO MEMOPTIMIZE FOR READ

memoptimize_write_clause

MEMOPTIMIZE FOR WRITE

NO MEMOPTIMIZE FOR WRITE

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 244

alter_table_properties::=

physical_attributes_clause

logging_clause

table_compression

inmemory_table_clause

ilm_clause

supplemental_table_logging

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

result_cache_clause

upgrade_table_clause

records_per_block_clause

parallel_clause

row_movement_clause

logical_replication_clause

flashback_archive_clause

RENAME TO new_table_name

alter_iot_clauses alter_XMLSchema_clause

shrink_clause

READ
ONLY

WRITE

REKEY encryption_spec

DEFAULT COLLATION collation_name

NO

ROW ARCHIVAL

ADD attribute_clustering_clause

MODIFY CLUSTERING

clustering_when zonemap_clause

DROP CLUSTERING

NOT

FOR STAGING

annotations_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 244

Note

If you specify the MODIFY CLUSTERING clause, then you must specify at least one of
the clauses clustering_when or zonemap_clause.

(physical_attributes_clause::=, logging_clause::=, table_compression::=,
inmemory_table_clause::=, ilm_clause::=, supplemental_table_logging::=,
allocate_extent_clause::=, deallocate_unused_clause::= , upgrade_table_clause::=,
records_per_block_clause::=, parallel_clause::=, row_movement_clause::=,
logical_replication_clause::=, flashback_archive_clause::=, shrink_clause::=,
attribute_clustering_clause::=, clustering_when::=, zonemap_clause::=, alter_iot_clauses::=,
alter_XMLSchema_clause::=, annotations_clause::=)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

table_compression::=

COMPRESS

ROW STORE COMPRESS

BASIC

ADVANCED

COLUMN STORE COMPRESS

FOR

QUERY

ARCHIVE

LOW

HIGH

NO

ROW LEVEL LOCKING

NOCOMPRESS

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 244

inmemory_table_clause::=

INMEMORY

inmemory_attributes

NO INMEMORY inmemory_column_clause

(inmemory_attributes::=, inmemory_column_clause::=)

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

(inmemory_memcompress::=, inmemory_priority::=, inmemory_distribute::=,
inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 244

inmemory_distribute::=

DISTRIBUTE

AUTO

BY

ROWID RANGE

PARTITION

SUBPARTITION

FOR SERVICE

DEFAULT

ALL

service_name

NONE

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

inmemory_spatial::=

SPATIAL column

inmemory_column_clause::=

INMEMORY

(ALL) inmemory_memcompress

NO INMEMORY

(ALL) (column

,

)

(inmemory_memcompress::=)

ilm_clause::=

ILM

ADD POLICY ilm_policy_clause

DELETE

ENABLE

DISABLE

POLICY ilm_policy_name

DELETE_ALL

ENABLE_ALL

DISABLE_ALL

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 244

ilm_policy_clause::=

ilm_compression_policy

ilm_tiering_policy

ilm_inmemory_policy

(ilm_compression_policy::=, ilm_tiering_policy::=, ilm_inmemory_policy::=)

ilm_compression_policy::=

table_compression
SEGMENT

GROUP

AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

ROW STORE COMPRESS ADVANCED

COLUMN STORE COMPRESS FOR QUERY
ROW AFTER ilm_time_period OF NO MODIFICATION

(table_compression::=, ilm_time_period::=)

ilm_tiering_policy::=

TIER TO tablespace

SEGMENT

GROUP ON function_name

TIER TO tablespace READ ONLY

SEGMENT

GROUP
AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

(ilm_time_period::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 244

ilm_inmemory_policy::=

SET INMEMORY

inmemory_attributes

MODIFY INMEMORY inmemory_memcompress

NO INMEMORY

SEGMENT

AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

ilm_time_period::=

integer

DAY

DAYS

MONTH

MONTHS

YEAR

YEARS

supplemental_table_logging::=

ADD SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

DROP SUPPLEMENTAL LOG
supplemental_id_key_clause

GROUP log_group

supplemental_log_grp_clause::=

GROUP log_group (column

NO LOG

,

)

ALWAYS

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 244

supplemental_id_key_clause::=

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

(size_clause::=)

rename_lob_storage_clause::=

RENAME LOB lob_item lob_rename_parameters

rename_lob_parameters::=

PARTITION

SUBPARTITION

old_segment_name TO new_segment_name

result_cache_clause::=

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 244

RESULT_CACHE

(

MODE
DEFAULT

FORCE
, STANDBY

ENABLE

DISABLE

STANDBY
ENABLE

DISABLE
, MODE

DEFAULT

FORCE

)

upgrade_table_clause::=

UPGRADE

NOT

INCLUDING DATA column_properties

(column_properties::=)

records_per_block_clause::=

MINIMIZE

NOMINIMIZE

RECORDS_PER_BLOCK

row_movement_clause::=

ENABLE

DISABLE

ROW MOVEMENT

logical_replication_clause::=

DISABLE LOGICAL REPLICATION

ENABLE LOGICAL REPLICATION

ALL

ALLOW NOVALIDATE

KEYS

NO

PARTIAL JSON

flashback_archive_clause::=

BLOCKCHAIN

FLASHBACK ARCHIVE

flashback_archive

NO FLASHBACK ARCHIVE

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 244

alter_iot_clauses::=

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

(alter_overflow_clause::=, alter_mapping_table_clauses::=)

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

prefix_compression

iot_advanced_compression index_org_overflow_clause

(mapping_table_clauses::=, prefix_compression::=, index_org_overflow_clause::=)

mapping_table_clauses::=

MAPPING TABLE

NOMAPPING

index_compression::=

prefix_compression

advanced_index_compression

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 244

iot_advanced_compression::=

COMPRESS ADVANCED

LOW

NOCOMPRESS

advanced_index_compression::=

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

index_org_overflow_clause::=

INCLUDING column_name

OVERFLOW

segment_attributes_clause

(segment_attributes_clause::=)

partition_extended_name::=

PARTITION partition

PARTITION FOR (partition_key_value

,

)

subpartition_extended_name::=

SUBPARTITION subpartition

SUBPARTITION FOR (subpartition_key_value

,

)

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 244

(physical_attributes_clause::=, TABLESPACE SET: not supported with ALTER TABLE,
logging_clause::=)

alter_overflow_clause::=

add_overflow_clause

OVERFLOW

segment_attributes_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

(segment_attributes_clause::=, allocate_extent_clause::=, shrink_clause::=,
deallocate_unused_clause::=)

add_overflow_clause::=

ADD OVERFLOW

segment_attributes_clause (PARTITION

segment_attributes_clause

,

)

(segment_attributes_clause::=)

alter_mapping_table_clauses::=

MAPPING TABLE

allocate_extent_clause

deallocate_unused_clause

(allocate_extent_clause::=, deallocate_unused_clause::=)

shrink_clause::=

SHRINK SPACE

COMPACT CASCADE

attribute_clustering_clause::=

CLUSTERING

clustering_join

cluster_clause

clustering_when zonemap_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 244

(clustering_join::=, cluster_clause::=, clustering_when::=, zonemap_clause::=)

clustering_join::=

schema .

table JOIN

schema .

table ON (equijoin_condition)

,

cluster_clause::=

BY

LINEAR

INTERLEAVED

ORDER clustering_columns

clustering_columns::=

clustering_column_group

(clustering_column_group

,

)

clustering_column_group::=

(column

,

)

clustering_when::=

YES

NO

ON LOAD

YES

NO

ON DATA MOVEMENT

zonemap_clause::=

WITH MATERIALIZED ZONEMAP

(zonemap_name)

WITHOUT MATERIALIZED ZONEMAP

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 244

annotations_clause::=

For the full syntax and semantics of the annotations_clause see annotations_clause.

column_clauses::=

add_column_clause

modify_column_clauses

drop_column_clause

add_period_clause

drop_period_clause

rename_column_clause

modify_collection_retrieval

modify_LOB_storage_clause

rename_LOB_storage_clause

alter_varray_col_properties

(add_column_clause::=, modify_column_clauses::=, drop_column_clause::=,
add_period_clause::=, drop_period_clause::=, rename_column_clause::=,
modify_collection_retrieval::=, modify_LOB_storage_clause::=, alter_varray_col_properties::=)

add_column_clause::=

ADD

column_definition

virtual_column_definition

(
column_definition

virtual_column_definition

,

domain_definition

,

)

column_properties

(out_of_line_part_storage

,

)

(column_definition::=, virtual_column_definition::=, column_properties::=,
out_of_line_part_storage::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 244

column_definition::=

column

datatype_domain

COLLATE column_collation_name

RESERVABLE

SORT

VISIBLE

INVISIBLE

DEFAULT

ON NULL

FOR INSERT
ONLY

AND UPDATE

identity_clause

expr

ENCRYPT encryption_spec

inline_constraint

inline_ref_constraint annotations_clause

(identity_clause::=, encryption_spec::=, inline_constraint and inline_ref_constraint: constraint::=)

datatype_domain::=

datatype

DOMAIN

domain_owner .

domain_name

DOMAIN domain_owner .

domain_name

(datatype::=)

identity_clause::=

GENERATED

ALWAYS

BY DEFAULT

ON NULL

FOR INSERT
ONLY

AND UPDATE

AS IDENTITY

(identity_options)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 244

identity_options::=

START WITH
integer

LIMIT VALUE

INCREMENT BY integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

SCALE
EXTEND

NOEXTEND

NOSCALE

ORDER

NOORDER

virtual_column_definition::=

column

datatype

DOMAIN

domain_owner .

domain_name

DOMAIN

domain_owner .

domain_name

COLLATE column_collation_name

VISIBLE

INVISIBLE GENERATED ALWAYS

AS (column_expression)

VIRTUAL

MATERIALIZED

evaluation_edition_clause unusable_editions_clause inline_constraint

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 244

(datatype::=,evaluation_edition_clause::=, unusable_editions_clause::=, constraint::=)

domain_definition::=

DOMAIN

domain_owner .

domain_name (column

,

)

USING (column

,

)

evaluation_edition_clause::=

EVALUATE USING

CURRENT EDITION

EDITION edition

NULL EDITION

unusable_editions_clause::=

UNUSABLE BEFORE

CURRENT EDITION

EDITION edition

UNUSABLE BEGINNING WITH

CURRENT EDITION

EDITION edition

NULL EDITION

modify_column_clauses::=

MODIFY

(
modify_col_properties

modify_virtcol_properties

,

)

(modify_col_visibility

,

)

modify_col_substitutable

modify_domain

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 244

(modify_col_properties::=, modify_virtcol_properties::=, modify_col_visibility::=,
modify_col_substitutable::=,modify_domain::=)

modify_col_properties::=

column

datatype DOMAIN

domain_owner .

domain_name

NOT

RESERVABLE

COLLATE column_collation_name

default_clause

identity_clause

DROP IDENTITY

ENCRYPT encryption_spec

DECRYPT

inline_constraint LOB_storage_clause alter_XMLSchema_clause annotations_clause

(datatype::=,default_clause::=, identity_clause::=, encryption_spec::=, constraint::=,
LOB_storage_clause::=, alter_XMLSchema_clause::=, annotations_clause)

default_clause::=

DEFAULT

ON NULL

FOR INSERT
ONLY

AND UPDATE

default_expression

encryption_spec::=

USING ’ encrypt_algorithm ’ IDENTIFIED BY password

’ integrity_algorithm ’

NO

SALT

modify_virtcol_properties::=

column

datatype COLLATE column_collation_name GENERATED ALWAYS

AS (column_expression)

VIRTUAL

evaluation_edition_clause

unusable_editions_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 244

(datatype::=,evaluation_edition_clause::=, unusable_editions_clause::=)

modify_col_visibility::=

column

VISIBLE

INVISIBLE

modify_col_substitutable::=

COLUMN column

NOT

SUBSTITUTABLE AT ALL LEVELS

FORCE

modify_domain::=

(column

,

)

ADD DOMAIN

domain_owner .

domain_name

DROP DOMAIN

PRESERVE CONSTRAINTS

drop_column_clause::=

SET UNUSED

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE ONLINE

DROP

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE CHECKPOINT

integer

DROP
UNUSED COLUMNS

COLUMNS CONTINUE

CHECKPOINT

integer

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 244

add_period_clause::=

ADD (period_definition)

period_definition::=

PERIOD FOR valid_time_column

(start_time_column , end_time_column)

drop_period_clause::=

DROP (PERIOD FOR valid_time_column)

rename_column_clause::=

RENAME COLUMN old_name TO new_name

modify_collection_retrieval::=

MODIFY NESTED TABLE collection_item RETURN AS

LOCATOR

VALUE

constraint_clauses::=

ADD
out_of_line_constraint

out_of_line_ref_constraint

MODIFY

CONSTRAINT constraint_name

PRIMARY KEY

UNIQUE (column

,

)

constraint_state

CASCADE precheck_state

RENAME CONSTRAINT old_name TO new_name

drop_constraint_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 244

(out_of_line_constraint::=, out_of_line_ref_constraint::=, constraint_state::=)

drop_constraint_clause::=

DROP

PRIMARY KEY

UNIQUE (column

,

)

CONSTRAINT constraint_name

CASCADE

KEEP

DROP
INDEX

ONLINE

column_properties::=

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

json_storage_clause

out_of_line_part_storage::=

PARTITION partition

nested_table_col_properties

LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition

nested_table_col_properties

LOB_storage_clause

varray_col_properties

,

)

object_type_col_properties::=

COLUMN column substitutable_column_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 244

substitutable_column_clause::=

ELEMENT

IS OF

TYPE

(ONLY type)

NOT

SUBSTITUTABLE AT ALL LEVELS

nested_table_col_properties::=

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause

LOCAL

GLOBAL

STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)

RETURN

AS LOCATOR

VALUE

object_properties::=

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

For constraint clauses see constraint::=

supplemental_logging_props::=

SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 244

(supplemental_log_grp_clause::=, supplemental_id_key_clause::=)

physical_properties::=

deferred_segment_creation

segment_attributes_clause

table_compression inmemory_table_clause ilm_clause

deferred_segment_creation

ORGANIZATION

HEAP

segment_attributes_clause

heap_org_table_clause

INDEX

segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

EXTERNAL PARTITION ATTRIBUTES external_table_clause

REJECT LIMIT

CLUSTER cluster (column

,

)

(deferred_segment_creation::= , segment_attributes_clause::=, table_compression::=,
inmemory_table_clause::=—part of CREATE TABLE syntax, ilm_clause::=,
heap_org_table_clause::=, index_org_table_clause::=, external_table_clause::=—part of
CREATE TABLE syntax)

deferred_segment_creation::=

SEGMENT CREATION

IMMEDIATE

DEFERRED

heap_org_table_clause::=

table_compression inmemory_table_clause ilm_clause

(table_compression::=, inmemory_table_clause::=—part of CREATE TABLE syntax,
ilm_clause::=)

varray_col_properties::=

VARRAY varray_item

substitutable_column_clause

varray_storage_clause

substitutable_column_clause

(substitutable_column_clause::=, varray_storage_clause::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 244

varray_storage_clause::=

STORE AS

SECUREFILE

BASICFILE

LOB

LOB_segname

(LOB_storage_parameters)

LOB_segname

(LOB_parameters::=)

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

(LOB_storage_parameters::=)

LOB_storage_parameters::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

LOB_parameters

storage_clause

storage_clause

(TABLESPACE SET: not supported with ALTER TABLE, LOB_parameters::=, storage_clause::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 244

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

(LOB_retention_clause::=, LOB_deduplicate_clause::=, LOB_compression_clause::=,
encryption_spec::=, logging_clause::=)

modify_LOB_storage_clause::=

MODIFY LOB (LOB_item) (modify_LOB_parameters)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 244

modify_LOB_parameters::=

storage_clause

PCTVERSION

FREEPOOLS
integer

REBUILD FREEPOOLS

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

(storage_clause::=, LOB_retention_clause::=, LOB_compression_clause::=,
encryption_spec::=, logging_clause::=, allocate_extent_clause::=, shrink_clause::=,
deallocate_unused_clause::=)

LOB_retention_clause::=

RETENTION

MAX

MIN integer

AUTO

NONE

LOB_deduplicate_clause::=

DEDUPLICATE

KEEP_DUPLICATES

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 244

LOB_compression_clause::=

COMPRESS

HIGH

MEDIUM

LOW

NOCOMPRESS

alter_varray_col_properties::=

MODIFY VARRAY varray_item (modify_LOB_parameters)

(modify_LOB_parameters::=)

LOB_partition_storage::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_partitioning_storage

varray_col_properties
)

(LOB_storage_clause::=, varray_col_properties::=, LOB_partitioning_storage::=)

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

(TABLESPACE SET: not supported with ALTER TABLE)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 244

XMLType_column_properties::=

XMLTYPE

COLUMN

column

XMLType_storage XMLSchema_spec

XMLType_storage::=

STORE

AS

OBJECT RELATIONAL

SECUREFILE

BASICFILE
CLOB

NOT

TRANSPORTABLE

BINARY XML

LOB_segname

(LOB_parameters)

(LOB_parameters)

ALL VARRAYS AS
LOBS

TABLES

XMLSchema_spec::=

XMLSCHEMA XMLSchema_URL

ELEMENT

element

XMLSchema_URL # element

STORE ALL VARRAYS AS

LOBS

TABLES

ALLOW

DISALLOW

NONSCHEMA

ALLOW

DISALLOW

ANYSCHEMA

alter_XMLSchema_clause::=

ALLOW

ANYSCHEMA

NONSCHEMA

DISALLOW NONSCHEMA

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 244

JSON_storage_clause::=

JSON (json_column

,

) STORE AS

(json_parameters)

LOB_segname (json_parameters)

JSON_parameters ::=

TABLESPACE tablespace

storage_clause

CHUNK

PCTVERSION

FREEPOOLS

integer

RETENTION

,

alter_external_table::=

add_column_clause

modify_column_clauses

drop_column_clause

parallel_clause

external_table_data_props

REJECT LIMIT
integer

UNLIMITED

PROJECT COLUMN
ALL

REFERENCED

(add_column_clause::=, modify_column_clauses::=, drop_column_clause::=,
parallel_clause::=, external_table_data_props::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 244

external_table_data_props::=

DEFAULT DIRECTORY directory

ACCESS PARAMETERS

(’opaque_format_spec’)

(opaque_format_spec)

USING CLOB subquery

LOCATION (

directory :

’ location_specifier ’

,

)

external_part_subpart_data_props::=

DEFAULT DIRECTORY directory LOCATION (

directory :

’ location_specifier ’

,

)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 244

alter_table_partitioning::=

modify_table_default_attrs

alter_automatic_partitioning

alter_interval_partitioning

set_subpartition_template

modify_table_partition

modify_table_subpartition

move_table_partition

move_table_subpartition

add_external_partition_attrs

add_table_partition

coalesce_table_partition

drop_external_partition_attrs

drop_table_partition

drop_table_subpartition

rename_partition_subpart

truncate_partition_subpart

split_table_partition

split_table_subpartition

merge_table_partitions

merge_table_subpartitions

exchange_partition_subpart

(modify_table_default_attrs::=, alter_automatic_partitioning::=, alter_interval_partitioning::=,
set_subpartition_template::=, modify_table_partition::=, modify_table_subpartition::=,
move_table_partition::=, move_table_subpartition::=, add_table_partition::=,
coalesce_table_partition::=, drop_table_partition::=, drop_table_subpartition::=,
rename_partition_subpart::=, truncate_partition_subpart::=, split_table_partition::=,
split_table_subpartition::=, merge_table_partitions::=, merge_table_subpartitions::=,
exchange_partition_subpart::=

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 244

modify_table_default_attrs::=

MODIFY DEFAULT ATTRIBUTES

FOR partition_extended_name DEFAULT DIRECTORY directory

deferred_segment_creation read_only_clause indexing_clause segment_attributes_clause

table_compression inmemory_clause PCTTHRESHOLD integer prefix_compression

alter_overflow_clause

LOB (LOB_item)

VARRAY varray
(LOB_parameters)

(partition_extended_name::=, deferred_segment_creation::= , read_only_clause::=,
indexing_clause::=, segment_attributes_clause::=, table_compression::=, inmemory_clause::=,
prefix_compression::=, alter_overflow_clause::=, LOB_parameters::=)

read_only_clause::=

READ ONLY

READ WRITE

indexing_clause::=

INDEXING

ON

OFF

inmemory_clause::=

INMEMORY

inmemory_attributes

TEXT

column_name

,

column_name USING policy_name

,

NO INMEMORY

(inmemory_attributes::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 244

alter_automatic_partitioning::=

SET PARTITIONING
AUTOMATIC

MANUAL

SET STORE IN (tablespace

,

)

alter_interval_partitioning::=

SET INTERVAL (

expr

)

SET STORE IN (tablespace

,

)

set_subpartition_template::=

SET SUBPARTITION TEMPLATE
(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subpartition_quantity

(range_subpartition_desc::=, list_subpartition_desc::=, individual_hash_subparts::=)

modify_table_partition::=

modify_range_partition

modify_hash_partition

modify_list_partition

(modify_range_partition::=, modify_hash_partition::=, modify_list_partition::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 244

modify_range_partition::=

MODIFY partition_extended_name

partition_attributes

add_range_subpartition

add_hash_subpartition

add_list_subpartition

coalesce_table_subpartition

alter_mapping_table_clause

REBUILD

UNUSABLE LOCAL INDEXES

read_only_clause

indexing_clause

(partition_extended_name::=, partition_attributes::=, add_range_subpartition::=,
add_hash_subpartition::=, add_list_subpartition::=, coalesce_table_subpartition::=,
alter_mapping_table_clauses::=, read_only_clause::=, indexing_clause::=)

modify_hash_partition::=

MODIFY partition_extended_name

partition_attributes

coalesce_table_subpartition

alter_mapping_table_clause

REBUILD

UNUSABLE LOCAL INDEXES

read_only_clause

indexing_clause

(partition_extended_name::=, coalesce_table_subpartition::=, partition_attributes::=,
alter_mapping_table_clauses::=, read_only_clause::=, indexing_clause::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 244

modify_list_partition::=

MODIFY partition_extended_name

partition_attributes

ADD

DROP
VALUES (list_values)

add_range_subpartition

add_list_subpartition

add_hash_subpartition

coalesce_table_subpartition

REBUILD

UNUSABLE LOCAL INDEXES

read_only_clause

indexing_clause

(partition_extended_name::=, partition_attributes::=, list_values::=, add_range_subpartition::=,
add_list_subpartition::=, add_hash_subpartition::=, coalesce_table_subpartition::=,
read_only_clause::=, indexing_clause::=)

modify_table_subpartition::=

MODIFY subpartition_extended_name

allocate_extent_clause

deallocate_unused_clause

shrink_clause

LOB LOB_item

VARRAY varray
(modify_LOB_parameters)

REBUILD

UNUSABLE LOCAL INDEXES

ADD

DROP
VALUES (list_values)

read_only_clause

indexing_clause

(subpartition_extended_name::=, allocate_extent_clause::=, deallocate_unused_clause::=,
shrink_clause::=, modify_LOB_parameters::=, list_values::=, read_only_clause::=,
indexing_clause::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 244

move_table_partition::=

MOVE partition_extended_name

MAPPING TABLE table_partition_description

filter_condition update_index_clauses parallel_clause allow_disallow_clustering

ONLINE

(partition_extended_name::=, table_partition_description::=, filter_condition::=,
update_index_clauses::=, parallel_clause::=, allow_disallow_clustering::=)

filter_condition::=

INCLUDING ROWS where_clause

allow_disallow_clustering::=

ALLOW

DISALLOW

CLUSTERING

move_table_subpartition::=

MOVE subpartition_extended_name

indexing_clause partitioning_storage_clause

update_index_clauses filter_condition parallel_clause allow_disallow_clustering

ONLINE

(subpartition_extended_name::=, indexing_clause::=, partitioning_storage_clause::=,
update_index_clauses::=, filter_condition::=, parallel_clause::=, allow_disallow_clustering::=)

add_external_partition_attrs

ADD EXTERNAL PARTITION ATTRIBUTES external_table_clause

REJECT LIMIT

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 244

add_table_partition::=

ADD

PARTITION

partition

add_range_partition_clause

,

PARTITION

partition

add_list_partition_clause

,

PARTITION

partition

add_system_partition_clause

,
BEFORE

partition_name

partition_number

PARTITION

partition

add_hash_partition_clause

dependent_tables_clause

(add_range_partition_clause::=, add_list_partition_clause::=, add_system_partition_clause::=,
add_hash_partition_clause::=, dependent_tables_clause:=)

add_range_partition_clause::=

range_values_clause

table_partition_description external_part_subpart_data_props

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity update_index_clauses

(range_values_clause::=, table_partition_description::=, external_part_subpart_data_props::=,
range_subpartition_desc::=, list_subpartition_desc::=, individual_hash_subparts::=,
hash_subparts_by_quantity::=, update_index_clauses::=)

add_hash_partition_clause::=

partitioning_storage_clause

update_index_clauses parallel_clause read_only_clause indexing_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 244

(partitioning_storage_clause::=, update_index_clauses::=, parallel_clause::=,
read_only_clause::=, indexing_clause::=)

add_list_partition_clause::=

list_values_clause

table_partition_description external_part_subpart_data_props

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity update_index_clauses

(list_values_clause::=, table_partition_description::=, external_part_subpart_data_props::=,
range_subpartition_desc::=, list_subpartition_desc::=, individual_hash_subparts::=,
hash_subparts_by_quantity::=, update_index_clauses::=)

add_system_partition_clause::=

table_partition_description update_index_clauses

(table_partition_description::=, update_index_clauses::=)

add_range_subpartition::=

ADD range_subpartition_desc

,
dependent_tables_clause update_index_clauses

(range_subpartition_desc::=, dependent_tables_clause:=, update_index_clauses::=)

add_hash_subpartition::=

ADD individual_hash_subparts

dependent_tables_clause update_index_clauses parallel_clause

(individual_hash_subparts::=, dependent_tables_clause:=, update_index_clauses::=,
parallel_clause::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 244

add_list_subpartition::=

ADD list_subpartition_desc

,
dependent_tables_clause update_index_clauses

(list_subpartition_desc::=, dependent_tables_clause:=, update_index_clauses::=)

dependent_tables_clause:=

DEPENDENT TABLES (table (partition_spec

,

)

,

)

(partition_spec::=)

coalesce_table_partition::=

COALESCE PARTITION

update_index_clauses parallel_clause allow_disallow_clustering

(update_index_clauses::=, parallel_clause::=, allow_disallow_clustering::=)

coalesce_table_subpartition::=

COALESCE SUBPARTITION subpartition

update_index_clauses parallel_clause allow_disallow_clustering

(update_index_clauses::=, parallel_clause::=, allow_disallow_clustering::=)

drop_external_partition_attrs::=

DROP EXTERNAL PARTITION ATTRIBUTES

drop_table_partition::=

DROP partition_extended_names

update_index_clauses

parallel_clause

(partition_extended_names::=, update_index_clauses::=, parallel_clause::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 244

drop_table_subpartition::=

DROP subpartition_extended_names

update_index_clauses

parallel_clause

(subpartition_extended_names::=, update_index_clauses::=, parallel_clause::=)

rename_partition_subpart::=

RENAME
partition_extended_name

subpartition_extended_name
TO new_name

(partition_extended_name::=, subpartition_extended_name::=)

truncate_partition_subpart::=

TRUNCATE
partition_extended_names

subpartition_extended_names

DROP

ALL

REUSE
STORAGE

CASCADE update_index_clauses

parallel_clause

(partition_extended_names::=, subpartition_extended_names::=, update_index_clauses::=,
parallel_clause::=)

partition_extended_names::=

PARTITION

PARTITIONS

partition

FOR (partition_key_value

,

)

,

subpartition_extended_names::=

SUBPARTITION

SUBPARTITIONS

subpartition

FOR (subpartition_key_value

,

)

,

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 244

split_table_partition::=

SPLIT partition_extended_name

AT (literal

,

)

INTO (range_partition_desc , range_partition_desc)

VALUES (list_values)

INTO (list_partition_desc , list_partition_desc)

INTO (

range_partition_desc

,

list_partition_desc

, , partition_spec)

split_nested_table_part filter_condition dependent_tables_clause update_index_clauses

parallel_clause allow_disallow_clustering ONLINE

(partition_extended_name::=, range_partition_desc::=, list_values::=, list_partition_desc::=,
partition_spec::=, split_nested_table_part::=, filter_condition::=, dependent_tables_clause:=,
update_index_clauses::=, parallel_clause::=, allow_disallow_clustering::=)

split_nested_table_part::=

NESTED TABLE column INTO

(nested_table_partition_spec , nested_table_partition_spec

split_nested_table_part

)

split_nested_table_part

nested_table_partition_spec::=

PARTITION partition

segment_attributes_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 244

split_table_subpartition::=

SPLIT subpartition_extended_name

AT (literal

,

)

INTO (range_subpartition_desc , range_subpartition_desc)

VALUES (list_values)

INTO (list_subpartition_desc , list_subpartition_desc)

INTO (

range_subpartition_desc

,

list_subpartition_desc

, , subpartition_spec)

filter_condition dependent_tables_clause update_index_clauses parallel_clause

allow_disallow_clustering ONLINE

(subpartition_extended_name::=, range_subpartition_desc::=, list_values::=,
list_subpartition_desc::=, subpartition_spec::=, filter_condition::=, dependent_tables_clause:=,
update_index_clauses::=, parallel_clause::=, allow_disallow_clustering::=

subpartition_spec::=

SUBPARTITION

subpartition partitioning_storage_clause

merge_table_partitions::=

MERGE PARTITIONS partition_or_key_value
, partition_or_key_value

TO partition_or_key_value

INTO partition_spec

filter_condition dependent_tables_clause update_index_clauses parallel_clause ONLINE

allow_disallow_clustering

(partition_or_key_value::=, partition_spec::=, filter_condition::=, dependent_tables_clause:=,
update_index_clauses::=, parallel_clause::=, allow_disallow_clustering::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 244

partition_or_key_value::=

partition

FOR (partition_key_value

,

)

merge_table_subpartitions::=

MERGE SUBPARTITIONS subpartition_or_key_value
, subpartition_or_key_value

TO subpartition_or_key_value

INTO
range_subpartition_desc

list_subpartition_desc filter_condition dependent_tables_clause

update_index_clauses parallel_clause ONLINE allow_disallow_clustering

(subpartition_or_key_value::=, range_subpartition_desc::=, list_subpartition_desc::=,
filter_condition::=, dependent_tables_clause:=, update_index_clauses::=, parallel_clause::=,
allow_disallow_clustering::=)

subpartition_or_key_value::=

subpartition

FOR (subpartition_key_value

,

)

exchange_partition_subpart::=

EXCHANGE
partition_extended_name

subpartition_extended_name
WITH TABLE

schema .

table

INCLUDING

EXCLUDING
INDEXES

WITH

WITHOUT
VALIDATION

exceptions_clause update_index_clauses

parallel_clause

CASCADE

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 244

(partition_extended_name::=, subpartition_extended_name::=, exceptions_clause::=,
update_index_clauses::=, parallel_clause::=)

exceptions_clause::=

EXCEPTIONS INTO

schema .

table

range_values_clause::=

VALUES LESS THAN (
literal

MAXVALUE

,

)

list_values_clause::=

VALUES (
list_values

DEFAULT
)

(list_values::=)

list_values::=

literal

NULL

,

(
literal

NULL

,

)

,

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 244

table_partition_description::=

INTERNAL

EXTERNAL deferred_segment_creation read_only_clause indexing_clause

segment_attributes_clause

table_compression

prefix_compression inmemory_clause ilm_clause

OVERFLOW

segment_attributes_clause

json_storage_clause

LOB_storage_clause

varray_col_properties

nested_table_col_properties

(deferred_segment_creation::= , read_only_clause::=, indexing_clause::=,
segment_attributes_clause::=, table_compression::=, prefix_compression::=,
inmemory_clause::=, LOB_storage_clause::=, varray_col_properties::=)

range_partition_desc::=

PARTITION

partition

range_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

(range_values_clause::=, table_partition_description::=, range_subpartition_desc::=,
list_subpartition_desc::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 244

list_partition_desc::=

PARTITION

partition

list_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

(list_values_clause::=, table_partition_description::=, range_subpartition_desc::=,
list_subpartition_desc::=)

range_subpartition_desc::=

SUBPARTITION

subpartition

range_values_clause

read_only_clause indexing_clause

partitioning_storage_clause external_part_subpart_data_props

(range_values_clause::=, read_only_clause::=, indexing_clause::=,
partitioning_storage_clause::=, external_part_subpart_data_props::=)

list_subpartition_desc::=

SUBPARTITION

subpartition

list_values_clause

read_only_clause indexing_clause

partitioning_storage_clause external_part_subpart_data_props

(list_values_clause::=, read_only_clause::=, indexing_clause::=,
partitioning_storage_clause::=, external_part_subpart_data_props::=)

individual_hash_subparts::=

SUBPARTITION

subpartition read_only_clause indexing_clause partitioning_storage_clause

(read_only_clause::=, indexing_clause::=, partitioning_storage_clause::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 244

hash_subparts_by_quantity::=

SUBPARTITIONS integer

STORE IN (tablespace

,

)

partitioning_storage_clause::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

OVERFLOW

TABLESPACE tablespace

TABLESPACE SET tablespace_set

table_compression

index_compression

inmemory_clause

ilm_clause

LOB_partitioning_storage

VARRAY varray_item STORE AS

SECUREFILE

BASICFILE

LOB LOB_segname

json_storage_clause

(TABLESPACE SET: not supported with ALTER TABLE, table_compression::=,
index_compression::=, inmemory_clause::=, LOB_partitioning_storage::=)

partition_attributes::=

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

shrink_clause

OVERFLOW

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

table_compression inmemory_clause

LOB LOB_item

VARRAY varray
(modify_LOB_parameters)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 244

(physical_attributes_clause::=, logging_clause::=, allocate_extent_clause::=,
deallocate_unused_clause::=, shrink_clause::=, table_compression::=, inmemory_clause::=,
modify_LOB_parameters::=)

partition_spec::=

PARTITION

partition table_partition_description

(table_partition_description::=)

update_index_clauses::=

update_global_index_clause

update_all_indexes_clause

(update_global_index_clause::=, update_all_indexes_clause::=)

update_global_index_clause::=

UPDATE

INVALIDATE

GLOBAL INDEXES

update_all_indexes_clause::=

UPDATE INDEXES

(index (
update_index_partition

update_index_subpartition
)

,

)

(update_index_partition::=, update_index_subpartition::=)

update_index_partition::=

index_partition_description

index_subpartition_clause

,

(index_partition_description::=, index_subpartition_clause::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 244

update_index_subpartition::=

SUBPARTITION

subpartition TABLESPACE tablespace

,

index_partition_description::=

PARTITION

partition

segment_attributes_clause

index_compression

PARAMETERS (’ ODCI_parameters ’)

USABLE

UNUSABLE

(segment_attributes_clause::=, index_compression::=)

index_subpartition_clause::=

STORE IN (tablespace

,

)

(SUBPARTITION

subpartition TABLESPACE tablespace index_compression

USABLE

UNUSABLE

,

)

(index_compression::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

alter_table_partitionset::=

add_partitionset

modify_partitionset

move_partitionset

split_partitionset

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 244

split_partitionset::=

SPLIT PARTITIONSET partition_set INTO
range_partitionset_clause

list_partitionset_clause
, PARTITIONSET partition_set

TABLESPACE SET tablespace_set LOB lob_column_name

,

STORE AS TABLESPACE SET tablespace_set

,

SUBPARTITIONS STORE IN tablespace_set

,

add_partitionset::=

ADD
range_partitionset_clause

list_partitionset_clause

modify_partitionset::=

MODIFY PARTITIONSET partition_set ADD VALUES value

,

move_partitionset::=

MOVE PARTITIONSET partition_set TABLESPACE SET tablespace_set

SUBPARTITIONS STORE IN tablespace_set

,

LOB lob_column_name

,

STORE AS TABLESPACE SET tablespace_set

,

move_table_clause::=

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 244

MOVE

filter_condition ONLINE segment_attributes_clause table_compression

index_org_table_clause

lob_storage_clause

json_storage_clause

varray_col_properties parallel_clause

allow_disallow_clustering UPDATE INDEXES

(index
segment_attributes_clause

update_index_partition

,

)

(filter_condition::=, segment_attributes_clause::=, table_compression::=,
index_org_table_clause::=, LOB_storage_clause::=, varray_col_properties::=,
parallel_clause::=, allow_disallow_clustering::=, update_index_partition::=)

modify_to_partitioned::=

MODIFY

table_partitioning_clauses

NONPARTITIONED filter_condition ONLINE

UPDATE INDEXES

(index

local_partitioned_index

global_partitioned_index

GLOBAL

,

)

modify_opaque_type::=

MODIFY OPAQUE TYPE anydata_column STORE (type_name

,

) UNPACKED

immutable_table_clauses::=

immutable_table_no_drop_clause immutable_table_no_delete_clause

immutable_row_version_clause immutable_data_format_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 244

blockchain_table_clauses::=

blockchain_drop_table_clause blockchain_row_retention_clause blockchain_hash_clause

blockchain_row_version_user_chain_clause blockchain_system_chains_clause

blockchain_data_format_clause

duplicated_table_refresh::=

REFRESH INTERVAL refresh_rate

SECOND

MINUTE

HOUR

enable_disable_clause::=

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint_name

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

(using_index_clause::=, exceptions_clause::=,)

using_index_clause::=

USING INDEX

schema .

index

(create_index_statement)

index_properties

(create_index::=, index_properties::=)

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 244

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

(global_partitioned_index::=, local_partitioned_index::=—part of CREATE INDEX,
index_attributes::=, domain_index_clause: not supported in using_index_clause)

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

index_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

partial_index_clause

parallel_clause

annotations_clause

(physical_attributes_clause::=, logging_clause::=, index_compression::=, partial_index_clause and
parallel_clause: not supported in using_index_clause)

Semantics

Many clauses of the ALTER TABLE statement have the same functionality they have in a CREATE
TABLE statement. For more information on such clauses, see CREATE TABLE.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 244

Note

Operations performed by the ALTER TABLE statement can cause Oracle Database to
invalidate procedures and stored functions that access the table. For information on
how and when the database invalidates such objects, see Oracle Database
Development Guide.

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the table. If you omit schema, then Oracle Database assumes the
table is in your own schema.

table

Specify the name of the table to be altered.

Note

If you alter a table that is a master table for one or more materialized views, then
Oracle Database marks the materialized views INVALID. Invalid materialized views
cannot be used by query rewrite and cannot be refreshed. For information on
revalidating a materialized view, see ALTER MATERIALIZED VIEW .

See Also

Oracle Database Data Warehousing Guide for more information on materialized views
in general

Restrictions on Altering Temporary Tables

You can modify, drop columns from, or rename a temporary table. However, for a temporary
table you cannot:

• Add columns of nested table type. You can add columns of other types.

• Specify referential integrity (foreign key) constraints for an added or modified column.

• Specify the following clauses of the LOB_storage_clause for an added or modified LOB column:
TABLESPACE, storage_clause, logging_clause, allocate_extent_clause, or deallocate_unused_clause.

• Specify the physical_attributes_clause, nested_table_col_properties, parallel_clause, allocate_extent_clause,
deallocate_unused_clause, or any of the index-organized table clauses.

• Exchange partitions between a partition and a temporary table.

• Specify the logging_clause.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 244

• Specify MOVE.

• Add an INVISIBLE column or modify an existing column to be INVISIBLE.

Restrictions on Altering External Tables

You can add, drop, or modify the columns of an external table. However, for an external table
you cannot:

• Add a LONG, LOB, or object type column or change the data type of an external table
column to any of these data types.

• Modify the storage parameters of an external table.

• Specify the logging_clause.

• Specify MOVE.

• Add an INVISIBLE column or modify an existing column to be INVISIBLE.

memoptimize_read_clause

Use this clause to improve the performance high frequency data query operations. The
MEMOPTIMIZE_POOL_SIZE initialization parameter controls the size of the memoptimize pool.
Note that the feature uses additional memory from the SGA.

• You must specify this clause as a top-level attribute of the table, it cannot be specified at
the partition or subpartition level.

• You must explicitly enable the table for MEMOPTIMIZE FOR READ before you can read data
from the table.

• You must explicitly disable the table for NO MEMOPTIMIZE FOR READ when you no longer
need it.

memoptimize_write_clause

Use this clause to enable fast ingest. Fast ingest optimizes the processing of high frequency
single row data inserts from Internet of Things (IoT) applications by using a large buffering pool
to store the inserts before writing them to disk.

Restrictions

Blockchain and immutable tables do not support the memoptimize_write_clause.

alter_table_properties

Use the alter_table_clauses to modify a database table.

physical_attributes_clause

The physical_attributes_clause lets you change the value of the PCTFREE, PCTUSED, and INITRANS
parameters and storage characteristics. Refer to physical_attributes_clause and
storage_clause for a full description of these parameters and characteristics.

Restrictions on Altering Table Physical Attributes

Altering physical attributes is subject to the following restrictions:

• You cannot specify the PCTUSED parameter for the index segment of an index-organized
table.

• If you attempt to alter the storage attributes of tables in locally managed tablespaces, then
Oracle Database raises an error. However, if some segments of a partitioned table reside

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 244

in a locally managed tablespace and other segments reside in a dictionary-managed
tablespace, then the database alters the storage attributes of the segments in the
dictionary-managed tablespace but does not alter the attributes of the segments in the
locally managed tablespace, and does not raise an error.

• For segments with automatic segment-space management, the database ignores attempts
to change the PCTUSED setting. If you alter the PCTFREE setting, then you must
subsequently run the DBMS_REPAIR.SEGMENT_FIX_STATUS procedure to implement the new
setting on blocks already allocated to the segment.

Cautions on Altering Tables Physical Attributes

The values you specify in this clause affect the table as follows:

• For a nonpartitioned table, the values you specify override any values specified for the
table at create time.

• For a range-, list-, or hash-partitioned table, the values you specify are the default values
for the table and the actual values for every existing partition, overriding any values already
set for the partitions. To change default table attributes without overriding existing partition
values, use the modify_table_default_attrs clause.

• For a composite-partitioned table, the values you specify are the default values for the
table and all partitions of the table and the actual values for all subpartitions of the table,
overriding any values already set for the subpartitions. To change default partition
attributes without overriding existing subpartition values, use the modify_table_default_attrs
clause with the FOR PARTITION clause.

logging_clause

Use the logging_clause to change the logging attribute of the table. The logging_clause specifies
whether subsequent ALTER TABLE ... MOVE and ALTER TABLE ... SPLIT operations will be logged
or not logged.

When used with the modify_table_default_attrs clause, this clause affects the logging attribute of a
partitioned table.

See Also

• logging_clause for a full description of this clause

• Oracle Database VLDB and Partitioning Guide for more information about the
logging_clause and parallel DML

table_compression

The table_compression clause is valid only for heap-organized tables. Use this clause to instruct
Oracle Database whether to compress data segments to reduce disk and memory use. Refer
to the CREATE TABLE table_compression for the full semantics of this clause and for information
on creating objects with table compression.

Note

The first time a table is altered in such a way that compressed data will be added, all
bitmap indexes and bitmap index partitions on that table must be marked UNUSABLE.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 244

inmemory_table_clause

Use this clause to enable or disable a table or table column for the In-Memory Column Store
(IM column store), or to change the In-Memory attributes for a table or table column.

• Specify INMEMORY to enable a table for the IM column store, or to change the
inmemory_attributes for a table that is already enabled for the IM column store.

• Specify NO INMEMORY to disable a table for the IM column store.

• Specify the inmemory_column_clause to enable or disable a table column for the IM column
store, or to change the inmemory_memcompress setting for a table column. If you specify this
clause when the table or partition is disabled for the IM column store, then the column
settings will take effect when the table or partition is subsequently enabled for the IM
column store. Regardless of whether the table or partition is enabled or disabled for the IM
column store, when you specify NO INMEMORY for a column, any previously specified
inmemory_memcompress setting for the column is lost. Refer to the inmemory_column_clause of
CREATE TABLE for the full semantics of this clause.

This inmemory_table_clause has the same semantics as the inmemory_table_clause of CREATE
TABLE, with the following additions:

• When you specify the inmemory_memcompress clause to change the data compression method
for a table that is already enabled for the IM column store, any columns that were
previously assigned a specific data compression method will retain that data compression
method. Refer to the inmemory_memcompress clause of CREATE TABLE for more
information on this clause.

• When you specify the inmemory_distribute clause, if you omit one subclause, then its setting
remains unchanged. That is, if you specify only the AUTO or BY clause, then the FOR
SERVICE setting for the table remains unchanged, and if you specify only the FOR SERVICE
clause, then the AUTO or BY setting for the table remains unchanged. If you omit both
subclauses and specify only the DISTRIBUTE keyword, then the table is assigned the
DISTRIBUTE AUTO setting and its FOR SERVICE setting remains unchanged. Refer to the
inmemory_distribute clause of CREATE TABLE for more information on this clause.

• When you specify NO INMEMORY to disable a partitioned or nonpartitioned table for the IM
column store, any column-level In-Memory settings are lost. If you subsequently enable the
table for the IM column store, then all columns will use the In-Memory settings for the
table, unless you specify otherwise when enabling the table.

• When you specify NO INMEMORY to disable a partition for the IM column store, the column-
level In-Memory settings are retained, even if all partitions in the table are disabled. If you
subsequently enable the table or a partition for the IM column store, then the column-level
In-Memory settings will go into effect, unless you specify otherwise when enabling the
table or partition.

• If a table is currently populated in the IM column store and you change any inmemory_attribute
of the table other than PRIORITY, then the database evicts the table from the IM column
store. The repopulation behavior depends on the PRIORITY setting.

inmemory_clause

Use this clause to enable or disable a table partition for the IM column store, or to change the
In-Memory parameters for a table partition. This clause has the same semantics in CREATE
TABLE and ALTER TABLE. Refer to the inmemory_clause in the documentation on CREATE TABLE
for the full semantics of this clause.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 244

You can specify IMEMORY on non-partitioned tables using the ORACLE_HIVE, ORACLE_HDFS, and
ORACLE_BIGDATA driver types.

For more details on the In-Memory column architecture see Oracle Database In-Memory Guide

Restriction

If a segment on disk is 64 KB or less, then it is not populated in the IM column store.
Therefore, some small database objects that were enabled for the IM column store might not
be populated.

ilm_clause

Use this clause to add, delete, enable, or disable Automatic Data Optimization policies for the
table.

ADD POLICY

Specify this clause to add a policy for the table.

Use ilm_policy_clause to specify the policy. Refer to the ilm_policy_clause for the full semantics of
this clause

Oracle Database assigns a name to the policy of the form Pn where n is an integer value

{ DELETE | ENABLE | DISABLE } POLICY

Specify these clauses to delete a policy for the table, enable a policy for the table, or disable a
policy for the table, respectively.

For ilm_policy_name, specify the name of the policy. You can view policy names by querying the
POLICY_NAME column of the DBA_ILMPOLICIES view.

{ DELETE_ALL, ENABLE_ALL, DISABLE_ALL }

Specify these clauses to delete all policies for the table, enable all policies for the table, or
disable all policies for the table, respectively.

See Also

Oracle Database VLDB and Partitioning Guide for more information on managing
policies for Automatic Data Optimization

ilm_policy_clause

This clause lets you specify an Automatic Data Optimization policy. You can use the
ilm_compression_policy clause to specify a compression policy, the ilm_tiering_policy clause to specify
a storage tiering policy, or the ilm_inmemory_policy clause to specify an In-Memory Column Store
policy.

ilm_compression_policy

Use this clause to specify a compression policy. This type of policy instructs the database to
compress data when a specified condition is met. Use the SEGMENT, GROUP, or ROW clause to
specify a segment-level, group-level, or row-level compression policy.

table_compression

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 244

Use the table_compression clause to specify the compression type. This clause applies to
segment-level and group-level compression policies.

You must specify a compression type that is higher than the current compression type. The
order of compression types from lowest to highest is:

NOCOMPRESS
ROW STORE COMPRESS BASIC

ROW STORE COMPRESS ADVANCED

COLUMN STORE COMPRESS FOR QUERY LOW

COLUMN STORE COMPRESS FOR QUERY HIGH

COLUMN STORE COMPRESS FOR ARCHIVE LOW

COLUMN STORE COMPRESS FOR ARCHIVE HIGH

Refer to table_compression for the full semantics of this clause.

SEGMENT

Specify SEGMENT to create a segment-level compression policy. This type of policy instructs the
database to compress table segments when the condition specified in the AFTER clause is met
or when the PL/SQL function specified in the ON clause returns TRUE.

Note that you cannot modify a segment using ALTER TABLE.

GROUP

Specify GROUP to create a group-level compression policy. This type of policy instructs the
database to compress the table and its dependent objects, such as indexes and SecureFiles
LOBs, when the condition specified in the AFTER clause is met or when the PL/SQL function
specified in the ON clause returns TRUE.

ROW

Specify ROW to create a row-level compression policy. This type of policy instructs the
database to compress database blocks in which all the rows have not been modified for a
specified period of time. When creating a row-level policy, you must specify ROW STORE
COMPRESS ADVANCED or COLUMN STORE COMPRESS FOR QUERY compression, and you must
specify AFTER ilm_time_period OF NO MODIFICATION. Refer to table_compression for the full
semantics of the ROW STORE COMPRESS ADVANCED and COLUMN STORE COMPRESS FOR QUERY
clauses.

AFTER

Use this clause to describe the condition that must be met in order for the policy to take effect.
The condition consists of a length of time, specified with the ilm_time_period clause, and one of
the following condition types:

• OF NO ACCESS: The policy will take effect after table has not been accessed for the
specified length of time.

• OF NO MODIFICATION: The policy will take effect after table has not been modified for the
specified length of time.

• OF CREATION: The policy will take effect when the specified length of time has passed since
table was created.

ilm_time_period

Specify a length of time in days, months, or years after which the condition must be met. For
integer, specify a positive integer. The DAY and DAYS keywords can be used interchangeably

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 244

and are provided for semantic clarity. This is also the case for the MONTH and MONTHS
keywords, and the YEAR and YEARS keywords.

ON

Use this clause to specify a PL/SQL function that returns a boolean value. For function_name,
specify the name of the function. The policy will take effect when the function returns TRUE.

Note

The ON function_name clause is not supported for tablespaces.

ilm_tiering_policy

Use this clause to specify a storage tiering policy. This type of policy instructs the database to
migrate data to a specified tablespace, either when a specified condition is met or when data
usage reaches a specified limit. Use the SEGMENT or GROUP clause to specify a segment-level
or group-level policy. You can migrate data to a read/write tablespace or a read-only
tablespace.

TIER TO tablespace

Use this clause to migrate data to a read/write tablespace.

• If you specify the ON function clause, then data will be migrated when function returns TRUE.
Refer to the ON clause for the full semantics of this clause.

• If you omit the ON function clause, then data will be migrated when data usage of the
tablespace quota reaches the percentage defined by TBS_PERCENT_USED. The database
will make a best effort to migrate enough data so that the amount of free space within the
tablespace quota reaches the percentage defined by TBS_PERCENT_FREE. Refer to Oracle
Database PL/SQL Packages and Types Reference for more information on
TBS_PERCENT_USED and TBS_PERCENT_FREE, which are constants in the DBMS_ILM_ADMIN
package.

TIER TO tablespace READ ONLY

Use this clause to migrate data to a read-only tablespace. When migrating data to the
tablespace, the database temporarily places the tablespace in read/write mode, migrates the
data, and then places the tablespace back in read-only mode.

• If you specify the AFTER clause, then data will be migrated when the specified condition is
met. Refer to the AFTER clause for the full semantics of this clause

• If you specify the ON function clause, then data will be migrated when function returns TRUE.
Refer to the ON clause for the full semantics of this clause.

SEGMENT | GROUP

Specify SEGMENT to create a segment-level storage tiering policy. This type of policy instructs
the database to migrate table segments to tablespace. Specify GROUP to create a group-level
storage tiering policy. This type of policy instructs the database to migrate the table and its
dependent objects, such as indexes and SecureFiles LOBs, to tablespace. The default is
SEGMENT.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 244

Note

The ON function_name clause is not supported for tablespaces.

ilm_inmemory_policy

Use this clause to specify an In-Memory Column Store (IM column store) policy. This type of
policy instructs the database to enable or disable the table for the IM column store, or to
change the compression method for the table in the IM column store, when a specified
condition is met.

SET INMEMORY

Use this clause to enable the table for the IM column store when the specified condition is met.
You can optionally use the inmemory_attributes clause to specify how table data will be stored in
the IM column store. Refer to inmemory_attributes for the full semantics of this clause.

MODIFY INMEMORY

Use this clause to change the compression method for table data stored in the IM column store
when the specified condition is met. The table must be enabled for the IM column store.

You must specify a compression method that his higher than the current compression method.
The order of compression methods from lowest to highest is:

NO INMEMORY

MEMCOMPRESS FOR DML

MEMCOMPRESS FOR QUERY LOW

MEMCOMPRESS FOR QUERY HIGH

MEMCOMPRESS FOR CAPACITY LOW

MEMCOMPRESS FOR CAPACITY HIGH

Refer to inmemory_memcompress for the full semantics of this clause.

NO INMEMORY

Use this clause to disable the table for the IM column store when the specified condition is met.

SEGMENT

The SEGMENT keyword is optional and is provided for semantic clarity. IM column store policies
are always segment-level policies.

AFTER | ON

The AFTER and ON clauses enable you to specify the condition that must be met in order for the
IM column store policy to take effect:

• If you specify the AFTER clause, then the policy will take effect when the specified condition
is met. Refer to the AFTER clause for the full semantics of this clause

• If you specify the ON function clause, then the policy will take effect when function returns
TRUE. Refer to the ON clause for the full semantics of this clause.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 244

Note

The ON function_name clause is not supported for tablespaces.

See Also

Oracle Database In-Memory Guide for more information on using Automatic Data
Optimization policies with the IM column store

supplemental_table_logging

Use the supplemental_table_logging clause to add or drop a redo log group or one or more
supplementally logged columns in a redo log group.

• In the ADD clause, use supplemental_log_grp_clause to create named supplemental log group.
Use the supplemental_id_key_clause to create a system-generated log group.

• On the DROP clause, use GROUP log_group syntax to drop a named supplemental log group
and use the supplemental_id_key_clause to drop a system-generated log group.

The supplemental_log_grp_clause and the supplemental_id_key_clause have the same semantics in
CREATE TABLE and ALTER TABLE statements. For full information on these clauses, refer to
supplemental_log_grp_clause and supplemental_id_key_clause in the documentation on
CREATE TABLE.

See Also

Oracle Data Guard Concepts and Administration for information on supplemental redo
log groups

allocate_extent_clause

Use the allocate_extent_clause to explicitly allocate a new extent for the table, the partition or
subpartition, the overflow data segment, the LOB data segment, or the LOB index.

Restriction on Allocating Table Extents

You cannot allocate an extent for a temporary table or for a range- or composite-partitioned
table.

See Also

allocate_extent_clause for a full description of this clause and "Allocating Extents:
Example"

deallocate_unused_clause

deallocate_unused_clause Use the deallocate_unused_clause to explicitly deallocate unused space
at the end of the table, partition or subpartition, overflow data segment, LOB data segment, or
LOB index and make the space available for other segments in the tablespace.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 244

See Also

deallocate_unused_clause for a full description of this clause and "Deallocating
Unused Space: Example"

rename_lob_storage_clause

Specify this clause to rename a LOB data segment internally.

Specify the following arguments:

• table_name

• column_name can be of type BLOB or BLOB

• old_segment_name can query all_lobs, all_lob_partition or all_lob_subpartition

• PARTITION or SUBPARTITION for partitioned tables, NULL for non-partitioned tables

• new_segment_name. The rename ensures that the new segment name is unique within the
database. A name conflict results in an error.

CACHE | NOCACHE

The CACHE and NOCACHE clauses have the same semantics in CREATE TABLE and ALTER TABLE
statements. For complete information on these clauses, refer to "CACHE | NOCACHE |
CACHE READS" in the documentation on CREATE TABLE. If you omit both of these clauses in
an ALTER TABLE statement, then the existing value is unchanged.

result_cache_clause

The result_cache_clause clause has the same semantics in CREATE TABLE and ALTER TABLE
statements. For complete information on this clause, refer to "result_cache_clause" in the
documentation on CREATE TABLE. If you omit this clause in an ALTER TABLE statement, then the
existing setting is unchanged.

Examples

ALTER TABLE employee RESULT_CACHE (MODE DEFAULT)
 ALTER TABLE employee RESULT_CACHE (STANDBY ENABLE)
 ALTER TABLE employee RESULT_CACHE (MODE DEFAULT, STANDBY ENABLE)
 ALTER TABLE employee RESULT_CACHE (STANDBY ENABLE, MODE FORCE)

upgrade_table_clause

The upgrade_table_clause is relevant for object tables and for relational tables with object columns.
It lets you instruct Oracle Database to convert the metadata of the target table to conform with
the latest version of each referenced type. If table is already valid, then the table metadata
remains unchanged.

Restriction on Upgrading Object Tables and Columns

Within this clause, you cannot specify object_type_col_properties as a clause of column_properties.

INCLUDING DATA

Specify INCLUDING DATA if you want Oracle Database to convert the data in the table to the
latest type version format. You can define the storage for any new column while upgrading the
table by using the column_properties and the LOB_partition_storage . This is the default.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 244

You can convert data in the table at the time you upgrade the type by specifying CASCADE
INCLUDING TABLE DATA in the dependent_handling_clause of the ALTER TYPE statement. See Oracle
Database PL/SQL Language Reference for information on this clause. For information on
whether a table contains data based on an older type version, refer to the DATA_UPGRADED
column of the USER_TAB_COLUMNS data dictionary view.

NOT INCLUDING DATA

Specify NOT INCLUDING DATA if you want Oracle Database to leave column data unchanged.

Restriction on NOT INCLUDING DATA

You cannot specify NOT INCLUDING DATA if the table contains columns in Oracle8 release 8.0.x
image format. To determine whether the table contains such columns, refer to the
V80_FMT_IMAGE column of the USER_TAB_COLUMNS data dictionary view.

See Also

• Oracle Database Reference for information on the data dictionary views

• ALTER TYPE for information on converting dependent table data when modifying
a type upon which the table depends

records_per_block_clause

The records_per_block_clause lets you specify whether Oracle Database restricts the number of
records that can be stored in a block. This clause ensures that any bitmap indexes
subsequently created on the table will be as compressed as possible.

Restrictions on Records in a Block

The record_per_block_clause is subject to the following restrictions:

• You cannot specify either MINIMIZE or NOMINIMIZE if a bitmap index has already been
defined on table. You must first drop the bitmap index.

• You cannot specify this clause for an index-organized table or a nested table.

MINIMIZE

Specify MINIMIZE to instruct Oracle Database to calculate the largest number of records in any
block in the table and to limit future inserts so that no block can contain more than that number
of records.

Oracle recommends that a representative set of data already exist in the table before you
specify MINIMIZE. If you are using table compression (see table_compression), then a
representative set of compressed data should already exist in the table.

Restriction on MINIMIZE

You cannot specify MINIMIZE for an empty table.

NOMINIMIZE

Specify NOMINIMIZE to disable the MINIMIZE feature. This is the default.

row_movement_clause

You cannot disable row movement in a reference-partitioned table unless row movement is
also disabled in the parent table. Otherwise, this clause has the same semantics in CREATE

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 94 of 244

TABLE and ALTER TABLE statements. For complete information on these clauses, refer to
row_movement_clause in the documentation on CREATE TABLE.

logical_replication_clause

You can perform partial database replication for users such as Oracle GoldenGate, and reduce
the supplemental logging overhead of uninteresting tables in interesting schema where
supplemental logging is enabled. For full semantics see CREATE TABLE
logical_replication_clause::=.

flashback_archive_clause

You must have the FLASHBACK ARCHIVE object privilege on the specified flashback archive to
specify this clause. Use this clause to enable or disable historical tracking for the table.

• Specify FLASHBACK ARCHIVE to enable tracking for the table. You can specify
flashback_archive to designate a particular flashback archive for this table. The flashback
archive you specify must already exist.

If you omit the archive name, then the database uses the default flashback archive
designated for the system. If no default flashback archive has been designated for the
system, then you must specify flashback_archive.

You cannot specify FLASHBACK ARCHIVE to change the flashback archive for this table.
Instead you must first issue an ALTER TABLE statement with the NO FLASHBACK ARCHIVE
clause and then issue an ALTER TABLE statement with the FLASHBACK ARCHIVE clause.

• Specify NO FLASHBACK ARCHIVE to disable tracking for the table.

See Also

The CREATE TABLE flashback_archive_clause for information on creating a table with
tracking enabled and CREATE FLASHBACK ARCHIVE for information on creating
default flashback archives

RENAME TO

Use the RENAME clause to rename table to new_table_name.

Using this clause invalidates any dependent materialized views. For more information on
materialized views, see CREATE MATERIALIZED VIEW and Oracle Database Data
Warehousing Guide.

If a domain index is defined on the table, then the database invokes the ODCIIndexAlter()
method with the RENAME option. This operation establishes correspondence between the
indextype metadata and the base table.

Restriction on Renaming Tables

You cannot rename a sharded table or a duplicated table.

shrink_clause

The shrink clause lets you manually shrink space in a table, index-organized table or its
overflow segment, index, partition, subpartition, LOB segment, materialized view, or
materialized view log. This clause is valid only for segments in tablespaces with automatic
segment management. By default, Oracle Database compacts the segment, adjusts the high
water mark, and releases the recuperated space immediately.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 95 of 244

Compacting the segment requires row movement. Therefore, you must enable row movement
for the object you want to shrink before specifying this clause. Further, if your application has
any rowid-based triggers, you should disable them before issuing this clause.

With release 21c, you can use the shrink_clause on SecureFile LOB segments. There are two
ways to invoke the shrink_clause:

1. This command targets a specific LOB column and all its partitions.

ALTER TABLE <table_name> MODIFY LOB <lob_column> SHRINK SPACE

2. This command cascades the shrink operation for all the LOB columns and its partitions for
the given table .

ALTER TABLE <table_name> SHRINK SPACE CASCADE

Restrictions:

The shrink_clause is not supported on IOT partition tables.

Note

Do not attempt to enable row movement for an index-organized table before specifying
the shrink_clause. The ROWID of an index-organized table is its primary key, which never
changes. Therefore, row movement is neither relevant nor valid for such tables.

COMPACT

If you specify COMPACT, then Oracle Database only defragments the segment space and
compacts the table rows for subsequent release. The database does not readjust the high
water mark and does not release the space immediately. You must issue another ALTER
TABLE ... SHRINK SPACE statement later to complete the operation. This clause is useful if you
want to accomplish the shrink operation in two shorter steps rather than one longer step.

For an index or index-organized table, specifying ALTER [INDEX | TABLE] ... SHRINK SPACE
COMPACT is equivalent to specifying ALTER [INDEX | TABLE ... COALESCE. The shrink_clause can be
cascaded (refer to the CASCADE clause, which follows) and compacts the segment more
densely than does a coalesce operation, which can improve performance. However, if you do
not want to release the unused space, then you can use the appropriate COALESCE clause.

CASCADE

If you specify CASCADE, then Oracle Database performs the same operations on all dependent
objects of table, including secondary indexes on index-organized tables.

Restrictions on the shrink_clause

The shrink_clause is subject to the following restrictions:

• You cannot combine this clause with any other clauses in the same ALTER TABLE
statement.

You cannot specify this clause for a cluster, a clustered table, or any object with a LONG
column.

• Segment shrink is not supported for tables with function-based indexes, domain indexes,
or bitmap join indexes.

• This clause does not shrink mapping tables of index-organized tables, even if you specify
CASCADE.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 96 of 244

• You can specify this clause for a table with Advanced Row Compression enabled (ROW
STORE COMPRESS ADVANCED). You cannot specify this clause for a table with any other type
of table compression enabled.

• You cannot shrink a table that is the master table of an ON COMMIT materialized view.
Rowid materialized views must be rebuilt after the shrink operation.

READ ONLY | READ WRITE

Specify READ ONLY to put the table in read-only mode. When the table is in READ ONLY mode,
you cannot issue any DML statements that affect the table or any SELECT ... FOR UPDATE
statements. You can issue DDL statements as long as they do not modify any table data.
Operations on indexes associated with the table are allowed when the table is in READ ONLY
mode. See Oracle Database Administrator’s Guide for the complete list of operations that are
allowed and disallowed on read-only tables.

Specify READ WRITE to return a read-only table to read/write mode.

REKEY encryption_spec

Use the REKEY clause to generate a new encryption key or to switch between different
algorithms. This operation returns only after all encrypted columns in the table, including LOB
columns, have been reencrypted.

DEFAULT COLLATION

This clause lets you change the default collation for the table. For collation_name, specify a valid
named collation or pseudo-collation.

The new default collation for the table is assigned to columns of a character data type that are
subsequently added to the table with an ALTER TABLE ADD statement or modified from a non-
character data type with an ALTER TABLE MODIFY statement. The collations for existing
columns in the table are not changed. Refer to the DEFAULT COLLATION clause of CREATE
TABLE for the full semantics of this clause.

[NO] ROW ARCHIVAL

Specify this clause to enable or disable table for row archival.

• Specify ROW ARCHIVAL to enable table for row archival. A hidden column
ORA_ARCHIVE_STATE is created in the table. If the table is already populated with data, then
the value of ORA_ARCHIVE_STATE is set to 0 for each existing row in the table. You can
subsequently use the UPDATE statement to set the value of ORA_ARCHIVE_STATE to 1 for
rows you want to archive.

• Specify NO ROW ARCHIVAL to disable table for row archival. The hidden column
ORA_ARCHIVE_STATE is dropped from the table.

Restrictions on [NO] ROW ARCHIVAL

The following restrictions apply to this clause:

• You cannot specify the ROW ARCHIVAL clause for a table that already contains a column
named ORA_ARCHIVE_STATE.

• You cannot specify the NO ROW ARCHIVAL clause for tables owned by SYS.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 97 of 244

See Also

• The CREATE TABLE ROW ARCHIVAL clause for the full semantics of this clause

• Oracle Database VLDB and Partitioning Guide for more information on In-
Database Archiving

attribute_clustering_clause

Use the ADD attribute_clustering_clause to enable the table for attribute clustering. The
attribute_clustering_clause has the same semantics for ALTER TABLE and CREATE TABLE. Refer to
the attribute_clustering_clause in the documentation on CREATE TABLE.

MODIFY CLUSTERING

Use this clause to allow or disallow attribute clustering for the table during direct-path insert
operations or data movement operations. The table must be enabled for attribute clustering.
The clustering_when clause and the zonemap_clause have the same semantics for ALTER TABLE and
CREATE TABLE. Refer to the clustering_when clause and the zonemap_clause in the
documentation on CREATE TABLE.

DROP CLUSTERING

Use this clause to disable the table for attribute clustering.

If a zone map on the table was created using the WITH MATERIALIZED ZONEMAP clause of
CREATE TABLE or ALTER TABLE, then the zone map will be dropped. If a zone map on the table
was created using the CREATE MATERIALIZED ZONEMAP statement, then the zone map will not
be dropped.

FOR STAGING

You can change the staging property of an exisiting table with ALTER TABLE t FOR STAGING. The
staging table t now has all the characteristics of a staging table created with CREATE TABLE t
FOR STAGING.

Refer to CREATE TABLE clause for the full semantics of staging tables: FOR STAGING

ALTER TABLE t NOT FOR STAGING

You can change a staging table with ALTER TABLE t NOT FOR STAGING. This means:

• You can enable compression explicitly on the table, its partitions, and future data loads.

• You can gather statistics on the table explictly or by using an statistics gathering
application.

• When you drop the table, it can be put in the recyclebin.

alter_iot_clauses

index_org_table_clause

This clause lets you alter some of the characteristics of an existing index-organized table.
Index-organized tables keep data sorted on the primary key and are therefore best suited for
primary-key-based access and manipulation. See index_org_table_clause in the context of
CREATE TABLE.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 98 of 244

See Also

"Modifying Index-Organized Tables: Examples"

prefix_compression

Use the prefix_compression clause to enable prefix compression for the table. Specify COMPRESS to
instruct Oracle Database to combine the primary key index blocks of the index-organized table
where possible to free blocks for reuse. You can specify this clause with the parallel_clause.
Specify NOCOMPRESS to disable prefix compression for the table.

iot_advanced_compression

Specify iot_advanced_compression to compress the indexes of index organized tables (IOTs) and
table partitions in order to reduce the storage footprint of IOTs.

You can enable advanced low index compression for all IOTs on specific partitions of a table,
and leave other partitions uncompressed.

PCTTHRESHOLD integer

Refer to "PCTTHRESHOLD integer" in the documentation on CREATE TABLE.

INCLUDING column_name

Refer to "INCLUDING column_name" in the documentation on CREATE TABLE.

overflow_attributes

The overflow_attributes let you specify the overflow data segment physical storage and logging
attributes to be modified for the index-organized table. Parameter values specified in this
clause apply only to the overflow data segment.

See Also

CREATE TABLE

add_overflow_clause

The add_overflow_clause lets you add an overflow data segment to the specified index-organized
table. You can also use this clause to explicitly allocate an extent to or deallocate unused
space from an existing overflow segment.

Use the STORE IN tablespace clause to specify tablespace storage for the entire overflow
segment. Use the PARTITION clause to specify tablespace storage for the segment by partition.

For a partitioned index-organized table:

• If you do not specify PARTITION, then Oracle Database automatically allocates an overflow
segment for each partition. The physical attributes of these segments are inherited from
the table level.

• If you want to specify separate physical attributes for one or more partitions, then you must
specify such attributes for every partition in the table. You need not specify the name of the
partitions, but you must specify their attributes in the order in which they were created.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 99 of 244

You can find the order of the partitions by querying the PARTITION_NAME and
PARTITION_POSITION columns of the USER_IND_PARTITIONS view.

If you do not specify TABLESPACE for a particular partition, then the database uses the
tablespace specified for the table. If you do not specify TABLESPACE at the table level, then the
database uses the tablespace of the partition primary key index segment.

Restrictions on Overflow Attributes

Within the segment_attributes_clause:

• You cannot specify the OPTIMAL parameter of the physical_attributes_clause.

• You cannot specify tablespace storage for the overflow segment using this clause. For a
nonpartitioned table, you can use ALTER TABLE ... MOVE ... OVERFLOW to move the segment
to a different tablespace. For a partitioned table, use ALTER TABLE ... MODIFY DEFAULT
ATTRIBUTES ... OVERFLOW to change the default tablespace of the overflow segment.

Additional restrictions apply if table is in a locally managed tablespace, because in such
tablespaces several segment attributes are managed automatically by the database.

See Also

allocate_extent_clause and deallocate_unused_clause for full descriptions of these
clauses of the add_overflow_clause

alter_overflow_clause

The alter_overflow_clause lets you change the definition of the overflow segment of an existing
index-organized table.

The restrictions that apply to the add_overflow_clause also apply to the alter_overflow_clause.

Note

When you add a column to an index-organized table, Oracle Database evaluates the
maximum size of each column to estimate the largest possible row. If an overflow
segment is needed but you have not specified OVERFLOW, then the database raises an
error and does not execute the ALTER TABLE statement. This checking function
guarantees that subsequent DML operations on the index-organized table will not fail
because an overflow segment is lacking.

alter_mapping_table_clauses

The alter_mapping_table_clauses is valid only if table is index organized and has a mapping table.

allocate_extent_clause

Use the allocate_extent_clause to allocate a new extent at the end of the mapping table for the
index-organized table. Refer to allocate_extent_clause for a full description of this clause.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 100 of 244

deallocate_unused_clause

Specify the deallocate_unused_clause to deallocate unused space at the end of the mapping table of
the index-organized table. Refer to deallocate_unused_clause for a full description of this
clause.

Oracle Database automatically maintains all other attributes of the mapping table or its
partitions.

COALESCE Clause

Specify COALESCE to instruct Oracle Database to merge the contents of index blocks of the
index the database uses to maintain the index-organized table where possible to free blocks
for reuse. Refer to the shrink_clause for information on the relationship between these two
clauses.

alter_XMLSchema_clause

This clause is valid as part of alter_table_properties only if you are modifying an XMLType table with
BINARY XML storage. Refer to XMLSchema_spec in the documentation on CREATE TABLE for
more information on the ALLOW and DISALLOW clauses.

column_clauses

Use these clauses to add, drop, or otherwise modify a column.

add_column_clause

The add_column_clause lets you add a column to a table.

See Also

CREATE TABLE for a description of the keywords and parameters of this clause and
"Adding a Table Column: Example"

Use ALTER TABLE ADD to associate columns to a domain:

ALTER TABLE [owner.]name ADD (<column_list_def_clause> [, DOMAIN [domain_owner.]domain_name
(<column_name_list>)]+)

column_definition

Unless otherwise noted in this section, the elements of column_definition have the same behavior
when adding a column to an existing table as they do when creating a new table. Refer to
thecolumn_definition clause of CREATE TABLE for information.

Restriction on column_definition

The SORT parameter is valid only when creating a new table. You cannot specify SORT in the
column_definition of an ALTER TABLE ... ADD statement.

When you add a column, the initial value of each row for the new column is null, unless you
specify the DEFAULT clause.

You can add an overflow data segment to each partition of a partitioned index-organized table.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 101 of 244

You can add LOB columns to nonpartitioned and partitioned tables. You can specify LOB
storage at the table and at the partition or subpartition level.

If you previously created a view with a query that used the SELECT * syntax to select all
columns from table, and you now add a column to table, then the database does not
automatically add the new column to the view. To add the new column to the view, re-create
the view using the CREATE VIEW statement with the OR REPLACE clause. Refer to CREATE
VIEW for more information.

Restrictions on Adding Columns

The addition of columns is subject to the following restrictions:

• You cannot add a LOB column or an INVISIBLE column to a cluster table.

• If you add a LOB column to a hash-partitioned table, then the only attribute you can specify
for the new partition is TABLESPACE.

• You cannot add a column with a NOT NULL constraint if table has any rows unless you also
specify the DEFAULT clause.

• If you specify this clause for an index-organized table, then you cannot specify any other
clauses in the same statement.

• You cannot add a column to a duplicated table.

DEFAULT

Use the DEFAULT clause to specify a default for a new column or a new default for an existing
column. Oracle Database assigns this value to the column if a subsequent INSERT statement
omits a value for the column.

The data type of the expression must match the data type specified for the column. The
column must also be large enough to hold this expression.

The DEFAULT expression can include any SQL function as long as the function does not return
a literal argument, a column reference, or a nested function invocation.

The DEFAULT expression can include the sequence pseudocolumns CURRVAL and NEXTVAL, as
long as the sequence exists and you have the privileges necessary to access it. Users who
perform subsequent inserts that use the DEFAULT expression must have the INSERT privilege on
the table and the SELECT privilege on the sequence. If the sequence is later dropped, then
subsequent insert statements where the DEFAULT expression is used will result in an error. If
you are adding a new column to a table, then the order in which NEXTVAL is assigned to each
existing row is nondeterministic. If you do not fully qualify the sequence by specifying the
sequence owner, for example, SCOTT.SEQ1, then Oracle Database will default the sequence
owner to be the user who issues the ALTER TABLE statement. For example, if user MARY adds
a column to SCOTT.TABLE and refers to a sequence that is not fully qualified, such as SEQ2, then
the column will use sequence MARY.SEQ2. Synonyms on sequences undergo a full name
resolution and are stored as the fully qualified sequence in the data dictionary; this is true for
public and private synonyms. For example, if user BETH adds a column referring to public or
private synonym SYN1 and the synonym refers to PETER.SEQ7, then the column will store
PETER.SEQ7 as the default.

If you specify the DEFAULT clause for a column, then the default value is stored as metadata
but the column itself is not populated with data. However, subsequent queries that specify the
new column are rewritten so that the default value is returned in the result set. This optimized
behavior is subject to the following restrictions:

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 102 of 244

• It cannot be index-organized, temporary, or part of a cluster. It also cannot be a queue
table, an object table, or the container table of a materialized view.

• If the table has a Virtual Private Database (VPD) policy on it, then the optimized behavior
will not take place unless the user who issues the ALTER TABLE ... ADD statement has the
EXEMPT ACCESS POLICY system privilege.

• The column being added cannot be encrypted, and cannot be an object column, nested
table column, or a LOB column.

• The DEFAULT expression cannot include the sequence pseudocolumns CURRVAL or
NEXTVAL.

If the optimized behavior cannot take place due to the preceding restrictions, then Oracle
Database updates each row in the newly created column with the default value. In this case,
the database does not fire any UPDATE triggers that are defined on the table.

Restrictions on Default Column Values

Default column values are subject to the following restrictions:

• A DEFAULT expression cannot contain references to PL/SQL functions or to other columns,
the pseudocolumns LEVEL, PRIOR, and ROWNUM, or date constants that are not fully
specified.

• The expression can be of any form except a scalar subquery expression.

ON NULL

If you specify the ON NULL clause, then Oracle Database assigns the DEFAULT column value
when a subsequent INSERT or optionally an UPDATE statement attempts to assign a value that
evaluates to NULL.

When you specify ON NULL, the NOT NULL constraint and NOT DEFERRABLE constraint state are
implicitly specified. If you specify an inline constraint that conflicts with NOT NULL and NOT
DEFERRABLE, then an error is raised.

Refer to CREATE TABLE ON NULL for the full semantics of DEFAULT ON NULL.

See Also

"Specifying a Default Column Value: Examples"

identity_clause

The identity_clause has the same semantics when you add an identity column that it has when
you create an identity column. Refer to CREATE TABLE identity_clause for more information.

When you add a new identity column to a table, all existing rows are updated using the
sequence generator. The order in which a value is assigned to each existing row is
nondeterministic.

identity_options

Use the identity_options clause to configure the sequence generator. The identity_options clause has
the same parameters as the CREATE SEQUENCE statement. Refer to CREATE SEQUENCE for a
full description of these parameters and characteristics. The exception is START WITH LIMIT
VALUE, which is specific to identity_options and can only be used with ALTER TABLE MODIFY. Refer
to identity_options for more information.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 103 of 244

inline_constraint

Use inline_constraint to add a constraint to the new column.

inline_ref_constraint

This clause lets you describe a new column of type REF. Refer to constraint for syntax and
description of this type of constraint, including restrictions.

virtual_column_definition

The virtual_column_definition has the same semantics when you add a column that it has when you
create a column.

See Also

The CREATE TABLE virtual_column_definition and "Adding a Virtual Table Column:
Example" for more information

Restriction on Adding a Virtual Column

You cannot add a virtual column when the SQL expression for the virtual column involves a
column on which an Oracle Data Redaction policy is defined.

column_properties

The clauses of column_properties determine the storage characteristics of an object type, nested
table, varray, or LOB column.

object_type_col_properties

This clause is valid only when you are adding a new object type column or attribute. To modify
the properties of an existing object type column, use the modify_column_clauses. The semantics of
this clause are the same as for CREATE TABLE unless otherwise noted.

Use the object_type_col_properties clause to specify storage characteristics for a new object column
or attribute or an element of a collection column or attribute.

For complete information on this clause, refer to object_type_col_properties in the
documentation on CREATE TABLE.

nested_table_col_properties

The nested_table_col_properties clause lets you specify separate storage characteristics for a nested
table, which in turn lets you to define the nested table as an index-organized table. You must
include this clause when creating a table with columns or column attributes whose type is a
nested table. (Clauses within this clause that function the same way they function for parent
object tables are not repeated here. See the CREATE TABLE clause nested_table_col_properties
for more information about these clauses.)

• For nested_item, specify the name of a column (or a top-level attribute of the nested table
object type) whose type is a nested table.

If the nested table is a multilevel collection, and the inner nested table does not have a
name, then specify COLUMN_VALUE in place of the nested_item name.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 104 of 244

• For storage_table, specify the name of the table where the rows of nested_item reside. The
storage table is created in the same schema and the same tablespace as the parent table.

Restrictions on Nested Table Column Properties

Nested table column properties are subject to the following restrictions:

• You cannot specify the parallel_clause.

• You cannot specify CLUSTER as part of the physical_properties clause.

See Also

"Nested Tables: Examples"

varray_col_properties

The varray_col_properties clause lets you specify separate storage characteristics for the LOB in
which a varray will be stored. If you specify this clause, then Oracle Database will always store
the varray in a LOB, even if it is small enough to be stored inline. If varray_item is a multilevel
collection, then the database stores all collection items nested within varray_item in the same
LOB in which varray_item is stored.

Restriction on Varray Column Properties

You cannot specify TABLESPACE as part of LOB_parameters for a varray column. The LOB
tablespace for a varray defaults to the tablespace of the containing table.

out_of_line_part_storage

This clause lets you specify storage attributes the newly added column for each partition or
subpartition in a partitioned table. For any partition or subpartition you do not name in this
clause, the storage attributes for the new column are the same as those specified in the
nested_table_col_properties at the table level.

LOB_storage_clause

Use the LOB_storage_clause to specify the LOB storage characteristics for a newly added LOB
column, LOB partition, or LOB subpartition, or when you are converting a LONG column into a
LOB column. You cannot use this clause to modify an existing LOB. Instead, you must use the
modify_LOB_storage_clause.

Unless otherwise noted in this section, all LOB parameters, in both the LOB_storage_clause and
the modify_LOB_storage_clause, have the same semantics in an ALTER TABLE statement that they
have in a CREATE TABLE statement. Refer to the CREATE TABLE LOB_storage_clause for
complete information on this clause.

Restriction on LOB Parameters

The only parameter of LOB_parameters you can specify for a hash partition or hash subpartition is
TABLESPACE.

CACHE READS Clause

When you add a new LOB column, you can specify the logging attribute with CACHE READS, as
you can when defining a LOB column at create time. Refer to the CREATE TABLE clause
CACHE READS for full information on this clause.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 105 of 244

ENABLE | DISABLE STORAGE IN ROW

You cannot change STORAGE IN ROW once it is set. Therefore, you cannot specify this clause as
part of the modify_col_properties clause. However, you can change this setting when adding a new
column (add_column_clause) or when moving the table (move_table_clause). Refer to the
CREATE TABLE clause ENABLE STORAGE IN ROW for complete information on this clause.

CHUNK integer

You cannot use the modify_col_properties clause to change the value of CHUNK after it has been
set. If you require a different CHUNK value for a column after it has been created, use ALTER
TABLE … MOVE. Refer to the CREATE TABLE clause CHUNK integer for more information.

RETENTION

For BasicFiles LOBs, if the database is in automatic undo mode, then you can specify
RETENTION instead of PCTVERSION to instruct Oracle Database to retain old versions of this
LOB. This clause overrides any prior setting of PCTVERSION. Refer to the CREATE TABLE clause
LOB_retention_clause for a full description of this parameter.

FREEPOOLS integer

For BasicFiles LOBs, if the database is in automatic undo mode, then you can use this clause
to specify the number of freelist groups for this LOB. This clause overrides any prior setting of
FREELIST GROUPS. Refer to the CREATE TABLE clause FREEPOOLS integer for a full description
of this parameter. The database ignores this parameter for SecureFiles LOBs.

LOB_partition_storage

You can specify only one list of LOB_partition_storage clauses in a single ALTER TABLE statement,
and all LOB_storage_clauses and varray_col_properties clause must precede the list of
LOB_partition_storage clauses. Refer to the CREATE TABLE clause LOB_partition_storage for full
information on this clause, including restrictions.

XMLType_column_properties

Refer to the CREATE TABLE clause XMLType_column_properties for a full description of this
clause.

See Also

• LOB_storage_clause for information on the LOB_segname and LOB_parameters clauses

• "XMLType Column Examples" for an example of XMLType columns in object-
relational tables and "Using XML in SQL Statements " for an example of creating
an XMLSchema

• Oracle XML DB Developer's Guide for more information on XMLType columns and
tables and on creating an XMLSchema

XMLType_storage

Refer to the CREATE TABLE clause XMLType_storage.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 106 of 244

JSON_storage_clause

With 21c you can define a column of JSON data type using the JSON_storage_clause.

Example

ALTER TABLE t ADD (jcol JSON)

modify_column_clauses

Use the modify_column_clauses to modify the properties of an existing column, the visibility of an
existing column, or the substitutability of an existing object type column.

See Also

"Modifying Table Columns: Examples"

modify_col_properties

Use this clause to modify the properties of the column. Any of the optional parts of the column
definition (data type, default value, or constraint) that you omit from this clause remain
unchanged.

datatype

You can change the data type of any column if all rows of the column contain nulls. However, if
you change the data type of a column in a materialized view container table, then Oracle
Database invalidates the corresponding materialized view.

You can omit the data type only if the statement also designates the column as part of the
foreign key of a referential integrity constraint. The database automatically assigns the column
the same data type as the corresponding column of the referenced key of the referential
integrity constraint.

You can always increase the size of a character or raw column or the precision of a numeric
column, whether or not all the rows contain nulls. You can reduce the size of a data type of a
column as long as the change does not require data to be modified. The database scans
existing data and returns an error if data exists that exceeds the new length limit.

When you increase the size of a VARCHAR2, NVARCHAR2, or RAW column to exceed 4000 bytes,
Oracle Database performs an in-place length extension and does not migrate the inline storage
to external LOB storage. This enables uninterrupted migration of large tables, especially after
migration, to leverage extended data types. However, the inline storage of the column will not
be preserved during table reorganization operations, such as CREATE TABLE ... AS SELECT,
export, import, or online redefinition. To migrate to the new out-of-line storage of extended data
type columns, you must recreate the table using one of the aforementioned methods. The
inline storage of the column will be preserved during table or partition movement operations,
such as ALTER TABLE MOVE [[SUB]PARTITION], and partition maintenance operations, such as
ALTER TABLE SPLIT [SUB]PARTITION, ALTER TABLE MERGE [SUB]PARTITIONS, and ALTER TABLE
COALESCE [SUB]PARTITIONS.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 107 of 244

Note

Oracle recommends against excessively increasing the size of a VARCHAR2,
NVARCHAR2, or RAW column beyond 4000 bytes for the following reasons:

• Row chaining may occur.

• Data that is stored inline must be read in its entirety, whether a column is selected
or not. Therefore, extended data type columns that are stored inline can have a
negative impact on performance.

You can reduce the size of a data type of a column as long as the change does not require
data to be modified. The database scans existing data and returns an error if data exists that
exceeds the new length limit.

You can change a DATE column to a TIMESTAMP or TIMESTAMP WITH LOCAL TIME ZONE column,
and you can change a TIMESTAMP or TIMESTAMP WITH LOCAL TIME ZONE column to a DATE
column. The following rules apply:

• When you change a TIMESTAMP or TIMESTAMP WITH LOCAL TIME ZONE column to a DATE
column, Oracle Database updates each column value that has nonzero fractional seconds
by rounding the value to the nearest second. If, while updating such a value, Oracle
Database encounters a minute field greater than or equal to 60 (which can occur in a
boundary case when the daylight saving rule switches), then it updates the minute field by
subtracting 60 from it.

• After you change a TIMESTAMP WITH LOCAL TIME ZONE column to a DATE column, the
values in the column still represent the local time that they represented in the database
time zone. However, the database time zone is no longer associated with the values.
When queried in SQL*Plus, the values are no longer automatically adjusted to the session
time zone. It is now the responsibility of applications processing the column values to
interpret them in a particular time zone.

If the table is empty, then you can increase or decrease the leading field or the fractional
second value of a datetime or interval column. If the table is not empty, then you can only
increase the leading field or fractional second of a datetime or interval column.

You can use the TO_LOB function to change a LONG column to a CLOB or NCLOB column, and a
LONG RAW column to a BLOB column. However, you cannot use the TO_LOB function from within
a PL/SQL package. Instead use the TO_CLOB (character) or TO_BLOB (raw) functions.

• The modified LOB column inherits all constraints and triggers that were defined on the
original LONG column. If you want to change any constraints, then you must do so in a
subsequent ALTER TABLE statement.

• If any domain indexes are defined on the LONG column, then you must drop them before
modifying the column to a LOB.

• After the modification, you will have to rebuild all other indexes on all columns of the table.

You can use the TO_CLOB (character) function to convert NCLOB columns CLOB columns.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 108 of 244

See Also

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information on LONG to LOB migration

• ALTER INDEX for information on dropping and rebuilding indexes

For CHAR and VARCHAR2 columns, you can change the length semantics by specifying CHAR
(to indicate character semantics for a column that was originally specified in bytes) or BYTE (to
indicate byte semantics for a column that was originally specified in characters). To learn the
length semantics of existing columns, query the CHAR_USED column of the ALL_, USER_, or
DBA_TAB_COLUMNS data dictionary view.

See Also

• Oracle Database Globalization Support Guide for information on byte and
character semantics

• Oracle Database Reference for information on the data dictionary views

You can specify a user-defined data type as non-persistable when creating or altering the data
type. Instances of non-persistable types cannot persist on disk. See CREATE TYPE for more
on user-defined data types declared as non-persistable types.

DOMAIN

Use this clause to associate domain_name with the column. The domain's data type must be
compatible with the column's data type.

COLLATE

Use this clause to set or change the data-bound collation for a column. For column_collation_name,
specify a valid named collation or pseudo-collation. Refer to the DEFAULT COLLATION clause
of CREATE TABLE for more information on data-bound collations.

Restrictions on Changing Column Collation

The modification of the column collation is subject to the following restrictions:

• If the column belongs to an index key, then its collation can only be changed:

– among collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, and USING_NLS_SORT_CS

– between collations BINARY_CI and USING_NLS_SORT_CI

– between collations BINARY_AI and USING_NLS_SORT_AI

• If the column belongs to a range- or list-partitioning key, is referenced by a bitmap join
index, belongs to the primary key of an index-organized table, or to the key of a domain
index, including an Oracle Text index, then its collation can only be changed among the
collations BINARY, USING_NLS_COMP, USING_NLS_SORT, and USING_NLS_SORT_CS.

• If the column belongs to an attribute clustering key, then its collation can only be changed
between the collations BINARY and USING_NLS_COMP.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 109 of 244

See Also

Modifying the Collation of a Column for Fine-Grained Case-Insensitivity: Example

identity_clause

Use identity_clause to modify the properties of an identity column. You cannot specify this clause
on a column that is not an identity column. If you do not specify ALWAYS or BY DEFAULT, then
the current generation type is retained. Refer to CREATE TABLE identity_clause for more
information on ALWAYS and BY DEFAULT.

identity_options

Use the identity_options clause to configure the sequence generator. The identity_options clause has
the same parameters as the CREATE SEQUENCE statement. Refer to CREATE SEQUENCE for a
full description of these parameters and characteristics. The exceptions are:

• START WITH LIMIT VALUE, which is specific to identity_options, can only be used with ALTER
TABLE MODIFY. If you specify START WITH LIMIT VALUE, then Oracle Database locks the
table and finds the maximum identity column value in the table (for increasing sequences)
or the minimum identity column value (for decreasing sequences) and assigns the value as
the sequence generator's high water mark. The next value returned by the sequence
generator will be the high water mark + INCREMENT BY integer for increasing sequences, or
the high water mark - INCREMENT BY integer for decreasing sequences.

• If you change the value of START WITH, then the default values will be used for all other
parameters in this clause unless you specify otherwise.

DROP IDENTITY

Use this clause to remove the identity property from a column, including the sequence
generator and NOT NULL and NOT DEFERRABLE constraints. Identity column values in existing
rows are not affected.

ENCRYPT encryption_spec | DECRYPT

Use this clause to decrypt an encrypted column, to encrypt an unencrypted column, or to
change the integrity algorithm or the SALT option of an encrypted column.

When encrypting an existing column, if you specify encryption_spec, it must match the encryption
specification of any other encrypted columns in the same table. Refer to the CREATE TABLE
clause encryption_spec for additional information and restrictions on the encryption_spec.

If a materialized view log is defined on the table, then Oracle Database encrypts or decrypts in
the materialized view log any columns you encrypt or decrypt in this clause.

Restrictions on ENCRYPT encryption_spec | DECRYPT

This clause is subject to the following restrictions:

• If the new or existing column is a LOB column, then it must be stored as a SecureFiles
LOB, and you cannot specify the SALT option.

• You cannot encrypt or decrypt a column on which a fine-grained audit policy for the UPDATE
statement is enabled. However, you can disable the fine-grained audit policy, encrypt or
decrypt the column, and then enable the fine-grained audit policy.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 110 of 244

See Also

"Data Encryption: Examples"

inline_constraint

This clause lets you add a constraint to a column you are modifying. To change the state of
existing constraints on existing columns, use the constraint_clauses.

LOB_storage_clause

The LOB_storage_clause is permitted within modify_col_properties only if you are converting a LONG
column to a LOB column. In this case only, you can specify LOB storage for the column using
the LOB_storage_clause. However, you can specify only the single column as a LOB_item. Default
LOB storage attributes are used for any attributes you omit in the LOB_storage_clause.

alter_XMLSchema_clause

This clause is valid within modify_col_properties only for XMLType tables with BINARY XML storage.
Refer to XMLSchema_spec in the documentation on CREATE TABLE for more information on the
ALLOW and DISALLOW clauses.

Restrictions on Modifying Column Properties

The modification of column properties is subject to the following restrictions:

• You cannot change the data type of a LOB column.

• You cannot modify a column of a table if a domain index is defined on the column. You
must first drop the domain index and then modify the column.

• You cannot modify the data type or length of a column that is part of the partitioning or
subpartitioning key of a table or index.

• You can change a CHAR column to VARCHAR2 (or VARCHAR) and a VARCHAR2 (or VARCHAR)
column to CHAR only if the BLANK_TRIMMING initialization parameter is set to TRUE and the
column size stays the same or increases. If the BLANK_TRIMMING initialization parameter is
set to TRUE, then you can also reduce the column size to any size greater than or equal to
the maximum trimmed data value.

• You cannot change a LONG or LONG RAW column to a LOB if the table is part of a cluster. If
you do change a LONG or LONG RAW column to a LOB, then the only other clauses you can
specify in this ALTER TABLE statement are the DEFAULT clause and the LOB_storage_clause.

• You can specify the LOB_storage_clause as part of modify_col_properties only when you are
changing a LONG or LONG RAW column to a LOB.

• You cannot specify a column of data type ROWID for an index-organized table, but you can
specify a column of type UROWID.

• You cannot change the data type of a column to REF.

• You cannot modify the properties of a column in a duplicated table.

See Also

ALTER MATERIALIZED VIEW for information on revalidating a materialized view

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 111 of 244

modify_virtcol_properties

This clause lets you modify a virtual column in the following ways:

• Specify the COLLATE clause to set or change the data-bound collation for a virtual column.
For column_collation_name, specify a valid named collation or pseudo-collation. Refer to the
DEFAULT COLLATION clause of CREATE TABLE for more information on data-bound
collations.

• If the virtual column refers to an editioned PL/SQL function, then you can modify the
evaluation edition or the unusable editions for a virtual column. The evaluation_edition_clause
and the unusable_editions_clause have the same semantics when you modify a virtual column
that they have when you create a virtual column. For complete information, refer to
evaluation_edition_clause and unusable_editions_clause in the documentation on CREATE
TABLE.

Restrictions on Modifying Virtual Columns

The following restrictions apply to modifying virtual columns:

• Specifying the COLLATE clause to set or change the data-bound collation for a virtual
column is subject to the restrictions listed in Restrictions on Changing Column Collation.

• If an index is defined on a virtual column and you modify its evaluation edition or unusable
editions, then the database will invalidate all indexes on the virtual column. If you attempt
to modify any other properties of the virtual column, then an error occurs.

modify_col_visibility

Use this clause to change the visibility of column. For complete information, refer to "VISIBLE |
INVISIBLE" in the documentation on CREATE TABLE.

Restriction on Modifying Column Visibility

You cannot change a VISIBLE column to INVISIBLE in a table owned by SYS.

modify_col_substitutable

Use this clause to set or change the substitutability of an existing object type column.

The FORCE keyword drops any hidden columns containing typeid information or data for
subtype attributes. You must specify FORCE if the column or any attributes of its type are not
FINAL.

Restrictions on Modifying Column Substitutability

The modification of column substitutability is subject to the following restrictions:

• You can specify this clause only once in any ALTER TABLE statement.

• You cannot modify the substitutability of a column in an object table if the substitutability of
the table itself has been set.

• You cannot specify this clause if the column was created or added using the IS OF TYPE
syntax, which limits the range of subtypes permitted in an object column or attribute to a
particular subtype. Refer to substitutable_column_clause in the documentation on CREATE
TABLE for information on the IS OF TYPE syntax.

• You cannot change a varray column to NOT SUBSTITUTABLE, even by specifying FORCE, if
any of its attributes are nested object types that are not FINAL.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 112 of 244

modify_domain::=

Use this clause to add or remove a domain from the table.

ADD DOMAIN

Use this to add a domain to the listed columns. You must specify as many columns as the
domain. The first column is associated with the first domain column, second column is
associated with the second domain column, and so on.

Example: Create a Domain phone_number and Add a Column

CREATE DOMAIN phone_number as VARCHAR2(12)
 CONSTRAINT CHECK (phone_number not like '%[0-9]%')
 NOT NULL;

To add a new column to a table with domain, the ALTER TABLE statement can be used as
follows:

ALTER TABLE customers ADD (cust_cell_phone_number Varchar2(12) DOMAIN phone_number);

ALTER TABLE customers ADD (cust_cell_phone_number Varchar2(12) DOMAIN phone_number DEFAULT ON NULL
'650-000-0000');

DROP DOMAIN

Use this clause to dissociate a domain from the listed columns. The number of columns in this
statement must match the number of columns in the domain.

If the domain has a collation, this will be preserved.

PRESERVE CONSTRAINTS

By default, any constraints from the domain are removed from the column. Use this clause to
copy the domain constraints to the column.

An error is raised in the following cases:

• If you alter a column to have a collation different than the collation of the column's domain.

• If you alter a domain to add or modify the domain's collation to a value different than the
collation of any column marked of the given domain.

drop_column_clause

The drop_column_clause lets you free space in the database by dropping columns you no longer
need or by marking them to be dropped at a future time when the demand on system
resources is less.

• If you drop a nested table column, then its storage table is removed.

• If you drop a LOB column, then the LOB data and its corresponding LOB index segment
are removed.

• If you drop a BFILE column, then only the locators stored in that column are removed, not
the files referenced by the locators.

• If you drop or mark unused a column defined as an INCLUDING column, then the column
stored immediately before this column will become the new INCLUDING column.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 113 of 244

SET UNUSED Clause

Specify SET UNUSED to mark one or more columns as unused. For an internal heap-organized
table, specifying this clause does not actually remove the target columns from each row in the
table. It does not restore the disk space used by these columns. Therefore, the response time
is faster than when you execute the DROP clause.

When you specify this clause for a column in an external table, the clause is transparently
converted to an ALTER TABLE ... DROP COLUMN statement. The reason for this is that any
operation on an external table is a metadata-only operation, so there is no difference in the
performance of the two commands.

You can view all tables with columns marked UNUSED in the data dictionary views
USER_UNUSED_COL_TABS, DBA_UNUSED_COL_TABS, and ALL_UNUSED_COL_TABS.

See Also

Oracle Database Reference for information on the data dictionary views

Unused columns are treated as if they were dropped, even though their column data remains
in the table rows. After a column has been marked UNUSED, you have no access to that
column. A SELECT * query will not retrieve data from unused columns. In addition, the names
and types of columns marked UNUSED will not be displayed during a DESCRIBE, and you can
add to the table a new column with the same name as an unused column.

Note

Until you actually drop these columns, they continue to count toward the maximum
number of columns in a single table, i.e. 1000 if the MAX_COLUMNS initialization
parameter is set to STANDARD, or 4096 columns if MAX_COLUMNS is set to EXTENDED.
However, as with all DDL statements, you cannot roll back the results of this clause.
You cannot issue SET USED counterpart to retrieve a column that you have SET
UNUSED. Refer to CREATE TABLE for more information on the 1000-column limit.

Also, if you mark a LONG column as UNUSED, then you cannot add another LONG
column to the table until you actually drop the unused LONG column.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while marking the
column or columns UNUSED.

Restrictions on Marking Columns Unused

The following restrictions apply to the SET UNUSED clause:

• You cannot specify the ONLINE clause when marking a column with a DEFERRABLE
constraint as UNUSED.

• Columns in tables owned by SYS cannot be marked as UNUSED.

DROP Clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 114 of 244

Specify DROP to remove the column descriptor and the data associated with the target column
from each row in the table. If you explicitly drop a particular column, then all columns currently
marked UNUSED in the target table are dropped at the same time.

When the column data is dropped:

• All indexes defined on any of the target columns are also dropped.

• All constraints that reference a target column are removed.

• If any statistics types are associated with the target columns, then Oracle Database
disassociates the statistics from the column with the FORCE option and drops any statistics
collected using the statistics type.

Note

If the target column is a parent key of a nontarget column, or if a check constraint
references both the target and nontarget columns, then Oracle Database returns an
error and does not drop the column unless you have specified the CASCADE
CONSTRAINTS clause. If you have specified that clause, then the database removes all
constraints that reference any of the target columns.

See Also

DISASSOCIATE STATISTICS for more information on disassociating statistics types

DROP UNUSED COLUMNS Clause

Specify DROP UNUSED COLUMNS to remove from the table all columns currently marked as
unused. Use this statement when you want to reclaim the extra disk space from unused
columns in the table. If the table contains no unused columns, then the statement returns with
no errors.

column

Specify one or more columns to be set as unused or dropped. Use the COLUMN keyword only if
you are specifying only one column. If you specify a column list, then it cannot contain
duplicates.

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS if you want to drop all foreign key constraints that refer to the
primary and unique keys defined on the dropped columns as well as all multicolumn
constraints defined on the dropped columns. If any constraint is referenced by columns from
other tables or remaining columns in the target table, then you must specify CASCADE
CONSTRAINTS. Otherwise, the statement aborts and an error is returned.

INVALIDATE

The INVALIDATE keyword is optional. Oracle Database automatically invalidates all dependent
objects, such as views, triggers, and stored program units. Object invalidation is a recursive
process. Therefore, all directly dependent and indirectly dependent objects are invalidated.
However, only local dependencies are invalidated, because the database manages remote
dependencies differently from local dependencies.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 115 of 244

An object invalidated by this statement is automatically revalidated when next referenced. You
must then correct any errors that exist in that object before referencing it.

See Also

Oracle Database Concepts for more information on dependencies

CHECKPOINT

Specify CHECKPOINT if you want Oracle Database to apply a checkpoint for the DROP COLUMN
operation after processing integer rows; integer is optional and must be greater than zero. If integer
is greater than the number of rows in the table, then the database applies a checkpoint after all
the rows have been processed. If you do not specify integer, then the database sets the default
of 512. Checkpointing cuts down the amount of undo logs accumulated during the DROP
COLUMN operation to avoid running out of undo space. However, if this statement is interrupted
after a checkpoint has been applied, then the table remains in an unusable state. While the
table is unusable, the only operations allowed on it are DROP TABLE, TRUNCATE TABLE, and
ALTER TABLE DROP ... COLUMNS CONTINUE (described in sections that follow).

You cannot use this clause with SET UNUSED, because that clause does not remove column
data.

DROP COLUMNS CONTINUE Clause

Specify DROP COLUMNS CONTINUE to continue the drop column operation from the point at
which it was interrupted. Submitting this statement while the table is in an invalid state results
in an error.

Restrictions on Dropping Columns

Dropping columns is subject to the following restrictions:

• Each of the parts of this clause can be specified only once in the statement and cannot be
mixed with any other ALTER TABLE clauses. For example, the following statements are not
allowed:

ALTER TABLE t1 DROP COLUMN f1 DROP (f2);
ALTER TABLE t1 DROP COLUMN f1 SET UNUSED (f2);
ALTER TABLE t1 DROP (f1) ADD (f2 NUMBER);
ALTER TABLE t1 SET UNUSED (f3)
 ADD (CONSTRAINT ck1 CHECK (f2 > 0));

• You can drop an object type column only as an entity. To drop an attribute from an object
type column, use the ALTER TYPE ... DROP ATTRIBUTE statement with the CASCADE
INCLUDING TABLE DATA clause. Be aware that dropping an attribute affects all dependent
objects. See Oracle Database PL/SQL Language Reference for more information.

• You can drop a column from an index-organized table only if it is not a primary key column.
The primary key constraint of an index-organized table can never be dropped, so you
cannot drop a primary key column even if you have specified CASCADE CONSTRAINTS.

• You can export tables with dropped or unused columns. However, you can import a table
only if all the columns specified in the export files are present in the table (none of those
columns has been dropped or marked unused). Otherwise, Oracle Database returns an
error.

• You can set unused a column from a table that uses COMPRESS BASIC, but you cannot drop
the column. However, all clauses of the drop_column_clause are valid for tables that use ROW

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 116 of 244

STORE COMPRESS ADVANCED. See the semantics for table_compression for more
information.

• You cannot drop a column on which a domain index has been built.

• You cannot drop a SCOPE table constraint or a WITH ROWID constraint on a REF column.

• You cannot use this clause to drop:

– A pseudocolumn, cluster column, or partitioning column. You can drop nonpartitioning
columns from a partitioned table if all the tablespaces where the partitions were
created are online and in read/write mode.

– A column from a nested table, an object table, a duplicated table, or a table owned by
SYS.

See Also

"Dropping a Column: Example"

add_period_clause

Use the add_period_clause to add a valid time dimension to table.

The period_definition clause of ALTER TABLE has the same semantics as in CREATE TABLE, with
the following exceptions and additions:

• valid_time_column must not already exist in table.

• If you specify start_time_column and end_time_column, then these columns must already exist in
table or you must specify the add_column_clause for each of these columns.

• If you specify start_time_column and end_time_column and these columns already exist in table
and are populated with data, then for all rows where both columns have non-NULL values,
the value of start_time_column must be earlier than the value of end_time_column.

See Also

CREATE TABLE period_definition for the full semantics of this clause

drop_period_clause

Use the drop_period_clause to drop a valid time dimension from table.

For valid_time_column, specify the name of the valid time dimension you want to drop.

This clause has the following effects:

• The valid_time_column will be dropped from table.

• If the start time column and end time column were automatically created by Oracle
Database when the valid time dimension was created, either with CREATE TABLE ...
period_definition or ALTER TABLE ... add_period_clause, then they will be dropped. Otherwise,
these columns will remain in table and revert to regular table columns.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 117 of 244

See Also

CREATE TABLE period_definition for more information on the valid_time_column, start time
column, and end time column

rename_column_clause

Use the rename_column_clause to rename a column of table. The new column name must not be the
same as any other column name in table.

When you rename a column, Oracle Database handles dependent objects as follows:

• Function-based indexes and check constraints that depend on the renamed column remain
valid.

• Dependent views, triggers, functions, procedures, and packages are invalidated. Oracle
Database attempts to revalidate them when they are next accessed, but you may need to
alter these objects with the new column name if revalidation fails.

• If a domain index is defined on the column being renamed, then the database invokes the
ODCIIndexAlter method with the RENAME option. This operation establishes
correspondence between the indextype metadata and the base table

Restrictions on Renaming Columns

Renaming columns is subject to the following restrictions:

• You cannot combine this clause with any of the other column_clauses in the same statement.

• You cannot rename a column that is used to define a join index. Instead you must drop the
index, rename the column, and re-create the index.

• You cannot rename a column in a duplicated table.

See Also

"Renaming a Column: Example"

modify_collection_retrieval

Use the modify_collection_retrieval clause to change what Oracle Database returns when a
collection item is retrieved from the database.

collection_item

Specify the name of a column-qualified attribute whose type is nested table or varray.

RETURN AS

Specify what Oracle Database should return as the result of a query:

• LOCATOR specifies that a unique locator for the nested table is returned.

• VALUE specifies that a copy of the nested table itself is returned.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 118 of 244

See Also

"Collection Retrieval: Example"

modify_LOB_storage_clause

The modify_LOB_storage_clause lets you change the physical attributes of LOB_item. You can specify
only one LOB_item for each modify_LOB_storage_clause.

The sections that follow describe the semantics of parameters specific to
modify_LOB_parameters. Unless otherwise documented in this section, the remaining LOB
parameters have the same semantics when altering a table that they have when you are
creating a table. Refer to the restrictions at the end of this section and to the CREATE TABLE
clause LOB_storage_parameters for more information.

Note

• You can modify LOB storage with an ALTER TABLE statement or with online
redefinition by using the DBMS_REDEFINITION package. If you have not enabled
LOB encryption, compression, or deduplication at create time, Oracle
recommends that you use online redefinition to enable them after creation, as this
process is more disk space efficient for changes to these three parameters. See
Oracle Database PL/SQL Packages and Types Reference for more information on
DBMS_REDEFINITION.

• You cannot convert a LOB from one type of storage to the other. Instead you must
migrate to SecureFiles or BasicFiles by using online redefinition or partition
exchange.

PCTVERSION integer

Refer to the CREATE TABLE clause PCTVERSION integer for information on this clause.

LOB_retention_clause

If the database is in automatic undo mode, then you can specify RETENTION instead of
PCTVERSION to instruct Oracle Database to retain old versions of this LOB. This clause
overrides any prior setting of PCTVERSION.

FREEPOOLS integer

For BasicFiles LOBs, if the database is in automatic undo mode, then you can use this clause
to specify the number of freelist groups for this LOB. This clause overrides any prior setting of
FREELIST GROUPS. Refer to the CREATE TABLE clause FREEPOOLS integer for a full description
of this parameter. The database ignores this parameter for SecureFiles LOBs.

REBUILD FREEPOOLS

This clause applies only to BasicFiles LOBs, not to SecureFiles LOBs. The REBUILD
FREEPOOLS clause removes all the old versions of data from the LOB column. This clause is
useful for removing all retained old version space in a LOB segment, freeing that space to be
used immediately by new LOB data.

LOB_deduplicate_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 119 of 244

This clause is valid only for SecureFiles LOBs. KEEP_DUPLICATES disables LOB deduplication.
DEDUPLICATE enables LOB deduplication. All lobs in the segment are read, and any matching
LOBs are deduplicated before returning.

LOB_compression_clause

This clause is valid only for SecureFiles LOBs. COMPRESS compresses all LOBs in the segment
and then returns. NOCOMPRESS uncompresses all LOBs in the segment and then returns.

ENCRYPT | DECRYPT

LOB encryption has the same semantics as column encryption in general. See "ENCRYPT
encryption_spec | DECRYPT" for more information.

CACHE, NOCACHE, CACHE READS

When you modify a LOB column from CACHE or NOCACHE to CACHE READS, or from CACHE
READS to CACHE or NOCACHE, you can change the logging attribute. If you do not specify
LOGGING or NOLOGGING, then this attribute defaults to the current logging attribute of the LOB
column. If you do not specify CACHE, NOCACHE, or CACHE READS, then Oracle Database retains
the existing values of the LOB attributes.

Restrictions on Modifying LOB Storage

Modifying LOB storage is subject to the following restrictions:

• You cannot modify the value of the INITIAL parameter in the storage_clause when modifying
the LOB storage attributes.

• You cannot specify both the allocate_extent_clause and the deallocate_unused_clause in the same
statement.

• You cannot specify both the PCTVERSION and RETENTION parameters.

• You cannot specify the shrink_clause for SecureFiles LOBs.

See Also

LOB_storage_clause (in CREATE TABLE) for information on setting LOB parameters
and "LOB Columns: Examples"

alter_varray_col_properties

The alter_varray_col_properties clause lets you change the storage characteristics of an existing
LOB in which a varray is stored.

Restriction on Altering Varray Column Properties

You cannot specify the TABLESPACE clause of LOB_parameters as part of this clause. The LOB
tablespace for a varray defaults to the tablespace of the containing table.

REKEY encryption_spec

The REKEY clause causes the database to generate a new encryption key. All encrypted
columns in the table are reencrypted using the new key and, if you specify the USING clause of
the encryption_spec, a new encryption algorithm. You cannot combine this clause with any other
clauses in this ALTER TABLE statement.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 120 of 244

See Also

Transparent Data Encryption for more information on transparent column encryption

constraint_clauses

Use the constraint_clauses to add a new constraint using out-of-line declaration, modify the state
of an existing constraint, or drop a constraint. Refer to constraint for a description of all the
keywords and parameters of out-of-line constraints and constraint_state.

Adding a Constraint

The ADD clause lets you add a new out-of-line constraint or out-of-line REF constraint to the
table.

Restrictions on Adding a Constraint

Adding constraints is subject to the following restrictions:

• You cannot add a constraint to a duplicated table.

• You cannot add a foreign key constraint to a sharded table.

See Also

"Disabling a CHECK Constraint: Example", "Specifying Object Identifiers: Example",
and "REF Columns: Examples"

Modifying a Constraint

The MODIFY CONSTRAINT clause lets you change the state of an existing constraint.

The CASCADE keyword is valid only when you are disabling a unique or primary key constraint
on which a foreign key constraint is defined. In this case, you must specify CASCADE so that the
unique or primary key constraint and all of its dependent foreign key constraints are disabled.

Like the other constraint states you can set the precheck state of a constraint to PRECHECK and
unset it with NOPRECHECK.

Restrictions on Modifying Constraints

Modifying constraints is subject to the following restrictions:

• You cannot change the state of a NOT DEFERRABLE constraint to INITIALLY DEFERRED.

• If you specify this clause for an index-organized table, then you cannot specify any other
clauses in the same statement.

• You cannot change the NOT NULL constraint on a foreign key column of a reference-
partitioned table, and you cannot change the state of a partitioning referential constraint of
a reference-partitioned table.

• You cannot modify a constraint on a duplicated table.

• You can specify precheck_state only with constraint_name. Primary key and unique constraints
are not supported.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 121 of 244

See Also

• "Adding and Modifying Precheck State Constraint: Example"

• "Changing the State of a Constraint: Examples"

• Explicitly Declaring Column Check Constraints Precheckable or Not

Renaming a Constraint

The RENAME CONSTRAINT clause lets you rename any existing constraint on table. The new
constraint name cannot be the same as any existing constraint on any object in the same
schema. All objects that are dependent on the constraint remain valid.

See Also

"Renaming Constraints: Example"

drop_constraint_clause

The drop_constraint_clause lets you drop an integrity constraint from the database. Oracle
Database stops enforcing the constraint and removes it from the data dictionary. You can
specify only one constraint for each drop_constraint_clause, but you can specify multiple
drop_constraint_clause in one statement.

PRIMARY KEY

Specify PRIMARY KEY to drop the primary key constraint of table.

UNIQUE

Specify UNIQUE to drop the unique constraint on the specified columns.

If you drop the primary key or unique constraint from a column on which a bitmap join index is
defined, then Oracle Database invalidates the index. See CREATE INDEX for information on
bitmap join indexes.

CONSTRAINT

Specify CONSTRAINT constraint_name to drop an integrity constraint other than a primary key or
unique constraint.

CASCADE

Specify CASCADE if you want all other integrity constraints that depend on the dropped integrity
constraint to be dropped as well.

KEEP INDEX | DROP INDEX

Specify KEEP INDEX or DROP INDEX to indicate whether Oracle Database should preserve or
drop the index it has been using to enforce the PRIMARY KEY or UNIQUE constraint.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while dropping the
constraint.

Restrictions on Dropping Constraints

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 122 of 244

Dropping constraints is subject to the following restrictions:

• You cannot drop a primary key or unique key constraint that is part of a referential integrity
constraint without also dropping the foreign key. To drop the referenced key and the foreign
key together, use the CASCADE clause. If you omit CASCADE, then Oracle Database does
not drop the primary key or unique constraint if any foreign key references it.

• You cannot drop a primary key constraint (even with the CASCADE clause) on a table that
uses the primary key as its object identifier (OID).

• If you drop a referential integrity constraint on a REF column, then the REF column remains
scoped to the referenced table.

• You cannot drop the scope of a REF column.

• You cannot drop the NOT NULL constraint on a foreign key column of a reference-
partitioned table, and you cannot drop a partitioning referential constraint of a reference-
partitioned table.

• You cannot drop the NOT NULL constraint on a column that is defined with a default column
value using the ON NULL clause.

• You cannot specify the ONLINE clause when dropping a DEFERRABLE constraint.

See Also

"Dropping Constraints: Examples"

alter_external_table

Use the alter_external_table clauses to change the characteristics of an external table. This clause
has no affect on the external data itself. The syntax and semantics of the parallel_clause,
enable_disable_clause, external_table_data_props, and REJECT LIMIT clause are the same as described
for CREATE TABLE. See the external_table_clause (in CREATE TABLE).

PROJECT COLUMN Clause

This clause lets you determine how the access driver validates the rows of an external table in
subsequent queries. The default is PROJECT COLUMN ALL, which means that the access driver
processes all column values, regardless of which columns are selected, and validates only
those rows with fully valid column entries. If any column value would raise an error, such as a
data type conversion error, then the row is rejected even if that column was not referenced in
the select list. If you specify PROJECT COLUMN REFERENCED, then the access driver processes
only those columns in the select list.

The ALL setting guarantees consistent result sets. The REFERENCED setting can result in
different numbers of rows returned, depending on the columns referenced in subsequent
queries, but is faster than the ALL setting. If a subsequent query selects all columns of the
external table, then the settings behave identically.

Restrictions on Altering External Tables

Altering external tables is subject to the following restrictions:

• You cannot modify an external table using any clause outside of this clause.

• You cannot add a LONG, varray, or object type column to an external table, nor can you
change the data type of an external table column to any of these data types.

• You cannot modify the storage parameters of an external table.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 123 of 244

alter_table_partitioning

The clauses in this section apply only to partitioned tables. You cannot combine partition
operations with other partition operations or with operations on the base table in the same
ALTER TABLE statement.

Notes on Changing Table Partitioning

The following notes apply when changing table partitioning:

• If you drop, exchange, truncate, move, modify, or split a partition on a table that is a master
table for one or more materialized views, then existing bulk load information about the
table will be deleted. Therefore, be sure to refresh all dependent materialized views before
performing any of these operations.

• If a bitmap join index is defined on table, then any operation that alters a partition of table
causes Oracle Database to mark the index UNUSABLE.

• The only alter_table_partitioning clauses you can specify for a reference-partitioned table are
modify_table_default_attrs, move_table_[sub]partition, truncate_partition_subpart, and
exchange_partition_subpart. None of these operations cascade to any child table of the
reference-partitioned table. No other partition maintenance operations are valid on a
reference-partitioned table, but you can specify the other partition maintenance operations
on the parent table of a reference-partitioned table, and the operation will cascade to the
child reference-partitioned table.

• When adding partitions and subpartitions, bear in mind that you can specify up to a total of
1024K-1 partitions and subpartitions for each table.

• When you add a table partition or subpartition and you omit the partition name, the
database generates a name using the rules described in "Notes on Partitioning in
General".

• When you move, add (hash only), coalesce, drop, split, merge, rename, or truncate a table
partition or subpartition, the procedures, functions, packages, package bodies, views, type
bodies, and triggers that reference the table remain valid. All other dependent objects are
invalidated.

• Deferred segment creation is not supported for partition maintenance operations that
create new segments on tables with LOB columns; segments will always be created for the
involved (sub)partitions.

• For sharded tables, the only clauses you can specify for modifying table partitions and
subpartitions are UNUSABLE LOCAL INDEXES and REBUILD UNUSABLE LOCAL INDEXES. You
cannot perform any other modifications for individual partitions and subpartitions on a
system sharded table.

• For user-defined sharded tables the following operations on partitions and subpartitions
are supported:

– add partition, add subpartition

– drop partition, drop subpartition

– split partition

– modify partition to add or drop values to a list partition

• For sharded tables, the only supported partition maintenance operations are truncating
partitions and subpartitions. You cannot perform any other partition maintenance
operations on a sharded table.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 124 of 244

For additional information on partition operations on tables with an associated CONTEXT
domain index, refer to Oracle Text Reference.

The storage of partitioned database entities in tablespaces of different block sizes is subject to
several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a discussion of
these restrictions.

modify_table_default_attrs

The modify_table_default_attrs clause lets you specify new default values for the attributes of table.
Only attributes named in the statement are affected. Partitions and LOB partitions you create
subsequently will inherit these values unless you override them explicitly when creating the
partition or LOB partition. Existing partitions and LOB partitions are not affected by this clause.

Only attributes named in the statement are affected, and the default values specified are
overridden by any attributes specified at the individual partition or LOB partition level.

• FOR partition_extended_name applies only to composite-partitioned tables. This clause specifies
new default values for the attributes of the partition identified in partition_extended_name.
Subpartitions and LOB subpartitions of that partition that you create subsequently will
inherit these values unless you override them explicitly when creating the subpartition or
LOB subpartition. Existing subpartitions are not affected by this clause.

If you are modifying the default directory, you can save its location using DEFAULT
DIRECTORY directory.

• PCTTHRESHOLD, prefix_compression, and the alter_overflow_clause are valid only for partitioned
index-organized tables.

• You can specify the prefix_compression clause only if prefix compression is already specified at
the table level. Further, you cannot specify an integer after the COMPRESS keyword. Prefix
length can be specified only when you create the table.

• You cannot specify the PCTUSED parameter in segment_attributes for the index segment of an
index-organized table.

• The read_only_clause lets you modify the default read-only or read/write mode for the table.
The new default mode will be assigned to partitions or subpartitions that are subsequently
added to the table, unless you override this behavior by specifying the mode for the new
partition or subpartition. When you modify the default read-only or read/write mode of a
table, you do not change the mode of the existing partitions and subpartitions in the table.
Refer to the read_only_clause of CREATE TABLE for the full semantics of this clause.

• The indexing_clause lets you modify the default indexing property for the table. The new
default indexing property will be assigned to partitions or subpartitions that are
subsequently added to the table, unless you override this behavior by specifying the
indexing property for the new partition or subpartition. When you modify the default
indexing property of a table, you do not change the indexing property of the existing
partitions and subpartitions in the table. Refer to the indexing_clause of CREATE TABLE for
the full semantics of this clause.

alter_automatic_partitioning

This clause allows you to manage automatic list-partitioned tables, as follows:

• Use the SET PARTITIONING AUTOMATIC clause to convert a regular list-partitioned table to an
automatic list-partitioned table.

• Use the SET PARTITIONING MANUAL clause to convert an automatic list-partitioned table to a
regular list-partitioned table.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 125 of 244

• You can specify the SET STORE IN clause only for automatic list-partitioned tables. It lets you
specify one or more tablespaces into which the database will store data for any
subsequent automatically created list partitions. This clause overrides any tablespaces that
might have been set for the table by a previously issued SET STORE IN clause.

To determine whether an existing table is an automatic list-partitioned table, you can query the
AUTOLIST column of the USER_, DBA_, ALL_PART_TABLES data dictionary views.

Restriction on alter_automatic_partitioning

You cannot convert a regular list-partitioned table that contains a DEFAULT partition to an
automatic list-partitioned table.

See Also

The AUTOMATIC clause in the documentation on CREATE TABLE for more information
on automatic list-partitioned tables

alter_interval_partitioning

Use this clause:

• To convert an existing range-partitioned table to interval partitioning. The database
automatically creates partitions of the specified numeric range or datetime interval as
needed for data beyond the highest value allowed for the last range partition. If the table
has reference-partitioned child tables, then the child tables are converted to interval
reference-partitioned child tables.

• To change the interval of an existing interval-partitioned table. The database first converts
existing interval partitions to range partitions and determines the high value of the defined
range partitions. The database then automatically creates partitions of the specified
numeric range or datetime interval as needed for data that is beyond that high value.

• To change the tablespace storage for an existing interval-partitioned table. If the table has
interval reference-partitioned child tables, then the new tablespace storage is inherited by
any child table that does not have its own table-level default tablespace.

• To change an interval-partitioned table back to a range-partitioned table. Use SET INTERVAL
() to disable interval partitioning. The database converts existing interval partitions to range
partitions, using the higher boundaries of created interval partitions as upper boundaries
for the range partitions to be created. If the table has interval reference-partitioned child
tables, then the child tables are converted to ordinary reference-partitioned child tables.

For expr, specify a valid number or interval expression.

See Also

The CREATE TABLE "INTERVAL Clause" and Oracle Database VLDB and Partitioning
Guide for more information on interval partitioning

set_subpartition_template

Use the set_subpartition_template clause to create or replace existing default range, list, or hash
subpartition definitions for each table partition. This clause is valid only for composite-
partitioned tables. It replaces the existing subpartition template or creates a new template if

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 126 of 244

you have not previously created one. Existing subpartitions are not affected, nor are existing
local and global indexes. However, subsequent partitioning operations (such as add and merge
operations) will use the new template.

You can drop an existing subpartition template by specifying ALTER TABLE table SET
SUBPARTITION TEMPLATE ().

The set_subpartition_template clause has the same semantics as the subpartition_template clause of
CREATE TABLE. Refer to the subpartition_template clause of CREATE TABLE for more
information.

modify_table_partition

The modify_table_partition clause lets you change the real physical attributes of a range, hash, list
partition, or system partition. This clause optionally modifies the storage attributes of one or
more LOB items for the partition. You can specify new values for physical attributes (with some
restrictions, as noted in the sections that follow), logging, and storage parameters.

For all types of partitions, you can also specify how Oracle Database should handle local
indexes that become unusable as a result of the modification to the partition. See "UNUSABLE
LOCAL INDEXES Clauses".

For partitioned index-organized tables, you can also update the mapping table in conjunction
with partition changes. See the alter_mapping_table_clauses .

read_only_clause

Use the read_only_clause to put a table partition in read-only or read/write mode. Refer to the
read_only_clause of CREATE TABLE for the full semantics of this clause.

indexing_clause

Use the indexing_clause to modify the indexing property of a table partition. The indexing property
determines whether the partition is included in partial indexes on the table. You can specify the
indexing_clause in the modify_range_partition, modify_hash_partition, and modify_list_partition clauses.

Specify INDEXING ON to change the indexing property for a table partition to ON. This operation
has no effect on full indexes on the table. It has the following effects on partial indexes on the
table:

• Local partial indexes: The table partition is included in the index. The corresponding index
partition is rebuilt and marked USABLE.

• Global partial indexes: The table partition is included in the index. Index entries for the
table partition are added to the index as part of routine index maintenance.

Specify INDEXING OFF to change the indexing property for a table partition to OFF. This
operation has no effect on full indexes on the table. It has the following effects on partial
indexes on the table:

• Local partial indexes: The table partition is excluded from the index. The corresponding
index partition is marked UNUSABLE.

• Global partial indexes: The table partition is excluded from the index. Index entries for the
table partition are removed from the index. This is a metadata-only operation and the index
entries will continue to be physically stored in the index. You can remove these orphaned
index entries by specifying COALESCE CLEANUP in the ALTER INDEX statement or in the
modify_index_partition clause.

Restriction on column of type object

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 127 of 244

You cannot partition a table that has an object type. The alter table modification to a partitioned
state is only supported for non-partitioned heap tables with zero columns of type object.

Restriction on the indexing_clause

You can specify this clause only for partitions of a simple partitioned table. For composite-
partitioned tables, you can specify the indexing_clause at the table subpartition level. Refer to
modify_table_subpartition for more information.

Notes on Modifying Table Partitions

The following notes apply to operations on range, list, and hash table partitions:

• For all types of table partition, in the partition_attributes clause, the shrink_clause lets you
compact an individual partition segment. Refer to shrink_clause for additional information
on this clause.

• The syntax and semantics for modifying a system partition are the same as those for
modifying a hash partition. Refer to modify_hash_partition.

• If table is composite partitioned, then:

– If you specify the allocate_extent_clause, then Oracle Database allocates an extent for each
subpartition of partition.

– If you specify the deallocate_unused_clause, then Oracle Database deallocates unused
storage from each subpartition of partition.

– Any other attributes changed in this clause will be changed in subpartitions of partition
as well, overriding existing values. To avoid changing the attributes of existing
subpartitions, use the FOR PARTITION clause of modify_table_default_attrs.

• When you modify the partition_attributes of a table partition with equipartitioned nested tables,
the changes do not apply to the nested table partitions corresponding to the table partition
being modified. However, you can modify the storage table of the nested table partition
directly with an ALTER TABLE statement.

• Unless otherwise documented, the remaining clauses of partition_attributes have the same
behavior they have when you are creating a partitioned table. Refer to the CREATE TABLE
table_partitioning_clauses for more information.

See Also

"Modifying Table Partitions: Examples"

modify_range_partition

Use this clause to modify the characteristics of a range partition.

add_range_subpartition

This clause is valid only for range-range composite partitions. It lets you add one or more
range subpartitions to partition.

Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to add a
subpartition to composite-partitioned external table. In this case, you can specify the optional
external_part_subpart_data_props clause of the range_subpartition_desc clause. Refer to
external_part_subpart_data_props for the full semantics of this clause.

Restriction on Adding Range Subpartitions

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 128 of 244

If table is an index-organized table, then you can add only one range subpartition at a time.

add_hash_subpartition

This clause is valid only for range-hash composite partitions. The add_hash_subpartition clause lets
you add a hash subpartition to partition. Oracle Database populates the new subpartition with
rows rehashed from the other subpartition(s) of partition as determined by the hash function. For
optimal load balancing, the total number of subpartitions should be a power of 2.

In the partitioning_storage_clause, the only clause you can specify for subpartitions is the
TABLESPACE clause. If you do not specify TABLESPACE, then the new subpartition will reside in
the default tablespace of partition.

Oracle Database adds local index partitions corresponding to the selected partition.

Oracle Database marks UNUSABLE the local index partitions corresponding to the added
partitions. The database invalidates any indexes on heap-organized tables. You can update
these indexes during this operation using the update_index_clauses.

add_list_subpartition

This clause is valid only for range-list and list-list composite partitions. It lets you add one or
more list subpartitions to partition, and only if you have not already created a DEFAULT
subpartition.

• The list_values_clause is required in this operation, and the values you specify in the
list_values_clause cannot exist in any other subpartition of partition. However, these values can
duplicate values found in subpartitions of other partitions.

• In the partitioning_storage_clause, the only clauses you can specify for subpartitions are the
TABLESPACE clause and table compression.

• Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to add a
subpartition to composite-partitioned external table. In this case, you can specify the
optional external_part_subpart_data_props clause of the list_subpartition_desc clause. Refer to
external_part_subpart_data_props for the full semantics of this clause.

For each added subpartition, Oracle Database also adds a subpartition with the same value list
to all local index partitions of the table. The status of existing local and global index partitions of
table are not affected.

Restrictions on Adding List Subpartitions

The following restrictions apply to adding list subpartitions:

• You cannot specify this clause if you have already created a DEFAULT subpartition for this
partition. Instead you must split the DEFAULT partition using the split_list_subpartition clause.

• If table is an index-organized table, then you can add only one list subpartition at a time.

coalesce_table_subpartition

COALESCE SUBPARTITION applies only to hash subpartitions. Use the COALESCE SUBPARTITION
clause if you want Oracle Database to select the last hash subpartition, distribute its contents
into one or more remaining subpartitions (determined by the hash function), and then drop the
last subpartition.

• Oracle Database drops local index partitions corresponding to the selected partition.

• Oracle Database marks UNUSABLE the local index partitions corresponding to one or more
absorbing partitions. The database invalidates any global indexes on heap-organized

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 129 of 244

tables. You can update these indexes during this operation using the
update_index_clauses.

modify_hash_partition

When modifying a hash partition, in the partition_attributes clause, you can specify only the
allocate_extent_clause and deallocate_unused_clause. All other attributes of the partition are inherited
from the table-level defaults except TABLESPACE, which stays the same as it was at create time.

modify_list_partition

Clauses available to you when modifying a list partition have the same semantics as when you
are modifying a range partition. When modifying a list partition, the following additional clauses
are available:

ADD | DROP VALUES Clauses

These clauses are valid only when you are modifying composite partitions. Local and global
indexes on the table are not affected by either of these clauses.

• Use the ADD VALUES clause to extend the partition_key_value list of partition to include
additional values. The added partition values must comply with all rules and restrictions
listed in the CREATE TABLE clause list_partitions .

• Use the DROP VALUES clause to reduce the partition_key_value list of partition by eliminating one
or more partition_key_value. When you specify this clause, Oracle Database checks to ensure
that no rows with this value exist. If such rows do exist, then Oracle Database returns an
error.

Note

ADD VALUES and DROP VALUES operations on a table with a DEFAULT list partition are
enhanced if you have defined a local prefixed index on the table.

Restrictions on Adding and Dropping List Values

Adding and dropping list values are subject to the following restrictions:

• You cannot add values to or drop values from a DEFAULT list partition.

• If table contains a DEFAULT partition and you attempt to add values to a nondefault partition,
then Oracle Database will check that the values being added do not already exist in the
DEFAULT partition. If the values do exist in the DEFAULT partition, then Oracle Database
returns an error.

modify_table_subpartition

This clause applies only to composite-partitioned tables. Its subclauses let you modify the
characteristics of an individual range, list, or hash subpartition.

The shrink_clause lets you compact an individual subpartition segment. Refer to shrink_clause for
additional information on this clause.

You can also specify how Oracle Database should handle local indexes that become unusable
as a result of the modification to the partition. See "UNUSABLE LOCAL INDEXES Clauses".

Use the read_only_clause to put a table subpartition in read-only or read/write mode. Refer to the
read_only_clause of CREATE TABLE for the full semantics of this clause.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 130 of 244

Use the indexing_clause to modify the indexing property of a table subpartition. The indexing
property determines whether the subpartition is included in partial indexes on the table.
Modifying the indexing property of table subpartitions has the same effect on index
subpartitions as modifying the indexing property of table partitions has on index partitions.
Refer to the indexing_clause of modify_table_partition for details.

Restriction on Modifying Hash Subpartitions

The only modify_LOB_parameters you can specify for subpartition are the allocate_extent_clause and
deallocate_unused_clause.

ADD | DROP VALUES Clauses

These clauses are valid only when you are modifying list subpartitions. Local and global
indexes on the table are not affected by either of these clauses.

• Use the ADD VALUES clause to extend the subpartition_key_value list of subpartition to include
additional values. The added partition values must comply with all rules and restrictions
listed in the CREATE TABLE clause list_partitions .

• Use the DROP VALUES clause to reduce the subpartition_key_value list of subpartition by
eliminating one or more subpartition_key_value. When you specify this clause, Oracle
Database checks to ensure that no rows with this value exist. If such rows do exist, then
Oracle Database returns an error.

You can also specify how Oracle Database should handle local indexes that become unusable
as a result of the modification to the partition. See "UNUSABLE LOCAL INDEXES Clauses".

Restriction on Modifying List Subpartitions

The only modify_LOB_parameters you can specify for subpartition are the allocate_extent_clause and
deallocate_unused_clause.

move_table_partition

Use the move_table_partition clause to move partition to another segment. You can move partition
data to another tablespace, recluster data to reduce fragmentation, or change create-time
physical attributes.

If the table contains LOB columns, then you can use the LOB_storage_clause to move the LOB
data and LOB index segments associated with this partition. Only the LOBs named are
affected. If you do not specify the LOB_storage_clause for a particular LOB column, then its LOB
data and LOB index segments are not moved.

If the table contains nested table columns, then you can use the nested_table_col_properties clause of
the table_partition_description to move the nested table segments associated with this partition.
Only the nested table items named are affected. If you do not specify the
nested_table_col_properties clause of the table_partition_description for a particular nested table column,
then its segments are not moved.

Oracle Database moves local index partitions corresponding to the specified partition. If the
moved partitions are not empty, then the database marks them UNUSABLE. The database
invalidates global indexes on heap-organized tables. You can update these indexes during this
operation using the update_index_clauses.

When you move a LOB data segment, Oracle Database drops the old data segment and
corresponding index segment and creates new segments even if you do not specify a new
tablespace.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 131 of 244

The move operation obtains its parallel attribute from the parallel_clause, if specified. When it is
not specified, the default parallel attributes of the table, if any, are used. If neither is specified,
then Oracle Database performs the move serially.

Specifying the parallel_clause in MOVE PARTITION does not change the default parallel attributes of
table.

Note

For index-organized tables, Oracle Database uses the address of the primary key, as
well as its value, to construct logical rowids. The logical rowids are stored in the
secondary index of the table. If you move a partition of an index-organized table, then
the address portion of the rowids will change, which can hamper performance. To
ensure optimal performance, rebuild the secondary index(es) on the moved partition to
update the rowids.

See Also

"Moving Table Partitions: Example"

MAPPING TABLE

The MAPPING TABLE clause is relevant only for an index-organized table that already has a
mapping table defined for it. Oracle Database moves the mapping table along with the moved
index-organized table partition. The mapping table partition inherits the physical attributes of
the moved index-organized table partition. This is the only way you can change the attributes
of the mapping table partition. If you omit this clause, then the mapping table partition retains
its original attributes.

Oracle Database marks UNUSABLE all corresponding bitmap index partitions.

Refer to the mapping_table_clauses (in CREATE TABLE) for more information on this clause.

ONLINE

Specify ONLINE to indicate that DML operations on the table partition will be allowed while
moving the table partition.

Restrictions on the ONLINE Clause

The ONLINE clause is subject to the following restrictions when moving table partitions:

• You cannot specify the ONLINE clause for tables owned by SYS.

• You cannot specify the ONLINE clause for index-organized tables.

• You cannot specify the ONLINE clause for heap-organized tables that contain object types
or on which bitmap join indexes or domain indexes are defined.

• Parallel DML and direct path INSERT operations require an exclusive lock on the table.
Therefore, these operations are not supported concurrently with an ongoing online partition
MOVE, due to conflicting locks.

Restrictions on Moving Table Partitions

Moving table partitions is subject to the following restrictions:

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 132 of 244

• If partition is a hash partition, then the only attribute you can specify in this clause is
TABLESPACE.

• You cannot specify this clause for a partition containing subpartitions. However, you can
move subpartitions using the move_table_subpartition clause.

move_table_subpartition

Use the move_table_subpartition clause to move the subpartition identified by
subpartition_extended_name to another segment. If you do not specify TABLESPACE, then the
subpartition remains in the same tablespace.

If the subpartition is not empty, then Oracle Database marks UNUSABLE all local index
subpartitions corresponding to the subpartition being moved. You can update all indexes on
heap-organized tables during this operation using the update_index_clauses.

If the table contains LOB columns, then you can use the LOB_storage_clause to move the LOB
data and LOB index segments associated with this subpartition. Only the LOBs specified are
affected. If you do not specify the LOB_storage_clause for a particular LOB column, then its LOB
data and LOB index segments are not moved.

When you move a LOB data segment, Oracle Database drops the old data segment and
corresponding index segment and creates new segments even if you do not specify a new
tablespace.

ONLINE

Specify ONLINE to indicate that DML operations on the table subpartition will be allowed while
moving the table subpartition.

Restrictions on the ONLINE Clause

The ONLINE clause for moving table subpartitions is subject to the same restrictions as the
ONLINE clause for moving table partitions. Refer to "Restrictions on the ONLINE Clause."

Restriction on Moving Table Subpartitions

The only clauses of the partitioning_storage_clause you can specify are the TABLESPACE clause and
table_compression.

add_external_partition_attrs
Use this clause to add external parameters to a partitioned table.

add_table_partition

Use the add_table_partition clause to add one or more range, list, or system partitions to table, or to
add one hash partition to table.

For each partition added, Oracle Database adds to any local index defined on table a new
partition with the same name as that of the base table partition. If the index already has a
partition with such a name, then Oracle Database generates a partition name of the form
SYS_Pn.

If table is index organized, then for each partition added Oracle Database adds a partition to
any mapping table and overflow area defined on the table as well.

If table is the parent table of a reference-partitioned table, then you can use the
dependent_tables_clause to propagate the partition maintenance operation you are specifying in this
statement to all the reference-partitioned child tables.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 133 of 244

The default indexing property of table is inherited by the new table partition(s). You can override
this by setting the indexing property of a list, range, or system partition using the indexing_clause
in the table_partition_description clause, or a hash partition using the indexing_clause in the
add_hash_partition_clause.

For each partition added to a composite-partitioned table, Oracle Database adds a new index
partition with the same subpartition descriptions to all local indexes defined on table. Global
indexes defined on table are not affected. If you specify the indexing property for the new table
partition, then the new subpartitions inherit the indexing property for the partition. Otherwise,
the new subpartitions inherit the default indexing property for the table. You can override this
by setting the indexing property of a subpartition using the indexing_clause in the
range_subpartition_desc, individual_hash_subparts, and list_subpartition_desc clauses.

BEFORE Clause

You can specify the optional BEFORE clause only when adding system partitions to table. This
clause lets you specify where the new partition(s) should be added in relation to existing
partitions. You cannot split a system partition. Therefore, this clause is useful if you want to
divide the contents of one existing partition among multiple new partitions. If you omit this
clause, then the database adds the new partition(s) after the existing partitions.

Restriction on Adding Table Partitions

If table is an index-organized table, or if a local domain index is defined on table, then you can
add only one partition at a time.

See Also

"Adding a Table Partition with a LOB and Nested Table Storage: Examples" and
"Adding Multiple Partitions to a Table: Example"

add_range_partition_clause

The add_range_partition_clause lets you add a new range partition to the high end of a range-
partitioned or composite range-partitioned table (after the last existing partition).

If a domain index is defined on table, then the index must not be marked IN_PROGRESS or
FAILED.

Restrictions on Adding Range Partitions

Adding range partitions is subject to the following restrictions:

• If the upper partition bound of each partitioning key in the existing high partition is
MAXVALUE, then you cannot add a partition to the table. Instead, use the split_table_partition
clause to add a partition at the beginning or the middle of the table.

• The prefix_compression and OVERFLOW clauses, are valid only for a partitioned index-
organized table. You can specify prefix_compression only if prefix compression is enabled at
the table level. You can specify OVERFLOW only if the partitioned table already has an
overflow segment.

• You cannot specify the PCTUSED parameter for the index segment of an index-organized
table.

range_values_clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 134 of 244

Specify the upper bound for the new partition. The value_list is a comma-delimited, ordered list
of literal values corresponding to the partitioning key columns. The value_list must collate greater
than the partition bound for the highest existing partition in the table.

table_partition_description

Use this clause to specify any create-time physical attributes for the new partition. If the table
contains LOB columns, then you can also specify partition-level attributes for one or more LOB
items.

external_part_subpart_data_props

Starting with Oracle Database 12c Release 2 (12.2), Oracle supports partitioned and
composite-partitioned external tables. When adding a partition to such a table, you can
optionally use this clause to specify the DEFAULT DIRECTORY and LOCATION for the partition.
Refer to DEFAULT DIRECTORY and LOCATION in the documentation on CREATE TABLE for
the full semantics of these clauses.

Subpartition Descriptions

These clauses are valid only for composite-partitioned tables. Use the range_subpartition_desc,
list_subpartition_desc, individual_hash_subparts, or hash_subparts_by_quantity clause as appropriate, if you
want to specify subpartitions for the new partition. This clause overrides any subpartition
descriptions defined in subpartition_template at the table level.

add_hash_partition_clause

The add_hash_partition_clause lets you add a new hash partition to the high end of a hash-
partitioned table. Oracle Database populates the new partition with rows rehashed from other
partitions of table as determined by the hash function. For optimal load balancing, the total
number of partitions should be a power of 2.

You can specify a name for the partition, and optionally a tablespace where it should be stored.
If you do not specify a name, then the database assigns a partition name of the form SYS_Pn. If
you do not specify TABLESPACE, then the new partition is stored in the default tablespace of the
table. Other attributes are always inherited from table-level defaults.

If this operation causes data to be rehashed among partitions, then the database marks
UNUSABLE any corresponding local index partitions. You can update all indexes on heap-
organized tables during this operation using the update_index_clauses.

Use the parallel_clause to specify whether to parallelize the creation of the new partition.

Use the read_only_clause to put a table partition in read-only or read/write mode. Refer to the
read_only_clause of CREATE TABLE for the full semantics of this clause.

Use the indexing_clause to specify the indexing property for the partition. If you do not specify this
clause, then the partition inherits the default indexing property of table.

See Also

CREATE TABLE and Oracle Database VLDB and Partitioning Guide for more
information on hash partitioning

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 135 of 244

add_list_partition_clause

The add_list_partition_clause lets you add a new partition to table using a new set of partition values.
You can specify any create-time physical attributes for the new partition. If the table contains
LOB columns, then you can also specify partition-level attributes for one or more LOB items.

Restrictions on Adding List Partitions

You cannot add a list partition if you have already defined a DEFAULT partition for the table.
Instead, you must use the split_table_partition clause to split the DEFAULT partition.

See Also

• list_partitions of CREATE TABLE for more information and restrictions on list
partitions

• "Working with Default List Partitions: Example"

add_system_partition_clause

Use this clause to add a partition to a system-partitioned table. Oracle Database adds a
corresponding index partition to all local indexes defined on the table.

The table_partition_description lets you specify partition-level attributes of the new partition. The
values of any unspecified attributes are inherited from the table-level values.

Restriction on Adding System Partitions

You cannot specify the OVERFLOW clause when adding a system partition.

See Also

The CREATE TABLE clause system_partitioning for more information on system
partitions

coalesce_table_partition

COALESCE applies only to hash partitions. Use the coalesce_table_partition clause to indicate that
Oracle Database should select the last hash partition, distribute its contents into one or more
remaining partitions as determined by the hash function, and then drop the last partition.

Oracle Database drops local index partitions corresponding to the selected partition. The
database marks UNUSABLE the local index partitions corresponding to one or more absorbing
partitions. The database invalidates any indexes on heap-organized tables. You can update all
indexes during this operation using the update_index_clauses.

Restriction on Coalescing Table Partitions

If you update global indexes using the update_all_indexes_clause, then you can specify only the
keywords UPDATE INDEXES, not the subclause.

drop_external_partition_attrs
Use this clause to drop external parameters in a partitioned table.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 136 of 244

drop_table_partition

The drop_table_partition clause removes partitions, and the data in those partitions, from a
partitioned table. If you want to drop a partition but keep its data in the table, then you must
merge the partition into one of the adjacent partitions.

Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to drop a partition
from a partitioned table or composite-partitioned external table.

See Also

merge_table_partitions

Use the partition_extended_names clause to specify one or more partitions to be dropped. When
specifying multiple partitions, you must specify all partitions by name, as shown in the upper
branch of the syntax diagram, or all partitions using the FOR clause, as shown in the lower
branch of the syntax diagram. You cannot use both types of syntax in one drop operation.

• If table has LOB columns, then Oracle Database also drops the LOB data and LOB index
partitions and any subpartitions corresponding to the table partition(s) being dropped.

• If table has equipartitioned nested table columns, then Oracle Database also drops the
nested table partitions corresponding to the table partition(s) being dropped.

• If table is index organized and has a mapping table defined on it, then the database drops
the corresponding mapping table partition(s) as well.

• Oracle Database drops local index partitions and subpartitions corresponding to the
dropped partition(s), even if they are marked UNUSABLE.

You can update indexes on table during this operation using the update_index_clauses.
Updates to global indexes are metadata-only and the index entries for records that are
dropped by the drop operation will continue to be physically stored in the index. You can
remove these orphaned index entries by specifying COALESCE CLEANUP in the ALTER INDEX
statement or in the modify_index_partition clause.

If you specify the parallel_clause with the update_index_clauses, then the database parallelizes the
index update, not the drop operation.

If you drop a range partition and later insert a row that would have belonged to the dropped
partition, then the database stores the row in the next higher partition. However, if that partition
is the highest partition, then the insert will fail, because the range of values represented by the
dropped partition is no longer valid for the table.

Restrictions on Dropping Table Partitions

Dropping table partitions is subject to the following restrictions:

• You cannot drop a partition of a hash-partitioned table. Instead, use the coalesce_table_partition
clause.

• You cannot drop all of the partitions in a table. Instead, drop the table.

• If you update global indexes using the update_all_indexes_clause, then you can specify
only the UPDATE INDEXES keywords but not the subclause.

• If table is an index-organized table, or if a local domain index is defined on table, then you
can drop only one partition at a time.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 137 of 244

• You cannot drop a partition of a duplicated table.

• Dropping a partition does not place the partition in the Oracle Database recycle bin,
regardless of the setting of the recycle bin. Dropped partitions are immediately removed
from the system.

See Also

"Dropping a Table Partition: Example"

drop_table_subpartition

Use this clause to drop range or list subpartitions from a range, list, or hash composite-
partitioned table. Oracle Database deletes any rows in the dropped subpartition(s).

Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to drop a
subpartition from a composite-partitioned external table.

Use the subpartition_extended_names clause to specify one or more subpartitions to be dropped.
When specifying multiple subpartitions, you must specify all subpartitions by name, as shown
in the upper branch of the syntax diagram, or all subpartitions using the FOR clause, as shown
in the lower branch of the syntax diagram. You cannot use both types of syntax in one drop
operation.

Oracle Database drops the corresponding subpartition(s) of any local index. Other index
subpartitions are not affected. Any global indexes are marked UNUSABLE unless you specify
the update_global_index_clause or update_all_indexes_clause. Updates to global indexes are metadata-
only and the index entries for records that are dropped by the drop operation will continue to be
physically stored in the index. You can remove these orphaned index entries by specifying
COALESCE CLEANUP in the ALTER INDEX statement or in the modify_index_partition clause.

Restrictions on Dropping Table Subpartitions

Dropping table subpartitions is subject to the following restrictions:

• You cannot drop a hash subpartition. Instead use the MODIFY PARTITION ... COALESCE
SUBPARTITION syntax.

• You cannot drop all of the subpartitions in a partition. Instead, use the drop_table_partition
clause.

• If you update the global indexes, then you cannot specify the optional subclause of the
update_all_indexes_clause.

• If table is an index-organized table, then you can drop only one subpartition at a time.

• When dropping multiple subpartitions, all of the subpartitions must be in the same partition.

• You cannot drop a subpartition of a duplicated table.

rename_partition_subpart

Use the rename_partition_subpart clause to rename a table partition or subpartition to new_name. For
both partitions and subpartitions, new_name must be different from all existing partitions and
subpartitions of the same table.

If table is index organized, then Oracle Database assigns the same name to the corresponding
primary key index partition as well as to any existing overflow partitions and mapping table
partitions.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 138 of 244

Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to rename a
partition or subpartition in a partitioned or composite-partitioned external table.

See Also

"Renaming Table Partitions: Examples"

truncate_partition_subpart

Specify TRUNCATE partition_extended_names to remove all rows from the partition(s) identified by
partition_extended_names or, if the table is composite partitioned, all rows from the subpartitions of
those partitions. Specify TRUNCATE subpartition_extended_names to remove all rows from individual
subpartitions. If table is index organized, then Oracle Database also truncates any
corresponding mapping table partitions and overflow area partitions.

When specifying multiple partitions, you must specify all partitions by name, as shown in the
upper branch of the partition_extended_names syntax diagram, or all partitions using the FOR clause,
as shown in the lower branch of the syntax diagram. You cannot use both types of syntax in
one truncate operation. The same rule applies when specifying multiple subpartitions with the
subpartition_extended_names clause.

For each specified partition or subpartition:

• If the partition or subpartition to be truncated contain data, then you must first disable any
referential integrity constraints on the table. Alternatively, you can delete the rows and then
truncate the partition.

• If table contains any LOB columns, then the LOB data and LOB index segments for the
partition are also truncated. If table is composite partitioned, then the LOB data and LOB
index segments for the subpartitions of the partition are truncated.

• If table contains any equipartitioned nested tables, then you cannot truncate the parent
partition unless its corresponding nested table partition is empty.

• If a domain index is defined on table, then the index must not be marked IN_PROGRESS or
FAILED, and the index partition corresponding to the table partition being truncated must
not be marked IN_PROGRESS.

For each partition or subpartition truncated, Oracle Database also truncates corresponding
local index partitions and subpartitions. If those index partitions or subpartitions are marked
UNUSABLE, then the database truncates them and resets the UNUSABLE marker to VALID.

You can update indexes on table during this operation using the update_index_clauses.
Updates to global indexes are metadata-only and the index entries for records that are
dropped by the truncate operation will continue to be physically stored in the index. You can
remove these orphaned index entries by specifying COALESCE CLEANUP in the ALTER INDEX
statement or in the modify_index_partition clause.

If you specify the parallel_clause with the update_index_clauses, then the database parallelizes the
index update, not the truncate operation.

DROP STORAGE

Specify DROP STORAGE to deallocate all space from the deleted rows, except the space
allocated by the MINEXTENTS parameter. This space can subsequently be used by other
objects in the tablespace.

DROP ALL STORAGE

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 139 of 244

Specify DROP ALL STORAGE to deallocate all space from the deleted rows, including the space
allocated by the MINEXTENTS parameter. All segments for the partition(s) or subpartition(s), as
well as all segments for their dependent objects, will be deallocated.

Restrictions on DROP ALL STORAGE

This clause is subject to the same restrictions as described in "Restrictions on Deferred
Segment Creation".

REUSE STORAGE

Specify REUSE STORAGE to keep space from the deleted rows allocated to the partition(s) or
subpartition(s). The space is subsequently available only for inserts and updates to the same
partition(s) or subpartition(s).

CASCADE

Specify CASCADE to truncate the corresponding partition(s) or subpartition(s) in all reference-
partitioned child tables of table.

Restrictions on Truncating Table Partitions and Subpartitions

Truncating table partitions and subpartitions is subject to the following restrictions:

• If you update global indexes using the update_all_indexes_clause, then you can specify only the
UPDATE INDEXES keywords, not the subclause.

• If table is an index-organized table, or if a local domain index is defined on table, then you
can truncate only one table partition or one table subpartition at a time.

• You cannot truncate partitions or subpartitions in a duplicated table.

See Also

"Truncating Table Partitions: Example"

split_table_partition

The split_table_partition clause lets you create, from the partition identified by partition_extended_name,
multiple new partitions, each with a new segment, new physical attributes, and new initial
extents. The segment associated with the current partition is discarded.

The new partitions inherit all unspecified physical attributes from the current partition.

Note

Oracle Database can optimize and speed up SPLIT PARTITION and SPLIT SUBPARTITION
operations if specific conditions are met. Refer to Oracle Database VLDB and
Partitioning Guide for information on optimizing these operations.

• If you split a DEFAULT list partition, then the last resulting partition will have the DEFAULT
value. All other resulting partitions will have the specified split values.

• If table is index organized, then Oracle Database splits any corresponding mapping table
partition and places it in the same tablespace as the parent index-organized table partition.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 140 of 244

The database also splits any corresponding overflow area, and you can use the OVERFLOW
clause to specify segment attributes for the new overflow areas.

• If table contains LOB columns, then you can use the LOB_storage_clause to specify separate
LOB storage attributes for the LOB data segments resulting from the split. The database
drops the LOB data and LOB index segments of the current partition and creates new
segments for each LOB column, for each partition, even if you do not specify a new
tablespace.

• If table contains nested table columns, then you can use the split_nested_table_part clause to
specify the storage table names and segment attributes of the nested table segments
resulting from the split. The database drops the nested table segments of the current
partition and creates new segments for each nested table column, for each partition. This
clause allows for multiple nested table columns in the parent table as well as multilevel
nested table columns.

Oracle Database splits the corresponding local index partition, even if it is marked UNUSABLE.
The database marks UNUSABLE, and you must rebuild the local index partitions corresponding
to the split partitions. The new index partitions inherit their attributes from the partition being
split. The database stores the new index partitions in the default tablespace of the index
partition being split. If that index partition has no default tablespace, then the database uses
the tablespace of the new underlying table partitions.

AT Clause

The AT clause applies only to range partitions and lets you split one range partition into two
range partitions. Specify the new noninclusive upper bound for the first of the two new
partitions. The value list must compare less than the original partition bound for the current
partition and greater than the partition bound for the next lowest partition (if there is one).

VALUES Clause

The VALUES clause applies only to list partitions and allows you to split one list partition into two
list partitions. If the table is partitioned on one key column, then use the upper branch of the
list_values syntax to specify a list of values for that column. You can specify NULL if you have not
already specified NULL for another partition in the table. If the table is partitioned on multiple
key columns, then use the lower branch of the list_values syntax to specify a list of value lists.
Each value list is enclosed in parentheses and represents a list of values for the key columns.
Oracle Database creates the first new partition using the list_values you specify and creates the
second new partition using the remaining partition values from the current partition. Therefore,
the value list cannot contain all of the partition values of the current partition, nor can it contain
any partition values that do not already exist for the current partition.

INTO Clause

The INTO clause lets you describe the new partitions resulting from the split.

• The AT ... INTO clause lets you describe the partitions resulting from splitting one range
partition into two range partitions. In range_partition_desc, the keyword PARTITION is required
even if you do not specify the optional names and physical attributes of the two partitions
resulting from the split. If you do not specify new partition names, then Oracle Database
assigns names of the form SYS_Pn. Any attributes you do not specify are inherited from the
current partition.

• The VALUES ... INTO clause lets you describe the partitions resulting from splitting one list
partition into two list partitions. In list_partition_desc, the keyword PARTITION is required even if
you do not specify the optional names and physical attributes of the two partitions resulting
from the split. If you do not specify new partition names, then Oracle Database assigns
names of the form SYS_Pn. Any attributes you do not specify are inherited from the current
partition.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 141 of 244

• The INTO clause lets you split one range partition into two or more range partitions, or one
list partition into two or more list partitions. If you do not specify new partition names, then
Oracle Database assigns names of the form SYS_Pn. Any attributes you do not specify are
inherited from the current partition.

– You must specify range partitions in ascending order of their partition bounds. The
partition bound of the first specified range partition must be greater than the partition
bound for the next lowest partition in the table (if there is one). Do not specify a
partition bound for the last range partition; it will inherit the partition bound of the
current partition.

– For list partitions, all specified partition values for the new partitions must exist in the
current partition. Do not specify any partition values for the last partition. Oracle
Database creates the last partition using the remaining partition values from the
current partition.

For range-hash composite-partitioned tables, if you specify subpartitioning for the new
partitions, then you can specify only TABLESPACE and table compression for the subpartitions.
All other attributes are inherited from the current partition. If you do not specify subpartitioning
for the new partitions, then their tablespace is also inherited from the current partition.

For range-list and list-list composite-partitioned tables, you cannot specify subpartitions for the
new partitions at all. The list subpartitions of the split partition inherit the number of
subpartitions and value lists from the current partition.

For all composite-partitioned tables for which you do not specify subpartition names for the
newly created subpartitions, the newly created subpartitions inherit their names from the parent
partition as follows:

• For those subpartitions in the parent partition with names of the form partition_name
underscore (_) subpartition_name (for example, P1_SUBP1), Oracle Database generates
corresponding names in the newly created subpartitions using the new partition names (for
example P1A_SUB1 and P1B_SUB1).

• For those subpartitions in the parent partition with names of any other form, Oracle
Database generates subpartition names of the form SYS_SUBPn.

Oracle Database splits the corresponding partition(s) in each local index defined on table, even
if the index is marked UNUSABLE.

If table is the parent table of a reference-partitioned table, then you can use the
dependent_tables_clause to propagate the partition maintenance operation you are specifying in this
statement to all the reference-partitioned child tables.

Oracle Database invalidates any indexes on heap-organized tables. You can update these
indexes during this operation using the update_index_clauses.

The parallel_clause lets you parallelize the split operation but does not change the default parallel
attributes of the table.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while splitting the
table partition.

Restrictions on the ONLINE Clause

The ONLINE clause is subject to the following restrictions when splitting table partitions:

• You cannot specify the ONLINE clause for tables owned by SYS.

• You cannot specify the ONLINE clause for index-organized tables.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 142 of 244

• You cannot specify the ONLINE clause if a domain index is defined on the table.

• You cannot specify the ONLINE clause for heap-organized tables that contain object types
or on which bitmap join indexes are defined.

• Parallel DML and direct path INSERT operations require an exclusive lock on the table.
Therefore, these operations are not supported concurrently with an ongoing online partition
split, due to conflicting locks.

Restrictions on Splitting Table Partitions

Splitting table partitions is subject to the following restrictions:

• You cannot specify this clause for a hash partition.

• You cannot specify the parallel_clause for index-organized tables.

• If table is an index-organized table, or if a local domain index is defined on table, then you
can split the partition into only two new partitions.

See Also

"Splitting Table Partitions: Examples"

split_table_subpartition

Use this clause to split a subpartition into multiple new subpartitions with nonoverlapping value
lists.

Note

Oracle Database can optimize and speed up SPLIT PARTITION and SPLIT SUBPARTITION
operations if specific conditions are met. Refer to Oracle Database VLDB and
Partitioning Guide for information on optimizing these operations.

AT Clause

The AT clause is valid only for range subpartitions. Specify the new noninclusive upper bound
for the first of the two new subpartitions. The value list must compare less than the original
subpartition bound for the subpartition identified by subpartition_extended_name and greater than the
partition bound for the next lowest subpartition (if there is one).

VALUES Clause

The VALUES clause is valid only for list subpartitions. If the table is subpartitioned on one key
column, then use the upper branch of the list_values syntax to specify a list of values for that
column. You can specify NULL if you have not already specified NULL for another subpartition
in the same partition. If the table is subpartitioned on multiple key columns, then use the lower
branch of the list_values syntax to specify a list of value lists. Each value list is enclosed in
parentheses and represents a list of values for the key columns. Oracle Database creates the
first new subpartition using the subpartition value list you specify and creates the second new
partition using the remaining partition values from the current subpartition. Therefore, the value
list cannot contain all of the partition values of the current subpartition, nor can it contain any
partition values that do not already exist for the current subpartition.

INTO Clause

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 143 of 244

The INTO clause lets you describe the new subpartitions resulting from the split.

• The AT ... INTO clause lets you describe the two subpartitions resulting from splitting one
range partition into two range partitions. In range_subpartition_desc, the keyword SUBPARTITION
is required even if you do not specify the optional names and attributes of the two new
subpartitions. If you do not specify new subpartition names, then Oracle Database assigns
names of the form SYS_SUBPn Any attributes you do not specify are inherited from the
current subpartition.

• The VALUES ... INTO clause lets you describe the two subpartitions resulting from splitting
one list partition into two list partitions. In list_subpartition_desc, the keyword SUBPARTITION is
required even if you do not specify the optional names and attributes of the two new
subpartitions. If you do not specify new subpartition names, then Oracle Database assigns
names of the form SYS_SUBPn Any attributes you do not specify are inherited from the
current subpartition.

• The INTO clause lets you split one range subpartition into two or more range subpartitions,
or one list subpartition into two or more list subpartitions. If you do not specify new
subpartition names, then Oracle Database assigns names of the form SYS_SUBPn. Any
attributes you do not specify are inherited from the current subpartition.

– You must specify range subpartitions in ascending order of their subpartition bounds.
The subpartition bound of the first specified range subpartition must be greater than
the subpartition bound for the next lowest subpartition (if there is one). Do not specify a
subpartition bound for the last range subpartition; it will inherit the partition bound of
the current subpartition.

– For list subpartitions, all specified subpartition values for the new subpartitions must
exist in the current subpartition. Do not specify any subpartition values for the last
subpartition. Oracle Database creates the last subpartition using the remaining
partition values from the current subpartition.

Oracle Database splits any corresponding local subpartition index, even if it is marked
UNUSABLE. The new index subpartitions inherit the names of the new table subpartitions unless
those names are already held by index subpartitions. In that case, the database assigns new
index subpartition names of the form SYS_SUBPn. The new index subpartitions inherit physical
attributes from the parent subpartition. However, if the parent subpartition does not have a
default TABLESPACE attribute, then the new subpartitions inherit the tablespace of the
corresponding new table subpartitions.

Oracle Database invalidates indexes on heap-organized tables. You can update these indexes
by using the update_index_clauses.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while splitting the
table subpartition.

Restrictions on the ONLINE Clause

The ONLINE clause for splitting table subpartitions is subject to the same restrictions as the
ONLINE clause for splitting table partitions. Refer to Restrictions on the ONLINE Clause.

Restrictions on Splitting Table Subpartitions

Splitting table subpartitions is subject to the following restrictions:

• You cannot specify this clause for a hash subpartition.

• In subpartition descriptions, the only clauses of partitioning_storage_clause you can specify are
TABLESPACE and table compression.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 144 of 244

• You cannot specify the parallel_clause for index-organized tables.

• If table is an index-organized table, then you can split the subpartition into only two new
subpartitions.

merge_table_partitions

The merge_table_partitions clause lets you merge the contents of two or more range, list, or system
partitions of table into one new partition and then drop the original partitions. This clause is not
valid for hash partitions. Use the coalesce_table_partition clause instead.

Specify a comma-separated list of two or more range, list, or system partitions to be merged.
You can use the TO clause to specify two or more adjacent range partitions to be merged.

For each partition, use partition to specify a partition name or the FOR clause to specify a
partition without using its name. See "References to Partitioned Tables and Indexes " for more
information on the FOR clause.

• The partitions to be merged must be adjacent and must be specified in ascending order of
their partition bounds if they are range partitions. List partitions and system partitions need
not be adjacent in order to be merged.

• When you merge range partitions, the new partition inherits the partition bound of the
highest of the original partitions.

• When you merge list partitions, the resulting partition value list is the union of the set of the
partition values lists of the partitions being merged. If you merge a DEFAULT list partition
with other list partitions, then the resulting partition will be the DEFAULT partition and will
have the DEFAULT value.

• When you merge composite range partitions or composite list partitions, range-list or list-
list composite partitions, you cannot specify subpartition descriptions. Oracle Database
obtains the subpartitioning information from the subpartition template. If you have not
specified a subpartition template, then the database creates one MAXVALUE subpartition
from range subpartitions or one DEFAULT subpartition from list subpartitions.

Any attributes you do not specify explicitly for the new partition are inherited from table-level
defaults. However, if you reuse one of the partition names for the new partition, then the new
partition inherits values from the partition whose name is being reused rather than from table-
level default values.

Oracle Database drops local index partitions corresponding to the selected partitions and
marks UNUSABLE the local index partition corresponding to merged partition. The database
also marks UNUSABLE any global indexes on heap-organized tables. You can update all these
indexes during this operation using the update_index_clauses.

If table is the parent table of a reference-partitioned table, then you can use the
dependent_tables_clause to propagate the partition maintenance operation you are specifying in this
statement to all the reference-partitioned child tables.

ONLINE

Specify ONLINE to allow DML operations on the table partitions during the merge partitions
operation.

Restriction on Merging Table Partitions

If table is an index-organized table, or if a local domain index is defined on table, then you can
merge only two partitions at a time.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 145 of 244

See Also

"Merging Two Table Partitions: Example", "Merging Four Adjacent Range Partitions:
Example", and "Working with Default List Partitions: Example"

merge_table_subpartitions

The merge_table_subpartitions clause lets you merge the contents of two or more range or list
subpartitions of table into one new subpartition and then drop the original subpartitions. This
clause is not valid for hash subpartitions. Use the coalesce_hash_subpartition clause instead.

Specify a comma-separated list of two or more range or list subpartitions to be merged. You
can use the TO clause to specify two or more adjacent range subpartitions to be merged.

For each subpartition, use subpartition to specify a subpartition name or the FOR clause to
specify a subpartition without using its name. See "References to Partitioned Tables and
Indexes " for more information on the FOR clause.

The subpartitions to be merged must belong to the same partition. If they are range
subpartitions, then they must be adjacent. If they are list subpartitions, then they need not be
adjacent. The data in the resulting subpartition consists of the combined data from the merged
subpartitions.

If you specify the INTO clause, then in the range_subpartition_desc or list_subpartition_desc you cannot
specify the range_values_clause or list_values_clause, respectively. Further, the only clauses you can
specify in the partitioning_storage_clause are the TABLESPACE clause and table_compression.

Any attributes you do not specify explicitly for the new subpartition are inherited from partition-
level values. However, if you reuse one of the subpartition names for the new subpartition, then
the new subpartition inherits values from the subpartition whose name is being reused rather
than from partition-level default values.

Oracle Database merges corresponding local index subpartitions and marks the resulting index
subpartition UNUSABLE. The database also marks UNUSABLE both partitioned and
nonpartitioned global indexes on heap-organized tables. You can update all indexes during this
operation using the update_index_clauses.

ONLINE

Specify ONLINE to allow DML operations on the table subpartitions during the merge
subpartitions operation.

Restriction on Merging Table Subpartitions

If table is an index-organized table, then you can merge only two subpartitions at a time.

exchange_partition_subpart

Use the EXCHANGE PARTITION or EXCHANGE SUBPARTITION clause to exchange the data and
index segments of:

• One nonpartitioned table with:

– one range, list, or hash partition

– one range, list, or hash subpartition

• One range-partitioned table with the range subpartitions of a range-range or list-range
composite-partitioned table partition

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 146 of 244

• One hash-partitioned table with the hash subpartitions of a range-hash or list-hash
composite-partitioned table partition

• One list-partitioned table with the list subpartitions of a range-list or hash-list composite-
partitioned table partition

In all cases, the structure of the table and the partition or subpartition being exchanged,
including their partitioning keys, must be identical. In the case of list partitions and
subpartitions, the corresponding value lists must also match.

This clause facilitates high-speed data loading when used with transportable tablespaces.

See Also

Oracle Database Administrator's Guide for information on transportable tablespaces

If table contains LOB columns, then for each LOB column Oracle Database exchanges LOB
data and LOB index partition or subpartition segments with corresponding LOB data and LOB
index segments of table.

If table has nested table columns, then for each such column Oracle Database exchanges
nested table partition segments with corresponding nested table segments of the
nonpartitioned table.

If table contains an identity column, then so must the partition or subpartition being exchanged,
and vice versa. The sequence generators must both be increasing or decreasing. The
sequence generators are not exchanged, so table and the partition or subpartition will continue
to use the same sequence generators. The high water mark for both sequence generators will
be adjusted so that new identity column values will not conflict with existing values.

All of the segment attributes of the two objects (including tablespace and logging) are also
exchanged.

Existing statistics for the table being exchanged into the partitioned table will be exchanged.
However, the global statistics for the partitioned table will not be altered. Use the
DBMS_STATS.GATHER_TABLE_STATS procedure to re-create global statistics. You can set the
GRANULARITY attribute equal to 'APPROX_GLOBAL AND PARTITION' to speed up the process and
aggregate new global statistics based on the existing partition statistics. See Oracle Database
PL/SQL Packages and Types Reference for more information on this packaged procedure.

Oracle Database invalidates any global indexes on the objects being exchanged. You can
update the global indexes on the table whose partition is being exchanged by using either the
update_global_index_clause or the update_all_indexes_clause. For the update_all_indexes_clause,
you can specify only the keywords UPDATE INDEXES, not the subclause. Global indexes on the
table being exchanged remain invalidated. The update_global_index_clause and
update_all_indexes_clause do not update local indexes during an exchange operation. You can
specify local index maintenance by using the INCLUDING | EXCLUDING INDEXES clause. If
you specify the parallel_clause with either of these clauses, then the database parallelizes the
index update, not the exchange operation.

See Also

"Notes on Exchanging Partitions and Subpartitions"

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 147 of 244

WITH TABLE

Specify the table with which the partition or subpartition will be exchanged. If you omit schema,
then Oracle Database assumes that table is in your own schema.

INCLUDING | EXCLUDING INDEXES

Specify INCLUDING INDEXES if you want local index partitions or subpartitions to be exchanged
with the corresponding table index (for a nonpartitioned table) or local indexes (for a hash-
partitioned table). Specify EXCLUDING INDEXES if you want all index partitions or subpartitions
corresponding to the partition and all the regular indexes and index partitions on the
exchanged table to be marked UNUSABLE. If you omit this clause, then the default is
EXCLUDING INDEXES.

WITH | WITHOUT VALIDATION

Specify WITH VALIDATION if you want Oracle Database to return an error if any rows in the
exchanged table do not map into partitions or subpartitions being exchanged. Specify WITHOUT
VALIDATION if you do not want Oracle Database to check the proper mapping of rows in the
exchanged table. If you omit this clause, then the default is WITH VALIDATION.

exceptions_clause

See "Handling Constraint Exceptions " for information on this clause. In the context of
exchanging partitions, this clause is valid only if the partitioned table has been defined with a
UNIQUE constraint, and that constraint must be in DISABLE VALIDATE state. This clause is valid
only for exchanging partition, not subpartitions.

CASCADE

Specify CASCADE to exchange the corresponding partition or subpartition in all reference-
partitioned child tables of table. The reference-partitioned table hierarchies of the source and
target must match.

Restrictions on CASCADE

The following restrictions apply to the CASCADE clause:

• You cannot specify CASCADE if a parent key in the reference-partitioned table hierarchy is
referenced by multiple partitioning constraints.

• You cannot specify CASCADE if a domain index or an XMLIndex index is defined on any of
the reference-partitioned child tables of table.

See Also

• The DBMS_IOT package in Oracle Database PL/SQL Packages and Types
Reference for information on the SQL scripts

• Oracle Database Administrator's Guide for information on eliminating migrated
and chained rows

• constraint for more information on constraint checking and "Creating an
Exceptions Table for Index-Organized Tables: Example"

Notes on Exchanging Partitions and Subpartitions

The following notes apply when exchanging partitions and subpartitions:

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 148 of 244

• Both tables involved in the exchange must have the same primary key, and no validated
foreign keys can be referencing either of the tables unless the referenced table is empty.

• When exchanging partitioned index-organized tables:

– The source and target table or partition must have their primary key set on the same
columns, in the same order.

– If prefix compression is enabled, then it must be enabled for both the source and the
target, and with the same prefix length.

– Both the source and target must be index organized.

– Both the source and target must have overflow segments, or neither can have overflow
segments. Also, both the source and target must have mapping tables, or neither can
have a mapping table.

– Both the source and target must have identical storage attributes for any LOB
columns.

See Also

"Exchanging Table Partitions: Example"

dependent_tables_clause

This clause is valid only when you are altering the parent table of a reference-partitioned table.
The clause lets you specify attributes of partitions that are created by the operation for
reference-partitioned child tables of the parent table.

• If the parent table is not composite partitioned, then specify one or more child tables, and
for each child table specify one partition_spec for each partition created in the parent table.

• If the parent table is composite, then specify one or more child tables, and for each child
table specify one partition_spec for each subpartition created in the parent table.

See Also

The CREATE TABLE clause reference_partitioning for information on creating reference-
partitioned tables and Oracle Database VLDB and Partitioning Guide for information
on partitioning by reference in general

UNUSABLE LOCAL INDEXES Clauses

These two clauses modify the attributes of local index partitions and index subpartitions
corresponding to partition, depending on whether you are modifying a partition or subpartition.

• UNUSABLE LOCAL INDEXES marks UNUSABLE the local index partition or index subpartition
associated with partition.

• REBUILD UNUSABLE LOCAL INDEXES rebuilds the unusable local index partition or index
subpartition associated with partition.

Restrictions on UNUSABLE LOCAL INDEXES

This clause is subject to the following restrictions:

• You cannot specify this clause with any other clauses of the modify_table_partition clause.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 149 of 244

• You cannot specify this clause in the modify_table_partition clause for a partition that has
subpartitions. However, you can specify this clause in the modify_table_subpartition clause.

update_index_clauses

Use the update_index_clauses to update the indexes on table as part of the table partitioning
operation. When you perform DDL on a table partition, if an index is defined on table, then
Oracle Database invalidates the entire index, not just the partitions undergoing DDL. This
clause lets you update the index partition you are changing during the DDL operation,
eliminating the need to rebuild the index after the DDL.

The update_index_clauses are not needed, and are not valid, for partitioned index-organized tables.
Index-organized tables are primary key based, so Oracle can keep global indexes USABLE
during operations that move data but do not change its value.

update_global_index_clause

Use this clause to update only global indexes on table. Oracle Database marks UNUSABLE all
local indexes on table.

UPDATE GLOBAL INDEXES

Specify UPDATE GLOBAL INDEXES to update the global indexes defined on table.

Restriction on Updating Global Indexes

If the global index is a global domain index defined on a LOB column, then Oracle Database
marks the domain index UNUSABLE instead of updating it.

INVALIDATE GLOBAL INDEXES

Specify INVALIDATE GLOBAL INDEXES to invalidate the global indexes defined on table.

If you specify neither, then Oracle Database invalidates the global indexes.

Restrictions on Invalidating Global Indexes

This clause is supported only for global indexes. It is not supported for index-organized tables.
In addition, this clause updates only indexes that are USABLE and VALID. UNUSABLE indexes
are left unusable, and INVALID global indexes are ignored.

update_all_indexes_clause

Use this clause to update all indexes on table.

update_index_partition

This clause is valid only for operations on table partitions and affects only local indexes.

• The index_partition_description lets you specify physical attributes, tablespace storage, and
logging for each partition of each local index. If you specify only the PARTITION keyword,
then Oracle Database updates the index partition as follows:

– For operations on a single table partition (such as MOVE PARTITION and SPLIT
PARTITION), the corresponding index partition inherits the attributes of the affected
index table partition, Oracle Database does not generate names for new index
partitions, so any new index partitions resulting from this operation inherit their names
from the corresponding new table partition.

– For MERGE PARTITION operations, the resulting local index partition inherits its name
from the resulting table partition and inherits its attributes from the local index.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 150 of 244

For a domain index, you can use the PARAMETERS clause to specify the parameter string
that is passed uninterpreted to the appropriate ODCI indextype routine. The PARAMETERS
clause is valid only for domain indexes, and is the only part of the index_partition_description
you can specify for a domain index.

See Also

Oracle Database Data Cartridge Developer's Guide for more information on
domain indexes

• For a composite-partitioned index, the index_subpartition_clause lets you specify tablespace
storage for each subpartition. Refer to the index_subpartition_clause (in CREATE INDEX) for
more information on this component of the update_index_partition clause.

For information on the USABLE and UNUSABLE keywords, refer to ALTER INDEX ... USABLE |
UNUSABLE.

update_index_subpartition

This clause is valid only for operations on subpartitions of composite-partitioned tables and
affects only local indexes on composite-partitioned tables. It lets you specify tablespace
storage for one or more subpartitions.

Restrictions on Updating All Indexes

The following restrictions apply to the update_all_indexes_clause:

• You cannot specify this clause for index-organized tables.

• When you exchange a partition or subpartition with the exchange_partition_subpart clause, the
update_all_indexes_clause is applicable only to global indexes. Therefore, you cannot specify
the update_index_partition or update_index_subpartition clauses. You can, however, specify local
index maintenance during an exchange operation by using the INCLUDING | EXCLUDING
INDEXES clause.

See Also

"Updating Global Indexes: Example" and "Updating Partitioned Indexes: Example"

parallel_clause

The parallel_clause lets you change the default degree of parallelism for queries and DML on the
table.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

Restrictions on Changing Table Parallelization

Changing parallelization is subject to the following restrictions:

• If table contains any columns of LOB or user-defined object type, then subsequent INSERT,
UPDATE, and DELETE operations on table are executed serially without notification.
Subsequent queries, however, are executed in parallel.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 151 of 244

• If you specify the parallel_clause in conjunction with the move_table_clause, then the parallelism
applies only to the move, not to subsequent DML and query operations on the table.

See Also

"Specifying Parallel Processing: Example"

alter_table_partitionset

The clauses of alter_table_partitionset only apply to sharded tables within a composite sharding
setup.

The following notes apply when changing table partitioning of sharded tables:

• Specify add_partitionset only to root sharded tables.

• For add and split partitionset operations you must deploy a new primary shardspace per
partitionset before specifying add_partitionset .

• For add and split partitionset operations partition names do not have a value list after them.
This is different from partition by list.

• Specify modify_partitionset only to root sharded tables that are partitioned by list.

• You must provide all the partitionset names as these are not generated by the system.

split_partitionset

Use split_partitionset to split an existing partitionset into one or more partitionsets. This clause is
valid only for root sharded table in a composite sharding setup. New primary shardspaces
must be deployed per new partitionset before executing split_partitionset.

See Operations on Directory-Based Partitioned Table for examples.

add_partitionset

add_partitionset clause is only valid for a root sharded table in a composite sharding setup. When
a new primary shardspace is created, add_partitionset needs to be used to create new
partitionsets.

See Operations on Directory-Based Partitioned Table for examples.

modify_partitionset

modify_partitionset clause is only value for a root sharded table that is partitionset by LIST. Use
this clause to add a new list value to an existing partitionset.

move_partitionset

Use move_partitionset to move all existing partitions of a sharded table in a partitionset to new
tablespace sets.

filter_condition

This clause lets you specify which rows to preserve during the following ALTER TABLE
operations: moving, splitting, or merging table partitions or subpartitions; moving a table; or
converting a nonpartitioned table to a partitioned table. The database preserves only the rows
that satisfy the condition specified in the where_clause. Refer to the where_clause in the
documentation on SELECT for the full semantics of this clause.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 152 of 244

Restrictions on Filter Conditions

The following restrictions apply to the filter_condition clause:

• Filter conditions are supported only for heap-organized tables.

• Filter conditions can refer only to columns in the table being altered. Filter conditions
cannot contain operations, such as joins or subqueries, that reference other database
objects.

• Filter conditions are unsupported for tables with primary or unique keys that are referenced
by enabled foreign keys.

Restrictions and Notes on Using Filter Conditions with Online Operations

The following restrictions and notes apply when you specify a filter condition for an online
ALTER TABLE operation:

• You cannot specify both the filter_condition and ONLINE clauses if supplemental logging is
enabled.

• When you specify both the filter_condition and ONLINE clauses, DML operations on the table
are allowed during the ALTER TABLE operation. The filter condition does not have a direct
effect on the concurrent DML operations. However, consider this combination carefully,
because the filter operation and the DML operations could unintentionally conflict, as
follows:

– Inserts into a nonpartitioned table will succeed. Inserts into a partitioned table will
succeed if they do not violate the partitioning key criteria.

– Delete operations will apply only to rows that are preserved by the filter condition
throughout the ALTER TABLE operation.

– Update operations will apply only to rows that are preserved by the filter condition
throughout the ALTER TABLE operation. These update operations will succeed,
regardless of whether the update operation would have disqualified the rows for
preservation by the filter condition.

– Rows that do not qualify for preservation by the filter condition at the onset of the
ALTER TABLE operation will not be preserved, regardless of whether an update
operation would qualify the rows for preservation.

allow_disallow_clustering

This clause is valid for tables that use attribute clustering. It lets you allow or disallow attribute
clustering for data movement that occurs during the move table operation specified by the
move_table_clause, and the table partition and subpartition maintenance operations specified by
the coalesce_table_[sub]partition, merge_table_[sub]partitions, move_table_[sub]partition, and
split_table_[sub]partition clauses.

• Specify ALLOW CLUSTERING to allow attribute clustering for data movement. This clause
overrides a NO ON DATA MOVEMENT setting in the DDL that created or altered the table.

• Specify DISALLOW CLUSTERING to disallow attribute clustering for data movement. This
clause overrides a YES ON DATA MOVEMENT setting in the DDL that created or altered the
table.

The allow_disallow_clustering clause has no effect if you specify it for a table that does not use
attribute clustering.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 153 of 244

See Also

clustering_when clause of CREATE TABLE for more information on the NO ON DATA
MOVEMENT and YES ON DATA MOVEMENT clauses

{ DEFERRED | IMMEDIATE } INVALIDATION

This clause lets you control when the database invalidates dependent cursors while performing
table partition maintenance operations.

• If you specify DEFERRED INVALIDATION, then the database avoids or defers invalidating
dependent cursors, when possible.

• If you specify IMMEDIATE INVALIDATION, then the database immediately invalidates
dependent cursors, as it did in Oracle Database 12c Release 1 (12.1) and prior releases.
This is the default.

If you omit this clause, then the value of the CURSOR_INVALIDATION initialization parameter
determines when cursors are invalidated.

You can specify this clause only when performing table partition maintenance operations; it is
not supported for any other ALTER TABLE operations.

See Also

• Oracle Database SQL Tuning Guide for more information on cursor invalidation

• Oracle Database Reference for more information in the CURSOR_INVALIDATION
initialization parameter

move_table_clause

The move_table_clause lets you relocate data of a nonpartitioned or partitioned table into new
segments. Alternatively you can move a partition or subpartition of a partitioned table into a
new segment, optionally in a different tablespace, and optionally modify any of its storage
attributes.

You can also move any LOB data segments associated with the table or partition using the
LOB_storage_clause and varray_col_properties clause. LOB items not specified in this clause are not
moved.

Moving Partitions and Subpartitions of Heap-Organized Tables

You can move all the partitions and subpartitions of a partitioned heap-organized table with a
single ALTER TABLE MOVE statement.

Existing partition and subpartition properties that are not modified on table level will be
preserved. For example, if you specify COMPRESS for the ALTER TABLE MOVE command, then all
partitions will be compressed, whereas the tablespace location for each partition will be
preserved. Conversely, if you specify a target tablespace for the ALTER TABLE MOVE , then all
partitions will reside in the specified tablespace after the move, but the individual compression
attribute for each partition will be preserved.

Restrictions on Moving All Partitions and Subpartions of a Partitioned Table with One
Command

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 154 of 244

• You cannot use this functionality if a domain index is defined on the table.

• You cannot use this functionality if the table has columns of type VARRAY.

• You cannot change the attribute clustering properties.

• You can only control table-level segment attributes_clauses, such as tablespace or
compression. Any segment attribute that is managed as default on the table-level is not
supported.

• You cannot use this functionality for an index-organized table .

ONLINE Clause

Specify ONLINE if you want DML operations on the table to be allowed while the table is being
moved.

Restrictions on Moving Tables Online

Moving tables online is subject to the following restrictions:

• You cannot combine this clause with any other clause in the same statement.

• You cannot specify this clause for a partitioned index-organized table.

• You cannot specify this clause if a domain index is defined on the table, like spatial, XML,
or Text indexes.

• Parallel DML and direct path INSERT operations require an exclusive lock on the table.
Therefore, these operations are not supported concurrently with an ongoing online table
MOVE, due to conflicting locks.

• You cannot specify this clause for index-organized tables that contain any LOB, VARRAY,
Oracle-supplied type, or user-defined object type columns.

index_org_table_clause

For an index-organized table, the index_org_table_clause of the move_table_clause lets you additionally
specify overflow segment attributes. The move_table_clause rebuilds the primary key index of the
index-organized table. The overflow data segment is not rebuilt unless the OVERFLOW keyword
is explicitly stated, with two exceptions:

• If you alter the values of PCTTHRESHOLD or the INCLUDING column as part of this ALTER
TABLE statement, then the overflow data segment is rebuilt.

• If you explicitly move any of out-of-line columns (LOBs, varrays, nested table columns) in
the index-organized table, then the overflow data segment is also rebuilt.

The index and data segments of LOB columns are not rebuilt unless you specify the LOB
columns explicitly as part of this ALTER TABLE statement.

mapping_table_clause

Specify MAPPING TABLE if you want Oracle Database to create a mapping table if one does not
already exist. If it does exist, then the database moves the mapping table along with the index-
organized table, and marks any bitmapped indexes UNUSABLE. The new mapping table is
created in the same tablespace as the parent table.

Specify NOMAPPING to instruct the database to drop an existing mapping table.

Refer to mapping_table_clauses (in CREATE TABLE) for more information on this clause.

Restriction on Mapping Tables

You cannot specify NOMAPPING if any bitmapped indexes have been defined on table.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 155 of 244

prefix_compression

Use the prefix_compression clause to enable or disable prefix compression in an index-organized
table.

• COMPRESS enables prefix compression, which eliminates repeated occurrence 1of primary
key column values in index-organized tables. Use integer to specify the prefix length
(number of prefix columns to compress).

The valid range of prefix length values is from 1 to the number of primary key columns
minus 1. The default prefix length is the number of primary key columns minus 1.

• NOCOMPRESS disables prefix compression in index-organized tables. This is the default.

TABLESPACE tablespace

Specify the tablespace into which the rebuilt index-organized table is to be stored.

LOB_storage_clause

Use this clause to move a LOB segment to a different tablespace. You cannot use this clause
to move a LOB segment if the table contains a LONG column. Instead, you must either convert
the LONG column to a LOB, or you must export the table, re-create the table specifying the
desired tablespace storage for the LOB column, and re-import the table data.

UPDATE INDEXES

This clause is valid only when performing online or offline moves of heap-organized tables. It
allows you to update all global indexes on the table.

You can optionally change the tablespace for an index or index partition, as follows:

• Specify the segment_attributes_clause to change the tablespace of a nonpartitioned global index.
Within this clause, you can specify only the TABLESPACE clause.

• Specify the update_index_partition clause to change the tablespace for a partition of a
partitioned global index. Within this clause, you can specify only the TABLESPACE clause of
the segment_attributes_clause.

Restrictions on Moving Tables

Moving tables is subject to the following restrictions:

• If you specify MOVE, then it must be the first clause in the ALTER TABLE statement, and the
only clauses outside this clause that are allowed are the physical_attributes_clause, the
parallel_clause, and the LOB_storage_clause.

• You cannot move a table containing a LONG or LONG RAW column.

• You cannot MOVE an entire partitioned table (either heap- or index-organized). You must
move individual partitions or subpartitions.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 156 of 244

Note

For any LOB columns you specify in a move_table_clause:

• Oracle Database drops the old LOB data segment and corresponding index
segment and creates new segments, even if you do not specify a new tablespace.

• If the LOB index in table resided in a different tablespace from the LOB data, then
Oracle Database collocates the LOB index in the same tablespace with the LOB
data after the move.

See Also

move_table_partition and move_table_subpartition

modify_to_partitioned

Use this clause to partition a nonpartitioned or partitioned table, including indexes, online or
offline.

You can change a nonpartitioned or partitioned table into any type of partitioned or composite
partitioned table with the following characteristics:

• All data in the original table is preserved.

• The data in the newly created partitions or subpartitions of the modified table is stored in
the same tablespace as the original table, unless you specify otherwise in the
table_partitioning_clauses.

• Local index partitions or subpartitions and lob partitions or subpartitions of the modified
table will be co- located with the table partitions or subpartitions unless you specify
otherwise in the table_partitioning_clauses.

• All triggers, constraints, and VPD policies defined on the original table are preserved.

• If table compression is defined on the original nonpartitioned table, then the partitioned
table will use the same type of table compression.

• In case of modifying a partitioned table, the compression setting of the newly created
partitions or subpartitions is derived from the default compression setting of the partitioned
table prior to the modification unless all partitions or subpartitions shared the same
compression method.

Each range, list, or hash partitioning or subpartitioning key column with a character data type,
specified in the modify_to_partitioned clause must have one of the following declared collations:
BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

table_partitioning_clauses

Use this clause to specify the partitioning attributes for the table.

Each range, list, or hash partitioning or subpartitioning key column with a character data type,
specified in the modify_to_partitioned clause must have one of the following declared collations:
BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

This clause has the same semantics here as it has for the CREATE TABLE statement. Refer to
the CREATE TABLE table_partitioning_clauses for the full semantics of this clause.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 157 of 244

NONPARTITIONED

Specify NONPARTITIONED to convert a partitioned table back to a nonpartitioned state.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while changing to a
partitioned table.

UPDATE INDEXES

Use this clause to specify how existing indexes on the table are converted into global
partitioned indexes or local partitioned indexes.

• For index, specify the name of an existing index on the table.

• Specify the local_partitioned_index clause to convert index into a local partitioned index. This
clause has the same semantics here as it has for the CREATE INDEX statement. Refer to
the clause local_partitioned_index in the documentation on CREATE INDEX for the full
semantics of this clause.

• Specify the global_partitioned_index clause to convert index into a global partitioned index. This
clause has the same semantics here as it has for the CREATE INDEX statement. Refer to
the clause global_partitioned_index in the documentation on CREATE INDEX for the full
semantics of this clause.

• Specify the GLOBAL keyword to allow prefixed partitioned and nonpartitioned global
indexes to retain their global shape. This clause prevents such indexes from being
converted to local partitioned indexes; it has no effect on nonprefixed global indexes.

If you specify only the UPDATE INDEXES keywords, or omit the UPDATE INDEXES clause
altogether, then existing indexes are converted as follows:

• Nonprefixed indexes retain their original shape: normal indexes are converted to
nonpartitioned global indexes, nonpartitioned global indexes remain the same, and
partitioned global indexes remain the same and retain their partitioning shape.

• Prefixed indexes are converted to local partitioned indexes. Prefixed indexes include
partitioning keys in the index definition, but the index definition is not limited to including
only the partitioning keys.

• Bitmap indexes are converted to local partitioned indexes, regardless of whether they are
prefixed or not.

Default Index Rules for Conversion from Partitioned to Partitioned Table

The rule set for default index conversion for partitioned to partitioned table is identical to the
one for nonpartitioned to partitioned table, with additional handling of existing local indexes on
the partitioned table.

• If the index is already local, then the index stays as a local index if the index column is
prefixed on both sides of the partitioning dimensions.

• If the partitioning columns are a subset of the key columns, (that is, they are prefixed), then
the global index is converted to local. If the global index is not prefixed, then the shape of
the global index is retained.

Restrictions on Changing a Nonpartitioned Table to a Partitioned Table

The following restrictions apply to the modify_to_partitioned clause:

• You cannot specify this clause for an index-organized table.

• You cannot specify this clause if a domain index is defined on the table.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 158 of 244

• You cannot specify ONLINE when changing a nonpartitioned table to a reference-partitioned
child table. This operation is supported only in offline mode.

See Also

Oracle Database VLDB and Partitioning Guide for more information on converting a
nonpartitioned table into a partitioned table

modify_opaque_type

Use the modify_opaque_type clause to instruct the database to store the specified abstract data
type or XMLType in an ANYDATA column using unpacked storage.

You can specify any abstract data type with this clause. However, it is primarily useful because
it allows you to specify the following data types, which cannot be stored in an ANYDATA column
using conventional storage:

• XMLType

• Abstract data types that contain one or more attributes of type XMLType, CLOB, BLOB, or
NCLOB.

When you use unpacked storage, data types are stored in system-generated hidden columns
that are associated with the ANYDATA column. You can insert and query these data types as
you would data types that are stored in an ANYDATA column using conventional storage.

anydata_column

Specify the name of a column of type ANYDATA. If type_name is an abstract data type that does
not contain an attribute of type XMLType, CLOB, BLOB, or NCLOB, then anydata_column must be
empty.

type_name

Specify the name of one or more abstract data types or XMLType. The abstract data type can
contain an attribute of type XMLType, CLOB, BLOB, or NCLOB. The type can be EDITIONABLE.
When you subsequently insert these data types into anydata_column, they will use unpacked
storage. If you previously specified this clause for the same anydata_column, then unpacked
storage will continue to be used for the previously specified data types as well as the newly
specified data types.

See Also

Oracle Database PL/SQL Packages and Types Reference for information on the
ANYDATA type and "Unpacked Storage in ANYDATA Columns: Example"

immutable_table_clauses

You can use the NO DROP or NO DELETE clauses to modify the definition of an immutable table.

Use the NO DROP clause to modify the retention period for an immutable table or the retention
period for rows within the immutable table. You cannot reduce the retention period.

Example : Modifying the Retention Period for an Immutable Table

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 159 of 244

The following statement modifies the definition of the immutable table imm_tab and specifies that
it cannot be dropped if the newest row is less than 50 days old.

ALTER TABLE imm_tab NO DROP UNTIL 50 DAYS IDLE;

Example : Modifying the Retention Period for Immutable Table Rows

The following statement modifies the definition of the immutable table imm_tab and specifies that
rows cannot be deleted until 120 days after they were created.

ALTER TABLE imm_tab NO DELETE UNTIL 120 DAYS AFTER
 INSERT;

blockchain_table_clauses

You can modify a table created using the keyword BLOCKCHAIN in the ALTER TABLE statement,
and one or more of the blockchain_table_clauses.

See blockchain_table_clauses of CREATE TABLE for the full semantics of the clause.

You can add, drop, and rename a column in a V2 blockchain table.

Use the blockchain_system_chains_clause to configure the number of system chains in a blockchain
table. The range of permissible values is 1 to 1024. For ALTER TABLE, you can increase or
decrease the number of system chains per instance, but you cannot configure a number of
system chains per instance that is less than the maximum number of a system chain already in
the blockchain table.

You cannot use the blockchain_hash_and_data_format_clause of the blockchain_table_clauses in the ALTER
TABLE statement.

Restrictions on All Versions of Blockchain Tables V1 and V2

You can use all the clauses of ALTER TABLE on a blockchain table except the following clauses:

• DROP (SUB)PARTITION

• TRUNCATE (SUB)PARTITION

• EXCHANGE (SUB)PARTITION

• MODIFY TYPE

• RENAME TABLE

Additional Restrictions on V1 Blockchain Tables

The following ADD, DROP, and RENAME COLUMN restrictions apply to V1 blockchain tables but
not V2 blockchain tables:

• RENAME COLUMN

• ADD COLUMN

• DROP COLUMN

duplicated_table_refresh

Use this clause to specify fine-grained refresh rate control for a duplicated table when it is
created with CREATE TABLE. You can also specify the refresh rate later with ALTER TABLE.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 160 of 244

enable_disable_clause

The enable_disable_clause lets you specify whether and how Oracle Database should apply an
integrity constraint. The DROP and KEEP clauses are valid only when you are disabling a unique
or primary key constraint.

See Also

The enable_disable_clause (in CREATE TABLE) for a complete description of this
clause, including notes and restrictions that relate to this statement

TABLE LOCK

Oracle Database permits DDL operations on a table only if the table can be locked during the
operation. Such table locks are not required during DML operations.

Note

Table locks are not acquired on temporary tables.

• Specify ENABLE TABLE LOCK to enable table locks, thereby allowing DDL operations on the
table. All currently executing transactions must commit or roll back before Oracle Database
enables the table lock.

Note

Oracle Database waits until active DML transactions in the database have
completed before locking the table. Sometimes the resulting delay is considerable.

• Specify DISABLE TABLE LOCK to disable table locks, thereby preventing DDL operations on
the table.

Note

Parallel DML operations are not performed when the table lock of the target table
is disabled.

ALL TRIGGERS

Use the ALL TRIGGERS clause to enable or disable all triggers associated with the table.

• Specify ENABLE ALL TRIGGERS to enable all triggers associated with the table. Oracle
Database fires the triggers whenever their triggering condition is satisfied.

To enable a single trigger, use the enable_clause of ALTER TRIGGER.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 161 of 244

See Also

CREATE TRIGGER , ALTER TRIGGER , and "Enabling Triggers: Example"

• Specify DISABLE ALL TRIGGERS to disable all triggers associated with the table. Oracle
Database does not fire a disabled trigger even if the triggering condition is satisfied.

CONTAINER_MAP

Use the CONTAINER_MAP clause to enable or disable the table to be queried using a container
map.

• Specify ENABLE CONTAINER_MAP to enable the table to be queried using a container map.

• Specify DISABLE CONTAINER_MAP to disable the table from being queried using a container
map.

CONTAINERS_DEFAULT

Use the CONTAINERS_DEFAULT clause to enable or disable the table for the CONTAINERS clause.

• Specify ENABLE CONTAINERS_DEFAULT to enable the table for the CONTAINERS clause.

• Specify DISABLE CONTAINERS_DEFAULT to disable the table for the CONTAINERS clause.

Examples

Adding Constraints to Tables: Example

The following statements create a new table to manipulate data and display the information in
the newly created table:

CREATE TABLE JOBS_Temp AS SELECT * FROM HR.JOBS;

SELECT * FROM JOBS_Temp WHERE MIN_SALARY < 3000;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
PU_CLERK Purchasing Clerk 2500 5500
ST_CLERK Stock Clerk 2008 5000
SH_CLERK Shipping Clerk 2500 5500

The following statement updates the column values to a higher value:

UPDATE JOBS_Temp SET MIN_SALARY = 2300 WHERE MIN_SALARY < 2010;

The following statement adds a constraint:

ALTER TABLE JOBS_Temp ADD CONSTRAINT chk_sal_min CHECK (MIN_SALARY >=2010);

The following statement displays the table information:

SELECT * FROM JOBS_Temp WHERE MIN_SALARY < 3000;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
PU_CLERK Purchasing Clerk 2500 5500
ST_CLERK Stock Clerk 2300 5000
SH_CLERK Shipping Clerk 2500 5500

The following statement displays the constraint:

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 162 of 244

SELECT CONSTRAINT_NAME FROM USER_CONSTRAINTS WHERE TABLE_NAME='JOBS_TEMP';

CONSTRAINT_NAME
--
SYS_C008830
CHK_SAL_MIN

Adding and Modifying Precheck State Constraint: Example

The following statement create a product table with constraint state PRECHECK set on some
columns:

CREATE TABLE product(
 id NUMBER NOT NULL PRIMARY KEY,
 name VARCHAR2(50),
 price NUMBER CHECK (mod(price,4) = 0 and 10 <> price) PRECHECK,
 color NUMBER CHECK (color >= 10 and color <=50 and mod(color,2) = 0)
 PRECHECK,
 description VARCHAR2(50) CHECK (length(description) <= 40) PRECHECK,
 constant NUMBER CHECK (constant=10) PRECHECK,
 CONSTRAINT TC1 CHECK (color > 0 AND price > 10) PRECHECK,
 CONSTRAINT TC2 CHECK (CATEGORY IN ('home', 'apparel') AND price > 10)
);

Add precheck to a new constraint

ALTER TABLE product MODIFY (name VARCHAR2(50) CHECK
 (regexp_like(name, '^Product')) PRECHECK);

Modify an existing constraint TC2:

ALTER TABLE product MODIFY CONSTRAINT TC2 PRECHECK;

Remove an exisiting precheck constraint on TC1:

ALTER TABLE product MODIFY CONSTRAINT TC1 NOPRECHECK;

Collection Retrieval: Example

The following statement modifies nested table column ad_textdocs_ntab in the sample table
sh.print_media so that when queried it returns actual values instead of locators:

ALTER TABLE print_media MODIFY NESTED TABLE ad_textdocs_ntab
 RETURN AS VALUE;

Specifying Parallel Processing: Example

The following statement specifies parallel processing for queries to the sample table
oe.customers:

ALTER TABLE customers
 PARALLEL;

Changing the State of a Constraint: Examples

The following statement places in ENABLE VALIDATE state an integrity constraint named
emp_manager_fk in the employees table:

ALTER TABLE employees
 ENABLE VALIDATE CONSTRAINT emp_manager_fk
 EXCEPTIONS INTO exceptions;

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 163 of 244

Each row of the employees table must satisfy the constraint for Oracle Database to enable the
constraint. If any row violates the constraint, then the constraint remains disabled. The
database lists any exceptions in the table exceptions. You can also identify the exceptions in the
employees table with the following statement:

SELECT e.*
 FROM employees e, exceptions ex
 WHERE e.rowid = ex.row_id
 AND ex.table_name = 'EMPLOYEES'
 AND ex.constraint = 'EMP_MANAGER_FK';

The following statement tries to place in ENABLE NOVALIDATE state two constraints on the
employees table:

ALTER TABLE employees
 ENABLE NOVALIDATE PRIMARY KEY
 ENABLE NOVALIDATE CONSTRAINT emp_last_name_nn;

This statement has two ENABLE clauses:

• The first places a primary key constraint on the table in ENABLE NOVALIDATE state.

• The second places the constraint named emp_last_name_nn in ENABLE NOVALIDATE state.

In this case, Oracle Database enables the constraints only if both are satisfied by each row in
the table. If any row violates either constraint, then the database returns an error and both
constraints remain disabled.

Consider the foreign key constraint on the location_id column of the departments table, which
references the primary key of the locations table. The following statement disables the primary
key of the locations table:

ALTER TABLE locations
 MODIFY PRIMARY KEY DISABLE CASCADE;

The unique key in the locations table is referenced by the foreign key in the departments table, so
you must specify CASCADE to disable the primary key. This clause disables the foreign key as
well.

Creating an Exceptions Table for Index-Organized Tables: Example

The following example creates the except_table table to hold rows from the index-organized table
hr.countries that violate the primary key constraint:

EXECUTE DBMS_IOT.BUILD_EXCEPTIONS_TABLE ('hr', 'countries', 'except_table');

ALTER TABLE countries
 ENABLE PRIMARY KEY
 EXCEPTIONS INTO except_table;

To specify an exception table, you must have the privileges necessary to insert rows into the
table. To examine the identified exceptions, you must have the privileges necessary to query
the exceptions table.

See Also

INSERT and SELECT for information on the privileges necessary to insert rows into
tables

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 164 of 244

Disabling a CHECK Constraint: Example

The following statement defines and disables a CHECK constraint on the employees table:

ALTER TABLE employees ADD CONSTRAINT check_comp
 CHECK (salary + (commission_pct*salary) <= 5000)
 DISABLE;

The constraint check_comp ensures that no employee's total compensation exceeds $5000. The
constraint is disabled, so you can increase an employee's compensation above this limit.

Enabling Triggers: Example

The following statement enables all triggers associated with the employees table:

ALTER TABLE employees
 ENABLE ALL TRIGGERS;

Deallocating Unused Space: Example

The following statement frees all unused space for reuse in table employees, where the high
water mark is above MINEXTENTS:

ALTER TABLE employees
 DEALLOCATE UNUSED;

Modifying the Collation of a Column for Fine-Grained Case-Insensitivity: Example

This example shows how to modify a column to be case-insensitive. First, create and populate
table students as follows:

CREATE TABLE students (last_name VARCHAR2(20), id NUMBER);

INSERT INTO students VALUES('Dodd', 364);
INSERT INTO students VALUES('de Niro', 132);
INSERT INTO students VALUES('Vogel', 837);
INSERT INTO students VALUES('van der Kamp', 549);
INSERT INTO students VALUES('van Der Meer', 624);

The following statement returns column last_name in alphabetical order. Notice that the results
are case-sensitive; lowercase letters are ordered after uppercase letters.

SELECT last_name, id
 FROM students
 ORDER BY last_name;

LAST_NAME ID
-------------------- ----------
Dodd 364
Vogel 837
de Niro 132
van Der Meer 624
van der Kamp 549

The following statement changes the data-bound collation of column last_name to case-
insensitive collation BINARY_CI:

ALTER TABLE students
 MODIFY (last_name COLLATE BINARY_CI);

The following statement again returns column last_name in alphabetical order. Notice that the
results are now case-insensitive:

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 165 of 244

SELECT last_name, id
 FROM students
 ORDER BY last_name;

LAST_NAME ID
-------------------- ----------
de Niro 132
Dodd 364
van der Kamp 549
van Der Meer 624
Vogel 837

Renaming a Column: Example

The following example renames the credit_limit column of the sample table oe.customers to
credit_amount:

ALTER TABLE customers
 RENAME COLUMN credit_limit TO credit_amount;

Dropping a Column: Example

This statement illustrates the drop_column_clause with CASCADE CONSTRAINTS. Assume table t1 is
created as follows:

CREATE TABLE t1 (
 pk NUMBER PRIMARY KEY,
 fk NUMBER,
 c1 NUMBER,
 c2 NUMBER,
 CONSTRAINT ri FOREIGN KEY (fk) REFERENCES t1,
 CONSTRAINT ck1 CHECK (pk > 0 and c1 > 0),
 CONSTRAINT ck2 CHECK (c2 > 0)
);

An error will be returned for the following statements:

ALTER TABLE t1 DROP (pk); -- pk is a parent key
ALTER TABLE t1 DROP (c1); -- c1 is referenced by multicolumn
 -- constraint ck1

Submitting the following statement drops column pk, the primary key constraint, the foreign key
constraint, ri, and the check constraint, ck1:

ALTER TABLE t1 DROP (pk) CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are also dropped,
then CASCADE CONSTRAINTS is not required. For example, assuming that no other referential
constraints from other tables refer to column pk, then it is valid to submit the following
statement without the CASCADE CONSTRAINTS clause:

ALTER TABLE t1 DROP (pk, fk, c1);

Dropping Unused Columns: Example

The following statements create a new table to manipulate data and display the information in
the newly created table:

CREATE TABLE JOBS_Temp AS SELECT * FROM HR.JOBS;

SELECT * FROM JOBS_Temp WHERE MAX_SALARY > 20000;

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 166 of 244

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_PRES President 20080 40000
AD_VP Administration Vice President 15000 30000
SA_MAN Sales Manager 10000 20080

The following statement adds two new columns:

ALTER TABLE JOBS_Temp ADD (DUMMY1 NUMBER(2), DUMMY2 NUMBER(2));

The following statements inserts values into the newly added columns:

INSERT INTO JOBS_Temp(JOB_ID, JOB_TITLE, DUMMY1, DUMMY2) VALUES ('D','DUMMY',10,20);

INSERT INTO JOBS_Temp(JOB_ID, JOB_TITLE, DUMMY1, DUMMY2) VALUES ('D','DUMMY',10,20)

The following statement sets the newly added columns to unused:

ALTER TABLE JOBS_TEMP SET UNUSED (DUMMY1, DUMMY2);

The following statement displays the count of unused columns:

SELECT * FROM USER_UNUSED_COL_TABS WHERE TABLE_NAME='JOBS_TEMP';

TABLE_NAM COUNT
--------- ----------
JOBS_TEMP 2

The following statement drops the unused columns:

ALTER TABLE JOBS_TEMP DROP UNUSED COLUMNS;

The following statement displays the table information:

SELECT * FROM JOBS_TEMP;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_PRES President 20080 40000
AD_VP Administration Vice President 15000 30000
AD_ASST Administration Assistant 3000 6000
FI_MGR Finance Manager 8200 16000
FI_ACCOUNT Accountant 4200 9000
AC_MGR Accounting Manager 8200 16000
AC_ACCOUNT Public Accountant 4200 9000
SA_MAN Sales Manager 10000 20080
SA_REP Sales Representative 6000 12008
PU_MAN Purchasing Manager 8000 15000
PU_CLERK Purchasing Clerk 2500 5500
ST_MAN Stock Manager 5500 8500
ST_CLERK Stock Clerk 2008 5000
SH_CLERK Shipping Clerk 2500 5500
IT_PROG Programmer 4000 10000
MK_MAN Marketing Manager 9000 15000
MK_REP Marketing Representative 4000 9000
HR_REP Human Resources Representative 4000 9000
PR_REP Public Relations Representative 4500 10500
D DUMMY
D DUMMY

Modifying Index-Organized Tables: Examples

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 167 of 244

This statement modifies the INITRANS parameter for the index segment of index-organized
table countries_demo, which is based on hr.countries:

ALTER TABLE countries_demo INITRANS 4;

The following statement adds an overflow data segment to index-organized table countries:

ALTER TABLE countries_demo ADD OVERFLOW;

This statement modifies the INITRANS parameter for the overflow data segment of index-
organized table countries:

ALTER TABLE countries_demo OVERFLOW INITRANS 4;

Splitting Table Partitions: Examples

The following statement splits the old partition sales_q4_2000 in the sample table sh.sales, creating
two new partitions, naming one sales_q4_2000b and reusing the name of the old partition for the
other:

ALTER TABLE sales SPLIT PARTITION SALES_Q4_2000
 AT (TO_DATE('15-NOV-2000','DD-MON-YYYY'))
 INTO (PARTITION SALES_Q4_2000, PARTITION SALES_Q4_2000b);

The following statement splits the old partition sales_q1_2002 into three new partitions
sales_jan_2002, sales_feb_2002, and sales_mar_2002:

ALTER TABLE sales SPLIT PARTITION SALES_Q1_2002 INTO (
 PARTITION SALES_JAN_2002 VALUES LESS THAN (TO_DATE('01-FEB-2002','DD-MON-YYYY')),
 PARTITION SALES_FEB_2002 VALUES LESS THAN (TO_DATE('01-MAR-2002','DD-MON-YYYY')),
 PARTITION SALES_MAR_2002);

The following statements create a partitioned version of the pm.print_media table. The LONG
column in the print_media table has been converted to LOB. The table is stored in tablespaces
created in "Creating Oracle Managed Files: Examples". The object types underlying the
ad_textdocs_ntab and ad_header columns are created in the script that creates the pm sample
schema:

CREATE TABLE print_media_part (
 product_id NUMBER(6),
 ad_id NUMBER(6),
 ad_composite BLOB,
 ad_sourcetext CLOB,
 ad_finaltext CLOB,
 ad_fltextn NCLOB,
 ad_textdocs_ntab TEXTDOC_TAB,
 ad_photo BLOB,
 ad_graphic BFILE,
 ad_header ADHEADER_TYP)
 NESTED TABLE ad_textdocs_ntab STORE AS textdoc_nt
 PARTITION BY RANGE (product_id)
 (PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (200));

The following statement splits partition p2 of that table into partitions p2a and p2b:

ALTER TABLE print_media_part
 SPLIT PARTITION p2 AT (150) INTO
 (PARTITION p2a TABLESPACE omf_ts1
 LOB (ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts2),
 PARTITION p2b

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 168 of 244

 LOB (ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts2))
 NESTED TABLE ad_textdocs_ntab INTO (PARTITION nt_p2a, PARTITION nt_p2b);

In both partitions p2a and p2b, Oracle Database creates the LOB segments for columns ad_photo
and ad_composite in tablespace omf_ts2. The LOB segments for the remaining columns in partition
p2a are stored in tablespace omf_ts1. The LOB segments for the remaining columns in
partition p2b remain in the tablespaces in which they resided prior to this ALTER statement.
However, the database creates new segments for all the LOB data and LOB index segments,
even if they are not moved to a new tablespace.

The database also creates new segments for nested table column ad_textdocs_ntab. The storage
tables is those new segments are nt_p2a and nt_p2b.

Merging Two Table Partitions: Example

The following statement merges back into one partition the partitions created in "Splitting Table
Partitions: Examples":

ALTER TABLE sales
 MERGE PARTITIONS sales_q4_2000, sales_q4_2000b
 INTO PARTITION sales_q4_2000;

The next statement reverses the example in "Splitting Table Partitions: Examples":

ALTER TABLE print_media_part
 MERGE PARTITIONS p2a, p2b INTO PARTITION p2ab TABLESPACE example
 NESTED TABLE ad_textdocs_ntab STORE AS nt_p2ab;

Merging Four Adjacent Range Partitions: Example

The following statement merges four adjacent range partitions, sales_q1_2000, sales_q2_2000,
sales_q3_2000, and sales_q4_2000 into one partition sales_all_2000:

ALTER TABLE sales
 MERGE PARTITIONS sales_q1_2000 TO sales_q4_2000
 INTO PARTITION sales_all_2000;

Adding a Table Partition with a LOB and Nested Table Storage: Examples

The following statement adds a partition p3 to the print_media_part table (see preceding example)
and specifies storage characteristics for the BLOB, CLOB, and nested table columns of that
table:

ALTER TABLE print_media_part ADD PARTITION p3 VALUES LESS THAN (400)
 LOB(ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts1)
 LOB(ad_sourcetext, ad_finaltext) STORE AS (TABLESPACE omf_ts2)
 NESTED TABLE ad_textdocs_ntab STORE AS nt_p3;

The LOB data and LOB index segments for columns ad_photo and ad_composite in partition p3 will
reside in tablespace omf_ts1. The remaining attributes for these LOB columns will be inherited
first from the table-level defaults, and then from the tablespace defaults.

The LOB data segments for columns ad_source_text and ad_finaltext will reside in the omf_ts2
tablespace, and will inherit all other attributes first from the table-level defaults, and then from
the tablespace defaults.

The partition for the storage table for nested table storage column ad_textdocs_ntab corresponding
to partition p3 of the base table is named nt_p3 and inherits all other attributes first from the
table-level defaults, and then from the tablespace defaults.

Adding Multiple Partitions to a Table: Example

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 169 of 244

The following statement adds three partitions to the table print_media_part created in "Splitting
Table Partitions: Examples":

ALTER TABLE print_media_part ADD
 PARTITION p3 values less than (300),
 PARTITION p4 values less than (400),
 PARTITION p5 values less than (500);

Working with Default List Partitions: Example

The following statements use the list partitioned table created in "List Partitioning Example".
The first statement splits the existing default partition into a new south partition and a default
partition:

ALTER TABLE list_customers SPLIT PARTITION rest
 VALUES ('MEXICO', 'COLOMBIA')
 INTO (PARTITION south, PARTITION rest);

The next statement merges the resulting default partition with the asia partition:

ALTER TABLE list_customers
 MERGE PARTITIONS asia, rest INTO PARTITION rest;

The next statement re-creates the asia partition by splitting the default partition:

ALTER TABLE list_customers SPLIT PARTITION rest
 VALUES ('CHINA', 'THAILAND')
 INTO (PARTITION asia, PARTITION rest);

Dropping a Table Partition: Example

The following statement drops partition p3 created in "Adding a Table Partition with a LOB and
Nested Table Storage: Examples":

ALTER TABLE print_media_part DROP PARTITION p3;

Exchanging Table Partitions: Example

This example creates the table exchange_table with the same structure as the partitions of the
list_customers table created in "List Partitioning Example". It then replaces partition rest of table
list_customers with table exchange_table without exchanging local index partitions with corresponding
indexes on exchange_table and without verifying that data in exchange_table falls within the bounds of
partition rest:

CREATE TABLE exchange_table (
 customer_id NUMBER(6),
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address CUST_ADDRESS_TYP,
 nls_territory VARCHAR2(30),
 cust_email VARCHAR2(40));

ALTER TABLE list_customers
 EXCHANGE PARTITION rest WITH TABLE exchange_table
 WITHOUT VALIDATION;

Modifying Table Partitions: Examples

The following statement marks all the local index partitions corresponding to the asia partition of
the list_customers table UNUSABLE:

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 170 of 244

ALTER TABLE list_customers MODIFY PARTITION asia
 UNUSABLE LOCAL INDEXES;

The following statement rebuilds all the local index partitions that were marked UNUSABLE:

ALTER TABLE list_customers MODIFY PARTITION asia
 REBUILD UNUSABLE LOCAL INDEXES;

Moving Table Partitions: Example

The following statement moves partition p2b (from "Splitting Table Partitions: Examples") to
tablespace omf_ts1:

ALTER TABLE print_media_part
 MOVE PARTITION p2b TABLESPACE omf_ts1;

Renaming Table Partitions: Examples

The following statement renames a partition of the sh.sales table:

ALTER TABLE sales RENAME PARTITION sales_q4_2003 TO sales_currentq;

Truncating Table Partitions: Example

The following statement uses the print_media_demo table created in "Partitioned Table with LOB
Columns Example". It deletes all the data in the p1 partition and deallocates the freed space:

ALTER TABLE print_media_demo
 TRUNCATE PARTITION p1 DROP STORAGE;

Updating Global Indexes: Example

The following statement splits partition sales_q1_2000 of the sample table sh.sales and updates any
global indexes defined on it:

ALTER TABLE sales SPLIT PARTITION sales_q1_2000
 AT (TO_DATE('16-FEB-2000','DD-MON-YYYY'))
 INTO (PARTITION q1a_2000, PARTITION q1b_2000)
 UPDATE GLOBAL INDEXES;

Updating Partitioned Indexes: Example

The following statement splits partition costs_Q4_2003 of the sample table sh.costs and updates the
local index defined on it. It uses the tablespaces created in "Creating Basic Tablespaces:
Examples".

CREATE INDEX cost_ix ON costs(channel_id) LOCAL;

ALTER TABLE costs
 SPLIT PARTITION costs_q4_2003 at
 (TO_DATE('01-Nov-2003','dd-mon-yyyy'))
 INTO (PARTITION c_p1, PARTITION c_p2)
 UPDATE INDEXES (cost_ix (PARTITION c_p1 tablespace tbs_02,
 PARTITION c_p2 tablespace tbs_03));

Specifying Object Identifiers: Example

The following statements create an object type, a corresponding object table with a primary-
key-based object identifier, and a table having a user-defined REF column:

CREATE TYPE emp_t AS OBJECT (empno NUMBER, address CHAR(30));

CREATE TABLE emp OF emp_t (

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 171 of 244

 empno PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TABLE dept (dno NUMBER, mgr_ref REF emp_t SCOPE is emp);

The next statements add a constraint and a user-defined REF column, both of which reference
table emp

ALTER TABLE dept ADD CONSTRAINT mgr_cons FOREIGN KEY (mgr_ref)
 REFERENCES emp;
ALTER TABLE dept ADD sr_mgr REF emp_t REFERENCES emp;

Adding a Table Column: Example

The following statement adds to the countries table a column named duty_pct of data type
NUMBER and a column named visa_needed of data type VARCHAR2 with a size of 3 and a CHECK
integrity constraint:

ALTER TABLE countries
 ADD (duty_pct NUMBER(2,2) CHECK (duty_pct < 10.5),
 visa_needed VARCHAR2(3));

Adding a Virtual Table Column: Example

The following statement adds to a copy of the hr.employees table a column named income, which is
a combination of salary plus commission. Both salary and commission are NUMBER columns,
so the database creates the virtual column as a NUMBER column even though the data type is
not specified in the statement:

CREATE TABLE emp2 AS SELECT * FROM employees;

ALTER TABLE emp2 ADD (income AS (salary + (salary*commission_pct)));

Modifying Table Columns: Examples

The following statement increases the size of the duty_pct column:

ALTER TABLE countries
 MODIFY (duty_pct NUMBER(3,2));

Because the MODIFY clause contains only one column definition, the parentheses around the
definition are optional.

The following statement changes the values of the PCTFREE and PCTUSED parameters for the
employees table to 30 and 60, respectively:

ALTER TABLE employees
 PCTFREE 30
 PCTUSED 60;

Modifying Storage Attributes for a Table

The following statement creates a table named JOBS_TEMP by using the existing JOBS table:

CREATE TABLE JOBS_TEMP AS SELECT * FROM HR.JOBS;

The following statement queries the USER_TABLES table for storage parameters:

SELECT initial_extent,
 next_extent,

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 172 of 244

 min_extents,
 max_extents,
 pct_increase,
 blocks,
 sample_size
FROM user_tables
WHERE table_name = 'JOBS_TEMP';

INITIAL_EXTENT NEXT_EXTENT MIN_EXTENTS MAX_EXTENTS PCT_INCREASE BLOCKS
SAMPLE_SIZE
-------------- ----------- ----------- ----------- ------------ ---------- -----------
 65536 1048576 1 2147483645 1 19

The following statement alters the JOBS_TEMP table with new storage parameters:

ALTER TABLE JOBS_TEMP MOVE
 STORAGE (INITIAL 20K
 NEXT 40K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 0)
 TABLESPACE USERS;

The following statement queries the USER_TABLES table for the new storage parameters:

SELECT initial_extent,
 next_extent,
 min_extents,
 max_extents,
 pct_increase,
 blocks,
 sample_size
FROM user_tables
WHERE table_name = 'JOBS_TEMP';

INITIAL_EXTENT NEXT_EXTENT MIN_EXTENTS MAX_EXTENTS PCT_INCREASE BLOCKS
SAMPLE_SIZE
-------------- ----------- ----------- ----------- ------------ ---------- -----------
 65536 40960 1 2147483645 1 19

Adding, Altering, Renaming and Dropping Table Columns: Example

The following statements create a new table to manipulate data and display the information in
the newly created table:

CREATE TABLE JOBS_Temp AS SELECT * FROM HR.JOBS;

SELECT * FROM JOBS_Temp WHERE MAX_SALARY > 30000;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_PRES President 20080 40000

The following statement modifies an existing column definition:

ALTER TABLE JOBS_Temp MODIFY(JOB_TITLE VARCHAR2(100));

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 173 of 244

The following statement adds two new columns to the table:

ALTER TABLE JOBS_Temp ADD (BONUS NUMBER (7,2), COMM NUMBER (5,2), DUMMY NUMBER(2));

The following statement displays the newly added columns:

SELECT JOB_ID, BONUS, COMM, DUMMY FROM JOBS_Temp WHERE MAX_SALARY > 20000;

JOB_ID BONUS COMM DUMMY
---------- ---------- ---------- ----------
AD_PRES
AD_VP
SA_MAN

The following statements rename an existing column and display the modified column:

ALTER TABLE JOBS_Temp RENAME COLUMN COMM TO COMMISSION;

SELECT JOB_ID, COMMISSION FROM JOBS_Temp WHERE MAX_SALARY > 20000;

JOB_ID COMMISSION
---------- ----------
AD_PRES
AD_VP
SA_MAN

The following statement drops a single column from the table:

ALTER TABLE JOBS_Temp DROP COLUMN DUMMY;

The following statement drops multiple columns from the table:

ALTER TABLE JOBS_Temp DROP (BONUS, COMMISSION);

Data Encryption: Examples

The following statement encrypts the salary column of the hr.employees table using the encryption
algorithm AES256. As described in "Semantics" above, you must first enable Transparent Data
Encryption:

ALTER TABLE employees
 MODIFY (salary ENCRYPT USING 'AES256' 'NOMAC');

The following statement adds a new encrypted column online_acct_pw to the oe.customers table,
using the default encryption algorithm AES192. Specifying NO SALT will allow a B-tree index to
be created on the column, if desired.

ALTER TABLE customers
 ADD (online_acct_pw VARCHAR2(8) ENCRYPT 'NOMAC' NO SALT);

The following example decrypts the customer.online_acct_pw column:

ALTER TABLE customers
 MODIFY (online_acct_pw DECRYPT);

Allocating Extents: Example

The following statement allocates an extent of 5 kilobytes for the employees table and makes it
available to instance 4:

ALTER TABLE employees
 ALLOCATE EXTENT (SIZE 5K INSTANCE 4);

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 174 of 244

Because this statement omits the DATAFILE parameter, Oracle Database allocates the extent in
one of the data files belonging to the tablespace containing the table.

Specifying a Default Column Value: Examples

This statement modifies the min_price column of the product_information table so that it has a
default value of 10:

ALTER TABLE product_information
 MODIFY (min_price DEFAULT 10);

If you subsequently add a new row to the product_information table and do not specify a value for
the min_price column, then the value of the min_price column is automatically 10:

INSERT INTO product_information (product_id, product_name,
 list_price)
 VALUES (300, 'left-handed mouse', 40.50);

SELECT product_id, product_name, list_price, min_price
 FROM product_information
 WHERE product_id = 300;

PRODUCT_ID PRODUCT_NAME LIST_PRICE MIN_PRICE
---------- -------------------- ---------- ----------
 300 left-handed mouse 40.5 10

To discontinue previously specified default values, so that they are no longer automatically
inserted into newly added rows, replace the values with NULL, as shown in this statement:

ALTER TABLE product_information
 MODIFY (min_price DEFAULT NULL);

The MODIFY clause need only specify the column name and the modified part of the definition,
rather than the entire column definition. This statement has no effect on any existing values in
existing rows.

The following example adds a column defined with DEFAULT ON NULL to a table. The DEFAULT
column value includes the sequence pseudocolumn NEXTVAL.

Create sequence s1 and table t1 as follows:

CREATE SEQUENCE s1 START WITH 1;

CREATE TABLE t1 (name VARCHAR2(10));
INSERT INTO t1 VALUES('Kevin');
INSERT INTO t1 VALUES('Julia');
INSERT INTO t1 VALUES('Ryan');

Add column id, which defaults to s1.NEXTVAL. The default column value for id is assigned to
each existing row in the table. The order in which s1.NEXTVAL is assigned to each row is
nondeterministic.

ALTER TABLE t1 ADD (id NUMBER DEFAULT ON NULL s1.NEXTVAL NOT NULL);

SELECT id, name FROM t1 ORDER BY id;

 ID NAME
---------- ----------
 1 Kevin
 2 Julia
 3 Ryan

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 175 of 244

If you subsequently add a new row to the table and specify a NULL value for the id column,
then the DEFAULT ON NULL expression s1.NEXTVAL is inserted.

INSERT INTO t1(id, name) VALUES(NULL, 'Sean');

SELECT id, name FROM t1 ORDER BY id;

 ID NAME
---------- ----------
 1 Kevin
 2 Julia
 3 Ryan
 4 Sean

Adding a Constraint to an XMLType Table: Example

The following example adds a primary key constraint to the xwarehouses table, created in
"XMLType Examples":

ALTER TABLE xwarehouses
 ADD (PRIMARY KEY(XMLDATA."WarehouseID"));

Refer to XMLDATA Pseudocolumn for information about this pseudocolumn.

Renaming Constraints: Example

The following statement renames the cust_fname_nn constraint on the sample table oe.customers to
cust_firstname_nn:

ALTER TABLE customers RENAME CONSTRAINT cust_fname_nn
 TO cust_firstname_nn;

Dropping Constraints: Examples

The following statement drops the primary key of the departments table:

ALTER TABLE departments
 DROP PRIMARY KEY CASCADE;

If you know that the name of the PRIMARY KEY constraint is pk_dept, then you could also drop it
with the following statement:

ALTER TABLE departments
 DROP CONSTRAINT pk_dept CASCADE;

The CASCADE clause causes Oracle Database to drop any foreign keys that reference the
primary key.

The following statement drops the unique key on the email column of the employees table:

ALTER TABLE employees
 DROP UNIQUE (email);

The DROP clause in this statement omits the CASCADE clause. Because of this omission, Oracle
Database does not drop the unique key if any foreign key references it.

LOB Columns: Examples

The following statement adds CLOB column resume to the employee table and specifies LOB
storage characteristics for the new column:

ALTER TABLE employees ADD (resume CLOB)
 LOB (resume) STORE AS resume_seg (TABLESPACE example);

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 176 of 244

To modify the LOB column resume to use caching, enter the following statement:

ALTER TABLE employees MODIFY LOB (resume) (CACHE);

The following statement adds a SecureFiles CLOB column resume to the employee table and
specifies LOB storage characteristics for the new column. SecureFiles LOBs must be stored in
tablespaces with automatic segment-space management. Therefore, the LOB data in this
example is stored in the auto_seg_ts tablespace, which was created in "Specifying Segment
Space Management for a Tablespace: Example":

ALTER TABLE employees ADD (resume CLOB)
LOB (resume) STORE AS SECUREFILE resume_seg (TABLESPACE auto_seg_ts);

To modify the LOB column resume so that it does not use caching, enter the following statement:

ALTER TABLE employees MODIFY LOB (resume) (NOCACHE);

Nested Tables: Examples

The following statement adds the nested table column skills to the employee table:

ALTER TABLE employees ADD (skills skill_table_type)
 NESTED TABLE skills STORE AS nested_skill_table;

You can also modify nested table storage characteristics. Use the name of the storage table
specified in the nested_table_col_properties to make the modification. You cannot query or perform
DML statements on the storage table. Use the storage table only to modify the nested table
column storage characteristics.

The following statement creates table vet_service with nested table column client and storage
table client_tab. Nested table client_tab is modified to specify constraints:

CREATE TYPE pet_t AS OBJECT
 (pet_id NUMBER, pet_name VARCHAR2(10), pet_dob DATE);
/

CREATE TYPE pet AS TABLE OF pet_t;
/

CREATE TABLE vet_service (vet_name VARCHAR2(30),
 client pet)
 NESTED TABLE client STORE AS client_tab;

ALTER TABLE client_tab ADD UNIQUE (pet_id);

The following statement alters the storage table for a nested table of REF values to specify that
the REF is scoped:

CREATE TYPE emp_t AS OBJECT (eno number, ename char(31));
CREATE TYPE emps_t AS TABLE OF REF emp_t;
CREATE TABLE emptab OF emp_t;
CREATE TABLE dept (dno NUMBER, employees emps_t)
 NESTED TABLE employees STORE AS deptemps;
ALTER TABLE deptemps ADD (SCOPE FOR (COLUMN_VALUE) IS emptab);

Similarly, to specify storing the REF with rowid:

ALTER TABLE deptemps ADD (REF(column_value) WITH ROWID);

In order to execute these ALTER TABLE statements successfully, the storage table deptemps must
be empty. Also, because the nested table is defined as a table of scalar values (REF values),
Oracle Database implicitly provides the column name COLUMN_VALUE for the storage table.

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 177 of 244

See Also

• CREATE TABLE for more information about nested table storage

• Oracle Database Object-Relational Developer's Guide for more information about
nested tables

REF Columns: Examples

The following statement creates an object type dept_t and then creates table staff:

CREATE TYPE dept_t AS OBJECT
 (deptno NUMBER, dname VARCHAR2(20));
/

CREATE TABLE staff
 (name VARCHAR2(100),
 salary NUMBER,
 dept REF dept_t);

An object table offices is created as:

CREATE TABLE offices OF dept_t;

The dept column can store references to objects of dept_t stored in any table. If you would like to
restrict the references to point only to objects stored in the departments table, then you could do
so by adding a scope constraint on the dept column as follows:

ALTER TABLE staff
 ADD (SCOPE FOR (dept) IS offices);

The preceding ALTER TABLE statement will succeed only if the staff table is empty.

If you want the REF values in the dept column of staff to also store the rowids, then issue the
following statement:

ALTER TABLE staff
 ADD (REF(dept) WITH ROWID);

Unpacked Storage in ANYDATA Columns: Example

This example creates a table with an ANYDATA column, stores opaque data types in the
ANYDATA column using unpacked storage, and then queries the data types. This example
assumes that you are connected to the database as user hr.

Create table t1, which contains a NUMBER column n and an ANYDATA column x:

CREATE TABLE t1 (n NUMBER, x ANYDATA);

Create an object type clob_typ, which contains a CLOB attribute:

CREATE OR REPLACE TYPE clob_typ AS OBJECT (c clob);
/

Enable unpacked storage of the opaque data types XMLType and clob_typ in ANYDATA column x
of table t1:

ALTER TABLE t1 MODIFY OPAQUE TYPE x STORE (XMLType, clob_typ) UNPACKED;

Insert XMLType and clob_typ objects into table t1. These types will use unpacked storage:

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 178 of 244

INSERT INTO t1
 VALUES(1, anydata.convertobject(XMLType('<Test>This is test XML</Test>')));

INSERT INTO t1
 VALUES(2, anydata.convertobject(clob_typ(TO_CLOB('This is a test CLOB'))));

Query table t1 to view the names of the types stored in ANYDATA column x:

SELECT t1.*, anydata.getTypeName(t1.x) typename FROM t1;

 N X() TYPENAME
----- -------------------- --------------------
 1 ANYDATA() SYS.XMLTYPE
 2 ANYDATA() HR.CLOB_TYP

Create functions that allow you to query the values stored in the XMLType and clob_typ data
types:

CREATE FUNCTION get_xmltype (ad IN ANYDATA) RETURN VARCHAR2 AS
 rtn_val PLS_INTEGER;
 my_xmltype XMLType;
 string_val VARCHAR2(30);
 BEGIN
 rtn_val := ad.getObject(my_xmltype);
 string_val := my_xmltype.getstringval();
 return (string_val);
 END;
/

CREATE FUNCTION get_clob_typ (ad IN ANYDATA) RETURN VARCHAR2 AS
 rtn_val PLS_INTEGER;
 my_clob_typ clob_typ;
 string_val VARCHAR2(30);
 BEGIN
 rtn_val := ad.getObject(my_clob_typ);
 string_val := (my_clob_typ.c);
 return (string_val);
 END;
/

Query table t1 to view the values stored in each data type in ANYDATA column x:

SELECT t1.*, anydata.getTypeName(t1.x) typename,
 CASE
 WHEN anydata.gettypename(t1.x) = 'SYS.XMLTYPE' THEN get_xmltype(t1.x)
 WHEN anydata.gettypename(t1.x) = 'HR.CLOB_TYP' THEN get_clob_typ(t1.x)
 END string_value
FROM t1;

 N X() TYPENAME STRING_VALUE
----- -------------------- -------------------- ------------------------------
 1 ANYDATA() SYS.XMLTYPE <Test>This is test XML</Test>
 2 ANYDATA() HR.CLOB_TYP This is a test CLOB

Additional Examples

For examples of defining integrity constraints with the ALTER TABLE statement, see the
constraint.

For examples of changing the storage parameters of a table, see the storage_clause.

Add and Drop Annotations at the Table Level

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 179 of 244

The following examples use table1 :

CREATE TABLE table1 (T NUMBER) ANNOTATIONS(Operations 'Sort', Hidden);

The following example drops all annotations from table1:

ALTER TABLE table1 ANNOTATIONS(DROP Operations, DROP Hidden);

The following example adds a new annotation Operations with a JSON value:

ALTER TABLE table1 ANNOTATIONS(ADD Operations '["Sort", "Group"]');

Add and Drop Annotations at the Column Level

The following example adds a new Identity annotation for column T of table1:

ALTER TABLE table1 MODIFY T ANNOTATIONS(Identity 'ID');

The following example adds Hidden, and drops Identity:

ALTER TABLE table1 MODIFY T ANNOTATIONS(ADD Hidden, DROP Identity);

Operations on Directory-Based Partitioned Table

Example: Create Sharded Table and Partition by Directory

CREATE SHARDED TABLE departments
 (department_id NUMBER(6)
 , department_name VARCHAR2(30) CONSTRAINT dept_name_nn NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
 , CONSTRAINT dept_id_pk PRIMARY KEY(department_id)
)
 PARTITION BY DIRECTORY (department_id)
 (
 PARTITION p_1 TABLESPACE tbs1,
 PARTITION p_2 TABLESPACE tbs2
);

The following two examples use the table departments above for operations add and split.

Add Partitions to a Table Partitioned by Directory

ALTER TABLE departments ADD
 PARTITION p_3 TABLESPACE tbs3,
 PARTITION p_4 TABLESPACE tbs4;

Split Partitions of a Table Partitioned by Directory

ALTER TABLE departments
 SPLIT PARTITION p_1 INTO
 (PARTITION p_1 TABLESPACE tbs1,
 PARTITION p_3 TABLESPACE tbs3)
 UPDATE INDEXES;

Chapter 12
ALTER TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 180 of 244

ALTER TABLESPACE
Purpose

Use the ALTER TABLESPACE statement to alter an existing tablespace or one or more of its data
files or temp files.

You cannot use this statement to convert a dictionary-managed tablespace to a locally
managed tablespace. For that purpose, use the DBMS_SPACE_ADMIN package, which is
documented in Oracle Database PL/SQL Packages and Types Reference.

See Also

Oracle Database Administrator's Guide and CREATE TABLESPACE for information on
creating a tablespace

Prerequisites

To alter the SYSAUX tablespace, you must have the SYSDBA system privilege.

If you have the ALTER TABLESPACE system privilege, then you can perform any ALTER
TABLESPACE operation. If you have the MANAGE TABLESPACE system privilege, then you can
only perform the following operations:

• Take a tablespace online or offline

• Begin or end a backup

• Make a tablespace read only or read write

• Change the state of a tablespace to PERMANENT or TEMPORARY

• Set the default logging mode of a tablespace to LOGGING or NOLOGGING

• Put a tablespace in force logging mode or take it out of force logging mode

• Rename a tablespace or a tablespace data file

• Specify RETENTION GUARANTEE or RETENTION NOGUARANTEE for an undo tablespace

• Resize a data file for a tablespace

• Enable or disable autoextension of a data file for a tablespace

• Shrink the amount of space a temporary tablespace or a temp file is taking

Before you can make a tablespace read only, the following conditions must be met:

• The tablespace must be online.

• The tablespace must not contain any active rollback segments. For this reason, the
SYSTEM tablespace can never be made read only, because it contains the SYSTEM rollback
segment. Additionally, because the rollback segments of a read-only tablespace are not
accessible, Oracle recommends that you drop the rollback segments before you make a
tablespace read only.

• The tablespace must not be involved in an open backup, because the end of a backup
updates the header file of all data files in the tablespace.

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 181 of 244

Performing this function in restricted mode may help you meet these restrictions, because only
users with RESTRICTED SESSION system privilege can be logged on.

Syntax

alter_tablespace::=

ALTER TABLESPACE

IF EXISTS

tablespace alter_tablespace_attrs

(alter_tablespace_attrs::=)

alter_tablespace_attrs::=

default_tablespace_params

MINIMUM EXTENT size_clause

RESIZE size_clause

COALESCE

SHRINK SPACE

KEEP size_clause

RENAME TO new_tablespace_name

BEGIN

END
BACKUP

datafile_tempfile_clauses

tablespace_logging_clauses

tablespace_group_clause

tablespace_state_clauses

autoextend_clause

flashback_mode_clause

tablespace_retention_clause

alter_tablespace_encryption

lost_write_protection

(default_tablespace_params::=, size_clause::=, datafile_tempfile_clauses::=,
tablespace_logging_clauses::=, tablespace_group_clause::=, tablespace_state_clauses::=,
autoextend_clause::=, flashback_mode_clause::=, tablespace_retention_clause::=,
alter_tablespace_encryption::=, lost_write_protection::=)

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 182 of 244

default_tablespace_params::=

DEFAULT

default_table_compression default_index_compression inmemory_clause

ilm_clause storage_clause

(default_table_compression::=—part of CREATE TABLESPACE, default_index_compression::=—
part of CREATE TABLESPACE, inmemory_clause::=—part of CREATE TABLESPACE, ilm_clause::=—
part of ALTER TABLE, storage_clause::=)

Note

If you specify the DEFAULT clause, then you must specify at least one of the clauses
default_table_compression, default_index_compression, inmemory_clause, ilm_clause, or storage_clause.

datafile_tempfile_clauses::=

ADD
DATAFILE

TEMPFILE

file_specification

,

DROP
DATAFILE

TEMPFILE

’ filename ’

file_number

SHRINK TEMPFILE
’ filename ’

file_number

KEEP size_clause

RENAME DATAFILE ’ filename ’

,

TO ’ filename ’

,

DATAFILE

TEMPFILE

ONLINE

OFFLINE

(file_specification::=).

tablespace_logging_clauses::=

logging_clause

NO

FORCE LOGGING

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 183 of 244

(logging_clause::=)

tablespace_group_clause::=

TABLESPACE GROUP
tablespace_group_name

’ ’

tablespace_state_clauses::=

ONLINE

OFFLINE

NORMAL

TEMPORARY

IMMEDIATE

READ

ONLY

WRITE

PERMANENT

TEMPORARY

autoextend_clause::=

AUTOEXTEND

OFF

ON

NEXT size_clause maxsize_clause

(size_clause::=)

maxsize_clause::=

MAXSIZE

UNLIMITED

size_clause

(size_clause::=)

flashback_mode_clause::=

FLASHBACK

ON

OFF

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 184 of 244

tablespace_retention_clause::=

RETENTION

GUARANTEE

NOGUARANTEE

alter_tablespace_encryption::=

ENCRYPTION

OFFLINE

tablespace_encryption_spec

ENCRYPT

DECRYPT

ONLINE

tablespace_encryption_spec ENCRYPT

REKEY

DECRYPT

ts_file_name_convert

FINISH

ENCRYPT

REKEY

DECRYPT

ts_file_name_convert

(tablespace_encryption_spec::=, ts_file_name_convert::=)

tablespace_encryption_spec::=

USING ’ encrypt_algorithm ’ MODE ’ cipher_mode ’

ts_file_name_convert::=

FILE_NAME_CONVERT = (’ filename_pattern ’ , ’ replacement_filename_pattern ’

,

)

KEEP

lost_write_protection::=

ENABLE

REMOVE

SUSPEND

LOST WRITE PROTECTION

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 185 of 244

Semantics

IF NOT EXISTS

Specify IF EXISTS to alter an existing tablespace.

Specifying IF NOT EXISTS with ALTER results in error: Incorrect IF EXISTS clause for ALTER/DROP
statement.

tablespace

Specify the name of the tablespace to be altered.

Restrictions on Altering Tablespaces

Altering tablespaces is subject to the following restrictions:

• If tablespace is an undo tablespace, then the only other clauses you can specify in this
statement are ADD DATAFILE, RENAME DATAFILE, RENAME TO (renaming the tablespace),
DATAFILE ... ONLINE, DATAFILE ... OFFLINE, BEGIN BACKUP, and END BACKUP.

• You cannot make the SYSTEM tablespace read only or temporary and you cannot take it
offline.

• For locally managed temporary tablespaces, the only clause you can specify in this
statement is the ADD clause.

See Also

Oracle Database Administrator's Guide for information on automatic undo
management and undo tablespaces

alter_tablespace_attrs

Use the alter_tablespace_attrs clauses to change the attributes of the tablespace.

default_tablespace_params

This clause lets you specify new default parameters for the tablespace. The new default
parameters apply to objects subsequently created in the tablespace.

The clauses default_table_compression, default_index_compression, inmemory_clause, ilm_clause, and
storage_clause have the same semantics in CREATE TABLESPACE and ALTER TABLESPACE. For
complete information on these clauses, refer to the default_tablespace_params clause in the
documentation on CREATE TABLESPACE.

MINIMUM EXTENT

This clause is valid only for permanent dictionary-managed tablespaces. The MINIMUM EXTENT
clause lets you control free space fragmentation in the tablespace by ensuring that every used
or free extent in a tablespace is at least as large as, and is a multiple of, the value specified in
the size_clause.

Restriction on MINIMUM EXTENT

You cannot specify this clause for a locally managed tablespace or for a dictionary-managed
temporary tablespace.

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 186 of 244

See Also

size_clause for information about that clause, Oracle Database Administrator's Guide
for more information about using MINIMUM EXTENT to control space fragmentation

RESIZE Clause

This clause is valid only for bigfile tablespaces, including shadow tablespaces which store lost
write protection tracking data. It lets you increase or decrease the size of the single data file to
an absolute size. Use K, M, G, or T to specify the size in kilobytes, megabytes, gigabytes, or
terabytes, respectively.

To change the size of a newly added data file or temp file in smallfile tablespaces, use the
ALTER DATABASE ... autoextend_clause (see database_file_clauses).

See Also

BIGFILE | SMALLFILE for information on bigfile tablespaces

COALESCE

For each data file in the tablespace, this clause combines all contiguous free extents into larger
contiguous extents.

SHRINK SPACE Clause

This clause is valid only for temporary tablespaces. It lets you reduce the amount of space the
tablespace is taking. In the optional KEEP clause, the size_clause defines the lower bound that a
tablespace can be shrunk to. It is the opposite of MAXSIZE for an autoextensible tablespace. If
you omit the KEEP clause, then the database will attempt to shrink the tablespace as much as
possible as long as other tablespace storage attributes are satisfied.

RENAME Clause

Use this clause to rename tablespace. This clause is valid only if tablespace and all its data files are
online and the COMPATIBLE parameter is set to 10.0.0 or greater. You can rename both
permanent and temporary tablespaces.

If tablespace is read only, then Oracle Database does not update the data file headers to reflect
the new name. The alert log will indicate that the data file headers have not been updated.

Note

If you re-create the control file, and if the data files that Oracle Database uses for this
purpose are restored backups whose headers reflect the old tablespace name, then
the re-created control file will also reflect the old tablespace name. However, after the
database is fully recovered, the control file will reflect the new name.

If tablespace has been designated as the undo tablespace for any instance in an Oracle Real
Application Clusters (Oracle RAC) environment, and if a server parameter file was used to start
up the database, then Oracle Database changes the value of the UNDO_TABLESPACE parameter

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 187 of 244

for that instance in the server parameter file (SPFILE) to reflect the new tablespace name. If a
single-instance database is using a parameter file (pfile) instead of an spfile, then the database
puts a message in the alert log advising the database administrator to change the value
manually in the pfile.

Note

The RENAME clause does not change the value of the UNDO_TABLESPACE parameter in
the running instance. Although this does not affect the functioning of the undo
tablespace, Oracle recommends that you issue the following statement to manually
change the value of UNDO_TABLESPACE to the new tablespace name for the duration of
the instance:

ALTER SYSTEM SET UNDO_TABLESPACE = new_tablespace_name SCOPE = MEMORY;

You only need to issue this statement once. If the UNDO_TABLESPACE parameter is set
to the new tablespace name in the pfile or spfile, then the parameter will be set
correctly when the instance is next restarted.

Restriction on Renaming Tablespaces

You cannot rename the SYSTEM or SYSAUX tablespaces.

BACKUP Clauses

Use these clauses to move all data files in a tablespace into or out of online (sometimes called
hot) backup mode.

See Also

• Oracle Database Administrator's Guide for information on restarting the database
without media recovery

• ALTER DATABASE "BACKUP Clauses" for information on moving all data files in the
database into and out of online backup mode

• ALTER DATABASE alter_datafile_clause for information on taking individual data files
out of online backup mode

BEGIN BACKUP

Specify BEGIN BACKUP to indicate that an open backup is to be performed on the data files that
make up this tablespace. This clause does not prevent users from accessing the tablespace.
You must use this clause before beginning an open backup.

Restrictions on Beginning Tablespace Backup

Beginning tablespace backup is subject to the following restrictions:

• You cannot specify this clause for a read-only tablespace or for a temporary locally
managed tablespace.

• While the backup is in progress, you cannot take the tablespace offline normally, shut
down the instance, or begin another backup of the tablespace.

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 188 of 244

See Also

"Backing Up Tablespaces: Examples"

END BACKUP

Specify END BACKUP to indicate that an online backup of the tablespace is complete. Use this
clause as soon as possible after completing an online backup. Otherwise, if an instance failure
or SHUTDOWN ABORT occurs, then Oracle Database assumes that media recovery (possibly
requiring archived redo log) is necessary at the next instance startup.

Restriction on Ending Tablespace Backup

You cannot use this clause on a read-only tablespace.

datafile_tempfile_clauses

The tablespace file clauses let you add or modify a data file or temp file.

ADD Clause

Specify ADD to add to the tablespace a data file or temp file specified by file_specification. Use the
datafile_tempfile_spec form of file_specification (see file_specification) to list regular data files and
temp files in an operating system file system or to list Oracle Automatic Storage Management
disk group files.

For locally managed temporary tablespaces, this is the only clause you can specify at any
time.

If you omit file_specification, then Oracle Database creates an Oracle Managed File of 100M with
AUTOEXTEND enabled.

You can add a data file or temp file to a locally managed tablespace that is online or to a
dictionary managed tablespace that is online or offline. Ensure the file is not in use by another
database.

Restriction on Adding Data Files and Temp Files

You cannot specify this clause for a bigfile (single-file) tablespace, as such a tablespace has
only one data file or temp file.

Note

On some operating systems, Oracle does not allocate space for a temp file until the
temp file blocks are actually accessed. This delay in space allocation results in faster
creation and resizing of temp files, but it requires that sufficient disk space is available
when the temp files are later used. To avoid potential problems, before you create or
resize a temp file, ensure that the available disk space exceeds the size of the new
temp file or the increased size of a resized temp file. The excess space should allow
for anticipated increases in disk space use by unrelated operations as well. Then
proceed with the creation or resizing operation.

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 189 of 244

See Also

file_specification , "Adding and Dropping Data Files and Temp Files: Examples", and
"Adding an Oracle-managed Data File: Example"

DROP Clause

Specify DROP to drop from the tablespace an empty data file or temp file specified by filename or
file_number. This clause causes the data file or temp file to be removed from the data dictionary
and deleted from the operating system. The database must be open at the time this clause is
specified.

The ALTER TABLESPACE ... DROP TEMPFILE statement is equivalent to specifying the ALTER
DATABASE TEMPFILE ... DROP INCLUDING DATAFILES.

Restrictions on Dropping Files

To drop a data file or temp file, the data file or temp file:

• Must be empty.

• Cannot be the first data file that was created in the tablespace. In such cases, drop the
tablespace instead.

• Cannot be in a read-only tablespace that was migrated from dictionary managed to locally
managed. Dropping a data file from all other read-only tablespaces is supported.

• Cannot be offline.

See Also

• ALTER DATABASE alter_tempfile_clause for additional information on dropping temp
files

• Oracle Database Administrator's Guide for information on data file numbers and
for guidelines on managing data files

• "Adding and Dropping Data Files and Temp Files: Examples"

SHRINK TEMPFILE Clause

This clause is valid only when altering a temporary tablespace. It lets you reduce the amount of
space the specified temp file is taking. In the optional KEEP clause, the size_clause defines the
lower bound that the temp file can be shrunk to. It is the opposite of MAXSIZE for an
autoextensible tablespace. If you omit the KEEP clause, then the database will attempt to shrink
the temp file as much as possible as long as other storage attributes are satisfied.

RENAME DATAFILE Clause

Specify RENAME DATAFILE to rename one or more of the tablespace data files. The database
must be open, and you must take the tablespace offline before renaming it. Each filename must
fully specify a data file using the conventions for filenames on your operating system.

This clause merely associates the tablespace with the new file rather than the old one. This
clause does not actually change the name of the operating system file. You must change the
name of the file through your operating system.

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 190 of 244

See Also

"Moving and Renaming Tablespaces: Example"

ONLINE | OFFLINE Clauses

Use these clauses to take all data files or temp files in the tablespace offline or put them online.
These clauses have no effect on the ONLINE or OFFLINE status of the tablespace itself.

The database must be mounted. If tablespace is SYSTEM, or an undo tablespace, or the default
temporary tablespace, then the database must not be open.

tablespace_logging_clauses

Use these clauses to set or change the logging characteristics of the tablespace.

logging_clause

Specify LOGGING if you want logging of all tables, indexes, and partitions within the tablespace.
The tablespace-level logging attribute can be overridden by logging specifications at the table,
index, and partition levels.

When an existing tablespace logging attribute is changed by an ALTER TABLESPACE statement,
all tables, indexes, and partitions created after the statement will have the new default logging
attribute (which you can still subsequently override). The logging attribute of existing objects is
not changed.

If the tablespace is in FORCE LOGGING mode, then you can specify NOLOGGING in this
statement to set the default logging mode of the tablespace to NOLOGGING, but this will not
take the tablespace out of FORCE LOGGING mode.

[NO] FORCE LOGGING

Use this clause to put the tablespace in force logging mode or take it out of force logging
mode. The database must be open and in READ WRITE mode. Neither of these settings
changes the default LOGGING or NOLOGGING mode of the tablespace.

Restriction on Force Logging Mode

You cannot specify FORCE LOGGING for an undo or a temporary tablespace.

See Also

Oracle Database Administrator's Guide for information on when to use FORCE LOGGING
mode and "Changing Tablespace Logging Attributes: Example"

tablespace_group_clause

This clause is valid only for locally managed temporary tablespaces. Use this clause to add
tablespace to or remove it from the tablespace_group_name tablespace group.

• Specify a group name to indicate that tablespace is a member of this tablespace group. If
tablespace_group_name does not already exist, then Oracle Database implicitly creates it when
you alter tablespace to be a member of it.

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 191 of 244

• Specify an empty string (' ') to remove tablespace from the tablespace_group_name tablespace
group.

Restriction on Tablespace Groups

You cannot specify a tablespace group for a permanent tablespace or for a dictionary-
managed temporary tablespace.

See Also

Oracle Database Administrator's Guide for more information on tablespace groups and
"Assigning a Tablespace Group: Example"

tablespace_state_clauses

Use these clauses to set or change the state of the tablespace.

ONLINE | OFFLINE

Specify ONLINE to bring the tablespace online. Specify OFFLINE to take the tablespace offline
and prevent further access to its segments. When you take a tablespace offline, all of its data
files are also offline.

Note

Before taking a tablespace offline for a long time, consider changing the tablespace
allocation of any users who have been assigned the tablespace as either a default or
temporary tablespace. While the tablespace is offline, such users cannot allocate
space for objects or sort areas in the tablespace. See ALTER USER for more
information on allocating tablespace quota to users.

Restriction on Taking Tablespaces Offline

You cannot take a temporary tablespace offline.

OFFLINE NORMAL

Specify NORMAL to flush all blocks in all data files in the tablespace out of the system global
area (SGA). You need not perform media recovery on this tablespace before bringing it back
online. This is the default.

OFFLINE TEMPORARY

If you specify TEMPORARY, then Oracle Database performs a checkpoint for all online data files
in the tablespace but does not ensure that all files can be written. Files that are offline when
you issue this statement may require media recovery before you bring the tablespace back
online.

OFFLINE IMMEDIATE

If you specify IMMEDIATE, then Oracle Database does not ensure that tablespace files are
available and does not perform a checkpoint. You must perform media recovery on the
tablespace before bringing it back online.

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 192 of 244

Note

The FOR RECOVER setting for ALTER TABLESPACE ... OFFLINE has been deprecated. The
syntax is supported for backward compatibility. However, Oracle recommends that you
use the transportable tablespaces feature for tablespace recovery.

See Also

Oracle Database Backup and Recovery User's Guide for information on using
transportable tablespaces to perform media recovery

READ ONLY | READ WRITE

Specify READ ONLY to place the tablespace in transition read-only mode. In this state,
existing transactions can complete (commit or roll back), but no further DML operations are
allowed to the tablespace except for rollback of existing transactions that previously modified
blocks in the tablespace. You cannot make the SYSAUX, SYSTEM, or temporary tablespaces
READ ONLY.

When a tablespace is read only, you can copy its files to read-only media. You must then
rename the data files in the control file to point to the new location by using the SQL statement
ALTER DATABASE ... RENAME.

See Also

• Oracle Database Concepts for more information on read-only tablespaces

• ALTER DATABASE

Specify READ WRITE to indicate that write operations are allowed on a previously read-only
tablespace.

PERMANENT | TEMPORARY

Specify PERMANENT to indicate that the tablespace is to be converted from a temporary to a
permanent tablespace. A permanent tablespace is one in which permanent database objects
can be stored. This is the default when a tablespace is created.

Specify TEMPORARY to indicate that the tablespace is to be converted from a permanent to a
temporary tablespace. A temporary tablespace is one in which no permanent database objects
can be stored. Objects in a temporary tablespace persist only for the duration of the session.

Restrictions on Temporary Tablespaces

Temporary tablespaces are subject to the following restrictions:

• You cannot specify TEMPORARY for the SYSAUX tablespace.

• If tablespace was not created with a standard block size, then you cannot change it from
permanent to temporary.

• You cannot specify TEMPORARY for a tablespace in FORCE LOGGING mode.

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 193 of 244

autoextend_clause

This clause is valid only for bigfile (single-file) tablespaces. Use this clause to enable or disable
autoextension of the single data file in the tablespace. To enable or disable autoextension of a
newly added data file or temp file in smallfile tablespaces, use the autoextend_clause of the
database_file_clauses in the ALTER DATABASE statement.

See Also

• Oracle Database Administrator's Guide for information about bigfile (single-file)
tablespaces

• file_specification for more information about the autoextend_clause

flashback_mode_clause

Use this clause to specify whether this tablespace should participate in any subsequent
FLASHBACK DATABASE operation.

• For you to turn FLASHBACK mode on, the database must be mounted and closed.

• For you to turn FLASHBACK mode off, the database must be mounted, either open READ
WRITE or closed.

This clause is not valid for temporary tablespaces.

Refer to CREATE TABLESPACE for more complete information on this clause.

See Also

Oracle Database Backup and Recovery User's Guide for more information about
Flashback Database

tablespace_retention_clause

This clause has the same semantics in CREATE TABLESPACE and ALTER TABLESPACE
statements. Refer to tablespace_retention_clause in the documentation on CREATE
TABLESPACE.

alter_tablespace_encryption

These clauses let you encrypt, decrypt, or rekey the tablespace.

ONLINE is the default for ALTER TABLESPACE ENCRYPTION.

ONLINE

• Specify ENCRYPT to encrypt the tablespace. The tablespace must be unencrpyted.

• Specify REKEY to encrypt an encrypted the tablespace using a different encryption
algorithm. The tablespace must have been encrypted when it was created or encrypted
with online conversion (ONLINE ENCRYPT).

• Specify DECRYPT to decrypt the tablespace. The tablespace must have been encrypted
when it was created or encrypted with online conversion (ONLINE ENCRYPT).

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 194 of 244

FINISH

If an online conversion operation is interrupted, use the FINISH clause to finish the operation.
The ENCRYPT, DECRYPT, REKEY, and ts_file_name_convert clauses have the same semantics here
as they have for the ONLINE clause.

You can use FINISH to encrypt, decrypt, or rekey the tablespace with online conversion. The
tablespace must be online. The online conversion method creates a new datafile for each
datafile in the tablespace. Therefore, before using this clause, ensure that the amount of free
disk space is greater than or equal to the amount of disk space currently used by the
tablespace.

OFFLINE

This clause lets you encrypt or decrypt the tablespace with offline conversion. The tablespace
must be offline or the database must be mounted, but not open. The offline conversion method
does not use auxiliary disk space or files; it operates directly on the existing datafiles.
Therefore, you should perform a full backup of the tablespace before converting it offline.

• Specify ENCRYPT to encrypt the tablespace. You can encrypt the tablespace using AES128,
AES192, or AES256 algorithms. The tablespace must be unencrpyted.

• Specify DECRYPT to decrypt the tablespace. The tablespace must have been previously
encrypted with offline conversion (OFFLINE ENCRYPT).

If an offline conversion operation is interrupted, then you can reissue the offline conversion
command to finish the operation.

tablespace_encryption_spec

Use this clause to specify the encryption algorithm to use when encrypting or rekeying the
tablespace. If you omit this clause, then the datafiles will be encrypted using the AES128
algorithm. Refer to tablespace_encryption_spec in the documentation on CREATE TABLESPACE
for the full semantics of this clause.

ts_file_name_convert

Use this clause to determine how the database generates the names of the new datafiles that
are created during online conversion.

If FILE_NAME_CONVERT is omitted, Oracle will internally select a name for the auxiliary file, and
later rename it back to the original name.

• For filename_pattern, specify a string found in an existing datafile name.

• For replacement_filename_pattern, specify a replacement string. Oracle Database will replace
filename_pattern with replacement_filename_pattern when naming the new datafile.

• Specify KEEP to retain the original files after the tablespace conversion is finished. If you
omit this clause, then the original files are deleted when the conversion is finished.

Restriction on the alter_tablespace_encryption Clause

You cannot perform offline or online conversions on temporary tablespaces.

lost_write_protection

Before you can enable lost write protection on individual tablespaces, you must first enable the
database for shadow lost write protection with ALTER DATABASE. Then you must create at least
one shadow tablespace in that database using the CREATE TABLESPACE command.

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 195 of 244

After these steps you can use ALTER TABLESPACE to enable, remove, and suspend lost write
protection on the shadow tablespace.

Example: Enable Lost Write Protection for a Tablespace

The following command enables lost write protection for the tbsu1 tablespace.

 ALTER TABLESPACE tbsu1 ENABLE LOST WRITE PROTECTION

Example: Remove Lost Write Protection for a Shadow Tablespace

The following command removes lost write protection for the tbsu1 tablespace.

 ALTER TABLESPACE tbsu1 REMOVE LOST WRITE PROTECTION

Example: Suspend Lost Write Protection for a Shadow Tablespace

The following command suspends lost write protection for the tbsu1 tablespace.

 ALTER TABLESPACE tbsu1 SUSPEND LOST WRITE PROTECTION

See Also

Managing Lost Write Protection with Shadow Tablespaces

Examples

Backing Up Tablespaces: Examples

The following statement signals to the database that a backup is about to begin:

ALTER TABLESPACE tbs_01
 BEGIN BACKUP;

The following statement signals to the database that the backup is finished:

ALTER TABLESPACE tbs_01
 END BACKUP;

Moving and Renaming Tablespaces: Example

This example moves and renames a data file associated with the tbs_02 tablespace, created in
"Enabling Autoextend for a Tablespace: Example", from diskb:tbs_f5.dbf to diska:tbs_f5.dbf:

1. Take the tablespace offline using an ALTER TABLESPACE statement with the OFFLINE clause:

ALTER TABLESPACE tbs_02 OFFLINE NORMAL;

2. Copy the file from diskb:tbs_f5.dbf to diska:tbs_f5.dbf using your operating system commands.

3. Rename the data file using an ALTER TABLESPACE statement with the RENAME DATAFILE
clause:

ALTER TABLESPACE tbs_02
 RENAME DATAFILE 'diskb:tbs_f5.dbf'
 TO 'diska:tbs_f5.dbf';

4. Bring the tablespace back online using an ALTER TABLESPACE statement with the ONLINE
clause:

ALTER TABLESPACE tbs_02 ONLINE;

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 196 of 244

Adding and Dropping Data Files and Temp Files: Examples

The following statement adds a data file to the tablespace. When more space is needed, new
10-kilobytes extents will be added up to a maximum of 100 kilobytes:

ALTER TABLESPACE tbs_03
 ADD DATAFILE 'tbs_f04.dbf'
 SIZE 100K
 AUTOEXTEND ON
 NEXT 10K
 MAXSIZE 100K;

The following statement drops the empty data file:

ALTER TABLESPACE tbs_03
 DROP DATAFILE 'tbs_f04.dbf';

The following statements add a temp file to the temporary tablespace created in "Creating a
Temporary Tablespace: Example" and then drops the temp file:

ALTER TABLESPACE temp_demo ADD TEMPFILE 'temp05.dbf' SIZE 5 AUTOEXTEND ON;

ALTER TABLESPACE temp_demo DROP TEMPFILE 'temp05.dbf';

Managing Space in a Temporary Tablespace: Example

The following statement manages the space in the temporary tablespace created in "Creating
a Temporary Tablespace: Example" using the SHRINK SPACE clause. The KEEP clause is
omitted, so the database will attempt to shrink the tablespace as much as possible as long as
other tablespace storage attributes are satisfied.

ALTER TABLESPACE temp_demo SHRINK SPACE;

Adding an Oracle-managed Data File: Example

The following example adds an Oracle-managed data file to the omf_ts1 tablespace (see
"Creating Oracle Managed Files: Examples" for the creation of this tablespace). The new data
file is 100M and is autoextensible with unlimited maximum size:

ALTER TABLESPACE omf_ts1 ADD DATAFILE;

Changing Tablespace Logging Attributes: Example

The following example changes the default logging attribute of a tablespace to NOLOGGING:

ALTER TABLESPACE tbs_03 NOLOGGING;

Altering a tablespace logging attribute has no affect on the logging attributes of the existing
schema objects within the tablespace. The tablespace-level logging attribute can be overridden
by logging specifications at the table, index, and partition levels.

Changing Undo Data Retention: Examples

The following statement changes the undo data retention for tablespace undots1 to normal undo
data behavior:

ALTER TABLESPACE undots1
 RETENTION NOGUARANTEE;

The following statement changes the undo data retention for tablespace undots1 to behavior that
preserves unexpired undo data:

Chapter 12
ALTER TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 197 of 244

ALTER TABLESPACE undots1
 RETENTION GUARANTEE;

ALTER TABLESPACE SET

Note

This SQL statement is valid only if you are using Oracle Sharding. For more
information on Oracle Sharding, refer to Oracle Database Administrator’s Guide.

Purpose

Use the ALTER TABLESPACE SET statement to change an attribute of an existing tablespace set.
The attribute change is applied to all tablespaces in the tablespace set.

See Also

CREATE TABLESPACE SET and DROP TABLESPACE SET

Prerequisites

You must be connected to a shard catalog database as an SDB user.

If you have the ALTER TABLESPACE system privilege, then you can perform any ALTER
TABLESPACE SET operation. If you have the MANAGE TABLESPACE system privilege, then you can
only perform the following operations:

• Take all tablespaces in a tablespace set online or offline

• Begin or end a backup

• Make all tablespaces in a tablespace set read only or read write

• Set the default logging mode of all tablespaces in a tablespace set to LOGGING or
NOLOGGING

• Put all tablespaces in a tablespace set in force logging mode or take them out of force
logging mode

• Resize all data files for a tablespace set

• Enable or disable autoextension of all data files for a tablespace set

Before you can make a tablespace set read only, the following conditions must be met:

• The tablespaces in the tablespace set must be online.

• The tablespace set must not contain any active rollback segments. Additionally, because
the rollback segments of a read-only tablespace set are not accessible, Oracle
recommends that you drop the rollback segments before you make a tablespace set read
only.

• The tablespace set must not be involved in an open backup, because the end of a backup
updates the header file of all data files in the tablespace set.

Chapter 12
ALTER TABLESPACE SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 198 of 244

Syntax

alter_tablespace_set::=

ALTER TABLESPACE SET tablespace_set alter_tablespace_attrs ;

alter_tablespace_attrs::=

default_tablespace_params

MINIMUM EXTENT size_clause

RESIZE size_clause

COALESCE

SHRINK SPACE

KEEP size_clause

RENAME TO new_tablespace_name

BEGIN

END
BACKUP

datafile_tempfile_clauses

tablespace_logging_clauses

tablespace_group_clause

tablespace_state_clauses

autoextend_clause

flashback_mode_clause

tablespace_retention_clause

alter_tablespace_encryption

lost_write_protection

(See the following clauses of ALTER TABLESPACE: default_tablespace_params::=,
size_clause::=, datafile_tempfile_clauses::=, tablespace_logging_clauses::=,
tablespace_state_clauses::=, autoextend_clause::=, alter_tablespace_encryption::=)

Semantics

tablespace_set

Specify the name of the tablespace set to be altered.

alter_tablespace_attrs

Use this clause to change an attribute for all tablespaces in the tablespace set.

The subclauses of alter_tablespace_attrs have the same semantics here as for the ALTER
TABLESPACE statement, with the following exceptions:

Chapter 12
ALTER TABLESPACE SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 199 of 244

• You cannot specify the following subclauses for tablespace sets:

– MINIMUM EXTENT size_clause

– SHRINK SPACE [KEEP size_clause]

– tablespace_group_clause

– flashback_mode_clause

– tablespace_retention_clause

• For the datafile_tempfile_clauses, only the following subclauses are supported for tablespace
sets:

– RENAME DATAFILE

– DATAFILE { ONLINE | OFFLINE }

• For the tablespace_state_clauses, the PERMANENT and TEMPORARY subclauses are not
supported for tablespace sets.

See Also

alter_tablespace_attrs in the documentation on ALTER TABLESPACE for the full
semantics of this clause

Examples

Altering a Tablespace Set: Example

The following statement puts all tablespaces in tablespace set ts1 in force logging mode:

ALTER TABLESPACE SET ts1
 FORCE LOGGING;

ALTER TRIGGER
Purpose

Triggers are defined using PL/SQL. Therefore, this section provides some general information
but refers to Oracle Database PL/SQL Language Reference for details of syntax and
semantics.

Use the ALTER TRIGGER statement to enable, disable, or compile a database trigger.

Note

This statement does not change the declaration or definition of an existing trigger. To
redeclare or redefine a trigger, use the CREATE TRIGGER statement with the OR
REPLACE keywords.

Chapter 12
ALTER TRIGGER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 200 of 244

See Also

• CREATE TRIGGER for information on creating a trigger

• DROP TRIGGER for information on dropping a trigger

• Oracle Database Concepts for general information on triggers

Prerequisites

The trigger must be in your own schema or you must have ALTER ANY TRIGGER system
privilege.

In addition, to alter a trigger on DATABASE, you must have the ADMINISTER DATABASE TRIGGER
privilege.

See Also

CREATE TRIGGER for more information on triggers based on DATABASE triggers

Syntax

alter_trigger::=

ALTER TRIGGER

IF EXISTS schema .

trigger_name

trigger_compile_clause

ENABLE

DISABLE

RENAME TO new_name

EDITIONABLE

NONEDITIONABLE

(trigger_compile_clause: See Oracle Database PL/SQL Language Reference for the syntax of this
clause.)

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the trigger. If you omit schema, then Oracle Database assumes
the trigger is in your own schema.

Chapter 12
ALTER TRIGGER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 201 of 244

trigger_name

Specify the name of the trigger to be altered.

trigger_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of this
clause and for complete information on creating and compiling triggers.

ENABLE | DISABLE

Specify ENABLE to enable the trigger. You can also use the ENABLE ALL TRIGGERS clause of
ALTER TABLE to enable all triggers associated with a table. See ALTER TABLE.

Specify DISABLE to disable the trigger. You can also use the DISABLE ALL TRIGGERS clause of
ALTER TABLE to disable all triggers associated with a table.

RENAME Clause

Specify RENAME TO new_name to rename the trigger. Oracle Database renames the trigger and
leaves it in the same state it was in before being renamed.

When you rename a trigger, the database rebuilds the remembered source of the trigger in the
USER_SOURCE, ALL_SOURCE, and DBA_SOURCE data dictionary views. As a result, comments
and formatting may change in the TEXT column of those views even though the trigger source
did not change.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the trigger becomes an editioned or noneditioned object
if editioning is later enabled for the schema object type TRIGGER in schema. The default is
EDITIONABLE. For information about altering editioned and noneditioned objects, see Oracle
Database Development Guide.

Restriction on NONEDITIONABLE

You cannot specify NONEDITIONABLE for a crossedition trigger.

ALTER TYPE
Purpose

Object types are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the ALTER TYPE statement to add or drop member attributes or methods. You can change
the existing properties (FINAL or INSTANTIABLE) of an object type, and you can modify the
scalar attributes of the type.

You can also use this statement to recompile the specification or body of the type or to change
the specification of an object type by adding new object member subprogram specifications.

Prerequisites

The object type must be in your own schema and you must have CREATE TYPE or CREATE ANY
TYPE system privilege, or you must have ALTER ANY TYPE system privileges.

Chapter 12
ALTER TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 202 of 244

Syntax

alter_type::=

ALTER TYPE

IF EXISTS schema .

type_name

alter_type_clause

EDITIONABLE

NONEDITIONABLE

(alter_type_clause: See Oracle Database PL/SQL Language Reference for the syntax of this
clause.)

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema that contains the type. If you omit schema, then Oracle Database assumes
the type is in your current schema.

type_name

Specify the name of an object type, a nested table type, or a varray type.

Restriction on type_name

You cannot evolve an editioned object type. The ALTER TYPE statement fails with ORA-22348 if
either of the following is true:

• The type is an editioned object type and the ALTER TYPE statement has no
type_compile_clause. You can use the ALTER TYPE statement to recompile an editioned object
type, but not for any other purpose.

• The type has a dependent that is an editioned object type and the ALTER TYPE statement
has a CASCADE clause.

Refer to Oracle Database PL/SQL Language Reference for more information on the
type_compile_clause and the CASCADE clause.

alter_type_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of this
clause and for complete information on creating and compiling object types.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the type becomes an editioned or noneditioned object if
editioning is later enabled for the schema object type TYPE in schema. The default is
EDITIONABLE. For information about altering editioned and noneditioned objects, see Oracle
Database Development Guide.

Chapter 12
ALTER TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 203 of 244

ALTER USER
Purpose

Use the ALTER USER statement:

• To change the authentication or database resource characteristics of a database user

• To permit a proxy server to connect as a client without authentication

• In an Oracle Automatic Storage Management (Oracle ASM) cluster, to change the
password of a user in the password file that is local to the Oracle ASM instance of the
current node

See Also

Oracle Database Security Guide for detailed information about user authentication
methods

Prerequisites

In general, you must have the ALTER USER system privilege. However, the current user can
change his or her own password without this privilege.

To change the SYS password, password file must exist, and an account granted alter user
privilege must have the SYSDBA administrative role in order to have the ability to change SYS
password.

You must be authenticated AS SYSASM to change the password of a user other than yourself in
an Oracle ASM instance password file.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). If the current container is the root, then you can specify CONTAINER = ALL or CONTAINER
= CURRENT. If the current container is a pluggable database (PDB), then you can specify only
CONTAINER = CURRENT.

To set and modify CONTAINER_DATA attributes using the container_data_clause, you must be
connected to a CDB and the current container must be the root.

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 204 of 244

Syntax

alter_user::=

ALTER USER

IF EXISTS

user

IDENTIFIED

BY password

REPLACE old_password

EXTERNALLY

AS ’
certificate_DN

kerberos_principal_name
’

GLOBALLY

AS ’

directory_DN

AZURE_USER

AZURE_ROLE
= value

IAM_GROUP_NAME

IAM_PRINCIPAL_NAME

IAM_PRINCIPAL_OCID

= value

’

NO AUTHENTICATION

ADD

UPDATE
FACTOR ’ auth_method ’ AS ’ external_name ’

DROP FACTOR ’ auth_method ’

DEFAULT COLLATION collation_name

DEFAULT TABLESPACE tablespace

LOCAL

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

QUOTA
size_clause

UNLIMITED
ON tablespace

PROFILE profile

DEFAULT ROLE

role

,

ALL

EXCEPT role

,

NONE

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK

ENABLE EDITIONS

FOR object_type

,

FORCE

HTTP

DIGEST
ENABLE

DISABLE

CONTAINER =
CURRENT

ALL

ENABLE

DISABLE
DICTIONARY PROTECTION

READ
ONLY

WRITE

container_data_clause

user

,

proxy_clause

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 205 of 244

(size_clause::=)

container_data_clause::=

SET CONTAINER_DATA =

ALL

DEFAULT

(container_name

,

)

ADD CONTAINER_DATA = (container_name

,

)

REMOVE CONTAINER_DATA = (container_name

,

)

FOR

schema .

container_data_object

proxy_clause::=

GRANT CONNECT THROUGH
ENTERPRISE USERS

db_user_proxy db_user_proxy_clauses

REVOKE CONNECT THROUGH
ENTERPRISE USERS

db_user_proxy

db_user_proxy_clauses::=

WITH

ROLE

role_name

,

ALL EXCEPT role_name

,

NO ROLES AUTHENTICATION REQUIRED

Semantics

The keywords, parameters, and clauses described in this section are unique to ALTER USER or
have different semantics than they have in CREATE USER. Keywords, parameters, and clauses
that do not appear here have the same meaning as in the CREATE USER statement.

Note

Oracle recommends that user names and passwords be encoded in ASCII or EBCDIC
characters only, depending on your platform.

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 206 of 244

See Also

CREATE USER for information on the keywords and parameters and CREATE
PROFILE for information on assigning limits on database resources to a user

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

IDENTIFIED Clause

BY password

Specify BY password to specify a new password for the user. Passwords are case sensitive. Any
subsequent CONNECT string used to connect this user to the database must specify the
password using the same case (upper, lower, or mixed) that is used in this ALTER USER
statement. Passwords can contain single-byte, or multibyte characters, or both from your
database character set.

Note

Oracle Database expects a different timestamp for each resetting of a particular
password. If you reset one password multiple times within one second (for example,
by cycling through a set of passwords using a script), then the database may return an
error message that the password cannot be reused. For this reason, Oracle
recommends that you avoid using scripts to reset passwords.

You can omit the REPLACE clause if you are setting your own password or you have the ALTER
USER system privilege and you are changing another user's password. However, unless you
have the ALTER USER system privilege, you must always specify the REPLACE clause if a
password complexity verification function has been enabled, either by running the
UTLPWDMG.SQL script or by specifying such a function in the PASSWORD_VERIFY_FUNCTION
parameter of a profile that has been assigned to the user.

In an Oracle ASM cluster, you can use this clause to change the password of a user in the
password file that is local to an Oracle ASM instance of the current node. You must be
authenticated AS SYSASM to specify IDENTIFIED BY password without the REPLACE old_password
clause. If you are not authenticated AS SYSASM, then you can only change your own password
by specifying REPLACE old_password.

Oracle Database does not check the old password, even if you provide it in the REPLACE
clause, unless you are changing your own existing password.

Changing a Password to Begin the Gradual Database Password Rollover Period

Prerequisite

Enable gradual database password rollover period by setting a non-zero value to the
PASSWORD_ROLLOVER_TIME user profile parameter using CREATE PROFILE or ALTER PROFILE .

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 207 of 244

After you set the PASSWORD_ROLLOVER_TIME to specify the duration of the gradual password
rollover period in the profile of the user, you can use the ALTER USER statement to change the
user's password, which will allow clients to login using both the old password and the new
password until the password rollover period expires.

During the password rollover period, you must propagate the new password to all clients
(before the PASSWORD_ROLLOVER_TIME ends). If you successfully propagated the new
password to all clients early (before the end of the password rollover period), then you can use
the EXPIRE PASSWORD ROLLOVER PERIOD clause to end the password rollover (finalizing the
password change, so that only the new password can be used).

Changing a Password During the Gradual Database Password Rollover Period

You can change the password during the password rollover period (before the rollover period
expires) using ALTER USER with or without the REPLACE clause.

For example, say user u1 has an original password p1, and p2 is the new password that started
the rollover process. Now you want to switch to p3 instead of p2. You can use any one of the
statements to change the password to p3:

ALTER USER u1 IDENTIFIED BY p3;

ALTER USER u1 IDENTIFIED BY p3 REPLACE p1;

ALTER USER u1 IDENTIFIED BY p3 REPLACE p2;

After you change the password to p3, the user can log in using either p1 or p3. Logging in with p2
returns error Invalid credential or not authorized; logon denied and is recorded as a failed login attempt.

The rollover start time remains set to the password change timestamp, this is the time the
password of the user was changed. The rollover start time and password change time are not
affected by any further password change made during the password rollover period. The old
password can be used for at most PASSWORD_ROLLOVER_TIME days.

See Also

• Oracle Database Security Guide for guidelines on creating passwords

• Configuring Authentication

GLOBALLY

Refer to CREATE USER for more information on this clause.

You can change a user's access verification method from IDENTIFIED GLOBALLY to either
IDENTIFIED BY password or IDENTIFIED EXTERNALLY. You can change a user's access verification
method to IDENTIFIED GLOBALLY from one of the other methods only if all external roles
granted explicitly to the user are revoked.

EXTERNALLY

Refer to CREATE USER for more information on this clause.

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 208 of 244

See Also

Oracle Database Enterprise User Security Administrator's Guide for more information
on globally and externally identified users, "Changing User Identification: Example",
and "Changing User Authentication: Examples"

NO AUTHENTICATION Clause

Use this clause to change an existing user account with authentication to a schema account
without authentication to prevent logins to the account.

ADD | UPDATE | DROP FACTOR

Use this clause to specify second factor authentication for native database users.

DEFAULT COLLATION Clause

Use this clause to change the default collation for the schema owned by the user. The new
default collation is assigned to tables, views, and materialized views that are subsequently
created in the schema. It does not influence default collations for existing tables views, and
materialized views. Refer to the DEFAULT COLLATION Clause clause of CREATE USER for the
full semantics of this clause.

DEFAULT TABLESPACE Clause

Use this clause to assign or reassign a tablespace for the user's permanent segments. This
clause overrides any default tablespace that has been specified for the database.

Restriction on Default Tablespaces

You cannot specify a locally managed temporary tablespace, including an undo tablespace, or
a dictionary-managed temporary tablespace, as a user's default tablespace.

[LOCAL] TEMPORARY TABLESPACE Clause

Use this clause to assign or reassign a temporary tablespace or tablespace group for the
user's temporary segments.

• Specify tablespace to indicate the user's temporary tablespace. Specify TEMPORARY
TABLESPACE to indicate a shared temporary tablespace. Specify LOCAL TEMPORARY
TABLESPACE to indicate a local temporary tablespace. If you are connected to a CDB, then
you can specify CDB$DEFAULT to use the CDB-wide default temporary tablespace.

• Specify tablespace_group_name to indicate that the user can save temporary segments in any
tablespace in the tablespace group specified by tablespace_group_name. Local temporary
tablespaces cannot be part of a tablespace group.

Restriction on User Temporary Tablespace

Any individual tablespace you assign or reassign as the user's temporary tablespace must be a
temporary tablespace and must have a standard block size.

See Also

"Assigning a Tablespace Group: Example"

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 209 of 244

DEFAULT ROLE Clause

Specify the roles enabled by default for the user at logon.This clause can contain only roles
that have been granted directly to the user with a GRANT statement, or roles created by the
user with the CREATE ROLE privilege. You cannot use the DEFAULT ROLE clause to specify:

• Roles not granted to the user

• Roles granted through other roles

• Roles managed by an external service (such as the operating system), or by the Oracle
Internet Directory

• Roles that are enabled by the SET ROLE statement, such as password-authenticated roles
and secure application roles

See Also

CREATE ROLE

Assigning Default Roles to Common Users in a CDB

You can modify the default role assigned to a common user both in the current container and
across all containers in a CDB.

While assigning a default role to a common user across all containers, role must be a common
role that was commonly granted to the common user.

While assigning a default role to a common user in the current container, role must be one of
the following:

• A local role that was granted to the common user in the current container

• A common role that was granted to the common user, either commonly or locally in the
current container

EXPIRE PASSWORD ROLLOVER PERIOD Clause

You can manually expire the password rollover period with EXPIRE PASSWORD ROLLOVER
PERIOD.

ENABLE EDITIONS

This clause is not reversible. Specify ENABLE EDITIONS to allow the user to create multiple
versions of editionable objects in this schema using editions. Editionable objects in non-
editions-enabled schemas cannot be editioned.

Use the FOR clause to specify one or more object types for which the user can create
editionable objects. For a list of valid values for object_type, query the V$EDITIONABLE_TYPES
dynamic performance view.

If you omit the FOR clause, then the types that become editionable in the schema are VIEW,
SYNONYM, PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY, TRIGGER, TYPE, TYPE BODY, and
LIBRARY.

To enable edition for other object types that are not enabled by default, you must explicitly
specify the object type in the FOR clause.

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 210 of 244

Example: Enable Edition for Object Type not Enabled by Default

ALTER USER username ENABLE EDITIONS FOR SQL TRANSLATION PROFILE;

See Also

• For more on the semantics of the ENABLE EDITIONS clause see the
corresponding section in CREATE USER

• Enabling Editions for a User

• Oracle Database Reference for more information about the V$EDITIONABLE_TYPES
dynamic performance view

If the schema to be editions-enabled contains any objects that are not editionable and that
depend on editionable type objects in the schema, then you must specify FORCE to enable
editions for this schema. In this case, all the objects that are not editionable and that depend
on the editionable type objects in the schema being editions-enabled become invalid.

[HTTP] DIGEST Clause

This clause lets you enable or disable HTTP Digest Access Authentication for the user.

• Specify ENABLE to enable HTTP Digest Access Authentication. After specifing this clause,
you must change the user’s password. This causes the database to generate an HTTP
Digest verifier for the new password. Only then will HTTP Digest Access Authentication
take effect. One way to ensure that the user’s password is changed after you issue this
clause is to specify the PASSWORD EXPIRE clause in the same statement with the HTTP
DIGEST ENABLE clause, as follows:

ALTER USER user PASSWORD EXPIRE HTTP DIGEST ENABLE;

This causes the database to prompt the user for a new password on his or her next
attempt to log in to the database. After that, HTTP Digest Access Authentication will take
effect for the user.

• Specify DISABLE to disable HTTP Digest Access Authentication for the user. You do not
need to change the user’s password in order for this clause to take effect. Specifying the
DISABLE clause removes the HTTP Digest from dictionary tables.

ALTER USER user PASSWORD EXPIRE HTTP DIGEST DISABLE;

Refer to [HTTP] DIGEST Clause in the documentation on CREATE USER for more information on
this clause.

CONTAINER Clause

If the current container is a PDB, then you can specify CONTAINER = CURRENT to change the
attributes of a local user, or the container-specific attributes (such as the default tablespace) of
a common user, in the current container. If the current container is the root, then you can
specify CONTAINER = ALL to change the attributes of a common user across the entire CDB. If
you omit this clause and the current container is a PDB, then CONTAINER = CURRENT is the
default. If you omit this clause and the current container is the root, then CONTAINER = ALL is
the default.

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 211 of 244

Restriction on Modifying Common Users in a CDB

Certain attributes of a common user must be modified for all the containers in a CDB and not
for only some containers. Therefore, when you use any of the following clauses to modify a
common user, ensure that you modify all of the containers by connecting to the root and
specifying CONTAINER=ALL:

• IDENTIFIED clause

• PASSWORD clause

• [HTTP] DIGEST clause

ENABLE or DISABLE DICTIONARY PROTECTION

Use this clause to enable or disable dictionary protection on the created user. When a schema
is dictionary protected, other users cannot use system privileges (including ANY privileges) on
the schema, even if they have been granted the system privilege on the schema. Only the
SELECT ANY DICTIONARY and ANALYZE ANY DICTIONARY system privileges can be used on a
dictionary-protected schema. Users can still use object privileges on the schema, assuming
that the user has been granted the object privilege on the schema. A user without the object
privileges on the object but with corresponding system privileges will be denied access to the
object with an insufficient privileges error.

By default, Oracle-maintained schemas have dictionary protection, but this protection can be
temporarily removed if necessary. You cannot enable dictionary protection on a customer
(Non-Oracle maintained) schema. You also cannot create a custom schema with dictionary
protection enabled.

You must be logged in as user SYS with the SYSDBA administrative privilege in order to manage
dictionary protection for Oracle-maintained schemas.

See Also

• Configuring Privilege and Role Authorization of the Oracle Database Security
Guide.

READ ONLY | READ WRITE

Specify READ ONLY to set read-only access to a local PDB user.

With read-only access, the local PDB user is not permitted to execute any write operations on
the PDB they connect to. The session operates as if the database is open in read-only mode.

Specify READ WRITE to revoke READ ONLY access on a local user.

You must have the ALTER USER privilege to execute this statement.

You can view the state of a local user in the *_USERS view.

container_data_clause

The container_data_clause allows you the set and modify CONTAINER_DATA attributes for a common
user. Use the FOR clause to indicate whether to set or modify the default CONTAINER_DATA
attribute or an object-specific CONTAINER_DATA attribute. These attributes determine the set of
containers (which can never exclude the root) whose data will be visible via CONTAINER_DATA
objects to the specified common user when the current session is the root.

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 212 of 244

To specify the container_data_clause, the current session must be the root and you must specify
CONTAINER = CURRENT.

SET CONTAINER_DATA

Use this clause to set the default CONTAINER_DATA attribute or an object-specific
CONTAINER_DATA attribute for a common user. When you specify this clause, you replace the
existing value, if any, of the CONTAINER_DATA attribute.

Use container_name to specify one or more containers that will be accessible to the user.

Use ALL to specify that all current and future containers in the CDB will be accessible to the
user.

Use DEFAULT to specify the default behavior, which is as follows:

• For a default CONTAINER_DATA attribute, the current container, that is, the root, and the
CDB as a whole will be accessible to the user.

• For an object-specific CONTAINER_DATA attribute, the database will use the user's default
CONTAINER_DATA attribute.

Note

CONTAINER_DATA attributes that are set to DEFAULT are not visible in the
DBA_CONTAINER_DATA view.

ADD CONTAINER_DATA

Use this clause to add containers to the default CONTAINER_DATA attribute or an object-specific
CONTAINER_DATA attribute for a common user. Use container_name to specify one or more
containers to add.

You cannot use this clause if the default CONTAINER_DATA attribute is set to ALL. If you use this
clause when the default CONTAINER_DATA attribute is set to DEFAULT, then CDB$ROOT will
automatically be added to the set of containers, unless the set already contains CDB$ROOT.

You cannot use this clause if the object-specific CONTAINER_DATA attribute is set to ALL or
DEFAULT.

REMOVE CONTAINER_DATA

Use this clause to remove containers from the default CONTAINER_DATA attribute or an object-
specific CONTAINER_DATA attribute for a common user. Use container_name to specify one or more
containers to remove.

You cannot use this clause if the default CONTAINER_DATA attribute or object-specific
CONTAINER_DATA attribute is set to ALL or DEFAULT.

FOR container_data_object

If you specify the FOR clause, then you can set and modify the object-specific CONTAINER_DATA
attribute for container_data_object for a common user. container_data_object must be a
CONTAINER_DATA table or view. If you omit schema, then Oracle Database assumes that
container_data_object is in your own schema.

If you omit the FOR clause, then you can set and modify the default CONTAINER_DATA attribute
for a common user.

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 213 of 244

See Also

Oracle Database Security Guide for more information about enabling common users
to view information about PDB objects

proxy_clause

The proxy_clause lets you control the ability of an enterprise user (a user outside the database) or
a database proxy (another database user) to connect as the database user being altered.

GRANT CONNECT THROUGH

Specify GRANT CONNECT THROUGH to allow the connection.

REVOKE CONNECT THROUGH

Specify REVOKE CONNECT THROUGH to prohibit the connection.

ENTERPRISE USER

This clause lets you expose user to proxy use by enterprise users. The administrator working in
Oracle Internet Directory must then grant privileges for appropriate enterprise users to act on
behalf of user.

db_user_proxy

This clause lets you expose user to proxy use by database user db_user_proxy (the proxy).

• The proxy will have all privileges that were directly granted to user.

• The proxy will have all roles associated with user, unless you specify the WITH clauses of
db_user_proxy_clauses to limit the proxy to some or none of the roles of user. For each role
associated with the proxy, if the role is enabled by default for user at login, then that role will
also be enabled by default for the proxy at login.

db_user_proxy_clauses

You can enable password-protected roles in a proxy session. Both secure application role and
password-protected roles provide a secure method for enabling a role in a session. Oracle
recommends using secure password roles instead of password protected roles in instances
where the password has to be maintained and transmitted over insecure channels, or if more
than one person needs to know the password. Password-protected roles in a proxy session
are suitable for situations where automation is used to set the role.

Proxy users can access password-protected roles. Specify the WITH clauses to limit the proxy
to some or none of the roles associated with user, and the AUTHENTICATION REQUIRED clause to
specify whether authentication is required.

WITH ROLE

WITH ROLE role_name permits the proxy to connect as the specified user and to activate only the
roles that are specified by role_name. This clause can contain only roles that are associated with
user. Password protected roles and secure application roles also need to be listed in the WITH
ROLE clause if the Proxy user will need to use these secure roles. These secure roles will be
included with the WITH ROLE ALL clause (the default if WITH ROLE is not specified). If WITH ROLE
doesn't specify the secure roles, then those cannot be enabled even with right password.

WITH ROLE ALL EXCEPT

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 214 of 244

WITH ROLE ALL EXCEPT role_name permits the proxy to connect as the specified user and to
activate all roles associated with that user except those specified for role_name. This clause can
contain only roles that are associated with user.

WITH NO ROLES

WITH NO ROLES permits the proxy to connect as the specified user, but prohibits the proxy from
activating any of that user's roles after connecting, even the secure roles like password
protected roles and secure application roles.

AUTHENTICATION REQUIRED

Oracle Database does not expect the proxy to authenticate the user unless you specify the
AUTHENTICATION REQUIRED clause. This clause ensures that authentication credentials for the
user must be presented when the user is authenticated through the specified proxy. The
credential is a password.

AUTHENTICATED USING

The AUTHENTICATED USING clauses, which appeared in the syntax of earlier releases, have
been deprecated and are no longer needed. If you specify the AUTHENTICATED USING
PASSWORD clause, then Oracle Database converts it to the AUTHENTICATION REQUIRED clause.
Specifying the AUTHENTICATED USING CERTIFICATE clause or the AUTHENTICATED USING
DISTINGUISHED NAME clause is equivalent to omitting the AUTHENTICATION REQUIRED clause.

See Also

• Oracle Security Overview for an overview of database security and for information
on middle-tier systems and proxy authentication

• Oracle Database Security Guide for more information on proxies and their use of
the database and "Proxy Users: Examples"

Examples

Changing User Identification: Example

The following statement changes the password of the user sidney (created in "Creating a
Database User: Example") second_2nd_pwd and default tablespace to the tablespace example:

ALTER USER sidney
 IDENTIFIED BY second_2nd_pwd
 DEFAULT TABLESPACE example;

The following statement assigns the new_profile profile (created in "Creating a Profile: Example")
to the sample user sh:

ALTER USER sh
 PROFILE new_profile;

In subsequent sessions, sh is restricted by limits in the new_profile profile.

The following statement makes all roles granted directly to sh default roles, except the
dw_manager role:

ALTER USER sh
 DEFAULT ROLE ALL EXCEPT dw_manager;

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 215 of 244

At the beginning of sh's next session, Oracle Database enables all roles granted directly to sh
except the dw_manager role.

Changing User Authentication: Examples

The following statement changes the authentication mechanism of user app_user1 (created in
"Creating a Database User: Example"):

ALTER USER app_user1 IDENTIFIED GLOBALLY AS 'CN=tom,O=oracle,C=US';

The following statement causes user sidney's password to expire:

ALTER USER sidney PASSWORD EXPIRE;

If you cause a database user's password to expire with PASSWORD EXPIRE, then the user (or the
DBA) must change the password before attempting to log in to the database following the
expiration. However, tools such as SQL*Plus allow the user to change the password on the
first attempted login following the expiration.

Assigning a Tablespace Group: Example

The following statement assigns tbs_grp_01 (created in "Adding a Temporary Tablespace to a
Tablespace Group: Example") as the tablespace group for user sh:

ALTER USER sh
 TEMPORARY TABLESPACE tbs_grp_01;

Proxy Users: Examples

The following statement alters the user app_user1. The example permits the app_user1 to connect
through the proxy user sh. The example also allows app_user1 to enable its warehouse_user role
(created in "Creating a Role: Example") when connected through the proxy sh:

ALTER USER app_user1
 GRANT CONNECT THROUGH sh
 WITH ROLE warehouse_user;

To show basic syntax, this example uses the sample database Sales History user (sh) as the
proxy. Normally a proxy user would be an application server or middle-tier entity. For
information on creating the interface between an application user and a database by way of an
application server, refer to Oracle Call Interface Programmer's Guide.

See Also

• "Creating External Database Users: Examples" to see how to create the app_user
user

• "Creating a Role: Example" to see how to create the dw_user role

The following statement takes away the right of user app_user1 to connect through the proxy user
sh:

ALTER USER app_user1 REVOKE CONNECT THROUGH sh;

The following hypothetical examples shows another method of proxy authentication:

ALTER USER sully GRANT CONNECT THROUGH OAS1
 AUTHENTICATED USING PASSWORD;

Chapter 12
ALTER USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 216 of 244

The following example exposes the user app_user1 to proxy use by enterprise users. The
enterprise users cannot act on behalf of app_user1 until the Oracle Internet Directory
administrator has granted them appropriate privileges:

ALTER USER app_user1
 GRANT CONNECT THROUGH ENTERPRISE USERS;

ALTER VIEW
Purpose

Use the ALTER VIEW statement to explicitly recompile a view that is invalid or to modify view
constraints. Explicit recompilation lets you locate recompilation errors before run time. You may
want to recompile a view explicitly after altering one of its base tables to ensure that the
alteration does not affect the view or other objects that depend on it.

You can also use ALTER VIEW to define, modify, or drop view constraints.

You cannot use this statement to change the definition of an existing view. Further, if DDL
changes to the view's base tables invalidate the view, then you cannot use this statement to
compile the invalid view. In these cases, you must redefine the view using CREATE VIEW with
the OR REPLACE keywords.

When you issue an ALTER VIEW statement, Oracle Database recompiles the view regardless of
whether it is valid or invalid. The database also invalidates any local objects that depend on the
view.

If you alter a view that is referenced by one or more materialized views, then those
materialized views are invalidated. Invalid materialized views cannot be used by query rewrite
and cannot be refreshed.

See Also

• CREATE VIEW for information on redefining a view and ALTER MATERIALIZED
VIEW for information on revalidating an invalid materialized view

• Oracle Database Data Warehousing Guide for general information on data
warehouses

• Oracle Database Concepts for more about dependencies among schema objects

Prerequisites

The view must be in your own schema or you must have ALTER ANY TABLE system privilege.

Chapter 12
ALTER VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 217 of 244

Syntax

alter_view::=

ALTER VIEW

IF EXISTS schema .

view

ADD out_of_line_constraint

MODIFY CONSTRAINT constraint
RELY

NORELY

DROP

CONSTRAINT constraint

PRIMARY KEY

UNIQUE (column

,

)

COMPILE

RECOMPILE

READ
ONLY

WRITE

EDITIONABLE

NONEDITIONABLE

annotations_clause

(out_of_line_constraint::=—part of constraint::= syntax), annotations_clause

Semantics

IF EXISTS

Specify IF EXISTS to alter an existing table.

Specifying IF NOT EXISTS with ALTER VIEW results in ORA-11544: Incorrect IF EXISTS clause for ALTER/
DROP statement.

schema

Specify the schema containing the view. If you omit schema, then Oracle Database assumes the
view is in your own schema.

view

Specify the name of the view to be recompiled.

MODIFY CONSTRAINT Clause

Use the MODIFY CONSTRAINT clause to change the RELY or NORELY setting of an existing view
constraint. Refer to "Notes on View Constraints" for general information on view constraints.

Restriction on Modifying Constraints

You cannot change the setting of a unique or primary key constraint if it is part of a referential
integrity constraint without dropping the foreign key or changing its setting to match that of view.

Chapter 12
ALTER VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 218 of 244

ADD Clause

Use the ADD clause to add a constraint to view. Refer to constraint for information on view
constraints and their restrictions.

DROP Clause

Use the DROP clause to drop an existing view constraint.

Restriction on Dropping Constraints

You cannot drop a unique or primary key constraint if it is part of a referential integrity
constraint on a view.

COMPILE | RECOMPILE

RECOMPILE and COMPILE keywords direct Oracle Database to recompile the view.

Use RECOMPILE to explicitly recompile a view that is invalid or to modify view constraints.
Explicit recompilation allows users to locate recompilation errors, before run time.

{ READ ONLY | READ WRITE }

These clauses are valid only for editioning views.

• Specify READ ONLY to indicate that the editioning view cannot be updated.

• Specify READ WRITE to return a read-only editioning view to read/write status.

When you specify these clauses, the database does not invalidate dependent objects, but it
may invalidate cursors.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the view becomes an editioned or noneditioned object if
editioning is later enabled for the schema object type VIEW in schema. The default is
EDITIONABLE. For information about altering editioned and noneditioned objects, see Oracle
Database Development Guide.

See Also

CREATE VIEW for information about editioning views

annotations_clause

For the full semantics of the annotations clause see annotations_clause.

You can only change annotations at the view level with the ALTER statement. To drop column-
level annotations, you must drop and recreate the view.

Examples

Altering a View: Example

To recompile the view customer_ro (created in "Creating a Read-Only View: Example"), issue the
following statement:

Chapter 12
ALTER VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 219 of 244

ALTER VIEW customer_ro
 COMPILE;

If Oracle Database encounters no compilation errors while recompiling customer_ro, then
customer_ro becomes valid. If recompiling results in compilation errors, then the database returns
an error and customer_ro remains invalid.

Oracle Database also invalidates all dependent objects. These objects include any procedures,
functions, package bodies, and views that reference customer_ro. If you subsequently reference
one of these objects without first explicitly recompiling it, then the database recompiles it
implicitly at run time.

Add and Drop Annotations: Example

The following example drops annotation Title from view MView1 and adds annotation Identity :

ALTER VIEW HighWageEmp ANNOTATIONS(DROP Title, ADD Identity);

ANALYZE
Purpose

Use the ANALYZE statement to collect statistics, for example, to:

• Collect or delete statistics about an index or index partition, table or table partition, index-
organized table, cluster, or scalar object attribute.

• Validate the structure of an index or index partition, table or table partition, index-organized
table, cluster, or object reference (REF).

• Identify migrated and chained rows of a table or cluster.

Note

The use of ANALYZE for the collection of optimizer statistics is obsolete.

If you want to collect optimizer statistics, use the DBMS_STATS package, which lets you
collect statistics in parallel, global statistics for partitioned objects, and helps you fine
tune your statistics collection in other ways. See Oracle Database PL/SQL Packages
and Types Reference for more information on the DBMS_STATS package.

Use the ANALYZE statement only for the following cases:

• To use the VALIDATE or LIST CHAINED ROWS clauses

• To collect information on freelist blocks

Prerequisites

The schema object to be analyzed must be local, and it must be in your own schema or you
must have the ANALYZE ANY system privilege.

If you want to list chained rows of a table or cluster into a list table, then the list table must be
in your own schema, or you must have INSERT privilege on the list table, or you must have
INSERT ANY TABLE system privilege.

Chapter 12
ANALYZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 220 of 244

If you want to validate a partitioned table, then you must have the INSERT object privilege on
the table into which you list analyzed rowids, or you must have the INSERT ANY TABLE system
privilege.

Syntax

analyze::=

ANALYZE

TABLE

schema .

table

INDEX

schema .

index

partition_extension_clause

CLUSTER

schema .

cluster

validation_clauses

LIST CHAINED ROWS

into_clause

DELETE

SYSTEM

STATISTICS

;

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

validation_clauses::=

VALIDATE REF UPDATE

SET DANGLING TO NULL

VALIDATE STRUCTURE

CASCADE

FAST

COMPLETE

OFFLINE

ONLINE

into_clause

Chapter 12
ANALYZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 221 of 244

into_clause::=

INTO

schema .

table

Semantics

schema

Specify the schema containing the table, index, or cluster. If you omit schema, then Oracle
Database assumes the table, index, or cluster is in your own schema.

TABLE table

Specify a table to be analyzed. When you analyze a table, the database collects statistics
about expressions occurring in any function-based indexes as well. Therefore, be sure to
create function-based indexes on the table before analyzing the table. Refer to CREATE
INDEX for more information about function-based indexes.

When analyzing a table, the database skips all domain indexes marked LOADING or FAILED.

For an index-organized table, the database also analyzes any mapping table and calculates its
PCT_ACCESSS_DIRECT statistics. These statistics estimate the accuracy of guess data block
addresses stored as part of the local rowids in the mapping table.

Oracle Database collects the following statistics for a table. Statistics marked with an asterisk
are always computed exactly. Table statistics, including the status of domain indexes, appear in
the data dictionary views USER_TABLES, ALL_TABLES, and DBA_TABLES in the columns shown in
parentheses.

• Number of rows (NUM_ROWS)

• * Number of data blocks below the high water mark—the number of data blocks that have
been formatted to receive data, regardless whether they currently contain data or are
empty (BLOCKS)

• * Number of data blocks allocated to the table that have never been used (EMPTY_BLOCKS)

• Average available free space in each data block in bytes (AVG_SPACE)

• Number of chained rows (CHAIN_COUNT)

• Average row length, including the row overhead, in bytes (AVG_ROW_LEN)

Restrictions on Analyzing Tables

Analyzing tables is subject to the following restrictions:

• You cannot use ANALYZE to collect statistics on data dictionary tables.

• You cannot use ANALYZE to collect statistics on an external table. Instead, you must use
the DBMS_STATS package.

• You cannot use ANALYZE to collect default statistics on a temporary table. However, if you
have already created an association between one or more columns of a temporary table
and a user-defined statistics type, then you can use ANALYZE to collect the user-defined
statistics on the temporary table.

• You cannot compute or estimate statistics for the following column types: REF column
types, varrays, nested tables, LOB column types (LOB column types are not analyzed,

Chapter 12
ANALYZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 222 of 244

they are skipped), LONG column types, or object types. However, if a statistics type is
associated with such a column, then Oracle Database collects user-defined statistics.

See Also

• ASSOCIATE STATISTICS

• Oracle Database Reference for information on the data dictionary views

partition_extension_clause

partition_extension_clause

Specify the partition or subpartition, or the partition or subpartition value, on which you want
statistics to be gathered. You cannot use this clause when analyzing clusters.

If you specify PARTITION and table is composite-partitioned, then Oracle Database analyzes all
the subpartitions within the specified partition.

INDEX index

Specify an index to be analyzed.

Oracle Database collects the following statistics for an index. Statistics marked with an asterisk
are always computed exactly. For conventional indexes, when you compute or estimate
statistics, the statistics appear in the data dictionary views USER_INDEXES, ALL_INDEXES, and
DBA_INDEXES in the columns shown in parentheses.

• * Depth of the index from its root block to its leaf blocks (BLEVEL)

• Number of leaf blocks (LEAF_BLOCKS)

• Number of distinct index values (DISTINCT_KEYS)

• Average number of leaf blocks for each index value (AVG_LEAF_BLOCKS_PER_KEY)

• Average number of data blocks for each index value (for an index on a table)
(AVG_DATA_BLOCKS_PER_KEY)

• Clustering factor (how well ordered the rows are about the indexed values)
(CLUSTERING_FACTOR)

For domain indexes, this statement invokes the user-defined statistics collection function
specified in the statistics type associated with the index (see ASSOCIATE STATISTICS). If no
statistics type is associated with the domain index, then the statistics type associated with its
indextype is used. If no statistics type exists for either the index or its indextype, then no user-
defined statistics are collected. User-defined index statistics appear in the STATISTICS column of
the data dictionary views USER_USTATS, ALL_USTATS, and DBA_USTATS.

Chapter 12
ANALYZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 223 of 244

Note

• When you analyze an index from which a substantial number of rows has been
deleted, Oracle Database sometimes executes a COMPUTE statistics operation
(which can entail a full table scan) even if you request an ESTIMATE statistics
operation. Such an operation can be quite time consuming.

• In some cases, analyzing an index with the ANALYZE statement takes an
inordinate amount of time to complete. In these cases, you can use a SQL query
to validate the index. If the query determines that there is an inconsistency
between a table and the index, then you can use the ANALYZE statement for a
thorough analysis of the index. Refer to Oracle Database Administrator's Guide for
more information.

Restriction on Analyzing Indexes

You cannot analyze a domain index that is marked IN_PROGRESS or FAILED.

See Also

• CREATE INDEX for more information on domain indexes

• Oracle Database Reference for information on the data dictionary views

• "Analyzing an Index: Example"

CLUSTER cluster

Specify a cluster to be analyzed. When you collect statistics for a cluster, Oracle Database also
automatically collects the statistics for all the tables in the cluster and all their indexes,
including the cluster index.

For both indexed and hash clusters, the database collects the average number of data blocks
taken up by a single cluster key (AVG_BLOCKS_PER_KEY). These statistics appear in the data
dictionary views ALL_CLUSTERS, USER_CLUSTERS, and DBA_CLUSTERS.

See Also

Oracle Database Reference for information on the data dictionary views and
"Analyzing a Cluster: Example"

validation_clauses

The validation clauses let you validate REF values and the structure of the analyzed object.

See Also

Oracle Database Administrator's Guide for more information about validating tables,
indexes, clusters, and materialized views

Chapter 12
ANALYZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 224 of 244

VALIDATE REF UPDATE Clause

Specify VALIDATE REF UPDATE to validate the REF values in the specified table, check the rowid
portion in each REF, compare it with the true rowid, and correct it, if necessary. You can use this
clause only when analyzing a table.

If the owner of the table does not have the READ or SELECT object privilege on the referenced
objects, then Oracle Database will consider them invalid and set them to null. Subsequently
these REF values will not be available in a query, even if it is issued by a user with appropriate
privileges on the objects.

SET DANGLING TO NULL

SET DANGLING TO NULL sets to null any REF values (whether or not scoped) in the specified
table that are found to point to an invalid or nonexistent object.

VALIDATE STRUCTURE

Specify VALIDATE STRUCTURE to validate the structure of the analyzed object. The statistics
collected by this clause are not used by the Oracle Database optimizer.

See Also

"Validating a Table: Example"

• For a table, Oracle Database verifies the integrity of each of the data blocks and rows. For
an index-organized table, the database also generates compression statistics (optimal
prefix compression count) for the primary key index on the table.

• For a cluster, Oracle Database automatically validates the structure of the cluster tables.

• For a partitioned table, Oracle Database also verifies that each row belongs to the correct
partition. If a row does not collate correctly, then its rowid is inserted into the INVALID_ROWS
table.

• For a temporary table, Oracle Database validates the structure of the table and its indexes
during the current session.

• For an index, Oracle Database verifies the integrity of each data block in the index and
checks for block corruption. This clause does not confirm that each row in the table has an
index entry or that each index entry points to a row in the table. You can perform these
operations by validating the structure of the table with the CASCADE clause.

Oracle Database also computes compression statistics (optimal prefix compression count)
for all normal indexes.

Oracle Database stores statistics about the index in the data dictionary views INDEX_STATS
and INDEX_HISTOGRAM.

See Also

Oracle Database Reference for information on these views

If Oracle Database encounters corruption in the structure of the object, then an error message
is returned. In this case, drop and re-create the object.

CASCADE

Chapter 12
ANALYZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 225 of 244

Specify CASCADE if you want Oracle Database to validate the structure of the indexes
associated with the table or cluster. If you use this clause when validating a table, then the
database also validates the indexes defined on the table. If you use this clause when validating
a cluster, then the database also validates all the cluster tables indexes, including the cluster
index.

By default, CASCADE performs a COMPLETE validation, which can be resource intensive. Specify
FAST if you want the database to check for the existence of corruptions without reporting details
about the corruption. If the FAST check finds a corruption, you can then use the CASCADE option
without the FAST clause to locate and learn details about it.

If you use this clause to validate an enabled (but previously disabled) function-based index,
then validation errors may result. In this case, you must rebuild the index.

ONLINE | OFFLINE

Specify ONLINE to enable Oracle Database to run the validation while DML operations are
ongoing within the object. The database reduces the amount of validation performed to allow
for concurrency.

Note

When you validate the structure of an object ONLINE, Oracle Database does not collect
any statistics, as it does when you validate the structure of the object OFFLINE.

Specify OFFLINE, to maximize the amount of validation performed. This setting prevents INSERT,
UPDATE, and DELETE statements from concurrently accessing the object during validation but
allows queries. This is the default.

Restriction on ONLINE

You cannot specify ONLINE when analyzing a cluster.

INTO

The INTO clause of VALIDATE STRUCTURE is valid only for partitioned tables. Specify a table into
which Oracle Database lists the rowids of the partitions whose rows do not collate correctly. If
you omit schema, then the database assumes the list is in your own schema. If you omit this
clause altogether, then the database assumes that the table is named INVALID_ROWS. The SQL
script used to create this table is UTLVALID.SQL.

LIST CHAINED ROWS

LIST CHAINED ROWS lets you identify migrated and chained rows of the analyzed table or
cluster. You cannot use this clause when analyzing an index.

In the INTO clause, specify a table into which Oracle Database lists the migrated and chained
rows. If you omit schema, then the database assumes the chained-rows table is in your own
schema. If you omit this clause altogether, then the database assumes that the table is named
CHAINED_ROWS. The chained-rows table must be on your local database.

You can create the CHAINED_ROWS table using one of these scripts:

• UTLCHAIN.SQL uses physical rowids. Therefore it can accommodate rows from
conventional tables but not from index-organized tables. (See the Note that follows.)

Chapter 12
ANALYZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 226 of 244

• UTLCHN1.SQL uses universal rowids, so it can accommodate rows from both conventional
and index-organized tables.

If you create your own chained-rows table, then it must follow the format prescribed by one of
these two scripts.

If you are analyzing index-organized tables based on primary keys (rather than universal
rowids), then you must create a separate chained-rows table for each index-organized table to
accommodate its primary-key storage. Use the SQL scripts DBMSIOTC.SQL and PRVTIOTC.PLB to
define the BUILD_CHAIN_ROWS_TABLE procedure, and then execute this procedure to create an
IOT_CHAINED_ROWS table for each such index-organized table.

See Also

• The DBMS_IOT package in Oracle Database PL/SQL Packages and Types
Reference for information on the packaged SQL scripts

• "Listing Chained Rows: Example"

DELETE STATISTICS

Specify DELETE STATISTICS to delete any statistics about the analyzed object that are currently
stored in the data dictionary. Use this statement when you no longer want Oracle Database to
use the statistics.

When you use this clause on a table, the database also automatically removes statistics for all
the indexes defined on the table. When you use this clause on a cluster, the database also
automatically removes statistics for all the cluster tables and all their indexes, including the
cluster index.

Specify SYSTEM if you want Oracle Database to delete only system (not user-defined) statistics.
If you omit SYSTEM, and if user-defined column or index statistics were collected for an object,
then the database also removes the user-defined statistics by invoking the statistics deletion
function specified in the statistics type that was used to collect the statistics.

See Also

"Deleting Statistics: Example"

Examples

Deleting Statistics: Example

The following statement deletes statistics about the sample table oe.orders and all its indexes
from the data dictionary:

ANALYZE TABLE orders DELETE STATISTICS;

Analyzing an Index: Example

The following statement validates the structure of the sample index oe.inv_product_ix:

ANALYZE INDEX inv_product_ix VALIDATE STRUCTURE;

Validating a Table: Example

Chapter 12
ANALYZE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 227 of 244

The following statement analyzes the sample table hr.employees and all of its indexes:

ANALYZE TABLE employees VALIDATE STRUCTURE CASCADE;

For a table, the VALIDATE REF UPDATE clause verifies the REF values in the specified table,
checks the rowid portion of each REF, and then compares it with the true rowid. If the result is
an incorrect rowid, then the REF is updated so that the rowid portion is correct.

The following statement validates the REF values in the sample table oe.customers:

ANALYZE TABLE customers VALIDATE REF UPDATE;

The following statement validates the structure of the sample table oe.customers while allowing
simultaneous DML:

ANALYZE TABLE customers VALIDATE STRUCTURE ONLINE;

Analyzing a Cluster: Example

The following statement analyzes the personnel cluster (created in "Creating a Cluster:
Example"), all of its tables, and all of their indexes, including the cluster index:

ANALYZE CLUSTER personnel
 VALIDATE STRUCTURE CASCADE;

Listing Chained Rows: Example

The following statement collects information about all the chained rows in the table orders:

ANALYZE TABLE orders
 LIST CHAINED ROWS INTO chained_rows;

The preceding statement places the information into the table chained_rows. You can then
examine the rows with this query (no rows will be returned if the table contains no chained
rows):

SELECT owner_name, table_name, head_rowid, analyze_timestamp
 FROM chained_rows
 ORDER BY owner_name, table_name, head_rowid, analyze_timestamp;

OWNER_NAME TABLE_NAME HEAD_ROWID ANALYZE_TIMESTAMP
---------- ---------- ------------------ -----------------
OE ORDERS AAAAZzAABAAABrXAAA 25-SEP-2000

ASSOCIATE STATISTICS
Purpose

Use the ASSOCIATE STATISTICS statement to associate a statistics type (or default statistics)
containing functions relevant to statistics collection, selectivity, or cost with one or more
columns, standalone functions, packages, types, domain indexes, or indextypes.

For a listing of all current statistics type associations, query the USER_ASSOCIATIONS data
dictionary view. If you analyze the object with which you are associating statistics, then you can
also query the associations in the USER_USTATS view.

Chapter 12
ASSOCIATE STATISTICS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 228 of 244

See Also

ANALYZE for information on the order of precedence with which ANALYZE uses
associations

Prerequisites

To issue this statement, you must have the appropriate privileges to alter the base object
(table, function, package, type, domain index, or indextype). In addition, unless you are
associating only default statistics, you must have execute privilege on the statistics type. The
statistics type must already have been defined.

See Also

CREATE TYPE for information on defining types

Syntax

associate_statistics::=

ASSOCIATE STATISTICS WITH
column_association

function_association

storage_table_clause

;

column_association::=

COLUMNS

schema .

table . column

,

using_statistics_type

Chapter 12
ASSOCIATE STATISTICS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 229 of 244

function_association::=

FUNCTIONS

schema .

function

,

PACKAGES

schema .

package

,

TYPES

schema .

type

,

INDEXES

schema .

index

,

INDEXTYPES

schema .

indextype

,

using_statistics_type

default_cost_clause

, default_selectivity_clause

default_selectivity_clause

, default_cost_clause

using_statistics_type::=

USING

schema .

statistics_type

NULL

default_cost_clause::=

DEFAULT COST (cpu_cost , io_cost , network_cost)

default_selectivity_clause::=

DEFAULT SELECTIVITY default_selectivity

Chapter 12
ASSOCIATE STATISTICS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 230 of 244

storage_table_clause::=

WITH

SYSTEM

USER

MANAGED STORAGE TABLES

Semantics

column_association

Specify one or more table columns. If you do not specify schema, then Oracle Database
assumes the table is in your own schema.

function_association

Specify one or more standalone functions, packages, user-defined data types, domain
indexes, or indextypes. If you do not specify schema, then Oracle Database assumes the object
is in your own schema.

• FUNCTIONS refers only to standalone functions, not to method types or to built-in functions.

• TYPES refers only to user-defined types, not to built-in SQL data types.

Restriction on function_association

You cannot specify an object for which you have already defined an association. You must first
disassociate the statistics from this object.

See Also

DISASSOCIATE STATISTICS "Associating Statistics: Example"

using_statistics_type

Specify the statistics type (or a synonym for the type) being associated with column, function,
package, type, domain index, or indextype. The statistics_type must already have been created.

The NULL keyword is valid only when you are associating statistics with a column or an index.
When you associate a statistics type with an object type, columns of that object type inherit the
statistics type. Likewise, when you associate a statistics type with an indextype, index
instances of the indextype inherit the statistics type.You can override this inheritance by
associating a different statistics type for the column or index. Alternatively, if you do not want to
associate any statistics type for the column or index, then you can specify NULL in the
using_statistics_type clause.

Restriction on Specifying Statistics Type

You cannot specify NULL for functions, packages, types, or indextypes.

See Also

Oracle Database Data Cartridge Developer's Guide for information on creating
statistics collection functions

Chapter 12
ASSOCIATE STATISTICS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 231 of 244

default_cost_clause

Specify default costs for standalone functions, packages, types, domain indexes, or
indextypes. If you specify this clause, then you must include one number each for CPU cost,
I/O cost, and network cost, in that order. Each cost is for a single execution of the function or
method or for a single domain index access. Accepted values are integers of zero or greater.

default_selectivity_clause

Specify as a percent the default selectivity for predicates with standalone functions, types,
packages, or user-defined operators. The default_selectivity_clause must be a number between 0
and 100. Values outside this range are ignored.

Restriction on the default_selectivity_clause

You cannot specify DEFAULT SELECTIVITY for domain indexes or indextypes.

See Also

"Specifying Default Cost: Example"

storage_table_clause

This clause is relevant only for statistics on INDEXTYPE.

• Specify WITH SYSTEM MANAGED STORAGE TABLES to indicate that the storage of statistics
data is to be managed by the system. The type you specify in statistics_type should be storing
the statistics related information in tables that are maintained by the system. Also, the
indextype you specify must already have been created or altered to support the WITH
SYSTEM MANAGED STORAGE TABLES clause.

• Specify WITH USER MANAGED STORAGE TABLES to indicate that the tables that store the
user-defined statistics will be managed by the user. This is the default behavior.

Examples

Associating Statistics: Example

This statement creates an association for the standalone package emp_mgmt. See Oracle
Database PL/SQL Language Reference for the example that creates this package.

ASSOCIATE STATISTICS WITH PACKAGES emp_mgmt DEFAULT SELECTIVITY 10;

Specifying Default Cost: Example

This statement specifies that using the domain index salary_index, created in "Using Extensible
Indexing ", to implement a given predicate always has a CPU cost of 100, I/O cost of 5, and
network cost of 0.

ASSOCIATE STATISTICS WITH INDEXES salary_index DEFAULT COST (100,5,0);

The optimizer will use these default costs instead of calling a cost function.

Chapter 12
ASSOCIATE STATISTICS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 232 of 244

AUDIT (Traditional Auditing)

Note

Traditional Auditing is desupported in Oracle Database Release 23. Oracle
recommends that you use unified auditing instead.

AUDIT (Unified Auditing)
This section describes the AUDIT statement for unified auditing. This type of auditing is new
beginning with Oracle Database 12c and provides a full set of enhanced auditing features.
Refer to Oracle Database Security Guide for more information on unified auditing.

Purpose

Use the AUDIT statement to:

• Enable a unified audit policy for all users or for specified users

• Specify whether an audit record is created if the audited event fails, succeeds, or both

• Specify application context attributes, whose values will be recorded in audit records

Changes made to the audit policy become effective immediately in the current session and in
all active sessions without re-login.

See Also

• NOAUDIT (Unified Auditing)

• CREATE AUDIT POLICY (Unified Auditing)

• ALTER AUDIT POLICY (Unified Auditing)

• DROP AUDIT POLICY (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

If you are connected to a multitenant container database (CDB), then to enable a common
unified audit policy, the current container must be the root and you must have the commonly
granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role. To enable a local unified
audit policy, the current container must be the container in which the audit policy was created
and you must have the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN
common role, or you must have the locally granted AUDIT SYSTEM privilege or the AUDIT_ADMIN
local role in the container.

To specify the AUDIT CONTEXT ... statement when connected to a CDB, you must have the
commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role, or you must
have the locally granted AUDIT SYSTEM privilege or the AUDIT_ADMIN local role in the current
session's container.

Chapter 12
AUDIT (Traditional Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 233 of 244

Syntax

unified_audit::=

AUDIT

POLICY policy

BY

EXCEPT
user

,

by_users_with_roles WHENEVER

NOT

SUCCESSFUL

CONTEXT NAMESPACE namespace ATTRIBUTES attribute

,

,

BY user

, ;

by_users_with_roles::=

BY USERS WITH GRANTED ROLES role

,

Semantics

policy

With Oracle Database Release 21c unified audit policies are enforced on the current user who
executes the SQL statement.

Specify the name of the unified audit policy to be enabled. (The policy must be created
previously by the CREATE AUDIT POLICY statement.) The policy becomes active immediately for
the current session and active ongoing sessions as soon as the AUDIT POLICY statement is
executed.

You can find descriptions of all unified audit policies by querying the AUDIT_UNIFIED_POLICIES
view and descriptions of all enabled unified audit policies by querying the
AUDIT_UNIFIED_ENABLED_POLICIES view.

When you enable a unified audit policy, all SQL statements and operations that satisfy either a
system privilege or action or role audit option specified in the enabled policy will be audited—
that is, a unified audit record will be created in the UNIFIED_AUDIT_TRAIL view. If a single SQL
statement or operation satisfies multiple enabled policies, then only one unified audit record
will be created and all satisfied audit policy names will appear in a comma-separated list in the
UNIFIED_AUDIT_POLICIES column of the UNIFIED_AUDIT_TRAIL view.

See Also

• CREATE AUDIT POLICY (Unified Auditing)

• Oracle Database Reference for more information on the AUDIT_UNIFIED_POLICIES,
AUDIT_UNIFIED_ENABLED_POLICIES, and UNIFIED_AUDIT_TRAIL views

Chapter 12
AUDIT (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 234 of 244

BY | EXCEPT

Specify the BY clause to enable policy for only the specified users.

Specify the EXCEPT clause to enable policy for all users except the specified users.

If you omit the BY and EXCEPT clauses and the by_users_with_roles clause, then Oracle Database
enables policy for all users.

If policy is a common unified audit policy, then user must be a common user. If policy is a local
unified audit policy, then user must be a common user or a local user in the container to which
you are connected.

Notes on the BY and EXCEPT Clauses

The following notes apply to the BY and EXCEPT clauses:

• If multiple AUDIT ... BY ... statements are specified for the same unified audit policy, then
the policy is enabled for the union of the users specified in each statement.

• If multiple AUDIT ... EXCEPT ... statements are specified for the same unified audit policy,
then only the most recently specified statement takes effect. That is, the policy is enabled
for all users except the users specified in the most recent AUDIT ... EXCEPT ... statement.

• If a policy is enabled using the BY clause and you would like to instead enable it using the
EXCEPT clause, then you must first use the NOAUDIT ... BY ... statement to disable the policy
for all users for whom the policy is currently enabled, and then enable the policy with the
AUDIT ... EXCEPT ... statement.

• If a policy is enabled using the EXCEPT clause and you would like to instead enable it using
the BY clause, then you must first use the NOAUDIT statement to disable the audit policy.
Note that you cannot specify the EXCEPT clause with the NOAUDIT statement. You can then
enable the policy with the AUDIT ... BY ... statement.

Restriction on the BY and EXCEPT Clauses

You cannot specify an AUDIT ... BY ... statement and an AUDIT ... EXCEPT ... statement for the
same unified audit policy. If you attempt to do so, then an error occurs.

by_users_with_roles

Specify this clause to enable policy for users who have been directly or indirectly granted the
specified roles. If you subsequently grant one of the roles to an additional user or to a role
which is directly or indirectly granted to a user, then the policy automatically applies to that
user. If you subsequently revoke one of the roles from a user or from a role which was directly
or indirectly granted to a role or a user, then the policy no longer applies to that user.

When you are connected to a CDB, if policy is a common unified audit policy, then role must be a
common role. If policy is a local unified audit policy, then role must be a common role or a local
role in the container to which you are connected.

Enabling a Local Audit Policy on Roles

Local audit policy can be enabled on local roles as well as on common roles. When a local
audit policy is enabled on a common role, it generates audit records when a common role is
granted to user locally or commonly in the container.

Enabling a Common Audit Policy on Roles

Chapter 12
AUDIT (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 235 of 244

Common audit policy can only be enabled on common roles. When a common audit policy is
enabled on a common role, it generates audit records when a common role is granted to an
user commonly or locally in the ROOT container.

WHENEVER [NOT] SUCCESSFUL

Specify WHENEVER SUCCESSFUL to audit only SQL statements and operations that succeed.

Specify WHENEVER NOT SUCCESSFUL to audit only SQL statements and operations that fail or
result in errors.

If you omit this clause, then Oracle Database performs the audit regardless of success or
failure.

CONTEXT Clause

Specify the CONTEXT clause to include the values of context attributes in audit records.

• For namespace, specify the context namespace.

• For attribute, specify one or more context attributes whose values you want to include in
audit records.

• Use the optional BY user clause to include the values of the context attributes only in audit
records for events executed by the specified users. If you omit the BY clause, then the
values of the context attributes are included in all audit records.

If you specify the CONTEXT clause when the current container is the root of a CDB, then the
values of context attributes will be included in audit records only for events executed in the
root. If you specify the optional BY clause, then user must be a common user.

If you specify the CONTEXT clause when the current container is a pluggable database (PDB),
then the values of context attributes will be included in audit records only for events executed
in that PDB. If you specify the optional BY clause, then user must be a common user or a local
user in that PDB.

You can find the application context attributes that are configured to be captured in the audit
trail by querying the AUDIT_UNIFIED_CONTEXTS view.

See Also

Oracle Database Reference for more information on the AUDIT_UNIFIED_CONTEXTS
view

Examples

The following examples enable unified audit policies that were created in the CREATE AUDIT
POLICY "Examples".

Enabling a Unified Audit Policy for All Users: Example

The following statement enables unified audit policy table_pol for all users:

AUDIT POLICY table_pol;

The following statement verifies that table_pol is enabled for all users:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies

Chapter 12
AUDIT (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 236 of 244

 WHERE policy_name = 'TABLE_POL';

POLICY_NAME ENABLED_OPTION ENTITY_NAME
----------- ----------- ---------
TABLE_POL BY ALL USERS

Enabling a Unified Audit Policy for Specific Users: Examples

The following statement enables unified audit policy dml_pol for only users hr and sh:

AUDIT POLICY dml_pol BY hr, sh;

The following statement verifies that dml_pol is enabled for only users hr and sh:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'DML_POL'
 ORDER BY entity_name;

POLICY_NAME ENABLED_OPTION ENTITY_NAME
----------- ----------- ---------
DML_POL BY HR
DML_POL BY SH

The following statement enables unified audit policy read_dir_pol for all users except hr:

AUDIT POLICY read_dir_pol EXCEPT hr;

The following statement verifies that read_dir_pol is enabled for all users except hr:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'READ_DIR_POL';

POLICY_NAME ENABLED_OPTION ENTITY_NAME
------------ ----------- ---------
READ_DIR_POL EXCEPT HR

The following statement enables unified audit policy security_pol for user hr and audits only the
SQL statements and operations that fail:

AUDIT POLICY security_pol BY hr WHENEVER NOT SUCCESSFUL;

The following statement verifies that security_pol is enabled for only user hr and that only the SQL
statements and operations that fail will be audited:

SELECT policy_name, enabled_option, entity_name, success, failure
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'SECURITY_POL';

POLICY_NAME ENABLED_OPTION ENTITY_NAME SUCCESS FAILURE
------------ -------------------- ---------- ------- -------
SECURITY_POL BY HR NO YES

Including Values of Context Attributes in Audit Records: Example

The following statement instructs the database to include the values of namespace USERENV
attributes CURRENT_USER and DB_NAME in all audit records for user hr:

AUDIT CONTEXT NAMESPACE userenv
 ATTRIBUTES current_user, db_name
 BY hr;

Chapter 12
AUDIT (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 237 of 244

CALL
Purpose

Use the CALL statement to execute a routine (a standalone procedure or function, or a
procedure or function defined within a type or package) from within SQL.

Note

The restrictions on user-defined function expressions specified in "Function
Expressions " apply to the CALL statement as well.

See Also

Oracle Database PL/SQL Language Reference for information on creating such
routine

Prerequisites

You must have EXECUTE privilege on the standalone routine or on the type or package in which
the routine is defined.

Syntax

call::=

CALL
routine_clause

object_access_expression

INTO : host_variable

INDICATOR

: indicator_variable

;

routine_clause::=

schema .

type .

package .
function

procedure

method

@ dblink_name

(

argument

,

)

Chapter 12
CALL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 238 of 244

object_access_expression::=

table_alias . column .

object_table_alias .

(expr) .

attribute

.
. method (

argument

,

)

method (

argument

,

)

Semantics

You can execute a routine in two ways. You can issue a call to the routine itself by name, by
using the routine_clause, or you can invoke a routine inside the type of an expression, by using an
object_access_expression.

routine_clause

Specify the name of the function or procedure being called, or a synonym that resolves to a
function or procedure.

When you call a member function or procedure of a type, if the first argument (SELF) is a null IN
OUT argument, then Oracle Database returns an error. If SELF is a null IN argument, then the
database returns null. In both cases, the function or procedure is not invoked.

Restriction on Functions

If the routine is a function, then the INTO clause is required.

schema

Specify the schema in which the standalone routine, or the package or type containing the
routine, resides. If you do not specify schema, then Oracle Database assumes the routine is in
your own schema.

type or package

Specify the type or package in which the routine is defined.

@dblink

In a distributed database system, specify the name of the database containing the standalone
routine, or the package or function containing the routine. If you omit dblink, then Oracle
Database looks in your local database.

See Also

"Calling a Procedure: Example" for an example of calling a routine directly

Chapter 12
CALL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 239 of 244

object_access_expression

If you have an expression of an object type, such as a type constructor or a bind variable, then
you can use this form of expression to call a routine defined within the type. In this context, the
object_access_expression is limited to method invocations.

See Also

"Object Access Expressions " for syntax and semantics of this form of expression, and
"Calling a Procedure Using an Expression of an Object Type: Example" for an
example of calling a routine using an expression of an object type

argument

Specify one or more arguments to the routine, if the routine takes arguments. You can use
positional, named, or mixed notation for argument. For example, all of the following notations are
correct:

CALL my_procedure(arg1 => 3, arg2 => 4)

CALL my_procedure(3, 4)

CALL my_procedure(3, arg2 => 4)

Restrictions on Applying Arguments to Routines

The argument is subject to the following restrictions:

• The data types of the parameters passed by the CALL statement must be SQL data types.
They cannot be PL/SQL-only data types such as BOOLEAN.

• An argument cannot be a pseudocolumn or either of the object reference functions VALUE or
REF.

• Any argument that is an IN OUT or OUT argument of the routine must correspond to a host
variable expression.

• The number of arguments, including any return argument, is limited to 1000.

• You cannot bind arguments of character and raw data types (CHAR, VARCHAR2, NCHAR,
NVARCHAR2, RAW, LONG RAW) that are larger than 4K.

INTO :host_variable

The INTO clause applies only to calls to functions. Specify which host variable will store the
return value of the function.

:indicator_variable

Specify the value or condition of the host variable.

See Also

Pro*C/C++ Programmer's Guide for more information on host variables and indicator
variables

Chapter 12
CALL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 240 of 244

Examples

Calling a Procedure: Example

The following statement removes the Entertainment department (created in "Inserting
Sequence Values: Example") using uses the remove_dept procedure. See Oracle Database
PL/SQL Language Reference for the example that creates this procedure.

CALL emp_mgmt.remove_dept(162);

Calling a Procedure Using an Expression of an Object Type: Example

The following examples show how call a procedure by using an expression of an object type in
the CALL statement. The example uses the warehouse_typ object type in the order entry sample
schema OE:

ALTER TYPE warehouse_typ
 ADD MEMBER FUNCTION ret_name
 RETURN VARCHAR2
 CASCADE;

CREATE OR REPLACE TYPE BODY warehouse_typ
 AS MEMBER FUNCTION ret_name
 RETURN VARCHAR2
 IS
 BEGIN
 RETURN self.warehouse_name;
 END;
 END;
/
VARIABLE x VARCHAR2(25);

CALL warehouse_typ(456, 'Warehouse 456', 2236).ret_name()
 INTO :x;

PRINT x;
X

Warehouse 456

The next example shows how to use an external function to achieve the same thing:

CREATE OR REPLACE FUNCTION ret_warehouse_typ(x warehouse_typ)
 RETURN warehouse_typ
 IS
 BEGIN
 RETURN x;
 END;
/
CALL ret_warehouse_typ(warehouse_typ(234, 'Warehouse 234',
 2235)).ret_name()
 INTO :x;

PRINT x;

X

Warehouse 234

Chapter 12
CALL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 241 of 244

COMMENT
Purpose

Use the COMMENT statement to add to the data dictionary a comment about a table or table
column, unified audit policy, edition, indextype, materialized view, mining model, operator, or
view.

To drop a comment from the database, set it to the empty string ' '.

See Also

• "Comments " for more information on associating comments with SQL statements
and schema objects

• Oracle Database Reference for information on the data dictionary views that
display comments

Prerequisites

The object about which you are adding a comment must be in your own schema or:

• To add a comment to a table, view, or materialized view, you must have COMMENT ANY
TABLE system privilege.

• To add a comment to a unified audit policy, you must have the AUDIT SYSTEM system
privilege or the AUDIT_ADMIN role.

• To add a comment to an edition, you must have the CREATE ANY EDITION system privilege,
granted either directly or through a role.

• To add a comment to an indextype, you must have the CREATE ANY INDEXTYPE system
privilege.

• To add a comment to a mining model, you must have the COMMENT ANY MINING MODEL
system privilege.

• To add a comment to an operator, you must have the CREATE ANY OPERATOR system
privilege.

Chapter 12
COMMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 242 of 244

Syntax

comment::=

C0MMENT ON

AUDIT POLICY policy

COLUMN

schema .
table

view

materialized_view

. column

EDITION edition_name

INDEXTYPE

schema .

indextype

MATERIALIZED VIEW materialized_view

MINING MODEL

schema .

model

OPERATOR

schema .

operator

TABLE

schema . table

view

IS string ;

Semantics

AUDIT POLICY Clause

Specify the name of the unified audit policy to be commented.

You can view the comments on a particular unified audit policy by querying the
AUDIT_UNIFIED_POLICY_COMMENTS data dictionary view.

COLUMN Clause

Specify the name of the column of a table, view, or materialized view to be commented. If you
omit schema, then Oracle Database assumes the table, view, or materialized view is in your own
schema.

You can view the comments on a particular table or column by querying the data dictionary
views USER_TAB_COMMENTS, DBA_TAB_COMMENTS, or ALL_TAB_COMMENTS or
USER_COL_COMMENTS, DBA_COL_COMMENTS, or ALL_COL_COMMENTS.

EDITION Clause

Specify the name of an existing edition to be commented.

You can query the data dictionary view ALL_EDITION_COMMENTS to view comments associated
with editions that are accessible to the current user. You can query DBA_EDITION_COMMENTS to
view comments associated with all editions in the database.

TABLE Clause

Specify the schema and name of the table or materialized view to be commented. If you omit
schema, then Oracle Database assumes the table or materialized view is in your own schema.

Chapter 12
COMMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 243 of 244

Note

In earlier releases, you could use this clause to create a comment on a materialized
view. You should now use the COMMENT ON MATERIALIZED VIEW clause for
materialized views.

INDEXTYPE Clause

Specify the name of the indextype to be commented. If you omit schema, then Oracle Database
assumes the indextype is in your own schema.

You can view the comments on a particular indextype by querying the data dictionary views
USER_INDEXTYPE_COMMENTS, DBA_INDEXTYPE_COMMENTS, or ALL_INDEXTYPE_COMMENTS.

MATERIALIZED VIEW Clause

Specify the name of the materialized view to be commented. If you omit schema, then Oracle
Database assumes the materialized view is in your own schema.

You can view the comments on a particular materialized view by querying the data dictionary
views USER_MVIEW_COMMENTS, DBA_MVIEW_COMMENTS, or ALL_MVIEW_COMMENTS.

MINING MODEL

Specify the name of the mining model to be commented.

You can view the comments on a particular mining model by querying the COMMENTS column
of the data dictionary views USER_MINING_MODELS, DBA_MINING_MODELS, or
ALL_MINING_MODELS.

OPERATOR Clause

Specify the name of the operator to be commented. If you omit schema, then Oracle Database
assumes the operator is in your own schema.

You can view the comments on a particular operator by querying the data dictionary views
USER_OPERATOR_COMMENTS, DBA_OPERATOR_COMMENTS, or ALL_OPERATOR_COMMENTS.

IS 'string'

Specify the text of the comment. Refer to "Text Literals " for a syntax description of 'string'.

Examples

Creating Comments: Example

To insert an explanatory remark on the job_id column of the employees table, you might issue the
following statement:

COMMENT ON COLUMN employees.job_id
 IS 'abbreviated job title';

To drop this comment from the database, issue the following statement:

COMMENT ON COLUMN employees.job_id IS '';

Chapter 12
COMMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 244 of 244

13
SQL Statements: COMMIT to CREATE JSON
RELATIONAL DUALITY VIEW

This chapter contains the following SQL statements:

• COMMIT

• CREATE ANALYTIC VIEW

• CREATE ATTRIBUTE DIMENSION

• CREATE AUDIT POLICY (Unified Auditing)

• CREATE CLUSTER

• CREATE CONTEXT

• CREATE CONTROLFILE

• CREATE DATABASE

• CREATE DATABASE LINK

• CREATE DIMENSION

• CREATE DIRECTORY

• CREATE DISKGROUP

• CREATE DOMAIN

• CREATE EDITION

• CREATE FLASHBACK ARCHIVE

• CREATE FUNCTION

• CREATE HIERARCHY

• CREATE INDEX

• CREATE INDEXTYPE

• CREATE INMEMORY JOIN GROUP

• CREATE JAVA

• CREATE JSON RELATIONAL DUALITY VIEW

COMMIT
Purpose

Use the COMMIT statement to end your current transaction and make permanent all changes
performed in the transaction. A transaction is a sequence of SQL statements that Oracle
Database treats as a single unit. This statement also erases all savepoints in the transaction
and releases transaction locks.

Until you commit a transaction:

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 185

• You can see any changes you have made during the transaction by querying the modified
tables, but other users cannot see the changes. After you commit the transaction, the
changes are visible to other users' statements that execute after the commit.

• You can roll back (undo) any changes made during the transaction with the ROLLBACK
statement (see ROLLBACK).

Oracle Database issues an implicit COMMIT under the following circumstances:

• Before any syntactically valid data definition language (DDL) statement, even if the
statement results in an error

• After any data definition language (DDL) statement that completes without an error

You can also use this statement to:

• Commit an in-doubt distributed transaction manually

• Terminate a read-only transaction begun by a SET TRANSACTION statement

Oracle recommends that you explicitly end every transaction in your application programs with
a COMMIT or ROLLBACK statement, including the last transaction, before disconnecting from
Oracle Database. If you do not explicitly commit the transaction and the program terminates
abnormally, then the last uncommitted transaction is automatically rolled back.

A normal exit from most Oracle utilities and tools causes the current transaction to be
committed. A normal exit from an Oracle precompiler program does not commit the transaction
and relies on Oracle Database to roll back the current transaction.

See Also

• Oracle Database Concepts for more information on transactions

• SET TRANSACTION for more information on specifying characteristics of a
transaction

Prerequisites

You need no privileges to commit your current transaction.

To manually commit a distributed in-doubt transaction that you originally committed, you must
have FORCE TRANSACTION system privilege. To manually commit a distributed in-doubt
transaction that was originally committed by another user, you must have FORCE ANY
TRANSACTION system privilege.

Chapter 13
COMMIT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 185

Syntax

commit::=

COMMIT

WORK

COMMENT string WRITE

WAIT

NOWAIT

IMMEDIATE

BATCH

FORCE string

, integer

;

Semantics

COMMIT

All clauses after the COMMIT keyword are optional. If you specify only COMMIT, then the default
is COMMIT WORK WRITE WAIT IMMEDIATE.

WORK

The WORK keyword is supported for compliance with standard SQL. The statements COMMIT
and COMMIT WORK are equivalent.

COMMENT Clause

This clause is supported for backward compatibility. Oracle recommends that you use named
transactions instead of commit comments.

See Also

SET TRANSACTION and Oracle Database Concepts for more information on named
transactions

Specify a comment to be associated with the current transaction. The 'text' is a quoted literal of
up to 255 bytes that Oracle Database stores in the data dictionary view DBA_2PC_PENDING
along with the transaction ID if a distributed transaction becomes in doubt. This comment can
help you diagnose the failure of a distributed transaction.

See Also

COMMENT for more information on adding comments to SQL statements

Chapter 13
COMMIT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 185

WRITE Clause

Use this clause to specify the priority with which the redo information generated by the commit
operation is written to the redo log. This clause can improve performance by reducing latency,
thus eliminating the wait for an I/O to the redo log. Use this clause to improve response time in
environments with stringent response time requirements where the following conditions apply:

• The volume of update transactions is large, requiring that the redo log be written to disk
frequently.

• The application can tolerate the loss of an asynchronously committed transaction.

• The latency contributed by waiting for the redo log write to occur contributes significantly to
overall response time.

You can specify the WAIT | NOWAIT and IMMEDIATE | BATCH clauses in any order.

Note

If you omit this clause, then the behavior of the commit operation is controlled by the
COMMIT_LOGGING and COMMIT_WAIT initialization parameters, if they have been set.

WAIT | NOWAIT

Use these clauses to specify when control returns to the user.

• The WAIT parameter ensures that the commit will return only after the corresponding redo
is persistent in the online redo log. Whether in BATCH or IMMEDIATE mode, when the client
receives a successful return from this COMMIT statement, the transaction has been
committed to durable media. A crash occurring after a successful write to the log can
prevent the success message from returning to the client. In this case the client cannot tell
whether or not the transaction committed.

• The NOWAIT parameter causes the commit to return to the client whether or not the write to
the redo log has completed. This behavior can increase transaction throughput. With the
WAIT parameter, if the commit message is received, then you can be sure that no data has
been lost.

Note

With NOWAIT, a crash occurring after the commit message is received, but before the
redo log record(s) are written, can falsely indicate to a transaction that its changes are
persistent.

If you omit this clause, then the transaction commits with the WAIT behavior.

IMMEDIATE | BATCH

Use these clauses to specify when the redo is written to the log.

• The IMMEDIATE parameter causes the log writer process (LGWR) to write the transaction's
redo information to the log. This operation option forces a disk I/O, so it can reduce
transaction throughput.

Chapter 13
COMMIT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 185

• The BATCH parameter causes the redo to be buffered to the redo log, along with other
concurrently executing transactions. When sufficient redo information is collected, a disk
write of the redo log is initiated. This behavior is called "group commit", as redo for multiple
transactions is written to the log in a single I/O operation.

If you omit this clause, then the transaction commits with the IMMEDIATE behavior.

See Also

Oracle Database Concepts for more information on asynchronous commit

FORCE Clause

In a distributed database system, the FORCE string [, integer] clause lets you manually commit an
in-doubt distributed transaction. The transaction is identified by the 'string' containing its local or
global transaction ID. To find the IDs of such transactions, query the data dictionary view
DBA_2PC_PENDING. You can use integer to specifically assign the transaction a system change
number (SCN). If you omit integer, then the transaction is committed using the current SCN.

Note

A COMMIT statement with a FORCE clause commits only the specified transactions.
Such a statement does not affect your current transaction.

See Also

Oracle Database Administrator's Guide for more information on these topics

Examples

Committing an Insert: Example

This statement inserts a row into the hr.regions table and commits this change:

INSERT INTO regions VALUES (5, 'Antarctica');

COMMIT WORK;

To commit the same insert operation and instruct the database to buffer the change to the redo
log, without initiating disk I/O, use the following COMMIT statement:

COMMIT WRITE BATCH;

Commenting on COMMIT: Example

The following statement commits the current transaction and associates a comment with it:

COMMIT
 COMMENT 'In-doubt transaction Code 36, Call (415) 555-2637';

If a network or machine failure prevents this distributed transaction from committing properly,
then Oracle Database stores the comment in the data dictionary along with the transaction ID.

Chapter 13
COMMIT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 185

The comment indicates the part of the application in which the failure occurred and provides
information for contacting the administrator of the database where the transaction was
committed.

Forcing an In-Doubt Transaction: Example

The following statement manually commits a hypothetical in-doubt distributed transaction.
Query the V$CORRUPT_XID_LIST data dictionary view to find the transaction IDs of corrupt
transactions. You must have DBA privileges to view the V$CORRUPT_XID_LIST and to issue this
statement.

COMMIT FORCE '22.57.53';

CREATE ANALYTIC VIEW
Purpose

Use the CREATE ANALYTIC VIEW statement to create an analytic view. An analytic view
specifies the source of its fact data and defines measures that describe calculations or other
analytic operations to perform on the data. An analytic view also specifies the attribute
dimensions and hierarchies that define the rows of the analytic view.

Prerequisites

To create an analytic view in your own schema, you must have the CREATE ANALYTIC VIEW
system privilege. To create an analytic view in another user's schema, you must have the
CREATE ANY ANALYTIC VIEW system privilege.

Syntax

create_analytic_view::=

CREATE

OR REPLACE

NOFORCE

FORCE

ANALYTIC VIEW

IF NOT EXISTS

analytic_view_name

SHARING =
METADATA

NONE classification_clause using_clause dim_by_clause

measures_clause default_measure_clause default_aggregate_clause cache_clause

fact_columns_clause qry_transform_clause

Chapter 13
CREATE ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 185

classification_clause::=

CAPTION caption DESCRIPTION description

CLASSIFICATION classification_name

VALUE classification_value LANGUAGE language

using_clause::=

USING source_clause

source_clause::=

schema .

fact_table_or_view

REMOTE

AS

alias

dim_by_clause::=

DIMENSION BY (dim_key

,

)

dim_key::=

dim_ref

classification_clause

KEY

(alias .

fact_column

)

(

alias .

fact_column

,

)

REFERENCES

DISTINCT

(

attribute

)

(attribute

,

)

HIERARCHIES (hier_ref

,

)

Chapter 13
CREATE ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 185

dim_ref::=

schema .

attr_dim_name

AS

dim__alias

hier_ref::=

schema .

hier_name

AS

hier_alias DEFAULT

measures_clause::=

MEASURES (av_measure

,

)

av_measure::=

meas_name

base_meas_clause

calc_meas_clause classification_clause

base_meas_clause::=

FACT

(expression)

meas_aggregate_clause

calc_meas_clause::=

meas_name AS (expression)

meas_aggregate_clause::=

AGGREGATE BY aggr_function

Chapter 13
CREATE ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 185

default_measure_clause::=

DEFAULT MEASURE measure

default_aggregate_clause::=

DEFAULT AGGREGATE BY aggr_function

cache_clause::=

CACHE cache_specification

,

cache_specification::=

MEASURE GROUP

ALL

(measure_name

,

) levels_clause

,

levels_clause::=

LEVELS (

level_specification

,

) level_group_type

level_specification::=

(

dim_name .

hier_name .

level_name)

level_group_type::=

DYNAMIC

MATERIALIZED

USING

schema .

table

Chapter 13
CREATE ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 185

fact_columns_clause::=

FACT COLUMNS fact_column

AS

fact_alias

,

qry_transform_clause::=

ENABLE QUERY TRANSFORM

RELY

NORELY

Semantics

OR REPLACE

Specify OR REPLACE to replace an existing definition of an analytic view with a different
definition.

FORCE and NOFORCE

Specify FORCE to force the creation of the analytic view even if it does not successfully compile.
If you specify NOFORCE, then the analytic view must compile successfully, otherwise an error
occurs. The default is NOFORCE.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the analytic view does not exist, a new analytic view is created at the end of the
statement.

• If the analytic view exists, this is the analytic view you have at the end of the statement. A
new one is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the schema in which to create the analytic view. If you do not specify a schema, then
Oracle Database creates the analytic view in your own schema.

analytic_view_name

Specify a name for the analytic view.

Chapter 13
CREATE ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 185

SHARING

Use the sharing clause if you want to create the object in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

classification_clause

Use the classification clause to specify values for the CAPTION or DESCRIPTION classifications
and to specify user-defined classifications. Classifications provide descriptive metadata that
applications may use to provide information about analytic views and their components.

You may specify any number of classifications for the same object. A classification can have a
maximum length of 4000 bytes.

For the CAPTION and DESCRIPTION classifications, you may use the DDL shortcuts CAPTION
'caption' and DESCRIPTION 'description' or the full classification syntax.

You may vary the classification values by language. To specify a language for the CAPTION or
DESCRIPTION classification, you must use the full syntax. If you do not specify a language, then
the language value for the classification is NULL. The language value must either be NULL or a
valid NLS_LANGUAGE value.

using_clause

Use this clause to declare the sources that you want to use to build the analytic view.

source_clause

You can specify any of the following sources to build an analytic view:

• A fact table or a view.

• External tables and remote tables.

• A table or a view in another schema. You can specify an alias for the table or the view.

REMOTE

Specify REMOTE on a given source to indicate to the analytic view that the given source is
backed by remote data and should be optimized as remote data.

dim_by_clause

Specify the attribute dimensions of the analytic view.

dim_key

Specify an attribute dimension, columns of the fact table, columns of the attribute dimension,
and hierarchies that are related in the analytic view.

With the KEY keyword, specify one or more columns in the fact table.

With the REFERENCES keyword, specify attributes of the attribute dimensions that the analytic
view is dimensioned by. Each attribute must be a level key. The DISTINCT keyword supports the

Chapter 13
CREATE ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 185

use of denormalized fact tables, in which the attribute dimension and fact data are in the same
table. Use REFERENCES DISTINCT when an attribute dimension is defined using the fact table.

With the HIERARCHIES keyword, specify the hierarchies in the analytic view that use the
attribute dimension.

dim_ref

Specify an attribute dimension. You can specify an alias for an attribute dimension, which is
required if you use the same dimension more than once or if you use multiple dimensions with
the same name from different schemas.

hier_ref

Specify a hierarchy. You can specify an alias for a hierarchy. You can specify one of the
hierarchies in the list as the default. If you do not specify a default, the first hierarchy in the list
is the default.

measures_clause

Specify the measures for the analytic view.

av_measure

Define a measure using either a single fact column or an expression over measures in this
analytic view. A measure can be either a base measure or a calculated measure.

base_measure_clause

Define a base measure by optionally specifying a fact column or a meas_aggregate_clause, or both.
If you do not specify a fact column, then the analytic view uses the column of the fact table that
has the same name as the measure. If a column by the same name does not exist, an error is
raised.

calc_measure_clause

Define a calculated measure by specifying an analytic view expression. The expression may
reference other measures in the analytic view, but may not reference fact columns. Calculated
measures do not have an aggregate clause because they're computed over the aggregated
base measures.

For the syntax and descriptions of analytic view expressions, see Analytic View Expressions.

default_measure_clause

Specify a measure to use as the default measure for the analytic view. If you do not specify a
measure, the first measure defined is the default.

meas_aggregate_clausè

Specify a default aggregation function for a base measure. If you do not specify an aggregation
function, then the function specified by the default_aggregate_clause is used.

aggr_function

The functions that you can aggregate by in the meas_aggregate_clause and default_aggregate_clause are
the following: APPROX_COUNT_DISTINCT, APPROX_COUNT_DISTINCT_AGG, AVG, COUNT, MAX, MIN,
STDDEV, STDDEV_POP, STDDEV_SAMP, SUM, VAR_POP, VAR_SAMP, and VARIANCE.

Chapter 13
CREATE ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 185

default_aggregate_clause

Specify a default aggregation function for all of the base measures in the analytic view. If you
do not specify a default aggregation function, then the default value is SUM.

cache_clause

Specify a cache clause to improve query response time when an appropriate materialized view
is available. You can specify one or more cache specifications.

cache_specification

Specify one or more measure groups for a cache clause. To include all measure groups,
specify ALL. Each measure group can contain one or more measures and one or more level
groupings. A level grouping can contain one or more level specifications.

level_specification

Specify one or more levels for a level grouping of a measure group for a cache specification.
Specify only one level per hierarchy. A materialized view must exist that contains the
aggregated values for the hierarchy level.

level_group_type

If you specify the USING clause, then the given table will be directly used at query time, if the
analytic view determines that this is the best cache to use for the query. The typical shape of
the cache is a column for each measure in the MEASURE GROUP plus a column per level key of
each level in the cache. There is one row per member combination, across all given levels, that
has at least one contributing row from the fact table. The column names of the given table
must match a specific format so that the analytic view can identify which columns line up with
which measures and level keys. The names of the columns can be retrieved from the
DBMS_HIERARCHY package using the method GET_MV_SQL_FOR_AV_CACHE.

This method takes in the cache to generate SQL for and returns the SQL text for the cache.
This SQL text can be used to create a materialized view for the cache. It can also be used to
create an aggregate table using CREATE TABLE AS.

At compile time of the analytic view, the following checks will be made in regard to the
materialized table:

• The table must exist and be accessible by the owner of the analytic view

• The columns of the table must include the expected cache columns

fact_columns_clause

Specify this clause to explictly state the fact columns that can be accessed by the dervided
analytic view. You can aggregate any columns of the fact table that appear in fact_columns_clause
at query time with the aggregation operator specified in the derived analytic view

If an alias is provided for the fact column, then the alias name must be used in the dervided
analytic view. The alias defaults to the fact column name if not specified.

It is a semantic analysis error, if two or more fact columns are specified with the same name.

If you do not specify this clause, then no fact columns can be accessed for aggregation by the
derived analytic view. This is the default.

Chapter 13
CREATE ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 185

qry_transform_clause

Specify this clause on an analytic view, if you want the view to participate in detecting queries
that match its semantic model and transform it into an equivalent analytic view query if
appropriate.

Restrictions

You cannot use qry_transform_clause on an analytic view in the following cases:

• When the analytic view contains an attribute dimension with more than one dimension
table (either a snowflake or starflake schema)

• When a dimension table joins to the fact table at a level that is above the leaf level of the
dimension (i.e. a REFERENCES DISTINCT join)

• When NORELY is specified and one or more base tables are remote tables

The new clause allows for an optional RELY or NORELY keyword. The default is NORELY.

The analytic view metadata can be viewed as a set of constraints on the underlying data.
These constraints are not enforced by the database, but can be checked using the
DBMS_HIERARCHY.VALIDATE_ANALYTIC_VIEW procedure.

The RELY keyword indicates that the constraints implied on the data by the analytic view
metadata can be relied upon without validation when being considered for base table
transform. If NORELY is specified, then the data must be in a valid state in relation to the
metadata in order for the base table transform to take place.

Examples

The following is a description of the SALES_FACT table:

desc SALES_FACT
Name Null? Type
----------------- ----- -------------
MONTH_ID VARCHAR2(10)
CATEGORY_ID NUMBER(6)
STATE_PROVINCE_ID VARCHAR2(120)
UNITS NUMBER(6)
SALES NUMBER(12,2)

The following example creates the SALES_AV analytic view using the SALES_FACT table:

CREATE OR REPLACE ANALYTIC VIEW sales_av
USING sales_fact
DIMENSION BY
 (time_attr_dim -- An attribute dimension of time data
 KEY month_id REFERENCES month_id
 HIERARCHIES (
 time_hier DEFAULT),
 product_attr_dim -- An attribute dimension of product data
 KEY category_id REFERENCES category_id
 HIERARCHIES (
 product_hier DEFAULT),
 geography_attr_dim -- An attribute dimension of store data
 KEY state_province_id
 REFERENCES state_province_id HIERARCHIES (

Chapter 13
CREATE ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 185

 geography_hier DEFAULT)
)
MEASURES
 (sales FACT sales, -- A base measure
 units FACT units, -- A base measure
 sales_prior_period AS -- Calculated measures
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1)),
 sales_year_ago AS
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 chg_sales_year_ago AS
 (LAG_DIFF(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 pct_chg_sales_year_ago AS
 (LAG_DIFF_PERCENT(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 sales_qtr_ago AS
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter)),
 chg_sales_qtr_ago AS
 (LAG_DIFF(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter)),
 pct_chg_sales_qtr_ago AS
 (LAG_DIFF_PERCENT(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter))
)
DEFAULT MEASURE SALES;

CREATE ATTRIBUTE DIMENSION
Purpose

Use the CREATE ATTRIBUTE DIMENSION statement to create an attribute dimension. An attribute
dimension specifies dimension members for one or more analytic view hierarchies. It specifies
the data source it is using and the members it includes. It specifies levels for its members and
determines attribute relationships between levels.

Prerequisites

To create an attribute dimension in your own schema, you must have the CREATE ATTRIBUTE
DIMENSION system privilege. To create an attribute dimension in another user's schema, you
must have the CREATE ANY ATTRIBUTE DIMENSION system privilege.

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 185

Syntax

create_attribute_dimension::=

CREATE

OR REPLACE

NOFORCE

FORCE

ATTRIBUTE DIMENSION

IF NOT EXISTS

schema .

attr_dimension

SHARING =
METADATA

NONE

classification_clause
DIMENSION TYPE

STANDARD

TIME

attr_dim_using_clause attributes_clause attr_dim_level_clause

all_clause

classification_clause::=

CAPTION caption DESCRIPTION description

CLASSIFICATION classification_name

VALUE classification_value LANGUAGE language

attr_dim_using_clause::=

USING source_clause

,
join_path_clause

source_clause::=

schema .

fact_table_or_view

REMOTE

AS

alias

join_path_clause::=

JOIN PATH join_path_name ON join_condition

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 185

join_condition::=

join_condition_elem

AND join_condition_elem

join_condition_elem ::=

alias.

column =

alias.

column

attributes_clause::=

ATTRIBUTES (attr_dim_attribute_clause

,

)

attr_dim_attributes_clause::=

alias .

column

AS

attribute_name classification_clause

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 185

attr_dim_level_clause::=

LEVEL level

NOT NULL

SKIP WHEN NULL classification_clause

LEVEL TYPE

STANDARD

YEARS

HALF_YEARS

QUARTERS

MONTHS

WEEKS

DAYS

HOURS

MINUTES

SECONDS

key_clause

alternate_key_clause

MEMBER NAME expression MEMBER CAPTION expression

MEMBER DESCRIPTION expression ORDER BY

MIN

MAX

dim_order_clause

,

DETERMINES (attribute

,

)

key_clause::=

KEY

(

attribute

)

(attribute

,

)

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 185

alternate_key_clause::=

ALTERNATE KEY

(

attribute

)

(attribute

,

)

dim_order_clause::=

attribute

ASC

DESC

NULLS

FIRST

LAST

all_clause::=

ALL MEMBER

NAME expression

MEMBER CAPTION expression

CAPTION expression

MEMBER DESCRIPTION expression

DESCRIPTION expression

Semantics

OR REPLACE

Specify OR REPLACE to replace an existing definition of an attribute dimension with a different
definition.

FORCE and NOFORCE

Specify FORCE to force the creation of the attribute dimension even if it does not successfully
compile. If you specify NOFORCE, then the attribute dimension must compile successfully,
otherwise an error occurs. The default is NOFORCE.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the attribute dimension does not exist, a new attribute dimension is created at the end of
the statement.

• If the attribute dimension exists, this is the attribute dimension you have at the end of the
statement. A new one is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 185

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the schema in which to create the attribute dimension. If you do not specify a schema,
then Oracle Database creates the attribute dimension in your own schema.

attr_dimension

Specify a name for the attribute dimension.

SHARING

Use the sharing clause if you want to create the object in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

classification_clause

Use the classification clause to specify values for the CAPTION or DESCRIPTION classifications
and to specify user-defined classifications. Classifications provide descriptive metadata that
applications may use to provide information about analytic views and their components.

You may specify any number of classifications for the same object. A classification can have a
maximum length of 4000 bytes.

For the CAPTION and DESCRIPTION classifications, you may use the DDL shortcuts CAPTION
'caption' and DESCRIPTION 'description' or the full classification syntax.

You may vary the classification values by language. To specify a language for the CAPTION or
DESCRIPTION classification, you must use the full syntax. If you do not specify a language, then
the language value for the classification is NULL. The language value must either be NULL or a
valid NLS_LANGUAGE value.

DIMENSION TYPE

An attribute dimension may be either a STANDARD or a TIME type. A STANDARD type attribute
dimension has STANDARD type levels. Each level of a TIME type attribute dimension is one of
the time types. The default DIMENSION TYPE is STANDARD.

attr_dim_using_clause

Use this clause to declare the sources that you want to use to create the attribute dimension.

source_clause

You may specify the following sources:

• A table or a view.

• An alias for the table or the view by using the AS keyword.

• A join path. Use join paths to specify joins when the attribute dimension uses tables
organized in a snowflake schema.

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 185

REMOTE

Specify REMOTE on a given source to indicate that the source is backed by remote data and
should be optimized as remote data.

join_path_clause

The join path clause specifies a join condition between columns in different tables. The name
for the join path specified by the join_path_name argument must be unique for each join path
included in the USING clause.

join_condition

A join condition consists of one or more join condition elements; each additional join condition
element is included by an AND operation.

join_condition_element

In a join condition element, the column references on the left-hand-side must come from a
different table than the column references on the right-hand-side.

attributes_clause

Specify one or more attr_dim_attribute_clause clauses.

attr_dim_attribute_clause

Specify a column from the attr_dim_using_clause source. The attribute has the name of the column
unless you specify an alias using the AS keyword. You may specify classifications for each
attribute.

attr_dim_level_clause

Specify a level in the attribute dimension. A level specifies key and optional alternate key
attributes that provide the members of the level.

If the key attribute has no NULL values, then you may specify NOT NULL, which is the default. If
it does have one or more NULL values, then specify SKIP WHEN NULL.

LEVEL TYPE

A STANDARD type attribute dimension has STANDARD type levels. You do not need to specify a
LEVEL TYPE for a STANDARD type attribute dimension.

In a TIME type attribute dimension, you must specify a level type. The type of the level may be
one of the time types. You must specify a time type even if the values of the level members are
not of that type. For example, you may have a SEASON level with values that are the names
of seasons. In defining the level, you must specify any one of the time level types, such as
QUARTERS. An application may use the level type designations for whatever purpose it
chooses.

DETERMINES

With the DETERMINES keyword, you may specify other attributes of the attribute dimension that
this level determines. If an attribute has only one value for each value of another attribute, then
the value of the first attribute determines the value of the other attribute. For example, the
QUARTER_ID attribute has only one value for each value of the MONTH_ID attribute, so you
can include the the QUARTER_ID attribute in the DETERMINES phrase of the MONTHS level.

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 185

key_clause

Specify one or more attributes as the key for the level.

alternate_key_clause

Specify one or more attributes as the alternate key for the level.

dim_order_clause

Specify the ordering of the members of the level.

all_clause

Optionally specify MEMBER NAME, MEMBER CAPTION, and MEMBER DESCRIPTION values for the
implicit ALL level. By default, the MEMBER NAME value is ALL.

Examples

The following example describes the TIME_DIM table:

desc TIME_DIM

Name Null? Type
----------------- ----- -------------
MONTH_ID VARCHAR2(10)
CATEGORY_ID NUMBER(6)
STATE_PROVINCE_ID VARCHAR2(120)
UNITS NUMBER(6)
SALES NUMBER(12,2)
YEAR_ID NOT NULL VARCHAR2(30)
YEAR_NAME NOT NULL VARCHAR2(40)
YEAR_END_DATE DATE
QUARTER_ID NOT NULL VARCHAR2(30)
QUARTER_NAME NOT NULL VARCHAR2(40)
QUARTER_END_DATE DATE
QUARTER_OF_YEAR NUMBER
MONTH_ID NOT NULL VARCHAR2(30)
MONTH_NAME NOT NULL VARCHAR2(40)
MONTH_END_DATE DATE
MONTH_OF_YEAR NUMBER
MONTH_LONG_NAME VARCHAR2(30)
SEASON VARCHAR2(10)
SEASON_ORDER NUMBER(38)
MONTH_OF_QUARTER NUMBER(38)

The following example creates a TIME type attribute dimension, using columns from the
TIME_DIM table:

CREATE OR REPLACE ATTRIBUTE DIMENSION time_attr_dim
DIMENSION TYPE TIME
USING time_dim
ATTRIBUTES
 (year_id
 CLASSIFICATION caption VALUE 'YEAR_ID'
 CLASSIFICATION description VALUE 'YEAR ID',

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 185

 year_name
 CLASSIFICATION caption VALUE 'YEAR_NAME'
 CLASSIFICATION description VALUE 'Year',
 year_end_date
 CLASSIFICATION caption VALUE 'YEAR_END_DATE'
 CLASSIFICATION description VALUE 'Year End Date',
 quarter_id
 CLASSIFICATION caption VALUE 'QUARTER_ID'
 CLASSIFICATION description VALUE 'QUARTER ID',
 quarter_name
 CLASSIFICATION caption VALUE 'QUARTER_NAME'
 CLASSIFICATION description VALUE 'Quarter',
 quarter_end_date
 CLASSIFICATION caption VALUE 'QUARTER_END_DATE'
 CLASSIFICATION description VALUE 'Quarter End Date',
 quarter_of_year
 CLASSIFICATION caption VALUE 'QUARTER_OF_YEAR'
 CLASSIFICATION description VALUE 'Quarter of Year',
 month_id
 CLASSIFICATION caption VALUE 'MONTH_ID'
 CLASSIFICATION description VALUE 'MONTH ID',
 month_name
 CLASSIFICATION caption VALUE 'MONTH_NAME'
 CLASSIFICATION description VALUE 'Month',
 month_long_name
 CLASSIFICATION caption VALUE 'MONTH_LONG_NAME'
 CLASSIFICATION description VALUE 'Month Long Name',
 month_end_date
 CLASSIFICATION caption VALUE 'MONTH_END_DATE'
 CLASSIFICATION description VALUE 'Month End Date',
 month_of_quarter
 CLASSIFICATION caption VALUE 'MONTH_OF_QUARTER'
 CLASSIFICATION description VALUE 'Month of Quarter',
 month_of_year
 CLASSIFICATION caption VALUE 'MONTH_OF_YEAR'
 CLASSIFICATION description VALUE 'Month of Year',
 season
 CLASSIFICATION caption VALUE 'SEASON'
 CLASSIFICATION description VALUE 'Season',
 season_order
 CLASSIFICATION caption VALUE 'SEASON_ORDER'
 CLASSIFICATION description VALUE 'Season Order')
LEVEL month
 LEVEL TYPE MONTHS
 CLASSIFICATION caption VALUE 'MONTH'
 CLASSIFICATION description VALUE 'Month'
 KEY month_id
 MEMBER NAME month_name
 MEMBER CAPTION month_name
 MEMBER DESCRIPTION month_long_name
 ORDER BY month_end_date
 DETERMINES (month_end_date,
 quarter_id,
 season,
 season_order,
 month_of_year,

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 185

 month_of_quarter)
LEVEL quarter
 LEVEL TYPE QUARTERS
 CLASSIFICATION caption VALUE 'QUARTER'
 CLASSIFICATION description VALUE 'Quarter'
 KEY quarter_id
 MEMBER NAME quarter_name
 MEMBER CAPTION quarter_name
 MEMBER DESCRIPTION quarter_name
 ORDER BY quarter_end_date
 DETERMINES (quarter_end_date,
 quarter_of_year,
 year_id)
LEVEL year
 LEVEL TYPE YEARS
 CLASSIFICATION caption VALUE 'YEAR'
 CLASSIFICATION description VALUE 'Year'
 KEY year_id
 MEMBER NAME year_name
 MEMBER CAPTION year_name
 MEMBER DESCRIPTION year_name
 ORDER BY year_end_date
 DETERMINES (year_end_date)
LEVEL season
 LEVEL TYPE QUARTERS
 CLASSIFICATION caption VALUE 'SEASON'
 CLASSIFICATION description VALUE 'Season'
 KEY season
 MEMBER NAME season
 MEMBER CAPTION season
 MEMBER DESCRIPTION season
LEVEL month_of_quarter
 LEVEL TYPE MONTHS
 CLASSIFICATION caption VALUE 'MONTH_OF_QUARTER'
 CLASSIFICATION description VALUE 'Month of Quarter'
 KEY month_of_quarter;

The following example describes the PRODUCT_DIM table:

desc PRODUCT_DIM

Name Null? Type
--------------- -------- -------------
DEPARTMENT_ID NOT NULL NUMBER
DEPARTMENT_NAME NOT NULL VARCHAR2(100)
CATEGORY_ID NOT NULL NUMBER
CATEGORY_NAME NOT NULL VARCHAR2(100)

The following example creates a STANDARD type attribute dimension, using columns from the
PRODUCT_DIM table:

CREATE OR REPLACE ATTRIBUTE DIMENSION product_attr_dim
USING product_dim
ATTRIBUTES
 (department_id,

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 185

 department_name,
 category_id,
 category_name)
LEVEL DEPARTMENT
 KEY department_id
 ALTERNATE KEY department_name
 MEMBER NAME department_name
 MEMBER CAPTION department_name
 ORDER BY department_name
LEVEL CATEGORY
 KEY category_id
 ALTERNATE KEY category_name
 MEMBER NAME category_name
 MEMBER CAPTION category_name
 ORDER BY category_name
 DETERMINES(department_id)
ALL MEMBER NAME 'ALL PRODUCTS';

The following example describes the GEOGRAPHY_DIM table:

desc GEOGRAPHY_DIM

Name Null? Type
--------------- -------- -------------
DEPARTMENT_ID NOT NULL NUMBER
DEPARTMENT_NAME NOT NULL VARCHAR2(100)
CATEGORY_ID NOT NULL NUMBER
CATEGORY_NAME NOT NULL VARCHAR2(100)
REGION_ID NOT NULL VARCHAR2(120)
REGION_NAME NOT NULL VARCHAR2(100)
COUNTRY_ID NOT NULL VARCHAR2(2)
COUNTRY_NAME NOT NULL VARCHAR2(120)
STATE_PROVINCE_ID NOT NULL VARCHAR2(120)
STATE_PROVINCE_NAME NOT NULL VARCHAR2(400)

The following example creates an STANDARD type attribute dimension, using columns from the
GEOGRAPHY_DIM table:

CREATE OR REPLACE ATTRIBUTE DIMENSION geography_attr_dim
USING geography_dim
ATTRIBUTES
 (region_id,
 region_name,
 country_id,
 country_name,
 state_province_id,
 state_province_name)
LEVEL REGION
 KEY region_id
 ALTERNATE KEY region_name
 MEMBER NAME region_name
 MEMBER CAPTION region_name
 ORDER BY region_name
LEVEL COUNTRY
 KEY country_id

Chapter 13
CREATE ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 185

 ALTERNATE KEY country_name
 MEMBER NAME country_name
 MEMBER CAPTION country_name
 ORDER BY country_name
 DETERMINES(region_id)
LEVEL STATE_PROVINCE
 KEY state_province_id
 ALTERNATE KEY state_province_name
 MEMBER NAME state_province_name
 MEMBER CAPTION state_province_name
 ORDER BY state_province_name
 DETERMINES(country_id)
ALL MEMBER NAME 'ALL CUSTOMERS';

CREATE AUDIT POLICY (Unified Auditing)
This section describes the CREATE AUDIT POLICY statement for unified auditing. This type of
auditing is new beginning with Oracle Database 12c and provides a full set of enhanced
auditing features. Refer to Oracle Database Security Guide for more information on unified
auditing.

Purpose

Use the CREATE AUDIT POLICY statement to create a unified audit policy.

See Also

• ALTER AUDIT POLICY (Unified Auditing)

• DROP AUDIT POLICY (Unified Auditing)

• AUDIT (Unified Auditing)

• NOAUDIT (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To create a common unified audit policy, you must have the commonly granted AUDIT
SYSTEM privilege or the AUDIT_ADMIN common role. To create a local unified audit policy, you
must have the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role, or
you must have the locally granted AUDIT SYSTEM privilege or the AUDIT_ADMIN local role in the
container to which you are connected.

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 185

Syntax

create_audit_policy::=

CREATE AUDIT POLICY policy

privilege_audit_clause action_audit_clause role_audit_clause

WHEN ’ audit_condition ’ EVALUATE PER

STATEMENT

SESSION

INSTANCE ONLY TOPLEVEL

CONTAINER =
ALL

CURRENT

;

Note

You must specify at least one of the clauses privilege_audit_clause, action_audit_clause, or
role_audit_clause.

(privilege_audit_clause::=, action_audit_clause::=, role_audit_clause::=)

privilege_audit_clause::=

PRIVILEGES system_privilege

,

action_audit_clause::=

standard_actions

component_actions

Note

You can specify only the standard_actions clause, only the component_actions clause, or both
clauses in either order, but you can specify each clause at most once.

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 185

standard_actions::=

ACTIONS

object_action

ALL

(column

,

)

ON

DIRECTORY directory_name

MINING MODEL

schema .

object_name

schema .

object_name

system_action

ALL

,

component_actions::=

ACTIONS COMPONENT =

DATAPUMP

DIRECT_LOAD

OLS

XS

component_action

,

DV component_action ON object_name

,

SQL_FIREWALL

SQL

CONTEXT
VIOLATION

ALL

ON user_name

PROTOCOL

FTP

HTTP

AUTHENTICATION

role_audit_clause::=

ROLES role

,

Semantics

policy

Specify the name of the unified audit policy to be created. The name of the policy must begin
with the value of the COMMON_USER_PREFIX initialization parameter. The default value of the
COMMON_USER_PREFIX parameter is c##.

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 185

The length of the audit policy name cannot exceed 128 bytes and must contain ASCII
characters only.

These rules apply for application common audit policies as well. In this case, the value of the
COMMON_USER_PREFIX is fetched from the application root. The default value in application root
is an empty string.

The name must also satisfy the requirements listed in "Database Object Naming Rules ".

You can find the names of all unified audit policies by querying the AUDIT_UNIFIED_POLICIES
view.

See Also

Oracle Database Reference for more information on the AUDIT_UNIFIED_POLICIES view

privilege_audit_clause

Use this clause to audit one or more system privileges. For system_privilege, specify a valid
system privilege. To view all valid system privileges, query the NAME column of the
SYSTEM_PRIVILEGE_MAP view.

Only those SQL statements are audited, that successfully use system privileges. If a statement
does not make use of a system privilege, it does not get audited with the privilege_audit_clause.

Restriction on Auditing System Privileges

You cannot audit the following system privileges: INHERIT ANY PRIVILEGES, SYSASM,
SYSBACKUP, SYSDBA, SYSDG, SYSKM, SYSRAC, and SYSOPER.

action_audit_clause

Use this clause to specify one or more actions to be audited. Use the standard_actions clause to
audit actions on standard RDBMS objects and to audit standard RDBMS system actions for
the database. Use the component_actions clause to audit actions for components.

standard_actions

Use this clause to audit actions on standard RDBMS objects and to audit standard RDBMS
system actions for the database.

You can also create unified audit policies to audit individual columns in tables and views. For
examples on auditing columns see Examples

Note that column level audit policies generate audit records whenever the column is accessed.

object_action ON

Use this clause to audit an action on the specified object. For object_action, specify the action to
be audited. Table 13-1 lists the actions that can be audited on each type of object.

ALL ON

Use this clause to audit all actions on the specified object. All of the actions listed in Table 13-1
for the type of object that you specify in the ON clause will be audited.

ON Clause

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 185

Use the ON clause to specify the object to be audited. Directories and data mining models are
identified separately because they reside in separate namespaces. To audit actions on a
directory, specify ON DIRECTORY directory_name. To audit actions on a data mining model, specify
ON MINING MODEL object_name. To audit actions on the other types of objects listed in Table 13-1,
specify ON object_name. If you do not qualify object_name with schema, then the database assumes
the object is in your own schema.

Table 13-1 Unified Auditing Objects and Actions

Type of Object Actions

Directory AUDIT, GRANT, READ

Function AUDIT, EXECUTE (Notes 1 and 2), GRANT

Java Schema Objects (Source,
Class, Resource)

AUDIT, EXECUTE, GRANT

Library EXECUTE, GRANT

Materialized Views ALTER, AUDIT, COMMENT, DELETE, INDEX, INSERT, LOCK, SELECT,
UPDATE

Mining Model AUDIT, COMMENT, GRANT, RENAME, SELECT

Object Type ALTER, AUDIT, GRANT

Package AUDIT, EXECUTE, GRANT

Procedure AUDIT, EXECUTE (Notes 1 and 2), GRANT

Sequence ALTER, AUDIT, GRANT, SELECT

Table ALTER, AUDIT, COMMENT, DELETE, FLASHBACK, GRANT, INDEX,
INSERT, LOCK, RENAME, SELECT, UPDATE, TRUNCATE

View AUDIT, DELETE, FLASHBACK, GRANT, INSERT, LOCK, RENAME,
SELECT, UPDATE

Note 1: When you audit the EXECUTE operation on a PL/SQL stored procedure or stored
function, the database considers only its ability to find the procedure or function and authorize
its execution when determining the success or failure of the operation for the purposes of
auditing. Therefore, if you specify the WHENEVER NOT SUCCESSFUL clause, then only invalid
object errors, non-existent object errors, and authorization failures are audited; errors
encountered during the execution of the procedure or function are not audited. If you specify
the WHENEVER SUCCESSFUL clause, then all executions that are not blocked by invalid object
errors, non-existent object errors, or authorization failures are audited, regardless of whether
errors are encountered during execution.

Note 2: To audit the failure of a recursive SQL operation inside a PL/SQL stored procedure or
stored function, configure auditing for the SQL operation.

Note 3: The auditing of EXECUTE on a PL/SQL stored procedure, function, or package in the
database happens during the instantiation phase of the procedure, function, or package.

Note 3: The auditing of the GRANT object audit option also audits the REVOKE audit option.

system_action

Use this clause to audit a system action for the database. To view the valid values for
system_action, query the NAME column of the AUDITABLE_SYSTEM_ACTIONS view where
COMPONENT is 'Standard'.

Example: Audit CHANGE PASSWORD in Unified Auditing

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 185

You can audit CHANGE PASSWORD system actions by configuring an audit policy to audit
password changes. After you configure the audit policy, you must enable the audit policy.

Example: Create Audit Policy to Audit System Action Change Password

The following example creates an audit policy mypolicy to audit the action CHANGE PASSWORD:

CREATE AUDIT POLICY mypolicy ACTIONS CHANGE PASSWORD;
–---------------------
Audit policy created.

Example: Enable Audit Policy Configured to Audit Password Changes

The following statement enables the audit policy mypolicy:

AUDIT POLICY mypolicy;

The audit policy mypolicy will now audit CHANGE PASSWORD actions for both successful and
unsuccessful changes of password.

Example: Change Password

A user hr_usr with password hr_pwd can connect to PDB hr_pdb and change the password as
follows:

CONNECT hr_usr/hr_pwd@hr_pdb;
PASSWORD
Changing password for hr_usr
Old password:
New password:
Retype new password:
Password changed.

In the SQL*Plus example above, the command PASSWORD run by user hr_usr initiates a CHANGE
PASSWORD action that generates an audit record.

Example: Check Audit Trail for Password Changes

You can view the record by by querying the UNIFIED_AUDIT_TRAIL as follows:

SELECT ACTION_NAME, UNIFIED_AUDIT_POLICIES, OBJECT_NAME FROM UNIFIED_AUDIT_TRAIL;

ACTION_NAME
--
UNIFIED_AUDIT_POLICIES
--
OBJECT_NAME
--
CHANGE PASSWORD
MYPOLICY
HR_USR

Note that the audit policy mypolicy will not capture password changes via the ALTER USER
statement.

ALL

Use this clause to audit all system actions for the database.

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 185

component_actions

Use this clause to audit actions for the following components: Oracle Data Pump, Oracle
SQL*Loader Direct Path Load, Oracle Label Security, Oracle Database Real Application
Security, Oracle Database Vault, and the transmission protocol.

DATAPUMP

Use this clause to audit actions for Oracle Data Pump. For component_action, specify the action to
be audited. To view the valid actions for Oracle Data Pump, query the NAME column of the
AUDITABLE_SYSTEM_ACTIONS view where COMPONENT is Datapump. For example:

SELECT name FROM auditable_system_actions WHERE component = 'Datapump';

Refer to Oracle Database Security Guide for complete information on auditing Oracle Data
Pump.

DIRECT_LOAD

Use this clause to audit actions for Oracle SQL*Loader Direct Path Load. For component_action,
specify the action to be audited. To view the valid actions for Oracle SQL*Loader Direct Path
Load, query the NAME column of the AUDITABLE_SYSTEM_ACTIONS view where COMPONENT is
Direct path API. For example:

SELECT name FROM auditable_system_actions WHERE component = 'Direct path API';

Refer to Oracle Database Security Guide for complete information on auditing Oracle
SQL*Loader Direct Path Load.

OLS

Use this clause to audit actions for Oracle Label Security. For component_action, specify the action
to be audited. To view the valid actions for Oracle Label Security, query the NAME column of
the AUDITABLE_SYSTEM_ACTIONS view where COMPONENT is Label Security. For example:

SELECT name FROM auditable_system_actions WHERE component = 'Label Security';

Refer to Oracle Database Security Guide for complete information on auditing Oracle Label
Security.

XS

Use this clause to audit actions for Oracle Database Real Application Security. For
component_action, specify the action to be audited. To view the valid actions for Oracle Database
Real Application Security, query the NAME column of the AUDITABLE_SYSTEM_ACTIONS view
where COMPONENT is XS. For example:

SELECT name FROM auditable_system_actions WHERE component = 'XS';

Refer to Oracle Database Security Guide for complete information on auditing Oracle
Database Real Application Security.

DV

Use this clause to audit actions for Oracle Database Vault. For component_action, specify the
action to be audited. To view the valid actions for Oracle Database Vault, query the NAME
column of the AUDITABLE_SYSTEM_ACTIONS view where COMPONENT is Database Vault. For
example:

SELECT name FROM auditable_system_actions WHERE component = 'Database Vault';

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 185

For object_name, specify the name of the Database Vault object to be audited.

Refer to Oracle Database Security Guide for complete information on auditing Oracle
Database Vault.

SQL_FIREWALL

Use this clause to set the unified audit policy to track SQL firewall violations.

PROTOCOL

Use the PROTOCOL component to audit FTP and HTTP messages.

Example 1: Audit all HTTP Messages

CREATE AUDIT POLICY mypolicy ACTIONS COMPONENT = PROTOCOL HTTP;
 AUDIT POLICY mypolicy;

Example 2: Audit Failed FTP Messages

CREATE AUDIT POLICY mypolicy ACTIONS COMPONENT = PROTOCOL FTP;
 AUDIT POLICY mypolicy WHENEVER NOT SUCCESSFUL;

Example 3: Audit HTTP Messages that had 401 AUTH Replies

CREATE AUDIT POLICY mypolicy ACTIONS COMPONENT = PROTOCOL AUTHENTICATION;
 AUDIT POLICY mypolicy;

role_audit_clause

Use this clause to specify one or more roles to be audited. When you audit a role, Oracle
Database audits all system privileges that are granted directly to the role. SQL statements that
require the system privileges in order to succeed are audited. For role, specify either a user-
defined (local or external) or predefined role. For a list of predefined roles, refer to Oracle
Database Security Guide.

WHEN Clause

Use this clause to control when the unified audit policy is enforced.

audit_condition

Specify a condition that determines if the unified audit policy is enforced. If audit_condition
evaluates to TRUE, then the policy is enforced. If FALSE, then the policy is not enforced.

The audit_condition can have a maximum length of 4000 characters. It can contain expressions,
as well as the following functions and conditions:

• Numeric functions: BITAND, CEIL, FLOOR, POWER

• Character functions returning character values: CONCAT, LOWER, UPPER

• Character functions returning number values: INSTR, LENGTH

• Environment and identifier functions: SYS_CONTEXT, UID

• Comparison conditions: =, !=, <>, <, >, <=, >=

• Logical conditions: AND, OR

• Null conditions: IS [NOT] NULL

• [NOT] BETWEEN condition

• [NOT] IN condition

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 185

The audit_condition must be enclosed in single quotation marks. If the audit_condition contains a
single quotation mark, then specify two single quotation marks instead. For example, to specify
the following condition:

SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER') = 'myclient'

Specify the following for 'audit_condition':

'SYS_CONTEXT(''USERENV'', ''CLIENT_IDENTIFIER'') = ''myclient'''

The EVALUATE PER clauses evaluate the audit condition per instance per container. For
example, if a condition is evaluated in one container, it will be evaluated again in any other
container even if the instance is same.

EVALUATE PER STATEMENT

Specify this clause to evaluate the audit_condition for each auditable statement for each instance
in the container. If the audit_condition evaluates to TRUE, then the unified audit policy is enforced
for the statement. If FALSE, then the unified audit policy is not enforced for the statement.

EVALUATE PER SESSION

Specify this clause to evaluate the audit_condition once during the session. The audit_condition is
evaluated for the first auditable statement that is executed during the session. If the
audit_condition evaluates to TRUE, then the unified audit policy is enforced for all applicable
statements for the rest of the session. If FALSE, then the unified audit policy is not enforced for
all applicable statements for the rest of the session.

EVALUATE PER INSTANCE

Specify this clause to evaluate the audit_condition once during the lifetime of the instance. The
audit_condition is evaluated for the first auditable statement that is executed during the instance
lifetime. If the audit_condition evaluates to TRUE, then the unified audit policy is enforced for all
applicable statements for the rest of the lifetime of the instance. If FALSE, then the unified audit
policy is not enforced for all applicable statements for the rest of the lifetime of the instance.

ONLY TOPLEVEL

Specify the ONLY TOPLEVEL clause when you want to audit the SQL statements issued directly
by a user.

SQL statements that are run from within a PL/SQL procedure are not considered top-level
statements. You can audit top-level statements from all users, including user SYS.

For more see Database Security Guide.

CONTAINER Clause

Use the CONTAINER clause to specify the scope of the unified audit policy.

• Specify CONTAINER = ALL to create a common unified audit policy. This type of policy is
available to all pluggable databases (PDBs) in the CDB. The current container must be the
root. If you specify the ACTIONS object_action ON or ACTIONS ALL ON clause, then you must
specify a common object or an application common object.

• Specify CONTAINER = CURRENT to create a local unified audit policy in the current
container. The current container can be the root or a PDB.

If you omit this clause, then CONTAINER = CURRENT is the default.

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 185

Note

You cannot alter the scope of a unified audit policy after it has been created.

Examples

Auditing System Privileges: Example

The following statement creates unified audit policy table_pol, which audits the system privileges
CREATE ANY TABLE and DROP ANY TABLE:

CREATE AUDIT POLICY table_pol
 PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE;

The following statement verifies that table_pol now appears in the AUDIT_UNIFIED_POLICIES view:

SELECT *
 FROM audit_unified_policies
 WHERE policy_name = 'TABLE_POL';

Auditing Actions on Objects: Examples

The following statement creates unified audit policy dml_pol, which audits DELETE, INSERT, and
UPDATE actions on table hr.employees, and all auditable actions on table hr.departments:

CREATE AUDIT POLICY dml_pol
 ACTIONS DELETE on hr.employees,
 INSERT on hr.employees,
 UPDATE on hr.employees,
 ALL on hr.departments;

The following statement creates unified audit policy read_dir_pol, which audits READ actions on
directory bfile_dir (created in "Creating a Directory: Examples"):

CREATE AUDIT POLICY read_dir_pol
 ACTIONS READ ON DIRECTORY bfile_dir;

Auditing System Actions: Examples

The following query displays the standard RDBMS system actions that can be audited for the
database:

SELECT name FROM auditable_system_actions
 WHERE component = 'Standard'
 ORDER BY name;

NAME

ADMINISTER KEY MANAGEMENT
ALL
ALTER ASSEMBLY
ALTER AUDIT POLICY
ALTER CLUSTER
...

The following statement creates unified audit policy security_pol, which audits the system action
ADMINISTER KEY MANAGEMENT:

CREATE AUDIT POLICY security_pol
 ACTIONS ADMINISTER KEY MANAGEMENT;

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 185

The following statement creates unified audit policy dir_pol, which audits all read, write, and
execute operations on any directory:

CREATE AUDIT POLICY dir_pol
 ACTIONS READ DIRECTORY, WRITE DIRECTORY, EXECUTE DIRECTORY;

See 31.4.4.11 Example: Auditing All Actions in the Database of the Database Security Guide
for guidelines to audit database actions without generating a large volume of audit records.

Auditing Component Actions: Example

The following query displays the actions that can be audited for Oracle Data Pump:

SELECT name FROM auditable_system_actions
 WHERE component = 'Datapump';

NAME

EXPORT
IMPORT
ALL

The following statement creates unified audit policy dp_actions_pol, which audits IMPORT actions
for Oracle Data Pump:

CREATE AUDIT POLICY dp_actions_pol
 ACTIONS COMPONENT = datapump IMPORT;

Auditing Roles: Example

The following statement creates unified audit policy java_pol, which audits the predefined roles
java_admin and java_deploy:

CREATE AUDIT POLICY java_pol
 ROLES java_admin, java_deploy;

Auditing System Privileges, Actions, and Roles: Example

The following statement creates unified audit policy hr_admin_pol, which audits multiple system
privileges, actions, and roles:

CREATE AUDIT POLICY hr_admin_pol
 PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE
 ACTIONS DELETE on hr.employees,
 INSERT on hr.employees,
 UPDATE on hr.employees,
 ALL on hr.departments,
 LOCK TABLE
 ROLES audit_admin, audit_viewer;

Controlling When a Unified Audit Policy is Enforced: Examples

The following statement creates unified audit policy order_updates_pol, which audits UPDATE
actions on table oe.orders. This policy is enforced only when the auditable statement is issued by
an external user. The audit condition is checked once per session.

CREATE AUDIT POLICY order_updates_pol
 ACTIONS UPDATE ON oe.orders
 WHEN 'SYS_CONTEXT(''USERENV'', ''IDENTIFICATION_TYPE'') = ''EXTERNAL'''
 EVALUATE PER SESSION;

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 185

The following statement creates unified audit policy emp_updates_pol, which audits DELETE,
INSERT, and UPDATE actions on table hr.employees. This policy is enforced only when the
auditable statement is issued by a user who does not have a UID of 100, 105, or 107. The
audit condition is checked for each auditable statement.

CREATE AUDIT POLICY emp_updates_pol
 ACTIONS DELETE on hr.employees,
 INSERT on hr.employees,
 UPDATE on hr.employees
 WHEN 'UID NOT IN (100, 105, 107)'
 EVALUATE PER STATEMENT;

Creating a Local Unified Audit Policy: Example

The following statement creates local unified audit policy local_table_pol, which audits the system
privileges CREATE ANY TABLE and DROP ANY TABLE in the current container:

CREATE AUDIT POLICY local_table_pol
 PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE
 CONTAINER = CURRENT;

Creating a Common Unified Audit Policy: Example

The following statement creates common unified audit policy common_role1_pol, which audits the
common role c##role1 (created in CREATE ROLE "Examples") across the entire CDB:

CREATE AUDIT POLICY c##common_role1_pol
 ROLES c##role1
 CONTAINER = ALL;

Creating an Audit Policy on Columns: Example

The audit policy pol generates an audit record when granting privileges on the column job in the
emp table.

CREATE AUDIT POLICY pol ACTIONS GRANT(job) on scott.emp;

The audit policy pol generates an audit record when a new department number is inserted into
the dept table.

CREATE AUDIT POLICY pol ACTIONS INSERT(deptno) on scott.dept;

CREATE CLUSTER
Purpose

Use the CREATE CLUSTER statement to create a cluster. A cluster is a schema object that
contains data from one or more tables.

• An indexed cluster must contain more than one table, and all of the tables in the cluster
have one or more columns in common. Oracle Database stores together all the rows from
all the tables that share the same cluster key.

• In a hash cluster, which can contain one or more tables, Oracle Database stores together
rows that have the same hash key value.

For information on existing clusters, query the USER_CLUSTERS, ALL_CLUSTERS, and
DBA_CLUSTERS data dictionary views.

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 185

See Also

• Oracle Database Concepts for general information on clusters

• Oracle Database SQL Tuning Guide for suggestions on when to use clusters

• Oracle Database Reference for information on the data dictionary views

Prerequisites

To create a cluster in your own schema, you must have CREATE CLUSTER system privilege. To
create a cluster in another user's schema, you must have CREATE ANY CLUSTER system
privilege. Also, the owner of the schema to contain the cluster must have either space quota on
the tablespace containing the cluster or the UNLIMITED TABLESPACE system privilege.

Oracle Database does not automatically create an index for a cluster when the cluster is
initially created. Data manipulation language (DML) statements cannot be issued against
cluster tables in an indexed cluster until you create a cluster index with a CREATE INDEX
statement.

Syntax

create_cluster::=

CREATE CLUSTER

IF NOT EXISTS schema .

cluster

SHARING =
METADATA

NONE

(column datatype

COLLATE column_collation_name SORT

,

)

physical_attributes_clause

SIZE size_clause

TABLESPACE tablespace

INDEX

SINGLE TABLE

HASHKEYS integer

HASH IS expr

parallel_clause

N0ROWDEPENDENCIES

ROWDEPENDENCIES

CACHE

N0CACHE cluster_range_partitions

(datatype::=,physical_attributes_clause::=, size_clause::=, cluster_range_partitions::=)

physical_attributes_clause::=

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 185

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

cluster_range_partitions::=

PARTITION BY RANGE (column

,

)

(PARTITION

partition

range_values_clause table_partition_description

,

)

(range_values_clause::=, table_partition_description::=)

Semantics

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the cluster does not exist, a new cluster is created at the end of the statement.

• If the cluster exists, this is the cluster you have at the end of the statement. A new one is
not created because the older cluster is detected.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the schema to contain the cluster. If you omit schema, then Oracle Database creates the
cluster in your current schema.

cluster

Specify is the name of the cluster to be created. The name must satisfy the requirements listed
in "Database Object Naming Rules ".

After you create a cluster, you add tables to it. A cluster can contain a maximum of 32 tables.
Object tables and tables containing LOB columns or columns of the Any* Oracle-supplied types

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 185

cannot be part of a cluster. After you create a cluster and add tables to it, the cluster is
transparent. You can access clustered tables with SQL statements just as you can access
nonclustered tables.

See Also

CREATE TABLE for information on adding tables to a cluster, "Creating a Cluster:
Example", and "Adding Tables to a Cluster: Example"

SHARING

Use the sharing clause if you want to create the cluster in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

column

Specify one or more names of columns in the cluster key. You can specify up to 16 cluster key
columns. These columns must correspond in both data type and size to columns in each of the
clustered tables, although they need not correspond in name.

You cannot specify integrity constraints as part of the definition of a cluster key column.
Instead, you can associate integrity constraints with the tables that belong to the cluster.

See Also

"Cluster Keys: Example"

datatype

Specify the data type of each cluster key column.

Restrictions on Cluster Data Types

Cluster data types are subject to the following restrictions:

• You cannot specify a cluster key column of data type LONG, LONG RAW, REF, nested table,
varray, BLOB, CLOB, BFILE, the Any* Oracle-supplied types, or user-defined object type.

• You can specify a column of type ROWID, but Oracle Database does not guarantee that the
values in such columns are valid rowids.

See Also

"Data Types " for information on data types

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 185

COLLATE

Use this clause to specify the data-bound collation for character data type columns in the
cluster key.

For column_collation_name, specify the collation as follows:

• When creating an indexed cluster or a sorted hash cluster, you can specify one of the
following collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

• When creating a hash cluster that is not sorted, you can specify any valid named collation
or pseudo-collation.

If you omit this clause, then columns in the cluster key inherit the effective schema default
collation of the schema containing the cluster. Refer to the DEFAULT_COLLATION clause of
ALTER SESSION for more information on the effective schema default collation.

The collations of cluster key columns must match the collations of the corresponding columns
in the tables created in the cluster.

You can specify the COLLATE clause only if the COMPATIBLE initialization parameter is set to 12.2
or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

To change the collation of a cluster key column, you must recreate the cluster.

SORT

The SORT keyword is valid only if you are creating a hash cluster. Table rows are hashed into
buckets on cluster key columns without SORT, and then sorted in each bucket on the columns
with this clause. This may improve response time during subsequent queries on the clustered
data.

All columns without the SORT clause must come before all columns with the SORT clause in the
CREATE CLUSTER statement.

Restriction on Sorted Hash Clusters

Row dependency is not supported for sorted hash clusters.

See Also

• See "HASHKEYS Clause" for information on creating a hash cluster.

• Managing Hash Clusters for more information.

physical_attributes_clause

The physical_attributes_clause lets you specify the storage characteristics of the cluster. Each table
in the cluster uses these storage characteristics as well. If you do not specify values for these
parameters, then Oracle Database uses the following defaults:

• PCTFREE: 10

• PCTUSED: 40

• INITRANS: 2 or the default value of the tablespace to contain the cluster, whichever is
greater

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 185

See Also

physical_attributes_clause and storage_clause for a complete description of these
clauses

SIZE

Specify the amount of space in bytes reserved to store all rows with the same cluster key value
or the same hash value. This space determines the maximum number of cluster or hash
values stored in a data block. If SIZE is not a divisor of the data block size, then Oracle
Database uses the next largest divisor. If SIZE is larger than the data block size, then the
database uses the operating system block size, reserving at least one data block for each
cluster or hash value.

The database also considers the length of the cluster key when determining how much space
to reserve for the rows having a cluster key value. Larger cluster keys require larger sizes. To
see the actual size, query the KEY_SIZE column of the USER_CLUSTERS data dictionary view.
(This value does not apply to hash clusters, because hash values are not actually stored in the
cluster.)

If you omit this parameter, then the database reserves one data block for each cluster key
value or hash value.

TABLESPACE

Specify the tablespace in which the cluster is to be created.

INDEX Clause

Specify INDEX to create an indexed cluster. In an indexed cluster, Oracle Database stores
together rows having the same cluster key value. Each distinct cluster key value is stored only
once in each data block, regardless of the number of tables and rows in which it occurs. If you
specify neither INDEX nor HASHKEYS, then Oracle Database creates an indexed cluster by
default.

After you create an indexed cluster, you must create an index on the cluster key before you
can issue any data manipulation language (DML) statements against a table in the cluster. This
index is called the cluster index.

You cannot create a cluster index for a hash cluster, and you need not create an index on a
hash cluster key.

See Also

CREATE INDEX for information on creating a cluster index and Oracle Database
Concepts for general information in indexed clusters

HASHKEYS Clause

Specify the HASHKEYS clause to create a hash cluster and specify the number of hash values
for the hash cluster. In a hash cluster, Oracle Database stores together rows that have the
same hash key value. The hash value for a row is the value returned by the hash function of
the cluster.

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 185

Oracle Database rounds up the HASHKEYS value to the nearest prime number to obtain the
actual number of hash values. The minimum value for this parameter is 2. If you omit both the
INDEX clause and the HASHKEYS parameter, then the database creates an indexed cluster by
default.

When you create a hash cluster, the database immediately allocates space for the cluster
based on the values of the SIZE and HASHKEYS parameters.

See Also

Oracle Database Concepts for more information on how Oracle Database allocates
space for clusters and "Hash Clusters: Examples"

SINGLE TABLE

SINGLE TABLE indicates that the cluster is a type of hash cluster containing only one table. This
clause can provide faster access to rows in the table.

Restriction on Single-table Clusters

Only one table can be present in the cluster at a time. However, you can drop the table and
create a different table in the same cluster.

See Also

"Single-Table Hash Clusters: Example"

HASH IS expr

Specify an expression to be used as the hash function for the hash cluster. The expression:

• Must evaluate to a positive value

• Must contain at least one column, with referenced columns of any data type as long as the
entire expression evaluates to a number of scale 0. For example: number_column *
LENGTH(varchar2_column)

• Cannot reference user-defined PL/SQL functions

• Cannot reference the pseudocolumns LEVEL or ROWNUM

• Cannot reference the user-related functions USERENV, UID, or USER or the datetime
functions CURRENT_DATE, CURRENT_TIMESTAMP, DBTIMEZONE, EXTRACT (datetime),
FROM_TZ, LOCALTIMESTAMP, NUMTODSINTERVAL, NUMTOYMINTERVAL, SESSIONTIMEZONE,
SYSDATE, SYSTIMESTAMP, TO_DSINTERVAL, TO_TIMESTAMP, TO_DATE, TO_TIMESTAMP_TZ,
TO_YMINTERVAL, and TZ_OFFSET.

• Cannot evaluate to a constant

• Cannot be a scalar subquery expression

• Cannot contain columns qualified with a schema or object name (other than the cluster
name)

If you omit the HASH IS clause, then Oracle Database uses an internal hash function for the
hash cluster.

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 185

For information on existing hash functions, query the USER_, ALL_, and
DBA_CLUSTER_HASH_EXPRESSIONS data dictionary tables.

The cluster key of a hash column can have one or more columns of any data type. Hash
clusters with composite cluster keys or cluster keys made up of noninteger columns must use
the internal hash function.

See Also

Oracle Database Reference for information on the data dictionary views

parallel_clause

The parallel_clause lets you parallelize the creation of the cluster.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

NOROWDEPENDENCIES | ROWDEPENDENCIES

This clause has the same behavior for a cluster that it has for a table. Refer to
"NOROWDEPENDENCIES | ROWDEPENDENCIES" in CREATE TABLE for information.

CACHE | NOCACHE

CACHE

Specify CACHE if you want the blocks retrieved for this cluster to be placed at the most recently
used end of the least recently used (LRU) list in the buffer cache when a full table scan is
performed. This clause is useful for small lookup tables.

NOCACHE

Specify NOCACHE if you want the blocks retrieved for this cluster to be placed at the least
recently used end of the LRU list in the buffer cache when a full table scan is performed. This
is the default behavior.

NOCACHE has no effect on clusters for which you specify KEEP in the storage_clause.

cluster_range_partitions

Specify the cluster_range_partitions clause to create a range-partitioned hash cluster. If you specify
this clause, then you must also specify the HASHKEYS clause.

Use the cluster_range_partitions clause to partition the cluster on ranges of values from the column
list. When you add a table to a range-partitioned hash cluster, it is automatically partitioned on
the same columns, with the same number of partitions, and on the same partition bounds as
the cluster. Oracle Database assigns system-generated names to the table partitions.

Each partitioning key column with a character data type must have one of the following
declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

The cluster_range_partitions clause has the same semantics as the range_partitions clause of CREATE
TABLE, except that here you cannot specify the INTERVAL clause. For complete information,
refer to range_partitions in the documentation on CREATE TABLE.

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 185

See Also

"Range-Partitioned Hash Clusters: Example"

Examples

Creating a Cluster: Example

The following statement creates a cluster named personnel with the cluster key column department,
a cluster size of 512 bytes, and storage parameter values:

CREATE CLUSTER personnel
 (department NUMBER(4))
SIZE 512
STORAGE (initial 100K next 50K);

Cluster Keys: Example

The following statement creates the cluster index on the cluster key of personnel:

CREATE INDEX idx_personnel ON CLUSTER personnel;

After creating the cluster index, you can add tables to the index and perform DML operations
on those tables.

Adding Tables to a Cluster: Example

The following statements create some departmental tables from the sample hr.employees table
and add them to the personnel cluster created in the earlier example:

CREATE TABLE dept_10
 CLUSTER personnel (department_id)
 AS SELECT * FROM employees WHERE department_id = 10;

CREATE TABLE dept_20
 CLUSTER personnel (department_id)
 AS SELECT * FROM employees WHERE department_id = 20;

Hash Clusters: Examples

The following statement creates a hash cluster named language with the cluster key column
cust_language, a maximum of 10 hash key values, each of which is allocated 512 bytes, and
storage parameter values:

CREATE CLUSTER language (cust_language VARCHAR2(3))
 SIZE 512 HASHKEYS 10
 STORAGE (INITIAL 100k next 50k);

Because the preceding statement omits the HASH IS clause, Oracle Database uses the internal
hash function for the cluster.

The following statement creates a hash cluster named address with the cluster key made up of
the columns postal_code and country_id, and uses a SQL expression containing these columns for
the hash function:

CREATE CLUSTER address
 (postal_code NUMBER, country_id CHAR(2))
 HASHKEYS 20
 HASH IS MOD(postal_code + country_id, 101);

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 185

Single-Table Hash Clusters: Example

The following statement creates a single-table hash cluster named cust_orders with the cluster
key customer_id and a maximum of 100 hash key values, each of which is allocated 512 bytes:

CREATE CLUSTER cust_orders (customer_id NUMBER(6))
 SIZE 512 SINGLE TABLE HASHKEYS 100;

Range-Partitioned Hash Clusters: Example

The following statement creates a range-partitioned hash cluster named sales with five range
partitions based on the amount sold. The cluster key is made up of the columns amount_sold and
prod_id. The cluster uses the hash function (amount_sold * 10 + prod_id) and has a maximum of
100000 hash key values, each of which is allocated 300 bytes.

CREATE CLUSTER sales (amount_sold NUMBER, prod_id NUMBER)
 HASHKEYS 100000
 HASH IS (amount_sold * 10 + prod_id)
 SIZE 300
 TABLESPACE example
 PARTITION BY RANGE (amount_sold)
 (PARTITION p1 VALUES LESS THAN (2001),
 PARTITION p2 VALUES LESS THAN (4001),
 PARTITION p3 VALUES LESS THAN (6001),
 PARTITION p4 VALUES LESS THAN (8001),
 PARTITION p5 VALUES LESS THAN (MAXVALUE));

Create Cluster Tables: Example

The following statement creates a cluster named emp_dept with the default key size (600):

CREATE CLUSTER emp_dept (deptno NUMBER(3))
 SIZE 600
 TABLESPACE USERS
 STORAGE (INITIAL 200K
 NEXT 300K
 MINEXTENTS 2
 PCTINCREASE 33);

The following statement creates a cluster table named dept under emp_dept cluster:

CREATE TABLE dept (
 deptno NUMBER(3) PRIMARY KEY)
 CLUSTER emp_dept (deptno);

The following statement creates another cluster table named empl under emp_dept cluster:

CREATE TABLE empl (
 emplno NUMBER(5) PRIMARY KEY,
 emplname VARCHAR2(15) NOT NULL,
 deptno NUMBER(3) REFERENCES dept)
 CLUSTER emp_dept (deptno);

The following statement creates an index for the emp_dept cluster:

CREATE INDEX emp_dept_index
 ON CLUSTER emp_dept

Chapter 13
CREATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 185

 TABLESPACE USERS
 STORAGE (INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 10
 PCTINCREASE 33);

The following statement queries USER_CLUSTERS to display the cluster metadata:

SELECT CLUSTER_NAME, TABLESPACE_NAME, CLUSTER_TYPE, PCT_INCREASE, MIN_EXTENTS,
MAX_EXTENTS FROM USER_CLUSTERS;

CLUSTER_NAME TABLESPACE CLUST PCT_INCREASE MIN_EXTENTS MAX_EXTENTS
--------------- ---------- ----- ------------ ----------- -----------
EMP_DEPT USERS INDEX 1 2147483645

The following statement queries USER_CLU_COLUMNS to display the cluster metadata:

SELECT * FROM USER_CLU_COLUMNS;

CLUSTER_NAME CLU_COLUMN_NAME TABLE_NAME TAB_COLUMN_NAME
--------------- -------------------- ---------- --------------------
EMP_DEPT DEPTNO DEPT DEPTNO
EMP_DEPT DEPTNO EMPL DEPTNO

The following statement queries USER_INDEXES to display the index attributes of the emp_dept
cluster:

SELECT INDEX_NAME, INDEX_TYPE, PCT_INCREASE, MIN_EXTENTS, MAX_EXTENTS FROM
USER_INDEXES WHERE TABLE_NAME='EMP_DEPT';

INDEX_NAME INDEX_TYPE PCT_INCREASE MIN_EXTENTS MAX_EXTENTS
--------------- --------------- ------------ ----------- -----------
EMP_DEPT_INDEX CLUSTER 1 2147483645

CREATE CONTEXT
Purpose

Use the CREATE CONTEXT statement to:

• Create a namespace for a context (a set of application-defined attributes that validates
and secures an application)

• Associate the namespace with the externally created package that sets the context

You can use the DBMS_SESSION.SET_CONTEXT procedure in your designated package to set or
reset the attributes of the context.

Chapter 13
CREATE CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 185

See Also

• Oracle Database Security Guide for a discussion of contexts

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_SESSION.SET_CONTEXT procedure

Prerequisites

To create a context namespace, you must have CREATE ANY CONTEXT system privilege.

Note that you cannot use a synonym for a package name in the CREATE CONTEXT command.

Syntax

create_context::=

CREATE

OR REPLACE

CONTEXT namespace USING

schema .

package

INITIALIZED
EXTERNALLY

GLOBALLY

ACCESSED GLOBALLY

;

Semantics

OR REPLACE

Specify OR REPLACE to redefine an existing context namespace using a different package.

namespace

Specify the name of the context namespace to create or modify. The name must satisfy the
requirements listed in "Database Object Naming Rules ". Context namespaces are always
stored in the schema SYS.

See Also

"Database Object Naming Rules " for guidelines on naming a context namespace

schema

Specify the schema owning package. If you omit schema, then Oracle Database uses the current
schema.

package

Specify the PL/SQL package that sets or resets the context attributes under the namespace for
a user session.

Chapter 13
CREATE CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 185

To provide some design flexibility, Oracle Database does not verify the existence of the
schema or the validity of the package at the time you create the context.

SHARING

Use the sharing clause if you want to create the object in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

INITIALIZED Clause

The INITIALIZED clause lets you specify an entity other than Oracle Database that can initialize
the context namespace.

EXTERNALLY

EXTERNALLY indicates that the namespace can be initialized using an OCI interface when
establishing a session.

See Also

Oracle Call Interface Programmer's Guide for information on using OCI to establish a
session

GLOBALLY

GLOBALLY indicates that the namespace can be initialized by the LDAP directory when a global
user connects to the database.

After the session is established, only the designated PL/SQL package can issue commands to
write to any attributes inside the namespace.

See Also

Oracle Database Security Guide for information on establishing globally initialized
contexts

ACCESSED GLOBALLY

This clause indicates that any application context set in namespace is accessible throughout the
entire instance. This setting lets multiple sessions share application attributes.

Examples

Creating an Application Context: Example

Chapter 13
CREATE CONTEXT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 185

This example uses a PL/SQL package emp_mgmt, which validates and secures a human
resources application. See Oracle Database PL/SQL Language Reference for the example
that creates that package. The following statement creates the context namespace hr_context
and associates it with the package emp_mgmt:

CREATE CONTEXT hr_context USING emp_mgmt;

You can control data access based on this context using the SYS_CONTEXT function. For
example, the emp_mgmt package has defined an attribute department_id as a particular department
identifier. You can secure the base table employees by creating a view that restricts access based
on the value of department_id, as follows:

CREATE VIEW hr_org_secure_view AS
 SELECT * FROM employees
 WHERE department_id = SYS_CONTEXT('hr_context', 'department_id');

See Also

SYS_CONTEXT and Oracle Database Security Guide for more information on using
application contexts to retrieve user information

CREATE CONTROLFILE

Note

Oracle recommends that you perform a full backup of all files in the database before
using this statement. For more information, see Oracle Database Backup and
Recovery User's Guide.

Purpose

The CREATE CONTROLFILE statement should be used in only a few cases. Use this statement to
re-create a control file if all control files being used by the database are lost and no backup
control file exists. You can also use this statement to change the maximum number of redo log
file groups, redo log file members, archived redo log files, data files, or instances that can
concurrently have the database mounted and open.

To change the name of the database, Oracle recommends that you use the DBNEWID utility
rather than the CREATE CONTROLFILE statement. DBNEWID is preferable because no OPEN
RESETLOGS operation is required after changing the database name.

See Also

• Oracle Database Utilities for more information about the DBNEWID utility

• ALTER DATABASE "BACKUP CONTROLFILE Clause" for information creating a
script based on an existing database control file

Chapter 13
CREATE CONTROLFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 185

Prerequisites

To create a control file, you must have the SYSDBA or SYSBACKUP system privilege.

The database must not be mounted by any instance. After successfully creating the control file,
Oracle mounts the database in the mode specified by the CLUSTER_DATABASE parameter. The
DBA must then perform media recovery before opening the database. If you are using the
database with Oracle Real Application Clusters (Oracle RAC), then you must then shut down
and remount the database in SHARED mode (by setting the value of the CLUSTER_DATABASE
initialization parameter to TRUE) before other instances can start up.

Syntax

create_controlfile::=

CREATE CONTROLFILE

REUSE SET

DATABASE database

logfile_clause RESETL0GS

NORESETL0GS

DATAFILE file_specification

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING

SET STANDBY NOLOGGING FOR
DATA AVAILABILITY

LOAD PERFORMANCE character_set_clause

;

(storage_clause::=)

logfile_clause::=

LOGFILE

GROUP integer

file_specification

,

(file_specification::=)

Chapter 13
CREATE CONTROLFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 185

character_set_clause::=

CHARACTER SET character_set

Semantics

When you issue a CREATE CONTROLFILE statement, Oracle Database creates a new control file
based on the information you specify in the statement. The control file resides in the location
specified in the CONTROL_FILES initialization parameter. If that parameter does not have a
value, then the database creates an Oracle-managed control file in the default control file
destination, which is one of the following (in order of precedence):

1. One or more control files as specified in the DB_CREATE_ONLINE_LOG_DEST_n initialization
parameter. The file in the first directory is the primary control file. When
DB_CREATE_ONLINE_LOG_DEST_n is specified, the database does not create a control file in
DB_CREATE_FILE_DEST or in DB_RECOVERY_FILE_DEST (the fast recovery area).

2. If no value is specified for DB_CREATE_ONLINE_LOG_DEST_n, but values are set for both the
DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST, then the database creates one control
file in each location. The location specified in DB_CREATE_FILE_DEST is the primary control
file.

3. If a value is specified only for DB_CREATE_FILE_DEST, then the database creates one control
file in that location.

4. If a value is specified only for DB_RECOVERY_FILE_DEST, then the database creates one
control file in that location.

If no values are set for any of these parameters, then the database creates a control file in the
default location for the operating system on which the database is running. This control file is
not an Oracle Managed File.

If you omit any clauses, then Oracle Database uses the default values rather than the values
for the previous control file. After successfully creating the control file, Oracle Database mounts
the database in the mode specified by the initialization parameter CLUSTER_DATABASE. If that
parameter is not set, then the default value is FALSE, and the database is mounted in
EXCLUSIVE mode. Oracle recommends that you then shut down the instance and take a full
backup of all files in the database.

See Also

Oracle Database Backup and Recovery User's Guide

REUSE

Specify REUSE to indicate that existing control files identified by the initialization parameter
CONTROL_FILES can be reused, overwriting any information they may currently contain. If you
omit this clause and any of these control files already exists, then Oracle Database returns an
error.

Chapter 13
CREATE CONTROLFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 185

DATABASE Clause

Specify the name of the database. The value of this parameter must be the existing database
name established by the previous CREATE DATABASE statement or CREATE CONTROLFILE
statement.

SET DATABASE Clause

Use SET DATABASE to change the name of the database. The name of a database can be as
long as eight bytes.

When you specify this clause, you must also specify RESETLOGS. If you want to rename the
database and retain your existing log files, then after issuing this CREATE CONTROLFILE
statement you must complete a full database recovery using an ALTER DATABASE RECOVER
USING BACKUP CONTROLFILE statement.

logfile_clause

Use the logfile_clause to specify the redo log files for your database. You must list all members of
all redo log file groups.

Use the redo_log_file_spec form of file_specification (see file_specification) to list regular redo log
files in an operating system file system or to list Oracle ASM disk group redo log files. When
using a form of ASM_filename, you cannot specify the autoextend_clause of the redo_log_file_spec.

If you specify RESETLOGS in this clause, then you must use one of the file creation forms of
ASM_filename. If you specify NORESETLOGS, then you must specify one of the reference forms of
ASM_filename.

See Also

ASM_filename for information on the different forms of syntax and Oracle Automatic
Storage Management Administrator's Guide for general information about using
Oracle ASM

GROUP integer

Specify the logfile group number. If you specify GROUP values, then Oracle Database verifies
these values with the GROUP values when the database was last open.

If you omit this clause, then the database creates logfiles using system default values. In
addition, if either the DB_CREATE_ONLINE_LOG_DEST_n or DB_CREATE_FILE_DEST initialization
parameter has been set, and if you have specified RESETLOGS, then the database creates two
logs in the default logfile destination specified in the DB_CREATE_ONLINE_LOG_DEST_n
parameter, and if it is not set, then in the DB_CREATE_FILE_DEST parameter.

See Also

file_specification for a full description of this clause

Chapter 13
CREATE CONTROLFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 185

RESETLOGS

Specify RESETLOGS if you want Oracle Database to ignore the contents of the files listed in the
LOGFILE clause. These files do not have to exist. You must specify this clause if you have
specified the SET DATABASE clause.

Each redo_log_file_spec in the LOGFILE clause must specify the SIZE parameter. The database
assigns all online redo log file groups to thread 1 and enables this thread for public use by any
instance. After using this clause, you must open the database using the RESETLOGS clause of
the ALTER DATABASE statement.

NORESETLOGS

Specify NORESETLOGS if you want Oracle Database to use all files in the LOGFILE clause as
they were when the database was last open. These files must exist and must be the current
online redo log files rather than restored backups. The database reassigns the redo log file
groups to the threads to which they were previously assigned and reenables the threads as
they were previously enabled.

You cannot specify NORESETLOGS if you have specified the SET DATABASE clause to change the
name of the database. Refer to "SET DATABASE Clause" for more information.

DATAFILE Clause

Specify the data files of the database. You must list all data files. These files must all exist,
although they may be restored backups that require media recovery.

Do not include in the DATAFILE clause any data files in read-only tablespaces. You can add
these types of files to the database later. Also, do not include in this clause any temporary data
files (temp files).

Use the datafile_tempfile_spec form of file_specification (see file_specification) to list regular data files
and temp files in an operating system file system or to list Oracle ASM disk group files. When
using a form of ASM_filename, you must use one of the reference forms of ASM_filename. Refer to
ASM_filename for information on the different forms of syntax.

See Also

Oracle Automatic Storage Management Administrator's Guide for general information
about using Oracle ASM

Restriction on DATAFILE

You cannot specify the autoextend_clause of file_specification in this DATAFILE clause.

MAXLOGFILES Clause

Specify the maximum number of online redo log file groups that can ever be created for the
database. Oracle Database uses this value to determine how much space to allocate in the
control file for the names of redo log files. The default and maximum values depend on your
operating system. The value that you specify should not be less than the greatest GROUP value
for any redo log file group.

Chapter 13
CREATE CONTROLFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 185

MAXLOGMEMBERS Clause

Specify the maximum number of members, or identical copies, for a redo log file group. Oracle
Database uses this value to determine how much space to allocate in the control file for the
names of redo log files. The minimum value is 1. The maximum and default values depend on
your operating system.

MAXLOGHISTORY Clause

This parameter is useful only if you are using Oracle Database in ARCHIVELOG mode. Specify
your current estimate of the maximum number of archived redo log file groups needed for
automatic media recovery of the database. The database uses this value to determine how
much space to allocate in the control file for the names of archived redo log files.

The minimum value is 0. The default value is a multiple of the MAXINSTANCES value and
depends on your operating system. The maximum value is limited only by the maximum size of
the control file. The database will continue to add additional space to the appropriate section of
the control file as needed, so that you do not need to re-create the control file if your your
original configuration is no longer adequate. As a result, the actual value of this parameter can
eventually exceed the value you specify.

MAXDATAFILES Clause

Specify the initial sizing of the data files section of the control file at CREATE DATABASE or
CREATE CONTROLFILE time. An attempt to add a file whose number is greater than
MAXDATAFILES, but less than or equal to DB_FILES, causes the control file to expand
automatically so that the data files section can accommodate more files.

The number of data files accessible to your instance is also limited by the initialization
parameter DB_FILES.

MAXINSTANCES Clause

Specify the maximum number of instances that can simultaneously have the database
mounted and open. This value takes precedence over the value of the initialization parameter
INSTANCES. The minimum value is 1. The maximum and default values depend on your
operating system.

ARCHIVELOG | NOARCHIVELOG

Specify ARCHIVELOG to archive the contents of redo log files before reusing them. This clause
prepares for the possibility of media recovery as well as instance or system failure recovery.

If you omit both the ARCHIVELOG clause and NOARCHIVELOG clause, then Oracle Database
chooses NOARCHIVELOG mode by default. After creating the control file, you can change
between ARCHIVELOG mode and NOARCHIVELOG mode with the ALTER DATABASE statement.

FORCE LOGGING

Use this clause to put the database into FORCE LOGGING mode after control file creation. When
the database is in this mode, Oracle Database logs all changes in the database except
changes to temporary tablespaces and temporary segments. This setting takes precedence
over and is independent of any NOLOGGING or FORCE LOGGING settings you specify for
individual tablespaces and any NOLOGGING settings you specify for individual database
objects. If you omit this clause, then the database will not be in FORCE LOGGING mode after the
control file is created.

Chapter 13
CREATE CONTROLFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 185

Note

FORCE LOGGING mode can have performance effects. Refer to Oracle Database
Administrator's Guide for information on when to use this setting.

SET STANDBY NOLOGGING FOR DATA AVAILABILITY | LOAD PERFORMANCE

SET STANDBY NOLOGGING

The SET STANDBY NOLOGGING disables logging on the standby. You can specify it in two modes:

• SET STANDBY NOLOGGING FOR DATA AVAILABILITY guarantees full data replication
to the standby database. The primary and standby databases are synchronized during the
load. In cases of network congestion the primary database will throttle its load.

• SET STANDBY NOLOGGING FOR LOAD PERFORMANCE to maintain speed of primary
database load and synchronize with the standby later.

Restrictions On SET STANDBY NOLOGGING

The SET STANDBY NOLOGGING clause cannot be used at the same time as FORCE LOGGING.

character_set_clause

If you specify a character set, then Oracle Database reconstructs character set information in
the control file. If media recovery of the database is subsequently required, then this
information will be available before the database is open, so that tablespace names can be
correctly interpreted during recovery. This clause is required only if you are using a character
set other than the default, which depends on your operating system. Oracle Database prints
the current database character set to the alert log in $ORACLE_HOME/log during startup.

If you are re-creating your control file and you are using Recovery Manager for tablespace
recovery, and if you specify a different character set from the one stored in the data dictionary,
then tablespace recovery will not succeed. However, at database open, the control file
character set will be updated with the correct character set from the data dictionary.

You cannot modify the character set of the database with this clause.

See Also

Oracle Database Backup and Recovery User's Guide for more information on
tablespace recovery

Examples

Creating a Controlfile: Example

This statement re-creates a control file. In this statement, database demo was created with the
WE8DEC character set. The example uses the word path where you would normally insert the
path on your system to the appropriate Oracle Database directories.

STARTUP NOMOUNT

CREATE CONTROLFILE REUSE DATABASE "demo" NORESETLOGS NOARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2

Chapter 13
CREATE CONTROLFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 185

 MAXDATAFILES 32
 MAXINSTANCES 1
 MAXLOGHISTORY 449
LOGFILE
 GROUP 1 '/path/oracle/dbs/t_log1.f' SIZE 500K,
 GROUP 2 '/path/oracle/dbs/t_log2.f' SIZE 500K
STANDBY LOGFILE
DATAFILE
 '/path/oracle/dbs/t_db1.f',
 '/path/oracle/dbs/dbu19i.dbf',
 '/path/oracle/dbs/tbs_11.f',
 '/path/oracle/dbs/smundo.dbf',
 '/path/oracle/dbs/demo.dbf'
CHARACTER SET WE8DEC
;

CREATE DATABASE

Note

This statement prepares a database for initial use and erases any data currently in the
specified files. Use this statement only when you understand its ramifications.

Note

In this release of Oracle Database and in subsequent releases, several enhancements
are being made to ensure the security of default database user accounts. You can find
a security checklist for this release in Oracle Database Security Guide. Oracle
recommends that you read this checklist and configure your database accordingly.

Purpose

Use the CREATE DATABASE statement to create a database, making it available for general use.

This statement erases all data in any specified data files that already exist in order to prepare
them for initial database use. If you use the statement on an existing database, then all data in
the data files is lost.

After creating the database, this statement mounts it in either exclusive or parallel mode,
depending on the value of the CLUSTER_DATABASE initialization parameter and opens it, making
it available for normal use. You can then create tablespaces for the database.

See Also

• ALTER DATABASE for information on modifying a database

• Oracle Database Java Developer's Guide for information on creating an Oracle
Java virtual machine

• CREATE TABLESPACE for information on creating tablespaces

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 185

Prerequisites

To create a database, you must have the SYSDBA system privilege. An initialization parameter
file with the name of the database to be created must be available, and you must be in
STARTUP NOMOUNT mode.

Syntax

create_database::=

CREATE DATABASE

database

USER SYS IDENTIFIED BY password

USER SYSTEM IDENTIFIED BY password

CONTROLFILE REUSE

MAXDATAFILES integer

MAXINSTANCES integer

CHARACTER SET charset

NATIONAL CHARACTER SET charset

SET DEFAULT
BIGFILE

SMALLFILE
TABLESPACE

database_logging_clauses

tablespace_clauses

set_time_zone_clause

BIGFILE

SMALLFILE

USER_DATA TABLESPACE tablespace_name DATAFILE datafile_tempfile_spec

,

enable_pluggable_database

new_database_name USING MIRROR COPY mirror_name

;

(database_logging_clauses::=, tablespace_clauses::=, set_time_zone_clause::=,
datafile_tempfile_spec::=, enable_pluggable_database::=)

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 185

database_logging_clauses::=

LOGFILE

GROUP integer

file_specification

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING

SET STANDBY NOLOGGING FOR
DATA AVAILABILITY

LOAD PERFORMANCE

(file_specification::=)

tablespace_clauses::=

EXTENT MANAGEMENT LOCAL

DATAFILE file_specification

,

SYSAUX DATAFILE file_specification

,

default_tablespace

default_temp_tablespace

undo_tablespace

(file_specification::=, default_tablespace::=, default_temp_tablespace::=, undo_tablespace::=,
undo_tablespace::=)

default_tablespace::=

DEFAULT TABLESPACE tablespace

DATAFILE datafile_tempfile_spec extent_management_clause

default_temp_tablespace::=

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 185

BIGFILE

SMALLFILE

DEFAULT

TEMPORARY TABLESPACE

LOCAL TEMPORARY TABLESPACE FOR
ALL

LEAF

tablespace

TEMPFILE file_specification

,

extent_management_clause

(file_specification::=)

extent_management_clause::=

EXTENT MANAGEMENT LOCAL

AUTOALLOCATE

UNIFORM

SIZE size_clause

(size_clause::=)

undo_tablespace::=

BIGFILE

SMALLFILE

UNDO TABLESPACE tablespace

DATAFILE file_specification

,

(file_specification::=)

set_time_zone_clause::=

SET TIME_ZONE = ’

+

–
hh : mi

time_zone_region

’

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 185

enable_pluggable_database::=

ENABLE PLUGGABLE DATABASE

SEED

file_name_convert SYSTEM tablespace_datafile_clauses SYSAUX tablespace_datafile_clauses

undo_mode_clause

(tablespace_datafile_clauses::=, undo_mode_clause::=)

file_name_convert::=

FILE_NAME_CONVERT =
(’ filename_pattern ’ , ’ replacement_filename_pattern ’

,

)

NONE

tablespace_datafile_clauses::=

DATAFILES

SIZE size_clause

autoextend_clause

(size_clause::=, autoextend_clause::=)

undo_mode_clause::=

LOCAL UNDO

ON

OFF

Semantics

database

Specify the name of the database to be created. The name must match the value of the
DB_NAME initialization parameter. The name can be up to 8 bytes long and can contain only
ASCII characters. The following characters are valid in a database name: alphanumeric
characters, underscore (_), number sign (#), and dollar sign ($). No other characters are valid.
The database name must start with an alphabetic character. Oracle Database writes this name
into the control file. If you subsequently issue an ALTER DATABASE statement that explicitly
specifies a database name, then Oracle Database verifies that name with the name in the
control file.

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 185

The database name is case insensitive and is stored in uppercase ASCII characters. If you
specify the database name as a quoted identifier, then the quotation marks are silently ignored.

Note

You cannot use special characters from European or Asian character sets in a
database name. For example, characters with umlauts are not allowed.

If you omit the database name from a CREATE DATABASE statement, then Oracle Database uses
the name specified by the initialization parameter DB_NAME. The DB_NAME initialization
parameter must be set in the database initialization parameter file, and if you specify a different
name from the value of that parameter, then the database returns an error. Refer to "Database
Object Naming Rules " for additional rules to which database names should adhere.

USER SYS ..., USER SYSTEM ...

Use these clauses to establish passwords for the SYS and SYSTEM users. These clauses are
not mandatory in this release. However, if you specify either clause, then you must specify both
clauses.

If you do not specify these clauses, then Oracle Database creates the default password
change_on_install for user SYS . You can change this password later with the ALTER USER
statement.

See Also

ALTER USER

CONTROLFILE REUSE Clause

Specify CONTROLFILE REUSE to reuse existing control files identified by the initialization
parameter CONTROL_FILES, overwriting any information they currently contain. Normally you
use this clause only when you are re-creating a database, rather than creating one for the first
time. When you create a database for the first time, Oracle Database creates a control file in
the default destination, which is dependent on the value or several initialization parameters.
See CREATE CONTROLFILE, "Semantics".

You cannot use this clause if you also specify a parameter value that requires that the control
file be larger than the existing files. These parameters are MAXLOGFILES, MAXLOGMEMBERS,
MAXLOGHISTORY, MAXDATAFILES, and MAXINSTANCES.

If you omit this clause and any of the files specified by CONTROL_FILES already exist, then the
database returns an error.

MAXDATAFILES Clause

Specify the initial sizing of the data files section of the control file at CREATE DATABASE or
CREATE CONTROLFILE time. An attempt to add a file whose number is greater than
MAXDATAFILES, but less than or equal to DB_FILES, causes the Oracle Database control file to
expand automatically so that the data files section can accommodate more files.

The number of data files accessible to your instance is also limited by the initialization
parameter DB_FILES.

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 185

MAXINSTANCES Clause

Specify the maximum number of instances that can simultaneously have this database
mounted and open. This value takes precedence over the value of initialization parameter
INSTANCES. The minimum value is 1. The maximum value is 1055. The default depends on
your operating system.

CHARACTER SET Clause

Specify the character set the database uses to store data. The supported character sets and
default value of this parameter depend on your operating system.

Restriction on CHARACTER SET

You cannot specify the AL16UTF16 character set as the database character set.

See Also

Oracle Database Globalization Support Guide for more information about choosing a
character set

NATIONAL CHARACTER SET Clause

Specify the national character set used to store data in columns specifically defined as NCHAR,
NCLOB, or NVARCHAR2. Valid values are AL16UTF16 and UTF8. The default is AL16UTF16.

See Also

Oracle Database Globalization Support Guide for information on Unicode data type
support

SET DEFAULT TABLESPACE Clause

Use this clause to determine the default type of subsequently created tablespaces and of the
SYSTEM and SYSAUX tablespaces. Specify either BIGFILE or SMALLFILE to set the default type of
subsequently created tablespaces as a bigfile or smallfile tablespace, respectively.

• A bigfile tablespace contains only one data file or temp file, which can contain up to
approximately 4 billion (232) blocks. The maximum size of the single data file or temp file is
128 terabytes (TB) for a tablespace with 32K blocks and 32TB for a tablespace with 8K
blocks.

• A smallfile tablespace is a traditional Oracle tablespace, which can contain 1022 data
files or temp files, each of which can contain up to approximately 4 million (222) blocks.

If you omit this clause, then Oracle Database creates bigfile tablespaces by default for SYSAUX,
SYSTEM, and USER tablespaces .

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 185

See Also

• Oracle Database Administrator's Guide for more information about bigfile
tablespaces

• "Setting the Default Type of Tablespaces: Example" for an example using this
syntax

database_logging_clauses

Use the database_logging_clauses to determine how Oracle Database will handle redo log files for
this database.

LOGFILE Clause

Specify one or more files to be used as redo log files. Use the redo_log_file_spec form of
file_specification to create regular redo log files in an operating system file system or to create
Oracle ASM disk group redo log files. When using a form of ASM_filename, you cannot specify
the autoextend_clause of redo_log_file_spec.

The redo_log_file_spec clause specifies a redo log file group containing one or more redo log file
members (copies). All redo log files specified in a CREATE DATABASE statement are added to
redo log thread number 1.

See Also

file_specification for a full description of this clause

If you omit the LOGFILE clause, then Oracle Database creates an Oracle-managed log file
member in the default destination, which is one of the following locations (in order of
precedence):

• If DB_CREATE_ONLINE_LOG_DEST_n is set, then the database creates a log file member in
each directory specified, up to the value of the MAXLOGMEMBERS initialization parameter.

• If the DB_CREATE_ONLINE_LOG_DEST_n parameter is not set, but both the
DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST initialization parameters are set, then
the database creates one Oracle-managed log file member in each of those locations. The
log file in the DB_CREATE_FILE_DEST destination is the first member.

• If only the DB_CREATE_FILE_DEST initialization parameter is specified, then Oracle Database
creates a log file member in that location.

• If only the DB_RECOVERY_FILE_DEST initialization parameter is specified, then Oracle
Database creates a log file member in that location.

In all these cases, the parameter settings must correctly specify operating system filenames or
creation form Oracle ASM filenames, as appropriate.

If no values are set for any of these parameters, then the database creates a log file in the
default location for the operating system on which the database is running. This log file is not
an Oracle Managed File.

GROUP integer

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 185

Specify the number that identifies the redo log file group. The value of integer can range from 1
to the value of the MAXLOGFILES parameter. A database must have at least two redo log file
groups. You cannot specify multiple redo log file groups having the same GROUP value. If you
omit this parameter, then Oracle Database generates its value automatically. You can examine
the GROUP value for a redo log file group through the dynamic performance view V$LOG.

MAXLOGFILES Clause

Specify the maximum number of redo log file groups that can ever be created for the database.
Oracle Database uses this value to determine how much space to allocate in the control file for
the names of redo log files. The default, minimum, and maximum values depend on your
operating system.

MAXLOGMEMBERS Clause

Specify the maximum number of members, or copies, for a redo log file group. Oracle
Database uses this value to determine how much space to allocate in the control file for the
names of redo log files. The minimum value is 1. The maximum and default values depend on
your operating system.

MAXLOGHISTORY Clause

This parameter is useful only if you are using Oracle Database in ARCHIVELOG mode with
Oracle Real Application Clusters (Oracle RAC). Specify the maximum number of archived redo
log files for automatic media recovery of Oracle RAC. The database uses this value to
determine how much space to allocate in the control file for the names of archived redo log
files. The minimum value is 0. The default value is a multiple of the MAXINSTANCES value and
depends on your operating system. The maximum value is limited only by the maximum size of
the control file.

ARCHIVELOG

Specify ARCHIVELOG if you want the contents of a redo log file group to be archived before the
group can be reused. This clause prepares for the possibility of media recovery.

NOARCHIVELOG

Specify NOARCHIVELOG if the contents of a redo log file group need not be archived before the
group can be reused. This clause does not allow for the possibility of media recovery.

The default is NOARCHIVELOG mode. After creating the database, you can change between
ARCHIVELOG mode and NOARCHIVELOG mode with the ALTER DATABASE statement.

FORCE LOGGING

Use this clause to put the database into FORCE LOGGING mode. Oracle Database will log all
changes in the database except for changes in temporary tablespaces and temporary
segments. This setting takes precedence over and is independent of any NOLOGGING or FORCE
LOGGING settings you specify for individual tablespaces and any NOLOGGING settings you
specify for individual database objects.

FORCE LOGGING mode is persistent across instances of the database. If you shut down and
restart the database, then the database is still in FORCE LOGGING mode. However, if you re-
create the control file, then Oracle Database will take the database out of FORCE LOGGING
mode unless you specify FORCE LOGGING in the CREATE CONTROLFILE statement.

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 185

Note

FORCE LOGGING mode can have performance effects. Refer to Oracle Database
Administrator's Guide for information on when to use this setting.

See Also

CREATE CONTROLFILE

SET STANDBY NOLOGGING FOR DATA AVAILABILITY | LOAD PERFORMANCE

The SET STANDBY NOLOGGING disables logging on the standby. You can specify it in two modes:

• SET STANDBY NOLOGGING FOR DATA AVAILABILITY guarantees full data replication
to the standby database. The primary and standby databases are synchronized during the
load. In cases of network congestion the primary database will throttle its load.

• SET STANDBY NOLOGGING FOR LOAD PERFORMANCE to maintain speed of primary
database load and synchronize with the standby later.

Restrictions SET STANDBY NOLOGGING

TheSET STANDBY NOLOGGING clause cannot be used at the same time as FORCE LOGGING.

tablespace_clauses

Use the tablespace clauses to configure the SYSTEM and SYSAUX tablespaces and to specify a
default temporary tablespace and an undo tablespace.

extent_management_clause

Use this clause to create a locally managed SYSTEM tablespace. If you omit this clause, then
the SYSTEM tablespace will be dictionary managed.

Note

When you create a locally managed SYSTEM tablespace, you cannot change it to be
dictionary managed, nor can you create any other dictionary-managed tablespaces in
this database.

If you specify this clause, then the database must have a default temporary tablespace,
because a locally managed SYSTEM tablespace cannot store temporary segments.

• If you specify EXTENT MANAGEMENT LOCAL but you do not specify the DATAFILE clause,
then you can omit the default_temp_tablespace clause. Oracle Database will create a default
temporary tablespace called TEMP with one data file of size 10M with autoextend disabled.

• If you specify both EXTENT MANAGEMENT LOCAL and the DATAFILE clause, then you must
also specify the default_temp_tablespace clause and explicitly specify a temp file for that
temporary tablespace.

If you have opened the instance in automatic undo mode, similar requirements exist for the
database undo tablespace:

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 185

• If you specify EXTENT MANAGEMENT LOCAL but you do not specify the DATAFILE clause,
then you can omit the undo_tablespace clause. Oracle Database will create an undo
tablespace named SYS_UNDOTBS.

• If you specify both EXTENT MANAGEMENT LOCAL and the DATAFILE clause, then you must
also specify the undo_tablespace clause and explicitly specify a data file for that tablespace.

See Also

Oracle Database Administrator's Guide for more information on locally managed
and dictionary-managed tablespaces

DATAFILE Clause

Specify one or more files to be used as data files. All these files become part of the SYSTEM
tablespace. Use the data file_tempfile_spec form of file_specification to create regular data files and
temp files in an operating system file system or to create Oracle ASM disk group files.

Note

This clause is optional, as is the DATAFILE clause of the undo_tablespace clause.
Therefore, to avoid ambiguity, if your intention is to specify a data file for the SYSTEM
tablespace with this clause, then do not specify it immediately after an undo_tablespace
clause that does not include the optional DATAFILE clause. If you do so, then Oracle
Database will interpret the DATAFILE clause to be part of the undo_tablespace clause.

The syntax for specifying data files for the SYSTEM tablespace is the same as that for
specifying data files during tablespace creation using the CREATE TABLESPACE statement,
whether you are storing files using Oracle ASM or in a file system.

See Also

CREATE TABLESPACE for information on specifying data files

If you are running the database in automatic undo mode and you specify a data file name for
the SYSTEM tablespace, then Oracle Database expects to generate data files for all
tablespaces. Oracle Database does this automatically if you are using Oracle Managed Files—
you have set a value for the DB_CREATE_FILE_DEST initialization parameter. However, if you are
not using Oracle Managed Files and you specify this clause, then you must also specify the
undo_tablespace clause and the default_temp_tablespace clause.

If you omit this clause, then:

• If the DB_CREATE_FILE_DEST initialization parameter is set, then Oracle Database creates a
100 MB Oracle-managed data file with a system-generated name in the default file
destination specified in the parameter.

• If the DB_CREATE_FILE_DEST initialization parameter is not set, then Oracle Database
creates one data file whose name and size depend on your operating system.

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 185

See Also

file_specification for syntax

SYSAUX Clause

Oracle Database creates both the SYSTEM and SYSAUX tablespaces as part of every database.
Use this clause if you are not using Oracle Managed Files and you want to specify one or more
data files for the SYSAUX tablespace.

You must specify this clause if you have specified one or more data files for the SYSTEM
tablespace using the DATAFILE clause. If you are using Oracle Managed Files and you omit this
clause, then the database creates the SYSAUX data files in the default location set up for Oracle
Managed Files.

If you have enabled Oracle Managed Files and you omit the SYSAUX clause, then the database
creates the SYSAUX tablespace as an online, permanent, locally managed tablespace with one
data file of 100 MB, with logging enabled and automatic segment-space management.

The syntax for specifying data files for the SYSAUX tablespace is the same as that for
specifying data files during tablespace creation using the CREATE TABLESPACE statement,
whether you are storing files using Oracle ASM or in a file system.

See Also

• CREATE TABLESPACE for information on creating the SYSAUX tablespace during
database upgrade and for information on specifying data files in a tablespace

• Oracle Database Administrator's Guide for more information on creating the
SYSAUX tablespace

default_tablespace

Specify this clause to create a default permanent tablespace for the database. Oracle
Database creates a smallfile tablespace and subsequently will assign to this tablespace any
non-SYSTEM users for whom you do not specify a different permanent tablespace. If you do not
specify this clause, then the SYSTEM tablespace is the default permanent tablespace for non-
SYSTEM users.

The DATAFILE clause and extent_management_clause have the same semantics they have in a
CREATE TABLESPACE statement. Refer to "DATAFILE | TEMPFILE Clause" and
extent_management_clause for information on these clauses.

default_temp_tablespace

Use this clause to create a default shared temporary tablespace or a default local temporary
tablespace. Oracle Database will assign to these temporary tablespaces any users for whom
you do not specify different temporary tablespaces.

• Specify DEFAULT TEMPORARY TABLESPACE to create a default shared temporary tablespace
for the database. Shared temporary tablespaces were available in prior releases of Oracle
Database and were called "temporary tablespaces." Elsewhere in this guide, the term
"temporary tablespace" refers to a shared temporary tablespace unless specified
otherwise. If you do not specify this clause, and if the database does not create a default

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 185

shared temporary tablespace automatically in the process of creating a locally managed
SYSTEM tablespace, then the SYSTEM tablespace is the default shared temporary
tablespace.

• Starting with Oracle Database 12c Release 2 (12.2), you can specify DEFAULT LOCAL
TEMPORARY TABLESPACE to create a default local temporary tablespace. Local temporary
tablespaces are useful for Oracle Real Application Clusters and Oracle Flex Clusters. They
store a separate, nonshared temp file for each database instance, which can improve I/O
performance. A local temporary tablespace must be a BIGFILE tablespace.

– Specify FOR ALL to instruct the database to create separate, nonshared temp files for
all HUB and LEAF nodes.

– Specify FOR LEAF to instruct the database to create separate nonshared temp files for
only LEAF nodes. If you specify this clause, then HUB nodes will use the default
shared temporary tablespace. For SQL operations that span both HUB and LEAF
nodes, HUB nodes will use the default shared temporary tablespace and LEAF nodes
will use the default local temporary tablespace.

If you do not create a local temporary tablespace, then HUB and LEAF nodes will use the
default shared temporary tablespace.

Specify BIGFILE or SMALLFILE to determine whether the default temporary tablespace is a
bigfile or smallfile tablespace. These clauses have the same semantics as in the "SET
DEFAULT TABLESPACE Clause ".

The TEMPFILE clause part of this clause is optional if you have enabled Oracle Managed Files
by setting the DB_CREATE_FILE_DEST initialization parameter. If you have not specified a value
for this parameter, then the TEMPFILE clause is required. If you have specified BIGFILE, then
you can specify only one temp file in this clause.

The syntax for specifying temp files for the default temporary tablespace is the same as that for
specifying temp files during temporary tablespace creation using the CREATE TABLESPACE
statement, whether you are storing files using Oracle ASM or in a file system.

The extent_management_clause clause has the same semantics in CREATE DATABASE and CREATE
TABLESPACE statements. For complete information, refer to the CREATE TABLESPACE ...
extent_management_clause .

See Also

CREATE TABLESPACE for information on specifying temp files

Note

On some operating systems, Oracle does not allocate space for a temp file until the
temp file blocks are actually accessed. This delay in space allocation results in faster
creation and resizing of temp files, but it requires that sufficient disk space is available
when the temp files are later used. To avoid potential problems, before you create or
resize a temp file, ensure that the available disk space exceeds the size of the new
temp file or the increased size of a resized temp file. The excess space should allow
for anticipated increases in disk space use by unrelated operations as well. Then
proceed with the creation or resizing operation.

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 185

Restrictions on Default Temporary Tablespaces

Default temporary tablespaces are subject to the following restrictions:

• You cannot specify the SYSTEM tablespace in this clause.

• The default temporary tablespace must have a standard block size.

undo_tablespace

If you have opened the instance in automatic undo mode (the UNDO_MANAGEMENT initialization
parameter is set to AUTO, which is the default), then you can specify the undo_tablespace to create
a tablespace to be used for undo data. Oracle strongly recommends that you use automatic
undo mode. However, if you want undo space management to be handled by way of rollback
segments, then you must omit this clause. You can also omit this clause if you have set a value
for the UNDO_TABLESPACE initialization parameter. If that parameter has been set, and if you
specify this clause, then tablespace must be the same as that parameter value.

• Specify BIGFILE if you want the undo tablespace to be a bigfile tablespace. A bigfile
tablespace contains only one data file, which can be up to 8 exabytes (8 million terabytes)
in size.

Tablespaces SYSAUX, SYSTEM, and USER are BIGFILE by default.

• Specify SMALLFILE if you want the undo tablespace to be a smallfile tablespace. A
smallfile tablespace is a traditional Oracle Database tablespace, which can contain 1022
data files or temp files, each of which can contain up to approximately 4 million (222)
blocks.

• The DATAFILE clause part of this clause is optional if you have enabled Oracle Managed
Files by setting the DB_CREATE_FILE_DEST initialization parameter. If you have not specified
a value for this parameter, then the DATAFILE clause is required. If you have specified
BIGFILE, then you can specify only one data file in this clause.

The syntax for specifying data files for the undo tablespace is the same as that for specifying
data files during tablespace creation using the CREATE TABLESPACE statement, whether you are
storing files using Oracle ASM or in a file system.

See Also

CREATE TABLESPACE for information on specifying data files

If you specify this clause, then Oracle Database creates an undo tablespace named tablespace,
creates the specified data file(s) as part of the undo tablespace, and assigns this tablespace as
the undo tablespace of the instance. Oracle Database will manage undo data using this undo
tablespace. The DATAFILE clause of this clause has the same behavior as described in
"DATAFILE Clause".

If you have specified a value for the UNDO_TABLESPACE initialization parameter in your
initialization parameter file before mounting the database, then you must specify the same
name in this clause. If these names differ, then Oracle Database will return an error when you
open the database.

If you omit this clause, then Oracle Database creates a default database with a default smallfile
undo tablespace named SYS_UNDOTBS and assigns this default tablespace as the undo
tablespace of the instance. This undo tablespace allocates disk space from the default files
used by the CREATE DATABASE statement, and it has an initial extent of 10M. Oracle Database

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 185

handles the system-generated data file as described in "DATAFILE Clause". If Oracle
Database is unable to create the undo tablespace, then the entire CREATE DATABASE operation
fails.

See Also

• Oracle Database Administrator's Guide for information on automatic undo
management and undo tablespaces

• CREATE TABLESPACE for information on creating an undo tablespace after
database creation

set_time_zone_clause

Use the SET TIME_ZONE clause to set the time zone of the database. You can specify the time
zone in two ways:

• By specifying a displacement from UTC (Coordinated Universal Time—formerly Greenwich
Mean Time). The valid range of hh:mi is -12:00 to +14:00.

• By specifying a time zone region. To see a listing of valid time zone region names, query
the TZNAME column of the V$TIMEZONE_NAMES dynamic performance view.

Note

Oracle recommends that you set the database time zone to UTC (0:00). Doing so can
improve performance, especially across databases, as no conversion of time zones
will be required.

See Also

Oracle Database Reference for information on the dynamic performance views

Oracle Database normalizes all TIMESTAMP WITH LOCAL TIME ZONE data to the time zone of
the database when the data is stored on disk. If you do not specify the SET TIME_ZONE clause,
then the database uses the operating system time zone of the server. If the operating system
time zone is not a valid Oracle Database time zone, then the database time zone defaults to
UTC.

USER_DATA TABLESPACE Clause

This clause lets you create a tablespace that is used for storing user data and database
options such as Oracle XML DB.

If you specify this clause when creating a multitenant container database (CDB), then the
tablespace is created as part of the seed. Pluggable databases (PDBs) subsequently created
using the seed will include this tablespace and its data file. The tablespace and data file
specified in this clause are not used by the root.

Specify BIGFILE or SMALLFILE to determine whether the tablespace is a bigfile or smallfile
tablespace. If you omit these clauses, then Oracle Database creates a tablespace of the type
that you specify with the SET DEFAULT TABLESPACE clause. If you do not specify the SET

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 185

DEFAULT TABLESPACE clause, then Oracle Database creates a smallfile tablespace. These
clauses have the same semantics as in the "SET DEFAULT TABLESPACE Clause ".

Use the datafile_tempfile_spec clause to specify one or more data files for the tablespace. Refer to
datafile_tempfile_spec for the full semantics of this clause.

enable_pluggable_database

Starting with Oracle Database 21c, the ENABLE_PLUGGABLE_DATABASE initialization parameter
is set to TRUE by default. If you set the ENABLE_PLUGGABLE_DATABASE initialization parameter
to FALSE, the command will fail.

The CREATE DATABASE enable_pluggable_database statement creates a CDB that contains a root and
a seed container. You then create PDBs in the CDB by using the CREATE PLUGGABLE DATABASE
statement.

See Also

• Creating and configuring a cdb.

• CREATE PLUGGABLE DATABASE

• "Creating a CDB: Example"

file_name_convert

Use the file_name_convert clause to determine how the database generates the names of files
(such as data files and wallet files) associated with the seed by using the names of files
associated with the root.

• For filename_pattern, specify a string found in file names associated with the root.

• For replacement_filename_pattern, specify a replacement string.

Oracle Database will replace filename_pattern with replacement_filename_pattern when generating the
names of files associated with the seed.

File name patterns cannot match files or directories managed by Oracle Managed Files.

You can specify FILE_NAME_CONVERT = NONE, which is the same as omitting this clause. If you
omit this clause, then the database first attempts to use Oracle Managed Files to generate
seed file names. If you are not using Oracle Managed Files, then the database uses the
PDB_FILE_NAME_CONVERT initialization parameter to generate file names. If this parameter is
not set, then an error occurs.

tablespace_datafile_clauses

Use these clauses to specify attributes for all data files comprising the SYSTEM and SYSAUX
tablespaces in the seed PDB. If you do not specify SIZE size_clause, then the data file size for a
given tablespace will be set to a predetermined fraction of the size of the corresponding root
data file. If you do not specify the autoextend_clause, then those values are inherited from the root.

Refer to size_clause and autoextend_clause for the full semantics of these clauses.

undo_mode_clause

This clause lets you specify local undo mode or shared undo mode for the CDB.

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 185

• Use LOCAL UNDO ON to specify local undo mode for the CDB. In this mode, every container
in the CDB uses local undo.

• Use LOCAL UNDO OFF to specify shared undo mode for the CDB. In this mode, there is one
active undo tablespace for a single-instance CDB, or for an Oracle RAC CDB, there is one
active undo tablespace for each instance.

If you omit this clause, then the default is LOCAL UNDO OFF.

USING MIRROR COPY

Use this clause to create a database with new_database_name using the prepared files of the mirror
copy, identified by mirror_name.

Examples

Creating a Database: Example

The following statement creates a database and fully specifies each argument:

CREATE DATABASE sample
 CONTROLFILE REUSE
 LOGFILE
 GROUP 1 ('diskx:log1.log', 'disky:log1.log') SIZE 50K,
 GROUP 2 ('diskx:log2.log', 'disky:log2.log') SIZE 50K
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG
 CHARACTER SET AL32UTF8
 NATIONAL CHARACTER SET AL16UTF16
 DATAFILE
 'disk1:df1.dbf' AUTOEXTEND ON,
 'disk2:df2.dbf' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 DEFAULT TEMPORARY TABLESPACE temp_ts
 UNDO TABLESPACE undo_ts
 SET TIME_ZONE = '+02:00';

This example assumes that you have enabled Oracle Managed Files by specifying a value for
the DB_CREATE_FILE_DEST parameter in your initialization parameter file. Therefore no file
specification is needed for the DEFAULT TEMPORARY TABLESPACE and UNDO TABLESPACE
clauses.

Creating a CDB: Example

The following statement creates a CDB newcdb. The ENABLE PLUGGABLE DATABASE clause
indicates that a CDB is being created. The CDB will contain a root (CDB$ROOT) and a seed
(PDB$SEED). The FILE_NAME_CONVERT clause specifies that names of files for the seed will be
generated by replacing /u01/app/oracle/oradata/newcdb in the names of files associated with the root
with /u01/app/oracle/oradata/pdbseed.

CREATE DATABASE newcdb
 USER SYS IDENTIFIED BY sys_password
 USER SYSTEM IDENTIFIED BY system_password
 LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/my/redo01b.log')
 SIZE 100M BLOCKSIZE 512,
 GROUP 2 ('/u01/logs/my/redo02a.log','/u02/logs/my/redo02b.log')
 SIZE 100M BLOCKSIZE 512,
 GROUP 3 ('/u01/logs/my/redo03a.log','/u02/logs/my/redo03b.log')
 SIZE 100M BLOCKSIZE 512
 MAXLOGHISTORY 1

Chapter 13
CREATE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 185

 MAXLOGFILES 16
 MAXLOGMEMBERS 3
 MAXDATAFILES 1024
 CHARACTER SET AL32UTF8
 NATIONAL CHARACTER SET AL16UTF16
 EXTENT MANAGEMENT LOCAL
 DATAFILE '/u01/app/oracle/oradata/newcdb/system01.dbf'
 SIZE 700M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
 SYSAUX DATAFILE '/u01/app/oracle/oradata/newcdb/sysaux01.dbf'
 SIZE 550M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
 DEFAULT TABLESPACE deftbs
 DATAFILE '/u01/app/oracle/oradata/newcdb/deftbs01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 DEFAULT TEMPORARY TABLESPACE tempts1
 TEMPFILE '/u01/app/oracle/oradata/newcdb/temp01.dbf'
 SIZE 20M REUSE AUTOEXTEND ON NEXT 640K MAXSIZE UNLIMITED
 UNDO TABLESPACE undotbs1
 DATAFILE '/u01/app/oracle/oradata/newcdb/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON NEXT 5120K MAXSIZE UNLIMITED
 ENABLE PLUGGABLE DATABASE
 SEED
 FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/newcdb/',
 '/u01/app/oracle/oradata/pdbseed/')
 SYSTEM DATAFILES SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES SIZE 100M
 USER_DATA TABLESPACE usertbs
 DATAFILE '/u01/app/oracle/oradata/pdbseed/usertbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

CREATE DATABASE LINK
Purpose

Use the CREATE DATABASE LINK statement to create a database link. A database link is a
schema object in one database that enables you to access objects on another database. The
other database need not be an Oracle Database system. However, to access non-Oracle
systems you must use Oracle Heterogeneous Services.

After you have created a database link, you can use it in SQL statements to refer to tables,
views, and PL/SQL objects in the other database by appending @dblink to the table, view, or
PL/SQL object name. You can query a table or view in the other database with the SELECT
statement. You can also access remote tables and views using any INSERT, UPDATE, DELETE, or
LOCK TABLE statement.

Chapter 13
CREATE DATABASE LINK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 185

See Also

• Oracle Database Development Guide for information about accessing remote
tables or views with PL/SQL functions, procedures, packages, and data types

• Oracle Database Administrator's Guide for information on distributed database
systems

• Oracle Database Reference for descriptions of existing database links in the
ALL_DB_LINKS, DBA_DB_LINKS, and USER_DB_LINKS data dictionary views and for
information on monitoring the performance of existing links through the V$DBLINK
dynamic performance view

• ALTER DATABASE LINK for information on altering a database link when the
password of a connection or authentication user changes.

• DROP DATABASE LINK for information on dropping existing database links

• INSERT , UPDATE , DELETE , and LOCK TABLE for using links in DML
operations

Prerequisites

To create a private database link, you must have the CREATE DATABASE LINK system privilege.
To create a public database link, you must have the CREATE PUBLIC DATABASE LINK system
privilege. Also, you must have the CREATE SESSION system privilege on the remote Oracle
Database.

Oracle Net must be installed on both the local and remote Oracle Databases.

Syntax

create_database_link::=

CREATE

SHARED PUBLIC

DATABASE LINK

IF NOT EXISTS

dblink

CONNECT

TO

CURRENT_USER

user IDENTIFIED BY password

dblink_authentication

WITH credential

dblink_authentication

USING connect_string

;

(dblink::=)

Chapter 13
CREATE DATABASE LINK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 185

dblink_authentication::=

AUTHENTICATED BY user IDENTIFIED BY password

WITH CREDENTIAL

Semantics

SHARED

Specify SHARED to create a database link that can be shared by multiple sessions using a
single network connection from the source database to the target database. In a shared server
configuration, shared database links can keep the number of connections into the remote
database from becoming too large. Shared links are typically also public database links.
However, a shared private database link can be useful when many clients access the same
local schema, and therefore use the same private database link.

In a shared database link, multiple sessions in the source database share the same connection
to the target database. Once a session is established on the target database, that session is
disassociated from the connection, to make the connection available to another session on the
source database. To prevent an unauthorized session from attempting to connect through the
database link, when you specify SHARED you must also specify the dblink_authentication clause for
the users authorized to use the database link.

See Also

Oracle Database Administrator's Guide for more information about shared database
links

PUBLIC

Specify PUBLIC to create a public database link visible to all users. If you omit this clause, then
the database link is private and is available only to you.

The data accessible on the remote database depends on the identity the database link uses
when connecting to the remote database:

• If you specify CONNECT TO user IDENTIFIED BY password, then the database link connects with
the specified user and password.

• If you specify CONNECT TO CURRENT_USER, then the database link connects with the user in
effect based on the scope in which the link is used.

• If you omit both of those clauses, then the database link connects to the remote database
as the locally connected user.

See Also

"Defining a Public Database Link: Example"

Chapter 13
CREATE DATABASE LINK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 185

dblink

Specify the complete or partial name of the database link. If you specify only the database
name, then Oracle Database implicitly appends the database domain of the local database.

Use only ASCII characters for dblink. Multibyte characters are not supported. The database link
name is case insensitive and is stored in uppercase ASCII characters. If you specify the
database name as a quoted identifier, then the quotation marks are silently ignored.

If the value of the GLOBAL_NAMES initialization parameter is TRUE, then the database link must
have the same name as the database to which it connects. If the value of GLOBAL_NAMES is
FALSE, and if you have changed the global name of the database, then you can specify the
global name.

The maximum number of database links that can be open in one session or one instance of an
Oracle RAC configuration depends on the value of the OPEN_LINKS and
OPEN_LINKS_PER_INSTANCE initialization parameters.

Restriction on Creating Database Links

You cannot create a database link in another user's schema, and you cannot qualify dblink with
the name of a schema. Periods are permitted in names of database links, so Oracle Database
interprets the entire name, such as ralph.linktosales, as the name of a database link in your
schema rather than as a database link named linktosales in the schema ralph.

See Also

• "References to Objects in Remote Databases " for guidelines for naming database
links

• Oracle Database Reference for information on the GLOBAL_NAMES, OPEN_LINKS,
and OPEN_LINKS_PER_INSTANCE initialization parameters

• "RENAME GLOBAL_NAME Clause" (an ALTER DATABASE clause) for information
on changing the database global name

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the database link does not exist, a new database link is created at the end of the
statement.

• If the database link exists, this is the database link you have at the end of the statement. A
new one is not created because the older database link is detected.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

CONNECT TO Clause

The CONNECT TO clause lets you specify the user and credentials, if any, to be used to connect
to the remote database.

CURRENT_USER Clause

Specify CURRENT_USER to create a current user database link. The current user must be a
global user with a valid account on the remote database.

Chapter 13
CREATE DATABASE LINK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 185

If the database link is used directly rather than from within a stored object, then the current
user is the same as the connected user.

When executing a stored object (such as a procedure, view, or trigger) that initiates a database
link, CURRENT_USER is the name of the user that owns the stored object, and not the name of
the user that called the object. For example, if the database link appears inside procedure
scott.p (created by scott), and user jane calls procedure scott.p, then the current user is scott.

However, if the stored object is an invoker-rights function, procedure, or package, then the
invoker's authorization ID is used to connect as a remote user. For example, if the privileged
database link appears inside procedure scott.p (an invoker-rights procedure created by scott),
and user Jane calls procedure scott.p, then CURRENT_USER is jane and the procedure executes
with Jane's privileges.

See Also

• CREATE FUNCTION for more information on invoker-rights functions

• "Defining a CURRENT_USER Database Link: Example"

user IDENTIFIED BY password

Specify the user name and password used to connect to the remote database using a fixed
user database link. If you omit this clause, then the database link uses the user name and
password of each user who is connected to the database. This is called a connected user
database link.

You can set the password to a maximum length of 1024 bytes.

See Also

"Defining a Fixed-User Database Link: Example"

dblink_authentication

You can specify this clause only if you are creating a shared database link—that is, you have
specified the SHARED clause. Specify the username and password on the target instance. This
clause authenticates the user to the remote server and is required for security. The specified
username and password must be a valid username and password on the remote instance. The
username and password are used only for authentication. No other operations are performed
on behalf of this user.

CONNECT WITH Clause

Use CONNECT WITH to specify the credential object that stores the username and password to
connect to the remote database.

You can create, update, or drop the credential using the DBMS_CREDENTIAL package.

You can use a credential object belonging to another user, if that user has granted you execute
privileges on the credential object.

Chapter 13
CREATE DATABASE LINK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 185

USING 'connect string'

Specify the service name of a remote database. If you specify only the database name, then
Oracle Database implicitly appends the database domain to the connect string to create a
complete service name. Therefore, if the database domain of the remote database is different
from that of the current database, then you must specify the complete service name.

See Also

Oracle Database Administrator's Guide for information on specifying remote
databases

Examples

The examples that follow assume two databases, one with the database name local and the
other with the database name remote. The examples use the Oracle Database domain. Your
database domain will be different.

Defining a Public Database Link: Example

The following statement defines a shared public database link named remote that refers to the
database specified by the service name remote:

CREATE PUBLIC DATABASE LINK remote
 USING 'remote';

This database link allows user hr on the local database to update a table on the remote database
(assuming hr has appropriate privileges):

UPDATE employees@remote
 SET salary=salary*1.1
 WHERE last_name = 'Baer';

Defining a Fixed-User Database Link: Example

In the following statement, user hr on the remote database defines a fixed-user database link
named local to the hr schema on the local database:

CREATE DATABASE LINK local
 CONNECT TO hr IDENTIFIED BY password
 USING 'local';

After this database link is created, hr can query tables in the schema hr on the local database in
this manner:

SELECT * FROM employees@local;

User hr can also use DML statements to modify data on the local database:

INSERT INTO employees@local
 (employee_id, last_name, email, hire_date, job_id)
 VALUES (999, 'Claus', 'sclaus@example.com', SYSDATE, 'SH_CLERK');

UPDATE jobs@local SET min_salary = 3000
 WHERE job_id = 'SH_CLERK';

DELETE FROM employees@local
 WHERE employee_id = 999;

Chapter 13
CREATE DATABASE LINK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 185

Using this fixed database link, user hr on the remote database can also access tables owned by
other users on the same database. This statement assumes that user hr has the READ or
SELECT privilege on the oe.customers table. The statement connects to the user hr on the local
database and then queries the oe.customers table:

SELECT * FROM oe.customers@local;

Defining a CURRENT_USER Database Link: Example

The following statement defines a current-user database link to the remote database, using the
entire service name as the link name:

CREATE DATABASE LINK remote.us.example.com
 CONNECT TO CURRENT_USER
 USING 'remote';

The user who issues this statement must be a global user registered with the LDAP directory
service.

You can create a synonym to hide the fact that a particular table is on the remote database. The
following statement causes all future references to emp_table to access the employees table owned
by hr on the remote database:

CREATE SYNONYM emp_table
 FOR oe.employees@remote.us.example.com;

CREATE DIMENSION
Purpose

Use the CREATE DIMENSION statement to create a dimension. A dimension defines a parent-
child relationship between pairs of column sets, where all the columns of a column set must
come from the same table. However, columns in one column set (called a level) can come
from a different table than columns in another set. The optimizer uses these relationships with
materialized views to perform query rewrite. The SQL Access Advisor uses these
relationships to recommend creation of specific materialized views.

Note

Oracle Database does not automatically validate the relationships you declare when
creating a dimension. To validate the relationships specified in the hierarchy_clause and
the dimension_join_clause of CREATE DIMENSION, you must run the
DBMS_OLAP.VALIDATE_DIMENSION procedure.

See Also

• CREATE MATERIALIZED VIEW for more information on materialized views

• Oracle Database SQL Tuning Guide for more information on query rewrite, the
optimizer and the SQL Access Advisor

Chapter 13
CREATE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 185

Prerequisites

To create a dimension in your own schema, you must have the CREATE DIMENSION system
privilege. To create a dimension in another user's schema, you must have the CREATE ANY
DIMENSION system privilege. In either case, you must have the READ or SELECT object privilege
on any objects referenced in the dimension.

Syntax

create_dimension::=

CREATE DIMENSION

schema .

dimension level_clause

hierarchy_clause

attribute_clause

extended_attribute_clause

;

level_clause::=

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

SKIP WHEN NULL

hierarchy_clause::=

HIERARCHY hierarchy (child_level CHILD OF parent_level

dimension_join_clause

)

dimension_join_clause::=

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

attribute_clause::=

Chapter 13
CREATE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 185

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

extended_attribute_clause::=

ATTRIBUTE attribute LEVEL level DETERMINES

dependent_column

(dependent_column

,

)

Semantics

schema

Specify the schema in which the dimension will be created. If you do not specify schema, then
Oracle Database creates the dimension in your own schema.

dimension

Specify the name of the dimension. The name must satisfy the requirements listed in
"Database Object Naming Rules ".

level_clause

The level_clause defines a level in the dimension. A level defines dimension hierarchies and
attributes.

level

Specify the name of the level.

level_table . level_column

Specify the columns in the level. You can specify up to 32 columns. The tables you specify in
this clause must already exist.

SKIP WHEN NULL

Specify this clause to indicate that if the specified level is NULL, then the level is to be skipped.
This clause lets you preserve the hierarchical chain of parent-child relationship by an
alternative path that skips over the specified level. See hierarchy_clause.

Restrictions on Dimension Level Columns

Dimension level columns are subject to the following restrictions:

• All of the columns in a level must come from the same table.

• If columns in different levels come from different tables, then you must specify the
dimension_join_clause.

• The set of columns you specify must be unique to this level.

• The columns you specify cannot be specified in any other dimension.

Chapter 13
CREATE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 185

• Each level_column must be non-null unless the level is specified with SKIP WHEN NULL. The
non-null columns need not have NOT NULL constraints. The column for which you specify
SKIP WHEN NULL cannot have a NOT NULL constraint).

hierarchy_clause

The hierarchy_clause defines a linear hierarchy of levels in the dimension. Each hierarchy forms a
chain of parent-child relationships among the levels in the dimension. Hierarchies in a
dimension are independent of each other. They may, but need not, have columns in common.

Each level in the dimension should be specified at most once in this clause, and each level
must already have been named in the level_clause.

hierarchy

Specify the name of the hierarchy. This name must be unique in the dimension.

child_level

Specify the name of a level that has an n:1 relationship with a parent level. The level_columns of
child_level cannot be null, and each child_level value uniquely determines the value of the next
named parent_level.

If the child level_table is different from the parent level_table, then you must specify a join
relationship between them in the dimension_join_clause.

parent_level

Specify the name of a level.

dimension_join_clause

The dimension_join_clause lets you specify an inner equijoin relationship for a dimension whose
columns are contained in multiple tables. This clause is required and permitted only when the
columns specified in the hierarchy are not all in the same table.

child_key_column

Specify one or more columns that are join-compatible with columns in the parent level.

If you do not specify the schema and table of each child_column, then the schema and table are
inferred from the CHILD OF relationship in the hierarchy_clause. If you do specify the schema and
column of a child_key_column, then the schema and table must match the schema and table of
columns in the child of parent_level in the hierarchy_clause.

parent_level

Specify the name of a level.

Restrictions on Join Dimensions

Join dimensions are subject to the following restrictions:

• You can specify only one dimension_join_clause for a given pair of levels in the same hierarchy.

• The child_key_columns must be non-null, and the parent key must be unique and non-null. You
need not define constraints to enforce these conditions, but queries may return incorrect
results if these conditions are not true.

• Each child key must join with a key in the parent_level table.

• Self-joins are not permitted. The child_key_columns cannot be in the same table as parent_level.

Chapter 13
CREATE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 185

• All of the child key columns must come from the same table.

• The number of child key columns must match the number of columns in parent_level, and the
columns must be joinable.

• You cannot specify multiple child key columns unless the parent level consists of multiple
columns.

attribute_clause

The attribute_clause lets you specify the columns that are uniquely determined by a hierarchy
level. The columns in level must all come from the same table as the dependent_columns. The
dependent_columns need not have been specified in the level_clause.

For example, if the hierarchy levels are city, state, and country, then city might determine mayor,
state might determine governor, and country might determine president.

extended_attribute_clause

This clause lets you specify an attribute name for one or more level-to-column relations. The
type of attribute you create with this clause is not different from the type of attribute created
using the attribute_clause. The only difference is that this clause lets you assign a name to the
attribute that is different from the level name.

Examples

Creating a Dimension: Examples

This statement was used to create the customers_dim dimension in the sample schema sh:

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country
)
 ATTRIBUTE customer DETERMINES
 (cust_first_name, cust_last_name, cust_gender,
 cust_marital_status, cust_year_of_birth,
 cust_income_level, cust_credit_limit)
 ATTRIBUTE country DETERMINES (countries.country_name)
;

Creating a Dimension with Extended Attributes: Example

Alternatively, the extended_attribute_clause could have been used instead of the attribute_clause, as
shown in the following example:

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)

Chapter 13
CREATE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 185

 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country
)
 ATTRIBUTE customer_info LEVEL customer DETERMINES
 (cust_first_name, cust_last_name, cust_gender,
 cust_marital_status, cust_year_of_birth,
 cust_income_level, cust_credit_limit)
 ATTRIBUTE country DETERMINES (countries.country_name);

Creating a Dimension with NULL Column Values: Example

The following example shows how to create the dimension if one of the level columns is null
and you want to preserve the hierarchical chain. The example uses the cust_marital_status column
for simplicity because it is not a NOT NULL column. If it had such a constraint, then you would
have to disable the constraint before using the SKIP WHEN NULL clause.

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL status IS (customers.cust_marital_status) SKIP WHEN NULL
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion) SKIP WHEN NULL
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country
)
 ATTRIBUTE customer DETERMINES
 (cust_first_name, cust_last_name, cust_gender,
 cust_marital_status, cust_year_of_birth,
 cust_income_level, cust_credit_limit)
 ATTRIBUTE country DETERMINES (countries.country_name)
;

CREATE DIRECTORY
Purpose

Use the CREATE DIRECTORY statement to create a directory object. A directory object specifies
an alias for a directory on the server file system where external binary file LOBs (BFILEs) and
external table data are located. You can use directory names when referring to BFILEs in your
PL/SQL code and OCI calls, rather than hard coding the operating system path name, for
management flexibility.

Chapter 13
CREATE DIRECTORY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 185

All directories are created in a single namespace and are not owned by an individual schema.
You can secure access to the BFILEs stored within the directory structure by granting object
privileges on the directories to specific users.

See Also

• "Large Object (LOB) Data Types " for more information on BFILE objects

• GRANT for more information on granting object privileges

• external_table_clause::= of CREATE TABLE

Prerequisites

You must have the CREATE ANY DIRECTORY system privilege to create directories.

When you create a directory, you are automatically granted the READ, WRITE, and EXECUTE
object privileges on the directory, and you can grant these privileges to other users and roles.
The DBA can also grant these privileges to other users and roles.

WRITE privileges on a directory are useful in connection with external tables. They let the
grantee determine whether the external table agent can write a log file or a bad file to the
directory.

For file storage, you must also create a corresponding operating system directory, an Oracle
Automatic Storage Management (Oracle ASM) disk group, or a directory within an Oracle ASM
disk group. Your system or database administrator must ensure that the operating system
directory has the correct read and write permissions for Oracle Database processes.

Privileges granted for the directory are created independently of the permissions defined for
the operating system directory, and the two may or may not correspond exactly. For example,
an error occurs if sample user hr is granted READ privilege on the directory object but the
corresponding operating system directory does not have READ permission defined for Oracle
Database processes.

Restrictions

Symbolic links are not allowed in the directory object paths or filenames when opening BFILE
objects. The entire directory path and filename is checked and the following error is returned if
any symbolic link is found:

ORA-22288: file or LOB operation FILEOPEN failed soft link in path

Workaround

If the database directory object or filename you are trying to open contains symbolic links,
change it to provide the real path and filename.

Chapter 13
CREATE DIRECTORY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 185

Syntax

create_directory::=

CREATE

OR REPLACE

DIRECTORY

IF NOT EXISTS

directory

SHARING =
METADATA

NONE

AS ’ path_name ’

Semantics

OR REPLACE

Specify OR REPLACE to re-create the directory database object if it already exists. You can use
this clause to change the definition of an existing directory without dropping, re-creating, and
regranting database object privileges previously granted on the directory.

Users who had previously been granted privileges on a redefined directory can still access the
directory without being regranted the privileges.

See Also

DROP DIRECTORY for information on removing a directory from the database

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the directory does not exist, a new directory is created at the end of the statement.

• If the directory exists, this is the directory you have at the end of the statement. A new one
is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

SHARING

This clause applies only when creating a directory in an application root. This type of directory
is called an application common object and it can be shared with the application PDBs that
belong to the application root. To determine how the directory is shared, specify one of the
following sharing attributes:

• METADATA - A metadata link shares the directory’s metadata, but its data is unique to each
container. This type of directory is referred to as a metadata-linked application common
object.

Chapter 13
CREATE DIRECTORY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 185

• NONE - The directory is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING initialization
parameter to determine the sharing attribute of the directory. If the DEFAULT_SHARING
initialization parameter does not have a value, then the default is METADATA.

You cannot change the sharing attribute of a directory after it is created.

See Also

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

directory

Specify the name of the directory object to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

Oracle Database does not verify that the directory you specify actually exists. Therefore, take
care that you specify a valid directory in your operating system. In addition, if your operating
system uses case-sensitive path names, then be sure you specify the directory in the correct
format. You need not include a trailing slash at the end of the path name.

Do not refer to a parent directory in the directory name. For example, the following syntax is
valid:

CREATE DIRECTORY mydir AS '/scratch/data/file_data';

However, the following syntax is not valid:

CREATE DIRECTORY mydir AS '/scratch/../file_data';

path_name

Specify the full path name of the operating system directory of the server where the files are
located. The single quotation marks are required, with the result that the path name is case
sensitive.

Examples

Creating a Directory: Examples

The following statement creates a directory database object that points to a directory on the
server:

CREATE DIRECTORY admin AS '/disk1/oracle/admin';

The following statement redefines directory database object bfile_dir to enable access to BFILEs
stored in the operating system directory /usr/bin/bfile_dir:

CREATE OR REPLACE DIRECTORY bfile_dir AS '/usr/bin/bfile_dir';

Chapter 13
CREATE DIRECTORY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 185

CREATE DISKGROUP

Note

This SQL statement is valid only if you are using Oracle ASM and you have started an
Oracle ASM instance. You must issue this statement from within the Oracle ASM
instance, not from a normal database instance. For information on starting an Oracle
ASM instance, refer to Oracle Automatic Storage Management Administrator's Guide.

Purpose

Use the CREATE DISKGROUP clause to name a group of disks and specify that Oracle Database
should manage the group for you. Oracle Database manages a disk group as a logical unit and
evenly spreads each file across the disks to balance I/O. Oracle Database also automatically
distributes database files across all available disks in disk groups and rebalances storage
automatically whenever the storage configuration changes.

This statement creates a disk group, assigns one or more disks to the disk group, and mounts
the disk group for the first time. Note that CREATE DISKGROUP only mounts a disk group on the
local node. If you want Oracle ASM to mount the disk group automatically in subsequent
instances, then you must add the disk group name to the value of the ASM_DISKGROUPS
initialization parameter in the initialization parameter file. If you use an SPFILE, then the disk
group is added to the initialization parameter automatically.

See Also

• ALTER DISKGROUP for information on modifying disk groups

• Oracle Automatic Storage Management Administrator's Guide for information on
Oracle ASM and using disk groups to simplify database administration

• ASM_DISKGROUPS for more information about adding disk group names to the
initialization parameter file

• V$ASM_OPERATION for information on monitoring Oracle ASM operations

• DROP DISKGROUP for information on dropping a disk group

Prerequisites

You must have the SYSASM system privilege to issue this statement.

Before issuing this statement, you must format the disks using an operating system format
utility. Also ensure that the Oracle Database user has read/write permission and the disks can
be discovered using the ASM_DISKSTRING.

When you store your database files in Oracle ASM disk groups, rather than in a file system,
before the database instance can access your files in the disk groups, you must configure and
start up an Oracle ASM instance to manage the disk groups.

Each database instance communicates with a single Oracle ASM instance on the same node
as the database. Multiple database instances on the same node can communicate with a
single Oracle ASM instance.

Chapter 13
CREATE DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 185

Syntax

create_diskgroup::=

CREATE DISKGROUP diskgroup_name

HIGH

NORMAL

FLEX

EXTENDED

SITE site_name

EXTERNAL

REDUNDANCY

QUORUM

REGULAR FAILGROUP failgroup_name

DISK qualified_disk_clause

,

ATTRIBUTE ’ attribute_name ’ = ’ attribute_value ’

,

;

qualified_disk_clause::=

search_string

NAME disk_name SIZE size_clause

FORCE

NOFORCE

(size_clause::=)

diskgroup_name

Specify the name of the disk group. The name must satisfy the requirements listed in
"Database Object Naming Rules ". However, disk groups are not schema objects.

Note

Oracle does not recommend using quoted identifiers for disk group names. These
quoted identifiers are accepted when issuing the CREATE DISKGROUP statement in
SQL*Plus, but they may not be valid when using other tools that manage disk groups.

REDUNDANCY Clause

The REDUNDANCY clause lets you specify the redundancy level of the disk group.

Chapter 13
CREATE DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 185

• NORMAL REDUNDANCY requires the existence of at least two failure groups (see the
FAILGROUP clause that follows). Oracle ASM provides redundancy for all files in the disk
group according to the attributes specified in the disk group templates. NORMAL
REDUNDANCY disk groups can tolerate the loss of one group. Refer to ALTER DISKGROUP ...
diskgroup_template_clauses for more information on disk group templates.

NORMAL REDUNDANCY is the default if you omit the REDUNDANCY clause. Therefore, if you
omit this clause, you must create at least two failure groups, or the create operation will
fail.

• HIGH REDUNDANCY requires the existence of at least three failure groups. Oracle ASM fixes
mirroring at 3-way mirroring, with each extent getting two mirrored copies. HIGH
REDUNDANCY disk groups can tolerate the loss of two failure groups.

• FLEX REDUNDANCY is a type of disk group that allows a database to specify its own
redundancy after the disk group is created. A file's redundancy can also be changed after
its creation. This type of disk group supports Oracle ASM file groups and quota groups. A
flex disk group requires the existence of at least three failure groups. If a flex disk group
has fewer than five failure groups, then it can tolerate the loss of one; otherwise, it can
tolerate the loss of two failure groups. To create a flex disk group, the COMPATIBLE.ASM and
COMPATIBLE.RDBMS disk group attributes must be set to 12.2 or greater.

• EXTENDED REDUNDANCY is a disk group that has all the features of a flex disk group in
addition to being highly available in an extended cluster environment. The cluster contains
nodes that span multiple physically separated sites. For more see About Oracle ASM
Extended Disk Groups

You can use the SITE keyword to specify the redundancy of files and file groups in an
extended disk group for each site, rather than for each disk group.

• EXTERNAL REDUNDANCY indicates that Oracle ASM does not provide any redundancy for
the disk group. The disks within the disk group must provide redundancy (for example,
using a storage array), or you must be willing to tolerate loss of the disk group if a disk fails
(for example, in a test environment). You cannot specify the FAILGROUP clause if you
specify EXTERNAL REDUNDANCY.

You cannot change the redundancy level after the disk group has been created, with the
following exception: You can convert a normal or high redundancy disk group to a flex disk
group. For more information, see the convert_redundancy_clause of ALTER DISKGROUP.

QUORUM | REGULAR

Use these keywords to qualify either failure group or disk specifications.

• REGULAR disks, or disks in non-quorum failure groups, can contain any files.

• QUORUM disks, or disks in quorum failure groups, cannot contain any database files, the
Oracle Cluster Registry (OCR), or dynamic volumes. However, QUORUM disks can contain
the voting file for Cluster Synchronization Services (CSS). Oracle ASM uses quorum disks
or disks in quorum failure groups for voting files whenever possible.

A quorum failure group is not considered when determining redundancy requirements with
respect to storing user data.

If you specify neither keyword, then REGULAR is the default.

Specify either QUORUM or REGULAR before the keyword FAILGROUP if you are explicitly
specifying the failure group. If you are creating a disk group with implicitly created failure
groups, then specify these keywords before the keyword DISK.

Chapter 13
CREATE DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 185

See Also

Oracle Automatic Storage Management Administrator's Guide for more information
about quorum and regular disks and failure groups

FAILGROUP Clause

Use this clause to specify a name for one or more failure groups. If you omit this clause, and
you have specified NORMAL or HIGH REDUNDANCY, then Oracle Database automatically adds
each disk in the disk group to its own failure group. The implicit name of the failure group is the
same as the operating system independent disk name (see "NAME Clause").

You cannot specify this clause if you are creating an EXTERNAL REDUNDANCY disk group.

qualified_disk_clause

Specify DISK qualified_disk_clause to add a disk to a disk group.

search_string

For each disk you are adding to the disk group, specify the operating system dependent
search string that Oracle ASM will use to find the disk. The search_string must point to a subset of
the disks returned by discovery using the strings in the ASM_DISKSTRING initialization
parameter. If search_string does not point to any disks the Oracle Database user has read/write
access to, then Oracle ASM returns an error. If it points to one or more disks that have already
been assigned to a different disk group, then Oracle Database returns an error unless you also
specify FORCE.

For each valid candidate disk, Oracle ASM formats the disk header to indicate that it is a
member of the new disk group.

See Also

The ASM_DISKSTRING initialization parameter for more information on specifying the
search string

NAME Clause

The NAME clause is valid only if the search_string points to a single disk. This clause lets you
specify an operating system independent name for the disk. The name can be up to 30
characters long and can contain only alphanumeric characters. The first character must be
alphabetic. If you omit this clause and you assigned a label to a disk through ASMLIB, then
that label is used as the disk name. If you omit this clause and you did not assign a label
through ASMLIB, then Oracle ASM creates a default name of the form diskgroupname_####, where
is the disk number. You use this name to refer to the disk in subsequent Oracle ASM
operations.

SIZE Clause

Use this clause to specify in bytes the size of the disk. If you specify a size greater than the
capacity of the disk, then Oracle ASM returns an error. If you specify a size less than the
capacity of the disk, then you limit the disk space Oracle ASM will use. The size value must be
identical for all disks in a disk group. If you omit this clause, then Oracle ASM attempts
programmatically to determine the size of the disk.

Chapter 13
CREATE DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 185

FORCE

Specify FORCE if you want Oracle ASM to add the disk to the disk group even if the disk is
already a member of a different disk group.

Note

Using FORCE in this way may destroy existing disk groups.

For this clause to be valid, the disk must already be a member of a disk group and the disk
cannot be part of a mounted disk group.

NOFORCE

Specify NOFORCE if you want Oracle ASM to return an error if the disk is already a member of a
different disk group. NOFORCE is the default.

ATTRIBUTE Clause

Use this clause to set attribute values for the disk group. You can view the current attribute
values by querying the V$ASM_ATTRIBUTE view. Table 13-2 lists the attributes you can set with
this clause. All attribute values are strings.

Table 13-2 Disk Group Attributes

Attribute Valid Values Description

ACCESS_CONTROL.ENABLE
D

true or false Specifies whether Oracle ASM File Access Control is enabled for a
disk group. If set to true, accessing Oracle ASM files is subject to
access control. If false, any user can access every file in the disk
group. All other operations behave independently of this attribute.
The default value is false.

If both the compatible.rdbms and compatible.asm attributes are set to at
least 11.2, you can set this attribute in an ALTER DISKGROUP ... SET
ATTRIBUTE statement. You cannot set this attribute when creating a
disk group.

When you set up file access control on an existing disk group, the
files previously created remain accessible by everyone, unless you
run the ALTER DISKGROUP SET PERMISSION statement to restrict
the permissions.

Note: This attribute is used in conjunction with
ACCESS_CONTROL.UMASK to manage Oracle ASM File Access
Control. After setting the ACCESS_CONTROL.ENABLED disk attribute,
you must set permissions with the ACCESS_CONTROL.UMASK
attribute.

Chapter 13
CREATE DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 185

Table 13-2 (Cont.) Disk Group Attributes

Attribute Valid Values Description

ACCESS_CONTROL.UMASK A three-digit number
where each digit is 0,
2, or 6.

Determines which permissions are masked out on the creation of an
Oracle ASM file for the user that owns the file (first digit), users in the
same user group (second digit), and others not in the user group
(third digit). This attribute applies to all files on a disk group. Setting
to 0 masks out nothing. Setting to 2 masks out write permission.
Setting to 6 masks out both read and write permissions. The default
value is 066.

If both the compatible.rdbms and compatible.asm attributes are set to at
least 11.2, you can set this attribute in an ALTER DISKGROUP ... SET
ATTRIBUTE statement. You cannot set this attribute when creating a
disk group.

When you set up file access control on an existing disk group, the
files previously created remain accessible by everyone, unless you
run the ALTER DISKGROUP SET PERMISSION statement to restrict
the permissions.

Note: This attribute is used in conjunction with
ACCESS_CONTROL.ENABLED to manage Oracle ASM File Access
Control. Before setting ACCESS_CONTROL.UMASK, you must set
ACCESS_CONTROL.ENABLED to true.

AU_SIZE Size in bytes. Valid
values are powers of 2
from 1M to 64M.
Examples '4M',
'4194304'.

Specifies the allocation unit size. This attribute can be set only during
disk group creation; it cannot be modified with an ALTER DISKGROUP
statement.

COMPATIBLE.ADVM Valid Oracle Database
version number1

Determines whether the disk group can contain Oracle ADVM
volumes. The value must be set to 11.2 or higher. Before setting this
attribute, the COMPATIBLE.ASM value must be 11.2 or higher. Also,
the Oracle ADVM volume drivers must be loaded.

By default, the value of the COMPATIBLE.ADVM attribute is empty
until set.

COMPATIBLE.ASM Valid Oracle Database
version number1

Determines the minimum software version for an Oracle ASM
instance that can use the disk group. This setting also affects the
format of the data structures for the Oracle ASM metadata on the
disk.

For Oracle ASM in Oracle Database 11g, 10.1 is the default setting
for the COMPATIBLE.ASM attribute when using the SQL CREATE
DISKGROUP statement, the ASMCMD mkdg command, and Oracle
Enterprise Manager Create Disk Group page. When creating a disk
group with ASMCA, the default setting is 11.2.

Chapter 13
CREATE DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 94 of 185

Table 13-2 (Cont.) Disk Group Attributes

Attribute Valid Values Description

COMPATIBLE.RDBMS Valid Oracle Database
version number1

Determines the minimum COMPATIBLE database initialization
parameter setting for any database instance that is allowed to use
the disk group.

Before advancing the COMPATIBLE.RDBMS attribute, ensure that the
values for the COMPATIBLE initialization parameter for all of the
databases that access the disk group are set to at least the value of
the new setting for COMPATIBLE.RDBMS. For example, if the
COMPATIBLE initialization parameters of the databases are set to
either 11.1 or 11.2, then COMPATIBLE.RDBMS can be set to any value
between 10.1 and 11.1 inclusively.

For Oracle ASM in Oracle Database 11g, 10.1 is the default setting
for the COMPATIBLE.RDBMS attribute when using the SQL CREATE
DISKGROUP statement, the ASMCMD mkdg command, ASMCA
Create Disk Group page, and Oracle Enterprise Manager Create
Disk Group page.

CONTENT.CHECK true or false Enables (true) or disables (false) content checking when performing
data copy operations for rebalancing a disk group. You cannot set
this attribute when creating a disk group.

The default value is dependent on the COMPATIBLE.ASM attribute
and follows this rule:
• If COMPATIBLE.ASM > = 19.0.0.0.0, then CONTENT.CHECK

defaults to true.
• If COMPATIBLE.ASM < 19.0.0.0.0, then CONTENT.CHECK

defaults to false.

Note: This rule is ONLY true for the creation of new diskgroups. If the
COMPATIBLE.ASM attribute of an existing diskgroup is updated to
19.0.0.0.0 or above, the CONTENT.CHECK attribute remains at its
current value.

DISK_REPAIR_TIME 0 to 136 years When disks are taken offline, Oracle ASM drops them after a default
period of time. If both the compatible.rdbms and compatible.asm
attributes are set to at least 11.1, you can set the disk_repair_time
attribute in an ALTER DISKGROUP ... SET ATTRIBUTE statement to
change that default period of time so that the disk can be repaired
and brought back online. You cannot set this attribute when creating
a disk group.

The time can be specified in units of minute (M) or hour (H). The
specified time elapses only when the disk group is mounted. If you
omit the unit, then the default is H. If you omit this attribute, and both
compatible.rdbms and compatible.asm are set to at least 11.1, then the
default is 12 H. Otherwise the disk is dropped immediately. You can
override this attribute with an ALTER DISKGROUP ... OFFLINE DISK
statement and the DROP AFTER clause.

Note: If a disk is taken offline using the current value of
disk_repair_time, and the value of this attribute is subsequently
changed, then the changed value is used by Oracle ASM in the disk
offline logic.

See Also: The ALTER DISKGROUP ... disk_offline_clause and Oracle
Automatic Storage Management Administrator's Guide for more
information

Chapter 13
CREATE DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 95 of 185

Table 13-2 (Cont.) Disk Group Attributes

Attribute Valid Values Description

FAILGROUP_REPAIR_TIME <number>m (number of
minutes) or <number>h
(number of hours)

Specifies a default repair time for the failure groups in the disk group.
The failure group repair time is used if Oracle ASM determines that
an entire failure group has failed. The default value is 24 hours (24h).

If there is a repair time specified for a disk, such as with the DROP
AFTER clause of the ALTER DISKGROUP OFFLINE DISK statement,
then that disk repair time overrides the failure group repair time.

This attribute can only be set when altering a disk group and is only
applicable to normal and high redundancy disk groups.

LOGICAL_SECTOR_SIZE 512, 4096, or 4K Sets the logical sector size of a disk group. This value specifies the
smallest possible I/O that the disk group can accept. The default
value is estimated from the disks that join the disk group.

To set this disk group attribute during the creation of a disk group or
to alter it after a disk group has been created, the COMPATIBLE.ASM
disk group attribute must be set to 12.2 or higher.

PHYS_META_REPLICATED true or false Tracks the replication status of a disk group. When the Oracle ASM
compatibility of a disk group is advanced to 12.0 or higher, the
physical metadata of each disk, including its disk header, free space
table blocks and allocation table blocks, is replicated. The replication
is performed online asynchronously. PHYS_META_REPLICATED is set
to true by Oracle ASM if the physical metadata of every disk in the
disk group has been replicated.

This disk group attribute is only defined in a disk group with the
Oracle ASM disk group compatibility (COMPATIBLE.ASM) set to 12.0
and higher. This attribute is read-only and is intended for information
only. You cannot set or change its value.

PREFERRED_READ.ENABLE
D

true or false In an Oracle extended cluster, which contains nodes that span
multiple physically separated sites, the PREFERRED_READ.ENABLED
disk group attribute controls whether preferred read functionality is
enabled for a disk group. If preferred read functionality is enabled,
then this functionality enables an instance to determine and read
from disks at the same site as itself, which can improve performance.
For extended clusters, the default value is true. For clusters that are
not extended (only one physical site), preferred read is disabled
(false). Preferred read status applies to extended, normal, high, and
flex redundancy disk groups.

This disk group attribute is only defined in a disk group with the
Oracle ASM disk group compatibility (COMPATIBLE.ASM) set to 12.2
and higher.

SECTOR_SIZE 512, 4096, or 4K Sets the physical sector size of a disk group. All disks in the disk
group must have this physical sector size. The default value is
obtained from the disks that join the disk group.

To set this disk group attribute during the creation of a disk group, the
COMPATIBLE.ASM and COMPATIBLE.RDBMS disk group attributes
must be set to 11.2 or higher. To alter this disk group attribute after a
disk group has been created, the COMPATIBLE.ASM disk group
attribute must be set to 12.2 or higher.

THIN_PROVISIONED true or false Enables (true) or disables (false) the functionality to discard unused
storage space after a disk group rebalance is completed. The default
value is false.

Chapter 13
CREATE DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 96 of 185

Table 13-2 (Cont.) Disk Group Attributes

Attribute Valid Values Description

CONTENT_HARDCHECK true or false CONTENT_HARDCHECK enables or disables Hardware Assisted
Resilient Data (HARD) checking when performing data copy
operations for rebalancing a disk group. This attribute can only be set
when altering a disk group.

1 Specify at least the first two digits of a valid Oracle Database release number. Refer to Oracle Database Administrator's Guide for
information on specifying valid version numbers. For example, you can specify compatibility as '11.2' or '12.1'.

See Also

Oracle Automatic Storage Management Administrator's Guide for more information on
managing these attribute settings

Examples

The following example assumes that the ASM_DISKSTRING parameter is a superset of /devices/
disks/c*, /devices/disks/c* points to at least one device to be used as an Oracle ASM disk, and the
Oracle Database user has read/write permission to the disks.

See Also

Oracle Automatic Storage Management Administrator's Guide for information on
Oracle ASM and using disk groups to simplify database administration

Creating a Diskgroup: Example

The following statement creates an Oracle ASM disk group dgroup_01 where no redundancy for
the disk group is provided by Oracle ASM and includes all disks that match the search_string:

CREATE DISKGROUP dgroup_01
 EXTERNAL REDUNDANCY
 DISK '/devices/disks/c*';

CREATE DOMAIN
Purpose

Use CREATE DOMAIN to create a data use case domain. A use case domain is high-level
dictionary object that belongs to a schema and encapsulates a set of optional properties and
constraints.

You can define table columns to be associated with a domain, thereby explicitly applying the
domain's optional properties and constraints to the columns.

At minimum, a domain must specify a built-in Oracle data type. The qualified domain name
should not collide with the qualified user-defined data types, or with Oracle built-in data types.

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 97 of 185

The domain data type must be a single Oracle data type. For Oracle character data type you
must specify a maximum length, one of VARCHAR2(L [CHAR|BYTE]), NVARCHAR2(L), CHAR(L
[CHAR|BYTE]), or NCHAR(L).

Domain-Specific Expressions and Conditions

A domain expression can be one of simple, datetime, interval, CASE, compound, or list domain
expression :

• A simple domain expression is one of string, number, sequence.CURRVAL, sequence.NEXTVAL,
NULL, or schema.domain. It is similar to simple expressions, except that it references domain
names instead of column names. It references domain names as qualified names, names
of Oracle built-in domains or uses a PUBLIC synonym to a domain.

• A datetime domain expression is a datetime expression that references domain
expressions only.

• An interval domain expression is defined just as a regular interval expression, except that it
references domain expressions. For example, (SYSTIMESTAMP - day_of_week) DAY(9) TO
SECOND is an interval domain expression.

• A compound domain expression is any of: (expr), expr op expr with op +, -, *, /, ||, or expr COLLATE
collation_name, where expr is a domain expression.

Examples of valid compound domain expressions

 'email: ' || EmailAddress

day_of_week + INTERVAL '1' DAY

TO_CHAR(LastFour(SSN))

• A case domain expression is a like a regular case expression except that it references
domain expressions only.

Examples of valid case domain expressions

CASE
 WHEN UPPER(DOMAIN_DISPLAY(day_of_week)) IN ('SAT','SUN')
 THEN 'weekend'
 ELSE 'week day'
END

• Similar to the definition of use case domain expressions, a domain condition is like a
regular SQL condition, except that it references only domain expressions. You can use the
keyword VALUE in domain expressions instead of the domain name. For example:

CREATE DOMAIN day_of_week AS CHAR(3 CHAR)
 CONSTRAINT day_of_week_c
 CHECK (UPPER(VALUE) IN ('MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'))
 DEFERRABLE INITIALLY DEFERRED
 DISPLAY SUBSTR(VALUE, 1, 2);

Prerequisites

To create a domain in your own schema, you must have the CREATE DOMAIN system privilege.

To create a domain in another user's schema, you must have the CREATE ANY DOMAIN system
privilege.

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 98 of 185

Syntax

create_domain::=

create_single_column_domain

create_multi_column_domain

create_flexible_domain

create_single_column_domain::=

CREATE

USECASE

DOMAIN

IF NOT EXISTS schema .

domain_name

AS
datatype

ENUM (enum_list)

STRICT column_properties_clause DISPLAY display_expression

ORDER order_expression annotations_clause

(datatype::=, enum_list::=, column_properties_clause::=, annotations_clause)

enum_list::=

enum_item_list

,

enum_item_list::=

name

enum_alias_list = value

enum_alias_list::=

= name enum_alias_list

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 99 of 185

column_properties_clause::=

default_clause

NOT

NULL constraint_clause VALIDATE USING schema_constant_text

COLLATE column_collation_name

create_multi_column_domain::=

CREATE

USECASE

DOMAIN

IF NOT EXISTS schema .

domain_name AS

(domain_column AS datatype

STRICT column_properties_clause annotations_clause

,

)

DISPLAY display_expression ORDER order_expression annotations_clause

(datatype::=, column_properties_clause::=, annotations_clause)

create_flexible_domain::=

CREATE

USECASE

FLEXIBLE DOMAIN

IF NOT EXISTS schema .

domain_name

(domain_column

,

) CHOOSE DOMAIN USING (domain_discriminant_column datatype

,

)

FROM
DECODE expr , search_expr , result_expr

,
, default

case_expression

datatype::=,CASE Expressions

result_expr::=

schema .

domain_name (domain_column

,

)

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 100 of 185

default_clause::=

DEFAULT

ON NULL

FOR INSERT
ONLY

AND UPDATE

default_expression

constraint_clause::=

CONSTRAINT

constraint_name

NOT

NULL

CHECK condition

constraint_state

annotations_clause::=

For the full syntax and semantics of the annotations_clause see annotations_clause.

Semantics

USECASE

This keyword is optional and is provided for semantic clarity. It indicates that the domain is to
describe a data use case.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the domain does not exist, a new domain is created at the end of the statement.

• If the domain exists, a new one is not created because the older one is detected.

Using IF EXISTS with CREATE results in the following error: Incorrect IF NOT EXISTS clause for CREATE
statement.

domain_name

domain_name follows the same restrictions as any type name and must not collide with the name
of any object in the domain schema, any Oracle supplied data type, and any Oracle supplied
domain.

These restrictions apply at a PDB-level in a CDB environment.

Note that domains are schema-level catalog objects, and therefore subject to schema-level
object restrictions.

datatype

datatype must be an Oracle built-in data type like:

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 101 of 185

• CHAR(L [CHAR|BYTE]), NCHAR(L), VARCHAR(L [CHAR|BYTE]), VARCHAR2(L [CHAR|BYTE]),
NVARCHAR2(L)

• NUMBER[p, [s]], FLOAT, BINARY_FLOAT, BINARY_DOUBLE

• RAW, LONG RAW (extended included)

• DATE, TIMESTAMP (WITH (LOCAL) TIME ZONE), INTERVAL

• BFILE, BLOB, CLOB, NCLOB

• JSON native data type

• BOOLEAN

ENUM

Specify ENUM to create an enumeration domain. An enumeration domain consists of a set of
names and, optionally, a value corresponding to name. The name has to be a valid SQL
identifier and every specified value must be a literal or a constant expression. The values can
be of any data type that are supported for a data use case domain, but all of them must agree
on that data type.

An enumeration domain has the following defaults:

• Display expression: returns the first name associated with each value. This returns
unquoted names in uppercase and quoted names in the same case they were defined.

• Order expression: sorts by the values in the enum.

• Check constraint: validates the input is in the list of values in the enum. This check-
constraint cannot be dropped using ALTER DOMAIN

The names inside a enumeration domain can be used wherever a literal is allowed in a scalar
SQL expression, and the domain itself can be used in the FROM clause of a SELECT statement
as if it were a table.

The collection of names (name) in an enumeration domain must be unique. There is no limit on
number of names (or their aliases) in a enumeration, besides whatever limits already exist in
Oracle SQL.

The data type of all the values (value) must match. If you do not specify a value, the default
value of the first name is 1, and the value of every other unspecified name is one more than
the previous value.

The expression defining the default must be one of the enumeration names without any
expression besides that.

STRICT

When you specify STRICT, table columns linked with the domain must have the same data type
limits as the corresponding domain columns. For example, if the data type of a domain column
is NUMBER(10), you can only associate it with columns declared as NUMBER(10). Applying the
domain to columns of NUMBER(9) or NUMBER(11) will raise a type error.

If you omit STRICT, you can link the domain to columns with type limits greater than or equal to
the domain's limit. For example, you can apply a non-strict domain with the data type
NUMBER(10) to columns with the data type NUMBER(20).

If you associate a column with a domain without specifying the column's data type, then it uses
STRICT semantics.

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 102 of 185

default_clause

If you specify the ON NULL clause, an implicit NOT NULL constraint is added.

default_expression

default_expression must be a domain expression and must conform to all the restrictions on default
column expressions of the given data type, when applied to domain expressions:

• default_expression cannot contain a SQL function that returns a domain reference, or a nested
function invocation, and it cannot be a subquery expression.

• The dataype of default_expression must match the domain's specified data type.

• As a domain expression, default_expression cannot refer to any table or column. It cannot refer
to any other domain name.

• default_expression may refer to NEXTVAL and CURRVAL for a sequence. It cannot reference a
PL/SQL function.

constraint_clause

Note that domain constraints can have optional names. They are NOT NULL, NULL or CHECK
constraints. Multiple such constraint clauses can be specified both at the column and domain
level.

The CHECK conditions as well as expressions in ALTER DOMAIN can only refer to domain
columns. If the domain has a single column, the column name is either the domain name or the
keyword VALUE, but the same expression cannot contain both domain name and VALUE as
column name.

constraint_name is optional. When specified, it must not collide with a name of any other
constraint in the domain's schema (in the given PDB if in a CDB environment). When not
specified, a system-generated name will be used. Domain constraints follow the same rules as
table and column-level constraints: a named table or column-level constraint cannot coincide
with the name of any other constraint in the same schema. Domain constraints can share
names with tables, even in the same schema. They can share names with columns, and it is
possible for a constraint to have the same name as the table or column it is defined on.

The CHECK condition must be a domain logical condition and must conform to all the
restrictions on CHECK constraints translated to domain expressions:

• It can only refer to domain_name, like a CHECK constraint on a column can only refer to a
column. It cannot refer to any columns in any table or view, even within the domain
schema.

• Subquery or scalar query expressions cannot be used.

• Condition cannot refer to non-deterministic functions (like CURRENT_DATE), or user-defined
PL/SQL functions.

• CHECK IS JSON (STRICT) constraints are allowed.

CHECK IS JSON(VALIDATE USING schema_constant_text) is allowed. You can specify the JSON
schema and use it to validate that the JSON column respects the schema definition that is
specified. schema_constant_text can be a constant literal with the JSON schema text, or a bind
variable for the JSON schema text. The bind must be a runtime constant. It cannot be a
domain.

If you use the IS JSON constraint without specifying VALIDATE USING schema_constraint, any
JSON value will be accepted. But when you specify a JSON Schema with VALIDATE USING

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 103 of 185

schema_constraint , and the entered input data into the table column does not follow the
schema, a JSON schema validation error is raised.

You can use shorthand syntax to specify the JSON schema with VALIDATE USING
schema_constant_text.

Just as for table and column-level constraints, you can specify only one JSON constraint
for a given table column

• The CHECK constraint condition is applied to one value at a time, and it is satisfied if the
CHECK condition, with domain_name substituted by the value, evaluates to TRUE or UNKNOWN.

Domain constraints may be enforced in any order.

NULL constraint means that values of the domain are allowed to be NULL, and this is the
default.

When constraint_state is not specified, the constraint is NOT DEFERABLE INITIALLY IMMEDIATE.

COLLATE

When collation is specified, it conforms to all the restrictions of column-level or schema-level
collation. The data type must be a character data type if collation is specified.

You must ensure that all columns of a domain with a collation specified have the same collation
as that of their domain.

If no collation is specified, and the data type is collatable, then the column's collation is used if
specified. Otherwise the underlying default data type collation in the domain's schema is used.

An error is raised in the following cases:

• If you create a table with a column in a domain with a collation different than the column's
collation.

• If you alter a column to have a collation different than the collation of the column's domain.

• If you alter a domain to add or modify the domain's collation to a value different than the
collation of any column marked of the given domain.

You can specify the COLLATE clause only if the COMPATIBLE initialization parameter is set to
12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

display_expression

Use display_expression to format the data according to domain specifications. It can be of any data
type allowed as a domain data type. display_expression must be a domain expression that does
not contain table or view columns, subqueries, non-deterministic functions, or PL/SQL
functions. It can refer to domain_name. If you do not specify collation for the expression, then
display_expression uses the domain's collation, if it is specified.

order_expression

Use order_expression to order and compare values for domain specifications.

order_expression must conform to the same restrictions as display_expressions, and additionally
must be of a byte or char-comparable data type. It returns order_expression with domain_name
replaced by expression, if order_expression is specified for the expression's domain, or expression
otherwise

annotations_clause

For examples of the annotations_clause see the examples at the end.

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 104 of 185

For the full semantics of the annotations clause see annotations_clause.

FROM Clause of Create Flexible Domain

expr and comparison_expr reference domain discriminant columns in the list
domain_discriminant_column.

The FROM clause for flexible domain is either a DECODE or a CASE expression that refers only to
discriminant column names (in the list following CHOOSE DOMAIN USING) in the search
expressions and has only domain name followed by a list of columns in the result expressions.
The columns in the result expression must be only columns in the domain column list (following
CREATE FLEXIBLE DOMAIN).

Examples

Create Domain year_of_birth

The following example creates the single column domain year_of_birth. The check constraint
ensures that the column's value is an integer with a value greater than or equal to 1900. The
display clause formats the output of calls to domain_display to either 19-YY or 20-YY, where YY is
the last two digits of the value. The order clause sorts calls to domain_order in order by the
column value minus 1900.

CREATE DOMAIN year_of_birth AS NUMBER(4)
 CONSTRAINT CHECK ((trunc(year_of_birth) = year_of_birth) and (year_of_birth >= 1900))
 DISPLAY (CASE WHEN year_of_birth < 2000 THEN '19-' ELSE '20-' END) || MOD(year_of_birth, 100)
 ORDER year_of_birth-1900 ;

Create Domain day_of_week

The following statement creates the single column domain day_of_week. The check constraint
ensures that its values are one of MON, TUE, WED, THU, FRI, SAT, SUN. The initially deferred
clause delays validation of these values until commit time. The order clause ensures the
values are sorted by day of week instead of alphabetically when calling domain_order.

CREATE DOMAIN day_of_week AS CHAR(3 CHAR)
 CONSTRAINT day_of_week_c
 CHECK (day_of_week IN ('MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'))
 INITIALLY DEFERRED
 ORDER CASE day_of_week
 WHEN 'MON' THEN 0
 WHEN 'TUE' THEN 1
 WHEN 'WED' THEN 2
 WHEN 'THU' THEN 3
 WHEN 'FRI' THEN 4
 WHEN 'SAT' THEN 5
 WHEN 'SUN' THEN 6
 ELSE 7
 END;

From 23.3 you can associate columns of data type CHAR(L CHAR) with the domain with any
value for L.

Create Domain email

The following example creates the sequence email_seq. It then creates the single column
domain email. This uses the sequence to generate email addresses in the form nnn@domain.com
when you insert null into columns with this domain, where nnn are the numbers generated by

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 105 of 185

the sequence. The constrains ensures that email addresses are of the form sss@sss.sss, where
sss is any nonwhitespace character.

The display clause formats the output of calls to domain_display to ---sss.sss, where sss is the
nonwhitespace characters after the @ sign.

CREATE SEQUENCE IF NOT EXISTS email_seq;

CREATE DOMAIN email AS VARCHAR2(30)
 DEFAULT ON NULL email_seq.NEXTVAL || '@domain.com'
 CONSTRAINT EMAIL_C CHECK (REGEXP_LIKE (email, '^(\S+)\@(\S+)\.(\S+)$'))
 DISPLAY '---' || SUBSTR(email, INSTR(email, '@') + 1);

Create a Strict Domain dept_codes

The following statement creates the domain dept_codes. The check constraint ensures its values
are greater than 99 excluding 200. It adds the annotation Title with the value "Domain Annotation".
You can only link this domain with columns of type NUMBER(3).

CREATE DOMAIN dept_codes AS NUMBER(3) STRICT
 CONSTRAINT dept_chk CHECK (dept_codes > 99 AND dept_codes != 200)
 ANNOTATIONS (Title 'Domain Annotation');

Create Domain hourly_wages

The following statement creates the single column domain hourly_wages. It defaults to 15 when
inserting null into columns with this domain. The check constraint ensures the values are
between 7 and 1,000.

The display clause returns its value in the format $999.99 when calling domain_display. The order
clause multiplies its value by negative one, so sorting by domain_order sorts from high to low. It
has the annotation Title with the value "Domain Annotation".

CREATE DOMAIN hourly_wages AS NUMBER(10)
 DEFAULT ON NULL 15
 CONSTRAINT minimal_wage_c
 CHECK (hourly_wages >= 7 and hourly_wages <=1000) ENABLE
 DISPLAY TO_CHAR(hourly_wages, '$999.99')
 ORDER (-1*hourly_wages)
 ANNOTATIONS (Title 'Domain Annotation');

Add Annotations to a Multi Column Domain US_City at Column and Domain Levels

The following statement creates the multicolumn domain US_city. This has three columns: name,
state, and zip. All columns have the Address annotation.

The check constraint ensures that the permitted values for state are CA, AZ, and TX and zip is
less than 100000. The display clause returns calls to domain_display in the format name ||', '|| state ||', '||
TO_CHAR(zip).

The order clause sorts calls to domain_order by the concatenation of state, then zip, then name.
The domain has an object level annotation Title with the value "Domain Annotation" and and three
column level annotations Address without a value, one for each column.

CREATE DOMAIN US_city AS
 (
 name AS VARCHAR2(30) ANNOTATIONS (Address),
 state AS VARCHAR2(2) ANNOTATIONS (Address),
 zip AS NUMBER ANNOTATIONS (Address)
)

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 106 of 185

 CONSTRAINT City_CK CHECK(state in ('CA','AZ','TX') and zip < 100000)
 DISPLAY name||', '|| state ||', '||TO_CHAR(zip)
 ORDER state||', '||TO_CHAR(zip)||', '||name
 ANNOTATIONS (Title 'Domain Annotation');

Create a Flexible Domain

The following examples create the flexible domain expense_details. To do this, you must first
create the domains flight_details, meals_details, and lodging_details. These are multicolumn domains
with check constraints to ensure the domain columns store appropriate values for the expense
type.

For flight_details, this means the flight_num are two strings separated by a dash, and the origin
and destination are both three character strings.

For meals_details, the restaurant is mandatory, the meal_type one of Breakfast, Lunch or Dinner, and
diner_count is non-null.

For lodging_details, the hotel must be non-null and the nights_count greater than zero.

The flexible domain expense_details then chooses between these based on the value in the typ
column.

In the FROM DECODE example:

• if typ = Flight, it uses the flight_details domain. The flexible domain columns val1, val2, and val3
map to flight_num, origin, and destination in the flight_details domain.

• if typ = Meals, it uses the meals_details domain. The flexible domain columns val1, val2, and val4
map to restaurant, meal_type, and diner_count respectively in the meals_details domain.

• if typ = Lodging, it uses the lodging_details domain. The flexible domain columns val1 and val4
map to hotel and nights_count respectively in the lodging_details domain.

In the FROM CASE flexible domain:

• If typ starts with letters A-G, it uses the flight_details domain.

• If typ = Meals, it uses the meals_details domain.

• If typ starts with Lodg, it uses the lodging_details domain.

The column mappings are the same as in the FROM DECODE example.

Create Domain flight_details

CREATE DOMAIN flight_details AS
 (
 flight_num AS VARCHAR2(100) NOT NULL,
 origin AS VARCHAR2(200)
 CONSTRAINT origin_3_char_c CHECK (LENGTH(origin) = 3),
 destination AS VARCHAR2(200)
 CONSTRAINT dest_3_char_c CHECK (LENGTH(destination) = 3)
)
 CONSTRAINT flight_c
 CHECK
 (
 flight_num LIKE '%-%' AND
 origin IS NOT NULL AND
 destination IS NOT NULL
)
 CONSTRAINT origin_dest_different_c
 CHECK (origin <> destination)

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 107 of 185

 DISPLAY flight_num||', '||origin||', '||destination
 ORDER flight_num||destination;

Create Domain meals_details

CREATE DOMAIN meals_details AS
 (
 restaurant AS VARCHAR2(100) NOT NULL,
 meal_type AS VARCHAR2(200),
 diner_count AS NUMBER
)
 CONSTRAINT meals_c
 CHECK
 (
 restaurant IS NOT NULL AND
 meal_type IN ('Breakfast', 'Lunch', 'Dinner') AND
 diner_count IS NOT NULL
)
 DISPLAY meal_type||', '||restaurant||', '||diner_count;

Create Domain lodging_details

 CREATE DOMAIN lodging_details AS
 (
 hotel AS VARCHAR2(100) NOT NULL,
 nights_count AS NUMBER
)
 CONSTRAINT lodging_c
 CHECK (hotel IS NOT NULL AND nights_count > 0)
 DISPLAY hotel||', '||nights_count;

Create a Flexible Domain expense_details Using FROM DECODE

CREATE FLEXIBLE DOMAIN expense_details (val1, val2, val3, val4)
 CHOOSE DOMAIN USING (typ VARCHAR2(10))
 FROM DECODE(typ,
 'Flight', flight_details(val1, val2, val3),
 'Meals', meals_details(val1, val2, val4),
 'Lodging', lodging_details(val1, val4));

Create a Flexible Domain expense_details Using FROM CASE

CREATE FLEXIBLE DOMAIN expense_details (val1, val2, val3, val4)
 CHOOSE DOMAIN USING(typ VARCHAR2(10))
 FROM CASE
 WHEN typ BETWEEN 'A' AND 'G' THEN flight_details(val1, val2, val3)
 WHEN typ = 'Meals' THEN meals_details(val1, val2, val4)
 WHEN typ LIKE 'Lodg%' THEN lodging_details(val1, val4)
 END;

Create Domain Specifying a JSON Schema for Validation

The following example creates domain w2_form of type JSON with a constraint that checks that
the value is a JSON object that complies with the provided JSON Schema. The check
constraint uses IS JSON VALIDATE USING schema_constant_text:

CREATE DOMAIN w2_form AS JSON
 CONSTRAINT CHECK (VALUE IS JSON VALIDATE USING '{
 "title": "W2_form",
 "type": "object",
 "properties": {
 "social_security_number": {

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 108 of 185

 "type": "string",
 "description": "The person social security number."
 },
 "wages": {
 "description": "total wages",
 "type": "number",
 "minimum": 0
 },
 "social_security_wages": {
 "type": "number",
 "description": "wages subject to social security tax"
 },
 "Federal Income Tax Withheld": {
 "type": "number",
 "description": "withheld of tax to federal income tax"
 },
 "Social Security Tax Withheld": {
 "type": "number",
 "description": "withheld of social security tax"
 }
 },
 "required": [
 "social_security_number",
 "wages",
 "Federal Income Tax Withheld"
]
 }'
);

The following statement creates table tax_report where column w2_form is associated with domain
w2_form to ensure that its content conforms to the schema defined in the domainw2_form:

CREATE TABLE tax_report(id NUMBER, income JSON DOMAIN w2_form);

Before the data is inserted into the income column, it is checked against the JSON Schema. If
the data is not valid, an error is raised.

Example of valid data:

INSERT INTO tax_report VALUES
 (1, '{"wages": 100, "social_security_number": "111", "Federal Income Tax Withheld":10}'
);
1 row created

Example of invalid data:

INSERT INTO tax_report VALUES
 (2, '{"wages": 100}'
);
ERROR at line 1:
ORA-40875: JSON schema validation error

Create a Domain Specifying a JSON Schema Using Shorthand Syntax

CREATE DOMAIN w2_form AS JSON VALIDATE USING '{
 "title": "W2_form",
 "type": "object",
 "properties": {
 "social_security_number": {
 "type": "string",

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 109 of 185

 "description": "The person social security number."
 },
 "wages": {
 "description": "total wages",
 "type": "number",
 "minimum": 0
 },
 "social_security_wages": {
 "type": "number",
 "description": "wages subject to social security tax"
 },
 "Federal Income Tax Withheld": {
 "type": "number",
 "description": "withheld of tax to federal income tax"
 },
 "Social Security Tax Withheld": {
 "type": "number",
 "description": "withheld of social security tax"
 }
 },
 "required": [
 "social_security_number",
 "wages",
 "Federal Income Tax Withheld"
]
 }';

Example: Create a Domain with an Annotation Stored as JSON and Query its Value

The following example creates a domain with an annotation allowed_operations specified as a
JSON string which contains a nested JSON object:

CREATE DOMAIN email AS VARCHAR2(30)
 CONSTRAINT EMAIL_C CHECK (REGEXP_LIKE (email, '^(\S+)\@(\S+)\.(\S+)$'))
 DISPLAY '---' || SUBSTR(email, INSTR(email, '@') + 1)
 ANNOTATIONS(allowed_operations
'{
 "allowed_operations": {
 "title": "Allowed operations",
 "operations": [
 "Sort",
 "Group By",
 "Picklist"
]
 }
}');

Now you can run the following query to retrieve values for the annotation allowed_operations:

SELECT jt.* FROM user_annotations_usage a,
 JSON_TABLE (annotation_value,
 '$.allowed_operations.operations[*]'
 COLUMNS (value VARCHAR2(50 CHAR) PATH '$')) jt
 WHERE annotation_name = 'ALLOWED_OPERATIONS'
 AND object_name = 'EMAIL' ;

The output is:

VALUE

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 110 of 185

--
Sort
Group By
Picklist

Example: Create a Domain with an Annotation Stored as JSON and Query its Value

The following example creates a domain with the annotation display_units specified as a JSON
string containg an array to store the possible display units:

CREATE DOMAIN temperature AS NUMBER(3)
ANNOTATIONS (display_units '{ "units": ["celsius", "fahrenheit"] }');

Now you can query for the values of the annotation:

SELECT jt.* FROM user_annotations_usage,
 JSON_TABLE(annotation_value, '$.units[*]'
 COLUMNS (value VARCHAR2(30 CHAR) PATH '$')) jt
 WHERE annotation_name = 'DISPLAY_UNITS'
 AND object_name = 'TEMPERATURE';

The output is:

VALUE
--
celsius
fahrenheit

Example: JSON Schema Using a Use Case Domain

You can register a JSON schema as a use case domain.

The following example creates domain dj5 as a JSON schema object:

CREATE DOMAIN dj5 AS JSON CONSTRAINT dj5chk
 CHECK (dj5 IS JSON validate
 '{
 "type": "object",
 "properties": {
 "a": {
 "type": "number"
 }
 }
 }'
);

You can then create a table jtab and associate column jcol with the domain dj5:

CREATE TABLE jtab(
 id NUMBER PRIMARY KEY,
 jcol JSON DOMAIN dj5
);

Examples for ENUM Domains

Example: Create ENUM Domain order_status

The following example creates an enumeration domain order_status with a collection of names
New, Open, Shipped, Closed, Cancelled:

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 111 of 185

CREATE DOMAIN order_status AS
 ENUM (
 New ,
 Open ,
 Shipped ,
 Closed ,
 Cancelled
);

Example: Query Enumeration Domain order_status

Unlike a regular domain, the enumeration domain order_status can be treated as a table and
queried via SELECT as follows:

SELECT * FROM order_status;

The result is:

ENUM_NAME ENUM_VALUE
- - - - - - - - - - -
NEW 1
OPEN 2
SHIPPED 3
CLOSED 4
CANCELLED 5

Example: Enumeration Domain order_status as data type of Column:

Like a regular single-column domain, an enumeration domain can be used to define the data
type of a column in a table. In the example below, the enumeration domain order_status is used
as the data type of column status in table orders:

CREATE TABLE orders (
 id NUMBER,
 cust VARCHAR2(100),
 status ORDER_STATUS
);

Using DESCRIBE on the orders table shows the status column as a numeric column with a single
column domain order_status:

DESCRIBE orders;

The result is:

Name Null ? Type
---- ------ ----
ID NUMBER
CUST VARCHAR2 (100)
STATUS NUMBER SCOTT.ORDER_STATUS

You can construct each row to insert into the the orders table using the appropriate order_status:

INSERT INTO orders VALUES
 (1, 'Costco', order_status.open),
 (2, 'BMW', order_status.closed),

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 112 of 185

 (3, 'Nestle', order_status.shipped);

 3 rows created .

Use the domain_display function to list the rows in the orders table:

SELECT ID, DOMAIN_DISPLAY(STATUS) FROM orders;

The result is:

ID STATUS
--- ------
1 OPEN
2 CLOSED
3 SHIPPED

The actual values stored in the status column are the values you associated with the status
when you created the enumerated domain order_status, 2 for OPEN, 4 for CLOSED, and 3 for
SHIPPED:

SELECT ID, STATUS FROM orders;

The result is:

ID STATUS
--- ------
1 2
2 4
3 3

Since the underlying data type of the status column is a number, you can directly update the
column with a numeric value as long as is passes the domain check-constraint:

UPDATE orders SET STATUS = 2 WHERE STATUS = 5;

1 ROW UPDATED.

Since enumeration names are placeholds for literal values, you can use them anywhere where
SQL allows literals:

SELECT 2 * ORDER_STATUS.CANCELLED;

The result is:

2*ORDER_STATUS.CANCELLED
–-----------------------
 10

Example: Create ENUM Domain days_of_week

The following example creates an enumeration domain days_of_week with a collection of names
that comprises the days of the week.

Each value has a pair of names, only the first name of the pair has an assigned value. There
are two names for each value, the full day name and the first two letters of the day's name. The
names Sunday and Su both have the value zero. The value then increases by one for each pair

Chapter 13
CREATE DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 113 of 185

of names. So Monday and Mo have the value 1, Tuesday and Tu have the value 2 and so on up to
Saturday and Sa which have the value 6.

CREATE DOMAIN days_of_week AS
 ENUM (
 Sunday = Su = 0,
 Monday = Mo,
 Tuesday = Tu,
 Wednesday = We,
 Thursday = Th,
 Friday = Fr,
 Saturday = Sa
);

CREATE EDITION
Purpose

This statement creates a new edition as a child of an existing edition. An edition makes it
possible to have two or more versions of the same editionable objects in the database. When
you create an edition, it immediately inherits all of the editionable objects of its parent edition.
The following object types are editionable:

• Synonym

• View

• Function

• Procedure

• Package (specification and body)

• Type (specification and body)

• Library

• Trigger

An editionable object is an object of one of the above editionable object types in an editions-
enabled schema. The ability to have multiple versions of these objects in the database greatly
facilitates online application upgrades.

Note

All database object types not listed above are not editionable. Changes to object types
that are not editionable are immediately visible across all editions in the database.

Every newly created or upgraded Oracle Database has one default edition named ORA$BASE,
which serves as the parent of the first edition created with a CREATE EDITION statement. You
can subsequently designate a user-defined edition as the database default edition using an
ALTER DATABASE DEFAULT EDITION statement.

Chapter 13
CREATE EDITION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 114 of 185

See Also

• Oracle Database Development Guide for a more complete discussion of
editionable object types and editions

• The ALTER DATABASE "DEFAULT EDITION Clause" for information on designating
an edition as the default edition for the database

Prerequisites

To create an edition, you must have the CREATE ANY EDITION system privilege, granted either
directly or through a role. To create an edition as a child of another edition, you must have the
USE object privilege on the parent edition.

Syntax

create_edition::=

CREATE EDITION

IF NOT EXISTS

edition

AS CHILD OF parent_edition

Semantics

edition

Specify the name of the edition to be created. The name must satisfy the requirements listed in
"Database Object Naming Rules ".

To view the editions that have been created for the database, query the EDITION_NAME column
of the DBA_OBJECTS or ALL_OBJECTS data dictionary view.

When you create an edition, the system automatically grants you the USE object privilege WITH
GRANT OPTION on the edition you create.

Note

Oracle strongly recommends that you do not name editions with the prefixes ORA,
ORACLE, SYS, DBA, and DBMS, as these prefixes are reserved for internal use.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the object does not exist, a new obejct is created at the end of the statement.

• If the object exists, this is the object you have at the end of the statement. A new one is not
created because the older object is detected.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

Chapter 13
CREATE EDITION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 115 of 185

AS CHILD OF Clause

If you use this clause, then the new edition is created as a child of parent_edition. If you omit this
clause, then the new edition is created as a child of the leaf edition. At the time of its creation,
the new edition inherits all editioned objects from its parent edition.

Restriction on Editions

An edition can have only one child edition. If you specify for parent_edition an edition that already
has a child edition, then an error is returned.

Examples

The following very simple examples are intended to show the syntax for creating and working
with an edition. For realistic examples of using editions refer to Oracle Database Development
Guide.

In the following statements, the user HR is given the privileges needed to create and use an
edition:

GRANT CREATE ANY EDITION, DROP ANY EDITION to HR;
Grant succeeded.

ALTER USER hr ENABLE EDITIONS;
User altered.

HR creates a new edition TEST_ED for testing purposes:

CREATE EDITION test_ed;

HR then creates an editioning view ed_view in the default edition ORA$BASE for testing purposes,
first verifying that the current edition is the default edition:

SELECT SYS_CONTEXT('userenv', 'current_edition_name') FROM DUAL;
SYS_CONTEXT('USERENV','CURRENT_EDITION_NAME')
--
ORA$BASE
1 row selected.

CREATE EDITIONING VIEW e_view AS
 SELECT last_name, first_name, email FROM employees;
View created.

DESCRIBE e_view
 Name Null? Type
 --- -------- ----------------------------
 LAST_NAME NOT NULL VARCHAR2(25)
 FIRST_NAME VARCHAR2(20)
 EMAIL NOT NULL VARCHAR2(25)

The view is then actualized in the TEST_ED edition when HR uses the TEST_ED edition and re-
creates the view in a different form:

ALTER SESSION SET EDITION = TEST_ED;
Session altered.

CREATE OR REPLACE EDITIONING VIEW e_view AS
 SELECT last_name, first_name, email, salary FROM employees;

View created.

Chapter 13
CREATE EDITION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 116 of 185

The view in the TEST_ED edition has an additional column:

DESCRIBE e_view
 Name Null? Type
 --- -------- ----------------------------
 LAST_NAME NOT NULL VARCHAR2(25)
 FIRST_NAME VARCHAR2(20)
 EMAIL NOT NULL VARCHAR2(25)
 SALARY NUMBER(8,2)

The view in the ORA$BASE edition remains isolated from the test environment:

ALTER SESSION SET EDITION = ora$base;
Session altered.

DESCRIBE e_view;

 Name Null? Type
 --- -------- ----------------------------
 LAST_NAME NOT NULL VARCHAR2(25)
 FIRST_NAME VARCHAR2(20)
 EMAIL NOT NULL VARCHAR2(25)

Even if the view is dropped in the test environment, it remains in the ORA$BASE edition:

ALTER SESSION SET EDITION = TEST_ED;
Session altered.

DROP VIEW e_view;
View dropped.

ALTER SESSION SET EDITION = ORA$BASE;
Session altered.

DESCRIBE e_view;
 Name Null? Type
 --- -------- ----------------------------
 LAST_NAME NOT NULL VARCHAR2(25)
 FIRST_NAME VARCHAR2(20)
 EMAIL NOT NULL VARCHAR2(25)

When the testing of upgrade that necessitated the TEST_ED edition is complete, the edition can
be dropped:

DROP EDITION TEST_ED;

CREATE FLASHBACK ARCHIVE
Purpose

Use the CREATE FLASHBACK ARCHIVE statement to create a flashback archive, which provides
the ability to automatically track and archive transactional data changes to specified database
objects. A flashback archive consists of multiple tablespaces and stores historic data from all
transactions against tracked tables. The data is stored in internal history tables.

Flashback data archives retain historical data for the time duration specified using the
RETENTION parameter. Historical data can be queried using the Flashback Query AS OF clause.
Archived historic data that has aged beyond the specified retention period is automatically
purged.

Chapter 13
CREATE FLASHBACK ARCHIVE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 117 of 185

Flashback data archives retain historical data across data definition language (DDL) changes
to tables enabled for flashback archive. Flashback data archives supports many common DDL
statements, including some DDL statements that alter table definitions or incur data movement.
DDL statements that are not supported result in error ORA-55610.

See Also

• Oracle Database Development Guide for general information on using Flashback
Time Travel

• The CREATE TABLE flashback_archive_clause for information on designating a
table as a tracked table

• ALTER FLASHBACK ARCHIVE for information on changing the quota and
retention attributes of the flashback archive, as well as adding or changing
tablespace storage for the flashback archive

Prerequisites

You must have the FLASHBACK ARCHIVE ADMINISTER system privilege to create a flashback
archive. In addition, you must have the CREATE TABLESPACE system privilege to create a
flashback archive, as well as sufficient quota on the tablespace in which the historical
information will reside. To designate a flashback archive as the system default flashback
archive, you must be logged in as SYSDBA.

Syntax

create_flashback_archive::=

CREATE FLASHBACK ARCHIVE

DEFAULT

flashback_archive TABLESPACE tablespace

flashback_archive_quota

NO

OPTIMIZE DATA

flashback_archive_retention ;

flashback_archive_quota::=

QUOTA integer

M

G

T

P

E

Chapter 13
CREATE FLASHBACK ARCHIVE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 118 of 185

flashback_archive_retention::=

RETENTION integer

YEAR

MONTH

DAY

Semantics

DEFAULT

You must be logged in as SYSDBA to specify DEFAULT. Use this clause to designate this
flashback archive as the default flashback archive for the database. When a CREATE TABLE or
ALTER TABLE statement specifies the flashback_archive_clause without specifying a flashback
archive name, the database uses the default flashback archive to store data from that table.

You cannot specify this clause if a default flashback archive already exists. However, you can
replace an existing default flashback archive using the ALTER FLASHBACK ARCHIVE ... SET
DEFAULT clause.

See Also

The CREATE TABLE flashback_archive_clause for more information

flashback_archive

Specify the name of the flashback archive. The name must satisfy the requirements specified
in "Database Object Naming Rules ".

TABLESPACE Clause

Specify the tablespace where the archived data for this flashback archive is to be stored. You
can specify only one tablespace with this clause. However, you can subsequently add
tablespaces to the flashback archive with an ALTER FLASHBACK ARCHIVE statement.

flashback_archive_quota

Specify the amount of space in the initial tablespace to be reserved for the archived data. If the
space for archiving in a flashback archive becomes full, then DML operations on tracked tables
that use this flashback archive will fail. The database issues an out-of-space alert when the
content of the flashback archive is 90% of the specified quota, to allow time to purge old data
or add additional quota. If you omit this clause, then the flashback archive has unlimited quota
on the specified tablespace.

[NO] OPTIMIZE DATA

Specify OPTIMIZE DATA to enable optimization for flashback archive history tables. This
instructs the database to optimize the storage of data in history tables using any of the
following features: Advanced Row Compression, Advanced LOB Compression, Advanced LOB
Deduplication, segment-level compression tiering, and row-level compression tiering. To
specify this clause, you must have a license for the Advanced Compression option.

Chapter 13
CREATE FLASHBACK ARCHIVE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 119 of 185

Specify NO OPTIMIZE DATA to instruct the database not to optimize the storage of data in history
tables. This is the default.

flashback_archive_retention

Specify the length of time in months, days, or years that the archived data should be retained
in the flashback archive. If the length of time causes the flashback archive to become full, then
the database responds as described in flashback_archive_quota.

Examples

The following statement creates two flashback archives for testing purposes. The first is
designated as the default for the database. For both of them, the space quota is 1 megabyte,
and the archive retention is one day.

CREATE FLASHBACK ARCHIVE DEFAULT test_archive1
 TABLESPACE example
 QUOTA 1 M
 RETENTION 1 DAY;

CREATE FLASHBACK ARCHIVE test_archive2
 TABLESPACE example
 QUOTA 1 M
 RETENTION 1 DAY;

The next statement alters the default flashback archive to extend the retention period to 1
month:

ALTER FLASHBACK ARCHIVE test_archive1
 MODIFY RETENTION 1 MONTH;

The next statement specifies tracking for the oe.customers table. The flashback archive is not
specified, so data will be archived in the default flashback archive, test_archive1:

ALTER TABLE oe.customers
 FLASHBACK ARCHIVE;

The next statement specifies tracking for the oe.orders table. In this case, data will be archived in
the specified flashback archive, test_archive2:

ALTER TABLE oe.orders
 FLASHBACK ARCHIVE test_archive2;

The next statement drops test_archive2 flashback archive:

DROP FLASHBACK ARCHIVE test_archive2;

CREATE FUNCTION
Purpose

Functions are defined in PL/SQL. Therefore, this section provides some general information
but refers to Oracle Database PL/SQL Language Reference for details of syntax and
semantics.

Use the CREATE FUNCTION statement to create a standalone stored function or a call
specification.

• A stored function (also called a user function or user-defined function) is a set of
PL/SQL statements you can call by name. Stored functions are very similar to procedures,

Chapter 13
CREATE FUNCTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 120 of 185

except that a function returns a value to the environment in which it is called. User
functions can be used as part of a SQL expression.

• A call specification declares a JavaScript method, a Java method or a third-generation
language (3GL) routine so that it can be called from PL/SQL. You can also use the CALL
SQL statement to call such a method or routine. The call specification tells Oracle
Database which Java method, JavaScript method, or which named function in which
shared library, to invoke when a call is made. It also tells the database what type
conversions to make for the arguments and return value.

Note

You can also create a function as part of a package using the CREATE PACKAGE
statement.

See Also

• CREATE PROCEDURE for a general discussion of procedures and functions,
CREATE PACKAGE for information on creating packages, ALTER FUNCTION
and DROP FUNCTION for information on modifying and dropping a function

• CREATE LIBRARY for information on shared libraries

• Oracle Database Development Guide for more information about registering
external functions

• JavaScript Developer's Guide

• CREATE MLE MODULE

Prerequisites

To create or replace a function in your own schema, you must have the CREATE PROCEDURE
system privilege. To create or replace a function in another user's schema, you must have the
CREATE ANY PROCEDURE system privilege.

Syntax

Functions are defined using PL/SQL. Alternatively they can refer to non-PL/SQL code such as
Java, JavaScript, C, and others by means of call specifications. Therefore, the syntax diagram
in this book shows only the SQL keywords. Refer to Oracle Database PL/SQL Language
Reference for the PL/SQL syntax, semantics, and examples.

create_function::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

FUNCTION

IF NOT EXISTS

plsql_function_source

(plsql_function_source: See Oracle Database PL/SQL Language Reference.)

Chapter 13
CREATE FUNCTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 121 of 185

Semantics

OR REPLACE

Specify OR REPLACE to re-create the function if it already exists. Use this clause to change the
definition of an existing function without dropping, re-creating, and regranting object privileges
previously granted on the function. If you redefine a function, then Oracle Database recompiles
it.

Users who had previously been granted privileges on a redefined function can still access the
function without being regranted the privileges.

If any function-based indexes depend on the function, then Oracle Database marks the
indexes DISABLED.

See Also

ALTER FUNCTION for information on recompiling functions using SQL

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the function does not exist, a new function is created at the end of the statement.

• If the function exists, this is the function you have at the end of the statement. A new one is
not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the function is an editioned or noneditioned object if
editioning is enabled for the schema object type FUNCTION in schema. The default is
EDITIONABLE. For information about editioned and noneditioned objects, see Oracle Database
Development Guide.

plsql_function_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_function_source, including examples.

CREATE HIERARCHY
Purpose

Use the CREATE HIERARCHY statement to create a hierarchy. A hierarchy specifies the
hierarchical relationships among the levels of an attribute dimension.

Chapter 13
CREATE HIERARCHY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 122 of 185

Prerequisites

To create a hierarchy in your own schema, you must have the CREATE HIERARCHY system
privilege. To create a hierarchy in another user's schema, you must have the CREATE ANY
HIERARCHY system privilege.

Syntax

create_hierarchy::=

CREATE

OR REPLACE NO

FORCE

HIERARCHY

IF NOT EXISTS

schema .

hierarchy

SHARING =
METADATA

NONE classification_clause

hier_using_clause level_hier_clause

hier_attrs_clause

classification_clause::=

CAPTION caption DESCRIPTION description

CLASSIFICATION classification_name

VALUE classification_value LANGUAGE language

hier_using_clause::=

USING

schema .

attribute_dimension level_hier_clause

level_hier_clause::=

(level

CHILD OF

)

Chapter 13
CREATE HIERARCHY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 123 of 185

hier_attrs_clause::=

HIERARCHICAL ATTRIBUTES (hier_attr_clause

,

)

hier_attr_clause::=

hier_attr_name

classification_clause

hier_attr_name::=

MEMBER_NAME

MEMBER_UNIQUE_NAME

MEMBER_CAPTION

MEMBER_DESCRIPTION

LEVEL_NAME

HIER_ORDER

DEPTH

IS_LEAF

PARENT_LEVEL_NAME

PARENT_UNIQUE_NAME

Semantics

OR REPLACE

Specify OR REPLACE to replace an existing definition of a hierarchy with a different definition.

FORCE and NOFORCE

Specify FORCE to force the creation of the hierarchy even if it does not successfully compile. If
you specify NOFORCE, then the hierarchy must compile successfully, otherwise an error occurs.
The default is NOFORCE.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the hierarchy does not exist, a new hierarchy is created at the end of the statement.

• If the hierarchy exists, this is the hierarchy you have at the end of the statement. A new
one is not created because the older one is detected.

Chapter 13
CREATE HIERARCHY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 124 of 185

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the schema in which to create the hierarchy. If you do not specify a schema, then
Oracle Database creates the hierarchy in your own schema.

hierarchy

Specify a name for the hierarchy.

SHARING

Use the sharing clause if you want to create the object in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

classification_clause

Use the classification clause to specify values for the CAPTION or DESCRIPTION classifications
and to specify user-defined classifications. Classifications provide descriptive metadata that
applications may use to provide information about analytic views and their components.

You may specify any number of classifications for the same object. A classification can have a
maximum length of 4000 bytes.

For the CAPTION and DESCRIPTION classifications, you may use the DDL shortcuts CAPTION
'caption' and DESCRIPTION 'description' or the full classification syntax.

You may vary the classification values by language. To specify a language for the CAPTION or
DESCRIPTION classification, you must use the full syntax. If you do not specify a language, then
the language value for the classification is NULL. The language value must either be NULL or a
valid NLS_LANGUAGE value.

hier_using_clause

Specify the attribute dimension that has the members of the hierarchy.

level_hier_clause

Specify the organization of the hierarchy levels.

hier_attrs_clause

Specify classifications that contain descriptive metadata for the hierarchical attributes. A
hier_attr_clause for a given hier_attr_name may appear only once in the list.

All hierarchies always contain all of the hierarchical attributes, but a hierarchical attribute does
not have descriptive metadata associated with it unless you specify it with this clause.

Chapter 13
CREATE HIERARCHY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 125 of 185

hier_attr_clause

Specify a hierarchical attribute and provide one or more classifications for it.

hier_attr_name

Specify a hierarchical attribute.

Examples

The following example creates the TIME_HIER hierarchy:

CREATE OR REPLACE HIERARCHY time_hier -- Hierarchy name
USING time_attr_dim -- Refers to TIME_ATTR_DIM attribute dimension
 (month CHILD OF -- Months in the attribute dimension
 quarter CHILD OF
 year);

The following example creates the PRODUCT_HIER hierarchy:

CREATE OR REPLACE HIERARCHY product_hier
USING product_attr_dim
 (category
 CHILD OF department);

The following example creates the GEOGRAPHY_HIER hierarchy:

CREATE OR REPLACE HIERARCHY geography_hier
USING geography_attr_dim
 (state_province
 CHILD OF country
 CHILD OF region);

CREATE HYBRID VECTOR INDEX
Syntax

CREATE HYBRID VECTOR INDEX

schema.

index_name

ON

schema.

table_name index_column_name

PARAMETERS (’ paramstring ’)

Semantics

This command is part of the Oracle Text product.

Chapter 13
CREATE HYBRID VECTOR INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 126 of 185

Use the CREATE HYBRID VECTOR INDEX statement to create a hybrid vector index, which allows
you to index and query documents using a combination of full-text search and similarity search
to achieve higher quality search results.

Hybrid Vector Index for JSON

You can create a hybrid vector index on a JSON column. In this case index_column_name must be
a column of type JSON, and paramstring must contain the JSON-specific path element.

See Also

• For full semantics and usage details, refer to Oracle Text SQL Statements and Operators
of the Oracle Text Reference.

• Indexes for JSON DATA

CREATE INDEX
Purpose

Use the CREATE INDEX statement to create an index on:

• One or more columns of a table, a partitioned table, an index-organized table, or a cluster

• One or more scalar typed object attributes of a table or a cluster

• A nested table storage table for indexing a nested table column

An index is a schema object that contains an entry for each value that appears in the indexed
column(s) of the table or cluster and provides direct, fast access to rows. The maximum size of
a single index entry is dependent on the block size of the database.

Oracle Database supports several types of index:

• Normal indexes. (By default, Oracle Database creates B-tree indexes.)

• Bitmap indexes, which store rowids associated with a key value as a bitmap.

• Partitioned indexes, which consist of partitions containing an entry for each value that
appears in the indexed column(s) of the table.

• Function-based indexes, which are based on expressions. They enable you to construct
queries that evaluate the value returned by an expression, which in turn may include built-
in or user-defined functions.

• Domain indexes, which are instances of an application-specific index of type indextype.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 127 of 185

Note

• Oracle Database Concepts for a discussion of indexes

• Oracle Database Reference for more information about the limits related to index
size

• Oracle Database Reference for information on how index creation inherits
compression attributes

• ALTER INDEX and DROP INDEX

Prerequisites

To create an index in your own schema, one of the following conditions must be true:

• The table or cluster to be indexed must be in your own schema.

• You must have the INDEX object privilege on the table to be indexed.

• You must have the CREATE ANY INDEX system privilege.

To create an index in another schema, you must have the CREATE ANY INDEX system privilege.
Also, the owner of the schema to contain the index must have either the UNLIMITED
TABLESPACE system privilege or space quota on the tablespaces to contain the index or index
partitions.

To create a function-based index, in addition to the prerequisites for creating a conventional
index, if the index is based on user-defined functions, then those functions must be marked
DETERMINISTIC. A function-based index is executed with the credentials of the index owner, so
the index owner must have the EXECUTE object privilege on the function.

To create a domain index in your own schema, in addition to the prerequisites for creating a
conventional index, you must also have the EXECUTE object privilege on the indextype. If you
are creating a domain index in another user's schema, then the index owner also must have
the EXECUTE object privilege on the indextype and its underlying implementation type. Before
creating a domain index, you should first define the indextype.

See Also

CREATE INDEXTYPE

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 128 of 185

Syntax

create_index::=

CREATE

UNIQUE

BITMAP

MULTIVALUE

INDEX

IF NOT EXISTS schema .

index_name

index_ilm_clause

ON

cluster_index_clause

table_index_clause

bitmap_join_index_clause

USABLE

UNUSABLE

DEFERRED

IMMEDIATE
INVALIDATION

(cluster_index_clause::=, table_index_clause::=, bitmap_join_index_clause::=)

index_ilm_clause ::=

ILM

ADD POLICY

policy_clause

DELETE POLICY policy_name

policy_clause ::=

OPTIMIZE condition_clause

tiering_clause

PLSQL_function_name

tiering_clause ::=

TIER TO LOW_COST_TBS

condition_clause ::=

tracking_statistics_clause

ON PLSQL_function_name

tracking_statistics_clause ::=

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 129 of 185

AFTER time_interval

DAYS

MONTHS

YEARS

OF

NO
ACCESS

MODIFICATION

CREATION

cluster_index_clause::=

CLUSTER

schema .

cluster index_attributes

(index_attributes::=)

table_index_clause::=

schema .

table

t_alias

(index_expr

ASC

DESC

,

)

index_properties

(index_properties::=)

bitmap_join_index_clause::=

schema .

table (

schema .

table .

t_alias .

column

ASC

DESC

,

)

FROM

schema .

table

t_alias

,

WHERE condition

local_partitioned_index

index_attributes

(local_partitioned_index::=, index_attributes::=)

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 130 of 185

index_expr::=

column

column_expression

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

(global_partitioned_index::=, local_partitioned_index::=, index_attributes::=,
domain_index_clause::=, XMLIndex_clause::=)

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

index_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

partial_index_clause

parallel_clause

annotations_clause

(physical_attributes_clause::=, logging_clause::=, index_compression::=,
partial_index_clause::=, parallel_clause::=, annotations_clause)

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 131 of 185

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

index_compression::=

prefix_compression

advanced_index_compression

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

advanced_index_compression::=

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

partial_index_clause::=

INDEXING

PARTIAL

FULL

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 132 of 185

domain_index_clause::=

indextype

local_domain_index_clause parallel_clause PARAMETERS (’ ODCI_parameters ’)

(parallel_clause::=)

local_domain_index_clause::=

LOCAL

(PARTITION partition

PARAMETERS (’ ODCI_parameters ’)

,

)

XMLIndex_clause::=

XDB .

XMLINDEX

local_XMLIndex_clause parallel_clause XMLIndex_parameters_clause

(The XMLIndex_parameters_clause is documented in Oracle XML DB Developer's Guide.)

local_XMLIndex_clause::=

LOCAL

(PARTITION partition

XMLIndex_parameters_clause

,

)

(The XMLIndex_parameters_clause is documented in Oracle XML DB Developer's Guide.)

annotations_clause::=

For the full syntax and semantics of the annotations_clause see annotations_clause.

global_partitioned_index::=

GLOBAL PARTITION BY

RANGE (column_list) (index_partitioning_clause)

HASH (column_list)
individual_hash_partitions

hash_partitions_by_quantity

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 133 of 185

(index_partitioning_clause::=, individual_hash_partitions::=, hash_partitions_by_quantity::=)

individual_hash_partitions::=

(PARTITION

partition read_only_clause indexing_clause partitioning_storage_clause

,

)

(read_only_clause and indexing_clause: not supported in table_index_clause,
partitioning_storage_clause::=)

partitioning_storage_clause::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

OVERFLOW

TABLESPACE tablespace

TABLESPACE SET tablespace_set

table_compression

index_compression

inmemory_clause

ilm_clause

LOB_partitioning_storage

VARRAY varray_item STORE AS

SECUREFILE

BASICFILE

LOB LOB_segname

json_storage_clause

(TABLESPACE SET, table_compression, inmemory_clause, and ilm_clause not supported with CREATE
INDEX, index_compression::=, LOB_partitioning_storage::=)

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 134 of 185

(TABLESPACE SET: not supported with CREATE INDEX)

hash_partitions_by_quantity::=

PARTITIONS hash_partition_quantity

STORE IN (tablespace

,

)

table_compression

index_compression OVERFLOW STORE IN (tablespace

,

)

index_partitioning_clause::=

PARTITION

partition

VALUES LESS THAN (literal

,

)

segment_attributes_clause

(segment_attributes_clause::=)

local_partitioned_index::=

LOCAL

on_range_partitioned_table

on_list_partitioned_table

on_hash_partitioned_table

on_comp_partitioned_table

(on_range_partitioned_table::=, on_list_partitioned_table::=, on_hash_partitioned_table::=,
on_comp_partitioned_table::=)

on_range_partitioned_table::=

(PARTITION

partition

segment_attributes_clause

index_compression

USABLE

UNUSABLE

,

)

(segment_attributes_clause::=)

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 135 of 185

on_list_partitioned_table::=

(PARTITION

partition

segment_attributes_clause

index_compression

USABLE

UNUSABLE

,

)

(segment_attributes_clause::=)

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

(physical_attributes_clause::=, TABLESPACE SET: not supported with CREATE INDEX,
logging_clause::=

on_hash_partitioned_table::=

STORE IN (tablespace

,

)

(PARTITION

partition TABLESPACE tablespace index_compression

USABLE

UNUSABLE

,

)

on_comp_partitioned_table::=

STORE IN (tablespace

,

)

(PARTITION

partition

segment_attributes_clause

index_compression

USABLE

UNUSABLE index_subpartition_clause

,

)

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 136 of 185

(segment_attributes_clause::=, index_compression::=, index_subpartition_clause::=)

index_subpartition_clause::=

STORE IN (tablespace

,

)

(SUBPARTITION

subpartition TABLESPACE tablespace index_compression

USABLE

UNUSABLE

,

)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

Semantics

UNIQUE

Specify UNIQUE to indicate that the value of the column (or columns) upon which the index is
based must be unique.

Restrictions on Unique Indexes

Unique indexes are subject to the following restrictions:

• You cannot specify both UNIQUE and BITMAP.

• You cannot specify UNIQUE for a domain index.

See Also

"Unique Constraints " for information on the conditions that satisfy a unique constraint

BITMAP

Specify BITMAP to indicate that index is to be created with a bitmap for each distinct key, rather
than indexing each row separately. Bitmap indexes store the rowids associated with a key
value as a bitmap. Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then
it means that the row with the corresponding rowid contains the key value. The internal
representation of bitmaps is best suited for applications with low levels of concurrent
transactions, such as data warehousing.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 137 of 185

Note

Oracle does not index table rows in which all key columns are null except in the case
of bitmap indexes. Therefore, if you want an index on all rows of a table, then you
must either specify NOT NULL constraints for the index key columns or create a bitmap
index.

Restrictions on Bitmap Indexes

Bitmap indexes are subject to the following restrictions:

• You cannot specify BITMAP when creating a global partitioned index.

• You cannot create a bitmap secondary index on an index-organized table unless the index-
organized table has a mapping table associated with it.

• You cannot specify both UNIQUE and BITMAP.

• You cannot specify BITMAP for a domain index.

• A bitmap index can have a maximum of 30 columns.

See Also

• Oracle Database Concepts and Oracle Database SQL Tuning Guide for more
information about using bitmap indexes

• CREATE TABLE for information on mapping tables

• "Bitmap Index Examples"

MULTIVALUE

Use the MULTIVALUE keyword to create a multivalue index on JSON data using simple dot-
notation syntax to specify the path to the indexed data.

Example

The multivalue index created here indexes the values of top-level field credit_score. If the
credit_score value targeted by a query is an array, then the index can be picked up for any array
elements that are numbers. If the value is a scalar, then the index can be picked up if the
scalar is a number.

CREATE MULTIVALUE INDEX mvi_1 ON mytable t
 (t.jcol.credit_score.numberOnly());

See Also

• Indexes for JSON Data

• Simple Dot-Notation Access to JSON Data

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 138 of 185

• If the index does not exist, a new index is created at the end of the statement.

• If the index exists, this is the index you have at the end of the statement. A new one is not
created because the older index is detected.

Using IF EXISTS with CREATE INDEX results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE
statement.

schema

Specify the schema to contain the index. If you omit schema, then Oracle Database creates the
index in your own schema.

index_name

Specify the name of the index to be created. The name must satisfy the requirements listed in
Database Object Naming Rules .

See Also

Creating an Index: Example and Creating an Index on an XMLType Table: Example

index_ilm_clause

With Oracle Database Release 20c you can use the index_ilm_clause to add or delete an ILM
policy to an index.

You can also add an ILM policy to an index after you create it with the ALTER INDEX statement.

When you create an index with an ILM policy, you can add only one new policy. To add more
policies to an index, or to modify existing policies on the index you must use the ALTER INDEX
statement.

You cannot modify an ILM policy at the index partition level. The index level modification will be
cascaded to all partitions.

Examples

CREATE INDEX [schema.]empno_idx ILM_POLICY

Restrictions

You cannot add an ILM policy on cluster indexes and IOTs.

You cannot add an ILM policy on domain indexes and bitmap indexes.

policy_clause

The OPTIMIZE index policy chooses the appropriate action if the policy condtion is met.

You can create ILM policies on objects in the same schema.

If you want to move the ILM policy to a different tablespace, you must ensure that you have the
necessary permissions for all the tablespaces mentioned in the ILM policy.

You must also ensure that you have the necessary storage on the target tablespaces for
storage tiering jobs.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 139 of 185

cluster_index_clause

Use the cluster_index_clause to identify the cluster for which a cluster index is to be created. If you
do not qualify cluster with schema, then Oracle Database assumes the cluster is in your current
schema. You cannot create a cluster index for a hash cluster.

See Also

CREATE CLUSTER and "Creating a Cluster Index: Example"

table_index_clause

Specify the table on which you are defining the index. If you do not qualify table with schema, then
Oracle Database assumes the table is contained in your own schema.

You create an index on a nested table column by creating the index on the nested table
storage table. Include the NESTED_TABLE_ID pseudocolumn of the storage table to create a
UNIQUE index, which effectively ensures that the rows of a nested table value are distinct.

See Also

"Indexes on Nested Tables: Example"

You can perform DDL operations (such as ALTER TABLE, DROP TABLE, CREATE INDEX) on a
temporary table only when no session is bound to it. A session becomes bound to a temporary
table by performing an INSERT operation on the table. A session becomes unbound to the
temporary table by issuing a TRUNCATE statement or at session termination, or, for a
transaction-specific temporary table, by issuing a COMMIT or ROLLBACK statement.

Restrictions on the table_index_clause

This clause is subject to the following restrictions:

• If index is locally partitioned, then table must be partitioned.

• If table is index-organized, then this statement creates a secondary index. The index
contains the index key and the logical rowid of the index-organized table. The logical rowid
excludes columns that are also part of the index key. You cannot specify REVERSE for this
secondary index, and the combined size of the index key and the logical rowid should be
less than the block size.

• If table is a temporary table, then index will also be temporary with the same scope (session
or transaction) as table. The following restrictions apply to indexes on temporary tables:

– The only part of index_properties you can specify is index_attributes.

– Within index_attributes, you cannot specify the physical_attributes_clause, the parallel_clause, the
logging_clause, or TABLESPACE.

– You cannot create a domain index or a partitioned index on a temporary table.

• You cannot create an index on an external table.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 140 of 185

See Also

CREATE TABLE and Oracle Database Concepts for more information on temporary
tables

t_alias

Specify a correlation name (alias) for the table upon which you are building the index.

Note

This alias is required if the index_expr references any object type attributes or object
type methods. See "Creating a Function-based Index on a Type Method: Example"
and "Indexing on Substitutable Columns: Examples".

index_expr

For index_expr, specify the column or column expression upon which the index is based.

You can create multiple indexes on the same set of columns, column expressions, or both if
the following conditions are met:

• The indexes are of different types, use different partitioning, or have different uniqueness
properties.

• Only one of the indexes is VISIBLE at any given time.

See Also

Oracle Database Administrator's Guide for more information on creating multiple
indexes

column

Specify the name of one or more columns in the table. A bitmap index can have a maximum of
30 columns. Other indexes can have as many as 32 columns. These columns define the index
key.

If a unique index is local nonprefixed (see local_partitioned_index), then the index key must
contain the partitioning key.

See Also

Oracle Database VLDB and Partitioning Guide for information on prefixed and
nonprefixed indexes

You can create an index on a scalar object attribute column or on the system-defined
NESTED_TABLE_ID column of the nested table storage table. If you specify an object attribute

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 141 of 185

column, then the column name must be qualified with the table name. If you specify a nested
table column attribute, then it must be qualified with the outermost table name, the containing
column name, and all intermediate attribute names leading to the nested table column
attribute.

When you create an index on a column or expression with a declared or derived named
collation other than BINARY, or a declared or derived pseudo-collation USING_NLS_SORT_CI or
USING_NLS_SORT_AI, the database creates a functional index on the function NLSSORT. See
Oracle Database Globalization Support Guide for more information.

Creating an Index on an Extended Data Type Column

If column is an extended data type column, then you may receive a "maximum key length
exceeded" error when attempting to create the index. The maximum key length for an index
varies depending on the database block size and some additional index metadata stored in a
block. For example, for databases that use the Oracle standard 8K block size, the maximum
key length is approximately 6400 bytes.

To work around this situation, you must shorten the length of the values you want to index,
using one of the following methods:

• Create a function-based index to shorten the values stored in the extended data type
column as part of the expression used for the index definition.

• Create a virtual column to shorten the values stored in the extended data type column as
part of the expression used for the virtual column definition and build a normal index on the
virtual column. Using a virtual column also enables you to leverage functionality for regular
columns, such as collecting statistics and using constraint and triggers.

For both methods you can use either the SUBSTR or STANDARD_HASH function to shorten the
values of the extended data type column to build an index. These methods have the following
advantages and disadvantages:

• Use the SUBSTR function to return a substring, or prefix, of column that is an acceptable
length for the index key. This type of index can be used for equality, IN-list, and range
predicates on the original column without the need to specify the SUBSTR column as part of
the predicate. Refer to SUBSTR for more information.

• Using the STANDARD_HASH function is likely to create an index that is more compact than
the substring-based index and may result in fewer unnecessary index accesses. This type
of index can be used for equality and IN-list predicates on the original column without the
need to specify the STANDARD_HASH column as part of the predicate. Refer to
STANDARD_HASH for more information.

The following example shows how to create a function-based index on an extended data type
column:

CREATE INDEX index ON table (SUBSTR(column, 1, n));

For n, specify a prefix length that is large enough to differentiate between values in column.

The following example shows how to create a virtual column for an extended data type column,
and then create an index on the virtual column:

ALTER TABLE table ADD (new_hash_column AS (STANDARD_HASH(column)));
CREATE INDEX index ON table (new_hash_column);

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 142 of 185

See Also

"Extended Data Types" for more information on extended data types

Restrictions on Index Columns

The following restrictions apply to index columns:

• You cannot create an index on columns or attributes whose type is user-defined, LONG,
LONG RAW, LOB, or REF, except that Oracle Database supports an index on REF type
columns or attributes that have been defined with a SCOPE clause.

• Only normal (B-tree) indexes can be created on encrypted columns, and they can only be
used for equality searches.

column_expression

Specify an expression built from columns of table, constants, SQL functions, and user-defined
functions. When you specify column_expression, you create a function-based index.

See Also

"Column Expressions ", "Notes on Function-based Indexes", "Restrictions on
Function-based Indexes", and "Function-Based Index Examples"

Name resolution of the function is based on the schema of the index creator. User-defined
functions used in column_expression are fully name resolved during the CREATE INDEX operation.

After creating a function-based index, collect statistics on both the index and its base table
using the DBMS_STATS package. Such statistics will enable Oracle Database to correctly decide
when to use the index.

Function-based unique indexes can be useful in defining a conditional unique constraint on a
column or combination of columns. Refer to "Using a Function-based Index to Define
Conditional Uniqueness: Example" for an example.

See Also

Oracle Database PL/SQL Packages and Types Reference for more information on the
DBMS_STATS package

Notes on Function-based Indexes

The following notes apply to function-based indexes:

• When you subsequently query a table that uses a function-based index, Oracle Database
will not use the index unless the query filters out nulls. However, Oracle Database will use
a function-based index in a query even if the columns specified in the WHERE clause are in
a different order than their order in the column_expression that defined the function-based
index.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 143 of 185

See Also

"Function-Based Index Examples"

• If the function on which the index is based becomes invalid or is dropped, then Oracle
Database marks the index DISABLED. Queries on a DISABLED index fail if the optimizer
chooses to use the index. DML operations on a DISABLED index fail unless the index is
also marked UNUSABLE and the parameter SKIP_UNUSABLE_INDEXES is set to true. Refer to
ALTER SESSION for more information on this parameter.

• If a public synonym for a function, package, or type is used in column_expression, and later an
actual object with the same name is created in the table owner's schema, then Oracle
Database disables the function-based index. When you subsequently enable the function-
based index using ALTER INDEX ... ENABLE or ALTER INDEX ... REBUILD, the function,
package, or type used in the column_expression continues to resolve to the function, package,
or type to which the public synonym originally pointed. It will not resolve to the new
function, package, or type.

• If the definition of a function-based index generates internal conversion to character data,
then use caution when changing NLS parameter settings. Function-based indexes use the
current database settings for NLS parameters. If you reset these parameters at the session
level, then queries using the function-based index may return incorrect results. Two
exceptions are the collation parameters (NLS_SORT and NLS_COMP). Oracle Database
handles the conversions correctly even if these have been reset at the session level.

• Oracle Database cannot convert data in all cases, even when conversion is explicitly
requested. For example, an attempt to convert the string '105 lbs' from VARCHAR2 to NUMBER
using the TO_NUMBER function fails with an error. Therefore, if column_expression contains a
data conversion function such as TO_NUMBER or TO_DATE, and if a subsequent INSERT or
UPDATE statement includes data that the conversion function cannot convert, then the
index will cause the INSERT or UPDATE statement to fail.

• If column_expression contains a datetime format model, then the function-based index
expression defining the column may contain format elements that are different from those
specified. For example, define a function-based index using the yyyy datetime format
element:

CREATE INDEX cust_eff_ix ON customers
 (NVL(cust_eff_to, TO_DATE('9000-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss')));

Query the ALL_IND_EXPRESSIONS view to see that the function-based index expression
defining the column uses the syyyy datetime format element:

SELECT column_expression
 FROM all_ind_expressions
 WHERE index_name='CUST_EFF_IX';

COLUMN_EXPRESSION
--
NVL("CUST_EFF_TO",TO_DATE(' 9000-01-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Restrictions on Function-based Indexes

Function-based indexes are subject to the following restrictions:

• The value returned by the function referenced in column_expression is subject to the same
restrictions as are the index columns of a B-tree index. Refer to "Restrictions on Index
Columns".

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 144 of 185

• Any user-defined function referenced in column_expression must be declared as
DETERMINISTIC.

• For a function-based globally partitioned index, the column_expression cannot be the
partitioning key.

• The column_expression can be any of the forms of expression described in Column
Expressions .

• All functions must be specified with parentheses, even if they have no parameters.
Otherwise Oracle Database interprets them as column names.

• Any function you specify in column_expression must return a repeatable value. For example,
you cannot specify the SYSDATE or USER function or the ROWNUM pseudocolumn.

See Also

CREATE FUNCTION and Oracle Database PL/SQL Language Reference

ASC | DESC

Use ASC or DESC to indicate whether the index should be created in ascending or descending
order. Indexes on character data are created in ascending or descending order of the character
values in the database character set.

Oracle Database treats descending indexes as if they were function-based indexes. As with
other function-based indexes, the database does not use descending indexes until you first
analyze the index and the table on which the index is defined. See the column_expression
clause of this statement.

Ascending unique indexes allow multiple NULL values. However, in descending unique
indexes, multiple NULL values are treated as duplicate values and therefore are not permitted.

Restriction on Ascending and Descending Indexes

You cannot specify either of these clauses for a domain index. You cannot specify DESC for a
reverse index. Oracle Database ignores DESC if index is bitmapped or if the COMPATIBLE
initialization parameter is set to a value less than 8.1.0.

index_attributes

Specify the optional index attributes.

physical_attributes_clause

Use the physical_attributes_clause to establish values for physical and storage characteristics for
the index.

If you omit this clause, then Oracle Database sets PCTFREE to 10 and INITRANS to 2.

Restriction on Index Physical Attributes

You cannot specify the PCTUSED parameter for an index.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 145 of 185

See Also

physical_attributes_clause and storage_clause for a complete description of these
clauses

TABLESPACE

For tablespace, specify the name of the tablespace to hold the index, index partition, or index
subpartition. If you omit this clause, then Oracle Database creates the index in the default
tablespace of the owner of the schema containing the index.

For a local index, you can specify the keyword DEFAULT in place of tablespace. New partitions or
subpartitions added to the local index will be created in the same tablespace(s) as the
corresponding partitions or subpartitions of the underlying table.

index_compression

The index_compression clauses let you enable or disable index compression for the index. Specify
the COMPRESS clause of prefix_compression to enable prefix compression for the index, specify the
COMPRESS ADVANCED clause of advanced_index_compression to enable advanced index compression
for the index, or specify the NOCOMPRESS clause of either prefix_compression or
advanced_index_compression to disable compression for the index. The default is NOCOMPRESS.

If you want to use compression for a partitioned index, then you must create the index with
compression enabled at the index level. You can subsequently enable and disable the
compression setting for individual partitions of such a partitioned index. You can also enable
and disable compression when rebuilding individual partitions. You can modify an existing
nonpartitioned index to enable or disable compression only when rebuilding the index.

prefix_compression

Specify COMPRESS to enable prefix compression, also known as key compression, which
eliminates repeated occurrence of key column values. Use integer to specify the prefix length
(number of prefix columns to compress). You can specify prefix compression for indexes that
are nonunique or unique indexes of at least two columns.

• For unique indexes, the range of valid prefix length values is from 1 to the number of key
columns minus 1. The default prefix length is the number of key columns minus 1.

• For nonunique indexes, the range of valid prefix length values is from 1 to the number of
key columns. The default prefix length is the number of key columns.

advanced_index_compression

Specify this clause to enable advanced index compression. Advanced index compression
improves compression ratios significantly while still providing efficient access to indexes.
Therefore, advanced index compression works well on all supported indexes, including those
indexes that are not good candidates for prefix compression.

• COMPRESS ADVANCED LOW - This level compresses the index less than the HIGH level, but
provides faster access to the index. You can specify this clause for indexes that are
nonunique or unique indexes of at least two columns. Before enabling COMPRESS
ADVANCED LOW, the database must be at 12.1.0 or higher compatibility level.

• COMPRESS ADVANCED HIGH - This level compresses the index more than the LOW level, but
provides slower access to the index. You can specify this clause for indexes that are
nonunique or unique indexes of one or more columns. Before enabling COMPRESS
ADVANCED HIGH, the database must be at 12.2.0 or higher compatibility level.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 146 of 185

If you omit the LOW and HIGH keywords, then the default is HIGH.

Restrictions on Index Compression

The following restrictions apply to index compression:

• You cannot specify prefix compression or advanced index compression for a bitmap index.

• You cannot specify advanced index compression for index-organized tables.

See Also

• DB_INDEX_COMPRESSION_INHERITANCE for more on how index creation
inherits compression attributes

• Oracle Database Administrator's Guide for more information on prefix
compression and advanced index compression

• "Compressing an Index: Example"

partial_index_clause

You can specify this clause only when creating an index on a partitioned table. Specify
INDEXING FULL to create a full index. Specify INDEXING PARTIAL to create a partial index. The
default is INDEXING FULL.

A full index includes all partitions in the underlying table, regardless of their indexing
properties. A partial index includes only partitions in the underlying table with an indexing
property of ON.

If a partial index is a local partitioned index, then index partitions that correspond with table
partitions with an indexing property of ON are marked USABLE. Index partitions that correspond
with table partitions with an indexing property of OFF are marked UNUSABLE.

If the underlying table is a composite-partitioned table, then the preceding conditions for index
partitions and table partitions apply instead to index subpartitions and table subpartitions.

Restrictions on Partial Indexes

Partial indexes are subject to the following restrictions:

• The underlying table of a partial index cannot be a nonpartitioned table.

• Unique indexes cannot be partial indexes. This applies to indexes created with the CREATE
UNIQUE INDEX statement and indexes that are implicitly created when you specify a unique
constraint on one or more columns.

See Also

CREATE TABLE indexing_clause for information on the indexing property

SORT | NOSORT

By default, Oracle Database sorts indexes in ascending order when it creates the index. You
can specify NOSORT to indicate to the database that the rows are already stored in the
database in ascending order, so that Oracle Database does not have to sort the rows when
creating the index. If the rows of the indexed column or columns are not stored in ascending

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 147 of 185

order, then the database returns an error. For greatest savings of sort time and space, use this
clause immediately after the initial load of rows into a table. If you specify neither of these
keywords, then SORT is the default.

Restrictions on NOSORT

This parameter is subject to the following restrictions:

• You cannot specify REVERSE with this clause.

• You cannot use this clause to create a cluster index partitioned or bitmap index.

• You cannot specify this clause for a secondary index on an index-organized table.

REVERSE

Specify REVERSE to store the bytes of the index block in reverse order, excluding the rowid.

Restrictions on Reverse Indexes

Reverse indexes are subject to the following restrictions:

• You cannot specify NOSORT with this clause.

• You cannot reverse a bitmap index or an index on an index-organized table.

VISIBLE | INVISIBLE

Use this clause to specify whether the index is visible or invisible to the optimizer. An invisible
index is maintained by DML operations, but it is not be used by the optimizer during queries
unless you explicitly set the parameter OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE at the
session or system level.

To determine whether an existing index is visible or invisible to the optimizer, you can query the
VISIBILITY column of the USER_, DBA_, ALL_INDEXES data dictionary views.

See Also

Oracle Database Administrator's Guide for more information on this feature

logging_clause

Specify whether the creation of the index will be logged (LOGGING) or not logged (NOLOGGING)
in the redo log file. This setting also determines whether subsequent Direct Loader
(SQL*Loader) and direct-path INSERT operations against the index are logged or not logged.
LOGGING is the default.

If index is nonpartitioned, then this clause specifies the logging attribute of the index.

If index is partitioned, then this clause determines:

• The default value of all partitions specified in the CREATE statement, unless you specify the
logging_clause in the PARTITION description clause

• The default value for the segments associated with the index partitions

• The default value for local index partitions or subpartitions added implicitly during
subsequent ALTER TABLE ... ADD PARTITION operations

The logging attribute of the index is independent of that of its base table.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 148 of 185

If you omit this clause, then the logging attribute is that of the tablespace in which it resides.

See Also

• logging_clause for a full description of this clause

• Oracle Database VLDB and Partitioning Guide for more information about logging
and parallel DML

• "Creating an Index in NOLOGGING Mode: Example"

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed during creation of
the index.

Restrictions on Online Index Building

Online index building is subject to the following restrictions:

• Parallel DML is not supported during online index building. If you specify ONLINE and then
issue parallel DML statements, then Oracle Database returns an error.

• You can specify ONLINE for a bitmap index or a cluster index as long as you set
COMPATIBLE to 10 or higher.

• You cannot specify ONLINE for a conventional index on a UROWID column.

• For a nonunique secondary index on an index-organized table, the number of index key
columns plus the number of primary key columns that are included in the logical rowid in
the index-organized table cannot exceed 32. The logical rowid excludes columns that are
part of the index key.

See Also

Oracle Database Concepts for a description of online index building and rebuilding

parallel_clause

Specify the parallel_clause if you want creation of the index to be parallelized.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

Index Partitioning Clauses

Use the global_partitioned_index clause and the local_partitioned_index clauses to partition index.

The storage of partitioned database entities in tablespaces of different block sizes is subject to
several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a discussion of
these restrictions.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 149 of 185

See Also

"Partitioned Index Examples"

annotations_clause

For the full semantics of the annotations clause see annotations_clause.

global_partitioned_index

The global_partitioned_index clause lets you specify that the partitioning of the index is user defined
and is not equipartitioned with the underlying table. By default, nonpartitioned indexes are
global indexes.

You can partition a global index by range or by hash. In both cases, you can specify up to 32
columns as partitioning key columns. The partitioning column list must specify a left prefix of
the index column list. If the index is defined on columns a, b, and c, then for the columns you
can specify (a, b, c), or (a, b), or (a, c), but you cannot specify (b, c) or (c) or (b, a). If you specify a
partition name, then it must conform to the rules for naming schema objects and their parts as
described in "Database Object Naming Rules ". If you omit the partition names, then Oracle
Database assigns names of the form SYS_Pn.

GLOBAL PARTITION BY RANGE

Use this clause to create a range-partitioned global index. Oracle Database will partition the
global index on the ranges of values from the table columns you specify in the column list.

See Also

"Creating a Range-Partitioned Global Index: Example"

GLOBAL PARTITION BY HASH

Use this clause to create a hash-partitioned global index. Oracle Database assigns rows to the
partitions using a hash function on values in the partitioning key columns.

See Also

The CREATE TABLE clause hash_partitions for information on the two methods of hash
partitioning and "Creating a Hash-Partitioned Global Index: Example"

Restrictions on Global Partitioned Indexes

Global partitioned indexes are subject to the following restrictions:

• The partitioning key column list cannot contain the ROWID pseudocolumn or a column of
type ROWID.

• The only property you can specify for hash partitions is tablespace storage. Therefore, you
cannot specify LOB or varray storage clauses in the partitioning_storage_clause of
individual_hash_partitions.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 150 of 185

• You cannot specify the OVERFLOW clause of hash_partitions_by_quantity, as that clause is valid
only for index-organized table partitions.

• In the partitioning_storage_clause, you cannot specify table_compression or the inmemory_clause, but
you can specify index_compression.

Note

If your enterprise has or will have databases using different character sets, then use
caution when partitioning on character columns. The sort sequence of characters is
not identical in all character sets.

See Also

Oracle Database Globalization Support Guide for more information on character set
support

index_partitioning_clause

Use this clause to describe the individual index partitions. The number of repetitions of this
clause determines the number of partitions. If you omit partition, then Oracle Database
generates a name with the form SYS_Pn.

For VALUES LESS THAN (value_list), specify the noninclusive upper bound for the current partition
in a global index. The value list is a comma-delimited, ordered list of literal values
corresponding to the column list in the global_partitioned_index clause. Always specify MAXVALUE
as the value of the last partition.

Note

If the index is partitioned on a DATE column, and if the date format does not specify the
first two digits of the year, then you must use the TO_DATE function with a 4-character
format mask for the year. The date format is determined implicitly by NLS_TERRITORY or
explicitly by NLS_DATE_FORMAT. Refer to Oracle Database Globalization Support Guide
for more information on these initialization parameters.

See Also

"Range Partitioning Example"

local_partitioned_index

The local_partitioned_index clauses let you specify that the index is partitioned on the same
columns, with the same number of partitions and the same partition bounds as table. For
composite-partitioned tables, this clause lets you specify that the index is subpartitioned on the
same columns, with the same number of subpartitions and the same subpartition bounds as
table. Oracle Database automatically maintains local index partitioning as the underlying table is
repartitioned.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 151 of 185

If you specify only the keyword LOCAL and do not specify a subclause, then Oracle Database
creates each index partition in the same tablespace as its corresponding table partition and
assigns it the same name as its corresponding table partition. If table is a composite-partitioned
table, then Oracle Database creates each index subpartition in the same tablespace as its
corresponding table subpartition and assigns it the same name as its corresponding table
subpartition.

If you specify a partition name, then it must conform to the rules for naming schema objects
and their parts as described in "Database Object Naming Rules ". If you omit a partition name,
then Oracle Database generates a name that is consistent with the corresponding table
partition. If the name conflicts with an existing index partition name, then the database uses the
form SYS_Pn.

on_range_partitioned_table

This clause lets you specify the names and attributes of index partitions on a range-partitioned
table. If you specify this clause, then the number of PARTITION clauses must be equal to the
number of table partitions, and in the same order.

You cannot specify prefix compression for an index partition unless you have specified prefix
compression for the index.

For more information on the USABLE and UNUSABLE clauses, refer to USABLE | UNUSABLE.

on_list_partitioned_table

The on_list_partitioned_table clause is identical to on_range_partitioned_table.

on_hash_partitioned_table

This clause lets you specify names and tablespace storage for index partitions on a hash-
partitioned table.

If you specify any PARTITION clauses, then the number of these clauses must be equal to the
number of table partitions. You can optionally specify tablespace storage for one or more
individual partitions. If you do not specify tablespace storage either here or in the STORE IN
clause, then the database stores each index partition in the same tablespace as the
corresponding table partition.

The STORE IN clause lets you specify one or more tablespaces across which Oracle Database
will distribute all the index hash partitions. The number of tablespaces need not equal the
number of index partitions. If the number of index partitions is greater than the number of
tablespaces, then the database cycles through the names of the tablespaces.

For more information on the USABLE and UNUSABLE clauses, refer to USABLE | UNUSABLE.

on_comp_partitioned_table

This clause lets you specify the name and attributes of index partitions on a composite-
partitioned table.

The STORE IN clause is valid only for range-hash or list-hash composite-partitioned tables. It
lets you specify one or more default tablespaces across which Oracle Database will distribute
all index hash subpartitions for all partitions. You can override this storage by specifying
different default tablespace storage for the subpartitions of an individual partition in the second
STORE IN clause in the index_subpartition_clause.

For range-range, range-list, and list-list composite-partitioned tables, you can specify default
attributes for the range or list subpartitions in the PARTITION clause. You can override this
storage by specifying different attributes for the range or list subpartitions of an individual
partition in the SUBPARTITION clause of the index_subpartition_clause.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 152 of 185

You cannot specify prefix compression for an index partition unless you have specified prefix
compression for the index.

For more information on the USABLE and UNUSABLE clauses, refer to USABLE | UNUSABLE.

index_subpartition_clause

This clause lets you specify names and tablespace storage for index subpartitions in a
composite-partitioned table.

The STORE IN clause is valid only for hash subpartitions of a range-hash and list-hash
composite-partitioned table. It lets you specify one or more tablespaces across which Oracle
Database will distribute all the index hash subpartitions. The SUBPARTITION clause is valid for
all subpartition types.

If you specify any SUBPARTITION clauses, then the number of those clauses must be equal to
the number of table subpartitions. If you specify a subpartition name, then it must conform to
the rules for naming schema objects and their parts as described in "Database Object Naming
Rules ". If you omit subpartition, then the database generates a name that is consistent with the
corresponding table subpartition. If the name conflicts with an existing index subpartition name,
then the database uses the form SYS_SUBPn.

The number of tablespaces need not equal the number of index subpartitions. If the number of
index subpartitions is greater than the number of tablespaces, then the database cycles
through the names of the tablespaces.

If you do not specify tablespace storage for subpartitions either in the on_comp_partitioned_table
clause or in the index_subpartition_clause, then Oracle Database uses the tablespace specified for
index. If you also do not specify tablespace storage for index, then the database stores the
subpartition in the same tablespace as the corresponding table subpartition.

For more information on the USABLE and UNUSABLE clauses, refer to CREATE INDEX ... USABLE
| UNUSABLE.

domain_index_clause

Use the domain_index_clause to indicate that index is a domain index, which is an instance of an
application-specific index of type indextype.

Creating a domain index requires a number of preceding operations. You must first create an
implementation type for an indextype. You must also create a functional implementation and
then create an operator that uses the function. Next you create an indextype, which associates
the implementation type with the operator. Finally, you create the domain index using this
clause. Refer to Extended Examples, which contains an example of creating a simple domain
index, including all of these operations.

index_expr

In the index_expr (in table_index_clause), specify the table columns or object attributes on which the
index is defined. You can define multiple domain indexes on a single column only if the
underlying indextypes are different and the indextypes support a disjoint set of user-defined
operators.

Restrictions on Domain Indexes

Domain indexes are subject to the following restrictions:

• The index_expr (in table_index_clause) can specify only a single column, and the column cannot
be of data type REF, varray, nested table, LONG, or LONG RAW.

• You cannot create a bitmap or unique domain index.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 153 of 185

• You cannot create a domain index on a temporary table.

• You can create local domain indexes on only range-, list-, hash-, and interval-partitioned
tables, with one exception: You cannot create a local domain index on an automatic list-
partitioned table.

• Domain indexes can be created only on table columns declared with collation BINARY,
USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS. See Oracle Database
Globalization Support Guide for more information.

indextype

For indextype, specify the name of the indextype. This name should be a valid schema object
that has already been created.

If you have installed Oracle Text, then you can use various built-in indextypes to create Oracle
Text domain indexes. For more information on Oracle Text and the indexes it uses, refer to
Oracle Text Reference.

See Also

CREATE INDEXTYPE

local_domain_index_clause

Use this clause to specify that the index is a local index on a partitioned table.

• The PARTITIONS clause lets you specify names for the index partitions. The number of
partitions you specify must match the number of partitions in the base table. If you omit this
clause, then the database creates the partitions with system-generated names of the form
SYS_Pn.

• The PARAMETERS clause lets you specify the parameter string specific to an individual
partition. If you omit this clause, then the parameter string associated with the index is also
associated with the partition.

parallel_clause

Use the parallel_clause to parallelize creation of the domain index. For a nonpartitioned domain
index, Oracle Database passes the explicit or default degree of parallelism to the
ODCIIndexCreate cartridge routine, which in turn establishes parallelism for the index. For local
domain indexes, this clause causes the index partitions to be created in parallel.

See Also

Oracle Database Data Cartridge Developer's Guide for complete information on the
Oracle Data Cartridge Interface (ODCI) routines

PARAMETERS

In the PARAMETERS clause, specify the parameter string that is passed uninterpreted to the
appropriate ODCI indextype routine. The maximum length of the parameter string is 1000
characters.

When you specify this clause at the top level of the syntax, the parameters become the default
parameters for the index partitions. If you specify this clause as part of the

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 154 of 185

local_domain_index_clause, then you override any default parameters with parameters for the
individual partition.

After the domain index is created, Oracle Database invokes the appropriate ODCI routine. If
the routine does not return successfully, then the domain index is marked FAILED. The only
operations supported on an failed domain index are DROP INDEX and (for non-local indexes)
REBUILD INDEX.

See Also

Oracle Database Data Cartridge Developer's Guide for information on the Oracle Data
Cartridge Interface (ODCI) routines

XMLIndex_clause

The XMLIndex_clause lets you define an XMLIndex index, typically on a column contain XML data.
An XMLIndex index is a type of domain index designed specifically for the domain of XML data.

XMLIndex_parameters_clause

This clause lets you specify information about the path table and about the secondary indexes
corresponding to the components of XMLIndex. This clause also lets you specify information
about the structured component of the index. The maximum length of the parameter string is
1000 characters.

When you specify this clause at the top level of the syntax, the parameters become the
parameters of the index and the default parameters for the index partitions. If you specify this
clause as part of the local_xmlindex_clause clause, then you override any default parameters with
parameters for the individual partition.

See Also

Oracle XML DB Developer's Guide for the syntax and semantics of the
XMLIndex_parameters_clause, as well as detailed information about the use of XMLIndex

bitmap_join_index_clause

Use the bitmap_join_index_clause to define a bitmap join index. A bitmap join index is defined on a
single table. For an index key made up of dimension table columns, it stores the fact table
rowids corresponding to that key. In a data warehousing environment, the table on which the
index is defined is commonly referred to as a fact table, and the tables with which this table is
joined are commonly referred to as dimension tables. However, a star schema is not a
requirement for creating a join index.

ON

In the ON clause, first specify the fact table, and then inside the parentheses specify the
columns of the dimension tables on which the index is defined.

FROM

In the FROM clause, specify the joined tables.

WHERE

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 155 of 185

In the WHERE clause, specify the join condition.

If the underlying fact table is partitioned, then you must also specify one of the
local_partitioned_index clauses (see local_partitioned_index).

Restrictions on Bitmap Join Indexes

In addition to the restrictions on bitmap indexes in general (see BITMAP), the following
restrictions apply to bitmap join indexes:

• You cannot create a bitmap join index on a temporary table.

• No table may appear twice in the FROM clause.

• You cannot create a function-based join index.

• The dimension table columns must be either primary key columns or have unique
constraints.

• If a dimension table has a composite primary key, then each column in the primary key
must be part of the join.

• You cannot specify the local_partitioned_index clause unless the fact table is partitioned.

• A bitmap join index definition can only reference columns with collation BINARY,
USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS. For any of these collations,
index keys are collated and the join condition is evaluated using the BINARY collation. See
Oracle Database Globalization Support Guide for more information.

Note

Oracle Database Data Warehousing Guide for information on fact and dimension
tables and on using bitmap indexes in a data warehousing environment

USABLE | UNUSABLE

You can specify the USABLE and UNUSABLE keywords:

• For an index, in the CREATE INDEX statement

• For an index partition, in the on_range_partitioned_table, on_list_partitioned_table,
on_hash_partitioned_table, and on_comp_partitioned_table clauses

• For an index subpartition, in the index_subpartition_clause

For nonpartitioned indexes, specify UNUSABLE to create an index in an unusable state. An
unusable index must be rebuilt, or dropped and re-created, before it can be used. Specify
USABLE to create an index in a usable state. USABLE is the default.

For partitioned indexes, specify USABLE or UNUSABLE as follows:

• If you specify UNUSABLE for the index, then all index partitions are marked UNUSABLE.

• If you specify USABLE for the index, then all index partitions are marked USABLE.

• If you do not specify USABLE or UNUSABLE for the index, then all index partitions are
marked USABLE. The exception is a local partial index. If you specify the LOCAL and
INDEXING PARTIAL clauses, and do not specify USABLE or UNUSABLE, then each index
partition is marked USABLE if the indexing property of its corresponding table partition is
ON, or UNUSABLE if the indexing property of its corresponding table partition is OFF.

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 156 of 185

You can override the preceding conditions by specifying USABLE or UNUSABLE for a specific
index partition.

If the underlying table is a composite-partitioned table, then the preceding conditions for index
partitions and table partitions apply instead to index subpartitions and table subpartitions.

After you create a partitioned index, you can choose to rebuild specific index partitions or
subpartitions to make them USABLE. Doing so can be useful if you want to maintain indexes
only on some index partitions or subpartitions—for example, if you want to enable index
access for new partitions but not for old partitions.

When an index, or some partitions or subpartitions of an index, are created UNUSABLE, no
segment is allocated for the unusable object. The unusable index or index partition consumes
no space in the database.

If an index, or some partitions or subpartitions of the index, are marked UNUSABLE, then the
index will be considered as an access path by the optimizer only under the following
circumstances: the optimizer must know at compile time which partitions are to be accessed,
and all of those partitions to be accessed must be marked USABLE. Therefore, the query
cannot contain any bind variables.

Restrictions on USABLE | UNUSABLE

The following restrictions apply when marking an index USABLE or UNUSABLE:

• You cannot specify this clause for an index on a temporary table.

• Unusable indexes or index partitions will still have a segment under the following
conditions:

– The index (or index partition) is owned by SYS, SYSTEM, PUBLIC, OUTLN, or XDB

– The index (or index partition) is stored in dictionary-managed tablespaces

– The global partitioned or nonpartitioned index on a partitioned table becomes unusable
due to a partition maintenance operation

{ DEFERRED | IMMEDIATE } INVALIDATION

This clause lets you control when the database invalidates dependent cursors while creating
the index. It has the same semantics here as for the ALTER INDEX statement. Refer to
{ DEFERRED | IMMEDIATE } INVALIDATION in the documentation on ALTER INDEX for the full
semantics of this clause.

Examples

General Index Examples

Creating an Index: Example

The following statement shows how the sample index ord_customer_ix on the customer_id column of
the sample table oe.orders was created:

CREATE INDEX ord_customer_ix
 ON orders (customer_id);

Compressing an Index: Example

To create the ord_customer_ix_demo index with the COMPRESS clause, you might issue the following
statement:

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 157 of 185

CREATE INDEX ord_customer_ix_demo
 ON orders (customer_id, sales_rep_id)
 COMPRESS 1;

The index will compress repeated occurrences of customer_id column values.

Creating an Index in NOLOGGING Mode: Example

If the sample table orders had been created using a fast parallel load (so all rows were already
sorted), then you could issue the following statement to quickly create an index.

/* Unless you first sort the table oe.orders, this example fails
 because you cannot specify NOSORT unless the base table is
 already sorted.
*/
CREATE INDEX ord_customer_ix_demo
 ON orders (order_mode)
 NOSORT
 NOLOGGING;

Creating a Cluster Index: Example

To create an index for the personnel cluster, which was created in "Creating a Cluster: Example",
issue the following statement:

CREATE INDEX idx_personnel ON CLUSTER personnel;

No index columns are specified, because cluster indexes are automatically built on all the
columns of the cluster key. For cluster indexes, all rows are indexed.

Creating an Index on an XMLType Table: Example

The following example creates an index on the area element of the xwarehouses table (created in
"XMLType Table Examples"):

CREATE INDEX area_index ON xwarehouses e
 (EXTRACTVALUE(VALUE(e),'/Warehouse/Area'));

Such an index would greatly improve the performance of queries that select from the table
based on, for example, the square footage of a warehouse, as shown in this statement:

SELECT e.getClobVal() AS warehouse
 FROM xwarehouses e
 WHERE EXISTSNODE(VALUE(e),'/Warehouse[Area>50000]') = 1;

See Also

EXISTSNODE and VALUE

Function-Based Index Examples

The following examples show how to create and use function-based indexes.

Creating a Function-Based Index: Example

The following statement creates a function-based index on the employees table based on an
uppercase evaluation of the last_name column:

CREATE INDEX upper_ix ON employees (UPPER(last_name));

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 158 of 185

See the "Prerequisites " for the privileges and parameter settings required when creating
function-based indexes.

To increase the likelihood that Oracle Database will use the index rather than performing a full
table scan, be sure that the value returned by the function is not null in subsequent queries.
For example, this statement will use the index, unless some other condition exists that
prevents the optimizer from doing so:

SELECT first_name, last_name
 FROM employees WHERE UPPER(last_name) IS NOT NULL
 ORDER BY UPPER(last_name);

Without the WHERE clause, Oracle Database may perform a full table scan.

In the next statements showing index creation and subsequent query, Oracle Database will use
index income_ix even though the columns are in reverse order in the query:

CREATE INDEX income_ix
 ON employees(salary + (salary*commission_pct));

SELECT first_name||' '||last_name "Name"
 FROM employees
 WHERE (salary*commission_pct) + salary > 15000
 ORDER BY employee_id;

Creating a Function-Based Index on a LOB Column: Example

The following statement uses the text_length function to create a function-based index on a LOB
column in the sample pm schema. See Oracle Database PL/SQL Language Reference for the
example that creates this function. The example selects rows from the sample table print_media
where that CLOB column has fewer than 1000 characters.

CREATE INDEX src_idx ON print_media(text_length(ad_sourcetext));

SELECT product_id FROM print_media
 WHERE text_length(ad_sourcetext) < 1000
 ORDER BY product_id;

PRODUCT_ID

 2056
 2268
 3060
 3106

Creating a Function-based Index on a Type Method: Example

This example entails an object type rectangle containing two number attributes: length and width.
The area() method computes the area of the rectangle.

CREATE TYPE rectangle AS OBJECT
(length NUMBER,
 width NUMBER,
 MEMBER FUNCTION area RETURN NUMBER DETERMINISTIC
);

CREATE OR REPLACE TYPE BODY rectangle AS
 MEMBER FUNCTION area RETURN NUMBER IS
 BEGIN
 RETURN (length*width);
 END;
END;

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 159 of 185

Now, if you create a table rect_tab of type rectangle, you can create a function-based index on the
area() method as follows:

CREATE TABLE rect_tab OF rectangle;
CREATE INDEX area_idx ON rect_tab x (x.area());

You can use this index efficiently to evaluate a query of the form:

SELECT * FROM rect_tab x WHERE x.area() > 100;

Using a Function-based Index to Define Conditional Uniqueness: Example

The following statement creates a unique function-based index on the oe.orders table that
prevents a customer from taking advantage of promotion ID 2 ("blowout sale") more than once:

CREATE UNIQUE INDEX promo_ix ON orders
 (CASE WHEN promotion_id =2 THEN customer_id ELSE NULL END,
 CASE WHEN promotion_id = 2 THEN promotion_id ELSE NULL END);

INSERT INTO orders (order_id, order_date, customer_id, order_total, promotion_id)
 VALUES (2459, systimestamp, 106, 251, 2);
1 row created.

INSERT INTO orders (order_id, order_date, customer_id, order_total, promotion_id)
 VALUES (2460, systimestamp+1, 106, 110, 2);
insert into orders (order_id, order_date, customer_id, order_total, promotion_id)
*
ERROR at line 1:
ORA-00001: unique constraint (OE.PROMO_IX) violated

The objective is to remove from the index any rows where the promotion_id is not equal to 2.
Oracle Database does not store in the index any rows where all the keys are NULL. Therefore,
in this example, both customer_id and promotion_id are mapped to NULL unless promotion_id is
equal to 2. The result is that the index constraint is violated only if promotion_id is equal to 2
for two rows with the same customer_id value.

Partitioned Index Examples

Creating a Range-Partitioned Global Index: Example

The following statement creates a global prefixed index cost_ix on the sample table sh.sales with
three partitions that divide the range of costs into three groups:

CREATE INDEX cost_ix ON sales (amount_sold)
 GLOBAL PARTITION BY RANGE (amount_sold)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2500),
 PARTITION p3 VALUES LESS THAN (MAXVALUE));

Creating a Hash-Partitioned Global Index: Example

The following statement creates a hash-partitioned global index cust_last_name_ix on the sample
table sh.customers with four partitions:

CREATE INDEX cust_last_name_ix ON customers (cust_last_name)
 GLOBAL PARTITION BY HASH (cust_last_name)
 PARTITIONS 4;

Creating an Index on a Hash-Partitioned Table: Example

The following statement creates a local index on the category_id column of the hash_products
partitioned table (which was created in "Hash Partitioning Example"). The STORE IN clause

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 160 of 185

immediately following LOCAL indicates that hash_products is hash partitioned. Oracle Database
will distribute the hash partitions between the tbs1 and tbs2 tablespaces:

CREATE INDEX prod_idx ON hash_products(category_id) LOCAL
 STORE IN (tbs_01, tbs_02);

The creator of the index must have quota on the tablespaces specified. See CREATE
TABLESPACE for examples that create tablespaces tbs_01 and tbs_02.

Creating an Index on a Composite-Partitioned Table: Example

The following statement creates a local index on the composite_sales table, which was created in
"Composite-Partitioned Table Examples". The STORAGE clause specifies default storage
attributes for the index. However, this default is overridden for the five subpartitions of
partitions q3_2000 and q4_2000, because separate TABLESPACE storage is specified.

The creator of the index must have quota on the tablespaces specified. See CREATE
TABLESPACE for examples that create tablespaces tbs_02 and tbs_03.

CREATE INDEX sales_ix ON composite_sales(time_id, prod_id)
 STORAGE (INITIAL 1M)
 LOCAL
 (PARTITION q1_1998,
 PARTITION q2_1998,
 PARTITION q3_1998,
 PARTITION q4_1998,
 PARTITION q1_1999,
 PARTITION q2_1999,
 PARTITION q3_1999,
 PARTITION q4_1999,
 PARTITION q1_2000,
 PARTITION q2_2000
 (SUBPARTITION pq2001, SUBPARTITION pq2002,
 SUBPARTITION pq2003, SUBPARTITION pq2004,
 SUBPARTITION pq2005, SUBPARTITION pq2006,
 SUBPARTITION pq2007, SUBPARTITION pq2008),
 PARTITION q3_2000
 (SUBPARTITION c1 TABLESPACE tbs_02,
 SUBPARTITION c2 TABLESPACE tbs_02,
 SUBPARTITION c3 TABLESPACE tbs_02,
 SUBPARTITION c4 TABLESPACE tbs_02,
 SUBPARTITION c5 TABLESPACE tbs_02),
 PARTITION q4_2000
 (SUBPARTITION pq4001 TABLESPACE tbs_03,
 SUBPARTITION pq4002 TABLESPACE tbs_03,
 SUBPARTITION pq4003 TABLESPACE tbs_03,
 SUBPARTITION pq4004 TABLESPACE tbs_03)
);

Bitmap Index Examples

The following creates a bitmap index on the table oe.hash_products, which was created in "Hash
Partitioning Example":

CREATE BITMAP INDEX product_bm_ix
 ON hash_products(list_price)
 LOCAL(PARTITION ix_p1 TABLESPACE tbs_01,
 PARTITION ix_p2,
 PARTITION ix_p3 TABLESPACE tbs_02,
 PARTITION ix_p4 TABLESPACE tbs_03)
 TABLESPACE tbs_04;

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 161 of 185

Because hash_products is a partitioned table, the bitmap join index must be locally partitioned. In
this example, the user must have quota on tablespaces specified. See CREATE TABLESPACE
for examples that create tablespaces tbs_01, tbs_02, tbs_03, and tbs_04.

The next series of statements shows how one might create a bitmap join index on a fact table
using a join with a dimension table.

CREATE TABLE hash_products
 (product_id NUMBER(6)
 , product_name VARCHAR2(50)
 , product_description VARCHAR2(2000)
 , category_id NUMBER(2)
 , weight_class NUMBER(1)
 , warranty_period INTERVAL YEAR TO MONTH
 , supplier_id NUMBER(6)
 , product_status VARCHAR2(20)
 , list_price NUMBER(8,2)
 , min_price NUMBER(8,2)
 , catalog_url VARCHAR2(50)
 , CONSTRAINT pk_product_id PRIMARY KEY (product_id)
 , CONSTRAINT product_status_lov_demo
 CHECK (product_status in ('orderable'
 ,'planned'
 ,'under development'
 ,'obsolete')
))
 PARTITION BY HASH (product_id)
 PARTITIONS 5
 STORE IN (example);

CREATE TABLE sales_quota
 (product_id NUMBER(6)
 , customer_name VARCHAR2(50)
 , order_qty NUMBER(6)
 ,CONSTRAINT u_product_id UNIQUE(product_id)
);

CREATE BITMAP INDEX product_bm_ix
 ON hash_products(list_price)
 FROM hash_products h, sales_quota s
 WHERE h.product_id = s.product_id
 LOCAL(PARTITION ix_p1 TABLESPACE example,
 PARTITION ix_p2,
 PARTITION ix_p3 TABLESPACE example,
 PARTITION ix_p4,
 PARTITION ix_p5 TABLESPACE example)
 TABLESPACE example;

Indexes on Nested Tables: Example

The sample table pm.print_media contains a nested table column ad_textdocs_ntab, which is stored in
storage table textdocs_nestedtab. The following example creates a unique index on storage table
textdocs_nestedtab:

CREATE UNIQUE INDEX nested_tab_ix
 ON textdocs_nestedtab(NESTED_TABLE_ID, document_typ);

Including pseudocolumn NESTED_TABLE_ID ensures distinct rows in nested table column
ad_textdocs_ntab.

Indexing on Substitutable Columns: Examples

Chapter 13
CREATE INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 162 of 185

You can build an index on attributes of the declared type of a substitutable column. In addition,
you can reference the subtype attributes by using the appropriate TREAT function. The following
example uses the table books, which is created in "Substitutable Table and Column Examples".
The statement creates an index on the salary attribute of all employee authors in the books table:

CREATE INDEX salary_i
 ON books (TREAT(author AS employee_t).salary);

The target type in the argument of the TREAT function must be the type that added the attribute
being referenced. In the example, the target of TREAT is employee_t, which is the type that added
the salary attribute.

If this condition is not satisfied, then Oracle Database interprets the TREAT function as any
functional expression and creates the index as a function-based index. For example, the
following statement creates a function-based index on the salary attribute of part-time
employees, assigning nulls to instances of all other types in the type hierarchy.

CREATE INDEX salary_func_i ON persons p
 (TREAT(VALUE(p) AS part_time_emp_t).salary);

You can also build an index on the type-discriminant column underlying a substitutable column
by using the SYS_TYPEID function.

Note

Oracle Database uses the type-discriminant column to evaluate queries that involve
the IS OF type condition. The cardinality of the typeid column is normally low, so Oracle
recommends that you build a bitmap index in this situation.

The following statement creates a bitmap index on the typeid of the author column of the books
table:

CREATE BITMAP INDEX typeid_i ON books (SYS_TYPEID(author));

See Also

• Oracle Database PL/SQL Language Reference to see the creation of the type
hierarchy underlying the books table

• the functions TREAT and SYS_TYPEID and the condition "IS OF type Condition "

CREATE INDEXTYPE
Purpose

Use the CREATE INDEXTYPE statement to create an indextype, which is an object that specifies
the routines that manage a domain (application-specific) index. Indextypes reside in the same
namespace as tables, views, and other schema objects. This statement binds the indextype
name to an implementation type, which in turn specifies and refers to user-defined index
functions and procedures that implement the indextype.

Chapter 13
CREATE INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 163 of 185

See Also

Oracle Database Data Cartridge Developer's Guide for more information on
implementing indextypes

Prerequisites

To create an indextype in your own schema, you must have the CREATE INDEXTYPE system
privilege. To create an indextype in another schema, you must have the CREATE ANY
INDEXTYPE system privilege. In either case, you must have the EXECUTE object privilege on the
implementation type and the supported operators.

An indextype supports one or more operators, so before creating an indextype, you must first
design the operator or operators to be supported and provide functional implementation for
those operators.

See Also

CREATE OPERATOR

Syntax

create_indextype::=

CREATE

OR REPLACE

INDEXTYPE

IF NOT EXISTS

schema .

indextype

SHARING =
METADATA

NONE

FOR

schema .

operator (parameter_type

,

)

,

using_type_clause

WITH LOCAL

RANGE

PARTITION storage_table_clause

using_type_clause::=

USING

schema .

implementation_type

array_DML_clause

Chapter 13
CREATE INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 164 of 185

array_DML_clause::=

WITH

WITHOUT

ARRAY DML

(

schema .

type

,

schema .

varray_type

)

,

storage_table_clause::=

WITH

SYSTEM

USER

MANAGED STORAGE TABLES

Semantics

OR REPLACE

Specify OR REPLACE to re-create the indextype if it already exists. You can use this clause to
change the definition of an existing indextype without dropping, re-creating, and regranting
object privileges previously granted on it.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the indextype does not exist, a new indextype is created at the end of the statement.

• If the indextype exists, this is the indextype you have at the end of the statement. A new
one is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the name of the schema in which the indextype resides. If you omit schema, then Oracle
Database creates the indextype in your own schema.

indextype

Specify the name of the indextype to be created. The name must satisfy the requirements
listed in "Database Object Naming Rules ".

Chapter 13
CREATE INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 165 of 185

SHARING

Use the sharing clause if you want to create the object in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

FOR Clause

Use the FOR clause to specify the list of operators supported by the indextype.

• For schema, specify the schema containing the operator. If you omit schema, then Oracle
assumes the operator is in your own schema.

• For operator, specify the name of the operator supported by the indextype.

All the operators listed in this clause must be valid operators.

• For parameter_type, list the types of parameters to the operator.

using_type_clause

The USING clause lets you specify the type that provides the implementation for the new
indextype.

For implementation_type, specify the name of the type that implements the appropriate Oracle Data
Cartridge Interface (ODCI).

• You must specify a valid type that implements the routines in the ODCI.

• The implementation type must reside in the same schema as the indextype.

See Also

Oracle Database Data Cartridge Developer's Guide for additional information on this
interface

WITH LOCAL PARTITION

Use this clause to indicate that the indextype can be used to create local domain indexes on
range-, list-, hash-, and interval-partitioned tables. You use this clause in combination with the
storage_table_clause in several ways (see storage_table_clause).

• The recommended method is to specify WITH LOCAL PARTITION WITH SYSTEM MANAGED
STORAGE TABLES. This combination uses system-managed storage tables, which are the
preferred storage management, and lets you create local domain indexes on range-, list-,
hash-, and interval-partitioned tables. In this case the RANGE keyword is optional and
ignored, because it is no longer needed if you specify WITH LOCAL PARTITION WITH SYSTEM
MANAGED STORAGE TABLES.

• You can specify WITH LOCAL RANGE PARTITION (including the RANGE keyword) and omit the
storage_table clause. Local domain indexes on range-partitioned tables are supported with

Chapter 13
CREATE INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 166 of 185

user-managed storage tables for backward compatibility. Oracle does not recommend this
combination because it uses the less efficient user-managed storage tables.

If you omit this clause entirely, then you cannot subsequently use this indextype to create a
local domain index on a range, list-, hash-, or interval-partitioned table.

storage_table_clause

Use this clause to specify how storage tables and partition maintenance operations for indexes
built on this indextype are managed:

• Specify WITH SYSTEM MANAGED STORAGE TABLES to indicate that the storage of statistics
data is to be managed by the system. The type you specify in statistics_type should be storing
the statistics related information in tables that are maintained by the system. Also, the
indextype you specify must already have been created or altered to support the WITH
SYSTEM MANAGED STORAGE TABLES clause.

• Specify WITH USER MANAGED STORAGE TABLES to indicate that the tables that store the
user-defined statistics will be managed by the user. This is the default behavior.

See Also

Oracle Database Data Cartridge Developer's Guide for more information about
storage tables for domain indexes

array_DML_clause

Use this clause to let the indextype support the array interface for the ODCIIndexInsert method.

type and varray_type

If the data type of the column to be indexed is a user-defined object type, then you must
specify this clause to identify the varray varray_type that Oracle should use to hold column values
of type. If the indextype supports a list of types, then you can specify a corresponding list of
varray types. If you omit schema for either type or varray_type, then Oracle assumes the type is in
your own schema.

If the data type of the column to be indexed is a built-in system type, then any varray type
specified for the indextype takes precedence over the ODCI types defined by the system.

See Also

Oracle Database Data Cartridge Developer's Guide for more information on the ODCI
array interface

Examples

Creating an Indextype: Example

The following statement creates an indextype named position_indextype and specifies the
position_between operator that is supported by the indextype and the position_im type that
implements the index interface. Refer to "Using Extensible Indexing " for an extensible
indexing scenario that uses this indextype:

Chapter 13
CREATE INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 167 of 185

CREATE INDEXTYPE position_indextype
 FOR position_between(NUMBER, NUMBER, NUMBER)
 USING position_im;

CREATE INMEMORY JOIN GROUP
Purpose

Use the CREATE INMEMORY JOIN GROUP statement to create a join group, which is an object that
specifies frequently joined columns from the same table or different tables. Such columns
typically contain values of compatible data types that fall in similar ranges. When you create a
join group, Oracle Database stores special metadata for the columns in the global dictionary,
which enables the database to optimize join queries for the columns. In order to achieve this
optimization, the table columns must be populated in the In-Memory Column Store (IM column
store).

Creating a join group for tables causes the current In-Memory contents of these tables to be
invalidated. Subsequent repopulation causes the In-Memory Compression Units (IMCUs) of
the tables to be re-encoded with the global dictionary. Thus, Oracle recommends that you first
create the join group, and then populate the tables.

See Also

• ALTER INMEMORY JOIN GROUP and DROP INMEMORY JOIN GROUP

• Oracle Database In-Memory Guide for more information on join groups

Prerequisites

To create a join group in another user's schema, or to include in the join group a column in a
table in another user’s schema, you must have the CREATE ANY TABLE system privilege.

Syntax

create_inmemory_join_group::=

CREATE INMEMORY JOIN GROUP

IF NOT EXISTS schema .

join_group

(

schema .

table (column) ,

schema .

table (column)

,

)

Semantics

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the object does not exist, a new obejct is created at the end of the statement.

• If the object exists, this is the object you have at the end of the statement. A new one is not
created because the older object is detected.

Chapter 13
CREATE INMEMORY JOIN GROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 168 of 185

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the schema to contain the join group. If you omit schema, then the database creates the
join group in your own schema.

join_group

Specify the name of the join group to be created. The name must satisfy the requirements
listed in “Database Object Naming Rules ”.

schema

Specify the schema of the table that contains a column to be included in the join group If you
omit schema, then Oracle Database assumes the table is in your own schema.

table

Specify the name of the table that contains a column to be included in the join group.

column

Specify the name of a column to be included in the join group. A join group can contain
columns in the same table or different tables.

Restrictions on Join Groups

The following restrictions apply to join groups:

• A join group must contain at least 1 column.

• A join group can contain at most 255 columns.

• A table column can be a member of at most one join group.

• Oracle Active Data Guard does not support join groups.

Examples

The following statement creates a join group named prod_id1 in the oe schema. Both tables
involved in this join group reside in the oe schema.

CREATE INMEMORY JOIN GROUP prod_id1
 (inventories(product_id), order_items(product_id));

The following statement creates a join group named prod_id2 in the oe schema. The table
inventories resides in the oe schema and the table online_media resides in the pm schema.

CREATE INMEMORY JOIN GROUP prod_id2
 (inventories(product_id), pm.online_media(product_id));

CREATE JAVA
Purpose

Use the CREATE JAVA statement to create a schema object containing a Java source, class, or
resource.

Chapter 13
CREATE JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 169 of 185

See Also

• Oracle Database Java Developer's Guide for Java concepts and information about
Java stored procedures

• Oracle Database JDBC Developer's Guide for information on JDBC

Prerequisites

To create or replace a schema object containing a Java source, class, or resource in your own
schema, you must have CREATE PROCEDURE system privilege. To create or replace such a
schema object in another user's schema, you must have CREATE ANY PROCEDURE system
privilege.

Syntax

create_java::=

CREATE

OR REPLACE
AND

RESOLVE

COMPILE NOFORCE

JAVA

IF NOT EXISTS

SOURCE

RESOURCE
NAMED

schema .

primary_name

CLASS

SCHEMA schema

SHARING =
METADATA

NONE invoker_rights_clause
RESOLVER ((match_string

, schema_name

–
))

USING

BFILE (directory_object_name , server_file_name)

CLOB

BLOB

BFILE

subquery

’ key_for_BLOB ’

AS source_char

invoker_rights_clause::=

AUTHID

CURRENT_USER

DEFINER

Chapter 13
CREATE JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 170 of 185

Semantics

OR REPLACE

Specify OR REPLACE to re-create the schema object containing the Java class, source, or
resource if it already exists. Use this clause to change the definition of an existing object
without dropping, re-creating, and regranting object privileges previously granted.

If you redefine a Java schema object and specify RESOLVE or COMPILE, then Oracle Database
recompiles or resolves the object. Whether or not the resolution or compilation is successful,
the database invalidates classes that reference the Java schema object.

Users who had previously been granted privileges on a redefined function can still access the
function without being regranted the privileges.

See Also

ALTER JAVA for additional information

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the object does not exist, a new object is created at the end of the statement.

• If the object exists, this is the object you have at the end of the statement. A new one is not
created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

RESOLVE | COMPILE

RESOLVE and COMPILE are synonymous keywords. They specify that Oracle Database should
attempt to resolve the Java schema object that is created if this statement succeeds.

• When applied to a class, resolution of referenced names to other class schema objects
occurs.

• When applied to a source, source compilation occurs.

Restriction on RESOLVE and COMPILE

You cannot specify these keywords for a Java resource.

NOFORCE

Specify NOFORCE to roll back the results of this CREATE command if you have specified either
RESOLVE or COMPILE and the resolution or compilation fails. If you do not specify this option,
then Oracle Database takes no action if the resolution or compilation fails, and the created
schema object remains.

JAVA SOURCE Clause

Specify JAVA SOURCE to load a Java source file.

Chapter 13
CREATE JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 171 of 185

JAVA CLASS Clause

Specify JAVA CLASS to load a Java class file.

JAVA RESOURCE Clause

Specify JAVA RESOURCE to load a Java resource file.

NAMED Clause

The NAMED clause is required for a Java source or resource. The primary_name must be
enclosed in double quotation marks and its length must not exceed 4000 bytes in the database
character set.

• For a Java source, this clause specifies the name of the schema object in which the source
code is held. A successful CREATE JAVA SOURCE statement will also create additional
schema objects to hold each of the Java classes defined by the source.

• For a Java resource, this clause specifies the name of the schema object to hold the Java
resource.

Use double quotation marks to preserve a lower- or mixed-case primary_name.

If you do not specify schema, then Oracle Database creates the object in your own schema.

Restrictions on NAMED Java Classes

The NAMED clause is subject to the following restrictions:

• You cannot specify NAMED for a Java class.

• The primary_name cannot contain a database link.

SCHEMA Clause

The SCHEMA clause applies only to a Java class. This optional clause specifies the schema in
which the object containing the Java file will reside. If you do not specify this clause, then
Oracle Database creates the object in your own schema.

SHARING

This clause applies only when creating a Java schema object in an application root. This type
of object is called an application common object and it can be shared with the application
PDBs that belong to the application root. To determine how the Java schema object is shared,
specify one of the following sharing attributes:

• METADATA - A metadata link shares the Java schema object’s metadata, but its data is
unique to each container. This type of Java schema object is referred to as a metadata-
linked application common object.

• NONE - The Java schema object is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING initialization
parameter to determine the sharing attribute of the Java schema object. If the
DEFAULT_SHARING initialization parameter does not have a value, then the default is METADATA.

You cannot change the sharing attribute of a Java schema object after it is created.

Chapter 13
CREATE JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 172 of 185

See Also

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

invoker_rights_clause

Use the invoker_rights_clause to indicate whether the methods of the class execute with the
privileges and in the schema of the user who owns the class or with the privileges and in the
schema of CURRENT_USER.

This clause also determines how Oracle Database resolves external names in queries, DML
operations, and dynamic SQL statements in the member functions and procedures of the type.

AUTHID CURRENT_USER

CURRENT_USER indicates that the methods of the class execute with the privileges of
CURRENT_USER. This clause is the default and creates an invoker-rights class.

This clause also specifies that external names in queries, DML operations, and dynamic SQL
statements resolve in the schema of CURRENT_USER. External names in all other statements
resolve in the schema in which the methods reside.

AUTHID DEFINER

DEFINER indicates that the methods of the class execute with the privileges of the owner of the
schema in which the class resides, and that external names resolve in the schema where the
class resides. This clause creates a definer-rights class.

See Also

• Oracle Database Java Developer's Guide

• Oracle Database PL/SQL Language Reference for information on how
CURRENT_USER is determined

RESOLVER Clause

The RESOLVER clause lets you specify a mapping of the fully qualified Java name to a Java
schema object, where:

• match_string is either a fully qualified Java name, a wildcard that can match such a Java
name, or a wildcard that can match any name.

• schema_name designates a schema to be searched for the corresponding Java schema
object.

• A dash (-) as an alternative to schema_name indicates that if match_string matches a valid Java
name, Oracle Database can leave the name unresolved. The resolution succeeds, but the
name cannot be used at run time by the class.

This mapping is stored with the definition of the schema objects created in this command for
use in later resolutions (either implicit or in explicit ALTER JAVA ... RESOLVE statements).

Chapter 13
CREATE JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 173 of 185

USING Clause

The USING clause determines a sequence of character data (CLOB or BFILE) or binary data
(BLOB or BFILE) for the Java class or resource. Oracle Database uses the sequence of
characters to define one file for a Java class or resource, or one source file and one or more
derived classes for a Java source.

BFILE Clause

Specify the directory and filename of a previously created file on the operating system
(directory_object_name) and server file (server_file_name) containing the sequence. BFILE is usually
interpreted as a character sequence by CREATE JAVA SOURCE and as a binary sequence by
CREATE JAVA CLASS or CREATE JAVA RESOURCE.

CLOB | BLOB | BFILE subquery

Specify a subquery that selects a single row and column of the type specified (CLOB, BLOB, or
BFILE). The value of the column makes up the sequence of characters.

Note

In earlier releases, the USING clause implicitly supplied the keyword SELECT. This is no
longer the case. However, the subquery without the keyword SELECT is still supported
for backward compatibility.

key_for_BLOB

The key_for_BLOB clause supplies the following implicit query:

SELECT LOB FROM CREATE$JAVA$LOB$TABLE
 WHERE NAME = 'key_for_BLOB';

Restriction on the key_for_BLOB Clause

For you to use this case, the table CREATE$JAVA$LOB$TABLE must exist in the current schema
and must have a column LOB of type BLOB and a column NAME of type VARCHAR2.

AS source_char

Specify a sequence of characters for a Java source.

Examples

Creating a Java Class Object: Example

The following statement creates a schema object containing a Java class using the name
found in a Java binary file:

CREATE JAVA CLASS USING BFILE (java_dir, 'Agent.class')
/

This example assumes the directory object java_dir, which points to the operating system
directory containing the Java class Agent.class, already exists. In this example, the name of the
class determines the name of the Java class schema object.

Creating a Java Source Object: Example

Chapter 13
CREATE JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 174 of 185

The following statement creates a Java source schema object:

CREATE JAVA SOURCE NAMED "Welcome" AS
 public class Welcome {
 public static String welcome() {
 return "Welcome World"; } }
/

Creating a Java Resource Object: Example

The following statement creates a Java resource schema object named apptext from a bfile:

CREATE JAVA RESOURCE NAMED "appText"
 USING BFILE (java_dir, 'textBundle.dat')
/

CREATE JSON RELATIONAL DUALITY VIEW
Purpose

JSON-relational duality views expose data in relational tables as JSON documents. The
documents are materialized on demand, not stored. Duality views give your data a conceptual
and an operational duality as it is organized both relationally and hierarchically. You can base
different duality views on data stored in one or more of the same tables, providing different
JSON hierarchies over the same, shared data. This means that applications can access
(create, query, modify) the same data as a collection of JSON documents or as a set of related
tables and columns, and both approaches can be employed at the same time.

A flex column in a table underlying a JSON-relational duality view lets you add and redefine
fields of the document object produced by that table. This provides a certain kind of schema
flexibility to a duality view, and to the documents it supports. For more information on flex
columns in a table underlying a JSON-relational duality view see JSON Data Stored in JSON-
Relational Duality Views of the JSON-Relational Duality Developer's Guide

You define a duality view against a set of tables related by primary key (PK), foreign key (FK)
or unique key constraints (UK). The following rules apply:

• The primary or unique key constraints must be declared in the database but need not be
enforced (can be RELY constraints). Foreign key constraints are not required to be declared
in the database.

• The relationships type can be 1-to-1, 1-to-N and N-to-M (using a mapping table with two
FKs). The N-to-M relationship can be thought of as the combination of 1-to-N and 1-to-1
relationship

• Columns of two or more tables with 1-to-1 or N-to-1 relationships can be merged into the
same JSON object via UNNEST. Otherwise a nested JSON object is created.

• Tables with a 1-to-N relationship create a nested JSON array.

• A duality view has only one column of type JSON.

• Each row in the duality view is one JSON object, which is typically a hierarchy of nested
objects and arrays.

• Each application object is built from values originating from one or multiple rows from the
underlying tables of that view. Typically, each table contributes to one (nested) JSON
object.

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 175 of 185

Note

The SQL data types allowed for a column in a table underlying a duality view are
BINARY_DOUBLE, BINARY_FLOAT, BLOB, BOOLEAN, CHAR, CLOB, DATE, JSON, INTERVAL
DAY TO SECOND, INTERVAL YEAR TO MONTH, NCHAR, NCLOB, NUMBER, NVARCHAR2,
VARCHAR2, RAW, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and VECTOR. An error is
raised if you specify any other column data type.

See Also

JSON-Relational Duality Developer's Guide

Syntax

create_json_relational_duality_view::=

CREATE

OR REPLACE

NO

FORCE

EDITIONABLE

NONEDITIONABLE

JSON

RELATIONAL

DUALITY VIEW

IF NOT EXISTS

view_name

duality_view_replication_clause

AS

SELECT object_gen_clause FROM root_table

root_table_alias table_tags_clause

graphql_query_for_DV

duality_view_replication_clause

DISABLE

ENABLE

LOGICAL REPLICATION

object_gen_clause::=

JSON { key_value_clause

,
, flex_clause

}

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 176 of 185

key_value_clause::=

KEY

string
:

IS

column_name

column_tags_clause

(duality_view_subquery)

[duality_view_subquery]

UNNEST (duality_view_subquery)

flex_clause::=

column_name AS FLEX

COLUMN

column_tags_clause::=

WITH

CHECK

NOCHECK

ETAG

UPDATE

NOUPDATE

duality_view_subquery::=

SELECT object_gen_clause FROM child_table

child_table_alias

table_tag_clause

WHERE join_condition

table_tags_clause::=

WITH

CHECK

NOCHECK

ETAG

INSERT

NOINSERT

UPDATE

NOUPDATE

DELETE

NODELETE

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 177 of 185

graphql_query_for_DV::=

root_query_field

root_query_field::=

root_query_field_name

directives

selection_set

(directives::=, selection_set::=)

root_query_field_name::=

object_type_name_lower

directives::=

directive

directive::=

@ name

arguments

arguments::=

(argument)

argument::=

name : value

name::=

name_start

name_continue

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 178 of 185

name_start::=

letter

_

name_continue::=

letter

digit

_

letter::=

upper_letter

lower_letter

upper_letter::=

"

A

...

Z

"

lower_letter::=

"

a

...

z

"

digit::=

0

...

9

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 179 of 185

selection_set::=

[{ selection_list }]

{ selection_list }

selection_list::=

selection

selection::=

field

fragment_spread

field::=

alias :

query_field_name

directives selection_set

(directives::=, selection_set::=)

alias::=

name

query_field_name::=

query_scalar_field_name

query_object_field_name

query_scalar_field_name::=

name

quoted_name

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 180 of 185

query_object_field_name::=

object_field_name

fragment_spread::=

. . . fragment_name

*

fragment_name

name

quoted_name::=

" any_char "

lower_case_name::=

lower_letter

_

name_continue_lower

name_continue_lower::=

lower_letter

digit

_

field_name::=

scalar_field_name

object_field_name

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 181 of 185

scalar_field_name::=

lower_case_name

quoted_name

object_field_name::=

object_type_name_lower

object_field_name_lower::=

schema_name_lower .

simple_object_type_name_lower

schema_name_lower::=

lower_case_name

quoted_name

simple_object_type_name_lower::=

lower_case_name

quoted_name

Semantics

The JSON realtional duality view has only one column of data type JSON. The column contains
the JSON object which is a representation of a application object. The column name is always
DATA.

The duality view is read-only by default. This means that the following annotations are in effect:
NOINSERT, NODELETE, NOUPDATE.

OR REPLACE

Specify OR REPLACE to re-create the view if it already exists. You can use this clause to change
the definition of an existing view without dropping, re-creating, and regranting object privileges
previously granted on it.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 182 of 185

• If the view does not exist, a new view is created at the end of the statement.

• If the view exists, this is the view you have at the end of the statement. A new one is not
created because the older one is detected.

You can have only one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both in
the same statement results in the following error:

ORA-11541: REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE
statement

duality_view_replication_clause

To enable logical replication on a duality view use CREATE JSON RELATIONAL DUALITY VIEW
ENABLE LOGICAL REPLICATION.

To disable logical replication on a duality view use CREATE JSON RELATIONAL DUALITY VIEW
DISABLE LOGICAL REPLICATION

Note

On a multi instance RAC database, you must run the ALTER SYSTEM ENABLE RAC
TWO_STAGE ROLLING UPDATES ALL DDL, before you can enable or disable logical
replication.

You must run ALTER SYSTEM ENABLE RAC TWO_STAGE ROLLING UPDATES ALL after
patching all the RAC instances.

After you run ALTER SYSTEM ENABLE RAC TWO_STAGE ROLLING UPDATES ALL you cannot
perform an online downgrade (unpatch) of your RAC database to DBRU23.5 or lower.
You must take a downtime.

On a single instance database, you do not need to run ALTER SYSTEM ENABLE RAC
TWO_STAGE ROLLING UPDATES ALL.

root_table

root_table refers to the top level table which the duality view is defined on. It is the only table
specified in the FROM clause of the top level SELECT statement.

key_value_clause

You must have one key named _id that points to the column(s) that identify the JSON
document, usually a primary-key column.

See Document-Identifier Field for Duality Views of the JSON-Relational Duality Developer's
Guide .

table_tags_clause

You can mark the view as updatable using the following keyword inside a WITH clause:

• WITH INSERT

• WITH UPDATE

• WITH DELETE

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 183 of 185

You can combine keywords together without commas, for example: WITH INSERT UPDATE

column_tags_clause

You can mark individual columns with WITH UPDATE or WITH NOUPDATE. This supercedes table-
level annotation.

Column Properties for Updatability

If the FROM clause is marked with such keywords, then this sets the default for all columns of
the table in the FROM clause. You can change the default setting on an individual column. If a
the FROM clause is specified as WITH (INSERT, UPDATE, DELETE) and a column overrides this
default with NOUPDATE, then updates are not allowed.

Column Properties for ETAGs

Individual columns as well as a FROM clause can be specified to take part in the CHECK ETAG
calculation or not. An ETAG is a hash value for all the columns' values in one JSON object and
is used to detect changes. A column without ETAG can be changed without this change
impacting other operations. By default all columns participate in ETAG calculation. Using
NOCHECK ETAG a column can be excluded from ETAG calculation.

graphql_query_for DV

graphql_query_for_DV is a special kind of shorthand query operation definition in GraphQL.

• The root_query_field is the single top-level selection field of this shorthand query.

For brevity, graphql_query_for_dv omits the pair of curly brackets of the top-levelselection_set of a
general shorthand query operation.

• selection_set syntax augments the selection set defined in the GraphQL specification with the
option of optional square brackets around the selection list.

• selection in selection_list can be only field or fragment_spread .

• field directives : conform to the GraphQL specification. Only supported custom directives are
allowed. @skip and @include are NOT supported.

• argument conforms to the GraphQL specification.

• root_query_field_name corresponds to the root table.

• name has the same syntax as the GraphQL specification.

• quoted_name: The field names in a GraphQL query for DV allow quoted and un-quoted
names. As a convention, un-quoted field names are in lower case only. any_char is any
character allowed in a quoted identifier in SQL .

• scalar_field_name corresponds to a column name of a table.

• object_field_name corresponds to a related table name. In addition you can use quoted
names, and fully qualified table names with dot-concatenation.

Examples

See Also

Introduction To Car-Racing Duality Views Example of the JSON-Relational Duality
Developer's Guide.

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 184 of 185

Example 1: Create a Duality View of Orders

The following example is a view of an orders view object ORDERS_OV with the following
information:

• Order information such as order status from the Orders table

• A CustomerInfo singleton descendant consisting of customer details from the Customer table

• An OrderItems array descendant consisting of a list of order items from the OrderItems table.

• Each order item, in turn, consists of ItemInfo and ShipmentInfo singletons from the Products and
Shipment tables respectively.

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW ORDERS_OV AS
SELECT JSON { 'OrderId' : ord.order_id,
 'OrderTime' : ord.order_datetime,
 'OrderStatus' : ord.order_status,
 'CustomerInfo' :
 (SELECT JSON{'CustomerId' : cust.customer_id,
 'CustomerName' : cust.full_name,
 'CustomerEmail' : cust.email_address }
 FROM CUSTOMERS cust
 WHERE cust.customer_id = ord.customer_id),
 'OrderItems' : (SELECT JSON_ARRAYAGG(
 JSON { 'OrderItemId' : oi.line_item_id,
 'Quantity' : oi.quantity,
 'ProductInfo' : <subquery from product>
 'ShipmentInfo' : <subquery from shipments>)
 })
 FROM ORDER_ITEMS oi
 WHERE ord.order_id = oi.order_id)
}
FROM ORDERS ord;

Example 2: Create an Updatable View

To make the view updatable, one has to add INSERT or UPDATE or DELETE or any combination of
these to either the FROM clause or individual column. The following allows to update the order,
only read the customer and insert and update (not delete) order items.

CREATE OR REPLACE JSON RELATIONAL DUALITY VIEW ORDERS_OV AS
SELECT JSON { 'OrderId' : ord.order_id,
 'OrderTime'. : ord.order_datetime,
 'OrderStatus' : ord.order_status,
 'CustomerInfo' :
 (SELECT JSON{'CustomerId' : cust.customer_id,
 'CustomerName' : cust.full_name,
 'CustomerEmail' : cust.email_address WITH NOCHECK}
 FROM CUSTOMERS c WITH CHECK
 WHERE cust.customer_id = ord.customer_id),
 'OrderItems' : (SELECT JSON_ARRAYAGG(
 JSON { 'OrderItemId' : oi.line_item_id,
 'Quantity' : oi.quantity,
 'ProductInfo' : <subquery from product>
 'ShipmentInfo' : <subquery from shipments>)
 })
 FROM ORDER_ITEMS oi WITH INSERT, UPDATE
 WHERE ord.order_id = oi.order_id)
}
FROM ORDERS ord WITH INSERT UPDATE DELETE;

Chapter 13
CREATE JSON RELATIONAL DUALITY VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 185 of 185

14
SQL Statements: CREATE LIBRARY to
CREATE SCHEMA

This chapter contains the following SQL statements:

• CREATE LIBRARY

• CREATE LOCKDOWN PROFILE

• CREATE LOGICAL PARTITION TRACKING

• CREATE MATERIALIZED VIEW

• CREATE MATERIALIZED VIEW LOG

• CREATE MATERIALIZED ZONEMAP

• CREATE MLE ENV

• CREATE MLE MODULE

• CREATE OPERATOR

• CREATE OUTLINE

• CREATE PACKAGE

• CREATE PACKAGE BODY

• CREATE PFILE

• CREATE PLUGGABLE DATABASE

• CREATE PMEM FILESTORE

• CREATE PROCEDURE

• CREATE PROFILE

• CREATE PROPERTY GRAPH

• CREATE RESTORE POINT

• CREATE ROLE

• CREATE ROLLBACK SEGMENT

• CREATE SCHEMA

CREATE LIBRARY
Purpose

Use the CREATE LIBRARY statement to create a schema object associated with an operating-
system shared library. The name of this schema object can then be used in the call_spec of
CREATE FUNCTION or CREATE PROCEDURE statements, or when declaring a function or
procedure in a package or type, so that SQL and PL/SQL can call to third-generation-language
(3GL) functions and procedures.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 142

See Also

CREATE FUNCTION and Oracle Database PL/SQL Language Reference for more
information on functions and procedures

Prerequisites

The CREATE LIBRARY statement is valid only on platforms that support shared libraries and
dynamic linking.

To create a library in your own schema, you must have the CREATE LIBRARY system privilege.
To create a library in another user's schema, you must have the CREATE ANY LIBRARY system
privilege.

To use the library in the call_spec of a CREATE FUNCTION statement, or when declaring a function
in a package or type, you must have the EXECUTE object privilege on the library and the
CREATE FUNCTION system privilege. Refer to Oracle Database PL/SQL Language Reference for
information on the call_spec of a CREATE FUNCTION statement.

To use the library in the call_spec of a CREATE PROCEDURE statement, or when declaring a
procedure in a package or type, you must have the EXECUTE object privilege on the library and
the CREATE PROCEDURE system privilege. Refer to Oracle Database PL/SQL Language
Reference for information on the call_spec of a CREATE PROCEDURE statement.

To execute a procedure or function defined with the call_spec (including a procedure or function
defined within a package or type), you must have the EXECUTE object privilege on the
procedure or function (but you do not need the EXECUTE object privilege on the library).

Syntax

Libraries are defined using PL/SQL. Therefore, the syntax diagram in this book shows only the
SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the PL/SQL
syntax, semantics, and examples.

create_library::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

LIBRARY

IF NOT EXISTS

plsql_library_source

(plsql_library_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the library if it already exists. Use this clause to change the
definition of an existing library without dropping, re-creating, and regranting object privileges
granted on it.

Users who had previously been granted privileges on a redefined library can still access the
library without being regranted the privileges.

Chapter 14
CREATE LIBRARY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 142

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the library does not exist, a new library is created at the end of the statement.

• If the library exists, this is the library you have at the end of the statement. A new one is
not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the library is an editioned or noneditioned object if
editioning is enabled for the schema object type LIBRARY in schema. The default is EDITIONABLE.
For information about editioned and noneditioned objects, see Oracle Database Development
Guide.

plsql_library_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_library_source.

CREATE LOCKDOWN PROFILE
Purpose

Use the CREATE LOCKDOWN PROFILE statement to create a PDB lockdown profile. You can use
PDB lockdown profiles in a multitenant container database (CDB) to restrict user operations in
PDBs.

After you create a PDB lockdown profile, you can add restrictions to the profile with the ALTER
LOCKDOWN PROFILE statement. You can restrict user operations associated with certain
database features, options, and SQL statements.

When a lockdown profile is assigned to a PDB, users in that PDB cannot perform the
operations that are the disabled for the profile. To assign a lockdown profile, set its name for
the value of the PDB_LOCKDOWN initialization parameter. You can assign a lockdown profile to
individual PDBs, or to all PDBs in a CDB or application container, as follows:

• If you set PDB_LOCKDOWN while connected to a CDB root, then the lockdown profile
applies to all PDBs in the CDB. It does not apply to the CDB root.

• If you set PDB_LOCKDOWN while connected to an application root, then the lockdown profile
applies to the application root and all PDBs in the application container.

• If you set PDB_LOCKDOWN while connected to a particular PDB, then the lockdown profile
applies to that PDB and overrides the lockdown profile for the CDB or application
container, if one exists.

Chapter 14
CREATE LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 142

See Also

• ALTER LOCKDOWN PROFILE and DROP LOCKDOWN PROFILE

• Oracle Database Security Guide for more information on PDB lockdown profiles

Prerequisites

• The CREATE LOCKDOWN PROFILE statement must be issued from the CDB or the Application
Root.

• You must have the CREATE LOCKDOWN PROFILE system privilege in the container in which
the statement is issued.

• The PDB lockdown profile name must be unique in the container in which the statement is
issued.

Syntax

create_lockdown_profile::=

CREATE LOCKDOWN PROFILE profile_name

static_base_profile

dynamic_base_profile

;

static_base_profile ::=

FROM base_profile

dynamic_base_profile ::=

INCLUDING base_profile

Semantics

profile_name

You can create a new PDB lockdown profile with a name that you specify. The name must
satisfy the requirements listed in “Database Object Naming Rules ”. The lockdown profile can
be derived from a static, or dynamic base profile.

static_base_profile

Use this option to create a new lockdown profile with a base profile. The rules of the base
profile in effect at profile creation time will be copied to the new lockdown profile. Changes to
the base profile after the lockdown profile is created will not apply to the lockdown profile.

Chapter 14
CREATE LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 142

dynamic_base_profile

Use this option to create a new lockdown profile that will change with changes to the base
profile. The new lockdown profile will inherit DISABLE rules of the base profile as well and
subsequent changes to the base profile. The rules of the base profile have precedence in any
conflict with rules that may be explicitly added to the lockdown profile. For example, the
OPTION_VALUE clause of the base profile takes precedence over the OPTION_VALUE clause of
the dynamic base profile.

Example

The following statement creates PDB lockdown profile hr_prof with a dynamic base profile
PRIVATE_DBAAS:

CREATE LOCKDOWN PROFILE hr_prof INCLUDING PRIVATE_DBAAS;

CREATE LOGICAL PARTITION TRACKING
Purpose

Use the CREATE LOGICAL PARTITION TRACKING statement to define a logical partitioning scheme
on a table for being leveraged by materialized views and logical partition change tracking. You
can define the logical partitions of your tables independently of any existing or non-existing
partitioning schema of a table.

Syntax

create_logical_partition_tracking::=

CREATE LOGICAL PARTITION TRACKING ON table_name

PARTITION BY RANGE (column

,

)

INTERVAL (expr)

(PARTITION

partition

range_values_clause

,

)

Semantics

Logical partition tracking is supported on a single key column within the table. The datatype of
the key column can be of the following data types: NUMBER, DATE, CHAR, VARCHAR, VARCHAR2,
TIMESTAMP, TIMSTAMP WITH TIME ZONE.

Only RANGE and INTERVAL logical partitions are supported on the base table.

See Also

• Refreshing Materialized Views of the Data Warehousing Guide.

Chapter 14
CREATE LOGICAL PARTITION TRACKING

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 142

CREATE MATERIALIZED VIEW
Purpose

Use the CREATE MATERIALIZED VIEW statement to create a materialized view. A materialized
view is a database object that contains the results of a query. The FROM clause of the query
can name tables, views, and other materialized views. Collectively these objects are called
master tables (a replication term) or detail tables (a data warehousing term). This reference
uses "master tables" for consistency. The databases containing the master tables are called
the master databases.

Note

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

For replication purposes, materialized views allow you to maintain read-only copies of remote
data on your local node. You can select data from a materialized view as you would from a
table or view. In replication environments, the materialized views commonly created are
primary key, rowid, object, and subquery materialized views.

See Also

Oracle Database Administrator’s Guide for information on the types of materialized
views used to support replication

For data warehousing purposes, the materialized views commonly created are materialized
aggregate views, single-table materialized aggregate views, and materialized join views.
All three types of materialized views can be used by query rewrite, an optimization technique
that transforms a user request written in terms of master tables into a semantically equivalent
request that includes one or more materialized views.

See Also

• ALTER MATERIALIZED VIEW

• Oracle Database Data Warehousing Guide for information on the types of
materialized views used to support data warehousing

Prerequisites

The privileges required to create a materialized view should be granted directly rather than
through a role.

To create a materialized view in your own schema:

• You must have been granted the CREATE MATERIALIZED VIEW system privilege and either
the CREATE TABLE or CREATE ANY TABLE system privilege.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 142

• You must also have access to any master tables of the materialized view that you do not
own, either through a READ or SELECT object privilege on each of the tables or through the
READ ANY TABLE or SELECT ANY TABLE system privilege.

To create a materialized view in another user's schema:

• You must have the CREATE ANY MATERIALIZED VIEW system privilege.

• The owner of the materialized view must have the CREATE TABLE system privilege. The
owner must also have access to any master tables of the materialized view that the
schema owner does not own (for example, if the master tables are on a remote database)
and to any materialized view logs defined on those master tables, either through a READ or
SELECT object privilege on each of the tables or through the READ ANY TABLE or SELECT
ANY TABLE system privilege.

To create a refresh-on-commit materialized view (REFRESH ON COMMIT clause), in addition to
the preceding privileges, you must have the ON COMMIT REFRESH object privilege on any
master tables that you do not own or you must have the ON COMMIT REFRESH system privilege.

To create the materialized view with query rewrite enabled, in addition to the preceding
privileges:

• If the schema owner does not own the master tables, then the schema owner must have
the GLOBAL QUERY REWRITE privilege or the QUERY REWRITE object privilege on each table
outside the schema.

• If you are defining the materialized view on a prebuilt container (ON PREBUILT TABLE
clause), then you must have the READ or SELECT privilege WITH GRANT OPTION on the
container table.

The user whose schema contains the materialized view must have sufficient quota in the target
tablespace to store the master table and index of the materialized view or must have the
UNLIMITED TABLESPACE system privilege.

When you create a materialized view, Oracle Database creates one internal table and at least
one index, and may create one view, all in the schema of the materialized view. Oracle
Database uses these objects to maintain the materialized view data. You must have the
privileges necessary to create these objects.

You can create the following types of local materialized views (including both ON COMMIT and
ON DEMAND) on master tables with commit SCN-based materialized view logs:

• Materialized aggregate views, including materialized aggregate views on a single table

• Materialized join views

• Primary-key-based and rowid-based single table materialized views

• UNION ALL materialized views, where each UNION ALL branch is one of the above
materialized view types

You cannot create remote materialized views on master tables with commit SCN-based
materialized view logs.

Creating a materialized view on master tables with different types of materialized view logs
(that is, a master table with timestamp-based materialized view logs and a master table with
commit SCN-based materialized view logs) is not supported and causes ORA-32414.

To specify an edition in the evaluation_edition_clause or the unusable_editions_clause, you must have the
USE privilege on the edition.

To perform select from a materialized view, you must have the SELECT ANY TABLE system
privilege.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 142

See Also

• CREATE TABLE, CREATE VIEW , and CREATE INDEX for information on these
privileges

• Oracle Database Administrator’s Guide for information about the prerequisites that
apply to creating replication materialized views

• Oracle Database Data Warehousing Guide for information about the prerequisites
that apply to creating data warehousing materialized views

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 142

Syntax

create_materialized_view::=

CREATE MATERIALIZED VIEW

IF NOT EXISTS schema .

materialized_view

OF

schema .

object_type

(column_alias

ENCRYPT

encryption_spec
annotations_clause

scoped_table_ref_constraint

)

,

DEFAULT COLLATION collation_name

ON PREBUILT TABLE

WITH

WITHOUT
REDUCED PRECISION

physical_properties materialized_view_props

USING INDEX

physical_attributes_clause

TABLESPACE tablespace

USING NO INDEX create_mv_refresh

evaluation_edition_clause

ENABLE

DISABLE
ON QUERY COMPUTATION

query_rewrite_clause

ENABLE

DISABLE
CONCURRENT REFRESH

annotations_clause

AS subquery

(scoped_table_ref_constraint::=, physical_properties::=, materialized_view_props::=,
physical_attributes_clause::=, create_mv_refresh::=, evaluation_edition_clause::=,
query_rewrite_clause::=, subquery::=, annotations_clause)

annotations_clause::=

For the full syntax and semantics of the annotations_clause see annotations_clause.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 142

scoped_table_ref_constraint::=

SCOPE FOR (
ref_column

ref_attribute
) IS

schema . scope_table_name

c_alias

physical_properties::=

deferred_segment_creation

segment_attributes_clause

table_compression inmemory_table_clause ilm_clause

deferred_segment_creation

ORGANIZATION

HEAP

segment_attributes_clause

heap_org_table_clause

INDEX

segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

EXTERNAL PARTITION ATTRIBUTES external_table_clause

REJECT LIMIT

CLUSTER cluster (column

,

)

(deferred_segment_creation::=, segment_attributes_clause::=, table_compression::=,
inmemory_table_clause::=, heap_org_table_clause::=, index_org_table_clause::=)

materialized_view_props::=

column_properties table_partitioning_clauses

CACHE

NOCACHE parallel_clause

build_clause

(column_properties::=, table_partitioning_clauses::=—part of CREATE TABLE syntax,
parallel_clause::=, build_clause::=)

heap_org_table_clause::=

table_compression inmemory_table_clause ilm_clause

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 142

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

prefix_compression

iot_advanced_compression index_org_overflow_clause

(mapping_table_clause: not supported with materialized views, prefix_compression::=,
index_org_overflow_clause::=)

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

index_org_overflow_clause::=

INCLUDING column_name

OVERFLOW

segment_attributes_clause

(segment_attributes_clause::=)

create_mv_refresh::=

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 142

REFRESH

FAST

COMPLETE

FORCE

ON DEMAND

ON COMMIT

ON STATEMENT

START WITH

NEXT
date

WITH
PRIMARY KEY

ROWID

USING

DEFAULT

MASTER

LOCAL

ROLLBACK SEGMENT

MASTER

LOCAL

ROLLBACK SEGMENT rollback_segment

USING
ENFORCED

TRUSTED
CONSTRAINTS

NEVER REFRESH

deferred_segment_creation::=

SEGMENT CREATION

IMMEDIATE

DEFERRED

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

(physical_attributes_clause::=, TABLESPACE SET: not supported with CREATE MATERIALIZED
VIEW, logging_clause::=)

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 142

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(logging_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

table_compression::=

COMPRESS

ROW STORE COMPRESS

BASIC

ADVANCED

COLUMN STORE COMPRESS

FOR

QUERY

ARCHIVE

LOW

HIGH

NO

ROW LEVEL LOCKING

NOCOMPRESS

inmemory_table_clause::=

INMEMORY

inmemory_attributes

NO INMEMORY inmemory_column_clause

(inmemory_attributes::=, inmemory_column_clause::=)

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 142

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

(inmemory_memcompress::=, inmemory_priority::=, inmemory_distribute::=,
inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

inmemory_distribute::=

DISTRIBUTE

AUTO

BY

ROWID RANGE

PARTITION

SUBPARTITION

FOR SERVICE

DEFAULT

ALL

service_name

NONE

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 142

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

inmemory_column_clause::=

INMEMORY

(ALL) inmemory_memcompress

NO INMEMORY

(ALL) (column

,

)

(inmemory_memcompress::=)

column_properties::=

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

json_storage_clause

(object_type_col_properties::=, nested_table_col_properties::=, varray_col_properties::=,
LOB_partition_storage::=, LOB_storage_clause::=, XMLType_column_properties: not supported for
materialized views)

object_type_col_properties::=

COLUMN column substitutable_column_clause

(substitutable_column_clause::=)

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 142

substitutable_column_clause::=

ELEMENT

IS OF

TYPE

(ONLY type)

NOT

SUBSTITUTABLE AT ALL LEVELS

nested_table_col_properties::=

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause

LOCAL

GLOBAL

STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)

RETURN

AS LOCATOR

VALUE

(substitutable_column_clause::=, object_properties::=, physical_properties::=—part of CREATE
TABLE syntax, column_properties::=)

varray_col_properties::=

VARRAY varray_item

substitutable_column_clause

varray_storage_clause

substitutable_column_clause

(substitutable_column_clause::=, varray_storage_clause::=)

varray_storage_clause::=

STORE AS

SECUREFILE

BASICFILE

LOB

LOB_segname

(LOB_storage_parameters)

LOB_segname

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 142

(LOB_parameters::=)

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

(LOB_storage_parameters::=)

LOB_storage_parameters::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

LOB_parameters

storage_clause

storage_clause

(TABLESPACE SET: not supported with CREATE MATERIALIZED VIEW, LOB_parameters::=,
storage_clause::=)

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 142

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

(storage_clause::=, logging_clause::=)

LOB_partition_storage::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_partitioning_storage

varray_col_properties
)

(LOB_storage_clause::=, varray_col_properties::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 142

build_clause::=

BUILD

IMMEDIATE

DEFERRED

evaluation_edition_clause::=

EVALUATE USING

CURRENT EDITION

EDITION edition

NULL EDITION

query_rewrite_clause::=

ENABLE

DISABLE

QUERY REWRITE

unusable_editions_clause

unusable_editions_clause::=

UNUSABLE BEFORE

CURRENT EDITION

EDITION edition

UNUSABLE BEGINNING WITH

CURRENT EDITION

EDITION edition

NULL EDITION

Semantics

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the view does not exist, a new view is created at the end of the statement.

• If the view exists, this is the view you have at the end of the statement. A new one is not
created because the older one is detected.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

annotations_clause

For the full semantics of the annotations clause see annotations_clause.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 142

schema

Specify the schema to contain the materialized view. If you omit schema, then Oracle Database
creates the materialized view in your schema.

materialized_view

Specify the name of the materialized view to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ". Oracle Database generates names
for the table and indexes used to maintain the materialized view by adding a prefix or suffix to
the materialized view name.

column_alias

You can specify a column alias for each column of the materialized view. The column alias list
explicitly resolves any column name conflict, eliminating the need to specify aliases in the
SELECT clause of the materialized view. If you specify any column alias in this clause, then you
must specify an alias for each data source referenced in the SELECT clause.

ENCRYPT clause

Use this clause to encrypt this column of the materialized view. Refer to the CREATE TABLE
clause encryption_spec for more information on column encryption.

OF object_type

The OF object_type clause lets you explicitly create an object materialized view of type
object_type.

See Also

See CREATE TABLE ... object_table for more information on the OF type_name clause

scoped_table_ref_constraint

Use the SCOPE FOR clause to restrict the scope of references to a single object table. You can
refer either to the table name with scope_table_name or to a column alias. The values in the REF
column or attribute point to objects in scope_table_name or c_alias, in which object instances of the
same type as the REF column are stored. If you specify aliases, then they must have a one-to-
one correspondence with the columns in the SELECT list of the defining query of the
materialized view.

See Also

"SCOPE REF Constraints" for more information

DEFAULT COLLATION

Use this clause to specify the default collation for the materialized view. The default collation is
used as the derived collation for all the character literals included in the defining query of the
materialized view. The default collation is not used by the materialized view columns; the
collations for the materialized view columns are derived from the materialized view’s defining
subquery. The CREATE MATERIALIZED VIEW statement fails with an error, or the materialized

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 142

view is created in an invalid state, if any of its character columns is based on an expression in
the defining subquery that has no derived collation.

For collation_name, specify a valid named collation or pseudo-collation.

If you omit this clause, then the default collation for the materialized view is set to the effective
schema default collation of the schema containing the materialized view. Refer to the
DEFAULT_COLLATION clause of ALTER SESSION for more information on the effective schema
default collation.

You can specify the DEFAULT COLLATION clause only if the COMPATIBLE initialization parameter
is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

To change the default collation for a materialized view, you must recreate the materialized
view.

Restrictions on the Default Collation for Materialized Views

The following restrictions apply when specifying the default collation for a materialized view:

• If the defining query of the materialized view contains the WITH plsql_declarations clause, then
the default collation of the materialized view must be USING_NLS_COMP.

• If the materialized view is created on a prebuilt table, then the declared collations of the
table columns must be the same as the corresponding collations of the materialized view
columns, as derived from the defining query.

ON PREBUILT TABLE Clause

The ON PREBUILT TABLE clause lets you register an existing table as a preinitialized
materialized view. This clause is particularly useful for registering large materialized views in a
data warehousing environment. The table must have the same name and be in the same
schema as the resulting materialized view.

If the materialized view is dropped, then the preexisting table reverts to its identity as a table.

Note

This clause assumes that the table object reflects the materialization of a subquery.
Oracle strongly recommends that you ensure that this assumption is true in order to
ensure that the materialized view correctly reflects the data in its master tables.

The ON PREBUILT TABLE clause could be useful in the following scenarios:

• You have a table representing the result of a query. Creating the table was an expensive
operation that possibly took a long time. You want to create a materialized view on the
query. You can use the ON PREBUILT TABLE clause to avoid the expense of executing the
query and populating the container for the materialized view.

• You temporarily discontinue having a materialized view, but keep its container table, using
the DROP MATERIALIZED VIEW ... PRESERVE TABLE statement. You then decide to recreate
the materialized view and you know that the master tables of the view have not changed.
You can create the materialized view using the ON PREBUILT TABLE clause. This avoids the
expense and time of creating and populating the container table for the materialized view.

If you specify ON PREBUILT TABLE, then Oracle database does not create the I_SNAP$ index.
This index improves fast refresh performance. If you want the benefits of this index, then you

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 142

can create it manually. Refer to Oracle Database Data Warehousing Guide for more
information.

WITH REDUCED PRECISION

Specify WITH REDUCED PRECISION to authorize the loss of precision that will result if the
precision of the table or materialized view columns do not exactly match the precision returned
by subquery.

WITHOUT REDUCED PRECISION

Specify WITHOUT REDUCED PRECISION to require that the precision of the table or materialized
view columns match exactly the precision returned by subquery, or the create operation will fail.
This is the default.

Restrictions on Using Prebuilt Tables

Prebuilt tables are subject to the following restrictions:

• Each column alias in subquery must correspond to a column in the prebuilt table, and
corresponding columns must have matching data types.

• If you specify this clause, then you cannot specify a NOT NULL constraint for any column
that is not referenced in subquery unless you also specify a default value for that column.

• You cannot specify the ON PREBUILT TABLE clause when creating a rowid materialized view.

See Also

"Creating Prebuilt Materialized Views: Example"

physical_properties_clause

The components of the physical_properties_clause have the same semantics for materialized views
that they have for tables, with exceptions and additions described in the sections that follow.

Restriction on the physical_properties_clause

You cannot specify ORGANIZATION EXTERNAL for a materialized view.

deferred_segment_creation

Use this clause to determine when the segment for this materialized view should be created.
See the CREATE TABLE clause deferred_segment_creation for more information.

segment_attributes_clause

Use the segment_attributes_clause to establish values for the PCTFREE, PCTUSED, and INITRANS
parameters, the storage characteristics for the materialized view, to assign a tablespace, and
to specify whether logging is to occur. In the USING INDEX clause, you cannot specify PCTFREE
or PCTUSED.

TABLESPACE Clause

Specify the tablespace in which the materialized view is to be created. If you omit this clause,
then Oracle Database creates the materialized view in the default tablespace of the schema
containing the materialized view.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 142

See Also

physical_attributes_clause and storage_clause for a complete description of these
clauses, including default values

logging_clause

Specify LOGGING or NOLOGGING to establish the logging characteristics for the materialized
view. The logging characteristic affects the creation of the materialized view and any nonatomic
refresh that is initiated by way of the DBMS_REFRESH package. The default is the logging
characteristic of the tablespace in which the materialized view resides.

See Also

logging_clause for a full description of this clause and Oracle Database PL/SQL
Packages and Types Reference for more information on atomic and nonatomic refresh

table_compression

Use the table_compression clause to instruct the database whether to compress data segments to
reduce disk and memory use. This clause has the same semantics in CREATE MATERIALIZED
VIEW and CREATE TABLE. Refer to the table_compression clause in the documentation on
CREATE TABLE for the full semantics of this clause.

inmemory_table_clause

Use the inmemory_table_clause to enable or disable the materialized view for the In-Memory
Column Store (IM column store). This clause has the same semantics as the
inmemory_table_clause in the CREATE TABLE documentation.

inmemory_column_clause

Use the inmemory_column_clause to disable specific materialized view columns for the IM column
store, and to specify the data compression method for specific columns. This clause has the
same semantics here as it has for the inmemory_column_clause in the CREATE TABLE
documentation, with the following addition: If you specify the inmemory_column_clause, then you
must also specify a column_alias for each column in the materialized view.

index_org_table_clause

The ORGANIZATION INDEX clause lets you create an index-organized materialized view. In such
a materialized view, data rows are stored in an index defined on the primary key of the
materialized view. You can specify index organization for the following types of materialized
views:

• Read-only and updatable object materialized views. You must ensure that the master table
has a primary key.

• Read-only and updatable primary key materialized views.

• Read-only rowid materialized views.

The keywords and parameters of the index_org_table_clause have the same semantics as
described in CREATE TABLE, with the restrictions that follow.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 142

See Also

The index_org_table_clause of CREATE TABLE

Restrictions on Index-Organized Materialized Views

Index-organized materialized views are subject to the following restrictions:

• You cannot specify the following CREATE MATERIALIZED VIEW clauses: CACHE or NOCACHE,
CLUSTER, or ON PREBUILT TABLE.

• In the index_org_table_clause:

– You cannot specify the mapping_table_clause.

– You can specify COMPRESS only for a materialized view based on a composite primary
key. You can specify NOCOMPRESS for a materialized view based on either a simple or
composite primary key.

CLUSTER Clause

The CLUSTER clause lets you create the materialized view as part of the specified cluster. A
cluster materialized view uses the space allocation of the cluster. Therefore, you do not specify
physical attributes or the TABLESPACE clause with the CLUSTER clause.

Restriction on Cluster Materialized Views

If you specify CLUSTER, then you cannot specify the table_partitioning_clauses in
materialized_view_props.

materialized_view_props

Use these property clauses to describe a materialized view that is not based on an existing
table. To create a materialized view that is based on an existing table, use the ON PREBUILT
TABLE clause.

column_properties

The column_properties clause lets you specify the storage characteristics of a LOB, nested table,
varray, or XMLType column. The object_type_col_properties are not relevant for a materialized view.

See Also

CREATE TABLE for detailed information about specifying the parameters of this
clause

table_partitioning_clauses

The table_partitioning_clauses let you specify that the materialized view is partitioned on specified
ranges of values or on a hash function. Partitioning of materialized views is the same as
partitioning of tables.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 142

See Also

table_partitioning_clauses in the CREATE TABLE documentation

CACHE | NOCACHE

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for this table
are placed at the most recently used end of the least recently used (LRU) list in the buffer
cache when a full table scan is performed. This attribute is useful for small lookup tables.
NOCACHE specifies that the blocks are placed at the least recently used end of the LRU list.

Note

NOCACHE has no effect on materialized views for which you specify KEEP in the
storage_clause.

See Also

CREATE TABLE for information about specifying CACHE or NOCACHE

parallel_clause

The parallel_clause lets you indicate whether parallel operations will be supported for the
materialized view and sets the default degree of parallelism for queries and DML on the
materialized view after creation.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

build_clause

The build_clause lets you specify when to populate the materialized view.

IMMEDIATE

Specify IMMEDIATE to indicate that the materialized view is to be populated immediately. This is
the default.

DEFERRED

Specify DEFERRED to indicate that the materialized view is to be populated by the next REFRESH
operation. The first (deferred) refresh must always be a complete refresh. Until then, the
materialized view has a staleness value of UNUSABLE, so it cannot be used for query rewrite.

USING INDEX Clause

The USING INDEX clause lets you establish the value of the INITRANS and STORAGE parameters
for the default index Oracle Database uses to maintain the materialized view data. If USING
INDEX is not specified, then default values are used for the index. Oracle Database uses the
default index to speed up incremental (FAST) refresh of the materialized view.

Restriction on USING INDEX clause

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 142

You cannot specify the PCTUSED parameter in this clause.

USING NO INDEX Clause

Specify USING NO INDEX to suppress the creation of the default index. You can create an
alternative index explicitly by using the CREATE INDEX statement. You should create such an
index if you specify USING NO INDEX and you are creating the materialized view with the fast
refresh method (REFRESH FAST).

create_mv_refresh

Use the create_mv_refresh clause to specify the default methods, modes, and times for the
database to refresh the materialized view. If the master tables of a materialized view are
modified, then the data in the materialized view must be updated to make the materialized view
accurately reflect the data currently in its master tables. This clause lets you schedule the
times and specify the method and mode for the database to refresh the materialized view.

Restriction on Synchronous Refresh

If you are using the synchronous refresh method, then you must specify ON DEMAND and
USING TRUSTED CONSTRAINTS.

Note

This clause only sets the default refresh options. For instructions on actually
implementing the refresh, refer to Oracle Database Administrator’s Guide and Oracle
Database Data Warehousing Guide.

See Also

• "Periodic Refresh of Materialized Views: Example" and "Automatic Refresh Times
for Materialized Views: Example"

• Oracle Database PL/SQL Packages and Types Reference for more information on
refresh methods

• Oracle Database Data Warehousing Guide to learn how to use refresh statistics to
monitor the performance of materialized view refresh operations

FAST Clause

Specify FAST to indicate the fast refresh method, which performs the refresh according to the
changes that have occurred to the master tables. The changes for conventional DML changes
are stored in the materialized view log associated with the master table. The changes for
direct-path INSERT operations are stored in the direct loader log.

If you specify REFRESH FAST, then the CREATE statement will fail unless materialized view logs
already exist for the materialized view master tables. Oracle Database creates the direct loader
log automatically when a direct-path INSERT takes place. No user intervention is needed.

For both conventional DML changes and for direct-path INSERT operations, other conditions
may restrict the eligibility of a materialized view for fast refresh.

Restrictions on FAST Refresh

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 142

FAST refresh is subject to the following restrictions:

• When you specify FAST refresh at create time, Oracle Database verifies that the
materialized view you are creating is eligible for fast refresh. When you change the refresh
method to FAST in an ALTER MATERIALIZED VIEW statement, Oracle Database does not
perform this verification. If the materialized view is not eligible for fast refresh, then Oracle
Database returns an error when you attempt to refresh this view.

• Materialized views are not eligible for fast refresh if the defining query contains an analytic
function or the XMLTable function.

• Materialized views are not eligible for fast refresh if the defining query references a table
on which an XMLIndex index is defined.

• You cannot fast refresh a materialized view if any of its columns is encrypted.

See Also

• Oracle Database Administrator’s Guide for restrictions on fast refresh in replication
environments

• Oracle Database Data Warehousing Guide for restrictions on fast refresh in data
warehousing environments

• The EXPLAIN_MVIEW procedure of the DBMS_MVIEW package for help diagnosing
problems with fast refresh and the TUNE_MVIEW procedure of the DBMS_MVIEW
package for correction of query rewrite problems

• "Analytic Functions "

• "Creating a Fast Refreshable Materialized View: Example"

COMPLETE Clause

Specify COMPLETE to indicate the complete refresh method, which is implemented by executing
the defining query of the materialized view. If you request a complete refresh, then Oracle
Database performs a complete refresh even if a fast refresh is possible.

FORCE Clause

Specify FORCE to indicate that when a refresh occurs, Oracle Database will perform a fast
refresh if one is possible or a complete refresh if fast refresh is not possible. If you do not
specify a refresh method (FAST, COMPLETE, or FORCE), then FORCE is the default.

ON COMMIT Clause

Specify ON COMMIT to indicate that a refresh is to occur whenever the database commits a
transaction that operates on a master table of the materialized view. This clause may increase
the time taken to complete the commit, because the database performs the refresh operation
as part of the commit process.

You can specify only one of the ON COMMIT, ON DEMAND, and ON STATEMENT clauses. If you
specify ON COMMIT, then you cannot also specify START WITH or NEXT.

Restrictions on Refreshing ON COMMIT

The following restrictions apply to the ON COMMIT clause:

• This clause is not supported for materialized views containing object types or Oracle-
supplied types.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 142

• This clause is not supported for materialized views with remote tables.

• If you specify this clause, then you cannot subsequently execute a distributed transaction
on any master table of this materialized view. For example, you cannot insert into the
master by selecting from a remote table. The ON DEMAND clause does not impose this
restriction on subsequent distributed transactions on master tables.

ON DEMAND Clause

Specify ON DEMAND to indicate that database will not refresh the materialized view unless the
user manually launches a refresh through one of the three DBMS_MVIEW refresh procedures.

You can specify only one of the ON COMMIT, ON DEMAND, and ON STATEMENT clauses. If you
omit all three of these clauses, then ON DEMAND is the default. You can override this default
setting by specifying the START WITH or NEXT clauses, either in the same CREATE
MATERIALIZED VIEW statement or a subsequent ALTER MATERIALIZED VIEW statement.

START WITH and NEXT take precedence over ON DEMAND. Therefore, in most circumstances it
is not meaningful to specify ON DEMAND when you have specified START WITH or NEXT.

See Also

• Oracle Database PL/SQL Packages and Types Reference for information on these
procedures

• Oracle Database Data Warehousing Guide on the types of materialized views you
can create by specifying REFRESH ON DEMAND

ON STATEMENT Clause

Specify ON STATEMENT to indicate that an automatic refresh is to occur every time a DML
operation is performed on any of the materialized view's base tables.

You can specify only one of the ON COMMIT, ON DEMAND, and ON STATEMENT clauses. You can
specify ON STATEMENT only when creating a materialized view. You cannot subsequently alter
the materialized view to use ON STATEMENT refresh.

Restrictions on Refreshing ON STATEMENT

The following restrictions apply to the ON STATEMENT clause:

• This clause can be used only with materialized views that are fast refreshable. The ON
STATEMENT clause must be specified with the REFRESH FAST clause.

• The base tables referenced in the materialized view’s defining query must be connected in
a join graph that uses the star schema or snowflake schema model. The query must
contain exactly one centralized fact table and one or more dimension tables, with all pairs
of joined tables being related using primary key-foreign key constraints.

– There is no restriction on the depth of the snowflake model.

– The constraints can be in RELY mode. However, you must include the USING TRUSTED
CONSTRAINT clause while creating the materialized view to use the RELY constraint.

• The materialized view’s defining query must include the ROWID column of the fact table.

• The materialized view’s defining query cannot include any of the following: invisible
columns, ANSI join syntax, complex query, inline view as base table, composite primary
key, LONG columns, and LOB columns.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 142

• You cannot alter the definition of an existing materialized view that uses the ON STATEMENT
refresh mode.

• You cannot alter an existing materialized view and enable ON STATEMENT refresh for it.

• The following operations cause a materialized view with ON STATEMENT refresh to become
unusable:

– UPDATE operations on one or more dimension tables on which the materialized view is
based

– Partition maintenance operations and TRUNCATE operations on any base table

However, a materialized view with the ON STATEMENT refresh mode can be partitioned.

• All the restrictions that apply to the ON COMMIT clause apply to ON STATEMENT.

START WITH Clause

Specify a datetime expression for the first automatic refresh time.

NEXT Clause

Specify a datetime expression for calculating the interval between automatic refreshes.

Both the START WITH and NEXT values must evaluate to a time in the future. If you omit the
START WITH value, then the database determines the first automatic refresh time by evaluating
the NEXT expression with respect to the creation time of the materialized view. If you specify a
START WITH value but omit the NEXT value, then the database refreshes the materialized view
only once. If you omit both the START WITH and NEXT values, or if you omit the create_mv_refresh
entirely, then the database does not automatically refresh the materialized view.

WITH PRIMARY KEY Clause

Specify WITH PRIMARY KEY to create a primary key materialized view. This is the default and
should be used in all cases except those described for WITH ROWID. Primary key materialized
views allow materialized view master tables to be reorganized without affecting the eligibility of
the materialized view for fast refresh. The master table must contain an enabled primary key
constraint, and the defining query of the materialized view must specify all of the primary key
columns directly. In the defining query, the primary key columns cannot be specified as the
argument to a function such as UPPER.

Restriction on Primary Key Materialized Views

You cannot specify this clause for an object materialized view. Oracle Database implicitly
refreshes objects materialized WITH OBJECT ID.

See Also

Oracle Database Administrator’s Guide for detailed information about primary key
materialized views and "Creating Primary Key Materialized Views: Example"

WITH ROWID Clause

Specify WITH ROWID to create a rowid materialized view. Rowid materialized views are useful if
the materialized view does not include all primary key columns of the master tables. Rowid
materialized views must be based on a single table and cannot contain any of the following:

• Distinct or aggregate functions

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 142

• GROUP BY or CONNECT BY clauses

• Subqueries

• Joins

• Set operations

The WITH ROWID clause has no effect if there are multiple master tables in the defining query.

Rowid materialized views are not eligible for fast refresh after a master table reorganization
until a complete refresh has been performed.

Restriction on Rowid Materialized Views

You cannot specify this clause for an object materialized view. Oracle Database implicitly
refreshes objects materialized WITH OBJECT ID.

See Also

"Creating Materialized Aggregate Views: Example" and "Creating Rowid Materialized
Views: Example"

USING ROLLBACK SEGMENT Clause

This clause is not valid if your database is in automatic undo mode, because in that mode
Oracle Database uses undo tablespaces instead of rollback segments. Oracle strongly
recommends that you use automatic undo mode. This clause is supported for backward
compatibility with replication environments containing older versions of Oracle Database that
still use rollback segments.

For rollback_segment, specify the remote rollback segment to be used during materialized view
refresh.

DEFAULT

DEFAULT specifies that Oracle Database will choose automatically which rollback segment to
use. If you specify DEFAULT, then you cannot specify rollback_segment. DEFAULT is most useful
when modifying, rather than creating, a materialized view.

See Also

ALTER MATERIALIZED VIEW

MASTER

MASTER specifies the remote rollback segment to be used at the remote master site for the
individual materialized view.

LOCAL

LOCAL specifies the remote rollback segment to be used for the local refresh group that
contains the materialized view. This is the default.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 142

See Also

Oracle Database PL/SQL Packages and Types Reference for information on
specifying the local materialized view rollback segment using the DBMS_REFRESH
package

If you omit rollback_segment, then the database automatically chooses the rollback segment to be
used. One master rollback segment is stored for each materialized view and is validated during
materialized view creation and refresh. If the materialized view is complex, then the database
ignores any master rollback segment you specify.

USING ... CONSTRAINTS Clause

The USING ... CONSTRAINTS clause lets Oracle Database choose more rewrite options during
the refresh operation, resulting in more efficient refresh execution. The clause lets Oracle
Database use unenforced constraints, such as dimension relationships or constraints in the
RELY state, rather than relying only on enforced constraints during the refresh operation.

The USING TRUSTED CONSTRAINTS clause enables you to create a materialized view on top of a
table that has a non-NULL Virtual Private Database (VPD) policy on it. In this case, you must
ensure that the materialized view behaves correctly. Materialized view results are computed
based on the rows and columns filtered by VPD policy. Therefore, you must coordinate the
materialized view definition with the VPD policy to ensure the correct results. Without the USING
TRUSTED CONSTRAINTS clause, any VPD policy on a master table will prevent a materialized
view from being created.

Note

The USING TRUSTED CONSTRAINTS clause lets Oracle Database use dimension and
constraint information that has been declared trustworthy by the database
administrator but that has not been validated by the database. If the dimension and
constraint information is valid, then performance may improve. However, if this
information is invalid, then the refresh procedure may corrupt the materialized view
even though it returns a success status.

If you omit this clause, then the default is USING ENFORCED CONSTRAINTS.

NEVER REFRESH Clause

Specify NEVER REFRESH to prevent the materialized view from being refreshed with any Oracle
Database refresh mechanism or packaged procedure. Oracle Database will ignore any
REFRESH statement on the materialized view issued from such a procedure. If you specify this
clause, then you can perform DML operations on the materialized view. To reverse this clause,
you must issue an ALTER MATERIALIZED VIEW ... REFRESH statement.

evaluation_edition_clause

You must specify this clause if subquery references an editioned object. Use this clause to
specify the edition that is searched during name resolution of the editioned object—the
evaluation edition.

• Specify CURRENT EDITION to search the edition in which this DDL statement is executed.

• Specify EDITION edition to search edition.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 142

• Specifying NULL EDITION is equivalent to omitting the evaluation_edition_clause.

If you omit the evaluation_edition_clause, then editioned objects are invisible during name resolution
and an error will result. Dropping the evaluation edition invalidates the materialized view.

See Also

Oracle Database Development Guide for more information on specifying the
evaluation edition for a materialized view

{ ENABLE | DISABLE } ON QUERY COMPUTATION

This clause lets you create a real-time materialized view or a regular view. A real-time
materialized view provides fresh data to user queries even when the materialized view is not in
sync with its base tables due to data changes. Instead of modifying the materialized view, the
optimizer writes a query that combines the existing rows in the materialized view with changes
recorded in log files (either materialized view logs or the direct loader logs). This is called on-
query computation.

• Specify ENABLE ON QUERY COMPUTATION to create a real-time materialized view by
enabling on-query computation. This allows you to directly query up-to-date data from the
materialized view by specifying the FRESH_MV hint in the SELECT statement. If the
materialized view is also enabled for query rewrite, then on-query computation occurs
automatically during query rewrite.

• Specify DISABLE ON QUERY COMPUTATION to create a regular materialized view by disabling
on-query computation. This is the default.

Restrictions on Real-Time Materialized Views

Real-time materialized views are subject to the following restrictions:

• Real-time materialized views cannot be used when one or more materialized view logs
created on the base tables are either unusable or nonexistent.

• A real-time materialized view must be refreshable using out-of-place refresh, log-based
refresh, or partition change tracking (PCT) refresh.

• A refresh-on-commit materialized view cannot be a real-time materialized view.

• If a real-time materialized view is a nested materialized view that is defined on top of one
or more base materialized views, then query rewrite occurs only if all the base materialized
views are fresh. If one or more base materialized views are stale, then query rewrite is not
performed using this real-time materialized view.

• The cursors of queries that directly access real-time materialized views are not shared.

See Also

• FRESH_MV Hint

• Oracle Database Data Warehousing Guide for more information on real-time
materialized views

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 142

query_rewrite_clause

The query_rewrite_clause lets you specify whether the materialized view is eligible to be used for
query rewrite.

ENABLE Clause

Specify ENABLE to enable the materialized view for query rewrite. If you also specify the
unusable_editions_clause, then the materialized view is not enabled for query rewrite in the
unusable editions.

Restrictions on Enabling Query Rewrite

Enabling of query rewrite is subject to the following restrictions:

• You can enable query rewrite only if all user-defined functions in the materialized view are
DETERMINISTIC.

• You can enable query rewrite only if expressions in the statement are repeatable. For
example, you cannot include CURRENT_TIME or USER, sequence values (such as the
CURRVAL or NEXTVAL pseudocolumns), or the SAMPLE clause (which may sample different
rows as the contents of the materialized view change).

Note

• Query rewrite is disabled by default, so you must specify this clause to make
materialized views eligible for query rewrite.

• After you create the materialized view, you must collect statistics on it using the
DBMS_STATS package. Oracle Database needs the statistics generated by this
package to optimize query rewrite.

See Also

• Oracle Database Data Warehousing Guide for more information on query rewrite

• Oracle Database Data Warehousing Guide to learn how to use refresh statistics to
monitor the performance of materialized view refresh operations

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_STATS package

• The EXPLAIN_MVIEW procedure of the DBMS_MVIEW package for help diagnosing
problems with query rewrite and the TUNE_MVIEW procedure of the DBMS_MVIEW
package for correction of query rewrite problems

• CREATE FUNCTION

DISABLE Clause

Specify DISABLE to indicate that the materialized view is not eligible for use by query rewrite. A
disabled materialized view can be refreshed.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 142

unusable_editions_clause

This clause lets you specify that the materialized view is not eligible for query rewrite in one or
more editions. You can specify this clause regardless of whether you specify the ENABLE or
DISABLE clause. If you specify the DISABLE clause, then this clause will take effect if the
materialized view is subsequently enabled for query rewrite using the ALTER MATERIALIZED
VIEW ... ENABLE QUERY REWRITE statement.

UNUSABLE BEFORE Clause

This clause lets you specify that the materialized view is not eligible for query rewrite in the
ancestors of an edition.

• If you specify CURRENT EDITION, then the materialized view is not eligible for query rewrite
in the ancestors of the current edition.

• If you specify EDITION edition, then the materialized view is not eligible for query rewrite in
the ancestors of the specified edition.

UNUSABLE BEGINNING WITH Clause

This clause lets you specify that the materialized view is not eligible for query rewrite in an
edition and its descendants.

• If you specify CURRENT EDITION, then the materialized view is not eligible for query rewrite
in the current edition and its descendants.

• If you specify EDITION edition, then the materialized view is not eligible for query rewrite in
the specified edition and its descendants.

• Specifying NULL EDITION is equivalent to omitting the UNUSABLE BEGINNING WITH clause.

The materialized view has a dependency on each edition in which it is not eligible for query
rewrite. If such an edition is subsequently dropped, then the dependency is removed. However,
the materialized view is not invalidated.

ENABLE | DISABLE CONCURRENT REFRESH

Enable concurrent refresh to refresh the same on-commit atomic materialized view across
multiple sessions concurrently. The materialized view is refreshed concurrently when multiple
concurrent DML transactions on the same base table of the materialized view are committed.

There are no limitations on how many materialized views can be refreshed.

Concurrent refresh is disabled by default. You must explictly enable it on the materialized view.
Note that you can enable it only on on-commit materialized views.

See Also

Refreshing Materialized Views of the Oracle Database Data Warehousing Guide.

AS subquery

Specify the defining query of the materialized view. When you create the materialized view,
Oracle Database executes this subquery and places the results in the materialized view. This
subquery is any valid SQL subquery. However, not all subqueries are fast refreshable, nor are
all subqueries eligible for query rewrite.

Notes on the Defining Query of a Materialized View

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 142

The following notes apply to materialized views:

• Oracle Database does not execute the defining query immediately if you specify BUILD
DEFERRED.

• Oracle recommends that you qualify each table and view in the FROM clause of the defining
query of the materialized view with the schema containing it.

• In order to create a materialized view whose defining query selects from a master table
that has a Virtual Private Database (VPD) policy, you must specify the REFRESH USING
TRUSTED CONSTRAINTS clause.

Restrictions on the Defining Query of a Materialized View

The materialized view query is subject to the following restrictions:

• The defining query of a materialized view can select from tables, views, or materialized
views owned by the user SYS, but you cannot enable QUERY REWRITE on such a
materialized view.

• The defining query of a materialized view cannot select from a V$ view or a GV$ view.

• You cannot define a materialized view with a subquery in the select list of the defining
query. You can, however, include subqueries elsewhere in the defining query, such as in
the WHERE clause.

• You cannot use the AS OF clause of the flashback_query_clause in the defining query of a
materialized view.

• Materialized join views and materialized aggregate views with a GROUP BY clause cannot
select from an index-organized table.

• Materialized views cannot contain columns of data type LONG or LONG RAW.

• Materialized views cannot contain virtual columns.

• You cannot create a materialized view log on a temporary table. Therefore, if the defining
query references a temporary table, then this materialized view will not be eligible for FAST
refresh, nor can you specify the QUERY REWRITE clause in this statement.

• If the FROM clause of the defining query references another materialized view, then you
must always refresh the materialized view referenced in the defining query before
refreshing the materialized view you are creating in this statement.

• Materialized views with join expressions in the defining query cannot have XML data type
columns. The XML data types include XMLType and URI data type columns.

If you are creating a materialized view enabled for query rewrite, then:

• The defining query cannot contain, either directly or through a view, references to
ROWNUM, USER, SYSDATE, remote tables, sequences, or PL/SQL functions that write or
read database or package state.

• Neither the materialized view nor the master tables of the materialized view can be remote.

If you want the materialized view to be eligible for fast refresh using a materialized view log, or
synchronous refresh using a staging log, then some additional restrictions apply.

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 142

See Also

• Oracle Database Data Warehousing Guide for restrictions relating to using fast
refresh and synchronous refresh

• Oracle Database Administrator’s Guidefor more information on restrictions relating
to replication

• "Creating Materialized Join Views: Example", "Creating Subquery Materialized
Views: Example", and "Creating a Nested Materialized View: Example"

Examples

The following examples require the materialized logs that are created in the "Examples"
section of CREATE MATERIALIZED VIEW LOG .

Creating a Simple Materialized View: Example

The following statement creates a very simple materialized view based on the employees and
table in the hr schema:

CREATE MATERIALIZED VIEW mv1 AS SELECT * FROM hr.employees;

By default, Oracle Database creates a primary key materialized view with refresh on demand
only. If a materialized view log exists on employees, then mv1 can be altered to be capable of fast
refresh. If no such log exists, then only full refresh of mv1 is possible. Oracle Database uses
default storage properties for mv1. The only privileges required for this operation are the
CREATE MATERIALIZED VIEW system privilege, and the READ or SELECT object privilege on
hr.employees.

Creating Subquery Materialized Views: Example

The following statement creates a subquery materialized view based on the customers and
countries tables in the sh schema at the remote database:

CREATE MATERIALIZED VIEW foreign_customers
 AS SELECT * FROM sh.customers@remote cu
 WHERE EXISTS
 (SELECT * FROM sh.countries@remote co
 WHERE co.country_id = cu.country_id);

Creating Materialized Aggregate Views: Example

The following statement creates and populates a materialized aggregate view on the sample
sh.sales table and specifies the default refresh method, mode, and time. It uses the materialized
view log created in "Creating a Materialized View Log for Fast Refresh: Examples", as well as
the two additional logs shown here:

CREATE MATERIALIZED VIEW LOG ON times
 WITH ROWID, SEQUENCE (time_id, calendar_year)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON products
 WITH ROWID, SEQUENCE (prod_id)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sales_mv
 BUILD IMMEDIATE
 REFRESH FAST ON COMMIT
 AS SELECT t.calendar_year, p.prod_id,

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 142

 SUM(s.amount_sold) AS sum_sales
 FROM times t, products p, sales s
 WHERE t.time_id = s.time_id AND p.prod_id = s.prod_id
 GROUP BY t.calendar_year, p.prod_id;

Creating Materialized Join Views: Example

The following statement creates and populates the materialized aggregate view
sales_by_month_by_state using tables in the sample sh schema. The materialized view will be
populated with data as soon as the statement executes successfully. By default, subsequent
refreshes will be accomplished by reexecuting the defining query of the materialized view:

CREATE MATERIALIZED VIEW sales_by_month_by_state
 TABLESPACE example
 PARALLEL 4
 BUILD IMMEDIATE
 REFRESH COMPLETE
 ENABLE QUERY REWRITE
 AS SELECT t.calendar_month_desc, c.cust_state_province,
 SUM(s.amount_sold) AS sum_sales
 FROM times t, sales s, customers c
 WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id
 GROUP BY t.calendar_month_desc, c.cust_state_province;

Creating Prebuilt Materialized Views: Example

The following statement creates a materialized aggregate view for the preexisting summary
table, sales_sum_table:

CREATE TABLE sales_sum_table
 (month VARCHAR2(8), state VARCHAR2(40), sales NUMBER(10,2));

CREATE MATERIALIZED VIEW sales_sum_table
 ON PREBUILT TABLE WITH REDUCED PRECISION
 ENABLE QUERY REWRITE
 AS SELECT t.calendar_month_desc AS month,
 c.cust_state_province AS state,
 SUM(s.amount_sold) AS sales
 FROM times t, customers c, sales s
 WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id
 GROUP BY t.calendar_month_desc, c.cust_state_province;

In the preceding example, the materialized view has the same name and also has the same
number of columns with the same data types as the prebuilt table. The WITH REDUCED
PRECISION clause allows for differences between the precision of the materialized view columns
and the precision of the values returned by the subquery.

Creating Primary Key Materialized Views: Example

The following statement creates the primary key materialized view catalog on the sample table
oe.product_information:

CREATE MATERIALIZED VIEW catalog
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 1/4096
 WITH PRIMARY KEY
 AS SELECT * FROM product_information;

Creating Rowid Materialized Views: Example

The following statement creates a rowid materialized view on the sample table oe.orders:

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 142

CREATE MATERIALIZED VIEW order_data REFRESH WITH ROWID
 AS SELECT * FROM orders;

Periodic Refresh of Materialized Views: Example

The following statement creates the primary key materialized view emp_data and populates it
with data from the sample table hr.employees:

CREATE MATERIALIZED VIEW LOG ON employees
 WITH PRIMARY KEY
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW emp_data
 PCTFREE 5 PCTUSED 60
 TABLESPACE example
 STORAGE (INITIAL 50K)
 REFRESH FAST NEXT sysdate + 7
 AS SELECT * FROM employees;

The preceding statement does not include a START WITH parameter, so Oracle Database
determines the first automatic refresh time by evaluating the NEXT value using the current
SYSDATE. A materialized view log was created for the employee table, so Oracle Database
performs a fast refresh of the materialized view every 7 days, beginning 7 days after the
materialized view is created.

Because the materialized view conforms to the conditions for fast refresh, the database will
perform a fast refresh. The preceding statement also establishes storage characteristics that
the database uses to maintain the materialized view.

Automatic Refresh Times for Materialized Views: Example

The following statement creates the complex materialized view all_customers that queries the
employee tables on the remote and local databases:

CREATE MATERIALIZED VIEW all_customers
 PCTFREE 5 PCTUSED 60
 TABLESPACE example
 STORAGE (INITIAL 50K)
 USING INDEX STORAGE (INITIAL 25K)
 REFRESH START WITH ROUND(SYSDATE + 1) + 11/24
 NEXT NEXT_DAY(TRUNC(SYSDATE), 'MONDAY') + 15/24
 AS SELECT * FROM sh.customers@remote
 UNION
 SELECT * FROM sh.customers@local;

Oracle Database automatically refreshes this materialized view tomorrow at 11:00 a.m. and
subsequently every Monday at 3:00 p.m. The default refresh method is FORCE. The defining
query contains a UNION operator, which is not supported for fast refresh, so the database will
automatically perform a complete refresh.

The preceding statement also establishes storage characteristics for both the materialized view
and the index that the database uses to maintain it:

• The first STORAGE clause establishes the sizes of the first and second extents of the
materialized view as 50 kilobytes each.

• The second STORAGE clause, appearing with the USING INDEX clause, establishes the sizes
of the first and second extents of the index as 25 kilobytes each.

Creating a Fast Refreshable Materialized View: Example

Chapter 14
CREATE MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 142

The following statement creates a fast-refreshable materialized view that selects columns from
the order_items table in the sample oe schema, using the UNION set operator to restrict the rows
returned from the product_information and inventories tables using WHERE conditions. The
materialized view logs for order_items and product_information were created in the "Examples "
section of CREATE MATERIALIZED VIEW LOG. This example also requires a materialized view log
on oe.inventories.

CREATE MATERIALIZED VIEW LOG ON inventories
 WITH (quantity_on_hand);

CREATE MATERIALIZED VIEW warranty_orders REFRESH FAST AS
 SELECT order_id, line_item_id, product_id FROM order_items o
 WHERE EXISTS
 (SELECT * FROM inventories i WHERE o.product_id = i.product_id
 AND i.quantity_on_hand IS NOT NULL)
 UNION
 SELECT order_id, line_item_id, product_id FROM order_items
 WHERE quantity > 5;

The materialized view warranty_orders requires that materialized view logs be defined on
order_items (with product_id as a join column) and on inventories (with quantity_on_hand as a filter
column). See "Specifying Filter Columns for Materialized View Logs: Example" and "Specifying
Join Columns for Materialized View Logs: Example".

Creating a Nested Materialized View: Example

The following example uses the materialized view from the preceding example as a master
table to create a materialized view tailored for a particular sales representative in the sample oe
schema:

CREATE MATERIALIZED VIEW my_warranty_orders
 AS SELECT w.order_id, w.line_item_id, o.order_date
 FROM warranty_orders w, orders o
 WHERE o.order_id = o.order_id
 AND o.sales_rep_id = 165;

Specify Annotations at the View Level

The following example adds annotations Title value Tab1 MV1 and Snapshot without a value to the
materialized view MView1:

CREATE MATERIALIZED VIEW MView1 ANNOTATIONS (Title 'Tab1 MV1', ADD Snapshot) AS SELECT * from Table1;

Specify Annotations at the View and Column Level

The following example adds Hidden to column T, Title with value Tab1 MV1, and Snapshot without a
value to the materialized view MView1 :

CREATE MATERIALIZED VIEW MView1(T ANNOTATIONS (Hidden)) ANNOTATIONS (Title 'Tab1 MV1', ADD Snapshot)
 AS SELECT * from Table1;

CREATE MATERIALIZED VIEW LOG
Purpose

Use the CREATE MATERIALIZED VIEW LOG statement to create a materialized view log, which
is a table associated with the master table of a materialized view.

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 142

Note

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

Materialized view logs are used for two types of materialized view refreshes: fast refresh and
synchronous refresh.

Fast refresh uses a conventional materialized view log. During a fast refresh (also called an
incremental refresh), when DML changes are made to master table data, Oracle Database
stores rows describing those changes in the materialized view log and then uses the
materialized view log to refresh materialized views based on the master table.

Synchronous refresh uses a special type of materialized view log called a staging log.
During a synchronous refresh, DML changes are first described in the staging log and then
applied to the master tables and the materialized views simultaneously. This guarantees that
the master table data and materialized view data are in sync throughout the refresh process.
This refresh method is useful in data warehousing environments.

Without a materialized view log, Oracle Database must reexecute the materialized view query
to refresh the materialized view. This process is called a complete refresh. Usually, a
complete refresh takes more time to complete than a fast refresh or a synchronous refresh.

A materialized view log is located in the master database in the same schema as the master
table. A master table can have only one materialized view log defined on it.

To fast refresh or synchronous refresh a materialized join view, you must create a materialized
view log for each of the tables referenced by the materialized view.

Fast refresh supports two types of materialized view logs: timestamp-based materialized view
logs and commit SCN-based materialized view logs. Timestamp-based materialized view logs
use timestamps and require some setup operations when preparing to refresh the materialized
view. Commit SCN-based materialized view logs use commit SCN data rather than
timestamps, which removes the need for the setup operations and thus can improve the speed
of the materialized view refresh. If you specify the COMMIT SCN clause, then a commit SCN-
based materialized view log is created. Otherwise, a time-stamp based materialized view log is
created. Note that only new materialized view logs can take advantage of COMMIT SCN.
Existing materialized view logs cannot be altered to add COMMIT SCN unless they are dropped
and recreated. Refer to Oracle Database Data Warehousing Guide for more information.

Synchronous refresh supports only timestamp-based staging logs.

See Also

• CREATE MATERIALIZED VIEW , ALTER MATERIALIZED VIEW , Oracle
Database Concepts, Oracle Database Data Warehousing Guide, and Oracle
Database Administrator’s Guide for information on materialized views in general

• ALTER MATERIALIZED VIEW LOG for information on modifying a materialized
view log

• DROP MATERIALIZED VIEW LOG for information on dropping a materialized
view log

• Oracle Database Utilities for information on using direct loader logs

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 142

Prerequisites

The privileges required to create a materialized view log directly relate to the privileges
necessary to create the underlying objects associated with a materialized view log.

• If you own the master table, then you can create an associated materialized view log if you
have the CREATE TABLE privilege.

• If you are creating a materialized view log for a table in another user's schema, then you
must have the CREATE ANY TABLE and COMMENT ANY TABLE system privileges, as well as
either the READ or SELECT object privilege on the master table or the READ ANY TABLE or
SELECT ANY TABLE system privilege.

In either case, the owner of the materialized view log must have sufficient quota in the
tablespace intended to hold the materialized view log or must have the UNLIMITED TABLESPACE
system privilege.

See Also

Oracle Database Data Warehousing Guide for more information about the
prerequisites for creating a materialized view log

Restrictions

The statement CREATE MATERIALIZED VIEW LOG does not support the following columns in the
Master Table:

• Hidden columns

• Identity columns

• BFILE columns

• Temporal validity columns

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 142

Syntax

create_materialized_vw_log::=

CREATE MATERIALIZED VIEW LOG

IF NOT EXISTS

ON

schema .

table

SHARING =
METADATA

NONE

physical_attributes_clause

TABLESPACE tablespace

logging_clause

CACHE

NOCACHE parallel_clause table_partitioning_clauses

WITH

OBJECT ID

PRIMARY KEY

ROWID

SEQUENCE

COMMIT SCN

,

(column

,

)

new_values_clause

mv_log_purge_clause for_refresh_clause

(physical_attributes_clause::=, logging_clause::=, parallel_clause::=,
table_partitioning_clauses::= (in CREATE TABLE), new_values_clause::=,
mv_log_purge_clause::=, for_refresh_clause::=.)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 142

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

parallel_clause::=

NOPARALLEL

PARALLEL

integer

new_values_clause::=

INCLUDING

EXCLUDING

NEW VALUES

mv_log_purge_clause::=

PURGE

IMMEDIATE

SYNCHRONOUS

ASYNCHRONOUS

START WITH datetime_expr

NEXT datetime_expr

REPEAT INTERVAL interval_expr

START WITH datetime_expr NEXT datetime_expr

REPEAT INTERVAL interval_expr

for_refresh_clause::=

FOR
SYNCHRONOUS REFRESH USING staging_log_name

FAST REFRESH

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 142

Semantics

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the materialized view log does not exist, a new materialized view log is created at the
end of the statement.

• If the materialized view log exists, this is the materialized view log you have at the end of
the statement. A new one is not created because the older materialized view log is
detected.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the schema containing the materialized view log master table. If you omit schema, then
Oracle Database assumes the master table is contained in your own schema. Oracle
Database creates the materialized view log in the schema of its master table. You cannot
create a materialized view log for a table in the schema of the user SYS.

table

Specify the name of the master table for which the materialized view log is to be created.
Oracle Database encrypts any columns in the materialized view log that are encrypted in the
master table, using the same encryption algorithm.

Restrictions on Master Tables of Materialized View Logs

The following restrictions apply to master tables of materialized view logs:

• You cannot create a materialized view log for a temporary table or for a view.

• You cannot create a materialized view log for a master table with a virtual column.

See Also

"Creating a Materialized View Log for Fast Refresh: Examples"

SHARING

Use the sharing clause if you want to create the object in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

physical_attributes_clause

Use the physical_attributes_clause to define physical and storage characteristics for the materialized
view log.

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 142

See Also

physical_attributes_clause and storage_clause for a complete description these
clauses, including default values

TABLESPACE Clause

Specify the tablespace in which the materialized view log is to be created. If you omit this
clause, then the database creates the materialized view log in the default tablespace of the
schema of the materialized view log.

logging_clause

Specify either LOGGING or NOLOGGING to establish the logging characteristics for the
materialized view log. The default is the logging characteristic of the tablespace in which the
materialized view log resides.

See Also

logging_clause for a full description of this clause

CACHE | NOCACHE

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for this log
are placed at the most recently used end of the least recently used (LRU) list in the buffer
cache when a full table scan is performed. This attribute is useful for small lookup tables.

NOCACHE specifies that the blocks are placed at the least recently used end of the LRU list.
The default is NOCACHE.

Note

NOCACHE has no effect on materialized view logs for which you specify KEEP in the
storage_clause.

See Also

CREATE TABLE for information about specifying CACHE or NOCACHE

parallel_clause

The parallel_clause lets you indicate whether parallel operations will be supported for the
materialized view log.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 142

table_partitioning_clauses

Use the table_partitioning_clauses to indicate that the materialized view log is partitioned on
specified ranges of values or on a hash function. Partitioning of materialized view logs is the
same as partitioning of tables.

See Also

table_partitioning_clauses in the CREATE TABLE documentation

WITH Clause

Use the WITH clause to indicate whether the materialized view log should record the primary
key, rowid, object ID, or a combination of these row identifiers when rows in the master are
changed. You can also use this clause to add a sequence to the materialized view log to
provide additional ordering information for its records.

This clause also specifies whether the materialized view log records additional columns that
might be referenced as filter columns, which are non-primary-key columns referenced by
subquery materialized views, or join columns, which are non-primary-key columns that define
a join in the subquery WHERE clause.

If you omit this clause, or if you specify the clause without PRIMARY KEY, ROWID, or OBJECT ID,
then the database stores primary key values by default. However, the database does not store
primary key values implicitly if you specify only OBJECT ID or ROWID at create time. A primary
key log, created either explicitly or by default, performs additional checking on the primary key
constraint.

OBJECT ID

Specify OBJECT ID to indicate that the system-generated or user-defined object identifier of
every modified row should be recorded in the materialized view log.

Restriction on OBJECT ID

You can specify OBJECT ID only when creating a log on an object table, and you cannot specify
it for storage tables.

PRIMARY KEY

Specify PRIMARY KEY to indicate that the primary key of all rows changed should be recorded
in the materialized view log.

ROWID

Specify ROWID to indicate that the rowid of all rows changed should be recorded in the
materialized view log.

SEQUENCE

Specify SEQUENCE to indicate that a sequence value providing additional ordering information
should be recorded in the materialized view log. Sequence numbers are necessary to support
fast refresh after some update scenarios.

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 142

See Also

Oracle Database Data Warehousing Guide for more information on the use of
sequence numbers in materialized view logs and for examples that use this clause

COMMIT SCN

Without the COMMIT SCN clause, the materialized view log is based on timestamps and
requires some setup operations when preparing to refresh the materialized view. Specify
COMMIT SCN to instruct the database to use commit SCN data rather than timestamps. This
setting removes the need for the setup operations and thus can improve the speed of the
materialized view refresh.

You can create the following types of local materialized views (including both ON COMMIT and
ON DEMAND) on master tables with commit SCN-based materialized view logs:

• Materialized aggregate views, including materialized aggregate views on a single table

• Materialized join views

• Primary-key-based and rowid-based single table materialized views

• UNION ALL materialized views, where each UNION ALL branch is one of the above
materialized view types

You cannot create remote materialized views on master tables with commit SCN-based
materialized view logs.

Restrictions on COMMIT SCN

The following restrictions apply to COMMIT SCN:

• Use of COMMIT SCN on a table with one or more LOB columns is not supported and causes
ORA-32421.

• Creating a materialized view on master tables with different types of materialized view logs
(that is, a master table with timestamp-based materialized view logs and a master table
with commit SCN-based materialized view logs) is not supported and causes ORA-32414.

• If you specify COMMIT SCN, then you cannot specify FOR SYNCHRONOUS REFRESH.

column

Specify the columns whose values you want to be recorded in the materialized view log for all
rows that are changed. Typically these columns are filter columns and join columns.

Restrictions on the WITH Clause

This clause is subject to the following restrictions:

• You can specify only one PRIMARY KEY, one ROWID, one OBJECT ID, one SEQUENCE, and
one column list for each materialized view log.

• Primary key columns are implicitly recorded in the materialized view log. Therefore, you
cannot specify any of the following combinations if column contains one of the primary key
columns:

WITH ... PRIMARY KEY ... (column)
WITH ... (column) ... PRIMARY KEY
WITH (column)

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 142

See Also

• CREATE MATERIALIZED VIEW for information on explicit and implicit inclusion of
materialized view log values

• Oracle Database Administrator’s Guide for more information about filter columns
and join columns

• "Specifying Filter Columns for Materialized View Logs: Example" and "Specifying
Join Columns for Materialized View Logs: Example"

NEW VALUES Clause

The NEW VALUES clause lets you determine whether Oracle Database saves both old and new
values for update DML operations in the materialized view log.

See Also

"Including New Values in Materialized View Logs: Example"

INCLUDING

Specify INCLUDING to save both new and old values in the log. If this log is for a table on which
you have a single-table materialized aggregate view, and if you want the materialized view to
be eligible for fast refresh, then you must specify INCLUDING.

EXCLUDING

Specify EXCLUDING to disable the recording of new values in the log. This is the default. You
can use this clause to avoid the overhead of recording new values. Do not use this clause if
you have a fast-refreshable single-table materialized aggregate view defined on the master
table.

mv_log_purge_clause

Use this clause to specify the purge time for the materialized view log.

• IMMEDIATE SYNCHRONOUS: the materialized view log is purged immediately after refresh.
This is the default.

• IMMEDIATE ASYNCHRONOUS: the materialized view log is purged in a separate Oracle
Scheduler job after the refresh operation.

• START WITH, NEXT, and REPEAT INTERVAL set up a scheduled purge that is independent of
the materialized view refresh and is initiated during CREATE or ALTER MATERIALIZED VIEW
LOG statement. This is very similar to scheduled refresh syntax in a CREATE or ALTER
MATERIALIZED VIEW statement:

– The START WITH datetime expression specifies when the purge starts.

– The NEXT datetime expression computes the next run time for the purge.

If you specify REPEAT INTERVAL, then the next run time will be: SYSDATE + interval_expr.

A CREATE MATERIALIZED VIEW LOG statement with a scheduled purge creates an Oracle
Scheduler job to perform log purge. The job calls the DBMS_SNAPSHOT.PURGE_LOG

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 142

procedure to purge the materialized view logs. This process allows you to amortize the
purging costs over several materialized view refreshes.

Restriction on mv_log_purge_clause

This clause is not valid for materialized view logs on temporary tables.

See Also

Oracle Database Data Warehousing Guide for more information on purging
materialized view logs

for_refresh_clause

Use this clause to specify the refresh method for which the materialized view log will be used.
You can specify only one refresh method for any given master table.

FOR SYNCHRONOUS REFRESH

Specify this clause to create a staging log that can be used for synchronous refresh. Use
staging_log_name to specify the name of the staging log to be created. The staging log will be
created in the schema in which the master table resides.

After you create the staging log, you cannot perform DML operations directly on the master
table. You must use the procedures in the DBMS_SYNC_REFRESH package to prepare and
execute change data operations.

Restrictions on Synchronous Refresh

The following restrictions apply to synchronous refresh:

• If you specify FOR SYNCHRONOUS REFRESH, then you cannot specify COMMIT SCN.

• To be eligible for synchronous refresh, the master table must satisfy the following criteria:

– If the master table is a fact table, then it must be partitioned.

– The master table must have a key. If the master table is a dimension table, then it must
have a primary key defined on it. If the master table is a fact table, then the set of
columns that are the foreign keys of the dimension tables joined to the fact table are
deemed to be the key.

– The master table cannot have a non-NULL Virtual Private Database (VPD) policy or a
trigger defined on it.

Oracle Database may allow you to create a staging log on a master table even if all of the
preceding criteria are not met. However, the master table will not be eligible for
synchronous refresh.

• Any existing materialized views on the master table must be refresh-on-demand
materialized views. If an existing materialized view is a refresh-on-commit materialized
view, then you must change it to a refresh-on-demand materialized view with the
alter_mv_refresh clause of ALTER MATERIALIZED VIEW before you create the staging log.

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 142

See Also

• Oracle Database Data Warehousing Guide for the complete steps for using
synchronous refresh

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_SYNC_REFRESH package

FOR FAST REFRESH

Specify this clause to create a materialized view log that can be used for fast refresh. The
materialized view log will be created in the same schema in which the master table resides.
This is the default.

Examples

Creating a Materialized View Log for Fast Refresh: Examples

The following statement creates a materialized view log on the oe.customers table that specifies
physical and storage characteristics:

CREATE MATERIALIZED VIEW LOG ON customers
 PCTFREE 5
 TABLESPACE example
 STORAGE (INITIAL 10K);

The materialized view log on customers supports fast refresh for primary key materialized views
only.

The following statement creates another version of the materialized view log with the ROWID
clause, which enables fast refresh for more types of materialized views:

CREATE MATERIALIZED VIEW LOG ON customers WITH PRIMARY KEY, ROWID;

This materialized view log on customers makes fast refresh possible for rowid materialized views
and for materialized join views. To provide for fast refresh of materialized aggregate views, you
must also specify the SEQUENCE and INCLUDING NEW VALUES clauses, as shown in the
example that follows.

Specify a Purge Repeat Interval for a Materialized View Log: Example

The following statement creates a materialized view log on the oe.orders table. The contents of
the log will be purged once every five days, beginning five days after the creation date of the
materialized view log:

CREATE MATERIALIZED VIEW LOG ON orders
 PCTFREE 5
 TABLESPACE example
 STORAGE (INITIAL 10K)
 PURGE REPEAT INTERVAL '5' DAY;

Specifying Filter Columns for Materialized View Logs: Example

The following statement creates a materialized view log on the sh.sales table and is used in
"Creating Materialized Aggregate Views: Example". It specifies as filter columns all of the
columns of the table referenced in that materialized view.

CREATE MATERIALIZED VIEW LOG ON sales
 WITH ROWID, SEQUENCE(amount_sold, time_id, prod_id)
 INCLUDING NEW VALUES;

Chapter 14
CREATE MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 142

Specifying Join Columns for Materialized View Logs: Example

The following statement creates a materialized view log on the order_items table of the sample oe
schema. The log records primary keys and product_id, which is used as a join column in
"Creating a Fast Refreshable Materialized View: Example".

CREATE MATERIALIZED VIEW LOG ON order_items WITH (product_id);

Including New Values in Materialized View Logs: Example

The following example creates a materialized view log on the oe.product_information table that
specifies INCLUDING NEW VALUES:

CREATE MATERIALIZED VIEW LOG ON product_information
 WITH ROWID, SEQUENCE (list_price, min_price, category_id), PRIMARY KEY
 INCLUDING NEW VALUES;

You could create the following materialized aggregate view to use the product_information log:

CREATE MATERIALIZED VIEW products_mv
 REFRESH FAST ON COMMIT
 AS SELECT SUM(list_price - min_price), category_id
 FROM product_information
 GROUP BY category_id;

This materialized view is eligible for fast refresh because the log defined on its master table
includes both old and new values.

Creating a Staging Log for Synchronous Refresh: Example

The following statement creates a staging log on the sh.sales fact table. The staging log is
named mystage_log and is stored in the sh schema. It can be used for synchronous refresh.

CREATE MATERIALIZED VIEW LOG ON sales
 PCTFREE 5
 TABLESPACE example
 STORAGE (INITIAL 10K)
 FOR SYNCHRONOUS REFRESH USING mystage_log;

CREATE MATERIALIZED ZONEMAP
Purpose

Use the CREATE MATERIALIZED ZONEMAP statement to create a zone map.

A zone map is a special type of materialized view that stores information about zones. A zone
is a set of contiguous data blocks on disk that stores the values of one or more table columns.
Multiple zones are usually required to store all of the values of the table columns. A zone map
tracks the minimum and maximum table column values stored in each zone.

Zone maps enable you to reduce the I/O and CPU costs of table scans. When a SQL
statement contains predicates on columns in a zone map, the database compares the
predicate values to the minimum and maximum table column values stored in each zone to
determine which zones to read during SQL execution.

Oracle Database supports the following types of zone maps:

• A basic zone map is defined on a single table and maintains zone information for
specified columns in that table.

Chapter 14
CREATE MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 142

You can create a basic zone map either by specifying the create_zonemap_on_table clause, or
by specifying the create_zonemap_as_subquery clause where the FROM clause of the defining
subquery specifies a single table.

• A join zone map is defined on two or more joined tables and maintains zone information
for specified columns in any of the joined tables.

You can create a join zone map by specifying the create_zonemap_as_subquery clause. The
FROM clause of the defining subquery must specify a table that is left outer joined with one
or more other tables.

Zone maps are commonly used with star schemas in data warehousing environments.
However, a star schema is not a requirement for creating a zone map. In either case, this
reference uses star schema terminology to refer to the tables in a zone map. In a join zone
map, the outer table of the join(s) is referred to as the fact table, and the tables with which this
table is joined are referred to as dimension tables. Collectively these tables are called the
base tables of the zone map. In a basic zone map, the single table on which the zone map is
defined is referred to as both the fact table and the base table of the zone map.

A base table of a zone map can be a partitioned or composite-partitioned table. In this case,
the zone map maintains minimum and maximum column values for each partition (and
subpartition) as well as for each zone.

You can create zone maps for use with or without attribute clustering:

• To create a zone map for use with attribute clustering, use either of the following methods:

– Use the CREATE MATERIALIZED ZONEMAP statement and include attribute clustered
columns in the zone map. Refer to the attribute_clustering_clause of CREATE TABLE
and the attribute_clustering_clause clause of ALTER TABLE for more information.

– Specify the WITH MATERIALIZED ZONEMAP clause while creating or modifying an
attribute clustered table. Refer to the zonemap_clause of CREATE TABLE and the
MODIFY CLUSTERING clause of ALTER TABLE for more information.

• To create a zone map for use without attribute clustering, use the CREATE MATERIALIZED
ZONEMAP statement and include columns that are not attribute clustered in the zone map.

See Also

Oracle Database Data Warehousing Guide for more information on zone maps

Prerequisites

To create a zone map in your own schema:

• You must have the CREATE MATERIALIZED VIEW system privilege and either the CREATE
TABLE or CREATE ANY TABLE system privilege.

• You must have access to any base tables of the zone map that you do not own, either
through a READ or SELECT object privilege on each of the tables or through the READ ANY
TABLE or SELECT ANY TABLE system privilege.

To create a zone map in another user's schema:

• You must have the CREATE ANY MATERIALIZED VIEW system privilege.

• The owner of the zone map must have the CREATE TABLE system privilege. The owner
must also have access to any base tables of the zone map that the schema owner does

Chapter 14
CREATE MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 142

not own, either through a READ or SELECT object privilege on each of the tables or through
the READ ANY TABLE or SELECT ANY TABLE system privilege.

To create a refresh-on-commit zone map (REFRESH ON COMMIT clause), in addition to the
preceding privileges, you must have the ON COMMIT REFRESH object privilege on any base
tables that you do not own or you must have the ON COMMIT REFRESH system privilege. Unlike
materialized views, you can create a refresh-on-commit zone map even if there are no
materialized view logs on the base tables.

When you create a zone map, Oracle Database creates one internal table and at least one
index, all in the schema of the zone map. Oracle Database uses these objects to maintain the
zone map data. You must have the privileges necessary to create these objects, and you must
have sufficient quota in the target tablespace to store these objects or you must have the
UNLIMITED TABLESPACE system privilege.

Syntax

create_materialized_zonemap::=

create_zonemap_on_table

create_zonemap_as_subquery

create_zonemap_on_table::=

CREATE MATERIALIZED ZONEMAP

IF NOT EXISTS schema .

zonemap_name

zonemap_attributes zonemap_refresh_clause

ENABLE

DISABLE
PRUNING

ON

schema . table

materialized_view
(column

,

)

create_zonemap_as_subquery::=

CREATE MATERIALIZED ZONEMAP

IF NOT EXISTS schema .

zonemap_name

(column_alias

,

) zonemap_attributes zonemap_refresh_clause

ENABLE

DISABLE
PRUNING

AS query_block

Chapter 14
CREATE MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 142

zonemap_attributes::=

TABLESPACE tablespace

SCALE integer

CACHE

NOCACHE

zonemap_refresh_clause::=

REFRESH

FAST

COMPLETE

FORCE

ON

DEMAND

COMMIT

LOAD

DATA MOVEMENT

LOAD DATA MOVEMENT

Note

When specifying the zonemap_refresh_clause, you must specify at least one clause after
the REFRESH keyword.

Semantics

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the materialized zonemap does not exist, a new materialized zonemap is created at the
end of the statement.

• If the materialized zonemap exists, this is the materialized zonemap you have at the end of
the statement. A new one is not created because the older materialized zonemap is
detected.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

create_zonemap_on_table

Use this clause to create a basic zone map.

ON Clause

In the ON clause, first specify the fact table for the zone map, and then inside the parentheses
specify one or more columns of the fact table to be included in the zone map.

For each specified fact table column, Oracle creates two columns in the zone map. These two
columns contain the minimum and maximum values of the fact table column in each zone.

Chapter 14
CREATE MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 142

Oracle generates names for the zone map columns of the form MIN_1_column and MAX_1_column
for the first specified fact table column, MIN_2_column and MAX_2_column for the second specified
fact table column, and so on.

If you omit schema, then Oracle assumes the fact table is in your own schema. The fact table
can be a table or a materialized view

create_zonemap_as_subquery

Use this clause to create a basic zone map or a join zone map. To create a basic zone map,
specify a single base table in the FROM clause of the defining subquery. To create a join zone
map, specify a table that is left outer joined to one or more other tables in the FROM clause of
the defining subquery.

column_alias

You can specify a column alias for each table column to be included in the zone map. The
column alias list explicitly resolves any column name conflict, eliminating the need to specify
aliases in the SELECT list of the defining subquery. If you specify any column alias in this
clause, then you must specify an alias for each column in the SELECT list of the defining
subquery. The first column alias you specify must be ZONE_ID$, which corresponds to the first
column in the SELECT list, the SYS_OP_ZONE_ID function expression.

AS query_block

Specify the defining subquery of the zone map. The subquery must consist of a single
query_block. You can specify only the SELECT, FROM, WHERE, and GROUP BY clauses of query_block,
and those clauses must satisfy the following requirements:

• The first column in the SELECT list must be the SYS_OP_ZONE_ID function expression. Refer
to SYS_OP_ZONE_ID for more information.

• The remaining columns in the SELECT list must be function expressions that return
minimum and maximum values for the columns you want to include in the zone map. For
each column, specify a pair of function expressions of the following form:

MIN([table.]column), MAX([table.]column)

For table, specify the name or table alias for the table that contains the column. The table
can be a fact table or dimension table. For column, specify the name or column alias for the
column.

• The FROM clause can specify a fact table alone, or a fact table and one or more dimension
tables with each dimension table left outer joined to the fact table. You can specify LEFT
[OUTER] JOIN syntax in the FROM clause, or apply the outer join operator (+) to dimension
table columns in the join condition in the WHERE clause. You can optionally specify a table
alias for any of the tables in the FROM clause. Fact tables and dimension tables can be
tables or materialized views.

• In the WHERE clause, you can specify only left outer join conditions using the outer join
operator(+).

• You must specify a GROUP BY clause with the same SYS_OP_ZONE_ID function expression
that you specified for the first column of the SELECT list.

schema

Specify the schema to contain the zone map. If you omit schema, then Oracle Database creates
the zone map in your schema.

Chapter 14
CREATE MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 142

zonemap_name

Specify the name of the zone map to be created. The name must satisfy the requirements
listed in "Database Object Naming Rules ".

zonemap_attributes

Use this clause to specify the following attributes for the zone map: TABLESPACE, SCALE,
PCTFREE, PCTUSED, and CACHE or NOCACHE.

TABLESPACE

Specify the tablespace in which the zone map is to be created. If you omit this clause, then
Oracle Database creates the zone map in the default tablespace of the schema containing the
zone map.

SCALE

This clause lets you specify the zone map scale, which determines the number of contiguous
disk blocks that form a zone. The scale is an integer value that represents a power of 2. For
example, a scale of 10 means up to 2 raised to the 10th power, or 1024, contiguous disk
blocks will form a zone. For integer, specify a value between 4 and 16, inclusive. The
recommended value is 10; this is the default.

PCTFREE

Specify an integer representing the percentage of space in each data block of the zone map
reserved for future updates to rows of the zone map. The integer value must be between 0 and
99, inclusive. The default value is 10. Refer to physical_attributes_clause for more information
on the PCTFREE parameter.

PCTUSED

Specify an integer representing the minimum percentage of used space that Oracle maintains
for each data block of the zone map. The integer value must be between 0 and 99, inclusive.
The default value is 40. Refer to physical_attributes_clause for more information on the
PCTUSED parameter.

CACHE | NOCACHE

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for this zone
map are placed at the most recently used end of the least recently used (LRU) list in the buffer
cache when a full table scan is performed.

NOCACHE specifies that the blocks are placed at the least recently used end of the LRU list.
The default is NOCACHE.

zonemap_refresh_clause

Use this clause to specify the default refresh method and mode for the zone map. If you do not
specify a refresh method (FAST, COMPLETE, or FORCE), then FORCE is the default method. If you
do not specify a refresh mode (ON clauses), then ON LOAD DATA MOVEMENT is the default
mode.

FAST

Specify FAST to indicate the fast refresh method, which performs the refresh according to the
changes that have occurred to the base tables. While zone maps are internally implemented
as a type of materialized view, materialized view logs on base tables are not needed to perform
a fast refresh of a zone map

Chapter 14
CREATE MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 142

COMPLETE

Specify COMPLETE to indicate the complete refresh method, which is implemented by executing
the defining query of the zone map. If you request a complete refresh, then Oracle Database
performs a complete refresh even if a fast refresh is possible.

FORCE

Specify FORCE to indicate that when a refresh occurs, Oracle Database will perform a fast
refresh if one is possible or a complete refresh if fast refresh is not possible. This is the default.

ON DEMAND

Specify ON DEMAND to indicate that database will not refresh the zone map unless you
manually issue an ALTER MATERIALIZED ZONEMAP ... REBUILD statement. If you specify this
clause, then the zone map is referred to as a refresh-on-demand zone map. Refer to REBUILD
in the documentation on ALTER MATERIALIZED ZONEMAP for more information on rebuilding a
zone map.

ON COMMIT

Specify ON COMMIT to indicate that a refresh is to occur whenever the database commits a
transaction that operates on a base table of the zone map. If you specify this clause, then the
zone map is referred to as a refresh-on-commit zone map. This clause may increase the time
taken to complete the commit, because the database performs the refresh operation as part of
the commit process.

ON LOAD

Specify ON LOAD to indicate that a refresh is to occur at the end of a direct-path insert (serial or
parallel) resulting either from an INSERT or a MERGE operation.

ON DATA MOVEMENT

Specify ON DATA MOVEMENT to indicate that a refresh is to occur at the end of the following
data movement operations:

• Data redefinition using the DBMS_REDEFINITION package

• Table partition maintenance operations that are specified by the following clauses of ALTER
TABLE: coalesce_table, merge_table_partitions, move_table_partition, and split_table_partition

ON LOAD DATA MOVEMENT

Specify ON LOAD DATA MOVEMENT to indicate that a refresh is to occur at the end of a direct-
path insert or a data movement operation. This is the default.

ENABLE | DISABLE PRUNING

This clause lets you control the use of the zone map for pruning.

• Specify ENABLE PRUNING to enable use of the zone map for pruning. This is the default.

• Specify DISABLE PRUNING to disable use of the zone map for pruning. The optimizer will not
use the zone map for pruning, but the database will continue to maintain the zone map.

If the setting is ENABLE PRUNING, then the optimizer will consider using the zone map for
pruning during SQL operations that include any of the following conditions:

• Comparison conditions: =, <=, <, >=, >

The condition must be a simple comparison condition that has a column name on one side
and a literal or bind variable on the other side. For example:

Chapter 14
CREATE MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 142

WHERE country_name = 'United States of America'
WHERE country_name = :country1
WHERE 10000 >= salary

• IN condition

The IN condition must have a column name on the left side and an expression list of literals
or bind variables on the right side. For example:

WHERE country_name IN ('Germany', 'India', 'United Kingdom')
WHERE country_name IN (:country1, :country2, :country3)
WHERE prod_id IN (20, 48, 132, 143)

• LIKE condition

The LIKE condition must have a column name on the left side and a text literal on the right
side. The text literal is the pattern for the LIKE condition and it must contain at least one
pattern matching character. Valid pattern matching characters are the underscore (_),
which matches exactly one character, and the percent sign (%), which matches zero or
more characters. The first character of the pattern cannot be a pattern matching character.
For example:

WHERE prod_name LIKE 'DVD%'
WHERE prod_name LIKE 'Model%Cordless%Battery'
WHERE prod_name LIKE 'CD%Pack of _'

See Also

Conditions for more information on conditions

Restrictions on Zone Maps

Zone maps are subject to the following restrictions:

• A table can be a fact table for at most one zone map. A table can be a dimension table for
multiple zone maps. A table can be a fact table for one zone map and a dimension table
for other zone maps.

• A base table of a zone map cannot be an external table, an index-organized table, a
remote table, a temporary table, or a view.

• A base table of a zone map cannot be in the schema of the user SYS.

• A zone map cannot be partitioned.

• You can define a zone map on a column of any scalar data type other than BFILE, BLOB,
CLOB, LONG, LONG RAW, or NCLOB.

• All joins specified in the defining subquery of a zone map must be left outer equijoins with
the fact table on the left side.

• If the FROM clause of the defining subquery for a zone map references a materialized view,
then you must refresh that materialized view before refreshing the zone map.

• You cannot perform DML operations directly on a zone map.

• Each column of the zone map must have one of the following declared collations: BINARY
or USING_NLS_COMP.

Chapter 14
CREATE MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 142

Examples

The following statement creates a basic zone map called sales_zmap. The zone map tracks
columns cust_id and prod_id in the table sales.

CREATE MATERIALIZED ZONEMAP sales_zmap
 ON sales(cust_id, prod_id);

The following statement creates a basic zone map called sales_zmap that is similar to the zone
map created in the previous example. However, this statement uses a defining subquery to
create the zone map.

CREATE MATERIALIZED ZONEMAP sales_zmap
 AS SELECT SYS_OP_ZONE_ID(rowid),
 MIN(cust_id), MAX(cust_id),
 MIN(prod_id), MAX(prod_id)
 FROM sales
 GROUP BY SYS_OP_ZONE_ID(rowid);

The following statement creates a join zone map called sales_zmap. The fact table for the zone
map is sales and the zone map has one dimension table: customers. The zone map tracks two
columns in the dimension table: cust_state_province and cust_city.

CREATE MATERIALIZED ZONEMAP sales_zmap
 AS SELECT SYS_OP_ZONE_ID(s.rowid),
 MIN(cust_state_province), MAX(cust_state_province),
 MIN(cust_city), MAX(cust_city)
 FROM sales s
 LEFT OUTER JOIN customers c ON s.cust_id = c.cust_id
 GROUP BY SYS_OP_ZONE_ID(s.rowid);

The following statement creates a join zone map called sales_zmap. The fact table for the zone
map is sales and the zone map has two dimension tables: products and customers. The zone map
tracks five columns in the dimension tables: prod_category and prod_subcategory in the products table,
and country_id, cust_state_province, and cust_city in the customers table.

CREATE MATERIALIZED ZONEMAP sales_zmap
 AS SELECT SYS_OP_ZONE_ID(s.rowid),
 MIN(prod_category), MAX(prod_category),
 MIN(prod_subcategory), MAX(prod_subcategory),
 MIN(country_id), MAX(country_id),
 MIN(cust_state_province), MAX(cust_state_province),
 MIN(cust_city), MAX(cust_city)
 FROM sales s
 LEFT OUTER JOIN products p ON s.prod_id = p.prod_id
 LEFT OUTER JOIN customers c ON s.cust_id = c.cust_id
 GROUP BY sys_op_zone_id(s.rowid);

The following statement creates a join zone map that is identical to the zone map created in
the previous example. The only difference is that the previous example uses the LEFT OUTER
JOIN syntax in the FROM clause and the following example uses the outer join operator (+) in
the WHERE clause.

CREATE MATERIALIZED ZONEMAP sales_zmap
 AS SELECT SYS_OP_ZONE_ID(s.rowid),
 MIN(prod_category), MAX(prod_category),
 MIN(prod_subcategory), MAX(prod_subcategory),
 MIN(country_id), MAX(country_id),
 MIN(cust_state_province), MAX(cust_state_province),
 MIN(cust_city), MAX(cust_city)

Chapter 14
CREATE MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 142

 FROM sales s, products p, customers c
 WHERE s.prod_id = p.prod_id(+) AND
 s.cust_id = c.cust_id(+)
 GROUP BY sys_op_zone_id(s.rowid);

CREATE MLE ENV
Purpose

MLE Environments are first-class schema objects that can be managed on their own and
reused across multiple execution contexts.

MLE uses execution contexts to execute MLE language code and MLE environments allow
you configure properties for these execution contexts. You can set language options to
customize the runtime of the MLE language and you can enable specific MLE modules to be
imported to an execution context and manage dependencies.

Use CREATE MLE ENV to create a new MLE environment in the database in one of three ways:

You can create an MLE environment in one of three ways :

• As a fresh empty environment.

• As an environment with a list of imports and a language option string.

• By by cloning an existing environment. Cloning an environment creates an independent
copy that is not affected by subsequent changes to the original environment.

MLE environments use the same namespace as tables and procedures.

Prerequisites

Users must have the CREATE MLE privilege to create an environment in their own schema, and
the CREATE ANY MLE privilege to create an environment in other schemas. The user creating
the environment must either own the environment being cloned or should have the EXECUTE
privilege on it.

Syntax

CREATE

OR REPLACE

MLE ENV

IF NOT EXISTS schema .

name

CLONE

schema .

environment_name

IMPORTS (’ import_name ’ MODULE

schema .

mle_module_name

,

) LANGUAGE OPTIONS option_string

PURE

Chapter 14
CREATE MLE ENV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 142

Semantics

OR REPLACE

Specify OR REPLACE to re-create the environment, if it already exists. You can use this clause to
change the definition of an existing environment without dropping, re-creating, and regranting
object privileges previously granted on it.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the MLE environment does not exist, a new MLE environment is created at the end of the
statement.

• If the MLE environment, this is the MLE environment you have at the end of the statement.
A new one is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the error: REPLACE and IF NOT
EXISTS cannot coexist in the same DDL statement.

PURE

Specify PURE on MLE MLE environments and JavaScript inline call specifications create
restricted JavaScript execution contexts.

For more see About Restricted Execution Contexts of the JavaScript Developer's Guide.

Examples

The following example creates an empty MLE environment myenv.

CREATE MLE ENV scott."myenv";

The following example clones an existing MLE environment:

CREATE MLE ENV scott."myenv" CLONE "other_env";

See Also

• MLE JavaScript Modules and Environments

• ALTER MLE ENV

• DROP MLE ENV

CREATE MLE MODULE
Purpose

Multilingual Engine (MLE) allows developers to write, store, and execute JavaScript code in
Oracle Database Release 23 on Linux x86-64 by using MLE Modules to encapsulate JavaScript.

Use CREATE MLE MODULE to create a new MLE module in the database.

Chapter 14
CREATE MLE MODULE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 142

See Also

JavaScript Developer's Guide

Syntax

CREATE

OR REPLACE

MLE MODULE

IF NOT EXISTS schema .

module_name

LANGUAGE

schema .

mle_language

VERSION version_string

USING BFILE (directory_object_name , server_file_name)

CLOB

BLOB

BFILE

selection_clause

AS module_text

Semantics

OR REPLACE

Specify OR REPLACE to re-create the module if it already exists. You can use this clause to
change the definition of an existing module without dropping, re-creating, and regranting object
privileges previously granted on it.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the MLE module does not exist, a new MLE module is created at the end of the
statement.

• If the MLE module exists, this is the MLE module you have at the end of the statement. A
new one is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

schema

Use schema to fully qualify the module name. If you do not specify schema, then the current
schema is used.

The length of the module name must not exceed 128 bytes. MLE modules use the same
namespace as tables and procedures.

Chapter 14
CREATE MLE MODULE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 142

LANGUAGE, VERSION

Use LANGUAGE to specify the MLE language of the created module. You must use the value
JAVASCRIPT when you create JavaScript modules. An ORA-04101 error is thrown if an
unsupported MLE language is used.

The optional VERSION clause specifies a version string for the MLE module. Version strings are
purely informational and do not influence any behavior of MLE or the RDBMS. The version
string must fit into a VARCHAR2(256).

CLOB, BLOB, BFILE

Use USING to create MLE modules from code contained in CLOBs, BLOBs, or BFILEs.

You can specify the BFILE clause with a subquery or with a directory using directory_object_name
and server_file_name to specify the directory and filename of the MLE module you want to use.
Note that you must create the directory object before this step using CREATE DIRECTORY .

The CLOB | BLOB | BFILE clause specifies a subquery whose result must be a single row and
column of the specified type (CLOB, BLOB, or BFILE) that holds the contents of the MLE module
to be deployed. The CLOB option is available only if the MLE module contains textual data. The
textual data in MLE modules contained in BLOBs and BFILEs is encoded in UTF-8.

AS

Use AS to specify the contents of the MLE module as a sequence of characters inlined in the
DDL statement. As with CLOBs, the AS clause is only available when the source of the MLE
module contains textual data. Do not encapsulate the character sequence within quotes. The
character sequence is delimited by the end of the DDL statement.

See Also

• JavaScript Developer's Guide

• DROP MLE MODULE

• ALTER MLE MODULE

• CREATE MLE ENV

CREATE OPERATOR
Purpose

Use the CREATE OPERATOR statement to create a new operator and define its bindings.

Operators can be referenced by indextypes and by SQL queries and DML statements. The
operators, in turn, reference functions, packages, types, and other user-defined objects.

See Also

Oracle Database Data Cartridge Developer's Guide and Oracle Database Concepts
for a discussion of these dependencies and of operators in general

Chapter 14
CREATE OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 142

Prerequisites

To create an operator in your own schema, you must have the CREATE OPERATOR system
privilege. To create an operator in another schema, you must have the CREATE ANY OPERATOR
system privilege. In either case, you must also have the EXECUTE object privilege on the
functions and operators referenced.

Syntax

create_operator::=

CREATE

OR REPLACE

OPERAT0R

IF NOT EXISTS schema .

operator binding_clause ;

SHARING =
METADATA

NONE

binding_clause::=

BINDING (parameter_type

,

) RETURN return_type

implementation_clause

using_function_clause

,

implementation_clause::=

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause

context_clause::=

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type

COMPUTE ANCILLARY DATA

WITH COLUMN CONTEXT

Chapter 14
CREATE OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 142

using_function_clause::=

USING

schema .

package .

type .

function_name

Semantics

OR REPLACE

Specify OR REPLACE to replace the definition of the operator schema object.

Restriction on Replacing an Operator

You can replace the definition only if the operator has no dependent objects, such as
indextypes supporting the operator.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the operator does not exist, a new operator is created at the end of the statement.

• If the operator exists, this is the operator you have at the end of the statement. A new one
is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the schema containing the operator. If you omit schema, then the database creates the
operator in your own schema.

operator

Specify the name of the operator to be created. The name must satisfy the requirements listed
in "Database Object Naming Rules ".

binding_clause

Use the binding_clause to specify one or more parameter data types (parameter_type) for binding the
operator to a function. The signature of each binding—the sequence of the data types of the
arguments to the corresponding function—must be unique according to the rules of
overloading.

The parameter_type can itself be an object type. If it is, then you can optionally qualify it with its
schema.

Restriction on Binding Operators

You cannot specify a parameter_type of REF, LONG, or LONG RAW.

Chapter 14
CREATE OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 142

See Also

Oracle Database PL/SQL Language Reference for more information about
overloading

RETURN Clause

Specify the return data type for the binding.

The return_type can itself be an object type. If so, then you can optionally qualify it with its
schema.

Restriction on Binding Return Data Type

You cannot specify a return_type of REF, LONG, or LONG RAW.

SHARING

Use the sharing clause if you want to create the object in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

implementation_clause

Use this clause to describe the implementation of the binding.

ANCILLARY TO Clause

Use the ANCILLARY TO clause to indicate that the operator binding is ancillary to the specified
primary operator binding (primary_operator). If you specify this clause, then do not specify a
previous binding with just one number parameter.

context_clause

Use the context_clause to describe the functional implementation of a binding that is not ancillary
to a primary operator binding.

WITH INDEX CONTEXT, SCAN CONTEXT

Use this clause to indicate that the functional evaluation of the operator uses the index and a
scan context that is specified by the implementation type.

COMPUTE ANCILLARY DATA

Specify COMPUTE ANCILLARY DATA to indicate that the operator binding computes ancillary
data.

WITH COLUMN CONTEXT

Specify WITH COLUMN CONTEXT to indicate that Oracle Database should pass the column
information to the functional implementation for the operator.

Chapter 14
CREATE OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 142

If you specify this clause, then the signature of the function implemented must include one
extra ODCIFuncCallInfo structure.

See Also

Oracle Database Data Cartridge Developer's Guide for instructions on using the
ODCIFuncCallInfo routine

using_function_clause

The using_function_clause lets you specify the function that provides the implementation for the
binding. The function_name can be a standalone function, packaged function, type method, or a
synonym for any of these.

If the function is subsequently dropped, then the database marks all dependent objects
INVALID, including the operator. However, if you then subsequently issue an ALTER
OPERATOR ... DROP BINDING statement to drop the binding, then subsequent queries and DML
will revalidate the dependent objects.

Examples

Creating User-Defined Operators: Example

This example creates a very simple functional implementation of equality and then creates an
operator that uses the function. For a more complete set of examples, see Oracle Database
Data Cartridge Developer's Guide.

CREATE FUNCTION eq_f(a VARCHAR2, b VARCHAR2) RETURN NUMBER AS
BEGIN
 IF a = b THEN RETURN 1;
 ELSE RETURN 0;
 END IF;
END;
/

CREATE OPERATOR eq_op
 BINDING (VARCHAR2, VARCHAR2)
 RETURN NUMBER
 USING eq_f;

Chapter 14
CREATE OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 142

CREATE OUTLINE
Purpose

Note

Stored outlines are deprecated. They are still supported for backward compatibility.
However, Oracle recommends that you use SQL plan management instead. SQL plan
management creates SQL plan baselines, which offer superior SQL performance
stability compared with stored outlines.

You can migrate existing stored outlines to SQL plan baselines by using the
MIGRATE_STORED_OUTLINE function of the DBMS_SPM package or Enterprise Manager
Cloud Control. When the migration is complete, the stored outlines are marked as
migrated and can be removed. You can drop all migrated stored outlines on your
system by using the DROP_MIGRATED_STORED_OUTLINE function of the DBMS_SPM
package.

See Also: Oracle Database SQL Tuning Guide for more information about SQL plan
management and Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SPM package

Use the CREATE OUTLINE statement to create a stored outline, which is a set of attributes used
by the optimizer to generate an execution plan. You can then instruct the optimizer to use a set
of outlines to influence the generation of execution plans whenever a particular SQL statement
is issued, regardless of changes in factors that can affect optimization. You can also modify an
outline so that it takes into account changes in these factors.

Note

The SQL statement you want to affect must be an exact string match of the statement
specified when creating the outline.

See Also

• Oracle Database SQL Tuning Guide for information on execution plans

• ALTER OUTLINE for information on modifying an outline

• ALTER SESSION and ALTER SYSTEM for information on the
USE_STORED_OUTLINES and USE_PRIVATE_OUTLINES parameters

Prerequisites

To create a public or private outline, you must have the CREATE ANY OUTLINE system privilege.

If you are creating a clone outline from a source outline, then you must also have the
SELECT_CATALOG_ROLE role.

Chapter 14
CREATE OUTLINE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 142

You can enable or disable the use of stored outlines dynamically for an individual session or for
the system:

• Enable the USE_STORED_OUTLINES parameter to use public outlines.

• Enable the USE_PRIVATE_OUTLINES parameter to use private stored outlines.

Syntax

create_outline::=

CREATE

OR REPLACE

PUBLIC

PRIVATE

OUTLINE

outline

FROM

PUBLIC

PRIVATE

source_outline

FOR CATEGORY category ON statement

;

Note

None of the clauses after outline are required. However, you must specify at least one
clause after outline, and it must be either the FROM clause or the ON clause.

Semantics

OR REPLACE

Specify OR REPLACE to replace an existing outline with a new outline of the same name.

PUBLIC | PRIVATE

Specify PUBLIC if you are creating an outline for use by PUBLIC. This is the default.

Specify PRIVATE to create an outline for private use by the current session only. The data of this
outline is stored in the current schema.

outline

Specify the unique name to be assigned to the stored outline. The name must satisfy the
requirements listed in "Database Object Naming Rules ". If you do not specify outline, then the
database generates an outline name.

See Also

"Creating an Outline: Example"

Chapter 14
CREATE OUTLINE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 142

FROM source_outline Clause

Use the FROM clause to create a new outline by copying an existing one. By default, Oracle
Database looks for source_category in the public area. If you specify PRIVATE, then the database
looks for the outline in the current schema.

Restriction on Copying an Outline

If you specify the FROM clause, then you cannot specify the ON clause.

See Also

"Creating a Private Clone Outline: Example" and "Publicizing a Private Outline to the
Public Area: Example"

FOR CATEGORY Clause

Specify an optional name used to group stored outlines. For example, you could specify a
category of outlines for end-of-week use and another for end-of-quarter use. If you do not
specify category, then the outline is stored in the DEFAULT category.

ON Clause

Specify the SQL statement for which the database will create an outline when the statement is
compiled. This clause is optional only if you are creating a copy of an existing outline using the
FROM clause.

You can specify any one of the following statements: SELECT, DELETE, UPDATE, INSERT ...
SELECT, CREATE TABLE ... AS SELECT.

Restrictions on the ON Clause

This clause is subject to the following restrictions:

• If you specify the ON clause, then you cannot specify the FROM clause.

• You cannot create an outline on a multitable INSERT statement.

• The SQL statement in the ON clause cannot include any DML operation on a remote
object.

Note

In subsequent statements, you can specify additional outlines for the same SQL
statement, but each outline for the same statement must specify a different category in
the CATEGORY clause.

Examples

Creating an Outline: Example

The following statement creates a stored outline by compiling the ON statement. The outline is
called salaries and is stored in the category special.

Chapter 14
CREATE OUTLINE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 142

CREATE OUTLINE salaries FOR CATEGORY special
 ON SELECT last_name, salary FROM employees;

When this same SELECT statement is subsequently compiled, if the USE_STORED_OUTLINES
parameter is set to special, the database generates the same execution plan as was generated
when the outline salaries was created.

Creating a Private Clone Outline: Example

The following statement creates a stored private outline my_salaries based on the public category
salaries created in the preceding example.

CREATE OR REPLACE PRIVATE OUTLINE my_salaries
 FROM salaries;

Publicizing a Private Outline to the Public Area: Example

The following statement copies back (publicizes) a private outline to the public area after
private editing:

CREATE OR REPLACE OUTLINE public_salaries
 FROM PRIVATE my_salaries;

CREATE PACKAGE
Purpose

Packages are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the CREATE PACKAGE statement to create the specification for a stored package, which is
an encapsulated collection of related procedures, functions, and other program objects stored
together in the database. The package specification declares these objects. The package
body, specified subsequently, defines these objects.

See Also

• CREATE PACKAGE BODY for information on specifying the implementation of the
package

• CREATE FUNCTION and CREATE PROCEDURE for information on creating
standalone functions and procedures

• ALTER PACKAGE and DROP PACKAGE for information on modifying and
dropping a package

• Oracle Database Development Guide and Oracle Database PL/SQL Packages
and Types Reference for detailed discussions of packages and how to use them

Prerequisites

To create or replace a package in your own schema, you must have the CREATE PROCEDURE
system privilege. To create or replace a package in another user's schema, you must have the
CREATE ANY PROCEDURE system privilege.

Chapter 14
CREATE PACKAGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 142

To embed a CREATE PACKAGE statement inside an Oracle Database precompiler program, you
must terminate the statement with the keyword END-EXEC followed by the embedded SQL
statement terminator for the specific language.

See Also

Oracle Database PL/SQL Language Reference for more information

Syntax

Packages are defined using PL/SQL. Therefore, the syntax diagram in this book shows only
the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the PL/SQL
syntax, semantics, and examples.

create_package::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

PACKAGE

IF NOT EXISTS

plsql_package_source

(plsql_package_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the package specification if it already exists. Use this clause
to change the specification of an existing package without dropping, re-creating, and regranting
object privileges previously granted on the package. If you change a package specification,
then Oracle Database recompiles it.

Users who had previously been granted privileges on a redefined package can still access the
package without being regranted the privileges.

If any function-based indexes depend on the package, then the database marks the indexes
DISABLED.

See Also

ALTER PACKAGE for information on recompiling package specifications

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the package does not exist, a new package is created at the end of the statement.

• If the package exists, this is the package you have at the end of the statement. A new one
is not created because the older one is detected.

Chapter 14
CREATE PACKAGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 142

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the package is an editioned or noneditioned object if
editioning is enabled for the schema object type PACKAGE in schema. The default is EDITIONABLE.
For information about editioned and noneditioned objects, see Oracle Database Development
Guide.

plsql_package_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_package_source, including examples.

CREATE PACKAGE BODY
Purpose

Package bodies are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the CREATE PACKAGE BODY statement to create the body of a stored package, which is an
encapsulated collection of related procedures, stored functions, and other program objects
stored together in the database. The package body defines these objects. The package
specification, defined in an earlier CREATE PACKAGE statement, declares these objects.

Packages are an alternative to creating procedures and functions as standalone schema
objects.

See Also

• CREATE FUNCTION and CREATE PROCEDURE for information on creating
standalone functions and procedures

• CREATE PACKAGE for a discussion of packages, including how to create
packages

• ALTER PACKAGE for information on modifying a package

• DROP PACKAGE for information on removing a package from the database

Prerequisites

To create or replace a package in your own schema, you must have the CREATE PROCEDURE
system privilege. To create or replace a package in another user's schema, you must have the
CREATE ANY PROCEDURE system privilege. In both cases, the package body must be created in
the same schema as the package.

To embed a CREATE PACKAGE BODY statement inside an Oracle Database precompiler
program, you must terminate the statement with the keyword END-EXEC followed by the
embedded SQL statement terminator for the specific language.

Chapter 14
CREATE PACKAGE BODY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 142

See Also

Oracle Database PL/SQL Language Reference

Syntax

Package bodies are defined using PL/SQL. Therefore, the syntax diagram in this book shows
only the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the
PL/SQL syntax, semantics, and examples.

create_package_body::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

PACKAGE BODY

IF NOT EXISTS

plsql_package_body_source

(plsql_package_body_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the package body if it already exists. Use this clause to
change the body of an existing package without dropping, re-creating, and regranting object
privileges previously granted on it. If you change a package body, then Oracle Database
recompiles it.

Users who had previously been granted privileges on a redefined package can still access the
package without being regranted the privileges.

See Also

ALTER PACKAGE for information on recompiling package bodies

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the package body does not exist, a new package body is created at the end of the
statement.

• If the package body exists, this is the package body you have at the end of the statement.
A new one is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

Chapter 14
CREATE PACKAGE BODY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 142

[EDITIONABLE | NONEDITIONABLE]

If you do not specify this clause, then the package body inherits EDITIONABLE or
NONEDITIONABLE from the package specification. If you do specify this clause, then it must
match that of the package specification.

plsql_package_body_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_package_body_source.

CREATE PFILE
Purpose

Use the CREATE PFILE statement to export either a binary server parameter file or the current
In-Memory parameter settings into a text initialization parameter file. Creating a text parameter
file is a convenient way to get a listing of the current parameter settings being used by the
database, and it lets you edit the file easily in a text editor and then convert it back into a server
parameter file using the CREATE SPFILE statement.

Upon successful execution of this statement, Oracle Database creates a text parameter file on
the server. In an Oracle Real Application Clusters environment, it will contain all parameter
settings of all instances. It will also contain any comments that appeared on the same line with
a parameter setting in the server parameter file.

Note on Creating Text Parameter Files in a CDB

When you create a text parameter file in a multitenant container database (CDB), the current
container can be the root or a PDB.

• If the current container is the root, then the database creates a text file that contains the
parameter settings for the root.

• If the current container is a PDB, then the database creates a text file that contains the
parameter settings for the PDB. In this case you must specify a pfile_name.

See Also

• CREATE SPFILE for information on server parameter files

• Oracle Database Administrator's Guide for additional information on text
initialization parameter files and binary server parameter files

• Oracle Real Application Clusters Administration and Deployment Guide for
information on using server parameter files in an Oracle Real Application Clusters
environment

Prerequisites

You must have one of the following system privileges to execute this statement:

• SYSDBA

• SYSDG

• SYSOPER

Chapter 14
CREATE PFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 142

• SYSBACKUP

• SYSASM

• SYSRAC

You can execute this statement either before or after instance startup.

Restrictions

You cannot overwrite OS files as a SYSDG, SYSOPER, or SYSRAC user.

Syntax

create_pfile::=

CREATE PFILE

= ’ pfile_name ’

FROM
SPFILE

= ’ spfile_name ’

MEMORY
;

Semantics

pfile_name

Specify the name of the text parameter file you want to create. If you do not specify pfile_name,
then Oracle Database uses the platform-specific default initialization parameter file name.
pfile_name can include a path prefix. If you do not specify such a path prefix, then the database
adds the path prefix for the default storage location, which is platform dependent.

spfile_name

Specify the name of the binary server parameter from which you want to create a text file.

• If you specify spfile_name, then the file must exist on the server. If the file does not reside in
the default directory for server parameter files on your operating system, then you must
specify the full path.

• If you do not specify spfile_name, then the database uses the spfile that is currently
associated with the instance, usually the one that was used a startup. If no spfile is
associated with the instance, then the database looks for the platform-specific default
server parameter file name. If that file does not exist, then the database returns an error.

See Also

Creating and Configuring an Oracle Database

MEMORY

Specify MEMORY to create a pfile using the current system-wide parameter settings. In an
Oracle RAC environment, the created file will contain the parameter settings from each
instance.

Examples

Creating a Parameter File: Example

Chapter 14
CREATE PFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 142

The following example creates a text parameter file my_init.ora from a binary server parameter
file s_params.ora:

CREATE PFILE = 'my_init.ora' FROM SPFILE = 's_params.ora';

Note

Typically you will need to specify the full path and filename for parameter files on your
operating system. Refer to your Oracle operating system documentation for path
information and default parameter file names.

CREATE PLUGGABLE DATABASE
Purpose

Use the CREATE PLUGGABLE DATABASE statement to create a pluggable database (PDB).

This statement enables you to perform the following tasks:

• Create a PDB by using the seed as a template

Use the create_pdb_from_seed clause to create a PDB by using the seed in the multitenant
container database (CDB) as a template. The files associated with the seed are copied to
a new location and the copied files are then associated with the new PDB.

• Create a PDB by cloning an existing PDB

Use the create_pdb_clone clause to create a PDB by copying an existing PDB and then
plugging the copy into the CDB. The files associated with the existing PDB are copied to a
new location and the copied files are associated with the new PDB.

• Create a PDB by plugging an unplugged PDB into a CDB

Use the create_pdb_from_xml clause to plug an unplugged PDB into a CDB, using an XML
metadata file.

• Create a proxy PDB by referencing another PDB. A proxy PDB provides fully functional
access to the referenced PDB.

Use the create_pdb_clone clause and specify AS PROXY FROM to create a proxy PDB.

• Create an application container, application seed, or application PDB

Use the create_pdb_from_seed, create_pdb_clone, or create_pdb_from_xml clause. To create an
application container, you must specify the AS APPLICATION CONTAINER clause. To create
an application seed, you must specify the AS SEED clause.

Note

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers to
a non-CDB from a previous release.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 142

Note

When a new PDB is established in a CDB, it is possible that the name of a service
offered by the new PDB will collide with an existing service name. The namespace in
which a collision can occur is that of the listener that gives access to the CDB. Within
that namespace, collisions are possible among the names of CDB's default services,
PDB's default services, and user-defined services. For example, if two or more CDBs
on the same computer system use the same listener, and the newly established PDB
has the same service name as another PDB in these CDBs, then a collision occurs.

When you create a PDB, you can specify new names for any potential colliding service
names. See the clause service_name_convert. If you discover a service name
collision after a PDB is created, you must not attempt to operate the PDB that causes
a collision with an existing service name. If the colliding name is that of the PDB's
default service, then you must rename the PDB. If the colliding name is that of a user-
created service within the PDB, then you must drop that service and create one in its
place, with a non-colliding name, that has the same purpose and properties.

See Also

• Oracle Multitenant Administrator’s Guide for more information on multi-tenant
architecture and concepts.

• ALTER PLUGGABLE DATABASE and DROP PLUGGABLE DATABASE for
information on modifying and dropping PDBs

Prerequisites

You must be connected to a CDB. The CDB must be open and in READ WRITE mode.

To create a PDB or an application container, the current container must be the root and you
must have the CREATE PLUGGABLE DATABASE system privilege, granted commonly.

To create an application seed or an application PDB, the current container must be an
application root, the application container must be open and in READ WRITE mode, and you
must have the CREATE PLUGGABLE DATABASE system privilege, either granted commonly or
granted locally in that application container.

To specify the create_pdb_clone clause:

• If src_pdb_name refers to a PDB in the same CDB, then you must have the CREATE
PLUGGABLE DATABASE system privilege in the root of the CDB in which the new PDB will be
created and in the PDB being cloned.

• If src_pdb_name refers to a PDB in a remote database, then you must have the CREATE
PLUGGABLE DATABASE system privilege in the root of the CDB in which the new PDB will be
created. In addition, the remote user must have the CREATE PLUGGABLE DATABASE system
privilege in the PDB to which src_pdb_name refers.

See Oracle Multitenant Administrator’s Guide for more information on the prerequisites to PDB
creation.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 142

Syntax

create_pluggable_database::=

CREATE PLUGGABLE DATABASE
pdb_name

AS APPLICATION CONTAINER

AS SEED

create_pdb_from_seed

create_pdb_clone

create_pdb_from_xml

create_pdb_from_mirror_copy

container_map_clause

pdb_snapshot_clause

;

(create_pdb_from_seed::=, create_pdb_clone::=, create_pdb_from_xml::=)

create_pdb_from_seed::=

ADMIN USER admin_user_name IDENTIFIED BY password

pdb_dba_roles parallel_pdb_creation_clause

default_tablespace pdb_storage_clause file_name_convert service_name_convert

path_prefix_clause tempfile_reuse_clause user_tablespaces_clause standbys_clause

logging_clause create_file_dest_clause HOST = ’ hostname ’ PORT = number

(pdb_dba_roles::=, parallel_pdb_creation_clause::=, default_tablespace::=,
file_name_convert::=, service_name_convert::=, pdb_storage_clause::=,
path_prefix_clause::=, tempfile_reuse_clause::=, user_tablespaces_clause::=,
standbys_clause::=, logging_clause::=, create_file_dest_clause::=)

pdb_dba_roles::=

ROLES = (role

,

)

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 142

parallel_pdb_creation_clause::=

PARALLEL

integer

default_tablespace::=

DEFAULT TABLESPACE tablespace

DATAFILE datafile_tempfile_spec extent_management_clause

(datafile_tempfile_spec::=, extent_management_clause::=)

pdb_storage_clause::=

STORAGE

(

MAXSIZE

MAX_AUDIT_SIZE

MAX_DIAG_SIZE

UNLIMITED

size_clause
)

UNLIMITED

(size_clause::=)

file_name_convert::=

FILE_NAME_CONVERT =
(’ filename_pattern ’ , ’ replacement_filename_pattern ’

,

)

NONE

service_name_convert::=

SERVICE_NAME_CONVERT =
(’ service_name ’ , ’ replacement_service_name ’

,

)

NONE

path_prefix_clause::=

PATH_PREFIX =

’ path_name ’

directory_object_name

NONE

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 142

tempfile_reuse_clause::=

TEMPFILE REUSE

user_tablespaces_clause::=

USER_TABLESPACES =

(’ tablespace ’

,

)

ALL

EXCEPT (’ tablespace ’

,

)

NONE

SNAPSHOT COPY

NO DATA

COPY

MOVE

NOCOPY

standbys_clause::=

STANDBYS =

(’ cdb_name ’

,

)

ALL

EXCEPT (’ cdb_name ’

,

)

NONE

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

create_file_dest_clause::=

CREATE_FILE_DEST =

NONE

’ directory_path_name ’

diskgroup_name

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 142

create_pdb_clone::=

FROM
src_pdb_name

@ dblink

NON$CDB @ dblink

AS PROXY FROM src_pdb_name @ dblink

using_snapshot_clause

parallel_pdb_creation_clause default_tablespace pdb_storage_clause

file_name_convert service_name_convert path_prefix_clause tempfile_reuse_clause

SNAPSHOT COPY user_tablespaces_clause standbys_clause logging_clause

create_file_dest_clause keystore_clause pdb_refresh_mode_clause

RELOCATE

KEEP SOURCE
AVAILABILITY

MAX

NORMAL

pdb_refresh_mode_clause

NO DATA HOST = ’ hostname ’ PORT = number

(parallel_pdb_creation_clause::=, default_tablespace::=, pdb_storage_clause::=,
file_name_convert::=, service_name_convert::=, path_prefix_clause::=,
tempfile_reuse_clause::=, user_tablespaces_clause::=, standbys_clause::=, logging_clause::=,
create_file_dest_clause::=, keystore_clause::=, pdb_refresh_mode_clause::=)

keystore_clause::=

KEYSTORE IDENTIFIED BY
EXTERNAL STORE

keystore_password

NO REKEY

REKEY USING algorithm

pdb_refresh_mode_clause::=

REFRESH MODE

MANUAL

EVERY refresh_interval

HOURS

MINUTES

NONE

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 142

create_pdb_from_xml::=

AS CLONE

USING filename

source_file_name_convert

source_file_directory

COPY

MOVE

file_name_convert

NOCOPY

service_name_convert default_tablespace pdb_storage_clause path_prefix_clause

tempfile_reuse_clause user_tablespaces_clause standbys_clause logging_clause

create_file_dest_clause HOST = ’ hostname ’ PORT = number create_pdb_decrypt_from_xml

(source_file_name_convert::=, source_file_directory::=, file_name_convert::=,
service_name_convert::=, default_tablespace::=, pdb_storage_clause::=,
path_prefix_clause::=, tempfile_reuse_clause::=, user_tablespaces_clause::=,
standbys_clause::=, logging_clause::=, create_file_dest_clause::=)

create_pdb_from_mirror_copy::=

new_pdb_name FROM base_pdb_name

@dblinkname

USING MIRROR COPY mirror_name

using_snapshot_clause ::=

USING SNAPSHOT

snapshot_name

AT SCN snapshot_SCN

AT snapshot_timestamp

container_map_clause ::=

CONTAINER_MAP UPDATE
add_table_partition

split_table_partition

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 142

pdb_snapshot_clause ::=

SNAPSHOT

MANUAL

EVERY snapshot_interval
HOURS

MINUTES

NONE

source_file_name_convert::=

SOURCE_FILE_NAME_CONVERT =
(’ filename_pattern ’ , ’ replacement_filename_pattern ’

,

)

NONE

source_file_directory::=

SOURCE_FILE_DIRECTORY =
’ directory_path_name ’

NONE

create_pdb_decrypt_from_xml::=

DECRYPT USING transport_secret

Semantics

pdb_name

Specify the name of the PDB to be created. The name must satisfy the requirements listed in
"Database Object Naming Rules ". The first character of a PDB name must be an alphabet
character. The remaining characters can be alphanumeric or the underscore character (_).

The PDB name must be unique in the CDB, and it must be unique within the scope of all the
CDBs whose instances are reached through a specific listener.

AS APPLICATION CONTAINER

Specify this clause to create an application container.

See Also

Creating and Removing Application Containers and Seeds

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 142

using_snapshot_clause

Specify this clause to create a PDB from an existing PDB snapshot that can be identified by its
name, SCN, or timestamp.

If you additionally specify SNAPSHOT COPY, then the new PDB will depend on the existence
of the specified PDB snapshot. This will affect your ability to drop or purge the new PDB.

AS SEED

Specify this clause to create an application seed. The database assigns the seed a name of
the form application_container_name$SEED.

An application container can have at most one application seed. The application seed is
optional, but, if it exists, you can use it to create application PDBs quickly that match the
requirements of the application container. An application seed enables instant provisioning of
application PDBs that are created from it.

See Also

Creating and Removing Application Containers and Seeds

create_pdb_from_seed

This clause enables you to create a PDB by using the seed in the CDB as a template.

See Also

Creating a PDB from Scratch

ADMIN USER

Use this clause to create an administrative user who can be granted the privileges required to
perform administrative tasks on the PDB. For admin_user_name, specify name of the user to be
created. Use the IDENTIFIED BY clause to specify the password for admin_user_name. Oracle
Database creates a local user in the PDB and grants the PDB_DBA local role to that user.

pdb_dba_roles

This clause lets you grant one or more roles to the PDB_DBA role. Use this clause to grant roles
that have the privileges required by the administrative user of the PDB. For role, specify a
predefined role. For a list of predefined roles, refer to Oracle Database Security Guide.

You can also use the GRANT statement to grant roles to the PDB_DBA role after the PDB has
been created. Until you have granted the appropriate privileges to the PDB_DBA role, the SYS
and SYSTEM users can perform administrative tasks on a PDB.

parallel_pdb_creation_clause

This clause instructs the CDB to use parallel execution servers to copy the new PDB's data
files to a new location. This may result in faster creation of the PDB.

PARALLEL

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 142

If you specify PARALLEL, then the CDB automatically chooses the number of parallel execution
servers to use. This is the default if the COMPATIBLE initialization parameter is set to 12.2 or
higher.

PARALLEL integer

Use integer to specify the number of parallel execution servers to use. The CDB can ignore
this setting, depending on the current database load and the number of available parallel
execution servers. If you specify a value of 0 or 1, then the CDB does not parallelize the
creation of the PDB. This can result in a longer PDB creation time.

default_tablespace

If you specify this clause, then Oracle Database creates a smallfile tablespace and sets it as
the default permanent tablespace for the PDB. Oracle Database will assign the default
tablespace to any non-SYSTEM user for whom a different permanent tablespace is not
specified. The default_tablespace clause has the same semantics that it has for the CREATE
DATABASE statement. For full information, refer to default_tablespace in the documentation on
CREATE DATABASE.

pdb_storage_clause

Use this clause to specify storage limits for the PDB.

• Use MAXSIZE to limit the amount of storage that can be used by all tablespaces in the PDB
to the value specified with size_clause. This limit includes the size of data files and temporary
files for tablespaces belonging to the PDB. Specify MAXSIZE UNLIMITED to enforce no limit.

• Use MAX_AUDIT_SIZE to limit the amount of storage that can be used by unified audit OS
spillover (.bin format) files in the PDB to the value specified with size_clause. Specify
MAX_AUDIT_SIZE UNLIMITED to enforce no limit.

• Use MAX_DIAG_SIZE to limit the amount of storage for diagnostics (trace files and incident
dumps) in the Automatic Diagnostic Repository (ADR) that can be used by the PDB to the
value specified with size_clause. Specify MAX_DIAG_SIZE UNLIMITED to enforce no limit.

If you omit this clause, or specify STORAGE UNLIMITED, then there are no storage limits for the
PDB. This is equivalent to specifying STORAGE (MAXSIZE UNLIMITED MAX_AUDIT_SIZE
UNLIMITED MAX_DIAG_SIZE UNLIMITED).

file_name_convert

Use this clause to determine how the database generates the names of files (such as data files
and wallet files) for the PDB.

• For filename_pattern, specify a string found in names of files associated with the seed (when
creating a PDB by using the seed), associated with the source PDB (when cloning a PDB),
or listed in the XML file (when plugging a PDB into a CDB).

• For replacement_filename_pattern, specify a replacement string.

Oracle Database will replace filename_pattern with replacement_filename_pattern when generating the
names of files associated with the new PDB.

File name patterns cannot match files or directories managed by Oracle Managed Files.

You can specify FILE_NAME_CONVERT = NONE, which is the same as omitting this clause. If you
omit this clause, then the database first attempts to use Oracle Managed Files to generate file
names. If you are not using Oracle Managed Files, then the database uses the
PDB_FILE_NAME_CONVERT initialization parameter to generate file names. If this parameter is
not set, then an error occurs.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 142

service_name_convert

Use this clause to rename the user-defined services of the new PDB based on the service
names of the source PDB. When the service name of a new PDB conflicts with an existing
service name in the CDB, plug-in violations can result. This clause enables you to avoid these
violations.

• For service_name, specify the name of a service found in the PDB seed (when creating a
PDB in an application container by using the application seed) or in the source PDB (when
cloning a PDB or plugging a PDB into a CDB).

• For replacement_service_name, specify the replacement name for the service.

Oracle Database will use the replacement service name for the service in the PDB being
created.

You can specify SERVICE_NAME_CONVERT = NONE, which is the same as omitting this clause.

Restrictions on service_name_convert

The service_name_convert clause is subject to the following restrictions:

• You cannot change the name of the default service for a PDB. The default service has the
same name as the PDB.

• You cannot specify this clause when you use the create_pdb_from_seed clause to create a PDB
from the CDB seed, because the CDB seed does not have user-defined services. You can,
however, specify this clause when you use the create_pdb_from_seed clause to create an
application PDB from the application seed.

path_prefix_clause

Use this clause to ensure that file paths for directory objects associated with the PDB are
restricted to the specified directory or its subdirectories. This clause also ensures that the
following files associated with the PDB are restricted to the specified directory: the Oracle XML
repository for the PDB, files created with a CREATE PFILE statement, and the export directory for
Oracle wallets. You cannot modify the setting of this clause after you create the PDB. This
clause does not affect files created by Oracle Managed Files.

• For path_name, specify the absolute path name of an operating system directory. The single
quotation marks are required, with the result that the path name is case sensitive. Oracle
Database uses path_name as a prefix for all file paths associated with the PDB.

Be sure to specify path_name so that the resulting path name will be properly formed when
relative paths are appended to it. For example, on UNIX systems, be sure to end path_name
with a forward slash (/), such as:

PATH_PREFIX = '/disk1/oracle/dba/salespdb/'

• For directory_object_name, specify the name of a directory object that exists in the CDB root
(CDB$ROOT). The directory object points to the absolute path to be used for PATH_PREFIX.

• If you specify PATH_PREFIX = NONE, then the relative paths for directory objects associated
with the PDB are treated as absolute paths and are not restricted to a particular directory.

Omitting the path_prefix_clause is equivalent to specifying PATH_PREFIX = NONE.

After the path_prefix_clause is specified for a PDB, existing directory objects might not work as
expected, since the PATH_PREFIX string is always added as a prefix to all local directory objects
in the PDB. The path_prefix_clause only applies to user-created directory objects. It does not apply
to Oracle-supplied directory objects.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 142

tempfile_reuse_clause

When you create a PDB, Oracle Database associates temp files with the new PDB. Depending
on how you create the PDB, the temp files may already exist and may have been previously
used.

Specify TEMPFILE REUSE to instruct the database to format and reuse a temp file associated
with the new PDB if it already exists. If you specify this clause and a temp file does not exist,
then the database creates the temp file.

If you do not specify TEMPFILE REUSE and a temp file to be associated with the new PDB
already exists, then the database returns an error and does not create the PDB.

user_tablespaces_clause

This clause lets you specify the tablespaces to be made available in the new PDB. The
SYSTEM, SYSAUX, and TEMP tablespaces are available in all PDBs and cannot be specified in
this clause.

You can use this clause to separate the data for multiple schemas into different PDBs.

• Specify tablespace to make the tablespace available in the new PDB. You can specify more
than one tablespace in a comma-separated list.

• Specify ALL to make all tablespaces available in the new PDB. This is the default.

• Specify ALL EXCEPT to make all tablespaces available in the new PDB, except the
specified tablespaces.

• Specify NONE to make only the SYSTEM, SYSAUX, and TEMP tablespaces available in the
new PDB.

When the compatibility level of the CDB is 12.2 or higher, the tablespaces that are excluded by
this clause are created offline in the new PDB, and they have no data files associated with
them. When the compatibility level of the CDB is lower than 12.2, the tablespaces that are
excluded by this clause are offline in the new PDB, and all data files that belong to these
tablespaces are unnamed and offline.

{ SNAPSHOT COPY | NO DATA }

These clauses apply only when cloning a PDB with the create_pdb_clone clause. By default, the
database creates each tablespace to be made available in the new PDB according to the
settings specified for cloning the PDB. These clauses allow you to override those settings as
follows:

• SNAPSHOT COPY - Clone the tablespace using storage snapshots.

• NO DATA - Clone the data model definition of the tablespace, but not the tablespace's data.

{ COPY | MOVE | NOCOPY }

These clauses apply when you plug in a PDB with the create_pdb_from_xml clause. By default, the
database creates each tablespace to be made available in the new PDB according to the
settings specified for plugging in the PDB. These clauses allow you to override those settings
as follows:

• COPY - Copy the tablespace files to the new location.

• MOVE - Move the tablespace files to the new location.

• NOCOPY - Do not copy or move the tablespace files to the new location.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 142

standbys_clause

Use this clause to specify whether the new PDB is included in one or more standby CDBs. If
you include a PDB in a standby CDB, then during standby recovery the standby CDB will
search for the data files for the PDB. If the data files are not found, then standby recovery will
stop and you must copy the data files to the correct location before you can restart recovery.

• Specify cdb_name to include the new PDB in the specified standby CDB. You can specify
more than one standby CDB name in a comma-separated list.

• Specify ALL to include the new PDB in all standby CDBs. This is the default.

• Specify ALL EXCEPT to include the new PDB in all standby CDBs, except the specified
standby CDBs.

• Specify NONE to exclude the new PDB from all standby CDBs. When a PDB is excluded
from all standby CDBs, the PDB's data files are unnamed and marked offline on all of the
standby CDBs. Standby recovery will not stop if the data files for the PDB are not found on
the standby. If you instantiate a new standby CDB after the PDB is created, then you must
explicitly disable the PDB for recovery on the new standby CDB.

You can enable a PDB on a standby CDB after it was excluded on that standby CDB by
copying the data files to the correct location, bringing the PDB online, and marking it as
enabled for recovery.

logging_clause

Use this clause to specify the default logging attribute for tablespaces created within the PDB.
The logging attribute controls whether certain DML operations are logged in the redo log file
(LOGGING) or not (NOLOGGING).The default is LOGGING.

When creating a tablespace, you can override the default logging attribute by specifying the
logging_clause of the CREATE TABLESPACE statement.

Refer to logging_clause for a full description of this clause.

create_file_dest_clause

By default, a newly created PDB inherits its Oracle Managed Files settings from the root. If the
root uses Oracle Managed Files, then the PDB also uses Oracle Managed Files. The PDB
shares the same base file system directory for Oracle Managed Files with the root and has its
own subdirectory named with the GUID of the PDB. If the root does not use Oracle Managed
Files, then the PDB also does not use Oracle Managed Files.

This clause lets you override the default behavior. You can enable or disable Oracle Managed
Files for the PDB and you specify a different base file system directory or Oracle ASM disk
group for the PDB's files.

• Specify NONE to disable Oracle Managed Files for the PDB.

• Specify either directory_path_name or diskgroup_name to enable Oracle Managed Files for the
PDB.

Specify directory_path_name to designate the base file system directory for the PDB's files.
Specify the full path name of the operating system directory. The directory must exist and
Oracle processes must have appropriate permissions on the directory. The single
quotation marks are required, with the result that the path name is case sensitive.

Specify diskgroup_name to designate the default Oracle ASM disk group for the PDB's files.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 142

If you specify a value other than NONE, then the database implicitly sets the
DB_CREATE_FILE_DEST initialization parameter with SCOPE=SPFILE in the PDB.

HOST and PORT

These clauses are useful only if you are creating a PDB that you plan to reference from a
proxy PDB. This type of PDB is called a referenced PDB.

When creating a referenced PDB:

• If the name of the listener is different from the host name of the PDB, then you must
specify the HOST clause. For hostname, specify the fully qualified domain name of the
listener. Enclose hostname in single quotation marks. For example: 'myhost.example.com'.

In an Oracle Real Application Clusters (Oracle RAC) environment, you can specify for
hostname any of the hosts for the PDB.

• If the port number of the listener is not 1521, then you must specify the PORT clause. For
number, specify the port number for the listener.

A proxy PDB uses a database link to establish communication with its referenced PDB. After
communication is established, the proxy PDB communicates directly with the referenced PDB
without using a database link. The host name and port number of the listener for the
referenced PDB must be correct for the proxy PDB to function properly.

See Also

The clause AS PROXY FROM of create_pdb_clone for information on creating a proxy
PDB

create_pdb_clone

This clause enables you to create a new PDB by cloning a source to a target PDB. The source
can be a PDB in the local CDB, or a PDB in a remote CDB. The target PDB is the clone of the
source.

If the source is a PDB in the local CDB, then the source PDB can be plugged in or unplugged.
If the source is a PDB in a remote CDB, then the source PDB must be plugged in.

If the source is a PDB in a remote CDB, then the source and the CDB that contains the target
PDB must meet the following requirements:

• They must have the same endian format.

• They must have compatible character sets and national character sets, which means:

– Every character in the source character set is available in the local CDB character set.

– Every character in the source character set has the same code point value in the local
CDB character set.

• They must have the same set of database options installed.

Users in the PDB who used the default temporary tablespace of the source PDB use the
default temporary tablespace of the new PDB. Users who used non-default temporary
tablespaces in the PDB continue to use the same local temporary tablespaces in the new PDB.

You can clone a united PDB or an isolated PDB with the same command. The only difference
is that the keystore password you must provide are for different keystores.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 142

Hot Clone a PDB: Example

 CREATE PLUGGABLE DATABASE CDB1_PDB2_CLONE FROM CDB1_PDB2
 KEYSTORE IDENTIFIED BY keystore_password

For a united PDB:

• keystore_password is the ROOT keystore password.

• The wallet must be open in ROOT.

For an isolated PDB:

• keystore_password is the new keystore password for the PDB CDB1_PDB2_CLONE.

• The wallet must be open in CDB1_PDB2_CLONE.

Clone a PDB: Example

United PDB

 CREATE PLUGGABLE DATABASE CDB1_PDB1_C AS CLONE USING '/tmp/cdb1_pdb3.pdb'
 KEYSTORE IDENTIFED BY keystore_password DECRYPT USING transport_secret

• The wallet must be open in ROOT, if TDE is in use.

• If there are TDE keys in the .pdb file, you must specify KEYSTORE IDENTIFED BY and provide
transport_secret.

• keystore_password is the ROOT keystore password.

Isolated PDB

CREATE PLUGGABLE DATABASE CDB1_PDB2_C AS CLONE USING '/tmp/cdb1_pdb2.pdb'

• You need not specify KEYSTORE IDENTIFED BY or transport_secret. If specified, they are
ignored.

• The wallet need not be open in ROOT.

See Also

Cloning a PDB

FROM

Use this clause to specify the source PDB. The files associated with the source are copied to a
new location and these copied files are then associated with the new PDB.

The source PDB cannot be closed. It can be open as follows:

• If the CDB that contains the source PDB (the source CDB) is in ARCHIVELOG mode and
local undo mode, then the source PDB can be open in READ WRITE mode and fully
functional during the cloning operation. This is called hot PDB cloning.

• If the source CDB is not in ARCHIVELOG mode, then the source PDB must be open READ
ONLY.

Specify the source PDBas follows:

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 142

• If the source is a PDB in the local CDB, then use src_pdb_name to specify the name of the
source PDB. You cannot specify PDB$SEED for src_pdb_name. Instead, use the
create_pdb_from_seed clause to create a PDB by using the seed as a template.

• If the source is a PDB in a remote CDB, then use src_pdb_name to specify the name of the
source PDB and dblink to specify the name of the database link to use to connect to the
remote CDB.

AS PROXY FROM

Use this clause to create a proxy PDB by referencing a different PDB, which is referred to as
the referenced PDB. The referenced PDB can be in the same CDB as the proxy PDB or in a
different CDB. A local proxy PDB is in the same CDB as its referenced PDB, and a remote
proxy PDB is in a different CDB than its referenced PDB.

For src_pdb_name@dblink, specify the referenced PDB.

See Also

Creating a PDB as a Proxy PDB

default_tablespace

Use this clause to specify a permanent default tablespace for the PDB. Oracle Database will
assign the default tablespace to any non-SYSTEM user for whom a different permanent
tablespace is not specified. The tablespace must already exist in the source PDB. Because the
tablespace already exists, you cannot specify the DATAFILE clause or the extent_management_clause
when creating a PDB with the create_pdb_clone clause.

pdb_storage_clause

Use this clause to specify storage limits for the new PDB. Refer to pdb_storage_clause for the
full semantics of this clause.

file_name_convert

Use this clause to determine how the database generates the names of files for the new PDB.
Refer to file_name_convert for the full semantics of this clause.

service_name_convert

Use this clause to determine how the database renames services for the new PDB. Refer to
service_name_convert::= for the full semantics of this clause.

path_prefix_clause

Use this clause to ensure that all directory object paths associated with the PDB are restricted
to the specified directory or its subdirectories. Refer to path_prefix_clause for the full semantics
of this clause.

tempfile_reuse_clause

Specify TEMPFILE REUSE to instruct the database to format and reuse a temp file associated
with the new PDB if it already exists. Refer to tempfile_reuse_clause for the full semantics of
this clause.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 142

SNAPSHOT COPY

You can specify SNAPSHOT COPY only when cloning a PDB. The source PDB can be in the local
CDB or a remote CDB. The SNAPSHOT COPY clause instructs the database to clone the source
PDB using storage snapshots. This reduces the time required to create the clone because the
database does not need to make a complete copy of the source data files.

When you use the SNAPSHOT COPY clause to create a clone of a source PDB and the CLONEDB
initialization parameter is set to FALSE, the underlying file system for the source PDB's files
must support storage snapshots. Such file systems include Oracle Advanced Cluster File
System (Oracle ACFS) and Direct NFS Client storage.

When you use the SNAPSHOT COPY clause to create a clone of a source PDB and the CLONEDB
initialization parameter is set to TRUE, the underlying file system for the source PDB's files can
be any local file system, network file system (NFS), or clustered file system that has Direct
NFS enabled. However, the source PDB must remain in open read-only mode as long as any
clones exist.

Direct NFS Client enables an Oracle database to access network attached storage (NAS)
devices directly, rather than using the operating system kernel NFS client. If the PDB files are
stored on Direct NFS Client storage, then the following additional requirements must be met:

• The source PDB files must be located on an NFS volume.

• Storage credentials must be stored in a Transparent Data Encryption keystore.

• The storage user must have the privileges required to create and destroy snapshots on the
volume that hosts the source PDB files.

• Credentials must be stored in the keystore using an ADMINISTER KEY MANAGEMENT ADD
SECRET SQL statement.

When you use the SNAPSHOT COPY clause to create a clone of a source PDB, the following
restrictions apply to the source PDB as long as any clones exist:

• It cannot be unplugged.

• It cannot be dropped.

PDB clones created using the SNAPSHOT COPY clause cannot be unplugged. They can only be
dropped. Attempting to unplug a clone created using the SNAPSHOT COPY clause results in an
error.

For a PDB created using the SNAPSHOT COPY clause in an Oracle Real Application Clusters
(Oracle RAC) environment, each node that must access the PDB's files must be mounted. For
Oracle RAC databases running on Linux or UNIX platforms, the underlying NFS volumes must
be mounted. If the Oracle RAC database is running on a Windows platform and using Direct
NFS for shared storage, then you must update the oranfstab file on all nodes with the created
volume export and mount entries.

Storage clones are named and tagged using the new PDB GUID. You can query the CLONETAG
column of DBA_PDB_HISTORY view to view clone tags for storage clones.

keystore_clause

Specify this clause if the source database has encrypted data or a keystore set.

If you want to create the PDB by cloning another PDB, and if the source database has
encrypted data or a TDE master encryption key that has been set, then you must provide the
keystore password of the target keystore in keystore_password .

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 142

You can find if the source database has encrypted data by querying the
DBA_ENCRYPTED_COLUMNS data dictionary view or the V$ENCRYPTED_TABLESPACES dynamic
performance view.

You can use the EXTERNAL STORE clause instead of keystore_password to clone a PDB that is using
a united keystore. Note that you must configure the TDE SEPS wallet first before you use this
option.

You cannot use the EXTERNAL STORE clause for a PDB that is using an isolated keystore.

You can set the password to a maximum length of 1024 bytes.

pdb_refresh_mode_clause

The REFRESH MODE clause applies only when cloning a PDB. The source PDB must be in a
remote CDB, that is, you must specify the source PDB using the FROM src_pdb_name@dblink
clause.

This clause lets you specify the refresh mode of the PDB. You can use this clause to create a
refreshable PDB. Changes in the source PDB can be propagated to the refreshable PDB,
either manually or automatically. This operation is called a refresh. You can specify the
following refresh modes:

• MANUAL - This mode allows you to refresh the refreshable PDB manually at any time by
issuing an ALTER PLUGGABLE DATABASE REFRESH statement.

• EVERY refresh_interval MINUTES or HOURS – This mode instructs the database to refresh the
refreshable PDB every refresh_interval of selected time units, minutes or hours. If you select
MINUTES, the refresh_interval must be less than 3000. If you select HOURS, the refresh_interval
must be less than 2000. This mode also allows you to refresh the PDB manually at any
time by issuing an ALTER PLUGGABLE DATABASE REFRESH statement.

• NONE - If you specify this mode, then the clone PDB is not a refreshable PDB. The
database cannot refresh the PDB automatically and you cannot refresh the PDB manually.
If you specify this mode, then you cannot later change the PDB into a refreshable PDB.
This is the default.

A refreshable PDB can be opened only in READ ONLY mode. A refreshable PDB must be
closed in order for a refresh to occur. If it is not closed when you attempt to perform a manual
refresh, then an error will occur. If it is not closed when the database attempts an automatic
refresh, then the refresh will be deferred until the next scheduled refresh.

See Also

• ALTER PLUGGABLE DATABASE REFRESH for information on refreshing a PDB
manually

• ALTER PLUGGABLE DATABASE pdb_refresh_mode_clause for information on
changing the refresh mode of a PDB

• Oracle Database Administrator’s Guide for more information on refreshable PDBs

RELOCATE

Use this clause to relocate a PDB from one CDB to another. The database first clones the
source PDB to the target PDB, and then removes the source PDB. The database also moves
the files associated with the PDB to a new location. This operation is the fastest way to
relocate a PDB with minimal down time. The down time for the PDB is approximately the time

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 94 of 142

required to copy the PDB's files from their old location to their new location. The source PDB
can be open in READ WRITE mode and fully functional during the relocation operation.

Specify REFRESH MODE to keep the PDB current during the relocate process.

You can specify the availability level with the AVAILABILITY keyword. The default availability is
NORMAL. If you specify AVAILABILITY MAX, then additional operations are performed to ensure
a smooth migration of the workload in a persistent connection between source and target.

In the create_pdb_clone clause, you must use the FROM src_pdb_name@dblink syntax to identify the
location of the source PDB. For src_pdb_name, specify the name of the source PDB. For dblink,
specify a database link that indicates the location of the source PDB. The database link must
have been created in the CDB to which the PDB will be relocated. It can connect either to the
root of the remote CDB or to the remote PDB.

KEEP SOURCE

Specify KEEP SOURCE if you want to keep the source PDB and preserve it in an unplugged
state.

See Also

Relocating a PDB

NO DATA

The NO DATA clause applies only when cloning a PDB. This clause specifies that the source
PDB's data model definition is cloned, but not the PDB's data. The dictionary data in the
source PDB is cloned, but all user-created table and index data from the source PDB is
discarded.

Restrictions on the NO DATA Clause

The following restrictions apply to the NO DATA clause:

• The source PDB should be open in read only mode when you use the NO DATA clause to
clone a PDB.

• You cannot specify NO DATA if the source PDB contains clustered tables, Advanced
Queuing (AQ) tables, index-organized tables, or tables that contain abstract data type
columns.

HOST and PORT

These clauses are useful only if you are creating a PDB that you plan to reference from a
proxy PDB. This type of PDB is called a referenced PDB. Refer to HOST and PORT for the full
semantics of these clauses.

create_pdb_from_xml

This clause enables you to create a PDB by plugging an unplugged PDB (the source
database) into a CDB (the target CDB). If the source database is an unplugged PDB, then it
may have been unplugged from the target CDB or a different CDB.

The source database and the target CDB must meet the following requirements:

• They must have the same endian format.

• They must have compatible character sets and national character sets, which means:

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 95 of 142

– Every character in the source database character set is available in the target CDB
character set.

– Every character in the source database character set has the same code point value in
the target CDB character set.

• They must have the same set of database options installed.

See Also

• Plugging In an Unplugged PDB

• Oracle Database PL/SQL Packages and Types Reference for more information on
the DBMS_PDB package

AS CLONE

Specify this clause only if the target CDB already contains a PDB that was created using the
same set of data files. The source files remain as an unplugged PDB and can be used again.
Specifying AS CLONE also ensures that Oracle Database generates new identifiers, such as
DBID and GUID, for the new PDB.

USING

This clause lets you specify a file that contains information about the source database that your
are plugging in. For filename, specify the full path name of the file. You can obtain this file in one
of the following ways:

• If the source database is an unplugged PDB, then the file was created by the
pdb_unplug_clause of ALTER PLUGGABLE DATABASE as follows:

– If the filename ends with the extension .xml, then it is an XML file containing metadata
about the PDB. In this case, you must ensure that the XML metadata file, as well as
the PDB's data files, are in a location that is accessible to the CDB.

– If the filename ends with the extension .pdb, then it is a PDB archive file. This is a
compressed file that includes an XML file containing metadata about the PDB, as well
as the PDB's data files. The PDB archive file must exist in a location that is accessible
to the CDB. When you use a .pdb archive file, this file is extracted when you plug in
the PDB, and the PDB’s files are placed in the same directory as the .pdb archive file.
Therefore, the source_file_directory clause is not required.

• If the source database is a non-CDB, then you must create the XML metadata file using
the DBMS_PDB package, and ensure that the XML metadata file, as well as the source non-
CDB's data files, are in a location that is accessible to the CDB.

See Also

• pdb_unplug_clause of ALTER PLUGGABLE DATABASE

• Oracle Database PL/SQL Packages and Types Reference for more information on
the DBMS_PDB package

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 96 of 142

source_file_name_convert

Specify this clause only if the contents of the XML file do not accurately describe the locations
of the source files. If the files that must be used to plug in the source database are no longer in
the location specified in the XML file, then use this clause to map the specified file names to
the actual file names.

• For filename_pattern, specify the string for the location of the files as specified in the XML file.

• For replacement_filename_pattern, specify the string for the actual location that contains the files
that must be used to create the PDB.

Oracle Database will replace filename_pattern with replacement_filename_pattern when searching for
the source database files.

File name patterns cannot match files or directories managed by Oracle Managed Files.

If the files that must be used to create the PDB exist in the location specified in the XML file,
you can either omit this clause or specify SOURCE_FILE_NAME_CONVERT=NONE.

source_file_directory

Specify this clause only if the contents of the XML file do not accurately describe the locations
of the source files and the source files are all present in a single directory. This clause is
convenient when you have a large number of data files and specifying a replacement file name
pattern for each file using the source_file_name_convert clause is not feasible.

• For directory_path_name, specify the absolute path of the directory that contains the source
files. The directory is scanned to find the appropriate files based on the unplugged PDB's
XML file.

You can specify this clause for configurations that use Oracle Managed Files and for
configurations that do not use Oracle Managed Files.

If the files that must be used to create the PDB exist in the location specified in the XML file,
you can either omit this clause or specify SOURCE_FILE_DIRECTORY=NONE.

COPY

Specify COPY if you want the files listed in the XML file to be copied to the new location and
used for the new PDB. This is the default. You can use the optional file_name_convert clause to
use pattern replacement in the new file names. Refer to file_name_convert for the full
semantics of this clause.

MOVE

Specify MOVE if you want the files listed in the XML file to be moved, rather than copied, to the
new location and used for the new PDB. You can use the optional file_name_convert clause to use
pattern replacement in the new file names. Refer to file_name_convert for the full semantics of
this clause.

If the storage locations are different mounts, or if the storage locations do not support move at
the OS or storage level, then the MOVE clause first copies the files then deletes the originals.

NOCOPY

Specify NOCOPY if you want the files for the PDB to remain in their current locations. Use this
clause if there is no need to copy or move the files required to plug in the PDB.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 97 of 142

service_name_convert

Use this clause to determine how the database renames services for the new PDB. Refer to
service_name_convert::= for the full semantics of this clause.

default_tablespace

Use this clause to specify a permanent default tablespace for the PDB. Oracle Database will
assign the default tablespace to any non-SYSTEM user for whom a different permanent
tablespace is not specified. The tablespace must already exist in the source database. Because
the tablespace already exists, you cannot specify the DATAFILE clause or the
extent_management_clause when creating a PDB with the create_pdb_from_xml clause.

pdb_storage_clause

Use this clause to specify storage limits for the new PDB. Refer to pdb_storage_clause for the
full semantics of this clause.

path_prefix_clause

Use this clause to ensure that all directory object paths associated with the PDB are restricted
to the specified directory or its subdirectories. Refer to path_prefix_clause for the full semantics
of this clause.

tempfile_reuse_clause

Specify TEMPFILE REUSE to instruct the database to format and reuse a temp file associated
with the new PDB if it already exists. Refer to tempfile_reuse_clause for the full semantics of
this clause.

HOST and PORT

These clauses are useful only if you are creating a PDB that you plan to reference from a
proxy PDB. This type of PDB is called a referenced PDB. Refer to HOST and PORT for the full
semantics of these clauses.

create_pdb_from_mirror_copy

Specify this clause to create a pluggable database new_pdb_name using the prepared files of the
mirror copy mirror_name. The new PDB will be split from the source database using the prepared
files created by the prepare_clause.

• You must execute this clause from the root container.

• The meaning of the other optional parameters remains unchanged by this clause.

• You can only split one database from a prepared mirror copy. If you want to create
additional splits, you must prepare a new mirror copy.

• You can specify the database link name after you have specifed the mirror copy name in
the prepare_clause of the ALTER PLUGGABLE DATABASE statement. In addition, the current CDB
name should match the target CDB name specified in the prepare_clause. You must be a valid
user in the CDB being referenced by the database link with the system privileges CREATE
SESSION and CREATE PLUGGABLE DATABASE.

• If the database link name is omitted, then the base PDB name is looked up in the current
CDB.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 98 of 142

using_snapshot_clause

Specify this clause to create a PDB using an existing PDB snapshot that can be identified by
its name, SCN, or timestamp.

If you create a PDB specifying SNAPSHOT COPY, then the new PDB will depend on the
existence of the PDB snapshot. This will affect your ability to drop or purge the PDB.

container_map_clause

Specify this clause in CDB Root, Application Root or both to dynamically update changes as
they happen to the new PDB.

You must note the following points with container maps:

• The container_map_clause is optional.

• The add_partition_clause will add a new partition to the container map defined in the Root
(CDB Root and/or Application Root) of the new PDB.

• The split_partition_clause will split an existing partition of the container map defined in the Root
(CDB Root and/or Application Root) of the new PDB.

• In the absence of add_partition_clause and split_partition_clause, container map defined in the
Root of the new PDB is not updated.

• For PDB relocate, container map defined in the Root (CDB Root and/or Application Root)
of the source PDB are automatically updated to reflect the “drop” of the source PDB.

• Dynamic maintenance of container map defined using hash partitioning is not supported

Add a New Partition to a Range-Partitioned Container Map: Example

 CREATE PLUGGABLE DATABASE cdb1_pdb3
 ADMIN USER IDENTIFIED BY manager
 FILE_NAME_CONVERT=('cdb1_pdb0, cdb1_pdb3')
 CONTAINER_MAP UPDATE (ADD PARTITION cdb1_pdb3 VALUES LESS THAN (100));
 ALTER PLUGGABLE DATABASE cdb1_pdb3 OPEN

Split an Existing Partition of a Range-Partitioned Container Map to Create a New
Partition: Example

 CREATE PLUGGABLE DATABASE cdb1_pdb4
 ADMIN USER IDENTIFIED BY manager
 FILE_NAME_CONVERT=('cdb1_pdb0, cdb1_pdb4')
 CONTAINER_MAP UPDATE (SPLIT PARTITION cdb1_pdb3
 AT (50)
 INTO
 (PARTITION cdb1_pdb3, PARTITION cdb1_pdb3)
 ALTER PLUGGABLE DATABASE cdb1_pdb4 OPEN

Verify Updated in Range-Partitioned Container Map : Example

 SELECT partition_name, high_value
 FROM dba_tab_partitions
 WHERE table_name='MAP' AND table_owner='SYS'

pdb_snapshot_clause

Specify this clause if you want to be able to create PDB snapshots.

• NONE is the default. It means that no snapshots of the PDB can be created.

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 99 of 142

• MANUAL means that the PDB snapshot can only be created manually.

• If snapshot interval is specified, PDB snapshots will be created automatically at specified
interval. In addition, a user will also be able to create PDB snapshots manually

• If expressed in minutes, snapshot_interval must be less than 3000.

• If expressed in hours, snapshot_interval must be less than 2000.

create_pdb_decrypt_from_xml

You must have the SYSKM privilege to execute this command.

For PDBs in united mode, the following restrictions apply:

• You must specify the clause if you are using a TDE protected database. Otherwise it is
optional.

• You need not specify the clause for an isolated PDB.

• The wallet must be open in ROOT.

• The wallet file is copied in all cases: NOCOPY, COPY, and MOVE.

Plugging a PDB from an XML Metadata File: Example

CREATE PLUGGABLE DATABASE CDB1_PDB2 USING '/tmp/cdb1_pdb2.xml' NOCOPY
KEYSTORE IDENTIFIED BY keystore_password DECRYPT USING transport_secret

Plugging a PDB from an Archive File: Example

CREATE PLUGGABLE DATABASE CDB1_PDB1_1_C USING '/tmp/cdb1_pdb3.pdb' DECRYPT USING transport_secret

For PDBs in isolated mode, you need not specify DECRYPT USING transport_secret. This is not
required because the wallet file is copied during the creation of an unplugged PDB from an
XML file. if you are creating a PDB from an archive file with the .pdb extension, the wallet file of
the PDB is available in the zipped archive.

If the ewallet.p12 file already exists at the destination, a backup is automatically initiated. The
backup file has the following format: ewallet_PLGDB_2017090517455564.p12.

Examples

Creating a PDB by Using the Seed: Example

The following statement creates a PDB salespdb by using the seed in the CDB as a template.
The administrative user salesadm is created and granted the dba role. The default tablespace
assigned to any non-SYSTEM users for whom no permanent tablespace is assigned is sales. File
names for the new PDB will be constructed by replacing /disk1/oracle/dbs/pdbseed/ in the file names
in the seed with /disk1/oracle/dbs/salespdb/. All tablespaces that belong to sales must not exceed 2G.
The location of all directory object paths associated with salespdb are restricted to the directory /
disk1/oracle/dbs/salespdb/.

CREATE PLUGGABLE DATABASE salespdb
 ADMIN USER salesadm IDENTIFIED BY password
 ROLES = (dba)
 DEFAULT TABLESPACE sales
 DATAFILE '/disk1/oracle/dbs/salespdb/sales01.dbf' SIZE 250M AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/salespdb/')
 STORAGE (MAXSIZE 2G)
 PATH_PREFIX = '/disk1/oracle/dbs/salespdb/';

Chapter 14
CREATE PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 100 of 142

Cloning a PDB From an Existing PDB: Example

The following statement creates a PDB newpdb by cloning PDB salespdb. PDBs newpdb and salespdb
are in the same CDB. Because no storage limits are explicitly specified, there is no limit on the
amount of storage for newpdb. The files are copied from /disk1/oracle/dbs/salespdb/ to /disk1/oracle/dbs/
newpdb/. The location of all directory object paths associated with newpdb are restricted to the
directory /disk1/oracle/dbs/newpdb/.

CREATE PLUGGABLE DATABASE newpdb FROM salespdb
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/salespdb/', '/disk1/oracle/dbs/newpdb/')
 PATH_PREFIX = '/disk1/oracle/dbs/newpdb';

Plugging a PDB into a CDB: Example

The following statement plugs the PDB salespdb, which was previously unplugged, into the CDB.
The details about the metadata describing salespdb are stored in the XML file /disk1/usr/salespdb.xml.
The XML file does not accurately describe the current locations of the files. Therefore, the
SOURCE_FILE_NAME_CONVERT clause is used to indicate that the files are in /disk2/oracle/dbs/
salespdb/, not /disk1/oracle/dbs/salespdb/. The NOCOPY clause indicates that the files are already in the
correct location. All tablespaces that belong to sales must not exceed 2G. A file with the same
name as the temp file specified in the XML file exists in the target location. Therefore, the
TEMPFILE REUSE clause is required.

CREATE PLUGGABLE DATABASE salespdb
 USING '/disk1/usr/salespdb.xml'
 SOURCE_FILE_NAME_CONVERT =
 ('/disk1/oracle/dbs/salespdb/', '/disk2/oracle/dbs/salespdb/')
 NOCOPY
 STORAGE (MAXSIZE 2G)
 TEMPFILE REUSE;

CREATE PMEM FILESTORE
Purpose

You can create a persistent memory file store with this statement.

Prerequistes

You must have SYSDBA privileges to execute CREATE PMEM FILESTORE .

You must execute this statement from CDB$ROOT.

Syntax

create_pmem_filestore::=

CREATE PMEM FILESTORE filestore_name

MOUNTPOINT file_path

BACKINGFILE file_name

REUSE

SIZE size_clause

BLOCK SIZE size_clause

autoextend_clause

Chapter 14
CREATE PMEM FILESTORE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 101 of 142

Semantics

MOUNTPOINT

file_path contains the final directory name and must match the PMEM file store name. If there is
no match, the statement will fail.

You must start database instance with at least NOMOUNT mode.

It is recommeded to use a spfile for the database init.ora file.

When you use a spfile , the CREATE PMEM FILESTORE command automatically writes the
necessary init.ora parameters into the spfile to remember the configuration. If you do not use a
spfile , you must explicitly add the required parameters to init.ora so that the next database
instance startup will automatically mount the PMEM file store.

Example

CREATE PMEM FILESTORE cloud_db_1 MOUNTPOINT ‘/corp/db/cloud_db_1’
 BACKINGFILE ‘/var/pmem/foo_1.’ SIZE 2T BLOCKSIZE 8K
 AUTOEXTEND ON NEXT 10G MAXSIZE 3T

CREATE PROCEDURE
Purpose

Procedures are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the CREATE PROCEDURE statement to create a standalone stored procedure or a call
specification.

A procedure is a group of PL/SQL statements that you can call by name. A call specification
(sometimes called call spec) declares a Java method, a JavaScript method, or a third-
generation language (3GL) routine so that it can be called from SQL and PL/SQL. The call
spec tells Oracle Database which Java method, JavaScript function, or third-generation
language (3GL) routine to invoke when a call is made. It also tells the database what type
conversions to make for the arguments and return value.

Stored procedures offer advantages in the areas of development, integrity, security,
performance, and memory allocation.

Chapter 14
CREATE PROCEDURE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 102 of 142

See Also

• JavaScript Developer's Guide

• CREATE MLE MODULE

• CREATE MLE ENV

• Oracle Database Development Guide for more information on stored procedures,
including how to call stored procedures and for information about registering
external procedures.

• CREATE FUNCTION for information specific to functions, which are similar to
procedures in many ways.

• CREATE PACKAGE for information on creating packages. The CREATE
PROCEDURE statement creates a procedure as a standalone schema object. You
can also create a procedure as part of a package.

• ALTER PROCEDURE and DROP PROCEDURE for information on modifying and
dropping a standalone procedure.

• CREATE LIBRARY for more information about shared libraries.

Prerequisites

To create or replace a procedure in your own schema, you must have the CREATE PROCEDURE
system privilege. To create or replace a procedure in another user's schema, you must have
the CREATE ANY PROCEDURE system privilege.

To invoke a call spec, you may need additional privileges, for example, the EXECUTE object
privilege on the C library for a C call spec.

To embed a CREATE PROCEDURE statement inside an Oracle precompiler program, you must
terminate the statement with the keyword END-EXEC followed by the embedded SQL statement
terminator for the specific language.

See Also

Oracle Database PL/SQL Language Reference or Oracle Database Java Developer's
Guide for more information

Syntax

Procedures are defined using PL/SQL. Alternatively they can refer to non-PL/SQL code such
as Java, JavaScript, C, and others by means of call specifications. Therefore, the syntax
diagram in this book shows only the SQL keywords. Refer to Oracle Database PL/SQL
Language Reference for the PL/SQL syntax, semantics, and examples.

create_procedure::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

PROCEDURE

IF NOT EXISTS

plsql_procedure_source

Chapter 14
CREATE PROCEDURE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 103 of 142

(plsql_procedure_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the procedure if it already exists. Use this clause to change
the definition of an existing procedure without dropping, re-creating, and regranting object
privileges previously granted on it. If you redefine a procedure, then Oracle Database
recompiles it.

Users who had previously been granted privileges on a redefined procedure can still access
the procedure without being regranted the privileges.

If any function-based indexes depend on the procedure, then Oracle Database marks the
indexes DISABLED.

See Also

ALTER PROCEDURE for information on recompiling procedures

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the procedure does not exist, a new procedure is created at the end of the statement.

• If the procedure exists, this is the procedure you have at the end of the statement. A new
one is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the procedure is an editioned or noneditioned object if
editioning is enabled for the schema object type PROCEDURE in schema. The default is
EDITIONABLE. For information about editioned and noneditioned objects, see Oracle Database
Development Guide.

plsql_procedure_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_procedure_source.

Chapter 14
CREATE PROCEDURE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 104 of 142

CREATE PROFILE

Note

Oracle recommends that you use the Database Resource Manager rather than this
SQL statement to establish resource limits. The Database Resource Manager offers a
more flexible means of managing and tracking resource use. For more information on
the Database Resource Manager, refer to Oracle Database Administrator's Guide.

Purpose

Use the CREATE PROFILE statement to create a profile, which is a set of limits on database
resources. If you assign the profile to a user, then that user cannot exceed these limits.

To specify resource limits for a user, you must:

• Enable resource limits dynamically with the ALTER SYSTEM statement or with the
initialization parameter RESOURCE_LIMIT. This parameter does not apply to password
resources. Password resources are always enabled.

• Create a profile that defines the limits using the CREATE PROFILE statement

• Assign the profile to the user using the CREATE USER or ALTER USER statement

In a multitenant environment, different profiles can be assigned to a common user in the root
and in a PDB. When the common user logs in to the PDB, a profile whose setting applies to
the session depends on whether the settings are password-related or resource-related.

• Password-related profile settings are fetched from the profile that is assigned to the
common user in the root. For example, suppose you assign a common profile c##prof (in
which FAILED_LOGIN_ATTEMPTS is set to 1) to common user c##admin in the root. In a PDB
that user is assigned a local profilelocal_prof (in which FAILED_LOGIN_ATTEMPTS is set to 6.)
Common user c##admin is allowed only one failed login attempt when he or she tries to log
in to the PDB where loc_prof is assigned to him.

• Resource-related profile settings specified in the profile assigned to a user in a PDB get
used without consulting resource-related settings in a profile assigned to the common user
in the root. For example, if the profile local_prof that is assigned to user c##admin in a PDB
has SESSIONS_PER_USER set to 2, then c##admin is only allowed only 2 concurrent sessions
when he or she logs in to the PDB loc_prof is assigned to him, regardless of value of this
setting in a profile assigned to him in the root.

See Also

Oracle Database Security Guide for a detailed description and explanation of how to
use password management and protection

Prerequisites

To create a profile, you must have the CREATE PROFILE system privilege.

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 105 of 142

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root. To specify
CONTAINER = CURRENT, the current container must be a pluggable database (PDB).

See Also

• ALTER SYSTEM for information on enabling resource limits dynamically

• Oracle Database Reference for information on the RESOURCE_LIMIT parameter

• CREATE USER and ALTER USER for information on profiles

Syntax

create_profile::=

CREATE

MANDATORY

PROFILE profile LIMIT
resource_parameters

password_parameters

CONTAINER =
CURRENT

ALL

;

resource_parameters::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

size_clause

UNLIMITED

DEFAULT

(size_clause::=

password_parameters::=

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 106 of 142

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

INACTIVE_ACCOUNT_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

PASSWORD_ROLLOVER_TIME
expr

DEFAULT

Semantics

profile

Specify the name of the profile to be created. The name must satisfy the requirements listed in
"Database Object Naming Rules ". Use profiles to limit the database resources available to a
user for a single call or a single session.

In a non-CDB, a profile name cannot begin with C## or c##.

Note

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers to
a non-CDB from a previous release.

In a CDB, the requirements for a profile name are as follows:

• The name of a common profile must begin with characters that are a case-insensitive
match to the prefix specified by the COMMON_USER_PREFIX initialization parameter. By
default, the prefix is C##.

• The name of a local profile must not begin with characters that are a case-insensitive
match to the prefix specified by the COMMON_USER_PREFIX initialization parameter.
Regardless of the value of COMMON_USER_PREFIX, the name of a local profile can never
begin with C## or c##.

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 107 of 142

Note

If the value of COMMON_USER_PREFIX is an empty string, then there are no
requirements for common or local profile names with one exception: the name of a
local profile can never begin with C## or c##. Oracle recommends against using an
empty string value because it might result in conflicts between the names of local and
common profiles when a PDB is plugged into a different CDB, or when opening a PDB
that was closed when a common user was created.

Oracle Database enforces resource limits in the following ways:

• If a user exceeds the CONNECT_TIME or IDLE_TIME session resource limit, then the
database rolls back the current transaction and ends the session. When the user process
next issues a call, the database returns an error.

• If a user attempts to perform an operation that exceeds the limit for other session
resources, then the database aborts the operation, rolls back the current statement, and
immediately returns an error. The user can then commit or roll back the current transaction,
and must then end the session.

• If a user attempts to perform an operation that exceeds the limit for a single call, then the
database aborts the operation, rolls back the current statement, and returns an error,
leaving the current transaction intact.

MANDATORY

Specify the keyword MANDATORY to create a generic mandatory profile in CDB$ROOT. You can
use the mandatory profile to enforce password complexity requirements for database user
accounts across the entire CDB or individual PDBs using the profile parameter
password_verify_function.

The mandatory profile adds the password complexity requirement in addition to existing profile
limits for common and local users. A PDB administrator cannot remove the password
complexity requirement and allow users to set insecure shorter passwords, because
mandatory profiles, just like common profiles, can only be altered in CDB$ROOT .

You can only use password_verify_function and password_grace_time profile parameters to define the
limits for the mandatory profile.

Use the profile parameter password_grace_time to specify a grace period for user accounts in
violation of mandatory password complexity requirements and whose passwords have to be
changed.

The default value for password_verify_function is null. The default value for password_grace_time is 0.

User accounts imported using Oracle Data Pump are checked for password compliance
against the mandatory profile and forced to change their passwords. If the password is not
changed within the grace period, further connections are rejected. On import, the password is
not checked for compliance against the mandatory profile because the password is hashed
and cannot be decrypted. So the password is marked to expire after a configurable period set
in the parameter PASSWORD_GRACE_TIME of the mandatory profile. Once the password expires,
the new password is checked for compliance against the mandatory profile. Note that, post
import, the mandatory password verification check can be performed ONLY when the user logs
into the database. If the user does not login, the verification does not happen. In this case
there is no way for the system to know that the password complies with mandatory profile’s
password complexity checks and MANDATORY_PROFILE_VIOLATION will continue to show up as
NO for such users.

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 108 of 142

User-Created Password Complexity Function: Example

The example creates a password complexity function my_mandatory_function as the argument to
PASSWORD_VERIFY_FUNCTION.

SQL> create or replace function my_mandatory_verify_function
 (username varchar2,
 password varchar2,
 old_password varchar2)
 return boolean IS
begin
 -- mandatory verify function will always be evaluated regardless of the
 -- password verify function that is associated to a particular profile/user
 -- requires the minimum password length to be 8 characters
 if not ora_complexity_check(password, chars => 8) then
 return(false);
 end if;
 return(true);
end;
/
 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Function created.

Create a Mandatory Profile: Example

The example creates mandatory profile c##cdb_profile. LIMIT restricts the profile to use the only
profile parameter allowed, the PASSWORD_VERIFY_FUNCTION. The PASSWORD_VERIFY_FUNCTION
specifies the user-created password complexity function my_mandatory_function.

CREATE MANDATORY PROFILE c##cdb_profile LIMIT PASSWORD_VERIFY_FUNCTION my_mandatory_function
 CONTAINER = ALL ;

If you want to apply the mandatory user profile for all PDBs in the CDB, then you must do so in
the CDB root using the ALTER SYSTEM statement.

Apply the Mandatory Profile to the Entire CDB: Example

You must be in CDB$ROOT to execute this statement.

ALTER SYSTEM SET MANDATORY_USER_PROFILE=c##cdb_profile;

If you want to apply the mandatory user profile for individual PDBs, then you must configure
the MANDATORY_USER_PROFILE parameter in the init.ora file that is associated with the PDB.

Apply the Mandatory Profile to an Individual PDB: Example

Open the init.ora file associated with the PDB and set the MANDATORY_USER_PROFILE.

MANDATORY_USER_PROFILE=c##cdb_profile;

You can use SHOW PARAMETER to find the current MANDATORY_USER_PROFILE setting.

The mandatory profile that you set in init.ora takes precedence over the mandatory profile that
you set with the ALTER SYSTEM statement in the CDB root.

Restrictions

• Only common users who have been commonly granted the ALTER PROFILE system privilege
can alter or drop the mandatory profile, and only from the CDB root.

• Only a common user who has been commonly granted the ALTER SYSTEM privilege or has
the SYSDBA administrative privilege can modify the MANDTORY_USER_PROFILE in the init.ora
file.

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 109 of 142

Note

• You can use fractions of days for all parameters that limit time, with days as units.
For example, 1 hour is 1/24 and 1 minute is 1/1440.

• You can specify resource limits for users regardless of whether the resource limits
are enabled. However, Oracle Database does not enforce the limits until you
enable them.

See Also

• Managing Security for Database Users

• "Creating a Profile: Example"

UNLIMITED

When specified with a resource parameter, UNLIMITED indicates that a user assigned this
profile can use an unlimited amount of this resource. When specified with a password
parameter, UNLIMITED indicates that no limit has been set for the parameter.

DEFAULT

Specify DEFAULT if you want to omit a limit for this resource in this profile. A user assigned this
profile is subject to the limit for this resource specified in the DEFAULT profile. The DEFAULT
profile initially defines unlimited resources. You can change those limits with the ALTER PROFILE
statement.

Any user who is not explicitly assigned a profile is subject to the limits defined in the DEFAULT
profile. Also, if the profile that is explicitly assigned to a user omits limits for some resources or
specifies DEFAULT for some limits, then the user is subject to the limits on those resources
defined by the DEFAULT profile.

resource_parameters

SESSIONS_PER_USER

Specify the number of concurrent sessions to which you want to limit the user.

CPU_PER_SESSION

Specify the CPU time limit for a session, expressed in hundredth of seconds.

CPU_PER_CALL

Specify the CPU time limit for a call (a parse, execute, or fetch), expressed in hundredths of
seconds.

CONNECT_TIME

Specify the total elapsed time limit for a session, expressed in minutes.

IDLE_TIME

Specify the permitted periods of continuous inactive time during a session, expressed in
minutes. Long-running queries and other operations are not subject to this limit.

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 110 of 142

When you set an idle timeout of X minutes, note that the session will take X minutes, plus a
couple of additional minutes to be terminated.

On the client application side, the error message shows up the next time, when the idle client
attempts to issue a new command.

LOGICAL_READS_PER_SESSION

Specify the permitted number of data blocks read in a session, including blocks read from
memory and disk.

LOGICAL_READS_PER_CALL

Specify the permitted number of data blocks read for a call to process a SQL statement (a
parse, execute, or fetch).

PRIVATE_SGA

Specify the amount of private space a session can allocate in the shared pool of the system
global area (SGA). Refer to size_clause for information on that clause.

Note

This limit applies only if you are using shared server architecture. The private space
for a session in the SGA includes private SQL and PL/SQL areas, but not shared SQL
and PL/SQL areas.

COMPOSITE_LIMIT

Specify the total resource cost for a session, expressed in service units. Oracle Database
calculates the total service units as a weighted sum of CPU_PER_SESSION, CONNECT_TIME,
LOGICAL_READS_PER_SESSION, and PRIVATE_SGA.

See Also

• ALTER RESOURCE COST for information on how to specify the weight for each
session resource

• "Setting Profile Resource Limits: Example"

password_parameters

Use the following clauses to set password parameters. Parameters that set lengths of time—
that is, all the password parameters except FAILED_LOGIN_ATTEMPTS and
PASSWORD_REUSE_MAX—are interpreted in number of days. For testing purposes you can
specify minutes (n/1440) or even seconds (n/86400) for these parameters. You can also use a
decimal value for this purpose (for example .0833 for approximately one hour). The minimum
value is 1 second. The maximum value is 24855 days. For FAILED_LOGIN_ATTEMPTS and
PASSWORD_REUSE_MAX, you must specify an integer.

FAILED_LOGIN_ATTEMPTS

Specify the number of consecutive failed attempts to log in to the user account before the
account is locked. If you omit this clause, then the default is 10 times.

PASSWORD_LIFE_TIME

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 111 of 142

Specify the number of days the same password can be used for authentication. If you also set
a value for PASSWORD_GRACE_TIME, then the password expires if it is not changed within the
grace period, and further connections are rejected. If you omit this clause, then the default is
180 days.

See Also

Oracle Database Security Guide for information on setting PASSWORD_LIFE_TIME to a
low value

PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX

These two parameters must be set in conjunction with each other. PASSWORD_REUSE_TIME
specifies the number of days which need to pass before a user having this profile can reuse
one of their earlier passwords. PASSWORD_REUSE_MAX specifies the number of password
changes required before the current password can be reused. For these parameters to have
any effect, you must specify a value for both of them.

• If you specify a value for both of these parameters, then the user cannot reuse a password
until the password has been changed the number of times specified for
PASSWORD_REUSE_MAX during the number of days specified for PASSWORD_REUSE_TIME.

For example, if you specify PASSWORD_REUSE_TIME to 30 and PASSWORD_REUSE_MAX to 10,
then the user can reuse the password after 30 days if the password has already been
changed 10 times.

• If you specify a value for either of these parameters and specify UNLIMITED for the other,
then the user can never reuse a password.

• If you specify DEFAULT for either parameter, then Oracle Database uses the value defined
in the DEFAULT profile. By default, the PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX
parameters are set to UNLIMITED in the DEFAULT profile. If you have not changed the
default setting of UNLIMITED in the DEFAULT profile, then the database treats the value for
that parameter as UNLIMITED.

• If you set both of these parameters to UNLIMITED, then the database ignores both of them.
This is the default if you omit both parameters.

PASSWORD_LOCK_TIME

Specify the number of days an account will be locked after the specified number of consecutive
failed login attempts. If you omit this clause, then the default is 1 day.

PASSWORD_GRACE_TIME

Specify the number of days after the grace period begins during which a warning is issued and
login is allowed. If you omit this clause, then the default is 7 days.

INACTIVE_ACCOUNT_TIME

Specify the permitted number of consecutive days of no logins to the user account, after which
the account will be locked. The minimum value is 15 days. The maximum value is 24855. If
you omit this clause, then the default is UNLIMITED.

PASSWORD_VERIFY_FUNCTION

You can pass a PL/SQL password complexity verification script as an argument to CREATE
PROFILE by specifying PASSWORD_VERIFY_FUNCTION. Oracle Database provides a default script,
but you can write your own function or use third-party software instead.

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 112 of 142

• For function, specify the name of the password complexity verification function. The function
must exist in the SYS schema, and you must have EXECUTE privilege on the function.

• Specify NULL to indicate that no password verification is performed.

If you specify expr for any of the password parameters, then the expression can be of any form
except scalar subquery expression.

Restriction on Password Parameters

When you assign a profile to an external user or a global user, the password parameters do
not take effect for that user.

See Also

"Setting Profile Password Limits: Example"

PASSWORD_ROLLOVER_TIME

You must configure a non-zero limit for the PASSWORD_ROLLOVER_TIME user profile parameter
in order to enable the gradual database password rollover. You can configure this parameter
using CREATE PROFILE or ALTER PROFILE.

Use expr to specify a value for PASSWORD_ROLLOVER_TIME in days. You must specify hours as a
fraction of one day. For example, if you want to set the limit to four hours, expr would be 4/24 .

The granularity of the PASSWORD_ROLLOVER_TIME limit value is one second. For example, you
can have a limit of one hour plus three minutes and five seconds by providing an expr like this:
(1/24) + (3/1440) + (5/86400)) .

The default setting for PASSWORD_ROLLOVER_TIME is 0, which means that gradual password
rollover is disabled.

Example

The example sets the gradual password rollover time period to 1 day:

CREATE PROFILE usr_prof LIMIT PASSWORD_ROLLOVER_TIME 1

Limits on PASSWORD_ROLLOVER_TIME:

• Specify a value of 0 for PASSWORD_ROLLOVER_TIME if you want to disable the password
rollover period.

• Specify a positive value for PASSWORD_ROLLOVER_TIME to enable the password rollover
feature for all users who are members of the profile.

• The minimum value you can specify for PASSWORD_ROLLOVER_TIME is one hour. You do
this by entering 1/24. If you want to set the password rollover time to six hours, you enter
6/24 as the value for PASSWORD_ROLLOVER_TIME .

• The value for PASSWORD_ROLLOVER_TIME cannot exceed either 60 days, or the current
value of the PASSWORD_GRACE_TIME limit of the profile, or the current value of the
PASSWORD_LIFE_TIME limit of the profile; whichever is lowest.

To find user accounts that are currently in the password rollover period, query the
ACCOUNT_STATUS column of the DBA_USERS data dictionary view. The status will be IN
ROLLOVER.

The password rollover period begins the moment the user changes their password.

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 113 of 142

See Also

Configuring Authentication

CONTAINER Clause

The CONTAINER clause applies when you are connected to a CDB. However, it is not necessary
to specify the CONTAINER clause because its default values are the only allowed values.

• To create a common profile, you must be connected to the root. You can optionally specify
CONTAINER = ALL, which is the default when you are connected to the root.

• To create a local profile, you must be connected to a PDB. You can optionally specify
CONTAINER = CURRENT, which is the default when you are connected to a PDB.

Examples

Creating a Profile: Example

The following statement creates the profile new_profile:

CREATE PROFILE new_profile
 LIMIT PASSWORD_REUSE_MAX 10
 PASSWORD_REUSE_TIME 30;

Setting Profile Resource Limits: Example

The following statement creates the profile app_user:

CREATE PROFILE app_user LIMIT
 SESSIONS_PER_USER UNLIMITED
 CPU_PER_SESSION UNLIMITED
 CPU_PER_CALL 3000
 CONNECT_TIME 45
 LOGICAL_READS_PER_SESSION DEFAULT
 LOGICAL_READS_PER_CALL 1000
 PRIVATE_SGA 15K
 COMPOSITE_LIMIT 5000000;

If you assign the app_user profile to a user, then the user is subject to the following limits in
subsequent sessions:

• The user can have any number of concurrent sessions.

• In a single session, the user can consume an unlimited amount of CPU time.

• A single call made by the user cannot consume more than 30 seconds of CPU time.

• A single session cannot last for more than 45 minutes.

• In a single session, the number of data blocks read from memory and disk is subject to the
limit specified in the DEFAULT profile.

• A single call made by the user cannot read more than 1000 data blocks from memory and
disk.

• A single session cannot allocate more than 15 kilobytes of memory in the SGA.

• In a single session, the total resource cost cannot exceed 5 million service units. The
formula for calculating the total resource cost is specified by the ALTER RESOURCE COST
statement.

Chapter 14
CREATE PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 114 of 142

• Since the app_user profile omits a limit for IDLE_TIME and for password limits, the user is
subject to the limits on these resources specified in the DEFAULT profile.

Setting Profile Password Limits: Example

The following statement creates the app_user2 profile with password limits values set:

CREATE PROFILE app_user2 LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LIFE_TIME 60
 PASSWORD_REUSE_TIME 60
 PASSWORD_REUSE_MAX 5
 PASSWORD_VERIFY_FUNCTION ora12c_verify_function
 PASSWORD_LOCK_TIME 1/24
 PASSWORD_GRACE_TIME 10
 INACTIVE_ACCOUNT_TIME 30;

This example uses the default Oracle Database password verification function,
ora12c_verify_function. Refer to Oracle Database Security Guide for information on using this
verification function provided or designing your own verification function.

CREATE PROPERTY GRAPH
Purpose

Use CREATE PROPERTY GRAPH to create a property graph from existing schema objects. The
schema object can be a table, an external table, a materialized view or a synonym of the table,
external table, or materialized view.

Prerequistes

You need the CREATE PROPERTY GRAPH privilege to create a property graph in your own
schema. To create a property graph in any schema except SYS and AUDSYS, you must have the
CREATE ANY PROPERTY GRAPH privilege.

Syntax

CREATE

OR REPLACE

PROPERTY GRAPH

IF NOT EXISTS

schema .

graph_name vertex_tables_clause

edge_tables_clause graph_options

(edge_tables_clause::= , graph_options)

vertex_tables_clause::=

VERTEX TABLES (vertex_table_definition

,

)

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 115 of 142

vertex_table_definition::=

graph_element_name_and_key

graph_table_label_and_properties

graph_table_level_and_properties

graph_element_name_and_key::=

graph_element_object_name

AS graph_element_name graph_element_key

graph_element_object_name::=

schema .

materialized_view_name

table_name

synonym

graph_element_key::=

KEY (column_name_list)

graph_table_label_and_properties::=

graph_table_label_properties_clause graph_table_label_clause

graph_table_label_properties_clause::=

NO PROPERTIES

PROPERTIES graph_table_properties_alternatives

graph_table_properties_alternatives::=

ARE

ALL COLUMNS

EXCEPT (column_name_list)

(column_or_expression

,

)

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 116 of 142

column_name_list::=

column_name

,

column_or_expression::=

column_name

AS property_name

value_expression AS property_name

graph_table_label_clause::=

LABEL label_identifier

DEFAULT LABEL

graph_table_label_properties_clause

edge_tables_clause::=

EDGE TABLES (edge_table_definition

,

)

edge_tables_definition::=

graph_element_name_and_key SOURCE vertex_table_reference

DESTINATION vertex_table_reference

graph_table_label_and_properties

graph_table_level_and_properties

vertex_table_reference::=

graph_element_name

graph_element_key REFERENCES graph_element_name (column_name_list)

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 117 of 142

graph_options::=

OPTIONS (

ENFORCED

TRUSTED
MODE

ALLOW

DISALLOW
MIXED PROPERTY TYPES

,

)

Semantics

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the property graph does not exist, a new property graph is created at the end of the
statement.

• If the property graph exists, the existing property graph is what you have at the end of the
statement. A new one is not created because the older one is detected.

Using IF EXISTS with CREATE results in the following error: Incorrect IF NOT EXISTS clause for
CREATE statement .

You must create a property graph with the vertex_tables_clause .

Specify the schema to contain the property graph. If you omit schema, then Oracle Database
creates the graph in your own schema.

The name of the property graph must not be used by any other object in the same schema,
because property graphs share the name space used for tables and views. ORA-00955 is raised
in the case of name conflicts.

Specify OR REPLACE to re-create the property graph, if it already exists. You can use this clause
to change the definition of an existing property graph without dropping, re-creating, and
regranting object privileges previously granted on it.

If any materialized views are dependent on the property graph, then those materialized views
will be marked UNUSABLE and will require a full refresh to restore them to a usable state.
Invalid materialized views cannot be used by query rewrite and cannot be refreshed until they
are recompiled.

vertex_tables_clause

The vertex_tables_clause lets you define one or more vertex tables for the property graph. A
vertex_table_definition needs to specify the underlying object name. It can optionally specify more
items (like labels and properties) as explained below.

You can define a property graph by specifying just the name of the underlying object used to
define the graph element table. In this case a default label with the same name as the
underlying table is created and all the columns are exposed as graph properties.

The object name can be the name of a table, an external table, a materialized view, or a
synonym of a table or materialized view.

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 118 of 142

The object name can be qualified by specifying the schema it resides in. This means that you
can use objects from other schemas to define a graph element table. If no option is specified,
the name of the specified object is used as the name of the graph element table.

Example: Create a Property Graph with Vertex Table

In the following example, the vertex table name my_table_1 is the name of underlying object
my_table_1.

CREATE PROPERTY GRAPH “myGraph” VERTEX TABLES (my_table_1);

Example: Create a Property Graph with a Schema-Qualified Vertex Table

In the following example, the name my_table_1 is qualified by the schema other_schema and the
vertex table name is the name of underlying object my_table_1.

CREATE PROPERTY GRAPH “myGraph” VERTEX TABLES (other_schema.my_table_1);

graph_element_name_and_key

The graph-element-name-and-key clause lets you specify:

• The name of the schema object to be used for defining a graph element table. The name
of the graph element table defaults to the graph_element_object_name without the schema
qualification, if an AS clause is not used to provide an alternative name.

• One or more column names used to explicitly specify what columns of the underlying
object are used to identify a row in that underlying object.

Graph element table names are defined in a name space specific to the property graph: they
do not conflict with the names of schema objects, nor with the names of graph element tables
defined in other property graphs. This implies also that an edge table cannot use the name of a
vertex table. Graph element table names follow the same rules as other identifiers: they may
be quoted to indicate case-sensitivity, and are limited by default to 128 characters. Any
subsequent symbolic references to a graph element table in the DDL statement must use the
graph element table name, not the name of its underlying object. In particular, you must use
the graph element table name when you define the source and destination vertex table of an
edge table.

graph_element_object_name identifies the table or the materialized view directly or indirectly using a
synonym for the table or the materialized view.

You can omit the clause graph-element-key in the following cases:

• The clause graph_element_object_name identifies a base table with a single primary key
constraint. The primary key constraint takes precedence over any unique key that might
also be defined.

• The clause graph_element_object_name identifies a base table without primary keys and a single
unique key constraint where all columns are not nullable.

You must specify graph-element-key when object_name identifies a materialized view.

Example

The example shows the ways graph-element-key is used. In vertex table VT3 it is used to specify a
composite key made of multiple columns of the underlying table. Vertex table ALTVT2 is defined
from the same underlying object used to define vertex table VT2, but a different column of that
object (PK4) is specified as identifier for its vertices. It is assumed that vertex table VT1 has a
primary key constraint or unique key with not null columns.

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 119 of 142

CREATE PROPERTY GRAPH “myGraph”
 VERTEX TABLES (
 VT1,
 VT2 KEY(PK2),
 VT3 KEY(PK31, PK32),
 VT2 AS ALTVT2 KEY(PK4)
);

Note that a same underlying object VT2 can be used to define another graph element table
using the same primary key used to define other graph element tables from VT2. So in the
example above, specifying PK2 instead of PK4 for ALTVT2 is allowed.

When the graph-element-key clause is present, all the declared column names must match column
names of the underlying object of the graph element table.

When the graph-element-key clause is omitted, the database will infer the columns from the
constraints of the underlying object. If multiple primary or unique key constraints are defined for
that object, inferring a key fails and an error is raised. Note that the primary constraint is only
used to infer the key for the graph element table, no dependency to the constraint is created as
a result of this inference. This means that the constraint may be dropped later without
invalidating the graph or impact to its definition.

You can change this behavior and create a dependency to the constraint with the ENFORCED
MODE option.

You can define multiple graph element tables from the same object. For example, a table may
act as a different edge table in the same graph. You can also define a graph from tables from
different schemas but with the same name. In both cases you must take care to avoid name
collisions by specifying an alternative graph element table name with the optional AS clause.

Example: Create a Property Graph with the AS Clause

CREATE PROPERTY GRAPH “myGraph” VERTEX TABLES (my_table_1, other_schema.my_table_1 AS my_table2);

Restrictions

Restrictions that apply on primary key constraints also apply on vertex and edge table keys:

• Columns of the following built-in data types can be used to define keys of vertex or edge
tables: VARCHAR2, NVARCHAR2, NUMBER, BINARY_FLOAT, BINARY_DOUBLE, CHAR, NCHAR,
DATE, INTERVAL (both YEAR TO MONTH and DAY TO SECOND), and TIMESTAMP (but not
TIMESTAMP WITH TIME ZONE).

• A composite key cannot exceed 32 columns.

edge_tables_clause

Use edge_tables_clause to specify one or more edge_table_definition clauses. Each edge_table_definition
clause specifies the underlying object used to define the edge table of the graph.

edge_table_definition

Use edge_table_definition to explicitly define the vertex table that acts as the source of the edge,
and the vertex table that acts as the destination of the edge using the keywords SOURCE and
DESTINATION.

vertex_table_reference

The source and destination of the edge specify a vertex_table_reference. The vertex_table_reference
specifies three components:

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 120 of 142

• The graph element name of a vertex table, graph_element_name

• A list of columns of the edge table to be treated as foreign key graph_element_key.

• A list of columns of the referenced vertex table to be treated as referenced keys
column_name_list

The graph_element_name of a vertex_table_reference clause must be defined by a preceding
vertex_tables_definition clause. A vertex table name defined in the vertex_tables_definition may be used
to define multiple edge table definitions, either as a source for the edge, a destination, or both.

Example

Given the following vertex tables defined as follows:

CREATE PROPERTY GRAPH “myGraph”
 VERTEX TABLES (
 VT1,
 VT2 KEY(PK2),
 VT3 KEY(PK31, PK32),
 VT2 AS ALTVT2 KEY(PK4)
)
 EDGE TABLES (
 E1 SOURCE VT1
 DESTINATION VT2,
 E2 SOURCE KEY(FK1) REFERENCES VT1 (PK1)
 DESTINATION KEY(FK2) REFERENCES VT2 (PK2),
 E3 SOURCE KEY(FK1) REFERENCES VT1 (PK1)
 DESTINATION VT2,
 E4 SOURCE VT1
 DESTINATION KEY(FK5) REFERENCES VT2(RK5))
;

Both vertex-table-reference from edge table E1 to, respectively, source table VT1 and
destination table VT2 are declared implicitly. When using this syntax, the user relies on the
database to infer source and destination keys from existing foreign-key constraints between E1
and, respectively, VT1 and VT2. In this case, there must be exactly only foreign-key constraints
between E1 and VT1 (respectively, VT2).

If that is not the case an error is raised. Note that the foreign key constraint is only used to infer
the foreign key relationships between an edge table and its source and destination vertex
tables. No dependency to the foreign key constraint is created as a result of this inference.
This means that the constraint may be dropped later without invalidating the graph or impact to
its definition.

In contrast, both vertex-table-references from edge table E2, respectively, source vertex table
VT1 and destination vertex table VT2 are declared explicitly. This syntax is mandatory when
there are no or multiple foreign constraints defined between E2 and its referenced vertex
tables.

Implicit and explicit syntax can be mixed, as shown for edge table E3 and E4, wherein the
former uses an explicit syntax only of the source table, while the latter uses it only for the
destination table.

Note that the column_name_list clause that specifies the columns of the underlyng object for the
referenced vertex table to be treated as referenced key don’t necessarily match the columns
specified in the graph-element-key sub-clause of the vertex-definition clause that defined the
referenced vertex table. This is illustrated with edge table E4 from the example above: the
referenced key specified for VT2 is RK5, whereas the key that was specified in the vertex table
definition clause for VT2 was PK2.

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 121 of 142

graph_table_label_and_properties

Use graph_table_label_and_properties to specify the labels and properties of a graph. Then you can
formulate graph queries using the labels of a graph and the properties defined by these labels.

Graph Labels and Properties

You can associate graph element tables with labels that expose the columns of the underlying
object as properties. A label has a name and declares a mapping of property names to
columns of the underlying object for a given graph element table. Labels give you a way to
refer to one or more graph element tables in a graph query using a same label name.
Properties give you a way to refer to columns of one or more graph element tables using a
same, possibly label qualified, property name.

You can associate one label to multiple graph element tables, provided that all the graph
element tables that share this label declare the same property name. The columns or value
expressions exposed by the same property name must have union compatible types.

A graph element table may be associated with multiple labels.

Graph element tables are always associated with at least one label. If none is defined explicitly,
a label is assigned automatically with the same name as the graph element table.

Declaring labels and properties is optional. All the following ways to explicitly declare
properties and labels are valid:

• Only properties using graph_table_label_properties_clause

• Only labels using graph_table_label_clause

• Both properties and labels using graph_table_label_properties_clause

• No properties or labels

graph_table_label_properties_clause

The properties are derived from columns or SQL value expressions of columns of the
underlying object used to define the graph element table. By default, all visible columns are
mapped to properties and the names of the properties default to the names of these columns.
Pseudo-columns cannot be exposed as a property.

The graph_table_label_properties_clause provides the following options:

• PROPERTIES [ARE] ALL COLUMNS

All visible columns of the graph element table are exposed as properties of the label with
the same names as the column names. (This is the default when no properties are
specified.) Note that all visible columns that are used as keys will also be exposed as
properties.

• PROPERTIES [ARE] ALL COLUMNS EXCEPT(column_name_list)

All visible columns are exposed as properties of the label except for the ones explicitly
listed. This option is useful, if the number of columns not supposed to be exposed as
properties is small compared to the number of columns exposed as properties.

• PROPERTIES (column_name_list)

Only the columns explicitly listed become properties of the label with the same names as
the column names. This option is useful, if the number of columns exposed as properties is
small compared to the number of columns not supposed to be exposed as properties, or if

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 122 of 142

the user wants to expose invisible columns. It is also useful when renaming some or all of
the properties is necessary, as shown in the following:

• PROPERTIES(column_name_list AS property_name)

Only the columns explicitly listed become properties of the label. If AS property_name is
appended to the column_name, then the property_name is used as the property name, otherwise
the property name defaults to the column name. A property name can only be defined
once per label. The AS clause is useful to enable association of one label to multiple graph
element tables.

• PROPERTIES (value_expression AS property_name, ...)

It is possible to define a property as an expression over columns of the underlying object
used to define a graph element table. The AS clause is mandatory in this case. A value
expression can be a scalar expression, or a function expression, or expression list. It can
contain only the following forms of expression:

– Columns of the underlying object

– Constants: strings or numbers

– Deterministic functions — either SQL built-in functions or PL/SQL functions

No other expression forms are valid (in particular, sub-query expressions and
aggregate functions are invalid). The expression can only return a scalar data type.
SQL operator used in the expression must be deterministic

• NO PROPERTIES

The label does not expose any column of the underlying object associated with the graph
element table.

Note that that for a given vertex or edge table, the properties exposed in the various labels
applied to this vertex or edge table must have the same definition.

graph_table_properties_alternatives

You can control explicitly what columns are exposed as properties using the options of
graph_table_properties_alternatives clause.

Note that for implicit clauses, for example ALL COLUMNS, the list of exposed columns is
determined when the graph is created. If you add additional columns to a table after you create
the graph, for example you add a virtual column, the graph will not reflect the virtual column.

Examples

The following example illustrates various uses of graph_table_label_and_properties for declaring
labels associated to graph element tables (here only vertex tables) and their properties:

CREATE PROPERTY GRAPH “myGraph”
 VERTEX TABLES (
 HR.VT1,
 VT1 AS ALTVT1,
 VT2 LABEL “foo” ,
 VT3 NO PROPERTIES,
 VT4 PROPERTIES(C1),
 VT5 PROPERTIES(C1, C2 as P2),
 VT6 LABEL “bar” LABEL “weighted” NO PROPERTIES,
 VT7 LABEL “bar2” PROPERTIES ARE ALL COLUMNS EXCEPT (C3),
 VT8 LABEL “weighted” NO PROPERTIES DEFAULT LABEL,
 VT9 PROPERTIES(Cx + Cy * 0.15 AS PX, Cz AS PZ),
 VT10 PROPERTIES(JSON_VALUE(JCOL,
 ‘$.person.creditScore[0]’ returning number) AS CREDITSCORE,

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 123 of 142

 VT11 PROPERTIES(XMLCAST(XMLQUERY(‘/purchaseOrder/poDate’
 PASSING XCOL RETURNING CONTENT) AS DATE) AS PURCHASEDATE
);

The meaning of each vertex table definition of the example:

• Vertex table VT1 defines (implicitly) a single label VT1 that exposes all the visible columns
of the underlying object HR.VT1. This is the default when no options to specify label or
property are used.

• Vertex table ALTVT1 defines (implicitly) a single label ALTVT1 that exposes all the visible
columns of the underlying object VT1. If object name VT1 resolves to HR.VT1, both vertex
tables ALTVT1 and VT1 exposes the same columns from the same underlying object HR.VT1

• Vertex table VT2 defines a single label foo that exposes all the visible columns of the
underlying object VT2.

• Vertex table VT3 defines (implicitly) a single label VT3 without any properties. No columns
from the underlying object VT3 are exposed.

• Vertex table VT4 defines (implicitly) a single label VT4 with a single property C1 that
exposes the column C1 of the underlying object VT4.

• Vertex table VT5 defines (implicitly) a single label VT5 with a two properties C1 and P2, that
exposes, respectively, column C1 and C2 of the underlying object VT5.

• Vertex table VT6 defines two labels, bar and weighted, such that label bar exposes all visible
columns of underlying object VT6 as properties, while label “weighted” has no properties.

• Vertex table VT7 defines a single label bar that exposes all columns of the underlying object
VT3 but its column C3.

• Vertex table VT8 defines two labels, bar2 and VT8 (via the DEFAULT LABEL). The former has
no properties while the later exposes all columns as properties.

• Vertex table VT9 defines (implicitly) a single label VT9 with two properties PX and PZ, with PX
exposing an expression over columns Cx and Cy of the underlying object VT9, while PZ
exposes its column Cz.

• Vertex table VT10 defines one property CREDITSCORE that extracts creditScore value as
number data type from the JSON type column JCOL.

• Vertex table VT11 defines one property PURCHASEDATE that extracts purchase order date
value as date data type from the XMLtype column XCOL.

graph_options

Use the OPTIONS clause to specify a comma separated list of options. Each option can appear
only once. You can specify the mode of the graph, one of ENFORCED or TRUSTED. You can
either allow or disallow mixed types in properties with the same name.

ENFORCED or TRUSTED Mode

Option ENFORCED on the property graph means that guarantees are enforced over the entire
graph via constraints in the ENABLE VALIDATE state.

If you do not specify ENFORCED , the mode is TRUSTED. This is the default mode.

A property graph is in ENFORCED mode if :

• All of its graph element tables are defined with a primary key that matches an existing
ENABLE VALIDATE primary key constraint, or a unique key constraint in the ENABLE
VALIDATE state where all columns are not nullable.

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 124 of 142

• All vertex table references from edge tables are defined with a foreign key that matches an
existing ENABLE VALIDATE foreign key constraint between the underlying objects for the
edge and the vertex table respectively, that (foreign key constraint) defines the source or
destination vertex table reference. Further, the foreign key columns must have a NOT NULL
constraint, and a ENABLE VALIDATE primary key constraint, or both a unique and not null
constraints, must be defined on the referenced keys for each of the source and destination
table.

If neither one of these conditions is true, then the property graph is in TRUSTED mode. This is
the default mode.

Example: Creation of a Property Graph in Enforced Mode

CREATE PROPERTY GRAPH “mygraph”
 VERTEX TABLES (VT1, VT2 KEY(PK2)),
 EDGE TABLES (
 ET1 SOURCE VT1 DESTINATION VT2,
 ET2 SOURCE KEY(FK2) REFERENCES VT2 (PK2) DESTINATION VT1)
 OPTIONS(ENFORCED MODE);

The DDL in the example fails if any of the following is true:

• If neither a primary key constraint, or exacly one unique key constraints on non nullable
columns can be found for vertex table VT1, edge table ET1 or edge table ET2, regardless of
the ENFORCED MODE option.

• If there is not exactly one foreign key between ET1 and its referenced tables VT1 and VT2,
or between ET2 and its referenced table VT1, regardless of the ENFORCED MODE option.

• If neither a single primary key constraint on VT2.PK2, or a unique key constraint and NOT
NULL constraint on VT2.PK2 can be found, as a result of the ENFORCED MODE option.

• If no foreign key constraint can be found between ET2.FK2 and its referenced table VT2.PK2,
and there is neither a primary key constraint, or both a unique key and a NOT NULL
constraint on VT2.PK2, as a result of the ENFORCED MODE option.

DDL operations on constraints on tables that form the underlying objects of a property graph
can invalidate the graph if this one was successfully created with the ENFORCED MODE option
and have no effect on the graph if this one was successfully created with the TRUSTED MODE
option.

Table 14-1 DDL Operations on Constraints that Causes Graph Created with the
ENFORCED MODE Option to become Invalid

Operations Description

pkc is a PRIMARY KEY constraint in the statements
below.

ALTER TABLE t DROP CONSTRAINT pkc;

ALTER TABLE t DISABLE CONSTRAINT pkc;

ALTER TABLE t ENABLE NOVALIDATE CONSTRAINT
pkc;

If t is a graph element table e of G, and pkc is a
primary or unique key constraint on columns used
as keys for e, and G was in ENFORCED mode, G is
changed to be in TRUSTED mode.

If t is a vertex table e of G and pkc is a primary or
unique key constraint on columns used to define a
referenced key of a foreign key constraint with one
or more edge tables, and G was in ENFORCED
mode, G is changed to be in TRUSTED mode.

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 125 of 142

Table 14-1 (Cont.) DDL Operations on Constraints that Causes Graph Created with the
ENFORCED MODE Option to become Invalid

Operations Description

fkc is a FOREIGN KEY constraint in the statements
below.

ALTER TABLE t DROP CONSTRAINT fkc;

ALTER TABLE t DISABLE CONSTRAINT fkc;

ALTER TABLE t ENABLE NOVALIDATE CONSTRAINT fkc;

If t is an edge table e of G, and fkc is a foreign key
constraint on columns used as source or
destination keys for e referencing columns of vertex
table v, and G was in ENFORCED mode, G is
changed to be in TRUSTED mode

ALLOW or DISALLOW MIXED PROPERTY TYPES

DISALLOW means that the types of properties with same name should be exactly the same,
regardless of the labels where they come. Use DISALLOW when you want to ensure that a
given property has the same type across all labels.

ALLOW means that the types of properties with same name exposed in different labels can be
distinct and of properties with same name coming from same label should be UNION
compatible.

If you specify DISALLOW MIXED PROPERTY TYPES, the properties of a given name must have
exactly the same type in every label. Note that this option also requires that you define a label
associated with multiple graph element tables with the same data type.

The table summarizes the compatibility rules.

Table 14-2 Compatibility Rules for Mixed Property Types

Options ALLOW DISALLOW

Properties with same name in
different definition of the same
labels

Types must be UNION
Compatible

Types must match

Properties with same name from
different labels

Any Types must match

DISALLOW MIXED PROPERTY TYPES is the default.

Dependencies Between Property Graph and its Underlying Objects

A property graph depends on the underlying objects it is based upon, tables, materialized
views, or synonyms of tables or materialized views. Changes in these underlying objects can
render the property graph invalid. Cursors that depend on the underlying objects are also
invalidated. Queries against an invalid property graph in invalid state will error.

The following summarizes operations on dependent objects that cause a property graph to
become invalid:

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 126 of 142

Table 14-3 Operations on Dependent Objects that Invalidate a Property Graph

Operations Result

DROP TABLE t ;
DROP [PUBLIC] SYNONYM t;
DROP MATERIALIZED VIEW t;
CREATE OR REPLACE [PUBLIC] SYNONYM t;

If t is used to define a graph element table e of
graph G, then G becomes invalid.

RENAME t TO t2; If t is used to defined a graph element table e of
graph G, then G becomes invalid

ALTER TABLE for dropping an unused column C of
table t

ALTER TABLE

If t is used to defined a graph element table e of
graph G, then G becomes invalid

ALTER TABLE t RENAME C TO C2; If t is used to defined a graph element table e of
graph G and at least one label applied to e define a
property as an SQL operator expression, then G
becomes invalid

ALTER TABLE for modifying the type of a column C
of table t

If t is used to defined a graph element table e of
graph G, then G becomes invalid

Other DDL operations to alter dependent tables, views, or synonyms do not invaliate the
property graph.

Note also that using a materialized view to define vertex or edge tables in a property graph
creates a dependency to the container table for the view, not directly to the materialized view
schema object. This has the following implications:

• When dropping a materialized view but preserving its table (i.e., using PRESERVE TABLE),
the property graph remains valid.

• When dropping one of the tables, views, or synonyms used in the definition of the
materialized view, the materialized view becomes invalid, but the property graph remains
valid as it only depends on the container table.

This behavior is similar to the behavior of views defined over a materialized view.

Revalidating a Property Graph

Changes to the underlying objects of a property graph may invalidate the graph. An invalid
state indicates that the metadata of the property graph describes an incorrect definition with
respect to the property graph data model.

You can revalidate the property graph by redefining it with CREATE OR REPLACE PROPERTY
GRAPH .

Sometimes however a graph may report an invalid state when it is actually valid. This can
happen when the dependencies of the graph to its underlying objects are too coarse. When
this happens you can revalidate the graph using ALTER PROPERTY GRAPH COMPILE instead of
redefining it.

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 127 of 142

See Also

ALTER PROPERTY GRAPH

Examples

Example: Property Graph Without Explicit Labels or Properties

In the example a property graph myGraph is created without labels or properties. A label with
name mytable is automatically associated with the vertex table mytable defined over the object
myschema. A label with name T2 is automatically associated with the vertex table T2 defined over
the object mytable2.

All the columns of the underlying tables mytable and T2 are exposed as properties. The property
name is the column name.

CREATE PROPERTY GRAPH “myGraph”
 VERTEX TABLES (“myschema”. “mytable”, “mytable2” AS T2);

Example: Property Graph With An Explicit Label

In the example the vertex table mytable is associated with the label person.

All the columns of mytable are exposed as properties.

CREATE PROPERTY GRAPH “myGraph”
 VERTEX TABLES (“myschema”. “mytable” LABEL “person”);

If a label with the name of the graph element table is also needed, you have to explicitly
declare it in addition to the person label. You can do this by declaring another explicit label that
has the name of the graph element table, or by adding a DEFAULT LABEL.

The following vertex table declarations are semantically equivalent and all associate the graph
element table mytable with the label mytable:

CREATE PROPERTY GRAPH “myGraph”
 VERTEX TABLES (“myschema”. “mytable” LABEL “mytable”);

CREATE PROPERTY GRAPH
 VERTEX TABLES (“myschema”. “mytable” DEFAULT LABEL);

CREATE PROPERTY GRAPH
 VERTEX TABLES (“myschema”. “mytable” AS “mytable”);

CREATE PROPERTY GRAPH
 VERTEX TABLES (“myschema”. “mytable”);

Example: Property Graph With Multipe Labels

You can associate multiple labels to the same graph element. The example vertex table mytable
is associated with two labels foo and bar.

All the columns of mytable are exposed as properties.

CREATE PROPERTY GRAPH “myGraph”
 VERTEX TABLES (“myschema”. “mytable” LABEL “foo” LABEL “bar”);

Example: Property Graph With One Label Associating Multiple Graph Elements

Chapter 14
CREATE PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 128 of 142

The example shows a property graph mygraph where the shared weighted label associates two
vertex tables mytable1 and mytable2 and two edge tables E1 and E2 .

All the columns of mytable1 and mytable2are exposed as properties.

CREATE PROPERTY GRAPH “myGraph”
 VERTEX TABLES (
 “mytable1” LABEL “foo” LABEL “weighted”,
 “mytable2” LABEL “weighted”),
 EDGE TABLES (
 "E1" SOURCE “mytable1” DESTINATION “mytable2” LABEL “weighted”
 "E2" SOURCE “mytable2” DESTINATION “mytable1” LABEL “weighted”
);

CREATE RESTORE POINT
Purpose

Use the CREATE RESTORE POINT statement to create a restore point, which is a name
associated with a timestamp or an SCN of the database. A restore point can be used to flash
back a table or the database to the time specified by the restore point without the need to
determine the SCN or timestamp. Restore points are also useful in various RMAN operations,
including backups and database duplication. You can use RMAN to create restore points in the
process of implementing an archival backup.

See Also

• Oracle Database Backup and Recovery User's Guide for more information on
creating and using restore points and guaranteed restore points, for information on
database duplication, and for information on archival backups

• FLASHBACK DATABASE, FLASHBACK TABLE , and DROP RESTORE POINT
for information on using and dropping restore points

Prerequisites

To create a normal restore point, you must have the SELECT ANY DICTIONARY, FLASHBACK ANY
TABLE, SYSDBA, SYSBACKUP, or SYSDG system privilege.

To create a guaranteed restore point, you must fulfill one of the following conditions:

• You must connect AS SYSDBA, or AS SYSBACKUP, or AS SYSDG.

• You must have been granted the SYSDBA privilege and be using a multitenant database.

• You must be running as user SYS, and be using a a multitenant database.

To view or use a restore point, you must have the SELECT ANY DICTIONARY, FLASHBACK ANY
TABLE, SYSDBA, SYSBACKUP, or SYSDG system privilege or the SELECT_CATALOG_ROLE role.

You can create a restore point on a primary or standby database. The database can be open,
or mounted but not open. If the database is mounted, then it must have been shut down
consistently before being mounted unless it is a physical standby database.

You must have created a fast recovery area before creating a guaranteed restore point. You
need not enable flashback database before you create the guaranteed restore point. The
database must be in ARCHIVELOG mode if you are creating a guaranteed restore point.

Chapter 14
CREATE RESTORE POINT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 129 of 142

You need not enable flashback database before you create a normal restore point, because
normal restore points have other applications besides FLASHBACK DATABASE. However, you
would need to have enabled flashback database before you create a normal restore point, if
you intend to perform a FLASHBACK DATABASE to that normal restore point.

You can create, use, or view a restore point when connected to a multitenant container
database (CDB) as follows:

• To create a normal CDB restore point, the current container must be the root and you must
have the SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system privilege, either
granted commonly or granted locally in the root, or the SYSDBA, SYSBACKUP, or SYSDG
system privilege granted commonly.

• To create a guaranteed CDB restore point, the current container must be the root and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege granted commonly.

• To view a CDB restore point, the current container must be the root and you must have the
SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system privilege or the
SELECT_CATALOG_ROLE role, either granted commonly or granted locally in the root, or the
SYSDBA, SYSBACKUP, or SYSDG system privilege granted commonly, or the current container
must be a PDB and you must have the SELECT ANY DICTIONARY, FLASHBACK ANY TABLE,
SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly or granted locally in
that PDB.

• To use a CDB restore point, you must have the SELECT ANY DICTIONARY or FLASHBACK
ANY TABLE system privilege or the SELECT_CATALOG_ROLE role, either granted commonly or
granted locally in the root, or the SYSDBA, SYSBACKUP, or SYSDG system privilege granted
commonly.

• To create a normal PDB restore point, the current container must be the root and you must
have the SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system privilege, either
granted commonly or granted locally in the root, or the SYSDBA, SYSBACKUP, or SYSDG
system privilege granted commonly, or the current container must be the PDB for which
you want to create the restore point and you must have the SELECT ANY DICTIONARY,
FLASHBACK ANY TABLE, SYSDBA, SYSBACKUP, or SYSDG system privilege, granted
commonly or granted locally in that PDB.

• To create a guaranteed PDB restore point, the current container must be the root and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly, or the
current container must be the PDB for which you want to create the restore point and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly .

• To view a PDB restore point, the current container must be the root and you must have the
SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system privilege or the
SELECT_CATALOG_ROLE role, either granted commonly or granted locally in the root, or the
SYSDBA, SYSBACKUP, or SYSDG system privilege granted commonly, or the current container
must be the PDB for the restore point and you must have the SELECT ANY DICTIONARY,
FLASHBACK ANY TABLE, SYSDBA, SYSBACKUP, or SYSDG system privilege, granted
commonly or granted locally in that PDB.

• To use a PDB restore point, the current container must be the PDB for the restore point
and you must have the SELECT ANY DICTIONARY, FLASHBACK ANY TABLE, SYSDBA,
SYSBACKUP, or SYSDG system privilege, granted commonly or granted locally in that PDB.

Chapter 14
CREATE RESTORE POINT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 130 of 142

Syntax

create_restore_point::=

CREATE

CLEAN

RESTORE POINT restore_point

FOR PLUGGABLE DATABASE pdb_name

AS OF
TIMESTAMP

SCN
expr

PRESERVE

GUARANTEE FLASHBACK DATABASE

;

Semantics

CLEAN

You can specify CLEAN only when creating a PDB restore point. The PDB must use shared
undo and must be closed with no outstanding transactions. Flashing back a PDB using shared
undo to a clean PDB restore point does not require restoring backups or creating a clone
instance. Therefore, it is faster than flashing back a PDB using shared undo to an SCN or
other type of restore point.

restore_point

Specify the name of the restore point. The name must satisfy the requirements listed in
"Database Object Naming Rules ".

In a multitenant environment, the CDB and PDBs have their own namespaces for restore
points. Therefore, the CDB and each PDB can have a restore point with the same name. When
you specify a restore point name in a PDB or for a PDB operation, the name is first interpreted
as a PDB restore point for the concerned PDB. If a PDB restore point with the specified name
is not found, then it is interpreted as a CDB restore point.

The database can retain at least 2048 normal restore points. In a Multitenant environment, a
CDB can retain at least 2048 normal restore points across the entire CDB, including PDB
restore points. Normal restore points are retained in the database for at least the number of
days specified for the CONTROL_FILE_RECORD_KEEP_TIME initialization parameter. The default
value of that parameter is 7 days. Guaranteed restore points are retained in the database until
explicitly dropped by the user.

If you specify neither PRESERVE nor GUARANTEE FLASHBACK DATABASE, then the resulting
restore point enables you to flash the database back to a restore point within the time period
determined by the DB_FLASHBACK_RETENTION_TARGET initialization parameter. The database
automatically manages such restore points. When the maximum number of restore points is
reached, according to the rules described in restore_point above, the database automatically
drops the oldest restore point. Under some circumstances the restore points will be retained in
the RMAN recovery catalog for use in restoring long-term backups. You can explicitly drop a
restore point using the DROP RESTORE POINT statement.

FOR PLUGGABLE DATABASE

This clause enables you to create a PDB restore point when you are connected to the root. For
pdb_name, specify the name of the PDB.

Chapter 14
CREATE RESTORE POINT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 131 of 142

If you are connected to the PDB for which you want to create the restore point, then it is not
necessary to specify this clause. However, if you specify this clause, then you must specify the
name of the PDB to which you are connected.

AS OF Clause

Use this clause to create a restore point at a specified datetime or SCN in the past. If you
specify TIMESTAMP, then expr must be a valid datetime expression resolving to a time in the
past. If you specify SCN, then expr must be a valid SCN in the database in the past. In either
case, expr must refer to a datetime or SCN in the current incarnation of the database.

PRESERVE

Specify PRESERVE to indicate that the restore point must be explicitly deleted. Such restore
points are useful for preserving a flashback database.

GUARANTEE FLASHBACK DATABASE

A guaranteed restore point enables you to flash the database back deterministically to the
restore point regardless of the DB_FLASHBACK_RETENTION_TARGET initialization parameter
setting. The guaranteed ability to flash back depends on sufficient space being available in the
fast recovery area.

Guaranteed restore points guarantee only that the database will maintain enough flashback
logs to flashback the database to the guaranteed restore point. It does not guarantee that the
database will have enough undo to flashback any table to the same restore point.

Guaranteed restore points are always preserved. They must be dropped explicitly by the user
using the DROP RESTORE POINT statement. They do not age out. Guaranteed restore points can
use considerable space in the fast recovery area. Therefore, Oracle recommends that you
create guaranteed restore points only after careful consideration.

Examples

Creating and Using a Restore Point: Example

The following example creates a normal restore point, updates a table, and then flashes back
the altered table to the restore point. The example assumes the user hr has the appropriate
system privileges to use each of the statements.

CREATE RESTORE POINT good_data;

SELECT salary FROM employees WHERE employee_id = 108;

 SALARY

 12000

UPDATE employees SET salary = salary*10
 WHERE employee_id = 108;

SELECT salary FROM employees
 WHERE employee_id = 108;

 SALARY

 120000

COMMIT;

FLASHBACK TABLE employees TO RESTORE POINT good_data;

Chapter 14
CREATE RESTORE POINT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 132 of 142

SELECT salary FROM employees
 WHERE employee_id = 108;

 SALARY

 12000

CREATE ROLE
Purpose

Use the CREATE ROLE statement to create a role, which is a set of privileges that can be
granted to users or to other roles. You can use roles to administer database privileges. You can
add privileges to a role and then grant the role to a user. The user can then enable the role and
exercise the privileges granted by the role.

A role contains all privileges granted to the role and all privileges of other roles granted to it. A
new role is initially empty. You add privileges to a role with the GRANT statement.

If you create a role that is NOT IDENTIFIED or is IDENTIFIED EXTERNALLY or BY password, then
Oracle Database grants you the role with ADMIN OPTION. However, if you create a role
IDENTIFIED GLOBALLY, then the database does not grant you the role. A global role cannot be
granted to a user or role directly. Global roles can be granted through EUS enterprise roles,
mapped group memberships, and mapped app roles.

See Also

• GRANT for information on granting roles

• ALTER USER for information on enabling roles

• ALTER ROLE and DROP ROLE for information on modifying or removing a role
from the database

• SET ROLE for information on enabling and disabling roles for the current session

• Oracle Database Security Guide for general information about roles

• Oracle Database Enterprise User Security Administrator's Guide for details on
enterprise roles

Prerequisites

You must have the CREATE ROLE system privilege.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root. To specify
CONTAINER = CURRENT, the current container must be a pluggable database (PDB).

Chapter 14
CREATE ROLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 133 of 142

Syntax

create_role::=

CREATE ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

USING

schema .

package

EXTERNALLY

GLOBALLY AS ’

domain_name_of directory_group

AZURE_ROLE = value

IAM_GROUP_NAME = value

’

CONTAINER =
CURRENT

ALL

;

Semantics

role

Specify the name of the role to be created. The name must satisfy the requirements listed in
"Database Object Naming Rules ". Oracle recommends that the role contain at least one
single-byte character regardless of whether the database character set also contains multibyte
characters. The maximum length of the role name is 128 bytes. The maximum number of user-
defined roles that can be enabled for a single user at one time is 148.

In a non-CDB, a role name cannot begin with C## or c##.

Note

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers to
a non-CDB from a previous release.

In a CDB, the requirements for a role name are as follows:

• The name of a common role must begin with characters that are a case-insensitive match
to the prefix specified by the COMMON_USER_PREFIX initialization parameter. By default, the
prefix is C##.

• The name of a local role must not begin with characters that are a case-insensitive match
to the prefix specified by the COMMON_USER_PREFIX initialization parameter. Regardless of

Chapter 14
CREATE ROLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 134 of 142

the value of COMMON_USER_PREFIX, the name of a local role can never begin with C## or
c##.

Note

If the value of COMMON_USER_PREFIX is an empty string, then there are no
requirements for common or local role names with one exception: the name of a local
role can never begin with C## or c##. Oracle recommends against using an empty
string value because it might result in conflicts between the names of local and
common roles when a PDB is plugged into a different CDB, or when opening a PDB
that was closed when a common user was created.

Some roles are defined by SQL scripts provided on your distribution media.

See Also

GRANT for a list of these predefined roles and SET ROLE for information on enabling
and disabling roles for a user

NOT IDENTIFIED Clause

Specify NOT IDENTIFIED to indicate that this role is authorized by the database and that no
password is required to enable the role.

IDENTIFIED Clause

Use the IDENTIFIED clause to indicate that a user must be authorized by the specified method
before the role is enabled with the SET ROLE statement.

BY password

You can create a local role with a password with the BY password clause. This means that you
must specify the password to the database at the time you enable the role.

The password can contain any characters from the database character set except the NULL
character (CHR(0)) and the double-quote. The maximum length of the password is 1024 bytes.
The password is syntactically an identifier, and may need to be enclosed in double-quotes as
required by the "Database Object Naming Rules ". You must ensure that your database, and
the clients that need to enable the role are configured to support all the characters comprising
the password.

You can enable password-protected roles in a proxy session. Both secure application role and
password-protected roles provide a secure method for enabling a role in a session. Oracle
recommends using secure password roles instead of password protected roles in instances
where the password has to be maintained and transmitted over insecure channels, or if more
than one person needs to know the password. Password-protected roles in a proxy session
are suitable for situations where automation is used to set the role.

USING package

The USING package clause lets you create a secure application role, which is a role that can be
enabled only by applications using an authorized package. If you do not specify schema, then
the database assumes the package is in your own schema.

Chapter 14
CREATE ROLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 135 of 142

See Also

Oracle Database Security Guide for information on creating a secure application role

EXTERNALLY

Specify EXTERNALLY to create an external role. An external user must be authorized by an
external service, such as an operating system or third-party service, before enabling the role.

Depending on the operating system, the user may have to specify a password to the operating
system before the role is enabled.

GLOBALLY

Specify GLOBALLY to create a global role . A global user must be authorized to use the role by
the enterprise directory service before the role is enabled at login.

Specify GLOBALLY with AS to map a directory group to a global role when using centrally
managed users. The directory group is identified by its domain name.

Example: Map a Directory User to a Global User

 CREATE USER scott_global IDENTIFIED GLOBALLY AS ‘cn=scott taylor,ou=sales,dc=abccorp,dc=com’;

This effectively maps a directory user named ‘scott taylor’ in the ‘sales’ organization unit of the
abccorp.com domain to a database global user ‘scott_global’.

You can map an Oracle Database global role to an Azure app role in order to give Azure users
and applications additional privileges and roles beyond those that they have through their login
schemas.

Example: Map an Oracle Database Global Role to an App Role

The example creates a new database global role widget_sales_role and maps it to an existing
Azure AD application role WidgetManagerGroup:

CREATE ROLE widget_sales_role IDENTIFIED GLOBALLY AS 'AZURE_ROLE=WidgetManagerGroup';

See Also

Authenticating and Authorizing Microsoft Azure Active Directory Users for Oracle
Autonomous Databases

CONTAINER Clause

The CONTAINER clause applies when you are connected to a CDB. However, it is not necessary
to specify the CONTAINER clause because its default values are the only allowed values.

• To create a common role, you must be connected to the root. You can optionally specify
CONTAINER = ALL, which is the default when you are connected to the root.

• To create a local role, you must be connected to a PDB. You can optionally specify
CONTAINER = CURRENT, which is the default when you are connected to a PDB.

Chapter 14
CREATE ROLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 136 of 142

Examples

Creating a Role: Example

The following statement creates the role dw_manager:

CREATE ROLE dw_manager;

Users who are subsequently granted the dw_manager role will inherit all of the privileges that
have been granted to this role.

You can add a layer of security to roles by specifying a password, as in the following example:

CREATE ROLE dw_manager
 IDENTIFIED BY warehouse;

Users who are subsequently granted the dw_manager role must specify the password warehouse to
enable the role with the SET ROLE statement.

The following statement creates global role warehouse_user:

CREATE ROLE warehouse_user IDENTIFIED GLOBALLY;

The following statement creates the same role as an external role:

CREATE ROLE warehouse_user IDENTIFIED EXTERNALLY;

The following statement creates local role role1 in the current PDB. The current container must
be a PDB when you issue this statement:

CREATE ROLE role1 CONTAINER = CURRENT;

The following statement creates common role c##role1. The current container must be the root
when you issue this statement:

CREATE ROLE c##role1 CONTAINER = ALL;

CREATE ROLLBACK SEGMENT

Note

Oracle strongly recommends that you run your database in automatic undo
management mode instead of using rollback segments. Do not use rollback segments
unless you must do so for compatibility with earlier versions of Oracle Database. Refer
to Oracle Database Administrator's Guide for information on automatic undo
management.

Purpose

Use the CREATE ROLLBACK SEGMENT statement to create a rollback segment, which is an
object that Oracle Database uses to store data necessary to reverse, or undo, changes made
by transactions.

The information in this section assumes that your database is not running in automatic undo
mode (the UNDO_MANAGEMENT initialization parameter is set to MANUAL or not set at all). If
your database is running in automatic undo mode (the UNDO_MANAGEMENT initialization

Chapter 14
CREATE ROLLBACK SEGMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 137 of 142

parameter is set to AUTO, which is the default), then rollback segments are not permitted.
However, errors generated in rollback segment operations are suppressed.

Further, if your database has a locally managed SYSTEM tablespace, then you cannot create
rollback segments in any dictionary-managed tablespace. Instead, you must either use the
automatic undo management feature or create locally managed tablespaces to hold the
rollback segments.

Note

A tablespace can have multiple rollback segments. Generally, multiple rollback
segments improve performance.

• The tablespace must be online for you to add a rollback segment to it.

• When you create a rollback segment, it is initially offline. To make it available for
transactions by your Oracle Database instance, bring it online using the ALTER
ROLLBACK SEGMENT statement. To bring it online automatically whenever you start
up the database, add the segment name to the value of the ROLLBACK_SEGMENT
initialization parameter.

To use objects in a tablespace other than the SYSTEM tablespace:

• If you are using rollback segments for undo, then at least one rollback segment (other than
the SYSTEM rollback segment) must be online.

• If you are running the database in automatic undo mode, then at least one UNDO
tablespace must be online.

See Also

• ALTER ROLLBACK SEGMENT for information on altering a rollback segment

• DROP ROLLBACK SEGMENT for information on removing a rollback segment

• Oracle Database Reference for information on the UNDO_MANAGEMENT parameter

• Oracle Database Administrator's Guide for information on automatic undo mode

Prerequisites

To create a rollback segment, you must have the CREATE ROLLBACK SEGMENT system privilege.

Syntax

create_rollback_segment::=

CREATE

PUBLIC

ROLLBACK SEGMENT rollback_segment

TABLESPACE tablespace

storage_clause

;

(storage_clause)

Chapter 14
CREATE ROLLBACK SEGMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 138 of 142

Semantics

PUBLIC

Specify PUBLIC to indicate that the rollback segment is public and is available to any instance.
If you omit this clause, then the rollback segment is private and is available only to the instance
naming it in its initialization parameter ROLLBACK_SEGMENTS.

rollback_segment

Specify the name of the rollback segment to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

TABLESPACE

Use the TABLESPACE clause to identify the tablespace in which the rollback segment is created.
If you omit this clause, then the database creates the rollback segment in the SYSTEM
tablespace.

Note

Oracle Database must access rollback segments frequently. Therefore, Oracle
strongly recommends that you do not create rollback segments in the SYSTEM
tablespace, either explicitly or implicitly by omitting this clause. In addition, to avoid
high contention for the tablespace containing the rollback segment, it should not
contain other objects such as tables and indexes, and it should require minimal extent
allocation and deallocation.

To achieve these goals, create rollback segments in locally managed tablespaces with
autoallocation disabled—in tablespaces created with the EXTENT MANAGEMENT LOCAL
clause with the UNIFORM setting. The AUTOALLOCATE setting is not supported.

See Also

CREATE TABLESPACE

storage_clause

The storage_clause lets you specify storage characteristics for the rollback segment.

• The OPTIMAL parameter of the storage_clause is of particular interest, because it applies only
to rollback segments.

• You cannot specify the PCTINCREASE parameter of the storage_clause with CREATE ROLLBACK
SEGMENT.

See Also

storage_clause

Chapter 14
CREATE ROLLBACK SEGMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 139 of 142

Examples

Creating a Rollback Segment: Example

The following statement creates a rollback segment with default storage values in an
appropriately configured tablespace:

CREATE TABLESPACE rbs_ts
 DATAFILE 'rbs01.dbf' SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 100K;

/* This example and the next will fail if your database is in
 automatic undo mode.
*/
CREATE ROLLBACK SEGMENT rbs_one
 TABLESPACE rbs_ts;

The preceding statement is equivalent to the following:

CREATE ROLLBACK SEGMENT rbs_one
 TABLESPACE rbs_ts
 STORAGE
 (INITIAL 10K);

CREATE SCHEMA
Purpose

Use the CREATE SCHEMA statement to create multiple tables and views and perform multiple
grants in your own schema in a single transaction.

To execute a CREATE SCHEMA statement, Oracle Database executes each included statement.
If all statements execute successfully, then the database commits the transaction. If any
statement results in an error, then the database rolls back all the statements.

Note

This statement does not actually create a schema. Oracle Database automatically
creates a schema when you create a user (see CREATE USER). This statement lets
you populate your schema with tables and views and grant privileges on those objects
without having to issue multiple SQL statements in multiple transactions.

Prerequisites

The CREATE SCHEMA statement can include CREATE TABLE, CREATE VIEW, and GRANT
statements. To issue a CREATE SCHEMA statement, you must have the privileges necessary to
issue the included statements.

Chapter 14
CREATE SCHEMA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 140 of 142

Syntax

create_schema::=

CREATE SCHEMA AUTHORIZATION schema

create_table_statement

create_view_statement

grant_statement

;

Semantics

schema

Specify the name of the schema. The schema name must be the same as your Oracle
Database username.

Restrictions

While CREATE SCHEMA supports CREATE TABLE , CREATE BLOCKCHAIN TABLE is unsupported.

create_table_statement

Specify a CREATE TABLE statement to be issued as part of this CREATE SCHEMA statement. Do
not end this statement with a semicolon (or other terminator character).

See Also

CREATE TABLE

create_view_statement

Specify a CREATE VIEW statement to be issued as part of this CREATE SCHEMA statement. Do
not end this statement with a semicolon (or other terminator character).

See Also

CREATE VIEW

grant_statement

Specify a GRANT statement to be issued as part of this CREATE SCHEMA statement. Do not end
this statement with a semicolon (or other terminator character). You can use this clause to
grant object privileges on objects you own to other users. You can also grant system privileges
to other users if you were granted those privileges WITH ADMIN OPTION.

See Also

GRANT

Chapter 14
CREATE SCHEMA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 141 of 142

The CREATE SCHEMA statement supports the syntax of these statements only as defined by
standard SQL, rather than the complete syntax supported by Oracle Database.

The order in which you list the CREATE TABLE, CREATE VIEW, and GRANT statements is
unimportant. The statements within a CREATE SCHEMA statement can reference existing objects
or objects you create in other statements within the same CREATE SCHEMA statement.

Restriction on Granting Privileges to a Schema

The syntax of the parallel_clause is allowed for a CREATE TABLE statement in CREATE SCHEMA, but
parallelism is not used when creating the objects.

See Also

The parallel_clause in the CREATE TABLE documentation

Examples

Creating a Schema: Example

The following statement creates a schema named oe for the sample order entry user oe, creates
the table new_product, creates the view new_product_view, and grants the SELECT object privilege on
new_product_view to the sample human resources user hr.

CREATE SCHEMA AUTHORIZATION oe
 CREATE TABLE new_product
 (color VARCHAR2(10) PRIMARY KEY, quantity NUMBER)
 CREATE VIEW new_product_view
 AS SELECT color, quantity FROM new_product WHERE color = 'RED'
 GRANT select ON new_product_view TO hr;

Chapter 14
CREATE SCHEMA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 142 of 142

15
SQL Statements: CREATE SEQUENCE to
DROP CLUSTER

This chapter contains the following SQL statements:

• CREATE SEQUENCE

• CREATE SPFILE

• CREATE SYNONYM

• CREATE TABLE

• CREATE TABLESPACE

• CREATE TABLESPACE SET

• CREATE TRIGGER

• CREATE TYPE

• CREATE TYPE BODY

• CREATE USER

• CREATE VECTOR INDEX

• CREATE VIEW

• DELETE

• DISASSOCIATE STATISTICS

• DROP ANALYTIC VIEW

• DROP ATTRIBUTE DIMENSION

• DROP AUDIT POLICY (Unified Auditing)

• DROP CLUSTER

CREATE SEQUENCE
Purpose

A sequence is a database object used to produce unique integers, which are commonly used
to populate a synthetic primary key column in a table. The sequence number always increases,
typically by 1, and each new entry is placed on the right-most leaf block of the index.

Use the CREATE SEQUENCE statement to create a sequence to automatically generate primary
key values.

When a sequence number is generated, the sequence is incremented, independent of the
transaction committing or rolling back. If two users concurrently increment the same sequence,
then the sequence numbers each user acquires may have gaps, because sequence numbers
are being generated by the other user. One user can never acquire the sequence number
generated by another user. After a sequence value is generated by one user, that user can

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 238

continue to access that value regardless of whether the sequence is incremented by another
user.

Sequence numbers are generated independently of tables, so the same sequence can be
used for one or for multiple tables. It is possible that individual sequence numbers will appear
to be skipped, because they were generated and used in a transaction that ultimately rolled
back. Additionally, a single user may not realize that other users are drawing from the same
sequence.

After a sequence is created, you can access its values in SQL statements with the CURRVAL
pseudocolumn, which returns the current value of the sequence, or the NEXTVAL
pseudocolumn, which increments the sequence and returns the new value.

See Also

• Pseudocolumns for more information on using the CURRVAL and NEXTVAL

• "How to Use Sequence Values " for information on using sequences

• ALTER SEQUENCE or DROP SEQUENCE for information on modifying or
dropping a sequence

Prerequisites

To create a sequence in your own schema, you must have the CREATE SEQUENCE system
privilege.

To create a sequence in another user's schema, you must have the CREATE ANY SEQUENCE
system privilege.

Chapter 15
CREATE SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 238

Syntax

create_sequence::=

CREATE SEQUENCE

IF NOT EXISTS schema .

sequence

SHARING =

METADATA

DATA

NONE

INCREMENT BY

START WITH
integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

KEEP

NOKEEP

SCALE
EXTEND

NOEXTEND

NOSCALE

SHARD
EXTEND

NOEXTEND

NOSHARD

SESSION

GLOBAL

Semantics

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the sequence does not exist, a new sequence is created at the end of the statement.

Chapter 15
CREATE SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 238

• If the sequence exists, this is the sequence you have at the end of the statement. A new
one is not created because the older one is detected.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the schema to contain the sequence. If you omit schema, then Oracle Database creates
the sequence in your own schema.

sequence

Specify the name of the sequence to be created. The name must satisfy the requirements
listed in "Database Object Naming Rules ".

If you specify none of the clauses INCREMENT BY through GLOBAL, then you create an
ascending sequence that starts with 1 and increases by 1 with no upper limit. Specifying only
INCREMENT BY -1 creates a descending sequence that starts with ‐1 and decreases with no
lower limit.

• To create a sequence that increments without bound, for ascending sequences, omit the
MAXVALUE parameter or specify NOMAXVALUE. For descending sequences, omit the
MINVALUE parameter or specify the NOMINVALUE.

• To create a sequence that stops at a predefined limit, for an ascending sequence, specify a
value for the MAXVALUE parameter. For a descending sequence, specify a value for the
MINVALUE parameter. Also specify NOCYCLE. Any attempt to generate a sequence number
once the sequence has reached its limit results in an error.

• To create a sequence that restarts after reaching a predefined limit, specify values for both
the MAXVALUE and MINVALUE parameters. Also specify CYCLE.

SHARING

This clause applies only when creating a sequence in an application root. This type of
sequence is called an application common object and it can be shared with the application
PDBs that belong to the application root. To determine how the sequence is shared, specify
one of the following sharing attributes:

• METADATA - A metadata link shares the sequence’s metadata, but its data is unique to
each container. This type of sequence is referred to as a metadata-linked application
common object.

• DATA - A data link shares the sequence, and its data is the same for all containers in the
application container. Its data is stored only in the application root. This type of sequence is
referred to as a data-linked application common object.

• NONE - The sequence is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING initialization
parameter to determine the sharing attribute of the sequence. If the DEFAULT_SHARING
initialization parameter does not have a value, then the default is METADATA.

You cannot change the sharing attribute of a sequence after it is created.

Chapter 15
CREATE SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 238

See Also

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

INCREMENT BY

Specify the interval between sequence numbers. This integer value can be any positive or
negative integer, but it cannot be 0. This value can have 28 or fewer digits for an ascending
sequence and 27 or fewer digits for a descending sequence. The absolute of this value must
be less than the difference of MAXVALUE and MINVALUE. If this value is negative, then the
sequence descends. If the value is positive, then the sequence ascends. If you omit this
clause, then the interval defaults to 1.

START WITH

Specify the first sequence number to be generated. Use this clause to start an ascending
sequence at a value greater than its minimum or to start a descending sequence at a value
less than its maximum. For ascending sequences, the default value is the minimum value of
the sequence. For descending sequences, the default value is the maximum value of the
sequence. This integer value can have 28 or fewer digits for positive values and 27 or fewer
digits for negative values.

Note

This value is not necessarily the value to which an ascending or descending cycling
sequence cycles after reaching its maximum or minimum value, respectively.

MAXVALUE

Specify the maximum value the sequence can generate. This integer value can have 28 or
fewer digits for positive values and 27 or fewer digits for negative values. MAXVALUE must be
equal to or greater than START WITH and must be greater than MINVALUE.

NOMAXVALUE

Specify NOMAXVALUE to indicate a maximum value of 1028-1 for an ascending sequence or -1
for a descending sequence. This is the default.

MINVALUE

Specify the minimum value of the sequence. This integer value can have 28 or fewer digits for
positive values and 27 or fewer digits for negative values. MINVALUE must be less than or
equal to START WITH and must be less than MAXVALUE.

NOMINVALUE

Specify NOMINVALUE to indicate a minimum value of 1 for an ascending sequence or -(1027 -1)
for a descending sequence. This is the default.

Chapter 15
CREATE SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 238

CYCLE

Specify CYCLE to indicate that the sequence continues to generate values after reaching either
its maximum or minimum value. After an ascending sequence reaches its maximum value, it
generates its minimum value. After a descending sequence reaches its minimum, it generates
its maximum value.

NOCYCLE

Specify NOCYCLE to indicate that the sequence cannot generate more values after reaching its
maximum or minimum value. This is the default.

CACHE

Specify how many values of the sequence the database preallocates and keeps in memory for
faster access. This integer value can have 28 or fewer digits. The minimum value for this
parameter is 2. For sequences that cycle, this value must be less than the number of values in
the cycle. You cannot cache more values than will fit in a given cycle of sequence numbers.
Therefore, the maximum value allowed for CACHE must be less than the value determined by
the following formula:

CEIL ((MAXVALUE - MINVALUE) / ABS (INCREMENT))

If a system failure occurs, then all cached sequence values that have not been used in
committed DML statements are lost. The potential number of lost values is equal to the value
of the CACHE parameter.

Note

Oracle recommends using the CACHE setting to enhance performance if you are using
sequences in an Oracle Real Application Clusters environment.

NOCACHE

Specify NOCACHE to indicate that values of the sequence are not preallocated. If you omit both
CACHE and NOCACHE, then the database caches 20 sequence numbers by default.

ORDER

Specify ORDER to guarantee that sequence numbers are generated in order of request. This
clause is useful if you are using the sequence numbers as timestamps. Guaranteeing order is
usually not important for sequences used to generate primary keys.

NOORDER

Specify NOORDER if you do not want to guarantee sequence numbers are generated in order of
request. This is the default.

KEEP

Specify KEEP if you want NEXTVAL to retain its original value during replay for Application
Continuity. This behavior will occur only if the user running the application is the owner of the
schema containing the sequence. This clause is useful for providing bind variable consistency
at replay after recoverable errors. Refer to Oracle Database Development Guide for more
information on Application Continuity.

Chapter 15
CREATE SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 238

NOKEEP

Specify NOKEEP if you do not want NEXTVAL to retain its original value during replay for
Application Continuity. This is the default.

Note

The KEEP and NOKEEP clauses apply only to the owner of the schema containing the
sequence. You can control whether NEXTVAL retains its original value for other users
during replay for Application Continuity by granting or revoking the KEEP SEQUENCE
object privilege on the sequence. Refer to Table 18-4 for more information on the KEEP
SEQUENCE object privilege.

SCALE

Use SCALE to create a scalable sequence. A scalable sequence adds a 5 digit prefix to the
sequence. The prefix is made up of a 2 digit instance offset concatenated to a 3 digit session
offset as follows:

[(instance id % 100)] || [session id % 1000]

The final sequence number is in the format prefix || zero-padding || sequence, where the amount of
padding depends on the maximum width of the sequence.

Prior to Release 23, a scalable sequence would have a leading "1" as part of the instance
offset:

SELECT mysequence.nextval FROM DUAL;

NEXTVAL

101213001

In Release 23, this same scalable sequence will have the leading "1" of the instance offset
removed:

SELECT mysequence.nextval FROM DUAL;

NEXTVAL

1213001

Note

Starting with Oracle Database Release 23 any newly created scalable sequences will
have the leading "1" of the instance offset removed. Scalable sequences created prior
to Release 23 will retain the leading '1' of the instance offset.

When you use SCALE it is highly recommended that you not use ORDER simultaneously on the
sequence.

Chapter 15
CREATE SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 238

EXTEND

Specifying EXTEND with SCALE causes the sequence number to be left padded with zeros to its
maximum length, then the prefix concatenated, so the final sequence number has 6 more
digits than the MAXVALUE setting.

NOEXTEND

The default setting for the SCALE clause is NOEXTEND. With the NOEXTEND setting, the
generated sequence values are at most as wide as the maximum number of digits in the
sequence MAXVALUE setting.

NOEXTEND is the default setting for the SCALE clause. With the NOEXTEND setting, the
generated sequence values are at most as wide as the maximum number of digits in the
sequence (maxvalue/minvalue). This setting is useful for integration with existing applications
where sequences are used to populate fixed width columns.

NOSCALE

The default attribute for a sequence is NOSCALE, but you can also specify it explicitly to disable
sequence scalability..

SHARD

For complete semantics on the SHARD clause please refer to the SHARD clause of the ALTER
SEQUENCE statement.

SESSION

Specify SESSION to create a session sequence, which is a special type of sequence that is
specifically designed to be used with global temporary tables that have session visibility. Unlike
the existing regular sequences (referred to as "global" sequences for the sake of comparison),
a session sequence returns a unique range of sequence numbers only within a session, but
not across sessions. Another difference is that session sequences are not persistent. If a
session goes away, so does the state of the session sequences that were accessed during the
session.

Session sequences must be created by a read-write database but can be accessed on any
read-write or read-only databases (either a regular database temporarily open read-only or a
standby database).

The CACHE, NOCACHE, ORDER, or NOORDER clauses are ignored when specified with the
SESSION clause.

See Also

Oracle Data Guard Concepts and Administration for more information on session
sequences

GLOBAL

Specify GLOBAL to create a global, or regular, sequence. This is the default.

Examples

Creating a Sequence: Example

Chapter 15
CREATE SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 238

The following statement creates the sequence customers_seq in the sample schema oe. This
sequence could be used to provide customer ID numbers when rows are added to the customers
table.

CREATE SEQUENCE customers_seq
 START WITH 1000
 INCREMENT BY 1
 NOCACHE
 NOCYCLE;

The first reference to customers_seq.nextval returns 1000. The second returns 1001. Each
subsequent reference will return a value 1 greater than the previous reference.

CREATE SPFILE
Purpose

Use the CREATE SPFILE statement to create a server parameter file either from a traditional
plain-text initialization parameter file or from the current system-wide settings. Server
parameter files are binary files that exist only on the server and are called from client locations
to start up the database.

Server parameter files let you make persistent changes to individual parameters. When you
use a server parameter file, you can specify in an ALTER SYSTEM SET parameter statement that
the new parameter value should be persistent. This means that the new value applies not only
in the current instance, but also to any instances that are started up subsequently. Traditional
plain-text parameter files do not let you make persistent changes to parameter values.

Server parameter files are located on the server, so they allow for automatic database tuning
by Oracle Database and for backup by Recovery Manager (RMAN).

To use a server parameter file when starting up the database, you must create it using the
CREATE SPFILE statement.

All instances in an Oracle Real Application Clusters environment must use the same server
parameter file. However, when otherwise permitted, individual instances can have different
settings of the same parameter within this one file. Instance-specific parameter definitions are
specified as SID.parameter = value, where SID is the instance identifier.

The method of starting up the database with a server parameter file depends on whether you
create a default or nondefault server parameter file. Refer to "Creating a Server Parameter
File: Examples" for examples of how to use server parameter files.

Note on Creating Server Parameter Files in a CDB

When you create a server parameter file in a multitenant container database (CDB), the
current container can be the root or a PDB.

• If the current container is the root, then the values that you set for initialization parameters
in the root are used as default values for all other containers.

• If the current container is a PDB, then the database stores the PDB's initialization
parameter values internally, rather than in a file. Therefore, you cannot specify an
spfile_name. The values that you set for initialization parameters in the PDB are persistent
and override any values set for those parameters in the root.

When PDB is in MOUNT state, any query on V$parameter (show parameter) shows the
values from ROOT parameter table.

Chapter 15
CREATE SPFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 238

When PDB is in OPEN state, any query on V$parameter (show parameter) shows the values
from PDB parameter table.

You can subsequently use the ALTER SYSTEM statement to modify initialization parameter
values for the root or a PDB.

See Also

• CREATE PFILE for information on creating a regular text parameter file from a
binary server parameter file

• Oracle Database Administrator's Guide for information on traditional plain-text
initialization parameter files and server parameter files

• Oracle Real Application Clusters Administration and Deployment Guide for
information on using server parameter files in an Oracle Real Application Clusters
environment

Prerequisites

You must have the SYSBACKUP, SYSDBA, SYSDG, or SYSOPER system privilege to execute this
statement. You can execute this statement before or after instance startup. However, if you
have already started an instance using spfile_name, you cannot specify the same spfile_name in
this statement.

To create a server parameter file in a CDB, the current container must be the root and you
must have the commonly granted SYSBACKUP, SYSDBA, SYSDG, or SYSOPER system privilege.

Syntax

create_spfile::=

CREATE SPFILE

= ’ spfile_name ’

FROM
PFILE

= ’ pfile_name ’ AS COPY

MEMORY
;

Semantics

spfile_name

This clause lets you specify a name for the server parameter file you are creating.

If you specify spfile_name, then Oracle Database creates a nondefault server parameter file.

• For spfile_name, you can specify a traditional filename, a file in an Oracle ACFS (Oracle
Advanced Cluster File System) file system, or an Oracle Storage Management (Oracle
ASM) filename.

• If you specify a traditional filename or a file in an Oracle ACFS file system, then spfile_name
can include a path prefix. If you do not specify such a path prefix, then the database adds
the path prefix for the default storage location, which is platform dependent.

Chapter 15
CREATE SPFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 238

• If you specify the Oracle ASM filename syntax, then the database creates the spfile in an
Oracle ASM disk group.

• When using a nondefault server parameter file, you must specify the server parameter
filename in the STARTUP command when you start up the database. The exception to this
rule is as follows:

– If the database is defined as a resource in Oracle Clusterware, the instance from
which the command is issued is running, and you specify the spfile_name, specify the
FROM PFILE clause, and omit the AS COPY clause, then this statement automatically
updates the SPFILE in the database resource. In this case, you can start up the
database without referring to the server parameter file by name. If the instance from
which the command is issued is not running, then the SPFILE in the database
resource must be updated manually using srvctl modify database -d dbname -spfile spfile_path.

If you omit spfile_name, then Oracle Database uses the platform-specific default server
parameter filename. If such a file already exists on the server, then this statement overwrites it.
When using a default server parameter file, you can start up the database without referring to
the file by name.

Restriction on spfile_name

You cannot specify spfile_name when creating a server parameter file while connected to a PDB.

See Also

• "Creating a Server Parameter File: Examples" for information on starting up the
database with default and nondefault server parameter files

• file_specification for the syntax of traditional and Oracle ASM filenames and
ALTER DISKGROUP for information on modifying the characteristics of an Oracle
ASM file

• The appropriate operating-system-specific documentation for default parameter
file names

pfile_name

Specify the traditional plain-text initialization parameter file from which you want to create a
server parameter file. The traditional parameter file must reside on the server.

• If you specify pfile_name and the traditional parameter file does not reside in the default
directory for parameter files on your operating system, then you must specify the full path.

• If you do not specify pfile_name, then Oracle Database looks in the default directory for
parameter files on your operating system for the default parameter filename and uses that
file. If that file does not exist in the expected directory, then the database returns an error.

Note

In an Oracle Real Application Clusters environment, you must first combine all
instance parameter files into one file before specifying that filename in this statement
to create a server parameter file. For information on accomplishing this step, see
Oracle Real Application Clusters Administration and Deployment Guide.

Chapter 15
CREATE SPFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 238

AS COPY

This clause applies only if the database is defined as a resource in Oracle Clusterware. By
default, if you specify both the spfile_name and the FROM PFILE clause, then the CREATE SPFILE
statement automatically updates the SPFILE in the database resource. You can specify AS
COPY to prevent the database from updating the SPFILE in the database resource.

MEMORY

Specify MEMORY to create an spfile using the current system-wide parameter settings. In an
Oracle RAC environment, the created file will contain the parameter settings from each
instance.

Examples

Creating a Server Parameter File: Examples

The following example creates a default server parameter file from a traditional plain-text
parameter file named t_init1.ora:

CREATE SPFILE
 FROM PFILE = '$ORACLE_HOME/work/t_init1.ora';

Note

Typically you will need to specify the full path and filename for parameter files on your
operating system.

When you create a default server parameter file, you subsequently start up the database using
that server parameter file by using the SQL*Plus command STARTUP without the PFILE
parameter, as follows:

STARTUP

The following example creates a nondefault server parameter file s_params.ora from a traditional
plain-text parameter file named t_init1.ora:

CREATE SPFILE = 's_params.ora'
 FROM PFILE = '$ORACLE_HOME/work/t_init1.ora';

When you create a nondefault server parameter file, you subsequently start up the database
by first creating a traditional parameter file containing the following single line:

spfile = 's_params.ora'

The name of this parameter file must comply with the naming conventions of your operating
system. You then use the single-line parameter file in the STARTUP command. The following
example shows how to start up the database, assuming that the single-line parameter file is
named new_param.ora:

STARTUP PFILE=new_param.ora

Chapter 15
CREATE SPFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 238

CREATE SYNONYM
Purpose

Use the CREATE SYNONYM statement to create a synonym, which is an alternative name for a
table, view, sequence, operator, procedure, stored function, package, materialized view, Java
class schema object, user-defined object type, or another synonym. A synonym places a
dependency on its target object and becomes invalid if the target object is changed or dropped.

Synonyms provide both data independence and location transparency. Synonyms permit
applications to function without modification regardless of which user owns the table or view
and regardless of which database holds the table or view. However, synonyms are not a
substitute for privileges on database objects. Appropriate privileges must be granted to a user
before the user can use the synonym.

You can refer to synonyms in the following DML statements: SELECT, INSERT, UPDATE, DELETE,
FLASHBACK TABLE, EXPLAIN PLAN, LOCK TABLE, MERGE, and CALL .

You can refer to synonyms in the following DDL statements: AUDIT, NOAUDIT, GRANT, REVOKE,
and COMMENT.

See Also

Oracle Database Concepts for general information on synonyms

Prerequisites

To create a private synonym in your own schema, you must have the CREATE SYNONYM system
privilege.

To create a private synonym in another user's schema, you must have the CREATE ANY
SYNONYM system privilege.

To create a PUBLIC synonym, you must have the CREATE PUBLIC SYNONYM system privilege.

Syntax

create_synonym::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE PUBLIC

SYNONYM

IF NOT EXISTS schema .

synonym

SHARING =
METADATA

NONE

FOR

schema .

object

@ dblink

Chapter 15
CREATE SYNONYM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 238

Semantics

OR REPLACE

Specify OR REPLACE to re-create the synonym if it already exists. Use this clause to change the
definition of an existing synonym without first dropping it.

Restriction on Replacing a Synonym

You cannot use the OR REPLACE clause for a type synonym that has any dependent tables or
dependent valid user-defined object types.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the synonym does not exist, a new synonym is created at the end of the statement.

• If the synonym exists, this is the synonym you have at the end of the statement. A new one
is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the synonym is an editioned or noneditioned object if
editioning is enabled for the schema object type SYNONYM in schema. For private synonyms, the
default is EDITIONABLE. For public synonyms, the default is NONEDITIONABLE. For information
about editioned and noneditioned objects, see Oracle Database Development Guide.

PUBLIC

Specify PUBLIC to create a public synonym. Public synonyms are accessible to all users.
However each user must have appropriate privileges on the underlying object in order to use
the synonym.

When resolving references to an object, Oracle Database uses a public synonym only if the
object is not prefaced by a schema and is not followed by a database link.

If you omit this clause, then the synonym is private. A private synonym name must be unique
in its schema. A private synonym is accessible to users other than the owner only if those
users have appropriate privileges on the underlying database object and specify the schema
along with the synonym name.

Notes on Public Synonyms

The following notes apply to public synonyms:

• If you create a public synonym and it subsequently has dependent tables or dependent
valid user-defined object types, then you cannot create another database object of the
same name as the synonym in the same schema as the dependent objects.

• Take care not to create a public synonym with the same name as an existing schema. If
you do so, then all PL/SQL units that use that name will be invalidated.

Chapter 15
CREATE SYNONYM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 238

schema

Specify the schema to contain the synonym. If you omit schema, then Oracle Database creates
the synonym in your own schema. You cannot specify a schema for the synonym if you have
specified PUBLIC.

synonym

Specify the name of the synonym to be created. The name must satisfy the requirements listed
in "Database Object Naming Rules ".

Note

The maximum length of a synonym name is subject to the following rules:

• If the COMPATIBLE initialization parameter is set to a value of 12.2 or higher, then
the maximum length of a synonym name is 128 bytes. The database will allow you
to create and drop synonyms of length 129 to 4000 bytes. However, unless these
longer synonym names represent a Java name they will not work in any other SQL
command.

• If the COMPATIBLE initialization parameter is set to a value lower than 12.2, then the
maximum length of a synonym name is 30 bytes. The database will allow you to
create and drop synonyms of length 31 to 128 bytes. However, unless these
longer synonym names represent a Java name they will not work in any other SQL
command.

The longer synonym names are transformed into obscure shorter strings for storage in
the data dictionary.

See Also

"CREATE SYNONYM: Examples" and "Oracle Database Resolution of Synonyms:
Example"

SHARING

This clause applies only when creating a synonym in an application root. This type of synonym
is called an application common object and it can be shared with the application PDBs that
belong to the application root. To determine how the synonym is shared, specify one of the
following sharing attributes:

• METADATA - A metadata link shares the synonym’s metadata, but its data is unique to each
container. This type of synonym is referred to as a metadata-linked application common
object.

• NONE - The synonym is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING initialization
parameter to determine the sharing attribute of the synonym. If the DEFAULT_SHARING
initialization parameter does not have a value, then the default is METADATA.

You cannot change the sharing attribute of a synonym after it is created.

Chapter 15
CREATE SYNONYM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 238

See Also

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

FOR Clause

Specify the object for which the synonym is created. The schema object for which you are
creating the synonym can be of the following types:

• Table or object table

• View or object view

• Sequence

• Stored procedure, function, or package

• Materialized view

• Java class schema object

• User-defined object type

• Synonym

The schema object need not currently exist and you need not have privileges to access the
object.

Restriction on the FOR Clause

The schema object cannot be contained in a package.

schema

Specify the schema in which the object resides. If you do not qualify object with schema, then the
database assumes that the schema object is in your own schema.

If you are creating a synonym for a procedure or function on a remote database, then you must
specify schema in this CREATE statement. Alternatively, you can create a local public synonym on
the database where the object resides. However, the database link must then be included in all
subsequent calls to the procedure or function.

dblink

You can specify a complete or partial database link to create a synonym for a schema object
on a remote database where the object is located. If you specify dblink and omit schema, then the
synonym refers to an object in the schema specified by the database link. Oracle recommends
that you specify the schema containing the object in the remote database.

If you omit dblink, then Oracle Database assumes the object is located on the local database.

Restriction on Database Links

You cannot specify dblink for a Java class synonym.

Chapter 15
CREATE SYNONYM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 238

See Also

• "References to Objects in Remote Databases " for more information on referring to
database links

• CREATE DATABASE LINK for more information on creating database links

Examples

CREATE SYNONYM: Examples

To define the synonym offices for the table locations in the schema hr, issue the following
statement:

CREATE SYNONYM offices
 FOR hr.locations;

To create a PUBLIC synonym for the employees table in the schema hr on the remote database, you
could issue the following statement:

CREATE PUBLIC SYNONYM emp_table
 FOR hr.employees@remote.us.example.com;

A synonym may have the same name as the underlying object, provided the underlying object
is contained in another schema.

Oracle Database Resolution of Synonyms: Example

Oracle Database attempts to resolve references to objects at the schema level before
resolving them at the PUBLIC synonym level. For example, the schemas oe and sh both contain
tables named customers. In the next example, user SYSTEM creates a PUBLIC synonym named
customers for oe.customers:

CREATE PUBLIC SYNONYM customers FOR oe.customers;

If the user sh then issues the following statement, then the database returns the count of rows
from sh.customers:

SELECT COUNT(*) FROM customers;

To retrieve the count of rows from oe.customers, the user sh must preface customers with the
schema name. (The user sh must have select permission on oe.customers as well.)

SELECT COUNT(*) FROM oe.customers;

If the user hr's schema does not contain an object named customers, and if hr has select
permission on oe.customers, then hr can access the customers table in oe's schema by using the
public synonym customers:

SELECT COUNT(*) FROM customers;

CREATE TABLE
Purpose

Use the CREATE TABLE statement to create one of the following types of tables:

• A relational table is the basic structure to hold user data.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 238

• An object table that uses an object type for a column definition. An object table is explicitly
defined to hold object instances of a particular type.

• A JSON collection table is a table that stores a collection of JSON documents (objects) in
a JSON-type column while also guaranteeing a unique key per document.

You can also create an object type and then use it in a column when creating a relational table.

Tables are created with no data unless a subquery is specified. You can add rows to a table
with the INSERT statement. After creating a table, you can define additional columns, partitions,
and integrity constraints with the ADD clause of the ALTER TABLE statement. You can change
the definition of an existing column or partition with the MODIFY clause of the ALTER TABLE
statement.

See Also

• Oracle Database Administrator's Guide and CREATE TYPE for more information
about creating objects

• ALTER TABLE and DROP TABLE for information on modifying and dropping
tables

Prerequisites

To create a relational table in your own schema, you must have the CREATE TABLE system
privilege. To create a table in another user's schema, you must have the CREATE ANY TABLE
system privilege. Also, the owner of the schema to contain the table must have either space
quota on the tablespace to contain the table or the UNLIMITED TABLESPACE system privilege.

In addition to these table privileges, to create an object table or a relational table with an object
type column, the owner of the table must have the EXECUTE object privilege in order to access
all types referenced by the table, or you must have the EXECUTE ANY TYPE system privilege.
These privileges must be granted explicitly and not acquired through a role.

Additionally, if the table owner intends to grant access to the table to other users, then the
owner must have been granted the EXECUTE object privilege on the referenced types WITH
GRANT OPTION, or have the EXECUTE ANY TYPE system privilege WITH ADMIN OPTION. Without
these privileges, the table owner has insufficient privileges to grant access to the table to other
users.

To enable a unique or primary key constraint, you must have the privileges necessary to create
an index on the table. You need these privileges because Oracle Database creates an index
on the columns of the unique or primary key in the schema containing the table.

To specify an edition in the evaluation_edition_clause or the unusable_editions_clause, you must have the
USE privilege on the edition.

To specify the zonemap_clause, you must have the permissions necessary to create a zone map.
Refer to the "Prerequisites" section in the documentation on CREATE MATERIALIZED ZONEMAP.

To create an external table, you must have the required read and write operating system
privileges on the appropriate operating system directories. You must have the READ object
privilege on the database directory object corresponding to the operating system directory in
which the external data resides. You must also have the WRITE object privilege on the
database directory in which the files will reside if you specify a log file or bad file in the
opaque_format_spec or if you unload data into an external table from a database table by
specifying the AS subquery clause.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 238

To create an XMLType table in a different database schema from your own, you must have not
only privilege CREATE ANY TABLE but also privilege CREATE ANY INDEX. This is because a
unique index is created on column OBJECT_ID when you create the table. Column OBJECT_ID
stores a system-generated object identifier.

See Also

• CREATE INDEX

• Oracle Database Administrator's Guide for more information about the privileges
required to create tables using types

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 238

Syntax

create_table::=

CREATE

GLOBAL

PRIVATE
TEMPORARY

SHARDED

DUPLICATED

IMMUTABLE

BLOCKCHAIN

IMMUTABLE

JSON COLLECTION

TABLE

IF NOT EXISTS schema .

table

SHARING =

METADATA

DATA

EXTENDED DATA

NONE

relational_table

object_table

XMLType_table

JSON_Collection_table

MEMOPTIMIZE FOR READ MEMOPTIMIZE FOR WRITE

PARENT

schema .

table

REFRESH INTERVAL refresh_rate

SECOND

MINUTE

HOUR

SYNCHRONOUS

(relational_table::=, object_table::=, XMLType_table::=, JSON_Collection_table::=)

relational_table::=

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 238

(relational_properties) immutable_table_clauses blockchain_table_clauses

DEFAULT COLLATION collation_name
ON COMMIT

DROP

PRESERVE
DEFINITION

ON COMMIT
DELETE

PRESERVE
ROWS

physical_properties table_properties

Note

Each of the clauses following the table name is optional for any given relational table.
However, for every table you must at least specify either column names and data
types using the relational_properties clause or an AS subquery clause using the table_properties
clause.

(relational_properties::=,
immutable_table_clauses ,blockchain_table_clauses::= ,physical_properties::=,
table_properties::=)

object_table::=

OF

schema .

object_type

object_table_substitution

(object_properties)
ON COMMIT

DELETE

PRESERVE
ROWS

OID_clause OID_index_clause physical_properties table_properties

(object_table_substitution::=, object_properties::=, oid_clause::=, oid_index_clause::=,
physical_properties::=, table_properties::=)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 238

XMLType_table::=

OF XMLTYPE

(object_properties) XMLTYPE XMLType_storage XMLSchema_spec

XMLType_virtual_columns
ON COMMIT

DELETE

PRESERVE
ROWS

OID_clause

OID_index_clause physical_properties table_properties

(XMLType_storage::=, XMLSchema_spec::=, XMLType_virtual_columns::=, oid_clause::=,
oid_index_clause::=, physical_properties::=, table_properties::=)

JSON_Collection_table::=

WITH ETAG (expression_column

,

, constraint

,

)

physical_properties table_properties

relational_properties::=

column_definition

virtual_column_definition

period_definition

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

domain_clause

,

Note

You can specify these clauses in any order with the following exception: You must
specify at least one column_definition or virtual_column_definition before you specify
period_definition. You can specify period_definition only once.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 238

(column_definition::=, virtual_column_definition::=, period_definition::=,
out_of_line_constraint::=, out_of_line_ref_constraint::=, supplemental_logging_props::=,
domain_clause::=)

column_definition::=

column

datatype_domain

COLLATE column_collation_name

RESERVABLE

SORT

VISIBLE

INVISIBLE

DEFAULT

ON NULL

FOR INSERT
ONLY

AND UPDATE

identity_clause

expr

ENCRYPT encryption_spec

inline_constraint

inline_ref_constraint annotations_clause

(datatype_domain::=,identity_clause::=, inline_constraint::=, inline_ref_constraint::=,
annotations_clause::=)

datatype_domain::=

datatype

DOMAIN

domain_owner .

domain_name

DOMAIN domain_owner .

domain_name

(datatype::=)

encryption_spec::=

USING ’ encrypt_algorithm ’ IDENTIFIED BY password

’ integrity_algorithm ’

NO

SALT

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 238

annotations_clause::=

For the full syntax and semantics of the annotations_clause see annotations_clause.

identity_clause::=

GENERATED

ALWAYS

BY DEFAULT

ON NULL

FOR INSERT
ONLY

AND UPDATE

AS IDENTITY

(identity_options)

identity_options::=

START WITH
integer

LIMIT VALUE

INCREMENT BY integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

SCALE
EXTEND

NOEXTEND

NOSCALE

ORDER

NOORDER

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 238

virtual_column_definition::=

column

datatype

DOMAIN

domain_owner .

domain_name

DOMAIN

domain_owner .

domain_name

COLLATE column_collation_name

VISIBLE

INVISIBLE GENERATED ALWAYS

AS (column_expression)

VIRTUAL

MATERIALIZED

evaluation_edition_clause unusable_editions_clause inline_constraint

(datatype::=,evaluation_edition_clause::=, unusable_editions_clause::=, constraint::=)

evaluation_edition_clause::=

EVALUATE USING

CURRENT EDITION

EDITION edition

NULL EDITION

unusable_editions_clause::=

UNUSABLE BEFORE

CURRENT EDITION

EDITION edition

UNUSABLE BEGINNING WITH

CURRENT EDITION

EDITION edition

NULL EDITION

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 238

period_definition::=

PERIOD FOR valid_time_column

(start_time_column , end_time_column)

object_table_substitution::=

NOT

SUBSTITUTABLE AT ALL LEVELS

object_properties::=

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

(constraint::=, #unique_98/unique_98_Connect_42_I2126822)

oid_clause::=

OBJECT IDENTIFIER IS

SYSTEM GENERATED

PRIMARY KEY

oid_index_clause::=

OIDINDEX

index

(
physical_attributes_clause

TABLESPACE tablespace
)

(physical_attributes_clause::=)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 238

physical_properties::=

deferred_segment_creation

segment_attributes_clause

table_compression inmemory_table_clause ilm_clause

deferred_segment_creation

ORGANIZATION

HEAP

segment_attributes_clause

heap_org_table_clause

INDEX

segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

EXTERNAL PARTITION ATTRIBUTES external_table_clause

REJECT LIMIT

CLUSTER cluster (column

,

)

(deferred_segment_creation::=, segment_attributes_clause::=, table_compression::=,
inmemory_table_clause::=, ilm_clause::=, heap_org_table_clause::=,
index_org_table_clause::=, external_table_clause::=)

deferred_segment_creation::=

SEGMENT CREATION

IMMEDIATE

DEFERRED

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

(physical_attributes_clause::=, logging_clause::=)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 238

(storage_clause::=)

table_compression::=

COMPRESS

ROW STORE COMPRESS

BASIC

ADVANCED

COLUMN STORE COMPRESS

FOR

QUERY

ARCHIVE

LOW

HIGH

NO

ROW LEVEL LOCKING

NOCOMPRESS

inmemory_table_clause::=

INMEMORY

inmemory_attributes

NO INMEMORY inmemory_column_clause

(inmemory_attributes::=, inmemory_column_clause::=)

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

(inmemory_memcompress::=, inmemory_priority::=, inmemory_distribute::=,
inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 238

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

inmemory_distribute::=

DISTRIBUTE

AUTO

BY

ROWID RANGE

PARTITION

SUBPARTITION

FOR SERVICE

DEFAULT

ALL

service_name

NONE

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

inmemory_spatial::=

SPATIAL column

inmemory_column_clause::=

INMEMORY

(ALL) inmemory_memcompress

NO INMEMORY

(ALL) (column

,

)

(inmemory_memcompress::=)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 238

ilm_clause::=

ILM

ADD POLICY ilm_policy_clause

DELETE

ENABLE

DISABLE

POLICY ilm_policy_name

DELETE_ALL

ENABLE_ALL

DISABLE_ALL

ilm_policy_clause::=

ilm_compression_policy

ilm_tiering_policy

ilm_inmemory_policy

(ilm_compression_policy::=, ilm_tiering_policy::=, ilm_inmemory_policy::=)

ilm_compression_policy::=

table_compression
SEGMENT

GROUP

AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

ROW STORE COMPRESS ADVANCED

COLUMN STORE COMPRESS FOR QUERY
ROW AFTER ilm_time_period OF NO MODIFICATION

(table_compression::=, ilm_time_period::=)

ilm_tiering_policy::=

TIER TO tablespace

SEGMENT

GROUP ON function_name

TIER TO tablespace READ ONLY

SEGMENT

GROUP
AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 238

(ilm_time_period::=)

ilm_inmemory_policy::=

SET INMEMORY

inmemory_attributes

MODIFY INMEMORY inmemory_memcompress

NO INMEMORY

SEGMENT

AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

ilm_time_period::=

integer

DAY

DAYS

MONTH

MONTHS

YEAR

YEARS

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 238

table_properties::=

column_properties read_only_clause indexing_clause table_partitioning_clauses

attribute_clustering_clause

CACHE

NOCACHE result_cache_clause parallel_clause

ROWDEPENDENCIES

NOROWDEPENDENCIES enable_disable_clause row_movement_clause

logical_replication_clause flashback_archive_clause ROW ARCHIVAL

annotations_clause

AS subquery

FOR EXCHANGE WITH TABLE

schema .

table

FOR STAGING

(column_properties::=, read_only_clause::=, indexing_clause::=, table_partitioning_clauses::=,
attribute_clustering_clause::=, parallel_clause::=, enable_disable_clause::=,
row_movement_clause::=, logical_replication_clause::=, flashback_archive_clause::= ,
subquery::=)

column_properties::=

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

json_storage_clause

(object_type_col_properties::=, nested_table_col_properties::=, varray_col_properties::=,
LOB_storage_clause::=, LOB_partition_storage::=,
XMLType_column_properties::=,json_storage_clause::=)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 238

object_type_col_properties::=

COLUMN column substitutable_column_clause

substitutable_column_clause::=

ELEMENT

IS OF

TYPE

(ONLY type)

NOT

SUBSTITUTABLE AT ALL LEVELS

nested_table_col_properties::=

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause

LOCAL

GLOBAL

STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)

RETURN

AS LOCATOR

VALUE

(substitutable_column_clause::=, object_properties::=, physical_properties::=,
column_properties::=)

varray_col_properties::=

VARRAY varray_item

substitutable_column_clause

varray_storage_clause

substitutable_column_clause

(substitutable_column_clause::=, varray_storage_clause::=)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 238

varray_storage_clause::=

STORE AS

SECUREFILE

BASICFILE

LOB

LOB_segname

(LOB_storage_parameters)

LOB_segname

(LOB_parameters::=)

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

(LOB_storage_parameters::=)

LOB_storage_parameters::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

LOB_parameters

storage_clause

storage_clause

(LOB_parameters::=, storage_clause::=)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 238

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

(LOB_deduplicate_clause::=, LOB_compression_clause::=, logging_clause::=)

Note

Several of the LOB parameters are no longer needed if you are using SecureFiles for
LOB storage. Refer to LOB_storage_parameters for more information.

LOB_retention_clause::=

RETENTION

MAX

MIN integer

AUTO

NONE

LOB_deduplicate_clause::=

DEDUPLICATE

KEEP_DUPLICATES

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 238

LOB_compression_clause::=

COMPRESS

HIGH

MEDIUM

LOW

NOCOMPRESS

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

LOB_partition_storage::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_partitioning_storage

varray_col_properties
)

(LOB_storage_clause::=, varray_col_properties::=, LOB_partitioning_storage::=)

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 238

XMLType_column_properties::=

XMLTYPE

COLUMN

column

XMLType_storage XMLSchema_spec

(XMLType_storage::=, XMLSchema_spec::=)

XMLType_storage::=

STORE

AS

OBJECT RELATIONAL

SECUREFILE

BASICFILE
CLOB

NOT

TRANSPORTABLE

BINARY XML

LOB_segname

(LOB_parameters)

(LOB_parameters)

ALL VARRAYS AS
LOBS

TABLES

(LOB_parameters::=)

XMLSchema_spec::=

XMLSCHEMA XMLSchema_URL

ELEMENT

element

XMLSchema_URL # element

STORE ALL VARRAYS AS

LOBS

TABLES

ALLOW

DISALLOW

NONSCHEMA

ALLOW

DISALLOW

ANYSCHEMA

XMLType_virtual_columns::=

VIRTUAL COLUMNS (column AS (expr)

,

)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 238

JSON_storage_clause ::=

JSON (json_column

,

) STORE AS

(json_parameters)

LOB_segname (json_parameters)

JSON_parameters ::=

TABLESPACE tablespace

storage_clause

CHUNK

PCTVERSION

FREEPOOLS

integer

RETENTION

,

row_movement_clause::=

ENABLE

DISABLE

ROW MOVEMENT

logical_replication_clause::=

DISABLE LOGICAL REPLICATION

ENABLE LOGICAL REPLICATION

ALL

ALLOW NOVALIDATE

KEYS

NO

PARTIAL JSON

flashback_archive_clause::=

BLOCKCHAIN

FLASHBACK ARCHIVE

flashback_archive

NO FLASHBACK ARCHIVE

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 238

heap_org_table_clause::=

table_compression inmemory_table_clause ilm_clause

(table_compression::=, inmemory_table_clause::=, ilm_clause::=)

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

prefix_compression

iot_advanced_compression index_org_overflow_clause

(mapping_table_clauses::=, prefix_compression::=, index_org_overflow_clause::=)

mapping_table_clauses::=

MAPPING TABLE

NOMAPPING

index_compression::=

prefix_compression

advanced_index_compression

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

iot_advanced_compression::=

COMPRESS ADVANCED

LOW

NOCOMPRESS

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 238

advanced_index_compression::=

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

index_org_overflow_clause::=

INCLUDING column_name

OVERFLOW

segment_attributes_clause

(segment_attributes_clause::=)

supplemental_logging_props::=

SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

supplemental_log_grp_clause::=

GROUP log_group (column

NO LOG

,

)

ALWAYS

supplemental_id_key_clause::=

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

domain_clause::=

DOMAIN

domain_owner .

domain_name (column

,

)

USING (column

,

)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 238

immutable_table_clauses::=

immutable_table_no_drop_clause immutable_table_no_delete_clause

immutable_row_version_clause immutable_data_format_clause

immutable_table_no_drop_clause::=

NO DROP

UNTIL integer DAYS IDLE

immutable_table_no_delete_clause::=

NO DELETE

LOCKED

UNTIL integer DAYS AFTER INSERT

LOCKED

immutable_row_version_clause::=

WITH ROW VERSION row_version_name column

,

immutable_data_format_clause::=

VERSION

v1

v2

blockchain_table_clauses::=

blockchain_drop_table_clause blockchain_row_retention_clause blockchain_hash_clause

blockchain_row_version_user_chain_clause blockchain_system_chains_clause

blockchain_data_format_clause

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 238

blockchain_drop_table_clause::=

NO DROP

UNTIL integer DAYS IDLE

blockchain_row_retention_clause::=

NO DELETE

LOCKED

UNTIL integer DAYS AFTER INSERT

LOCKED

blockchain_hash_clause::=

HASHING USING SHA2_512

blockchain_row_version_user_chain_clause::=

WITH

USER CHAIN

ROW VERSION

AND USER CHAIN row_version_name (column

,

)

blockchain_system_chains_clause::=

CONFIGURE integer SYSTEM CHAINS PER INSTANCE

blockchain_data_format_clause::=

VERSION

v1

v2

external_table_clause::=

(

TYPE access_driver_type external_table_data_props

)

REJECT LIMIT
integer

UNLIMITED

inmemory_table_clause

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 238

(external_table_data_props::=)

external_table_data_props::=

DEFAULT DIRECTORY directory

ACCESS PARAMETERS

(’opaque_format_spec’)

(opaque_format_spec)

USING CLOB subquery

LOCATION (

directory :

’ location_specifier ’

,

)

(opaque_format_spec: This clause specifies the access parameters for the ORACLE_LOADER,
ORACLE_DATAPUMP, ORACLE_HDFS, and ORACLE_HIVE access drivers. See Oracle Database
Utilities for descriptions of these parameters.)

read_only_clause::=

READ ONLY

READ WRITE

indexing_clause::=

INDEXING

ON

OFF

table_partitioning_clauses::=

range_partitions

list_partitions

hash_partitions

composite_range_partitions

composite_list_partitions

composite_hash_partitions

reference_partitioning

system_partitioning

consistent_hash_partitions

directory_based_partitions

composite_directory_based_partitions

consistent_hash_with_subpartitions

partitionset_clauses

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 238

(range_partitions::=, list_partitions::=, hash_partitions::=, composite_range_partitions::=,
composite_list_partitions::= composite_hash_partitions::=, reference_partitioning::=,
system_partitioning::=, consistent_hash_partitions::=,
directory_based_partitions::=,composite_directory_based_partitions::=,consistent_hash_with_s
ubpartitions::=, partitionset_clauses::=)

range_partitions::=

PARTITION BY RANGE (column

,

)

INTERVAL (expr)

STORE IN (tablespace

,

)

(PARTITION

partition

range_values_clause table_partition_description

external_part_subpart_data_props

,

)

(range_values_clause::=, table_partition_description::=, external_part_subpart_data_props::=)

external_part_subpart_data_props::=

DEFAULT DIRECTORY directory LOCATION (

directory :

’ location_specifier ’

,

)

hash_partitions::=

PARTITION BY HASH (column

,

)
individual_hash_partitions

hash_partitions_by_quantity

(individual_hash_partitions::=, hash_partitions_by_quantity::=)

individual_hash_partitions::=

(PARTITION

partition read_only_clause indexing_clause partitioning_storage_clause

,

)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 238

(read_only_clause::=, indexing_clause::=, partitioning_storage_clause::=)

hash_partitions_by_quantity::=

PARTITIONS hash_partition_quantity

STORE IN (tablespace

,

)

table_compression

index_compression OVERFLOW STORE IN (tablespace

,

)

(table_compression::=, index_compression::=)

list_partitions::=

PARTITION BY LIST (column

,

)

AUTOMATIC

STORE IN (tablespace

,

)

(PARTITION

partition

list_values_clause table_partition_description

external_part_subpart_data_props

,

)

(list_values_clause::=, table_partition_description::=, external_part_subpart_data_props::=)

composite_range_partitions::=

PARTITION BY RANGE (column

,

)

INTERVAL (expr)

STORE IN (tablespace

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

(range_partition_desc

,

)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 238

(subpartition_by_range::=. subpartition_by_list::=, subpartition_by_hash::=,
range_partition_desc::=)

composite_hash_partitions::=

PARTITION BY HASH (column

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

individual_hash_partitions

hash_partitions_by_quantity

(subpartition_by_range::=, subpartition_by_list::=, subpartition_by_hash::=,
individual_hash_partitions::=, hash_partitions_by_quantity::=)

composite_list_partitions::=

PARTITION BY LIST (column

,

)

AUTOMATIC

STORE IN (tablespace

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

(list_partition_desc

,

)

(subpartition_by_range::=. subpartition_by_list::=, subpartition_by_hash::=,
list_partition_desc::=)

reference_partitioning::=

PARTITION BY REFERENCE (constraint)

(reference_partition_desc

,

)

(constraint::=, reference_partition_desc::=)

reference_partition_desc::=

PARTITION

partition table_partition_description

(table_partition_description::=)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 238

system_partitioning::=

PARTITION BY SYSTEM

PARTITIONS integer

reference_partition_desc

,

(reference_partition_desc::=)

consistent_hash_partitions::=

PARTITION BY CONSISTENT HASH (column

,

)

PARTITIONS AUTO

TABLESPACE SET tablespace_set

directory_based_partitions::=

PARTITION BY DIRECTORY (column_name

,

)

(PARTITION

partition

table_partition_description

,

)

DIRECTORY TABLESPACE tablespace_name

composite_directory_based_partitions::=

PARTITION BY DIRECTORY (column_name

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

(directory_partition_desc

,

)

DIRECTORY TABLESPACE tablespace_name

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 238

directory_partition_desc::=

PARTITION

partition

table_partition_description

(range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

consistent_hash_with_subpartitions::=

PARTITION BY CONSISTENT HASH (column

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

PARTITIONS AUTO

partitionset_clauses::=

range_partitionset_clause

list_partitionset_clause

(range_partitionset_clause::=, list_partitionset_clause::=

range_partitionset_clause::=

PARTITIONSET BY RANGE (column

,

) PARTITION BY CONSISTENT HASH (column

,

)

SUBPARTITION BY

RANGE

HASH
(column

,

)

LIST (column)

subpartition_template

PARTITIONS AUTO (range_partitionset_desc

,

)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 238

range_partitionset_desc::=

PARTITIONSET partition_set range_values_clause

TABLESPACE SET tablespace_set

LOB_storage_clause SUBPARTITIONS STORE IN (tablespace_set

,

)

list_partitionset_clause::=

PARTITIONSET BY LIST (column) PARTITION BY CONSISTENT HASH (column

,

)

SUBPARTITION BY

RANGE

HASH
(column

,

)

LIST (column)

subpartition_template

PARTITIONS AUTO (list_partitionset_desc

,

)

list_partitionset_desc::=

PARTITIONSET partition_set list_values_clause

TABLESPACE SET tablespace_set

LOB_storage_clause SUBPARTITIONS STORE IN (tablespace_set

,

)

range_partition_desc::=

PARTITION

partition

range_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 238

(range_values_clause::=, table_partition_description::=, range_subpartition_desc::=,
list_subpartition_desc::=, individual_hash_subparts::=, hash_subparts_by_quantity::=)

list_partition_desc::=

PARTITION

partition

list_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

(list_values_clause::=, table_partition_description::=, range_subpartition_desc::=,
list_subpartition_desc::=, individual_hash_subparts::=, hash_subparts_by_quantity::=)

subpartition_template::=

SUBPARTITION TEMPLATE

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subpartition_quantity

(range_subpartition_desc::=, list_subpartition_desc::=, individual_hash_subparts::=)

subpartition_by_range::=

SUBPARTITION BY RANGE (column

,

)

subpartition_template

(subpartition_template::=)

subpartition_by_list::=

SUBPARTITION BY LIST (column

,

)

subpartition_template

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 238

(subpartition_template::=)

subpartition_by_hash::=

SUBPARTITION BY HASH (column

,

)

SUBPARTITIONS integer

STORE IN (tablespace

,

)

subpartition_template

(subpartition_template::=)

range_subpartition_desc::=

SUBPARTITION

subpartition

range_values_clause

read_only_clause indexing_clause

partitioning_storage_clause external_part_subpart_data_props

(range_values_clause::=, read_only_clause::=, indexing_clause::=,
partitioning_storage_clause::=, external_part_subpart_data_props::=)

list_subpartition_desc::=

SUBPARTITION

subpartition

list_values_clause

read_only_clause indexing_clause

partitioning_storage_clause external_part_subpart_data_props

(list_values_clause::=, read_only_clause::=, indexing_clause::=,
partitioning_storage_clause::=, external_part_subpart_data_props::=)

individual_hash_subparts::=

SUBPARTITION

subpartition read_only_clause indexing_clause partitioning_storage_clause

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 238

(read_only_clause::=, indexing_clause::=, partitioning_storage_clause::=)

hash_subparts_by_quantity::=

SUBPARTITIONS integer

STORE IN (tablespace

,

)

range_values_clause::=

VALUES LESS THAN (
literal

MAXVALUE

,

)

list_values_clause::=

VALUES (
list_values

DEFAULT
)

(list_values::=)

list_values::=

literal

NULL

,

(
literal

NULL

,

)

,

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 238

table_partition_description::=

INTERNAL

EXTERNAL deferred_segment_creation read_only_clause indexing_clause

segment_attributes_clause

table_compression

prefix_compression inmemory_clause ilm_clause

OVERFLOW

segment_attributes_clause

json_storage_clause

LOB_storage_clause

varray_col_properties

nested_table_col_properties

(deferred_segment_creation::=, read_only_clause::=, indexing_clause::=,
segment_attributes_clause::=, table_compression::=, prefix_compression::=,
inmemory_clause::=, segment_attributes_clause::=, LOB_storage_clause::=,
varray_col_properties::=, nested_table_col_properties::=)

partitioning_storage_clause::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

OVERFLOW

TABLESPACE tablespace

TABLESPACE SET tablespace_set

table_compression

index_compression

inmemory_clause

ilm_clause

LOB_partitioning_storage

VARRAY varray_item STORE AS

SECUREFILE

BASICFILE

LOB LOB_segname

json_storage_clause

(table_compression::=, index_compression::=, inmemory_clause::=,
LOB_partitioning_storage::=)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 238

inmemory_clause::=

INMEMORY

inmemory_attributes

TEXT

column_name

,

column_name USING policy_name

,

NO INMEMORY

(inmemory_memcompress::=, inmemory_attributes::=)

attribute_clustering_clause::=

CLUSTERING

clustering_join

cluster_clause

clustering_when zonemap_clause

(clustering_join::=, cluster_clause::=, clustering_when::=, zonemap_clause::=)

result_cache_clause

RESULT_CACHE

(

MODE
DEFAULT

FORCE
, STANDBY

ENABLE

DISABLE

STANDBY
ENABLE

DISABLE
, MODE

DEFAULT

FORCE

)

clustering_join::=

schema .

table JOIN

schema .

table ON (equijoin_condition)

,

cluster_clause::=

BY

LINEAR

INTERLEAVED

ORDER clustering_columns

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 238

clustering_columns::=

clustering_column_group

(clustering_column_group

,

)

clustering_column_group::=

(column

,

)

clustering_when::=

YES

NO

ON LOAD

YES

NO

ON DATA MOVEMENT

zonemap_clause::=

WITH MATERIALIZED ZONEMAP

(zonemap_name)

WITHOUT MATERIALIZED ZONEMAP

parallel_clause::=

NOPARALLEL

PARALLEL

integer

enable_disable_clause::=

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint_name

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 238

(using_index_clause::=, exceptions_clause not supported in CREATE TABLE statements)

using_index_clause::=

USING INDEX

schema .

index

(create_index_statement)

index_properties

(create_index::=, index_properties::=)

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

(global_partitioned_index::=, local_partitioned_index::=—part of CREATE INDEX,
index_attributes::=, domain_index_clause and XMLIndex_clause: not supported in using_index_clause)

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

index_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

partial_index_clause

parallel_clause

annotations_clause

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 238

(physical_attributes_clause::=, logging_clause::=, index_compression::=, partial_index_clause and
parallel_clause: not supported in using_index_clause)

memoptimize_write_clause

MEMOPTIMIZE FOR WRITE

NO MEMOPTIMIZE FOR WRITE

Semantics

GLOBAL TEMPORARY

Specify GLOBAL TEMPORARY to create a temporary table, whose definition is visible to all
sessions with appropriate privileges. The data in a temporary table is visible only to the
session that inserts the data into the table.

When you first create a temporary table, its metadata is stored in the data dictionary, but no
space is allocated for table data. Space is allocated for the table segment at the time of the first
DML operation on the table. The temporary table definition persists in the same way as the
definitions of regular tables, but the table segment and any data the table contains are either
session-specific or transaction-specific data. You specify whether the table segment and
data are session- or transaction-specific with the ON COMMIT clause.

You can perform DDL operations (such as ALTER TABLE, DROP TABLE, CREATE INDEX) on a
temporary table only when no session is bound to it. A session becomes bound to a temporary
table with an INSERT operation on the table. A session becomes unbound to a temporary table
with a TRUNCATE statement or at session termination, or, for a transaction-specific temporary
table, by issuing a COMMIT or ROLLBACK statement.

PRIVATE TEMPORARY

Specify PRIVATE TEMPORARY to create a private temporary table.

A private temporary table differs from a temporary table in that its definition and data are
visible only within the session that created it.

Use the ON COMMIT clause to define the scope of a private temporary table: either transaction
or session.

The ON COMMIT clause used with the keywords DROP DEFINITION creates a transaction-specific
table whose data and definition are dropped when the transaction commits. This is the default
behavior.

The ON COMMIT clause used with keywords PRESERVE DEFINITION creates a session-specific
table whose definition is preserved when the transaction commits.

See here for usage details of the ON COMMIT clause.

Three DDL statements are supported for private temporary tables: CREATE, DROP, and
TRUNCATE.

Restrictions on Temporary Tables

Temporary tables are subject to the following restrictions:

• Temporary tables cannot be partitioned, clustered, or index organized.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 238

• You cannot specify any foreign key constraints on temporary tables.

• Temporary tables cannot contain columns of nested table.

• You cannot specify the following clauses of the LOB_storage_clause: TABLESPACE, storage_clause,
or logging_clause.

• Parallel UPDATE, DELETE and MERGE are not supported for temporary tables.

• The only part of the segment_attributes_clause you can specify for a temporary table is
TABLESPACE, which allows you to specify a single temporary tablespace.

• Distributed transactions are not supported for temporary tables.

• A temporary table cannot contain INVISIBLE columns.

Restrictions on Private Temporary Tables

In addition to the general limitations of temporary tables, private temporary tables are subject
to the following restrictions:

You must be a user other than SYS to create private temporary tables.

You cannot specify the following constraints on private temporary tables that are permitted on
global temporary tables:

• PRIMARY KEY constraint

• UNIQUE constraint

• CHECK constraint

• NOT NULL constraint

• The name of private temporary tables must always be prefixed with whatever is defined
with the init.ora parameter PRIVATE_TEMP_TABLE_PREFIX. The default is ORA$PTT_.

• You cannot create indexes, materialized views, or zone maps on private temporary tables.

• You cannot define column with default values.

• You cannot reference private temporary tables in any permanent object, e.g. views or
triggers.

• Private temporary tables are not visible through database links.

• You cannot associate table columns of private temporary tables with a domain using
CREATE TABLE. Doing so results in the following error: Cannot associate a private temporary table with
a domain.

See Also

Oracle Database Concepts for information on temporary tables and "Creating a Table:
Temporary Table Example"

SHARDED

Specify SHARDED to create a sharded table.

This clause is valid only if you are using Oracle Sharding, which is a data tier architecture in
which data is horizontally partitioned across independent databases. Each database in such
configuration is called a shard. All of the shards together make up a single logical database,
which is referred to as a sharded database (SDB). Horizontal partitioning involves splitting a

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 238

table across shards so that each shard contains the table with the same columns but a
different subset of rows. A table split up in this manner is called a sharded table.

When you create a sharded table, you must specify a tablespace set in which to create the
table. There is no default tablespace set for sharded tables. See CREATE TABLESPACE SET
for more information.

Oracle Sharding is based on the Oracle Partitioning feature. Therefore, a sharded table must
be a partitioned or composite-partitioned table. When creating a sharded table, you must
specify one of the table_partitioning_clauses. See table_partitioning_clauses for the full semantics
of these clauses.

Restrictions on Sharded Tables

The following restrictions apply to sharded tables:

• In system-managed sharding you can create multiple root tables (and therefore table
families) without throwing ORA-02530 , when the CREATE SHARDED TABLE statement does not
contain a PARTITION BY REFERENCE or PARENT clause and there is already a root table in
existence.

• A sharded table cannot be a temporary table or an index-organized table.

• A sharded table cannot contain a nested table column or an identity column.

• You cannot specify a tablespace for a sharded system or a composite sharded table with
the TABLESPACEclause, because system or composite sharded tables require tablespace
sets.

• You cannot create tablespace sets in a user-defined sharding environment.

• A sharded tablespace is required for sharded tables. Normal tablespaces are not
supported.

• You cannot specify the same tablespace for multiple partitions of the sharded table. This
rule applies to subpartitions also. The same tablespace cannot be specified for
subpartitions belonging to different partitions of a sharded table.

• You must specify a tablespace per partition of non-reference partitioned sharded tables.

• For user defined sharding the partition method must be range or list. Autolist and Interval
partitioning is not supported.

• The list partition method can only have one partitioning column.

• Default partitions are not supported in list partitioned tables.

• NULL partitions are not supported in list partitioned tables.

• A primary key constraint defined on a sharded table must contain the sharding columns. A
foreign key constraint on a column of a sharded table referencing a duplicated table
column is not supported.

• System partitioning and interval-range partitioning are not supported for sharded tables.

• You cannot specify a virtual (expression) column in a sharded table in the PARTITION BY or
PARTITIONSET BY clauses.

• XMLType columns for sharded tables are defaulted to TRANSPORTABLE BINARY XML, which is
the only storage type allowed. Any other storage clause for XMLType will throw an error.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 238

See Also

• Using Oracle Sharding

• Oracle Database Administrator’s Guide

DUPLICATED

This clause is valid only if you are using Oracle Sharding. Specify DUPLICATED to create a
duplicated table, which is duplicated on all shards. It can be a nonpartitioned table or
partitioned table.

Duplicated tables are not tied to any table family.

Restrictions on Duplicated Tables

The following restrictions apply to duplicated tables:

• A duplicated table cannot contain a LONG column.

• The maximum number of non-primary key columns in a duplicated table is 999.

• XMLType columns for duplicated tables are defaulted to TRANSPORTABLE BINARY XML, which
is the only storage type allowed. Any other storage clause for XMLType will throw an error.

• A duplicated table cannot be a temporary table.

• A duplicated table cannot be a reference-partitioned table or a system-partitioned table.

• You cannot specify NOLOGGING or PARALLEL for a duplicated table.

• You cannot enable a duplicated table for the In-Memory Column Store.

IMMUTABLE

Specify the IMMUTABLE keyword to create an append-only table that protects data from
unauthorized modification by insiders.

You can create a blockchain table that emphasizes its immutability by using the keywords
IMMUTABLE BLOCKCHAIN in CREATE TABLE.

You must specify the mandatory immutable_table_clauses when you create an immutable table
using the CREATE IMMUTABLE TABLE statement.

Prerequistes

• The COMPATIBLE initialization parameter must be set to 19.11.0.0 or higher.

• The CREATE TABLE system privilege is required to create immutable tables in your own
schema. The CREATE ANY TABLE system privilege is required to create immutable tables in
another user's schema.

• The NO DROP and NO DELETE clauses are mandatory.

BLOCKCHAIN

Specify the BLOCKCHAIN keyword to create a blockchain table.

You must specify the mandatory blockchain_table_clauses when you create a blockchain table using
the CREATE BLOCKCHAIN TABLE statement.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 238

When you create a blockchain table, an entry is created in the dictionary table blockchain_table$
owned by SYS .

Restrictions

The following CREATE TABLE clauses are disallowed with the creation of blockchain tables:

• ORGANIZATION INDEX

• ORGANIZATION EXTERNAL

• NESTED TABLE

See Also

• Managing Immutable Tables

• Managing Blockchain Tables

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the table does not exist, a new table is created at the end of the statement.

• If the table exists, this is the table you have at the end of the statement. A new one is not
created because the older table is detected.

Using IF EXISTS with CREATE TABLE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE
statement.

schema

Specify the schema to contain the table. If you omit schema, then the database creates the table
in your own schema.

table

Specify the name of the table or object table to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

See Also

Oracle Database Administrator’s Guide for more on sharded tables.

SHARING

This clause applies only when creating a table in an application root. This type of table is called
an application common object and its data can be shared with the application PDBs that
belong to the application root. To determine how the table data is shared, specify one of the
following sharing attributes:

• METADATA - A metadata link shares the table’s metadata, but its data is unique to each
container. This type of table is referred to as a metadata-linked application common
object.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 238

• DATA - A data link shares the table, and its data is the same for all containers in the
application container. Its data is stored only in the application root. This type of table is
referred to as a data-linked application common object.

• EXTENDED DATA - An extended data link shares the table, and its data in the application
root is the same for all containers in the application container. However, each application
PDB in the application container can store data that is unique to the application PDB. For
this type of table, data is stored in the application root and, optionally, in each application
PDB. This type of table is referred to as an extended data-linked application common
object.

• NONE - The table is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING initialization
parameter to determine the sharing attribute of the table. If the DEFAULT_SHARING initialization
parameter does not have a value, then the default is METADATA.

When creating a relational table, you can specify METADATA, DATA, EXTENDED DATA, or NONE.

When creating an object table or an XMLTYPE table, you can specify only METADATA or NONE.

You cannot change the sharing attribute of a table after it is created.

See Also

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

relational_table

This clause lets you create a relational table.

relational_properties

The relational properties describe the components of a relational table.

column_definition

The column_definition lets you define the characteristics of the column.

Specifying column_definition with AS subquery

If you specify the AS subquery clause, and each column returned by subquery has a column name
or is an expression with a specified column alias, then you can omit the column_definition clause.
In this case, the names of the columns of table are the same as the names of the columns
returned by subquery. The exception is creating an index-organized table, for which you must
specify the column_definition clause, because you must designate a primary key column.
Regardless of the table type, if you specify the column_definition clause and the AS subquery clause,
then you must omit datatype from the column_definition clause.

column

Specify the name of a column of the table. The name must satisfy the requirements listed in
"Database Object Naming Rules ".

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 238

If you also specify AS subquery, then you can omit column and datatype unless you are creating an
index-organized table. If you specify AS subquery when creating an index-organized table, then
you must specify column, and you must omit datatype.

The absolute maximum number of columns in a table is 1000, if the MAX_COLUMNS
initialization parameter = STANDARD, or 4096 columns if MAX_COLUMNS = EXTENDED. See
Oracle Database Reference for more on the MAX_COLUMNS initialization parameter.

When you create an object table or a relational table with columns of object, nested table,
varray, or REF type, Oracle Database maps the columns of the user-defined types to relational
columns, in effect creating hidden columns that count toward the 1000-column limit. A
relational column that stores a user-defined type attribute inherits the collation property of the
attribute. In Oracle Database 12c Release 2 (12.2), user-defined types are created using the
pseudo-collation property USING_NLS_COMP and their corresponding relational columns inherit
this property.

datatype_domain

datatype

Specify the data type of a column in datatype.

In general, you must specify datatype. However, the following exceptions apply:

• You must omit datatype if you specify the AS subquery clause.

• You can also omit datatype if the statement designates the column as part of a foreign key in
a referential integrity constraint. Oracle Database automatically assigns to the column the
data type of the corresponding column of the referenced key of the referential integrity
constraint.

Restrictions on Table Column Data Types

• Do not create a table with LONG columns. Use LOB columns (CLOB, NCLOB, BLOB) instead.
LONG columns are supported only for backward compatibility.

• You can specify a column of type ROWID, but Oracle Database does not guarantee that the
values in such columns are valid rowids.

See Also

"Data Types " for information on LONG columns and on Oracle-supplied data types

You can specify a user-defined data type as non-persistable when creating or altering the data
type. Instances of non-persistable types cannot persist on disk. See CREATE TYPE for more
on user-defined data types declared as non-persistable types.

domain_clause

Use this clause to associate columns with a domain. You can associate non-strict domains with
a table column with a compatibile type with any limit. For example, a number(10) domain can
be assigned to columns with number(9) or number(11). For strict domains you can only
associate their columns with table columns with a compatible type and identical type limits. For
example, a number(10) domain column can only be assigned to numeric columns with
precision 10, like decimal(10) or numeric(10).

The position of columns in this clause is the same as those in the domain. The number of
columns listed must be the same as in domain_name.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 238

Each column can belong to at most one domain. If a column is in two or more domains, the
statement will error.

If you specify the data type, you must use the DOMAIN keyword. You can omit the DOMAIN
keyword, if you omit the data type and just use the domain owner or domain name.

USING

The USING clause defines the discriminant columns in flexible domains. This clause is
mandatory when associating columns with a flexible domain.

The columns in the DOMAIN and USING clauses must be different.

RESERVABLE

Reservable columns provide for lock-free reservations. Lock-free reservations allow other
concurrent transactions updating the reservable columns to proceed without being blocked.
Lock-free reservations hold locks on hot data for short intervals of time and only when the
value is modified during the commit of the transaction.

Specify RESERVABLE on a column to make it reservable on columns with numeric data type.

Guidelines and Restrictions for Reservable Columns

• The schema definition of user tables declares the reservable columns with the RESERVABLE
keyword.

• A reservable column can be specified only on columns of the following numeric data types:
NUMBER, INTEGER, and FLOAT.

• A reservable column cannot be a Primary Key or an identity column (or virtual (expression)
column) because the reservable column is an aggregate type.

• A user table can have at most ten reservable columns.

• User tables that have reservable columns must have a Primary Key.

• Indexes are not supported on reservable columns.

• Composite reservable columns are not allowed. Reservable columns can be included only
in CHECK constraints expression.

• The CHECK constraint can be at the column-level or table-level. User-defined operational
constraints are used for reservable columns to ensure application correctness.

• Partitioning cannot be made on reservable columns. Transactions with pending
reservations must finalize before you can drop the reservable column or mark the column
as UNUSED.

See Also

• Using Lock-Free Reservation of the Database Development Guide.

• Columns section in Tables and Table Clusters of Database Concepts.

COLLATE

The COLLATE clause lets you specify a data-bound collation for the column.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 238

For column_collation_name, specify a valid named collation or pseudo-collation. For columns of
data type CLOB or NCLOB, the only allowed value for column_collation_name is the pseudo-collation
USING_NLS_COMP.

If you omit this clause, then the column is assigned:

• the pseudo-collation USING_NLS_COMP, if the column has the data type CLOB or NCLOB, or

• the collation of the corresponding parent key column, if the column belongs to a foreign
key, or

• the default collation for the table as it stands at the time the column is created.

Refer to the DEFAULT COLLATION clause for more information on the default collation for a
table.

You can specify the COLLATE clause only if the COMPATIBLE initialization parameter is set to 12.2
or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

SORT

The SORT keyword is valid only if you are creating this table as part of a hash cluster and only
for columns that are also cluster columns.

Table rows are hashed into buckets on cluster key columns without SORT, and then sorted in
each bucket on the columns with this clause. This may improve response time during
subsequent operations on the clustered data.

See Also

• "CLUSTER Clause" for information on creating a cluster table

• Managing Hash Clusters

VISIBLE | INVISIBLE

Use this clause to specify whether column is VISIBLE or INVISIBLE. The default is VISIBLE.

INVISIBLE columns are user-specified hidden columns. To display or assign a value to an
INVISIBLE column, you must specify its name explicitly. For example:

• The SELECT * syntax will not display an INVISIBLE column. However, if you include an
INVISIBLE column in the select list of a SELECT statement, then the column will be
displayed.

• You cannot implicitly specify a value for an INVISIBLE column in the VALUES clause of an
INSERT statement. You must specify the INVISIBLE column in the column list.

• You must explicitly specify an INVISIBLE column in Oracle Call Interface (OCI) describes.

• You can configure SQL*Plus to allow INVISIBLE column information to be viewed with the
DESCRIBE command. Refer to SQL*Plus User's Guide and Reference for more information.

Notes on VISIBLE and INVISIBLE Columns

The following notes apply to VISIBLE and INVISIBLE columns:

• An INVISIBLE column can be used as a partitioning key when specified as part of CREATE
TABLE.

• You can specify INVISIBLE columns in a column_expression.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 238

• A virtual (expression) column can be an INVISIBLE column.

• PL/SQL %ROWTYPE attributes do not show INVISIBLE columns.

• The COLUMN_ID column of the ALL_, DBA_, and USER_TAB_COLUMNS data dictionary views
determines the order in which a SELECT * query returns columns for a table, view, or
materialized view. The value of COLUMN_ID is NULL for INVISIBLE columns. When you
make an invisible column visible, it will be assigned the next highest available COLUMN_ID
value. When you make a visible column invisible, its COLUMN_ID value is set to NULL and
COLUMN_ID is decremented by 1 for any columns with a higher COLUMN_ID.

Restrictions on VISIBLE and INVISIBLE Columns

The following restrictions apply to VISIBLE and INVISIBLE columns:

• INVISIBLE columns are not supported in external tables, cluster tables, or temporary tables.

• You cannot make a system-generated hidden column visible.

Note

To determine whether a column is a system-generated hidden column, query the
HIDDEN_COLUMN and USER_GENERATED columns of the ALL_, DBA_, and
USER_TAB_COLS data dictionary views. Refer to Oracle Database Reference for
more information.

DEFAULT

The DEFAULT clause lets you specify a value to be assigned to the column if a subsequent
INSERT statement omits a value for the column. The data type of the expression must match
the data type specified for the column. The column must also be large enough to hold this
expression.

The DEFAULT expression can include any SQL function as long as the function does not return
a literal argument, a column reference, or a nested function invocation.

The DEFAULT expression can include the sequence pseudocolumns CURRVAL and NEXTVAL, as
long as the sequence exists and you have the privileges necessary to access it. Users who
perform subsequent inserts that use the DEFAULT expression must have the INSERT privilege on
the table and the SELECT privilege on the sequence. If the sequence is later dropped, then
subsequent INSERT statements where the DEFAULT expression is used will result in an error. If
you do not fully qualify the sequence by specifying the sequence owner, for example,
SCOTT.SEQ1, then Oracle Database will default the sequence owner to be the user who issues
the CREATE TABLE statement. For example, if user MARY creates SCOTT.TABLE and refers to a
sequence that is not fully qualified, such as SEQ2, then the column will use sequence
MARY.SEQ2. Synonyms on sequences undergo a full name resolution and are stored as the
fully qualified sequence in the data dictionary; this is true for public and private synonyms. For
example, if user BETH adds a column referring to public or private synonym SYN1 and the
synonym refers to PETER.SEQ7, then the column will store PETER.SEQ7 as the default.

Restrictions on Default Column Values

Default column values are subject to the following restrictions:

• A DEFAULT expression cannot contain references to PL/SQL functions or to other columns,
the pseudocolumns LEVEL, PRIOR, and ROWNUM, or date constants that are not fully
specified.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 238

• The expression can be of any form except a scalar subquery expression.

See Also

"About SQL Expressions " for the syntax of expr

ON NULL

If you specify the ON NULL clause, then Oracle Database assigns the DEFAULT column value
when a subsequent INSERT statement attempts to assign a value that evaluates to NULL.

When you specify ON NULL, the NOT NULL constraint and NOT DEFERRABLE constraint state are
implicitly specified. If you specify an inline constraint that conflicts with NOT NULL and NOT
DEFERRABLE, then an error is raised.

If you specify DEFAULT ON NULL FOR INSERT AND UPDATE, the DEFAULT ON NULL semantics
applies for INSERT, including the insert branch of merge and multi-table insert and UPDATE,
including the update branch of merge.

If you specify DEFAULT ON NULL FOR INSERT ONLY, it is equivalent to DEFAULT ON NULL. It means
that DEFAULT ON NULL semantics will apply for INSERT including the insert branch of merge and
multi-table insert only.

In before-row DML triggers, :new.column-name shows the defaulted value, and you can override
the default value in the trigger. If a column is defined as DEFAULT ON NULL FOR INSERT AND
UPDATE and the trigger updates the value to NULL, then DEFAULT ON NULL semantics will not
apply – i.e. NULL will not be converted to the column default value.

In the following trigger, column c2 has DEFAULT ON NULL semantics. When the trigger is
executed, an error is raised since it sets c2 to NULL:

create or replace trigger t1_t
before insert or update on t1 for each row
begin
 :new.c2 := NULL;
end;

Restriction on the ON NULL Clause

You cannot specify this clause for an object type column or a REF column.

See Also

"Creating a Table with a DEFAULT ON NULL Column Value: Example"

annotations_clause

The annotation_name is an identifier that can have up to 4000 characters. If the annotation name
is a reserved word it must be provided in double quotes. When a double quoted identifier is
used, the identifier can also contain whitespace characters. However, identifiers that contain
only whitespace characters are not accepted.

For examples see Add Annotations at Table Creation: Example

For the full semantics of the annotations clause see annotations_clause.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 238

identity_clause

Use this clause to specify an identity column. The identity column will be assigned an
increasing or decreasing integer value from a sequence generator for each subsequent INSERT
statement. You can use the identity_options clause to configure the sequence generator.

To create an identity column in a schema other than your own, you must have the CREATE ANY
TABLE, CREATE ANY SEQUENCE, and SELECT ANY SEQUENCE system privileges.

ALWAYS

If you specify ALWAYS, then Oracle Database always uses the sequence generator to assign a
value to the column. If you attempt to explicitly assign a value to the column using INSERT or
UPDATE, then an error will be returned. This is the default.

BY DEFAULT

If you specify BY DEFAULT, then Oracle Database uses the sequence generator to assign a
value to the column by default, but you can also explicitly assign a specified value to the
column. If you specify ON NULL, then Oracle Database uses the sequence generator to assign
a value to the column when a subsequent INSERT statement attempts to assign a value that
evaluates to NULL. See column_definition ON NULL for full semantics.

identity_options

Use the identity_options clause to configure the sequence generator. The identity_options clause has
the same parameters as the CREATE SEQUENCE statement. Refer to CREATE SEQUENCE for a
full description of these parameters and characteristics. The exception is START WITH LIMIT
VALUE, which is specific to identity_options and can only be used with ALTER TABLE MODIFY. Refer
to identity_options for more information.

Note

When you create an identity column, Oracle recommends that you specify the CACHE
clause with a value higher than the default of 20 to enhance performance.

Restrictions on Identity Columns

Identity columns are subject to the following restrictions:

• You can specify only one identity column per table.

• If you specify identity_clause, then you must specify a numeric data type for datatype in the
column_definition clause. You cannot specify a user-defined data type.

• If you specify identity_clause, then you cannot specify the DEFAULT clause in the
column_definition clause.

• When you specify identity_clause, the NOT NULL constraint and NOT DEFERRABLE constraint
state are implicitly specified. If you specify an inline constraint that conflicts with NOT NULL
and NOT DEFERRABLE, then an error is raised.

• If an identity column is encrypted, then the encryption algorithm may be inferred. Oracle
recommends that you use a strong encryption algorithm on identity columns.

• CREATE TABLE AS SELECT will not inherit the identity property on a column.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 238

See Also

"Creating a Table with an Identity Column: Examples"

encryption_spec

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) decryption libraries
for the GOST and SEED algorithms are deprecated, and encryption to GOST and SEED are
desupported.

GOST 28147-89 has been deprecated by the Russian government, and SEED has been
deprecated by the South Korean government. If you need South Korean government-approved
TDE cryptography, then use ARIA instead. If you are using GOST 28147-89, then you must
decrypt and encrypt with another supported TDE algorithm. The decryption algorithms for
GOST 28147-89 and SEED are included in Oracle Database 23ai, but are deprecated, and the
GOST encryption algorithm is desupported with Oracle Database 23ai. If you are using GOST
or SEED for TDE encryption, then Oracle recommends that you decrypt and encrypt with
another algorithm before upgrading to Oracle Database 23ai. However, with the exception of
the HP Itanium platform, the GOST and SEED decryption libraries are available with Oracle
Database 23ai, so you can also decrypt after upgrading.

The ENCRYPT clause lets you use the Transparent Data Encryption (TDE) feature to encrypt the
column you are defining. You can encrypt columns of type CHAR, NCHAR, VARCHAR2,
NVARCHAR2, NUMBER, DATE, LOB, and RAW. The data does not appear in its encrypted form to
authorized users, such as the user who encrypts the column.

Note

Column encryption requires that a system administrator with appropriate privileges has
initialized the security module, opened a keystore, and set an encryption key. Refer to
Transparent Data Encryption for general information about column encryption and to
security_clauses for related ALTER SYSTEM statements.

USING 'encrypt_algorithm'

Use this clause to specify the name of the algorithm to be used. Valid algorithms are AES256,
AES192, AES128 and 3DES168. If the COMPATIBLE initialization parameter is set to 12.2 or higher,
then the following algorithms are also valid: ARIA128, ARIA192, ARIA256, GOST256, and SEED128. If
you omit this clause, then the database uses AES192. If you encrypt more than one column in
the same table, and if you specify the USING clause for one of the columns, then you must
specify the same encryption algorithm for all the encrypted columns.

IDENTIFIED BY password

If you specify this clause, then the database derives the column key from the specified
password.

'integrity_algorithm'

Use this clause to specify the integrity algorithm to be used. Valid integrity algorithms are SHA-1
and NOMAC.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 238

• If you specify SHA-1, then TDE uses the Secure Hash Algorithm (SHA-1) and adds a 20-
byte Message Authentication Code (MAC) to each encrypted value for integrity checking.
This is the default.

• If you specify NOMAC, then TDE does not add a MAC and does not perform the integrity
check. This saves 20 bytes of disk space per encrypted value. Refer to Transparent Data
Encryption for more information on using NOMAC to save disk space and improve
performance.

All encrypted columns in a table must use the same integrity algorithm. If you already have a
table column using the SHA-1 algorithm, then you cannot use the NOMAC parameter to encrypt
another column in the same table. Refer to the REKEY encryption_spec clause of ALTER TABLE
to learn how to change the integrity algorithm used by all encrypted columns in a table.

SALT | NO SALT

Specify SALT to instruct the database to append a random string, called "salt," to the clear text
of the column before encrypting it. This is the default.

Specify NO SALT to prevent the database from appending salt to the clear text of the column
before encrypting it.

The following considerations apply when specifying SALT or NO SALT for encrypted columns:

• If you want to use the column as an index key, then you must specify NO SALT. Refer to
Transparent Data Encryption for a description of "salt" in this context.

• If you specify table compression for the table, then the database does not compress the
data in encrypted columns with SALT.

You cannot specify SALT or NO SALT for LOB encryption.

Restrictions on encryption_spec

The following restrictions apply to column encryption:

• Transparent Data Encryption is not supported by the traditional import and export utilities
or by transportable-tablespace-based export. Use the Data Pump import and export
utilities with encrypted columns instead.

• To encrypt a column in an external table, the table must use ORACLE_DATAPUMP as its
access type.

• You cannot encrypt a column in tables owned by SYS.

• You cannot encrypt a foreign key column.

See Also

Transparent Data Encryption for more information about Transparent Data Encryption

virtual_column_definition

Use virtual_column_definition to create a virtual column, also known as an expression column.
Expression columns can be virtual, meaning not stored on disk, or materialized, meaning
stored on disk. Depending on whether such a column is virtual or materialized, the database
derives the values on demand at access time (virtual) or by computing the values and storing
them on disk at DML time (materialized). Such columns can be used in queries, DML, and DDL
statements. They can be indexed, and you can collect statistics on them. Thus, they can be

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 238

treated just like other columns. Exceptions and restrictions are listed below in "Notes on Virtual
(Expression) Columns" and "Restrictions on Virtual (Expression) Columns".

column

For column, specify the name of the virtual (expression) column.

datatype

You can optionally specify the data type of the virtual (expression) column. If you omit datatype,
then the database determines the data type of the column based on the data type of the
underlying expressions. All Oracle scalar data types and XMLType are supported.

COLLATE

The COLLATE clause lets you specify a data-bound collation for the virtual (expression) column.
For column_collation_name, specify a valid named collation or pseudo-collation. If you omit this
clause, then the column is assigned the default collation for the table as it stands at the time
the column is created, unless the column belongs to a foreign key, in which case it inherits the
collation from the corresponding column of the parent key. Refer to the DEFAULT COLLATION
clause for more information on the default collation for a table.

You can specify the COLLATE clause only if the COMPATIBLE initialization parameter is set to 12.2
or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

VISIBLE | INVISIBLE

Use this clause to specify whether the virtual (expression) column is VISIBLE or INVISIBLE. The
default is VISIBLE. For complete information, refer to "VISIBLE | INVISIBLE".

GENERATED ALWAYS

The optional keywords GENERATED ALWAYS are provided for semantic clarity.

column_expression

The AS column_expression clause determines the content of the column. Refer to "Column
Expressions " for more information on column_expression.

VIRTUAL

Use VIRTUAL to create an expression column that is virtual.

MATERIALIZED

Use MATERIALIZED to store the computed value of an expression column on disk. Rather than
computing the values at access time, the computation will take place at DML time.

An alternate way to specify a materialized expression column is to use the keyword STORED
instead of MATERIALIZED.

evaluation_edition_clause

You must specify this clause if column_expression refers to an editioned PL/SQL function. Use this
clause to specify the edition that is searched during name resolution of the editioned PL/SQL
function—the evaluation edition.

• Specify CURRENT EDITION to search the edition in which this DDL statement is executed.

• Specify EDITION edition to search edition.

• Specifying NULL EDITION is equivalent to omitting the evaluation_edition_clause.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 238

If you omit the evaluation_edition_clause, then editioned objects are invisible during name resolution
and an error will result. If the evaluation edition is dropped, then a subsequent query on the
virtual (expression) column will result in an error.

The database does not maintain dependencies on the functions referenced by a virtual
(expression) column. Therefore, if a virtual (expression) column refers to a noneditioned
function, and the function becomes editioned, then the following operations may raise an error:

• Querying the virtual (expression) column

• Updating a row that includes the virtual (expression) column

• Firing a trigger that accesses the virtual (expression) column

See Also

Oracle Database Development Guide for more information on specifying the
evaluation edition for a virtual (expression) column

unusable_editions_clause

This clause lets you specify that the virtual (expression) column expression is unusable for
evaluating queries in one or more editions. The remaining editions form a range of editions in
which it is safe for the optimizer to use the virtual (expression) column expression to evaluate
queries.

For example, suppose you define a function-based index on the virtual (expression) column.
The optimizer can use the function-based index to evaluate queries that contain the virtual
(expression) column expression in their WHERE clause. If a query is compiled in an edition that
is in the usable range of editions for the virtual (expression) column, then the optimizer will
consider using the index to evaluate the query. If a query is compiled in an edition outside the
usable range of editions for the virtual (expression) column, then the optimizer will not consider
using the index.

See Also

Oracle Database Concepts for more information on optimization with function-based
indexes

UNUSABLE BEFORE Clause

This clause lets you specify that the virtual (expression) column expression is unusable for
evaluating queries in the ancestors of an edition.

• If you specify CURRENT EDITION, then the virtual (expression) column expression is
unusable in the ancestors of the edition in which this DDL statement is executed.

• If you specify EDITION edition, then the virtual (expression) column expression is unusable in
the ancestors of the specified edition.

UNUSABLE BEGINNING WITH Clause

This clause lets you specify that the virtual (expression) column expression is unusable for
evaluating queries in an edition and its descendants.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 238

• If you specify CURRENT EDITION, then the virtual (expression) column expression is
unusable in the edition in which this DDL statement is executed and its descendants.

• If you specify EDITION edition, then the virtual (expression) column expression is unusable in
the specified edition and its descendants.

• Specifying NULL EDITION is equivalent to omitting the UNUSABLE BEGINNING WITH clause.

If an edition specified in this clause is subsequently dropped, there is no effect on the virtual
(expression) column.

Notes on Virtual (Expression) Columns

• If column_expression refers to a column on which column-level security is implemented, then
the virtual (expression) column does not inherit the security rules of the base column. In
such a case, you must ensure that data in the virtual (expression) column is protected,
either by duplicating a column-level security policy on the virtual (expression) column or by
applying a function that implicitly masks the data. For example, it is common for credit card
numbers to be protected by a column-level security policy, while still allowing call center
employees to view the last four digits of the credit card number for validation purposes. In
such a case, you could define the virtual (expression) column to take a substring of the last
four digits of the credit card number.

• A table index defined on a virtual (expression) column is equivalent to a function-based
index on the table.

• You cannot directly update a virtual (expression) column. Thus, you cannot specify a virtual
(expression) column in the SET clause of an UPDATE statement. However, you can specify a
virtual (expression) column in the WHERE clause of an UPDATE statement. Likewise, you
can specify a virtual (expression) column in the WHERE clause of a DELETE statement to
delete rows from a table based on the derived value of the virtual (expression) column.

• A query that specifies in its FROM clause a table containing a virtual (expression) column is
eligible for result caching. Refer to "RESULT_CACHE Hint " for more information on result
caching.

• The column_expression can refer to a PL/SQL function if the function is explicitly designated
DETERMINISTIC during its creation. However, if the function is subsequently replaced,
definitions dependent on the virtual (expression) column are not invalidated. In such a
case, if the table contains data, queries that reference the virtual (expression) column may
return incorrect results if the virtual (expression) column is used in the definition of
constraints, indexes, or materialized views or for result caching. Therefore, in order to
replace the deterministic PL/SQL function for a virtual (expression) column.

– Disable and re-enable any constraints on the virtual (expression) column.

– Rebuild any indexes on the virtual (expression)column.

– Fully refresh materialized views accessing the virtual (expression) column.

– Flush the result cache if cached queries have accessed the virtual (expression)
column.

– Regather statistics on the table.

• A virtual (expression) column can be an INVISIBLE column. The column_expression can contain
INVISIBLE columns.

Restrictions on Virtual (Expression) Columns

• You can create virtual (expression) columns only in relational heap tables. virtual
(expression) columns are not supported for index-organized, external, object, cluster, or
temporary tables.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 238

• The column_expression in the AS clause has the following restrictions:

– It cannot refer to another virtual (expression) column by name.

– Any columns referenced in column_expression must be defined on the same table.

– It can refer to a deterministic user-defined function, but if it does, then you cannot use
the virtual (expression) column as a partitioning key column.

– The output of column_expression must be a scalar value.

See Also

"Column Expressions " for additional information and restrictions on
column_expression

• The virtual (expression) column cannot be an Oracle supplied data type, a user-defined
type, or LOB or LONG RAW.

• You cannot specify a call to a PL/SQL function in the defining expression for a virtual
(expression) column that you want to use as a partitioning column.

See Also

"Adding a Virtual Table Column: Example" and Oracle Database Administrator's Guide
for examples of creating tables with virtual (expression) columns

period_definition

Use the period_definition clause to create a valid time dimension for table.

This clause implements Temporal Validity support for table. If you specify this clause, then one
column in table, the start time column, contains a start date or timestamp, and another column
in table, the end time column, contains an end date or timestamp. These two columns define a
valid time dimension for table—that is, a period of time for which each row is considered valid.
You can use Oracle Flashback Query to retrieve rows from table based on whether they are
considered valid as of a specified time, before a specified time, or during a specified time
period.

You can specify at most one valid time dimension when you create a table. You can
subsequently add additional valid time dimensions to a table with the add_period_clause of
ALTER TABLE.

valid_time_column

Specify the name of the valid time dimension. The name must satisfy the requirements listed in
"Database Object Naming Rules ". Oracle Database creates an INVISIBLE virtual (expression)
column with this name of data type NUMBER in table.

start_time_column and end_time_column

You can optionally specify these clauses as follows:

• Use start_time_column to specify the name of the start time column, which contains the start
date or timestamp.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 238

• Use end_time_column to specify the name of the end time column, which contains the end
date or timestamp.

The names you specify for start_time_column and end_time_column must satisfy the requirements
listed in "Database Object Naming Rules ".

If you specify these clauses, then you must define start_time_column and end_time_column in the
column_definition clause of CREATE TABLE. Each column must be of a datetime data type (DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME ZONE) and can be
VISIBLE or INVISIBLE.

If you do not specify these clauses, then Oracle Database creates a start time column named
valid_time_column_START, and an end time column named valid_time_column_END. These columns
are of data type TIMESTAMP WITH TIME ZONE and are INVISIBLE.

You can insert and update values in the start time column and end time column as you would
any column, with the following considerations:

• If the value of the start time column is NULL, then the row is considered valid for all time
values that occur before, but not including, the value of the end time column.

• If the value of the end time column is NULL, then the row is considered valid for all time
values that occur on or after the value of the start time column.

• If the value of neither column is NULL, then the value of the start time column must be
earlier than the value of the end time column. The row is considered valid for all time
values that occur on or after the value of the start time column, and up to, but not including,
the value of the end time column.

• If the value of both columns is NULL, then the row is considered valid for all time values.

Restrictions on Valid Time Dimension Columns

The following restrictions apply to valid time dimension columns:

• The valid_time_column is for internal use only. You cannot perform DDL or DML operations on
it with one exception: You can drop the column by using the drop_period_clause of ALTER
TABLE.

• You can drop the start time column and end time column only by using the drop_period_clause
of ALTER TABLE.

• If the start time column and end time column are automatically created by Oracle
Database, then they are INVISIBLE and you cannot subsequently make them VISIBLE.

See Also

• Oracle Database Development Guide for more information on Temporal Validity

• SELECT flashback_query_clause for more information on Oracle Flashback Query

• ALTER TABLE add_period_clause and drop_period_clause for information how to
add and drop a valid time dimension

Constraint Clauses

Use these clauses to create constraints on the table columns. You must specify a PRIMARY KEY
constraint for an index-organized table, and it cannot be DEFERRABLE. Refer to constraint for
syntax and description of these constraints as well as examples.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 238

inline_ref_constraint and out_of_line_ref_constraint

These clauses let you describe a column of type REF. The only difference between these
clauses is that you specify out_of_line_ref_constraint from the table level, so you must identify the
REF column or attribute you are defining. Specify inline_ref_constraint as part of the definition of the
REF column or attribute.

See Also

"REF Constraint Examples"

inline_constraint

Use the inline_constraint to define an integrity constraint as part of the column definition.

You can create UNIQUE, PRIMARY KEY, and REFERENCES constraints on scalar attributes of
object type columns. You can also create NOT NULL constraints on object type columns and
CHECK constraints that reference object type columns or any attribute of an object type column.

out_of_line_constraint

Use the out_of_line_constraint syntax to define an integrity constraint as part of the table definition.

supplemental_logging_props

The supplemental_logging_props clause lets you instruct the database to put additional data into the
log stream to support log-based tools.

supplemental_log_grp_clause

Use this clause to create a named log group.

• The NO LOG clause lets you omit from the redo log one or more columns that would
otherwise be included in the redo for the named log group. You must specify at least one
fixed-length column without NO LOG in the named log group.

• If you specify ALWAYS, then during an update, the database includes in the redo all
columns in the log group. This is called an unconditional log group (sometimes called an
"always log group"), because Oracle Database supplementally logs all the columns in the
log group when the associated row is modified. If you omit ALWAYS, then the database
supplementally logs all the columns in the log group only if any column in the log group is
modified. This is called a conditional log group.

You can query the appropriate USER_, ALL_, or DBA_LOG_GROUP_COLUMNS data dictionary view
to determine whether any supplemental logging has already been specified.

supplemental_id_key_clause

Use this clause to specify that all or a combination of the primary key, unique key, and foreign
key columns should be supplementally logged. Oracle Database will generate either an
unconditional log group or a conditional log group. With an unconditional log group, the
database supplementally logs all the columns in the log group when the associated row is
modified. With a conditional log group, the database supplementally logs all the columns in the
log group only if any column in the log group is modified.

• If you specify ALL COLUMNS, then the database includes in the redo log all the fixed-length
maximum size columns of that row. Such a redo log is a system-generated unconditional
log group.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 238

• If you specify PRIMARY KEY COLUMNS, then for all tables with a primary key, the database
places into the redo log all columns of the primary key whenever an update is performed.
Oracle Database evaluates which columns to supplementally log as follows:

– First the database chooses columns of the primary key constraint, if the constraint is
validated or marked RELY and is not marked as DISABLED or INITIALLY DEFERRED.

– If no primary key columns exist, then the database looks for the smallest UNIQUE index
with at least one NOT NULL column and uses the columns in that index.

– If no such index exists, then the database supplementally logs all scalar columns of
the table.

• If you specify UNIQUE COLUMNS, then for all tables with a unique key or a bitmap index, if
any of the unique key or bitmap index columns are modified, the database places into the
redo log all other columns belonging to the unique key or bitmap index. Such a log group is
a system-generated conditional log group.

• If you specify FOREIGN KEY COLUMNS, then for all tables with a foreign key, if any foreign
key columns are modified, the database places into the redo log all other columns
belonging to the foreign key. Such a redo log is a system-generated conditional log group.

If you specify this clause multiple times, then the database creates a separate log group for
each specification. You can query the appropriate USER_, ALL_, or DBA_LOG_GROUPS data
dictionary view to determine whether any supplemental logging data has already been
specified.

immutable_table_clauses

You must specify this clause when you create an immutable table.

If you do not specify the VERSION using immutable_data_format_clause, a V1 immutable table is
created by default.

Example: Create an Immutable Table

The following example creates an immutable table named trade_ledger in your user schema. The
immutable table can be dropped only after 40 days of inactivity. Rows cannot be deleted until
100 days after they have been inserted.

 CREATE IMMUTABLE TABLE trade_ledger (tr_id NUMBER, user_name VARCHAR2(40), tr_value NUMBER)

 NO DROP UNTIL 40 DAYS IDLE

 NO DELETE UNTIL 100 DAYS AFTER INSERT;

blockchain_table_clauses

When you create a blockchain table, you must specify the blockchain_table_clauses :

• blockchain_drop_table_clause

• blockchain_row_retention_clause

• blockchain_hash_clause

• blockchain_data_format_clause

blockchain_drop_table_clause

NO DROP [UNTIL integer DAYS IDLE]

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 238

Use integer to specify the number of days that the blockchain table must be idle (i.e. have no
rows inserted). The minimum idle retention period is 0 days, but the recommended idle
retention period is 16 days.

You can specify this clause in two ways:

• NO DROP means that the blockchain table cannot be dropped.

• NO DROP UNTIL integer DAYS IDLE means that the blockchain table cannot be dropped, if the
newest row is less than integer of days old.

blockchain_row_retention_clause

NO DELETE [LOCKED]
 | NO DELETE UNTIL integer DAYS AFTER INSERT [LOCKED]

• integer specifies the idle retention period for inserted rows before they can be deleted. The
minimum idle retention period for inserted rows is 16 days.

• If you specify LOCKED, then you cannot change the retention period using ALTER TABLE.

• If you do not specify LOCKED in the clause UNTIL number DAYS AFTER INSERT, then you can
change the retention period using ALTER TABLE, but only to a value higher than the
previous retention period.

• If you specify NO DELETE LOCKED, then you cannot delete any rows from this table. But you
can drop the entire table if the table is inactive for more than the number of days specified
in the blockchain_drop_table_clause.

blockchain_hash_clause

HASHING USING sha2_512

You must specify this clause last after blockchain_drop_table_clause and blockchain_row_retention_clause
when you create a blockchain table.

You cannot specify this clause to modify a blockchain table using the ALTER TABLE statement.

blockchain_row_version_user_chain_clause

WITH ROW VERSION

This clause is optional and can only be specified on VERSION V2 blockchain tables. You can
specify at most three user-defined columns with the clause. The name of the row version
sequence identified by row_version_name is used to verify the user chain. The types of the
columns are restricted to NUMBER, CHAR, VARCHAR2, and RAW. When the clause is specified,
rows with identical values in the specified user-defined columns are sequenced using the
Oracle managed hidden column ORABCTAB_ROW_VERSION$.

Example: Row Versions

CREATE BLOCKCHAIN TABLE bank_ledger (bank VARCHAR2(128), account_no NUMBER, deposit_date DATE,
deposit_amount NUMBER)
 NO DROP UNTIL 31 DAYS IDLE
 NO DELETE LOCKED
 HASHING USING SHA2_512 WITH ROW VERSION ACCOUNT_NO (bank, account_no) VERSION V2;

AND USER CHAIN

The optional AND USER CHAIN clause can only be specified on VERSION V2 blockchain tables as
part of the WITH ROW VERSION clause. It extends the functionality offered by the row versions

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 238

and links these rows in a separate (user) blockchain. At most three user-defined columns can
be specified to define a user chain. The name of the user chain is that specified in the WITH
ROW VERSION clause. The sequencing of the rows in the user chain is accomplished using
column ORABCTAB_ROW_VERSION$. The crypto hash is maintained in column
ORABCTAB_USER_CHAIN_HASH$. Note, that ORABCTAB_USER_CHAIN_HASH$ is not signed in V2
blockchain tables. Only the system crypto hash can be signed (with signature stored in
ORABCTAB_SIGNATURE$ or ORABCTAB_DELEGATE_SIGNATURE$ column).

Example: AND USER CHAIN

CREATE BLOCKCHAIN TABLE bank_ledger (bank VARCHAR2(128), account_no NUMBER, deposit_date DATE,
deposit_amount NUMBER)
 NO DROP UNTIL 31 DAYS IDLE
 NO DELETE LOCKED
 HASHING USING SHA2_512 WITH ROW VERSION AND USER CHAIN bank_accounts (bank, account_no) VERSION
V2;

blockchain_system_chains_clause

Specify this clause to override the default of 32 system chains per instance. The number of
system chains configured by this clause must be between 1 and 1024.

blockchain_data_format_clause

You must specify the version when you create a blockchain table, either V1 or V2. Version V2
creates additional Oracle managed hidden columns than V1.

You cannot use ALTER TABLE to convert version from V1 to V2 and vice versa.

Example: HASHING and VERSION

CREATE BLOCKCHAIN TABLE bank_ledger (bank VARCHAR2(128), deposit_date DATE, deposit_amount NUMBER)
 NO DROP UNTIL 31 DAYS IDLE
 NO DELETE LOCKED
 HASHING USING SHA2_512 VERSION V2;

DEFAULT COLLATION

This clause lets you specify the default collation for the table. The default collation is assigned
to columns of the table that are of a character data type and are created with this statement or
subsequently added to the table with an ALTER TABLE statement. For collation_name, specify a
valid named collation or pseudo-collation.

If you omit this clause, then the default collation for the table is set to the effective schema
default collation of the schema containing the table. Refer to the DEFAULT_COLLATION
clause of ALTER SESSION for more information on the effective schema default collation.

You can override the table’s default collation and assign a data-bound collation to a particular
column by specifying the COLLATE clause in the column_definition or virtual_column_definition clause
of CREATE TABLE or ALTER TABLE, or the modify_col_properties or modify_virtcol_properties clause of
ALTER TABLE.

You can specify the DEFAULT COLLATION clause only if the COMPATIBLE initialization parameter
is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

Restriction on Collation for CLOB and NCLOB Columns

If a column has the data type of CLOB or NCLOB, then its specified collation must be
USING_NLS_COMP. The collation of CLOB and NCLOB columns is always USING_NLS_COMP and is
not affected by the default collation for the table.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 238

See Also

Oracle Database Globalization Support Guide for full information on default collations
and data-bound collations

ON COMMIT

The ON COMMIT clause is relevant only if you are creating a global temporary table. This clause
specifies whether the data in the temporary table persists for the duration of a transaction or a
session.

DELETE ROWS

Specify DELETE ROWS for a transaction-specific temporary table. This is the default. Oracle
Database will truncate the table (delete all its rows) after each commit.

PRESERVE ROWS

Specify PRESERVE ROWS for a session-specific temporary table. Oracle Database will truncate
the table (delete all its rows) when you terminate the session.

You can define the scope of a private temporary table using ON COMMIT. Use DROP DEFINITION
to define a transaction-specific table and PRESERVE DEFINITION to define a session-specific
table .

DROP DEFINITION

Specify DROP DEFINITION to create a private temporary table whose content and definition are
dropped when the transaction commits. The creation of a transaction-specific private
temporary table does not issue an implicit commit, but can be issued within an ongoing
transaction. The scope of this private temporary table is limited to the ongoing transaction. The
scope of this private temporary table is limited to the transaction. This is the default.

PRESERVE DEFINITION

Specify PRESERVE DEFINITION to create a private temporary table whose definition is preserved
when the transaction commits. The creation of a session-specific private temporary table
issues an implicit commit. The scope of this private temporary table is extended to the session.

physical_properties

The physical properties relate to the treatment of extents and segments and to the storage
characteristics of the table.

INTERNAL | EXTERNAL
Use the keyword INTERNAL to indicate an internal partition. This is the default. Use the keyword
EXTERNAL to indicate an external partition.

deferred_segment_creation

Use this clause to determine when the database should create the segment(s) for this table:

• SEGMENT CREATION DEFERRED: This clause defers creation of the table segment — as well
as segments for any LOB columns of the table, any indexes created implicitly as part of
table creation, and any indexes subsequently explicitly created on the table — until the first
row of data is inserted into the table. At that time, the segments for the table, LOB columns
and indexes, and explicitly created indexes are all materialized and inherit any storage
properties specified in this CREATE TABLE statement or, in the case of explicitly created

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 238

indexes, the CREATE INDEX statement. These segments are created regardless whether
the initial insert operation is uncommitted or rolled back. This is the default value.

Caution

When creating many tables with deferred segment creation, ensure that you
allocate enough space for your database so that when the first rows are inserted,
there is enough space for all the new segments.

• SEGMENT CREATION IMMEDIATE: The table segment is created as part of this CREATE TABLE
statement.

Immediate segment creation is useful, for example, if your application depends upon the object
appearing in the DBA_, USER_, and ALL_SEGMENTS data dictionary views, because the object
will not appear in those views until the segment is created. This clause overrides the setting of
the DEFERRED_SEGMENT_CREATION initialization parameter.

To determine whether a segment has been created for an existing table or its LOB columns or
indexes, query the SEGMENT_CREATED column of USER_TABLES, USER_INDEXES, or USER_LOBS.

Notes on Tables Without Segments

The following rules apply to a table whose segment has not yet been materialized:

• If you create this table with CREATE TABLE ... AS subquery, then if the source table has no
rows, segment creation of the new table is deferred. If the source table has rows, then
segment creation of the new table is not deferred.

• If you specify ALTER TABLE ... ALLOCATE EXTENT before the segment is materialized, then
the segment is materialized and then an extent is allocated. However the ALLOCATE
EXTENT clause in a DDL statement on any indexes of the table will return an error.

• In a DDL statement on the table or its LOB columns or indexes, any specification of
DEALLOCATE UNUSED is silently ignored.

• ONLINE operations on indexes of a table or table partition without a segment will silently be
disabled; that is, they will proceed OFFLINE.

• If any of the following DDL statements are executed on a table with one or more LOB
columns, then the resulting partition(s) or subpartition(s) will be materialized:

– ALTER TABLE SPLIT [SUB]PARTITION

– ALTER TABLE MERGE [SUB]PARTITIONS

– ALTER TABLE ADD [SUB]PARTITION (hash partitions only)

– ALTER TABLE COALESCE [SUB]PARTITION (hash partitions only)

Restrictions on Deferred Segment Creation

This clause is subject to the following restrictions:

• You cannot defer segment creation for the following types of tables: clustered tables,
global temporary tables, session-specific temporary tables, internal tables, external tables,
and tables owned by SYS, SYSTEM, PUBLIC, OUTLN, or XDB.

• Deferred segment creation is not supported in dictionary-managed tablespaces.

• Deferred segment creation is not supported in the SYSTEM tablespace.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 238

• Serializable transactions do not work with deferred segment creation. Trying to insert data
into an empty table with no segment created causes an error.

See Also

Oracle Database Concepts for general information on segment allocation and Oracle
Database Reference for more information about the DEFERRED_SEGMENT_CREATION
initialization parameter

segment_attributes_clause

The segment_attributes_clause lets you specify physical attributes and tablespace storage for the
table.

physical_attributes_clause

The physical_attributes_clause lets you specify the value of the PCTFREE, PCTUSED, and INITRANS
parameters and the storage characteristics of the table.

• For a nonpartitioned table, each parameter and storage characteristic you specify
determines the actual physical attribute of the segment associated with the table.

• For partitioned tables, the value you specify for the parameter or storage characteristic is
the default physical attribute of the segments associated with all partitions specified in this
CREATE statement (and in subsequent ALTER TABLE ... ADD PARTITION statements), unless
you explicitly override that value in the PARTITION clause of the statement that creates the
partition.

If you omit this clause, then Oracle Database sets PCTFREE to 10, PCTUSED to 40, and INITRANS
to 1.

See Also

• physical_attributes_clause and storage_clause for a description of these clauses

• "Creating a Table: Storage Example"

TABLESPACE

Specify the tablespace in which Oracle Database creates the table, object table OIDINDEX,
partition, LOB data segment, LOB index segment, or index-organized table overflow data
segment. If you omit TABLESPACE, then the database creates that item in the default tablespace
of the owner of the schema containing the table.

For a heap-organized table with one or more LOB columns, if you omit the TABLESPACE clause
for LOB storage, then the database creates the LOB data and index segments in the
tablespace where the table is created.

For an index-organized table with one or more LOB columns, if you omit TABLESPACE, then the
LOB data and index segments are created in the tablespace in which the primary key index
segment of the index-organized table is created.

For nonpartitioned tables, the value specified for TABLESPACE is the actual physical attribute of
the segment associated with the table. For partitioned tables, the value specified for
TABLESPACE is the default physical attribute of the segments associated with all partitions

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 238

specified in the CREATE statement and on subsequent ALTER TABLE ... ADD PARTITION
statements, unless you specify TABLESPACE in the PARTITION description.

See Also

CREATE TABLESPACE for more information on tablespaces

TABLESPACE SET

This clause is valid only when creating a sharded table by specifying the SHARDED keyword of
CREATE TABLE. Use this clause to specify the tablespace set in which Oracle Database creates
the table.

You can only associate a tablespace set with one table family when you use the CREATE
SHARDED TABLE statement. If you try to use a tablespace set with more than one table family,
an error will be thrown .

logging_clause

Specify whether the creation of the table and of any indexes required because of constraints,
partition, or LOB storage characteristics will be logged in the redo log file (LOGGING) or not
(NOLOGGING).The logging attribute of the table is independent of that of its indexes.

This attribute also specifies whether subsequent direct loader (SQL*Loader) and direct-path
INSERT operations against the table, partition, or LOB storage are logged (LOGGING) or not
logged (NOLOGGING).

Refer to logging_clause for a full description of this clause.

table_compression

The table_compression clause is valid only for heap-organized tables. Use this clause to instruct
the database whether to compress data segments to reduce disk use. The COMPRESS clauses
enable table compression. The NOCOMPRESS clause disables table compression. The default is
NOCOMPRESS.

COMPRESS

Specifying only the keyword COMPRESS is equivalent to specifying ROW STORE COMPRESS BASIC
and enables basic table compression.

ROW STORE COMPRESS BASIC

When you enable table compression by specifying either ROW STORE COMPRESS or ROW STORE
COMPRESS BASIC, you enable basic table compression. Oracle Database attempts to
compress data during direct-path INSERT operations when it is productive to do so. The original
import utility (imp) does not support direct-path INSERT, and therefore cannot import data in a
compressed format.

Tables with basic table compression use a PCTFREE value of 0 to maximize compression,
unless you explicitly set a value for PCTFREE in the physical_attributes_clause.

In earlier releases, basic table compression was enabled using COMPRESS BASIC. This syntax is
still supported for backward compatibility.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 238

See Also

"Conventional and Direct-Path INSERT" for information on direct-path INSERT
operations, including restrictions

ROW STORE COMPRESS ADVANCED

When you enable table compression by specifying ROW STORE COMPRESS ADVANCED, you
enable Advanced Row Compression. Oracle Database compresses data during all DML
operations on the table. This form of compression is recommended for OLTP environments.

Tables with ROW STORE COMPRESS ADVANCED or NOCOMPRESS use the PCTFREE default value of
10, to maximize compress while still allowing for some future DML changes to the data, unless
you override this default explicitly.

In earlier releases, Advanced Row Compression was called OLTP table compression and was
enabled using COMPRESS FOR OLTP. This syntax is still supported for backward compatibility.

COLUMN STORE COMPRESS FOR { QUERY | ARCHIVE }

When you specify COLUMN STORE COMPRESS FOR QUERY or COLUMN STORE COMPRESS FOR
ARCHIVE, you enable Hybrid Columnar Compression. With Hybrid Columnar Compression,
data can be compressed during direct-path inserts, conventional inserts, and array inserts.
During the load process, data is transformed into a column-oriented format and then
compressed. Oracle Database uses a compression algorithm appropriate for the level you
specify. In general, the higher the level, the greater the compression ratio. Hybrid Columnar
Compression can result in higher compression ratios, at a greater CPU cost. Therefore, this
form of compression is recommended for data that is not frequently updated.

COLUMN STORE COMPRESS FOR QUERY is useful in data warehousing environments. Valid values
are LOW and HIGH, with HIGH providing a higher compression ratio. The default is HIGH.

COLUMN STORE COMPRESS FOR ARCHIVE uses higher compression ratios than COLUMN STORE
COMPRESS FOR QUERY, and is useful for compressing data that will be stored for long periods of
time. Valid values are LOW and HIGH, with HIGH providing the highest possible compression
ratio. The default is LOW.

Specifying COLUMN STORE COMPRESS is equivalent to specifying COLUMN STORE COMPRESS FOR
QUERY HIGH.

Tables with COLUMN STORE COMPRESS FOR QUERY or COLUMN STORE COMPRESS FOR ARCHIVE
use a PCTFREE value of 0 to maximize compression, unless you explicitly set a value for
PCTFREE in the physical_attributes_clause. For these tables, PCTFREE has no effect for blocks loaded
using direct-path INSERT. PCTFREE is honored for blocks loaded using conventional INSERT, and
for blocks created as a result of DML operations on blocks originally loaded using direct-path
INSERT.

[NO] ROW LEVEL LOCKING

If you specify ROW LEVEL LOCKING, then Oracle Database uses row-level locking during DML
operations. This improves the performance of these operations when accessing Hybrid
Columnar Compressed data. If you specify NO ROW LEVEL LOCKING, then row-level locking is
not used. The default is NO ROW LEVEL LOCKING.

In earlier releases, Hybrid Columnar Compression was enabled using COMPRESS FOR QUERY
and COMPRESS FOR ARCHIVE. This syntax is still supported for backward compatibility.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 238

See Also

Oracle Database Concepts for more information on Hybrid Columnar Compression,
which is a feature of certain Oracle storage systems

Notes on Table Compression

You can specify table compression for the following portions of a heap-organized table:

• For an entire table, in the physical_properties clause of relational_table or object_table

• For a range partition, in the table_partition_description of the range_partitions clause

• For a composite range partition, in the table_partition_description of the range_partition_desc clause

• For a composite list partition, in the table_partition_description of the list_partition_desc clause

• For a list partition, in the table_partition_description of the list_partitions clause

• For a system or reference partition, in the table_partition_description of the reference_partition_desc
clause

• For the storage table of a nested table, in the nested_table_col_properties clause

See Also

Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_COMPRESSION package, which helps you choose the correct
compression level for an application, and Oracle Database Administrator's Guide
for more information about table compression, including examples

Restrictions on Table Compression

Table compression is subject to the following restrictions:

• Data segments of BasicFiles LOBs are not compressed. For information on compression
of SecureFiles LOBs, see LOB_compression_clause.

• You cannot drop a column from a table that uses compression, although you can set such
a column as unused. All of the operations of the ALTER TABLE ... drop_column_clause are valid
for tables that use ROW STORE COMPRESS ADVANCED, COLUMN STORE COMPRESS FOR
QUERY, and COLUMN STORE COMPRESS FOR ARCHIVE.

• You cannot specify any type of table compression for an index-organized table, any
overflow segment or partition of an overflow segment, or any mapping table segment of an
index-organized table.

• You cannot specify any type of table compression for external tables or for tables that are
part of a cluster.

• You cannot specify any type of table compression for tables with LONG or LONG RAW
columns, tables that are owned by the SYS schema and reside in the SYSTEM tablespace,
or tables with ROWDEPENDENCIES enabled.

• You cannot specify Hybrid Columnar Compression on tables that are enabled for flashback
archiving.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 238

• You cannot specify Hybrid Columnar Compression on the following object-relational
features: object tables, XMLType tables, columns with abstract data types, collections stored
as tables, or OPAQUE types, including XMLType columns stored as objects.

• When you update a row in a table compressed with Hybrid Columnar Compression, the
ROWID of the row may change.

• In tables compressed with Hybrid Columnar Compression, updates to a single row may
result in locks on multiple rows. Concurrency for write transactions may therefore be
affected.

• If a table compressed with Hybrid Columnar Compression has a foreign key constraint,
and you insert data using INSERT with the APPEND hint, then the data will be compressed to
a lesser level than is typical with Hybrid Columnar Compression. To compress the data
with Hybrid Columnar Compression, disable the foreign key constraint, insert the data
using INSERT with the APPEND hint, and then reenable the foreign key constraint.

inmemory_table_clause

Use this clause to enable or disable the table for the In-Memory Column Store (IM column
store). The IM column store is an optional, static SGA pool that stores copies of tables and
partitions in a special columnar format optimized for rapid scans. The IM column store does not
replace the buffer cache, but acts as a supplement so that both memory areas can store the
same data in different formats.

• Specify INMEMORY to enable the table for the IM column store.

You can optionally use the inmemory_attributes clause to specify how table data is stored in
the IM column store. This clause enables you to specify the data compression method and
the data population priority. In an Oracle RAC environment, it also enables you to specify
how the data is distributed and duplicated across Oracle RAC instances. Refer to the
inmemory_attributes clause for more information.

• Specify NO INMEMORY to disable the table for the IM column store.

• Specify the inmemory_column_clause to enable or disable specific table columns for the IM
column store, and to specify the data compression method for specific columns. Refer to
the inmemory_clause for more information.

• Specify INMEMORY ALL to mark all columns as in-memory. Specify NO INMEMORY ALL to
mark all columns as not in-memory. These options are applied first to table columns before
other inmemory column clauses.

You cannot specify INMEMORY ALL and NO INMEMORY ALL in the same DDL.

If you omit this clause, then the table is assigned the default IM column store settings for the
tablespace in which it is created. Refer to the inmemory_clause of CREATE TABLESPACE for
more information on specifying the default IM column store settings for a tablespace.

In an Oracle Active Data Guard environment, if you specify this clause for a table on the
primary database, then the table is enabled or disabled for the IM column store in the Oracle
Active Data Guard instance.

Note

The INMEMORY_CLAUSE_DEFAULT initialization parameter enables you to specify a
default IM column store clause for new tables and materialized views. Refer to Oracle
Database Reference for more information on the INMEMORY_CLAUSE_DEFAULT
initialization parameter.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 238

Restrictions on the In-Memory Column Store

The following restrictions apply to the In-Memory Column Store:

• You cannot specify the INMEMORY clause for index-organized tables.

• You cannot specify the INMEMORY clause for tables that are owned by the SYS schema and
reside in the SYSTEM or SYSAUX tablespace.

• Starting with Oracle Database 18c , you can specify the INMEMORY clause for external
tables. You must set the QUERY_REWRITE_INTEGRITY initialization parameter to stale_tolerated
for the DDL to parse correctly. The policy may not be changed via ALTER to anything other
than stale_tolerated if INMEMORY is specified.

• The IM column store does not support LONG or LONG RAW columns, out-of-line columns
(LOBs, varrays, nested table columns), or extended data type columns. If you enable a
table for the IM column store and it contains any of these types of columns, then the
columns will not be populated in the IM column store.

• If you enable a table for the IM column store and it contains a virtual (expression) column,
then the column will be populated in the IM column store only if the value of the
INMEMORY_VIRTUAL_COLUMNS initialization parameter is ENABLED and the SQL expression
for the virtual (expression) column refers only to columns that are enabled for the IM
column store.

See Also

Oracle Database In-Memory Guide for an overview of the IM column store

inmemory_attributes

Use the inmemory_memcompress, inmemory_priority, inmemory_distribute, and inmemory_duplicate clauses to
specify how table data is stored in the IM column store.

Specify the inmemory_spatial clause to apply inmemory attributes to spatial columns of type
SDO_GEOMETRY.

inmemory_memcompress

Use this clause to specify the compression method for table data stored in the IM column
store. This data is called In-Memory data.

To instruct the database to not compress In-Memory data, specify NO MEMCOMPRESS.

Specify MEMCOMPRESS AUTO to instruct the database to manage the segment including actions
like evict, recompress, and populate.

To instruct the database to compress In-Memory data, specify MEMCOMPRESS FOR followed by
one of the following methods:

• DML - This method is optimized for DML operations and performs little or no data
compression.

• QUERY - Specifying QUERY is equivalent to specifying QUERY LOW.

• QUERY LOW - This method compresses In-Memory data the least (except for DML) and
results in the best query performance. This is the default.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 238

• QUERY HIGH -This method compress In-Memory data more than QUERY LOW, but less than
CAPACITY LOW.

• CAPACITY - Specifying CAPACITY is equivalent to specifying CAPACITY LOW.

• CAPACITY LOW - This method compresses In-Memory data more than QUERY HIGH, but less
than CAPACITY HIGH, and results in excellent query performance.

• CAPACITY HIGH - This method compresses In-Memory data the most and results in good
query performance.

Any memcompress level can be specified via DDL, but will be ignored during population. All In-
Memory Compression Units (IMCUs) will be populated as QUERY LOW transparently.

inmemory_priority

Use the PRIORITY clause to specify the data population priority for table data in the IM column
store. This clause controls the priority of population, but not the speed of population.

• Specify NONE for on-demand population. In this case, the database populates table data
in the IM column store when the table it is accessed through a full table scan. If the table is
never accessed, or if it is accessed only through an index scan or fetch by rowid, then
population never occurs. This is the default.

• Specify one of the following priority levels for priority-based population: LOW, MEDIUM,
HIGH, or CRITICAL. In this case, the database automatically populates table data in the IM
column store using an internally managed priority queue; a full scan is not a necessary
condition for population. The database queues population of the table data based on the
specified priority level. For example, a table with the setting INMEMORY PRIORITY CRITICAL
takes precedence over a table with the setting INMEMORY PRIORITY HIGH, which in turn
takes precedence over a table with the setting INMEMORY PRIORITY LOW, and so on. If the
IM column store has insufficient space, then the database does not populate additional
table data until space is available.

inmemory_distribute

The DISTRIBUTE clause is applicable only if you are using Oracle Real Application Clusters
(Oracle RAC) or Oracle Active Data Guard. It lets you specify how table data in the IM column
store is distributed across Oracle RAC instances, and lets you specify the database instances
in which the data is eligible to be populated.

AUTO and BY

Use the AUTO and BY clauses to specify how table data in the IM column store is distributed
across Oracle RAC instances. You can specify the following options:

• AUTO - Oracle Database controls how data is distributed across Oracle RAC instances.
Large tables are distributed across Oracle RAC instances depending on their access
patterns. Smaller tables may be distributed between instances. This is the default.

• BY ROWID RANGE - Data in certain ranges of rowids is distributed to different Oracle RAC
instances.

• BY PARTITION - Data in partitions is distributed to different Oracle RAC instances.

• BY SUBPARTITION - Data in subpartitions is distributed to different Oracle RAC instances.

You can only use AUTO and BY to distribute the In-Memory Compression Units (IMCUs) for an
object between instances in a single Oracle RAC database, not between a primary instance
and standby instance in Active Data Guard.

FOR SERVICE

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 238

Use the FOR SERVICE clause to specify the Oracle RAC or Oracle Active Data Guard instances
in which the object is eligible to be populated. You can specify the following options:

• DEFAULT - The object is eligible for population on all instances specified with the
PARALLEL_INSTANCE_GROUP initialization parameter. If this parameter is not set, then the
object is populated on all instances. This is the default.

• ALL - The object is eligible for population on all instances, regardless of the value of the
PARALLEL_INSTANCE_GROUP initialization parameter.

• service_name - The object is eligible for population only on instances belonging to the
specified service and only when the service is active and not blocked on an instance.

• NONE - The object is not eligible for population on any instances. This option lets you
disable IM column store population while preserving the other In-Memory attributes for the
table. These attributes take effect if you subsequently enable IM column store population
for the table by specifying FOR SERVICE DEFAULT, FOR SERVICE ALL, or FOR SERVICE
service_name in the inmemory_distribute clause of an ALTER TABLE statement.

In Oracle RAC, the FOR SERVICE clause specifies the instances within the Oracle RAC
database. In Active Data Guard, the primary and standby databases may use a single-instance
or Oracle RAC configuration. In Active Data Guard, the FOR SERVICE clause specifies instances
in the primary database, instances in the standby database, or a mixture of primary and
standby instances.

inmemory_duplicate

The DUPLICATE clause is applicable only if you are using Oracle Real Application Clusters
(Oracle RAC) on an engineered system. It controls how table data in the IM column store is
duplicated across Oracle RAC instances. You can specify the following options:

• DUPLICATE - Data is duplicated on one Oracle RAC instance, resulting in the data existing
on a total of two Oracle RAC instances.

• DUPLICATE ALL - Data is duplicated across all Oracle RAC instances. If you specify
DUPLICATE ALL, then the database uses the DISTRIBUTE AUTO setting, regardless of
whether or how you specify the inmemory_distribute clause.

• NO DUPLICATE - Data is not duplicated across Oracle RAC instances. This is the default.

inmemory_column_clause

Use this clause to enable or disable specific table columns for the IM column store, and to
specify the data compression method for specific columns. If you specify this clause when
creating a NO INMEMORY table, then the column settings will take effect when the table or
partition is subsequently enabled for the IM column store.

• Specify INMEMORY to enable the specified table columns for the IM column store.

You can optionally use the inmemory_memcompress clause to specify the data compression
method for specific columns. See inmemory_memcompress. If you omit the
inmemory_memcompress clause, then the table column uses the data compression method for
the table. You cannot specify the PRIORITY, DISTRIBUTE, or DUPLICATE settings for a specific
table column. These settings are the same for all table columns as they are for the table.

• Specify NO INMEMORY to disable the specified table columns for the IM column store.

If you omit the inmemory_column_clause, then all table columns use the IM column store settings for
the table.

Restrictions on inmemory_column_clause

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 238

• You cannot specify this clause for a LONG or LONG RAW column, an out-of-line column
(LOB, varray, nested table column), or an extended data type column.

• To selectively enable a virtual (expression) column for the IM column store, the value of the
INMEMORY_VIRTUAL_COLUMNS initialization parameter must be ENABLED or MANUAL, and
the SQL expression for the virtual (expression) column must refer only to columns that are
enabled for the IM column store.

inmemory_clause

Use this clause to enable or disable a table partition for the IM column store. In order to specify
this clause, the table must be enabled for the IM column store. If you omit this clause, then the
table partition uses the IM column store settings for the table.

The inmemory_attributes clause has the same semantics for table partitions as for tables. Refer to
the inmemory_attributes clause for full information.

INMEMORY TEXT

Specify INMEMORY TEXT clause to enable IM full text columns. The PRIORITY clause has the
same effect on population of IM full text columns as standard In-Memory columns. The default
priority is NONE.

The MEMCOMPRESS clause is not valid with INMEMORY TEXT.

Examples

CREATE TABLE mydoc(id NUMBER, docCreationTime DATE, doc CLOB, json_doc JSON) INMEMORY TEXT(DOC,
JSON_DOC)

CREATE TABLE mydoc(id NUMBER, docCreationTime DATE, doc CLOB, json_doc JSON) INMEMORY PRIORITY
CRITICAL
 INMEMORY TEXT(DOC, JSON_DOC)

You can apply the IMEMORY TEXT clause to search non-scalar columns in an In-Memory table.
This clause enables fast In-Memory searching of text, XML, or JSON documents using the
CONTAINS () or JSON_TEXTCONTAINS() operators.

INMEMORY TEXT (column_name1, column_name2) specifies the list of columns to be enabled as IM
full text. The columns must be of type CHAR, VARCHAR2, CLOB, BLOB, or JSON. JSON columns
have JSON_TEXTCONTAINS() automatically enabled.

INMEMORY TEXT (column_name1 USING policy1, column_name2 USING policy2)specifies the list of
columns to be enabled as IM full text along with custom indexing policies. The columns must
be of type CHAR, VARCHAR2, CLOB, or BLOB. You cannot use this clause with columns of type
JSON.

You can use the IMEMORY PRIORITY clause to set the order in which objects are populated.

See Also

IM Full Text Columns.

You can specify INMEMORY on non-partitioned tables using the ORACLE_HIVE, ORACLE_HDFS,
and ORACLE_BIGDATA driver types.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 238

ilm_clause

Use this clause to add an Automatic Data Optimization policy to table.

This clause has the same semantics in CREATE TABLE and ALTER TABLE, with the following
additional restriction: You can specify only the ADD POLICY clause for CREATE TABLE. Refer to
the ilm_clause for the full semantics of this clause.

See Also

Oracle Database VLDB and Partitioning Guide for more information on managing
policies for Automatic Data Optimization

Restrictions on Automatic Data Optimization

Automatic Data Optimization is subject to the following restrictions:

• Automatic Data Optimization is not supported for tables that contain object types, index-
organized tables, clustered tables, or materialized views.

• Row-level policies are not supported for tables that support Temporal Validity or tables that
are enabled for row archiving for In-Database Archiving.

ilm_policy_clause

Use this clause to describe the Automatic Data Optimization policy.

This clause has the same semantics in CREATE TABLE and ALTER TABLE. Refer to
ilm_policy_clause for the full semantics of this clause.

RECOVERABLE | UNRECOVERABLE

These keywords are deprecated and have been replaced with LOGGING and NOLOGGING,
respectively. Although RECOVERABLE and UNRECOVERABLE are supported for backward
compatibility, Oracle strongly recommends that you use the LOGGING and NOLOGGING
keywords.

Restrictions on [UN]RECOVERABLE

This clause is subject to the following restrictions:

• You cannot specify RECOVERABLE for partitioned tables or LOB storage characteristics.

• You cannot specify UNRECOVERABLE for partitioned or index-organized tables.

• You can specify UNRECOVERABLE only with AS subquery.

ORGANIZATION

The ORGANIZATION clause lets you specify the order in which the data rows of the table are
stored.

HEAP

HEAP indicates that the data rows of table are stored in no particular order. This is the default.

INDEX

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 238

INDEX indicates that table is created as an index-organized table. In an index-organized table,
the data rows are held in an index defined on the primary key for the table.

EXTERNAL

EXTERNAL indicates that table is a read-only table located outside the database.

See Also

"External Table Example"

index_org_table_clause

Use the index_org_table_clause to create an index-organized table. Oracle Database maintains the
table rows, both primary key column values and nonkey column values, in an index built on the
primary key. Index-organized tables are therefore best suited for primary key-based access
and manipulation. An index-organized table is an alternative to:

• A noncluster table indexed on the primary key by using the CREATE INDEX statement

• A cluster table stored in an indexed cluster that has been created using the CREATE
CLUSTER statement that maps the primary key for the table to the cluster key

You must specify a primary key for an index-organized table, because the primary key uniquely
identifies a row. The primary key cannot be DEFERRABLE. Use the primary key instead of the
rowid for directly accessing index-organized rows.

If an index-organized table is partitioned and contains LOB columns, then you should specify
the index_org_table_clause first, then the LOB_storage_clause, and then the appropriate
table_partitioning_clauses.

You cannot use the TO_LOB function to convert a LONG column to a LOB column in the
subquery of a CREATE TABLE ... AS SELECT statement if you are creating an index-organized
table. Instead, create the index-organized table without the LONG column, and then use the
TO_LOB function in an INSERT ... AS SELECT statement.

The ROWID pseudocolumn of an index-organized table returns logical rowids instead of
physical rowids. A column that you create with the data type ROWID cannot store the logical
rowids of the IOT. The only data you can store in a column of type ROWID is rowids from heap-
organized tables. If you want to store the logical rowids of an IOT, then create a column of type
UROWID instead. A column of type UROWID can store both physical and logical rowids.

See Also

"Index-Organized Table Example"

Restrictions on Index-Organized Tables

Index-organized tables are subject to the following restrictions:

• You cannot define a virtual (expression) column for an index-organized table.

• You cannot specify the composite_range_partitions, composite_list_partitions, or
composite_hash_partitions clauses for an index-organized table.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 238

• If the index-organized table is a nested table or varray, then you cannot specify
table_partitioning_clauses.

• The collations of character data type columns belonging to the primary key of an index-
organized table must be BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

PCTTHRESHOLD integer

Specify the percentage of space reserved in the index block for an index-organized table row.
PCTTHRESHOLD must be large enough to hold the primary key. All trailing columns of a row,
starting with the column that causes the specified threshold to be exceeded, are stored in the
overflow segment. PCTTHRESHOLD must be a value from 1 to 50. If you do not specify
PCTTHRESHOLD, then the default is 50.

Restriction on PCTTHRESHOLD

You cannot specify PCTTHRESHOLD for individual partitions of an index-organized table.

mapping_table_clauses

Specify MAPPING TABLE to instruct the database to create a mapping of local to physical
ROWIDs and store them in a heap-organized table. This mapping is needed in order to create a
bitmap index on the index-organized table. If the index-organized table is partitioned, then the
mapping table is also partitioned and its partitions have the same name and physical attributes
as the base table partitions.

Oracle Database creates the mapping table or mapping table partition in the same tablespace
as its parent index-organized table or partition. You cannot query, perform DML operations on,
or modify the storage characteristics of the mapping table or its partitions.

prefix_compression

The prefix_compression clauses let you enable or disable prefix compression for index-organized
tables.

• Specify COMPRESS to enable prefix compression, also known as key compression, for an
index-organized table, which eliminates repeated occurrence of primary key column values
in index-organized tables. Use integer to specify the prefix length, which is the number of
prefix columns to compress.

The valid range of prefix length values is from 1 to the number of primary key columns
minus 1. The default prefix length is the number of primary key columns minus 1.

• Specify NOCOMPRESS to disable prefix compression in index-organized tables. This is the
default.

Restriction on Prefix Compression of Index-organized Tables

At the partition level, you can specify COMPRESS, but you cannot specify the prefix length with
integer.

iot_advanced_compression

Specify iot_advanced_compression to compress the indexes of index organized tables (IOTs) and
table partitions in order to reduce the storage footprint of IOTs.

You can enable advanced low index compression for all IOTs on specific partitions of a table,
and leave other partitions uncompressed.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 238

index_org_overflow_clause

The index_org_overflow_clause lets you instruct the database that index-organized table data rows
exceeding the specified threshold are placed in the data segment specified in this clause.

• When you create an index-organized table, Oracle Database evaluates the maximum size
of each column to estimate the largest possible row. If an overflow segment is needed but
you have not specified OVERFLOW, then the database raises an error and does not execute
the CREATE TABLE statement. This checking function guarantees that subsequent DML
operations on the index-organized table will not fail because an overflow segment is
lacking.

• All physical attributes and storage characteristics you specify in this clause after the
OVERFLOW keyword apply only to the overflow segment of the table. Physical attributes and
storage characteristics for the index-organized table itself, default values for all its
partitions, and values for individual partitions must be specified before this keyword.

• If the index-organized table contains one or more LOB columns, then the LOBs will be
stored out-of-line unless you specify OVERFLOW, even if they would otherwise be small
enough be to stored inline.

• If table is partitioned, then the database equipartitions the overflow data segments with the
primary key index segments.

INCLUDING column_name

Specify a column at which to divide an index-organized table row into index and overflow
portions. The primary key columns are always stored in the index. column_name can be either the
last primary key column or any non primary key column. All non primary key columns that
follow column_name are stored in the overflow data segment.

If an attempt to divide a row at column_name causes the size of the index portion of the row to
exceed the specified or default PCTTHRESHOLD value, then the database breaks up the row
based on the PCTTHRESHOLD value.

Restriction on the INCLUDING Clause

You cannot specify this clause for individual partitions of an index-organized table.

EXTERNAL PARTITION ATTRIBUTES
Use the EXTERNAL PARTITION ATTRIBUTES clause to specify table level external
parameters in a hybrid partitioned table.

external_table_clause

Use the external_table_clause to create an external table, which allows you to process data that is
stored outside the database from within the database without loading any of the data into the
database.

Defining an external table only creates metadata in the data dictionary, pointing to data outside
the database and providing seamless read only access to such data.

Because external tables have no data in the database, you define them with a small subset of
the clauses normally available when creating tables.

In addition to supporting external data residing in operating file systems and Big Data sources
and formats such as HDFS and Hive, Oracle supports external data residing in objects via the
DBMS_CLOUD package.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 94 of 238

You can work with data in object stores using the DBMS_CLOUD package or by manually
defining external tables. Oracle strongly recommends using DBMS_CLOUD for the additional
functionality that is fully compatible with Oracle autonomous database.

See Also

• DBMS_CLOUD

• Managing External Tables

• Within the relational_properties clause, you can specify only column, datatype, ENCRYPT,
inline_constraint, and out_of_line_constraint. You can specify the ENCRYPT clause only when you
specify the ORACLE_DATAPUMP access driver and the AS subquery clause to load data into the
external table. Within the inline_constraint and out_of_line_constraint clauses, you can specify all
subclauses except CHECK.

• Within the physical_properties_clause, you can specify only the organization of the table
(ORGANIZATION EXTERNAL external_table_clause).

• Within the table_properties clause, you can specify the parallel_clause. The parallel_clause lets you
parallelize subsequent queries on the external data and subsequent operations that
populate the external table.

Starting with Oracle Database 12c Release 2 (12.2), you can create a partitioned
external table. To do this, within the table_properties clause, you can specify the following
subclauses of the table_partitioning_clauses :

– range_partitions - specify this clause to create a range-partitioned or interval-partitioned
external table

– list_partitions - specify this clause to create a list-partitioned external table. Within this
clause, you cannot specify the AUTOMATIC clause; an automatic list-partitioned table
cannot be an external table.

– composite_range_partitions - specify this clause to create a range-range, range-list, interval-
range, or interval-list composite-partitioned external table

– composite_list_partitions - specify this clause to create a list-range or list-list composite-
partitioned external table. Within this clause, you cannot specify the AUTOMATIC
clause; an automatic composite-partitioned table cannot be an external table.

• You can populate the external table at create time by using the AS subquery clause.

No other clauses are permitted in the same CREATE TABLE statement.

See Also

• "External Table Example"

• ALTER TABLE ... "PROJECT COLUMN Clause" for information on the effect of
changing the default property of the column projection

• Oracle Database Data Warehousing Guide, Oracle Database Administrator's
Guide, and Oracle Database Utilities for information on the uses for external tables

Restrictions on External Tables

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 95 of 238

External tables are subject to the following restrictions:

• An external table cannot be a temporary table.

• You can specify only the following types of constraints on an external table: NOT NULL
constraints, unique constraints, primary key constraints, and foreign key constraints. When
you specify unique constraints, primary key constraints, or foreign key constraints, you
must also specify RELY DISABLE. These constraints are declarative and are not enforced.
They can increase query performance and reduce resource consumption because more
optimizer transformations can be taken into account. In order for the optimizer to utilize
these RELY DISABLE constraints, the QUERY_REWRITE_INTEGRITY initialization parameter
must be set to either trusted or stale_tolerated.

• You cannot create an index on an external table.

• An external table cannot contain INVISIBLE columns.

• An external table cannot have object type, varray, or LONG columns. However, you can
populate LOB columns of an external table with varray or LONG data from an internal
database table.

• Only ORACLE_LOADER and ORACLE_DATAPUMP access types are permitted for external
tables that can be populated into the inmemory column store.

TYPE

TYPE access_driver_type indicates the access driver of the external table. The access driver is the
API that interprets the external data for the database. Oracle Database provides the following
access drivers: ORACLE_LOADER, ORACLE_DATAPUMP, ORACLE_HDFS, and ORACLE_HIVE. If you
do not specify TYPE, then the database uses ORACLE_LOADER as the default access driver. You
must specify the ORACLE_DATAPUMP access driver if you specify the AS subquery clause to
unload data from one Oracle Database and reload it into the same or a different Oracle
Database.

Restrictions

ORACLE_HIVE column names should be limited to [A-ZA-Z0-9_]+ on partitioning external tables.

See Also

Oracle Database Utilities for information about the ORACLE_LOADER,
ORACLE_DATAPUMP, ORACLE_HDFS, and ORACLE_HIVE access drivers

DEFAULT DIRECTORY

DEFAULT DIRECTORY lets you specify a default directory object corresponding to a directory on
the file system where the external data sources may reside. The default directory can also be
used by the access driver to store auxiliary files such as error logs.

ACCESS PARAMETERS

The optional ACCESS PARAMETERS clause lets you assign values to the parameters of the
specific access driver for this external table.

• The opaque_format_spec specifies all access parameters for the ORACLE_LOADER,
ORACLE_DATAPUMP, ORACLE_HDFS, and ORACLE_HIVE access drivers. See Oracle Database
Utilities for descriptions of the ORACLE_LOADER, ORACLE_DATAPUMP, ORACLE_HDFS, and
ORACLE_HIVE access parameters.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 96 of 238

Field names specified in the opaque_format_spec must match columns in the table definition.
Oracle Database ignores any field in the opaque_format_spec that is not matched by a column
in the table definition.

• USING CLOB subquery lets you derive the parameters and their values through a subquery.
The subquery cannot contain any set operators or an ORDER BY clause. It must return one
row containing a single item of data type CLOB.

Whether you specify the parameters in an opaque_format_spec or derive them using a subquery,
the database does not interpret anything in this clause. It is up to the access driver to interpret
this information in the context of the external data.

For inline external tables and external modify query statements you must use opaque_format_spec
within single quotes. For DDL statements you must use opaque_format_spec without single quotes.

LOCATION

The LOCATION clause lets you specify one or more external data sources. Usually the
location_specifier is a file, but it need not be. Oracle Database does not interpret this clause. It is
up to the access driver to interpret this information in the context of the external data.

You must specify the LOCATION clause as follows:

• When creating a nonpartitioned external table, you must specify the LOCATION clause at
the table level in the external_table_data_props clause.

• When creating a partitioned external table, you must specify the LOCATION clause at the
partition level in the external_part_subpart_data_props clause.

• When creating a composite-partitioned external table, you must specify the LOCATION
clause at the subpartition level in the external_part_subpart_data_props clause.

REJECT LIMIT

The REJECT LIMIT clause lets you specify how many conversion errors can occur during a
query of the external data before an Oracle Database error is returned and the query is
aborted. The default value is 0.

CLUSTER Clause

The CLUSTER clause indicates that the table is to be part of cluster. The columns listed in this
clause are the table columns that correspond to the cluster columns. Generally, the cluster
columns of a table are the column or columns that make up its primary key or a portion of its
primary key. Refer to CREATE CLUSTER for more information.

Specify one column from the table for each column in the cluster key. The columns are
matched by position, not by name.

A cluster table uses the space allocation of the cluster. Therefore, do not use the PCTFREE,
PCTUSED, or INITRANS parameters, the TABLESPACE clause, or the storage_clause with the CLUSTER
clause.

Restrictions on Cluster Tables

Cluster tables are subject to the following restrictions:

• Object tables and tables containing LOB columns or columns of the Any* Oracle-supplied
types cannot be part of a cluster.

• You cannot specify the parallel_clause or CACHE or NOCACHE for a table that is part of a
cluster.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 97 of 238

• You cannot specify CLUSTER with either ROWDEPENDENCIES or NOROWDEPENDENCIES unless
the cluster has been created with the same ROWDEPENDENCIES or NOROWDEPENDENCIES
setting.

• A cluster table cannot contain INVISIBLE columns.

table_properties

The table_properties further define the characteristics of the table.

column_properties

Use the column_properties clauses to specify the storage attributes of a column.

object_type_col_properties

The object_type_col_properties determine storage characteristics of an object column or attribute or
of an element of a collection column or attribute.

column

For column, specify an object column or attribute.

substitutable_column_clause

The substitutable_column_clause indicates whether object columns or attributes in the same
hierarchy are substitutable for each other. You can specify that a column is of a particular type,
or whether it can contain instances of its subtypes, or both.

• If you specify ELEMENT, then you constrain the element type of a collection column or
attribute to a subtype of its declared type.

• The IS OF [TYPE] (ONLY type) clause constrains the type of the object column to a subtype of
its declared type.

• NOT SUBSTITUTABLE AT ALL LEVELS indicates that the object column cannot hold instances
corresponding to any of its subtypes. Also, substitution is disabled for any embedded
object attributes and elements of embedded nested tables and varrays. The default is
SUBSTITUTABLE AT ALL LEVELS.

Restrictions on the substitutable_column_clause

This clause is subject to the following restrictions:

• You cannot specify this clause for an attribute of an object column. However, you can
specify this clause for a object type column of a relational table and for an object column of
an object table if the substitutability of the object table itself has not been set.

• For a collection type column, the only part of this clause you can specify is [NOT]
SUBSTITUTABLE AT ALL LEVELS.

LOB_storage_clause

The LOB_storage_clause lets you specify the storage attributes of LOB data segments. You must
specify at least one clause after the STORE AS keywords. If you specify more than one clause,
then you must specify them in the order shown in the syntax diagram, from top to bottom.

For a nonpartitioned table, this clause specifies the storage attributes of LOB data segments of
the table.

For a partitioned table, Oracle Database implements this clause depending on where it is
specified:

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 98 of 238

• For a partitioned table specified at the table level—when specified in the physical_properties
clause along with one of the partitioning clauses—this clause specifies the default storage
attributes for LOB data segments associated with each partition or subpartition. These
storage attributes apply to all partitions or subpartitions unless overridden by a
LOB_storage_clause at the partition or subpartition level.

• For an individual partition of a partitioned table—when specified as part of a
table_partition_description—this clause specifies the storage attributes of the data segments of
the partition or the default storage attributes of any subpartitions of the partition. A
partition-level LOB_storage_clause overrides a table-level LOB_storage_clause.

• For an individual subpartition of a partitioned table—when specified as part of
subpartition_by_hash or subpartition_by_list—this clause specifies the storage attributes of the
data segments of the subpartition. A subpartition-level LOB_storage_clause overrides both
partition-level and table-level LOB_storage_clauses.

Restriction on the LOB_storage_clause:

Only the TABLESPACE clause is allowed when specifying the LOB_storage_clause in a subpartition.

See Also

• Oracle Database SecureFiles and Large Objects Developer's Guide for detailed
information about LOBs, including guidelines for creating gigabyte LOBs

• "Creating a Table: LOB Column Example"

LOB_item

Specify the LOB column name or LOB object attribute for which you are explicitly defining
tablespace and storage characteristics that are different from those of the table. Oracle
Database automatically creates a system-managed index for each LOB_item you create.

SECUREFILE | BASICFILE

Use this clause to specify the type of LOB storage, either high-performance LOB
(SecureFiles), or the traditional LOB (BasicFiles).

See Also

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about SecureFiles LOBs

Note

You cannot convert a LOB from one type of storage to the other. Instead you must
migrate to SecureFiles or BasicFiles by using online redefinition or partition exchange.

LOB_segname

Specify the name of the LOB data segment. You cannot use LOB_segname if you specify more
than one LOB_item.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 99 of 238

LOB_storage_parameters

The LOB_storage_parameters clause lets you specify various elements of LOB storage.

TABLESPACE Clause

Use this clause to specify the tablespace in which LOB data is to be stored.

TABLESPACE SET Clause

This clause is valid only when creating a sharded table by specifying the SHARDED keyword of
CREATE TABLE. Use this clause to specify the tablespace set in which LOB data is to be stored.

storage_clause

Use the storage_clause to specify various aspects of LOB segment storage. Of particular interest
in the context of LOB storage is the MAXSIZE clause of the storage_clause, which can be used in
combination with the LOB_retention_clause of LOB_parameters. Refer to storage_clause for more
information.

LOB_parameters

Several of the LOB_parameters are no longer needed if you are using SecureFiles for LOB
storage. The PCTVERSION and FREEPOOLS parameters are valid and useful only if you are using
BasicFiles LOB storage.

ENABLE STORAGE IN ROW

If you enable storage in row, then the LOB value is stored in the row (inline) if its length is less
than approximately 4000 bytes minus system control information. This is the default.

Restriction on Enabling Storage in Row

For an index-organized table, you cannot specify this parameter unless you have specified an
OVERFLOW segment in the index_org_table_clause.

DISABLE STORAGE IN ROW

If you disable storage in row, then the LOB value is stored outside of the row out of line
regardless of the length of the LOB value.

The LOB locator is always stored inline regardless of where the LOB value is stored. You
cannot change the value of STORAGE IN ROW once it is set except by moving the table. See the
move_table_clause in the ALTER TABLE documentation for more information.

CHUNK integer

Specify the number of bytes to be allocated for LOB manipulation. If integer is not a multiple of
the database block size, then the database rounds up in bytes to the next multiple. For
example, if the database block size is 2048 and integer is 2050, then the database allocates
4096 bytes (2 blocks). The maximum value is 32768 (32K), which is the largest Oracle
Database block size allowed. The default CHUNK size is one Oracle Database block.

The value of CHUNK must be less than or equal to the value of NEXT, either the default value or
that specified in the storage_clause. If CHUNK exceeds the value of NEXT, then the database
returns an error. You cannot change the value of CHUNK once it is set.

PCTVERSION integer

Specify the maximum percentage of overall LOB storage space used for maintaining old
versions of the LOB. If the database is running in manual undo mode, then the default value is

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 100 of 238

10, meaning that older versions of the LOB data are not overwritten until they consume 10% of
the overall LOB storage space.

You can specify the PCTVERSION parameter whether the database is running in manual or
automatic undo mode. PCTVERSION is the default in manual undo mode. RETENTION is the
default in automatic undo mode. You cannot specify both PCTVERSION and RETENTION.

This clause is not valid if you have specified SECUREFILE. If you specify both SECUREFILE and
PCTVERSION, then the database silently ignores the PCTVERSION parameter.

LOB_retention_clause

Use this clause to specify whether you want the LOB segment retained for flashback purposes,
consistent-read purposes, both, or neither.

You can specify the RETENTION parameter only if the database is running in automatic undo
mode. Oracle Database uses the value of the UNDO_RETENTION initialization parameter to
determine the amount of committed undo data to retain in the database. In automatic undo
mode, RETENTION is the default value unless you specify PCTVERSION. You cannot specify both
PCTVERSION and RETENTION.

You can specify the optional settings after RETENTION only if you are using SecureFiles. The
SECUREFILE parameter of the LOB_storage_clause indicates that the database will use SecureFiles
to manage storage dynamically, taking into account factors such as the undo mode of the
database.

• Specify MAX to signify that the undo should be retained until the LOB segment has
reached MAXSIZE. If you specify MAX, then you must also specify the MAXSIZE clause in
the storage_clause.

• Specify MIN if the database is in flashback mode to limit the undo retention duration for
the specific LOB segment to n seconds.

• Specify AUTO if you want to retain undo sufficient for consistent read purposes only.

• Specify NONE if no undo is required for either consistent read or flashback purposes.

If you do not specify the RETENTION parameter, or you specify RETENTION with no optional
settings, then RETENTION is set to DEFAULT, which is functionally equivalent to AUTO.

See Also

• To set the UNDO_RETENTION initialization parameter, see Setting the Minimum
Undo Retention Period

• CREATE TABLE clause LOB_storage_parameters for more information on simplified
LOB storage using SecureFiles

• Oracle Database SecureFiles and Large Objects Developer's Guide for more
information on using SecureFiles

• flashback_mode_clause of ALTER DATABASE for information on putting a database
in flashback mode

• "Creating an Undo Tablespace: Example"

FREEPOOLS integer

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 101 of 238

Specify the number of groups of free lists for the LOB segment. Normally integer will be the
number of instances in an Oracle Real Application Clusters environment or 1 for a single-
instance database.

You can specify this parameter only if the database is running in automatic undo mode. In this
mode, FREEPOOLS is the default unless you specify the FREELIST GROUPS parameter of the
storage_clause. If you specify neither FREEPOOLS nor FREELIST GROUPS, then the database uses a
default of FREEPOOLS 1 if the database is in automatic undo management mode and a default of
FREELIST GROUPS 1 if the database is in manual undo management mode.

This clause is not valid if you have specified SECUREFILE. If you specify both SECUREFILE and
FREEPOOLS, then the database silently ignores the FREEPOOLS parameter.

Restriction on FREEPOOLS

You cannot specify both FREEPOOLS and the FREELIST GROUPS parameter of the storage_clause.

LOB_deduplicate_clause

This clause is valid only for SecureFiles LOBs. Use the LOB_deduplicate_clause to enable or
disable LOB deduplication, which is the elimination of duplicate LOB data.

The DEDUPLICATE keyword instructs the database to eliminate duplicate copies of LOBs. Using
a secure hash index to detect duplication, the database coalesces LOBs with identical content
into a single copy, reducing storage consumption and simplifying storage management.

If you omit this clause, then LOB deduplication is disabled by default.

This clause implements LOB deduplication for the entire LOB segment. To enable or disable
deduplication for an individual LOB, use the DBMS_LOB.SETOPTIONS procedure.

See Also

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about LOB deduplication and Oracle Database PL/SQL Packages and
Types Reference for information about about the DBMS_LOB package

LOB_compression_clause

This clause is valid only for SecureFiles LOBs, not for BasicFiles LOBs. Use the
LOB_compression_clause to instruct the database to enable or disable server-side LOB
compression. Random read/write access is possible on server-side compressed LOB
segments. LOB compression is independent from table compression or index compression. If
you omit this clause, then the default is NOCOMPRESS.

You can specify HIGH, MEDIUM, or LOW to vary the degree of compression. The HIGH degree of
compression incurs higher latency than MEDIUM but provides better compression. The LOW
degree results in significantly higher decompression and compression speeds, at the cost of
slightly lower compression ratio than either HIGH or MEDIUM. If you omit this optional
parameter, then the default is MEDIUM.

This clause implements server-side LOB compression for the entire LOB segment. To enable
or disable compression on an individual LOB, use the DBMS_LOB.SETOPTIONS procedure.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 102 of 238

See Also

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information on server-side LOB storage and Oracle Database PL/SQL Packages and
Types Reference for information about client-side LOB compression using the
UTL_COMPRESS supplied package and for information about the DBMS_LOB package

ENCRYPT | DECRYPT

These clauses are valid only for LOBs that are using SecureFiles for LOB storage. Specify
ENCRYPT to encrypt all LOBs in the column. Specify DECRYPT to keep the LOB in cleartext. If
you omit this clause, then DECRYPT is the default.

Refer to encryption_spec for general information on that clause. When applied to a LOB
column, encryption_spec is specific to the individual LOB column, so the encryption algorithm can
differ from that of other LOB columns and other non-LOB columns. Use the encryption_spec as
part of the column_definition to encrypt the entire LOB column. Use the encryption_spec as part of the
LOB_storage_clause in the table_partition_description to encrypt a LOB partition.

Restriction on encryption_spec for LOBs

You cannot specify the SALT or NO SALT clauses of encryption_spec for LOB encryption.

See Also

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information on LOB encryption and Oracle Database PL/SQL Packages and Types
Reference for information the DBMS_LOB package

CACHE | NOCACHE | CACHE READS

Refer to CACHE | NOCACHE | CACHE READS for information on these clauses.

LOB_partition_storage

The LOB_partition_storage clause lets you specify a separate LOB_storage_clause or varray_col_properties
clause for each partition. You must specify the partitions in the order of partition position. You
can find the order of the partitions by querying the PARTITION_NAME and PARTITION_POSITION
columns of the USER_IND_PARTITIONS view.

If you do not specify a LOB_storage_clause or varray_col_properties clause for a particular partition,
then the storage characteristics are those specified for the LOB item at the table level. If you
also did not specify any storage characteristics for the LOB item at the table level, then Oracle
Database stores the LOB data partition in the same tablespace as the table partition to which it
corresponds.

Restrictions on LOB_partition_storage

LOB_partition_storage is subject to the following restrictions:

• In the LOB_parameters of the LOB_storage_clause, you cannot specify encryption_spec, because it is
invalid to specify an encryption algorithm for partitions and subpartitions.

• You can only specify the TABLESPACE clause for hash partitions and all types of
subpartitions.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 103 of 238

varray_col_properties

The varray_col_properties let you specify separate storage characteristics for the LOB in which a
varray will be stored. If varray_item is a multilevel collection, then the database stores all
collection items nested within varray_item in the same LOB in which varray_item is stored.

• For a nonpartitioned table—when specified in the physical_properties clause without any of the
partitioning clauses—this clause specifies the storage attributes of the LOB data segments
of the varray.

• For a partitioned table specified at the table level—when specified in the physical_properties
clause along with one of the partitioning clauses—this clause specifies the default storage
attributes for the varray LOB data segments associated with each partition (or its
subpartitions, if any).

• For an individual partition of a partitioned table—when specified as part of a
table_partition_description—this clause specifies the storage attributes of the varray LOB data
segments of that partition or the default storage attributes of the varray LOB data
segments of any subpartitions of this partition. A partition-level varray_col_properties overrides
a table-level varray_col_properties.

• For an individual subpartition of a partitioned table—when specified as part of
subpartition_by_hash or subpartition_by_list—this clause specifies the storage attributes of the
varray data segments of this subpartition. A subpartition-level varray_col_properties overrides
both partition-level and table-level varray_col_properties.

STORE AS [SECUREFILE | BASICFILE] LOB Clause

If you specify STORE AS LOB, then:

• If the maximum varray size is less than approximately 4000 bytes, then the database
stores the varray as an inline LOB unless you have disabled storage in row.

• If the maximum varray size is greater than approximately 4000 bytes or if you have
disabled storage in row, then the database stores in the varray as an out-of-line LOB.

If you do not specify STORE AS LOB, then storage is based on the maximum possible size of the
varray rather than on the actual size of a varray column. The maximum size of the varray is the
number of elements times the element size, plus a small amount for system control
information. If you omit this clause, then:

• If the maximum size of the varray is less than approximately 4000 bytes, then the database
does not store the varray as a LOB, but as inline data.

• If the maximum size is greater than approximately 4000 bytes, then the database always
stores the varray as a LOB.

– If the actual size is less than approximately 4000 bytes, then it is stored as an inline
LOB

– If the actual size is greater than approximately 4000 bytes, then it is stored as an out-
of-line LOB, as is true for other LOB columns.

substitutable_column_clause

The substitutable_column_clause has the same behavior as described for
object_type_col_properties.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 104 of 238

See Also

"Substitutable Table and Column Examples"

Restriction on Varray Column Properties

You cannot specify this clause on an interval partitioned table.

nested_table_col_properties

The nested_table_col_properties let you specify separate storage characteristics for a nested table,
which in turn enables you to define the nested table as an index-organized table. Unless you
explicitly specify otherwise in this clause:

• For a nonpartitioned table, the storage table is created in the same schema and the same
tablespace as the parent table.

• For a partitioned table, the storage table is created in the default tablespace of the
schema. By default, nested tables are equipartitioned with the partitioned base table.

• In either case, the storage table uses default storage characteristics, and stores the nested
table values of the column for which it was created.

You must include this clause when creating a table with columns or column attributes whose
type is a nested table. Clauses within nested_table_col_properties that function the same way they
function for the parent table are not repeated here.

nested_item

Specify the name of a column, or of a top-level attribute of the object type of the tables, whose
type is a nested table.

COLUMN_VALUE

If the nested table is a multilevel collection, then the inner nested table or varray may not have
a name. In this case, specify COLUMN_VALUE in place of the nested_item name.

See Also

"Creating a Table: Multilevel Collection Example" for examples using nested_item and
COLUMN_VALUE

LOCAL | GLOBAL

Specify LOCAL to equipartition the nested table with the base table. This is the default. Oracle
Database automatically creates a local partitioned index for the partitioned nested table.

Specify GLOBAL to indicate that the nested table is a nonpartitioned nested table of a
partitioned base table.

storage_table

Specify the name of the table where the rows of nested_item reside.

You cannot query or perform DML statements on storage_table directly, but you can modify its
storage characteristics by specifying its name in an ALTER TABLE statement.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 105 of 238

See Also

ALTER TABLE for information about modifying nested table column storage
characteristics

RETURN [AS]

Specify what Oracle Database returns as the result of a query.

• VALUE returns a copy of the nested table itself.

• LOCATOR returns a collection locator to the copy of the nested table.

The locator is scoped to the session and cannot be used across sessions. Unlike a LOB
locator, the collection locator cannot be used to modify the collection instance.

If you do not specify the segment_attributes_clause or the LOB_storage_clause, then the nested table is
heap organized and is created with default storage characteristics.

Restrictions on Nested Table Column Properties

Nested table column properties are subject to the following restrictions:

• You cannot specify this clause for a temporary table.

• You cannot specify this clause on an interval partitioned table.

• You cannot specify the oid_clause.

• At create time, you cannot use object_properties to specify an out_of_line_ref_constraint,
inline_ref_constraint, or foreign key constraint for the attributes of a nested table.

See Also

• ALTER TABLE for information about modifying nested table column storage
characteristics

• "Nested Table Example" and "Creating a Table: Multilevel Collection Example"

XMLType_column_properties

The XMLType_column_properties let you specify storage attributes for an XMLTYPE column.

XMLType_storage

XMLType tables and columns data can be stored as transportable binary XML, binary XML, or a
set of objects in object-relational storage.

• Specify TRANSPORTABLE BINARY XML to store XML data in a transportable format that is
scalable and distributed. See Create Tables and Columns as Transportable Binary XML for
examples.

– TRANSPORTABLE BINARY XML can only be stored in SECUREFILE.

– Any LOB parameters you specify are applied to the underlying BLOB column created
for storing the transportable binary XML encoded value. .

– You can not specify the XMLSchema_spec clause for TRANSPORTABLE BINARY XML.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 106 of 238

• Specify BINARY XML to store the XML data in compact binary XML format.

Any LOB parameters you specify are applied to the underlying BLOB column created for
storing the binary XML encoded value.

In earlier releases, binary XML data is stored by default in a BasicFiles LOB. Beginning
with Oracle Database 11g Release 2 (11.2.0.2), if the COMPATIBLE initialization parameter
is 11.2 or higher and you do not specify BASICFILE or SECUREFILE, then binary XML data is
stored in a SecureFiles LOB whenever possible. If SecureFiles LOB storage is not possible
then the binary XML data is stored in a BasicFiles LOB. This can occur if either of the
following is true:

– The tablespace for the XMLType table does not use automatic segment space
management.

– A setting in file init.ora prevents SecureFiles LOB storage. For example, see parameter
DB_SECUREFILE in Oracle Database Reference.

• Specify CLOB if you want the database to store the XMLType data in a CLOB column. Storing
data in a CLOB column preserves the original content and enhances retrieval time.

If you specify LOB storage, then you can specify either LOB parameters or the
XMLSchema_spec clause, but not both. Specify the XMLSchema_spec clause if you want to restrict
the table or column to particular schema-based XML instances.

If you do not specify BASICFILE or SECUREFILE with this clause, then the CLOB column is
stored in a BasicFiles LOB.

Note

Oracle recommends against storing XMLType data in a CLOB column. CLOB storage
of XMLType is deprecated. Use binary XML storage of XMLType instead.

• Specify OBJECT RELATIONAL if you want the database to store the XMLType data in object-
relational columns. Storing data objects relationally lets you define indexes on the
relational columns and enhances query performance.

If you specify object-relational storage, then you must also specify the XMLSchema_spec
clause.

Use the ALL VARRAYS AS clause if you want the database to store all varrays in an XMLType
column.

In earlier releases, XMLType data is stored in a CLOB column in a BasicFiles LOB by default.
Beginning with Oracle Database 11g Release 2 (11.2.0.2), if the COMPATIBLE initialization
parameter is 11.2 or higher and you do not specify the XMLType_storage clause, then XMLType
data is stored in a binary XML column in a SecureFiles LOB. If SecureFiles LOB storage is not
possible, then it is stored in a binary XML column in a BasicFiles LOB.

See Also

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information on SecureFiles LOBs

XMLSchema_spec

Refer to the XMLSchema_spec for the full semantics of this clause.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 107 of 238

See Also

• LOB_storage_clause for information on the LOB_segname and LOB_parameters clauses

• "XMLType Column Examples" for examples of XMLType columns in object-
relational tables and "Using XML in SQL Statements " for an example of creating
an XMLSchema

• Oracle XML DB Developer's Guide for more information on XMLType columns and
tables and on creating XMLSchemas

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_XMLSCHEMA package

XMLType_virtual_columns

This clause is valid only for XMLType tables with binary XML storage, which you designate in the
XMLType_storage clause. Specify the VIRTUAL COLUMNS clause to define virtual (expression)
columns, which can be used as in a function-based index or in the definition of a constraint.
You cannot define a constraint on such a virtual (expression) column during creation of the
table, but you can use a subsequent ALTER TABLE statement to add a constraint to the column.

See Also

Oracle XML DB Developer's Guide for examples of how to use this clause in an XML
environment

json_storage_clause

With support for JSON data type you can define a column of JSON data type using the
JSON_storage_clause.

You can specify the JSON type modifier when you specify a JSON type column definition as
follows:

Create a Table with a JSON Type Column: Example

This example creates table j_purchaseorder with JSON data type column po_document. Oracle
recommends that you store JSON data as JSON type.

CREATE TABLE j_purchaseorder
 (id VARCHAR2 (32) NOT NULL PRIMARY KEY,
 date_loaded TIMESTAMP (6) WITH TIME ZONE,
 po_document JSON);

See Also

For more information on creating a JSON column see Creating a Table with a JSON
Column of the JSON developer's Guide.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 108 of 238

read_only_clause

This clause lets you specify whether to create a table, partition, or subpartition in read-only or
read/write mode.

• Use READ ONLY to specify read-only mode. When an object is in read-only mode, you
cannot issue any DML statements that affect the object or any SELECT ... FOR UPDATE ...
statements on the object. You can issue DDL statements as long as they do not modify
any table data. See Oracle Database Administrator’s Guide for the complete list of
operations that are allowed and disallowed on read-only objects.

• Use READ WRITE to specify read/write mode. This is the default.

When you specify this clause for a partitioned table, you specify the default read-only or read/
write mode for the table. This mode is assigned to all partitions in the table at creation time, as
well as any partitions that are subsequently added to the table, unless you override this
behavior by specifying the mode at the partition level.

When you specify this clause for a composite-partitioned table, you specify the default read-
only or read/write mode for all partitions in the table. You can override this behavior by
specifying this clause for a particular partition. The default mode of a partition is assigned to all
subpartitions in the partition at creation time, as well as any subpartitions that are subsequently
added to the partition, unless you override this behavior by specifying the mode at the
subpartition level.

indexing_clause

The indexing_clause is valid only for partitioned tables. Use this clause to set the indexing
property for a table, table partition, or table subpartition.

• Specify INDEXING ON to set the indexing property to ON. This is the default.

• Specify INDEXING OFF to set the indexing property to OFF.

The indexing property determines whether table partitions and subpartitions are included in
partial indexes on the table.

• For simple partitioned tables, partitions with an indexing property of ON are included in
partial indexes on the table. Partitions with an indexing property of OFF are excluded.

• For composite-partitioned tables, subpartitions with an indexing property of ON are
included in partial indexes on the table. Subpartitions with an indexing property of OFF are
excluded.

You can specify the indexing_clause at the table, partition, or subpartition level. When you specify
the indexing_clause at the table level, in the table_properties clause, you set the default indexing
property for the table. Interval partitions, which are automatically created by the database,
always inherit the default indexing property for the table. Other types of partitions and
subpartitions inherit the default indexing property as follows:

• For simple partitioned tables, partitions inherit the default indexing property for the table.
You can override this behavior by specifying the indexing_clause for an individual partition:

– For a range partition, in the table_partition_description of the range_partitions clause

– For a hash partition, in the individual_hash_partitions clause of the hash_partitions clause

– For a list partition, in the table_partition_description of the list_partitions clause

– For a reference partition, in the table_partition_description of the reference_partition_desc clause
of the reference_partitioning clause

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 109 of 238

– For a system partition, in the table_partition_description of the reference_partition_desc clause of
the system_partitioning clause

• For composite-partitioned tables, subpartitions inherit the default indexing property for the
table. You can override this behavior by specifying the indexing_clause for an individual
partition or subpartition.

If you specify the indexing_clause for a partition, then its subpartitions inherit the indexing
property of the partition:

– For composite range partitions, in the table_partition_description of the
composite_range_partitions clause

– For composite list partitions, in the table_partition_description of the composite_list_partitions
clause

– For composite hash partitions, in the individual_hash_partitions clause of the
composite_hash_partitions clause

You can set the indexing property of a subpartition by specifying the indexing_clause for the
subpartition:

– For range subpartitions, in the range_subpartition_desc clause of the composite_range_partitions
clause

– For list subpartitions, in the list_subpartition_desc clause of the composite_list_partitions clause

– For hash subpartitions, in the individual_hash_subparts clause of the composite_hash_partitions
clause

See Also

Oracle Database Reference for information on viewing the indexing property of a
table, table partition, or table subpartition.

• To view the default indexing property of a table, query the DEF_INDEXING column of
the *_PART_TABLES views.

• To view the indexing property of a table partition, query the INDEXING column of
the *_TAB_PARTITIONS views.

• To view the indexing property of a table subpartition, query the INDEXING column
of the *_TAB_SUBPARTITIONS views.

Restrictions on the indexing_clause

The indexing_clause is subject to the following restrictions:

• You cannot specify the indexing_clause for nonpartitioned tables.

• You cannot specify the indexing_clause for index-organized tables.

See Also

The partial_index_clause of CREATE INDEX for more information on partial indexes

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 110 of 238

table_partitioning_clauses

Use the table_partitioning_clauses to create a partitioned table.

Notes on Partitioning in General

The following notes pertain to all types of partitioning:

• You can specify up to a total of 1024K-1 partitions and subpartitions.

• You can create a partitioned table with just one partition. A table with one partition is
different from a nonpartitioned table. For example, you cannot add a partition to a
nonpartitioned table.

• You can specify a name for every table and LOB partition and for every table and LOB
subpartition, but you need not do so. If you specify a name, then it must conform to the
rules for naming schema objects and their parts as described in Database Object Naming
Rules . If you omit the name, then the database generates names as follows:

– If you omit a partition name, then the database generates a name of the form SYS_Pn.
System-generated names for LOB data and LOB index partitions take the form
SYS_LOB_Pn and SYS_IL_Pn, respectively.

– If you specify a subpartition name in subpartition_template, then for each subpartition
created with that template, the database generates a name by concatenating the
partition name with the template subpartition name. For LOB subpartitions, the
generated LOB subpartition name is a concatenation of the partition name and the
template LOB segment name. If the COMPATIBLE initialization parameter is set to 12.2 or
higher, then the maximum length of the concatenation is 128 bytes; otherwise, the
maximum length is 30 bytes. If the concatenation exceeds the maximum length, then
the database returns an error and the statement fails.

– If you omit a subpartition name when specifying an individual subpartition, and you
have not specified subpartition_template, then the database generates a name of the form
SYS_SUBPn. The corresponding system-generated names for LOB data and index
subpartitions are SYS_LOB_SUBPn and SYS_IL_SUBPn, respectively.

• Tablespace storage can be specified at various levels in the CREATE TABLE statement for
both table segments and LOB segments. The number of tablespaces does not have to
equal the number of partitions or subpartitions. If the number of partitions or subpartitions
is greater than the number of tablespaces, then the database cycles through the names of
the tablespaces.

The database evaluates tablespace storage in the following order of descending priority:

– Tablespace storage specified at the individual table subpartition or LOB subpartition
level has the highest priority, followed by storage specified for the partition or LOB in
the subpartition_template.

– Tablespace storage specified at the individual table partition or LOB partition level.
Storage parameters specified here take precedence over the subpartition_template.

– Tablespace storage specified for the table

– Default tablespace storage specified for the user

• By default, nested tables are equipartitioned with the partitioned base table.

Restrictions on Partitioning in General

All partitioning is subject to the following restrictions:

• You cannot partition a table that is part of a cluster.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 111 of 238

• You cannot partition a nested table or varray that is defined as an index-organized table.

• You cannot partition a table containing any LONG or LONG RAW columns.

Restrictions on Hybrid Partitioned Tables

• Restrictions that apply to external tables also apply to hybrid partitioned tables unless
explicitly noted. Only DML operations are supported on internal partitions of a hybrid
partitioned table (external partitions are treated as read-only partitions).

• Only single level LIST, RANGE, interval and autolist partitioning are supported.

• The following DDLs are supported: ADD PARTITION, ADD SUBPARTITION, DROP PARTITION,
DROP SUBPARTITION, EXCHANGE PARTITION, EXCHANGE SUBPARTITION on internal and
external partitions and subpartitions. Partitions and subpartitions can also be renamed.

• The DDLs MOVE, SPLIT and MERGE are supported on internal partition and subpartitions
only.

• Existing DMLs are supported on internal partitions only. External partitions are treated as
read-only. All triggers are supported.

• Table level non-enforced constraints in mandatory RELY DISABLE mode are supported. The
only supported enforced constraint is NOT NULL constraint.

• Unique indexes and global unique indexes are not supported. Only non-unique partial
indexes are supported on internal partitions. External partitions are not indexable.

• Only single level list partitioning is supported for HIVE.

• Attribute clustering (CLUSTERING clause) is not allowed.

• In-memory defined on the table level only has an effect on internal partitions of the hybrid
partitioned table.

• No column default value is allowed.

• Invisible columns are not allowed.

• The CELLMEMORY clause is not allowed.

• SPLIT, MERGE, and MOVE maintenance operations are not allowed on external partitions.

The storage of partitioned database entities in tablespaces of different block sizes is subject to
several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a discussion of
these restrictions.

See Also

"Partitioning Examples"

range_partitions

Use the range_partitions clause to partition the table on ranges of values from the column list. For
an index-organized table, the column list must be a subset of the primary key columns of the
table.

Restrictions on Range Partitioning

Range partitioning is subject to the restrictions listed in "Restrictions on Partitioning in
General". The following additional restrictions apply:

• You cannot specify more than 16 partitioning key columns.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 112 of 238

• Partitioning key columns must be of type CHAR, NCHAR, VARCHAR2, NVARCHAR2, VARCHAR,
NUMBER, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH LOCAL TIMEZONE, or RAW.

• Each range partitioning key column with a character data type that belongs to an XMLType
table or a table with an XMLType column, or that is used as a sharding key column must
have one of the following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT,
or USING_NLS_SORT_CS. For all these collations, partition bounds are checked using the
collation BINARY.

• You cannot specify NULL in the VALUES clause.

column

Specify an ordered list of columns used to determine into which partition a row belongs. These
columns are the partitioning key. You can specify virtual (expression) columns and INVISIBLE
columns as partitioning key columns.

INTERVAL Clause

Use this clause to establish interval partitioning for the table. Interval partitions are partitions
based on a numeric range or datetime interval. They extend range partitioning by instructing
the database to create partitions of the specified range or interval automatically when data
inserted into the table exceeds all of the range partitions. For each automatically created
partition, the database generates a name of the form SYS_Pn. The database guarantees that
automatically generated partition names are unique and do not violate namespace rules.

• For expr, specify a valid number or interval expression.

• The optional STORE IN clause lets you specify one or more tablespaces into which the
database will store interval partition data.

• You must also specify at least one range partition using the PARTITION clause of
range_partitions. The range partition key value determines the high value of the range
partitions, which is called the transition point, and the database creates interval partitions
for data beyond that transition point.

Restrictions on Interval Partitioning

The INTERVAL clause is subject to the restrictions listed in "Restrictions on Partitioning in
General" and "Restrictions on Range Partitioning". The following additional restrictions apply:

• You can specify only one partitioning key column, and it must be of type NUMBER, DATE,
FLOAT, TIMESTAMP, or TIMESTAMP WITH LOCAL TIME ZONE.

• This clause is not supported for index-organized tables.

• This clause is not supported for tables containing varray columns.

• You cannot create an interval-partitioned table with equipartitioned nested tables. If you
create an interval-partitioned table using nested tables or XML object-relational data types,
then the nested tables will be created as nonpartitioned tables.

• This clause is supported for tables containing XMLType columns only if the XML data is
stored as binary XML.

• Interval partitioning is not supported at the subpartition level.

• Serializable transactions do not work with interval partitioning. Trying to insert data into a
partition of an interval partitioned table that does not yet have a segment causes an error.

• In the VALUES clause:

– You cannot specify MAXVALUE (an infinite upper bound), because doing so would
defeat the purpose of the automatic addition of partitions as needed.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 113 of 238

– You cannot specify NULL values for the partitioning key column.

See Also

Oracle Database VLDB and Partitioning Guide for more information on interval
partitioning

PARTITION partition

If you specify a partition name, then the name partition must conform to the rules for naming
schema objects and their part as described in "Database Object Naming Rules ". If you omit
partition, then the database generates a name as described in "Notes on Partitioning in
General".

range_values_clause

Specify the noninclusive upper bound for the current partition. The value list is an ordered list
of literal values corresponding to the column list in the range_partitions clause. You can substitute
the keyword MAXVALUE for any literal in the value list. MAXVALUE specifies a maximum value
that will always sort higher than any other value, including null.

Specifying a value other than MAXVALUE for the highest partition bound imposes an implicit
integrity constraint on the table.

Note

If table is partitioned on a DATE column, and if the date format does not specify the first
two digits of the year, then you must use the TO_DATE function with the YYYY 4-
character format mask for the year. The RRRR format mask is not supported in this
clause. The date format is determined implicitly by NLS_TERRITORY or explicitly by
NLS_DATE_FORMAT. Refer to Oracle Database Globalization Support Guide for more
information on these initialization parameters.

See Also

Oracle Database Concepts for more information about partition bounds and "Range
Partitioning Example"

table_partition_description

Use the table_partition_description to define the physical and storage characteristics of the table.

The clauses deferred_segment_creation, segment_attributes_clause, table_compression, inmemory_clause, and
ilm_clause have the same function as described for the physical_properties of the table as a
whole.

Use the indexing_clause to set the indexing property for a range, list, system, or reference table
partition. Refer to the indexing_clause for more information.

The prefix_compression clause and OVERFLOW clause, have the same function as described for the
index_org_table_clause.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 114 of 238

LOB_storage_clause

The LOB_storage_clause lets you specify LOB storage characteristics for one or more LOB items in
this partition or in any range or list subpartitions of this partition. If you do not specify the
LOB_storage_clause for a LOB item, then the database generates a name for each LOB data
partition as described in "Notes on Partitioning in General".

varray_col_properties

The varray_col_properties let you specify storage characteristics for one or more varray items in
this partition or in any range or list subpartitions of this partition.

nested_table_col_properties

The nested_table_col_properties let you specify storage characteristics for one or more nested table
storage table items in this partition or in any range or list subpartitions of this partition. Storage
characteristics specified in this clause override any storage attributes specified at the table
level.

partitioning_storage_clause

Use the partitioning_storage_clause to specify storage characteristics for hash partitions and for
range, hash, and list subpartitions.

Restrictions on partitioning_storage_clause

This clause is subject to the following restrictions:

• The TABLESPACE SET clause is valid only when creating a sharded table by specifying the
SHARDED keyword of CREATE TABLE. Use this clause to specify the tablespace set in which
table partition data is to be stored.

• The OVERFLOW clause is relevant only for index-organized partitioned tables and is valid
only within the individual_hash_partitions clause. It is not valid for range or hash partitions or for
subpartitions of any type.

• You cannot specify the advanced_index_compression clause of the index_compression clause.

• You can specify the prefix_compression clause of the indexing_clause only for partitions of index-
organized tables and you can specify COMPRESS or NOCOMPRESS, but you cannot specify
the prefix length with integer.

list_partitions

Use the list_partitions clause to partition the table on a list of literal values for each column in the
column list. List partitioning is useful for controlling how individual rows map to specific partitions.

Restrictions on List Partitioning

List partitioning is subject to the restrictions listed in "Restrictions on Partitioning in General".
The following additional restrictions apply:

• You cannot specify more than 16 partitioning key columns.

• You cannot specify more than one partitioning key column when partitioning an index-
organized table.

• The partitioning key columns must be of type CHAR, NCHAR, VARCHAR2, NVARCHAR2,
VARCHAR, NUMBER, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH LOCAL TIMEZONE, or RAW.

• Each list partitioning key column with a character data type that belongs to an XMLType
table or a table with an XMLType column, or that is used as a sharding key column must
have one of the BINARY following declared collations: BINARY , USING_NLS_COMP,

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 115 of 238

USING_NLS_SORT, or USING_NLS_SORT_CS . For all these collations, partitions are matched
using the collation BINARY.

AUTOMATIC

Specify AUTOMATIC to create an automatic list-partitioned table. This type of table enables the
database to create additional partitions on demand.

When you create an automatic list-partitioned table, you specify partitions and partitioning key
values just as you would when creating a regular list-partitioned table. However, you do not
specify a DEFAULT partition. As data is loaded into the table, the database automatically creates
a new partition when the loaded partitioning key values do not correspond to any of the
existing partitions. If list partitioning is defined with a single partitioning key value, then the
database creates a new partition for each new partitioning key value. If list partitioning is
defined with multiple partitioning key columns, then the database creates a new partition for
each new and unique set of partitioning key values. For each automatically created partition,
the database generates a name of the form SYS_Pn. The database guarantees that
automatically generated partition names are unique and do not violate namespace rules.

You can specify the AUTOMATIC keyword for list-partitioned tables, and list-range, list-list, list-
hash, and list-interval composite-partitioned tables. For composite-partitioned tables, each
automatically created list partition will have one subpartition, unless a subpartition template is
defined for the table.

If a local partitioned index is defined on an automatic list-partitioned table, then local index
partitions will be created when the corresponding table partitions are created.

Restrictions on Automatic List Partitioning

Automatic list partitioning is subject to the restrictions listed in "Restrictions on List
Partitioning". The following additional restrictions apply:

• An automatic list-partitioned table must have at least one partition when created. Because
new partitions are automatically created for new, and unknown, partitioning key values, an
automatic list-partitioned table cannot have a DEFAULT partition.

• Automatic list partitioning is not supported for index-organized tables or external tables.

• Automatic list partitioning is not supported for tables containing varray columns.

• You cannot create a local domain index on an automatic list-partitioned table. You can
create a global domain index on an automatic list-partitioned table.

• An automatic list-partitioned table cannot be a child table or a parent table for reference
partitioning.

• Automatic list partitioning is not supported at the subpartition level.

STORE IN

The optional STORE IN clause lets you specify one or more tablespaces into which the database
will store data for the automatically created list partitions.

Note

You can change an automatic list-partitioned table to a regular list-partitioned table,
and vice versa. You can also change the tablespaces into which the database will
store data for automatically created list partitions. See the clause
alter_automatic_partitioning of ALTER TABLE for more information.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 116 of 238

list_values_clause

The list_values_clause of each partition must have at least one value. If the table is partitioned on
one key column, then use the upper branch of the list_values syntax to specify a list of values for
that column. In this case, no value, including NULL, can appear in more than one partition. If
the table is partitioned on multiple key columns, then use the lower branch of the list_values
syntax to specify a list of value lists. Each value list is enclosed in parentheses and represents
a list of values for the key columns. In this case, individual key column values can appear in
more than one partition; however, no complete value list can appear in more than one partition.
List partitions are not ordered.

If you specify the literal NULL for a partition value in the VALUES clause, then to access data in
that partition in subsequent queries, you must use an IS NULL condition in the WHERE clause,
rather than a comparison condition.

The DEFAULT keyword creates a partition into which the database will insert any row that does
not map to another partition. Therefore, you can specify DEFAULT for only one partition, and you
cannot specify any other values for that partition. Further, the default partition must be the last
partition you define. The use of DEFAULT is similar to the use of MAXVALUE for range partitions.

The string comprising the list of values for each partition can be up to 4K bytes. The total
number of values for all partitions cannot exceed 64K-1.

The partitioning key column for a list partition can be an extended data type column, which has
a maximum size of 32767 bytes. In this case, the list of values that you want to specify for a
partition may exceed the 4K byte limit. You can work around this limitation by using one of the
following methods:

• Use the DEFAULT partition for values that exceed the 4K byte limit.

• Use a hash function, such as STANDARD_HASH, in the partition key column to create unique
identifiers of lengths less than 4K bytes. See STANDARD_HASH for more information.

Restriction on the list_values_clause

You cannot specify a DEFAULT partition for an automatic list-partitioned table.

See Also

"Extended Data Types" for more information on extended data types

table_partition_description

The subclauses of the table_partition_description have the same behavior as described for range
partitions in table_partition_description.

hash_partitions

Use the hash_partitions clause to specify that the table is to be partitioned using the hash method.
Oracle Database assigns rows to partitions using a hash function on values found in columns
designated as the partitioning key. You can specify individual hash partitions, or you can
specify how many hash partitions the database should create.

Restrictions on Hash Partitioning

Hash partitioning is subject to the restrictions listed in "Restrictions on Partitioning in General".
The following additional restrictions apply:

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 117 of 238

• You cannot specify more than 16 partitioning key columns.

• Partitioning key columns must be of type CHAR, NCHAR, VARCHAR2, NVARCHAR2, VARCHAR,
NUMBER, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH LOCAL TIMEZONE, or RAW.

• Each hash partitioning key column with a character data type that belongs to an XMLType
table or a table with an XMLType column, or that is used as a sharding key column must
have one of the following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT,
or USING_NLS_SORT_CS.

column

Specify an ordered list of columns used to determine into which partition a row belongs (the
partitioning key).

individual_hash_partitions

Use this clause to specify individual partitions by name.

Use the indexing_clause to set the indexing property for a hash partition. Refer to the
indexing_clause for more information.

Restriction on Specifying Individual Hash Partitions

The only clauses you can specify in the partitioning_storage_clause are the TABLESPACE clause and
table compression.

Note

If your enterprise has or will have databases using different character sets, then use
caution when partitioning on character columns. The sort sequence of characters is
not identical in all character sets. Refer to Oracle Database Globalization Support
Guide for more information on character set support.

hash_partitions_by_quantity

An alternative to defining individual partitions is to specify the number of hash partitions. In this
case, the database assigns partition names of the form SYS_Pn. The STORE IN clause lets you
specify one or more tablespaces where the hash partition data is to be stored. The number of
tablespaces need not equal the number of partitions. If the number of partitions is greater than
the number of tablespaces, then the database cycles through the names of the tablespaces.

For both methods of hash partitioning, for optimal load balancing you should specify a number
of partitions that is a power of 2. When you specify individual hash partitions, you can specify
both TABLESPACE and table compression in the partitioning_storage_clause. When you specify hash
partitions by quantity, you can specify only TABLESPACE. Hash partitions inherit all other
attributes from table-level defaults.

The table_compression clause has the same function as described for the table_properties of the
table as a whole.

The prefix_compression clause and the OVERFLOW clause have the same function as described for
the index_org_table_clause.

Tablespace storage specified at the table level is overridden by tablespace storage specified at
the partition level, which in turn is overridden by tablespace storage specified at the
subpartition level.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 118 of 238

In the individual_hash_partitions clause, the TABLESPACE clause of the partitioning_storage_clause
determines tablespace storage only for the individual partition being created. In the
hash_partitions_by_quantity clause, the STORE IN clause determines placement of partitions as the
table is being created and the default storage location for subsequently added partitions.

Restriction on Specifying Hash Partitions by Quantity

You cannot specify the advanced_index_compression clause of the index_compression clause.

See Also

Oracle Database VLDB and Partitioning Guide for more information on hash
partitioning

composite_range_partitions

Use the composite_range_partitions clause to first partition table by range, and then partition the
partitions further into range, hash, or list subpartitions.

The INTERVAL clause has the same semantics for composite range partitioning that it has for
range partitioning. Refer to "INTERVAL Clause" for more information.

Specify subpartition_by_range, subpartition_by_hash or subpartition_by_list to indicate the
type of subpartitioning you want for each composite range partition. Within these clauses you
can specify a subpartition template, which establishes default subpartition characteristics for
subpartitions created as part of this statement or subsequently created subpartitions.

After establishing the type of subpartitioning you want for the table, and optionally a
subpartition template, you must define at least one range partition.

• You must specify the range_values_clause , which has the same requirements as for
noncomposite range partitions.

• Use the table_partition_description to define the physical and storage characteristics of the
each partition.

• In the range_partition_desc, use range_subpartition_desc, list_subpartition_desc, individual_hash_subparts,
or hash_subparts_by_quantity to specify characteristics for the individual subpartitions of the
partition. The values you specify in these clauses supersede for these subpartitions any
values you have specified in the subpartition_template.

• The only characteristics you can specify for a hash or list subpartition or any LOB
subpartition are TABLESPACE and table_compression.

Restrictions on Composite Range Partitioning

Regardless of the type of subpartitioning, composite range partitioning is subject to the
following restrictions:

• The only physical attributes you can specify at the subpartition level are TABLESPACE and
table compression.

• You cannot specify composite partitioning for an index-organized table. Therefore, the
OVERFLOW clause of the table_partition_description is not valid for composite-partitioned tables.

• You cannot specify composite partitioning for tables containing XMLType columns.

• Each range, list, or hash subpartitioning key column with a character data type that
belongs to an XMLType table or a table with an XMLType column must have one of the

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 119 of 238

following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

See Also

"Composite-Partitioned Table Examples" for examples of composite range partitioning
and Oracle Database VLDB and Partitioning Guide for examples of composite list
partitioning

composite_list_partitions

Use the composite_list_partitions clause to first partition table by list, and then partition the partitions
further into range, hash, or list subpartitions.

Specify subpartition_by_range, subpartition_by_hash or subpartition_by_list to indicate the
type of subpartitioning you want for each composite list partition. Within these clauses you can
specify a subpartition template, which establishes default subpartition characteristics for
subpartitions created as part of this statement and for subsequently created subpartitions.

After establishing the type of subpartitioning you want for each composite partition, and
optionally defining a subpartition template, you must define at least one list partition.

• In the list_partition_desc, you must specify the list_values_clause, which has the same
requirements as for noncomposite list partitions.

• Use the table_partition_description to define the physical and storage characteristics of the
each partition.

• In the list_partition_desc, use range_subpartition_desc, list_subpartition_desc, individual_hash_subparts, or
hash_subparts_by_quantity to specify characteristics for the individual subpartitions of the
partition. The values you specify in these clauses supersede the for these subpartitions
any values you have specified in the subpartition_template.

Specify AUTOMATIC to create an automatic list-range, list-list, list-hash, or list-interval
composite-partitioned table. This type of table enables the database to create additional
partitions on demand. The optional STORE IN clause lets you specify one or more tablespaces
into which the database will store data for the automatically created partitions. The AUTOMATIC
and STORE IN clauses have the same semantics here as they have for noncomposite list
partitions. Refer to AUTOMATIC and STORE IN in the documentation on list_partitions for the full
semantics of these clauses. Automatic composite-partitioned tables are subject to the
restrictions listed in Restrictions on Composite List Partitioning and Restrictions on Automatic
List Partitioning.

Restrictions on Composite List Partitioning

Composite list partitioning is subject to the same restrictions as described in "Restrictions on
Composite Range Partitioning".

composite_hash_partitions

Use the composite_hash_partitions clause to first partition table using the hash method, and then
partition the partitions further into range, hash, or list subpartitions.

Specify subpartition_by_range, subpartition_by_hash or subpartition_by_list to indicate the
type of subpartitioning you want for each composite range partition. Within these clauses you
can specify a subpartition template, which establishes default subpartition characteristics for
subpartitions created as part of this statement or subsequently created subpartitions.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 120 of 238

After establishing the type of subpartitioning you want for the table, you must specify
individual_hash_partitions or hash_partitions_by_quantity.

Restrictions on Composite Hash Partitioning

Composite hash partitioning is subject to the same restrictions as described in "Restrictions on
Composite Range Partitioning".

subpartition_template

The subpartition_template is an optional element of range, list, and hash subpartitioning. The
template lets you define default subpartitions for each table partition. Oracle Database will
create these default subpartition characteristics in any partition for which you do not explicitly
define subpartitions. This clause is useful for creating symmetric partitions. You can override
this clause by explicitly defining subpartitions at the partition level, in the range_subpartition_desc,
list_subpartition_desc, individual_hash_subparts, or hash_subparts_by_quantity clause.

When defining subpartitions with a template, you can explicitly define range, list, or hash
subpartitions, or you can define a quantity of hash subpartitions.

• To explicitly define subpartitions, use range_subpartition_desc, list_subpartition_desc, or
individual_hash_subparts. You must specify a name for each subpartition. If you specify the
LOB_partitioning_clause of the partitioning_storage_clause, then you must specify LOB_segname.

• To define a quantity of hash subpartitions, specify a positive integer for
hash_subpartition_quantity. The database creates that number of subpartitions in each partition
and assigns subpartition names of the form SYS_SUBPn.

Note

When you specify tablespace storage for the subpartition template, it does not
override any tablespace storage you have specified explicitly for the partitions of table.
To specify tablespace storage for subpartitions, do one of these things:

• Omit tablespace storage at the partition level and specify tablespace storage in
the subpartition template.

• Define individual subpartitions with specific tablespace storage.

Restrictions on Subpartition Templates

Subpartition templates are subject to the following restrictions:

• If you specify TABLESPACE for one LOB subpartition, then you must specify TABLESPACE for
all of the LOB subpartitions of that LOB column. You can specify the same tablespace for
more than one LOB subpartition.

• If you specify separate LOB storage for list subpartitions using the partitioning_storage_clause,
either in the subpartition_template or when defining individual subpartitions, then you must
specify LOB_segname for both LOB and varray columns.

subpartition_by_range

Use the subpartition_by_range clause to indicate that the database should subpartition by range
each partition in table. The subpartitioning column list is unrelated to the partitioning key but is
subject to the same restrictions (see column).

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 121 of 238

You can use the subpartition_template to specify default subpartition characteristic values. See
subpartition_template. The database uses these values for any subpartition in this partition for
which you do not explicitly specify the characteristic.

You can also define range subpartitions individually for each partition using the
range_subpartition_desc of range_partition_desc or list_partition_desc. If you omit both subpartition_template
and the range_subpartition_desc, then the database creates a single MAXVALUE subpartition.

subpartition_by_list

Use the subpartition_by_list clause to indicate that the database should subpartition each partition
in the table on lists of literal values from the column list. You can specify a maximum of 16 list
subpartitioning key columns.

You can use the subpartition_template to specify default subpartition characteristic values. See
subpartition_template. The database uses these values for any subpartition in this partition for
which you do not explicitly specify the characteristic.

You can also define list subpartitions individually for each partition using the list_subpartition_desc
of range_partition_desc or list_partition_desc. If you omit both subpartition_template and the
list_subpartition_desc, then the database creates a single DEFAULT subpartition.

Restrictions on List Subpartitioning

List subpartitioning is subject to the same restrictions as described in Restrictions on
Composite Range Partitioning.

subpartition_by_hash

Use the subpartition_by_hash clause to indicate that the database should subpartition by hash
each partition in table. The subpartitioning column list is unrelated to the partitioning key but is
subject to the same restrictions (see column).

You can define the subpartitions using the subpartition_template or the SUBPARTITIONS integer
clause. See subpartition_template. In either case, for optimal load balancing you should
specify a number of partitions that is a power of 2.

If you specify SUBPARTITIONS integer, then you determine the default number of subpartitions in
each partition of table, and optionally one or more tablespaces in which they are to be stored.
The default value is 1. If you omit both this clause and subpartition_template, then the database will
create each partition with one hash subpartition.

Notes on Composite Partitions

The following notes apply to composite partitions:

• For all subpartitions, you can use the range_subpartition_desc, list_subpartition_desc,
individual_hash_subparts, or hash_subparts_by_quantity to specify individual subpartitions by name,
and optionally some other characteristics.

• Alternatively, for hash and list subpartitions:

– You can specify the number of subpartitions and optionally one or more tablespaces
where they are to be stored. In this case, Oracle Database assigns subpartition names
of the form SYS_SUBPn.

– If you omit the subpartition description and if you have created a subpartition template,
then the database uses the template to create subpartitions. If you have not created a
subpartition template, then the database creates one hash subpartition or one DEFAULT
list subpartition.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 122 of 238

• For all types of subpartitions, if you omit the subpartitions description entirely, then the
database assigns subpartition names as follows:

– If you have specified a subpartition template and you have specified partition names,
then the database generates subpartition names of the form partition_name underscore
(_) subpartition_name (for example, P1_SUB1).

– If you have not specified a subpartition template or if you have specified a subpartition
template but did not specify partition names, then the database generates subpartition
names of the form SYS_SUBPn.

reference_partitioning

Use this clause to partition the table by reference. Partitioning by reference is a method of
equipartitioning the table being created (the child table) by a referential constraint to an
existing partitioned table (the parent table). When you partition a table by reference, partition
maintenance operations subsequently performed on the parent table automatically cascade to
the child table. Therefore, you cannot perform partition maintenance operations on a
reference-partitioned table directly.

If the parent table is an interval-partitioned table, then partitions in the reference-partitioned
child table that correspond to interval partitions in the parent table will be created during inserts
into the child table. When an interval partition in a child table is created, the partition name is
inherited from the associated parent table partition. If the child table has a table-level default
tablespace, then it will be used as the tablespace for the new interval partition. Otherwise, the
tablespace will be inherited from the parent table partition. Refer to Oracle Database VLDB
and Partitioning Guide for more information on referencing an interval-partitioned table.

constraint

The partitioning referential constraint must meet the following conditions:

• You must specify a referential integrity constraint defined on the table being created, which
must refer to a primary key or unique constraint on the parent table. The constraint must
be in ENABLE VALIDATE NOT DEFERRABLE state, which is the default when you specify a
referential integrity constraint during table creation.

• All foreign key columns referenced in the constraint must be NOT NULL.

• When you specify the constraint, you cannot specify the ON DELETE SET NULL clause of the
references_clause.

• The parent table referenced in the constraint must be an existing partitioned table. It can
be partitioned by any method.

• The foreign and parent keys cannot contain any virtual (expression) columns that
reference PL/SQL functions or LOB columns.

reference_partition_desc

Use this optional clause to specify partition names and to define the physical and storage
characteristics of the partition. The subclauses of the table_partition_description have the same
behavior as described for range partitions in table_partition_description.

If you specify this clause when creating a reference-partitioned child table whose parent is an
interval-partitioned table, then the partition descriptors are used for the child table's non-
interval partitions. Partition descriptors cannot be specified for interval partitions.

Restrictions on Reference Partitioning

Reference partitioning is subject to the restrictions listed in Restrictions on Partitioning in
General. The following additional restrictions apply:

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 123 of 238

• Restrictions for reference partitioning are derived from the partitioning strategy of the
parent table.

• Neither the parent table nor the child table can be an automatic list-partitioned table.

• You cannot specify this clause for an index-organized table, an external table, or a domain
index storage table.

• The parent table can be partitioned by reference, but constraint cannot be self-referential.
The table being created cannot be partitioned based on a reference to itself.

• If ROW MOVEMENT is enabled for the parent table, it must also be enabled for the child
table.

See Also

Oracle Database VLDB and Partitioning Guide for more information on partitioning by
reference and "Reference Partitioning Example"

system_partitioning

Use this clause to create system partitions. System partitioning does not entail any partitioning
key columns, nor do system partitions have any range or list bounds or hash algorithms.
Rather, they provide a way to equipartition dependent tables such as nested table or domain
index storage tables with partitioned base tables.

• If you specify only PARTITION BY SYSTEM, then the database creates one partition with a
system-generated name of the form SYS_Pn.

• If you specify PARTITION BY SYSTEM PARTITIONS integer, then the database creates as many
partitions as you specify in integer, which can range from 1 to 1024K-1.

• The description of the partition takes the same syntax as reference partitions, so they
share the reference_partition_desc. You can specify additional partition attributes with the
reference_partition_desc syntax. However, within the table_partition_description, you cannot specify
the OVERFLOW clause.

Restrictions on System Partitioning

System partitioning is subject to the following restrictions:

• You cannot system partition an index-organized table or a table that is part of a cluster.

• Composite partitioning is not supported with system partitioning.

• You cannot split a system partition.

• You cannot specify system partitioning in a CREATE TABLE ... AS SELECT statement.

• To insert data into a system-partitioned table using an INSERT INTO ... AS subquery statement,
you must use partition-extended syntax to specify the partition into which the values
returned by the subquery will be inserted.

See Also

Refer to Oracle Database Data Cartridge Developer's Guide for information on the
uses for system partitioning and "References to Partitioned Tables and Indexes "

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 124 of 238

consistent_hash_partitions

This clause is valid only for sharded tables. Use this clause to create consistent hash
partitions.

Each sharding key column with a character data type must have one of the following declared
collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

directory_based_partitions

Use this clause to create a sharded table with directory-based sharding.

The restrictions that apply to sharded tables apply to tables sharded by directory.

Example: Create Sharded Table and Partition by Directory

 CREATE SHARDED TABLE departments
 (department_id NUMBER(6)
 , department_name VARCHAR2(30) CONSTRAINT dept_name_nn NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
 , CONSTRAINT dept_id_pk PRIMARY KEY(department_id)
)
 PARTITION BY DIRECTORY (department_id)
 (
 PARTITION p_1 TABLESPACE tbs1,
 PARTITION p_2 TABLESPACE tbs2
);

In the example above, when you partition by directory the partition names p_1 and p_2 do not a
have value list after them. This is different from partition by list.

consistent_hash_with_subpartitions

This clause is valid only for sharded tables. Use this clause to create consistent hash with
subpartitions.

Each sharding key column with a character data type must have one of the following declared
collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

range_partitionset_clause

Use this clause to create a range partition set.

In the SUBPARTITION BY clause, within the subpartition_template clause, you cannot specify a
tablespace for a subpartition. That is, for range, list, and individual hash subpartitions, you
cannot specify the TABLESPACE clause of the partitioning_storage_clause, and in the
hash_subpartitions_by_quantity clause, you cannot specify the STORE IN (tablespace) clause.

In the PARTITIONS AUTO clause, within the subpartition_template clause of the range_partitionset_desc
clause, you can specify a tablespace for a subpartition.

Each super sharding or sharding key column with a character data type must have one of the
following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

list_partitionset_clause

Use this clause to create a list partition set.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 125 of 238

In the SUBPARTITION BY clause, within the subpartition_template clause, you cannot specify a
tablespace for a subpartition. That is, for range, list, and individual hash subpartitions, you
cannot specify the TABLESPACE clause of the partitioning_storage_clause, and in the
hash_subpartitions_by_quantity clause, you cannot specify the STORE IN (tablespace) clause.

In the PARTITIONS AUTO clause, within the subpartition_template clause of the list_partitionset_desc
clause, you can specify a tablespace for a subpartition.

Each super sharding or sharding key column with a character data type must have one of the
following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

attribute_clustering_clause

Use this clause to enable the table for attribute clustering. Attribute clustering lets you cluster
data in close physical proximity based on the content of specified columns.

Attribute clustering can be based only on columns in table or on joined values from other tables.
The latter is called join attribute clustering.

See Also

Oracle Database Data Warehousing Guide for more information on attribute clustering

clustering_join

Use this clause to specify join attribute clustering. Use the JOIN clause to specify the joined
values from other tables on which to base the attribute clustering. You can specify a maximum
of four JOIN clauses.

cluster_clause

Use this clause to specify the type of ordering to use for the table: linear ordering or interleaved
ordering. If you do not specify the LINEAR or INTERLEAVED keyword, then the default is LINEAR.

BY LINEAR ORDER

Use this clause to specify linear ordering. This type of ordering stores data according to the
order of the specified columns. If you specify this clause, then you can specify only one
clustering column group, which can contain at most 10 columns.

BY INTERLEAVED ORDER

Use this clause to specify interleaved ordering. This type of ordering uses a special
multidimensional clustering technique, similar to z-ordering, that permits multicolumn
clustering. If you specify this clause, then you can specify at most four clustering column
groups, with a maximum of 40 columns across all groups.

clustering_columns

Use this clause to specify one or more clustering column groups.

clustering_column_group

Use this clause to specify one or more columns to be included in the clustering column group.

Restriction on Attribute Clustering Columns

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 126 of 238

Each character column in the clustering column group must have one of the following declared
collations: BINARY or USING_NLS_COMP.

clustering_when

Use these clauses to allow or disallow attribute clustering during direct-path insert operations
and data movement operations.

ON LOAD

Specify YES ON LOAD to allow, or NO ON LOAD to disallow, attribute clustering during direct-path
inserts (serial or parallel) resulting either from an INSERT or a MERGE operation.

The default is YES ON LOAD.

ON DATA MOVEMENT

Specify YES ON DATA MOVEMENT to allow, or NO ON DATA MOVEMENT to disallow, attribute
clustering for data movement that occurs during the following operations:

• Data redefinition using the DBMS_REDEFINITION package

• Table partition maintenance operations that are specified by the following clauses of ALTER
TABLE: coalesce_table, merge_table_partitions, move_table_partition, and split_table_partition

The default is YES ON DATA MOVEMENT.

zonemap_clause

Use this clause to create a zone map on the table. The zone map tracks the columns specified
in the clustering_columns clause.

• Specify WITH MATERIALIZED ZONEMAP to create a zone map. For zonemap_name, specify the
name of the zone map to be created. If you omit zonemap_name, then the name of the zone
map is ZMAP$_table.

• Specify WITHOUT MATERIALIZED ZONEMAP to not create a zone map. This is the default.

If you subsequently drop the table or use the ALTER TABLE statement to DROP CLUSTERING or
MODIFY CLUSTERING ... WITHOUT MATERIALIZED ZONEMAP, then the zone map will be dropped.

See Also

CREATE MATERIALIZED ZONEMAP for more information on zone maps

Restrictions on Attribute Clustering

The following restrictions apply to attribute clustering:

• Attribute clustering is not supported for temporary tables or external tables.

• The table being created must be a heap-organized table. However, tables specified in the
clustering_join clause can be heap-organized or index-organized tables.

• Clustering columns must be of a scalar data type and cannot be encrypted.

• If you specify BY LINEAR ORDER, then you can specify only one clustering column group,
which can contain at most 10 columns.

• If you specify BY INTERLEAVED ORDER, then you can specify at most four clustering column
groups, with a maximum of 40 columns across all groups.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 127 of 238

• For join attribute clustering:

– The number of dimension tables cannot exceed four.

– The join to the table or tables providing the attribute clustering columns must be on a
unique key or primary key column to avoid row duplication.

• Attribute clustering will not order rows that are inserted using MERGE statements or
multitable insert operations.

CACHE | NOCACHE | CACHE READS

Use these clauses to indicate how Oracle Database should store blocks in the buffer cache.
For LOB storage, you can specify CACHE, NOCACHE, or CACHE READS. For other types of
storage, you can specify only CACHE or NOCACHE.

If you omit these clauses, then:

• In a CREATE TABLE statement, NOCACHE is the default.

• In an ALTER TABLE statement, the existing value is not changed.

The behavior of CACHE and NOCACHE described in this section does not apply when Oracle
Database chooses to use direct reads or to perform table scans using parallel query.

CACHE

For data that is accessed frequently, this clause indicates that the blocks retrieved for this table
are placed at the most recently used end of the least recently used (LRU) list in the buffer
cache when a full table scan is performed. This attribute is useful for small lookup tables.

See Also

Oracle Database Concepts for more information on how the database maintains the
least recently used (LRU) list

As a parameter in the LOB_storage_clause, CACHE specifies that the database places LOB data
values in the buffer cache for faster access. The database evaluates this parameter in
conjunction with the logging_clause. If you omit this clause, then the default value for both
BasicFiles and SecureFiles LOBs is NOCACHE LOGGING.

Restriction on CACHE

You cannot specify CACHE for an index-organized table. However, index-organized tables
implicitly provide CACHE behavior.

NOCACHE

For data that is not accessed frequently, this clause indicates that the blocks retrieved for this
table are placed at the least recently used end of the LRU list in the buffer cache when a full
table scan is performed. NOCACHE is the default for LOB storage.

As a parameter in the LOB_storage_clause, NOCACHE specifies that the LOB values are not brought
into the buffer cache. NOCACHE is the default for LOB storage.

Restriction on NOCACHE

You cannot specify NOCACHE for an index-organized table.

CACHE READS

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 128 of 238

CACHE READS applies only to LOB storage. It specifies that LOB values are brought into the
buffer cache only during read operations but not during write operations.

logging_clause

Use this clause to indicate whether the storage of data blocks should be logged or not.

See Also

logging_clause for a description of the logging_clause when specified as part of
LOB_parameters

result_cache_clause

Use this clause to determine whether the results of statements or query blocks that name this
table are considered for storage in the result cache.

You can use mode DEFAULT or mode FORCE for result caching, with STANDBY enabled or
disabled.

• DEFAULT: Result caching is not determined at the table level. The query is considered for
result caching if the RESULT_CACHE_MODE initialization parameter is set to FORCE, or if that
parameter is set to MANUAL and the RESULT_CACHE hint is specified in the query. This is
the default if you omit this clause.

• FORCE: If all tables names in the query have this setting, then the query is always
considered for caching unless the NO_RESULT_CACHE hint is specified for the query. If one
or more tables named in the query are set to DEFAULT, then the effective table annotation
for that query is considered to be DEFAULT, with the semantics described above.

• The default value of STANDBY is DISABLE.

• You must enable STANDBY on all the dependent objects of a query to save the result of the
query into the result cache.

• A transaction must enable STANDBY on an object in order to generate a redo marker at
transaction commit time on the primary.

You can query the RESULT_CACHE column of the DBA_, ALL_, and USER_TABLES data dictionary
views to learn the result cache mode of the table.

Precedence

The RESULT_CACHE and NO_RESULT_CACHE SQL hints take precedence over these result cache
table annotations and the RESULT_CACHE_MODE initialization parameter.

The RESULT_CACHE_MODE setting of FORCE in turn takes precedence over this table annotation
clause.

If you set the initialization parameter RESULT_CACHE_INTEGRITY to ENFORCED, then only
deterministic constructs will be eligible for result caching. The ENFORCED setting overrides the
setting of RESULT_CACHE_MODE or specified hints.

If you set RESULT_CACHE_INTEGRITY to TRUSTED, then the database honors the setting of
RESULT_CACHE_MODE and specified hints and considers queries using non-deterministic
constructs as candidates for result caching.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 129 of 238

Note

The RESULT_CACHE_MODE setting of FORCE is not recommended, as it can cause
significant performance and latching overhead, as database and clients will try to
cache all queries.

See Also

• Oracle Call Interface Programmer's Guide and Oracle Database Concepts for
general information about result caching

• Oracle Database Performance Tuning Guide for information about using this
clause

• Oracle Database Reference for information about the RESULT_CACHE_MODE
initialization parameter and the *_TABLES data dictionary views

• "RESULT_CACHE Hint " and "NO_RESULT_CACHE Hint " for information about
the hints

parallel_clause

The parallel_clause lets you parallelize creation of the table and set the default degree of
parallelism for queries and the DML INSERT, UPDATE, DELETE, and MERGE after table creation.

Note

The syntax of the parallel_clause supersedes syntax appearing in earlier releases of
Oracle. The superseded syntax is still supported for backward compatibility, but may
result in slightly different behavior from that documented.

NOPARALLEL

Specify NOPARALLEL for serial execution. This is the default.

PARALLEL

Specify PARALLEL if you want Oracle to select a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer

Specification of integer indicates the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use one or two parallel
execution servers. Normally Oracle calculates the optimum degree of parallelism, so it is not
necessary for you to specify integer.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 130 of 238

See Also

parallel_clause for more information on this clause

NOROWDEPENDENCIES | ROWDEPENDENCIES

This clause lets you specify whether table will use row-level dependency tracking. With this
feature, each row in the table has a system change number (SCN) that represents a time
greater than or equal to the commit time of the last transaction that modified the row. You
cannot change this setting after table is created.

ROWDEPENDENCIES

Specify ROWDEPENDENCIES if you want to enable row-level dependency tracking. This setting is
useful primarily to allow for parallel propagation in replication environments. It increases the
size of each row by 6 bytes.

Restriction on the ROWDEPENDENCIES Clause

Oracle does not support table compression for tables that use row-level dependency tracking.
If you specify both the ROWDEPENDENCIES clause and the table_compression clause, then the
table_compression clause is ignored. To remove the ROWDEPENDENCIES attribute, you must
redefine the table using the DBMS_REDEFINITION package or recreate the table.

NOROWDEPENDENCIES

Specify NOROWDEPENDENCIES if you do not want table to use the row-level dependency tracking
feature. This is the default.

enable_disable_clause

The enable_disable_clause lets you specify whether Oracle Database should apply a constraint. By
default, constraints are created in ENABLE VALIDATE state.

Restrictions on Enabling and Disabling Constraints

Enabling and disabling constraints are subject to the following restrictions:

• To enable or disable any integrity constraint, you must have defined the constraint in this or
a previous statement.

• You cannot enable a foreign key constraint unless the referenced unique or primary key
constraint is already enabled.

• In the index_properties clause of the using_index_clause, the INDEXTYPE IS ... clause is not valid in
the definition of a constraint.

See Also

constraint for more information on constraints and "Creating a Table: ENABLE/
DISABLE Examples"

ENABLE Clause

Use this clause if you want the constraint to be applied to the data in the table. This clause is
described fully in "ENABLE Clause" in the documentation on constraints.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 131 of 238

DISABLE Clause

Use this clause if you want to disable the integrity constraint. This clause is described fully in
"DISABLE Clause" in the documentation on constraints.

UNIQUE

The UNIQUE clause lets you enable or disable the unique constraint defined on the specified
column or combination of columns.

PRIMARY KEY

The PRIMARY KEY clause lets you enable or disable the primary key constraint defined on the
table.

CONSTRAINT

The CONSTRAINT clause lets you enable or disable the integrity constraint named constraint_name.

KEEP | DROP INDEX

This clause lets you either preserve or drop the index Oracle Database has been using to
enforce a unique or primary key constraint.

Restriction on Preserving and Dropping Indexes

You can specify this clause only when disabling a unique or primary key constraint.

using_index_clause

The using_index_clause lets you specify an index for Oracle Database to use to enforce a unique
or primary key constraint, or lets you instruct the database to create the index used to enforce
the constraint.

See Also

• CREATE INDEX for a description of index_attributes, the global_partitioned_index
and local_partitioned_index clauses, NOSORT, and the logging_clause in relation to
indexes

• constraint for information on the using_index_clause and on PRIMARY KEY and UNIQUE
constraints

• "Explicit Index Control Example" for an example of using an index to enforce a
constraint

CASCADE

Specify CASCADE to disable any integrity constraints that depend on the specified integrity
constraint. To disable a primary or unique key that is part of a referential integrity constraint,
you must specify this clause.

Restriction on CASCADE

You can specify CASCADE only if you have specified DISABLE.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 132 of 238

row_movement_clause

The row_movement_clause lets you specify whether the database can move a table row. It is
possible for a row to move, for example, during table compression or an update operation on
partitioned data.

Note

If you need static rowids for data access, then do not enable row movement. For a
normal (heap-organized) table, moving a row changes the rowid of the row. For a
moved row in an index-organized table, the logical rowid remains valid, although the
physical guess component of the logical rowid becomes inaccurate.

• Specify ENABLE to allow the database to move a row, thus changing the rowid.

• Specify DISABLE if you want to prevent the database from moving a row, thus preventing a
change of rowid.

If you omit this clause, then the database disables row movement.

Restriction on Row Movement

You cannot specify this clause for a nonpartitioned index-organized table.

logical_replication_clause

Use this clause to perform partial database replication for users such as Oracle GoldenGate,
and reduce the supplemental logging overhead of uninteresting tables in interesting schema
where supplemental logging is enabled.

ENABLE LOGICAL REPLICATION

You can specify ENABLE LOGICAL REPLICATION with ALLKEYS, ALLOW NOVALIDATE KEYS, and
[NO] PARTIAL JOSN in any order. The supplemtental log settings of all levels (database, the
container, schema, table) are honored. No additional ID or scheduling-key supplemental
logging is added for this table.

DISABLE LOGICAL REPLICATION

When logical replication is disabled for a table, it means that only database level supplemental
logging is honored. This provides a way for partial database replication users (who will not
enable database level column data supplemental logging) to disable supplemental logging for
uninteresting tables, so that even when supplemental logging is enabled at the schema level,
there is no column data supplemental logging for uninteresting tables.

If you create a table with DISABLE LOGICAL REPLICATION, logical replication is disabled for the
table. Database and container level supplemental log settings are honored but table-level and
schema-level supplemental log settings are ignored.

ENABLE LOGICAL REPLICATION ALL KEYS

Use this option to enable the table for Golden Gate AUTO_CAPTURE.

ID and scheduling keys, primary key (PK), foreign key (FK), unique index (UI), and all key
supplemental logging (ALLKEYS) are implicitly enabled for the table.

ENABLE LOGICAL REPLICATION ALLOW NOVALIDATE KEYS

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 133 of 238

Use this option to enable the table for Golden Gate AUTO_CAPTURE.

ID and scheduling keys, primary key (PK), foreign key (FK), unique index (UI), and all key
supplemental logging (ALLKEYS) are implicitly enabled for the table. The primary key
constraint in NOVALIDATE mode can be supplementally logged as a unique identifier for the
table. NOVALIDATE KEYS are allowed as a row identification key.

If you create a table with ENABLE LOGICAL REPLICATION ALLOW NOVALIDATE KEYS, ID and
scheduling-key is implicitly enabled for the table. The primary key constraint in NOVALIDATE
mode can be supplementally logged as a unique identifier for the table.

NO PARTIAL JSON

Use this clause if your replication target database does not support native JSON, partial JSON or
JSON DIFF . This includes non-Oracle target databases and Oracle target databases with DB
compatible lower than 23.

You can specify NO PARTIAL JSON whether a column of type JSON exists or not.

When you enable column-level data supplemental logging on the table or schema, partial JSON
update is disabled. This means that the JSON update will always generate a new JSON instance
with full JSON document. This is the default when [NO] PARTIAL JSON is not specified.

In order to use NO PARTIAL JSON without errors, you must set the database compatible
initialization parameter must be set to 23 or higher.

PARTIAL JSON

Use this option if your replication target database is Oracle Database with the database
compatible initialization parameter set to 23 or higher and where partial JSON and JSON DIFF can
be supported at the target database.

You can specify PARTIAL JSON whether a column of type JSON exists or not.

With PARTIAL JSON you can enable a partial JSON update for the table. A JSON column updated
using JSON_TRANSFORM may internally partially update the existing JSON instance, even when
column-level data supplemental logging has been added for the table or schema.

In order to use PARTIAL JSON without errors, you must set the database compatible initialization
parameter must be set to 23 or higher.

flashback_archive_clause

You must have the FLASHBACK ARCHIVE object privilege on the specified flashback archive to
specify this clause. Use this clause to enable or disable historical tracking for the table.

• Specify FLASHBACK ARCHIVE to enable tracking for the table. You can specify
flashback_archive to designate a particular flashback archive for this table. The flashback
archive you specify must already exist.

If you omit flashback_archive, then the database uses the default flashback archive designated
for the system. If no default flashback archive has been designated for the system, then
you must specify flashback_archive.

• Specify NO FLASHBACK ARCHIVE to disable tracking for the table. This is the default.

Restrictions on flashback_archive_clause

Flashback data archives are subject to the following restrictions:

• You cannot specify this clause for a nested table, clustered table, temporary table, remote
table, or external table.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 134 of 238

• You cannot specify this clause for a table compressed with Hybrid Columnar Compression.

• The table for which you are specifying this clause cannot contain any LONG or nested table
columns.

• If you specify this clause and subsequently copy the table to a different database—using
the export and import utilities or the transportable tablespace feature—then the copied
table will not be enabled for tracking and the archived data for the original table will not be
available for the copied table.

See Also

• Oracle Database Development Guide for general information on using Flashback
Time Travel

• ALTER FLASHBACK ARCHIVE for information on changing the quota and
retention attributes of the flashback archive, as well as adding or changing
tablespace storage for the flashback archive

ROW ARCHIVAL

Specify this clause to enable table for row archival. This clause lets you implement In-Database
Archiving, which allows you to designate table rows as active or archived. You can then
perform queries on only the active rows within the table.

When you specify this clause, a hidden column ORA_ARCHIVE_STATE is created in the table.
The column is of data type VARCHAR2. You can specify a value of 0 or 1 for this column to
indicate whether a row is active (0) or archived (1). If you do not specify a value for
ORA_ARCHIVE_STATE when inserting data into the table, then the value is set to 0.

• If ROW ARCHIVE VISIBILITY = ACTIVE for the session, then the database will consider only
active rows when performing queries on the table.

• If ROW ARCHIVE VISIBILITY = ALL for the session, then the database will consider all rows
when performing queries on the table.

See Also

• The ALTER SESSION Semantics clause to learn how to configure row archival
visibility for a session

• The ALTER TABLE [NO] ROW ARCHIVAL clause to learn how to enable or disable
an existing table for row archival

• Oracle Database VLDB and Partitioning Guide for more information on In-
Database Archiving

FOR EXCHANGE WITH TABLE

This clause lets you create a table that matches the structure of an existing partitioned table.
The two tables are then eligible for exchanging partitions and subpartitions. For table, specify an
existing partitioned table. For schema, specify the schema that contains the existing partitioned
table. If you omit schema, then the database assumes the table is in your own schema.

This operation creates a metadata clone, without data, of the partitioned table. The clone has
the same column ordering and column properties of the original table. Column properties

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 135 of 238

copied to the clone during this operation include unusable columns, invisible columns, virtual
expression columns, functional index expression columns, and other internal settings and
attributes. Indexes on the existing partitioned table are not created on the clone table.

You can subsequently use the exchange_partition_subpart clause of ALTER TABLE to exchange
partitions or subpartitions between the two tables. Refer to exchange_partition_subpart in the
documentation on ALTER TABLE for more information.

Each super sharding or sharding key column with a character data type must have one of the
following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

Restrictions on FOR EXCHANGE WITH TABLE

The following restrictions apply to the FOR EXCHANGE WITH TABLE clause:

• If you specify this clause, then you cannot specify the relational_properties clause.

• If you specify this clause, then within the table_properties clause, you can specify only the
table_partitioning_clause.

• Within the table_partitioning_clause each key column with a character data type must have
one of the following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

• When you create a clone for a partition of a composite-partitioned table, you must explicitly
specifying the appropriate table_partitioning_clause that matches exactly the subpartitioning of
the partition you want to exchange.

• Oracle does not clone the statistics setup of the partitioned table. For example, if you plan
to perform an exchange with a partitioned table for which incremental statistics are
enabled, you must manually enable the creation of a table synopsis on the clone table.
See Oracle Database SQL Tuning Guide for more information on maintaining incremental
statistics on partitioned tables.

• You cannot create a clone of an external table.

• If the table specified in the FOR EXCHANGE WITH TABLE clause is protected by a fine-grained
audit (FGA) policy, then the CREATE TABLE statement will fail, if the user who is creating it is
not the SYS user.

• You cannot use this clause if you have VPD policies enabled on the target table.

AS subquery

Specify a subquery to determine the contents of the table. The rows returned by the subquery
are inserted into the table upon its creation.

For object tables, subquery can contain either one expression corresponding to the table type, or
the number of top-level attributes of the table type. Refer to SELECT for more information.

If subquery returns the equivalent of part or all of an existing materialized view, then the
database may rewrite the query to use the materialized view in place of one or more tables
specified in subquery.

See Also

Oracle Database Data Warehousing Guide for more information on materialized views
and query rewrite

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 136 of 238

Oracle Database derives data types and lengths from the subquery. Oracle Database follows
the following rules for integrity constraints and other column and table attributes:

• Oracle Database automatically defines on columns in the new table any NOT NULL
constraints that have a state of NOT DEFERRABLE and VALIDATE, and were explicitly created
on the corresponding columns of the selected table if the subquery selects the column
rather than an expression containing the column. If any rows violate the constraint, then
the database does not create the table and returns an error.

• NOT NULL constraints that were implicitly created by Oracle Database on columns of the
selected table (for example, for primary keys) are not carried over to the new table.

• In addition, primary keys, unique keys, foreign keys, check constraints, partitioning criteria,
indexes, and column default values are not carried over to the new table.

• If the selected table is partitioned, then you can choose whether the new table will be
partitioned the same way, partitioned differently, or not partitioned. Partitioning is not
carried over to the new table. Specify any desired partitioning as part of the CREATE TABLE
statement before the AS subquery clause.

• A column that is encrypted using Transparent Data Encryption in the selected table will not
be encrypted in the new table unless you define the column in the new table as encrypted
at create time.

Note

Oracle recommends that you encrypt sensitive columns before populating them
with data. This will avoid creating clear text copies of sensitive data.

If each column returned by subquery has a column name or is an expression with a specified
column alias, then you can omit the columns from the table definition entirely. In this case, the
names of the columns of table are the same as the columns in subquery. The exception is
creating an index-organized table, for which you must specify the columns in the table
definition because you must specify a primary key column.

You can use subquery in combination with the TO_LOB function to convert the values in a LONG
column in another table to LOB values in a column of the table you are creating.

See Also

• Oracle Database SecureFiles and Large Objects Developer's Guide for a
discussion of why and when to copy LONG data to a LOB

• "Conversion Functions " for a description of how to use the TO_LOB function

• SELECT for more information on the order_by_clause

• Oracle Database SQL Tuning Guide for information on statistics gathering when
using the AS subquery clause

parallel_clause

If you specify the parallel_clause in this statement, then the database will ignore any value you
specify for the INITIAL storage parameter and will instead use the value of the NEXT parameter.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 137 of 238

See Also

storage_clause for information on these parameters

ORDER BY

The ORDER BY clause lets you order rows returned by the subquery.

When specified with CREATE TABLE, this clause does not necessarily order data across the
entire table. For example, it does not order across partitions. Specify this clause if you intend to
create an index on the same key as the ORDER BY key column. Oracle Database will cluster
data on the ORDER BY key so that it corresponds to the index key.

Restrictions on the Defining Query of a Table

The table query is subject to the following restrictions:

• The number of columns in the table must equal the number of expressions in the subquery.

• The column definitions can specify only column names, default values, and integrity
constraints, not data types.

• You cannot define a foreign key constraint in a CREATE TABLE statement that contains AS
subquery unless the table is reference partitioned and the constraint is the table's partitioning
referential constraint. In all other cases, you must create the table without the constraint
and then add it later with an ALTER TABLE statement.

FOR STAGING

Specify FOR STAGING to create a staging table optimized for staging data in Oracle Database.
Staging tables are typically shortlived and volatile with constantly changing data.

You can create a staging table with or without partitions with CREATE TABLE t FOR STAGING or
you can convert an exisiting table into a staging table with ALTER TABLE t FOR STAGING.

Examples: Create a Staging Table

CREATE TABLE staging_table (col1 number, col2 varchar2(100)) FOR STAGING;

Examples: Create a Staging Table With Partitions

CREATE TABLE part_staging_table (col1 number, col2 varchar2(100))
PARTITION BY RANGE (col1) (PARTITION p1 VALUES LESS THAN (100), PARTITION pmax VALUES LESS THAN
(MAXVALUE))
FOR STAGING;

A staging table with or without partitions has the following characteristics:

• Compression is explicitly turned off and disallowed for any future data load on the table
and its partitions and subpartitions. Changing existing tables into staging tables will not
impact the storage of existing data but only impact future data loads.

• You cannot change the default attritbutes of a staging table, its partitions or subpartitions,
or future data loads using ALTER TABLE.

• You cannot perform any partition maintenance operations that will move the data and
compress it using ALTER TABLE .

• You cannot partition a staging table and specify compression on any of its partitions.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 138 of 238

• Dynamic sampling is used for queries on a staging table. This means that you cannot
gather statistics on a staging table or any of its partitions.

• If you drop a staging table it will be dropped immediately, bypassing the recyclebin
irrespective of your setting.

The dictionary views USER_TABLES, ALL_TABLES, and DBA_TABLES have a staging table property
in a new column STAGING. The value of STAGING is YES for a staged table, and NO otherwise.

object_table

The OF clause lets you explicitly create an object table of type object_type. The columns of an
object table correspond to the top-level attributes of type object_type. Each row will contain an
object instance, and each instance will be assigned a unique, system-generated object
identifier when a row is inserted. If you omit schema, then the database creates the object table
in your own schema.

Object tables, as well as XMLType tables, object views, and XMLType views, do not have any
column names specified for them. Therefore, Oracle defines a system-generated
pseudocolumn OBJECT_ID. You can use this column name in queries and to create object views
with the WITH OBJECT IDENTIFIER clause.

See Also

"Object Column and Table Examples"

object_table_substitution

Use the object_table_substitution clause to specify whether row objects corresponding to subtypes
can be inserted into this object table.

NOT SUBSTITUTABLE AT ALL LEVELS

NOT SUBSTITUTABLE AT ALL LEVELS indicates that the object table being created is not
substitutable. In addition, substitution is disabled for all embedded object attributes and
elements of embedded nested tables and arrays. The default is SUBSTITUTABLE AT ALL
LEVELS.

See Also

• CREATE TYPE for more information about creating object types

• "User-Defined Types ", "About User-Defined Functions ", "About SQL Expressions
", CREATE TYPE , and Oracle Database Object-Relational Developer's Guide for
more information about using REF types

object_properties

The properties of object tables are essentially the same as those of relational tables. However,
instead of specifying columns, you specify attributes of the object.

For attribute, specify the qualified column name of an item in an object.

oid_clause

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 139 of 238

The oid_clause lets you specify whether the object identifier of the object table should be system
generated or should be based on the primary key of the table. The default is SYSTEM
GENERATED.

Restrictions on the oid_clause

This clause is subject to the following restrictions:

• You cannot specify OBJECT IDENTIFIER IS PRIMARY KEY unless you have already specified a
PRIMARY KEY constraint for the table.

• You cannot specify this clause for a nested table.

Note

A primary key object identifier is locally unique but not necessarily globally unique. If
you require a globally unique identifier, then you must ensure that the primary key is
globally unique.

oid_index_clause

This clause is relevant only if you have specified the oid_clause as SYSTEM GENERATED. It
specifies an index, and optionally its storage characteristics, on the hidden object identifier
column.

For index, specify the name of the index on the hidden system-generated object identifier
column. If you omit index, then the database generates a name.

physical_properties and table_properties

The semantics of these clauses are documented in the corresponding sections under relational
tables. See physical_properties and table_properties.

XMLType_table

Use the XMLType_table syntax to create a table of data type XMLType. Most of the clauses used to
create an XMLType table have the same semantics that exist for object tables. The clauses
specific to XMLType tables are described in this section.

Object tables, as well as XMLType tables, object views, and XMLType views, do not have any
column names specified for them. Therefore, Oracle defines a system-generated
pseudocolumn OBJECT_ID. You can use this column name in queries and to create object views
with the WITH OBJECT IDENTIFIER clause.

XMLSchema_spec

This clause lets you specify the URL of a registered XMLSchema, either in the XMLSCHEMA
clause or as part of the ELEMENT clause, and an XML element name.

You must specify an element, although the XMLSchema URL is optional. If you do specify an
XMLSchema URL, then you must already have registered the XMLSchema using the
DBMS_XMLSCHEMA package.

The optional STORE ALL VARRAYS AS clause lets you specify how all varrays in the XMLType
table or column are to be stored.

• STORE ALL VARRAYS AS LOBS indicates that all varrays are to be stored as LOBs.

• STORE ALL VARRAYS AS TABLES indicates that all varrays are to be stored as tables.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 140 of 238

The optional ALLOW | DISALLOW clauses are valid only if you have specified BINARY XML
storage.

• ALLOW NONSCHEMA indicates that non-schema-based documents can be stored in the
XMLType column.

• DISALLOW NONSCHEMA indicates that non-schema-based documents cannot be stored in
the XMLType column. This is the default.

• ALLOW ANYSCHEMA indicates that any schema-based document can be stored in the
XMLType column.

• DISALLOW ANYSCHEMA indicates that any schema-based document cannot be stored in the
XMLType column. This is the default.

See Also

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_XMLSCHEMA package

• Oracle XML DB Developer's Guide for information on creating and working with
XML data

• "XMLType Table Examples"

JSON_Collection_table

Specify JSON COLLECTION to create a special table that stores JSON documents in a single
column called DATA. The column DATA is of type JSON.

Each document in a collection table automatically has a document-identifier field, _id, at the top
level, whose value is unique for the collection.

You can perform SELECTs, JOINs, UPDATEs and all the normal table operations with JSON
collections that you do in other tables.

• WITH ETAG : If specified, then each JSON document contains a document-handling field
_metadata, whose value is an object with etag as its only field.

The default is not to use ETAG.

• expression_column: Use to create one or more virtual (expression) column expressions on the
DATA column that you can use for partitioning.

DATA is the only visible column. User-defined expression columns are always INVISIBLE,
whether or not you explictly specify INVISIBLE in the definition.

• constraints : Use to add constraints on the DATA column or other user-defined expression
columns that you create.

Use ALTER TABLE to modify the JSON collection table. You can add or drop constraints, user
defined virtual (expression) columns, or partitions.

Restrictions

You can only add virtual (expression) columns.

You can only drop user defined virtual (expression) columns.

You cannot drop internally generated columns like DATA, RESID, or ETAG. Columns RESID and
ETAG are internal Oracle-managed columns that are not relevant to working with JSON

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 141 of 238

collection tables. These columns should not be used in customer applications. They are used
internally to enforce uniqueness and provide lock-free concurrency control.

Note

JSON Collections of the JSON Developer's Guide.

MEMOPTIMIZE FOR READ

Use this clause to enable fast lookup. Fast lookup improves the performance high frequency
data query operations. The MEMOPTIMIZE_POOL_SIZE initialization parameter controls the size
of the memoptimize pool. Note that the feature uses additional memory from the SGA.

• You must specify this clause as a top-level attribute of the table, it cannot be specified at
the partition or subpartition level.

• You must explicitly enable the table for MEMOPTIMIZE FOR READ before you can read data
from the table.

MEMOPTIMIZE FOR WRITE

Use this clause to enable fast ingest. Fast ingest optimizes memory processing of high
frequency single row data inserts from Internet of Things (IoT) applications.

• MEMOPTIMZE FOR WRITE is a top-level attribute and cannot be used at the partition or
subpartition level.

• A table must be enabled for MEMOPTIMIZE FOR WRITE before data for that table can be
written to the IGA.

Restrictions

Blockchain and immutable tables do not support MEMOPTIMZE FOR WRITE.

Columns of BFILE data type do not support MEMOPTIMZE FOR WRITE .

PARENT

You can use this clause to create a child table in a sharded table family.

A sharded table family is a set of tables that are sharded in the same way. Corresponding
partitions of all tables in a table family are stored in the same shard. This enables you to
minimize the number of multishard joins when querying data in the table family.

There are two methods for creating a sharded table family. The recommended method involves
using reference partitioning. However, if it is impossible or undesirable to create the primary
and foreign key constraints that are required for reference partitioning, then you can use the
PARENT clause to create a sharded table family.

The rules for creating a sharded table family differ depending on which method you use. When
you create a sharded table family by using the PARENT clause, the following rules apply:

• The sharded table family can contain only two levels of tables: a parent table, and one or
more child tables.

• All tables in the family must be explicitly partitioned using the same partitioning scheme.
Each table can use a different subpartitioning scheme, or none at all.

• You must first create the parent table, and it must be a sharded table.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 142 of 238

• You can then use the CREATE SHARDED TABLE ... PARENT ... statement to create each child
table. For table, specify the name of the parent table. For schema, specify the schema that
contains the parent table. If you omit schema, then the database assumes the parent table is
in your own schema.

You can create multiple sharded table families with system sharding but at most one with
composite or user-defined sharding.

See Also

• Using Oracle Sharding

Examples

Creating Tables: General Examples

This statement shows how the employees table owned by the sample human resources (hr)
schema was created. A hypothetical name is given to the table and constraints so that you can
duplicate this example in your test database:

CREATE TABLE employees_demo
 (employee_id NUMBER(6)
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn_demo NOT NULL
 , email VARCHAR2(25)
 CONSTRAINT emp_email_nn_demo NOT NULL
 , phone_number VARCHAR2(20)
 , hire_date DATE DEFAULT SYSDATE
 CONSTRAINT emp_hire_date_nn_demo NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn_demo NOT NULL
 , salary NUMBER(8,2)
 CONSTRAINT emp_salary_nn_demo NOT NULL
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
 , dn VARCHAR2(300)
 , CONSTRAINT emp_salary_min_demo
 CHECK (salary > 0)
 , CONSTRAINT emp_email_uk_demo
 UNIQUE (email)
) ;

This table contains twelve columns. The employee_id column is of data type NUMBER. The
hire_date column is of data type DATE and has a default value of SYSDATE. The last_name column is
of type VARCHAR2 and has a NOT NULL constraint, and so on.

Creating a Table: Storage Example

To define the same employees_demo table in the example tablespace with a small storage capacity,
issue the following statement:

CREATE TABLE employees_demo
 (employee_id NUMBER(6)
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn_demo NOT NULL
 , email VARCHAR2(25)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 143 of 238

 CONSTRAINT emp_email_nn_demo NOT NULL
 , phone_number VARCHAR2(20)
 , hire_date DATE DEFAULT SYSDATE
 CONSTRAINT emp_hire_date_nn_demo NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn_demo NOT NULL
 , salary NUMBER(8,2)
 CONSTRAINT emp_salary_nn_demo NOT NULL
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
 , dn VARCHAR2(300)
 , CONSTRAINT emp_salary_min_demo
 CHECK (salary > 0)
 , CONSTRAINT emp_email_uk_demo
 UNIQUE (email)
)
 TABLESPACE example
 STORAGE (INITIAL 8M);

Creating a Table with a DEFAULT ON NULL Column Value: Example

The following statement creates a table myemp, which can be used to store employee data. The
department_id column is defined with a DEFAULT ON NULL column value of 50. Therefore, if a
subsequent INSERT statement attempts to assign a NULL value to department_id, then the value
of 50 will be assigned instead.

CREATE TABLE myemp (employee_id number, last_name varchar2(25),
 department_id NUMBER DEFAULT ON NULL 50 NOT NULL);

In the employees table, employee_id 178 has a NULL value for department_id:

SELECT employee_id, last_name, department_id
 FROM employees
 WHERE department_id IS NULL;

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID
----------- ------------------------- -------------
 178 Grant

Populate the myemp table with the employee_id, last_name, and department_id column data from the
employees table:

INSERT INTO myemp (employee_id, last_name, department_id)
 (SELECT employee_id, last_name, department_id from employees);

In the myemp table, employee_id 178 has a value of 50 for department_id:

SELECT employee_id, last_name, department_id
 FROM myemp
 WHERE employee_id = 178;

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID
----------- ------------------------- -------------
 178 Grant 50

Creating a Table with an Identity Column: Examples

The following statement creates a table t1 with an identity column id. The sequence generator
will always assign increasing integer values to id, starting with 1.

CREATE TABLE t1 (id NUMBER GENERATED AS IDENTITY);

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 144 of 238

The following statement creates a table t2 with an identity column id. The sequence generator
will, by default, assign increasing integer values to id in increments of 10 starting with 100.

CREATE TABLE t2 (id NUMBER GENERATED BY DEFAULT AS IDENTITY (START WITH 100 INCREMENT BY 10));

Creating a Table: Temporary Table Example

The following statement creates a temporary table today_sales for use by sales representatives in
the sample database. Each sales representative session can store its own sales data for the
day in the table. The temporary data is deleted at the end of the session.

CREATE GLOBAL TEMPORARY TABLE today_sales
 ON COMMIT PRESERVE ROWS
 AS SELECT * FROM orders WHERE order_date = SYSDATE;

Creating a Table with Deferred Segment Creation: Example

The following statement creates a table with deferred segment creation. Oracle Database will
not create a segment for the data of this table until data is inserted into the table:

CREATE TABLE later (col1 NUMBER, col2 VARCHAR2(20)) SEGMENT CREATION DEFERRED;

Substitutable Table and Column Examples

The following statements create a type hierarchy, which can be used to create a substitutable
table. Type employee_t inherits the name and ssn attributes from type person_t and in addition has
department_id and salary attributes. Type part_time_emp_t inherits all of the attributes from employee_t
and, through employee_t, those of person_t and in addition has a num_hrs attribute. Type
part_time_emp_t is final by default, so no further subtypes can be created under it.

CREATE TYPE person_t AS OBJECT (name VARCHAR2(100), ssn NUMBER)
 NOT FINAL;
/

CREATE TYPE employee_t UNDER person_t
 (department_id NUMBER, salary NUMBER) NOT FINAL;
/

CREATE TYPE part_time_emp_t UNDER employee_t (num_hrs NUMBER);
/

The following statement creates a substitutable table from the person_t type:

CREATE TABLE persons OF person_t;

The following statement creates a table with a substitutable column of type person_t:

CREATE TABLE books (title VARCHAR2(100), author person_t);

When you insert into persons or books, you can specify values for the attributes of person_t or any
of its subtypes. Examples of insert statements appear in "Inserting into a Substitutable Tables
and Columns: Examples".

You can extract data from such tables using built-in functions and conditions. For examples,
see the functions TREAT and SYS_TYPEID , and the "IS OF type Condition " condition.

Creating a Table: Parallelism Examples

The following statement creates a table using an optimum number of parallel execution servers
to scan employees and to populate dept_80:

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 145 of 238

CREATE TABLE dept_80
 PARALLEL
 AS SELECT * FROM employees
 WHERE department_id = 80;

Using parallelism speeds up the creation of the table, because the database uses parallel
execution servers to create the table. After the table is created, querying the table is also
faster, because the same degree of parallelism is used to access the table.

The following statement creates the same table serially. Subsequent DML and queries on the
table will also be serially executed.

CREATE TABLE dept_80
 AS SELECT * FROM employees
 WHERE department_id = 80;

Creating a Table: ENABLE/DISABLE Examples

The following statement shows how the sample table departments was created. The example
defines a NOT NULL constraint, and places it in ENABLE VALIDATE state:

CREATE TABLE departments_demo
 (department_id NUMBER(4)
 , department_name VARCHAR2(30)
 CONSTRAINT dept_name_nn NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
 , dn VARCHAR2(300)
) ;

The following statement creates the same departments_demo table but also defines a disabled
primary key constraint:

CREATE TABLE departments_demo
 (department_id NUMBER(4) PRIMARY KEY DISABLE
 , department_name VARCHAR2(30)
 CONSTRAINT dept_name_nn NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
 , dn VARCHAR2(300)
) ;

Nested Table Example

The following statement shows how the sample table pm.print_media was created with a nested
table column ad_textdocs_ntab:

CREATE TABLE print_media
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

Creating a Table: Multilevel Collection Example

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 146 of 238

The following example shows how an account manager might create a table of customers
using two levels of nested tables:

CREATE TYPE phone AS OBJECT (telephone NUMBER);
/
CREATE TYPE phone_list AS TABLE OF phone;
/
CREATE TYPE my_customers AS OBJECT (
 cust_name VARCHAR2(25),
 phones phone_list);
/
CREATE TYPE customer_list AS TABLE OF my_customers;
/
CREATE TABLE business_contacts (
 company_name VARCHAR2(25),
 company_reps customer_list)
 NESTED TABLE company_reps STORE AS outer_ntab
 (NESTED TABLE phones STORE AS inner_ntab);

The following variation of this example shows how to use the COLUMN_VALUE keyword if the
inner nested table has no column or attribute name:

CREATE TYPE phone AS TABLE OF NUMBER;
/
CREATE TYPE phone_list AS TABLE OF phone;
/
CREATE TABLE my_customers (
 name VARCHAR2(25),
 phone_numbers phone_list)
 NESTED TABLE phone_numbers STORE AS outer_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS inner_ntab);

Creating a Table: LOB Column Example

The following statement is a variation of the statement that created the print_media table with
some added LOB storage characteristics:

CREATE TABLE print_media_new
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab_new
 LOB (ad_sourcetext, ad_finaltext) STORE AS
 (TABLESPACE example
 STORAGE (INITIAL 6144)
 CHUNK 4000
 NOCACHE LOGGING);

In the example above, the database rounds the value of CHUNK up to 4096 (the nearest
multiple of the block size of 2048).

Index-Organized Table Example

The following statement is a variation of the sample table hr.countries, which is index organized:

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 147 of 238

CREATE TABLE countries_demo
 (country_id CHAR(2)
 CONSTRAINT country_id_nn_demo NOT NULL
 , country_name VARCHAR2(40)
 , currency_name VARCHAR2(25)
 , currency_symbol VARCHAR2(3)
 , region VARCHAR2(15)
 , CONSTRAINT country_c_id_pk_demo
 PRIMARY KEY (country_id))
 ORGANIZATION INDEX
 INCLUDING country_name
 PCTTHRESHOLD 2
 STORAGE
 (INITIAL 4K)
 OVERFLOW
 STORAGE
 (INITIAL 4K);

External Table Example

The following statement creates an external table that represents a subset of the sample table
hr.departments. The TYPE clause specifies that the access driver type for the table is
ORACLE_LOADER. The ACCESS PARAMETERS() clause specifies parameter values for the
ORACLE_LOADER access driver. These parameters are shown in italics and form the
opaque_format_spec. The syntax for opaque_format_spec depends on the access driver type and is
outside the scope of this document. Refer to Oracle Database Utilities for details on the
ORACLE_LOADER access driver and the opaque_format_spec syntax.

CREATE TABLE dept_external (
 deptno NUMBER(6),
 dname VARCHAR2(20),
 loc VARCHAR2(25)
)
ORGANIZATION EXTERNAL
(TYPE oracle_loader
 DEFAULT DIRECTORY admin
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY newline
 BADFILE 'ulcase1.bad'
 DISCARDFILE 'ulcase1.dis'
 LOGFILE 'ulcase1.log'
 SKIP 20
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
 (
 deptno INTEGER EXTERNAL(6),
 dname CHAR(20),
 loc CHAR(25)
)
)
 LOCATION ('ulcase1.ctl')
)
REJECT LIMIT UNLIMITED;

See Also

"Creating a Directory: Examples" to see how the admin directory was created

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 148 of 238

XMLType Examples

This section contains brief examples of creating an XMLType table or XMLType column. For a
more expanded version of these examples, refer to "Using XML in SQL Statements ".

XMLType Table Examples

The following example creates a very simple XMLType table with one implicit binary XML
column:

CREATE TABLE xwarehouses OF XMLTYPE;

The following example creates an XMLSchema-based table. The XMLSchema must already
have been created (see "Using XML in SQL Statements " for more information):

CREATE TABLE xwarehouses OF XMLTYPE
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

You can define constraints on an XMLSchema-based table, and you can also create indexes
on XMLSchema-based tables, which greatly enhance subsequent queries. You can create
object-relational views on XMLType tables, and you can create XMLType views on object-
relational tables.

See Also

• "Using XML in SQL Statements " for an example of adding a constraint

• "Creating an Index on an XMLType Table: Example" for an example of creating an
index

• "Creating an XMLType View: Example" for an example of creating an XMLType view

XMLType Column Examples

The following example creates a table with an XMLType column stored as a CLOB. This table
does not require an XMLSchema, so the content structure is not predetermined:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS CLOB
 (TABLESPACE example
 STORAGE (INITIAL 6144)
 CHUNK 4000
 NOCACHE LOGGING);

The following example creates a similar table, but stores XMLType data in an object relational
XMLType column whose structure is determined by the specified schema:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

The following example creates another similar table with an XMLType column stored as a
SecureFiles CLOB. This table does not require an XMLSchema, so the content structure is not

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 149 of 238

predetermined. SecureFiles LOBs require a tablespace with automatic segment-space
management, so the example uses the tablespace created in "Specifying Segment Space
Management for a Tablespace: Example".

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS SECUREFILE CLOB
 (TABLESPACE auto_seg_ts
 STORAGE (INITIAL 6144)
 CACHE);

Partitioning Examples

Range Partitioning Example

The sales table in the sample schema sh is partitioned by range. The following example shows
an abbreviated variation of the sales table. Constraints and storage elements have been omitted
from the example.

CREATE TABLE range_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY RANGE (time_id)
 (PARTITION SALES_Q1_1998 VALUES LESS THAN (TO_DATE('01-APR-1998','DD-MON-YYYY')),
 PARTITION SALES_Q2_1998 VALUES LESS THAN (TO_DATE('01-JUL-1998','DD-MON-YYYY')),
 PARTITION SALES_Q3_1998 VALUES LESS THAN (TO_DATE('01-OCT-1998','DD-MON-YYYY')),
 PARTITION SALES_Q4_1998 VALUES LESS THAN (TO_DATE('01-JAN-1999','DD-MON-YYYY')),
 PARTITION SALES_Q1_1999 VALUES LESS THAN (TO_DATE('01-APR-1999','DD-MON-YYYY')),
 PARTITION SALES_Q2_1999 VALUES LESS THAN (TO_DATE('01-JUL-1999','DD-MON-YYYY')),
 PARTITION SALES_Q3_1999 VALUES LESS THAN (TO_DATE('01-OCT-1999','DD-MON-YYYY')),
 PARTITION SALES_Q4_1999 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY')),
 PARTITION SALES_Q1_2000 VALUES LESS THAN (TO_DATE('01-APR-2000','DD-MON-YYYY')),
 PARTITION SALES_Q2_2000 VALUES LESS THAN (TO_DATE('01-JUL-2000','DD-MON-YYYY')),
 PARTITION SALES_Q3_2000 VALUES LESS THAN (TO_DATE('01-OCT-2000','DD-MON-YYYY')),
 PARTITION SALES_Q4_2000 VALUES LESS THAN (MAXVALUE))
;

For information about partitioned table maintenance operations, see Oracle Database VLDB
and Partitioning Guide.

Range Partitioning Live SQL Example

The following statement creates a table partitioned by range:

CREATE TABLE empl_h
 (
 employee_id NUMBER(6) PRIMARY KEY,
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE DEFAULT SYSDATE,
 job_id VARCHAR2(10),
 salary NUMBER(8, 2),
 part_name VARCHAR2(25)
) PARTITION BY RANGE (hire_date) (

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 150 of 238

PARTITION hire_q1 VALUES less than(to_date('01-APR-2014', 'DD-MON-YYYY')),
PARTITION hire_q2 VALUES less than(to_date('01-JUL-2014', 'DD-MON-YYYY')),
PARTITION hire_q3 VALUES less than(to_date('01-OCT-2014', 'DD-MON-YYYY')),
PARTITION hire_q4 VALUES less than(to_date('01-JAN-2015', 'DD-MON-YYYY'))
);

The following statements insert rows into the partitions:

INSERT INTO empl_h (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, Part_name)
VALUES (1, 'Jane', 'Doe', 'example.com', '415.555.0100', '10-Feb-2014', '1001', 5001,'HIRE_Q1');

INSERT INTO empl_h (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, Part_name)
VALUES (2, 'John', 'Doe', 'example.net', '415.555.0101', '10-Apr-2014', '1002', 7001,'HIRE_Q2');

INSERT INTO empl_h (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, Part_name)
VALUES (3, 'Isabelle', 'Owl', 'example.org', '415.555.0102', '10-Sep-2014', '1003', 10001,'HIRE_Q3');

INSERT INTO empl_h (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, Part_name)
VALUES (4, 'Smith', 'Jones', 'example.in', '415.555.0103', '10-Dec-2014', '1004', 12001,'HIRE_Q4');

The following statements display the partition names using data dictionary tables:

SELECT PARTITION_NAME FROM USER_TAB_PARTITIONS WHERE TABLE_NAME = 'EMPL_H';

PARTITION_NAME

HIRE_Q1
HIRE_Q2
HIRE_Q3
HIRE_Q4

SELECT TABLE_NAME, PARTITIONING_TYPE, STATUS FROM USER_PART_TABLES WHERE TABLE_NAME =
'EMPL_H';

TABLE_NAME PARTITIONING_TYPE STATUS
---------- ----------------- ------
EMPL_H RANGE VALID

The following statement creates a table named parts by selecting a particular column from the
data dictionary table user_tab_partitions:

CREATE TABLE parts (p_name) AS SELECT PARTITION_NAME FROM USER_TAB_PARTITIONS WHERE TABLE_NAME
= 'EMPL_H';

The following statement displays the table data:

select * from parts;

P_NAME

HIRE_Q1
HIRE_Q2
HIRE_Q3
HIRE_Q4

The following statement compares the columns from the two tables and displays the
information based on the comparison:

select E.HIRE_DATE,E.JOB_ID,P.p_name from empl_h E, parts P where E.Part_name = P.p_name;

HIRE_DATE JOB_ID P_NAME
--------- ---------- ------------
10-FEB-14 1001 HIRE_Q1

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 151 of 238

10-APR-14 1002 HIRE_Q2
10-SEP-14 1003 HIRE_Q3
10-DEC-14 1004 HIRE_Q4

Interval Partitioning Example

The following example creates a variation of the oe.customers table that is partitioned by interval
on the credit_limit column. One range partition is created to establish the transition point. All of
the original data in the table is within the bounds of the range partition. Then data is added that
exceeds the range partition, and the database creates a new interval partition.

CREATE TABLE customers_demo (
 customer_id number(6),
 cust_first_name varchar2(20),
 cust_last_name varchar2(20),
 credit_limit number(9,2))
PARTITION BY RANGE (credit_limit)
INTERVAL (1000)
(PARTITION p1 VALUES LESS THAN (5001));

INSERT INTO customers_demo
 (customer_id, cust_first_name, cust_last_name, credit_limit)
 (select customer_id, cust_first_name, cust_last_name, credit_limit
 from customers);

Query the USER_TAB_PARTITIONS data dictionary view before the database creates the interval
partition:

SELECT partition_name, high_value FROM user_tab_partitions WHERE table_name = 'CUSTOMERS_DEMO';

PARTITION_NAME HIGH_VALUE
------------------------------ ---------------
P1 5001

Insert data into the table that exceeds the high value of the range partition:

INSERT INTO customers_demo
 VALUES (699, 'Fred', 'Flintstone', 5500);

Query the USER_TAB_PARTITIONS view again after the insert to learn the system-generated
name of the interval partition created to accommodate the inserted data. (The system-
generated name will vary for each session.)

SELECT partition_name, high_value FROM user_tab_partitions
 WHERE table_name = 'CUSTOMERS_DEMO'
 ORDER BY partition_name;

PARTITION_NAME HIGH_VALUE
------------------------------ ---------------
P1 5001
SYS_P44 6001

List Partitioning Example

The following statement shows how the sample table oe.customers might have been created as a
list-partitioned table. Some columns and all constraints of the sample table have been omitted
in this example.

CREATE TABLE list_customers
 (customer_id NUMBER(6)
 , cust_first_name VARCHAR2(20)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 152 of 238

 , cust_last_name VARCHAR2(20)
 , cust_address CUST_ADDRESS_TYP
 , nls_territory VARCHAR2(30)
 , cust_email VARCHAR2(40))
 PARTITION BY LIST (nls_territory) (
 PARTITION asia VALUES ('CHINA', 'THAILAND'),
 PARTITION europe VALUES ('GERMANY', 'ITALY', 'SWITZERLAND'),
 PARTITION west VALUES ('AMERICA'),
 PARTITION east VALUES ('INDIA'),
 PARTITION rest VALUES (DEFAULT));

Partitioned Table with LOB Columns Example

This statement creates a partitioned table print_media_demo with two partitions p1 and p2, and a
number of LOB columns. The statement uses the sample table pm.print_media.

CREATE TABLE print_media_demo
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab_demo
 LOB (ad_composite, ad_photo, ad_finaltext)
 STORE AS(STORAGE (INITIAL 20M))
 PARTITION BY RANGE (product_id)
 (PARTITION p1 VALUES LESS THAN (3000) TABLESPACE tbs_01
 LOB (ad_composite, ad_photo)
 STORE AS (TABLESPACE tbs_02 STORAGE (INITIAL 10M))
 NESTED TABLE ad_textdocs_ntab STORE AS nt_p1 (TABLESPACE example),
 PARTITION P2 VALUES LESS THAN (MAXVALUE)
 LOB (ad_composite, ad_finaltext)
 STORE AS SECUREFILE (TABLESPACE auto_seg_ts)
 NESTED TABLE ad_textdocs_ntab STORE AS nt_p2
)
 TABLESPACE tbs_03;

Partition p1 will be in tablespace tbs_01. The LOB data partitions for ad_composite and ad_photo will
be in tablespace tbs_02. The LOB data partition for the remaining LOB columns will be in
tablespace tbs_01. The storage attribute INITIAL is specified for LOB columns ad_composite and
ad_photo. Other attributes will be inherited from the default table-level specification. The default
LOB storage attributes not specified at the table level will be inherited from the tablespace
tbs_02 for columns ad_composite and ad_photo and from tablespace tbs_01 for the remaining LOB
columns. LOB index partitions will be in the same tablespaces as the corresponding LOB data
partitions. Other storage attributes will be based on values of the corresponding attributes of
the LOB data partitions and default attributes of the tablespace where the index partitions
reside. The nested table partition for ad_textdocs_ntab will be stored as nt_p1 in tablespace
example.

Partition p2 will be in the default tablespace tbs_03. The LOB data for ad_composite and ad_finaltext
will be in tablespace auto_seg_ts as SecureFiles LOBs. The LOB data for the remaining LOB
columns will be in tablespace tbs_03. The LOB index for columns ad_composite and ad_finaltext will
be in tablespace auto_seg_ts. The LOB index for the remaining LOB columns will be in
tablespace tbs_03. The nested table partition for ad_textdocs_ntab will be stored as nt_p2 in the
default tablespace tbs_03.

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 153 of 238

Hash Partitioning Example

The sample table oe.product_information is not partitioned. However, you might want to partition
such a large table by hash for performance reasons, as shown in this example. The tablespace
names are hypothetical in this example.

CREATE TABLE hash_products
 (product_id NUMBER(6) PRIMARY KEY
 , product_name VARCHAR2(50)
 , product_description VARCHAR2(2000)
 , category_id NUMBER(2)
 , weight_class NUMBER(1)
 , warranty_period INTERVAL YEAR TO MONTH
 , supplier_id NUMBER(6)
 , product_status VARCHAR2(20)
 , list_price NUMBER(8,2)
 , min_price NUMBER(8,2)
 , catalog_url VARCHAR2(50)
 , CONSTRAINT product_status_lov_demo
 CHECK (product_status in ('orderable'
 ,'planned'
 ,'under development'
 ,'obsolete')
))
 PARTITION BY HASH (product_id)
 PARTITIONS 4
 STORE IN (tbs_01, tbs_02, tbs_03, tbs_04);

Reference Partitioning Example

The next statement uses the hash_products partitioned table created in the preceding example. It
creates a variation of the oe.order_items table that is partitioned by reference to the hash
partitioning on the product id of hash_products. The resulting child table will be created with five
partitions. For each row of the child table part_order_items, the database evaluates the foreign key
value (product_id) to determine the partition number of the parent table hash_products to which the
referenced key belongs. The part_order_items row is placed in its corresponding partition.

CREATE TABLE part_order_items (
 order_id NUMBER(12) PRIMARY KEY,
 line_item_id NUMBER(3),
 product_id NUMBER(6) NOT NULL,
 unit_price NUMBER(8,2),
 quantity NUMBER(8),
 CONSTRAINT product_id_fk
 FOREIGN KEY (product_id) REFERENCES hash_products(product_id))
 PARTITION BY REFERENCE (product_id_fk);

Composite-Partitioned Table Examples

The table created in the "Range Partitioning Example" divides data by time of sale. If you plan
to access recent data according to distribution channel as well as time, then composite
partitioning might be more appropriate. The following example creates a copy of that range_sales
table but specifies range-hash composite partitioning. The partitions with the most recent data
are subpartitioned with both system-generated and user-defined subpartition names.
Constraints and storage attributes have been omitted from the example.

CREATE TABLE composite_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 154 of 238

 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY RANGE (time_id)
SUBPARTITION BY HASH (channel_id)
 (PARTITION SALES_Q1_1998 VALUES LESS THAN (TO_DATE('01-APR-1998','DD-MON-YYYY')),
 PARTITION SALES_Q2_1998 VALUES LESS THAN (TO_DATE('01-JUL-1998','DD-MON-YYYY')),
 PARTITION SALES_Q3_1998 VALUES LESS THAN (TO_DATE('01-OCT-1998','DD-MON-YYYY')),
 PARTITION SALES_Q4_1998 VALUES LESS THAN (TO_DATE('01-JAN-1999','DD-MON-YYYY')),
 PARTITION SALES_Q1_1999 VALUES LESS THAN (TO_DATE('01-APR-1999','DD-MON-YYYY')),
 PARTITION SALES_Q2_1999 VALUES LESS THAN (TO_DATE('01-JUL-1999','DD-MON-YYYY')),
 PARTITION SALES_Q3_1999 VALUES LESS THAN (TO_DATE('01-OCT-1999','DD-MON-YYYY')),
 PARTITION SALES_Q4_1999 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY')),
 PARTITION SALES_Q1_2000 VALUES LESS THAN (TO_DATE('01-APR-2000','DD-MON-YYYY')),
 PARTITION SALES_Q2_2000 VALUES LESS THAN (TO_DATE('01-JUL-2000','DD-MON-YYYY'))
 SUBPARTITIONS 8,
 PARTITION SALES_Q3_2000 VALUES LESS THAN (TO_DATE('01-OCT-2000','DD-MON-YYYY'))
 (SUBPARTITION ch_c,
 SUBPARTITION ch_i,
 SUBPARTITION ch_p,
 SUBPARTITION ch_s,
 SUBPARTITION ch_t),
 PARTITION SALES_Q4_2000 VALUES LESS THAN (MAXVALUE)
 SUBPARTITIONS 4)
;

The following examples creates a partitioned table of customers based on the sample table
oe.customers. In this example, the table is partitioned on the credit_limit column and list
subpartitioned on the nls_territory column. The subpartition template determines the
subpartitioning of any subsequently added partitions, unless you override the template by
defining individual subpartitions. This composite partitioning makes it possible to query the
table based on a credit limit range within a specified region:

CREATE TABLE customers_part (
 customer_id NUMBER(6),
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 nls_territory VARCHAR2(30),
 credit_limit NUMBER(9,2))
 PARTITION BY RANGE (credit_limit)
 SUBPARTITION BY LIST (nls_territory)
 SUBPARTITION TEMPLATE
 (SUBPARTITION east VALUES
 ('CHINA', 'JAPAN', 'INDIA', 'THAILAND'),
 SUBPARTITION west VALUES
 ('AMERICA', 'GERMANY', 'ITALY', 'SWITZERLAND'),
 SUBPARTITION other VALUES (DEFAULT))
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2500),
 PARTITION p3 VALUES LESS THAN (MAXVALUE));

Object Column and Table Examples

Creating Object Tables: Examples

Consider object type department_typ:

CREATE TYPE department_typ AS OBJECT
 (d_name VARCHAR2(100),
 d_address VARCHAR2(200));
/

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 155 of 238

Object table departments_obj_t holds department objects of type department_typ:

CREATE TABLE departments_obj_t OF department_typ;

The following statement creates object table salesreps with a user-defined object type, salesrep_typ:

CREATE OR REPLACE TYPE salesrep_typ AS OBJECT
 (repId NUMBER,
 repName VARCHAR2(64));

CREATE TABLE salesreps OF salesrep_typ;

Creating a Table with a User-Defined Object Identifier: Example

This example creates an object type and a corresponding object table whose object identifier is
primary key based:

CREATE TYPE employees_typ AS OBJECT
 (e_no NUMBER, e_address CHAR(30));
/

CREATE TABLE employees_obj_t OF employees_typ (e_no PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

You can subsequently reference the employees_obj_t object table using either inline_ref_constraint or
out_of_line_ref_constraint syntax:

CREATE TABLE departments_t
 (d_no NUMBER,
 mgr_ref REF employees_typ SCOPE IS employees_obj_t);

CREATE TABLE departments_t (
 d_no NUMBER,
 mgr_ref REF employees_typ
 CONSTRAINT mgr_in_emp REFERENCES employees_obj_t);

Specifying Constraints on Type Columns: Example

The following example shows how to define constraints on attributes of an object type column:

CREATE TYPE address_t AS OBJECT
 (hno NUMBER,
 street VARCHAR2(40),
 city VARCHAR2(20),
 zip VARCHAR2(5),
 phone VARCHAR2(10));
/

CREATE TYPE person AS OBJECT
 (name VARCHAR2(40),
 dateofbirth DATE,
 homeaddress address_t,
 manager REF person);
/

CREATE TABLE persons OF person
 (homeaddress NOT NULL,
 UNIQUE (homeaddress.phone),
 CHECK (homeaddress.zip IS NOT NULL),
 CHECK (homeaddress.city <> 'San Francisco'));

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 156 of 238

Add Annotations at Table Creation: Example

The following example adds two operations with values Sort and Group, and a standalone Hidden
without a value, to table table t1.

CREATE TABLE t1 (T NUMBER) ANNOTATIONS(Operations 'Sort', Operations 'Group', Hidden);

The annotation can be preceded by the keyword ADD which is the default operation if nothing
is specified as the following example shows:

CREATE TABLE t1 (T NUMBER) ANNOTATIONS (ADD Hidden);

Add Annotations to Table Columns

CREATE TABLE t1 (T NUMBER ANNOTATIONS(Operations 'Sort' , Hidden));

Add Annotations to Table and Columns

CREATE TABLE Employee (
 Id NUMBER(5) ANNOTATIONS(Identity, Display ’Employee ID’, Group ’Emp_Info’),
 Ename VARCHAR2(50) ANNOTATIONS(Display ’Employee Name’, Group ’Emp_Info’),
 Sal NUMBER TAG ANNOTATIONS(Display ’Employee Salary’, UI_Hidden)
) ANNOTATIONS (Display ’Employee Table’);

Associating Table Columns to Domains Using CREATE TABLE: Example

You can associate table columns with a domain with CREATE TABLE or with ALTER TABLE
MODIFY.

You must specify domain associations at the end of the statement, after all columns have been
defined.

The DOMAIN keyword, when specified, must be followed by the domain name.

Associate Table Columns With a Domain: Example

The following example creates domain dn1:

CREATE DOMAIN dn1 AS NUMBER;

The following example creates domain dn2:

CREATE DOMAIN dn2 AS (c1 AS NUMBER NOT NULL, c2 as NUMBER DEFAULT 1);

The following example creates domain dm1:

CREATE DOMAIN dm1 AS
 (ann AS NUMBER NOT NULL ,
 bnnpos AS NUMBER NOT NULL CONSTRAINT CHECK (bnnpos > 0),
 c AS VARCHAR2(10) DEFAULT 'abc',
 ddon AS NUMBER DEFAULT ON NULL 10)
 CONSTRAINT CHECK (ann+ddon < = 100)
 CONSTRAINT CHECK (length(c) > bnnpos);

The following example associates columns c1, c2, c3 , c4 with domain dm1, columns c5 and c6
with domain dn2, and column c7 with dn1.

CREATE TABLE tm1 (c1 NUMBER, c2 NUMBER, c3 VARCHAR2(15),c4 NUMBER, c5 NUMBER,
 c6 NUMBER, c7 NUMBER, DOMAIN dm1 (c1, c2, c3, c4),

Chapter 15
CREATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 157 of 238

 DOMAIN dn2(c5, c6), DOMAIN dn1(c7));

Create Tables and Columns as Transportable Binary XML

Create Tables Stored as Transportable Binary XML

CREATE TABLE t1 OF XMLTYPE
 XMLTYPE STORE AS TRANSPORTABLE BINARY XML;

Create Columns Stored as Transportable Binary XML

CREATE TABLE t2 (id NUMBER, doc XMLTYPE)
 XMLTYPE doc STORE AS TRANSPORTABLE BINARY XML;

Add Columns Stored as Transportable Binary XML to Tables

ALTER TABLE t3 ADD (doc XMLTYPE)
 XMLTYPE doc STORE AS TRANSPORTABLE BINARY XML;

CREATE TABLESPACE
Purpose

Use the CREATE TABLESPACE statement to create a tablespace, which is an allocation of space
in the database that can contain schema objects.

• A permanent tablespace contains persistent schema objects. Objects in permanent
tablespaces are stored in data files.

• An undo tablespace is a type of permanent tablespace used by Oracle Database to
manage undo data if you are running your database in automatic undo management
mode. Oracle strongly recommends that you use automatic undo management mode
rather than using rollback segments for undo.

• A temporary tablespace contains schema objects only for the duration of a session.
Objects in temporary tablespaces are stored in temp files.

When you create a tablespace, it is initially a read/write tablespace. You can subsequently use
the ALTER TABLESPACE statement to take the tablespace offline or online, add data files or temp
files to it, or make it a read-only tablespace.

You can also drop a tablespace from the database with the DROP TABLESPACE statement.

See Also

• Oracle Database Concepts for information on tablespaces

• ALTER TABLESPACE and DROP TABLESPACE for information on modifying and
dropping tablespaces

Prerequisites

You must have the CREATE TABLESPACE system privilege. To create the SYSAUX tablespace, you
must have the SYSDBA system privilege.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 158 of 238

Before you can create a tablespace, you must create a database to contain it, and the
database must be open.

See Also

CREATE DATABASE

To use objects in a tablespace other than the SYSTEM tablespace:

• If you are running the database in automatic undo management mode, then at least one
UNDO tablespace must be online.

• If you are running the database in manual undo management mode, then at least one
rollback segment other than the SYSTEM rollback segment must be online.

Note

Oracle strongly recommends that you run your database in automatic undo
management mode. For more information, refer to Oracle Database Administrator's
Guide.

Syntax

create_tablespace::=

CREATE

BIGFILE

SMALLFILE
permanent_tablespace_clause

undo_tablespace_clause

temporary_tablespace_clause

(permanent_tablespace_clause::=, temporary_tablespace_clause::=,
undo_tablespace_clause::=)

permanent_tablespace_clause::=

TABLESPACE

IF NOT EXISTS

tablespace

DATAFILE file_specification

,

permanent_tablespace_attrs IN SHARDSPACE shardspace

(file_specification::=, permanent_tablespace_attrs::=)

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 159 of 238

permanent_tablespace_attrs::=

MINIMUM EXTENT size_clause

BLOCKSIZE integer

K

logging_clause

FORCE LOGGING

tablespace_encryption_clause

default_tablespace_params

ONLINE

OFFLINE

extent_management_clause

segment_management_clause

flashback_mode_clause

lost_write_protection

(size_clause::=, logging_clause::=, tablespace_encryption_clause::=,
default_tablespace_params::=, extent_management_clause::=,
segment_management_clause::=, flashback_mode_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

tablespace_encryption_clause::=

ENCRYPTION

tablespace_encryption_spec

ENCRYPT

DECRYPT

(tablespace_encryption_spec::=)

tablespace_encryption_spec::=

USING ’ encrypt_algorithm ’ MODE ’ cipher_mode ’

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 160 of 238

default_tablespace_params::=

DEFAULT

default_table_compression default_index_compression inmemory_clause

ilm_clause storage_clause

(default_table_compression::=, default_index_compression::=, inmemory_clause::=,
ilm_clause::=—part of CREATE TABLE syntax, storage_clause::=)

Note

If you specify the DEFAULT clause, then you must specify at least one of the clauses
default_table_compression, default_index_compression, inmemory_clause, ilm_clause, or storage_clause.

default_table_compression::=

TABLE

COMPRESS FOR OLTP

COMPRESS FOR QUERY

LOW

HIGH

COMPRESS FOR ARCHIVE

LOW

HIGH

NOCOMPRESS

default_index_compression::=

INDEX

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

inmemory_clause::=

INMEMORY

inmemory_attributes

TEXT

column_name

,

column_name USING policy_name

,

NO INMEMORY

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 161 of 238

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

(inmemory_memcompress::=, inmemory_priority::=, inmemory_distribute_tablespace::=,
inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

inmemory_distribute_tablespace::=

DISTRIBUTE

AUTO

BY ROWID RANGE

FOR SERVICE

DEFAULT

ALL

service_name

NONE

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 162 of 238

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

extent_management_clause::=

EXTENT MANAGEMENT LOCAL

AUTOALLOCATE

UNIFORM

SIZE size_clause

(size_clause::=)

segment_management_clause::=

SEGMENT SPACE MANAGEMENT

AUTO

MANUAL

flashback_mode_clause::=

FLASHBACK

ON

OFF

undo_tablespace_clause::=

UNDO TABLESPACE tablespace

DATAFILE file_specification

,

extent_management_clause tablespace_retention_clause tablespace_encryption_clause

(file_specification::=, extent_management_clause::=, tablespace_retention_clause::=)

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 163 of 238

tablespace_retention_clause::=

RETENTION

GUARANTEE

NOGUARANTEE

temporary_tablespace_clause::=

TEMPORARY TABLESPACE

LOCAL TEMPORARY TABLESPACE FOR
ALL

LEAF

tablespace

TEMPFILE file_specification

,

tablespace_group_clause extent_management_clause

tablespace_encryption_clause

(file_specification::=, tablespace_group_clause::=, extent_management_clause::=,
tablespace_encryption_clause::=)

tablespace_group_clause::=

TABLESPACE GROUP
tablespace_group_name

’ ’

lost_write_protection ::=

ENABLE

REMOVE

SUSPEND

LOST WRITE PROTECTION

Semantics

BIGFILE | SMALLFILE

Use this clause to determine whether the tablespace is a bigfile or smallfile tablespace. This
clause overrides any default tablespace type setting for the database.

• A bigfile tablespace contains only one data file or temp file, which can contain up to
approximately 4 billion (232) blocks. The minimum size of the single data file or temp file is

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 164 of 238

12 megabytes (MB) for a tablespace with 32K blocks and 7MB for a tablespace with 8K
blocks. The maximum size of the single data file or temp file is 128 terabytes (TB) for a
tablespace with 32K blocks and 32TB for a tablespace with 8K blocks.

• A smallfile tablespace is a traditional Oracle tablespace, which can contain 1022 data
files or temp files, each of which can contain up to approximately 4 million (222) blocks.

If you omit this clause, then Oracle Database uses the current default tablespace type of
permanent or temporary tablespace that is set for the database. If you specify BIGFILE for a
permanent tablespace, then the database by default creates a locally managed tablespace
with automatic segment-space management.

Restriction on Bigfile Tablespaces

You can specify only one data file in the DATAFILE clause or one temp file in the TEMPFILE
clause.

Note

Starting with Oracle Database 23ai, BIGFILE functionality is the default for SYSAUX,
SYSTEM, and USER tablespaces.

See Also

• Oracle Database Administrator's Guide for more information on using bigfile
tablespaces

• "Creating a Bigfile Tablespace: Example"

permanent_tablespace_clause

Use the following clauses to create a permanent tablespace. (Some of these clauses are also
used to create a temporary or undo tablespace.)

tablespace

Specify the name of the tablespace to be created. The name must satisfy the requirements
listed in "Database Object Naming Rules ".

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the tablespace does not exist, a new tablespace is created at the end of the statement.

• If the tablespace exists, this is the tablespace you have at the end of the statement. A new
one is not created because the older one is detected.

Using IF EXISTS with CREATE results in error: Incorrect IF NOT EXISTS clause for CREATE
statement.

Note on the SYSAUX Tablespace

SYSAUX is a required auxiliary system tablespace. You must use the CREATE TABLESPACE
statement to create the SYSAUX tablespace if you are upgrading from a release earlier than
Oracle Database 11g. You must have the SYSDBA system privilege to specify this clause, and
you must have opened the database in UPGRADE mode.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 165 of 238

You must specify EXTENT MANAGEMENT LOCAL and SEGMENT SPACE MANAGEMENT AUTO for the
SYSAUX tablespace. The DATAFILE clause is optional only if you have enabled Oracle Managed
Files. See "DATAFILE | TEMPFILE Clause" for the behavior of the DATAFILE clause.

Take care to allocate sufficient space for the SYSAUX tablespace. For guidelines on creating
this tablespace, refer to Oracle Database Upgrade Guide.

Restrictions on the SYSAUX Tablespace

You cannot specify OFFLINE or TEMPORARY for the SYSAUX tablespace.

DATAFILE | TEMPFILE Clause

Specify the data files to make up the permanent tablespace or the temp files to make up the
temporary tablespace. Use the datafile_tempfile_spec form of file_specification to create regular data
files and temp files in an operating system file system or to create Oracle Automatic Storage
Management (Oracle ASM) disk group files.

You must specify the DATAFILE or TEMPFILE clause unless you have enabled Oracle Managed
Files by setting a value for the DB_CREATE_FILE_DEST initialization parameter. For Oracle ASM
disk group files, the parameter must be set to a multiple file creation form of Oracle ASM
filenames. If this parameter is set, then the database creates a system-named 100 MB file in
the default file destination specified in the parameter. The file has AUTOEXTEND enabled and an
unlimited maximum size.

Note

Media recovery does not recognize temp files.

See Also

• Oracle Automatic Storage Management Administrator's Guide for more
information on using Oracle ASM

• file_specification for a full description, including the AUTOEXTEND parameter and
the multiple file creation form of Oracle ASM filenames

Notes on Specifying Data Files and Temp Files

• You can create a tablespace within an Oracle ASM disk group by providing only the disk
group name in the datafile_tempfile_spec. In this case, Oracle ASM creates a data file in the
specified disk group with a system-generated filename. The data file is auto-extensible with
an unlimited maximum size and a default size of 100 MB. You can use the autoextend_clause
to override the default size.

• If you use one of the reference forms of the ASM_filename, which refers to an existing file,
then you must also specify REUSE.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 166 of 238

Note

On some operating systems, Oracle does not allocate space for a temp file until the
temp file blocks are actually accessed. This delay in space allocation results in faster
creation and resizing of temp files, but it requires that sufficient disk space is available
when the temp files are later used. To avoid potential problems, before you create or
resize a temp file, ensure that the available disk space exceeds the size of the new
temp file or the increased size of a resized temp file. The excess space should allow
for anticipated increases in disk space use by unrelated operations as well. Then
proceed with the creation or resizing operation.

See Also

• file_specification for a full description, including the AUTOEXTEND parameter

• "Enabling Autoextend for a Tablespace: Example" and "Creating Oracle Managed
Files: Examples"

permanent_tablespace_attrs

Use the permanent_tablespace_attrs clauses to set the attributes of the tablespace.

MINIMUM EXTENT Clause

This clause is valid only for a dictionary-managed tablespace. Specify the minimum size of an
extent in the tablespace. This clause lets you control free space fragmentation in the
tablespace by ensuring that the size of every used or free extent in a tablespace is at least as
large as, and is a multiple of, the value specified in the size_clause.

See Also

size_clause for information on that clause and Oracle Database VLDB and Partitioning
Guide for more information about using MINIMUM EXTENT to control fragmentation

BLOCKSIZE Clause

Use the BLOCKSIZE clause to specify a nonstandard block size for the tablespace. In order to
specify this clause, the DB_CACHE_SIZE and at least one DB_nK_CACHE_SIZE parameter must be
set, and the integer you specify in this clause must correspond with the setting of one
DB_nK_CACHE_SIZE parameter setting.

Restriction on BLOCKSIZE

You cannot specify nonstandard block sizes for a temporary tablespace or if you intend to
assign this tablespace as the temporary tablespace for any users.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 167 of 238

Note

Oracle recommend that you do not store tablespaces with a 2K block size on 4K
sector size disks, because performance degradation can result.

See Also

Oracle Database Reference for information on the DB_nK_CACHE_SIZE parameter and
Oracle Database Concepts for information on multiple block sizes

logging_clause

Specify the default logging attributes of all tables, indexes, materialized views, materialized
view logs, and partitions within the tablespace. This clause is not valid for a temporary or undo
tablespace.

If you omit this clause, then the default is LOGGING. The exception is creating a tablespace in a
PDB. In this case, if you omit this clause, then the tablespace uses the logging attribute of the
PDB. Refer to the logging_clause of CREATE PLUGGABLE DATABASE for more information.

The tablespace-level logging attribute can be overridden by logging specifications at the table,
index, materialized view, materialized view log, and partition levels.

See Also

logging_clause for a full description of this clause

FORCE LOGGING

Use this clause to put the tablespace into FORCE LOGGING mode. Oracle Database will log all
changes to all objects in the tablespace except changes to temporary segments, overriding
any NOLOGGING setting for individual objects. The database must be open and in READ WRITE
mode.

This setting does not exclude the NOLOGGING attribute. You can specify both FORCE LOGGING
and NOLOGGING. In this case, NOLOGGING is the default logging mode for objects subsequently
created in the tablespace, but the database ignores this default as long as the tablespace or
the database is in FORCE LOGGING mode. If you subsequently take the tablespace out of FORCE
LOGGING mode, then the NOLOGGING default is once again enforced.

Note

FORCE LOGGING mode can have performance effects. Refer to Oracle Database
Administrator's Guide for information on when to use this setting.

Restriction on Forced Logging

You cannot specify FORCE LOGGING for an undo or temporary tablespace.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 168 of 238

tablespace_encryption_clause

Use this clause to specify whether to create an encrypted or unencrypted tablespace. If you
create an encrypted tablespace, then Transparent Data Encryption (TDE) is applied to all data
files of the tablespace.

ENCRYPT | DECRYPT
Specify ENCRYPT to create an encrypted tablespace. Specify DECRYPT to create an
unencrypted tablespace.

If you omit this clause, then the value of the ENCRYPT_NEW_TABLESPACES initialization
parameter determines whether the tablespace is encrypted upon creation. Refer to Oracle
Database Reference for more information on the ENCRYPT_NEW_TABLESPACES initialization
parameter.

Before issuing this clause, you must already have loaded the TDE master key into database
memory or established a connection to the HSM. For more information, see the open_keystore
clause of ADMINISTER KEY MANAGEMENT .

tablespace_encryption_spec

Use USING 'encrypt_algorithm' to specify the encryption algorithm.

Valid algorithms are AES256, AES192, AES128, and 3DES168.

Specify 'cipher_mode' to determine how the TDE encrypted tablespace uses the tablespace key
to encrypt data blocks. You can specify XTS (an XEX-based mode with ciphertext stealing
mode) only with the encyrption algorithms AES128 and AES256. For AES192 use CFB.

If you set the COMPATIBLE initialization parameter to 12.2 or higher, then the following algorithms
are also valid: ARIA128, ARIA192, ARIA256, GOST256, and SEED128.

If you omit this clause, then the database uses AES128.

Starting with Oracle Database 23ai, the Transparent Data Encryption (TDE) decryption libraries
for the GOST and SEED algorithms are deprecated, and encryption to GOST and SEED are
desupported.

GOST 28147-89 has been deprecated by the Russian government, and SEED has been
deprecated by the South Korean government. If you need South Korean government-approved
TDE cryptography, then use ARIA instead. If you are using GOST 28147-89, then you must
decrypt and encrypt with another supported TDE algorithm. The decryption algorithms for
GOST 28147-89 and SEED are included in Oracle Database 23ai, but are deprecated, and the
GOST encryption algorithm is desupported with Oracle Database 23ai. If you are using GOST
or SEED for TDE encryption, then Oracle recommends that you decrypt and encrypt with
another algorithm before upgrading to Oracle Database 23ai. However, with the exception of
the HP Itanium platform, the GOST and SEED decryption libraries are available with Oracle
Database 23ai, so you can also decrypt after upgrading.

See Also

• "Creating an Encrypted Tablespace: Example"

• Encryption Conversions for Tablespaces and Databases

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 169 of 238

default_tablespace_params

The DEFAULT clause lets you specify default parameters for the tablespace.

default_table_compression

Use this clause to specify default compression of data for all tables created in the tablespace.
This clause is not valid for a temporary tablespace. The subclauses of this clause have the
same semantics as they have for the table_compression clause of the CREATE TABLE statement,
with one exception: The COMPRESS FOR OLTP clause here is equivalent to the ROW STORE
COMPRESS ADVANCED clause of CREATE TABLE. Refer to the table_compression clauses of
CREATE TABLE for the full semantics of these subclauses.

default_index_compression

Use this clause to specify default compression of data for all indexes created in the tablespace.
This clause is not valid for a temporary tablespace. The subclauses of this clause have the
same semantics as they have for the advanced_index_compression clause of the CREATE INDEX
statement. Refer to the advanced_index_compression clause of CREATE INDEX for the full
semantics of these subclauses.

inmemory_clause

Use the inmemory_clause to specify the default In-Memory Column Store (IM column store)
settings for all tables and materialized views created in the tablespace. This clause is not valid
for a temporary tablespace.

• Specify INMEMORY to enable all tables and materialized views for the IM column store.

You can optionally use the inmemory_attributes clause to specify how the table or materialized
view data is stored in the IM column store. The inmemory_attributes clause has the same
semantics in CREATE TABLE and CREATE TABLESPACE. Refer to the inmemory_attributes
clause of CREATE TABLE for the full semantics of this clause.

• Specify NO INMEMORY to disable all tables and materialized views for the IM column store.
This is the default.

ilm_clause

Use the ilm_clause to specify default Automatic Data Optimization settings for all tables created
in the tablespace. This clause is not valid for a temporary tablespace. Refer to the ilm_clause
of CREATE TABLE for the full semantics of this clause.

storage_clause

Use the storage_clause to specify storage parameters for all objects created in the tablespace.
This clause is not valid for a temporary tablespace or a locally managed tablespace. For a
dictionary-managed tablespace, you can specify the following storage parameters with this
clause: ENCRYPT, INITIAL, NEXT, MINEXTENTS, MAXEXTENTS, MAXSIZE, and PCTINCREASE. Refer
to storage_clause for more information.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 170 of 238

Note

The ENCRYPT clause of the storage_clause is supported for backward compatibility.
However, beginning with Oracle Database 12c Release 2 (12.2), you can instead
specify ENCRYPT in the tablespace_encryption_clause. Refer to
tablespace_encryption_clause for more information.

See Also

"Creating Basic Tablespaces: Examples"

ONLINE | OFFLINE Clauses

Use these clauses to determine whether the tablespace is online or offline. This clause is not
valid for a temporary tablespace.

ONLINE

Specify ONLINE to make the tablespace available immediately after creation to users who have
been granted access to the tablespace. This is the default.

OFFLINE

Specify OFFLINE to make the tablespace unavailable immediately after creation.

The data dictionary view DBA_TABLESPACES indicates whether each tablespace is online or
offline.

extent_management_clause

The extent_management_clause lets you specify how the extents of the tablespace will be managed.

Note

After you have specified extent management with this clause, you can change extent
management only by migrating the tablespace.

• AUTOALLOCATE specifies that the tablespace is system managed. Users cannot specify an
extent size. You cannot specify AUTOALLOCATE for a temporary tablespace.

• UNIFORM specifies that the tablespace is managed with uniform extents of SIZE bytes.The
default SIZE is 1 megabyte. All extents of temporary tablespaces are of uniform size, so this
keyword is optional for a temporary tablespace. However, you must specify UNIFORM in
order to specify SIZE. You cannot specify UNIFORM for an undo tablespace.

If you do not specify AUTOALLOCATE or UNIFORM, then the default is UNIFORM for temporary
tablespaces and AUTOALLOCATE for all other types of tablespaces.

If you do not specify the extent_management_clause, then Oracle Database interprets the MINIMUM
EXTENT clause and the DEFAULT storage_clause to determine extent management.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 171 of 238

Note

The DICTIONARY keyword is deprecated. It is still supported for backward compatibility.
However, Oracle recommends that you create locally managed tablespaces. Locally
managed tablespaces are much more efficiently managed than dictionary-managed
tablespaces. The creation of new dictionary-managed tablespaces is scheduled for
desupport.

See Also

Oracle Database Concepts for a discussion of locally managed tablespaces

Restrictions on Extent Management

Extent management is subject to the following restrictions:

• A permanent locally managed tablespace can contain only permanent objects. If you need
a locally managed tablespace to store temporary objects, for example, if you will assign it
as a user's temporary tablespace, then use the temporary_tablespace_clause.

• If you specify this clause, then you cannot specify DEFAULT storage_clause, MINIMUM EXTENT,
or the temporary_tablespace_clause.

See Also

Oracle Database Administrator's Guide for information on changing extent
management by migrating tablespaces and "Creating a Locally Managed Tablespace:
Example"

segment_management_clause

The segment_management_clause is relevant only for permanent, locally managed tablespaces. It lets
you specify whether Oracle Database should track the used and free space in the segments in
the tablespace using free lists or bitmaps. This clause is not valid for a temporary tablespace.

AUTO

Specify AUTO if you want the database to manage the free space of segments in the
tablespace using a bitmap. If you specify AUTO, then the database ignores any specification for
PCTUSED, FREELIST, and FREELIST GROUPS in subsequent storage specifications for objects in
this tablespace. This setting is called automatic segment-space management and is the
default.

MANUAL

Specify MANUAL if you want the database to manage the free space of segments in the
tablespace using free lists. Oracle strongly recommends that you do not use this setting and
that you create tablespaces with automatic segment-space management.

To determine the segment management of an existing tablespace, query the
SEGMENT_SPACE_MANAGEMENT column of the DBA_TABLESPACES or USER_TABLESPACES data
dictionary view.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 172 of 238

Note

If you specify AUTO segment management, then:

• If you set extent management to LOCAL UNIFORM, then you must ensure that each
extent contains at least 5 database blocks.

• If you set extent management to LOCAL AUTOALLOCATE, and if the database block
size is 16K or greater, then Oracle manages segment space by creating extents
with a minimum size of 5 blocks rounded up to 64K.

Restrictions on Automatic Segment-Space Management

This clause is subject to the following restrictions:

• You can specify this clause only for a permanent, locally managed tablespace.

• You cannot specify this clause for the SYSTEM tablespace.

See Also

• Oracle Automatic Storage Management Administrator's Guide for information on
automatic segment-space management and when to use it

• Oracle Database Reference for information on the data dictionary views

• "Specifying Segment Space Management for a Tablespace: Example"

flashback_mode_clause

Use this clause in conjunction with the ALTER DATABASE FLASHBACK clause to specify whether
the tablespace can participate in FLASHBACK DATABASE operations. This clause is useful if you
have the database in FLASHBACK mode but you do not want Oracle Database to maintain
Flashback log data for this tablespace.

This clause is not valid for temporary or undo tablespaces.

FLASHBACK ON

Specify FLASHBACK ON to put the tablespace in FLASHBACK mode. Oracle Database will save
Flashback log data for this tablespace and the tablespace can participate in a FLASHBACK
DATABASE operation. If you omit the flashback_mode_clause, then FLASHBACK ON is the default.

FLASHBACK OFF

Specify FLASHBACK OFF to take the tablespace out of FLASHBACK mode. Oracle Database will
not save any Flashback log data for this tablespace. You must take the data files in this
tablespace offline or drop them prior to any subsequent FLASHBACK DATABASE operation.
Alternatively, you can take the entire tablespace offline. In either case, the database does not
drop existing Flashback logs.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 173 of 238

Note

The FLASHBACK mode of a tablespace is independent of the FLASHBACK mode of an
individual table.

See Also

• Oracle Database Backup and Recovery User's Guide for information on Oracle
Flashback Database

• ALTER DATABASE and FLASHBACK DATABASE for information on setting the
FLASHBACK mode of the entire database and reverting the database to an earlier
version

• FLASHBACK TABLE and flashback_query_clause

lost_write_protection

Specify the lost_write_protection clause to create a storage area for lost write records. This storage
area or shadow tablespace must be created, before you can enable lost write protection on
datafiles and databases.

You may create as many shadow tablespaces as you need, and name them as you would any
other tablespace.

Example: Create a Shadow Tablespace in a Database

This example creates the shadow tablespace sh_lwp1 for lost write protection:

CREATE BIGFILE TABLESPACE sh_lwp1 DATAFILE sh_lwp1.df SIZE 10M BLOCKSIZE 8K
 LOST WRITE PROTECTION;

To enable lost write protection on datafiles and databases, you must specify the
lost_write_protection clause with the ALTER TABLESPACE, ALTER DATABASE, and ALTER PLUGGABLE
DATABASE statements.

undo_tablespace_clause

Specify UNDO to create an undo tablespace. When you run the database in automatic undo
management mode, Oracle Database manages undo space using the undo tablespace instead
of rollback segments. This clause is useful if you are now running in automatic undo
management mode but your database was not created in automatic undo management mode.

Oracle Database always assigns an undo tablespace when you start up the database in
automatic undo management mode. If no undo tablespace has been assigned to this instance,
then the database uses the SYSTEM rollback segment. You can avoid this by creating an undo
tablespace, which the database will implicitly assign to the instance if no other undo tablespace
is currently assigned.

The DATAFILE clause is described in "DATAFILE | TEMPFILE Clause".

extent_management_clause

It is unnecessary to specify the extent_management_clause when creating an undo tablespace,
because undo tablespaces must be locally managed tablespaces that use AUTOALLOCATE
extent management. If you do specify this clause, then you must specify EXTENT MANAGEMENT

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 174 of 238

LOCAL or EXTENT MANAGEMENT LOCAL AUTOALLOCATE, both of which are the same as omitting
this clause. Refer to extent_management_clause for the full semantics of this clause.

tablespace_retention_clause

This clause is valid only for undo tablespaces.

• RETENTION GUARANTEE specifies that Oracle Database should preserve unexpired undo
data in all undo segments of tablespace even if doing so forces the failure of ongoing
operations that need undo space in those segments. This setting is useful if you need to
issue an Oracle Flashback Query or an Oracle Flashback Transaction Query to diagnose
and correct a problem with the data.

• RETENTION NOGUARANTEE returns the undo behavior to normal. Space occupied by
unexpired undo data in undo segments can be consumed if necessary by ongoing
transactions. This is the default.

tablespace_encryption_clause

This clause has the same semantics for undo tablespaces as for permanent tablespaces.
Refer to tablespace_encryption_clause in the documentation on permanent tablespaces for full
information.

Restrictions on Undo Tablespaces

Undo tablespaces are subject to the following restrictions:

• You cannot create database objects in this tablespace. It is reserved for system-managed
undo data.

• The only clauses you can specify for an undo tablespace are the DATAFILE clause, the
tablespace_retention_clause, the tablespace_encryption_clause, and the extent_management_clause to
specify local AUTOALLOCATE extent management. You cannot specify local UNIFORM extent
management or dictionary extent management using the extent_management_clause. All undo
tablespaces are created permanent, read/write, and in logging mode. Values for MINIMUM
EXTENT and DEFAULT STORAGE are system generated.

See Also

• Oracle Database Administrator's Guide for information on automatic undo
management and undo tablespaces and Oracle Database Reference for
information on the UNDO_MANAGEMENT parameter

• CREATE DATABASE for information on creating an undo tablespace during
database creation, and ALTER TABLESPACE and DROP TABLESPACE

• "Creating an Undo Tablespace: Example"

temporary_tablespace_clause

Use this clause to create a temporary tablespace, which is an allocation of space in the
database that can contain transient data that persists only for the duration of a session. This
transient data cannot be recovered after process or instance failure.

The transient data can be user-generated schema objects such as temporary tables or system-
generated data such as temp space used by hash joins and sort operations. When a
temporary tablespace, or a tablespace group of which this tablespace is a member, is assigned

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 175 of 238

to a particular user, then Oracle Database uses the tablespace for sorting operations in
transactions initiated by that user.

You can create two types of temporary tablespaces:

• You can create a shared temporary tablespace by specifying the TEMPORARY TABLESPACE
clause. A shared temporary tablespace stores temp files on shared disk, so that the
temporary space is accessible to all database instances. Shared temporary tablespaces
were available in prior releases of Oracle Database and were called "temporary
tablespaces." Elsewhere in this guide, the term "temporary tablespace" refers to a shared
temporary tablespace unless specified otherwise.

• Starting with Oracle Database 12c Release 2 (12.2), you can create a local temporary
tablespace by specifying the LOCAL TEMPORARY TABLESPACE clause. Local temporary
tablespaces are useful in an Oracle Clusterware environment. They store a separate,
nonshared temp files for each database instance, which can improve I/O performance. A
local temporary tablespace must be a BIGFILE tablespace.

– Specify FOR ALL to instruct the database to create separate, nonshared temp files for
all HUB and LEAF nodes.

– Specify FOR LEAF to instruct the database to create separate nonshared temp files for
only LEAF nodes.

TEMPFILE

The TEMPFILE clause is described in "DATAFILE | TEMPFILE Clause".

tablespace_group_clause

This clause is relevant only for temporary tablespaces. Use this clause to determine whether
tablespace is a member of a tablespace group. A tablespace group lets you assign multiple
temporary tablespaces to a single user and increases the addressability of temporary
tablespaces.

• Specify a group name to indicate that tablespace is a member of this tablespace group. The
group name cannot be the same as tablespace or any other existing tablespace. If the
tablespace group already exists, then Oracle Database adds the new tablespace to that
group. If the tablespace group does not exist, then the database creates the group and
adds the new tablespace to that group.

• Specify an empty string (' ') to indicate that tablespace is not a member of any tablespace
group.

Restriction on Tablespace Groups

Tablespace groups support only shared temporary tablespaces. You cannot add a local
temporary tablespace to a tablespace group.

extent_management_clause

The extent_management_clause is described in extent_management_clause .

tablespace_encryption_clause

This clause has the same semantics for temporary tablespaces as for permanent tablespaces.
Refer to tablespace_encryption_clause in the documentation on permanent tablespaces for full
information.

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 176 of 238

See Also

• ALTER TABLESPACE and "Adding a Temporary Tablespace to a Tablespace
Group: Example" for information on adding a tablespace to a tablespace group

• CREATE USER for information on assigning a temporary tablespace to a user

• Oracle Database Administrator's Guide for more information on tablespace groups

Restrictions on Temporary Tablespaces

The data stored in temporary tablespaces persists only for the duration of a session.
Therefore, only a subset of the CREATE TABLESPACE clauses are relevant for temporary
tablespaces. The only clauses you can specify for a temporary tablespace are the TEMPFILE
clause, the tablespace_group_clause, the extent_management_clause, and the tablespace_encryption_clause.

Examples

These examples assume that your database is using 8K blocks.

Creating a Bigfile Tablespace: Example

The following example creates a bigfile tablespace bigtbs_01 with a data file bigtbs_f1.dbf of 20
MB:

CREATE BIGFILE TABLESPACE bigtbs_01
 DATAFILE 'bigtbs_f1.dbf'
 SIZE 20M AUTOEXTEND ON;

Creating an Undo Tablespace: Example

The following example creates a 10 MB undo tablespace undots1:

CREATE UNDO TABLESPACE undots1
 DATAFILE 'undotbs_1a.dbf'
 SIZE 10M AUTOEXTEND ON
 RETENTION GUARANTEE;

Creating a Temporary Tablespace: Example

This statement shows how the temporary tablespace that serves as the default temporary
tablespace for database users in the sample database was created:

CREATE TEMPORARY TABLESPACE temp_demo
 TEMPFILE 'temp01.dbf' SIZE 5M AUTOEXTEND ON;

Assuming that the default database block size is 2K, and that each bit in the map represents
one extent, then each bit maps 2,500 blocks.

The following example sets the default location for data file creation and then creates a
tablespace with an Oracle-managed temp file in the default location. The temp file is 100 M
and is autoextensible with unlimited maximum size. These are the default values for Oracle
Managed Files:

ALTER SYSTEM SET DB_CREATE_FILE_DEST = '$ORACLE_HOME/rdbms/dbs';

CREATE TEMPORARY TABLESPACE tbs_05;

Adding a Temporary Tablespace to a Tablespace Group: Example

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 177 of 238

The following statement creates the tbs_temp_02 temporary tablespace as a member of the
tbs_grp_01 tablespace group. If the tablespace group does not already exist, then Oracle
Database creates it during execution of this statement:

CREATE TEMPORARY TABLESPACE tbs_temp_02
 TEMPFILE 'temp02.dbf' SIZE 5M AUTOEXTEND ON
 TABLESPACE GROUP tbs_grp_01;

Creating Basic Tablespaces: Examples

This statement creates a tablespace named tbs_01 with one data file:

CREATE TABLESPACE tbs_01
 DATAFILE 'tbs_f2.dbf' SIZE 40M
 ONLINE;

This statement creates tablespace tbs_03 with one data file and allocates every extent as a
multiple of 500K:

CREATE TABLESPACE tbs_03
 DATAFILE 'tbs_f03.dbf' SIZE 20M
 LOGGING;

Enabling Autoextend for a Tablespace: Example

This statement creates a tablespace named tbs_02 with one data file. When more space is
required, 500 kilobyte extents will be added up to a maximum size of 100 megabytes:

CREATE TABLESPACE tbs_02
 DATAFILE 'diskb:tbs_f5.dbf' SIZE 500K REUSE
 AUTOEXTEND ON NEXT 500K MAXSIZE 100M;

Creating a Locally Managed Tablespace: Example

The following statement assumes that the database block size is 2K.

CREATE TABLESPACE tbs_04 DATAFILE 'file_1.dbf' SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

This statement creates a locally managed tablespace in which every extent is 128K and each
bit in the bit map describes 64 blocks.

The following statement creates a locally managed tablespace with uniform extents and shows
an example of a table stored in that tablespace:

CREATE TABLESPACE lmt1 DATAFILE 'lmt_file2.dbf' SIZE 100m REUSE
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M;

CREATE TABLE lmt_table1 (col1 NUMBER, col2 VARCHAR2(20))
 TABLESPACE lmt1 STORAGE (INITIAL 2m);

The initial segment size of the table is 2M.

The following example creates a locally managed tablespace without uniform extents:

CREATE TABLESPACE lmt2 DATAFILE 'lmt_file3.dbf' SIZE 100m REUSE
 EXTENT MANAGEMENT LOCAL;

CREATE TABLE lmt_table2 (col1 NUMBER, col2 VARCHAR2(20))
 TABLESPACE lmt2 STORAGE (INITIAL 2m MAXSIZE 100m);

Chapter 15
CREATE TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 178 of 238

The initial segment size of the table is 2M. Oracle Database determines the size of each extent
and the total number of extents allocated to satisfy the initial segment size. The segment's
maximum size is limited to 100M.

Creating an Encrypted Tablespace: Example

In the following example, the first statement enables encryption for the database by opening
the wallet. The second statement creates an encrypted tablespace.

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "wallet_password";

CREATE TABLESPACE encrypt_ts
 DATAFILE '$ORACLE_HOME/dbs/encrypt_df.dbf' SIZE 1M
 ENCRYPTION USING 'AES256' ENCRYPT;

The following example creates a tablespace encts2 using the encryption algoritm AES256 and
cipher mode XTS:

CREATE TABLESPACE encts2 DATAFILE ‘encts2.f’ SIZE 1G ENCRYPTION USING AES256 MODE ‘XTS’ ENCRYPT;

Specifying Segment Space Management for a Tablespace: Example

The following example creates a tablespace with automatic segment-space management:

CREATE TABLESPACE auto_seg_ts DATAFILE 'file_2.dbf' SIZE 1M
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO;

Creating Oracle Managed Files: Examples

The following example sets the default location for data file creation and creates a tablespace
with a data file in the default location. The data file is 100M and is autoextensible with an
unlimited maximum size:

ALTER SYSTEM SET DB_CREATE_FILE_DEST = '$ORACLE_HOME/rdbms/dbs';

CREATE TABLESPACE omf_ts1;

The following example creates a tablespace with an Oracle-managed data file of 100M that is
not autoextensible:

CREATE TABLESPACE omf_ts2 DATAFILE AUTOEXTEND OFF;

CREATE TABLESPACE SET

Note

This SQL statement is valid only if you are using Oracle Sharding. For more
information on Oracle Sharding, refer to Oracle Database Administrator’s Guide.

Purpose

Use the CREATE TABLESPACE SET statement to create a tablespace set. A tablespace set can be
used in a sharded database as a logical storage unit for one or more sharded tables and
indexes.

A tablespace set consists of multiple tablespaces distributed across shards in a shardspace.
The database automatically creates the tablespaces in a tablespace set. The number of

Chapter 15
CREATE TABLESPACE SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 179 of 238

tablespaces is determined automatically and is equal to the number of chunks in the
corresponding shardspace.

All tablespaces in a tablespace set are permanent bigfile tablespaces; a tablespace set does
not contain SYSTEM, undo, or temporary tablespaces. The database automatically creates one
data file for each tablespace. All tablespaces in a tablespace set share the same attributes.
You can modify attributes for all tablespaces in a tablespace set with the ALTER TABLESPACE
SET statement.

See Also

ALTER TABLESPACE SET and DROP TABLESPACE SET

Prerequisites

You must be connected to a shard catalog database as an SDB user.

You must have the CREATE TABLESPACE system privilege.

Syntax

create_tablespace_set::=

CREATE TABLESPACE SET tablespace_set

IN SHARDSPACE shardspace

USING TEMPLATE (

DATAFILE file_specification

,

permanent_tablespace_attrs)

;

Chapter 15
CREATE TABLESPACE SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 180 of 238

permanent_tablespace_attrs::=

MINIMUM EXTENT size_clause

BLOCKSIZE integer

K

logging_clause

FORCE LOGGING

tablespace_encryption_clause

default_tablespace_params

ONLINE

OFFLINE

extent_management_clause

segment_management_clause

flashback_mode_clause

lost_write_protection

(file_specification::=, See the following clauses of CREATE TABLESPACE: logging_clause::=,
tablespace_encryption_clause::=, default_tablespace_params::=,
extent_management_clause::=, segment_management_clause::=, flashback_mode_clause::=)

Semantics

tablespace_set

Specify the name of the tablespace set to be created. The name must satisfy the requirements
listed in Database Object Naming Rules .

IN SHARDSPACE

Specify this clause if you are using composite sharding. For shardspace_name, specify the name of
the shardspace in which the tablespace set is to be created.

Omit this clause if you are using system-managed sharding. In this case, the tablespace set is
created in the default shardspace for the sharded database.

USING TEMPLATE

The USING TEMPLATE clause allows you to specify attributes for the tablespaces in the
tablespace set.

The DATAFILE and permanent_tablespace_attrs clauses have the same semantics here as for the
CREATE TABLESPACE statement, with the following exceptions:

• For the DATAFILE file_specification clause, you can specify only the SIZE clause and the
autoextend_clause.

• You cannot specify the MINIMUM EXTENT size_clause.

• For the segment_management_clause, you can specify only SEGMENT SPACE MANAGEMENT AUTO.
The MANUAL setting is not supported.

Chapter 15
CREATE TABLESPACE SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 181 of 238

See Also

file_specification and permanent_tablespace_attrs in the documentation on CREATE
TABLESPACE for the full semantics of these clauses

Examples

Creating a Tablespace Set: Example

The following statement creates tablespace set ts1:

CREATE TABLESPACE SET ts1
 IN SHARDSPACE sgr1
 USING TEMPLATE
 (DATAFILE SIZE 100m
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO
);

CREATE TRIGGER
Purpose

Triggers are defined using PL/SQL. Therefore, this section provides some general information
but refers to Oracle Database PL/SQL Language Reference for details of syntax and
semantics.

Use the CREATE TRIGGER statement to create a database trigger, which is:

• A stored PL/SQL block associated with a table, a schema, or the database or

• An anonymous PL/SQL block or a call to a procedure implemented in PL/SQL or Java

Oracle Database automatically executes a trigger when specified conditions occur.

See Also

ALTER TRIGGER and DROP TRIGGER

Prerequisites

To create a trigger in your own schema on a table in your own schema or on your own schema
(SCHEMA), you must have the CREATE TRIGGER system privilege.

To create a trigger in any schema on a table in any schema, or on another user's schema
(schema.SCHEMA), you must have the schema level CREATE ANY TRIGGER privilege both in the
schema where the trigger is created and in the schema where table resides, or you must have
the CREATE ANY TRIGGER system privilege.

In addition to the preceding privileges, to create a trigger on DATABASE, you must have the
ADMINISTER DATABASE TRIGGER system privilege.

To create a trigger on a pluggable database (PDB), the current container must be that PDB
and you must have the ADMINISTER DATABASE TRIGGER system privilege. For information about
PDBs, see Oracle Database Administrator's Guide.

Chapter 15
CREATE TRIGGER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 182 of 238

In addition to the preceding privileges, to create a crossedition trigger, you must be enabled for
editions. For information about enabling editions for a user, see Oracle Database Development
Guide.

If the trigger issues SQL statements or calls procedures or functions, then the owner of the
trigger must have the privileges necessary to perform these operations. These privileges must
be granted directly to the owner rather than acquired through roles.

Syntax

Triggers are defined using PL/SQL. Therefore, the syntax diagram in this book shows only the
SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the PL/SQL
syntax, semantics, and examples.

create_trigger::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

TRIGGER

IF NOT EXISTS

plsql_trigger_source

(plsql_trigger_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the trigger if it already exists. Use this clause to change the
definition of an existing trigger without first dropping it.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the trigger does not exist, a new trigger is created at the end of the statement.

• If the trigger exists, this is the trigger you have at the end of the statement. A new one is
not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the trigger is an editioned or noneditioned object if
editioning is enabled for the schema object type TRIGGER in schema. The default is EDITIONABLE.
For information about editioned and noneditioned objects, see Oracle Database Development
Guide.

Restriction on NONEDITIONABLE

You cannot specify NONEDITIONABLE for a crossedition trigger.

Chapter 15
CREATE TRIGGER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 183 of 238

plsql_trigger_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_trigger_source.

CREATE TRUE CACHE
Purpose

Use CREATE TRUE CACHE to internally create and initialize the run-time management files
required for True Cache, and also open True Cache for service. The set of run-time
management files for True Cache operation include controlfile, SPFILE and tempfiles.

Prerequisites

• You must set the initialization parameter TRUE_CACHE to TRUE to be in a True Cache
environment.

• You must start the database in NOMOUNT mode.

See Also

True Cache User's Guide

Syntax

CREATE TRUE CACHE

Semantics

To drop True Cache use DROP DATABASE.

CREATE TYPE
Purpose

Object types are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Note

Starting with Oracle Database 23ai, the SQLJ method of embedding SQL statements
in Java code is deprecated. Oracle recommends using the Java Database
Connectivity (JDBC) APIs instead of SQLJ.

Use the CREATE TYPE statement to create the specification of an object type, a SQLJ object
type, a named varying array (varray), a nested table type, or an incomplete object type.
You create object types with the CREATE TYPE and the CREATE TYPE BODY statements. The

Chapter 15
CREATE TRUE CACHE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 184 of 238

CREATE TYPE statement specifies the name of the object type, its attributes, methods, and other
properties. The CREATE TYPE BODY statement contains the code for the methods that
implement the type.

Note

• If you create an object type for which the type specification declares only attributes
but no methods, then you need not specify a type body.

• If you create a SQLJ object type, then you cannot specify a type body. The
implementation of the type is specified as a Java class.

An incomplete type is a type created by a forward type definition. It is called "incomplete"
because it has a name but no attributes or methods. It can be referenced by other types, and
so can be used to define types that refer to each other. However, you must fully specify the
type before you can use it to create a table or an object column or a column of a nested table
type.

See Also

• CREATE TYPE BODY for information on creating the member methods of a type

• Oracle Database Object-Relational Developer's Guide for more information about
objects, incomplete types, varrays, and nested tables

Prerequisites

To create a type in your own schema, you must have the CREATE TYPE system privilege. To
create a type in another user's schema, you must have the CREATE ANY TYPE system privilege.
You can acquire these privileges explicitly or be granted them through a role.

To create a subtype, you must have the UNDER ANY TYPE system privilege or the UNDER object
privilege on the supertype.

The owner of the type must be explicitly granted the EXECUTE object privilege in order to
access all other types referenced within the definition of the type, or the type owner must be
granted the EXECUTE ANY TYPE system privilege. The owner cannot obtain these privileges
through roles.

If the type owner intends to grant other users access to the type, then the owner must be
granted the EXECUTE object privilege on the referenced types with the GRANT OPTION or the
EXECUTE ANY TYPE system privilege with the ADMIN OPTION. Otherwise, the type owner has
insufficient privileges to grant access on the type to other users.

User-Defined Data Types Declared as Non-Persistable Data Types

You can specify a user-defined data type as non-persistable when creating the data type.
Instances of non-persistable types cannot persist on disk. Perisistable data types include the
following:

• ANSI-supported data types, for example NUMERIC, DECIMAL, REAL.

• Oracle built-in data types, for example NUMBER, VARCHAR2, TIMESTAMP.

• Oracle-supplied data types, for example ANYDATA, XML Type, ORDImage.

Chapter 15
CREATE TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 185 of 238

Rules For SQL User-Defined Data Types

• A persistable type cannot have attributes or elements of non-persistable types.

• A non-persistable type can have attributes or elements of both persistable and non-
persistable types.

• A sub-type must inherit the persistence property from its super type.

• A REF type is persistable and can hold references only to objects of persistable types.

• You cannot persist instances of non-persistable types on disk. If you create a table with a
type that has been declared as non-persistable, the CREATE TABLE statement will fail. The
following operations will likewise fail:

– Create or alter a relational table with columns of non-persistable types.

– Create an object table with columns of non-persistable types.

– Store instances of non-persistable types in an ANYDATA instance which is persisted on
disk.

You can specify unique PL/SQL attributes in the CREATE TYPE statement in the PL/SQL context
only.

Syntax

Types are defined using PL/SQL. Therefore, the syntax diagram in this book shows only the
SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the PL/SQL
syntax, semantics, and examples.

create_type::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

TYPE

IF NOT EXISTS

plsql_type_source

(plsql_type_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the type if it already exists. Use this clause to change the
definition of an existing type without first dropping it.

Users previously granted privileges on the re-created object type can use and reference the
object type without being granted privileges again.

If any function-based indexes depend on the type, then Oracle Database marks the indexes
DISABLED.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the type does not exist, a new type is created at the end of the statement.

• If the type exists, this is the type you have at the end of the statement. A new one is not
created because the older one is detected.

Chapter 15
CREATE TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 186 of 238

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the type is an editioned or noneditioned object if
editioning is enabled for the schema object type TYPE in schema.The default is EDITIONABLE. For
information about editioned and noneditioned objects, see Oracle Database Development
Guide.

plsql_type_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_type_source.

CREATE TYPE BODY
Purpose

Type bodies are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the CREATE TYPE BODY to define or implement the member methods defined in the object
type specification. You create object types with the CREATE TYPE and the CREATE TYPE BODY
statements. The CREATE TYPE statement specifies the name of the object type, its attributes,
methods, and other properties. The CREATE TYPE BODY statement contains the code for the
methods that implement the type.

For each method specified in an object type specification for which you did not specify the
call_spec, you must specify a corresponding method body in the object type body.

Note

If you create a SQLJ object type, then specify it as a Java class.

See Also

• CREATE TYPE for information on creating a type specification

• ALTER TYPE for information on modifying a type specification

Prerequisites

Every member declaration in the CREATE TYPE specification for object types must have a
corresponding construct in the CREATE TYPE or CREATE TYPE BODY statement.

To create or replace a type body in your own schema, you must have the CREATE TYPE or the
CREATE ANY TYPE system privilege. To create an object type in another user's schema, you

Chapter 15
CREATE TYPE BODY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 187 of 238

must have the CREATE ANY TYPE system privilege. To replace an object type in another user's
schema, you must have the DROP ANY TYPE system privilege.

Syntax

Type bodies are defined using PL/SQL. Therefore, the syntax diagram in this book shows only
the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the PL/SQL
syntax, semantics, and examples.

create_type_body::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

TYPE BODY

IF NOT EXISTS

plsql_type_body_source

(plsql_type_body_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the type body if it already exists. Use this clause to change
the definition of an existing type body without first dropping it.

Users previously granted privileges on the re-created object type body can use and reference
the object type body without being granted privileges again.

You can use this clause to add new member subprogram definitions to specifications added
with the ALTER TYPE ... REPLACE statement.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the type body does not exist, a new type body is created at the end of the statement.

• If the type body exists, this is the type body you have at the end of the statement. A new
one is not created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

[EDITIONABLE | NONEDITIONABLE]

If you do not specify this clause, then the type body inherits EDITIONABLE or NONEDITIONABLE
from the type specification. If you do specify this clause, then it must match that of the type
specification.

Chapter 15
CREATE TYPE BODY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 188 of 238

plsql_type_body_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_type_body_source.

CREATE USER
Purpose

Use the CREATE USER statement to create and configure a database user, which is an account
through which you can log in to the database, and to establish the means by which Oracle
Database permits access by the user.

You can issue this statement in an Oracle Automatic Storage Management (Oracle ASM)
cluster to add a user and password combination to the password file that is local to the Oracle
ASM instance of the current node. Each node's Oracle ASM instance can use this statement to
update its own password file. The password file itself must have been created by the ORAPWD
utility.

You can enable a user to connect to the database through a proxy application or application
server. For syntax and discussion, refer to ALTER USER .

Prerequisites

You must have the CREATE USER system privilege. When you create a user with the CREATE
USER statement, the user's privilege domain is empty. To log on to Oracle Database, a user
must have the CREATE SESSION system privilege. Therefore, after creating a user, you should
grant the user at least the CREATE SESSION system privilege. Refer to GRANT for more
information.

Only a user authenticated AS SYSASM can issue this command to modify the Oracle ASM
instance password file.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root. To specify
CONTAINER = CURRENT, the current container must be a pluggable database (PDB).

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 189 of 238

Syntax

create_user::=

CREATE USER

IF NOT EXISTS

user

IDENTIFIED

BY password

HTTP

DIGEST
ENABLE

DISABLE AND FACTOR ’ auth_method ’ AS ’ external_name ’

EXTERNALLY

AS ’
certificate_DN

kerberos_principal_name
’

GLOBALLY

AS ’

directory_DN

AZURE_USER

AZURE_ROLE
= value

IAM_GROUP_NAME

IAM_PRINCIPAL_NAME

IAM_PRINCIPAL_OCID

= value

’

NO AUTHENTICATION

DEFAULT COLLATION collation_name

DEFAULT TABLESPACE tablespace

LOCAL

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

QUOTA
size_clause

UNLIMITED
ON tablespace

PROFILE profile

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK

ENABLE EDITIONS

CONTAINER =
CURRENT

ALL

READ
ONLY

WRITE

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 190 of 238

(size_clause::=)

Semantics

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the user does not exist, a new user is created at the end of the statement.

• If the user exists, this is the user you have at the end of the statement. A new one is not
created because the older one is detected.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

user

Specify the name of the user to be created. This name can contain only characters from your
database character set and must follow the rules described in the section "Database Object
Naming Rules ". Oracle recommends that the user name contain at least one single-byte
character regardless of whether the database character set also contains multibyte characters.

In a non-CDB, a user name cannot begin with C## or c##.

Note

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers to
a non-CDB from a previous release.

In a CDB, the requirements for a user name are as follows:

• The name of a common user must begin with characters that are a case-insensitive
match to the prefix specified by the COMMON_USER_PREFIX initialization parameter. By
default, the prefix is C##.

• The name of a local user must not begin with characters that are a case-insensitive match
to the prefix specified by the COMMON_USER_PREFIX initialization parameter. Regardless of
the value of COMMON_USER_PREFIX, the name of a local user can never begin with C## or
c##.

Note

If the value of COMMON_USER_PREFIX is an empty string, then there are no
requirements for common or local user names with one exception: the name of a local
user can never begin with C## or c##. Oracle recommends against using an empty
string value because it might result in conflicts between the names of local and
common users when a PDB is plugged into a different CDB, or when opening a PDB
that was closed when a common user was created.

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 191 of 238

Note

Oracle recommends that user names and passwords be encoded in ASCII or EBCDIC
characters only, depending on your platform.

See Also

"Creating a Database User: Example"

IDENTIFIED Clause

The IDENTIFIED clause lets you indicate how Oracle Database authenticates the user.

BY password

The BY password clause lets you creates a local user and indicates that the user must specify
password to log on to the database. Passwords are case sensitive and their maximum length is
1024 bytes. Any subsequent CONNECT string used to connect this user to the database must
specify the password using the same case (upper, lower, or mixed) that is used in this CREATE
USER statement or a subsequent ALTER USER statement. Passwords can contain any single-
byte, multibyte, or special characters, or any combination of these, from your database
character set, with the exception of the double quotation mark (") and the return character . If a
password starts with a non-alphabetic character, or contains a character other than an
alphanumeric character, the underscore (_), dollar sign ($), or pound sign (#), then it must be
enclosed in double quotation marks. Otherwise, enclosing a password in double quotation
marks is optional.

See Also

Oracle Database Security Guide for more information about case-sensitive passwords,
password complexity, and other password guidelines

Passwords must follow the rules described in the section "Database Object Naming Rules ",
unless you are using one of the three Oracle Database password complexity verification
routines. These routines requires a more complex combination of characters than the normal
naming rules permit. You implement these routines with the UTLPWDMG.SQL script, which is
further described in Oracle Database Security Guide.

Note

Oracle recommends that user names and passwords be encoded in ASCII or EBCDIC
characters only, depending on your platform.

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 192 of 238

See Also

Oracle Database Security Guide to for a detailed discussion of password management
and protection

[HTTP] DIGEST Clause

This clause lets you ENABLE or DISABLE HTTP Digest Access Authentication for the user. The
default is DISABLE.

The HTTP keyword is optional and is provided for semantic clarity.

Restriction on the [HTTP] DIGEST Clause

You cannot specify this clause for external or global users.

AND FACTOR 'auth_method' AS 'external_name'

Use this clause to specify second factor authentication for native database users.

auth_method can be one of cert_auth, duo_push, oma_push, totp_auth.

For more see Configuring Authentication of the Database Security Guide.

EXTERNALLY Clause

Specify EXTERNALLY to create an external user. Such a user must be authenticated by an
external service, such as an operating system or a third-party service. In this case, Oracle
Database relies on authentication by the operating system or third-party service to ensure that
a specific external user has access to a specific database user.

The IDENTIFIED EXTERNALLY clause setting is unique to the user that is specified in the CREATE
USER statement. This means that you cannot create another user with the same name used in
a previous user creation statement.

The following example creates the external user jsmith:

CREATE USER jsmith IDENTIFIED EXTERNALLY AS "CN=foo,DNQ=123,SERIAL=234";

Now create another external user tjones with the same name
CN=foo,dnQualifier=123,SERIALNUMER=234 :

CREATE USER tjones IDENTIFIED EXTERNALLY AS "CN=foo,dnQualifier=123,SERIALNUMER=234";

The user tjones is not created because the command fails with the error: User with same external
name already exists because the CN=foo,dnQualifier=123,SerialNumber=234 setting has already been
used. This happens because dnq= is converted to dnqualifier= and serial= is converted to
serialnumber= internally, and therefore, CN=foo,DNQ=123,SERIAL=234 and
CN=foo,dnQualifier=123,SerialNumber=234 are treated as the same user.

AS 'certificate_DN'

This clause is required for and used for SSL-authenticated external users only. The certificate_DN
is the distinguished name in the user's PKI certificate in the user's wallet. The maximum length
of certificate_DN is 1024 characters.

AS 'kerberos_principal_name'

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 193 of 238

This clause is required for and used for Kerberos-authenticated external users only. The
maximum length of kerberos_principal_name is 1024 characters.

Note

Oracle strongly recommends that you do not use IDENTIFIED EXTERNALLY with
operating systems that have inherently weak login security.

Restriction on Creating External Users

Oracle ASM does not support the creation of external users.

See Also

• Oracle Database Enterprise User Security Administrator's Guide for more
information on externally identified users

• "Creating External Database Users: Examples"

GLOBALLY Clause

The GLOBALLY clause lets you create a global user. Such a user must be authorized by the
enterprise directory service (Oracle Internet Directory).

The directory_DN string can take one of two forms:

• The X.509 name at the enterprise directory service that identifies this user. It should be of
the form CN=username,other_attributes, where other_attributes is the rest of the user's distinguished
name (DN) in the directory. This form uses the LDAP Data Interchange Format (LDIF) and
creates a private global schema.

• A null string (' ') indicating that the enterprise directory service will map authenticated
global users to this database schema with the appropriate roles. This form is the same as
specifying the GLOBALLY keyword alone and creates a shared global schema.

The maximum length of directory_DN is 1024 characters.

You can control the ability of an application server to connect as the specified user and to
activate that user's roles using the ALTER USER statement.

You can exclusively map an Oracle Database schema to a Microsoft Azure AD user using
GLOBALLY AS AZURE_USER. You must log in to the Oracle Autonomous Database instance as a
user who has been granted the CREATE USER or ALTER USER system privilege.

Example: Map Oracle Database Schema to a Microsoft Azure AD User

The example creates a new database schema user named peter_fitch and maps this user to an
existing Azure AD user named peter.fitch@example.com:

CREATE USER peter_fitch IDENTIFIED GLOBALLY AS 'AZURE_USER=peter.fitch@example.com';

Example: Map a Shared Oracle Database Schema to an App Role

The example creates a new database global user account (schema) named dba_azure and maps
it to an existing Azure AD application role named AZURE_DBA:

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 194 of 238

CREATE USER dba_azure IDENTIFIED GLOBALLY AS 'AZURE_ROLE=AZURE_DBA';

Restriction on Creating Global Users

Oracle ASM does not support the creation of global users.

See Also

• Oracle Database Security Guide for more information on global users

• Authenticating and Authorizing Microsoft Azure Active Directory Users for Oracle
Autonomous Databases

• ALTER USER

• "Creating a Global Database User: Example"

NO AUTHENTICATION Clause

Use the NO AUTHENTICATION clause to create a schema that does not have a password and
cannot be logged into. This is intended for schema only accounts and reduces maintenance by
removing default passwords and any requirement to rotate the password.

DEFAULT COLLATION Clause

This clause lets you specify the default collation for the schema owned by the user. The default
collation is assigned to tables, views, and materialized views that are subsequently created in
the schema.

For collation_name, specify a valid named collation or pseudo-collation.

If you omit this clause, then the default collation for the schema owned by the user is set to the
USING_NLS_COMP pseudo-collation.

You can override this clause and assign a different default collation to a particular table,
materialized view, or view by specifying the DEFAULT COLLATION clause of the CREATE or ALTER
statement for the table, materialized view, or view. You can also override the default collations
of all schemas for the duration of a database session by setting the default collation for the
session. See the DEFAULT_COLLATION clause of ALTER SESSION for more details.

You can specify the DEFAULT COLLATION clause only if the COMPATIBLE initialization parameter
is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

DEFAULT TABLESPACE Clause

Specify the default tablespace for objects that are created in the user's schema. If you omit this
clause, then the user's objects are stored in the database default tablespace. If no default
tablespace has been specified for the database, then the user's objects are stored in the
SYSTEM tablespace.

Restriction on Default Tablespaces

You cannot specify a locally managed temporary tablespace, including an undo tablespace, or
a dictionary-managed temporary tablespace, as a user's default tablespace.

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 195 of 238

See Also

• CREATE TABLESPACE for more information on tablespaces in general and undo
tablespaces in particular

• Oracle Database Security Guide for more information on assigning default
tablespaces to users

[LOCAL] TEMPORARY TABLESPACE Clause

Specify the tablespace or tablespace group for the user's temporary segments. If you omit this
clause, then the user's temporary segments are stored in the database default temporary
tablespace or, if none has been specified, in the SYSTEM tablespace.

• Specify tablespace to indicate the user's temporary tablespace. Specify TEMPORARY
TABLESPACE to indicate a shared temporary tablespace. Specify LOCAL TEMPORARY
TABLESPACE to indicate a local temporary tablespace. If you are connected to a CDB, then
you can specify CDB$DEFAULT to use the CDB-wide default temporary tablespace.

• Specify tablespace_group_name to indicate that the user can save temporary segments in any
tablespace in the tablespace group specified by tablespace_group_name. Local temporary
tablespaces cannot be part of a tablespace group.

Restrictions on Temporary Tablespace

This clause is subject to the following restrictions:

• The tablespace must be a temporary tablespace and must have a standard block size.

• The tablespace cannot be an undo tablespace or a tablespace with automatic segment-
space management.

See Also

• Oracle Database Administrator's Guide for information about tablespace groups
and Oracle Database Security Guide for information on assigning temporary
tablespaces to users

• CREATE TABLESPACE for more information on undo tablespaces and segment
management

• "Assigning a Tablespace Group: Example"

QUOTA Clause

Use the QUOTA clause to specify the maximum amount of space the user can allocate in the
tablespace.

A CREATE USER statement can have multiple QUOTA clauses for multiple tablespaces.

UNLIMITED lets the user allocate space in the tablespace without bound.

The maximum amount of space that you can specify is 2 terabytes (TB). If you need more
space, then specify UNLIMITED.

Restriction on the QUOTA Clause

You cannot specify this clause for a temporary tablespace.

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 196 of 238

See Also

size_clause for information on that clause and Oracle Database Security Guide for
more information on assigning tablespace quotas

PROFILE Clause

Specify the profile you want to assign to the user. The profile limits the amount of database
resources the user can use. If you omit this clause, then Oracle Database assigns the DEFAULT
profile to the user.

You can use the CREATE USER statement to create a new user, and associate the user with a
profile that has the PASSWORD_ROLLOVER_TIME configured.

You must first set the password rollover period using CREATE PROFILE or ALTER PROFILE.

In the example u1 is the user, with password p1. prof1 is the profile with
PASSWORD_ROLLOVER_TIME set.

CREATE USER u1 IDENTIFIED BY p1 PROFILE prof1 ;

Note

Oracle recommends that you use the Database Resource Manager to establish
database resource limits rather than SQL profiles. The Database Resource Manager
offers a more flexible means of managing and tracking resource use. For more
information on the Database Resource Manager, refer to Oracle Database
Administrator's Guide.

See Also

• GRANT and CREATE PROFILE

• Configuring Authentication

PASSWORD EXPIRE Clause

Specify PASSWORD EXPIRE if you want the user's password to expire. This setting forces the
user or the DBA to change the password before the user can log in to the database.

ACCOUNT Clause

Specify ACCOUNT LOCK to lock the user's account and disable access. Specify ACCOUNT
UNLOCK to unlock the user's account and enable access to the account. The default is
ACCOUNT UNLOCK.

ENABLE EDITIONS

This clause is not reversible. Specify ENABLE EDITIONS to allow the user to create multiple
versions of editionable objects in this schema using editions. Editionable objects in schemas
that are not editions-enabled cannot be editioned.

Note the following before enabling editions with ALTER USER:

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 197 of 238

• Enabling editions is not a live operation.

• When a database is upgraded from Release 11.2 to Release 12.1, users who were
enabled for editions in the pre-upgrade database are enabled for editions in the post-
upgrade database and the default schema object types are editionable in their schemas.
The default schema object types are displayed by the static data dictionary view
DBA_EDITIONED_TYPES . Users who were not enabled for editions in the pre-upgrade
database are not enabled for editions in the post-upgrade database and no schema object
types are editionable in their schemas.

• To see which users already have editions enabled, see the EDITIONS_ENABLED column of
the static data dictionary view DBA_USERS or USER_USERS .

Restriction on Enabling Editions

The FOR clause is ignored when used with ENABLE EDITIONS. This only applies to the CREATE
USER statement, not the ALTER USER statement.

You cannot enable editions for any schemas supplied by Oracle.

See Also

• Enabling Editions for a User

• Oracle Database Reference for more information about the V$EDITIONABLE_TYPES
dynamic performance view

CONTAINER Clause

The CONTAINER clause applies when you are connected to a CDB. However, it is not necessary
to specify the CONTAINER clause because its default values are the only allowed values.

• To create a common user, you must be connected to the root. You can optionally specify
CONTAINER = ALL, which is the default when you are connected to the root.

• To create a local user, you must be connected to a PDB. You can optionally specify
CONTAINER = CURRENT, which is the default when you are connected to a PDB.

While creating a common user, any default tablespace, temporary tablespace, or profile
specified using the following clauses must exist in all the containers belonging to the CDB:

• DEFAULT TABLESPACE

• TEMPORARY TABLESPACE

• QUOTA

• PROFILE

If these objects do not exist in all the containers, the CREATE USER statement fails.

READ ONLY | READ WRITE

Use this clause to set READ ONLY access to a local PDB user.

With read-only access, the local PDB user is not permitted to execute any write operations on
the PDB they connect to. The session operates as if the database is open in read-only mode.

Specify READ WRITE to set READ WRITE access to a local user.

You must have the CREATE USER privilege to execute this statement.

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 198 of 238

You can view the state of a local user in the *_USERS view.

Examples

All of the following examples use the example tablespace, which exists in the seed database and
is accessible to the sample schemas.

Creating a Database User: Example

If you create a new user with PASSWORD EXPIRE, then the user's password must be changed
before the user attempts to log in to the database. You can create the user sidney by issuing the
following statement:

CREATE USER sidney
 IDENTIFIED BY out_standing1
 DEFAULT TABLESPACE example
 QUOTA 10M ON example
 TEMPORARY TABLESPACE temp
 QUOTA 5M ON system
 PROFILE app_user
 PASSWORD EXPIRE;

The user sidney has the following characteristics:

• The password out_standing1

• Default tablespace example, with a quota of 10 megabytes

• Temporary tablespace temp

• Access to the tablespace SYSTEM, with a quota of 5 megabytes

• Limits on database resources defined by the profile app_user (which was created in
"Creating a Profile: Example")

• An expired password, which must be changed before sidney can log in to the database

Creating External Database Users: Examples

The following example creates an external user, who must be identified by an external source
before accessing the database:

CREATE USER app_user1
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE example
 QUOTA 5M ON example
 PROFILE app_user;

The user app_user1 has the following additional characteristics:

• Default tablespace example

• Default temporary tablespace example

• 5M of space on the tablespace example and unlimited quota on the temporary tablespace of
the database

• Limits on database resources defined by the app_user profile

To create another user accessible only by an operating system account, prefix the user name
with the value of the initialization parameter OS_AUTHENT_PREFIX. For example, if this value is
"ops$", then you can create the externally identified user external_user with the following
statement:

Chapter 15
CREATE USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 199 of 238

CREATE USER ops$external_user
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE example
 QUOTA 5M ON example
 PROFILE app_user;

Creating a Global Database User: Example

The following example creates a global user. When you create a global user, you can specify
the X.509 name that identifies this user at the enterprise directory server:

CREATE USER global_user
 IDENTIFIED GLOBALLY AS 'CN=analyst, OU=division1, O=oracle, C=US'
 DEFAULT TABLESPACE example
 QUOTA 5M ON example;

Creating a Common User in a CDB

The following example creates a common user called c##comm_user in a CDB. Before you run
this CREATE USER statement, ensure that the tablespaces example and temp_tbs exist in all of the
containers in the CDB.

CREATE USER c##comm_user
 IDENTIFIED BY comm_pwd
 DEFAULT TABLESPACE example
 QUOTA 20M ON example
 TEMPORARY TABLESPACE temp_tbs;

The user comm_user has the following additional characteristics:

• The password comm_pwd

• Default tablespace example, with a quota of 20 megabytes

• Temporary tablespace temp_tbs

CREATE VECTOR INDEX
Purpose

Vector indexes speed up vector searches and are either exact search indexes or approximate
search indexes. An exact search gives 100% accuracy at the cost of heavy compute
resources. Approximate search indexes, also called vector indexes, trade accuracy for
performance.

Vectors are grouped or connected together based on similarity, where similarity is determined
by their relative distance to each other. Greedy searches are done across these groups and
connections to find the best, closest match to the query vector being searched for. A search
using a vector index is called an approximate search.

There are two vector indexes supported in vector search: IVF (Inverted File) Flat index and
HNSW (Hierarchical Navigable Small Worlds) index. IVF Flat (also simply called IVF) is a
partitioned-based index, while HNSW is a graph-based index. All partition based indexes are
classifed as Neighbor Partition Vector Index, and all graph-based indexes are classifed as In-
Memory Neighbor Graph Vector Index.

Chapter 15
CREATE VECTOR INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 200 of 238

See Also

Create Vector Indexes of the AI Vector Search User's Guide

Syntax

CREATE VECTOR INDEX vector_index_name ON table_name (vector_column)

INCLUDE (covering_column

,

) GLOBAL

vector_index_organization_clause

WITH TARGET ACCURACY percentage_value

vector_index_parameters_clause

PARALLEL degree_of_parallelism

(vector_index_organization_clause::=,vector_index_parameters_clause::=,vector_index_para
meters_hnsw_clause::=,vector_index_parameters_ivf_clause::=)

vector_index_organization_clause::=

ORGANIZATION

INMEMORY

NEIGHBOR

GRAPH

NEIGHBOR

PARTITIONS

WITH DISTANCE metric name

vector_index_parameters_clause::=

PARAMETERS (
vector_index_parameters_hnsw_clause

vector_index_parameters_ivf_clause
)

vector_index_parameters_hnsw_clause::=

TYPE HNSW ,

NEIGHBORS

M

max_closest_vectors_connected ,

EFCONSTRUCTION

max_candidates_to_consider

Chapter 15
CREATE VECTOR INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 201 of 238

vector_index_parameters_ivf_clause::=

TYPE IVF ,

NEIGHBOR PARTITIONS number_of_partitions

SAMPLES_PER_PARTITION number_of_samples

MIN_VECTORS_PER_PARTITION min_number_of_vectors_per_partition

Semantics

INCLUDE

See Included Columns of the AI Vector Search User's Guide for semantics.

vector_index_parameters_hnsw_clause

HNSW Specific Parameters

NEIGHBORS and M are equivalent and represent the maximum number of neighbors a vector
can have on any layer. The last vertex has one additional flexibility that it can have up to 2M
neighbors.

EFCONSTRUCTION represents the maximum number of closest vector candidates considered at
each step of the search during insertion.

The valid range for HNSW vector index parameters are:

• ACCURACY: > 0 and <= 100

• DISTANCE: EUCLIDEAN, L2_SQUARED (aka EUCLIDEAN_SQUARED), COSINE, DOT, MANHATTAN,
HAMMING

If you do not specify DISTANCE metric_name, the default metric COSINE is used.

• TYPE : HNSW

• NEIGHBORS: >= 2 and <= 2048

• EFCONSTRUCTION: > 0 and <= 65535

vector_index_parameters_ivf_clause

IVF Parameters

NEIGHBOR PARTITIONS determines the number of centroid partitions that are created by the
index.

SAMPLE_PER_PARTITION decides the total number of vectors that are passed to the clustering
algorithm (number of samples per partition times the number of neighbor partitions). Note, that
passing all the vectors would significantly increase the total time to create the index. Instead,
aim to pass a subset of vectors that can capture the data distribution.

MIN_VECTORS_PER_PARTITION represents the target minimum number of vectors per partition.
Aim to trim out any partition that can end up with fewer than 100 vectors. This may result in
lesser number of centroids. Its values can range from 0 (no trimming of centroids) to
num_vectors (would result in 1 neighbor partition).

The valid range for IVF vector index parameters are:

Chapter 15
CREATE VECTOR INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 202 of 238

• ACCURACY: > 0 and <= 100

• DISTANCE: EUCLIDEAN, L2_SQUARED (aka EUCLIDEAN_SQUARED), COSINE, DOT, MANHATTAN,
HAMMING

If you do not specify DISTANCE metric_name, the default metric COSINE is used.

• TYPE : IVF

• NEIGHBOR PARTITIONS: >= 1 and <= 10000000

• SAMPLE_PER_PARTITION: from 1 to (num_vectors/neighbor_partitions)

• MIN_VECTORS_PER_PARTITION: from 0 (no trimming of centroid partitions) to total number of
vectors (would result in 1 centroid partition)

Examples

CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 95;

CREATE VECTOR INDEX galaxies_hnsw_idx ON galaxies (embedding) ORGANIZATION INMEMORY NEIGHBOR GRAPH
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type HNSW, neighbors 40, efconstruction 500);

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 95;

CREATE VECTOR INDEX galaxies_ivf_idx ON galaxies (embedding) ORGANIZATION NEIGHBOR PARTITIONS
DISTANCE COSINE
WITH TARGET ACCURACY 90 PARAMETERS (type IVF, neighbor partitions 10);

CREATE VIEW
Purpose

Use the CREATE VIEW statement to define a view, which is a logical table based on one or
more tables or views. A view contains no data itself. The tables upon which a view is based are
called base tables.

You can create an object view or a relational view that supports LOBs, object types, REF data
types, nested table, or varray types on top of the existing view mechanism. An object view is a
view of a user-defined type, where each row contains objects, each object with a unique object
identifier.

You can create a XMLType view, which is similar to an object view but displays data from
XMLSchema-based tables of XMLType.

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 203 of 238

See Also

• Oracle Database Concepts, Oracle Database Development Guide, and Oracle
Database Administrator's Guide for information on various types of views and their
uses

• Oracle XML DB Developer's Guide for information on XMLType views

• ALTER VIEW and DROP VIEW for information on modifying a view and removing
a view from the database

Prerequisites

To create a view in your own schema, you must have the CREATE VIEW system privilege. To
create a view in another user's schema, you must have the CREATE ANY VIEW system privilege.

To create a subview, you must have the UNDER ANY VIEW system privilege or the UNDER object
privilege on the superview.

The owner of the schema containing the view must have the privileges necessary to either
select (READ or SELECT privilege), insert, update, or delete rows from all the tables or views on
which the view is based. The owner must be granted these privileges directly, rather than
through a role.

To use the basic constructor method of an object type when creating an object view, one of the
following must be true:

• The object type must belong to the same schema as the view to be created.

• You must have the EXECUTE ANY TYPE system privileges.

• You must have the EXECUTE object privilege on that object type.

See Also

SELECT , INSERT , UPDATE , and DELETE for information on the privileges required
by the owner of a view on the base tables or views of the view being created

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 204 of 238

Syntax

create_view::=

CREATE

OR REPLACE

NO

FORCE

EDITIONING

EDITIONABLE

EDITIONING

NONEDITIONABLE

JSON COLLECTION

VIEW

IF NOT EXISTS schema .

view

SHARING =

METADATA

DATA

EXTENDED DATA

NONE

(
alias

VISIBLE

INVISIBLE inline_constraint

out_of_line_constraint

,

)

object_view_clause

XMLType_view_clause

DEFAULT COLLATION collation_name
BEQUEATH

CURRENT_USER

DEFINER

annotations_clause

AS subquery

subquery_restriction_clause

CONTAINER_MAP

CONTAINERS_DEFAULT

(inline_constraint::= and out_of_line_constraint::=, object_view_clause::=,
XMLType_view_clause::=, subquery::=—part of SELECT, subquery_restriction_clause::=,
annotations_clause)

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 205 of 238

object_view_clause::=

OF

schema .

type_name

WITH OBJECT
IDENTIFIER

ID

DEFAULT

(attribute

,

)

UNDER

schema .

superview

(

out_of_line_constraint

attribute inline_constraint

,

)

(inline_constraint::= and out_of_line_constraint::=)

XMLType_view_clause::=

OF XMLTYPE

XMLSchema_spec

WITH OBJECT
IDENTIFIER

ID

DEFAULT

(expr

,

)

XMLSchema_spec::=

XMLSCHEMA XMLSchema_URL

ELEMENT

element

XMLSchema_URL # element

STORE ALL VARRAYS AS

LOBS

TABLES

ALLOW

DISALLOW

NONSCHEMA

ALLOW

DISALLOW

ANYSCHEMA

annotations_clause::=

For the full syntax and semantics of the annotations_clause see annotations_clause.

subquery_restriction_clause::=

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 206 of 238

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

Semantics

OR REPLACE

Specify OR REPLACE to re-create the view if it already exists. You can use this clause to change
the definition of an existing view without dropping, re-creating, and regranting object privileges
previously granted on it.

INSTEAD OF triggers defined on a conventional view are dropped when the view is re-created.
DML triggers defined on an editioning view are retained when an editioning view is re-created.
However, such triggers can be rendered permanently invalid if the editioning view has changed
so that it can no longer be compiled—for example if an editioning view column referenced in
the trigger definition has been dropped.

If any materialized views are dependent on view, then those materialized views will be marked
UNUSABLE and will require a full refresh to restore them to a usable state. Invalid materialized
views cannot be used by query rewrite and cannot be refreshed until they are recompiled.

You cannot replace a conventional view with an editioning view or an editioning view with a
conventional view. See Oracle Database Development Guide for more information on
editioning views.

See Also

• ALTER MATERIALIZED VIEW for information on refreshing invalid materialized
views

• Oracle Database Concepts for information on materialized views in general

• CREATE TRIGGER for more information about the INSTEAD OF clause

FORCE

Specify FORCE if you want to create the view regardless of whether the base tables of the view
or the referenced object types exist or the owner of the schema containing the view has
privileges on them. These conditions must be true before any SELECT, INSERT, UPDATE, or
DELETE statements can be issued against the view.

If the view definition contains any constraints, CREATE VIEW ... FORCE fails if the base table
does not exist or the referenced object type does not exist. CREATE VIEW ... FORCE also fails if
the view definition names a constraint that does not exist.

NO FORCE

Specify NOFORCE if you want to create the view only if the base tables exist and the owner of
the schema containing the view has privileges on them. This is the default.

EDITIONING

Use this clause to create an editioning view. An editioning view is a single-table view that
selects all rows from the base table and displays a subset of the base table columns. You can
use an editioning view to isolate an application from DDL changes to the base table during

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 207 of 238

administrative operations such as upgrades. You can obtain information about the relationship
of existing editioning view to their base tables by querying the USER_, ALL_, and
DBA_EDITIONING_VIEW data dictionary views.

The owner of an editioning view must be editions-enabled. Refer to ENABLE EDITIONS for
more information.

Notes on Editioning Views

Editioning views differ from conventional views in several important ways:

• Editioning views are intended only to select and provide aliases for a subset of columns in
a table. Therefore, the syntax for creating an editioning view is more limited than the
syntax for creating a conventional view. Any violation of the restrictions that follow causes
the creation of the view to fail, even if you specify FORCE.

• You can create DML triggers on editioning views. In this case, the database considers the
editioning view to be the base object of the trigger. Such triggers fire when a DML
operation target the editioning view itself. They do not fire if the DML operation targets the
base table.

• You cannot create INSTEAD OF triggers on editioning views.

Restrictions on Editioning Views

Editioning views are subject to the following restrictions:

• Within any edition, you can create only one editioning view for any single table.

• You cannot specify the object_view_clause, XMLType_view_clause, or BEQUEATH clause.

• You cannot define a constraint WITH CHECK OPTION on an editioning view.

• In the select list of the defining subquery, you can specify only simple references to the
columns of the base table, and you can specify each column of the base table only once in
the select list. The asterisk wildcard symbol * and t_alias.* are supported to designate all
columns of a base table.

• The FROM clause of the defining subquery of the view can reference only a single existing
database table. Joins are not permitted. The base table must be in the same schema as
the view being created. You cannot use a synonym to identify the table, but you can
specify a table alias.

• The following clauses of the defining subquery are not valid for editioning views:
subquery_factoring_clause, DISTINCT or UNIQUE, where_clause, hierarchical_query_clause,
group_by_clause, HAVING condition, model_clause, or the set operators (UNION, INTERSECT, or
MINUS)

See Also

• Oracle Database Development Guide for detailed information about editioning
views

• CREATE EDITION for information about editions, including an example of an
editioning view

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the view becomes an editioned or noneditioned object if
editioning is enabled for the schema object type VIEW in schema. The default is EDITIONABLE.

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 208 of 238

For information about editioned and noneditioned objects, see Oracle Database Development
Guide.

JSON Collection

You can create a JSON COLLECTION view that maps JSON documents to underlying relational
data.

A JSON COLLECTION view is a special view that provides JSON documents in a single JSON-
type object column named DATA. You cannot specify more than one column, otherwise you will
raise an error.

JSON COLLECTION views are read only.

It is recommended, but not mandatory to define an _id column pointing to the unique identifier
of the view to follow the standard format of JSON collections in Oracle.

Example

CREATE OR REPLACE JSON COLLECTION VIEW
AS
SELECT JSON { '_id': deptno, 'deptName': dname } DATA
FROM dept ;

For more information on JSON relational duality views, fully updateable views on top of
relational tables, see CREATE JSON RELATIONAL DUALITY VIEW .

For more on JSON collections, see JSON Collections of the JSON Developer's Guide.

IF NOT EXISTS

Specifying IF NOT EXISTS has the following effects:

• If the view does not exist, a new view is created at the end of the statement.

• If the view exists, this is the view you have at the end of the statement. A new one is not
created because the older one is detected.

You can have one of OR REPLACE or IF NOT EXISTS in a statement at a time. Using both OR
REPLACE with IF NOT EXISTS in the very same statement results in the following error: ORA-11541:
REPLACE and IF NOT EXISTS cannot coexist in the same DDL statement.

Using IF EXISTS with CREATE results in ORA-11543: Incorrect IF NOT EXISTS clause for CREATE statement.

schema

Specify the schema to contain the view. If you omit schema, then Oracle Database creates the
view in your own schema.

view

Specify the name of the view or the object view. The name must satisfy the requirements listed
in "Database Object Naming Rules ".

Restriction on Views

If a view has INSTEAD OF triggers, then any views created on it must have INSTEAD OF triggers,
even if the views are inherently updatable.

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 209 of 238

See Also

"Creating a View: Example"

SHARING

This clause applies only when creating a view in an application root. This type of view is called
an application common object and its data can be shared with the application PDBs that
belong to the application root. To determine how the view data is shared, specify one of the
following sharing attributes:

• METADATA - A metadata link shares the view’s metadata, but its data is unique to each
container. This type of view is referred to as a metadata-linked application common
object.

• DATA - A data link shares the view, and its data is the same for all containers in the
application container. Its data is stored only in the application root. This type of view is
referred to as a data-linked application common object.

• EXTENDED DATA - An extended data link shares the view, and its data in the application root
is the same for all containers in the application container. However, each application PDB
in the application container can store data that is unique to the application PDB. For this
type of view, data is stored in the application root and, optionally, in each application PDB.
This type of view is referred to as an extended data-linked application common object.

• NONE - The view is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING initialization
parameter to determine the sharing attribute of the view. If the DEFAULT_SHARING initialization
parameter does not have a value, then the default is METADATA.

When creating a conventional view, you can specify METADATA, DATA, EXTENDED DATA, or
NONE.

When creating an object view or an XMLTYPE view, you can specify only METADATA or NONE.

You cannot change the sharing attribute of a view after it is created.

See Also

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

alias

Specify names for the expressions selected by the defining query of the view. The number of
aliases must match the number of expressions selected by the view. Aliases must follow the
rules for naming Oracle Database schema objects. Aliases must be unique within the view.

If you omit the aliases, then the database derives them from the columns or column aliases in
the query. For this reason, you must use aliases if the query contains expressions rather than
only column names. Also, you must specify aliases if the view definition includes constraints
and/or column annotations.

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 210 of 238

Restriction on View Aliases

You cannot specify an alias when creating an object view.

See Also

"Syntax for Schema Objects and Parts in SQL Statements"

VISIBLE | INVISIBLE

Use this clause to specify whether a view column is VISIBLE or INVISIBLE. By default, view
columns are VISIBLE regardless of their visibility in the base tables, unless you specify
INVISIBLE. This applies to conventional views and editioning views. For complete information
on these clauses, refer to "VISIBLE | INVISIBLE" in the documentation on CREATE TABLE.

inline_constraint and out_of_line_constraint

You can specify constraints on views and object views. You define the constraint at the view
level using the out_of_line_constraint clause. You define the constraint as part of column or
attribute specification using the inline_constraint clause after the appropriate alias.

Oracle Database does not enforce view constraints. For a full discussion of view constraints,
including restrictions, refer to "View Constraints ".

See Also

"Creating a View with Constraints: Example"

object_view_clause

The object_view_clause lets you define a view on an object type.

See Also

"Creating an Object View: Example"

OF type_name Clause

Use this clause to explicitly create an object view of type type_name. The columns of an object
view correspond to the top-level attributes of type type_name. Each row will contain an object
instance and each instance will be associated with an object identifier as specified in the WITH
OBJECT IDENTIFIER clause. If you omit schema, then the database creates the object view in your
own schema.

Object tables, as well as XMLType tables, object views, and XMLType views, do not have any
column names specified for them. Therefore, Oracle Database defines a system-generated
pseudocolumn OBJECT_ID. You can use this column name in queries and to create object views
with the WITH OBJECT IDENTIFIER clause.

WITH OBJECT IDENTIFIER Clause

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 211 of 238

Use the WITH OBJECT IDENTIFIER clause to specify a top-level (root) object view. This clause
lets you specify the attributes of the object type that will be used as a key to identify each row
in the object view. In most cases these attributes correspond to the primary key columns of the
base table. You must ensure that the attribute list is unique and identifies exactly one row in the
view. The WITH OBJECT IDENTIFIER and WITH OBJECT ID clauses can be used interchangeably
and are provided for semantic clarity.

Restrictions on Object Views

Object views are subject to the following restrictions:

• If you try to dereference or pin a primary key REF that resolves to more than one instance
in the object view, then the database returns an error.

• You cannot specify this clause if you are creating a subview, because subviews inherit
object identifiers from superviews.

If the object view is defined on an object table or an object view, then you can omit this clause
or specify DEFAULT.

DEFAULT

Specify DEFAULT if you want the database to use the intrinsic object identifier of the underlying
object table or object view to uniquely identify each row.

attribute

For attribute, specify an attribute of the object type from which the database should create the
object identifier for the object view.

UNDER Clause

Use the UNDER clause to specify a subview based on an object superview.

Restrictions on Subviews

Subviews are subject to the following restrictions:

• You must create a subview in the same schema as the superview.

• The object type type_name must be the immediate subtype of superview.

• You can create only one subview of a particular type under the same superview.

See Also

• CREATE TYPE for information about creating objects

• Oracle Database Reference for information on data dictionary views

XMLType_view_clause

Use this clause to create an XMLType view, which displays data from an XMLSchema-based
table of type XMLType. The XMLSchema_spec indicates the XMLSchema to be used to map the
XML data to its object-relational equivalents. The XMLSchema must already have been
created before you can create an XMLType view.

The WITH OBJECT IDENTIFIER and WITH OBJECT ID clauses can be used interchangeably and
are provided for semantic clarity.

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 212 of 238

Object tables, as well as XMLType tables, object views, and XMLType views, do not have any
column names specified for them. Therefore, Oracle Database defines a system-generated
pseudocolumn OBJECT_ID. You can use this column name in queries and to create object views
with the WITH OBJECT IDENTIFIER clause.

See Also

• Oracle XML DB Developer's Guide for information on XMLType views and
XMLSchemas

• "Creating an XMLType View: Example" and "Creating a View on an XMLType
Table: Example"

annotations_clause

For the full semantics of the annotations clause see annotations_clause.

DEFAULT COLLATION

Use this clause to specify the default collation for the view. The default collation is used as the
derived collation for all the character literals included in the defining query of the view. The
default collation is not used by the view columns; the collations for the view columns are
derived from the view’s defining subquery. The CREATE VIEW statement fails with an error if any
of its character columns is based on an expression in the defining subquery that has no
derived collation.

For collation_name, specify a valid named collation or pseudo-collation.

If you omit this clause, then the default collation for the view is set to the effective schema
default collation of the schema containing the view. Refer to the DEFAULT_COLLATION clause
of ALTER SESSION for more information on the effective schema default collation.

You can specify the DEFAULT COLLATION clause only if the COMPATIBLE initialization parameter
is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

To change the default collation for a view, you must recreate the view.

Restriction on the Default Collation for Views

If the defining query of the view contains the WITH plsql_declarations clause, then the default
collation of the view must be USING_NLS_COMP.

BEQUEATH

Use the BEQUEATH clause to specify whether functions referenced in the view are executed
using the view invoker's rights or the view definer's rights.

CURRENT_USER

If you specify BEQUEATH CURRENT_USER, then functions referenced by the view are executed
using the view invoker's rights as long as one of the following conditions is met:

• The view owner has the INHERIT PRIVILEGES object privilege on the invoking user.

• The view owner has the INHERIT ANY PRIVILEGES system privilege.

If a query of the view invokes an identity- or privilege-sensitive SQL function, or an invoker's
rights PL/SQL or Java function, then the current schema, current user, and currently enabled

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 213 of 238

roles within the operation's execution are inherited from the querying user's environment,
rather than from the owner of the view.

This clause does not turn the view itself into an invoker's rights object. Name resolution within
the view is still handled using the view owner's schema, and privilege checking for the view is
done using the view owner's privileges.

DEFINER

If you specify BEQUEATH DEFINER, then functions referenced by the view are executed using
the view definer's rights. If a query on the view invokes an identity- or privilege-sensitive SQL
function, or an invoker's rights PL/SQL or Java function, then the current schema, current user,
and currently enabled roles within the operation's execution are inherited from the owner of the
view.

Name resolution within the view is handled using the view owner's schema, and privilege
checking for the view is done using the view owner's privileges.

This is the default.

Restriction on the BEQUEATH Clause

You cannot specify this clause with the EDITIONING clause.

See Also

Oracle Database Security Guide for more information on controlling invoker's rights
and definer's rights in views

AS subquery

Specify a subquery that identifies columns and rows of the table(s) that the view is based on.
The select list of the subquery can contain up to 1000 expressions.

If you create views that refer to remote tables and views, then the database links you specify
must have been created using the CONNECT TO clause of the CREATE DATABASE LINK
statement, and you must qualify them with a schema name in the view subquery.

If you create a view with the flashback_query_clause in the defining query, then the database does
not interpret the AS OF expression at create time but rather each time a user subsequently
queries the view.

See Also

"Creating a Join View: Example" and Oracle Database Development Guide for more
information on Oracle Flashback Query

Restrictions on the Defining Query of a View

The view query is subject to the following restrictions:

• The subquery cannot select the CURRVAL or NEXTVAL pseudocolumns.

• If the subquery selects the ROWID, ROWNUM, or LEVEL pseudocolumns, then those columns
must have aliases in the view subquery.

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 214 of 238

• If the subquery uses an asterisk (*) to select all columns of a table, and you later add new
columns to the table, then the view will not contain those columns until you re-create the
view by issuing a CREATE OR REPLACE VIEW statement.

• For object views, the number of elements in the subquery select list must be the same as
the number of top-level attributes for the object type. The data type of each of the selecting
elements must be the same as the corresponding top-level attribute.

• You cannot specify the SAMPLE clause.

The preceding restrictions apply to materialized views as well.

Notes on Updatable Views

The following notes apply to updatable views:

An updatable view is one you can use to insert, update, or delete base table rows. You can
create a view to be inherently updatable, or you can create an INSTEAD OF trigger on any view
to make it updatable.

To learn whether and in what ways the columns of an inherently updatable view can be
modified, query the USER_UPDATABLE_COLUMNS data dictionary view. The information displayed
by this view is meaningful only for inherently updatable views. For a view to be inherently
updatable, the following conditions must be met:

• Each column in the view must map to a column of a single table. For example, if a view
column maps to the output of a TABLE clause (an unnested collection), then the view is not
inherently updatable.

• The view must not contain any of the following constructs:

A set operator
A DISTINCT operator
An aggregate or analytic function
A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause
A collection expression in a SELECT list
A subquery in a SELECT list
A subquery designated WITH READ ONLY
Joins, with some exceptions, as documented in Oracle Database Administrator's Guide

• In addition, if an inherently updatable view contains pseudocolumns or expressions, then
you cannot update base table rows with an UPDATE statement that refers to any of these
pseudocolumns or expressions.

• If you want a join view to be updatable, then all of the following conditions must be true:

– The DML statement must affect only one table underlying the join.

– For an INSERT statement, the view must not be created WITH CHECK OPTION, and all
columns into which values are inserted must come from a key-preserved table. A
key-preserved table is one for which every primary key or unique key value in the base
table is also unique in the join view.

– For an UPDATE statement, the view must not be created WITH CHECK OPTION, and
update must be deterministic (updates each row only once).

– For a DELETE statement, if the join results in more than one key-preserved table, then
Oracle Database deletes from the first table named in the FROM clause, whether or not
the view was created WITH CHECK OPTION.

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 215 of 238

See Also

• Oracle Database Administrator's Guide for more information on updatable views

• "Creating an Updatable View: Example", "Creating a Join View: Example" for an
example of updatable join views and key-preserved tables, and Oracle Database
PL/SQL Language Reference for an example of an INSTEAD OF trigger on a view
that is not inherently updatable

subquery_restriction_clause

Use the subquery_restriction_clause to restrict the defining query of the view in one of the following
ways:

WITH READ ONLY

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to the
table or view that would produce rows that are not included in the subquery. When used in the
subquery of a DML statement, you can specify this clause in a subquery in the FROM clause
but not in subquery in the WHERE clause.

CONSTRAINT constraint

Specify the name of the READ ONLY or CHECK OPTION constraint. If you omit this identifier, then
Oracle automatically assigns the constraint a name of the form SYS_Cn, where n is an integer
that makes the constraint name unique within the database.

Note

For tables, WITH CHECK OPTION guarantees that inserts and updates result in tables
that the defining table subquery can select. For views, WITH CHECK OPTION cannot
make this guarantee if:

• There is a subquery within the defining query of this view or any view on which this
view is based or

• INSERT, UPDATE, or DELETE operations are performed using INSTEAD OF triggers.

Restriction on the subquery_restriction_clause

You cannot specify this clause if you specify an ORDER BY clause.

See Also

"Creating a Read-Only View: Example"

CONTAINER_MAP

Specify the CONTAINER_MAP clause to enable the view to be queried using a container map.

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 216 of 238

CONTAINERS_DEFAULT

Specify the CONTAINERS_DEFAULT clause to enable the view for the CONTAINERS clause.

Examples

Creating a View: Example

The following statement creates a view of the sample table employees named emp_view. The view
shows the employees in department 20 and their annual salary:

CREATE VIEW emp_view AS
 SELECT last_name, salary*12 annual_salary
 FROM employees
 WHERE department_id = 20;

The view declaration need not define a name for the column based on the expression salary*12,
because the subquery uses a column alias (annual_salary) for this expression.

Creating an Editioning View: Example

The following statement creates an editioning view of the orders table:

CREATE EDITIONING VIEW ed_orders_view (o_id, o_date, o_status)
 AS SELECT order_id, order_date, order_status FROM orders
 WITH READ ONLY;

You can use this view to isolate an application from DDL changes to the orders table during an
administrative operation such as an upgrade. You can create a DML trigger on this view, so
that the trigger fires when a DML operation targets the view itself, but does not fire if the DML
operation targets the orders table.

Creating a View with Constraints: Example

The following statement creates a restricted view of the sample table hr.employees and defines a
unique constraint on the email view column and a primary key constraint for the view on the
emp_id view column:

CREATE VIEW emp_sal (emp_id, last_name,
 email UNIQUE RELY DISABLE NOVALIDATE,
 CONSTRAINT id_pk PRIMARY KEY (emp_id) RELY DISABLE NOVALIDATE)
 AS SELECT employee_id, last_name, email FROM employees;

Creating an Updatable View: Example

The following statement creates an updatable view named clerk of all clerks in the employees
table. Only the employees' IDs, last names, department numbers, and jobs are visible in this
view, and these columns can be updated only in rows where the employee is a kind of clerk:

CREATE VIEW clerk AS
 SELECT employee_id, last_name, department_id, job_id
 FROM employees
 WHERE job_id = 'PU_CLERK'
 or job_id = 'SH_CLERK'
 or job_id = 'ST_CLERK';

This view lets you change the job_id of a purchasing clerk to purchasing manager (PU_MAN):

UPDATE clerk SET job_id = 'PU_MAN' WHERE employee_id = 118;

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 217 of 238

The next example creates the same view WITH CHECK OPTION. You cannot subsequently insert
a new row into clerk if the new employee is not a clerk. You can update an employee's job_id
from one type of clerk to another type of clerk, but the update in the preceding statement would
fail, because the view cannot access employees with non-clerk job_id.

CREATE VIEW clerk AS
 SELECT employee_id, last_name, department_id, job_id
 FROM employees
 WHERE job_id = 'PU_CLERK'
 or job_id = 'SH_CLERK'
 or job_id = 'ST_CLERK'
 WITH CHECK OPTION;

Creating a Join View: Example

A join view is one whose view subquery contains a join. If at least one column in the join has a
unique index, then it may be possible to modify one base table in a join view. You can query
USER_UPDATABLE_COLUMNS to see whether the columns in a join view are updatable. For
example:

CREATE VIEW locations_view AS
 SELECT d.department_id, d.department_name, l.location_id, l.city
 FROM departments d, locations l
 WHERE d.location_id = l.location_id;

SELECT column_name, updatable
 FROM user_updatable_columns
 WHERE table_name = 'LOCATIONS_VIEW'
 ORDER BY column_name, updatable;

COLUMN_NAME UPD
------------------------------ ---
DEPARTMENT_ID YES
DEPARTMENT_NAME YES
LOCATION_ID NO
CITY NO

In the preceding example, the primary key index on the location_id column of the locations table is
not unique in the locations_view view. Therefore, locations is not a key-preserved table and
columns from that base table are not updatable.

INSERT INTO locations_view VALUES
 (999, 'Entertainment', 87, 'Roma');
INSERT INTO locations_view VALUES
*
ERROR at line 1:
ORA-01776: cannot modify more than one base table through a join view

You can insert, update, or delete a row from the departments base table, because all the columns
in the view mapping to the departments table are marked as updatable and because the primary
key of departments is retained in the view.

INSERT INTO locations_view (department_id, department_name)
 VALUES (999, 'Entertainment');

1 row created.

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 218 of 238

Note

For you to insert into the table using the view, the view must contain all NOT NULL
columns of all tables in the join, unless you have specified DEFAULT values for the NOT
NULL columns.

See Also

Oracle Database Administrator's Guide for more information on updating join views

Creating a Read-Only View: Example

The following statement creates a read-only view named customer_ro of the oe.customers table.
Only the customers' last names, language, and credit limit are visible in this view:

CREATE VIEW customer_ro (name, language, credit)
 AS SELECT cust_last_name, nls_language, credit_limit
 FROM customers
 WITH READ ONLY;

Creating an Object View: Example

The following example shows the creation of the type inventory_typ in the oc schema, and the
oc_inventories view that is based on that type:

CREATE TYPE inventory_typ
 OID '82A4AF6A4CD4656DE034080020E0EE3D'
 AS OBJECT
 (product_id NUMBER(6)
 , warehouse warehouse_typ
 , quantity_on_hand NUMBER(8)
) ;
/
CREATE OR REPLACE VIEW oc_inventories OF inventory_typ
 WITH OBJECT OID (product_id)
 AS SELECT i.product_id,
 warehouse_typ(w.warehouse_id, w.warehouse_name, w.location_id),
 i.quantity_on_hand
 FROM inventories i, warehouses w
 WHERE i.warehouse_id=w.warehouse_id;

Creating a View on an XMLType Table: Example

The following example builds a regular view on the XMLType table xwarehouses, which was
created in "Examples ":

CREATE VIEW warehouse_view AS
 SELECT VALUE(p) AS warehouse_xml
 FROM xwarehouses p;

You select from such a view as follows:

SELECT e.warehouse_xml.getclobval()
 FROM warehouse_view e
 WHERE EXISTSNODE(warehouse_xml, '//Docks') =1;

Creating an XMLType View: Example

Chapter 15
CREATE VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 219 of 238

In some cases you may have an object-relational table upon which you would like to build an
XMLType view. The following example creates an object-relational table resembling the XMLType
column warehouse_spec in the sample table oe.warehouses, and then creates an XMLType view of that
table:

CREATE TABLE warehouse_table
(
 WarehouseID NUMBER,
 Area NUMBER,
 Docks NUMBER,
 DockType VARCHAR2(100),
 WaterAccess VARCHAR2(10),
 RailAccess VARCHAR2(10),
 Parking VARCHAR2(20),
 VClearance NUMBER
);

INSERT INTO warehouse_table
 VALUES(5, 103000,3,'Side Load','false','true','Lot',15);

CREATE VIEW warehouse_view OF XMLTYPE
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse"
 WITH OBJECT ID
 (extract(OBJECT_VALUE, '/Warehouse/Area/text()').getnumberval())
 AS SELECT XMLELEMENT("Warehouse",
 XMLFOREST(WarehouseID as "Building",
 area as "Area",
 docks as "Docks",
 docktype as "DockType",
 wateraccess as "WaterAccess",
 railaccess as "RailAccess",
 parking as "Parking",
 VClearance as "VClearance"))
 FROM warehouse_table;

You query this view as follows:

SELECT VALUE(e) FROM warehouse_view e;

DELETE
Purpose

Use the DELETE statement to remove rows from:

• An unpartitioned or partitioned table

• The unpartitioned or partitioned base table of a view

• The unpartitioned or partitioned container table of a writable materialized view

• The unpartitioned or partitioned master table of an updatable materialized view

Prerequisites

For you to delete rows from a table, the table must be in your own schema or you must have
the DELETE object privilege on the table.

For you to delete rows from an updatable materialized view, the materialized view must be in
your own schema or you must have the DELETE object privilege on the materialized view.

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 220 of 238

For you to delete rows from the base table of a view, the owner of the schema containing the
view must have the DELETE object privilege on the base table. Also, if the view is in a schema
other than your own, then you must have the DELETE object privilege on the view.

The DELETE ANY TABLE system privilege also allows you to delete rows from any table or table
partition or from the base table of any view.

To delete rows from an object on a remote database, you must also have the READ or SELECT
object privilege on the object.

To specify the returning_clause, you must have the READ or SELECT object privilege on the object.

If the SQL92_SECURITY initialization parameter is set to TRUE and the DELETE operation
references table columns, such as the columns in a where_clause or returning_clause , then you must
have the SELECT object privilege on the object from which you want to delete rows.

You cannot delete rows from a table if a function-based index on the table has become invalid.
You must first validate the function-based index.

Syntax

delete::=

DELETE

hint FROM dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

from_using_clause where_clause returning_clause error_logging_clause

;

(DML_table_expression_clause::=, where_clause::=, returning_clause::=,
error_logging_clause::=, from_using_clause::=)

DML_table_expression_clause::=

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

(subquery

subquery_restriction_clause

)

table_collection_expression

(partition_extension_clause::=, subquery::=, subquery_restriction_clause::=,
table_collection_expression::=)

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 221 of 238

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)

(+)

from_using_clause::=

FROM

USING

table_reference

join_clause

(join_clause)

inline_analytic_view

,

where_clause::=

WHERE condition

returning_clause::=

RETURN

RETURNING

OLD

NEW

expr

,

INTO data_item

,

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 222 of 238

error_logging_clause::=

LOG ERRORS

INTO

schema .

table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

Semantics

hint

Specify a comment that passes instructions to the optimizer on choosing an execution plan for
the statement.

See Also

"Hints " for the syntax and description of hints

from_clause

Use the FROM clause to specify the database objects from which you are deleting rows.

The ONLY syntax is relevant only for views. Use the ONLY clause if the view in the FROM clause
belongs to a view hierarchy and you do not want to delete rows from any of its subviews.

DML_table_expression_clause

Use this clause to specify the objects from which data is being deleted.

schema

Specify the schema containing the table or view. If you omit schema, then Oracle Database
assumes the table or view is in your own schema.

table | view | materialized view | subquery

Specify the name of a table, view, materialized view, or the column or columns resulting from a
subquery, from which the rows are to be deleted.

When you delete rows from an updatable view, Oracle Database deletes rows from the base
table.

You cannot delete rows from a read-only materialized view. If you delete rows from a writable
materialized view, then the database removes the rows from the underlying container table.
However, the deletions are overwritten at the next refresh operation. If you delete rows from an
updatable materialized view that is part of a materialized view group, then the database also
removes the corresponding rows from the master table.

If table or the base table of view or the master table of materialized_view contains one or more
domain index columns, then this statement executes the appropriate indextype delete routine.

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 223 of 238

See Also

Oracle Database Data Cartridge Developer's Guide for more information on these
routines

Issuing a DELETE statement against a table fires any DELETE triggers defined on the table.

All table or index space released by the deleted rows is retained by the table and index.

partition_extension_clause

Specify the name or partition key value of the partition or subpartition targeted for deletes
within the object.

You need not specify the partition name when deleting values from a partitioned object.
However, in some cases, specifying the partition name is more efficient than a complicated
where_clause.

See Also

"References to Partitioned Tables and Indexes " and "Deleting Rows from a Partition:
Example"

dblink

Specify the complete or partial name of a database link to a remote database where the object
is located. You can delete rows from a remote object only if you are using Oracle Database
distributed functionality.

Note

Starting with Oracle Database 12c Release 2 (12.2), the DELETE statement accepts
remote LOB locators as bind variables. Refer to the “Distributed LOBs” chapter in
Oracle Database SecureFiles and Large Objects Developer's Guide for more
information.

See Also

"References to Objects in Remote Databases " for information on referring to
database links and "Deleting Rows from a Remote Database: Example"

If you omit dblink, then the database assumes that the object is located on the local database.

subquery_restriction_clause

The subquery_restriction_clause lets you restrict the subquery in one of the following ways:

WITH READ ONLY

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 224 of 238

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to the
table or view that would produce rows that are not included in the subquery. When used in the
subquery of a DML statement, you can specify this clause in a subquery in the FROM clause
but not in subquery in the WHERE clause.

CONSTRAINT constraint

Specify the name of the CHECK OPTION constraint. If you omit this identifier, then Oracle
automatically assigns the constraint a name of the form SYS_Cn, where n is an integer that
makes the constraint name unique within the database.

See Also

"Using the WITH CHECK OPTION Clause: Example"

table_collection_expression

The table_collection_expression lets you inform Oracle that the value of collection_expression should be
treated as a table for purposes of query and DML operations. The collection_expression can be a
subquery, a column, a function, or a collection constructor. Regardless of its form, it must
return a collection value—that is, a value whose type is nested table or varray. This process of
extracting the elements of a collection is called collection unnesting.

The optional plus (+) is relevant if you are joining the TABLE collection expression with the
parent table. The + creates an outer join of the two, so that the query returns rows from the
outer table even if the collection expression is null.

Note

In earlier releases of Oracle, when collection_expression was a subquery,
table_collection_expression was expressed as THE subquery. That usage is now deprecated.

You can use a table_collection_expression in a correlated subquery to delete rows with values that
also exist in another table.

See Also

"Table Collections: Examples"

collection_expression

Specify a subquery that selects a nested table column from the object from which you are
deleting.

Restrictions on the dml_table_expression_clause Clause

This clause is subject to the following restrictions:

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 225 of 238

• You cannot execute this statement if table or the base or master table of view or
materialized_view contains any domain indexes marked IN_PROGRESS or FAILED.

• You cannot insert into a partition if any affected index partitions are marked UNUSABLE.

• You cannot specify the ORDER BY clause in the subquery of the DML_table_expression_clause.

• You cannot delete from a view except through INSTEAD OF triggers if the defining query of
the view contains one of the following constructs:

A set operator
A DISTINCT operator
An aggregate or analytic function
A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause
A collection expression in a SELECT list
A subquery in a SELECT list
A subquery designated WITH READ ONLY
Joins, with some exceptions, as documented in Oracle Database Administrator's Guide

If you specify an index, index partition, or index subpartition that has been marked UNUSABLE,
then the DELETE statement will fail unless the SKIP_UNUSABLE_INDEXES initialization parameter
has been set to true.

See Also

ALTER SESSION

t_alias

Provide a correlation name for the table, view, materialized view, subquery, or collection value
to be referenced elsewhere in the statement. This alias is required if the
DML_table_expression_clause references any object type attributes or object type methods. Table
aliases are generally used in DELETE statements with correlated queries.

from_using_clause

Use this clause to filter the rows DELETE removes. Specify the join conditions in the where_clause.
You can outer join source tables to the target with (+). The target table cannot be the outer
table in the join.

You can join many tables, views, and inline views. Specify the join conditions in the where_clause
or use the join_clause to join these to each other with ANSI join syntax.

You can specify the same table in the dml_table_expression_clause and from_using_clause. When you
do so they must have unique aliases.

Example: Delete with Direct-Join

In this example, the join condition between table tand table s determines which rows of t are
deleted:

DELETE FROM t
FROM s
WHERE t.t1 = s.s1;

If the join condition results in the same target row being selected more than once, the DELETE
will succeed, and the deletion count will correctly reflect the number of rows deleted.

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 226 of 238

In a DELETE of a join view, one of the tables must be key-preserving. That table is used as the
delete target. If there is more than one table that is key-preserving, the first key-preserved
table encountered in the FROM clause is used as the delete target. If no such table exists, error
ORA-01752 is raised. There is no such restriction in direct join syntax, since it is clear what the
delete target is.

Direct joins for DELETE have the same semantics and restrictions as SELECT in the from_clause
and where_clause. Triggers on the target table fire as normal.

Restrictions

• You cannot specify ANSI join syntax using the dml_table_expression_clause. However, you can
specify ANSI join syntax between the tables specified in the FROM clause. Right and full
outer joins are not allowed.

• You can use a lateral view in the FROM clause, but it cannot reference a column from the
delete target. It may be outer-joined.

• You can only specify one table, view, or materialized view in dml_table_expression_clause when
the from_using_clause is present.

• The hint clause can be used to specify instructions to the optimizer for joins involving the
from_using_clause

where_clause

Use the where_clause to delete only rows that satisfy the condition. The condition can reference
the object from which you are deleting and can contain a subquery. You can delete rows from a
remote object only if you are using Oracle Database distributed functionality. Refer to
Conditions for the syntax of condition.

If this clause contains a subquery that refers to remote objects, then the DELETE operation can
run in parallel as long as the reference does not loop back to an object on the local database.
However, if the subquery in the DML_table_expression_clause refers to any remote objects, then the
DELETE operation will run serially without notification. Refer to the parallel_clause in the CREATE
TABLE documentation for additional information.

If you omit dblink, then the database assumes that the table or view is located on the local
database.

If you omit the where_clause, then the database deletes all rows of the object.

returning_clause

This clause lets you return values from deleted columns, and thereby eliminate the need to
issue a SELECT statement following the DELETE statement.

The returning clause retrieves the rows affected by a DML statement. You can specify this
clause for tables and materialized views and for views with a single base table.

When operating on a single row, a DML statement with a returning_clause can retrieve column
expressions using the affected row, rowid, and REFs to the affected row and store them in host
variables or PL/SQL variables.

When operating on multiple rows, a DML statement with the returning_clause stores values from
expressions, rowids, and REFs involving the affected rows in bind arrays.

expr

Each item in the expr list must be a valid expression syntax.

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 227 of 238

INTO

The INTO clause indicates that the values of the changed rows are to be stored in the
variable(s) specified in data_item list.

data_item

Each data_item is a host variable or PL/SQL variable that stores the retrieved expr value.

For each expression in the RETURNING list, you must specify a corresponding type-compatible
PL/SQL variable or host variable in the INTO list.

Restrictions on the RETURNING Clause

The following restrictions apply to the RETURNING clause:

• The expr is restricted as follows:

– For UPDATE and DELETE statements each expr must be a simple expression or a single-
set aggregate function expression. You cannot combine simple expressions and
single-set aggregate function expressions in the same returning_clause. For INSERT
statements, each expr must be a simple expression. Aggregate functions are not
supported in an INSERT statement RETURNING clause.

– Single-set aggregate function expressions cannot include the DISTINCT keyword.

• If the expr list contains a primary key column or other NOT NULL column, then the update
statement fails if the table has a BEFORE UPDATE trigger defined on it.

• You cannot specify the returning_clause for a multitable insert.

• You cannot use this clause with parallel DML or with remote objects.

• You cannot retrieve LONG types with this clause.

• You cannot specify this clause for a view on which an INSTEAD OF trigger has been defined.

See Also

• Oracle Database PL/SQL Language Reference for information on using the BULK
COLLECT clause to return multiple values to collection variables

• "Using the RETURNING Clause: Example"

error_logging_clause

The error_logging_clause has the same behavior in DELETE statement as it does in an INSERT
statement. Refer to the INSERT statement error_logging_clause for more information.

See Also

"Inserting Into a Table with Error Logging: Example"

Examples

Deleting Rows: Examples

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 228 of 238

The following statement deletes all rows from the sample table oe.product_descriptions where the
value of the language_id column is AR:

DELETE FROM product_descriptions
 WHERE language_id = 'AR';

The following statement deletes from the sample table hr.employees purchasing clerks whose
commission rate is less than 10%:

DELETE FROM employees
 WHERE job_id = 'SA_REP'
 AND commission_pct < .2;

The following statement has the same effect as the preceding example, but uses a subquery:

DELETE FROM (SELECT * FROM employees)
 WHERE job_id = 'SA_REP'
 AND commission_pct < .2;

Deleting Rows from a Remote Database: Example

The following statement deletes specified rows from the locations table owned by the user hr on
a database accessible by the database link remote:

DELETE FROM hr.locations@remote
 WHERE location_id > 3000;

Deleting Nested Table Rows: Example

For an example that deletes nested table rows, refer to "Table Collections: Examples".

Deleting Rows from a Partition: Example

The following example removes rows from partition sales_q1_1998 of the sh.sales table:

DELETE FROM sales PARTITION (sales_q1_1998)
 WHERE amount_sold > 1000;

Using the RETURNING Clause: Example

The following example returns column salary from the deleted rows and stores the result in bind
variable :bnd1. The bind variable must already have been declared.

DELETE FROM employees
 WHERE job_id = 'SA_REP'
 AND hire_date + TO_YMINTERVAL('01-00') < SYSDATE
 RETURNING salary INTO :bnd1;

Deleting Data from a Table: Example

The following statements create a table named product_price_history and insert data into it:

CREATE TABLE product_price_history (
 product_id INTEGER NOT NULL,
 price INTEGER NOT NULL,
 currency_code VARCHAR2(3 CHAR) NOT NULL,
 effective_from_date DATE NOT NULL,
 effective_to_date DATE,
 CONSTRAINT product_price_history_pk
 PRIMARY KEY (product_id, currency_code, effective_from_date)
) PARTITION BY RANGE (effective_from_date) (
 PARTITION p0 VALUES less than (DATE'2015-01-02'),
 PARTITION p1 VALUES less than (DATE'2015-01-03'),

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 229 of 238

 PARTITION p2 VALUES less than (DATE'2015-01-04')
);

INSERT INTO product_price_history
 WITH prices AS (
 SELECT 1, 100, 'USD', DATE'2015-01-01', DATE'2015-01-02'
 FROM dual UNION ALL
 SELECT 1, 60, 'GBP', DATE'2015-01-01', DATE'2015-01-02'
 FROM dual UNION ALL
 SELECT 1, 110, 'EUR', DATE'2015-01-01', DATE'2015-01-02'
 FROM dual UNION ALL
 SELECT 1, 101, 'USD', DATE'2015-01-02', DATE'2015-01-03'
 FROM dual UNION ALL
 SELECT 1, 62, 'GBP', DATE'2015-01-02', DATE'2015-01-03'
 FROM dual UNION ALL
 SELECT 1, 109, 'EUR', DATE'2015-01-02', DATE'2015-01-03'
 FROM dual UNION ALL
 SELECT 1, 105, 'USD', DATE'2015-01-03', NULL
 FROM dual UNION ALL
 SELECT 1, 61, 'GBP', DATE'2015-01-03', NULL
 FROM dual UNION ALL
 SELECT 1, 107, 'EUR', DATE'2015-01-03', NULL
 FROM dual UNION ALL
 SELECT 2, 30, 'USD', DATE'2015-01-01', DATE'2015-01-03'
 FROM dual UNION ALL
 SELECT 2, 33, 'USD', DATE'2015-01-03', NULL
 FROM dual UNION ALL
 SELECT 3, 100, 'GBP', DATE'2015-01-03', NULL
 FROM dual
)
SELECT *
FROM prices;

The following statement deletes the rows from the table product_price_history where
product_id is 3:

DELETE FROM product_price_history WHERE product_id = 3;

The following procedure deletes the rows from the product_price_history where product_id is 2
and effective_to_date is NULL:

DECLARE
 currency product_price_history.currency_code%TYPE;
BEGIN
 DELETE product_price_history
 WHERE product_id = 2
 AND effective_to_date IS NULL
 returning currency_code INTO currency;

 dbms_output.Put_line(currency);
END;

USD

The following statement deletes the rows from the table product_price_history where
currency_code is ‘EUR’:

DELETE (SELECT * FROM product_price_history) WHERE currency_code = 'EUR';

The following statement uses a subquery to delete rows from product_price_history:

DELETE product_price_history pp
WHERE (product_id, currency_code, effective_from_date)

Chapter 15
DELETE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 230 of 238

 IN (SELECT product_id, currency_code, Max(effective_from_date)
 FROM product_price_history
 GROUP BY product_id, currency_code);

The following statement uses partitions to delete rows from product_price_history:

DELETE product_price_history partition (p1);

The following statement displays the table information:

SELECT * FROM product_price_history;

PRODUCT_ID PRICE CUR EFFECTIVE EFFECTIVE
---------- ---------- --- --------- ---------
 1 100 USD 01-JAN-15 02-JAN-15
 1 60 GBP 01-JAN-15 02-JAN-15

The following statement deletes all rows from product_price_history:

DELETE product_price_history;

DISASSOCIATE STATISTICS
Purpose

Use the DISASSOCIATE STATISTICS statement to disassociate default statistics or a statistics type
from columns, standalone functions, packages, types, domain indexes, or indextypes.

See Also

ASSOCIATE STATISTICS for more information on statistics type associations

Prerequisites

To issue this statement, you must have the appropriate privileges to alter the underlying table,
function, package, type, domain index, or indextype.

Chapter 15
DISASSOCIATE STATISTICS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 231 of 238

Syntax

disassociate_statistics::=

DISASSOCIATE STATISTICS FROM

COLUMNS

schema .

table . column

,

FUNCTIONS

schema .

function

,

PACKAGES

schema .

package

,

TYPES

schema .

type

,

INDEXES

schema .

index

,

INDEXTYPES

schema .

indextype

,

FORCE

;

Semantics

FROM COLUMNS | FUNCTIONS | PACKAGES | TYPES | INDEXES | INDEXTYPES

Specify one or more columns, standalone functions, packages, types, domain indexes, or
indextypes from which you are disassociating statistics.

If you do not specify schema, then Oracle Database assumes the object is in your own schema.

If you have collected user-defined statistics on the object, then the statement fails unless you
specify FORCE.

FORCE

Specify FORCE to remove the association regardless of whether any statistics exist for the
object using the statistics type. If statistics do exist, then the statistics are deleted before the
association is deleted.

Chapter 15
DISASSOCIATE STATISTICS

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 232 of 238

Note

When you drop an object with which a statistics type has been associated, Oracle
Database automatically disassociates the statistics type with the FORCE option and
drops all statistics that have been collected with the statistics type.

Examples

Disassociating Statistics: Example

This statement disassociates statistics from the emp_mgmt package. See Oracle Database
PL/SQL Language Reference for the example that creates this package in the hr schema.

DISASSOCIATE STATISTICS FROM PACKAGES hr.emp_mgmt;

DROP ANALYTIC VIEW
Purpose

Use the DROP ANALYTIC VIEW statement to drop an analytic view. An ANALYTIC VIEW object is a
component of analytic views.

Prerequisites

To drop an analytic view in your own schema, you must have the DROP ANALYTIC VIEW system
privilege. To drop an analytic view in another user's schema, you must have the DROP ANY
ANALYTIC VIEW system privilege.

Syntax

drop_analytic_view::=

DROP ANALYTIC VIEW

IF EXISTS schema .

analytic_view_name

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema in which the analytic view exists. If you do not specify a schema, then
Oracle Database looks for the analytic view in your own schema.

analytic_view_name

Specify the name of the analytic view to drop.

Chapter 15
DROP ANALYTIC VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 233 of 238

Example

The following statement drops the specified analytic view object:

DROP ANALYTIC VIEW sales_av;

DROP ATTRIBUTE DIMENSION
Purpose

Use the DROP ATTRIBUTE DIMENSION statement to drop an attribute dimension. An ATTRIBUTE
DIMENSION object is a component of analytic views.

Prerequisites

To drop an attribute dimension in your own schema, you must have the DROP ATTRIBUTE
DIMENSION system privilege. To drop an analytic view in another user's schema, you must have
the DROP ANY ATTRIBUTE DIMENSION system privilege.

Syntax

drop_attribute_dimension::=

DROP ATTRIBUTE DIMENSION

IF EXISTS schema .

attr_dimension_name

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema in which the attribute dimension exists. If you do not specify a schema,
then Oracle Database looks for the attribute dimension in your own schema.

attr_dimension_name

Specify the name of the attribute dimension to drop.

Example

The following statement drops the specified attribute dimension object:

DROP ATTRIBUTE DIMENSION product_attr_dim;

Chapter 15
DROP ATTRIBUTE DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 234 of 238

DROP AUDIT POLICY (Unified Auditing)
This section describes the DROP AUDIT POLICY statement for unified auditing. This type of
auditing is new beginning with Oracle Database 12c and provides a full set of enhanced
auditing features. Refer to Oracle Database Security Guide for more information on unified
auditing.

Purpose

Use the DROP AUDIT POLICY statement to remove a unified audit policy from the database.

See Also

• CREATE AUDIT POLICY (Unified Auditing)

• ALTER AUDIT POLICY (Unified Auditing)

• AUDIT (Unified Auditing)

• NOAUDIT (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

To drop a common unified audit policy, the current container must be the root and you must
have the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role. To drop
a local unified audit policy, the current container must be the container in which the audit policy
was created and you must have the commonly granted AUDIT SYSTEM privilege or the
AUDIT_ADMIN common role, or you must have the locally granted AUDIT SYSTEM privilege or the
AUDIT_ADMIN local role in the container.

Syntax

drop_audit_policy::=

DROP AUDIT POLICY policy ;

Semantics

policy

Specify the name of the unified audit policy you want to drop. The policy must have been
created using the CREATE AUDIT POLICY statement.

You can find the names of all unified audit policies by querying the AUDIT_UNIFIED_POLICIES
view and the names of all enabled unified audit policies by querying the
AUDIT_UNIFIED_ENABLED_POLICIES view

Restriction on Dropping Unified Audit Policies

You cannot drop an enabled unified audit policy. You must first disable the policy using the
NOAUDIT statement.

Chapter 15
DROP AUDIT POLICY (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 235 of 238

See Also

• CREATE AUDIT POLICY (Unified Auditing)

• Oracle Database Reference for more information on the AUDIT_UNIFIED_POLICIES
and AUDIT_UNIFIED_ENABLED_POLICIES views

Examples

Dropping a Unified Audit Policy: Example

The following statement drops unified audit policy table_pol:

DROP AUDIT POLICY table_pol;

DROP CLUSTER
Purpose

Use the DROP CLUSTER clause to remove a cluster from the database.

Note

When you drop a cluster, any tables in the recycle bin that were once part of that
cluster are purged from the recycle bin and can no longer be recovered with a
FLASHBACK TABLE operation.

You cannot uncluster an individual table. Instead you must perform these steps:

1. Create a new table with the same structure and contents as the old one, but with no
CLUSTER clause.

2. Drop the old table.

3. Use the RENAME statement to give the new table the name of the old one.

4. Grant privileges on the new unclustered table. Grants on the old clustered table do not
apply.

See Also

CREATE TABLE, DROP TABLE , RENAME , GRANT for information on these
steps

Prerequisites

The cluster must be in your own schema or you must have the DROP ANY CLUSTER system
privilege.

Chapter 15
DROP CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 236 of 238

Syntax

drop_cluster::=

DROP CLUSTER

IF EXISTS schema .

cluster

INCLUDING TABLES

CASCADE CONSTRAINTS

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the cluster. If you omit schema, then the database assumes the
cluster is in your own schema.

cluster

Specify the name of the cluster to be dropped. Dropping a cluster also drops the cluster index
and returns all cluster space, including data blocks for the index, to the appropriate
tablespace(s).

INCLUDING TABLES

Specify INCLUDING TABLES to drop all tables that belong to the cluster.

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS to drop all referential integrity constraints from tables outside
the cluster that refer to primary and unique keys in tables of the cluster. If you omit this clause
and such referential integrity constraints exist, then the database returns an error and does not
drop the cluster.

Examples

Dropping a Cluster: Examples

The following examples drop the clusters created in the "Examples" section of CREATE
CLUSTER.

The following statements drops the language cluster:

DROP CLUSTER language;

The following statement drops the personnel cluster as well as tables dept_10 and dept_20 and any
referential integrity constraints that refer to primary or unique keys in those tables:

Chapter 15
DROP CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 237 of 238

DROP CLUSTER personnel
 INCLUDING TABLES
 CASCADE CONSTRAINTS;

Chapter 15
DROP CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 238 of 238

16
SQL Statements: DROP CONTEXT to DROP
JAVA

This chapter contains the following SQL statements:

• DROP CONTEXT

• DROP DATABASE

• DROP DATABASE LINK

• DROP DIMENSION

• DROP DIRECTORY

• DROP DISKGROUP

• DROP EDITION

• DROP FLASHBACK ARCHIVE

• DROP FUNCTION

• DROP HIERARCHY

• DROP INDEX

• DROP INDEXTYPE

• DROP INMEMORY JOIN GROUP

• DROP JAVA

DROP CONTEXT
Purpose

Use the DROP CONTEXT statement to remove a context namespace from the database.

Removing a context namespace does not invalidate any context under that namespace that
has been set for a user session. However, the context will be invalid when the user next
attempts to set that context.

See Also

CREATE CONTEXT and Oracle Database Security Guide for more information on
contexts

Prerequisites

You must have the DROP ANY CONTEXT system privilege.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 20

Syntax

drop_context::=

DROP CONTEXT namespace ;

Semantics

namespace

Specify the name of the context namespace to drop. You cannot drop the built-in namespace
USERENV.

See Also

SYS_CONTEXT for information on the USERENV namespace

Examples

Dropping an Application Context: Example

The following statement drops the context created in CREATE CONTEXT:

DROP CONTEXT hr_context;

DROP DATABASE
Purpose

Note

You cannot roll back a DROP DATABASE statement.

Use the DROP DATABASE statement to drop the database. This statement is useful when you
want to drop a test database or drop an old database after successful migration to a new host.

You can issue DROP DATABASE on True Cache to delete all the files that belong to this True
Cache. The command only deletes files that belong to this True Cache. You must have started
up the True Cache in mount mode.

See Also

Oracle Database Backup and Recovery User's Guide for more information on
dropping the database

Chapter 16
DROP DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 20

Prerequisites

You must have the SYSDBA system privilege to issue this statement. The database must be
mounted in exclusive and restricted mode, and it must be closed.

Syntax

drop_database::=

DROP DATABASE

Semantics

When you issue this statement, Oracle Database drops the database and deletes all control
files and data files listed in the control file. If the database used a server parameter file (spfile),
then the spfile is also deleted.

Archived logs and backups are not removed, but you can use Recovery Manager (RMAN) to
remove them. If the database is on raw disks, then this statement does not delete the actual
raw disk special files.

Drop True Cache

To drop the True Cache using DROP DATABASE you must mount the database and set restricted
mode as follows:

STARTUP MOUNT
ALTER SYSTEM ENABLE RESTRICTED SESSION;
DROP DATABASE

DROP DATABASE LINK
Purpose

Use the DROP DATABASE LINK statement to remove a database link from the database.

See Also

CREATE DATABASE LINK for information on creating database links

Prerequisites

A private database link must be in your own schema. To drop a PUBLIC database link, you must
have the DROP PUBLIC DATABASE LINK system privilege.

Syntax

drop_database_link::=

DROP

PUBLIC

DATABASE LINK

IF EXISTS

dblink

Chapter 16
DROP DATABASE LINK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 20

Semantics

PUBLIC

You must specify PUBLIC to drop a PUBLIC database link.

dblink

Specify the name of the database link to be dropped.

Restriction on Dropping Database Links

You cannot drop a database link in another user's schema, and you cannot qualify dblink with
the name of a schema, because periods are permitted in names of database links. Therefore,
Oracle Database interprets the entire name, such as ralph.linktosales, as the name of a database
link in your schema rather than as a database link named linktosales in the schema ralph.

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

Examples

Dropping a Database Link: Example

The following statement drops the public database link named remote, which was created in
"Defining a Public Database Link: Example":

DROP PUBLIC DATABASE LINK remote;

DROP DIMENSION
Purpose

Use the DROP DIMENSION statement to remove the named dimension.

This statement does not invalidate materialized views that use relationships specified in
dimensions. However, requests that have been rewritten by query rewrite may be invalidated,
and subsequent operations on such views may execute more slowly.

See Also

• CREATE DIMENSION and ALTER DIMENSION for information on creating and
modifying a dimension

• Oracle Database Concepts for general information about dimensions

Prerequisites

The dimension must be in your own schema or you must have the DROP ANY DIMENSION
system privilege to use this statement.

Chapter 16
DROP DIMENSION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 20

Syntax

drop_dimension::=

DROP DIMENSION

schema .

dimension ;

Semantics

schema

Specify the name of the schema in which the dimension is located. If you omit schema, then
Oracle Database assumes the dimension is in your own schema.

dimension

Specify the name of the dimension you want to drop. The dimension must already exist.

Examples

Dropping a Dimension: Example

This example drops the sh.customers_dim dimension:

DROP DIMENSION customers_dim;

See Also

"Creating a Dimension: Examples" and "Modifying a Dimension: Examples" for
examples of creating and modifying this dimension

DROP DIRECTORY
Purpose

Use the DROP DIRECTORY statement to remove a directory object from the database.

See Also

CREATE DIRECTORY for information on creating a directory

Prerequisites

To drop a directory, you must have the DROP ANY DIRECTORY system privilege.

Chapter 16
DROP DIRECTORY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 20

Note

Do not drop a directory when files in the associated file system are being accessed by
PL/SQL or OCI programs.

Syntax

drop_directory::=

DROP DIRECTORY

IF EXISTS

directory_name

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

directory_name

Specify the name of the directory database object to be dropped.

Oracle Database removes the directory object but does not delete the associated operating
system directory on the server file system.

Examples

Dropping a Directory: Example

The following statement drops the directory object bfile_dir:

DROP DIRECTORY bfile_dir;

See Also

"Creating a Directory: Examples"

DROP DISKGROUP

Note

This SQL statement is valid only if you are using Oracle ASM and you have started an
Oracle ASM instance. You must issue this statement from within the Oracle ASM
instance, not from a normal database instance. For information on starting an Oracle
ASM instance, refer to Oracle Automatic Storage Management Administrator's Guide.

Chapter 16
DROP DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 20

Purpose

The DROP DISKGROUP statement lets you drop an Oracle ASM disk group along with all the files
in the disk group. Oracle ASM first ensures that no files in the disk group are open. It then
drops the disk group and all its member disks and clears the disk header.

See Also

• CREATE DISKGROUP and ALTER DISKGROUP for information on creating and
modifying disk groups

• Oracle Automatic Storage Management Administrator's Guide for information on
Oracle ASM and using disks groups to simplify database administration

Prerequisites

You must have the SYSASM system privilege and you must have an Oracle ASM instance
started, from which you issue this statement. The disk group to be dropped must be mounted.

Syntax

drop_diskgroup::=

DROP DISKGROUP diskgroup_name

FORCE

INCLUDING

EXCLUDING
CONTENTS

;

Semantics

diskgroup_name

Specify the name of the disk group you want to drop.

INCLUDING CONTENTS

Specify INCLUDING CONTENTS to confirm that Oracle ASM should drop all the files in the disk
group. You must specify this clause if the disk group contains any files.

FORCE

This clause clears the headers on the disk belonging to a disk group that cannot be mounted
by the Oracle ASM instance. The disk group cannot be mounted by any instance of the
database.

The Oracle ASM instance first determines whether the disk group is being used by any other
Oracle ASM instance using the same storage subsystem. If it is being used, and if the disk
group is in the same cluster, or on the same node, then the statement fails. If the disk group is
in a different cluster, then the system further checks to determine whether the disk group is
mounted by any instance in the other cluster. If it is mounted elsewhere, then the statement
fails. However, this latter check is not as definitive as the checks for disk groups in the same
cluster. Therefore, use this clause with caution.

Chapter 16
DROP DISKGROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 20

EXCLUDING CONTENTS

Specify EXCLUDING CONTENTS to ensure that Oracle ASM drops the disk group only when the
disk group is empty. This is the default. If the disk group is not empty, then an error will be
returned.

Examples

Dropping a Diskgroup: Example

The following statement drops the Oracle ASM disk group dgroup_01, which was created in
"Creating a Diskgroup: Example", and all of the files in the disk group:

DROP DISKGROUP dgroup_01 INCLUDING CONTENTS;

DROP DOMAIN
Purpose

Use this statement to drop a domain, thereby disassociating the domain from all its dependent
objects.

Prerequisites

The domain must be in your own schema or you must have the DROP ANY DOMAIN system
privilege.

Syntax

drop_domain::=

DROP

USECASE

DOMAIN

IF EXISTS schema .

domain_name

FORCE

PRESERVE

Semantics

USECASE

This keyword is optional and is provided for semantic clarity. It indicates that the domain is to
describe a data use case.

IF EXISTS

Specify IF EXISTS to drop a domain that exists.

You cannot specify IF NOT EXISTS with DROP DOMAIN. This results in the following error:
ORA-11544:Incorrect IF EXISTS clause for ALTER/DROP statement.

You can drop a domain by specifying its domain name and disassociate it from all its
dependent columns. In the following example email is the name of a domain name:

DROP DOMAIN email;

Chapter 16
DROP DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 20

If a domain is associated with columns, DROP DOMAIN domain_name fails with ORA-11502:The domain
<domain_name> to be dropped has dependent objects.This includes any tables in the recyclebin.

You can additionally drop a domain by specifying two optional keywords: either FORCE or FORCE
PRESERVE which have different meanings:

FORCE

DROP DOMAIN domain_name FORCE disassociates the domain from all its dependent columns. This
includes dropping all constraints on columns that were inherited from the domain. Defaults
inherited from the domain are also dropped unless these defaults were set specifically on
columns.

If you must drop a domain and have dependent tables in the recyclebin, you must use the
FORCE option.

FORCE PRESERVE

Use DROP DOMAIN domain_name FORCE PRESERVE if you want to preserve domain defaults and
domain constraints on columns inherited from the domain. You must first specify FORCE, in
order to specify the PRESERVE option. Use this option if you want to temporarily drop the
domain and recreate it later with new data and the former dependent columns. In this case you
want to ensure that the table data continues to be consistent with the domain definition with all
the constraints and defaults on columns inherited from the domain preserved. If you drop a
domain with FORCE PRESERVE and later recreate the domain and reassociate the column with it,
you can end up with a second constraint. In this case, use ALTER TABLE DROP CONSTRAINT to
drop the second constraint.

If there are no tables or materialized views with columns of the given domain, then DROP
DOMAIN will invalidate any SQL dependent statements and remove the domain object from the
catalog. In this case you can specify FORCE and FORCE PRESERVE without affecting the domain
or the domain's dependent objects.

If there are tables or materialized views with columns of the given domain, DROP DOMAIN
without the FORCE option will fail without affecting the domain or domain's dependent objects.

If there are tables or materialized views with columns of the given domain, DROP DOMAIN FORCE
will do the following:

• Remove the default expression from any dependent column, if the column has a default
expression that was only set as a domain default. If the default expression was added on
the column and set as domain default, then default on the column is preserved.

• Remove the domain annotations from all dependent columns

• Preserve collation on any domain dependent columns

• Invalidate all SQL dependent statements in the cursor cache.

• Materialized views (MVs) that reference domain functions like DOMAIN_DISPLAY,
DOMAIN_ORDER, DOMAIN_NAME will be invalidated so they can be fully refreshed. MVs that
reference columns of a given domain will not be invalidated .

• Remove the domain successfully.

If there are flexible domains referencing the domain, then DROP DOMAIN without the FORCE
option will raise an error, while DROP DOMAIN FORCE will drop all flexible dependent domains in
FORCE mode also.

Chapter 16
DROP DOMAIN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 20

Examples

The following example drops the domain day_of_week. If there are any columns associated with
the domain the statement will raise ORA-11502 and the domain will still be present:

DROP DOMAIN day_of_week;

The following statement drops the domain day_of_week. If there are any columns associated with
it, the columns will inherit any defaults and constraints from the domain:

DROP DOMAIN day_of_week FORCE PRESERVE;

DROP EDITION
Purpose

Use the DROP EDITION statement to drop an edition, along with all actual editionable objects it
contains. An actual editionable object is an editionable object that has been created or
modified in an edition.

See Also

CREATE EDITION for a listing of editionable object types

Prerequisites

You must have the DROP ANY EDITION system privilege, granted either directly or through a
role.

Syntax

drop_edition::=

DROP EDITION

IF EXISTS

edition

CASCADE

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing edition.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

Objects that are not editionable, or that are editionable but have not been actualized in the
current edition, are not dropped.

You must specify CASCADE if the specified edition contains any actual editionable objects.

Restrictions

This statement is subject to the following conditions and restrictions:

Chapter 16
DROP EDITION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 20

• The specified edition cannot have both a parent edition and a child edition.

• DROP EDITION will fail if you attempt to drop the default edition.

• DROP EDITION will fail if you attempt to drop the root edition and the recycle bin contains at
least one object that used to be in that edition before it was dropped. Under these
circumstances, even DROP EDITION CASCADE will fail. In this case, you can purge all objects
from the recycle bin with the PURGE DBA_RECYCLEBIN statement and then drop the edition.
Refer to PURGE for more information.

DROP EDITION will also fail if you attempt to drop the leaf edition and the recycle bin
contains at least one object that used to be in that edition before it was dropped. However,
under these circumstances, DROP EDITION CASCADE will succeed.

The only type of editioned object that might be in the recycle bin is a trigger.

See Also

• Oracle Database Development Guide

• Oracle Database PL/SQL Packages and Types Reference

Examples

For examples that use this statement, refer to CREATE EDITION .

DROP FLASHBACK ARCHIVE
Purpose

Use the DROP FLASHBACK ARCHIVE clause to remove a flashback archive from the system. This
statement removes the flashback archive and all the historical data in it, but does not drop the
tablespaces that were used by the flashback archive.

Prerequisites

You must have the FLASHBACK ARCHIVE ADMINISTER system privilege to drop a flashback
archive.

Syntax

drop_flashback_archive::=

DROP FLASHBACK ARCHIVE flashback_archive ;

Semantics

flashback_archive

Specify the name of the flashback archive you want to drop.

Chapter 16
DROP FLASHBACK ARCHIVE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 20

See Also

CREATE FLASHBACK ARCHIVE for information on creating flashback archives and
for some simple examples of using flashback archives

DROP FUNCTION
Purpose

Functions are defined using PL/SQL. Refer to Oracle Database PL/SQL Language Reference
for complete information on creating, altering, and dropping functions.

Use the DROP FUNCTION statement to remove a standalone stored function from the database.

Note

Do not use this statement to remove a function that is part of a package. Instead,
either drop the entire package using the DROP PACKAGE statement or redefine the
package without the function using the CREATE PACKAGE statement with the OR
REPLACE clause.

Prerequisites

The function must be in your own schema or you must have the DROP ANY PROCEDURE system
privilege.

Syntax

drop_function::=

DROP FUNCTION

IF EXISTS schema .

function_name ;

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the function. If you omit schema, then Oracle Database assumes
the function is in your own schema.

function_name

Specify the name of the function to be dropped.

Chapter 16
DROP FUNCTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 20

Oracle Database invalidates any local objects that depend on, or call, the dropped function. If
you subsequently reference one of these objects, then the database tries to recompile the
object and returns an error if you have not re-created the dropped function.

If any statistics types are associated with the function, then the database disassociates the
statistics types with the FORCE option and drops any user-defined statistics collected with the
statistics type.

See Also

• Oracle Database Concepts for more information on how Oracle Database
maintains dependencies among schema objects, including remote objects

• ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for more information
on statistics type associations

Examples

Dropping a Function: Example

The following statement drops the function SecondMax in the sample schema oe and invalidates
all objects that depend upon SecondMax:

DROP FUNCTION oe.SecondMax;

See Also

Oracle Database PL/SQL Language Reference for the example that creates the
SecondMax function

DROP HIERARCHY
Purpose

Use the DROP HIERARCHY statement to drop a hierarchy. A HIERARCHY object is a component
of analytic views.

Prerequisites

To drop a hierarchy in your own schema, you must have the DROP HIERARCHY system privilege.
To drop a hierarchy in another user's schema, you must have the DROP ANY HIERARCHY
system privilege.

Syntax

drop_hierarchy::=

DROP HIERARCHY

IF EXISTS schema .

hierarchy_name

Chapter 16
DROP HIERARCHY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 20

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema in which the hierarchy exists. If you do not specify a schema, then Oracle
Database looks for the hierarchy in your own schema.

hierarchy_name

Specify the name of the hierarchy to drop.

Example

The following statement drops the specified hierarchy object:

DROP HIERARCHY product_hier;

DROP INDEX
Purpose

Use the DROP INDEX statement to remove an index or domain index from the database.

When you drop a global partitioned index, a range-partitioned index, or a hash-partitioned
index, all the index partitions are also dropped. If you drop a composite-partitioned index, then
all the index partitions and subpartitions are also dropped.

In addition, when you drop a domain index:

• Oracle Database invokes the appropriate routine.

• If any statistics are associated with the domain index, then Oracle Database disassociates
the statistics types with the FORCE clause and removes the user-defined statistics collected
with the statistics type.

See Also

– Oracle Database Data Cartridge Developer's Guide for information on the
routines

– CREATE INDEX and ALTER INDEX for information on creating and modifying
an index

– The domain_index_clause of CREATE INDEX for more information on domain
indexes

– ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for more
information on statistics type associations

Chapter 16
DROP INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 20

Prerequisites

The index must be in your own schema or you must have the DROP ANY INDEX system
privilege.

Syntax

drop_index::=

DROP INDEX

IF EXISTS schema .

index

ONLINE FORCE

DEFERRED

IMMEDIATE

INVALIDATION

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the index. If you omit schema, then Oracle Database assumes
the index is in your own schema.

index

Specify the name of the index to be dropped. When the index is dropped, all data blocks
allocated to the index are returned to the tablespace that contained the index.

ONLINE

Specify ONLINE to indicate that DML operations on the table or partition will be allowed while
dropping the index.

FORCE

FORCE applies only to domain indexes. This clause drops the domain index even if the
indextype routine invocation returns an error or the index is marked IN PROGRESS. Without
FORCE, you cannot drop a domain index if its indextype routine invocation returns an error or
the index is marked IN PROGRESS.

Chapter 16
DROP INDEX

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 20

Note

When dropping a domain index with FORCE option, the index will be dropped
regardless of any errors happening in the indextype routine. The errors raised by the
indextype routine are not reported.

Only use the FORCE option when the index or index partitions are marked IN PROGRESS
or when DROP INDEX has already failed.

{ DEFERRED | IMMEDIATE } INVALIDATION

This clause lets you control when the database invalidates dependent cursors while dropping
the index. It has the same semantics here as for the ALTER INDEX statement, with the following
addition: When you drop an index with DEFERRED INVALIDATION, Oracle database will
immediately invalidate any DML statement or query that references the dropped index in its
plan.

See { DEFERRED | IMMEDIATE } INVALIDATION in the documentation on ALTER INDEX for
the full semantics of this clause.

Restrictions on Dropping Indexes

The following restrictions apply to dropping indexes:

• You cannot drop a domain index if the index or any of its index partitions is marked
IN_PROGRESS.

• You cannot specify the ONLINE clause when dropping a domain index, a cluster index, or
an index on a queue table.

Examples

Dropping an Index: Example

This statement drops an index named ord_customer_ix_demo, which was created in "Compressing
an Index: Example":

DROP INDEX ord_customer_ix_demo;

DROP INDEXTYPE
Purpose

Use the DROP INDEXTYPE statement to drop an indextype as well as any association with a
statistics type.

See Also

CREATE INDEXTYPE for more information on indextypes

Prerequisites

The indextype must be in your own schema or you must have the DROP ANY INDEXTYPE
system privilege.

Chapter 16
DROP INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 20

Syntax

drop_indextype::=

DROP INDEXTYPE

IF EXISTS schema .

indextype

FORCE

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the indextype. If you omit schema, then Oracle Database
assumes the indextype is in your own schema.

indextype

Specify the name of the indextype to be dropped.

If any statistics types have been associated with indextype, then the database disassociates
the statistics type from the indextype and drops any statistics that have been collected using
the statistics type.

See Also

ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for more information on
statistics associations

FORCE

Specify FORCE to drop the indextype even if the indextype is currently being referenced by one
or more domain indexes. Oracle Database marks those domain indexes INVALID. Without
FORCE, you cannot drop an indextype if any domain indexes reference the indextype.

Examples

Dropping an Indextype: Example

The following statement drops the indextype position_indextype, created in "Using Extensible
Indexing ", and marks INVALID any domain indexes defined on this indextype:

DROP INDEXTYPE position_indextype FORCE;

Chapter 16
DROP INDEXTYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 20

DROP INMEMORY JOIN GROUP
Purpose

Use the DROP INMEMORY JOIN GROUP statement to remove a join group from the database.

See Also

• CREATE INMEMORY JOIN GROUP and ALTER INMEMORY JOIN GROUP

• Oracle Database In-Memory Guide for more information on join groups

Prerequisites

If the join group is in another user’s schema, then you must have the DROP ANY TABLE system
privilege.

Syntax

drop_inmemory_join_group::=

DROP INMEMORY JOIN GROUP

IF EXISTS schema .

join_group

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the join group. If you omit schema, then the database assumes
the join group is in your own schema.

join_group

Specify the name of the join group to be dropped.

You can view existing join groups by querying the DBA_JOINGROUPS or USER_JOINGROUPS data
dictionary view. Refer to Oracle Database Reference for more information on these views.

Examples

The following statement drops the join group prod_id1:

DROP INMEMORY JOIN GROUP prod_id1;

Chapter 16
DROP INMEMORY JOIN GROUP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 20

DROP JAVA
Purpose

Use the DROP JAVA statement to drop a Java source, class, or resource schema object.

See Also

• CREATE JAVA for information on creating Java objects

• Oracle Database Java Developer's Guide for more information on resolving Java
sources, classes, and resources

Prerequisites

The Java source, class, or resource must be in your own schema or you must have the DROP
ANY PROCEDURE system privilege. You also must have the EXECUTE object privilege on Java
classes to use this command.

Syntax

drop_java::=

DR0P JAVA

IF EXISTS
SOURCE

CLASS

RESOURCE

schema .

object_name

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

JAVA SOURCE

Specify SOURCE to drop a Java source schema object and all Java class schema objects
derived from it.

JAVA CLASS

Specify CLASS to drop a Java class schema object.

JAVA RESOURCE

Specify RESOURCE to drop a Java resource schema object.

Chapter 16
DROP JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 20

object_name

Specify the name of an existing Java class, source, or resource schema object. Enclose the
object_name in double quotation marks to preserve lower- or mixed-case names.

Examples

Dropping a Java Class Object: Example

The following statement drops the Java class Agent, created in "Creating a Java Class Object:
Example":

DROP JAVA CLASS "Agent";

Chapter 16
DROP JAVA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 20

17
SQL Statements: DROP LIBRARY to DROP
SYNONYM

This chapter contains the following SQL statements:

• DROP LIBRARY

• DROP LOCKDOWN PROFILE

• DROP MATERIALIZED VIEW

• DROP MATERIALIZED VIEW LOG

• DROP MATERIALIZED ZONEMAP

• DROP OPERATOR

• DROP OUTLINE

• DROP PACKAGE

• DROP PLUGGABLE DATABASE

• DROP PROCEDURE

• DROP PROFILE

• DROP RESTORE POINT

• DROP ROLE

• DROP ROLLBACK SEGMENT

• DROP SEQUENCE

• DROP SYNONYM

DROP LIBRARY
Purpose

Use the DROP LIBRARY statement to remove an external procedure library from the database.

See Also

CREATE LIBRARY for information on creating a library

Prerequisites

You must have the DROP ANY LIBRARY system privilege.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 24

Syntax

drop_library::=

DROP LIBRARY

IF EXISTS

library_name

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

library_name

Specify the name of the external procedure library being dropped.

Examples

Dropping a Library: Example

The following statement drops the ext_lib library:

DROP LIBRARY ext_lib;

DROP LOCKDOWN PROFILE
Purpose

Use the DROP LOCKDOWN PROFILE statement to remove a PDB lockdown profile from the
database. A PDB that was assigned the dropped profile will continue to be assigned the profile,
but will not be subject to the restrictions imposed by the dropped profile.

If the PDB_LOCKDOWN initialization parameter for a CDB, an application root, or a PDB has the
value of the dropped lockdown profile, then the restrictions imposed by the dropped profile will
be disabled when you drop it. However, the value of the PDB_LOCKDOWN initialization
parameter will remain until you explicitly unset it.

See Also

• CREATE LOCKDOWN PROFILE and ALTER LOCKDOWN PROFILE

• Oracle Database Security Guide for more information on PDB lockdown profiles

Prerequisites

• You must issue this statement from the CDB Root or the Application Root.

• You must have the DROP LOCKDOWN PROFILE system privilege in the container where you
mean to issue the statement.

Chapter 17
DROP LOCKDOWN PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 24

Syntax

drop_lockdown_profile::=

DROP LOCKDOWN PROFILE profile_name ;

Semantics

profile_name

Specify the name of the PDB lockdown profile to be dropped.

You can find the names of existing PDB lockdown profiles by querying the
DBA_LOCKDOWN_PROFILES data dictionary view.

See Also

Oracle Database Reference for more information on the DBA_LOCKDOWN_PROFILES
data dictionary view and the PDB_LOCKDOWN initialization parameter

Example

The following statement drops PDB lockdown profile hr_prof:

DROP LOCKDOWN PROFILE hr_prof;

DROP MATERIALIZED VIEW
Purpose

Use the DROP MATERIALIZED VIEW statement to remove an existing materialized view from the
database.

When you drop a materialized view, Oracle Database does not place it in the recycle bin.
Therefore, you cannot subsequently either purge or undrop the materialized view.

Note

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

Chapter 17
DROP MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 24

See Also

• CREATE MATERIALIZED VIEW for more information on the various types of
materialized views

• ALTER MATERIALIZED VIEW for information on modifying a materialized view

• Oracle Database Administrator’s Guide for information on materialized views in a
replication environment

• Oracle Database Data Warehousing Guide for information on materialized views
in a data warehousing environment

Prerequisites

The materialized view must be in your own schema or you must have the DROP ANY
MATERIALIZED VIEW system privilege. You must also have the privileges to drop the internal
table, views, and index that the database uses to maintain the materialized view data.

See Also

DROP TABLE , DROP VIEW , and DROP INDEX for information on privileges required
to drop objects that the database uses to maintain the materialized view

Syntax

drop_materialized_view::=

DROP MATERIALIZED VIEW

IF EXISTS schema .

materialized_view

PRESERVE TABLE

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the materialized view. If you omit schema, then Oracle Database
assumes the materialized view is in your own schema.

materialized_view

Specify the name of the existing materialized view to be dropped.

• If you drop a simple materialized view that is the least recently refreshed materialized view
of a master table, then the database automatically purges from the master table
materialized view log only the rows needed to refresh the dropped materialized view.

Chapter 17
DROP MATERIALIZED VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 24

• If you drop a materialized view that was created on a prebuilt table, then the database
drops the materialized view, and the prebuilt table reverts to its identity as a table.

• When you drop a master table, the database does not automatically drop materialized
views based on the table. However, the database returns an error when it tries to refresh a
materialized view based on a master table that has been dropped.

• If you drop a materialized view, then any compiled requests that were rewritten to use the
materialized view will be invalidated and recompiled automatically. If the materialized view
was prebuilt on a table, then the table is not dropped, but it can no longer be maintained by
the materialized view refresh mechanism.

PRESERVE TABLE Clause

This clause lets you retain the materialized view container table and its contents after the
materialized view object is dropped. The resulting table has the same name as the dropped
materialized view.

Oracle Database removes all metadata associated with the materialized view. However,
indexes created on the container table automatically during creation of the materialized view
are preserved, with one exception: the index created during the creation of a rowid
materialized view is dropped. Also, if the materialized view has any nested table columns, then
the storage tables for those columns are preserved, along with their metadata.

Restriction on the PRESERVE TABLE Clause

This clause is not valid for materialized views that have been imported from releases earlier
than Oracle9i, when these objects were called "snapshots".

Examples

Dropping a Materialized View: Examples

The following statement drops the materialized view emp_data in the sample schema hr:

DROP MATERIALIZED VIEW emp_data;

The following statement drops the sales_by_month_by_state materialized view and the underlying
table of the materialized view, unless the underlying table was registered in the CREATE
MATERIALIZED VIEW statement with the ON PREBUILT TABLE clause:

DROP MATERIALIZED VIEW sales_by_month_by_state;

DROP MATERIALIZED VIEW LOG
Purpose

Use the DROP MATERIALIZED VIEW LOG statement to remove a materialized view log from the
database.

Note

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

Chapter 17
DROP MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 24

See Also

• CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW for more
information on materialized views

• CREATE MATERIALIZED VIEW LOG for information on materialized view logs

• Oracle Database Administrator’s Guide for information on materialized views in a
replication environment

• Oracle Database Data Warehousing Guide for information on materialized views
in a data warehousing environment

Prerequisites

To drop a materialized view log, you must have the privileges needed to drop a table.

See Also

DROP TABLE

Syntax

drop_materialized_view_log::=

DROP MATERIALIZED VIEW LOG

IF EXISTS

ON

schema .

table

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the materialized view log and its master table. If you omit
schema, then Oracle Database assumes the materialized view log and master table are in your
own schema.

table

Specify the name of the master table associated with the materialized view log to be dropped.

After you drop a materialized view log that was created FOR FAST REFRESH, some materialized
views based on the materialized view log master table can no longer be fast refreshed. These
materialized views include rowid materialized views, primary key materialized views, and
subquery materialized views.

Chapter 17
DROP MATERIALIZED VIEW LOG

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 24

See Also

Oracle Database Data Warehousing Guide for a description of these types of
materialized views

After you drop a materialized view log that was created FOR SYNCHRONOUS REFRESH (a staging
log), the materialized views based on the staging log master table can no longer be
synchronous refreshed.

Examples

Dropping a Materialized View Log: Example

The following statement drops the materialized view log on the oe.customers master table:

DROP MATERIALIZED VIEW LOG ON customers;

DROP MATERIALIZED ZONEMAP
Purpose

Use the DROP MATERIALIZED ZONEMAP statement to remove an existing zone map from the
database.

Prerequisites

The zone map must be in your own schema or you must have the DROP ANY MATERIALIZED
VIEW system privilege. You must also have the privileges to drop the internal table and indexes
that the database uses to maintain the zone map data.

See Also

DROP TABLE and DROP INDEX for information on privileges required to drop objects
that the database uses to maintain the zone map

Syntax

drop_materialized_zonemap::=

DROP MATERIALIZED ZONEMAP

IF EXISTS schema .

zonemap_name

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

Chapter 17
DROP MATERIALIZED ZONEMAP

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 24

schema

Specify the schema containing the zone map. If you omit schema, then Oracle Database
assumes the zone map is in your own schema.

zonemap_name

Specify the name of the existing zone map to be dropped.

Example

Dropping a Zone Map: Examples

The following statement drops the zone map sales_zmap:

DROP MATERIALIZED ZONEMAP sales_zmap;

DROP MLE ENV
Purpose

Drop an exisiting environment with DROP MLE ENV.

Prerequisites

You must have the DROP ANY MLE privilege to drop an environment in schemas other than your
own. No privilege is needed to drop an environment in your own schema.

Syntax

DROP MLE ENV

IF EXISTS schema .

name

Semantics

Specify IF EXISTS to drop an existing MLE environment.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

See Also

• CREATE MLE ENV

• ALTER MLE ENV

• CREATE MLE MODULE

DROP MLE MODULE
Purpose

You can drop a previously deployed MLE module using DROP MLE MODULE .

Chapter 17
DROP MLE ENV

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 24

Syntax

DROP MLE MODULE

IF EXISTS schema .

module_name

Semantics

Specify IF EXISTS to drop an existing MLE module.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema Specify the schema containing the MLE module. If you do not specify the schema, then
Oracle Database assumes that the module is in your own schema.

module_name refers to the module name.

See Also

• CREATE MLE MODULE

• ALTER MLE MODULE

DROP OPERATOR
Purpose

Use the DROP OPERATOR statement to drop a user-defined operator.

See Also

• CREATE OPERATOR and ALTER OPERATOR for information on creating and
modifying operators

• "User-Defined Operators " and Oracle Database Data Cartridge Developer's
Guide for more information on operators in general

• ALTER INDEXTYPE for information on dropping an operator of a user-defined
indextype

Prerequisites

The operator must be in your schema or you must have the DROP ANY OPERATOR system
privilege.

Syntax

drop_operator::=

DROP OPERATOR

IF EXISTS schema .

operator

FORCE

Chapter 17
DROP OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 24

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the operator. If you omit schema, then Oracle Database assumes
the operator is in your own schema.

operator

Specify the name of the operator to be dropped.

FORCE

Specify FORCE to drop the operator even if it is currently being referenced by one or more
schema objects, such as indextypes, packages, functions, procedures, and so on. The
database marks any such dependent objects INVALID. Without FORCE, you cannot drop an
operator if any schema objects reference it.

Examples

Dropping a User-Defined Operator: Example

The following statement drops the operator eq_op:

DROP OPERATOR eq_op;

Because the FORCE clause is not specified, this operation will fail if any of the bindings of this
operator are referenced by an indextype.

Chapter 17
DROP OPERATOR

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 24

DROP OUTLINE
Purpose

Note

• Stored outlines are deprecated. They are still supported for backward
compatibility. However, Oracle recommends that you use SQL plan management
instead. SQL plan management creates SQL plan baselines, which offer superior
SQL performance stability compared with stored outlines.

• You can migrate existing stored outlines to SQL plan baselines by using the
MIGRATE_STORED_OUTLINE function of the DBMS_SPM package or Enterprise
Manager Cloud Control. When the migration is complete, the stored outlines are
marked as migrated and can be removed. You can drop all migrated stored
outlines on your system by using the DROP_MIGRATED_STORED_OUTLINE function of
the DBMS_SPM package.

• See Also: Oracle Database SQL Tuning Guide for more information about SQL
plan management and Oracle Database PL/SQL Packages and Types Reference
for information about the DBMS_SPM package

Use the DROP OUTLINE statement to drop a stored outline.

See Also

CREATE OUTLINE for information on creating an outline

Prerequisites

To drop an outline, you must have the DROP ANY OUTLINE system privilege.

Syntax

drop_outline::=

DROP OUTLINE outline ;

Semantics

outline

Specify the name of the outline to be dropped.

After the outline is dropped, if the SQL statement for which the stored outline was created is
compiled, then the optimizer generates a new execution plan without the influence of the
outline.

Chapter 17
DROP OUTLINE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 24

Examples

Dropping an Outline: Example

The following statement drops the stored outline called salaries.

DROP OUTLINE salaries;

DROP PACKAGE
Purpose

Packages are defined using PL/SQL. Refer to Oracle Database PL/SQL Language Reference
for complete information on creating, altering, and dropping packages.

Use the DROP PACKAGE statement to remove a stored package from the database. This
statement drops the body and specification of a package.

Note

Do not use this statement to remove a single object from a package. Instead, re-create
the package without the object using the CREATE PACKAGE and CREATE PACKAGE BODY
statements with the OR REPLACE clause.

Prerequisites

The package must be in your own schema or you must have the DROP ANY PROCEDURE system
privilege.

Syntax

drop_package::=

DROP PACKAGE

IF EXISTS BODY schema .

package ;

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

BODY

Specify BODY to drop only the body of the package. If you omit this clause, then Oracle
Database drops both the body and specification of the package.

When you drop only the body of a package but not its specification, the database does not
invalidate dependent objects. However, you cannot call one of the procedures or stored
functions declared in the package specification until you re-create the package body.

Chapter 17
DROP PACKAGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 24

schema

Specify the schema containing the package. If you omit schema, then the database assumes the
package is in your own schema.

package

Specify the name of the package to be dropped.

Oracle Database invalidates any local objects that depend on the package specification. If you
subsequently reference one of these objects, then the database tries to recompile the object
and returns an error if you have not re-created the dropped package.

If any statistics types are associated with the package, then the database disassociates the
statistics types with the FORCE clause and drops any user-defined statistics collected with the
statistics types.

See Also

ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS

Examples

Dropping a Package: Example

The following statement drops the specification and body of the emp_mgmt package, invalidating
all objects that depend on the specification. See Oracle Database PL/SQL Language
Reference for the example that creates this package.

DROP PACKAGE emp_mgmt;

DROP PLUGGABLE DATABASE
Purpose

Use the DROP PLUGGABLE DATABASE statement to drop a pluggable database (PDB). The PDB
can be a traditional PDB, an application container, an application seed, or an application PDB.

When you drop a PDB, the control file of the multitenant container database (CDB) is modified
to remove all references to the dropped PDB and its data files. Archived logs and backups
associated with the dropped PDB are not deleted. You can delete them using Oracle Recovery
Manager (RMAN), or you can retain them in case you subsequently want to perform point-in-
time recovery of the PDB.

Caution

You cannot roll back a DROP PLUGGABLE DATABASE statement.

Prerequisites

You must be connected to a CDB.

Chapter 17
DROP PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 24

To drop a traditional PDB or an application container, the current container must be the root,
you must be authenticated AS SYSDBA or AS SYSOPER, and the SYSDBA or SYSOPER privilege
must be either granted to you commonly, or granted to you locally in the root and locally in
traditional PDB or application container you want to drop. The application container must be
empty, that is, it must not contain an application seed or any application PDBs.

To drop an application seed, the current container must be the root or the application root, you
must be authenticated AS SYSDBA or AS SYSOPER, and the SYSDBA or SYSOPER privilege must be
either granted to you commonly, or granted to you locally in the root or application root.

To drop an application PDB, the current container must be the root or the application root, you
must be authenticated AS SYSDBA or AS SYSOPER, and the SYSDBA or SYSOPER privilege must be
either granted to you commonly, or granted to you locally in the root or application root, and
locally in the application PDB you want to drop.

To specify KEEP DATAFILES (the default), the PDB you want to drop must be unplugged.

To specify INCLUDING DATAFILES, the PDB you want to drop must be in mounted mode or it
must be unplugged.

Syntax

drop_pluggable_database::=

DROP PLUGGABLE DATABASE pdb_name

FORCE

KEEP

INCLUDING
DATAFILES

;

Semantics

pdb_name

Specify the name of the PDB you want to drop. You cannot drop the seed (PDB$SEED).
However, you can drop an application seed.

FORCE

Use FORCE to drop an orphaned application root container.

FORCE requires the following condition: the APP_ROOT_CLONE must be closed, and the APP_CDB
must be open.

To close the APP_ROOT_CLONE, you must set the variable _ORACLE_SCRIPT" to true using ALTER
SESSION.

Keeping APP_CDB open follow the instructions to close the APP_ROOT_CLONE:

ALTER SESSION SET _ORACLE_SCRIPT"=true ;
ALTER PLUGGABLE DATABASE APP_ROOT_CLONE CLOSE;
DROP PLUGGABLE DATABASE APP_ROOT_CLONE FORCE INCLUDING DATAFILES;

See Also

Removing a PDB

Chapter 17
DROP PLUGGABLE DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 24

KEEP DATAFILES

Specify KEEP DATAFILES to retain the data files associated with the PDB after the PDB is
dropped. The temp file for the PDB is deleted because it is no longer needed. This is the
default.

Keeping data files may be useful in scenarios where a PDB that is unplugged from one CDB is
plugged into another CDB, with both CDBs sharing storage devices.

INCLUDING DATAFILES

Specify INCLUDING DATAFILES to delete the data files associated with the PDB being dropped.
The temp file for the PDB is also deleted.

Restriction on Dropping SNAPSHOT COPY PDBs

If a PDB was created with the SNAPSHOT COPY clause, then you must specify INCLUDING
DATAFILES when you drop the PDB.

Examples

Dropping a PDB: Example

The following statement drops the PDB pdb1 and its associated data files:

DROP PLUGGABLE DATABASE pdb1
 INCLUDING DATAFILES;

DROP PMEM FILESTORE
Purpose

You can drop a PMEM file store with this command.

Syntax

drop_pmem_filestore::=

DROP PMEM FILESTORE filestore_name

FORCE

INCLUDING

EXCLUDING

CONTENTS

;

Semantics

INCLUDING CONTENTS

Specify INCLUDING CONTENTS to confirm that Oracle should remove all the files in the PMEM
file store.

EXCLUDING CONTENTS

Specify EXCLUDING CONTENTS to ensure that Oracle drops the PMEM file store only when the
file store is empty.

Chapter 17
DROP PMEM FILESTORE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 24

FORCE

Specify FORCE along with INCLUDING CONTENTS if you suspect that the file store is corrupt.

Note that this option does not check if the file store has content in it prior to deleting it.

If you specify neither INCLUDING CONTENTS nor EXCLUDING CONTENTS, you must ensure that
the file store is empty. EXCLUDING CONTENTS is the default behavior.

Example

DROP PMEM FILESTORE cloud_db_1 EXCLUDING CONTENTS

DROP PROCEDURE
Purpose

Procedures are defined using PL/SQL. Refer to Oracle Database PL/SQL Language
Reference for complete information on creating, altering, and dropping procedures.

Use the DROP PROCEDURE statement to remove a standalone stored procedure from the
database. Do not use this statement to remove a procedure that is part of a package. Instead,
either drop the entire package using the DROP PACKAGE statement, or redefine the package
without the procedure using the CREATE PACKAGE statement with the OR REPLACE clause.

Prerequisites

The procedure must be in your own schema or you must have the DROP ANY PROCEDURE
system privilege.

Syntax

drop_procedure::=

DROP PR0CEDURE

IF EXISTS schema .

procedure ;

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the procedure. If you omit schema, then Oracle Database
assumes the procedure is in your own schema.

procedure

Specify the name of the procedure to be dropped.

When you drop a procedure, Oracle Database invalidates any local objects that depend upon
the dropped procedure. If you subsequently reference one of these objects, then the database

Chapter 17
DROP PROCEDURE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 24

tries to recompile the object and returns an error message if you have not re-created the
dropped procedure.

Examples

Dropping a Procedure: Example

The following statement drops the procedure remove_emp owned by the user hr and invalidates
all objects that depend upon remove_emp:

DROP PROCEDURE hr.remove_emp;

DROP PROFILE
Purpose

Use the DROP PROFILE statement to remove a profile from the database. You can drop any
profile except the DEFAULT profile.

See Also

CREATE PROFILE and ALTER PROFILE on creating and modifying a profile

Prerequisites

You must have the DROP PROFILE system privilege.

Syntax

drop_profile::=

DROP PROFILE profile

CASCADE

;

Semantics

profile

Specify the name of the profile to be dropped.

CASCADE

Specify CASCADE to deassign the profile from any users to whom it is assigned. Oracle
Database automatically assigns the DEFAULT profile to such users. You must specify this clause
to drop a profile that is currently assigned to users.

Examples

Dropping a Profile: Example

The following statement drops the profile app_user, which was created in "Creating a Profile:
Example". Oracle Database drops the profile app_user and assigns the DEFAULT profile to any
users currently assigned the app_user profile:

Chapter 17
DROP PROFILE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 24

DROP PROFILE app_user CASCADE;

DROP PROPERTY GRAPH
Purpose

You can drop property graphs with DROP PROPERTY GRAPH.

Prerequistes

Like tables and views, you can drop a property graph in your own schema. To drop a property
graph in any schema except SYS and AUDSYS, you must have the DROP ANY PROPERTY GRAPH
privilege.

Syntax

drop_property_graph::=

DROP PROPERTY GRAPH

IF EXISTS schema .

graph_name

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing property graph.

If you specify IF NOT EXISTS with DROP, the command fails with the error message: Incorrect IF
EXISTS clause for ALTER/DROP statement.

DROP RESTORE POINT
Purpose

Use the DROP RESTORE POINT statement to remove a normal restore point or a guaranteed
restore point from the database.

• You need not drop normal restore points. The database automatically drops the oldest
restore points when necessary, as described in the semantics for restore_point. However,
you can drop a normal restore point if you want to reuse the name.

• Guaranteed restore points are not dropped automatically. Therefore, if you want to remove
a guaranteed restore point from the database, then you must do so explicitly using this
statement.

See Also

CREATE RESTORE POINT , FLASHBACK DATABASE, and FLASHBACK TABLE for
information on creating and using restore points

Chapter 17
DROP PROPERTY GRAPH

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 24

Prerequisites

To drop a normal restore point, you must have the SELECT ANY DICTIONARY, FLASHBACK ANY
TABLE, SYSBACKUP, or SYSDG system privilege.

To drop a guaranteed restore point, you must fulfill one of the following conditions:

• You must connect AS SYSDBA, or AS SYSBACKUP, or AS SYSDG.

• You must have been granted the SYSDBA privilege, and be using a multitenant database.

• You must be running as user SYS, and be using a a multitenant database.

You can drop a restore point when connected to a multitenant container database (CDB) as
follows:

• To drop a normal CDB restore point, the current container must be the root and you must
have the SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system privilege, either
granted commonly or granted locally in the root, or the SYSDBA, SYSBACKUP, or SYSDG
system privilege granted commonly.

• To drop a guaranteed CDB restore point, the current container must be the root and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege granted commonly.

• To drop a normal PDB restore point, the current container must be the root and you must
have the SELECT ANY DICTIONARY, FLASHBACK ANY TABLE, SYSDBA, SYSBACKUP, or SYSDG
system privilege, granted commonly, or the current container must be the PDB in which
you want to create the restore point and you must have the SELECT ANY DICTIONARY,
FLASHBACK ANY TABLE, SYSDBA, SYSBACKUP, or SYSDG system privilege, granted
commonly or granted locally in that PDB.

• To drop a guaranteed PDB restore point, the current container must be the root and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly, or the
current container must be the PDB in which you want to create the restore point and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly or
granted locally in that PDB.

Syntax

drop_restore_point::=

DROP RESTORE POINT restore_point

FOR PLUGGABLE DATABASE pdb_name

;

Semantics

restore_point

Specify the name of the restore point you want to drop.

FOR PLUGGABLE DATABASE

This clause enables you to drop a PDB restore point when you are connected to the root. For
pdb_name, specify the name of the PDB that contains the restore point you want to drop.

If you are connected to the PDB from which you want to drop the restore point, then it is not
necessary to specify this clause. However, if you specify this clause, then you must specify the
name of the PDB to which you are connected.

Chapter 17
DROP RESTORE POINT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 24

Examples

Dropping a Restore Point: Example

The following example drops the good_data restore point, which was created in "Creating and
Using a Restore Point: Example":

DROP RESTORE POINT good_data;

DROP ROLE
Purpose

Use the DROP ROLE statement to remove a role from the database. When you drop a role,
Oracle Database revokes it from all users and roles to whom it has been granted and removes
it from the database. User sessions in which the role is already enabled are not affected.
However, no new user session can enable the role after it is dropped.

See Also

• CREATE ROLE and ALTER ROLE for information on creating roles and changing
the authorization needed to enable a role

• SET ROLE for information on disabling roles for the current session

Prerequisites

You must have been granted the role with the ADMIN OPTION or you must have the DROP ANY
ROLE system privilege.

Syntax

drop_role::=

DROP ROLE role ;

Semantics

role

Specify the name of the role to be dropped.

Examples

Dropping a Role: Example

To drop the role dw_manager, which was created in "Creating a Role: Example", issue the
following statement:

DROP ROLE dw_manager;

Chapter 17
DROP ROLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 24

DROP ROLLBACK SEGMENT
Purpose

Use the DROP ROLLBACK SEGMENT to remove a rollback segment from the database. When you
drop a rollback segment, all space allocated to the rollback segment returns to the tablespace.

Note

If your database is running in automatic undo mode, then this is the only valid
operation on rollback segments. In that mode, you cannot create or alter a rollback
segment.

Prerequisites

You must have the DROP ROLLBACK SEGMENT system privilege, and the rollback segment must
be offline.

Syntax

drop_rollback_segment::=

DROP ROLLBACK SEGMENT rollback_segment ;

Semantics

rollback_segment

Specify the name the rollback segment to be dropped.

Restrictions on Dropping Rollback Segments

This statement is subject to the following restrictions:

• You can drop a rollback segment only if it is offline. To determine whether a rollback
segment is offline, query the data dictionary view DBA_ROLLBACK_SEGS. Offline rollback
segments have the value AVAILABLE in the STATUS column. You can take a rollback
segment offline with the OFFLINE clause of the ALTER ROLLBACK SEGMENT statement.

• You cannot drop the SYSTEM rollback segment.

Examples

Dropping a Rollback Segment: Example

The following syntax drops the rollback segment created in "Creating a Rollback Segment:
Example":

DROP ROLLBACK SEGMENT rbs_one;

Chapter 17
DROP ROLLBACK SEGMENT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 24

DROP SEQUENCE
Purpose

Use the DROP SEQUENCE statement to remove a sequence from the database.

You can also use this statement to restart a sequence by dropping and then re-creating it. For
example, if you have a sequence with a current value of 150 and you would like to restart the
sequence with a value of 27, then you can drop the sequence and then re-create it with the
same name and a START WITH value of 27.

See Also

CREATE SEQUENCE and ALTER SEQUENCE for more information on creating and
modifying a sequence

Prerequisites

The sequence must be in your own schema or you must have the DROP ANY SEQUENCE system
privilege.

Syntax

drop_sequence::=

DROP SEQUENCE

IF EXISTS schema .

sequence_name

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the sequence. If you omit schema, then Oracle Database
assumes the sequence is in your own schema.

sequence_name

Specify the name of the sequence to be dropped.

Examples

Dropping a Sequence: Example

The following statement drops the sequence customers_seq owned by the user oe, which was
created in "Creating a Sequence: Example". To issue this statement, you must either be
connected as user oe or have the DROP ANY SEQUENCE system privilege:

Chapter 17
DROP SEQUENCE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 24

DROP SEQUENCE oe.customers_seq;

DROP SYNONYM
Purpose

Use the DROP SYNONYM statement to remove a synonym from the database or to change the
definition of a synonym by dropping and re-creating it.

See Also

CREATE SYNONYM for more information on synonyms

Prerequisites

To drop a private synonym, either the synonym must be in your own schema or you must have
the DROP ANY SYNONYM system privilege.

To drop a PUBLIC synonym, you must have the DROP PUBLIC SYNONYM system privilege.

Syntax

drop_synonym::=

drop_synonym::=

DROP

PUBLIC

SYNONYM

IF EXISTS schema .

synonym

FORCE

Semantics

PUBLIC

You must specify PUBLIC to drop a public synonym. You cannot specify schema if you have
specified PUBLIC.

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the synonym. If you omit schema, then Oracle Database
assumes the synonym is in your own schema.

synonym

Specify the name of the synonym to be dropped.

Chapter 17
DROP SYNONYM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 24

If you drop a synonym for the master table of a materialized view, and if the defining query of
the materialized view specified the synonym rather than the actual table name, then Oracle
Database marks the materialized view unusable.

If an object type synonym has any dependent tables or user-defined types, then you cannot
drop the synonym unless you also specify FORCE.

FORCE

Specify FORCE to drop the synonym even if it has dependent tables or user-defined types.

Note

Oracle does not recommend that you specify FORCE to drop object type synonyms with
dependencies. This operation can result in invalidation of other user-defined types or
marking UNUSED the table columns that depend on the synonym. For information
about type dependencies, see Oracle Database Object-Relational Developer's Guide.

Examples

Dropping a Synonym: Example

To drop the public synonym named customers, which was created in "Oracle Database
Resolution of Synonyms: Example", issue the following statement:

DROP PUBLIC SYNONYM customers;

Chapter 17
DROP SYNONYM

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 24

18
SQL Statements: DROP TABLE to LOCK
TABLE

This chapter contains the following SQL statements:

• DROP TABLE

• DROP TABLESPACE

• DROP TABLESPACE SET

• DROP TRIGGER

• DROP TYPE

• DROP TYPE BODY

• DROP USER

• DROP VIEW

• EXPLAIN PLAN

• FLASHBACK DATABASE

• FLASHBACK TABLE

• GRANT

• INSERT

• LOCK TABLE

DROP TABLE
Purpose

Use the DROP TABLE statement to move a table or object table to the recycle bin or to remove
the table and all its data from the database entirely.

Note

Unless you specify the PURGE clause, the DROP TABLE statement does not result in
space being released back to the tablespace for use by other objects, and the space
continues to count toward the user's space quota.

For an external table, this statement removes only the table metadata in the database. It has
no affect on the actual data, which resides outside of the database.

When you drop a table that is part of a cluster, the table is moved to the recycle bin. However,
if you subsequently drop the cluster, then the table is purged from the recycle bin and can no
longer be recovered with a FLASHBACK TABLE operation.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 93

Dropping a table invalidates dependent objects and removes object privileges on the table. If
you want to re-create the table, then you must regrant object privileges on the table, re-create
the indexes, integrity constraints, and triggers for the table, and respecify its storage
parameters. Truncating has none of these effects. Therefore, removing rows with the
TRUNCATE statement can be more efficient than dropping and re-creating a table.

See Also

• CREATE TABLE and ALTER TABLE for information on creating and modifying
tables

• TRUNCATE TABLE and DELETE for information on removing data from a table

• FLASHBACK TABLE for information on retrieving a dropped table from the recycle
bin

Prerequisites

The table must be in your own schema or you must have the DROP ANY TABLE system
privilege.

You can perform DDL operations (such as ALTER TABLE, DROP TABLE, CREATE INDEX) on a
temporary table only when no session is bound to it. A session becomes bound to a temporary
table by performing an INSERT operation on the table. A session becomes unbound to the
temporary table by issuing a TRUNCATE statement or at session termination, or, for a
transaction-specific temporary table, by issuing a COMMIT or ROLLBACK statement.

Dropping Private Temporary Tables

You can drop a private temporary table using the existing DROP TABLE command. Dropping a
private temporary table will not commit an existing transaction. This applies to both transaction-
specific and session-specific private temporary tables. Note that a dropped private temporary
table will not go into the RECYCLEBIN.

Dropping Blockchain and Immutable Tables

Use the DROP TABLE statement to drop a blockchain or immutable table. It is recommended that
you include the PURGE option while dropping these tables. Dropping a blockchain or immutable
table removes its definition from the data dictionary, deletes all its rows, and deletes any
indexes and triggers defined on the table.

The blockchain or immutable table must be contained in your schema, or you must have the
DROP ANY TABLE system privilege.

A blockchain or immutable table can be dropped only after it has not been modified for a period
of time that is defined by its retention period.

An empty blockchain or immutable table can be dropped regardless of its retention period.

Syntax

drop_table::=

DROP TABLE

IF EXISTS schema .

table

CASCADE CONSTRAINTS PURGE

Chapter 18
DROP TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 93

Semantics

IF EXISTS

Specifying IF EXISTS drops the table if it exists.

Using IF NOT EXISTS with DROP TABLE results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the table. If you omit schema, then Oracle Database assumes the
table is in your own schema.

table

Specify the name of the table to be dropped. Oracle Database automatically performs the
following operations:

• All rows from the table are dropped.

• All table indexes and domain indexes are dropped, as well as any triggers defined on the
table, regardless of who created them or whose schema contains them. If table is
partitioned, then any corresponding local index partitions are also dropped.

• All the storage tables of nested tables and LOBs of table are dropped.

• When you drop a range-, hash-, or list-partitioned table, then the database drops all the
table partitions. If you drop a composite-partitioned table, then all the partitions and
subpartitions are also dropped.

• When you drop a partitioned table with the PURGE keyword, the statement executes as a
series of subtransactions, each of which drops a subset of partitions or subpartitions and
their metadata. This division of the drop operation into subtransactions optimizes the
processing of internal system resource consumption (for example, the library cache),
especially for the dropping of very large partitioned tables. As soon as the first
subtransaction commits, the table is marked UNUSABLE. If any of the subtransactions fails,
then the only operation allowed on the table is another DROP TABLE ... PURGE statement.
Such a statement will resume work from where the previous DROP TABLE statement failed,
assuming that you have corrected any errors that the previous operation encountered.

You can list the tables marked UNUSABLE by such a drop operation by querying the status
column of the *_TABLES, *_PART_TABLES, *_ALL_TABLES, or *_OBJECT_TABLES data dictionary
views, as appropriate.

See Also

Oracle Database VLDB and Partitioning Guide for more information on dropping
partitioned tables.

• For an index-organized table, any mapping tables defined on the index-organized table are
dropped.

• For a domain index, the appropriate drop routines are invoked. Refer to Oracle Database
Data Cartridge Developer's Guide for more information on these routines.

Chapter 18
DROP TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 93

• If any statistics types are associated with the table, then the database disassociates the
statistics types with the FORCE clause and removes any user-defined statistics collected
with the statistics type.

See Also

ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for more information
on statistics type associations

• If the table is not part of a cluster, then the database returns all data blocks allocated to the
table and its indexes to the tablespaces containing the table and its indexes.

To drop a cluster and all its the tables, use the DROP CLUSTER statement with the
INCLUDING TABLES clause to avoid dropping each table individually. See DROP
CLUSTER .

• If the table is a base table for a view, a container or master table of a materialized view, or
if it is referenced in a stored procedure, function, or package, then the database invalidates
these dependent objects but does not drop them. You cannot use these objects unless you
re-create the table or drop and re-create the objects so that they no longer depend on the
table.

If you choose to re-create the table, then it must contain all the columns selected by the
subqueries originally used to define the materialized views and all the columns referenced
in the stored procedures, functions, or packages. Any users previously granted object
privileges on the views, stored procedures, functions, or packages need not be regranted
these privileges.

If the table is a master table for a materialized view, then the materialized view can still be
queried, but it cannot be refreshed unless the table is re-created so that it contains all the
columns selected by the defining query of the materialized view.

If the table has a materialized view log, then the database drops this log and any other
direct-path INSERT refresh information associated with the table.

Restrictions on Dropping Tables

• You cannot directly drop the storage table of a nested table. Instead, you must drop the
nested table column using the ALTER TABLE ... DROP COLUMN clause.

• You cannot drop the parent table of a reference-partitioned table. You must first drop all
reference-partitioned child tables.

• You cannot drop a table that uses a flashback data archive for historical tracking. You must
first disable the table's use of the flashback archive.

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS to drop all referential integrity constraints that refer to primary
and unique keys in the dropped table. If you omit this clause, and such referential integrity
constraints exist, then the database returns an error and does not drop the table.

PURGE

Specify PURGE if you want to drop the table and release the space associated with it in a single
step. If you specify PURGE, then the database does not place the table and its dependent
objects into the recycle bin.

Chapter 18
DROP TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 93

Note

You cannot roll back a DROP TABLE statement with the PURGE clause, nor can you
recover the table if you have dropped it with the PURGE clause.

Using this clause is equivalent to first dropping the table and then purging it from the recycle
bin. This clause lets you save one step in the process. It also provides enhanced security if you
want to prevent sensitive material from appearing in the recycle bin.

See Also

Oracle Database Administrator's Guide for information on the recycle bin and naming
conventions for objects in the recycle bin

Examples

Dropping a Table: Example

The following statement drops the oe.list_customers table created in "List Partitioning Example".

DROP TABLE list_customers PURGE;

DROP TABLESPACE
Purpose

Use the DROP TABLESPACE statement to remove a tablespace from the database.

When you drop a tablespace, Oracle Database does not place it in the recycle bin. Therefore,
you cannot subsequently either purge or undrop the tablespace.

See Also

CREATE TABLESPACE and ALTER TABLESPACE for information on creating and
modifying a tablespace

Prerequisites

You must have the DROP TABLESPACE system privilege. You cannot drop a tablespace if it
contains any rollback segments holding active transactions.

Chapter 18
DROP TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 93

Syntax

drop_tablespace::=

DROP TABLESPACE

IF EXISTS

tablespace

DROP

KEEP
QUOTA

INCLUDING CONTENTS

AND

KEEP
DATAFILES

CASCADE CONSTRAINTS

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing tablespace.

Specifying IF NOT EXISTS with ALTER results in error: Incorrect IF EXISTS clause for ALTER/DROP
statement.

tablespace

Specify the name of the tablespace to be dropped, including those of shadow tablespaces, that
store lost write protection updates.

You can drop a tablespace regardless of whether it is online or offline. Oracle recommends that
you take the tablespace offline before dropping it to ensure that no SQL statements in currently
running transactions access any of the objects in the tablespace.

You cannot drop the SYSTEM tablespace. You can drop the SYSAUX tablespace only if you have
the SYSDBA system privilege and you have started the database in UPGRADE mode.

You may want to alert any users who have been assigned the tablespace as either a default or
temporary tablespace. After the tablespace has been dropped, these users cannot allocate
space for objects or sort areas in the tablespace. You can reassign users new default and
temporary tablespaces with the ALTER USER statement.

Any objects that were previously dropped from the tablespace and moved to the recycle bin
are purged from the recycle bin. Oracle Database removes from the data dictionary all
metadata about the tablespace and all data files and temp files in the tablespace. The
database also automatically drops from the operating system any Oracle-managed data files
and temp files in the tablespace. Other data files and temp files are not removed from the
operating system unless you specify INCLUDING CONTENTS AND DATAFILES.

You cannot use this statement to drop a tablespace group. However, if tablespace is the only
tablespace in a tablespace group, then Oracle Database removes the tablespace group from
the data dictionary as well.

Restrictions on Dropping Tablespaces

Dropping tablespaces is subject to the following restrictions:

• You cannot drop a tablespace that contains a domain index or any objects created by a
domain index.

Chapter 18
DROP TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 93

• You cannot drop an undo tablespace if it is being used by any instance or if it contains any
undo data needed to roll back uncommitted transactions.

• You cannot drop a tablespace that has been designated as the default tablespace for the
database. You must first reassign another tablespace as the default tablespace and then
drop the old default tablespace.

• You cannot drop a temporary tablespace if it is part of the database default temporary
tablespace group. You must first remove the tablespace from the database default
temporary tablespace group and then drop it.

• You cannot drop a temporary tablespace if it contains segments that are in use by existing
sessions. In this case, no error is raised. The database waits until there are no segments in
use by existing sessions and then drops the tablespace.

• You cannot drop a tablespace, even with the INCLUDING CONTENTS and CASCADE
CONSTRAINTS clauses, if doing so would disable a primary key or unique constraint in
another tablespace. For example, if the tablespace being dropped contains a primary key
index, but the primary key column itself is in a different tablespace, then you cannot drop
the tablespace until you have manually disabled the primary key constraint in the other
tablespace.

See Also

Oracle Database Data Cartridge Developer's Guide and Oracle Database Concepts
for more information on domain indexes

{ DROP | KEEP } QUOTA

Specify DROP QUOTA to drop all user quotas for the tablespace. Specify KEEP QUOTA to retain all
user quotas for the tablespace. The default is KEEP QUOTA.

You can view all user quotas for a tablespace by querying the DBA_TS_QUOTAS data dictionary
view.

INCLUDING CONTENTS

Specify INCLUDING CONTENTS to drop all the contents of the tablespace, including those of
shadow tablespaces that store lost write protection updates. You must specify this clause to
drop a tablespace that contains any database objects. If you omit this clause, and the
tablespace is not empty, then the database returns an error and does not drop the tablespace.

DROP TABLESPACE fails, even if you specify INCLUDING CONTENTS, if the tablespace contains
some, but not all, of the partitions or subpartitions of a single table. If all the partitions or
subpartitions of a partitioned table reside in tablespace, then DROP TABLESPACE ... INCLUDING
CONTENTS drops tablespace, as well as any associated index segments, LOB data and index
segments, and nested table data and index segments of table in other tablespace(s).

For a partitioned index-organized table, if all the primary key index segments are in this
tablespace, then this clause will also drop any overflow segments that exist in other
tablespaces, as well as any associated mapping table in other tablespaces. If some of the
primary key index segments are not in this tablespace, then the statement will fail. In that case,
before you can drop the tablespace, you must use ALTER TABLE ... MOVE PARTITION to move
those primary key index segments into this tablespace, drop the partitions whose overflow data
segments are not in this tablespace, and drop the partitioned index-organized table.

Chapter 18
DROP TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 93

If the tablespace contains a master table of a materialized view, then the database invalidates
the materialized view.

If the tablespace contains a materialized view log, then the database drops the log and any
other direct-path INSERT refresh information associated with the table.

AND DATAFILES

When you specify INCLUDING CONTENTS, the AND DATAFILES clause lets you instruct the
database to delete the associated operating system files as well. Oracle Database writes a
message to the alert log for each operating system file deleted. This clause is not needed for
Oracle Managed Files, because they are removed from the system even if you do not specify
AND DATAFILES.

KEEP DATAFILES

When you specify INCLUDING CONTENTS, the KEEP DATAFILES clause lets you instruct the
database to leave untouched the associated operating system files, including Oracle Managed
Files. You must specify this clause if you are using Oracle Managed Files and you do not want
the associated operating system files removed by the INCLUDING CONTENTS clause.

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS to drop all referential integrity constraints from tables outside
tablespace that refer to primary and unique keys of tables inside tablespace. If you omit this clause
and such referential integrity constraints exist, then Oracle Database returns an error and does
not drop the tablespace.

Examples

Dropping a Tablespace: Example

The following statement drops the tbs_01 tablespace and drops all referential integrity
constraints that refer to primary and unique keys inside tbs_01:

DROP TABLESPACE tbs_01
 INCLUDING CONTENTS
 CASCADE CONSTRAINTS;

Dropping a Shadow Tablespace: Example

The following statement tries to move the tracked data in the shadow tablespace to another
shadow tablespace. This only works if there are shadow tablespaces in the PDB with enough
free space.

DROP TABLESPACE <shadow_tablespace_name>

The following statement drops the shadow tablespace and all its contents. All the tracking data
is lost.

Dropping Shadow Tablespace Including Contents: Example

DROP TABLESPACE <shadow_tablespace_name>
 INCLUDING CONTENTS

Deleting Operating System Files: Example

The following example drops the tbs_02 tablespace and deletes all associated operating system
data files:

DROP TABLESPACE tbs_02
 INCLUDING CONTENTS AND DATAFILES;

Chapter 18
DROP TABLESPACE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 93

DROP TABLESPACE SET

Note

This SQL statement is valid only if you are using Oracle Sharding. For more
information on Oracle Sharding, refer to Oracle Database Administrator’s Guide.

Purpose

Use the DROP TABLESPACE SET statement to drop a tablespace set from a shardgroup.

When you drop a tablespace set, Oracle Database does not place it in the recycle bin.
Therefore, you cannot subsequently either purge or undrop the tablespace set.

See Also

CREATE TABLESPACE SET and ALTER TABLESPACE SET

Prerequisites

You must be connected to a shard catalog database as an SDB user.

You must have the DROP TABLESPACE system privilege. You cannot drop a tablespace set if its
tablespaces contain any rollback segments holding active transactions.

Syntax

drop_tablespace_set::=

DROP TABLESPACE SET tablespace_set

INCLUDING CONTENTS

AND

KEEP
DATAFILES

CASCADE CONSTRAINTS

;

Semantics

tablespace_set

Specify the name of the tablespace set to be dropped.

INCLUDING CONTENTS

This clause lets you specify how the database manages objects and datafiles associated with
the tablespaces in the tablespace set during the drop operation. The INCLUDING CONTENTS
clause has the same semantics here as for the DROP TABLESPACE statement. See INCLUDING
CONTENTS for the full semantics of this clause.

Chapter 18
DROP TABLESPACE SET

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 93

Examples

Dropping a Tablespace Set: Example

The following statement drops the tablespace set ts1:

DROP TABLESPACE SET ts1;

DROP TRIGGER
Purpose

Triggers are defined using PL/SQL. Refer to Oracle Database PL/SQL Language Reference
for complete information on creating, altering, and dropping triggers.

Use the DROP TRIGGER statement to remove a database trigger from the database.

See Also

CREATE TRIGGER and ALTER TRIGGER

Prerequisites

The trigger must be in your own schema or you must have the DROP ANY TRIGGER system
privilege. To drop a trigger on DATABASE in another user's schema, you must also have the
ADMINISTER DATABASE TRIGGER system privilege.

Syntax

drop_trigger::=

DROP TRIGGER

IF EXISTS schema .

trigger ;

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the trigger. If you omit schema, then Oracle Database assumes
the trigger is in your own schema.

trigger

Specify the name of the trigger to be dropped. Oracle Database removes it from the database
and does not fire it again.

Chapter 18
DROP TRIGGER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 93

Examples

Dropping a Trigger: Example

The following statement drops the salary_check trigger in the schema hr:

DROP TRIGGER hr.salary_check;

DROP TYPE
Purpose

Object types are defined using PL/SQL. Refer to Oracle Database PL/SQL Language
Reference for complete information on creating, altering, and dropping object types.

Use the DROP TYPE statement to drop the specification and body of an object type, a varray, or
a nested table type.

Prerequisites

The object type, varray, or nested table type must be in your own schema or you must have the
DROP ANY TYPE system privilege.

Syntax

drop_type::=

DROP TYPE

IF EXISTS schema .

type_name

FORCE

VALIDATE

;

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

Semantics

schema

Specify the schema containing the type. If you omit schema, then Oracle Database assumes the
type is in your own schema.

type_name

Specify the name of the object, varray, or nested table type to be dropped. You can drop only
types with no type or table dependencies. This includes tables in the recycle bin.

When you drop a type, any dependent objects such as subtypes are not placed in the recycle
bin and any former dependent objects in the recycle bin are purged.

If type_name is a supertype, then this statement will fail unless you also specify FORCE. If you
specify FORCE, then the database invalidates all subtypes depending on this supertype.

Chapter 18
DROP TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 93

If type_name is a statistics type, then this statement will fail unless you also specify FORCE. If you
specify FORCE, then the database first disassociates all objects that are associated with
type_name and then drops type_name.

See Also

ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for more information on
statistics types

If type_name is an object type that has been associated with a statistics type, then the database
first attempts to disassociate type_name from the statistics type and then drops type_name.
However, if statistics have been collected using the statistics type, then the database will be
unable to disassociate type_name from the statistics type, and this statement will fail.

If type_name is an implementation type for an indextype, then the indextype will be marked
INVALID.

If type_name has a public synonym defined on it, then the database will also drop the synonym.

Unless you specify FORCE, you can drop only object types, nested tables, or varray types that
are standalone schema objects with no dependencies. This is the default behavior.

See Also

CREATE INDEXTYPE

FORCE

Specify FORCE to drop the type even if it has dependent database objects. Oracle Database
marks UNUSED all columns dependent on the type to be dropped, and those columns become
inaccessible.

Note

Oracle does not recommend that you specify FORCE to drop object types with
dependencies. These include dependent tables in the recycle bin. This operation is not
recoverable and could cause the data in the dependent tables or columns to become
inaccessible.

Refer to Managing Tables .

VALIDATE

If you specify VALIDATE when dropping a type, then Oracle Database checks for stored
instances of this type within substitutable columns of any of its supertypes. If no such instances
are found, then the database completes the drop operation.

This clause is meaningful only for subtypes. Oracle recommends the use of this option to
safely drop subtypes that do not have any explicit type or table dependencies.

Chapter 18
DROP TYPE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 93

Examples

Dropping an Object Type: Example

The following statement removes object type person_t. See Oracle Database PL/SQL Language
Reference for the example that creates this object type. Any columns that are dependent on
person_t are marked UNUSED and become inaccessible.

DROP TYPE person_t FORCE;

DROP TYPE BODY
Purpose

Object types are defined using PL/SQL. Refer to Oracle Database PL/SQL Language
Reference for complete information on creating, altering, and dropping object types.

Use the DROP TYPE BODY statement to drop the body of an object type, varray, or nested table
type. When you drop a type body, the object type specification still exists, and you can re-
create the type body. Prior to re-creating the body, you can still use the object type, although
you cannot call the member functions.

Prerequisites

The object type body must be in your own schema or you must have the DROP ANY TYPE
system privilege.

Syntax

drop_type_body::=

DROP TYPE BODY

IF EXISTS schema .

type_name ;

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the object type. If you omit schema, then Oracle Database
assumes the object type is in your own schema.

type_name

Specify the name of the object type body to be dropped.

Restriction on Dropping Type Bodies

You can drop a type body only if it has no type or table dependencies.

Chapter 18
DROP TYPE BODY

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 93

Examples

Dropping an Object Type Body: Example

The following statement removes object type body data_typ1. See Oracle Database PL/SQL
Language Reference for the example that creates this object type.

DROP TYPE BODY data_typ1;

DROP USER
Purpose

Use the DROP USER statement to remove a database user and optionally remove the user's
objects.

In an Oracle Automatic Storage Management (Oracle ASM) cluster, a user authenticated AS
SYSASM can use this clause to remove a user from the password file that is local to the Oracle
ASM instance of the current node.

When you drop a user, Oracle Database also purges all of that user's schema objects from the
recycle bin.

Note

Do not attempt to drop the users SYS or SYSTEM. Doing so will corrupt your database.

See Also

CREATE USER and ALTER USER for information on creating and modifying a user

Prerequisites

You must have the DROP USER system privilege. In an Oracle ASM cluster, you must be
authenticated AS SYSASM.

Syntax

drop_user::=

DROP USER

IF EXISTS

user

CASCADE

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

Chapter 18
DROP USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 93

user

Specify the user to be dropped. Oracle Database does not drop users whose schemas contain
objects unless you specify CASCADE or unless you first explicitly drop the user's objects.

Restriction on Dropping Users

You cannot drop a user whose schema contains a table that uses a flashback data archive for
historical tracking. You must first disable the table's use of the flashback data archive.

CASCADE

Specify CASCADE to drop all objects in the user's schema before dropping the user. You must
specify this clause to drop a user whose schema contains any objects.

• If the user's schema contains tables, then Oracle Database drops the tables and
automatically drops any referential integrity constraints on tables in other schemas that
refer to primary and unique keys on these tables.

• If this clause results in tables being dropped, then the database also drops all domain
indexes created on columns of those tables and invokes appropriate drop routines.

See Also

Oracle Database Data Cartridge Developer's Guide for more information on these
routines

• Oracle Database invalidates, but does not drop, the following objects in other schemas:

– Views or synonyms for objects in the dropped user's schema

– Stored procedures, functions, or packages that query objects in the dropped user's
schema

• Oracle Database does not drop materialized views in other schemas that are based on
tables in the dropped user's schema. However, because the base tables no longer exist,
the materialized views in the other schemas can no longer be refreshed.

• Oracle Database drops all triggers in the user's schema.

• Oracle Database does not drop roles created by the user.

• Oracle Database drops all domains in the user's schemas. The database will issue DROP
DOMAIN FORCE for all domains the user owns.

Note

Oracle Database also drops with FORCE all types owned by the user. See the FORCE
keyword of DROP TYPE .

Examples

Dropping a Database User: Example

If user Sidney's schema contains no objects, then you can drop sidney by issuing the statement:

DROP USER sidney;

Chapter 18
DROP USER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 93

If Sidney's schema contains objects, then you must use the CASCADE clause to drop sidney and
the objects:

DROP USER sidney CASCADE;

DROP VIEW
Purpose

Use the DROP VIEW statement to remove a view or an object view from the database. You can
change the definition of a view by dropping and re-creating it.

See Also

CREATE VIEW and ALTER VIEW for information on creating and modifying a view

Prerequisites

The view must be in your own schema or you must have the DROP ANY VIEW system privilege.

Syntax

drop_view::=

DROP VIEW

IF EXISTS schema .

view

CASCADE CONSTRAINTS

Semantics

IF EXISTS

Specify IF EXISTS to drop an existing object.

Specifying IF NOT EXISTS with DROP results in ORA-11544: Incorrect IF EXISTS clause for ALTER/DROP
statement.

schema

Specify the schema containing the view. If you omit schema, then Oracle Database assumes the
view is in your own schema.

view

Specify the name of the view to be dropped.

Oracle Database does not drop views, materialized views, and synonyms that are dependent
on the view but marks them INVALID. You can drop them or redefine views and synonyms, or
you can define other views in such a way that the invalid views and synonyms become valid
again.

If any subviews have been defined on view, then the database invalidates the subviews as well.
To determine whether the view has any subviews, query the SUPERVIEW_NAME column of the
USER_, ALL_, or DBA_VIEWS data dictionary views.

Chapter 18
DROP VIEW

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 93

See Also

• CREATE TABLE and CREATE SYNONYM

• ALTER MATERIALIZED VIEW for information on revalidating invalid materialized
views

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS to drop all referential integrity constraints that refer to primary
and unique keys in the view to be dropped. If you omit this clause, and such constraints exist,
then the DROP statement fails.

Examples

Dropping a View: Example

The following statement drops the emp_view view, which was created in "Creating a View:
Example":

DROP VIEW emp_view;

EXPLAIN PLAN
Purpose

Use the EXPLAIN PLAN statement to determine the execution plan Oracle Database follows to
execute a specified SQL statement. This statement inserts a row describing each step of the
execution plan into a specified table. You can also issue the EXPLAIN PLAN statement as part of
the SQL trace facility.

This statement also determines the cost of executing the statement. If any domain indexes are
defined on the table, then user-defined CPU and I/O costs will also be inserted.

The definition of a sample output table PLAN_TABLE is available in a SQL script on your
distribution media. Your output table must have the same column names and data types as this
table. The common name of this script is UTLXPLAN.SQL. The exact name and location depend
on your operating system.

Oracle Database provides information on cached cursors through several dynamic
performance views:

• For information on the work areas used by SQL cursors, query V$SQL_WORKAREA.

• For information on the execution plan for a cached cursor, query V$SQL_PLAN.

• For execution statistics at each step or operation of an execution plan of cached cursors
(for example, number of produced rows, number of blocks read), query
V$SQL_PLAN_STATISTICS.

• For a selective precomputed join of the preceding three views, query
V$SQL_PLAN_STATISTICS_ALL.

• Execution statistics at each step or operation of an execution plan of cached cursors are
displayed in V$SQL_PLAN_MONITOR if the statement execution is monitored. You can force
monitoring using the MONITOR hint.

Chapter 18
EXPLAIN PLAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 93

See Also

• Oracle Database SQL Tuning Guide for information on the output of EXPLAIN
PLAN, how to use the SQL trace facility, and how to generate and interpret
execution plans

• Oracle Database Reference for information on dynamic performance views

Prerequisites

To issue an EXPLAIN PLAN statement, you must have the privileges necessary to insert rows
into an existing output table that you specify to hold the execution plan.

You must also have the privileges necessary to execute the SQL statement for which you are
determining the execution plan. If the SQL statement accesses a view, then you must have
privileges to access any tables and views on which the view is based. If the view is based on
another view that is based on a table, then you must have privileges to access both the other
view and its underlying table.

To examine the execution plan produced by an EXPLAIN PLAN statement, you must have the
privileges necessary to query the output table.

The EXPLAIN PLAN statement is a data manipulation language (DML) statement, rather than a
data definition language (DDL) statement. Therefore, Oracle Database does not implicitly
commit the changes made by an EXPLAIN PLAN statement. If you want to keep the rows
generated by an EXPLAIN PLAN statement in the output table, then you must commit the
transaction containing the statement.

See Also

INSERT and SELECT for information on the privileges you need to populate and
query the plan table

Syntax

explain_plan::=

EXPLAIN PLAN

SET STATEMENT_ID = string

INTO

schema .

table

@ dblink

FOR statement ;

Semantics

SET STATEMENT_ID Clause

Specify a value for the STATEMENT_ID column for the rows of the execution plan in the output
table. You can then use this value to identify these rows among others in the output table. Be

Chapter 18
EXPLAIN PLAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 93

sure to specify a STATEMENT_ID value if your output table contains rows from many execution
plans. If you omit this clause, then the STATEMENT_ID value defaults to null.

INTO table Clause

Specify the name of the output table, and optionally its schema and database. This table must
exist before you use the EXPLAIN PLAN statement.

If you omit schema, then the database assumes the table is in your own schema.

The dblink can be a complete or partial name of a database link to a remote Oracle Database
where the output table is located. You can specify a remote output table only if you are using
Oracle Database distributed functionality. If you omit dblink, then the database assumes the
table is on your local database. See "References to Objects in Remote Databases " for
information on referring to database links.

If you omit INTO altogether, then the database assumes an output table named PLAN_TABLE in
your own schema on your local database.

FOR statement Clause

Specify a SELECT, INSERT, UPDATE, DELETE, MERGE, CREATE TABLE, CREATE INDEX, or ALTER
INDEX ... REBUILD statement for which the execution plan is generated.

Notes on EXPLAIN PLAN

The following notes apply to EXPLAIN PLAN:

• If statement includes the parallel_clause, then the resulting execution plan will indicate parallel
execution. However, EXPLAIN PLAN actually inserts the statement into the plan table, so
that the parallel DML statement you submit is no longer the first DML statement in the
transaction. This violates the Oracle Database restriction of one parallel DML statement in
a single transaction, and the statement will be executed serially. To maintain parallel
execution of the statements, you must commit or roll back the EXPLAIN PLAN statement,
and then submit the parallel DML statement.

• To determine the execution plan for an operation on a temporary table, EXPLAIN PLAN must
be run from the same session, because the data in temporary tables is session specific.

Examples

EXPLAIN PLAN Examples

The following statement determines the execution plan and cost for an UPDATE statement and
inserts rows describing the execution plan into the specified plan_table table with the
STATEMENT_ID value of 'Raise in Tokyo':

EXPLAIN PLAN
 SET STATEMENT_ID = 'Raise in Tokyo'
 INTO plan_table
 FOR UPDATE employees
 SET salary = salary * 1.10
 WHERE department_id =
 (SELECT department_id FROM departments
 WHERE location_id = 1700);

The following SELECT statement queries the plan_table table and returns the execution plan and
the cost:

SELECT id, LPAD(' ',2*(LEVEL-1))||operation operation, options,
 object_name, object_alias, position

Chapter 18
EXPLAIN PLAN

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 93

 FROM plan_table
 START WITH id = 0 AND statement_id = 'Raise in Tokyo'
 CONNECT BY PRIOR id = parent_id AND statement_id = 'Raise in Tokyo'
 ORDER BY id;

The query returns this execution plan:

 ID OPERATION OPTIONS OBJECT_NAME OBJECT_ALIAS POSITION
--- -------------------- -------------------- -------------------- -------------------- --------
 0 UPDATE STATEMENT 4
 1 UPDATE EMPLOYEES 1
 2 INDEX RANGE SCAN EMP_DEPARTMENT_IX EMPLOYEES@UPD$1 1
 3 TABLE ACCESS BY INDEX ROWID DEPARTMENTS DEPARTMENTS@SEL$1 1
 4 INDEX RANGE SCAN DEPT_LOCATION_IX DEPARTMENTS@SEL$1 1

The value in the POSITION column of the first row shows that the statement has a cost of 4.

EXPLAIN PLAN: Partitioned Example

The sample table sh.sales is partitioned on the time_id column. Partition sales_q3_2000 contains time
values less than Oct. 1, 2000, and there is a local index sales_time_bix on the time_id column.

Consider the query:

EXPLAIN PLAN FOR
 SELECT * FROM sales
 WHERE time_id BETWEEN :h AND '01-OCT-2000';

where :h represents an already declared bind variable. EXPLAIN PLAN executes this query with
PLAN_TABLE as the output table. The basic execution plan, including partitioning information, is
obtained with the following query:

SELECT operation, options, partition_start, partition_stop,
 partition_id
 FROM plan_table;

FLASHBACK DATABASE
Purpose

Use the FLASHBACK DATABASE statement to return the database to a past time or system
change number (SCN). This statement provides a fast alternative to performing incomplete
database recovery.

Following a FLASHBACK DATABASE operation, in order to have write access to the flashed back
database, you must reopen it with an ALTER DATABASE OPEN RESETLOGS statement.

See Also

Oracle Database Backup and Recovery User's Guide for more information on
FLASHBACK DATABASE

Prerequisites

You must have the SYSDBA, SYSBACKUP, or SYSDG system privilege.

If you are connected to a multitenant container database (CDB):

Chapter 18
FLASHBACK DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 93

• To flash back a CDB, you must be connected to the root and you must have the SYSDBA,
SYSBACKUP, or SYSDG system privilege granted commonly.

• To flash back a PDB you must be connected to the root and you must have the SYSDBA,
SYSBACKUP, or SYSDG system privilege granted commonly, or you must be connected to the
PDB you want to flash back and you must have the SYSDBA, SYSBACKUP, or SYSDG system
privilege, granted commonly or granted locally in that PDB.

A fast recovery area must have been prepared for the database. The database must have
been put in FLASHBACK mode with an ALTER DATABASE FLASHBACK ON statement unless you
are flashing the database back to a guaranteed restore point. The database must be mounted
but not open.

In addition:

• The database must run in ARCHIVELOG mode.

• The database must be mounted, but not open, with a current control file. The control file
cannot be a backup or re-created. When the database control file is restored from backup
or re-created, all existing flashback log information is discarded.

• The database must contain no online tablespaces for which flashback functionality was
disabled with the SQL statement ALTER TABLESPACE ... FLASHBACK OFF.

See Also

• Oracle Database Backup and Recovery User's Guide and the ALTER DATABASE ...
flashback_mode_clause for information on putting the database in FLASHBACK
mode

• CREATE RESTORE POINT for information on restore points and guaranteed
restore points

Syntax

flashback_database::=

FLASHBACK

STANDBY PLUGGABLE

DATABASE

database

TO

SCN

TIMESTAMP
expr

RESTORE POINT restore_point

TO BEFORE

SCN

TIMESTAMP
expr

RESETLOGS

;

Semantics

When you issue a FLASHBACK DATABASE statement, Oracle Database first verifies that all
required archived and online redo logs are available. If they are available, then it reverts all
currently online data files in the database to the SCN or time specified in this statement.

Chapter 18
FLASHBACK DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 93

• The amount of Flashback data retained in the database is controlled by the
DB_FLASHBACK_RETENTION_TARGET initialization parameter and the size of the fast
recovery area. You can determine how far back you can flash back the database by
querying the V$FLASHBACK_DATABASE_LOG view.

• If insufficient data remains in the database to perform the flashback, then you can use
standard recovery procedures to recover the database to a past point in time.

• If insufficient data remains for a set of data files, then the database returns an error. In this
case, you can take those data files offline and reissue the statement to revert the
remainder of the database. You can then attempt to recover the offline data files using
standard recovery procedures.

See Also

Oracle Database Backup and Recovery User's Guide for more information on
recovering data files

STANDBY

Specify STANDBY to revert the standby database to an earlier SCN or time. If the database is
not a standby database, then the database returns an error. If you omit this clause, then
database can be either a primary or a standby database.

See Also

Oracle Data Guard Concepts and Administration for information on how you can use
FLASHBACK DATABASE on a standby database to achieve different delays

PLUGGABLE

Specify PLUGGABLE to flash back a PDB. You must specify this clause whether the current
container is the root or the PDB you want to flash back.

Restrictions on Flashing Back a PDB

• You cannot flash back a proxy PDB.

• If the CDB is in shared undo mode, then you can only flash back a PDB to a clean PDB
restore point. Refer to the CLEAN clause of CREATE RESTORE POINT for more information.

database

If you are flashing back a CDB, then you can optionally specify the name of the database to be
flashed back. If you omit database, then Oracle Database flashes back the database identified by
the value of the initialization parameter DB_NAME.

If you are flashing back a PDB and the current container is the root, then use database to specify
the name of the PDB to be flashed back. If you are flashing back a PDB and the current
container is that PDB, then you can optionally use database to specify the PDB name.

TO SCN Clause

Specify a system change number (SCN):

Chapter 18
FLASHBACK DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 93

• TO SCN reverts the database back to its state at the specified SCN.

• TO BEFORE SCN reverts the database back to its state at the system change number just
preceding the specified SCN.

You can determine the current SCN by querying the CURRENT_SCN column of the V$DATABASE
view. This in turn lets you save the SCN to a spool file, for example, before running a high-risk
batch job.

TO TIMESTAMP Clause

Specify a valid datetime expression.

• TO TIMESTAMP reverts the database back to its state at the specified timestamp.

• TO BEFORE TIMESTAMP reverts the database back to its state one second before the
specified timestamp.

You can represent the timestamp as an offset from a determinate value, such as SYSDATE, or
as an absolute system timestamp.

TO RESTORE POINT Clause

Specify this clause to flash back the database to the specified restore point. If you have not
enabled flashback database, then this is the only clause you can specify in this FLASHBACK
DATABASE statement. If the database is not in FLASHBACK mode, as described in the
"Prerequisites" section above, then this is the only clause you can specify for this statement.

RESETLOGS

Specify TO BEFORE RESETLOGS to flash the database back to just before the last resetlogs
operation (ALTER DATABASE OPEN RESETLOGS).

See Also

Oracle Database Backup and Recovery User's Guide for more information about this
clause

Examples

Assuming that you have prepared a fast recovery area for the database and enabled media
recovery, enable database FLASHBACK mode and open the database with the following
statements:

STARTUP MOUNT
ALTER DATABASE FLASHBACK ON;
ALTER DATABASE OPEN;

With your database open for at least a day, you can flash back the database one day with the
following statements:

SHUTDOWN DATABASE
STARTUP MOUNT
FLASHBACK DATABASE TO TIMESTAMP SYSDATE-1;

Chapter 18
FLASHBACK DATABASE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 93

FLASHBACK TABLE
Purpose

Use the FLASHBACK TABLE statement to restore an earlier state of a table in the event of
human or application error. The time in the past to which the table can be flashed back is
dependent on the amount of undo data in the system. Also, Oracle Database cannot restore a
table to an earlier state across any DDL operations that change the structure of the table.

Note

Oracle strongly recommends that you run your database in automatic undo mode by
leaving the UNDO_MANAGEMENT initialization parameter set to AUTO, which is the
default. In addition, set the UNDO_RETENTION initialization parameter to an interval
large enough to include the oldest data you anticipate needing. For more information
refer to the documentation on the UNDO_MANAGEMENT and UNDO_RETENTION
initialization parameters.

You cannot roll back a FLASHBACK TABLE statement. However, you can issue another
FLASHBACK TABLE statement and specify a time just prior to the current time. Therefore, it is
advisable to record the current SCN before issuing a FLASHBACK TABLE clause.

See Also

• To set the UNDO_RETENTION initialization parameter, see Setting the Minimum
Undo Retention Period

• FLASHBACK DATABASE for information on reverting the entire database to an
earlier version

• the flashback_query_clause of SELECT for information on retrieving past data from
a table

• Oracle Database Backup and Recovery User's Guide for additional information on
using the FLASHBACK TABLE statement

Prerequisites

To flash back a table to an earlier SCN or timestamp, you must have either the FLASHBACK
object privilege on the table or the FLASHBACK ANY TABLE system privilege. In addition, you
must have the READ or SELECT object privilege on the table, and you must have the INSERT,
DELETE, and ALTER object privileges on the table.

Row movement must be enabled for all tables in the Flashback list unless you are flashing
back the table TO BEFORE DROP. That operation is called a flashback drop operation, and it
uses dropped data in the recycle bin rather than undo data. Refer to row_movement_clause for
information on enabling row movement.

To flash back a table to a restore point, you must have the SELECT ANY DICTIONARY or
FLASHBACK ANY TABLE system privilege or the SELECT_CATALOG_ROLE role.

Chapter 18
FLASHBACK TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 93

To flash back a table to before a DROP TABLE operation, you need only the privileges necessary
to drop the table.

Syntax

flashback_table::=

FLASHBACK TABLE

schema .

table

,

TO

SCN

TIMESTAMP
expr

RESTORE POINT restore_point

ENABLE

DISABLE
TRIGGERS

BEFORE DROP

RENAME TO table

;

Semantics

During an Oracle Flashback Table operation, Oracle Database acquires exclusive DML locks
on all the tables specified in the Flashback list. These locks prevent any operations on the
tables while they are reverting to their earlier state.

The Flashback Table operation is executed in a single transaction, regardless of the number of
tables specified in the Flashback list. Either all of the tables revert to the earlier state or none of
them do. If the Flashback Table operation fails on any table, then the entire statement fails.

At the completion of the Flashback Table operation, the data in table is consistent with table at
the earlier time. However, FLASHBACK TABLE TO SCN or TIMESTAMP does not preserve rowids,
and FLASHBACK TABLE TO BEFORE DROP does not recover referential constraints.

Oracle Database does not revert statistics associated with table to their earlier form. Indexes on
table that exist currently are reverted and reflect the state of the table at the Flashback point. If
the index exists now but did not yet exist at the Flashback point, then the database updates the
index to reflect the state of the table at the Flashback point. However, indexes that were
dropped during the interval between the Flashback point and the current time are not restored.

schema

Specify the schema containing the table. If you omit schema, then the database assumes the
table is in your own schema.

table

Specify the name of one or more tables containing data you want to revert to an earlier
version.

Restrictions on Flashing Back Tables

This statement is subject to the following restrictions:

• Flashback Table operations are not valid for the following type objects: tables that are part
of a cluster, child tables using reference partitioning, materialized views, Advanced

Chapter 18
FLASHBACK TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 93

Queuing (AQ) tables, static data dictionary tables, system tables, remote tables, object
tables, nested tables, or individual table partitions or subpartitions.

• The following DDL operations change the structure of a table, so that you cannot
subsequently use the TO SCN or TO TIMESTAMP clause to flash the table back to a time
preceding the operation: upgrading, moving, or truncating a table; adding a constraint to a
table, adding a table to a cluster; modifying or dropping a column; changing a column
encryption key; adding, dropping, merging, splitting, coalescing, or truncating a partition or
subpartition (with the exception of adding a range partition).

TO SCN Clause

Specify the system change number (SCN) corresponding to the point in time to which you want
to return the table. The expr must evaluate to a number representing a valid SCN.

TO TIMESTAMP Clause

Specify a timestamp value corresponding to the point in time to which you want to return the
table. The expr must evaluate to a valid timestamp in the past. The table will be flashed back to
a time within approximately 3 seconds of the specified timestamp.

TO RESTORE POINT Clause

Specify a restore point to which you want to flash back the table. The restore point must
already have been created.

See Also

CREATE RESTORE POINT for information on creating restore points

ENABLE | DISABLE TRIGGERS

By default, Oracle Database disables all enabled triggers defined on table during the Flashback
Table operation and then reenables them after the Flashback Table operation is complete.
Specify ENABLE TRIGGERS if you want to override this default behavior and keep the triggers
enabled during the Flashback process.

This clause affects only those database triggers defined on table that are already enabled. To
enable currently disabled triggers selectively, use the ALTER TABLE ... enable_disable_clause before
you issue the FLASHBACK TABLE statement with the ENABLE TRIGGERS clause.

TO BEFORE DROP Clause

Use this clause to retrieve from the recycle bin a table that has been dropped, along with all
possible dependent objects. The table must have resided in a locally managed tablespace
other than the SYSTEM tablespace.

See Also

• Oracle Database Administrator's Guide for information on the recycle bin and
naming conventions for objects in the recycle bin

• PURGE for information on removing objects permanently from the recycle bin

Chapter 18
FLASHBACK TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 93

You can specify either the original user-specified name of the table or the system-generated
name Oracle Database assigned to the object when it was dropped.

• System-generated recycle bin object names are unique. Therefore, if you specify the
system-generated name, then the database retrieves that specified object.

To see the contents of your recycle bin, query the USER_RECYCLEBIN data dictionary view.
You can use the RECYCLEBIN synonym instead. The following two statements return the
same rows:

SELECT * FROM RECYCLEBIN;
SELECT * FROM USER_RECYCLEBIN;

• If you specify the user-specified name, and if the recycle bin contains more than one object
of that name, then the database retrieves the object that was moved to the recycle bin
most recently. If you want to retrieve an older version of the table, then do one of these
things:

– Specify the system-generated recycle bin name of the table you want to retrieve.

– Issue additional FLASHBACK TABLE ... TO BEFORE DROP statements until you retrieve the
table you want.

Oracle Database attempts to preserve the original table name. If a new table of the same
name has been created in the same schema since the original table was dropped, then the
database returns an error unless you also specify the RENAME TO clause.

RENAME TO Clause

Use this clause to specify a new name for the table being retrieved from the recycle bin.

Notes on Flashing Back Dropped Tables

The following notes apply to flashing back dropped tables:

• Oracle Database retrieves all indexes defined on the table retrieved from the recycle bin
except for bitmap join indexes and domain indexes. (Bitmap join indexes and domain
indexes are not put in the recycle bin during a DROP TABLE operation, so cannot be
retrieved.)

• The database also retrieves all triggers and constraints defined on the table except for
referential integrity constraints that reference other tables.

The retrieved indexes, triggers, and constraints have recycle bin names. Therefore it is
advisable to query the USER_RECYCLEBIN view before issuing a FLASHBACK TABLE ... TO
BEFORE DROP statement so that you can rename the retrieved triggers and constraints to
more usable names.

• When you drop a table, all materialized view logs defined on the table are also dropped but
are not placed in the recycle bin. Therefore, the materialized view logs cannot be flashed
back along with the table.

• When you drop a table, any indexes on the table are dropped and put into the recycle bin
along with the table. If subsequent space pressures arise, then the database reclaims
space from the recycle bin by first purging indexes. In this case, when you flash back the
table, you may not get back all of the indexes that were defined on the table.

• You cannot flash back a table if it has been purged, either by a user or by Oracle Database
as a result of some space reclamation operation.

Examples

Restoring a Table to an Earlier State: Examples

Chapter 18
FLASHBACK TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 93

The examples below create a new table, employees_test, with row movement enabled, update
values within the new table, and issue the FLASHBACK TABLE statement.

Create table employees_test, with row movement enabled, from table employees of the sample hr
schema:

CREATE TABLE employees_test
 AS SELECT * FROM employees;

As a benchmark, list those salaries less than 2500:

SELECT salary
 FROM employees_test
 WHERE salary < 2500;

 SALARY

 2400
 2200
 2100
 2400
 2200

Note

To allow time for the SCN to propagate to the mapping table used by the FLASHBACK
TABLE statement, wait a minimum of 5 minutes prior to issuing the following statement.
This wait would not be necessary if a previously existing table were being used in this
example.

Enable row movement for the table:

ALTER TABLE employees_test
 ENABLE ROW MOVEMENT;

Issue a 10% salary increase to those employees earning less than 2500:

UPDATE employees_test
 SET salary = salary * 1.1
 WHERE salary < 2500;

5 rows updated.
COMMIT;

As a second benchmark, list those salaries that remain less than 2500 following the 10%
increase:

SELECT salary
 FROM employees_test
 WHERE salary < 2500;

 SALARY

 2420
 2310
 2420

Chapter 18
FLASHBACK TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 93

Restore the table employees_test to its state prior to the current system time. The unrealistic
duration of 1 minute is used so that you can test this series of examples quickly. Under normal
circumstances a much greater interval would have elapsed.

FLASHBACK TABLE employees_test
 TO TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' minute);

List those salaries less than 2500. After the FLASHBACK TABLE statement issued above, this list
should match the list in the first benchmark.

SELECT salary
 FROM employees_test
 WHERE salary < 2500;

 SALARY

 2400
 2200
 2100
 2400
 2200

Retrieving a Dropped Table: Example

If you accidentally drop the pm.print_media table and want to retrieve it, then issue the following
statement:

FLASHBACK TABLE print_media TO BEFORE DROP;

If another print_media table has been created in the pm schema, then use the RENAME TO clause
to rename the retrieved table:

FLASHBACK TABLE print_media TO BEFORE DROP RENAME TO print_media_old;

If you know that the employees table has been dropped multiple times, and you want to
retrieve the oldest version, then query the USER_RECYLEBIN table to determine the system-
generated name, and then use that name in the FLASHBACK TABLE statement. (System-
generated names in your database will differ from those shown here.)

SELECT object_name, droptime FROM user_recyclebin
 WHERE original_name = 'PRINT_MEDIA';

OBJECT_NAME DROPTIME
------------------------------ -------------------
RB$$45703$TABLE$0 2003-06-03:15:26:39
RB$$45704$TABLE$0 2003-06-12:12:27:27
RB$$45705$TABLE$0 2003-07-08:09:28:01

GRANT
Purpose

Use the GRANT statement to grant:

• Administrative privileges to users only (not to roles). Table 18-1

Refer to the Database Security Guide for more information about administrative privileges
Managing Administrative Privileges

• System privileges to users and roles. Table 18-2

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 93

Note that ANY system privileges, for example, SELECT ANY TABLE, will not work on SYS
objects or other dictionary objects.

• Schema privileges to users and roles. Table 18-3

• Roles to users, roles, and program units. The granted roles can be either user-defined
(local or external) or predefined. For a list of predefined roles, refer to Oracle Database
Security Guide.

• Object privileges for a particular object to users and roles. Table 18-4

Note

Global roles (created with IDENTIFIED GLOBALLY) are granted through enterprise roles
and cannot be granted using the GRANT statement.

Notes on Authorizing Database Users

You can authorize database users through means other than the database and the GRANT
statement.

• Many Oracle Database privileges are granted through supplied PL/SQL and Java
packages. For information on those privileges, refer to the documentation for the
appropriate package.

• Some operating systems have facilities that let you grant roles to Oracle Database users
with the initialization parameter OS_ROLES. If you choose to grant roles to users through
operating system facilities, then you cannot also grant roles to users with the GRANT
statement, although you can use the GRANT statement to grant system privileges to users
and system privileges and roles to other roles.

Note on Oracle Automatic Storage Management

A user authenticated AS SYSASM can use this statement to grant the administrative privileges
SYSASM, SYSOPER, and SYSDBA to a user in the Oracle ASM password file of the current node.

Note on Editionable Objects

A GRANT operation to grant object privileges on an editionable object actualizes the object in
the current edition. See Oracle Database Development Guide for more information about
editions and editionable objects.

See Also

• CREATE USER and CREATE ROLE for definitions of local, global, and external
privileges

• Oracle Database Security Guide for information about other authorization methods
and for information about privileges

• REVOKE for information on revoking grants

Prerequisites

To grant a system privilege, one of the following conditions must be met:

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 93

• You must have been granted the GRANT ANY PRIVILEGE system privilege. In this case, if
you grant the system privilege to a role, then a user to whom the role has been granted
does not have the privilege unless the role is enabled in user's session.

• You must have been granted the system privilege with the ADMIN OPTION. In this case, if
you grant the system privilege to a role, then a user to whom the role has been granted
has the privilege regardless whether the role is enabled in the user's session.

To grant a role to a user or another role, you must have been directly granted the role with
the ADMIN OPTION, or you must have been granted the GRANT ANY ROLE system privilege, or
you must have created the role.

To grant a role to a program unit in your own schema, you must have been directly granted
the role with either the ADMIN OPTION or the DELEGATE OPTION, or you must have been granted
the GRANT ANY ROLE system privilege, or you must have created the role.

To grant a role to a program unit in another user's schema, you must be the user SYS and
the role must have been created by the schema owner or directly granted to the schema
owner.

To grant an object privilege on a user, by specifying the ON USER clause of the on_object_clause,
you must be the user on whom the privilege is granted, or you must have been granted the
object privilege on that user with the WITH GRANT OPTION, or you must have been granted the
GRANT ANY OBJECT PRIVILEGE system privilege. If you can grant an object privilege on a user
only because you have the GRANT ANY OBJECT PRIVILEGE, then the GRANTOR column of the
*_TAB_PRIVS views displays the user on whom the privilege is granted rather than the user who
issued the GRANT statement.

To grant an object privilege on all other types of objects, you must own the object, or the
owner of the object must have granted you the object privileges with the WITH GRANT OPTION,
or you must have been granted the GRANT ANY OBJECT PRIVILEGE system privilege. If you have
the GRANT ANY OBJECT PRIVILEGE, then you can grant the object privilege only if the object
owner could have granted the same object privilege. In this case, the GRANTOR column of the
*_TAB_PRIVS views displays the object owner rather than the user who issued the GRANT
statement.

You can revoke privileges on an object if you have the GRANT ANY object privilege. This does
not apply to dictionary protected schemas. The ANY keyword in reference to a system privilege
means that the user can perform the privilege on any objects owned by any user except for
SYS.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root.

Syntax

grant::=

GRANT

grant_system_privileges

grant_schema_privileges

grant_object_privileges

CONTAINER =
CURRENT

ALL

grant_roles_to_programs

;

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 93

(grant_system_privileges::=, grant_schema_privileges::=,grant_object_privileges::=,
grant_roles_to_programs::=)

grant_system_privileges::=

system_privilege

role

ALL PRIVILEGES

,

TO
grantee_clause

grantee_identified_by

WITH
ADMIN

DELEGATE
OPTION

(grantee_clause::=, grantee_identified_by::=)

grant_schema_privileges::=

schema_privilege

ALL PRIVILEGES

,

ON SCHEMA schema TO
grantee_clause

grantee_identified_by

WITH
ADMIN

DELEGATE
OPTION

grantee_clause::=

user

role

PUBLIC

,

grantee_identified_by::=

user

,

IDENTIFIED BY password

,

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 93

grant_object_privileges::=

object_privilege

ALL

PRIVILEGES

(column

,

)

,

on_object_clause

TO grantee_clause

WITH HIERARCHY OPTION WITH GRANT OPTION

(on_object_clause::=, grantee_clause::=)

on_object_clause::=

ON

schema .

object

USER user

,

DIRECTORY directory_name

EDITION edition_name

MINING MODEL

schema .

mining_model_name

JAVA
SOURCE

RESOURCE

schema .

object

SQL TRANSLATION PROFILE

schema .

profile

grant_roles_to_programs::=

role

,

TO program_unit

,

program_unit::=

FUNCTION

schema .

function_name

PROCEDURE

schema .

procedure_name

PACKAGE

schema .

package_name

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 93

Semantics

grant_system_privileges

Use these clauses to grant system privileges.

system_privilege

Specify the system privilege you want to grant. Table 18-2 lists the system privileges,
organized by the database object operated upon.

• If you grant a privilege to a user, then the database adds the privilege to the user's
privilege domain. The user can immediately exercise the privilege. Oracle recommends
that you only grant the ANY privileges to trusted users.

• If you grant a privilege to a role, then the database adds the privilege to the privilege
domain of the role. Users who have been granted and have enabled the role can
immediately exercise the privilege. Other users who have been granted the role can
enable the role and exercise the privilege.

See Also

Granting a System Privilege to a User: Example and "Granting System Privileges
to a Role: Example"

• If you grant a privilege to PUBLIC, then the database adds the privilege to the privilege
domains of each user. All users can immediately perform operations authorized by the
privilege. Oracle recommends against granting system privileges to PUBLIC.

role

Specify the role you want to grant. You can grant an Oracle Database predefined role or a
user-defined role.

• If you grant a role to a user, then the database makes the role available to the user. The
user can immediately enable the role and exercise the privileges in the privilege domain of
the role.

In the case of a secure application role, you need not grant such a role directly to the user.
You can let the associated PL/SQL package do this, assuming the user passes appropriate
security policies. For more information, see the CREATE ROLE semantics for USING
package and Oracle Database Security Guide

• If you grant a role to another role, then the database adds the privilege domain of the
granted role to the privilege domain of the grantee role. Users who have been granted the
grantee role can enable it and exercise the privileges in the granted role's privilege
domain.

• If you grant a role to PUBLIC, then the database makes the role available to all users. All
users can immediately enable the role and exercise the privileges in the privilege domain
of the role.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 93

Note

Unlimited tablespace is not granted to the DBA role, but when a grant is executed to
grant DBA to a user, unlimited tablespace is granted as part of the same grant,
provided the user executing the GRANT command has unlimited tablespace granted
with the ADMIN or GRANT ANY PRIVILEGE system privilege .

ALL PRIVILEGES

Specify ALL PRIVILEGES to grant all of the system privileges listed in Table 18-2, except the
SELECT ANY DICTIONARY, ALTER DATABASE LINK, and ALTER PUBLIC DATABASE LINK privileges.

However, grant and revoke ALL PRIVILEGES do not apply to ADMINISTER KEY MANAGEMENT.
Granting ALL PRIVILEGES does not grant ADMINISTER KEY MANAGEMENT. Similarly, revoking ALL
PRIVILEGES does not revoke ADMINISTER KEY MANAGEMENT.

See Also

• Oracle Database Security Guide for information on the Oracle predefined roles

• "Granting a Role to a Role: Example"

• CREATE ROLE for information on creating a user-defined role

grantee_clause

Use the grantee_clause to specify the users or roles to which the system privilege, role, or object
privilege is granted.

PUBLIC

Specify PUBLIC to grant the privileges to all users. Oracle recommends against granting system
privileges to PUBLIC.

Restriction on Grantees

A user, role, or PUBLIC cannot appear more than once in the grantee_clause.

grantee_identified_by

The grantee_identified_by clause lets you assign passwords to users when granting them system
privileges and roles. You must specify an equal number of users and passwords. The first
password is assigned to the first user, the second password is assigned to the second user,
and so on. If a specified user exists, then the database resets the user's password. If a
specified user does not exist, then the database creates the user with the password.

You can set the password to a maximum length of 1024 bytes.

See Also

CREATE USER for restrictions on usernames and passwords and "Assigning User
Passwords When Granting a System Privilege: Example"

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 93

WITH ADMIN OPTION

Specify WITH ADMIN OPTION to enable the grantee to:

• Grant the privilege or role to another user or role, unless the role is a GLOBAL role

• Revoke the privilege or role from another user or role

• Alter the privilege or role to change the authorization needed to access it

• Drop the privilege or role

• Grant the role to a program unit in the grantee's schema.

• Revoke the role from a program unit in the grantee's schema.

If you grant a system privilege or role to a user without specifying WITH ADMIN OPTION, and
then subsequently grant the privilege or role to the user WITH ADMIN OPTION, then the user has
the ADMIN OPTION on the privilege or role.

To revoke the ADMIN OPTION on a system privilege or role from a user, you must revoke the
privilege or role from the user altogether and then grant the privilege or role to the user without
the ADMIN OPTION.

See Also

"Granting a Role with the ADMIN OPTION: Example"

WITH DELEGATE OPTION

You can specify this clause only when granting a role to a user.

Specify WITH DELEGATE OPTION to enable the grantee to:

• Grant the role to a program unit in the grantee's schema

• Revoke the role from a program unit in the grantee's schema

If you grant a role to a user without specifying WITH DELEGATE OPTION, and then subsequently
grant the role to the user WITH DELEGATE OPTION, then the user has the DELEGATE OPTION on
the role.

To revoke the DELEGATE OPTION on a role from a user, you must revoke the role from the user
altogether and then grant the role to the user without the DELEGATE OPTION.

See Also

• "Granting a Role with the DELEGATE OPTION: Example"

• The grant_roles_to_programs clause for more information on granting roles to
program units

Restrictions on Granting System Privileges and Roles

Privileges and roles are subject to the following restrictions:

• A privilege or role cannot appear more than once in the list of privileges and roles to be
granted.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 93

• You cannot grant a role to itself.

• You cannot grant a role IDENTIFIED GLOBALLY to anything.

• You cannot grant a role IDENTIFIED EXTERNALLY to a global user or global role.

• You cannot grant roles circularly. For example, if you grant the role banker to the role teller,
then you cannot subsequently grant teller to banker.

• You cannot grant an IDENTIFIED BY role, IDENTIFIED USING role, or IDENTIFIED EXTERNALLY
role to another role.

grant_schema_privileges

You can grant a schema level privilege to any user or any role if you are a user who :

• Owns the schema.

• Has a schema level privilege WITH ADMIN OPTION.

• Has the GRANT ANY SCHEMA PRIVILEGE system privilege. If you specify ALL PRIVILEGES , all
the schema level privileges in Table 18-3 are granted.

You cannot grant schema privileges on the SYS schema.

See Also

Schema Privileges to Simplify Access Control in the Oracle Database Security Guide

grant_object_privileges

Use these clauses to grant object privileges.

object_privilege

Specify the object privilege you want to grant. Table 18-4 lists the object privileges, organized
by the type of object on which they can be granted. When you grant an object privilege on a
editionable object, either to a user or to a role, the object is actualized in the edition in which
the grant is made. Refer to CREATE EDITION for information on editionable object types and
editions.

Note

To grant SELECT on a view to another user, either you must own all of the objects
underlying the view or you must have been granted the SELECT object privilege WITH
GRANT OPTION on all of those underlying objects. This is true even if the grantee
already has SELECT privileges on those underlying objects.

To grant READ on a view to another user, either you must own all of the objects
underlying the view or you must have been granted the READ or SELECT object
privilege WITH GRANT OPTION on all of those underlying objects. This is true even if the
grantee already has the READ or SELECT privilege on those underlying objects.

Restriction on Object Privileges

A privilege cannot appear more than once in the list of privileges to be granted.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 93

ALL [PRIVILEGES]

Specify ALL to grant all the privileges for the object that you have been granted with the GRANT
OPTION. The user who owns the schema containing an object automatically has all privileges
on the object with the GRANT OPTION. The keyword PRIVILEGES is provided for semantic clarity
and is optional.

column

Specify the table or view column on which privileges are to be granted. You can specify
columns only when granting the INSERT, REFERENCES, or UPDATE privilege. If you do not list
columns, then the grantee has the specified privilege on all columns in the table or view.

For information on existing column object grants, query the USER_, ALL_, or DBA_COL_PRIVS
data dictionary view.

See Also

Oracle Database Reference for information on the data dictionary views and "Granting
Multiple Object Privileges on Individual Columns: Example"

on_object_clause

The on_object_clause identifies the object on which the privileges are granted. Users, directory
objects, editions, data mining models, Java source and resource schema objects, and SQL
translation profiles are identified separately because they reside in separate namespaces.

See Also

"Granting Object Privileges to a Role: Example"

object

Specify the schema object on which the privileges are to be granted. If you do not qualify object
with schema, then the database assumes the object is in your own schema. The object can be
one of the following types:

• Table, view, or materialized view

• Sequence

• Procedure, function, or package

• User-defined type

• Synonym for any of the preceding items

• Directory, library, operator, or indextype

• Java source, class, or resource

You cannot grant privileges directly to a single partition of a partitioned table.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 93

See Also

"Granting Object Privileges on a Table to a User: Example", "Granting Object
Privileges on a View: Example", and "Granting Object Privileges to a Sequence in
Another Schema: Example"

ON USER

Specify the database user you want to grant privileges to.

Restriction on Granting Privileges on Users

You cannot grant privileges on user PUBLIC.

See Also

"Granting an Object Privilege on a User: Example"

ON DIRECTORY

Specify the name of the directory object on which privileges are to be granted. You cannot
qualify directory_name with a schema name.

See Also

CREATE DIRECTORY and "Granting an Object Privilege on a Directory: Example"

ON EDITION

Specify the name of the edition on which the USE object privilege is to be granted. You cannot
qualify edition_name with a schema name.

ON MINING MODEL

Specify the name of the mining model on which privileges are to be granted. If you do not
qualify mining_model_name with schema, then the database assumes that the mining model is in
your own schema.

ON JAVA SOURCE | RESOURCE

Specify the name of the Java source or resource schema object on which privileges are to be
granted. If you do not qualify object with schema, then the database assumes that the object is in
your own schema.

See Also

CREATE JAVA

ON SQL TRANSLATION PROFILE

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 93

Specify the name of the SQL translation profile on which privileges are to be granted. If you do
not qualify profile with schema, then the database assumes that the profile is in your own schema.

WITH HIERARCHY OPTION

Specify WITH HIERARCHY OPTION to grant the specified object privilege on all subobjects of
object, such as subviews created under a view, including subobjects created subsequent to this
statement.

This clause is meaningful only in combination with the READ or SELECT object privilege.

WITH GRANT OPTION

Specify WITH GRANT OPTION to enable the grantee to grant the object privileges to other users
and roles.

If you grant an object privilege to a user without specifying WITH GRANT OPTION, and then
subsequently grant the privilege to the user WITH GRANT OPTION, then the user has the GRANT
OPTION on the privilege.

To revoke the GRANT OPTION on an object privilege from a user, you must revoke the privilege
from the user altogether and then grant the privilege to the user without the GRANT OPTION.

Restriction on Granting WITH GRANT OPTION

You can specify WITH GRANT OPTION only when granting to a user or to PUBLIC, not when
granting to a role.

grant_roles_to_programs

Use this clause to grant roles to program units. Such roles are called code based access
control (CBAC) roles.

role

Specify the role you want to grant. You can grant an Oracle Database predefined role or a
user-defined role. The role must have been created by or directly granted to the schema owner
of the program unit.

program_unit

Specify the program unit to which the role is to be granted. You can specify a PL/SQL function,
procedure, or package. If you do not specify schema, then Oracle Database assumes the
function, procedure, or package is in your own schema.

See Also

Oracle Database Security Guide for more information on granting code based access
control roles to program units

CONTAINER Clause

If the current container is a pluggable database (PDB):

• Specify CONTAINER = CURRENT to locally grant a system privilege, object privilege, or role to
a user or role. The privilege or role is granted to the user or role only in the current PDB.

If the current container is the root:

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 93

• Specify CONTAINER = CURRENT to locally grant a system privilege, object privilege, or role to
a common user or common role. The privilege or role is granted to the user or role only in
the root.

• Specify CONTAINER = ALL to commonly grant a system privilege, object privilege on a
common object, or role, to a common user or common role.

If you omit this clause, then CONTAINER = CURRENT is the default.

Note

If you specify the CONTAINER clause when granting a privilege or role, then the current
container must be the same container and you must specify the same CONTAINER
clause when you revoke the privilege or role. Refer to the CONTAINER Clause of the
REVOKE statement for more information.

Listings of System Administrative, System, Schema, and Object Privileges

Table 18-1 Administrative Privileges

Administrative Privilege Name Operations Authorized

SYSBACKUP Perform the following backup and recovery operations:

STARTUP and SHUTDOWN.

CREATE CONTROLFILE.

CREATE PFILE and CREATE SPFILE.

FLASHBACK DATABASE.

Create, use, view, and drop restore points (including guaranteed restore
points).

Execute procedures in the DBMS_DATAPUMP, DBMS_PIPE, DBMS_TDB,
and DBMS_TTS packages.

SELECT on X$ tables, V$ views, and GV$ views.

Includes the ALTER DATABASE, ALTER SESSION, ALTER SYSTEM,
ALTER TABLESPACE, CREATE ANY CLUSTER, CREATE ANY
DIRECTORY, CREATE ANY TABLE, CREATE SESSION, DROP
DATABASE, DROP TABLESPACE, RESUMABLE, SELECT ANY
DICTIONARY, SELECT ANY TRANSACTION, UNLIMITED TABLESPACE
privileges and the SELECT_CATALOG_ROLE role.

SYSDBA This is the most powerful administrative privilege. It allows most
operations including the ability to view user data.

STARTUP and SHUTDOWN.

ALTER DATABASE: open, mount, back up, or change character set.

CREATE DATABASE.

DROP DATABASE.

ARCHIVELOG and RECOVERY.

CREATE SPFILE.

Includes the RESTRICTED SESSION privilege.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 93

Table 18-1 (Cont.) Administrative Privileges

Administrative Privilege Name Operations Authorized

SYSDG Perform the following Oracle Data Guard operations:

STARTUP and SHUTDOWN.

FLASHBACK DATABASE.

Create, use, view, and drop restore points (including guaranteed restore
points).

SELECT on X$ tables, V$ views, and GV$ views.

Includes the ALTER DATABASE, ALTER SESSION, ALTER SYSTEM,
CREATE SESSION, and SELECT ANY DICTIONARY privileges.

SYSKM Perform the following encryption key management operations:

Connect to the database even if the database is not open.

SELECT on the following views when the database is open:
V$CLIENT_SECRETS, V$ENCRYPTED_TABLESPACES,
V$ENCRYPTION_KEYS, V$ENCRYPTION_WALLET and V$WALLET.

Includes the ADMINISTER KEY MANAGEMENT and CREATE SESSION
privileges.

SYSOPER STARTUP and SHUTDOWN operations.

ALTER DATABASE: open, mount, or back up.

ARCHIVELOG and RECOVERY.

CREATE SPFILE.

Includes the RESTRICTED SESSION privilege.

Table 18-2 System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

Advisor Framework Privileges: All of the advisor framework privileges are part of the DBA role.

ADVISOR Access the advisor framework through PL/SQL packages such as
DBMS_ADVISOR and DBMS_SQLTUNE.

ADMINISTER SQL TUNING SET Create, drop, select (read), load (write), and delete SQL tuning sets
owned by the grantee through the DBMS_SQLTUNE package.

ADMINISTER ANY SQL TUNING SET Create, drop, select (read), load (write), and delete SQL tuning sets
owned by any user through the DBMS_SQLTUNE package.

CREATE ANY SQL PROFILE Accept a SQL Profile recommended by the SQL Tuning Advisor, which
is accessed through Enterprise Manager or by the DBMS_SQLTUNE
package.

Note: This privilege has been deprecated in favor of ADMINISTER SQL
MANAGEMENT OBJECT.

ALTER ANY SQL PROFILE Alter the attributes of an existing SQL Profile.

Note: This privilege has been deprecated in favor of ADMINISTER SQL
MANAGEMENT OBJECT.

DROP ANY SQL PROFILE Drop existing SQL Profiles.

Note: This privilege has been deprecated in favor of ADMINISTER SQL
MANAGEMENT OBJECT.

ADMINISTER SQL MANAGEMENT OBJECT Create, alter, and drop SQL Profiles owned by any user through the
DBMS_SQLTUNE package.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

ANALYTIC VIEWS —

CREATE ANALYTIC VIEW Create analytic views in the grantee's schema.

CREATE ANY ANALYTIC VIEW Create analytic views in any schema except SYS, AUDSYS.

ALTER ANY ANALYTIC VIEW Rename analytic views in any schema except SYS, AUDSYS.

DROP ANY ANALYTIC VIEW Drop analytic views in any schema except SYS, AUDSYS .

ATTRIBUTE DIMENSIONS —

CREATE ATTRIBUTE DIMENSION Create attribute dimensions in the grantee's schema.

CREATE ANY ATTRIBUTE DIMENSION Create attribute dimensions in any schema except SYS,AUDSYS.

ALTER ANY ATTRIBUTE DIMENSION Rename attribute dimensions in any schema except SYS,AUDSYS.

DROP ANY ATTRIBUTE DIMENSION Drop attribute dimensions in any schema except SYS,AUDSYS.

AUDIT: —

AUDIT ANY Audit an object in any schema, except SYS,AUDSYS, using AUDIT
schema_objects statements.

AUDIT SYSTEM Issue AUDIT statements.

ADMINISTER FINE GRAINED AUDIT POLICY Allow management of fine-grained audit policies

CLUSTERS: —

CREATE CLUSTER Create clusters in the grantee's schema.

CREATE ANY CLUSTER Create clusters in any schema except SYS,AUDSYS. Behaves similarly
to CREATE ANY TABLE.

ALTER ANY CLUSTER Alter clusters in any schema except SYS, AUDSYS.

DROP ANY CLUSTER Drop clusters in any schema except SYS,AUDSYS.

CONTEXTS: —

CREATE ANY CONTEXT Create any context namespace.

DROP ANY CONTEXT Drop any context namespace.

DATA REDACTION: —

EXEMPT REDACTION POLICY Bypass any existing Oracle Data Redaction policies and view actual
data from tables or views on which Data Redaction policies are defined.

ADMINISTER REDACTION POLICY Allow management of Redaction policies .

DATABASE: —

ALTER DATABASE Alter the database.

ALTER SYSTEM Issue ALTER SYSTEM statements.

DATABASE LINKS: —

CREATE DATABASE LINK Create private database links in the grantee's schema.

CREATE PUBLIC DATABASE LINK Create public database links.

ALTER DATABASE LINK Modify a fixed-user database link when the password of the connection
or authentication user changes.

ALTER PUBLIC DATABASE LINK Modify a public fixed-user database link when the password of the
connection or authentication user changes.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

DROP PUBLIC DATABASE LINK Drop public database links.

DEBUGGING: —

DEBUG CONNECT SESSION Connect the current session to a debugger.

DEBUG ANY PROCEDURE Debug all PL/SQL and Java code in any database object. Display
information on all SQL statements executed by the application.

Note: Granting this privilege is equivalent to granting the DEBUG object
privilege on all applicable objects in the database.

DICTIONARIES: —

ANALYZE ANY DICTIONARY Analyze any data dictionary object.

DIMENSIONS: —

CREATE DIMENSION Create dimensions in the grantee's schema.

CREATE ANY DIMENSION Create dimensions in any schema except SYS,AUDSYS.

ALTER ANY DIMENSION Alter dimensions in any schema except SYS,AUDSYS.

DROP ANY DIMENSION Drop dimensions in any schema except SYS,AUDSYS.

DIRECTIVES: —

CREATE DIRECTIVE Create a directive in your own schema on a table in your own schema .

CREATE ANY DIRECTIVE Create a directive in your own schema on a table in another user's
schema .

Create a directive in an other schema on a table in another user's
schema .

DROP ANY DIRECTIVE Drop a directive in another user's schema even if that user did not
create it.

ALTER ANY DIRECTIVE Alter a directive in another user's schema even if that user did not
create it.

DIRECTORIES: —

CREATE ANY DIRECTORY Create directory database objects.

DROP ANY DIRECTORY Drop directory database objects.

DOMAINS: —

CREATE DOMAIN Create a domain in your own schema.

CREATE ANY DOMAIN Create a domain in any schema.

ALTER ANY DOMAIN Alter a domain in any schema.

DROP ANY DOMAIN Drop a domain in any schema.

EXECUTE ANY DOMAIN Refer to a domain in any schema.

EDITIONS: —

CREATE ANY EDITION Create editions.

DROP ANY EDITION Drop editions.

FLASHBACK DATA ARCHIVES: —

FLASHBACK ARCHIVE ADMINISTER Create, alter, or drop any flashback data archive.

HIERARCHIES —

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

CREATE HIERARCHY Create hierarchies in the grantee's schema.

CREATE ANY HIERARCHY Create hierarchies in any schema except SYS,AUDSYS.

ALTER ANY HIERARCHY Rename hierarchies in any schema except SYS,AUDSYS.

DROP ANY HIERARCHY Drop hierarchies in any schema except SYS, AUDSYS.

INDEXES: —

CREATE ANY INDEX Create in any schema, except SYS, AUDSYS, a domain index or an
index on any table in any schema except SYS,AUDSYS.

ALTER ANY INDEX Alter indexes in any schema except SYS,AUDSYS.

DROP ANY INDEX Drop indexes in any schema except SYS,AUDSYS.

INDEXTYPES: —

CREATE INDEXTYPE Create indextypes in the grantee's schema.

CREATE ANY INDEXTYPE Create indextypes in any schema except SYS and create comments on
indextypes in any schema except SYS.

ALTER ANY INDEXTYPE Modify indextypes in any schema except SYS,AUDSYS.

DROP ANY INDEXTYPE Drop indextypes in any schema except SYS,AUDSYS.

EXECUTE ANY INDEXTYPE Reference indextypes in any schema except SYS,AUDSYS.

JOB SCHEDULER OBJECTS: The following privileges are needed to execute procedures in the
DBMS_SCHEDULER package. This privileges do not apply to lightweight
jobs, which are not database objects. Refer to Oracle Database
Administrator's Guide for more information about lightweight jobs.

CREATE JOB Create, alter, or drop jobs, chains, schedules, programs, credentials,
resource objects, or incompatibility resource objects in the grantee's
schema.

CREATE ANY JOB Create, alter, or drop jobs, chains, schedules, programs, credentials,
resource objects, or incompatibility resource objects in any schema
except SYS,AUDSYS.

Note: This extremely powerful privilege allows the grantee to execute
code as any other user. It should be granted with caution.

CREATE EXTERNAL JOB Create in the grantee's schema an executable scheduler job that runs
on the operating system.

EXECUTE ANY CLASS Specify any job class in a job in the grantee's schema.

EXECUTE ANY PROGRAM Use any program in a job in the grantee's schema.

MANAGE SCHEDULER Create, alter, or drop any job class, window, or window group.

USE ANY JOB RESOURCE Associate any schedule resource object with any program or job in the
grantee’s schema.

KEY MANAGEMENT FRAMEWORK: —

ADMINISTER KEY MANAGEMENT Manage keys and keystores.

LIBRARIES: Caution: CREATE LIBARARY, CREATE ANY LIBRARY, ALTER ANY
LIBRARY, and EXECUTE ANY LIBRARY are extremely powerful
privileges that should be granted only to trusted users. Refer to Oracle
Database Security Guide before granting these privileges.

CREATE LIBRARY Create external procedure or function libraries in the grantee's schema.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

CREATE ANY LIBRARY Create external procedure or function libraries in any schema except
SYS,AUDSYS.

ALTER ANY LIBRARY Alter external procedure or function libraries in any schema except
SYS,AUDSYS.

DROP ANY LIBRARY Drop external procedure or function libraries in any schema except
SYS,AUDSYS.

EXECUTE ANY LIBRARY Use external procedure or function libraries in any schema except
SYS,AUDSYS.

LOGMINER: —

LOGMINING Execute procedures in the DBMS_LOGMNR package in a CDB or a
PDB. Query the contents of the V$LOGMNR_CONTENTS view.

MATERIALIZED VIEWS: —

CREATE MATERIALIZED VIEW Create materialized views in the grantee's schema.

CREATE ANY MATERIALIZED VIEW Create materialized views in any schema except SYS,AUDSYS.

ALTER ANY MATERIALIZED VIEW Alter materialized views in any schema except SYS,AUDSYS.

DROP ANY MATERIALIZED VIEW Drop materialized views in any schema except SYS,AUDSYS.

QUERY REWRITE This privilege has been deprecated. No privileges are needed for a user
to enable rewrite for a materialized view that references tables or views
in the user's own schema.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view when that materialized view
references tables or views in any schema except SYS.

ON COMMIT REFRESH Create a refresh-on-commit materialized view on any table in the
database.

Alter a refresh-on-demand materialized view on any table in the
database to refresh-on-commit.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized view
in any schema except SYS. This privilege is not needed to execute the
DBMS_FLASHBACK procedures.

MINING MODELS: —

CREATE MINING MODEL Create mining models in the grantee's schema using the
DBMS_DATA_MINING.CREATE_MODEL procedure.

CREATE ANY MINING MODEL Create mining models in any schema, except SYS, AUDSYS, using the
DBMS_DATA_MINING.CREATE_MODEL procedure.

ALTER ANY MINING MODEL Change the mining model name or the associated cost matrix of a
model in any schema, except SYS, AUDSYS, using the applicable
DBMS_DATA_MINING procedures.

DROP ANY MINING MODEL Drop mining models in any schema, except SYS,AUDSYS, using the
DBMS_DATA_MINING.DROP_MODEL procedure.

SELECT ANY MINING MODEL Score or view mining models in any schema except SYS, AUDSYS.
Scoring is done either with the PREDICTION family of SQL functions or
with the DBMS_DATA_MINING.APPLY procedure. Viewing the model is
done with the DBMS_DATA_MINING.GET_MODEL_DETAILS_*
procedures.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

COMMENT ANY MINING MODEL Create comments on mining models in any schema, except SYS,
AUDSYS, using the SQL COMMENT statement.

OLAP CUBES: The following privileges are valid when you are using Oracle Database
with the OLAP option.

CREATE CUBE Create OLAP cubes in the grantee's schema.

CREATE ANY CUBE Create OLAP cubes in any schema except SYS,AUDSYS.

ALTER ANY CUBE Alter OLAP cubes in any schema except SYS,AUDSYS.

DROP ANY CUBE Drop OLAP cubes in any schema except SYS,AUDSYS.

SELECT ANY CUBE Query or view OLAP cubes in any schema except SYS,AUDSYS.

UPDATE ANY CUBE Update OLAP cubes in any schema except SYS,AUDSYS.

OLAP CUBE MEASURE FOLDERS: The following privileges are valid when you are using Oracle Database
with the OLAP option.

CREATE MEASURE FOLDER Create OLAP measure folders in the grantee's schema.

CREATE ANY MEASURE FOLDER Create OLAP measure folders in any schema except SYS,AUDSYS.

DELETE ANY MEASURE FOLDER Delete a measure from an OLAP measure folder in any schema except
SYS,AUDSYS.

DROP ANY MEASURE FOLDER Drop OLAP measure folders in any schema except SYS,AUDSYS.

INSERT ANY MEASURE FOLDER Insert a measure into an OLAP measure folder in any schema except
SYS,AUDSYS.

OLAP CUBE DIMENSIONS: The following privileges are valid when you are using Oracle Database
with the OLAP option.

CREATE CUBE DIMENSION Create OLAP cube dimension in the grantee's schema.

CREATE ANY CUBE DIMENSION Create OLAP cube dimensions in any schema except SYS,AUDSYS.

ALTER ANY CUBE DIMENSION Alter OLAP cube dimensions in any schema except SYS,AUDSYS.

DELETE ANY CUBE DIMENSION Delete from OLAP cube dimensions in any schema except SYS,
AUDSYS.

DROP ANY CUBE DIMENSION Drop OLAP cube dimensions in any schema except SYS,AUDSYS.

INSERT ANY CUBE DIMENSION Insert into OLAP cube dimensions in any schema except SYS,AUDSYS.

SELECT ANY CUBE DIMENSION View or query OLAP cube dimensions in any schema except
SYS,AUDSYS.

UPDATE ANY CUBE DIMENSION Update OLAP cube dimensions in any schema except SYS,AUDSYS.

OLAP CUBE BUILD PROCESSES: —

CREATE CUBE BUILD PROCESS Create OLAP cube build processes in the grantee's schema.

CREATE ANY CUBE BUILD PROCESS Create OLAP cube build processes in any schema except SYS,AUDSYS.

DROP ANY CUBE BUILD PROCESS Drop OLAP cube build processes in any schema except SYS,AUDSYS.

UPDATE ANY CUBE BUILD PROCESS Update OLAP cube build processes in any schema except
SYS,AUDSYS.

OPERATORS: —

CREATE OPERATOR Create an operator and its bindings in the grantee's schema.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

CREATE ANY OPERATOR Create an operator and its bindings in any schema and create a
comment on an operator in any schema.

ALTER ANY OPERATOR Modify operators in any schema.

DROP ANY OPERATOR Drop operators in any schema.

EXECUTE ANY OPERATOR Reference operators in any schema.

OUTLINES: —

CREATE ANY OUTLINE Create public outlines that can be used in any schema that uses
outlines.

ALTER ANY OUTLINE Modify outlines.

DROP ANY OUTLINE Drop outlines.

PDB LOCKDOWN PROFILES: —

CREATE LOCKDOWN PROFILE Create PDB lockdown profiles.

ALTER LOCKDOWN PROFILE Alter PDB lockdown profiles.

DROP LOCKDOWN PROFILE Drop PDB lockdown profiles.

PLAN MANAGEMENT: —

ADMINISTER SQL MANAGEMENT OBJECT Perform controlled manipulation of plan history and SQL plan baselines
maintained for various SQL statements.

PLUGGABLE DATABASES: —

CREATE PLUGGABLE DATABASE Create a PDB.

Plug in a PDB that was previously unplugged from a CDB.

Clone a PDB.

SET CONTAINER Allow a common user to switch into the container for which this privilege
was granted. This privilege can be granted only to a common user or
common role.

PROCEDURES: —

CREATE PROCEDURE Create stored procedures, functions, or packages in the grantee's
schema.

CREATE ANY PROCEDURE Create stored procedures, functions, or packages in any schema except
SYS,AUDSYS.

ALTER ANY PROCEDURE Alter stored procedures, functions, or packages in any schema except
SYS,AUDSYS.

DROP ANY PROCEDURE Drop stored procedures, functions, or packages in any schema except
SYS,AUDSYS.

EXECUTE ANY PROCEDURE Execute procedures or functions, either standalone or packaged.

Reference public package variables in any schema except
SYS,AUDSYS.

INHERIT ANY REMOTE PRIVILEGES Execute definer's rights procedures or functions that contain current
user database links.

PROFILES: —

CREATE PROFILE Create profiles.

ALTER PROFILE Alter profiles.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

DROP PROFILE Drop profiles.

PROPERTY GRAPHS: —

CREATE PROPERTY GRAPH Create property graph in the grantee’s schema.

CREATE ANY PROPERTY GRAPH Create property graph in any schema except SYS, AUDSYS.

ALTER ANY PROPERTY GRAPH Alter property graph in any schema except SYS, AUDSYS.

DROP ANY PROPERTY GRAPH Drop property graph in any schema except SYS, AUDSYS.

READ ANY PROPERTY GRAPH Query property graph in any schema except SYS, AUDSYS.

ROLES: —

CREATE ROLE Create roles.

ALTER ANY ROLE Alter any role in the database.

DROP ANY ROLE Drop roles.

GRANT ANY ROLE Grant any role in the database.

ROLLBACK SEGMENTS: —

CREATE ROLLBACK SEGMENT Create rollback segments.

ALTER ROLLBACK SEGMENT Alter rollback segments.

DROP ROLLBACK SEGMENT Drop rollback segments.

SEQUENCES: —

CREATE SEQUENCE Create sequences in the grantee's schema.

CREATE ANY SEQUENCE Create sequences in any schema except SYS,AUDSYS.

ALTER ANY SEQUENCE Alter sequences in any schema except SYS,AUDSYS.

DROP ANY SEQUENCE Drop sequences in any schema except SYS,AUDSYS.

SELECT ANY SEQUENCE Reference sequences in any schema except SYS,AUDSYS.

SESSIONS: —

CREATE SESSION Connect to the database.

ALTER RESOURCE COST Set costs for session resources.

ALTER SESSION Enable and disable the SQL trace facility.

RESTRICTED SESSION Logon after the instance is started using the SQL*Plus STARTUP
RESTRICT statement.

SNAPSHOTS: See MATERIALIZED VIEWS

SQL Firewall Administration –

ADMINISTER SQL FIREWALL This system privilege is required to execute the PL/SQL procedures in
SYS.DBMS_SQL_FIREWALL package. Just like any other system
privileges, SYS is assumed to have this privilege. However this system
privilege will not be granted to the DBA role by default.

SQL TRANSLATION PROFILES: —

CREATE SQL TRANSLATION PROFILE Create SQL translation profiles in the grantee's schema.

CREATE ANY SQL TRANSLATION PROFILE Create SQL translation profiles in any schema except SYS,AUDSYS.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

ALTER ANY SQL TRANSLATION PROFILE Alter the translator, custom SQL statement translations, or custom error
translations of a SQL translation profile in any schema except
SYS,AUDSYS.

USE ANY SQL TRANSLATION PROFILE Use SQL translation profiles in any schema except SYS,AUDSYS.

DROP ANY SQL TRANSLATION PROFILE Drop SQL translation profiles in any schema except SYS,AUDSYS.

TRANSLATE ANY SQL Translate SQL through the grantee's SQL translation profile for any
user.

SYNONYMS: Caution: CREATE PUBLIC SYNONYM and DROP PUBLIC SYNONYM
are extremely powerful privileges that should be granted only to trusted
users. Refer to Oracle Database Security Guide before granting these
privileges.

CREATE SYNONYM Create synonyms in the grantee's schema.

CREATE ANY SYNONYM Create private synonyms in any schema except SYS,AUDSYS.

CREATE PUBLIC SYNONYM Create public synonyms.

DROP ANY SYNONYM Drop private synonyms in any schema except SYS,AUDSYS.

DROP PUBLIC SYNONYM Drop public synonyms.

TABLES: Note: For external tables, the only valid privileges are CREATE ANY
TABLE, ALTER ANY TABLE, DROP ANY TABLE, READ ANY TABLE,
and SELECT ANY TABLE.

CREATE TABLE Create tables in the grantee's schema.

CREATE ANY TABLE Create a table in any schema except SYS,AUDSYS. The owner of the
schema containing the table must have space quota on the tablespace
to contain the table.

ALTER ANY TABLE Alter a table or view in any schema except SYS, AUDSYS.

BACKUP ANY TABLE Use the Export utility to incrementally export objects from the schema
of other users except SYS,AUDSYS.

DELETE ANY TABLE Delete rows from tables, table partitions, or views in any schema except
SYS,AUDSYS.

DROP ANY TABLE Drop or truncate tables or table partitions in any schema except
SYS,AUDSYS.

INSERT ANY TABLE Insert rows into tables and views in any schema except SYS,AUDSYS.

LOCK ANY TABLE Lock tables and views in any schema except SYS,AUDSYS.

READ ANY TABLE Query tables, views, or materialized views in any schema except
SYS,AUDSYS.

SELECT ANY TABLE Query tables, views, or materialized views in any schema except
SYS,AUDSYS. Obtain row locks using a SELECT ... FOR UPDATE.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized view
in any schema except SYS,AUDSYS. This privilege is not needed to
execute the DBMS_FLASHBACK procedures.

UPDATE ANY TABLE Update rows in tables and views in any schema except SYS,AUDSYS.

REDEFINE ANY TABLE Perform online redefinition without granting any of the privileges in
USER or FULL mode.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

TABLE RETENTION Create a blockchain table or an immutable table whose table retention
exceeds the threshold specified by the parameter
BLOCKCHAIN_TABLE_RETENTION_THRESHOLD. Increase the table
retention for an existing blockchain table or immutable table to a value
above the threshold specified by the parameter
BLOCKCHAIN_TABLE_RETENTION_THRESHOLD.

TABLESPACES: —

CREATE TABLESPACE Create tablespaces.

ALTER TABLESPACE Alter tablespaces.

DROP TABLESPACE Drop tablespaces.

MANAGE TABLESPACE Take tablespaces offline and online and begin and end tablespace
backups.

UNLIMITED TABLESPACE Use an unlimited amount of any tablespace. This privilege overrides
any specific quotas assigned. If you revoke this privilege from a user,
then the user's schema objects remain but further tablespace allocation
is denied unless authorized by specific tablespace quotas. You cannot
grant this system privilege to roles.

TRIGGERS: —

CREATE TRIGGER Create database triggers in the grantee's schema.

CREATE ANY TRIGGER Create database triggers in any schema except SYS, AUDSYS.

ALTER ANY TRIGGER Enable, disable, or compile database triggers in any schema except
SYS,AUDSYS.

DROP ANY TRIGGER Drop database triggers in any schema except SYS,AUDSYS.

ADMINISTER DATABASE TRIGGER Create a trigger on DATABASE. You must also have the CREATE
TRIGGER or CREATE ANY TRIGGER system privilege.

TYPES: —

CREATE TYPE Create object types and object type bodies in the grantee's schema.

CREATE ANY TYPE Create object types and object type bodies in any schema except
SYS,AUDSYS.

ALTER ANY TYPE Alter object types in any schema except SYS,AUDSYS.

DROP ANY TYPE Drop object types and object type bodies in any schema except
SYS,AUDSYS.

EXECUTE ANY TYPE Use and reference object types and collection types in any schema
except SYS,AUDSYS, and invoke methods of an object type in any
schema, except SYS,AUDSYS, if you make the grant to a specific user. If
you grant EXECUTE ANY TYPE to a role, then users holding the
enabled role will not be able to invoke methods of an object type in any
schema.

UNDER ANY TYPE Create subtypes under any nonfinal object types.

USERS: —

CREATE USER Create users. This privilege also allows the creator to:

• Assign quotas on any tablespace.
• Set default and temporary tablespaces.
• Assign a profile as part of a CREATE USER statement.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

ALTER USER Alter any user except SYS. This privilege authorizes the grantee to:

• Change another user's password or authentication method.
• Assign quotas on any tablespace.
• Set default and temporary tablespaces.
• Assign a profile and default roles.

DROP USER Drop users

VIEWS: —

CREATE VIEW Create views in the grantee's schema.

CREATE ANY VIEW Create views in any schema except SYS,AUDSYS.

DROP ANY VIEW Drop views in any schema except SYS,AUDSYS.

UNDER ANY VIEW Create subviews under any object views.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized view
in any schema except SYS,AUDSYS. This privilege is not needed to
execute the DBMS_FLASHBACK procedures.

MERGE ANY VIEW If a user has been granted the MERGE ANY VIEW privilege, then for
any query issued by that user, the optimizer can use view merging to
improve query performance without performing the checks that would
otherwise be performed to ensure that view merging does not violate
any security intentions of the view creator. See Oracle Database SQL
Tuning Guide for information on view merging.

VIRTUAL PRIVATE DATABASE

EXEMPT ACCESS POLICY Bypass fine-grained access control.

Caution: This is a very powerful system privilege, as it lets the grantee
bypass application-driven security policies. Database administrators
should use caution when granting this privilege.

ADMINISTER ROW LEVEL SECURITY POLICY Allow management of Virtual Private Database (VPD) policies (fine-
grained access control, row-level security)

MISCELLANEOUS: —

ANALYZE ANY Analyze a table, cluster, or index in any schema except SYS.

BECOME USER Allow users of the Data Pump Import utility (impdp) and the original
Import utility (imp) to assume the identity of another user in order to
perform operations that cannot be directly performed by a third party
(for example, loading objects such as object privilege grants).

Allow Streams administrators to create or alter capture users and apply
users in a Streams environment. By default this privilege is part of the
DBA role. Database Vault removes this privileges from the DBA role.
Therefore, this privilege is needed by Streams only in an environment
where Database Vault is installed.

CHANGE NOTIFICATION Create a registration on queries and receive database change
notifications in response to DML or DDL changes to the objects
associated with the registered queries. Refer to Oracle Database
Development Guide for more information on database change
notification.

COMMENT ANY TABLE Comment on a table, view, or column in any schema except
SYS,AUDSYS.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 93

Table 18-2 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

ENABLE DIAGNOSTICS • Set debug-events via ALTER SESSION or ALTER SYSTEM
• Set debug-actions to execute during an event via ALTER SESSION

or ALTER SYSTEM
• Execute debug-actions immediately via ALTER SESSION or ALTER

SYSTEM by specifying the IMMEDIATE keyword instead of an event
name

• Set the event parameter in the spfile via ALTER SYSTEM

FORCE ANY TRANSACTION Force the commit or rollback of any in-doubt distributed transaction in
the local database.

Induce the failure of a distributed transaction.

FORCE TRANSACTION Force the commit or rollback of the grantee's in-doubt distributed
transactions in the local database.

GRANT ANY OBJECT PRIVILEGE Grant any object privilege that the object owner is permitted to grant.

Revoke any object privilege that was granted by the object owner or by
some other user with the GRANT ANY OBJECT PRIVILEGE privilege.

GRANT ANY PRIVILEGE Grant any system privilege.

INHERIT ANY PRIVILEGES Execute invoker's rights procedures owned by the grantee with the
privileges of the invoker.

KEEP DATE TIME The SYSDATE and SYSTIMESTAMP functions return their original values
during replay for Application Continuity when the grantee is running the
application. This privilege is useful for providing bind variable
consistency after recoverable errors.

Note: If this privilege is granted or revoked between runtime and
failover of a request, then the original values are not returned during
replay for Application Continuity for that request.

KEEP SYSGUID The SYS_GUID function returns its original value during replay for
Application Continuity when the grantee is running the application. This
privilege is useful for providing bind variable consistency after
recoverable errors.

Note: If this privilege is granted or revoked between runtime and
failover of a request, then the original value is not returned during replay
for Application Continuity for that request.

PURGE DBA_RECYCLEBIN Remove all objects from the system-wide recycle bin.

RESUMABLE Enable resumable space allocation.

SELECT ANY DICTIONARY Query any data dictionary object in the dictioanry protected schema,
with the exception of the following objects: SYS.DEFAULT_PWD$,
SYS.ENC$, SYS.LINK$, SYS.USER$, SYS.USER_HISTORY$, and
SYS.XS$VERIFIERS.

Note: The privilege will NOT allow the grantee to execute SELECT ..
FOR UPDATE on a dictionary table. It will allow “READ” on dictionary
objects

SELECT ANY TRANSACTION Query the contents of the FLASHBACK_TRANSACTION_QUERY view.

Caution: This is a very powerful system privilege, as it lets the grantee
view all data in the database, including past data. This privilege should
be granted only to users who need to use the Oracle Flashback
Transaction Query feature.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 93

Table 18-3 Schema Privileges (Organized by the Operations Authorized)

Schema Privilege Name Operations Authorized

ANALYTIC VIEWS —

CREATE ANY ANALYTIC VIEW Create analytic views in any schema except SYS, AUDSYS.
If the grantee is the schema owner, then grantee should have been
granted CREATE ANALYTIC VIEW privilege.

ALTER ANY ANALYTIC VIEW Rename analytic views in any schema except SYS, AUDSYS.

DROP ANY ANALYTIC VIEW Drop analytic views in any schema except SYS, AUDSYS .

ATTRIBUTE DIMENSIONS —

CREATE ANY ATTRIBUTE DIMENSION Create attribute dimensions in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE ATTRIBUTE DIMENSION privilege.

ALTER ANY ATTRIBUTE DIMENSION Rename attribute dimensions in any schema except SYS,AUDSYS.

DROP ANY ATTRIBUTE DIMENSION Drop attribute dimensions in any schema except SYS,AUDSYS.

AUDIT GROUP: —

AUDIT ANY Audit an object in any schema, except SYS,AUDSYS, using AUDIT
schema_objects statements.

ADMINISTER FINE GRAINED AUDIT POLICY Allow management of fine-grained audit policies in a schema.

CLUSTERS: —

CREATE ANY CLUSTER Create clusters in any schema except SYS,AUDSYS. Behaves similarly
to CREATE ANY TABLE.

If the grantee is the schema owner, then grantee should have been
granted CREATE CLUSTER privilege.

ALTER ANY CLUSTER Alter clusters in any schema except SYS, AUDSYS.

DROP ANY CLUSTER Drop clusters in any schema except SYS,AUDSYS.

DATA REDACTION: —

EXEMPT REDACTION POLICY Bypass any existing Oracle Data Redaction policies and view actual
data from tables or views on which Data Redaction policies are defined
in the schema.

ADMINISTER REDACTION POLICY Allow management of redaction policies in a schema.

DIMENSIONS: —

CREATE ANY DIMENSION Create dimensions in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE DIMENSION privilege.

ALTER ANY DIMENSION Alter dimensions in any schema except SYS,AUDSYS.

DROP ANY DIMENSION Drop dimensions in any schema except SYS,AUDSYS.

DOMAINS: —

CREATE ANY DOMAIN Create a DOMAIN in any non-dictionary protected schema.

If the grantee is the schema owner, then grantee should have been
granted CREATE DOMAIN privilege.

ALTER ANY DOMAIN Rename a domain in any non-dictionary protected schema.

DROP ANY DOMAIN Drop a domain in any non-dictionary protected schema.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 93

Table 18-3 (Cont.) Schema Privileges (Organized by the Operations Authorized)

Schema Privilege Name Operations Authorized

EXECUTE ANY DOMAIN Execute a domain in a designated non-dictionary protected schema.

HIERARCHIES —

CREATE ANY HIERARCHY Create hierarchies in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE HIERARCHY privilege.

ALTER ANY HIERARCHY Rename hierarchies in any schema except SYS,AUDSYS.

DROP ANY HIERARCHY Drop hierarchies in any schema except SYS, AUDSYS.

INDEXES: —

CREATE ANY INDEX Create in any schema, except SYS, AUDSYS, a domain index or an
index on any table in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE INDEX privilege.

ALTER ANY INDEX Alter indexes in any schema except SYS,AUDSYS.

DROP ANY INDEX Drop indexes in any schema except SYS,AUDSYS.

INDEXTYPES: —

CREATE ANY INDEXTYPE Create indextypes in any schema except SYS and create comments on
indextypes in any schema except SYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE INDEXTYPE privilege.

ALTER ANY INDEXTYPE Modify indextypes in any schema except SYS,AUDSYS.

DROP ANY INDEXTYPE Drop indextypes in any schema except SYS,AUDSYS.

EXECUTE ANY INDEXTYPE Reference indextypes in any schema except SYS,AUDSYS.

JOB SCHEDULER OBJECTS: The following privileges are needed to execute procedures in the
DBMS_SCHEDULER package. This privileges do not apply to lightweight
jobs, which are not database objects. Refer to Oracle Database
Administrator's Guide for more information about lightweight jobs.

CREATE ANY JOB Create, alter, or drop jobs, chains, schedules, programs, credentials,
resource objects, or incompatibility resource objects in any schema
except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE JOB privilege.

Note: This extremely powerful privilege allows the grantee to execute
code as any other user. It should be granted with caution.

LIBRARIES: Caution: CREATE LIBARARY, CREATE ANY LIBRARY, ALTER ANY
LIBRARY, and EXECUTE ANY LIBRARY are extremely powerful
privileges that should be granted only to trusted users. Refer to Oracle
Database Security Guide before granting these privileges.

CREATE ANY LIBRARY Create external procedure or function libraries in any schema except
SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE LIBRARY privilege.

ALTER ANY LIBRARY Alter external procedure or function libraries in any schema except
SYS,AUDSYS.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 93

Table 18-3 (Cont.) Schema Privileges (Organized by the Operations Authorized)

Schema Privilege Name Operations Authorized

DROP ANY LIBRARY Drop external procedure or function libraries in any schema except
SYS,AUDSYS.

EXECUTE ANY LIBRARY Use external procedure or function libraries in any schema except
SYS,AUDSYS.

MATERIALIZED VIEWS: —

CREATE ANY MATERIALIZED VIEW Create materialized views in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE MATERIALIZED VIEW privilege.

ALTER ANY MATERIALIZED VIEW Alter materialized views in any schema except SYS,AUDSYS.

DROP ANY MATERIALIZED VIEW Drop materialized views in any schema except SYS,AUDSYS.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view when that materialized view
references tables or views in any schema except SYS.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized view
in any schema except SYS. This privilege is not needed to execute the
DBMS_FLASHBACK procedures.

MINING MODELS: —

CREATE ANY MINING MODEL Create mining models in any schema, except SYS, AUDSYS, using the
DBMS_DATA_MINING.CREATE_MODEL procedure.

If the grantee is the schema owner, then grantee should have been
granted CREATE MINING MODEL privilege.

ALTER ANY MINING MODEL Change the mining model name or the associated cost matrix of a
model in any schema, except SYS, AUDSYS, using the applicable
DBMS_DATA_MINING procedures.

DROP ANY MINING MODEL Drop mining models in any schema, except SYS,AUDSYS, using the
DBMS_DATA_MINING.DROP_MODEL procedure.

SELECT ANY MINING MODEL Score or view mining models in any schema except SYS, AUDSYS.
Scoring is done either with the PREDICTION family of SQL functions or
with the DBMS_DATA_MINING.APPLY procedure. Viewing the model is
done with the DBMS_DATA_MINING.GET_MODEL_DETAILS_*
procedures.

COMMENT ANY MINING MODEL Create comments on mining models in any schema, except SYS,
AUDSYS, using the SQL COMMENT statement.

OLAP CUBES: The following privileges are valid when you are using Oracle Database
with the OLAP option.

CREATE ANY CUBE Create OLAP cubes in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE CUBE privilege.

ALTER ANY CUBE Alter OLAP cubes in any schema except SYS,AUDSYS.

DROP ANY CUBE Drop OLAP cubes in any schema except SYS,AUDSYS.

SELECT ANY CUBE Query or view OLAP cubes in any schema except SYS,AUDSYS.

UPDATE ANY CUBE Update OLAP cubes in any schema except SYS,AUDSYS.

OLAP CUBE MEASURE FOLDERS: The following privileges are valid when you are using Oracle Database
with the OLAP option.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 93

Table 18-3 (Cont.) Schema Privileges (Organized by the Operations Authorized)

Schema Privilege Name Operations Authorized

CREATE ANY MEASURE FOLDER Create OLAP measure folders in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE MEASURE FOLDER privilege.

DELETE ANY MEASURE FOLDER Delete a measure from an OLAP measure folder in any schema except
SYS,AUDSYS.

DROP ANY MEASURE FOLDER Drop OLAP measure folders in any schema except SYS,AUDSYS.

INSERT ANY MEASURE FOLDER Insert a measure into an OLAP measure folder in any schema except
SYS,AUDSYS.

OLAP CUBE DIMENSIONS: The following privileges are valid when you are using Oracle Database
with the OLAP option.

CREATE ANY CUBE DIMENSION Create OLAP cube dimensions in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE CUBE DIMENSION privilege.

ALTER ANY CUBE DIMENSION Alter OLAP cube dimensions in any schema except SYS,AUDSYS.

DELETE ANY CUBE DIMENSION Delete from OLAP cube dimensions in any schema except SYS,
AUDSYS.

DROP ANY CUBE DIMENSION Drop OLAP cube dimensions in any schema except SYS,AUDSYS.

INSERT ANY CUBE DIMENSION Insert into OLAP cube dimensions in any schema except SYS,AUDSYS.

SELECT ANY CUBE DIMENSION View or query OLAP cube dimensions in any schema except
SYS,AUDSYS.

UPDATE ANY CUBE DIMENSION Update OLAP cube dimensions in any schema except SYS,AUDSYS.

OLAP CUBE BUILD PROCESSES: —

CREATE ANY CUBE BUILD PROCESS Create OLAP cube build processes in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE CUBE BUILD PROCESS privilege.

DROP ANY CUBE BUILD PROCESS Drop OLAP cube build processes in any schema except SYS,AUDSYS.

UPDATE ANY CUBE BUILD PROCESS Update OLAP cube build processes in any schema except
SYS,AUDSYS.

OPERATORS: —

CREATE ANY OPERATOR Create an operator and its bindings in any schema and create a
comment on an operator in any schema.

If the grantee is the schema owner, then grantee should have been
granted CREATE OPERATOR privilege.

ALTER ANY OPERATOR Modify operators in any schema.

DROP ANY OPERATOR Drop operators in any schema.

EXECUTE ANY OPERATOR Reference operators in any schema.

PROCEDURES: —

CREATE ANY PROCEDURE Create stored procedures, functions, or packages in any schema except
SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE PROCEDURE privilege.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 93

Table 18-3 (Cont.) Schema Privileges (Organized by the Operations Authorized)

Schema Privilege Name Operations Authorized

ALTER ANY PROCEDURE Alter stored procedures, functions, or packages in any schema except
SYS,AUDSYS.

DROP ANY PROCEDURE Drop stored procedures, functions, or packages in any schema except
SYS,AUDSYS.

EXECUTE ANY PROCEDURE Execute procedures or functions, either standalone or packaged.

Reference public package variables in any schema except
SYS,AUDSYS.

SEQUENCES: —

CREATE ANY SEQUENCE Create sequences in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE SEQUENCE privilege.

ALTER ANY SEQUENCE Alter sequences in any schema except SYS,AUDSYS.

DROP ANY SEQUENCE Drop sequences in any schema except SYS,AUDSYS.

SELECT ANY SEQUENCE Reference sequences in any schema except SYS,AUDSYS.

SQL TRANSLATION PROFILES: —

CREATE ANY SQL TRANSLATION PROFILE Create SQL translation profiles in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE SQL TRANSLATION PROFILE privilege.

ALTER ANY SQL TRANSLATION PROFILE Alter the translator, custom SQL statement translations, or custom error
translations of a SQL translation profile in any schema except
SYS,AUDSYS.

USE ANY SQL TRANSLATION PROFILE Use SQL translation profiles in any schema except SYS,AUDSYS.

DROP ANY SQL TRANSLATION PROFILE Drop SQL translation profiles in any schema except SYS,AUDSYS.

TRANSLATE ANY SQL Translate SQL through the grantee's SQL translation profile for any
user.

SYNONYMS: -

CREATE ANY SYNONYM Create private synonyms in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE SYNONYM privilege.

DROP ANY SYNONYM Drop private synonyms in any schema except SYS,AUDSYS.

TABLES: -

CREATE ANY TABLE Create a table in any schema except SYS,AUDSYS. The owner of the
schema containing the table must have space quota on the tablespace
to contain the table.

If the grantee is the schema owner, then grantee should have been
granted CREATE TABLE privilege.

ALTER ANY TABLE Alter a table or view in any schema except SYS, AUDSYS.

BACKUP ANY TABLE Use the Export utility to incrementally export objects from the schema
of other users except SYS,AUDSYS.

DELETE ANY TABLE Delete rows from tables, table partitions, or views in any schema except
SYS,AUDSYS.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 93

Table 18-3 (Cont.) Schema Privileges (Organized by the Operations Authorized)

Schema Privilege Name Operations Authorized

DROP ANY TABLE Drop or truncate tables or table partitions in any schema except
SYS,AUDSYS.

INSERT ANY TABLE Insert rows into tables and views in any schema except SYS,AUDSYS.

LOCK ANY TABLE Lock tables and views in any schema except SYS,AUDSYS.

READ ANY TABLE Query tables, views, or materialized views in any schema except
SYS,AUDSYS.

SELECT ANY TABLE Query tables, views, or materialized views in any schema except
SYS,AUDSYS. Obtain row locks using a SELECT ... FOR UPDATE.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized view
in any schema except SYS,AUDSYS. This privilege is not needed to
execute the DBMS_FLASHBACK procedures.

UPDATE ANY TABLE Update rows in tables and views in any schema except SYS,AUDSYS.

TRIGGERS: —

CREATE ANY TRIGGER Create database triggers in any schema except SYS, AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE TRIGGER privilege.

ALTER ANY TRIGGER Enable, disable, or compile database triggers in any schema except
SYS,AUDSYS.

DROP ANY TRIGGER Drop database triggers in any schema except SYS,AUDSYS.

TYPES: —

CREATE ANY TYPE Create object types and object type bodies in any schema except
SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE TYPE privilege.

ALTER ANY TYPE Alter object types in any schema except SYS,AUDSYS.

DROP ANY TYPE Drop object types and object type bodies in any schema except
SYS,AUDSYS.

EXECUTE ANY TYPE Use and reference object types and collection types in any schema
except SYS,AUDSYS, and invoke methods of an object type in any
schema, except SYS,AUDSYS, if you make the grant to a specific user. If
you grant EXECUTE ANY TYPE to a role, then users holding the
enabled role will not be able to invoke methods of an object type in any
schema.

UNDER ANY TYPE Create subtypes under any nonfinal object types.

VIEWS: —

CREATE ANY VIEW Create views in any schema except SYS,AUDSYS.

If the grantee is the schema owner, then grantee should have been
granted CREATE VIEW privilege.

DROP ANY VIEW Drop views in any schema except SYS,AUDSYS.

UNDER ANY VIEW Create subviews under any object views.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized view
in any schema except SYS,AUDSYS. This privilege is not needed to
execute the DBMS_FLASHBACK procedures.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 93

Table 18-3 (Cont.) Schema Privileges (Organized by the Operations Authorized)

Schema Privilege Name Operations Authorized

VIRTUAL PRIVATE DATABASE: —

EXEMPT ACCESS POLICY Bypass fine-grained access control.

Caution: This is a very powerful system privilege, as it lets the grantee
bypass application-driven security policies. Database administrators
should use caution when granting this privilege.

ADMINISTER ROW LEVEL SECURITY POLICY Allow management of Virtual Private Database (VPD) policies in a
schema (fine-grained access control, row-level security).

MISCELLANEOUS: —

ANALYZE ANY Analyze a table, cluster, or index in any schema except SYS.

COMMENT ANY TABLE Comment on a table, view, or column in any schema except
SYS,AUDSYS.

Table 18-4 Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

ANALYTIC VIEW PRIVILEGES The following analytic view privileges authorize operations on analytic views.

ALTER Rename the analytic view.

READ Query the object with the SELECT statement.

SELECT Query the object with the SELECT statement.

ATTRIBUTE DIMENSION
PRIVILEGES

The following attribute dimension privileges authorize operations on attribute
dimensions..

ALTER Rename the attribute dimension.

DIRECTIVE PRIVILEGES The object level directive privilege on a user's table allows another user to create a
notification directive on it.

DIRECTORY PRIVILEGES The following directory privileges provide secured access to the files stored in the
operating system directory to which the directory object serves as a pointer. The
directory object contains the full path name of the operating system directory where
the files reside. Because the files are actually stored outside the database, Oracle
Database server processes also need to have appropriate file permissions on the file
system server. Granting object privileges on the directory database object to
individual database users, rather than on the operating system, allows the database
to enforce security during file operations.

READ Read files in the directory.

WRITE Write files in the directory. This privilege is useful only in connection with external
tables. It allows the grantee to determine whether the external table agent can write
a log file or a bad file to the directory.

Restriction: This privilege does not allow the grantee to write to a BFILE.

EXECUTE Execute a preprocessor program that resides in the directory. A preprocessor
program converts data to a supported format when loading data records from an
external table with the ORACLE_LOADER access driver. Refer to Oracle Database
Utilities for more information. This privilege does not implicitly allow READ access on
the external table data.

EDITION PRIVILEGE The following edition privilege authorizes the use of an edition.

USE Use an edition.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 93

Table 18-4 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

FLASHBACK DATA ARCHIVE
PRIVILEGE

The following flashback data archive privilege authorizes operations on flashback
data archives.

FLASHBACK ARCHIVE Enable or disable historical tracking for a table.

HIERARCHY PRIVILEGES The following hierarchy privileges authorize operations on hierarchies.

ALTER Rename the hierarchy.

READ Query the object with the SELECT statement.

SELECT Query the object with the SELECT statement.

INDEXTYPE PRIVILEGE The following indextype privilege authorizes operations on indextypes.

EXECUTE Reference an indextype.

LIBRARY PRIVILEGE The following library privilege authorizes operations on a library.

EXECUTE Use and reference the specified object and invoke its methods.

Caution: This extremely powerful privilege should be granted only to trusted users.
Refer to Oracle Database Security Guide before granting this privilege.

MATERIALIZED VIEW PRIVILEGES The following materialized view privileges authorize operations on a materialized
view. The DELETE, INSERT, and UPDATE privileges can be granted only to updatable
materialized views.

ON COMMIT REFRESH Create a refresh-on-commit materialized view on the specified table.

QUERY REWRITE Create a materialized view for query rewrite using the specified table.

READ Query the materialized view.

SELECT Query the materialized view. Obtain row locks with the SELECT ... FOR UPDATE or
LOCK TABLE statement.

MINING MODEL PRIVILEGES The following mining model privileges authorize operations on a mining model.
These privileges are not required for models within the users own schema.

ALTER Change the mining model name or the associated cost matrix using the applicable
DBMS_DATA_MINING procedures.

SELECT Score or view the mining model. Scoring is done with the PREDICTION family of SQL
functions or with the DBMS_DATA_MINING.APPLY procedure. Viewing the model is
done with the DBMS_DATA_MINING.GET_MODEL_DETAILS_* procedures.

OBJECT TYPE PRIVILEGES The following object type privileges authorize operations on a database object
type.

DEBUG Access, through a debugger, all public and nonpublic variables, methods, and types
defined on the object type.

Place a breakpoint or stop at a line or instruction boundary within the type body.

EXECUTE Use and reference the specified object and invoke its methods.

Access, through a debugger, public variables, types, and methods defined on the
object type.

UNDER Create a subtype under this type. You can grant this object privilege only if you have
the UNDER ANY TYPE privilege WITH GRANT OPTION on the immediate supertype
of this type.

OLAP PRIVILEGES The following object privileges are valid if you are using Oracle Database with the
OLAP option.

INSERT Insert members into the OLAP cube dimension or measures into the measures
folder.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 93

Table 18-4 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

ALTER Change the definition of the OLAP cube dimension or cube.

DELETE Delete members from the OLAP cube dimension or measures from the measures
folder.

SELECT View or query the OLAP cube or cube dimension.

UPDATE Update measure values of the OLAP cube or attribute values of the cube dimension.

OPERATOR PRIVILEGE The following operator privilege authorizes operations on user-defined operators.

EXECUTE Reference an operator.

PROCEDURE, FUNCTION,
PACKAGE PRIVILEGES

The following procedure, function, and package privileges authorize operations
on procedures, functions, and packages. These privileges also apply to Java
sources, classes, and resources, which Oracle Database treats as though they
were procedures for purposes of granting object privileges.

DEBUG Access, through a debugger, all public and nonpublic variables, methods, and types
defined on the object.

Place a breakpoint or stop at a line or instruction boundary within the procedure,
function, or package. This privilege grants access to the declarations in the method
or package specification and body.

EXECUTE Execute the procedure or function directly, or access any program object declared in
the specification of a package, or compile the object implicitly during a call to a
currently invalid or uncompiled function or procedure. This privilege does not allow
the grantee to explicitly compile using ALTER PROCEDURE or ALTER FUNCTION. For
explicit compilation you need the appropriate ALTER system privilege.

Access, through a debugger, public variables, types, and methods defined on the
procedure, function, or package. This privilege grants access to the declarations in
the method or package specification only.

Job scheduler objects are created using the DBMS_SCHEDULER package. After
these objects are created, you can grant the EXECUTE object privilege on job
scheduler classes and programs. You can also grant ALTER privilege on job
scheduler jobs, programs, and schedules.

Note: Users do not need this privilege to execute a procedure, function, or package
indirectly.

PROPERTY GRAPH PRIVILEGES The following object privileges authorize operations on property graphs.

ALTER Change the graph definition using ALTER PROPERTY GRAPH statement.

READ Query the PROPERTY GRAPH with the SELECT statement.

Does not allow SELECT … FOR UPDATE.

SELECT Query the PROPERTY GRAPH with the SELECT statement.

SCHEDULER PRIVILEGES Job scheduler objects are created using the DBMS_SCHEDULER package. After
these objects are created, you can grant the following privileges.

EXECUTE Operations on job classes, programs, chains, and credentials.

ALTER Modifications to jobs, programs, chains, credentials, and schedules.

USE Associate the specified scheduler resource object with programs and jobs.

SEQUENCE PRIVILEGES The following sequence privileges authorize operations on a sequence.

ALTER Change the sequence definition with the ALTER SEQUENCE statement.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 93

Table 18-4 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

KEEP SEQUENCE The sequence pseudocolumn NEXTVAL retains its original value during replay for
Application Continuity when the grantee is running the application. This privilege is
useful for providing bind variable consistency when replaying after recoverable
errors.

If this privilege is granted or revoked between runtime and failover of a request, then
the original value of NEXTVAL is not retained during replay for Application Continuity
for that request.

Note: This privilege is not granted by the GRANT ALL PRIVILEGES ON sequence
statement. You must explicitly grant this privilege.

Note: This privilege is part of the DBA role.

SELECT Examine and increment values of the sequence with the CURRVAL and NEXTVAL
pseudocolumns.

SQL TRANSLATION PROFILE
PRIVILEGES

The following SQL translation profile privileges authorize operations on a SQL
translation profile.

ALTER Alter the translator, custom SQL statement translations, or custom error translations
of a SQL translation profile.

USE Use a SQL translation profile.

SYNONYM PRIVILEGES Synonym privileges are the same as the privileges for the target object. Granting a
privilege on a synonym is equivalent to granting the privilege on the base object.
Similarly, granting a privilege on a base object is equivalent to granting the privilege
on all synonyms for the object. If you grant to a user a privilege on a synonym, then
the user can use either the synonym name or the base object name in the SQL
statement that exercises the privilege.

TABLE PRIVILEGES The following table privileges authorize operations on a table. Any one of following
object privileges, except the READ privilege, allows the grantee to lock the table in
any lock mode with the LOCK TABLE statement.

Note: For external tables, the only valid object privileges are ALTER, READ, and
SELECT.

ALTER Change the table definition with the ALTER TABLE statement.

DEBUG Access, through a debugger:

• PL/SQL code in the body of any triggers defined on the table
• Information on SQL statements that reference the table directly

DELETE Remove rows from the table with the DELETE statement.

Note: You must grant the SELECT privilege on the table along with the DELETE
privilege if the table is on a remote database.

INDEX Create an index on the table with the CREATE INDEX statement.

INSERT Add new rows to the table with the INSERT statement.

Note: You must grant the SELECT privilege on the table along with the INSERT
privilege if the table is on a remote database.

READ Query the table with the SELECT statement. Does not allow SELECT ... FOR UPDATE.

REFERENCES Create a constraint that refers to the table. You cannot grant this privilege to a role.

SELECT To allow access to specific tables during queries, grant the SELECT privilege on the
table.

Query the table with the SELECT statement, including SELECT ... FOR UPDATE.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 93

Table 18-4 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

UPDATE Change data in the table with the UPDATE statement.

Note: You must grant the SELECT privilege on the table along with the UPDATE
privilege if the table is on a remote database.

FLASHBACK To allow access to a specific table during queries, grant the FLASHBACK privilege on
the table.

Issue a SQL Flashback Query on the table.

SIGN A user SCOTT with the SIGN privilege on a blockchain table can sign a row in the
blockchain table as a delegate if the following condtions are met:

The row does not already have a delegate signature

The row does not contain a non-NULL delegate user ID that is different than the ID
of user SCOTT.

USER PRIVILEGES The following privileges authorize operations on a user.

INHERIT PRIVILEGES Execute invoker's rights procedures or functions owned by the grantee with the
privileges of the invoker when the invoker is the user on whom this privilege is
granted.

INHERIT REMOTE PRIVILEGES Allow the user on whom this privilege is granted to execute definer's rights
procedures or functions that contain current user database links and are owned by
the grantee.

TRANSLATE SQL Translate SQL through the grantee's SQL translation profile for the user on whom
this privilege is granted.

VIEW PRIVILEGES The following view privileges authorize operations on a view. Any one of the
following object privileges, except the READ privilege, allows the grantee to lock the
view in any lock mode with the LOCK TABLE statement.

To grant a privilege on a view, you must have that privilege with the GRANT OPTION
on all of the base tables of the view.

DEBUG Access, through a debugger:

• PL/SQL code in the body of any triggers defined on the view
• Information on SQL statements that reference the view directly

DELETE Remove rows from the view with the DELETE statement.

INSERT Add new rows to the view with the INSERT statement.

MERGE VIEW This object privilege has the same behavior as the system privilege MERGE ANY
VIEW, except that the privilege is limited to the views specified in the ON clause. For
any query issued by the grantee on the specified views, the optimizer can use view
merging to improve query performance without performing the checks that would
otherwise be performed to ensure that view merging does not violate any security
intentions of the view creator.

READ Query the view with the SELECT statement. Does not allow SELECT ... FOR UPDATE.

REFERENCES Define foreign key constraints on the view.

SELECT Query the view with the SELECT statement, including SELECT ... FOR UPDATE.

See Also: object_privilege for additional information on granting this object
privilege on a view

UNDER Create a subview under this view. You can grant this object privilege only if you have
the UNDER ANY VIEW privilege WITH GRANT OPTION on the immediate superview
of this view.

UPDATE Change data in the view with the UPDATE statement.

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 93

Table 18-4 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

FLASHBACK To allow access to a specific view during queries, grant the FLASHBACK privilege on
the view.

Issue a SQL Flashback Query on the view.

Examples

Granting a System Privilege to a User: Example

To grant the CREATE SESSION system privilege to the sample user hr, allowing hr to log on to
Oracle Database, issue the following statement:

GRANT CREATE SESSION
 TO hr;

Assigning User Passwords When Granting a System Privilege: Example

Assume that user hr exists and user newuser does not exist. The following statement resets the
user hr password to password1, creates user newuser with password2, and grants both users the
CREATE SESSION system privilege:

GRANT CREATE SESSION
 TO hr, newuser IDENTIFIED BY password1, password2;

Granting System Privileges to a Role: Example

The following statement grants appropriate system privileges to a data warehouse manager
role, which was created in the "Creating a Role: Example":

GRANT
 CREATE ANY MATERIALIZED VIEW
 , ALTER ANY MATERIALIZED VIEW
 , DROP ANY MATERIALIZED VIEW
 , QUERY REWRITE
 , GLOBAL QUERY REWRITE
 TO dw_manager
 WITH ADMIN OPTION;

The dw_manager privilege domain now contains the system privileges related to materialized
views.

Granting a Role with the ADMIN OPTION: Example

To grant the dw_manager role with the ADMIN OPTION to the sample user sh, issue the following
statement:

GRANT dw_manager
 TO sh
 WITH ADMIN OPTION;

User sh can now perform the following operations with the dw_manager role:

• Enable the role and exercise any privileges in the privilege domain of the role, including the
CREATE MATERIALIZED VIEW system privilege

• Grant and revoke the role to and from other users

• Drop the role

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 93

• Grant and revoke the dw_manager role to and from program units in the sh schema

Granting a Role with the DELEGATE OPTION: Example

To grant the dw_manager role with the DELEGATE OPTION to the sample user sh, issue the following
statement:

GRANT dw_manager
 TO sh
 WITH DELEGATE OPTION;

User sh can now grant and revoke the dw_manager role to and from program units in the sh
schema.

Granting Object Privileges to a Role: Example

The following example grants the SELECT object privileges to a data warehouse user role,
which was created in the "Creating a Role: Example":

GRANT SELECT ON sh.sales TO warehouse_user;

Granting a Role to a Role: Example

The following statement grants the warehouse_user role to the dw_manager role. Both roles were
created in the "Creating a Role: Example":

GRANT warehouse_user TO dw_manager;

The dw_manager role now contains all of the privileges in the domain of the warehouse_user role.

Granting an Object Privilege on a User: Example

To grant the INHERIT PRIVILEGES object privilege on user sh to user hr, issue the following
statement:

GRANT INHERIT PRIVILEGES ON USER sh TO hr;

Granting an Object Privilege on a Directory: Example

To grant READ on directory bfile_dir to user hr, with the GRANT OPTION, issue the following
statement:

GRANT READ ON DIRECTORY bfile_dir TO hr
 WITH GRANT OPTION;

Granting Object Privileges on a Table to a User: Example

To grant all privileges on the table oe.bonuses, which was created in "Merging into a Table:
Example", to the user hr with the GRANT OPTION, issue the following statement:

GRANT ALL ON bonuses TO hr
 WITH GRANT OPTION;

The user hr can subsequently perform the following operations:

• Exercise any privilege on the bonuses table

• Grant any privilege on the bonuses table to another user or role

Granting Object Privileges on a View: Example

To grant SELECT and UPDATE privileges on the view emp_view, which was created in "Creating a
View: Example", to all users, issue the following statement:

Chapter 18
GRANT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 93

GRANT SELECT, UPDATE
 ON emp_view TO PUBLIC;

All users can subsequently query and update the view of employee details.

Granting Object Privileges to a Sequence in Another Schema: Example

To grant SELECT privilege on the customers_seq sequence in the schema oe to the user hr, issue
the following statement:

GRANT SELECT
 ON oe.customers_seq TO hr;

The user hr can subsequently generate the next value of the sequence with the following
statement:

SELECT oe.customers_seq.NEXTVAL
 FROM DUAL;

Granting Multiple Object Privileges on Individual Columns: Example

To grant to user oe the REFERENCES privilege on the employee_id column and the UPDATE privilege
on the employee_id, salary, and commission_pct columns of the employees table in the schema hr, issue
the following statement:

GRANT REFERENCES (employee_id),
 UPDATE (employee_id, salary, commission_pct)
 ON hr.employees
 TO oe;

The user oe can subsequently update values of the employee_id, salary, and commission_pct
columns. User oe can also define referential integrity constraints that refer to the employee_id
column. However, because the GRANT statement lists only these columns, oe cannot perform
operations on any of the other columns of the employees table.

For example, oe can create a table with a constraint:

CREATE TABLE dependent
 (dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
 CONSTRAINT in_emp REFERENCES hr.employees(employee_id));

The constraint in_emp ensures that all dependents in the dependent table correspond to an
employee in the employees table in the schema hr.

INSERT
Purpose

Use the INSERT statement to add rows to a table, the base table of a view, a partition of a
partitioned table or a subpartition of a composite-partitioned table, or an object table or the
base table of an object view.

Prerequisites

For you to insert rows into a table, the table must be in your own schema or you must have the
INSERT object privilege on the table.

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 93

For you to insert rows into the base table of a view, the owner of the schema containing the
view must have the INSERT object privilege on the base table. Also, if the view is in a schema
other than your own, then you must have the INSERT object privilege on the view.

If you have the INSERT ANY TABLE system privilege, then you can also insert rows into any
table or the base table of any view.

You must also have the READ or SELECT object privilege on the table into which you want to
insert rows if the table is on a remote database.

To specify the returning_clause, you must have the READ or SELECT object privilege on the object.

If the SQL92_SECURITY initialization parameter is set to TRUE and the INSERT operation
references table columns, such as the columns in a returning_clause, then you must have the
SELECT object privilege on the object into which you want to insert rows.

Conventional and Direct-Path INSERT

You can use the INSERT statement to insert data into a table, partition, or view in two ways:
conventional INSERT and direct-path INSERT. When you issue a conventional INSERT statement,
Oracle Database reuses free space in the table into which you are inserting and maintains
referential integrity constraints. With direct-path INSERT, the database appends the inserted
data after existing data in the table. Data is written directly into data files, bypassing the buffer
cache. Free space in the existing data is not reused. This alternative enhances performance
during insert operations and is similar to the functionality of the Oracle direct-path loader utility,
SQL*Loader. When you insert into a table that has been created in parallel mode, direct-path
INSERT is the default.

The manner in which the database generates redo and undo data depends in part on whether
you are using conventional or direct-path INSERT:

• Conventional INSERT always generates maximal redo and undo for changes to both data
and metadata, regardless of the logging setting of the table and the archivelog and force
logging settings of the database.

• Direct-path INSERT generates both redo and undo for metadata changes, because these
are needed for operation recovery. For data changes, undo and redo are generated as
follows:

– Direct-path INSERT always bypasses undo generation for data changes.

– If the database is not in ARCHIVELOG or FORCE LOGGING mode, then no redo is
generated for data changes, regardless of the logging setting of the table.

– If the database is in ARCHIVELOG mode (but not in FORCE LOGGING mode), then direct-
path INSERT generates data redo for LOGGING tables but not for NOLOGGING tables.

– If the database is in ARCHIVELOG and FORCE LOGGING mode, then direct-path SQL
generate data redo for both LOGGING and NOLOGGING tables.

Direct-path INSERT is subject to a number of restrictions. If any of these restrictions is violated,
then Oracle Database executes conventional INSERT serially without returning any message,
unless otherwise noted:

• You can have multiple direct-path INSERT statements in a single transaction, with or without
other DML statements. However, after one DML statement alters a particular table,
partition, or index, no other DML statement in the transaction can access that table,
partition, or index.

• Queries that access the same table, partition, or index are allowed before the direct-path
INSERT statement, but not after it.

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 93

• If any serial or parallel statement attempts to access a table that has already been
modified by a direct-path INSERT in the same transaction, then the database returns an
error and rejects the statement.

• The target table cannot be of a cluster.

• The target table cannot contain object type columns.

• Direct-path INSERT is not supported for an index-organized table (IOT) if it has a mapping
table, or if it is reference by a materialized view.

• Direct-path INSERT into a single partition of an index-organized table (IOT), into a
partitioned IOT with only one partition, or into an IOT that is not partitioned, will be done
serially, even if the IOT was created in parallel mode or you specify the APPEND or
APPEND_VALUES hint. However, direct-path INSERT operations into a partitioned IOT will
honor parallel mode as long as the partition-extended name is not used and the IOT has
more than one partition.

• The target table cannot have any triggers or referential integrity constraints defined on it.

• The target table cannot be replicated.

• A transaction containing a direct-path INSERT statement cannot be or become distributed.

See Also

• Oracle Database Administrator's Guide for a more complete description of direct-
path INSERT

• Oracle Database Utilities for information on SQL*Loader

• Oracle Database SQL Tuning Guide for information on statistics gathering when
inserting into an empty table using direct-path INSERT

Syntax

insert::=

INSERT

hint single_table_insert

multi_table_insert
;

(single_table_insert::=, multi_table_insert::=)

single_table_insert::=

insert_into_clause

insert_values_clause

insert_set_clause

returning_clause

by_name_position_clause

subquery

error_logging_clause

(insert_into_clause::=, insert_values_clause::=,insert_set_clause::=,
by_name_position_clause::=, returning_clause::=, subquery::=, error_logging_clause::=)

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 93

insert_into_clause::=

INTO dml_table_expression_clause

t_alias (column

,

)

(DML_table_expression_clause::=)

insert_values_clause::=

VALUES (

expr

DEFAULT

,

subquery

)

,

returning_clause::=

RETURN

RETURNING

OLD

NEW

expr

,

INTO data_item

,

insert_set_clause::=

SET

column_value_pairs

(column_value_pairs)

,

by_name_position_clause::=

BY

NAME

POSITION

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 93

multi_table_insert::=

ALL insert_into_clause

insert_values_clause

insert_set_clause error_logging_clause

conditional_insert_clause

by_name_position_clause

subquery

(insert_into_clause::=, insert_values_clause::=, conditional_insert_clause::=, subquery::=,
error_logging_clause::=)

conditional_insert_clause::=

ALL

FIRST

WHEN condition THEN insert_into_clause

insert_values_clause

insert_set_clause error_logging_clause

ELSE insert_into_clause

insert_values_clause

insert_set_clause error_logging_clause

(insert_into_clause::=, insert_values_clause::=)

DML_table_expression_clause::=

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

(subquery

subquery_restriction_clause

)

table_collection_expression

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 93

(partition_extension_clause::=, subquery::=—part of SELECT, subquery_restriction_clause::=,
table_collection_expression::=)

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)

(+)

error_logging_clause::=

LOG ERRORS

INTO

schema .

table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

Semantics

hint

Specify a comment that passes instructions to the optimizer on choosing an execution plan for
the statement.

For a multi-table insert, if you specify the PARALLEL hint for any target table, then the entire
multi-table insert statement is parallelized even if the target tables have not been created or
altered with PARALLEL specified. If you do not specify the PARALLEL hint, then the insert

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 93

operation will not be parallelized unless all target tables were created or altered with PARALLEL
specified.

See Also

• "Hints " for the syntax and description of hints

• "Restrictions on Multi-Table Inserts"

single_table_insert

In a single-table insert, you insert values into one row of a table, view, or materialized view by
specifying values explicitly or by retrieving the values through a subquery.

You can use the flashback_query_clause in subquery to insert past data into table. Refer to the
flashback_query_clause of SELECT for more information on this clause.

Restriction on Single-Table Inserts

If you retrieve values through a subquery, then the select list of the subquery must have the
same number of columns as the column list of the INSERT statement. If you omit the column list,
then the subquery must provide values for every column in the table.

See Also

"Inserting Values into Tables: Examples"

insert_into_clause

Use the INSERT INTO clause to specify the target object or objects into which the database is to
insert data.

Directory-based sharding uses the same partition extension syntax as system-based sharding.

DML_table_expression_clause

Use the INTO DML_table_expression_clause to specify the objects into which data is being inserted.

schema

Specify the schema containing the table, view, or materialized view. If you omit schema, then the
database assumes the object is in your own schema.

table | view | materialized_view | subquery

Specify the name of the table or object table, view or object view, materialized view, or the
column or columns returned by a subquery, into which rows are to be inserted. If you specify a
view or object view, then the database inserts rows into the base table of the view.

You cannot insert rows into a read-only materialized view. If you insert rows into a writable
materialized view, then the database inserts the rows into the underlying container table.
However, the insertions are overwritten at the next refresh operation. If you insert rows into an
updatable materialized view that is part of a materialized view group, then the database also
inserts the corresponding rows into the master table.

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 93

If any value to be inserted is a REF to an object table, and if the object table has a primary key
object identifier, then the column into which you insert the REF must be a REF column with a
referential integrity or SCOPE constraint to the object table.

If table, or the base table of view, contains one or more domain index columns, then this
statement executes the appropriate indextype insert routine.

Issuing an INSERT statement against a table fires any INSERT triggers defined on the table.

See Also

Oracle Database Data Cartridge Developer's Guide for more information on these
routines

Restrictions on the DML_table_expression_clause

This clause is subject to the following restrictions:

• You cannot execute this statement if table or the base table of view contains any domain
indexes marked IN_PROGRESS or FAILED.

• You cannot insert into a partition if any affected index partitions are marked UNUSABLE.

• With regard to the ORDER BY clause of the subquery in the DML_table_expression_clause, ordering
is guaranteed only for the rows being inserted, and only within each extent of the table.
Ordering of new rows with respect to existing rows is not guaranteed.

• If a view was created using the WITH CHECK OPTION, then you can insert into the view only
rows that satisfy the defining query of the view.

• If a view was created using a single base table, then you can insert rows into the view and
then retrieve those values using the returning_clause.

• You cannot insert rows into a view except with INSTEAD OF triggers if the defining query of
the view contains one of the following constructs:

A set operator
A DISTINCT operator
An aggregate or analytic function
A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause
A collection expression in a SELECT list
A subquery in a SELECT list
A subquery designated WITH READ ONLY
Joins, with some exceptions, as documented in Oracle Database Administrator's Guide

• If you specify an index, index partition, or index subpartition that has been marked
UNUSABLE, then the INSERT statement will fail unless the SKIP_UNUSABLE_INDEXES session
parameter has been set to TRUE. Refer to ALTER SESSION for information on the
SKIP_UNUSABLE_INDEXES session parameter.

partition_extension_clause

Specify the name or partition key value of the partition or subpartition within table, or the base
table of view, targeted for inserts.

If a row to be inserted does not map into a specified partition or subpartition, then the database
returns an error.

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 93

Restriction on Target Partitions and Subpartitions

This clause is not valid for object tables or object views.

See Also

"References to Partitioned Tables and Indexes "

dblink

Specify a complete or partial name of a database link to a remote database where the table or
view is located.

You can insert rows into a remote table or view only if you are using Oracle Database
distributed functionality.

To insert rows into a remote table you must have both INSERT and SELECT privileges on the
table.

If you omit dblink, then Oracle Database assumes that the table or view is on the local
database. You can insert rows into a local table with just the INSERT privilege.

Note

Starting with Oracle Database 12c Release 2 (12.2), the INSERT statement accepts
remote LOB locators as bind variables. Refer to the “Distributed LOBs” chapter in
Oracle Database SecureFiles and Large Objects Developer's Guide for more
information.

See Also

• "Syntax for Schema Objects and Parts in SQL Statements" and "References to
Objects in Remote Databases " for information on referring to database links

• "Inserting into a Remote Database: Example"

subquery_restriction_clause

Use the subquery_restriction_clause to restrict the subquery in one of the following ways:

WITH READ ONLY

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to the
table or view that would produce rows that are not included in the subquery. When used in the
subquery of a DML statement, you can specify this clause in a subquery in the FROM clause
but not in subquery in the WHERE clause.

CONSTRAINT constraint

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 93

Specify the name of the CHECK OPTION constraint. If you omit this identifier, then Oracle
automatically assigns the constraint a name of the form SYS_Cn, where n is an integer that
makes the constraint name unique within the database.

See Also

"Using the WITH CHECK OPTION Clause: Example"

table_collection_expression

The table_collection_expression lets you inform Oracle that the value of collection_expression should be
treated as a table for purposes of query and DML operations. The collection_expression can be a
subquery, a column, a function, or a collection constructor. Regardless of its form, it must
return a collection value—that is, a value whose type is nested table or varray. This process of
extracting the elements of a collection is called collection unnesting.

The optional plus (+) is relevant if you are joining the TABLE collection expression with the
parent table. The + creates an outer join of the two, so that the query returns rows from the
outer table even if the collection expression is null.

Note

In earlier releases of Oracle, when collection_expression was a subquery,
table_collection_expression was expressed as THE subquery. That usage is now deprecated.

See Also

"Table Collections: Examples"

t_alias

Specify a correlation name, which is an alias for the table, view, materialized view, or
subquery to be referenced elsewhere in the statement.

Restriction on Table Aliases

You cannot specify t_alias during a multi-table insert.

column

Specify a column of the table, view, or materialized view. In the inserted row, each column in
this list is assigned a value from the insert_values_clause or the subquery. If you want to assign a
value to an INVISIBLE column, then you must include the column in this list.

If you omit one or more of the table's columns from this list, then the column value of that
column for the inserted row is the column default value as specified when the table was
created or last altered. If any omitted column has a NOT NULL constraint and no default value,
then the database returns an error indicating that the constraint has been violated and rolls
back the INSERT statement. Refer to CREATE TABLE for more information on default column
values.

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 93

If you omit the column list altogether, then the insert_values_clause or query must specify values for
all columns in the table.

insert_values_clause

For a single-table insert operation, specify a row of values to be inserted into the table or
view. You must specify a value in the insert_values_clause for each column in the column list. If you
omit the column list, then the insert_values_clause must provide values for every column in the
table.

You can only supply one set of values for each insert_into_clause in a multi-table insert
operation.

In a multi-table insert operation, each expression in the insert_values_clause must refer to
columns returned by the select list of the subquery. If you omit the insert_values_clause, then the
select list of the subquery determines the values to be inserted, so it must have the same
number of columns as the column list of the corresponding insert_into_clause. If you do not specify
a column list in the insert_into_clause, then the computed row must provide values for all columns
in the target table.

For both types of insert operations, if you specify a column list in the insert_into_clause, then the
database assigns to each column in the list a corresponding value from the values clause or
the subquery. You can specify DEFAULT for any value in the insert_values_clause. If you have
specified a default value for the corresponding column of the table or view, then that value is
inserted. If no default value for the corresponding column has been specified, then the
database inserts null. Refer to "About SQL Expressions " and SELECT for syntax of valid
expressions.

Restrictions on Inserted Values

Values are subject to the following restrictions:

• You cannot insert a BFILE value until you have initialized the BFILE locator to null or to a
directory name and filename.

• When inserting into a list-partitioned table, you cannot insert a value into the partitioning
key column that does not already exist in the partition_key_value list of one of the partitions.

• You cannot specify DEFAULT when inserting into a view.

• If you insert string literals into a RAW column, then during subsequent queries Oracle
Database will perform a full table scan rather than using any index that might exist on the
RAW column.

• You cannot use default values for columns in row value expressions.

Inserting multiple default values into an identity column using the table value constructor
results in the following error : Sequence as default is not supported with INSERT using table value
constructor .

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 93

See Also

• BFILENAME for information on initializing BFILE values and for an example of
inserting into a BFILE

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information on initializing BFILE locators

• "Using XML in SQL Statements " for information on inserting values into an
XMLType table

• "Inserting into a Substitutable Tables and Columns: Examples", "Inserting Using
the TO_LOB Function: Example", "Inserting Sequence Values: Example", and
"Inserting Using Bind Variables: Example"

returning_clause

The returning clause retrieves the rows affected by a DML statement. You can specify this
clause for tables and materialized views and for views with a single base table.

When operating on a single row, a DML statement with a returning_clause can retrieve column
expressions using the affected row, rowid, and REFs to the affected row and store them in host
variables or PL/SQL variables.

When operating on multiple rows, a DML statement with the returning_clause stores values from
expressions, rowids, and REFs involving the affected rows in bind arrays.

expr

Each item in the expr list must be a valid expression syntax.

INTO

The INTO clause indicates that the values of the changed rows are to be stored in the
variable(s) specified in data_item list.

data_item

Each data_item is a host variable or PL/SQL variable that stores the retrieved expr value.

For each expression in the RETURNING list, you must specify a corresponding type-compatible
PL/SQL variable or host variable in the INTO list.

Restrictions

The following restrictions apply to the RETURNING clause:

• The expr is restricted as follows:

– For UPDATE and DELETE statements each expr must be a simple expression or a single-
set aggregate function expression. You cannot combine simple expressions and
single-set aggregate function expressions in the same returning_clause. For INSERT
statements, each expr must be a simple expression. Aggregate functions are not
supported in an INSERT statement RETURNING clause.

– Single-set aggregate function expressions cannot include the DISTINCT keyword.

• If the expr list contains a primary key column or other NOT NULL column, then the update
statement fails if the table has a BEFORE UPDATE trigger defined on it.

• You cannot specify the returning_clause for a multi-table insert.

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 93

• You cannot use this clause with parallel DML or with remote objects.

• You cannot retrieve LONG types with this clause.

• You cannot specify this clause for a view on which an INSTEAD OF trigger has been defined.

See Also

Oracle Database PL/SQL Language Reference for information on using the BULK
COLLECT clause to return multiple values to collection variables

insert_set_clause

Each column_value_pairs corresponds to a single row in INSERT.

You can insert a single row by specifying column_value_pairs with or without parentheses.

To insert multiple rows you must use parentheses.

Example 1: Single Row Insert without Parentheses

 INSERT INTO employees SET
 employee_id = 210, last_name = 'Smith', email = 'ASMITH', hire_date = SYSDATE, job_id = 'AD_ASST';

Example 2: Single Row Insert with Parentheses

 INSERT INTO employees SET
 (employee_id = 210, last_name = 'Smith', email = 'ASMITH', hire_date = SYSDATE, job_id = 'AD_ASST');

Example 3: Multi Row Insert

 INSERT INTO employees SET
 (employee_id = 210, last_name = 'Smith', email = 'ASMITH', hire_date = SYSDATE, job_id = 'AD_ASST'),
 (employee_id = 211, last_name = 'Roddick', email = 'ARODDICK', hire_date = SYSDATE, job_id = 'IT_PROG');

by_name_position_clause

by_name_position_clause enables support for non-positional insert with a subquery, where the
exposed column names (alias or simple column name, if unaliased) in the subquery's select list
are matched against the column names of the target table, to determine the order that values
should be inserted into the table.

As a modifier for a subquery, by_name_position_clause can appear anywhere before a subquery
optionally.

The following two insert statements are semantically equivalent:

 INSERT INTO job_history
 BY NAME
 SELECT employee_id, hire_date AS start_date, SYSDATE - 1 AS end_date, department_id, job_id FROM employees
 WHERE employee_id = 206

 INSERT INTO job_history (employee_id, start_date, end_date, department_id, job_id)
 SELECT employee_id, hire_date, SYSDATE - 1, department_id, job_id FROM employees
 WHERE employee_id = 206;

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 93

If the matching column in the target table cannot be found, an error is raised.

multi_table_insert

In a multi-table insert, you insert rows returned from the evaluation of a subquery into one or
more tables.

Table aliases are not defined by the select list of the subquery. Therefore, they are not visible in
the clauses dependent on the select list. For example, this can happen when trying to refer to
an object column in an expression. To use an expression with a table alias, you must put the
expression into the select list with a column alias, and then refer to the column alias in the
VALUES clause or WHEN condition of the multi-table insert.

ALL into_clause

Specify ALL followed by multiple insert_into_clauses to perform an unconditional multi-table
insert. Oracle Database executes each insert_into_clause once for each row returned by the
subquery.

Restrictions Using INSERT ALL

• The maximum number of rows you can insert into a table with 4096 columns is 15.

• The maximum number of rows you can insert into a table with 1000 columns is 65.

• The maximum row limit for tables with fewer columns is not constant and may vary.

You cannot use a subquery with insert_value_clause and insert_set_clause in multi_table_insert.

conditional_insert_clause

Specify the conditional_insert_clause to perform a conditional multi-table insert.

You can only supply one set of values for each WHEN or ELSE clause of conditional_insert_clause.

You cannot use a subquery with insert_value_clause and insert_set_clause in conditional_insert_clause.

Oracle Database filters each insert_into_clause through the corresponding WHEN condition, which
determines whether that insert_into_clause is executed. Each expression in the WHEN condition
must refer to columns returned by the select list of the subquery.A single multi-table insert
statement can contain up to 127 WHEN clauses.

ALL

If you specify ALL, the default value, then the database evaluates each WHEN clause
regardless of the results of the evaluation of any other WHEN clause. For each WHEN clause
whose condition evaluates to true, the database executes the corresponding INTO clause list.

FIRST

If you specify FIRST, then the database evaluates each WHEN clause in the order in which it
appears in the statement. For the first WHEN clause that evaluates to true, the database
executes the corresponding INTO clause and skips subsequent WHEN clauses for the given
row.

ELSE clause

For a given row, if no WHEN clause evaluates to true, then:

• If you have specified an ELSE clause, then the database executes the INTO clause list
associated with the ELSE clause.

• If you did not specify an else clause, then the database takes no action for that row.

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 93

See Also

"Multi-Table Inserts: Examples"

Restrictions on Multi-Table Inserts

multi-table inserts are subject to the following restrictions:

• You can perform multi-table inserts only on tables, not on views or materialized views.

• You cannot perform a multi-table insert into a remote table.

• You cannot specify a TABLE collection expression when performing a multi-table insert.

• multi-table inserts are not parallelized if any target table is index organized or if any target
table has a bitmap index defined on it.

• Plan stability is not supported for multi-table insert statements.

• The subquery of the multitable insert statement cannot use a sequence. For rules
pertaining to sequences, see How to Use Sequence Values

subquery

Specify a subquery that returns rows that are inserted into the table. The subquery can refer to
any table, view, or materialized view, including the target tables of the INSERT statement. If the
subquery selects no rows, then the database inserts no rows into the table.

You can use subquery in combination with the TO_LOB function to convert the values in a LONG
column to LOB values in another column in the same or another table.

• To migrate LONG values to LOB values in another column in a view, you must perform the
migration on the base table and then add the LOB column to the view.

• To migrate LONG values on a remote table to LOB values in a local table, you must perform
the migration on the remote table using the TO_LOB function, and then perform an INSERT ...
subquery operation to copy the LOB values from the remote table into the local table.

Notes on Inserting with a Subquery

The following notes apply when inserting with a subquery:

• If subquery returns the partial or total equivalent of a materialized view, then the database
may use the materialized view for query rewrite in place of one or more tables specified in
subquery.

See Also

Oracle Database Data Warehousing Guide for more information on materialized
views and query rewrite

• If subquery refers to remote objects, then the INSERT operation can run in parallel as long as
the reference does not loop back to an object on the local database. However, if the
subquery in the DML_table_expression_clause refers to any remote objects, then the INSERT
operation will run serially without notification. See parallel_clause for more information.

• If subquery includes an ORDER BY clause, then it will override row ordering specified using
attribute clustering table properties.

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 93

See Also

• "Inserting Values with a Subquery: Example"

• BFILENAME for an example of inserting into a BFILE

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information on initializing BFILEs

• "About SQL Expressions " and SELECT for syntax of valid expressions

error_logging_clause

The error_logging_clause lets you capture DML errors and the log column values of the affected
rows and save them in an error logging table.

INTO table

Specify the name of the error logging table. If you omit this clause, then the database assigns
the default name generated by the DBMS_ERRLOG package. The default error log table name is
ERR$_ followed by the first 25 characters of the name of the table upon which the DML
operation is being executed.

simple_expression

Specify the value to be used as a statement tag, so that you can identify the errors from this
statement in the error logging table. The expression can be either a text literal, a number literal,
or a general SQL expression such as a bind variable. You can also use a function expression if
you convert it to a text literal — for example, TO_CHAR(SYSDATE).

REJECT LIMIT

This clause lets you specify an integer as an upper limit for the number of errors to be logged
before the statement terminates and rolls back any changes made by the statement. The
default rejection limit is zero. For parallel DML operations, the reject limit is applied to each
parallel server.

Restrictions on DML Error Logging

• The following conditions cause the statement to fail and roll back without invoking the error
logging capability:

– Violated deferred constraints.

– Any direct-path INSERT or MERGE operation that raises a unique constraint or index
violation.

– Any update operation UPDATE or MERGE that raises a unique constraint or index
violation.

• You cannot track errors in the error logging table for LONG, LOB, or object type columns.
However, the table that is the target of the DML operation can contain these types of
columns.

– If you create or modify the corresponding error logging table so that it contains a
column of an unsupported type, and if the name of that column corresponds to an
unsupported column in the target DML table, then the DML statement fails at parse
time.

– If the error logging table does not contain any unsupported column types, then all DML
errors are logged until the reject limit of errors is reached. For rows on which errors

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 93

occur, column values with corresponding columns in the error logging table are logged
along with the control information.

See Also

• Oracle Database PL/SQL Packages and Types Reference for information on using
the create_error_log procedure of the DBMS_ERRLOG package and Oracle Database
Administrator's Guide for general information on DML error logging.

• "Inserting Into a Table with Error Logging: Example"

Examples

Inserting Values into Tables: Examples

The following statement inserts a row into the sample table departments:

INSERT INTO departments
 VALUES (280, 'Recreation', 121, 1700);

If the departments table had been created with a default value of 121 for the manager_id column,
then you could issue the same statement as follows:

INSERT INTO departments
 VALUES (280, 'Recreation', DEFAULT, 1700);

The following statement inserts a row with six columns into the employees table. One of these
columns is assigned NULL and another is assigned a number in scientific notation:

INSERT INTO employees (employee_id, last_name, email,
 hire_date, job_id, salary, commission_pct)
 VALUES (207, 'Gregory', 'pgregory@example.com',
 sysdate, 'PU_CLERK', 1.2E3, NULL);

The following statement has the same effect as the preceding example, but uses a subquery in
the DML_table_expression_clause:

INSERT INTO
 (SELECT employee_id, last_name, email, hire_date, job_id,
 salary, commission_pct FROM employees)
 VALUES (207, 'Gregory', 'pgregory@example.com',
 sysdate, 'PU_CLERK', 1.2E3, NULL);

Inserting Values with a Subquery: Example

The following statement copies employees whose commission exceeds 25% of their salary into
the bonuses table, which was created in "Merging into a Table: Example":

INSERT INTO bonuses
 SELECT employee_id, salary*1.1
 FROM employees
 WHERE commission_pct > 0.25;

Inserting Into a Table with Error Logging: Example

The following statements create a raises table in the sample schema hr, create an error logging
table using the DBMS_ERRLOG package, and populate the raises table with data from the employees
table. One of the inserts violates the check constraint on raises, and that row can be seen in

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 93

errlog. If more than ten errors had occurred, then the statement would have aborted, rolling
back any insertions made:

CREATE TABLE raises (emp_id NUMBER, sal NUMBER
 CONSTRAINT check_sal CHECK(sal > 8000));

EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('raises', 'errlog');

INSERT INTO raises
 SELECT employee_id, salary*1.1 FROM employees
 WHERE commission_pct > .2
 LOG ERRORS INTO errlog ('my_bad') REJECT LIMIT 10;

SELECT ORA_ERR_MESG$, ORA_ERR_TAG$, emp_id, sal FROM errlog;

ORA_ERR_MESG$ ORA_ERR_TAG$ EMP_ID SAL
--------------------------- -------------------- ------ -------
ORA-02290: check constraint my_bad 161 7700
 (HR.SYS_C004266) violated

Inserting into a Remote Database: Example

The following statement inserts a row into the employees table owned by the user hr on the
database accessible by the database link remote:

INSERT INTO employees@remote
 VALUES (8002, 'Juan', 'Fernandez', 'juanf@example.com', NULL,
 TO_DATE('04-OCT-1992', 'DD-MON-YYYY'), 'SH_CLERK', 3000,
 NULL, 121, 20);

Inserting Sequence Values: Example

The following statement inserts a new row containing the next value of the departments_seq
sequence into the departments table:

INSERT INTO departments
 VALUES (departments_seq.nextval, 'Entertainment', 162, 1400);

Inserting Using Bind Variables: Example

The following example returns the values of the inserted rows into output bind variables :bnd1
and :bnd2. The bind variables must first be declared.

INSERT INTO employees
 (employee_id, last_name, email, hire_date, job_id, salary)
 VALUES
 (employees_seq.nextval, 'Doe', 'john.doe@example.com',
 SYSDATE, 'SH_CLERK', 2400)
 RETURNING salary*12, job_id INTO :bnd1, :bnd2;

Inserting into a Substitutable Tables and Columns: Examples

The following example inserts into the persons table, which is created in "Substitutable Table and
Column Examples". The first statement uses the root type person_t. The second insert uses the
employee_t subtype of person_t, and the third insert uses the part_time_emp_t subtype of employee_t:

INSERT INTO persons VALUES (person_t('Bob', 1234));
INSERT INTO persons VALUES (employee_t('Joe', 32456, 12, 100000));
INSERT INTO persons VALUES (
 part_time_emp_t('Tim', 5678, 13, 1000, 20));

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 93

The following example inserts into the books table, which was created in "Substitutable Table
and Column Examples". Notice that specification of the attribute values is identical to that for
the substitutable table example:

INSERT INTO books VALUES (
 'An Autobiography', person_t('Bob', 1234));
INSERT INTO books VALUES (
 'Business Rules', employee_t('Joe', 3456, 12, 10000));
INSERT INTO books VALUES (
 'Mixing School and Work',
 part_time_emp_t('Tim', 5678, 13, 1000, 20));

You can extract data from substitutable tables and columns using built-in functions and
conditions. For examples, see the functions TREAT and SYS_TYPEID , and "IS OF type
Condition ".

Inserting Using the TO_LOB Function: Example

The following example copies LONG data to a LOB column in the following long_tab table:

CREATE TABLE long_tab (pic_id NUMBER, long_pics LONG RAW);

First you must create a table with a LOB.

CREATE TABLE lob_tab (pic_id NUMBER, lob_pics BLOB);

Next, use an INSERT ... SELECT statement to copy the data in all rows for the LONG column into
the newly created LOB column:

INSERT INTO lob_tab
 SELECT pic_id, TO_LOB(long_pics) FROM long_tab;

When you are confident that the migration has been successful, you can drop the long_pics
table. Alternatively, if the table contains other columns, then you can simply drop the LONG
column from the table as follows:

ALTER TABLE long_tab DROP COLUMN long_pics;

Multi-Table Inserts: Examples

The following example uses the multi-table insert syntax to insert into the sample table sh.sales
some data from an input table with a different structure.

Note

A number of NOT NULL constraints on the sales table have been disabled for purposes
of this example, because the example ignores a number of table columns for the sake
of brevity.

The input table looks like this:

SELECT * FROM sales_input_table;

PRODUCT_ID CUSTOMER_ID WEEKLY_ST SALES_SUN SALES_MON SALES_TUE SALES_WED SALES_THU SALES_FRI SALES_SAT
---------- ----------- --------- ---------- ---------- ---------- -------------------- ---------- ----------
 111 222 01-OCT-00 100 200 300 400 500 600 700
 222 333 08-OCT-00 200 300 400 500 600 700 800
 333 444 15-OCT-00 300 400 500 600 700 800 900

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 93

The multi-table insert statement looks like this:

INSERT ALL
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date, sales_sun)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+1, sales_mon)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+2, sales_tue)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+3, sales_wed)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+4, sales_thu)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+5, sales_fri)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+6, sales_sat)
 SELECT product_id, customer_id, weekly_start_date, sales_sun,
 sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat
 FROM sales_input_table;

Assuming these are the only rows in the sales table, the contents now look like this:

SELECT * FROM sales
 ORDER BY prod_id, cust_id, time_id;

 PROD_ID CUST_ID TIME_ID C PROMO_ID QUANTITY_SOLD AMOUNT COST
---------- ---------- --------- - ---------- ------------- ---------- ----------
 111 222 01-OCT-00 100
 111 222 02-OCT-00 200
 111 222 03-OCT-00 300
 111 222 04-OCT-00 400
 111 222 05-OCT-00 500
 111 222 06-OCT-00 600
 111 222 07-OCT-00 700
 222 333 08-OCT-00 200
 222 333 09-OCT-00 300
 222 333 10-OCT-00 400
 222 333 11-OCT-00 500
 222 333 12-OCT-00 600
 222 333 13-OCT-00 700
 222 333 14-OCT-00 800
 333 444 15-OCT-00 300
 333 444 16-OCT-00 400
 333 444 17-OCT-00 500
 333 444 18-OCT-00 600
 333 444 19-OCT-00 700
 333 444 20-OCT-00 800
 333 444 21-OCT-00 900

The next examples insert into multiple tables. Suppose you want to provide to sales
representatives some information on orders of various sizes. The following example creates
tables for small, medium, large, and special orders and populates those tables with data from
the sample table oe.orders:

CREATE TABLE small_orders
 (order_id NUMBER(12) NOT NULL,
 customer_id NUMBER(6) NOT NULL,
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6)
);

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 93

CREATE TABLE medium_orders AS SELECT * FROM small_orders;

CREATE TABLE large_orders AS SELECT * FROM small_orders;

CREATE TABLE special_orders
 (order_id NUMBER(12) NOT NULL,
 customer_id NUMBER(6) NOT NULL,
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 credit_limit NUMBER(9,2),
 cust_email VARCHAR2(40)
);

The first multi-table insert populates only the tables for small, medium, and large orders:

INSERT ALL
 WHEN order_total <= 100000 THEN
 INTO small_orders
 WHEN order_total > 1000000 AND order_total <= 200000 THEN
 INTO medium_orders
 WHEN order_total > 200000 THEN
 INTO large_orders
 SELECT order_id, order_total, sales_rep_id, customer_id
 FROM orders;

You can accomplish the same thing using the ELSE clause in place of the insert into the
large_orders table:

INSERT ALL
 WHEN order_total <= 100000 THEN
 INTO small_orders
 WHEN order_total > 100000 AND order_total <= 200000 THEN
 INTO medium_orders
 ELSE
 INTO large_orders
 SELECT order_id, order_total, sales_rep_id, customer_id
 FROM orders;

The next example inserts into the small, medium, and large tables, as in the preceding
example, and also puts orders greater than 290,000 into the special_orders table. This table also
shows how to use column aliases to simplify the statement:

INSERT ALL
 WHEN ottl <= 100000 THEN
 INTO small_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 100000 and ottl <= 200000 THEN
 INTO medium_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 200000 THEN
 into large_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 290000 THEN
 INTO special_orders
 SELECT o.order_id oid, o.customer_id cid, o.order_total ottl,
 o.sales_rep_id sid, c.credit_limit cl, c.cust_email cem
 FROM orders o, customers c
 WHERE o.customer_id = c.customer_id;

Finally, the next example uses the FIRST clause to put orders greater than 290,000 into the
special_orders table and exclude those orders from the large_orders table:

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 93

INSERT FIRST
 WHEN ottl <= 100000 THEN
 INTO small_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 100000 and ottl <= 200000 THEN
 INTO medium_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 290000 THEN
 INTO special_orders
 WHEN ottl > 200000 THEN
 INTO large_orders
 VALUES(oid, ottl, sid, cid)
 SELECT o.order_id oid, o.customer_id cid, o.order_total ottl,
 o.sales_rep_id sid, c.credit_limit cl, c.cust_email cem
 FROM orders o, customers c
 WHERE o.customer_id = c.customer_id;

Inserting Multiple Rows Using a Single Statement: Example

The following statements create three tables named people, patients and staff:

CREATE TABLE people (
 person_id INTEGER NOT NULL PRIMARY KEY,
 given_name VARCHAR2(100) NOT NULL,
 family_name VARCHAR2(100) NOT NULL,
 title VARCHAR2(20),
 birth_date DATE
);

CREATE TABLE patients (
 patient_id INTEGER NOT NULL PRIMARY KEY REFERENCES people (person_id),
 last_admission_date DATE
);

CREATE TABLE staff (
 staff_id INTEGER NOT NULL PRIMARY KEY REFERENCES people (person_id),
 hired_date DATE
);

The following statement inserts a row into the people table:

INSERT INTO people
VALUES (1, 'Dave', 'Badger', 'Mr', date'1960-05-01');

The following statement returns an error as there is no value provided for the birth_date
column:

INSERT INTO people
VALUES (2, 'Simon', 'Fox', 'Mr');

The following statement inserts a row into the people table:

INSERT INTO people (person_id, given_name, family_name, title)
VALUES (2, 'Simon', 'Fox', 'Mr');

The following statement inserts a row into the people table and the value for the title column is
populated by selecting a static value from the dual table:

INSERT INTO people (person_id, given_name, family_name, title)
VALUES (3, 'Dave', 'Frog', (SELECT 'Mr' FROM dual));

The following statement inserts multiple rows into the people table using ‘SELECT’ statement:

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 93

INSERT INTO people (person_id, given_name, family_name, title)
 WITH names AS (
 SELECT 4, 'Ruth', 'Fox', 'Mrs' FROM dual UNION ALL
 SELECT 5, 'Isabelle', 'Squirrel', 'Miss' FROM dual UNION ALL
 SELECT 6, 'Justin', 'Frog', 'Master' FROM dual UNION ALL
 SELECT 7, 'Lisa', 'Owl', 'Dr' FROM dual
)
 SELECT * FROM names;

The following statement rolls back all the previous DML operations:

ROLLBACK;

The following statement inserts multiple rows into the people table using ‘SELECT’ statement
with a ‘WHERE’ condition:

INSERT INTO people (person_id, given_name, family_name, title)
 WITH names AS (
 SELECT 4, 'Ruth', 'Fox' family_name, 'Mrs' FROM dual UNION ALL
 SELECT 5, 'Isabelle', 'Squirrel' family_name, 'Miss' FROM dual UNION ALL
 SELECT 6, 'Justin', 'Frog' family_name, 'Master' FROM dual UNION ALL
 SELECT 7, 'Lisa', 'Owl' family_name, 'Dr' FROM dual
)
 SELECT * FROM names
 WHERE family_name LIKE 'F%';

The following statement rolls back all the previous DML operations:

ROLLBACK;

The following statement inserts multiple rows into people, patients and staff table using
‘INSERT ALL’ statement:

INSERT ALL
 /* Every one is a person */
 INTO people (person_id, given_name, family_name, title)
 VALUES (id, given_name, family_name, title)
 INTO patients (patient_id, last_admission_date)
 VALUES (id, admission_date)
 INTO staff (staff_id, hired_date)
 VALUES (id, hired_date)
 WITH names AS (
 SELECT 4 id, 'Ruth' given_name, 'Fox' family_name, 'Mrs' title,
 NULL hired_date, DATE'2009-12-31' admission_date
 FROM dual UNION ALL
 SELECT 5 id, 'Isabelle' given_name, 'Squirrel' family_name, 'Miss' title ,
 NULL hired_date, DATE'2014-01-01' admission_date
 FROM dual UNION ALL
 SELECT 6 id, 'Justin' given_name, 'Frog' family_name, 'Master' title,
 NULL hired_date, DATE'2015-04-22' admission_date
 FROM dual UNION ALL
 SELECT 7 id, 'Lisa' given_name, 'Owl' family_name, 'Dr' title,
 DATE'2015-01-01' hired_date, NULL admission_date
 FROM dual
)
 SELECT * FROM names;

The following statement rolls back all the previous DML operations:

ROLLBACK;

The following statement inserts multiple rows into people, patients and staff table using
‘INSERT ALL’ statement with various conditions:

Chapter 18
INSERT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 93

INSERT ALL
 /* Everyone is a person, so insert all rows into people */
 WHEN 1=1 THEN
 INTO people (person_id, given_name, family_name, title)
 VALUES (id, given_name, family_name, title)
 /* Only people with an admission date are patients */
 WHEN admission_date IS NOT NULL THEN
 INTO patients (patient_id, last_admission_date)
 VALUES (id, admission_date)
 /* Only people with a hired date are staff */
 WHEN hired_date IS NOT NULL THEN
 INTO staff (staff_id, hired_date)
 VALUES (id, hired_date)
 WITH names AS (
 SELECT 4 id, 'Ruth' given_name, 'Fox' family_name, 'Mrs' title,
 NULL hired_date, DATE'2009-12-31' admission_date
 FROM dual UNION ALL
 SELECT 5 id, 'Isabelle' given_name, 'Squirrel' family_name, 'Miss' title ,
 NULL hired_date, DATE'2014-01-01' admission_date
 FROM dual UNION ALL
 SELECT 6 id, 'Justin' given_name, 'Frog' family_name, 'Master' title,
 NULL hired_date, DATE'2015-04-22' admission_date
 FROM dual UNION ALL
 SELECT 7 id, 'Lisa' given_name, 'Owl' family_name, 'Dr' title,
 DATE'2015-01-01' hired_date, NULL admission_date
 FROM dual
)
 SELECT * FROM names;

LOCK TABLE
Purpose

Use the LOCK TABLE statement to lock one or more tables, table partitions, or table
subpartitions in a specified mode. This lock manually overrides automatic locking and permits
or denies access to a table or view by other users for the duration of your operation.

Some forms of locks can be placed on the same table at the same time. Other locks allow only
one lock for a table.

A locked table remains locked until you either commit your transaction or roll it back, either
entirely or to a savepoint before you locked the table.

A lock never prevents other users from querying the table. A query never places a lock on a
table. Readers never block writers and writers never block readers.

See Also

• Oracle Database Concepts for a complete description of the interaction of lock
modes

• COMMIT

• ROLLBACK

• SAVEPOINT

Chapter 18
LOCK TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 93

Prerequisites

The table or view must be in your own schema, or you must have the LOCK ANY TABLE system
privilege, or you must have any object privilege (except the READ object privilege) on the table
or view.

Syntax

lock_table::=

LOCK TABLE

schema . table

view

partition_extension_clause

@ dblink

,

IN lockmode MODE

NOWAIT

WAIT integer

;

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

Semantics

schema

Specify the schema containing the table or view. If you omit schema, then Oracle Database
assumes the table or view is in your own schema.

table | view

Specify the name of the table or view to be locked.

If you specify view, then Oracle Database locks the base tables of the view.

If you specify the partition_extension_clause, then Oracle Database first acquires an implicit lock on
the table. The table lock is the same as the lock you specify for the partition or subpartition,
with two exceptions:

• If you specify a SHARE lock for the subpartition, then the database acquires an implicit ROW
SHARE lock on the table.

Chapter 18
LOCK TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 93

• If you specify an EXCLUSIVE lock for the subpartition, then the database acquires an implicit
ROW EXCLUSIVE lock on the table.

If you specify PARTITION and table is composite-partitioned, then the database acquires locks on
all the subpartitions of the partition.

Restrictions on Locking Tables

The following restrictions apply to locking tables:

• If view is part of a hierarchy, then it must be the root of the hierarchy.

• You can acquire locks on only the existing partitions in an automatic list-partitioned table.
That is, when you specify the following statement, the partition key value must correspond
to a partition that already exists in the table; it cannot correspond to a partition that might
be created on-demand at a later time:

LOCK TABLE ... PARTITION FOR (partition_key_value) ...

dblink

Specify a database link to a remote Oracle Database where the table or view is located. You
can lock tables and views on a remote database only if you are using Oracle distributed
functionality. All tables locked by a LOCK TABLE statement must be on the same database.

If you omit dblink, then Oracle Database assumes the table or view is on the local database.

See Also

"References to Objects in Remote Databases " for information on specifying database
links

lockmode Clause

Specify one of the following modes:

ROW SHARE

ROW SHARE permits concurrent access to the locked table but prohibits users from locking the
entire table for exclusive access. ROW SHARE is synonymous with SHARE UPDATE, which is
included for compatibility with earlier versions of Oracle Database.

ROW EXCLUSIVE

ROW EXCLUSIVE is the same as ROW SHARE, but it also prohibits locking in SHARE mode. ROW
EXCLUSIVE locks are automatically obtained when updating, inserting, or deleting.

SHARE UPDATE

See ROW SHARE.

SHARE

SHARE permits concurrent queries but prohibits updates to the locked table.

SHARE ROW EXCLUSIVE

SHARE ROW EXCLUSIVE is used to look at a whole table and to allow others to look at rows in
the table but to prohibit others from locking the table in SHARE mode or from updating rows.

Chapter 18
LOCK TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 93

EXCLUSIVE

EXCLUSIVE permits queries on the locked table but prohibits any other activity on it.

NOWAIT

Specify NOWAIT if you want the database to return control to you immediately if the specified
table, partition, or table subpartition is already locked by another user. In this case, the
database returns a message indicating that the table, partition, or subpartition is already locked
by another user.

WAIT

Use the WAIT clause to indicate that the LOCK TABLE statement should wait up to the specified
number of seconds to acquire a DML lock. There is no limit on the value of integer.

If you specify neither NOWAIT nor WAIT, then the database waits indefinitely until the table is
available, locks it, and returns control to you. When the database is executing DDL statements
concurrently with DML statements, a timeout or deadlock can sometimes result. The database
detects such timeouts and deadlocks and returns an error.

See Also

Oracle Database Administrator's Guide for more information about locking tables

Examples

Locking a Table: Example

The following statement locks the employees table in exclusive mode but does not wait if another
user already has locked the table:

LOCK TABLE employees
 IN EXCLUSIVE MODE
 NOWAIT;

The following statement locks the remote employees table that is accessible through the
database link remote:

LOCK TABLE employees@remote
 IN SHARE MODE;

Chapter 18
LOCK TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 93

19
SQL Statements: MERGE to UPDATE

This chapter contains the following SQL statements:

• MERGE

• NOAUDIT (Traditional Auditing)

• NOAUDIT (Unified Auditing)

• PURGE

• RENAME

• REVOKE

• ROLLBACK

• SAVEPOINT

• SELECT

• SET CONSTRAINT[S]

• SET ROLE

• SET TRANSACTION

• TRUNCATE CLUSTER

• TRUNCATE TABLE

• UPDATE

MERGE
Purpose

Use the MERGE statement to select rows from one or more sources for update or insertion into
a table or view. You can specify conditions to determine whether to update or insert into the
target table or view.

This statement is a convenient way to combine multiple operations. It lets you avoid multiple
INSERT, UPDATE, and DELETE DML statements.

MERGE is a deterministic statement. You cannot update the same row of the target table
multiple times in the same MERGE statement.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 1 of 164

Note

In previous releases of Oracle Database, when you created an Oracle Virtual Private
Database policy on an application that included the MERGE INTO statement, the MERGE
INTO statement would be prevented with an ORA-28132: Merge into syntax does not support
security policies error, due to the presence of the Virtual Private Database policy.
Beginning with Oracle Database 11g Release 2 (11.2.0.2), you can create policies on
applications that include MERGE INTO operations. To do so, in the
DBMS_RLS.ADD_POLICY statement_types parameter, include the INSERT, UPDATE, and
DELETE statements, or just omit the statement_types parameter altogether. Refer to Oracle
Database Security Guide for more information on enforcing policies on specific SQL
statement types.

Prerequisites

You must have the INSERT and UPDATE object privileges on the target table and the SELECT
object privilege on the source objects. To specify the DELETE clause of the merge_update_clause,
you must also have the DELETE object privilege on the target table or view.

Syntax

merge::=

MERGE

hint

INTO

schema . table

view

t_alias

USING

schema . table

view

(subquery)

t_alias

values_clause

ON (condition)

merge_update_clause merge_insert_clause

error_logging_clause returning_clause

Note

You must specify at least one of the clauses merge_update_clause or merge_insert_clause.

(values_clause::=, merge_update_clause::=, merge_insert_clause::=, error_logging_clause::=

Chapter 19
MERGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 164

values_clause::=

(VALUES (expr

,

)

, (expr

,

)

)

AS

t_alias (c_alias

,

)

merge_update_clause::=

WHEN MATCHED THEN UPDATE SET column_value_pairs

where_clause DELETE where_clause

column_value_pairs::=

(column

,

) = (

subquery

expr

(subquery)

DEFAULT

,
)

column =

expr

(subquery)

DEFAULT

,

merge_insert_clause::=

WHEN NOT MATCHED THEN INSERT

(column

,

)

VALUES (expr

DEFAULT

,

)

SET column_value_pairs

where_clause

Chapter 19
MERGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 3 of 164

where_clause::=

WHERE condition

error_logging_clause::=

LOG ERRORS

INTO

schema .

table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

Semantics

INTO Clause

Use the INTO clause to specify the target table or view you are updating or inserting into. In
order to merge data into a view, the view must be updatable. Refer to "Notes on Updatable
Views" for more information.

Restriction on Target Views

You cannot specify a target view on which an INSTEAD OF trigger has been defined.

USING Clause

Use the USING clause to specify the source you are updating or inserting from.

values_clause

For semantics of the values_clause please see the values_clause of the SELECT statement
values_clause .

ON Clause

Use the ON clause to specify the condition upon which the MERGE operation either updates or
inserts. For each row in the target table for which the search condition is true, Oracle Database
updates the row with corresponding data from the source . If the condition is not true for any
rows, then the database inserts into the target table based on the corresponding source row.

merge_update_clause

The merge_update_clause specifies the new column values of the target table or view. Oracle
performs this update if the condition of the ON clause is true. If the update clause is executed,
then all update triggers defined on the target table are activated.

Specify the where_clause if you want the database to execute the update operation only if the
specified condition is true. The condition can refer to either the data source or the target table.
If the condition is not true, then the database skips the update operation when merging the row
into the table.

Chapter 19
MERGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 164

Specify the DELETE where_clause to clean up data in a table while populating or updating it. The
only rows affected by this clause are those rows in the destination table that are updated by
the merge operation. The DELETE WHERE condition evaluates the updated value, not the
original value that was evaluated by the UPDATE SET ... WHERE condition. If a row of the
destination table meets the DELETE condition but is not included in the join defined by the ON
clause, then it is not deleted. Any delete triggers defined on the target table will be activated for
each row deletion.

You can specify this clause by itself or with the merge_insert_clause. If you specify both, then they
can be in either order.

Restrictions on the merge_update_clause

This clause is subject to the following restrictions:

• You cannot update a column that is referenced in the ON condition clause.

• You cannot specify DEFAULT when updating a view.

• You must specify column_value_pairs singly. No grouping allowed.

merge_insert_clause

The merge_insert_clause specifies values to insert into the column of the target table if the
condition of the ON clause is false. If the insert clause is executed, then all insert triggers
defined on the target table are activated. If you omit the column list after the INSERT keyword,
then the number of columns in the target table must match the number of values in the VALUES
clause.

To insert all of the source rows into the table, you can use a constant filter predicate in the
ON clause condition. An example of a constant filter predicate is ON (0=1). Oracle Database
recognizes such a predicate and makes an unconditional insert of all source rows into the
table. This approach is different from omitting the merge_update_clause. In that case, the database
still must perform a join. With constant filter predicate, no join is performed.

Specify the where_clause if you want Oracle Database to execute the insert operation only if the
specified condition is true. The condition can refer only to the data source columns. Oracle
Database skips the insert operation for all rows for which the condition is not true.

You can specify the merge_insert_clause by itself or with the merge_update_clause. If you specify both,
then they can be in either order.

Restriction on the merge_insert_clause

• You cannot specify DEFAULT when inserting into a view.

• You cannot use a subquery with column_value_pairs.

error_logging_clause

The error_logging_clause has the same behavior in a MERGE statement as in an INSERT
statement. Refer to the INSERT statement error_logging_clause for more information.

See Also

"Inserting Into a Table with Error Logging: Example"

Chapter 19
MERGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 5 of 164

Examples

Merging into a Table: Example

The following example uses the bonuses table in the sample schema oe with a default bonus of
100. It then inserts into the bonuses table all employees who made sales, based on the
sales_rep_id column of the oe.orders table. Finally, the human resources manager decides that
employees with a salary of $8000 or less should receive a bonus. Those who have not made
sales get a bonus of 1% of their salary. Those who already made sales get an increase in their
bonus equal to 1% of their salary. The MERGE statement implements these changes in one
step:

CREATE TABLE bonuses (employee_id NUMBER, bonus NUMBER DEFAULT 100);
INSERT INTO bonuses(employee_id)
 (SELECT e.employee_id FROM hr.employees e, oe.orders o
 WHERE e.employee_id = o.sales_rep_id
 GROUP BY e.employee_id);

SELECT * FROM bonuses ORDER BY employee_id;

EMPLOYEE_ID BONUS
----------- ----------
 153 100
 154 100
 155 100
 156 100
 158 100
 159 100
 160 100
 161 100
 163 100

MERGE INTO bonuses D
 USING (SELECT employee_id, salary, department_id FROM hr.employees
 WHERE department_id = 80) S
 ON (D.employee_id = S.employee_id)
 WHEN MATCHED THEN UPDATE SET D.bonus = D.bonus + S.salary*.01
 DELETE WHERE (S.salary > 8000)
 WHEN NOT MATCHED THEN INSERT (D.employee_id, D.bonus)
 VALUES (S.employee_id, S.salary*.01)
 WHERE (S.salary <= 8000);

SELECT * FROM bonuses ORDER BY employee_id;

EMPLOYEE_ID BONUS
----------- ----------
 153 180
 154 175
 155 170
 159 180
 160 175
 161 170
 164 72
 165 68
 166 64
 167 62
 171 74
 172 73
 173 61
 179 62

Chapter 19
MERGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 6 of 164

Conditional Insert and Update: Example

The following example conditionally inserts and updates table data by using the MERGE
statement.

The following statements create two tables named people_source and people_target and populate
them with names:

CREATE TABLE people_source (
 person_id INTEGER NOT NULL PRIMARY KEY,
 first_name VARCHAR2(20) NOT NULL,
 last_name VARCHAR2(20) NOT NULL,
 title VARCHAR2(10) NOT NULL
);

CREATE TABLE people_target (
 person_id INTEGER NOT NULL PRIMARY KEY,
 first_name VARCHAR2(20) NOT NULL,
 last_name VARCHAR2(20) NOT NULL,
 title VARCHAR2(10) NOT NULL
);

INSERT INTO people_target VALUES (1, 'John', 'Smith', 'Mr');
INSERT INTO people_target VALUES (2, 'alice', 'jones', 'Mrs');
INSERT INTO people_source VALUES (2, 'Alice', 'Jones', 'Mrs.');
INSERT INTO people_source VALUES (3, 'Jane', 'Doe', 'Miss');
INSERT INTO people_source VALUES (4, 'Dave', 'Brown', 'Mr');

COMMIT;

The following statement compares the contents of people_target and people_source by using the
person_id column. The values in the people_target table are updated when there is a match in the
people_source table:

MERGE INTO people_target pt
USING people_source ps
ON (pt.person_id = ps.person_id)
WHEN MATCHED THEN UPDATE
 SET pt.first_name = ps.first_name,
 pt.last_name = ps.last_name,
 pt.title = ps.title;

The following statements display the contents of the people_target table and perform a rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- -------------------- -------------------- ----------
 1 John Smith Mr
 2 Alice Jones Mrs.

Chapter 19
MERGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 164

ROLLBACK;

This statement compares the contents of the people_target and people_source tables by using the
person_id column. The values in the people_target table are updated only when there is no match in
the people_source table:

MERGE INTO people_target pt
USING people_source ps
ON (pt.person_id = ps.person_id)
WHEN NOT MATCHED THEN INSERT
 (pt.person_id, pt.first_name, pt.last_name, pt.title)
 VALUES (ps.person_id, ps.first_name, ps.last_name, ps.title);

The following statements display the contents of the people_target table and perform a rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- -------------------- -------------------- ----------
 1 John Smith Mr
 2 alice jones Mrs
 3 Jane Doe Miss
 4 Dave Brown Mr

ROLLBACK;

The following statement compares the contents of the people_target and people_source tables by
using the person_id column and conditionally inserts and updates data in the people_target table.
For each matching row in the people_source table, the values in the people_target table are updated
by using the values from the people_source table. Any unmatched rows from the people_source table
are added to the people_target table:

MERGE INTO people_target pt
USING people_source ps
ON (pt.person_id = ps.person_id)
WHEN MATCHED THEN UPDATE
 SET pt.first_name = ps.first_name,
 pt.last_name = ps.last_name,
 pt.title = ps.title
WHEN NOT MATCHED THEN INSERT
 (pt.person_id, pt.first_name, pt.last_name, pt.title)
 VALUES (ps.person_id, ps.first_name, ps.last_name, ps.title);

The following statements display the contents of the people_target table and perform a rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- ------------- ------------------ ----------

Chapter 19
MERGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 164

 1 John Smith Mr
 2 Alice Jones Mrs.
 3 Jane Doe Miss
 4 Dave Brown Mr

ROLLBACK;

The following statement compares the people_target and people_source tables by using the person_id
column. When the person_id matches, the corresponding rows in the people_target table are
updated by using values from the people_source table. The DELETE clause removes all the values
in people_target where title is ‘Mrs.’. When the person_id does not match, the rows from the
people_source table are added to the people_target table. The WHERE clause ensures that only
values that have title as ‘Mr’ are added to the people_target table:

MERGE INTO people_target pt
USING people_source ps
ON (pt.person_id = ps.person_id)
WHEN MATCHED THEN UPDATE
 SET pt.first_name = ps.first_name,
 pt.last_name = ps.last_name,
 pt.title = ps.title
 DELETE where pt.title = 'Mrs.'
WHEN NOT MATCHED THEN INSERT
 (pt.person_id, pt.first_name, pt.last_name, pt.title)
 VALUES (ps.person_id, ps.first_name, ps.last_name, ps.title)
 WHERE ps.title = 'Mr';

The following statements display the contents of the people_target table and perform a rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- -------------------- -------------------- ----------
 1 John Smith Mr
 4 Dave Brown Mr

ROLLBACK;

Dealing with Inputs from an Application

Usually applications have to check for the existence of a row first in order to decide whether to
INSERT a new row, or UPDATE an already existing one. The MERGE statement eliminates the
need for such a check by allowing the use of bind variables inside the USING statement as a
source.

The following statements demonstrate the use of bind variables to insert a new row into the
people_target table:

var person_id NUMBER;
var first_name VARCHAR2(20);
var last_name VARCHAR2(20);

Chapter 19
MERGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 9 of 164

var title VARCHAR2(10);

exec :person_id := 3;
exec :first_name := 'Gerald';
exec :last_name := 'Walker';
exec :title := 'Mr';

MERGE INTO people_target
 ON (person_id = :person_id)
WHEN MATCHED THEN UPDATE
SET first_name = :first_name,
 last_name = :last_name,
 title = :title
WHEN NOT MATCHED THEN INSERT
 (person_id, first_name, last_name, title)
 VALUES (:person_id, :first_name, :last_name, :title);

The following statements display the contents of the people_target table and perform a rollback:

SELECT * FROM people_target;

 PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- -------------------- -------------------- ----------
 1 John Smith Mr
 2 alice jones Mrs
 3 Gerald Walker Mr

ROLLBACK;

The following statements demonstrate the use of bind variables to update an already existing
row in the people_target. Note that the MERGE statement is identical to the one just used to insert
a new row:

var person_id NUMBER;
var first_name VARCHAR2(20);
var last_name VARCHAR2(20);
var title VARCHAR2(10);

exec :person_id := 2;
exec :first_name := 'Alice';
exec :last_name := 'Jones';
exec :title := 'Mrs';

MERGE INTO people_target
 ON (person_id = :person_id)
WHEN MATCHED THEN UPDATE
SET first_name = :first_name,
 last_name = :last_name,
 title = :title
WHEN NOT MATCHED THEN INSERT
 (person_id, first_name, last_name, title)
 VALUES (:person_id, :first_name, :last_name, :title);

Chapter 19
MERGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 10 of 164

The following statements display the contents of the people_target table and perform a rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- -------------------- -------------------- ----------
 1 John Smith Mr
 2 Alice Jones Mrs

ROLLBACK;

NOAUDIT (Traditional Auditing)

See Also

Traditional auditing is desupported in 23ai. Databases migrated from earlier versions
may still have traditional auditing policies configured. Those policies should be
migrated to unified auditing. When migrated, the traditional audit policies may be
removed with the NOAUDIT statement.

This section describes the NOAUDIT statement for traditional auditing, which is the same
auditing functionality used in releases earlier than Oracle Database 12c.

Beginning with Oracle Database 12c, Oracle introduces unified auditing, which provides a full
set of enhanced auditing features. For backward compatibility, traditional auditing is still
supported. However, Oracle recommends that you plan the migration of your existing audit
settings to the new unified audit policy syntax. For new audit requirements, Oracle
recommends that you use the new unified auditing. Traditional auditing may be desupported in
a future major release.

See Also

NOAUDIT (Unified Auditing) for a description of the NOAUDIT statement for unified
auditing

Purpose

Use the NOAUDIT statement to stop auditing operations previously enabled by the AUDIT
statement.

The NOAUDIT statement must have the same syntax as the previous AUDIT statement. Further,
it reverses the effects only of that particular statement. For example, suppose one AUDIT
statement A enables auditing for a specific user. A second statement B enables auditing for all
users. A NOAUDIT statement C to disable auditing for all users reverses statement B. However,
statement C leaves statement A in effect and continues to audit the user that statement A
specified.

Prerequisites

To stop auditing of SQL statements, you must have the AUDIT SYSTEM system privilege.

Chapter 19
NOAUDIT (Traditional Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 11 of 164

To stop auditing of schema objects, you must be the owner of the object on which you stop
auditing or you must have the AUDIT ANY system privilege. In addition, if the object you chose
for auditing is a directory, then even if you created it, you must have the AUDIT ANY system
privilege.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root and you must have
the commonly granted AUDIT SYSTEM privilege in order to stop auditing for the issuances of a
SQL statement, or the commonly granted AUDIT ANY privilege in order to stop auditing for the
operations on a schema object. To specify CONTAINER = CURRENT, the current container must
be a pluggable database (PDB) and you must have the locally granted AUDIT SYSTEM privilege
in order to stop auditing the issuances of a SQL statement, or the locally granted AUDIT ANY
privilege in order to stop auditing operations on a schema object.

Syntax

noaudit::=

NOAUDIT

audit_operation_clause

auditing_by_clause

audit_schema_object_clause

NETWORK

DIRECT_PATH LOAD

auditing_by_clause

WHENEVER

NOT

SUCCESSFUL

CONTAINER =
CURRENT

ALL

;

(audit_operation_clause::=, auditing_by_clause::=, audit_schema_object_clause::=)

audit_operation_clause::=

sql_statement_shortcut

ALL

ALL STATEMENTS

,

system_privilege

ALL PRIVILEGES

,

auditing_by_clause::=

BY user

,

Chapter 19
NOAUDIT (Traditional Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 12 of 164

audit_schema_object_clause::=

sql_operation

,

ALL
auditing_on_clause

auditing_on_clause::=

ON

schema .

object

DIRECTORY directory_name

MINING MODEL

schema .

model

SQL TRANSLATION PROFILE

schema .

profile

DEFAULT

Semantics

audit_operation_clause

Use the audit_operation_clause to stop auditing of a particular SQL statement.

statement_option

For sql_statement_shortcut, specify the shortcut for the SQL statements for which auditing is to be
stopped.

ALL

Specify ALL to stop auditing of all statement options currently being audited because of an
earlier AUDIT ALL ... statement. You cannot use this clause to reverse an earlier AUDIT ALL
STATEMENTS ... statement.

ALL STATEMENTS

Specify ALL STATEMENTS to reverse an earlier AUDIT ALL STATEMENTS ... statement. You cannot
use this clause to reverse an earlier AUDIT ALL ... statement.

system_privilege

For system_privilege, specify the system privilege for which auditing is to be stopped. Refer to
Table 18-2 for a list of the system privileges and the statements they authorize.

ALL PRIVILEGES

Specify ALL PRIVILEGES to stop auditing of all system privileges currently being audited.

Chapter 19
NOAUDIT (Traditional Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 13 of 164

auditing_by_clause

Use the auditing_by_clause to stop auditing only for SQL statements issued by the specified users
in their subsequent sessions. If you omit this clause, then Oracle Database stops auditing for
all users' statements, except for the situation described for WHENEVER SUCCESSFUL.

audit_schema_object_clause

Use the audit_schema_object_clause to stop auditing of a particular database object.

sql_operation

For sql_operation, specify the type of operation for which auditing is to be stopped on the object
specified in the ON clause.

ALL

Specify ALL as a shortcut equivalent to specifying all SQL operations applicable for the type of
object.

auditing_on_clause

The auditing_on_clause lets you specify the particular schema object for which auditing is to be
stopped.

• For object, specify the object name of a table, view, sequence, stored procedure, function,
or package, materialized view, or library. If you do not qualify object with schema, then Oracle
Database assumes the object is in your own schema.

• The DIRECTORY clause lets you specify the name of the directory on which auditing is to be
stopped.

• The SQL TRANSLATION PROFILE clause lets you specify the SQL translation profile on which
auditing is to be stopped.

• Specify DEFAULT to remove the specified object options as default object options for
subsequently created objects.

NETWORK

Use this clause to discontinue auditing of database link usage and logins.

DIRECT_PATH LOAD

Use this clause to discontinue auditing of SQL*Loader direct path loads.

WHENEVER [NOT] SUCCESSFUL

Specify WHENEVER SUCCESSFUL to stop auditing only for SQL statements and operations on
schema objects that complete successfully.

Specify WHENEVER NOT SUCCESSFUL to stop auditing only for SQL statements and operations
that result in Oracle Database errors.

If you omit this clause, then the database stops auditing for all statements or operations,
regardless of success or failure.

CONTAINER Clause

Use the CONTAINER clause to specify the scope of the NOAUDIT command.

Chapter 19
NOAUDIT (Traditional Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 14 of 164

• Specify CONTAINER = CURRENT to stop auditing in the PDB to which you are connected. If
you specify the auditing_by_clause, then user must be a common user or local user in the
current PDB. If you specify the auditing_on_clause, then the objects must be local objects in
the current PDB.

• Specify CONTAINER = ALL to stop auditing across the entire CDB. If you specify the
auditing_by_clause, then user must be a common user. If you do not specify the
auditing_by_clause, then auditing is stopped for all common users and all local users in each
PDB. If you specify the auditing_on_clause, then the objects must be common objects.

If you omit this clause, then CONTAINER = CURRENT is the default.

Examples

Stop Auditing of SQL Statements Related to Roles: Example

If you have chosen auditing for every SQL statement that creates or drops a role, then you can
stop auditing of such statements by issuing the following statement:

NOAUDIT ROLE;

Stop Auditing of Updates or Queries on Objects Owned by a Particular User: Example

If you have chosen auditing for any statement that queries or updates any table issued by the
users hr and oe, then you can stop auditing for queries by hr by issuing the following statement:

NOAUDIT SELECT TABLE BY hr;

The preceding statement stops auditing only queries by hr, so the database continues to audit
queries and updates by oe as well as updates by hr.

Stop Auditing of Statements Authorized by a Particular Object Privilege: Example

To stop auditing on all statements that are authorized by DELETE ANY TABLE system privilege,
issue the following statement:

NOAUDIT DELETE ANY TABLE;

Stop Auditing of Queries on a Particular Object: Example

If you have chosen auditing for every SQL statement that queries the employees table in the
schema hr, then you can stop auditing for such queries by issuing the following statement:

NOAUDIT SELECT
 ON hr.employees;

Stop Auditing of Queries that Complete Successfully: Example

You can stop auditing for queries that complete successfully by issuing the following statement:

NOAUDIT SELECT
 ON hr.employees
 WHENEVER SUCCESSFUL;

This statement stops auditing only for successful queries. Oracle Database continues to audit
queries resulting in Oracle Database errors.

Chapter 19
NOAUDIT (Traditional Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 15 of 164

NOAUDIT (Unified Auditing)
This section describes the NOAUDIT statement for unified auditing. This type of auditing is
new beginning with Oracle Database 12c and provides a full set of enhanced auditing features.
Refer to Oracle Database Security Guide for more information on unified auditing.

Purpose

Use the NOAUDIT statement to:

• Disable a unified audit policy for all users or for specified users

• Exclude the values of context attributes from audit records

Changes made to the audit policy become effective immediately in the current session and in
all active sessions without re-login.

See Also

• AUDIT (Unified Auditing)

• CREATE AUDIT POLICY (Unified Auditing)

• ALTER AUDIT POLICY (Unified Auditing)

• DROP AUDIT POLICY (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

If you are connected to a multitenant container database (CDB), then to disable a common
unified audit policy, the current container must be the root and you must have the commonly
granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role. To disable a local unified
audit policy, the current container must be the container in which the audit policy was created
and you must have the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN
common role, or you must have the locally granted AUDIT SYSTEM privilege or the AUDIT_ADMIN
local role in the container.

To specify the NOAUDIT CONTEXT ... statement when connected to a CDB, you must have the
commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role, or you must
have the locally granted AUDIT SYSTEM privilege or the AUDIT_ADMIN local role in the current
session's container.

Chapter 19
NOAUDIT (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 16 of 164

Syntax

unified_noaudit::=

NOAUDIT

POLICY policy

BY user

,

by_users_with_roles WHENEVER

NOT

SUCCESSFUL

CONTEXT NAMESPACE namespace ATTRIBUTES attribute

,

,

BY user

,

by_users_with_roles::=

BY USERS WITH GRANTED ROLES role

,

Semantics

policy

Specify the name of the unified audit policy you want to disable.

You can find descriptions of all unified audit policies by querying the AUDIT_UNIFIED_POLICIES
view and descriptions of all enabled unified audit policies by querying the
AUDIT_UNIFIED_ENABLED_POLICIES view.

See Also

Oracle Database Reference for more information on the AUDIT_UNIFIED_POLICIES and
AUDIT_UNIFIED_ENABLED_POLICIES views

CONTEXT Clause

Specify the CONTEXT clause to exclude the values of context attributes in audit records.

• For namespace, specify the context namespace.

• For attribute, specify one or more context attributes whose values you want to exclude from
audit records.

If you specify the CONTEXT clause when the current container is the root of a CDB, then the
values of context attributes will be included in audit records only for events executed in the
root. If you specify the optional BY clause, then user must be a common user.

If you specify the CONTEXT clause when the current container is a pluggable database (PDB),
then the values of context attributes will be included in audit records only for events executed

Chapter 19
NOAUDIT (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 17 of 164

in that PDB. If you specify the optional BY clause, then user must be a common user or a local
user in that PDB.

You can find the application context attributes that are configured to be captured in the audit
trail by querying the AUDIT_UNIFIED_CONTEXTS view.

See Also

Oracle Database Reference for more information on the AUDIT_UNIFIED_CONTEXTS
view

BY

You can specify the BY clause for the NOAUDIT POLICY and NOAUDIT CONTEXT statements.

NOAUDIT POLICY ... BY

The behavior of the BY clause depends on whether policy is enabled for all users or specific
users.

• If policy is enabled for all users, then you can disable policy for all users by omitting the BY
clause. If you specify the BY clause, then the NOAUDIT POLICY statement will have no
effect.

• If policy is enabled for one or more users (using the AUDIT POLICY ... BY ... statement), then
you can:

– Disable policy for one or more of those users by specifying the BY clause followed by
the users for whom you want policy disabled

– Completely disable policy by specifying the BY clause followed by all of the users for
whom policy is enabled

If you do not specify the BY clause, then the NOAUDIT POLICY statement will have no effect.

• If policy is enabled for all users except specific users (using the AUDIT POLICY ... EXCEPT ...
statement), then you can disable policy for all users by omitting the BY clause. If you specify
the BY clause, then the NOAUDIT POLICY statement will have no effect.

If policy is a common unified audit policy, then user must be a common user. If policy is a local
unified audit policy, then user must be a common user or a local user in the container to which
you are connected.

NOAUDIT CONTEXT ... BY

The behavior of the BY clause depends on whether attribute is configured to be included in audit
records for all users or specific users.

• If attribute is configured to be included in audit records for all users, then you can exclude
attribute from audit records for all users by omitting the BY clause. If you specify the BY
clause, then the NOAUDIT CONTEXT statement will have no effect.

• If attribute is configured to be included in audit records for specific users, then you can
exclude attribute for one or more of those users by specifying the BY clause followed by the
users for whom you want attribute excluded. If you do not specify the BY clause, then the
NOAUDIT CONTEXT statement will have no effect.

Chapter 19
NOAUDIT (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 18 of 164

by_users_with_roles

Specify this clause to disable policy only for users who have been directly granted the specified
roles. If you subsequently grant one of the roles to an additional user, then the policy is
automatically disabled for that user.

When you are connected to a CDB, if policy is a common unified audit policy, then role must be a
common role. If policy is a local unified audit policy, then role must be a common role or a local
role in the container to which you are connected.

Examples

The following examples disable unified audit policies that were created in the CREATE AUDIT
POLICY "Examples" and enabled in the AUDIT "Examples".

Disabling a Unified Audit Policy for All Users: Example

Assume that unified audit policy table_pol is enabled for all users. The following statement
disables table_pol for all users:

NOAUDIT POLICY table_pol;

The following statement returns no rows, which verifies that table_pol is disabled for all users:

SELECT *
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'TABLE_POL';

Disabling a Unified Audit Policy for Specific Users: Example

Assume that unified audit policy dml_pol is enabled for users hr and sh, as shown by the
following query:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'DML_POL'
 ORDER BY entity_name;

POLICY_NAME ENABLED_OPTION ENTITY_NAME
----------- ----------- ---------
DML_POL BY HR
DML_POL BY SH

The following statement disables dml_pol for user hr:

NOAUDIT POLICY dml_pol BY hr;

The following statement verifies that dml_pol is now enabled for only user sh:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'DML_POL';

POLICY_NAME ENABLED_OPTION ENTITY_NAME
----------- ----------- ---------
DML_POL BY SH

The following statement disables dml_pol for user sh:

NOAUDIT POLICY dml_pol BY sh;

Chapter 19
NOAUDIT (Unified Auditing)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 164

The following statement returns no rows, which verifies that dml_pol is disabled for all users:

SELECT *
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'DML_POL';

Excluding Values of Context Attributes in Audit Records: Example

The following statement instructs the database to exclude the values of namespace USERENV
attributes CURRENT_USER and DB_NAME from all audit records for user hr:

NOAUDIT CONTEXT NAMESPACE userenv
 ATTRIBUTES current_user, db_name
 BY hr;

PURGE
Purpose

Use the PURGE statement to:

• Remove a table or index from your recycle bin and release all of the space associated with
the object

• Remove part or all of a dropped tablespace or tablespace set from the recycle bin

• Remove the entire recycle bin

Note

You cannot roll back a PURGE statement, nor can you recover an object after it is
purged.

To see the contents of your recycle bin, query the USER_RECYCLEBIN data dictionary view. You
can use the RECYCLEBIN synonym instead. The following two statements return the same rows:

SELECT * FROM RECYCLEBIN;
SELECT * FROM USER_RECYCLEBIN;

See Also

• Oracle Database Administrator's Guide for information on the recycle bin and
naming conventions for objects in the recycle bin

• FLASHBACK TABLE for information on retrieving dropped tables from the recycle
bin

• Oracle Database Reference for information on using the RECYCLEBIN initialization
parameter to control whether dropped tables go into the recycle bin

Prerequisites

To purge a table, the table must reside in your own schema or you must have the DROP ANY
TABLE system privilege, or you must have the SYSDBA system privilege.

Chapter 19
PURGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 20 of 164

To purge an index, the index must reside in your own schema or you must have the DROP ANY
INDEX system privilege, or you must have the SYSDBA system privilege.

To purge a tablespace or tablespace set, you must have the DROP TABLESPACE system
privilege, or you must have the SYSDBA system privilege.

To purge a tablespace set, you must also be connected to a shard catalog database as an
SDB user.
To perform the PURGE DBA_RECYCLEBIN operation, you must have the SYSDBA or PURGE
DBA_RECYCLEBIN system privilege.

Syntax

purge::=

PURGE

TABLE table

INDEX index

TABLESPACE tablespace

USER user

TABLESPACE SET tablespace_set

USER user

RECYCLEBIN

DBA_RECYCLEBIN

;

Semantics

TABLE or INDEX

Specify the name of the table or index in the recycle bin that you want to purge. You can
specify either the original user-specified name or the system-generated name Oracle Database
assigned to the object when it was dropped.

• If you specify the user-specified name, and if the recycle bin contains more than one object
of that name, then the database purges the object that has been in the recycle bin the
longest.

• System-generated recycle bin object names are unique. Therefore, if you specify the
system-generated name, then the database purges that specified object.

When the database purges a table, all table partitions, LOBs and LOB partitions, indexes, and
other dependent objects of that table are also purged.

TABLESPACE or TABLESPACE SET

Use this clause to purge all the objects residing in the specified tablespace or tablespace set
from the recycle bin.

USER user

Use this clause to reclaim space in a tablespace or tablespace set for a specified user. This
operation is useful when a particular user is running low on disk quota for the specified
tablespace or tablespace set.

Chapter 19
PURGE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 21 of 164

RECYCLEBIN

Use this clause to purge the current user's recycle bin. Oracle Database will remove all objects
from the user's recycle bin and release all space associated with objects in the recycle bin.

DBA_RECYCLEBIN

This clause is valid only if you have the SYSDBA or PURGE DBA_RECYCLEBIN system privilege. It
lets you remove all objects from the system-wide recycle bin, and is equivalent to purging the
recycle bin of every user. This operation is useful, for example, before backward migration.

Examples

Remove a File From Your Recycle Bin: Example

The following statement removes the table test from the recycle bin. If more than one version of
test resides in the recycle bin, then Oracle Database removes the version that has been there
the longest:

PURGE TABLE test;

To determine system-generated name of the table you want removed from your recycle bin,
issue a SELECT statement on your recycle bin. Using that object name, you can remove the
table by issuing a statement similar to the following statement. (The system-generated name
will differ from the one shown in the example.)

PURGE TABLE RB$$33750$TABLE$0;

Remove the Contents of Your Recycle Bin: Example

To remove the entire contents of your recycle bin, issue the following statement:

PURGE RECYCLEBIN;

RENAME
Purpose

Note

You cannot roll back a RENAME statement.

Use the RENAME statement to rename a table, view, sequence, private synonym, or property
graph.

• Oracle Database automatically transfers integrity constraints, indexes, and grants on the
old object to the new object.

• Oracle Database invalidates all objects that depend on the renamed object, such as views,
synonyms, and stored procedures and functions that refer to a renamed table.

Chapter 19
RENAME

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 22 of 164

See Also

CREATE SYNONYM and DROP SYNONYM

Prerequisites

The object must be in your own schema.

Syntax

rename::=

RENAME old_name TO new_name ;

Semantics

old_name

Specify the name of an existing table, view, sequence, or private synonym.

new_name

Specify the new name to be given to the existing object. The new name must not already be
used by another schema object in the same namespace and must follow the rules for naming
schema objects.

Restrictions on Renaming Objects

Renaming objects is subject to the following restrictions:

• You cannot rename a public synonym. Instead, drop the public synonym and then re-
create the public synonym with the new name.

• You cannot rename a type synonym that has any dependent tables or dependent valid
user-defined object types.

See Also

"Database Object Naming Rules "

Examples

Renaming a Database Object: Example

The following example uses a copy of the sample table hr.departments. To change the name of
table departments_new to emp_departments, issue the following statement:

RENAME departments_new TO emp_departments;

You cannot use this statement directly to rename columns. However, you can rename a
column using the ALTER TABLE ... rename_column_clause.

Chapter 19
RENAME

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 23 of 164

See Also

rename_column_clause

Another way to rename a column is to use the RENAME statement together with the CREATE
TABLE statement with AS subquery. This method is useful if you are changing the structure of a
table rather than only renaming a column. The following statements re-create the sample table
hr.job_history, renaming a column from department_id to dept_id:

CREATE TABLE temporary
 (employee_id, start_date, end_date, job_id, dept_id)
AS SELECT
 employee_id, start_date, end_date, job_id, department_id
FROM job_history;

DROP TABLE job_history;

RENAME temporary TO job_history;

Any integrity constraints defined on table job_history will be lost in the preceding example. You
will have to redefine them on the new job_history table using an ALTER TABLE statement.

REVOKE
Purpose

Use the REVOKE statement to:

• Revoke system privileges from users and roles

• Revoke roles from users, roles, and program units.

• Revoke object privileges for a particular object from users and roles

• Revoke schema privileges from users and roles

Note on Oracle Automatic Storage Management

A user authenticated AS SYSASM can use this statement to revoke the system privileges
SYSASM, SYSOPER, and SYSDBA from a user in the Oracle ASM password file of the current
node.

Note on Editionable Objects

A REVOKE operation to revoke object privileges on an editionable object actualizes the object in
the current edition. See Oracle Database Development Guide for more information about
editions and editionable objects.

See Also

• GRANT for information on granting system privileges and roles

• Table 18-4 for a listing of the object privileges for each type of object

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 164

Prerequisites

To revoke a system privilege, you must have been granted the privilege with the ADMIN
OPTION. You can revoke any privilege if you have the GRANT ANY PRIVILEGE system privilege.

To revoke a role from a user or another role, you must have been directly granted the role
with the ADMIN OPTION or you must have created the role. You can revoke any role if you have
the GRANT ANY ROLE system privilege.

To revoke a role from a program unit, you must be the user SYS or you must be the schema
owner of the program unit.

To revoke an object privilege, one of the following conditions must be met:

• You must previously have granted the object privilege to the user or role.

• You must have the GRANT ANY OBJECT PRIVILEGE system privilege.

• You must have the GRANT ANY OBJECT PRIVILEGE system privilege. In this case, you can
revoke any object privilege that was granted by the object owner or on behalf of the owner
by a user with the GRANT ANY OBJECT PRIVILEGE. However, you cannot revoke an object
privilege that was granted by way of a WITH GRANT OPTION grant.

• You can revoke privileges on an object if you have the GRANT ANY object privilege. This
does not apply to SYS objects. The ANY keyword in reference to a system privilege means
that the user can perform the privilege on any objects owned by any user except for SYS.

See Also

"Revoke Operations that Use GRANT ANY OBJECT PRIVILEGE: Example"

The REVOKE statement can revoke only privileges and roles that were previously granted
directly with a GRANT statement. You cannot use this statement to revoke:

• Privileges or roles not granted to the revokee

• Roles or object privileges granted through the operating system

• Privileges or roles granted to the revokee through roles

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root.

Syntax

revoke::=

REVOKE

revoke_system_privileges

revoke_schema_privileges

revoke_object_privileges

CONTAINER =
CURRENT

ALL

revoke_roles_from_programs

;

(revoke_system_privileges::=, revoke_object_privileges::=, revoke_roles_from_programs::=)

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 25 of 164

revoke_system_privileges::=

system_privilege

role

ALL PRIVILEGES

,

FROM revokee_clause

(revokee_clause::=)

revoke_schema_privileges::=

(revokee_clause::=)

revoke_object_privileges::=

object_privilege

ALL

PRIVILEGES

,

on_object_clause

FROM revokee_clause

CASCADE CONSTRAINTS

FORCE

(on_object_clause::=, revokee_clause::=)

revokee_clause::=

user

role

PUBLIC

,

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 26 of 164

on_object_clause::=

ON

schema .

object

USER user

,

DIRECTORY directory_name

EDITION edition_name

MINING MODEL

schema .

mining_model_name

JAVA
SOURCE

RESOURCE

schema .

object

SQL TRANSLATION PROFILE

schema .

profile

revoke_roles_from_programs::=

role

,

ALL
FROM program_unit

,

program_unit::=

FUNCTION

schema .

function_name

PROCEDURE

schema .

procedure_name

PACKAGE

schema .

package_name

Semantics

revoke_system_privileges

Use these clauses to revoke system privileges.

system_privilege

Specify the system privilege to be revoked. Refer to Table 18-2 for a list of the system
privileges.

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 27 of 164

If you revoke a system privilege from a user, then the database removes the privilege from the
user's privilege domain. Effective immediately, the user cannot exercise the privilege.

If you revoke a system privilege from a role, then the database removes the privilege from the
privilege domain of the role. Effective immediately, users with the role enabled cannot exercise
the privilege. Also, other users who have been granted the role and subsequently enable the
role cannot exercise the privilege.

See Also

"Revoking a System Privilege from a User: Example" and "Revoking a System
Privilege from a Role: Example"

If you revoke a system privilege from PUBLIC, then the database removes the privilege from
the privilege domain of each user who has been granted the privilege through PUBLIC. Effective
immediately, such users can no longer exercise the privilege. However, the privilege is not
revoked from users who have been granted the privilege directly or through roles.

Oracle Database provides a shortcut for specifying all system privileges at once: Specify ALL
PRIVILEGES to revoke all the system privileges listed in Table 18-2.

Restriction on Revoking System Privileges

A system privilege cannot appear more than once in the list of privileges to be revoked.

role

Specify the role to be revoked.

If you revoke a role from a user, then the database makes the role unavailable to the user. If
the role is currently enabled for the user, then the user can continue to exercise the privileges
in the role's privilege domain as long as it remains enabled. However, the user cannot
subsequently enable the role.

If you revoke a role from another role, then the database removes the privilege domain of the
revoked role from the privilege domain of the revokee role. Users who have been granted and
have enabled the revokee role can continue to exercise the privileges in the privilege domain
of the revoked role as long as the revokee role remains enabled. However, other users who
have been granted the revokee role and subsequently enable it cannot exercise the privileges
in the privilege domain of the revoked role.

See Also

"Revoking a Role from a User: Example" and "Revoking a Role from a Role: Example"

If you revoke a role from PUBLIC, then the database makes the role unavailable to all users
who have been granted the role through PUBLIC. Any user who has enabled the role can
continue to exercise the privileges in its privilege domain as long as it remains enabled.
However, users cannot subsequently enable the role. The role is not revoked from users who
have been granted the role directly or through other roles.

Restriction on Revoking System Roles

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 28 of 164

A system role cannot appear more than once in the list of roles to be revoked. For information
on the predefined roles, refer to Oracle Database Security Guide.

revokee_clause

Use the revokee_clause to specify the users or roles from which the system privilege, role, or
object privilege is to be revoked.

PUBLIC

Specify PUBLIC to revoke the privileges or roles from all users.

revoke_schema_privileges

Use this clause to revoke schema privileges. You can revoke a schema level privilege from any
user or any role if you are a user who :

• Owns the schema.

• Has a schema level privilege WITH ADMIN OPTION.

• Has the GRANT ANY SCHEMA PRIVILEGE system privilege. If you specify ALL PRIVILEGES , all
the schema level privileges in Table 18-3 are revoked.

revoke_object_privileges

Use these clauses to revoke object privileges.

object_privilege

Specify the object privilege to be revoked. The object privileges, categorized by the type of
object to which they apply, are described in Table 18-4.

Note

Each privilege authorizes some operation. By revoking a privilege, you prevent the
revokee from performing that operation. However, multiple users may grant the same
privilege to the same user, role, or PUBLIC. To remove the privilege from the grantee's
privilege domain, all grantors must revoke the privilege. If even one grantor does not
revoke the privilege, then the grantee can still exercise the privilege by virtue of that
grant.

If you revoke an object privilege from a user, then the database removes the privilege from the
user's privilege domain. Effective immediately, the user cannot exercise the privilege.

If you revoke an object privilege from a user who has existing column level privileges granted ,
then those column level privileges will also be revoked.

• If that user has granted that privilege to other users or roles, then the database also
revokes the privilege from those other users or roles.

• If that user's schema contains a procedure, function, or package that contains SQL
statements that exercise the privilege, then the procedure, function, or package can no
longer be executed.

• If that user's schema contains a view on that object, then the database invalidates the
view.

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 29 of 164

• If you revoke the REFERENCES object privilege from a user who has exercised the privilege
to define referential integrity constraints, then you must specify the CASCADE CONSTRAINTS
clause.

If you revoke an object privilege from a role, then the database removes the privilege from the
privilege domain of the role. Effective immediately, users with the role enabled cannot exercise
the privilege. Other users who have been granted the role cannot exercise the privilege after
enabling the role.

If you revoke an object privilege from PUBLIC, then the database removes the privilege from the
privilege domain of each user who has been granted the privilege through PUBLIC. Effective
immediately, all such users are restricted from exercising the privilege. However, the privilege
is not revoked from users who have been granted the privilege directly or through roles.

ALL [PRIVILEGES]

Specify ALL to revoke all object privileges that you have granted to the revokee. (The keyword
PRIVILEGES is provided for semantic clarity and is optional.)

If no privileges have been granted on the object, then the database takes no action and does
not return an error.

Restriction on Revoking Object Privileges

A privilege cannot appear more than once in the list of privileges to be revoked. A user, a role,
or PUBLIC cannot appear more than once in the FROM clause.

See Also

"Revoking an Object Privilege from a User: Example", "Revoking Object Privileges
from PUBLIC: Example", and "Revoking All Object Privileges from a User: Example"

CASCADE CONSTRAINTS

This clause is relevant only if you revoke the REFERENCES privilege or ALL [PRIVILEGES]. It
drops any referential integrity constraints that the revokee has defined using the REFERENCES
privilege, which might have been granted either explicitly or implicitly through a grant of ALL
[PRIVILEGES].

See Also

"Revoking an Object Privilege with CASCADE CONSTRAINTS: Example"

FORCE

Specify FORCE to revoke the EXECUTE object privilege on user-defined type objects with table or
type dependencies. You must use FORCE to revoke the EXECUTE object privilege on user-
defined type objects with table dependencies.

If you specify FORCE, then all privileges are revoked, all dependent objects are marked
INVALID, data in dependent tables becomes inaccessible, and all dependent function-based
indexes are marked UNUSABLE. Regranting the necessary type privilege will revalidate the
table.

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 30 of 164

See Also

Oracle Database Concepts for detailed information about type dependencies and
user-defined object privileges

on_object_clause

The on_object_clause identifies the objects on which privileges are to be revoked.

object

Specify the object on which the object privileges are to be revoked. This object can be:

• A table, view, sequence, procedure, stored function, package, or materialized view

• A synonym for a table, view, sequence, procedure, stored function, package, materialized
view, or user-defined type

• A library, indextype, or user-defined operator

If you do not qualify object with schema, then the database assumes the object is in your own
schema.

See Also

"Revoking an Object Privilege on a Sequence from a User: Example"

If you revoke the READ or SELECT object privilege on the containing table or materialized view
of a materialized view, whether the privilege was granted with or without the GRANT OPTION,
then the database invalidates the materialized view.

If you revoke the READ or SELECT object privilege on any of the master tables of a materialized
view, whether the privilege was granted with or without the GRANT OPTION, then the database
invalidates both the materialized view and its containing table or materialized view.

ON USER

Specify the database user you want to revoke privileges from.

See Also

"Revoking an Object Privilege on a User from a User: Example"

ON DIRECTORY

Specify the name of the directory object on which privileges are to be revoked. You cannot
qualify directory_name with a schema name.

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 31 of 164

See Also

CREATE DIRECTORY and "Revoking an Object Privilege on a Directory from a User:
Example"

ON EDITION

Specify the name of the edition on which the USE object privilege is to be revoked. You cannot
qualify edition_name with a schema name.

ON MINING MODEL

Specify the name of the mining model on which privileges are to be revoked. If you do not
qualify mining_model_name with schema, then the database assumes that the mining model is in
your own schema.

ON JAVA SOURCE | RESOURCE

Specify the name of the Java source or resource schema object on which privileges are to be
revoked. If you do not qualify object with schema, then the database assumes that the object is in
your own schema.

ON SQL TRANSLATION PROFILE

Specify the name of the SQL translation profile on which privileges are to be revoked. If you do
not qualify profile with schema, then the database assumes the profile is in your own schema.

revoke_roles_from_programs

Use this clause to revoke code based access control (CBAC) roles from program units.

role

Specify the role you want to revoke.

ALL

Specify ALL to revoke all roles that are granted to the program unit.

program_unit

Specify the program unit from which the role is to be revoked. You can specify a PL/SQL
function, procedure, or package. If you do not specify schema, then Oracle Database assumes
the function, procedure, or package is in your own schema.

See Also

Oracle Database Security Guide for more information on revoking CBAC roles from
program units

CONTAINER Clause

If the current container is a pluggable database (PDB):

• Specify CONTAINER = CURRENT to revoke a locally granted system privilege, object
privilege, or role from a local user, common user, local role, or common role. The privilege

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 32 of 164

or role is revoked from the user or role only in the current PDB. This clause does not
revoke privileges granted with CONTAINER = ALL.

If the current container is the root:

• Specify CONTAINER = CURRENT to revoke a locally granted system privilege, object
privilege, or role from a common user or common role. The privilege or role is revoked
from the user or role only in the root. This clause does not revoke privileges granted with
CONTAINER = ALL.

• Specify CONTAINER = ALL to revoke a commonly granted system privilege, object privilege
on a common object, or role from a common user or common role. The privilege or role is
revoked from the user or role across the entire CDB. This clause can revoke only a
privilege or role granted with CONTAINER = ALL from the specified common user or common
role. This clause does not revoke privileges granted locally with CONTAINER = CURRENT.
However, any locally granted privileges that depend on the commonly granted privilege
being revoked are also revoked.

If you omit this clause, then CONTAINER = CURRENT is the default.

Examples

Revoking a System Privilege from a User: Example

The following statement revokes the DROP ANY TABLE system privilege from the users hr and
oe:

REVOKE DROP ANY TABLE
 FROM hr, oe;

The users hr and oe can no longer drop tables in schemas other than their own.

Revoking a Role from a User: Example

The following statement revokes the role dw_manager from the user sh:

REVOKE dw_manager
 FROM sh;

The user sh can no longer enable the dw_manager role.

Revoking a System Privilege from a Role: Example

The following statement revokes the CREATE TABLESPACE system privilege from the dw_manager
role:

REVOKE CREATE TABLESPACE
 FROM dw_manager;

Enabling the dw_manager role no longer allows users to create tablespaces.

Revoking a Role from a Role: Example

To revoke the role dw_user from the role dw_manager, issue the following statement:

REVOKE dw_user
 FROM dw_manager;

The dw_user role privileges are no longer granted to dw_manager.

Revoking an Object Privilege from a User: Example

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 33 of 164

You can grant DELETE, INSERT, READ, SELECT, and UPDATE privileges on the table orders to the
user hr with the following statement:

GRANT ALL
 ON orders TO hr;

To revoke the DELETE privilege on orders from hr, issue the following statement:

REVOKE DELETE
 ON orders FROM hr;

Revoking All Object Privileges from a User: Example

To revoke the remaining privileges on orders that you granted to hr, issue the following
statement:

REVOKE ALL
 ON orders FROM hr;

Revoking Object Privileges from PUBLIC: Example

You can grant SELECT and UPDATE privileges on the view emp_details_view to all users by granting
the privileges to the role PUBLIC:

GRANT SELECT, UPDATE
 ON emp_details_view TO public;

The following statement revokes UPDATE privilege on emp_details_view from all users:

REVOKE UPDATE
 ON emp_details_view FROM public;

Users can no longer update the emp_details_view view, although users can still query it. However,
if you have also granted the UPDATE privilege on emp_details_view to any users, either directly or
through roles, then these users retain the privilege.

Revoking an Object Privilege on a User from a User: Example

You can grant the user hr the INHERIT PRIVILEGES privilege on user sh with the following
statement:

GRANT INHERIT PRIVILEGES ON USER sh TO hr;

To revoke the INHERIT PRIVILEGES privilege on user sh from user hr, issue the following
statement:

REVOKE INHERIT PRIVILEGES ON USER sh FROM hr;

Revoking an Object Privilege on a Sequence from a User: Example

You can grant the user oe the SELECT privilege on the departments_seq sequence in the schema hr
with the following statement:

GRANT SELECT
 ON hr.departments_seq TO oe;

To revoke the SELECT privilege on departments_seq from oe, issue the following statement:

REVOKE SELECT
 ON hr.departments_seq FROM oe;

However, if the user hr has also granted SELECT privilege on departments to sh, then sh can still use
departments by virtue of hr's grant.

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 34 of 164

Revoking an Object Privilege with CASCADE CONSTRAINTS: Example

You can grant to oe the privileges REFERENCES and UPDATE on the employees table in the schema
hr with the following statement:

GRANT REFERENCES, UPDATE
 ON hr.employees TO oe;

The user oe can exercise the REFERENCES privilege to define a constraint in his or her own
dependent table that refers to the employees table in the schema hr:

CREATE TABLE dependent
(dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
 CONSTRAINT in_emp REFERENCES hr.employees(employee_id));

You can revoke the REFERENCES privilege on hr.employees from oe by issuing the following
statement that contains the CASCADE CONSTRAINTS clause:

REVOKE REFERENCES
 ON hr.employees
 FROM oe
 CASCADE CONSTRAINTS;

Revoking oe's REFERENCES privilege on hr.employees causes Oracle Database to drop the in_emp
constraint, because oe required the privilege to define the constraint.

However, if oe has also been granted the REFERENCES privilege on hr.employees by a user other
than you, then the database does not drop the constraint. oe still has the privilege necessary for
the constraint by virtue of the other user's grant.

Revoking an Object Privilege on a Directory from a User: Example

You can revoke the READ object privilege on directory bfile_dir from hr by issuing the following
statement:

REVOKE READ ON DIRECTORY bfile_dir FROM hr;

Revoke Operations that Use GRANT ANY OBJECT PRIVILEGE: Example

Suppose that the database administrator has granted GRANT ANY OBJECT PRIVILEGE to user sh.
Now suppose that user hr grants the update privilege on the employees table to oe:

CONNECT hr
GRANT UPDATE ON employees TO oe WITH GRANT OPTION;

This grant gives user oe the right to pass the object privilege along to another user:

CONNECT oe
GRANT UPDATE ON hr.employees TO pm;

User sh, who has the GRANT ANY OBJECT PRIVILEGE, can now act on behalf of user hr and
revoke the update privilege from user oe, because oe was granted the privilege by hr:

CONNECT sh
REVOKE UPDATE ON hr.employees FROM oe;

User sh cannot revoke the update privilege from user pm explicitly, because pm received the
grant neither from the object owner (hr), nor from sh, nor from another user with GRANT ANY
OBJECT PRIVILEGE, but from user oe. However, the preceding statement cascades, removing all

Chapter 19
REVOKE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 35 of 164

privileges that depend on the one revoked. Therefore the object privilege is implicitly revoked
from pm as well.

ROLLBACK
Purpose

Use the ROLLBACK statement to undo work done in the current transaction or to manually undo
the work done by an in-doubt distributed transaction.

Note

Oracle recommends that you explicitly end transactions in application programs using
either a COMMIT or ROLLBACK statement. If you do not explicitly commit the transaction
and the program terminates abnormally, then Oracle Database rolls back the last
uncommitted transaction.

See Also

• Oracle Database Concepts for information on transactions

• Oracle Database Heterogeneous Connectivity User's Guide for information on
distributed transactions

• SET TRANSACTION for information on setting characteristics of the current
transaction

• COMMIT and SAVEPOINT

Prerequisites

To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally committed, you
must have the FORCE TRANSACTION system privilege. To manually roll back an in-doubt
distributed transaction originally committed by another user, you must have the FORCE ANY
TRANSACTION system privilege.

Syntax

rollback::=

ROLLBACK

WORK

TO

SAVEPOINT

savepoint

FORCE string

;

Chapter 19
ROLLBACK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 36 of 164

Semantics

WORK

The keyword WORK is optional and is provided for SQL standard compatibility.

TO SAVEPOINT Clause

Specify the savepoint to which you want to roll back the current transaction. If you omit this
clause, then the ROLLBACK statement rolls back the entire transaction.

Using ROLLBACK without the TO SAVEPOINT clause performs the following operations:

• Ends the transaction

• Undoes all changes in the current transaction

• Erases all savepoints in the transaction

• Releases any transaction locks

See Also

SAVEPOINT

Using ROLLBACK with the TO SAVEPOINT clause performs the following operations:

• Rolls back just the portion of the transaction after the savepoint. It does not end the
transaction.

• Erases all savepoints created after that savepoint. The named savepoint is retained, so
you can roll back to the same savepoint multiple times. Prior savepoints are also retained.

• Releases all table and row locks acquired since the savepoint. Other transactions that
have requested access to rows locked after the savepoint must continue to wait until the
transaction is committed or rolled back. Other transactions that have not already requested
the rows can request and access the rows immediately.

Restriction on In-doubt Transactions

You cannot manually roll back an in-doubt transaction to a savepoint.

FORCE Clause

Specify FORCE to manually roll back an in-doubt distributed transaction. The transaction is
identified by the string containing its local or global transaction ID. To find the IDs of such
transactions, query the data dictionary view DBA_2PC_PENDING.

A ROLLBACK statement with a FORCE clause rolls back only the specified transaction. Such a
statement does not affect your current transaction.

See Also

Oracle Database Administrator's Guide for more information on distributed
transactions and rolling back in-doubt transactions

Chapter 19
ROLLBACK

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 37 of 164

Examples

Rolling Back Transactions: Examples

The following statement rolls back your entire current transaction:

ROLLBACK;

The following statement rolls back your current transaction to savepoint banda_sal:

ROLLBACK TO SAVEPOINT banda_sal;

See "Creating Savepoints: Example" for a full version of the preceding example.

The following statement manually rolls back an in-doubt distributed transaction:

ROLLBACK WORK
 FORCE '25.32.87';

SAVEPOINT
Purpose

Use the SAVEPOINT statement to create a name for a system change number (SCN), to which
you can later roll back.

See Also

• Oracle Database Concepts for information on savepoints.

• ROLLBACK for information on rolling back transactions

• SET TRANSACTION for information on setting characteristics of the current
transaction

Prerequisites

None.

Syntax

savepoint::=

SAVEPOINT savepoint ;

Semantics

savepoint

Specify the name of the savepoint to be created.

Savepoint names must be distinct within a given transaction. If you create a second savepoint
with the same identifier as an earlier savepoint, then the earlier savepoint is erased. After a

Chapter 19
SAVEPOINT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 164

savepoint has been created, you can either continue processing, commit your work, roll back
the entire transaction, or roll back to the savepoint.

Examples

Creating Savepoints: Example

To update the salary for Banda and Greene in the sample table hr.employees, check that the total
department salary does not exceed 314,000, then reenter the salary for Greene:

UPDATE employees
 SET salary = 7000
 WHERE last_name = 'Banda';
SAVEPOINT banda_sal;

UPDATE employees
 SET salary = 12000
 WHERE last_name = 'Greene';
SAVEPOINT greene_sal;

SELECT SUM(salary) FROM employees;

ROLLBACK TO SAVEPOINT banda_sal;

UPDATE employees
 SET salary = 11000
 WHERE last_name = 'Greene';

COMMIT;

SELECT
Purpose

Use a SELECT statement or subquery to retrieve data from one or more tables, object tables,
views, object views, materialized views, analytic views, or hierarchies.

If part or all of the result of a SELECT statement is equivalent to an existing materialized view,
then Oracle Database may use the materialized view in place of one or more tables specified
in the SELECT statement. This substitution is called query rewrite. It takes place only if cost
optimization is enabled and the QUERY_REWRITE_ENABLED parameter is set to TRUE. To
determine whether query rewrite has occurred, use the EXPLAIN PLAN statement.

See Also

• SQL Queries and Subqueries for general information on queries and subqueries

• Oracle Database Data Warehousing Guide for more information on materialized
views, query rewrite, and analytic views and hierarchies

• If you are querying JSON data see Query JSON Data

• If you are querying XML data see Querying XML Content Stored in Oracle XML
DB

• EXPLAIN PLAN

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 39 of 164

Prerequisites

For you to select data from a table, materialized view, analytic view, or hierarchy, the object
must be in your own schema or you must have the READ or SELECT privilege on the table,
materialized view, analytic view, or hierarchy.

For you to select rows from the base tables of a view:

• The object must be in your own schema or you must have the READ or SELECT privilege on
it, and

• Whoever owns the schema containing the object must have the READ or SELECT privilege
on the base tables.

The READ ANY TABLE or SELECT ANY TABLE system privilege also allows you to select data
from any table, materialized view, analytic view, or hierarchy, or the base table of any
materialized view, analytic view, or hierarchy.

To specify the FOR UPDATE clause, the preceding prerequisites apply with the following
exception: The READ and READ ANY TABLE privileges, where mentioned, do not allow you to
specify the FOR UPDATE clause.

To issue an Oracle Flashback Query using the flashback_query_clause, you must have the READ or
SELECT privilege on the objects in the select list. In addition, either you must have FLASHBACK
object privilege on the objects in the select list, or you must have FLASHBACK ANY TABLE
system privilege.

Syntax

select::=

subquery

for_update_clause

;

(subquery::=, for_update_clause::=)

subquery::=

query_block

subquery

UNION

INTERSECT

MINUS

EXCEPT

ALL

subquery

(subquery)

order_by_clause row_limiting_clause

(query_block::=, order_by_clause::=, row_limiting_clause::=)

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 40 of 164

query_block::=

with_clause

SELECT

hint

DISTINCT

UNIQUE

ALL

select_list

FROM

table_reference

join_clause

(join_clause)

inline_analytic_view

,

where_clause hierarchical_query_clause

group_by_clause

model_clause

window_clause

(with_clause::=, select_list::=, table_reference::=, join_clause::=, inline_analytic_view,
where_clause::=, hierarchical_query_clause::=, group_by_clause::=, model_clause::= ,
window_clause::=)

with_clause::=

WITH

plsql_declarations

subquery_factoring_clause

subav_factoring_clause

,

Note

You cannot specify only the WITH keyword. You must specify at least one of the
clauses plsql_declarations, subquery_factoring_clause, or subav_factoring_clause.

plsql_declarations::=

function_declaration

procedure_declaration

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 41 of 164

subquery_factoring_clause::=

query_name

(c_alias

,

)

AS
(subquery)

values_clause

search_clause cycle_clause

search_clause::=

SEARCH
DEPTH

BREADTH
FIRST BY c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

SET ordering_column

cycle_clause::=

CYCLE c_alias

,

SET cycle_mark_c_alias TO cycle_value DEFAULT no_cycle_value

subav_factoring_clause::=

subav_name ANALYTIC VIEW AS (sub_av_clause)

sub_av_clause::=

USING

schema .

base_av_name

hierarchies_clause filter_clauses add_meas_clause

hierarchies_clause::=

HIERARCHIES (

attr_dim_alias .

hier_alias

,

)

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 42 of 164

filter_clauses::=

FILTER FACT (filter_clause

,

)

filter_clause::=

hier_ids TO predicate

hier_ids::=

hier_id

hier_id

,

hier_id::=

MEASURES

dim_alias . hier_alias

add_meas_clause::=

ADD MEASURES (cube_meas

,

)

cube_meas::=

meas_name

base_meas_clause

calc_meas_clause

base_meas_clause::=

FACT

(expression)

meas_aggregate_clause

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 43 of 164

calc_meas_clause::=

meas_name AS (expression)

select_list::=

*

query_name

schema .
table

view

materialized view

t_alias

.*

expr

AS

c_alias

,

table_reference::=

ONLY (query_table_expression)

query_table_expression

flashback_query_clause

pivot_clause

unpivot_clause

row_pattern_clause

containers_clause

shards_clause

t_alias

values_clause

(query_table_expression::=, flashback_query_clause::=, pivot_clause::=, unpivot_clause::=,
row_pattern_clause::=, containers_clause::=, shards_clause::=, values_clause::=)

flashback_query_clause::=

VERSIONS

BETWEEN
SCN

TIMESTAMP

PERIOD FOR valid_time_column BETWEEN

expr

MINVALUE
AND

expr

MAXVALUE

AS OF

SCN

TIMESTAMP
expr

PERIOD FOR valid_time_column expr

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 44 of 164

query_table_expression::=

query_name

schema .

table

modified_external_table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

hierarchy

analytic_view

HIERARCHIES (

attr_dim .

hierarchy

,

)

inline_external_table

sample_clause

LATERAL

(subquery

subquery_restriction_clause

)

table_collection_expression

(analytic_view, hierarchy, subquery_restriction_clause::=, table_collection_expression::=)

inline_external_table::=

EXTERNAL ((column_definition

,

) inline_external_table_properties)

inline_external_table_properties::=

TYPE access_driver_type

external_table_data_props

REJECT LIMIT
integer

UNLIMITED

modified_external_table::=

EXTERNAL MODIFY modify_external_table_properties

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 45 of 164

modify_external_table_properties::=

DEFAULT DIRECTORY directory LOCATION (

directory :

’ location_specifier ’

,

)

ACCESS PARAMETERS

BADFILE filename

LOGFILE filename

DISCARDFILE filename
REJECT LIMIT

integer

UNLIMITED

pivot_clause::=

PIVOT

XML

(aggregate_function (expr)

AS

alias

,

pivot_for_clause pivot_in_clause)

pivot_for_clause::=

FOR

column

(column

,

)

pivot_in_clause::=

IN (

expr

(expr

,

)

AS

alias

,

subquery

ANY

,

)

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 46 of 164

unpivot_clause::=

UNPIVOT

INCLUDE

EXCLUDE
NULLS

(

column

(column

,

)

pivot_for_clause unpivot_in_clause)

unpivot_in_clause::=

IN (

column

(column

,

)

AS

literal

(literal

,

)

,

)

sample_clause::=

SAMPLE

BLOCK

(sample_percent)

SEED (seed_value)

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 47 of 164

table_collection_expression::=

TABLE (collection_expression)

(+)

containers_clause::=

CONTAINERS (

schema . table

view
)

shards_clause::=

SHARDS (

schema . table

view
)

values_clause::=

(VALUES (expr

,

)

, (expr

,

)

)

AS

t_alias (c_alias

,

)

join_clause::=

table_reference

inner_cross_join_clause

outer_join_clause

cross_outer_apply_clause

(inner_cross_join_clause::=, outer_join_clause::=, cross_outer_apply_clause::=)

inner_cross_join_clause::=

INNER

JOIN table_reference

ON condition

USING (column

,

)

CROSS

NATURAL

INNER JOIN table_reference

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 48 of 164

(table_reference::=)

outer_join_clause::=

query_partition_clause NATURAL

outer_join_type JOIN

table_reference

query_partition_clause

ON condition

USING (column

,

)

(query_partition_clause::=, outer_join_type::=, table_reference::=)

query_partition_clause::=

PARTITION BY

expr

,

(expr

,

)

outer_join_type::=

FULL

LEFT

RIGHT

OUTER

cross_outer_apply_clause::=

CROSS

OUTER
APPLY

table_reference

collection_expression

(table_reference::=, query_partition_clause::=)

inline_analytic_view

ANALYTIC VIEW sub_av_clause

AS

inline_av_alias

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 49 of 164

(sub_av_clause::=)

where_clause::=

WHERE condition

hierarchical_query_clause::=

CONNECT BY

NOCYCLE

condition

START WITH condition

START WITH condition CONNECT BY

NOCYCLE

condition

(condition can be any condition as described in Conditions)

group_by_clause::=

HAVING condition

GROUP BY

expr

c_alias

position

rollup_cube_clause

grouping_sets_clause

,

ALL

HAVING condition

(rollup_cube_clause::=, grouping_sets_clause::=)

rollup_cube_clause::=

ROLLUP

CUBE
(grouping_expression_list)

(grouping_expression_list::=)

grouping_sets_clause::=

GROUPING SETS (
rollup_cube_clause

grouping_expression_list

,

)

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 50 of 164

(rollup_cube_clause::=, grouping_expression_list::=)

grouping_expression_list::=

expression_list

,

expression_list::=

expr

c_alias

position

,

(

expr

c_alias

position

,

)

model_clause::=

MODEL

cell_reference_options return_rows_clause reference_model

main_model

(cell_reference_options::=, return_rows_clause::=, reference_model::=, main_model::=)

cell_reference_options::=

IGNORE

KEEP

NAV UNIQUE

DIMENSION

SINGLE REFERENCE

return_rows_clause::=

RETURN

UPDATED

ALL

ROWS

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 51 of 164

reference_model::=

REFERENCE reference_model_name ON (subquery) model_column_clauses

cell_reference_options

(model_column_clauses::=, cell_reference_options::=)

main_model::=

MAIN main_model_name

model_column_clauses

cell_reference_options

model_rules_clause

(model_column_clauses::=, cell_reference_options::=, model_rules_clause::=)

model_column_clauses::=

PARTITION BY (expr

c_alias

,

)

DIMENSION BY (expr

c_alias

,

) MEASURES (expr

c_alias

,

)

model_rules_clause::=

RULES

UPDATE

UPSERT

ALL
AUTOMATIC

SEQUENTIAL
ORDER

model_iterate_clause

(

UPDATE

UPSERT

ALL

cell_assignment

order_by_clause

= expr

,

)

(model_iterate_clause::=, cell_assignment::=, order_by_clause::=)

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 52 of 164

model_iterate_clause::=

ITERATE (number)

UNTIL (condition)

cell_assignment::=

measure_column [

condition

expr

single_column_for_loop

,

multi_column_for_loop

]

(single_column_for_loop::=, multi_column_for_loop::=)

single_column_for_loop::=

FOR dimension_column

IN (
literal

,

subquery
)

LIKE pattern

FROM literal TO literal
INCREMENT

DECREMENT
literal

multi_column_for_loop::=

FOR (dimension_column

,

) IN (
(literal

,

)

,

subquery
)

order_by_clause::=

ORDER

SIBLINGS

BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 53 of 164

window_clause::=

WINDOW window_name AS (window_specification)

,

window_specification::=

existing_window_name query_partition_clause order_by_clause windowing_clause

query_partition_clause::=, order_by_clause::=, windowing_clause

row_limiting_clause::=

OFFSET offset
ROW

ROWS fetch_clause row_limiting_partition_clause row_specification accuracy_clause

(fetch_clause::=, row_limiting_partition_clause::=, row_specification::=, accuracy_clause::=)

fetch_clause::=

FETCH

EXACT

APPROX

APPROXIMATE FIRST

NUMBER TO NUMBER

NEXT

row_limiting_partition_clause::=

partition_count

PARTITION

PARTITIONS
BY

partition_by_expr ,

row_specification::=

rowcount

percent PERCENT ROW

ROWS

ONLY

WITH TIES

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 54 of 164

accuracy_clause::=

WITH TARGET

ACCURACY

accuracy

PERCENT

PARAMETERS (

EFSEARCH efs

, NEIGHBOR PARTITION PROBES nprobes

NEIGHBOR PARTITION PROBES nprobes

, EFSEARCH efs)

for_update_clause::=

FOR UPDATE

OF

schema . table

view
.

column

,

NOWAIT

WAIT integer

SKIP LOCKED

row_pattern_clause::=

MATCH_RECOGNIZE (

row_pattern_partition_by row_pattern_order_by row_pattern_measures

row_pattern_rows_per_match row_pattern_skip_to

PATTERN (row_pattern)

row_pattern_subset_clause

DEFINE row_pattern_definition_list)

(row_pattern_partition_by::=, row_pattern_order_by::=, row_pattern_measures::=,
row_pattern_rows_per_match::=, row_pattern_skip_to::=, row_pattern::=,
row_pattern_subset_clause::=, row_pattern_definition_list::=)

row_pattern_partition_by::=

PARTITION BY column

,

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 55 of 164

row_pattern_order_by::=

ORDER BY column

ASC

DESC

NULLS FIRST

NULLS LAST

,

row_pattern_measures::=

MEASURES row_pattern_measure_column

,

row_pattern_measure_column::=

expr AS c_alias

row_pattern_rows_per_match::=

ONE ROW

ALL ROWS

PER MATCH

row_pattern_skip_to::=

AFTER MATCH SKIP

TO NEXT

PAST LAST

ROW

TO

FIRST

LAST

variable_name

row_pattern::=

row_pattern |

row_pattern_term

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 56 of 164

row_pattern_term::=

row_pattern_term

row_pattern_factor

row_pattern_factor::=

row_pattern_primary

row_pattern_quantifier

row_pattern_primary::=

variable_name

$

^

(

row_pattern

)

{ – row_pattern – }

row_pattern_permute

row_pattern_permute::=

PERMUTE (row_pattern

,

)

row_pattern_quantifier::=

*

?

+

?

?

?

{

unsigned_integer

,

unsigned_integer

}

?

{ unsigned_integer }

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 57 of 164

row_pattern_subset_clause::=

SUBSET row_pattern_subset_item

,

row_pattern_subset_item::=

variable_name = (variable_name

,

)

row_pattern_definition_list::=

row_pattern_definition

,

row_pattern_definition::=

variable_name AS condition

row_pattern_rec_func::=

row_pattern_classifier_func

row_pattern_match_num_func

row_pattern_navigation_func

row_pattern_aggregate_func

(row_pattern_classifier_func::=, row_pattern_match_num_func::=,
row_pattern_navigation_func::=, row_pattern_aggregate_func::=)

row_pattern_classifier_func::=

CLASSIFIER ()

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 58 of 164

row_pattern_match_num_func::=

MATCH_NUMBER ()

row_pattern_navigation_func::=

row_pattern_nav_logical

row_pattern_nav_physical

row_pattern_nav_compound

(row_pattern_nav_logical::=, row_pattern_nav_physical::=, row_pattern_nav_compound::=)

row_pattern_nav_logical::=

RUNNING

FINAL FIRST

LAST
(expr

, offset

)

row_pattern_nav_physical::=

PREV

NEXT
(expr

, offset

)

row_pattern_nav_compound::=

PREV

NEXT
(

RUNNING

FINAL FIRST

LAST
(expr

, offset

)

, offset

)

row_pattern_aggregate_func::=

RUNNING

FINAL

aggregate_function

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 59 of 164

Semantics

with_clause

Use the with_clause to define the following:

• PL/SQL procedures and functions (using the plsql_declarations clause)

• Subquery blocks (using subquery_factoring_clause or subav_factoring_clause, or both)

plsql_declarations

The plsql_declarations clause lets you declare and define PL/SQL functions and procedures. You
can then reference the PL/SQL functions in the query in which you specify this clause, as well
as its subqueries, if any. For the purposes of name resolution, these function names have
precedence over schema-level stored functions.

If the query in which you specify this clause is not a top-level SELECT statement, then the
following rules apply to the top-level SQL statement that contains the query:

• If the top-level statement is a SELECT statement, then it must have either a WITH
plsql_declarations clause or the WITH_PLSQL hint.

• If the top-level statement is a DELETE, MERGE, INSERT, or UPDATE statement, then it must
have the WITH_PLSQL hint.

The WITH_PLSQL hint only enables you to specify the WITH plsql_declarations clause within the
statement. It is not an optimizer hint.

See Also

• Oracle Database PL/SQL Language Reference for syntax and restrictions for
function_declaration and procedure_declaration.

• "Using a PL/SQL Function in the WITH Clause: Examples"

subquery_factoring_clause

The subquery_factoring_clause lets you assign a name (query_name) to a subquery block. You can
then reference the subquery block multiple places in the query by specifying query_name. Oracle
Database optimizes the query by treating the query_name as either an inline view or as a
temporary table. The query_name is subject to the same naming conventions and restrictions as
database schema objects. Refer to "Database Object Naming Rules " for information on
database object names.

The column aliases following the query_name and the set operators separating multiple
subqueries in the AS clause are valid and required for recursive subquery factoring. The
search_clause and cycle_clause are valid only for recursive subquery factoring but are not required.
See "Recursive Subquery Factoring".

You can specify this clause in any top-level SELECT statement and in most types of subqueries.
The query name is visible to the main query and to all subsequent subqueries. For recursive
subquery factoring, the query name is even visible to the subquery that defines the query
name itself.

Recursive Subquery Factoring

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 60 of 164

If a subquery_factoring_clause refers to its own query_name in the subquery that defines it, then the
subquery_factoring_clause is said to be recursive. A recursive subquery_factoring_clause must contain
two query blocks: the first is the anchor member and the second is the recursive member.
The anchor member must appear before the recursive member, and it cannot reference
query_name. The anchor member can be composed of one or more query blocks combined by
the set operators: UNION ALL, UNION, INTERSECT or MINUS. The recursive member must follow
the anchor member and must reference query_name exactly once. You must combine the
recursive member with the anchor member using the UNION ALL set operator.

The number of column aliases following WITH query_name and the number of columns in the
SELECT lists of the anchor and recursive query blocks must be the same.

The recursive member cannot contain any of the following elements:

• The DISTINCT keyword or a GROUP BY clause

• The model_clause

• An aggregate function. However, analytic functions are permitted in the select list.

• Subqueries that refer to query_name.

• Outer joins that refer to query_name as the right table.

In previous releases of Oracle Database, the recursive member of a recursive WITH clause ran
serially regardless of the parallelism of the entire query (also known as the top-level SELECT
statement). Beginning with Oracle Database 12c Release 2 (12.2), the recursive member runs
in parallel if the optimizer determines that the top-level SELECT statement can be executed in
parallel.

search_clause

Use the SEARCH clause to specify an ordering for the rows.

• Specify BREADTH FIRST BY if you want sibling rows returned before any child rows are
returned.

• Specify DEPTH FIRST BY if you want child rows returned before any siblings rows are
returned.

• Sibling rows are ordered by the columns listed after the BY keyword.

• The c_alias list following the SEARCH keyword must contain column names from the column
alias list for query_name.

• The ordering_column is automatically added to the column list for the query name. The query
that selects from query_name can include an ORDER BY on ordering_column to return the rows in
the order that was specified by the SEARCH clause.

cycle_clause

Use the CYCLE clause to mark cycles in the recursion.

• The c_alias list following the CYCLE keyword must contain column names from the column
alias list for query_name. Oracle Database uses these columns to detect a cycle.

• cycle_value and no_cycle_value should be character strings of length 1.

• If a cycle is detected, then the cycle mark column specified by cycle_mark_c_alias for the row
causing the cycle is set to the value specified for cycle_value. The recursion will then stop for
this row. That is, it will not look for child rows for the offending row, but it will continue for
other noncyclic rows.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 61 of 164

• If no cycles are found, then the cycle mark column is set to the default value specified for
no_cycle_value.

• The cycle mark column is automatically added to the column list for the query_name.

• A row is considered to form a cycle if one of its ancestor rows has the same values for the
cycle columns.

If you omit the CYCLE clause, then the recursive WITH clause returns an error if cycles are
discovered. In this case, a row forms a cycle if one of its ancestor rows has the same values
for all the columns in the column alias list for query_name that are referenced in the WHERE
clause of the recursive member.

Restrictions on Subquery Factoring

This clause is subject to the following restrictions:

• You can specify only one subquery_factoring_clause in a single SQL statement. Any query_name
defined in the subquery_factoring_clause can be used in any subsequent named query block in
the subquery_factoring_clause.

• In a compound query with set operators, you cannot use the query_name for any of the
component queries, but you can use the query_name in the FROM clause of any of the
component queries.

• You cannot specify duplicate names in the column alias list for query_name.

• The name used for the ordering_column has to be different from the name used for
cycle_mark_c_alias.

• The ordering_column and cycle mark column names cannot already be in the column alias list
for query_name.

See Also

• Oracle Database Concepts for information about inline views

• "Subquery Factoring: Example"

• "Recursive Subquery Factoring: Examples"

subav_factoring_clause

With the subav_factoring_clause, you can define a transitory analytic view that filters fact data prior
to aggregation or adds calculated measures to a query of an analytic view. The subav_name
argument assigns a name to the transitory analytic view. You can then reference the transitory
analytic view multiple places in the query by specifying subav_name. The subav_name is subject to
the same naming conventions and restrictions as database schema objects. Refer to
"Database Object Naming Rules " for information on database object names.

You can specify this clause in any top-level SELECT statement and in most types of subqueries.
The query name is visible to the main query and to all subsequent subqueries.

The sub_av_clause argument defines a transitory analytic view.

sub_av_clause

With the USING keyword, specify the name of an analytic view, which may be a transitory
analytic view previously defined in the WITH clause or it may be a persistent analytic view. A

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 62 of 164

persistent analytic view is defined in a CREATE ANALYTIC VIEW statement. If the analytic view is
a persistent one, then the current user must have select access on it.

See Also

Analytic Views: Examples

hierarchies_clause

The hierarchies_clause specifies the hierarchies of the base analytic view that the results of the
transitory analytic view are dimensioned by. With the HIERARCHIES keyword, specify the alias of
one or more hierarchies of the base analytic view.

If you do not specify a HIERARCHIES clause, then the default hierarchies of the base analytic
view are used.

filter_clauses

You may specify a given hier_alias in at most one filter_clause.

filter_clause

The filter clause applies the specified predicate condition to the fact table, which reduces the
number of rows returned from the table before aggregation of the measure values. The
predicate may contain any SQL row function or operation. The predicate may refer to any
attribute of the specified hierarchy or it may refer to a measure of the analytic view if you
specify the MEASURES keyword.

For example, the following clause restricts the aggregation of measure values to those for the
first and second quarters of every year of a time hierarchy.

FILTER FACT (time_hier TO quarter_of_year IN (1,2))

If you then select from the transitory analytic view the sales for the years 2000 and 2001, the
values returned are the aggregated values of the first and second quarters only.

An example of specifying a predicate for a measure in the filter clause is the following.

FILTER FACT (MEASURES TO sales BETWEEN 100 AND 200)

attr_dim_alias

The alias of an attribute dimension in the base analytic view. The
USER_ANALYTIC_VIEW_DIMENSIONS view contains the aliases of the attribute dimensions in an
analytic view.

hier_alias

The alias of a hierarchy in the base analytic view. The USER_ANALYTIC_VIEW_HIERS view
contains the aliases of the hierarchies in an analytic view.

add_meas_clause

With the ADD MEASURES keywords, you may add calculated measures to the transitory analytic
view.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 63 of 164

calc_meas_clause

Specify a name for the calculated measure and an analytic view expression that specifies
values for the calculated measure. The analytic view expression can be any valid
calc_meas_expression as described in Analytic View Expressions. For example, the following adds
a calculated measure named “share_sales.”

ADD MEASURES (share_sales AS (SHARE_OF(sales HIERARCHY time_hier PARENT)))

hint

Specify a comment that passes instructions to the optimizer on choosing an execution plan for
the statement.

See Also

"Hints " for the syntax and description of hints

DISTINCT | UNIQUE

Specify DISTINCT or UNIQUE if you want the database to return only one copy of each set of
duplicate rows selected. These two keywords are synonymous. Duplicate rows are those with
matching values for each expression in the select list.

Restrictions on DISTINCT and UNIQUE Queries

These types of queries are subject to the following restrictions:

• When you specify DISTINCT or UNIQUE, the total number of bytes in all select list
expressions is limited to the size of a data block minus some overhead. This size is
specified by the initialization parameter DB_BLOCK_SIZE.

• You cannot specify DISTINCT if the select_list contains LOB columns.

ALL

Specify ALL if you want the database to return all rows selected, including all copies of
duplicates. The default is ALL.

select_list

The select_list lets you specify the columns you want to retrieve from the database.

* (all-column wildcard)

Specify the all-column wildcard (asterisk) to select all columns, excluding pseudocolumns and
INVISIBLE columns, from all tables, views, or materialized views listed in the FROM clause. The
columns are returned in the order indicated by the COLUMN_ID column of the *_TAB_COLUMNS
data dictionary view for the table, view, or materialized view.

If you are selecting from a table rather than from a view or a materialized view, then columns
that have been marked as UNUSED by the ALTER TABLE SET UNUSED statement are not
selected.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 64 of 164

See Also

ALTER TABLE, "Simple Query Examples", and "Selecting from the DUAL Table:
Example"

query_name.*

Specify query_name followed by a period and the asterisk to select all columns from the specified
subquery block. For query_name, specify a subquery block name already specified in the
subquery_factoring_clause. You must have specified the subquery_factoring_clause in order to specify
query_name in the select_list. If you specify query_name in the select_list, then you also must specify
query_name in the query_table_expression (FROM clause).

table.* | view.* | materialized view.*

Specify the object name followed by a period and the asterisk to select all columns from the
specified table, view, or materialized view. Oracle Database returns a set of columns in the
order in which the columns were specified when the object was created. A query that selects
rows from two or more tables, views, or materialized views is a join.

You can use the schema qualifier to select from a table, view, or materialized view in a schema
other than your own. If you omit schema, then the database assumes the table, view, or
materialized view is in your own schema.

See Also

"Joins "

t_alias .*

Specify a correlation name (alias) followed by a period and the asterisk to select all columns
from the object with that correlation name specified in the FROM clause of the same subquery.
The object can be a table, view, materialized view, or subquery. Oracle Database returns a set
of columns in the order in which the columns were specified when the object was created. A
query that selects rows from two or more objects is a join.

expr

Specify an expression representing the information you want to select. A column name in this
list can be qualified with schema only if the table, view, or materialized view containing the
column is qualified with schema in the FROM clause. If you specify a member method of an object
type, then you must follow the method name with parentheses even if the method takes no
arguments.

The expression can also hold a scalar value that can be return values of PL/SQL functions,
subqueries that return a single value per row, and SQL macros.

c_alias

Specify an alias for the column expression. Oracle Database will use this alias in the column
heading of the result set. The AS keyword is optional. The alias effectively renames the select
list item for the duration of the query. The alias can be used in the order_by_clause but not other
clauses in the query.

From Release 23 you can use c_alias in group_by_clause .

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 65 of 164

See Also

• Oracle Database Data Warehousing Guide for information on using the expr AS
c_alias syntax with the UNION ALL operator in queries of multiple materialized views

• "About SQL Expressions " for the syntax of expr

Restrictions on the Select List

The select list is subject to the following restrictions:

• If you also specify a group_by_clause in this statement, then this select list can contain
only the following types of expressions:

– Constants

– Aggregate functions and the functions USER, UID, and SYSDATE

– Expressions identical to those in the group_by_clause. If the group_by_clause is in a
subquery, then all columns in the select list of the subquery must match the GROUP BY
columns in the subquery. If the select list and GROUP BY columns of a top-level query
or of a subquery do not match, then the statement results in ORA-00979.

From Release 23 you can group by position and alias.

– Expressions involving the preceding expressions that evaluate to the same value for
all rows in a group

• You can select a rowid from a join view only if the join has one and only one key-preserved
table. The rowid of that table becomes the rowid of the view.

See Also

Oracle Database Administrator's Guide for information on key-preserved tables

• If two or more tables have some column names in common, and if you are specifying a join
in the FROM clause, then you must qualify column names with names of tables or table
aliases.

FROM Clause

Use the optional FROM clause to specify the objects from which data is selected.

You can invoke a polymorphic table function (PTF) in the query block of the FROM clause like
other existing table functions. A PTF is a table function whose operands can have more than
one type.

With Oracle Database 21c, you can write SQL table macros and use them inside the FROM
clause, where it would be legal to call a PL/SQL function. SQL table macros are expressions,
typically used in a FROM clause, to act as a sort of polymorphic (parameterized) views. You
must define these macro functions in PL/SQL and call them from SQL for them to function as
macros.

With Oracle Database Release 23, you can use the GRAPH_TABLE operator as a table
expression in the FROM clause.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 66 of 164

See Also

• GRAPH_TABLE Operator

• PL/SQL Optimization and Tuning

• Defining SQL Macros

ONLY

The ONLY clause applies only to views. Specify ONLY if the view in the FROM clause is a view
belonging to a hierarchy and you do not want to include rows from any of its subviews.

query_table_expression

Use the query_table_expression clause to identify a subquery block, table, view, materialized view,
analytic view, hierarchy, partition, or subpartition, or to specify a subquery that identifies the
objects. In order to specify a subquery block, you must have specified the subquery block
name (query_name in the subquery_factoring_clause or subav_name in the subav_factoring_clause).

The analytic view in the expression may be a transitory analytic view defined in the with_clause
or a persistent analytic view.

See Also

"Using Subqueries: Examples"

LATERAL

Specify LATERAL to designate subquery as a lateral inline view. Within a lateral inline view, you
can specify tables that appear to the left of the lateral inline view in the FROM clause of a query.
You can specify this left correlation anywhere within subquery (such as the SELECT, FROM, and
WHERE clauses) and at any nesting level.

Restrictions on LATERAL

Lateral inline views are subject to the following restrictions:

• If you specify LATERAL, then you cannot specify the pivot_clause, the unpivot_clause, or a
pattern in the table_reference clause.

• If a lateral inline view contains the query_partition_clause, and it is the right side of a join
clause, then it cannot contain a left correlation to the left table in the join clause. However,
it can contain a left correlation to a table to its left in the FROM clause that is not the left
table.

• A lateral inline view cannot contain a left correlation to the first table in a right outer join or
full outer join.

See Also

"Using Lateral Inline Views: Example"

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 67 of 164

inline_external_table

Specify this clause to inline an external table in a query. You must specify the table columns
and properties for the external table that will be inlined in the query.

inline_external_table_properties

This clause extends the external_table_data_props with the REJECT LIMIT and access_driver_type
options. Use this clause to specify the properties of the external table.

In addition to supporting external data residing in operating file systems and Big Data sources
and formats such as HDFS and Hive, Oracle supports external data residing in objects.

modified_external_table

You can use this clause to override some external table properties specified by the CREATE
TABLE or ALTER TABLE statements from within a query.

You can override external table parameters at runtime.

Restrictions

• You must specify the key words EXTERNAL MODIFY in the query. If you do not specify the
keywords, you will see a Missing or invalid option error.

• You must reference an external table in the query. If you do not, you will see an error.

• You must specify at least one property in the query. One of DEFAULT DIRECTORY, LOCATION,
ACCESS PARAMETERS, or REJECT LIMIT.

• If you specify more than one external table properties, they must be listed in order. First the
DEFAULT DIRECTORY must be specified, followed by the ACCESS PARAMETERS, LOCATION and
REJECT LIMIT. Otherwise an error will be raised.

• In the DEFAULT DIRECTORY clause, you must specify only one proper default directory.
Otherwise a Missing DEFAULT keyword error will occur.

• You must enclose a filename in the LOCATION clause within quotes. Otherwise a Missing
keyword error will occur. Note that the access driver will decide whether or not to allow a
LOCATION clause in the query. If the clause is disallowed for a particular access driver, an
error will be raised.

• For ORACLE_LOADER and ORACLE_DATAPUMP access drivers, the external file location in the
LOCATION clause must be specified in the following format: directory: location, i.e, the
directory and location must be separated by a colon. Multiple locations in the clause must
be separated by a comma. Otherwise, a Missing keyword error will occur.

• Note that LOCATION will be made optional in CREATE TABLE, and must be specified either
when creating or querying the external table. Otherwise an error will be raised in the
access driver.

• When populating external data using ORACLE DATAPUMP via CTAS, the external file location
must be specified. This will be the only case where LOCATION clause is mandatory in
CREATE TABLE.

• When overriding access parameters, a proper access parameter list must be provided in
the ACCESS PARAMETERS clause, with enclosing parentheses.

Note that the syntax and allowable values for the access parameters in the
modified_external_table clause are the same as for the external table DDL for each access

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 68 of 164

driver. For more see Oracle Database Utilities for additional details regarding syntax and
permissible values.

• If you specify the REJECT LIMIT, then it must either be UNLIMITED or some valid value that is
within range. Otherwise a Reject limit out of range error will be raised.

modify_external_table_properties

You can specify the external table properties that you want to modify at run time using this
clause. The parameters that you can modify are DEFAULT DIRECTORY, LOCATION, ACCESS
PARAMETERS (BADFILE, LOGFILE, DISCARDFILE) and REJECT LIMIT.

Example: Overriding External Table Parameters in a Query

 SELECT * FROM
 sales_external EXTERNAL MODIFY (LOCATION 'sales_9.csv’ REJECT LIMIT UNLIMITED);

flashback_query_clause

Use the flashback_query_clause to retrieve data from a table, view, or materialized view based on
time dimensions associated with the data.

This clause implements SQL-driven Flashback, which lets you specify the following:

• A different system change number or timestamp for each object in the select list, using the
clauses VERSIONS BETWEEN { SCN | TIMESTAMP } or VERSIONS AS OF { SCN | TIMESTAMP }.
You can also implement session-level Flashback using the DBMS_FLASHBACK package.

• A valid time period for each object in the select list, using the clauses VERSIONS PERIOD
FOR or AS OF PERIOD FOR. You can also implement valid-time session-level Flashback using
the DBMS_FLASHBACK_ARCHIVE package.

A Flashback Query lets you retrieve a history of changes made to a row. You can retrieve the
corresponding identifier of the transaction that made the change using the VERSIONS_XID
pseudocolumn. You can also retrieve information about the transaction that resulted in a
particular row version by issuing an Oracle Flashback Transaction Query. You do this by
querying the FLASHBACK_TRANSACTION_QUERY data dictionary view for a particular transaction
ID.

VERSIONS BETWEEN { SCN | TIMESTAMP }

Specify VERSIONS BETWEEN to retrieve multiple versions of the rows returned by the query.
Oracle Database returns all committed versions of the rows that existed between two SCNs or
between two timestamp values. The first specified SCN or timestamp must be earlier than the
second specified SCN or timestamp. The rows returned include deleted and subsequently
reinserted versions of the rows.

• Specify VERSIONS BETWEEN SCN ... to retrieve the versions of the row that existed between
two SCNs. Both expressions must evaluate to a number and cannot evaluate to NULL.
MINVALUE and MAXVALUE resolve to the SCN of the oldest and most recent data available,
respectively.

• Specify VERSIONS BETWEEN TIMESTAMP ... to retrieve the versions of the row that existed
between two timestamps. Both expressions must evaluate to a timestamp value and
cannot evaluate to NULL. MINVALUE and MAXVALUE resolve to the timestamp of the oldest
and most recent data available, respectively.

AS OF { SCN | TIMESTAMP }

Specify AS OF to retrieve the single version of the rows returned by the query at a particular
change number (SCN) or timestamp. If you specify SCN, then expr must evaluate to a number. If

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 69 of 164

you specify TIMESTAMP, then expr must evaluate to a timestamp value. In either case, expr
cannot evaluate to NULL. Oracle Database returns rows as they existed at the specified
system change number or time.

Oracle Database provides a group of version query pseudocolumns that let you retrieve
additional information about the various row versions. Refer to "Version Query Pseudocolumns
" for more information.

When both clauses are used together, the AS OF clause determines the SCN or moment in time
from which the database issues the query. The VERSIONS clause determines the versions of the
rows as seen from the AS OF point. The database returns null for a row version if the
transaction started before the first BETWEEN value or ended after the AS OF point.

VERSIONS PERIOD FOR

Specify VERSIONS PERIOD FOR to retrieve rows from table based on whether they are considered
valid during the specified time period. In order to use this clause, table must support Temporal
Validity.

• For valid_time_column, specify the name of the valid time dimension column for table.

• Use the BETWEEN clause to specify the time period during which rows are considered valid.
Both expressions must evaluate to a timestamp value and cannot evaluate to NULL.
MINVALUE resolves to the earliest date or timestamp in the start time column of table.
MAXVALUE resolves to latest date or timestamp in the end time column of table.

AS OF PERIOD FOR

Specify AS OF PERIOD FOR to retrieve rows from table based on whether they are considered
valid as of the specified time. In order to use this clause, table must support Temporal Validity.

• For valid_time_column, specify the name of the valid time dimension column for table.

• Use expr to specify the time as of which rows are considered valid. The expression must
evaluate to a timestamp value and cannot evaluate to NULL.

See Also

• Oracle Database Development Guide for more information on Temporal Validity

• CREATE TABLE period_definition to learn how to configure a table to support
Temporal Validity and for information about the valid_time_column, start time column,
and end time column

Note on Flashback Queries

When performing a flashback query, Oracle Database might not use query optimizations that it
would use for other types of queries, which could have a negative impact on performance. In
particular, this occurs when you specify multiple flashback queries in a hierarchical query.

Restrictions on Flashback Queries

These queries are subject to the following restrictions:

• You cannot specify a column expression or a subquery in the expression of the AS OF
clause.

• You cannot specify the AS OF clause if you have specified the for_update_clause.

• You cannot use the AS OF clause in the defining query of a materialized view.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 70 of 164

• You cannot use the VERSIONS clause in flashback queries to temporary or external tables,
or tables that are part of a cluster.

• You cannot use the VERSIONS clause in flashback queries to views. However, you can use
the VERSIONS syntax in the defining query of a view.

• You cannot specify the flashback_query_clause if you have specified query_name in the
query_table_expression.

See Also

• Oracle Database Development Guide for more information on Oracle Flashback
Query

• "Using Flashback Queries: Example"

• Oracle Database Development Guide and Oracle Database PL/SQL Packages
and Types Reference for information about session-level Flashback using the
DBMS_FLASHBACK package

• Oracle Database Administrator's Guide and to the description of
FLASHBACK_TRANSACTION_QUERY in the Oracle Database Reference for more
information about transaction history

partition_extension_clause

For PARTITION or SUBPARTITION, specify the name or key value of the partition or subpartition
within table from which you want to retrieve data.

For range- and list-partitioned data, as an alternative to this clause, you can specify a condition
in the WHERE clause that restricts the retrieval to one or more partitions of table. Oracle
Database will interpret the condition and fetch data from only those partitions. It is not possible
to formulate such a WHERE condition for hash-partitioned data.

See Also

"References to Partitioned Tables and Indexes " and "Selecting from a Partition:
Example"

dblink

For dblink, specify the complete or partial name for a database link to a remote database where
the table, view, or materialized view is located. This database need not be an Oracle
Database.

See Also

• "References to Objects in Remote Databases " for more information on referring to
database links

• "Distributed Queries " for more information about distributed queries and "Using
Distributed Queries: Example"

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 71 of 164

If you omit dblink, then the database assumes that the table, view, or materialized view is on the
local database.

Restrictions on Database Links

Database links are subject to the following restrictions:

• You cannot query a user-defined type or an object REF on a remote table.

• You cannot query columns of type ANYTYPE, ANYDATA, or ANYDATASET from remote tables.

table | view | materialized_view | analytic_view | hierarchy

Specify the name of a table, view, materialized view, analytic view, or hierarchy from which
data is selected.

analytic_view

A persistent analytic view defined with the CREATE ANALYTIC VIEW statement or a transitory
analytic view defined in a WITH clause.

See Also

Analytic Views: Examples

hierarchy

A hierarchy defined with the CREATE HIERARCHY statement.

sample_clause

The sample_clause lets you instruct the database to select from a random sample of data from the
table, rather than from the entire table.

See Also

"Selecting a Sample: Examples"

BLOCK

BLOCK instructs the database to attempt to perform random block sampling instead of random
row sampling.

Block sampling is possible only during full table scans or index fast full scans. If a more
efficient execution path exists, then Oracle Database does not perform block sampling. If you
want to guarantee block sampling for a particular table or index, then use the FULL or
INDEX_FFS hint.

Beginning with Oracle Database 12c Release 2 (12.2.), you can specify block sampling for
external tables. In earlier releases, specifying block sampling for external tables had no effect;
row sampling was performed.

sample_percent

For sample_percent, specify the percentage of the total row or block count to be included in the
sample. The value must be in the range .000001 to, but not including, 100. This percentage

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 72 of 164

indicates the probability of each row, or each cluster of rows in the case of block sampling,
being selected as part of the sample. It does not mean that the database will retrieve exactly
sample_percent of the rows of table.

Warning

The use of statistically incorrect assumptions when using this feature can lead to
incorrect or undesirable results.

SEED seed_value

Specify this clause to instruct the database to attempt to return the same sample from one
execution to the next. The seed_value must be an integer between 0 and 4294967295. If you omit
this clause, then the resulting sample will change from one execution to the next.

Restrictions on sample_clause

The following restrictions apply to the SAMPLE clause:

• You cannot specify the SAMPLE clause in a subquery in a DML statement.

• You can specify the SAMPLE clause in a query on a base table, a container table of a
materialized view, or a view that is key preserving. You cannot specify this clause on a
view that is not key preserving.

subquery_restriction_clause

The subquery_restriction_clause lets you restrict the subquery in one of the following ways:

WITH READ ONLY

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to the
table or view that would produce rows that are not included in the subquery. When used in the
subquery of a DML statement, you can specify this clause in a subquery in the FROM clause
but not in subquery in the WHERE clause.

CONSTRAINT constraint

Specify the name of the CHECK OPTION constraint. If you omit this identifier, then Oracle
automatically assigns the constraint a name of the form SYS_Cn, where n is an integer that
makes the constraint name unique within the database.

See Also

"Using the WITH CHECK OPTION Clause: Example"

table_collection_expression

The table_collection_expression lets you inform Oracle that the value of collection_expression should be
treated as a table for purposes of query and DML operations. The collection_expression can be a
subquery, a column, a function, or a collection constructor. Regardless of its form, it must

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 73 of 164

return a collection value—that is, a value whose type is nested table or varray. This process of
extracting the elements of a collection is called collection unnesting.

The optional plus (+) is relevant if you are joining the TABLE collection expression with the
parent table. The + creates an outer join of the two, so that the query returns rows from the
outer table even if the collection expression is null.

Note

In earlier releases of Oracle, when collection_expression was a subquery,
table_collection_expression was expressed as THE subquery. That usage is now deprecated.

The collection_expression can reference columns of tables defined to its left in the FROM clause.
This is called left correlation. Left correlation can occur only in table_collection_expression. Other
subqueries cannot contains references to columns defined outside the subquery.

The optional (+) lets you specify that table_collection_expression should return a row with all fields
set to null if the collection is null or empty. The (+) is valid only if collection_expression uses left
correlation. The result is similar to that of an outer join.

When you use the (+) syntax in the WHERE clause of a subquery in an UPDATE or DELETE
operation, you must specify two tables in the FROM clause of the subquery. Oracle Database
ignores the outer join syntax unless there is a join in the subquery itself.

See Also

• "Outer Joins "

• "Table Collections: Examples" and "Collection Unnesting: Examples"

t_alias

Specify a correlation name, which is an alias for the table, view, materialized view, or
subquery for evaluating the query. This alias is required if the select list references any object
type attributes or object type methods. Correlation names are most often used in a correlated
query. Other references to the table, view, or materialized view throughout the query must refer
to this alias.

See Also

"Using Correlated Subqueries: Examples"

pivot_clause

The pivot_clause lets you write cross-tabulation queries that rotate rows into columns,
aggregating data in the process of the rotation. The output of a pivot operation typically
includes more columns and fewer rows than the starting data set. The pivot_clause performs the
following steps:

1. The pivot_clause computes the aggregation functions specified at the beginning of the
clause. Aggregation functions must specify a GROUP BY clause to return multiple values,

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 74 of 164

yet the pivot_clause does not contain an explicit GROUP BY clause. Instead, the pivot_clause
performs an implicit GROUP BY. The implicit grouping is based on all the columns not
referred to in the pivot_clause, along with the set of values specified in the pivot_in_clause.). If
you specify more than one aggregation function, then you must provide aliases for at least
all but one of the aggregation functions.

2. The grouping columns and aggregated values calculated in Step 1 are configured to
produce the following cross-tabular output:

a. All the implicit grouping columns not referred to in the pivot_clause, followed by

b. New columns corresponding to values in the pivot_in_clause. Each aggregated value is
transposed to the appropriate new column in the cross-tabulation. If you specify the
XML keyword, then the result is a single new column that expresses the data as an
XML string. The database generates a name for each new column. If you do not
provide an alias for an aggregation function, then the database uses each pivot
column value as the name for each new column to which that aggregated value is
transposed. If you provide an alias for an aggregation function, then the database
generates a name for each new column to which that aggregated value is transposed
by concatenating the pivot column name, the underscore character (_), and the
aggregation function alias. If a generated column name exceeds the maximum length
of a column name, then an ORA-00918 error is returned. To avoid this issue, specify a
shorter alias for the pivot column heading, the aggregation function, or both.

The subclauses of the pivot_clause have the following semantics:

XML

The optional XML keyword generates XML output for the query. The XML keyword permits the
pivot_in_clause to contain either a subquery or the wildcard keyword ANY. Subqueries and ANY
wildcards are useful when the pivot_in_clause values are not known in advance. With XML output,
the values of the pivot column are evaluated at execution time. You cannot specify XML when
you specify explicit pivot values using expressions in the pivot_in_clause.

When XML output is generated, the aggregate function is applied to each distinct pivot value,
and the database returns a column of XMLType containing an XML string for all value and
measure pairs.

expr

For expr, specify an expression that evaluates to a constant value of a pivot column. You can
optionally provide an alias for each pivot column value. If there is no alias, the column heading
becomes a quoted identifier.

subquery

A subquery is used only in conjunction with the XML keyword. When you specify a subquery,
all values found by the subquery are used for pivoting. The output is not the same cross-
tabular format returned by non-XML pivot queries. Instead of multiple columns specified in the
pivot_in_clause, the subquery produces a single XML string column. The XML string for each row
holds aggregated data corresponding to the implicit GROUP BY value of that row. The XML
string for each output row includes all pivot values found by the subquery, even if there are no
corresponding rows in the input data.

The subquery must return a list of unique values at the execution time of the pivot query. If the
subquery does not return a unique value, then Oracle Database raises a run-time error. Use
the DISTINCT keyword in the subquery if you are not sure the query will return unique values.

ANY

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 75 of 164

The ANY keyword is used only in conjunction with the XML keyword. The ANY keyword acts as
a wildcard and is similar in effect to subquery. The output is not the same cross-tabular format
returned by non-XML pivot queries. Instead of multiple columns specified in the pivot_in_clause,
the ANY keyword produces a single XML string column. The XML string for each row holds
aggregated data corresponding to the implicit GROUP BY value of that row. However, in contrast
to the behavior when you specify subquery, the ANY wildcard produces an XML string for each
output row that includes only the pivot values found in the input data corresponding to that row.

See Also

Oracle Database Data Warehousing Guide for more information about PIVOT and
UNPIVOT and "Using PIVOT and UNPIVOT: Examples"

unpivot_clause

The unpivot_clause rotates columns into rows.

• The INCLUDE | EXCLUDE NULLS clause gives you the option of including or excluding null-
valued rows. INCLUDE NULLS causes the unpivot operation to include null-valued rows;
EXCLUDE NULLS eliminates null-values rows from the return set. If you omit this clause,
then the unpivot operation excludes nulls.

• For column, specify a name for each output column that will hold measure values, such as
sales_quantity.

• In the pivot_for_clause, specify a name for each output column that will hold descriptor values,
such as quarter or product.

• In the unpivot_in_clause, specify the input data columns whose names will become values in
the output columns of the pivot_for_clause. These input data columns have names specifying
a category value, such as Q1, Q2, Q3, Q4. The optional AS clause lets you map the input
data column names to the specified literal values in the output columns.

The unpivot operation turns a set of value columns into one column. Therefore, the data types
of all the value columns must be in the same data type group, such as numeric or character.

• If all the value columns are CHAR, then the unpivoted column is CHAR. If any value column
is VARCHAR2, then the unpivoted column is VARCHAR2.

• If all the value columns are NUMBER, then the unpivoted column is NUMBER. If any value
column is BINARY_DOUBLE, then the unpivoted column is BINARY_DOUBLE. If no value
column is BINARY_DOUBLE but any value column is BINARY_FLOAT, then the unpivoted
column is BINARY_FLOAT.

containers_clause

The CONTAINERS clause is useful in a multitenant container database (CDB). This clause lets
you query data in the specified table or view across all containers in a CDB.

• To query data in a CDB, you must be a common user connected to the CDB root, and the
table or view must exist in the root and all PDBs. The query returns all rows from the table
or view in the CDB root and in all open PDBs.

• To query data in an application container, you must be a common user connected to the
application root, and the table or view must exist in the application root and all PDBs in the
application container. The query returns all rows from the table or view in the application
root and in all open PDBs in the application container.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 76 of 164

The table or view must be in your own schema. It is not necessary to specify schema, but if you
do then you must specify your own schema.

The query returns all rows from the table or view in the root and in all open PDBs, except
PDBs that are open in RESTRICTED mode. If the queried table or view does not already contain
a CON_ID column, then the query adds a CON_ID column to the query result, which identifies the
container whose data a given row represents.

See Also

• CONTAINERS Hint

• Oracle Database Administrator's Guide for more information on the CONTAINERS
clause

shards_clause

Use the shards_clause to query Oracle supplied objects such as V$, DBA/USER/ALL views, and
dictionary tables across shards. You can execute a query with the shards_clause only on the
shard catalog database.

This feature enables easier centralized management by providing the ability to execute queries
across all shards from a central shard catalog.

values_clause

You can use the values_clause in the FROM and with_clause of SELECT as a table value constructor
(TVC).

Each table value constructor contains a set of row value expressions (RVE). The elements in
each row expression should be homogeneous in number and their type must be compatible.

The c_alias or column alias is the name of the column corresponding to each expression in an
RVE.

TVCs in the FROM clause of select statements can be used as table expressions.

Example: Using the Values Constructor in the FROM Clause of SELECT

SELECT *
 FROM (VALUES (1,'SCOTT'),
 (2,'SMITH'),
 (3,'JOHN')
) t1 (employee_id, first_name);

The example above creates an in-line table t1 with two columns employee_id and first_name and
three rows.

If you use the values_clause with the with_clause::=, you must specify the column alias. Each
column alias must correspond to the column produced by the TVC. In this case, the TVC
replaces the subquery.

Example: Using the Values Constructor in the With_Clause of SELECT:

WITH X(foo, bar, baz) AS (
 VALUES (0, 1, 2), (3, 4, 5), (6, 7, 8)) SELECT * FROM X;

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 77 of 164

The table and column aliases (t_alias and c_alias) are required unless you use values_clause with
with_clause in SELECT.

Restrictions

• If multiple RVEs are specified, then each RVE should have the same cardinality. This
means that each RVE must have the same number of elements.

• Each element of the RVE can be a valid SQL expression that includes a column name,
scalar valued subquery, bind variable, or any other expression that evaluates to a single
value.

• The type of the expression or a constant at the corresponding positions of RVE in a TVC
should be implicitly convertible to the most general type following normal SQL type
conversion rules. The type of expression that will be inferred will be the most general type
of expression at the same position in all RVEs that constitute the TVC.

• If a scalar valued subquery is used to compute the value of an element in a RVE then the
select list of scalar valued subquery can contain exactly one expression.

• If RVE is used in an UPDATE, or MERGE statement, then the keyword DEFAULT can be
specified in a RVE for each position to indicate to the SQL engine that the default column
value should be used for this column.

• The execution plan will have a new section that appears only when the TVC has RVEs
consisting of constant values.

• If the types of the corresponding elements in a RVE in a TVC have different constraints,
then the type of the column will be the union of all the constraints or the most relaxed
constraint.

• An error will be thrown if a TVC, that consists of more than one RVE, is used in a place
where a scalar valued subquery is expected.

• The parallel behavior will be similar to union all queries on DUAL. TVC will not impact
parallel behavior.

• RVEs cannot be nested, that is, a RVE cannot contain another RVE.

• The maximum number of columns produced by the with_clause will be the same as the
maximum number of columns in a database table.

• NDV and other statistics that are computed by the optimizer will be similar to a union of all
queries on DUAL.

• The TVC clause will not have any restriction on number of RVEs other than the restriction
imposed by available memory.

• The elimination of UNION ALL branches on a predicate will be similar to UNION ALL queries
with DUAL.

join_clause

Use the appropriate join_clause syntax to identify tables that are part of a join from which to
select data. The inner_cross_join_clause lets you specify an inner or cross join. The outer_join_clause
lets you specify an outer join. The cross_outer_apply_clause lets you specify a variation of an ANSI
CROSS JOIN or an ANSI LEFT OUTER JOIN with left correlation support.

When you join more than two row sources, you can use parentheses to override default
precedence. For example, the following syntax:

SELECT ... FROM a JOIN (b JOIN c) ...

results in a join of b and c, and then a join of that result set with a.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 78 of 164

See Also

"Joins " for more information on joins, "Using Join Queries: Examples", "Using Self
Joins: Example", and "Using Outer Joins: Examples"

inner_cross_join_clause

Inner joins return only those rows that satisfy the join condition.

INNER

Specify INNER to explicitly specify an inner join.

JOIN

The JOIN keyword explicitly states that a join is being performed. You can use this syntax to
replace the comma-delimited table expressions used in WHERE clause joins with FROM clause
join syntax.

ON condition

Use the ON clause to specify a join condition. Doing so lets you specify join conditions separate
from any search or filter conditions in the WHERE clause.

USING (column)

When you are specifying an equijoin of columns that have the same name in both tables, the
USING column clause indicates the columns to be used. You can use this clause only if the join
columns in both tables have the same name. Within this clause, do not qualify the column
name with a table name or table alias.

CROSS

The CROSS keyword indicates that a cross join is being performed. A cross join produces the
cross-product of two relations and is essentially the same as the comma-delimited Oracle
Database notation.

NATURAL

The NATURAL keyword indicates that a natural join is being performed. Refer to NATURAL for
the full semantics of this clause.

outer_join_clause

Outer joins return all rows that satisfy the join condition and also return some or all of those
rows from one table for which no rows from the other satisfy the join condition. You can specify
two types of outer joins: a conventional outer join using the table_reference syntax on both sides
of the join, or a partitioned outer join using the query_partition_clause on one side or the other. A
partitioned outer join is similar to a conventional outer join except that the join takes place
between the outer table and each partition of the inner table. This type of join lets you
selectively make sparse data more dense along the dimensions of interest. This process is
called data densification.

query_partition_clause

The query_partition_clause lets you define a partitioned outer join. Such a join extends the
conventional outer join syntax by applying the outer join to partitions returned by the query.
Oracle Database creates a partition of rows for each expression you specify in the PARTITION
BY clause. The rows in each query partition have same value for the PARTITION BY expression.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 79 of 164

The query_partition_clause can be on either side of the outer join. The result of a partitioned outer
join is a UNION of the outer joins of each of the partitions in the partitioned result set and the
table on the other side of the join. This type of result is useful for filling gaps in sparse data,
which simplifies analytic calculations.

If you omit this clause, then the database treats the entire table expression—everything
specified in table_reference—as a single partition, resulting in a conventional outer join.

To use the query_partition_clause in an analytic function, use the upper branch of the syntax
(without parentheses). To use this clause in a model query (in the model_column_clauses) or a
partitioned outer join (in the outer_join_clause), use the lower branch of the syntax (with
parentheses).

Restrictions on Partitioned Outer Joins

Partitioned outer joins are subject to the following restrictions:

• You can specify the query_partition_clause on either the right or left side of the join, but not
both.

• You cannot specify a FULL partitioned outer join.

• If you specify the query_partition_clause in an outer join with an ON clause, then you cannot
specify a subquery in the ON condition.

See Also

"Using Partitioned Outer Joins: Examples"

NATURAL

The NATURAL keyword indicates that a natural join is being performed. A natural join is based
on all columns in the two tables that have the same name. It selects rows from the two tables
that have equal values in the relevant columns. If two columns with the same name do not
have compatible data types, then an error is raised. When specifying columns that are involved
in the natural join, do not qualify the column name with a table name or table alias.

On occasion, the table pairings in natural or cross joins may be ambiguous. For example,
consider the following join syntax:

 a NATURAL LEFT JOIN b LEFT JOIN c ON b.c1 = c.c1

This example can be interpreted in either of the following ways:

 a NATURAL LEFT JOIN (b LEFT JOIN c ON b.c1 = c.c1)
 (a NATURAL LEFT JOIN b) LEFT JOIN c ON b.c1 = c.c1

To avoid this ambiguity, you can use parentheses to specify the pairings of joined tables. In the
absence of such parentheses, the database uses left associativity, pairing the tables from left
to right.

Restriction on Natural Joins

You cannot specify a LOB column, columns of ANYTYPE, ANYDATA, or ANYDATASET, or a
collection column as part of a natural join.

outer_join_type

The outer_join_type indicates the kind of outer join being performed:

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 80 of 164

• Specify RIGHT to indicate a right outer join.

• Specify LEFT to indicate a left outer join.

• Specify FULL to indicate a full or two-sided outer join. In addition to the inner join, rows
from both tables that have not been returned in the result of the inner join will be preserved
and extended with nulls.

• You can specify the optional OUTER keyword following RIGHT, LEFT, or FULL to explicitly
clarify that an outer join is being performed.

ON condition

Use the ON clause to specify a join condition. Doing so lets you specify join conditions separate
from any search or filter conditions in the WHERE clause.

Restriction on the ON condition Clause

You cannot specify this clause with a NATURAL outer join.

USING column

In an outer join with the USING clause, the query returns a single column that coalesces the two
matching columns in the join. The coalesce function is as follows:

COALESCE (a, b) = a if a NOT NULL, else b.

Therefore:

• A left outer join returns all the common column values from the left table in the FROM
clause.

• A right outer join returns all the common column values from the right table in the FROM
clause.

• A full outer join returns all the common column values from both joined tables.

Restriction on the USING column Clause

The USING column clause is subject to the following restrictions:

• Within this clause, do not qualify the column name with a table name or table alias.

• You cannot specify a LOB column or a collection column in the USING column clause.

• You cannot specify this clause with a NATURAL outer join.

See Also

• "Outer Joins " for additional rules and restrictions pertaining to outer joins

• Oracle Database Data Warehousing Guide for a complete discussion of
partitioned outer joins and data densification

• "Using Outer Joins: Examples"

cross_outer_apply_clause

This clause allows you to perform a variation of an ANSI CROSS JOIN or an ANSI LEFT OUTER
JOIN with left correlation support. You can specify a table_reference or collection_expression to the right
of the APPLY keyword. The table_reference can be a table, inline view, or TABLE collection
expression. The collection_expression can be a subquery, a column, a function, or a collection

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 81 of 164

constructor. Regardless of its form, it must return a collection value—that is, a value whose
type is nested table or varray. The table_reference or collection_expression can reference columns of
tables defined in the FROM clause to the left of the APPLY keyword. This is called left correlation.

• Specify CROSS APPLY to perform a variation of an ANSI CROSS JOIN. Only rows from the
table on the left side of the join that produce a result set from table_reference or
collection_expression are returned.

• Specify OUTER APPLY to perform a variation of an ANSI LEFT OUTER JOIN. All rows from the
table on the left side of the join are returned. Rows that do not produce a result set from
table_reference or collection_expression have the NULL value in the corresponding column(s).

Restriction on the cross_outer_apply_clause

The table_reference cannot be a lateral inline view.

See Also

Using CROSS APPLY and OUTER APPLY Joins: Examples

inline_analytic_view

An inline analytic view is a transitory analytic view that is specified in the FROM clause. To
create an inline analytic view, use the ANALYTIC VIEW keyword and specify a sub_av_clause that
defines the analytic view. Optionally, you may specify an inline_av_alias, which is an alias for the
inline analytic view. The rules for the inline_av_alias are the same as the rules for an inline view
alias.

See Also

Analytic Views: Examples

where_clause

The WHERE condition lets you restrict the rows selected to those that satisfy one or more
conditions. For condition, specify any valid SQL condition.

If you omit this clause, then the database returns all rows from the tables, views, or
materialized views in the FROM clause.

Note

If this clause refers to a DATE column of a partitioned table or index, then the database
performs partition pruning only if:

• You created the table or index partitions by fully specifying the year using the
TO_DATE function with a 4-digit format mask, and

• You specify the date in the where_clause of the query using the TO_DATE function and
either a 2- or 4-digit format mask.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 82 of 164

With Oracle Database 21c you can write macros for scalar expressions and use them inside
the where_clause , where it would be legal to call a PLSQL function.

You must define these macro functions in PL/SQL and call them from SQL for them to function
as macros.

See Also

• Conditions for the syntax description of condition

• "Selecting from a Partition: Example"

• Defining SQL Macros

hierarchical_query_clause

The hierarchical_query_clause lets you select rows in a hierarchical order.

SELECT statements that contain hierarchical queries can contain the LEVEL pseudocolumn in
the select list. LEVEL returns the value 1 for a root node, 2 for a child node of a root node, 3 for
a grandchild, and so on. The number of levels returned by a hierarchical query may be limited
by available user memory.

Oracle processes hierarchical queries as follows:

• A join, if present, is evaluated first, whether the join is specified in the FROM clause or with
WHERE clause predicates.

• The CONNECT BY condition is evaluated.

• Any remaining WHERE clause predicates are evaluated.

If you specify this clause, then do not specify either ORDER BY or GROUP BY, because they will
destroy the hierarchical order of the CONNECT BY results. If you want to order rows of siblings
of the same parent, then use the ORDER SIBLINGS BY clause.

See Also

"Hierarchical Queries " for a discussion of hierarchical queries and "Using the LEVEL
Pseudocolumn: Examples"

START WITH Clause

Specify a condition that identifies the row(s) to be used as the root(s) of a hierarchical query.
The condition can be any condition as described in Conditions. Oracle Database uses as root(s)
all rows that satisfy this condition. If you omit this clause, then the database uses all rows in
the table as root rows.

CONNECT BY Clause

Specify a condition that identifies the relationship between parent rows and child rows of the
hierarchy. The condition can be any condition as described in Conditions. However, it must use
the PRIOR operator to refer to the parent row.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 83 of 164

See Also

• Pseudocolumns for more information on LEVEL

• "Hierarchical Queries " for general information on hierarchical queries

• "Hierarchical Query: Examples"

group_by_clause

Specify the GROUP BY clause if you want the database to group the selected rows based on the
value of expr(s) for each row and return a single row of summary information for each group. If
this clause contains CUBE or ROLLUP extensions, then the database produces superaggregate
groupings in addition to the regular groupings.

Expressions in the GROUP BY clause can contain any columns of the tables, views, or
materialized views in the FROM clause, regardless of whether the columns appear in the select
list.

The GROUP BY clause groups rows but does not guarantee the order of the result set. To order
the groupings, use the ORDER BY clause.

If a column name in the source tables and column alias in the SELECT list are the same, GROUP
BY will interpret the identifier as the column name, not the alias.

See Also

• Oracle Database Data Warehousing Guide for an expanded discussion and
examples of using SQL grouping syntax for data aggregation

• the GROUP_ID , GROUPING , and GROUPING_ID functions for examples

• "Using the GROUP BY Clause: Examples"

• Restrictions for Linguistic Collations for information on implications of how GROUP
BY character values are compared linguistically

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the expressions in the GROUP BY clause

ROLLUP

The ROLLUP operation in the simple_grouping_clause groups the selected rows based on the values
of the first n, n-1, n-2, ... 0 expressions in the GROUP BY specification, and returns a single row
of summary for each group. You can use the ROLLUP operation to produce subtotal values by
using it with the SUM function. When used with SUM, ROLLUP generates subtotals from the most
detailed level to the grand total. Aggregate functions such as COUNT can be used to produce
other kinds of superaggregates.

For example, given three expressions (n=3) in the ROLLUP clause of the simple_grouping_clause,
the operation results in n+1 = 3+1 = 4 groupings.

Rows grouped on the values of the first n expressions are called regular rows, and the others
are called superaggregate rows.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 84 of 164

See Also

Oracle Database Data Warehousing Guide for information on using ROLLUP with
materialized views

CUBE

The CUBE operation in the simple_grouping_clause groups the selected rows based on the values of
all possible combinations of expressions in the specification. It returns a single row of summary
information for each group. You can use the CUBE operation to produce cross-tabulation
values.

For example, given three expressions (n=3) in the CUBE clause of the simple_grouping_clause, the
operation results in 2n = 23 = 8 groupings. Rows grouped on the values of n expressions are
called regular rows, and the rest are called superaggregate rows.

See Also

• Oracle Database Data Warehousing Guide for information on using CUBE with
materialized views

• "Using the GROUP BY CUBE Clause: Example"

GROUPING SETS

GROUPING SETS are a further extension of the GROUP BY clause that let you specify multiple
groupings of data. Doing so facilitates efficient aggregation by pruning the aggregates you do
not need. You specify just the desired groups, and the database does not need to perform the
full set of aggregations generated by CUBE or ROLLUP. Oracle Database computes all
groupings specified in the GROUPING SETS clause and combines the results of individual
groupings with a UNION ALL operation. The UNION ALL means that the result set can include
duplicate rows.

Within the GROUP BY clause, you can combine expressions in various ways:

• To specify composite columns, group columns within parentheses so that the database
treats them as a unit while computing ROLLUP or CUBE operations.

• To specify concatenated grouping sets, separate multiple grouping sets, ROLLUP, and
CUBE operations with commas so that the database combines them into a single GROUP BY
clause. The result is a cross-product of groupings from each grouping set.

See Also

"Using the GROUPING SETS Clause: Example"

ALL

• ALL is a reserved word, so it cannot be a column name and it cannot be used as a column
alias.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 85 of 164

• You cannot use ALL with other GROUP BY syntax options. If you specify ALL, then GROUP BY
ALL is the only allowed group_by_clause syntax. In particular, you cannot specify ROLLUP,
CUBE or GROUPING SETS with GROUP BY ALL.

• GROUP BY ALL includes all select list expressions except the following, which are not valid
GROUP BY expressions in the GROUP BY clause:

– group functions or expressions containing group functions

– scalar subqueries

– window functions

• GROUP BY ALL also excludes select list expressions that are constants, including NULLs,
and binds. The main reason to skip constants is to avoid ambiguity if group by position is
enabled.

• GROUP BY ALL does not extract parts of the select list expression for GROUP BY: either the
whole expression is included in the GROUP BY or not at all.

• GROUP BY ALL can be used in views and materialized views. The definition query stored in
the dictionary for both will contain GROUP BY ALL and not the transformed GROUP BY clause.

• Full text-match rewrite of materialized views with GROUP BY ALL is supported, but partial
text-match rewrite is not.

• GROUP BY ALL can be used in a WITH clause query. It is supported wherever the GROUP BY
clause is allowed.

• HAVING condition may be specified with GROUP BY ALL.

• GROUP BY ALL is not supported with MODEL clause. If you specify it, the following error is
raised: "GROUP BY ALL is not supported with MODEL clause”.

• GROUP BY expression limit (1000 or 4k) applies to GROUP BY ALL . If you exceed the limit an
error is raised.

• GROUP BY ALL is not supported in a CREATE MATERIALIZED ZONE MAP DDL defining
subquery. If you specify it, the following error is raised: “Construct or object GROUP BY ALL clause
not allowed for zonemap”.

HAVING Clause

Use the HAVING clause to restrict the groups of returned rows to those groups for which the
specified condition is TRUE. If you omit this clause, then the database returns summary rows for
all groups.

Specify GROUP BY and HAVING after the where_clause and hierarchical_query_clause. If you specify
both GROUP BY and HAVING, then they can appear in either order.

With Oracle Database 21c you can write macros for scalar expressions and use them inside
the HAVING clause, where it would be legal to call a PL/SQL function.

You must define these macro functions in PL/SQL and call them from SQL for them to function
as macros.

See Also

• "Using the HAVING Condition: Example"

• Defining SQL Macros

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 86 of 164

Restrictions on the GROUP BY Clause

This clause is subject to the following restrictions:

• You cannot specify LOB columns, nested tables, or varrays as part of expr.

• The expressions can be of any form except scalar subquery expressions.

• If the group_by_clause references any object type columns, then the query will not be
parallelized.

• To group by position, the parameter group_by_position_enabled must be set to true, this is false
by default

model_clause

The model_clause lets you view selected rows as a multidimensional array and randomly access
cells within that array. Using the model_clause, you can specify a series of cell assignments,
referred to as rules, that invoke calculations on individual cells and ranges of cells. These
rules operate on the results of a query and do not update any database tables.

When using the model_clause in a query, the SELECT and ORDER BY clauses must refer only to
those columns defined in the model_column_clauses.

See Also

• The syntax description of expr in "About SQL Expressions " and the syntax
description of condition in Conditions

• Oracle Database Data Warehousing Guide for an expanded discussion and
examples

• "The MODEL clause: Examples"

main_model

The main_model clause defines how the selected rows will be viewed in a multidimensional array
and what rules will operate on which cells in that array.

model_column_clauses

The model_column_clauses define and classify the columns of a query into three groups: partition
columns, dimension columns, and measure columns. For expr, you can specify a column,
constant, host variable, single-row function, aggregate function, or any expression involving
them. If expr is a column, then the column alias (c_alias) is optional. If expr is not a column, then
the column alias is required. If you specify a column alias, then you must use the alias to refer
to the column in the model_rules_clause, SELECT list, and the query ORDER BY clauses.

PARTITION BY

The PARTITION BY clause specifies the columns that will be used to divide the selected rows
into partitions based on the values of the specified columns.

DIMENSION BY

The DIMENSION BY clause specifies the columns that will identify a row within a partition. The
values of the dimension columns, along with those of the partition columns, serve as array
indexes to the measure columns within a row.

MEASURES

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 87 of 164

The MEASURES clause identifies the columns on which the calculations can be performed.
Measure columns in individual rows are treated like cells that you can reference, by specifying
the values for the partition and dimension columns, and update.

cell_reference_options

Use the cell_reference_options clause to specify how null and absent values are treated in rules
and how column uniqueness is constrained.

IGNORE NAV

When you specify IGNORE NAV, the database returns the following values for the null and
absent values of the data type specified:

• Zero for numeric data types

• 01-JAN-2000 for datetime data types

• An empty string for character data types

• Null for all other data types

KEEP NAV

When you specify KEEP NAV, the database returns null for both null and absent cell values.
KEEP NAV is the default.

UNIQUE SINGLE REFERENCE

When you specify UNIQUE SINGLE REFERENCE, the database checks only single-cell references
on the right-hand side of the rule for uniqueness, not the entire query result set.

UNIQUE DIMENSION

When you specify UNIQUE DIMENSION, the database checks that the PARTITION BY and
DIMENSION BY columns form a unique key to the query. UNIQUE DIMENSION is the default.

model_rules_clause

Use the model_rules_clause to specify the cells to be updated, the rules for updating those cells,
and optionally, how the rules are to be applied and processed.

Each rule represents an assignment and consists of a left-hand side and right-hand side. The
left-hand side of the rule identifies the cells to be updated by the right-hand side of the rule.
The right-hand side of the rule evaluates to the values to be assigned to the cells specified on
the left-hand side of the rule.

UPSERT ALL

UPSERT ALL allows UPSERT behavior for a rule with both positional and symbolic references on
the left-hand side of the rule. When evaluating an UPSERT ALL rule, Oracle performs the
following steps to create a list of cell references to be upserted:

1. Find the existing cells that satisfy all the symbolic predicates of the cell reference.

2. Using just the dimensions that have symbolic references, find the distinct dimension value
combinations of these cells.

3. Perform a cross product of these value combinations with the dimension values specified
by way of positional references.

Refer to Oracle Database Data Warehousing Guide for more information on the semantics of
UPSERT ALL.

UPSERT

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 88 of 164

When you specify UPSERT, the database applies the rules to those cells referenced on the left-
hand side of the rule that exist in the multidimensional array, and inserts new rows for those
that do not exist. UPSERT behavior applies only when positional referencing is used on the left-
hand side and a single cell is referenced. UPSERT is the default. Refer to cell_assignment for
more information on positional referencing and single-cell references.

UPDATE and UPSERT can be specified for individual rules as well. When either UPDATE or UPSERT
is specified for a specific rule, it takes precedence over the option specified in the RULES
clause.

Note

If an UPSERT ALL, UPSERT, or UPDATE rule does not contain the appropriate predicates,
then the database may implicitly convert it to a different type of rule:

• If an UPSERT rule contains an existential predicate, then the rule is treated as an
UPDATE rule.

• An UPSERT ALL rule must have at least one existential predicate and one qualified
predicate on its left side. If it has no existential predicate, then it is treated as an
UPSERT rule. If it has no qualified predicate, then it is treated as an UPDATE rule

UPDATE

When you specify UPDATE, the database applies the rules to those cells referenced on the left-
hand side of the rule that exist in the multidimensional array. If the cells do not exist, then the
assignment is ignored.

AUTOMATIC ORDER

When you specify AUTOMATIC ORDER, the database evaluates the rules based on their
dependency order. In this case, a cell can be assigned a value once only.

SEQUENTIAL ORDER

When you specify SEQUENTIAL ORDER, the database evaluates the rules in the order they
appear. In this case, a cell can be assigned a value more than once. SEQUENTIAL ORDER is the
default.

ITERATE ... [UNTIL]

Use ITERATE ... [UNTIL] to specify the number of times to cycle through the rules and,
optionally, an early termination condition. The parentheses around the UNTIL condition are
optional.

When you specify ITERATE ... [UNTIL], rules are evaluated in the order in which they appear.
Oracle Database returns an error if both AUTOMATIC ORDER and ITERATE ... [UNTIL] are
specified in the model_rules_clause.

cell_assignment

The cell_assignment clause, which is the left-hand side of the rule, specifies one or more cells to
be updated. When a cell_assignment references a single cell, it is called a single-cell reference.
When more than one cell is referenced, it is called a multiple-cell reference.

All dimension columns defined in the model_clause must be qualified in the cell_assignment clause. A
dimension can be qualified using either symbolic or positional referencing.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 89 of 164

A symbolic reference qualifies a single dimension column using a Boolean condition like
dimension_column=constant. A positional reference is one where the dimension column is implied
by its position in the DIMENSION BY clause. The only difference between symbolic references
and positional references is in the treatment of nulls.

Using a single-cell symbolic reference such as a[x=null,y=2000], no cells qualify because x=null
evaluates to FALSE. However, using a single-cell positional reference such as a[null,2000], a cell
where x is null and y is 2000 qualifies because null = null evaluates to TRUE. With single-cell
positional referencing, you can reference, update, and insert cells where dimension columns
are null.

You can specify a condition or an expression representing a dimension column value using
either symbolic or positional referencing. condition cannot contain aggregate functions or the CV
function, and condition must reference a single dimension column. expr cannot contain a
subquery. Refer to "Model Expressions" for information on model expressions.

single_column_for_loop

The single_column_for_loop clause lets you specify a range of cells to be updated within a single
dimension column.

The IN clause lets you specify the values of the dimension column as either a list of values or
as a subquery. When using subquery, it cannot:

• Be a correlated query

• Return more than 10,000 rows

• Be a query defined in the WITH clause

The FROM clause lets you specify a range of values for a dimension column with discrete
increments within the range. The FROM clause can only be used for those columns with a data
type for which addition and subtraction is supported. The INCREMENT and DECREMENT values
must be positive.

Optionally, you can specify the LIKE clause within the FROM clause. In the LIKE clause, pattern is
a character string containing a single pattern-matching character %. This character is replaced
during execution with the current incremented or decremented value in the FROM clause.

If all dimensions other than those used by a FOR loop involve a single-cell reference, then the
expressions can insert new rows. The number of dimension value combinations generated by
FOR loops is counted as part of the 10,000 row limit of the MODEL clause.

multi_column_for_loop

The multi_column_for_loop clause lets you specify a range of cells to be updated across multiple
dimension columns. The IN clause lets you specify the values of the dimension columns as
either multiple lists of values or as a subquery. When using subquery, it cannot:

• Be a correlated query

• Return more than 10,000 rows

• Be a query defined in the WITH clause

If all dimensions other than those used by a FOR loop involve a single-cell reference, then the
expressions can insert new rows. The number of dimension value combinations generated by
FOR loops is counted as part of the 10,000 row limit of the MODEL clause.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 90 of 164

See Also

Oracle Database Data Warehousing Guide for more information about using FOR loops
in the MODEL clause

order_by_clause

Use the ORDER BY clause to specify the order in which cells on the left-hand side of the rule are
to be evaluated. The expr must resolve to a dimension or measure column. If the ORDER BY
clause is not specified, then the order defaults to the order of the columns as specified in the
DIMENSION BY clause. See order_by_clause for more information.

Restrictions on the order_by_clause

Use of the ORDER BY clause in the model rule is subject to the following restrictions:

• You cannot specify SIBLINGS, position, or c_alias in the order_by_clause of the model_clause.

• You cannot specify this clause on the left-hand side of the model rule and also specify a
FOR loop on the right-hand side of the rule.

expr

Specify an expression representing the value or values of the cell or cells specified on the
right-hand side of the rule. expr cannot contain a subquery. Refer to "Model Expressions" for
information on model expressions.

return_rows_clause

The return_rows_clause lets you specify whether to return all rows selected or only those rows
updated by the model rules. ALL is the default.

reference_model

Use the reference_model clause when you need to access multiple arrays from inside the
model_clause. This clause defines a read-only multidimensional array based on the results of a
query.

The subclauses of the reference_model clause have the same semantics as for the main_model
clause. Refer to model_column_clauses and cell_reference_options.

Restrictions on the reference_model Clause

This clause is subject to the following restrictions:

• PARTITION BY columns cannot be specified for reference models.

• The subquery of the reference model cannot refer to columns in an outer subquery.

Set Operators: (UNION, INTERSECT, MINUS, EXCEPT) ALL

The set operators combine the rows returned by two SELECT statements into a single result.
The number and data types of the columns selected by each component query must be the
same, but the column lengths can be different. The names of the columns in the result set are
the names of the expressions in the select list preceding the set operator.

If you combine more than two queries with set operators, then the database evaluates adjacent
queries from left to right. The parentheses around the subquery are optional. You can use them
to specify a different order of evaluation.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 91 of 164

Refer to "The Set Operators" for information on these operators, including restrictions on their
use.

order_by_clause

Use the ORDER BY clause to order rows returned by the statement. Without an order_by_clause,
no guarantee exists that the same query executed more than once will retrieve rows in the
same order.

SIBLINGS

The SIBLINGS keyword is valid only if you also specify the hierarchical_query_clause (CONNECT BY).
ORDER SIBLINGS BY preserves any ordering specified in the hierarchical query clause and then
applies the order_by_clause to the siblings of the hierarchy.

expr

expr orders rows based on their value for expr. The expression is based on columns in the select
list or columns in the tables, views, or materialized views in the FROM clause.

position

Specify position to order rows based on their value for the expression in this position of the
select list. The position value must be an integer.

You can specify multiple expressions in the order_by_clause. Oracle Database first sorts rows
based on their values for the first expression. Rows with the same value for the first expression
are then sorted based on their values for the second expression, and so on. The database
sorts nulls following all others in ascending order and preceding all others in descending order.
Refer to "Sorting Query Results " for a discussion of ordering query results.

ASC | DESC

Specify whether the ordering sequence is ascending or descending. ASC is the default.

NULLS FIRST | NULLS LAST

Specify whether returned rows containing null values should appear first or last in the ordering
sequence.

NULLS LAST is the default for ascending order, and NULLS FIRST is the default for descending
order.

Restrictions on the ORDER BY Clause

The following restrictions apply to the ORDER BY clause:

• If you have specified the DISTINCT operator in this statement, then this clause cannot refer
to columns unless they appear in the select list.

• An order_by_clause can contain no more than 255 expressions.

• You cannot order by a LOB, LONG, or LONG RAW column, nested table, or varray.

• If you specify a group_by_clause in the same statement, then this order_by_clause is
restricted to the following expressions:

– Constants

– Aggregate functions

– Analytic functions

– The functions USER, UID, and SYSDATE

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 92 of 164

– Expressions identical to those in the group_by_clause

– Expressions comprising the preceding expressions that evaluate to the same value for
all rows in a group

See Also

• "Using the ORDER BY Clause: Examples"

• Restrictions for Linguistic Collations for information on implications of how ORDER
BY character values are compared linguistically

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the expressions in the ORDER BY clause

window_clause

Oracle Database Release 21c supports the window_clause in the query_block clause.

Rules

• If you use a new window_specification to specify an existing_window_name then

– existing_window_name must refer to an earlier entry in the window_name list

– You cannot use existing_window_name with windowing_clause

– You cannot define a new window with the query_partition_clause. If existing_window_name has
order_by_clause, then the new window definition cannot have order_by_clause.

• Note that OVER window_name is not equivalent to OVER (window_name …). OVER (window_name
…) implies copying and modifying the window specification, and will be rejected if the
referenced window specification includes a windowing_clause.

Example

The following query shows the usage of window_clause specified as part of table expression and
window functions specified using the window name as defined in window clause.

SELECT
 ename, mgr,
 FIRST_VALUE(sal) OVER w AS "first",
 LAST_VALUE(sal) OVER w AS "last",
 NTH_VALUE(sal, 2) OVER w AS "second",
 NTH_VALUE(sal, 4) OVER w AS "fourth"
 FROM emp
 WINDOW w AS (PARTITION BY deptno ORDER BY sal ROWS UNBOUNDED PRECEDING);

row_limiting_clause

The row_limiting_clause allows you to limit the rows returned by the query. You can specify an
offset, and the number of rows or percentage of rows to return. You can use this clause to
implement top-N reporting. For consistent results, specify the order_by_clause to ensure a
deterministic sort order.

OFFSET

Use this clause to specify the number of rows to skip before row limiting begins. offset must be a
number or an expression that evaluates to a numeric value. If you specify a negative number,
then offset is treated as 0. If you specify NULL, or a number greater than or equal to the number
of rows returned by the query, then 0 rows are returned. If offset includes a fraction, then the

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 93 of 164

fractional portion is truncated. If you do not specify this clause, then offset is 0 and row limiting
begins with the first row.

Restrictions

This clause is subject to the following restrictions:

• You cannot specify this clause with the for_update_clause.

• If you specify this clause, then the select list cannot contain the sequence pseudocolumns
CURRVAL or NEXTVAL.

• Materialized views are not eligible for an incremental refresh if the defining query contains
the row_limiting_clause.

• If the select list contains columns with identical names and you specify the
row_limiting_clause, then an ORA-00918 error occurs. This error occurs whether the identically
named columns are in the same table or in different tables. You can work around this issue
by specifying unique column aliases for the identically named columns.

fetch_clause

Use this clause to specify the number of rows or percentage of rows to return. If you do not
specify this clause, then all rows are returned, beginning at row offset + 1.

APPROX | APPROXIMATE | EXACT

Specify EXACT to limit results as specified exactly.

Specify APPROX or APPROXIMATE to perform approximate vector search.

The two keywords APPROX and APPROXIMATE are synonyms. If you specify neither of them, the
default is APPROXIMATE. However, approximate vector search can only be performed when all
syntax and semantic rules are satisfied, the corresponding vector index is available, and the
query optimizer determines to perform it. If any of these conditions are unmet, then an
approximate search is not performed. In this case the query returns exact results.

Syntax and Semantic Rules for an Approximate Vector Search

• row_limiting_partition_clause must not be specified.

• OFFSET must not be specified.

• percent PERCENT (of row_specification, not accuracy PERCENT of accuracy_clause) must not be
specified.

• WITH TIES must not be specified .

• The approximate row limiting clause must be associated with an ORDER BY clause.

• The first key of the ORDER BY must be a distance function (VECTOR_DISTANCE or variant),
which must have one and only one vector column operand.

• There may be additional ORDER BY expressions after the distance function, but not before.

FIRST | NEXT

These keywords can be used interchangeably and are provided for semantic clarity.

row_limiting_partition_clause

You can specify one or more levels of partitions in partition_count to apply row limiting within each
partition or each combination of all levels of partitions.

You cannot use this clause with OFFSET, percent PERCENT, or WITH TIES.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 94 of 164

You may specify unlimited levels of partitions. For each partition level, the following rules apply:

• partition_countX must be a number or an expression that evaluates to a numeric value. It can
be given as a constant literal, a bind, a non-scalar subquery, or a correlated variable.
Otherwise an error is raised.

• If a negative number is specified, then it is treated as 0.

• If partition_countX is greater than the number of partitions available in this level, then certain
rows from all available partitions in this level are returned.

• If partition_countX includes a fraction, then the fractional portion is truncated.

• If partition_countX in any level is NULL, then 0 rows are returned.

• partition_by_exprX must be constants, columns, nonanalytic functions, function expressions,
or expressions involving any of these.

Given that the query result may be sorted in certain order, partitioned row limiting clause filters
out records so that only records that meet the following conditions are returned:

• the record has partition_by_expr1 being one of the top partition_count1 values of partition_by_expr1

• within the same partition_by_expr1, the record has partition_by_expr2 being one of the top
partition_count2 values of partition_by_expr2

• within the same partition_by_expr1 and partition_by_expr2, the record has partition_by_expr3 being
one of the top partition_count3 values of partition_by_expr3

• the same logic applies to all levels of partitions

• within the nested partition of partition_by_expr1, ..., partition_by_exprN, the record is the top
rowcount rows.

The keywords PARTITION BY or PARTITIONS BY are optional as long as there is no semantic
ambiguity when they are missing.

row_specification

rowcount | percent PERCENT

Use rowcount to specify the number of rows to return. rowcount must be a number or an
expression that evaluates to a numeric value. If you specify a negative number, then rowcount is
treated as 0. If rowcount is greater than the number of rows available beginning at row offset + 1,
then all available rows are returned. If rowcount includes a fraction, then the fractional portion is
truncated. If rowcount is NULL, then 0 rows are returned.

Use percent PERCENT to specify the percentage of the total number of selected rows to return.
percent must be a number or an expression that evaluates to a numeric value. If you specify a
negative number, then percent is treated as 0. If percent is NULL, then 0 rows are returned.

If you do not specify rowcount or percent PERCENT, then 1 row is returned.

ROW | ROWS

Specify one of ROW or ROWS. These keywords can be used interchangeably and are provided
for semantic clarity.

If any of these conditions are not met, an exact search will be performed even though the
APPROXIMATE syntax is used. In addition, even if all the conditions are met, the optimizer may
employ other cost-based decisions and choose not to use the index and perform exact search .

Example: Vector Search Query

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 95 of 164

SELECT docID FROM vec_table
ORDER BY VECTOR_DISTANCE(data, :query_vec)
FETCH APPROX FIRST 20 ROWS ONLY;

You can use this clause in vector and non-vector contexts. See examples Partitioned Row
Limiting in Non-Vector Context: Example and Partitioned Row Limiting in a Multi-Vector
Search: Example .

ONLY | WITH TIES

Specify ONLY to return exactly the specified number of rows or percentage of rows.

Specify WITH TIES to return additional rows with the same sort key as the last row fetched.
WITH TIES must be specified with order_by_clause . If you do not specify the order_by_clause, then no
additional rows will be returned.

You cannot use WITH TIES for approximate vector search and partition row limit. If you specify
it, approximate search will not happen, or if there are partitions, the statement will fail.

See Also

"Row Limiting: Examples"

accuracy_clause

Specify a value or certain parameters to tune the accuracy of the approximate vector search. If
approximate vector search is not performed for any reason, this clause is ignored.

Rules

• Keywords WITH, TARGET, and PERCENT are optional and used for semantic clarity. There is
no impact on the query's semantic if you choose not to specify these keywords.

• accuracy must be a number or an expression that evaluates to a numeric value between 1
and 100.

• In the case where a vector index is used, the accuracy, if specified, overwrites the index
specification, otherwise it inherits the index specification. In the case where no vector index
is used, exact results are returned, and the accuracy is meaningless.

• PARAMETERS efs and nprobes must be a number or an expression that evaluates to a numeric
value.

for_update_clause

The FOR UPDATE clause lets you lock the selected rows so that other users cannot lock or
update the rows until you end your transaction. You can specify this clause only in a top-level
SELECT statement, not in subqueries.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 96 of 164

Note

Prior to updating a LOB value, you must lock the row containing the LOB. One way to
lock the row is with an embedded SELECT ... FOR UPDATE statement. You can do this
using one of the programmatic languages or DBMS_LOB package. For more information
on lock rows before writing to a LOB, see Oracle Database SecureFiles and Large
Objects Developer's Guide.

Nested table rows are not locked as a result of locking the parent table rows. If you want the
nested table rows to be locked, then you must lock them explicitly.

Restrictions on the FOR UPDATE Clause

This clause is subject to the following restrictions:

• You cannot specify this clause with the following other constructs: the DISTINCT operator,
CURSOR expression, set operators, group_by_clause, or aggregate functions.

• The tables locked by this clause must all be located on the same database and on the
same database as any LONG columns and sequences referenced in the same statement.

See Also

"Using the FOR UPDATE Clause: Examples"

Using the FOR UPDATE Clause on Views

In general, this clause is not supported on views. However, in some cases, a SELECT ... FOR
UPDATE query on a view can succeed without any errors. This occurs when the view has been
merged to its containing query block internally by the query optimizer, and SELECT ... FOR
UPDATE succeeds on the internally transformed query. The examples in this section illustrate
when using the FOR UPDATE clause on a view can succeed or fail.

• Using the FOR UPDATE clause on merged views

An error can occur when you use the FOR UPDATE clause on a merged view if both of the
following conditions apply:

– The underlying column of the view is an expression

– The FOR UPDATE clause applies to a column list

The following statement succeeds because the underlying column of the view is not an
expression:

SELECT employee_id FROM (SELECT * FROM employees)
 FOR UPDATE OF employee_id;

The following statement succeeds because, while the underlying column of the view is an
expression, the FOR UPDATE clause does not apply to a column list:

SELECT employee_id FROM (SELECT employee_id+1 AS employee_id FROM employees)
 FOR UPDATE;

The following statement fails because the underlying column of the view is an expression
and the FOR UPDATE clause applies to a column list:

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 97 of 164

SELECT employee_id FROM (SELECT employee_id+1 AS employee_id FROM employees)
 FOR UPDATE OF employee_id;
 *
Error at line 2:
ORA-01733: virtual column not allowed here

• Using the FOR UPDATE clause on non-merged views

Since the FOR UPDATE clause is not supported on views, anything that prevents view
merging, such as the NO_MERGE hint, parameters that disallow view merging, or something
in the query structure that prevents view merging, will result in an ORA-02014 error.

In the following example, the GROUP BY statement prevents view merging, which causes an
error:

SELECT avgsal
 FROM (SELECT AVG(salary) AS avgsal FROM employees GROUP BY job_id)
 FOR UPDATE;
FROM (SELECT AVG(salary) AS avgsal FROM employees GROUP BY job_id)
 *
ERROR at line 2:
ORA-02014: cannot select FOR UPDATE from view with DISTINCT, GROUP BY, etc.

Note

Due to the complexity of the view merging mechanism, Oracle recommends against
using the FOR UPDATE clause on views.

OF ... column

Use the OF ... column clause to lock the select rows only for a particular table or view in a join.
The columns in the OF clause only indicate which table or view rows are locked. The specific
columns that you specify are not significant. However, you must specify an actual column
name, not a column alias. If you omit this clause, then the database locks the selected rows
from all the tables in the query.

NOWAIT | WAIT

The NOWAIT and WAIT clauses let you tell the database how to proceed if the SELECT statement
attempts to lock a row that is locked by another user.

• Specify NOWAIT to return control to you immediately if a lock exists.

• Specify WAIT to instruct the database to wait integer seconds for the row to become
available and then return control to you.

If you specify neither WAIT nor NOWAIT, then the database waits until the row is available and
then returns the results of the SELECT statement.

SKIP LOCKED

SKIP LOCKED is an alternative way to handle a contending transaction that is locking some rows
of interest. Specify SKIP LOCKED to instruct the database to attempt to lock the rows specified
by the WHERE clause and to skip any rows that are found to be already locked by another
transaction. This feature is designed for use in multiconsumer queue environments. It enables
queue consumers to skip rows that are locked by other consumers and obtain unlocked rows
without waiting for the other consumers to finish. Refer to Oracle Database Advanced Queuing
User's Guide for more information.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 98 of 164

Note on the WAIT and SKIP LOCKED Clauses

If you specify WAIT or SKIP LOCKED and the table is locked in exclusive mode, then the
database will not return the results of the SELECT statement until the lock on the table is
released. In the case of WAIT, the SELECT FOR UPDATE clause is blocked regardless of the wait
time specified.

row_pattern_clause

The MATCH_RECOGNIZE clause lets you perform pattern matching. Use this clause to recognize
patterns in a sequence of rows in table, which is called the row pattern input table. The result of
a query that uses the MATCH_RECOGNIZE clause is called the row pattern output table.

The MATCH_RECOGNIZE enables you to do the following tasks:

• Logically partition and order the data with the PARTITION BY and ORDER BY clauses.

• Define measures, which are expressions usable in other parts of the SQL query, in the
MEASURES clause.

• Define patterns of rows to seek using the PATTERN clause. These patterns use regular
expression syntax, a powerful and expressive feature, applied to the pattern variables you
define.

• Specify the logical conditions required to map a row to a row pattern variable in the DEFINE
clause.

See Also

• Oracle Database Data Warehousing Guide for more information on pattern
matching

• "Row Pattern Matching: Example"

row_pattern_partition_by

Specify PARTITION BY to divide the rows in the row pattern input table into logical groups called
row pattern partitions. Use column to specify one or more partitioning columns. Each partition
consists of the set of rows in the row pattern input table that have the same value(s) on the
partitioning column(s).

If you specify this clause, then matches are found within partitions and do not cross partition
boundaries. If you do not specify this clause, then all rows of the row input table constitute a
single row pattern partition.

row_pattern_order_by

Specify ORDER BY to order rows within each row pattern partition. Use column to specify one or
more ordering columns. If you specify multiple columns, then Oracle Database first sorts rows
based on their values for the first column. Rows with the same value for the first column are
then sorted based on their values for the second column, and so on. Oracle Database sorts
nulls following all others in ascending order.

If you do not specify this clause, then the result of the row_pattern_clause is nondeterministic and
you may get inconsistent results each time you run the query.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 99 of 164

row_pattern_measures

Use the MEASURES clause to define one or more row pattern measure columns. These columns
are included in the row pattern output table and contain values that are useful for analyzing
data.

When you define a row pattern measure column, using the row_pattern_measure_column clause, you
specify its pattern measure expression. The values in the column are calculated by evaluating
the pattern measure expression whenever a match is found.

row_pattern_measure_column

Use this clause to define a row pattern measure column.

• For expr, specify the pattern measure expression. A pattern measure expression is an
expression as described in Expressions that can contain only the following elements:

– Constants: Text literals and numeric literals

– References to any column of the row pattern input table

– The CLASSIFIER function, which returns the name of the primary row pattern variable to
which the row is mapped. Refer to row_pattern_classifier_func for more information.

– The MATCH_NUMBER function, which returns the sequential number of a row pattern
match within the row pattern partition. Refer to row_pattern_match_num_func for more
information.

– Row pattern navigation functions: PREV, NEXT, FIRST, and LAST. Refer to
row_pattern_navigation_func for more information.

– Row pattern aggregate functions: AVG , COUNT , MAX , MIN , or SUM . Refer to
row_pattern_aggregate_func for more information.

• For c_alias, specify the alias for the pattern measure expression. Oracle Database uses this
alias in the column heading of the row pattern output table. The AS keyword is optional.
The alias can be used in other parts of the query, such as the SELECT ... ORDER BY clause.

row_pattern_rows_per_match

This clause lets you specify whether the row pattern output table includes summary or detailed
data about each match.

• If you specify ONE ROW PER MATCH, then each match produces one summary row. This is
the default.

• If you specify ALL ROWS PER MATCH, then each match that spans multiple rows will produce
one output row for each row in the match.

row_pattern_skip_to

This clause lets you specify the point to resume row pattern matching after a non-empty match
is found.

• Specify AFTER MATCH SKIP TO NEXT ROW to resume pattern matching at the row after the
first row of the current match.

• Specify AFTER MATCH SKIP PAST LAST ROW to resume pattern matching at the next row after
the last row of the current match. This is the default.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 100 of 164

• Specify AFTER MATCH SKIP TO FIRST variable_name to resume pattern matching at the first row
that is mapped to pattern variable variable_name. The variable_name must be defined in the
DEFINE clause.

• Specify AFTER MATCH SKIP TO LAST variable_name to resume pattern matching at the last row
that is mapped to pattern variable variable_name. The variable_name must be defined in the
DEFINE clause.

• AFTER MATCH SKIP TO variable_name has the same behavior as AFTER MATCH SKIP TO LAST
variable_name.

See Also

Oracle Database Data Warehousing Guide for more information on the AFTER MATCH
SKIP clauses

PATTERN

Use the PATTERN clause to define which pattern variables must be matched, the sequence in
which they must be matched, and the quantity of rows that must be matched for each pattern
variable.

A row pattern match consists of a set of contiguous rows in a row pattern partition. Each row of
the match is mapped to a pattern variable. The mapping of rows to pattern variables must
conform to the regular expression specified in the row_pattern clause, and all conditions in the
DEFINE clause must be true.

Note

It is outside the scope of this document to explain regular expression concepts and
details. If you are not familiar with regular expressions, then you are encouraged to
familiarize yourself with the topic using other sources.

The precedence of the elements that you specify in the regular expression of the PATTERNS
clause, in decreasing order, is as follows:

• Row pattern elements (specified in the row_pattern_primary clause)

• Row pattern quantifiers (specified in the row_pattern_quantifier clause)

• Concatenation (specified in the row_pattern_term clause)

• Alternation (specified in the row_pattern clause)

See Also

Oracle Database Data Warehousing Guide for more information on the PATTERN
clause

row_pattern

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 101 of 164

Use this clause to specify the row pattern. A row pattern is a regular expression that can take
one of the following forms:

• A single row pattern term

For example: PATTERN(A)

• A row pattern, a vertical bar, and a row pattern term

For example: PATTERN(A|B)

• A recursively built row pattern, a vertical bar, and a row pattern term

For example: PATTERN(A|B|C)

The vertical bar in this clause represents alternation. Alternation matches a single regular
expression from a list of several possible regular expressions. Alternatives are preferred in the
order they are specified. For example, if you specify PATTERN(A|B|C), then Oracle Database
attempts to match A first. If A is not matched, then it attempts to match B. If B is not matched,
then it attempts to match C.

row_pattern_term

This clause lets you specify a row pattern term. A row pattern term can take one of the
following forms:

• A single row pattern factor

For example: PATTERN(A)

• A row pattern term followed by a row pattern factor.

For example: PATTERN(A B)

• A recursively built row pattern term followed by a row pattern factor

For example: PATTERN(A B C)

The syntax used in the second and third examples represents concatenation. Concatenation
is used to list two or more items in a pattern to be matched and the order in which they are to
be matched. For example, if you specify PATTERN(A B C), then Oracle Database first matches A,
then uses the resulting matched rows to match B, then uses the resulting matched rows to
match C. Only rows that match A, B, and C, are included in the row pattern match.

row_pattern_factor

This clause lets you specify a row pattern factor. A row pattern factor consists of a row pattern
element, specified using the row_pattern_primary clause, and an optional row pattern quantifier,
specified using the row_pattern_quantifier clause.

row_pattern_primary

Use this clause to specify the row pattern element. Table 19-1 lists the valid row pattern
elements and their descriptions.

Table 19-1 Row Pattern Elements

Row Pattern Element Description

variable_name Specify a primary pattern variable name that is defined in the
row_pattern_definition clause. You cannot specify a union pattern variable
that is defined in the row_pattern_subset_item clause.

$ $ matches the position after the last row in the partition. This element is
an anchor. Anchors work in terms of positions rather than rows.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 102 of 164

Table 19-1 (Cont.) Row Pattern Elements

Row Pattern Element Description

^ ^ matches the position before the first row in the partition. This element
is an anchor. Anchors work in terms of positions rather than rows

([row_pattern]) Use row_pattern to specify the row pattern to be matched. An empty
pattern () matches an empty set of rows.

{- row_pattern -} Exclusion syntax. Use row_pattern to specify parts of the pattern to be
excluded from the output of ALL ROWS PER MATCH.

row_pattern_permute Use row_pattern_permute to specify a pattern that is a permutation of row
pattern elements. Refer to row_pattern_permute for the full semantics
of this clause.

row_pattern_permute

Use the PERMUTE clause to express a pattern that is a permutation of the specified row pattern
elements. For example, PATTERN (PERMUTE (A, B, C)) is equivalent to an alternation of all
permutations of the three row pattern elements A, B, and C, similar to the following:

PATTERN (A B C | A C B | B A C | B C A | C A B | C B A)

Note that the row pattern elements are expanded lexicographically and that each element to
permute must be separated by a comma from the other elements.

See Also

Oracle Database Data Warehousing Guide for more information on permutations

row_pattern_quantifier

Use this clause to specify the row pattern quantifier, which is a postfix operator that defines the
number of iterations accepted for a match.

Row pattern quantifiers are referred to as greedy; they will attempt to match as many instances
of the regular expression on which they are applied as possible. The exception is row pattern
quantifiers that have a question mark (?) as a suffix, which are referred to as reluctant. They
will attempt to match as few instances as possible of the regular expression on which they are
applied.

Table 19-2 lists the valid row pattern quantifiers and the number of iterations they accept for a
match. In this table, n and m represent unsigned integers.

Table 19-2 Row Pattern Quantifiers

Row Pattern
Quantifier

Number of Iterations Accepted for a Match

* 0 or more iterations (greedy)

*? 0 or more iterations (reluctant)

+ 1 or more iterations (greedy)

+? 1 or more iterations (reluctant)

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 103 of 164

Table 19-2 (Cont.) Row Pattern Quantifiers

Row Pattern
Quantifier

Number of Iterations Accepted for a Match

? 0 or 1 iterations (greedy)

?? 0 or 1 iterations (reluctant)

{n,} n or more iterations, (n >= 0) (greedy)

{n,}? n or more iterations, (n >= 0) (reluctant)

{n,m} Between n and m iterations, inclusive, (0 <= n <= m, 0 < m) (greedy)

{n,m}? Between n and m iterations, inclusive, (0 <= n <= m, 0 < m) (reluctant)

{,m} Between 0 and m iterations, inclusive (m > 0) (greedy)

{,m}? Between 0 and m iterations, inclusive (m > 0) (reluctant)

{n}? n iterations, (n > 0)

See Also

Oracle Database Data Warehousing Guide for more information on row pattern
quantifiers

row_pattern_subset_clause

The SUBSET clause lets you specify one or more union row pattern variables. Use the
row_pattern_subset_item clause to declare each union row pattern variable.

You can specify union row pattern variables in the following clauses:

• MEASURES clause: In the expression for a row pattern measure column. That is, in
expression expr of the row_pattern_measure_column clause.

• DEFINE clause: In the condition that defines a primary pattern variable. That is, in condition of
the row_pattern_definition clause

row_pattern_subset_item

This clause lets you create a grouping of multiple pattern variables that can be referred to with
a variable name of its own. The variable name that refers to this grouping is called a union row
pattern variable.

• For variable_name on the left side of the equal sign, specify the name of the union row pattern
variable.

• On the right side of the equal sign, specify a comma-separated list of distinct primary row
pattern variables within parentheses. This list cannot include any union row pattern
variables.

See Also

Oracle Database Data Warehousing Guide for more information on defining union row
pattern variables

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 104 of 164

DEFINE

Use the DEFINE clause to specify one or more row pattern definitions. A row pattern definition
specifies the conditions that a row must meet in order to be mapped to a specific pattern
variable.

The DEFINE clause only supports running semantics.

See Also

• Oracle Database Data Warehousing Guide for more information on the DEFINE
clause

• Oracle Database Data Warehousing Guide for more information on running and
final semantics

row_pattern_definition_list

This clause lets you specify one or more row pattern definitions.

row_pattern_definition

This clause lets you specify a row pattern definition, which contains the conditions that a row
must meet in order to be mapped to the specified pattern variable.

• For variable_name, specify the name of the pattern variable.

• For condition, specify a condition as described in Conditions, with the following extension:
condition can contain any of the functions described by row_pattern_navigation_func::= and
row_pattern_aggregate_func::=.

row_pattern_rec_func

This clause comprises the following clauses, which let you specify row pattern recognition
functions:

• row_pattern_classifier_func: Use this clause to specify the CLASSIFIER function, which returns a
character string whose value is the name of the variable to which the row is mapped.

• row_pattern_match_num_func: Use this clause to specify the MATCH_NUMBER function, which
returns a numeric value with scale 0 (zero) whose value is the sequential number of the
match within the row pattern partition.

• row_pattern_navigation_func: Use this clause to specify functions that perform row pattern
navigation operations.

• row_pattern_aggregate_func: Use this clause to specify an aggregate function in the expression
for a row pattern measure column or in the condition that defines a primary pattern
variable.

You can specify row pattern recognition functions in the following clauses:

• MEASURES clause: In the expression for a row pattern measure column. That is, in
expression expr of the row_pattern_measure_column clause.

• DEFINE clause: In the condition that defines a primary pattern variable. That is, in condition of
the row_pattern_definition clause

A row pattern recognition function may behave differently depending whether you specify it in
the MEASURES or DEFINE clause. These details are explained in the semantics for each clause.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 105 of 164

row_pattern_classifier_func

The CLASSIFIER function returns a character string whose value is the name of the variable to
which the row is mapped.

• In the MEASURES clause:

– If you specify ONE ROW PER MATCH, then the query uses the last row of the match when
processing the MEASURES clause, so the CLASSIFIER function returns the name of the
pattern variable to which the last row of the match is mapped.

– If you specify ALL ROWS PER MATCH, then for each row of the match found, the
CLASSIFIER function returns the name of the pattern variable to which the row is
mapped.

For empty matches—that is, matches that contain no rows, the CLASSIFER function returns
NULL.

• In the DEFINE clause, the CLASSIFIER function returns the name of the primary pattern
variable to which the current row is mapped.

row_pattern_match_num_func

The MATCH_NUMBER function returns a numeric value with scale 0 (zero) whose value is the
sequential number of the match within the row pattern partition.

Matches within a row pattern partition are numbered sequentially starting with 1 in the order in
which they are found. If multiple rows satisfy a match, then they are all assigned the same
match number. Note that match numbering starts over again at 1 in each row pattern partition,
because there is no inherent ordering between row pattern partitions.

• In the MEASURES clause: You can use MATCH_NUMBER to obtain the sequential number of
the match within the row pattern.

• In the DEFINE clause: You can use MATCH_NUMBER to define conditions that depend upon
the match number.

row_pattern_navigation_func

This clause lets you perform the following row pattern navigation operations:

• Navigate among the group of rows mapped to a pattern variable using the FIRST and LAST
functions of the row_pattern_nav_logical clause.

• Navigate among all rows in a row pattern partition using the PREV and NEXT functions of
the row_pattern_nav_physical clause

• Nest the FIRST or LAST function within the PREV or NEXT function using the
row_pattern_nav_compound clause.

row_pattern_nav_logical

This clause lets you use the FIRST and LAST functions to navigate among the group of rows
mapped to a pattern variable using an optional logical offset.

• The FIRST function returns the value of expression expr when evaluated in the first row of
the group of rows mapped to the pattern variable that is specified in expr. If no rows are
mapped to the pattern variable, then the FIRST function returns NULL.

• The LAST function returns the value of expression expr when evaluated in the last row of the
group of rows mapped to the pattern variable that is specified in expr. If no rows are
mapped to the pattern variable, then the LAST function returns NULL.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 106 of 164

• Use expr to specify the expression to be evaluated. It must contain at least one row pattern
column reference. If it contains more than one row pattern column reference, then all must
refer to the same pattern variable.

• Use the optional offset to specify the logical offset within the set of rows mapped to the
pattern variable. When specified with the FIRST function, the offset is the number of rows
from the first row, in ascending order. When specified with the LAST function, the offset is
the number of rows from the last row in descending order. The default offset is 0.

For offset, specify a non-negative integer. It must be a runtime constant (literal, bind
variable, or expressions involving them), but not a column or subquery.

If you specify an offset that is greater than or equal to the number of rows mapped to the
pattern variable minus 1, then the function returns NULL.

You can specify running or final semantics for the FIRST and LAST functions as follows:

• The MEASURES clause supports running and final semantics. Specify RUNNING for running
semantics. Specify FINAL for final semantics. The default is RUNNING.

• The DEFINE clause supports only running semantics. Therefore, running semantics will be
used whether you specify or omit RUNNING. You cannot specify FINAL.

See Also

– Oracle Database Data Warehousing Guide for more information on the FIRST
and LAST functions

– Oracle Database Data Warehousing Guide for more information on running
and final semantics

row_pattern_nav_physical

This clause lets you use the PREV and NEXT functions to navigate all rows in a row pattern
partition using an optional physical offset.

• The PREV function returns the value of expression expr when evaluated in the previous row
in the partition. If there is no previous row in the partition, then the PREV function returns
NULL.

• The NEXT function returns the value of expression expr when evaluated in the next row in
the partition. If there is no next row in the partition, then the NEXT function returns NULL.

• Use expr to specify the expression to be evaluated. It must contain at least one row pattern
column reference. If it contains more than one row pattern column reference, then all must
refer to the same pattern variable.

• Use the optional offset to specify the physical offset within the partition. When specified with
the PREV function, it is the number of rows before the current row. When specified with the
NEXT function, it is the number of rows after the current row. The default is 1. If you specify
an offset of 0, then the current row is evaluated.

For offset, specify a non-negative integer. It must be a runtime constant (literal, bind
variable, or expressions involving them), but not a column or subquery.

The PREV and NEXT functions always use running semantics. Therefore, you cannot specify the
RUNNING or FINAL keywords with this clause.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 107 of 164

See Also

• Oracle Database Data Warehousing Guide for more information on the PREV and
NEXT functions

• Oracle Database Data Warehousing Guide for more information on running and
final semantics

row_pattern_nav_compound

This clause lets you nest the row_pattern_nav_logical clause within the row_pattern_nav_physical
clause. That is, it lets you nest the FIRST or LAST function within the PREV or NEXT function. The
row_pattern_nav_logical clause is evaluated first and then the result is supplied to the
row_pattern_nav_physical clause.

Refer to row_pattern_nav_logical and row_pattern_nav_physical for the full semantics of these
clauses.

See Also

Oracle Database Data Warehousing Guide for more information on nesting the FIRST
and LAST functions within the PREV and NEXT functions

row_pattern_aggregate_func

This clause lets you use an aggregate function in the expression for a row pattern measure
column or in the condition that defines a primary pattern variable.

For aggregate_function, specify any one of the AVG , COUNT , MAX , MIN , or SUM functions. The
DISTINCT keyword is not supported.

You can specify running or final semantics for aggregate functions as follows:

• The MEASURES clause supports running and final semantics. Specify RUNNING for running
semantics. Specify FINAL for final semantics. The default is RUNNING.

• The DEFINE clause supports only running semantics. Therefore, running semantics will be
used whether you specify or omit RUNNING. You cannot specify FINAL.

See Also

• Oracle Database Data Warehousing Guide for more information on aggregate
functions

• Oracle Database Data Warehousing Guide for more information on running and
final semantics

Examples

SQL Macros - Scalar Valued Macros: Examples

Print Hello <name>

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 108 of 164

A PL/SQL function greet is defined as a scalar SQL Macro that returns the string 'Hello,
<name>! ' when called from a SQL SELECT statement.

create or replace function greet(name varchar2 default 'World')
 return varchar2 SQL_MACRO(Scalar) is
begin
 return q'{ 'Hello, ' || name || '!' }';
end;
/

You can call greet in two ways:

Option 1: Without passing an explicit argument . In this case the default argument is used
and 'Hello World' is returned.

SELECT greet ('World') from dual;
–---------------
Hello, World!

Option 2: Passing an explicit argument . In this case the argument passed is used and
'Hello Bob' is returned.

SELECT greet ('Bob') from dual;
–---------------
Hello, Bob!

Split String Based on Delimiter

The PL/SQL function split_part splits a string on the specified delimiter and returns the part at the
specified position.

create or replace function split_part(string varchar2,
 delimiter varchar2,
 position pls_integer)
 return varchar2 SQL_MACRO(Scalar) is
begin
 return q'{
 regexp_substr(replace(string, delimiter||delimiter, delimiter||' '||delimiter),
 '[^'||delimiter||']+', 1, position, 'imx')
 }';
end;
/
SELECT split_part(sysdate, '-', 2) month from dual;
 –-------------
 MONTH
 –----
 OCT

SQL Macros - Table Valued Macros: Examples

The macro function budget computes the amount of each department's budget for a given job. It
returns the number of employees in each department with the specified job title.

create or replace function budget(job varchar2) return varchar2 SQL_MACRO is
begin
 return q'{
 select deptno, sum(sal) budget
 from emp
 where job = budget.job
 group by deptno
 }';
end;
/

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 109 of 164

SELECT * FROM budget ('MANAGER');
 DEPTNO BUDGET
–---------- –-------
 20 2975
 30 2850
 10 2450

Using a PL/SQL Function in the WITH Clause: Examples

The following example declares and defines a PL/SQL function get_domain in the WITH clause.
The get_domain function returns the domain name from a URL string, assuming that the URL
string has the "www" prefix immediately preceding the domain name, and the domain name is
separated by dots on the left and right. The SELECT statement uses get_domain to find distinct
catalog domain names from the orders table in the oe schema.

WITH
 FUNCTION get_domain(url VARCHAR2) RETURN VARCHAR2 IS
 pos BINARY_INTEGER;
 len BINARY_INTEGER;
 BEGIN
 pos := INSTR(url, 'www.');
 len := INSTR(SUBSTR(url, pos + 4), '.') - 1;
 RETURN SUBSTR(url, pos + 4, len);
 END;
SELECT DISTINCT get_domain(catalog_url)
 FROM product_information;
/

Subquery Factoring: Example

The following statement creates the query names dept_costs and avg_cost for the initial query
block containing a join, and then uses the query names in the body of the main query.

WITH
 dept_costs AS (
 SELECT department_name, SUM(salary) dept_total
 FROM employees e, departments d
 WHERE e.department_id = d.department_id
 GROUP BY department_name),
 avg_cost AS (
 SELECT SUM(dept_total)/COUNT(*) avg
 FROM dept_costs)
SELECT * FROM dept_costs
 WHERE dept_total >
 (SELECT avg FROM avg_cost)
 ORDER BY department_name;

DEPARTMENT_NAME DEPT_TOTAL
------------------------------ ----------
Sales 304500
Shipping 156400

Recursive Subquery Factoring: Examples

The following statement shows the employees who directly or indirectly report to employee 101
and their reporting level.

WITH
 reports_to_101 (eid, emp_last, mgr_id, reportLevel) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 110 of 164

 FROM employees
 WHERE employee_id = 101
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id, reportLevel+1
 FROM reports_to_101 r, employees e
 WHERE r.eid = e.manager_id
)
SELECT eid, emp_last, mgr_id, reportLevel
FROM reports_to_101
ORDER BY reportLevel, eid;

 EID EMP_LAST MGR_ID REPORTLEVEL
---------- ------------------------- ---------- -----------
 101 Kochhar 100 0
 108 Greenberg 101 1
 200 Whalen 101 1
 203 Mavris 101 1
 204 Baer 101 1
 205 Higgins 101 1
 109 Faviet 108 2
 110 Chen 108 2
 111 Sciarra 108 2
 112 Urman 108 2
 113 Popp 108 2
 206 Gietz 205 2

The following statement shows employees who directly or indirectly report to employee 101,
their reporting level, and their management chain.

WITH
 reports_to_101 (eid, emp_last, mgr_id, reportLevel, mgr_list) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel,
 CAST(manager_id AS VARCHAR2(2000))
 FROM employees
 WHERE employee_id = 101
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id, reportLevel+1,
 CAST(mgr_list || ',' || manager_id AS VARCHAR2(2000))
 FROM reports_to_101 r, employees e
 WHERE r.eid = e.manager_id
)
SELECT eid, emp_last, mgr_id, reportLevel, mgr_list
FROM reports_to_101
ORDER BY reportLevel, eid;

 EID EMP_LAST MGR_ID REPORTLEVEL MGR_LIST
 ---------- ------------------------- ---------- ----------- --------
 101 Kochhar 100 0 100
 108 Greenberg 101 1 100,101
 200 Whalen 101 1 100,101
 203 Mavris 101 1 100,101
 204 Baer 101 1 100,101
 205 Higgins 101 1 100,101
 109 Faviet 108 2 100,101,108
 110 Chen 108 2 100,101,108
 111 Sciarra 108 2 100,101,108
 112 Urman 108 2 100,101,108
 113 Popp 108 2 100,101,108
 206 Gietz 205 2 100,101,205

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 111 of 164

The following statement shows the employees who directly or indirectly report to employee 101
and their reporting level. It stops at reporting level 1.

WITH
 reports_to_101 (eid, emp_last, mgr_id, reportLevel) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel
 FROM employees
 WHERE employee_id = 101
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id, reportLevel+1
 FROM reports_to_101 r, employees e
 WHERE r.eid = e.manager_id
)
SELECT eid, emp_last, mgr_id, reportLevel
FROM reports_to_101
WHERE reportLevel <= 1
ORDER BY reportLevel, eid;

 EID EMP_LAST MGR_ID REPORTLEVEL
---------- ------------------------- ---------- -----------
 101 Kochhar 100 0
 108 Greenberg 101 1
 200 Whalen 101 1
 203 Mavris 101 1
 204 Baer 101 1
 205 Higgins 101 1

The following statement shows the entire organization, indenting for each level of
management.

WITH
 org_chart (eid, emp_last, mgr_id, reportLevel, salary, job_id) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel, salary, job_id
 FROM employees
 WHERE manager_id is null
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id,
 r.reportLevel+1 reportLevel, e.salary, e.job_id
 FROM org_chart r, employees e
 WHERE r.eid = e.manager_id
)
 SEARCH DEPTH FIRST BY emp_last SET order1
SELECT lpad(' ',2*reportLevel)||emp_last emp_name, eid, mgr_id, salary, job_id
FROM org_chart
ORDER BY order1;

EMP_NAME EID MGR_ID SALARY JOB_ID
-------------------- ---------- ---------- ---------- ----------
King 100 24000 AD_PRES
 Cambrault 148 100 11000 SA_MAN
 Bates 172 148 7300 SA_REP
 Bloom 169 148 10000 SA_REP
 Fox 170 148 9600 SA_REP
 Kumar 173 148 6100 SA_REP
 Ozer 168 148 11500 SA_REP
 Smith 171 148 7400 SA_REP
 De Haan 102 100 17000 AD_VP
 Hunold 103 102 9000 IT_PROG
 Austin 105 103 4800 IT_PROG
 Ernst 104 103 6000 IT_PROG

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 112 of 164

 Lorentz 107 103 4200 IT_PROG
 Pataballa 106 103 4800 IT_PROG
 Errazuriz 147 100 12000 SA_MAN
 Ande 166 147 6400 SA_REP
. . .

The following statement shows the entire organization, indenting for each level of
management, with each level ordered by hire_date. The value of is_cycle is set to Y for any
employee who has the same hire_date as any manager above him in the management chain.

WITH
 dup_hiredate (eid, emp_last, mgr_id, reportLevel, hire_date, job_id) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel, hire_date, job_id
 FROM employees
 WHERE manager_id is null
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id,
 r.reportLevel+1 reportLevel, e.hire_date, e.job_id
 FROM dup_hiredate r, employees e
 WHERE r.eid = e.manager_id
)
 SEARCH DEPTH FIRST BY hire_date SET order1
 CYCLE hire_date SET is_cycle TO 'Y' DEFAULT 'N'
SELECT lpad(' ',2*reportLevel)||emp_last emp_name, eid, mgr_id,
 hire_date, job_id, is_cycle
FROM dup_hiredate
ORDER BY order1;

EMP_NAME EID MGR_ID HIRE_DATE JOB_ID IS_CYCLE
-------------------- ---------- ---------- --------- ---------- --------
King 100 17-JUN-03 AD_PRES N
 De Haan 102 100 13-JAN-01 AD_VP N
 Hunold 103 102 03-JAN-06 IT_PROG N
 Austin 105 103 25-JUN-05 IT_PROG N
. . .
 Kochhar 101 100 21-SEP-05 AD_VP N
 Mavris 203 101 07-JUN-02 HR_REP N
 Baer 204 101 07-JUN-02 PR_REP N
 Higgins 205 101 07-JUN-02 AC_MGR N
 Gietz 206 205 07-JUN-02 AC_ACCOUNT Y
 Greenberg 108 101 17-AUG-02 FI_MGR N
 Faviet 109 108 16-AUG-02 FI_ACCOUNT N
 Chen 110 108 28-SEP-05 FI_ACCOUNT N
. . .

The following statement counts the number of employees under each manager.

WITH
 emp_count (eid, emp_last, mgr_id, mgrLevel, salary, cnt_employees) AS
 (
 SELECT employee_id, last_name, manager_id, 0 mgrLevel, salary, 0 cnt_employees
 FROM employees
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id,
 r.mgrLevel+1 mgrLevel, e.salary, 1 cnt_employees
 FROM emp_count r, employees e
 WHERE e.employee_id = r.mgr_id
)
 SEARCH DEPTH FIRST BY emp_last SET order1
SELECT emp_last, eid, mgr_id, salary, sum(cnt_employees), max(mgrLevel) mgrLevel
FROM emp_count

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 113 of 164

GROUP BY emp_last, eid, mgr_id, salary
HAVING max(mgrLevel) > 0
ORDER BY mgr_id NULLS FIRST, emp_last;

EMP_LAST EID MGR_ID SALARY SUM(CNT_EMPLOYEES) MGRLEVEL
------------------ ---------- ---------- ---------- ------------------ ----------
King 100 24000 106 3
Cambrault 148 100 11000 7 2
De Haan 102 100 17000 5 2
Errazuriz 147 100 12000 6 1
Fripp 121 100 8200 8 1
Hartstein 201 100 13000 1 1
Kaufling 122 100 7900 8 1
. . .

Analytic Views: Examples

The following statement uses the persistent analytic view sales_av. The query selects the
member_name hierarchical attribute of time_hier, which is the alias of a hierarchy of the same
name, and values from the sales and units measures of the analytic view that are dimensioned
by the time attribute dimension used by the time_hier hierarchy.. The results of the selection
are filtered to those for the YEAR level of the hierarchy. The results are returned in hierarchical
order.

SELECT time_hier.member_name as TIME,
 sales,
 units
FROM
 sales_av HIERARCHIES(time_hier)
WHERE time_hier.level_name = 'YEAR'
ORDER BY time_hier.hier_order;

The results of the query are the following:

TIME SALES UNITS
------ ------------- ---------
CY2011 6755115980.73 24462444
CY2012 6901682398.95 24400619
CY2013 7240938717.57 24407259
CY2014 7579746352.89 24402666
CY2015 7941102885.15 24475206

Transitory Analytic View Examples

The following statement defines the transitory analytic view my_av in the WITH clause. The
transitory analytic view is based on the persistent analytic view sales_av. The lag_sales
calculated measure is a LAG calculation that is used at query time.

WITH
 my_av ANALYTIC VIEW AS (
 USING sales_av HIERARCHIES (time_hier)
 ADD MEASURES (
 lag_sales AS (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1))
)
)
SELECT time_hier.member_name time, sales, lag_sales
FROM my_av HIERARCHIES (time_hier)

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 114 of 164

WHERE time_hier.level_name = 'YEAR'
ORDER BY time_hier.hier_order;

The results of the query are the following:

TIME SALES LAG_SALES
------ ---------- ----------
CY2011 6755115981 (null)
CY2012 6901682399 6755115981
CY2013 7240938718 6901682399
CY2014 7579746353 7240938718
CY2015 7941102885 7579746353

The following statement defines a transitory analytic view that uses a filter clause.

WITH
 my_av ANALYTIC VIEW AS (
 USING sales_av HIERARCHIES (time_hier)
 FILTER FACT (
 time_hier TO quarter_of_year IN (1, 2)
 AND year_name IN ('CY2011', 'CY2012')
)
)
SELECT time_hier.member_name time, sales
 FROM my_av HIERARCHIES (time_hier)
 WHERE time_hier.level_name IN ('YEAR', 'QUARTER')
 ORDER BY time_hier.hier_order;

The results of the query are the following:

TIME SALES
-------- ----------
CY2011 3340459835
Q1CY2011 1625299627
Q2CY2011 1715160208
CY2012 3397271965
Q1CY2012 1644857783
Q2CY2012 1752414182

Inline Analytic View Example

The following statement defines an inline analytic view in the FROM clause. The transitory
analytic view is based on the persistent analytic view sales_av. The lag_sales calculated
measure is a LAG calculation that is used at query time.

SELECT time_hier.member_name time, sales, lag_sales
FROM
 ANALYTIC VIEW (
 USING sales_av HIERARCHIES (time_hier)
 ADD MEASURES (
 lag_sales AS (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1))
)
)

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 115 of 164

WHERE time_hier.level_name = 'YEAR'
ORDER BY time_hier.hier_order;

The results of the query are the following:

TIME SALES LAG_SALES
------ ---------- ----------
CY2011 6755115981 (null)
CY2012 6901682399 6755115981
CY2013 7240938718 6901682399
CY2014 7579746353 7240938718
CY2015 7941102885 7579746353

Simple Query Examples

The following statement selects rows from the employees table with the department number of
30:

SELECT *
 FROM employees
 WHERE department_id = 30
 ORDER BY last_name;

The following statement selects the name, job, salary and department number of all employees
except purchasing clerks from department number 30:

SELECT last_name, job_id, salary, department_id
 FROM employees
 WHERE NOT (job_id = 'PU_CLERK' AND department_id = 30)
 ORDER BY last_name;

The following statement selects from subqueries in the FROM clause and for each department
returns the total employees and salaries as a decimal value of all the departments:

SELECT a.department_id "Department",
 a.num_emp/b.total_count "%_Employees",
 a.sal_sum/b.total_sal "%_Salary"
FROM
(SELECT department_id, COUNT(*) num_emp, SUM(salary) sal_sum
 FROM employees
 GROUP BY department_id) a,
(SELECT COUNT(*) total_count, SUM(salary) total_sal
 FROM employees) b
ORDER BY a.department_id;

Selecting from a Partition: Example

You can select rows from a single partition of a partitioned table by specifying the keyword
PARTITION in the FROM clause. This SQL statement assigns an alias for and retrieves rows from
the sales_q2_2000 partition of the sample table sh.sales:

SELECT * FROM sales PARTITION (sales_q2_2000) s
 WHERE s.amount_sold > 1500
 ORDER BY cust_id, time_id, channel_id;

The following example selects rows from the oe.orders table for orders earlier than a specified
date:

SELECT * FROM orders
 WHERE order_date < TO_DATE('2006-06-15', 'YYYY-MM-DD');

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 116 of 164

Selecting a Sample: Examples

The following query estimates the number of orders in the oe.orders table:

SELECT COUNT(*) * 10 FROM orders SAMPLE (10);

COUNT(*)*10

 70

Because the query returns an estimate, the actual return value may differ from one query to the
next.

SELECT COUNT(*) * 10 FROM orders SAMPLE (10);

COUNT(*)*10

 80

The following query adds a seed value to the preceding query. Oracle Database always returns
the same estimate given the same seed value:

SELECT COUNT(*) * 10 FROM orders SAMPLE(10) SEED (1);

COUNT(*)*10

 130

SELECT COUNT(*) * 10 FROM orders SAMPLE(10) SEED(4);

COUNT(*)*10

 120

SELECT COUNT(*) * 10 FROM orders SAMPLE(10) SEED (1);

COUNT(*)*10

 130

Using Flashback Queries: Example

The following statements show a current value from the sample table hr.employees and then
change the value. The intervals used in these examples are very short for demonstration
purposes. Time intervals in your own environment are likely to be larger.

SELECT salary FROM employees
 WHERE last_name = 'Chung';

 SALARY

 3800

UPDATE employees SET salary = 4000
 WHERE last_name = 'Chung';
1 row updated.

SELECT salary FROM employees
 WHERE last_name = 'Chung';

 SALARY

 4000

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 117 of 164

To learn what the value was before the update, you can use the following Flashback Query:

SELECT salary FROM employees
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' MINUTE)
 WHERE last_name = 'Chung';

 SALARY

 3800

To learn what the values were during a particular time period, you can use a version Flashback
Query:

SELECT salary FROM employees
 VERSIONS BETWEEN TIMESTAMP
 SYSTIMESTAMP - INTERVAL '10' MINUTE AND
 SYSTIMESTAMP - INTERVAL '1' MINUTE
 WHERE last_name = 'Chung';

To revert to the earlier value, use the Flashback Query as the subquery of another UPDATE
statement:

UPDATE employees SET salary =
 (SELECT salary FROM employees
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '2' MINUTE)
 WHERE last_name = 'Chung')
 WHERE last_name = 'Chung';
1 row updated.

SELECT salary FROM employees
 WHERE last_name = 'Chung';

 SALARY

 3800

Using the GROUP BY Clause: Examples

To return the minimum and maximum salaries for each department in the employees table, issue
the following statement:

SELECT department_id, MIN(salary), MAX (salary)
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

To return the minimum and maximum salaries for the clerks in each department, issue the
following statement:

SELECT department_id, MIN(salary), MAX (salary)
 FROM employees
 WHERE job_id = 'PU_CLERK'
 GROUP BY department_id
 ORDER BY department_id;

The following example counts how many employees were hired each year. The GROUP BY
clause uses the column alias YEAR_HIRED, so this groups using the expression TRUNC(hire_date,
'YYYY')

SELECT TRUNC(hire_date, 'YYYY') year_hired, COUNT(*)
FROM employees
GROUP BY year_hired

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 118 of 164

ORDER BY year_hired;

YEAR_HIRED COUNT(*)
----------- ----------
01-JAN-2011 1
01-JAN-2012 7
...
01-JAN-2017 19
01-JAN-2018 11

The following example counts how many employees were hired each day. The query groups by
HIRE_DATE, which is the name of a column in EMPLOYEES and a SELECT list alias. The column
name takes priority, so the query groups by the column, not the alias.

SELECT TRUNC(hire_date, 'YYYY') hire_date, COUNT(*)
FROM employees
GROUP BY hire_date
ORDER BY hire_date;

HIRE_DATE COUNT(*)
----------- ----------
01-JAN-2011 1
01-JAN-2012 4
01-JAN-2012 1
...
01-JAN-2018 1
01-JAN-2018 1

Using the GROUP BY CUBE Clause: Example

To return the number of employees and their average yearly salary across all possible
combinations of department and job category, issue the following query on the sample tables
hr.employees and hr.departments:

SELECT DECODE(GROUPING(department_name), 1, 'All Departments',
 department_name) AS department_name,
 DECODE(GROUPING(job_id), 1, 'All Jobs', job_id) AS job_id,
 COUNT(*) "Total Empl", AVG(salary) * 12 "Average Sal"
 FROM employees e, departments d
 WHERE d.department_id = e.department_id
 GROUP BY CUBE (department_name, job_id)
 ORDER BY department_name, job_id;

DEPARTMENT_NAME JOB_ID Total Empl Average Sal
------------------------------ ---------- ---------- -----------
Accounting AC_ACCOUNT 1 99600
Accounting AC_MGR 1 144000
Accounting All Jobs 2 121800
Administration AD_ASST 1 52800
. . .
Shipping ST_CLERK 20 33420
Shipping ST_MAN 5 87360

Using the GROUPING SETS Clause: Example

The following example finds the sum of sales aggregated for three precisely specified groups:

• (channel_desc, calendar_month_desc, country_id)

• (channel_desc, country_id)

• (calendar_month_desc, country_id)

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 119 of 164

Without the GROUPING SETS syntax, you would have to write less efficient queries with more
complicated SQL. For example, you could run three separate queries and UNION them, or run
a query with a CUBE(channel_desc, calendar_month_desc, country_id) operation and filter out five of the
eight groups it would generate.

SELECT channel_desc, calendar_month_desc, co.country_id,
 TO_CHAR(sum(amount_sold) , '9,999,999,999') SALES$
 FROM sales, customers, times, channels, countries co
 WHERE sales.time_id=times.time_id
 AND sales.cust_id=customers.cust_id
 AND sales.channel_id= channels.channel_id
 AND customers.country_id = co.country_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
 AND times.calendar_month_desc IN ('2000-09', '2000-10')
 AND co.country_iso_code IN ('UK', 'US')
 GROUP BY GROUPING SETS(
 (channel_desc, calendar_month_desc, co.country_id),
 (channel_desc, co.country_id),
 (calendar_month_desc, co.country_id));

CHANNEL_DESC CALENDAR COUNTRY_ID SALES$
-------------------- -------- ---------- ----------
Internet 2000-09 52790 124,224
Direct Sales 2000-09 52790 638,201
Internet 2000-10 52790 137,054
Direct Sales 2000-10 52790 682,297
 2000-09 52790 762,425
 2000-10 52790 819,351
Internet 52790 261,278
Direct Sales 52790 1,320,497

See Also

The functions GROUP_ID , GROUPING , and GROUPING_ID for more information on
those functions

Hierarchical Query: Examples

The following query with a CONNECT BY clause defines a hierarchical relationship in which the
employee_id value of the parent row is equal to the manager_id value of the child row:

SELECT last_name, employee_id, manager_id FROM employees
 CONNECT BY employee_id = manager_id
 ORDER BY last_name;

In the following CONNECT BY clause, the PRIOR operator applies only to the employee_id value. To
evaluate this condition, the database evaluates employee_id values for the parent row and
manager_id, salary, and commission_pct values for the child row:

SELECT last_name, employee_id, manager_id FROM employees
 CONNECT BY PRIOR employee_id = manager_id
 AND salary > commission_pct
 ORDER BY last_name;

To qualify as a child row, a row must have a manager_id value equal to the employee_id value of the
parent row and it must have a salary value greater than its commission_pct value.

Using the HAVING Condition: Example

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 120 of 164

To return the minimum and maximum salaries for the employees in each department whose
lowest salary is less than $5,000, issue the next statement:

SELECT department_id, MIN(salary), MAX (salary)
 FROM employees
 GROUP BY department_id
 HAVING MIN(salary) < 5000
 ORDER BY department_id;

DEPARTMENT_ID MIN(SALARY) MAX(SALARY)
------------- ----------- -----------
 10 4400 4400
 30 2500 11000
 50 2100 8200
 60 4200 9000

The following example uses a correlated subquery in a HAVING clause that eliminates from the
result set any departments without managers and managers without departments:

SELECT department_id, manager_id
 FROM employees
 GROUP BY department_id, manager_id HAVING (department_id, manager_id) IN
 (SELECT department_id, manager_id FROM employees x
 WHERE x.department_id = employees.department_id)
 ORDER BY department_id;

Using the ORDER BY Clause: Examples

To select all purchasing clerk records from employees and order the results by salary in
descending order, issue the following statement:

SELECT *
 FROM employees
 WHERE job_id = 'PU_CLERK'
 ORDER BY salary DESC;

To select information from employees ordered first by ascending department number and then by
descending salary, issue the following statement:

SELECT last_name, department_id, salary
 FROM employees
 ORDER BY department_id ASC, salary DESC, last_name;

To select the same information as the previous SELECT and use the positional ORDER BY
notation, issue the following statement, which orders by ascending department_id, then
descending salary, and finally alphabetically by last_name:

SELECT last_name, department_id, salary
 FROM employees
 ORDER BY 2 ASC, 3 DESC, 1;

The MODEL clause: Examples

The view created below is based on the sample sh schema and is used by the example that
follows.

CREATE OR REPLACE VIEW sales_view_ref AS
 SELECT country_name country,
 prod_name prod,
 calendar_year year,
 SUM(amount_sold) sale,
 COUNT(amount_sold) cnt

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 121 of 164

 FROM sales,times,customers,countries,products
 WHERE sales.time_id = times.time_id
 AND sales.prod_id = products.prod_id
 AND sales.cust_id = customers.cust_id
 AND customers.country_id = countries.country_id
 AND (customers.country_id = 52779
 OR customers.country_id = 52776)
 AND (prod_name = 'Standard Mouse'
 OR prod_name = 'Mouse Pad')
 GROUP BY country_name,prod_name,calendar_year;

SELECT country, prod, year, sale
 FROM sales_view_ref
 ORDER BY country, prod, year;

COUNTRY PROD YEAR SALE
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 3269.09
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 9535.08
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13

16 rows selected.

The next example creates a multidimensional array from sales_view_ref with columns containing
country, product, year, and sales. It also:

• Assigns the sum of the sales of the Mouse Pad for years 1999 and 2000 to the sales of the
Mouse Pad for year 2001, if a row containing sales of the Mouse Pad for year 2001 exists.

• Assigns the value of sales of the Standard Mouse for year 2001 to sales of the Standard
Mouse for year 2002, creating a new row if a row containing sales of the Standard Mouse
for year 2002 does not exist.

SELECT country,prod,year,s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s[prod='Mouse Pad', year=2001] =
 s['Mouse Pad', 1999] + s['Mouse Pad', 2000],
 s['Standard Mouse', 2002] = s['Standard Mouse', 2001]
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR SALE

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 122 of 164

---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 6679.41
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
France Standard Mouse 2002 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 15721.9
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13
Germany Standard Mouse 2002 6456.13

18 rows selected.

The first rule uses UPDATE behavior because symbolic referencing is used on the left-hand side
of the rule. The rows represented by the left-hand side of the rule exist, so the measure
columns are updated. If the rows did not exist, then no action would have been taken.

The second rule uses UPSERT behavior because positional referencing is used on the left-hand
side and a single cell is referenced. The rows do not exist, so new rows are inserted and the
related measure columns are updated. If the rows did exist, then the measure columns would
have been updated.

See Also

Oracle Database Data Warehousing Guide for an expanded discussion and examples

The next example uses the same sales_view_ref view and the analytic function SUM to calculate a
cumulative sum (csum) of sales per country and per year.

SELECT country, year, sale, csum
 FROM
 (SELECT country, year, SUM(sale) sale
 FROM sales_view_ref
 GROUP BY country, year
)
 MODEL DIMENSION BY (country, year)
 MEASURES (sale, 0 csum)
 RULES (csum[any, any]=
 SUM(sale) OVER (PARTITION BY country
 ORDER BY year
 ROWS UNBOUNDED PRECEDING)
)
 ORDER BY country, year;

COUNTRY YEAR SALE CSUM
--------------- ---------- ---------- ----------
France 1998 4900.25 4900.25
France 1999 5959.14 10859.39
France 2000 4275.03 15134.42
France 2001 5433.63 20568.05

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 123 of 164

Germany 1998 12943.98 12943.98
Germany 1999 14609.58 27553.56
Germany 2000 10012.77 37566.33
Germany 2001 15991.21 53557.54

8 rows selected.

Row Limiting: Examples

The following statement returns the 5 employees with the lowest employee_id values:

SELECT employee_id, last_name
 FROM employees
 ORDER BY employee_id
 FETCH FIRST 5 ROWS ONLY;

EMPLOYEE_ID LAST_NAME
----------- -------------------------
 100 King
 101 Kochhar
 102 De Haan
 103 Hunold
 104 Ernst

The following statement returns the next 5 employees with the lowest employee_id values:

SELECT employee_id, last_name
 FROM employees
 ORDER BY employee_id
 OFFSET 5 ROWS FETCH NEXT 5 ROWS ONLY;

EMPLOYEE_ID LAST_NAME
----------- -------------------------
 105 Austin
 106 Pataballa
 107 Lorentz
 108 Greenberg
 109 Faviet

The following statement returns the 5 percent of employees with the lowest salaries:

SELECT employee_id, last_name, salary
 FROM employees
 ORDER BY salary
 FETCH FIRST 5 PERCENT ROWS ONLY;

EMPLOYEE_ID LAST_NAME SALARY
----------- ------------------------- ----------
 132 Olson 2100
 128 Markle 2200
 136 Philtanker 2200
 127 Landry 2400
 135 Gee 2400
 119 Colmenares 2500

Because WITH TIES is specified, the following statement returns the 5 percent of employees
with the lowest salaries, plus all additional employees with the same salary as the last row
fetched in the previous example:

SELECT employee_id, last_name, salary
 FROM employees
 ORDER BY salary
 FETCH FIRST 5 PERCENT ROWS WITH TIES;

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 124 of 164

EMPLOYEE_ID LAST_NAME SALARY
----------- ------------------------- ----------
 132 Olson 2100
 128 Markle 2200
 136 Philtanker 2200
 127 Landry 2400
 135 Gee 2400
 119 Colmenares 2500
 131 Marlow 2500
 140 Patel 2500
 144 Vargas 2500
 182 Sullivan 2500
 191 Perkins 2500

Using the FOR UPDATE Clause: Examples

The following statement locks rows in the employees table with purchasing clerks located in
Oxford, which has location_id 2500, and locks rows in the departments table with departments in
Oxford that have purchasing clerks:

SELECT e.employee_id, e.salary, e.commission_pct
 FROM employees e, departments d
 WHERE job_id = 'SA_REP'
 AND e.department_id = d.department_id
 AND location_id = 2500
 ORDER BY e.employee_id
 FOR UPDATE;

The following statement locks only those rows in the employees table with purchasing clerks
located in Oxford. No rows are locked in the departments table:

SELECT e.employee_id, e.salary, e.commission_pct
 FROM employees e JOIN departments d
 USING (department_id)
 WHERE job_id = 'SA_REP'
 AND location_id = 2500
 ORDER BY e.employee_id
 FOR UPDATE OF e.salary;

Using the WITH CHECK OPTION Clause: Example

The following statement is legal even though the third value inserted violates the condition of
the subquery where_clause:

INSERT INTO (SELECT department_id, department_name, location_id
 FROM departments WHERE location_id < 2000)
 VALUES (9999, 'Entertainment', 2500);

However, the following statement is illegal because it contains the WITH CHECK OPTION clause:

INSERT INTO (SELECT department_id, department_name, location_id
 FROM departments WHERE location_id < 2000 WITH CHECK OPTION)
 VALUES (9999, 'Entertainment', 2500);
 *
ERROR at line 2:
ORA-01402: view WITH CHECK OPTION where-clause violation

Using PIVOT and UNPIVOT: Examples

The oe.orders table contains information about when an order was placed (order_date), how it was
place (order_mode), and the total amount of the order (order_total), as well as other information.

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 125 of 164

The following example shows how to use the PIVOT clause to pivot order_mode values into
columns, aggregating order_total data in the process, to get yearly totals by order mode:

CREATE TABLE pivot_table AS
SELECT * FROM
(SELECT EXTRACT(YEAR FROM order_date) year, order_mode, order_total FROM orders)
PIVOT
(SUM(order_total) FOR order_mode IN ('direct' AS Store, 'online' AS Internet));

SELECT * FROM pivot_table ORDER BY year;

 YEAR STORE INTERNET
---------- ---------- ----------
 2004 5546.6
 2006 371895.5 100056.6
 2007 1274078.8 1271019.5
 2008 252108.3 393349.4

The UNPIVOT clause lets you rotate specified columns so that the input column headings are
output as values of one or more descriptor columns, and the input column values are output as
values of one or more measures columns. The first query that follows shows that nulls are
excluded by default. The second query shows that you can include nulls using the INCLUDE
NULLS clause.

SELECT * FROM pivot_table
 UNPIVOT (yearly_total FOR order_mode IN (store AS 'direct',
 internet AS 'online'))
 ORDER BY year, order_mode;

 YEAR ORDER_ YEARLY_TOTAL
---------- ------ ------------
 2004 direct 5546.6
 2006 direct 371895.5
 2006 online 100056.6
 2007 direct 1274078.8
 2007 online 1271019.5
 2008 direct 252108.3
 2008 online 393349.4

7 rows selected.

SELECT * FROM pivot_table
 UNPIVOT INCLUDE NULLS
 (yearly_total FOR order_mode IN (store AS 'direct', internet AS 'online'))
 ORDER BY year, order_mode;

 YEAR ORDER_ YEARLY_TOTAL
---------- ------ ------------
 2004 direct 5546.6
 2004 online
 2006 direct 371895.5
 2006 online 100056.6
 2007 direct 1274078.8
 2007 online 1271019.5
 2008 direct 252108.3
 2008 online 393349.4

8 rows selected.

Using Join Queries: Examples

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 126 of 164

The following examples show various ways of joining tables in a query. In the first example, an
equijoin returns the name and job of each employee and the number and name of the
department in which the employee works:

SELECT last_name, job_id, departments.department_id, department_name
 FROM employees, departments
 WHERE employees.department_id = departments.department_id
 ORDER BY last_name, job_id;

LAST_NAME JOB_ID DEPARTMENT_ID DEPARTMENT_NAME
------------------- ---------- ------------- ----------------------
Abel SA_REP 80 Sales
Ande SA_REP 80 Sales
Atkinson ST_CLERK 50 Shipping
Austin IT_PROG 60 IT
. . .

You must use a join to return this data because employee names and jobs are stored in a
different table than department names. Oracle Database combines rows of the two tables
according to this join condition:

employees.department_id = departments.department_id

The following equijoin returns the name, job, department number, and department name of all
sales managers:

SELECT last_name, job_id, departments.department_id, department_name
 FROM employees, departments
 WHERE employees.department_id = departments.department_id
 AND job_id = 'SA_MAN'
 ORDER BY last_name;

LAST_NAME JOB_ID DEPARTMENT_ID DEPARTMENT_NAME
------------------- ---------- ------------- -----------------------
Cambrault SA_MAN 80 Sales
Errazuriz SA_MAN 80 Sales
Partners SA_MAN 80 Sales
Russell SA_MAN 80 Sales
Zlotkey SA_MAN 80 Sales

This query is identical to the preceding example, except that it uses an additional where_clause
condition to return only rows with a job value of 'SA_MAN'.

Using Subqueries: Examples

To determine who works in the same department as employee 'Lorentz', issue the following
statement:

SELECT last_name, department_id FROM employees
 WHERE department_id =
 (SELECT department_id FROM employees
 WHERE last_name = 'Lorentz')
 ORDER BY last_name, department_id;

To give all employees in the employees table a 10% raise if they have changed jobs—if they
appear in the job_history table—issue the following statement:

UPDATE employees
 SET salary = salary * 1.1
 WHERE employee_id IN (SELECT employee_id FROM job_history);

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 127 of 164

To create a second version of the departments table new_departments, with only three of the columns
of the original table, issue the following statement:

CREATE TABLE new_departments
 (department_id, department_name, location_id)
 AS SELECT department_id, department_name, location_id
 FROM departments;

Using Self Joins: Example

The following query uses a self join to return the name of each employee along with the name
of the employee's manager. A WHERE clause is added to shorten the output.

SELECT e1.last_name||' works for '||e2.last_name
 "Employees and Their Managers"
 FROM employees e1, employees e2
 WHERE e1.manager_id = e2.employee_id
 AND e1.last_name LIKE 'R%'
 ORDER BY e1.last_name;

Employees and Their Managers

Rajs works for Mourgos
Raphaely works for King
Rogers works for Kaufling
Russell works for King

The join condition for this query uses the aliases e1 and e2 for the sample table employees:

e1.manager_id = e2.employee_id

Using Outer Joins: Examples

The following example shows how a partitioned outer join fills data gaps in rows to facilitate
analytic function specification and reliable report formatting. The example first creates a small
data table to be used in the join:

SELECT d.department_id, e.last_name
 FROM departments d LEFT OUTER JOIN employees e
 ON d.department_id = e.department_id
 ORDER BY d.department_id, e.last_name;

Users familiar with the traditional Oracle Database outer joins syntax will recognize the same
query in this form:

SELECT d.department_id, e.last_name
 FROM departments d, employees e
 WHERE d.department_id = e.department_id(+)
 ORDER BY d.department_id, e.last_name;

Oracle strongly recommends that you use the more flexible FROM clause join syntax shown in
the former example.

The left outer join returns all departments, including those without any employees. The same
statement with a right outer join returns all employees, including those not yet assigned to a
department:

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 128 of 164

Note

The employee Zeuss was added to the employees table for these examples, and is
not part of the sample data.

SELECT d.department_id, e.last_name
 FROM departments d RIGHT OUTER JOIN employees e
 ON d.department_id = e.department_id
 ORDER BY d.department_id, e.last_name;

DEPARTMENT_ID LAST_NAME
------------- -------------------------
. . .
 110 Gietz
 110 Higgins
 Grant
 Zeuss

It is not clear from this result whether employees Grant and Zeuss have department_id NULL, or
whether their department_id is not in the departments table. To determine this requires a full outer
join:

SELECT d.department_id as d_dept_id, e.department_id as e_dept_id,
 e.last_name
 FROM departments d FULL OUTER JOIN employees e
 ON d.department_id = e.department_id
 ORDER BY d.department_id, e.last_name;

 D_DEPT_ID E_DEPT_ID LAST_NAME
---------- ---------- -------------------------
 . . .
 110 110 Gietz
 110 110 Higgins
 . . .
 260
 270
 999 Zeuss
 Grant

Because the column names in this example are the same in both tables in the join, you can
also use the common column feature by specifying the USING clause of the join syntax. The
output is the same as for the preceding example except that the USING clause coalesces the
two matching columns department_id into a single column output:

SELECT department_id AS d_e_dept_id, e.last_name
 FROM departments d FULL OUTER JOIN employees e
 USING (department_id)
 ORDER BY department_id, e.last_name;

D_E_DEPT_ID LAST_NAME
----------- -------------------------
 . . .
 110 Higgins
 110 Gietz
 . . .
 260
 270
 999 Zeuss
 Grant

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 129 of 164

Using Partitioned Outer Joins: Examples

The following example shows how a partitioned outer join fills in gaps in rows to facilitate
analytic calculation specification and reliable report formatting. The example first creates and
populates a simple table to be used in the join:

CREATE TABLE inventory (time_id DATE,
 product VARCHAR2(10),
 quantity NUMBER);

INSERT INTO inventory VALUES (TO_DATE('01/04/01', 'DD/MM/YY'), 'bottle', 10);
INSERT INTO inventory VALUES (TO_DATE('06/04/01', 'DD/MM/YY'), 'bottle', 10);
INSERT INTO inventory VALUES (TO_DATE('01/04/01', 'DD/MM/YY'), 'can', 10);
INSERT INTO inventory VALUES (TO_DATE('04/04/01', 'DD/MM/YY'), 'can', 10);

SELECT times.time_id, product, quantity FROM inventory
 PARTITION BY (product)
 RIGHT OUTER JOIN times ON (times.time_id = inventory.time_id)
 WHERE times.time_id BETWEEN TO_DATE('01/04/01', 'DD/MM/YY')
 AND TO_DATE('06/04/01', 'DD/MM/YY')
 ORDER BY 2,1;

TIME_ID PRODUCT QUANTITY
--------- ---------- ----------
01-APR-01 bottle 10
02-APR-01 bottle
03-APR-01 bottle
04-APR-01 bottle
05-APR-01 bottle
06-APR-01 bottle 10
01-APR-01 can 10
02-APR-01 can
03-APR-01 can
04-APR-01 can 10
05-APR-01 can
06-APR-01 can

12 rows selected.

The data is now more dense along the time dimension for each partition of the product
dimension. However, each of the newly added rows within each partition is null in the quantity
column. It is more useful to see the nulls replaced by the preceding non-NULL value in time
order. You can achieve this by applying the analytic function LAST_VALUE on top of the query
result:

SELECT time_id, product, LAST_VALUE(quantity IGNORE NULLS)
 OVER (PARTITION BY product ORDER BY time_id) quantity
 FROM (SELECT times.time_id, product, quantity
 FROM inventory PARTITION BY (product)
 RIGHT OUTER JOIN times ON (times.time_id = inventory.time_id)
 WHERE times.time_id BETWEEN TO_DATE('01/04/01', 'DD/MM/YY')
 AND TO_DATE('06/04/01', 'DD/MM/YY'))
 ORDER BY 2,1;

TIME_ID PRODUCT QUANTITY
--------- ---------- ----------
01-APR-01 bottle 10
02-APR-01 bottle 10
03-APR-01 bottle 10
04-APR-01 bottle 10
05-APR-01 bottle 10
06-APR-01 bottle 10

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 130 of 164

01-APR-01 can 10
02-APR-01 can 10
03-APR-01 can 10
04-APR-01 can 10
05-APR-01 can 10
06-APR-01 can 10

12 rows selected.

See Also

Oracle Database Data Warehousing Guide for an expanded discussion on filling gaps
in time series calculations and examples of usage

Using Antijoins: Example

The following example selects a list of departments having no employee making 10000 or
more as salary:

 SELECT department_name FROM hr.departments d
 WHERE NOT EXISTS (SELECT asdf FROM hr.employees e
 WHERE e.department_id = d.department_id
 AND e.salary >= 10000)
 ORDER BY department_name;

Using Semijoins: Example

In the following example, only one row needs to be returned from the departments table, even
though many rows in the employees table might match the subquery. If no index has been
defined on the salary column in employees, then a semijoin can be used to improve query
performance.

SELECT * FROM departments
 WHERE EXISTS
 (SELECT * FROM employees
 WHERE departments.department_id = employees.department_id
 AND employees.salary > 2500)
 ORDER BY department_name;

Using CROSS APPLY and OUTER APPLY Joins: Examples

The following statement uses the CROSS APPLY clause of the cross_outer_apply_clause. The join
returns only rows from the table on the left side of the join (departments) that produce a result
from the inline view on the right side of the join. That is, the join returns only the departments
that have at least one employee. The WHERE clause restricts the result set to include only the
Marketing, Operations, and Public Relations departments. However, the Operations
department is not included in the result set because it has no employees.

SELECT d.department_name, v.employee_id, v.last_name
 FROM departments d CROSS APPLY (SELECT * FROM employees e
 WHERE e.department_id = d.department_id) v
 WHERE d.department_name IN ('Marketing', 'Operations', 'Public Relations')
 ORDER BY d.department_name, v.employee_id;

DEPARTMENT_NAME EMPLOYEE_ID LAST_NAME
------------------------------ ----------- -------------------------
Marketing 201 Hartstein

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 131 of 164

Marketing 202 Fay
Public Relations 204 Baer

The following statement uses the OUTER APPLY clause of the cross_outer_apply_clause. The join
returns all rows from the table on the left side of the join (departments) regardless of whether they
produce a result from the inline view on the right side of the join. That is, the join returns all
departments regardless of whether the departments have any employees. The WHERE clause
restricts the result set to include only the Marketing, Operations, and Public Relations
departments. The Operations department is included in the result set even though it has no
employees.

SELECT d.department_name, v.employee_id, v.last_name
 FROM departments d OUTER APPLY (SELECT * FROM employees e
 WHERE e.department_id = d.department_id) v
 WHERE d.department_name IN ('Marketing', 'Operations', 'Public Relations')
 ORDER by d.department_name, v.employee_id;

DEPARTMENT_NAME EMPLOYEE_ID LAST_NAME
------------------------------ ----------- -------------------------
Marketing 201 Hartstein
Marketing 202 Fay
Operations
Public Relations 204 Baer

Using Lateral Inline Views: Example

The following example shows a scalar subquery that finds the highest-paid employee in each
department, with employee_id as a tie-breaker:

 SELECT department_name,
 (SELECT last_name FROM
 (SELECT last_name FROM hr.employees e
 WHERE e.department_id = d.department_id
 ORDER BY e.salary DESC, e.employee_id ASC)
 WHERE ROWNUM = 1) highest_paid
 FROM hr.departments d;

If you would like not only to see the highest-paid employee’s last name, but also their first_name,
salary, and email, as separate columns, the above approach would require 4 separate scalar
subqueries. A LATERAL join in this case offers a way to extend a scalar-like subqueries to
return any number of columns and other expressions that can then be referenced any number
of times anywhere these could be referenced from an ordinary join, the SELECT list, the WHERE
clause, ORDER BY, GROUP BY, and others, for example:

 SELECT d.department_name, e2.last_name, e2.first_name, e2.salary, e2.email
 FROM hr.departments d,
 LATERAL (SELECT * FROM
 (SELECT * FROM hr.employees e
 WHERE e.department_id = d.department_id
 ORDER BY e.salary DESC, e.employee_id ASC)
 WHERE ROWNUM = 1) e2;

Table Collections: Examples

You can perform DML operations on nested tables only if they are defined as columns of a
table. Therefore, when the query_table_expr_clause of an INSERT, DELETE, or UPDATE statement is a
table_collection_expression, the collection expression must be a subquery that uses the TABLE
collection expression to select the nested table column of the table. The examples that follow
are based on the following scenario:

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 132 of 164

Suppose the database contains a table hr_info with columns department_id, location_id, and
manager_id, and a column of nested table type people which has last_name, department_id, and salary
columns for all the employees of each respective manager:

CREATE TYPE people_typ AS OBJECT (
 last_name VARCHAR2(25),
 department_id NUMBER(4),
 salary NUMBER(8,2));
/
CREATE TYPE people_tab_typ AS TABLE OF people_typ;
/
CREATE TABLE hr_info (
 department_id NUMBER(4),
 location_id NUMBER(4),
 manager_id NUMBER(6),
 people people_tab_typ)
 NESTED TABLE people STORE AS people_stor_tab;

INSERT INTO hr_info VALUES (280, 1800, 999, people_tab_typ());

The following example inserts into the people nested table column of the hr_info table for
department 280:

INSERT INTO TABLE(SELECT h.people FROM hr_info h
 WHERE h.department_id = 280)
 VALUES ('Smith', 280, 1750);

The next example updates the department 280 people nested table:

UPDATE TABLE(SELECT h.people FROM hr_info h
 WHERE h.department_id = 280) p
 SET p.salary = p.salary + 100;

The next example deletes from the department 280 people nested table:

DELETE TABLE(SELECT h.people FROM hr_info h
 WHERE h.department_id = 280) p
 WHERE p.salary > 1700;

Collection Unnesting: Examples

To select data from a nested table column, use the TABLE collection expression to treat the
nested table as columns of a table. This process is called collection unnesting.

You could get all the rows from hr_info, which was created in the preceding example, and all the
rows from the people nested table column of hr_info using the following statement:

SELECT t1.department_id, t2.* FROM hr_info t1, TABLE(t1.people) t2
 WHERE t2.department_id = t1.department_id;

Now suppose that people is not a nested table column of hr_info, but is instead a separate table
with columns last_name, department_id, address, hiredate, and salary. You can extract the same rows as
in the preceding example with this statement:

SELECT t1.department_id, t2.*
 FROM hr_info t1, TABLE(CAST(MULTISET(
 SELECT t3.last_name, t3.department_id, t3.salary
 FROM people t3
 WHERE t3.department_id = t1.department_id)
 AS people_tab_typ)) t2;

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 133 of 164

Finally, suppose that people is neither a nested table column of table hr_info nor a table itself.
Instead, you have created a function people_func that extracts from various sources the name,
department, and salary of all employees. You can get the same information as in the preceding
examples with the following query:

SELECT t1.department_id, t2.* FROM hr_info t1, TABLE(CAST
 (people_func(...) AS people_tab_typ)) t2;

See Also

Oracle Database Object-Relational Developer's Guide for more examples of collection
unnesting.

Using the LEVEL Pseudocolumn: Examples

The following statement returns all employees in hierarchical order. The root row is defined to
be the employee whose job is AD_VP. The child rows of a parent row are defined to be those
who have the employee number of the parent row as their manager number.

SELECT LPAD(' ',2*(LEVEL-1)) || last_name org_chart,
 employee_id, manager_id, job_id
 FROM employees
 START WITH job_id = 'AD_VP'
 CONNECT BY PRIOR employee_id = manager_id;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
------------------ ----------- ---------- ----------
Kochhar 101 100 AD_VP
 Greenberg 108 101 FI_MGR
 Faviet 109 108 FI_ACCOUNT
 Chen 110 108 FI_ACCOUNT
 Sciarra 111 108 FI_ACCOUNT
 Urman 112 108 FI_ACCOUNT
 Popp 113 108 FI_ACCOUNT
 Whalen 200 101 AD_ASST
 Mavris 203 101 HR_REP
 Baer 204 101 PR_REP
 Higgins 205 101 AC_MGR
 Gietz 206 205 AC_ACCOUNT
De Haan 102 100 AD_VP
 Hunold 103 102 IT_PROG
 Ernst 104 103 IT_PROG
 Austin 105 103 IT_PROG
 Pataballa 106 103 IT_PROG
 Lorentz 107 103 IT_PROG

The following statement is similar to the previous one, except that it does not select employees
with the job FI_MGR.

SELECT LPAD(' ',2*(LEVEL-1)) || last_name org_chart,
 employee_id, manager_id, job_id
 FROM employees
 WHERE job_id != 'FI_MGR'
 START WITH job_id = 'AD_VP'
 CONNECT BY PRIOR employee_id = manager_id;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
------------------ ----------- ---------- ----------
Kochhar 101 100 AD_VP

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 134 of 164

 Faviet 109 108 FI_ACCOUNT
 Chen 110 108 FI_ACCOUNT
 Sciarra 111 108 FI_ACCOUNT
 Urman 112 108 FI_ACCOUNT
 Popp 113 108 FI_ACCOUNT
 Whalen 200 101 AD_ASST
 Mavris 203 101 HR_REP
 Baer 204 101 PR_REP
 Higgins 205 101 AC_MGR
 Gietz 206 205 AC_ACCOUNT
De Haan 102 100 AD_VP
 Hunold 103 102 IT_PROG
 Ernst 104 103 IT_PROG
 Austin 105 103 IT_PROG
 Pataballa 106 103 IT_PROG
 Lorentz 107 103 IT_PROG

Oracle Database does not return the manager Greenberg, although it does return employees who
are managed by Greenberg.

The following statement is similar to the first one, except that it uses the LEVEL pseudocolumn
to select only the first two levels of the management hierarchy:

SELECT LPAD(' ',2*(LEVEL-1)) || last_name org_chart,
employee_id, manager_id, job_id
 FROM employees
 START WITH job_id = 'AD_PRES'
 CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 2;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
------------------ ----------- ---------- ----------
King 100 AD_PRES
 Kochhar 101 100 AD_VP
 De Haan 102 100 AD_VP
 Raphaely 114 100 PU_MAN
 Weiss 120 100 ST_MAN
 Fripp 121 100 ST_MAN
 Kaufling 122 100 ST_MAN
 Vollman 123 100 ST_MAN
 Mourgos 124 100 ST_MAN
 Russell 145 100 SA_MAN
 Partners 146 100 SA_MAN
 Errazuriz 147 100 SA_MAN
 Cambrault 148 100 SA_MAN
 Zlotkey 149 100 SA_MAN
 Hartstein 201 100 MK_MAN

Using Distributed Queries: Example

This example shows a query that joins the departments table on the local database with the
employees table on the remote database:

SELECT last_name, department_name
 FROM employees@remote, departments
 WHERE employees.department_id = departments.department_id;

Using Correlated Subqueries: Examples

The following examples show the general syntax of a correlated subquery:

SELECT select_list
 FROM table1 t_alias1

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 135 of 164

 WHERE expr operator
 (SELECT column_list
 FROM table2 t_alias2
 WHERE t_alias1.column
 operator t_alias2.column);

UPDATE table1 t_alias1
 SET column =
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);

DELETE FROM table1 t_alias1
 WHERE column operator
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);

The following statement returns data about employees whose salaries exceed their department
average. The following statement assigns an alias to employees, the table containing the salary
information, and then uses the alias in a correlated subquery:

SELECT department_id, last_name, salary
 FROM employees x
 WHERE salary > (SELECT AVG(salary)
 FROM employees
 WHERE x.department_id = department_id)
 ORDER BY department_id;

For each row of the employees table, the parent query uses the correlated subquery to compute
the average salary for members of the same department. The correlated subquery performs
the following steps for each row of the employees table:

1. The department_id of the row is determined.

2. The department_id is then used to evaluate the parent query.

3. If the salary in that row is greater than the average salary of the departments of that row,
then the row is returned.

The subquery is evaluated once for each row of the employees table.

Selecting from the DUAL Table: Example

The following statement returns the current date:

SELECT CURRENT_DATE FROM DUAL;

You could select CURRENT_DATE from the employees table, but the database would return 14 rows
of the same CURRENT_DATE, one for every row of the employees table. Selecting from DUAL is
more convenient.

From Release 23 you can omit the optional FROM clause as in the following example:

SELECT CURRENT_DATE;

Selecting Sequence Values: Examples

The following statement increments the employees_seq sequence and returns the new value:

SELECT employees_seq.nextval
 FROM DUAL;

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 136 of 164

The following statement selects the current value of employees_seq:

SELECT employees_seq.currval
 FROM DUAL;

Row Pattern Matching: Example

This example uses row pattern matching to query stock price data. The following statements
create table Ticker and inserts stock price data into the table:

CREATE TABLE Ticker (SYMBOL VARCHAR2(10), tstamp DATE, price NUMBER);

INSERT INTO Ticker VALUES('ACME', '01-Apr-11', 12);
INSERT INTO Ticker VALUES('ACME', '02-Apr-11', 17);
INSERT INTO Ticker VALUES('ACME', '03-Apr-11', 19);
INSERT INTO Ticker VALUES('ACME', '04-Apr-11', 21);
INSERT INTO Ticker VALUES('ACME', '05-Apr-11', 25);
INSERT INTO Ticker VALUES('ACME', '06-Apr-11', 12);
INSERT INTO Ticker VALUES('ACME', '07-Apr-11', 15);
INSERT INTO Ticker VALUES('ACME', '08-Apr-11', 20);
INSERT INTO Ticker VALUES('ACME', '09-Apr-11', 24);
INSERT INTO Ticker VALUES('ACME', '10-Apr-11', 25);
INSERT INTO Ticker VALUES('ACME', '11-Apr-11', 19);
INSERT INTO Ticker VALUES('ACME', '12-Apr-11', 15);
INSERT INTO Ticker VALUES('ACME', '13-Apr-11', 25);
INSERT INTO Ticker VALUES('ACME', '14-Apr-11', 25);
INSERT INTO Ticker VALUES('ACME', '15-Apr-11', 14);
INSERT INTO Ticker VALUES('ACME', '16-Apr-11', 12);
INSERT INTO Ticker VALUES('ACME', '17-Apr-11', 14);
INSERT INTO Ticker VALUES('ACME', '18-Apr-11', 24);
INSERT INTO Ticker VALUES('ACME', '19-Apr-11', 23);
INSERT INTO Ticker VALUES('ACME', '20-Apr-11', 22);

The following query uses row pattern matching to find all cases where stock prices dipped to a
bottom price and then rose. This is generally called a V-shape. The resulting output contains
only three rows because the query specifies ONE ROW PER MATCH, and three matches were
found.

SELECT *
FROM Ticker MATCH_RECOGNIZE (
 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES STRT.tstamp AS start_tstamp,
 LAST(DOWN.tstamp) AS bottom_tstamp,
 LAST(UP.tstamp) AS end_tstamp
 ONE ROW PER MATCH
 AFTER MATCH SKIP TO LAST UP
 PATTERN (STRT DOWN+ UP+)
 DEFINE
 DOWN AS DOWN.price < PREV(DOWN.price),
 UP AS UP.price > PREV(UP.price)
) MR
ORDER BY MR.symbol, MR.start_tstamp;

SYMBOL START_TST BOTTOM_TS END_TSTAM
---------- --------- --------- ---------
ACME 05-APR-11 06-APR-11 10-APR-11
ACME 10-APR-11 12-APR-11 13-APR-11
ACME 14-APR-11 16-APR-11 18-APR-11

Partitioned Row Limiting in Non-Vector Context: Example

Chapter 19
SELECT

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 137 of 164

The following example finds the top two departments that people with highest salary work in,
and the top three people with the highest salary within each selected department:

SELECT deptno, ename FROM emp
ORDER BY sal DESC
FETCH FIRST 2 PARTITIONS BY deptno, 3 ROWS ONLY;

Partitioned Row Limiting in a Multi-Vector Search: Example

The following statement creates a table chunk_table with three columns: doc_id and chunk_id (of
type NUMBER), and data_vec (of type VECTOR).

doc_id refers to the document id, chunk_id refers to the chunk id, and data_vec refers to the vector
embedding.

CREATE TABLE chunk_table (
 doc_id NUMBER,
 chunk_id NUMBER,
 data_vec VECTOR
);

The following query performs a multi-vector search :

SELECT doc_id,
 FROM chunk_table
 ORDER BY VECTOR_DISTANCE(data_vec, :query_vec)
 FETCH [APPROX] FIRST 10 PARTITIONS BY docId, 1 ROW ONLY;

SET CONSTRAINT[S]
Purpose

Use the SET CONSTRAINTS statement to specify, for a particular transaction, whether a
deferrable constraint is checked following each DML statement (IMMEDIATE) or when the
transaction is committed (DEFERRED). You can use this statement to set the mode for a list of
constraint names or for ALL constraints.

The SET CONSTRAINTS mode lasts for the duration of the transaction or until another SET
CONSTRAINTS statement resets the mode.

Note

You can also use an ALTER SESSION statement with the SET CONSTRAINTS clause to set
all deferrable constraints. This is equivalent to making issuing a SET CONSTRAINTS
statement at the start of each transaction in the current session.

You cannot specify this statement inside of a trigger definition.

SET CONSTRAINTS can be a distributed statement. Existing database links that have
transactions in process are notified when a SET CONSTRAINTS ALL statement is issued, and
new links are notified that it was issued as soon as they start a transaction.

Chapter 19
SET CONSTRAINT[S]

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 138 of 164

Prerequisites

To specify when a deferrable constraint is checked, you must have the READ or SELECT
privilege on the table to which the constraint is applied unless the table is in your schema.

Syntax

set_constraints::=

SET

CONSTRAINT

CONSTRAINTS

constraint

,

ALL

IMMEDIATE

DEFERRED

;

Semantics

constraint

Specify the name of one or more integrity constraints.

ALL

Specify ALL to set all deferrable constraints for this transaction.

IMMEDIATE

Specify IMMEDIATE to cause the specified constraints to be checked immediately on execution
of each constrained DML statement. Oracle Database first checks any constraints that were
deferred earlier in the transaction and then continues immediately checking constraints of any
further statements in that transaction, as long as all the checked constraints are consistent and
no other SET CONSTRAINTS statement is issued. If any constraint fails the check, then an error is
signaled. At that point, a COMMIT statement causes the whole transaction to undo.

Making constraints immediate at the end of a transaction is a way of checking whether COMMIT
can succeed. You can avoid unexpected rollbacks by setting constraints to IMMEDIATE as the
last statement in a transaction. If any constraint fails the check, you can then correct the error
before committing the transaction.

DEFERRED

Specify DEFERRED to indicate that the conditions specified by the deferrable constraint are
checked when the transaction is committed.

Note

You can verify the success of deferrable constraints prior to committing them by
issuing a SET CONSTRAINTS ALL IMMEDIATE statement.

Examples

Setting Constraints: Examples

Chapter 19
SET CONSTRAINT[S]

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 139 of 164

The following statement sets all deferrable constraints in this transaction to be checked
immediately following each DML statement:

SET CONSTRAINTS ALL IMMEDIATE;

The following statement checks three deferred constraints when the transaction is committed.
This example fails if the constraints were specified to be NOT DEFERRABLE.

SET CONSTRAINTS emp_job_nn, emp_salary_min,
 hr.jhist_dept_fk@remote DEFERRED;

SET ROLE
Purpose

When a user logs on to Oracle Database, the database enables all privileges granted explicitly
to the user and all privileges in the user's default roles. During the session, the user or an
application can use the SET ROLE statement any number of times to enable or disable the roles
currently enabled for the session.

You cannot enable more than 148 user-defined roles at one time.

Note

• For most roles, you cannot enable or disable a role unless it was granted to you
either directly or through other roles. However, a secure application role can be
granted and enabled by its associated PL/SQL package. See the CREATE ROLE
semantics for USING package and Oracle Database Security Guide for
information about secure application roles.

• SET ROLE succeeds only if there are no definer's rights units on the call stack. If at
least one DR unit is on the call stack, then issuing the SET ROLE command causes
ORA-06565. See Oracle Database PL/SQL Language Reference for more
information about definer's rights units.

• To run the SET ROLE command from PL/SQL, you must use dynamic SQL,
preferably the EXECUTE IMMEDIATE statement. See Oracle Database PL/SQL
Language Reference for more information about this statement.

You can see which roles are currently enabled by examining the SESSION_ROLES data dictionary
view.

See Also

• CREATE ROLE for information on creating roles

• ALTER USER for information on changing a user's default roles

• Oracle Database Reference for information on the SESSION_ROLES session
parameter

Prerequisites

You must already have been granted the roles that you name in the SET ROLE statement.

Chapter 19
SET ROLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 140 of 164

Syntax

set_role::=

SET ROLE

role

IDENTIFIED BY password

,

ALL

EXCEPT role

,

NONE

;

Semantics

role

Specify one or more roles to be enabled for the current session. All roles not specified are
disabled for the current session or until another SET ROLE statement is issued in the current
session.

In the IDENTIFIED BY password clause, specify the password for a role. If the role has a
password, then you must specify the password to enable the role.

Restriction on Setting Roles

You cannot specify a role identified globally. Global roles are enabled by default at login, and
cannot be reenabled later.

IDENTIFIED BY

You can set the password to a maximum length of 1024 bytes.

ALL Clause

Specify ALL to enable all roles granted to you for the current session except those optionally
listed in the EXCEPT clause.

Roles listed in the EXCEPT clause must be roles granted directly to you. They cannot be roles
granted to you through other roles.

If you list a role in the EXCEPT clause that has been granted to you both directly and through
another role, then the role remains enabled by virtue of the role to which it has been granted.

Restrictions on the ALL Clause

The following restrictions apply to the ALL clause:

• You cannot use this clause to enable roles with passwords that have been granted directly
to you.

• You cannot use this clause to enable a secure application role, which is a role that can be
enabled only by applications using an authorized package. Refer to Oracle Database
Security Guide for information on creating a secure application role.

Chapter 19
SET ROLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 141 of 164

NONE

Specify NONE to disable all roles for the current session, including the DEFAULT role.

Examples

Setting Roles: Examples

To enable the role dw_manager identified by a password for your current session, issue the
following statement:

SET ROLE dw_manager IDENTIFIED BY password;

To enable all roles granted to you for the current session, issue the following statement:

SET ROLE ALL;

To enable all roles granted to you except dw_manager, issue the following statement:

SET ROLE ALL EXCEPT dw_manager;

To disable all roles granted to you for the current session, issue the following statement:

SET ROLE NONE;

SET TRANSACTION
Purpose

Use the SET TRANSACTION statement to establish the current transaction as read-only or read/
write, establish its isolation level, assign it to a specified rollback segment, or assign a name to
the transaction.

A transaction implicitly begins with any operation that obtains a TX lock:

• When a statement that modifies data is issued

• When a SELECT ... FOR UPDATE statement is issued

• When a transaction is explicitly started with a SET TRANSACTION statement or the
DBMS_TRANSACTION package

Issuing either a COMMIT or ROLLBACK statement explicitly ends the current transaction.

The operations performed by a SET TRANSACTION statement affect only your current
transaction, not other users or other transactions. Your transaction ends whenever you issue a
COMMIT or ROLLBACK statement. Oracle Database implicitly commits the current transaction
before and after executing a data definition language (DDL) statement.

See Also

COMMIT and ROLLBACK

Prerequisites

If you use a SET TRANSACTION statement, then it must be the first statement in your transaction.
However, a transaction need not have a SET TRANSACTION statement.

Chapter 19
SET TRANSACTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 142 of 164

Syntax

set_transaction::=

SET TRANSACTION

READ
ONLY

WRITE

ISOLATION LEVEL
SERIALIZABLE

READ COMMITTED

USE ROLLBACK SEGMENT rollback_segment

NAME string

NAME string

;

Semantics

READ ONLY

The READ ONLY clause establishes the current transaction as a read-only transaction. This
clause established transaction-level read consistency.

All subsequent queries in that transaction see only changes that were committed before the
transaction began. Read-only transactions are useful for reports that run multiple queries
against one or more tables while other users update these same tables.

This clause is not supported for the user SYS. Queries by SYS will return changes made during
the transaction even if SYS has set the transaction to be READ ONLY.

Restriction on Read-only Transactions

Only the following statements are permitted in a read-only transaction:

• Subqueries—SELECT statements without the for_update_clause

• LOCK TABLE

• SET ROLE

• ALTER SESSION

• ALTER SYSTEM

READ WRITE

Specify READ WRITE to establish the current transaction as a read/write transaction. This
clause establishes statement-level read consistency, which is the default.

Restriction on Read/Write Transactions

You cannot toggle between transaction-level and statement-level read consistency in the same
transaction.

ISOLATION LEVEL Clause

• The SERIALIZABLE setting specifies serializable transaction isolation mode as defined in the
SQL standard. If a serializable transaction contains data manipulation language (DML) that
attempts to update any resource that may have been updated in a transaction
uncommitted at the start of the serializable transaction, then the DML statement fails.

Chapter 19
SET TRANSACTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 143 of 164

• The READ COMMITTED setting is the default Oracle Database transaction behavior. If the
transaction contains DML that requires row locks held by another transaction, then the
DML statement waits until the row locks are released.

USE ROLLBACK SEGMENT Clause

Note

This clause is relevant and valid only if you are using rollback segments for undo.
Oracle strongly recommends that you use automatic undo management to handle
undo space. If you follow this recommendation and run your database in automatic
undo mode, then Oracle Database ignores this clause.

Specify USE ROLLBACK SEGMENT to assign the current transaction to the specified rollback
segment. This clause also implicitly establishes the transaction as a read/write transaction.

Parallel DML requires more than one rollback segment. Therefore, if your transaction contains
parallel DML operations, then the database ignores this clause.

NAME Clause

Use the NAME clause to assign a name to the current transaction. This clause is especially
useful in distributed database environments when you must identify and resolve in-doubt
transactions. The string value is limited to 255 bytes.

If you specify a name for a distributed transaction, then when the transaction commits, the
name becomes the commit comment, overriding any comment specified explicitly in the
COMMIT statement.

See Also

Oracle Database Concepts for more information about transaction naming

Examples

Setting Transactions: Examples

The following statements could be run at midnight of the last day of every month to count the
products and quantities on hand in the West Coast warehouses in the sample Order Entry (oe)
schema. This report would not be affected by any other user who might be adding or removing
inventory to a different warehouse between the running of the first query and the running of the
second query.

COMMIT;

SET TRANSACTION READ ONLY NAME 'West Coast';

SELECT product_id, quantity_on_hand, 'San Francisco' location
 FROM inventories
 WHERE warehouse_id = 2
 ORDER BY product_id;

SELECT product_id, quantity_on_hand, 'Seattle' location
 FROM inventories

Chapter 19
SET TRANSACTION

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 144 of 164

 WHERE warehouse_id = 4
 ORDER BY product_id;

COMMIT;

The first COMMIT statement ensures that SET TRANSACTION is the first statement in the
transaction. The last COMMIT statement does not actually make permanent any changes to the
database. It simply ends the read-only transaction.

TRUNCATE CLUSTER
Purpose

Note

You cannot roll back a TRUNCATE CLUSTER statement.

Use the TRUNCATE CLUSTER statement to remove all rows from a cluster. By default, Oracle
Database also performs the following tasks:

• Deallocates all space used by the removed rows except that specified by the MINEXTENTS
storage parameter

• Sets the NEXT storage parameter to the size of the last extent removed from the segment
by the truncation process

Removing rows with the TRUNCATE statement can be more efficient than dropping and re-
creating a cluster. Dropping and re-creating a cluster invalidates dependent objects of the
cluster, requires you to regrant object privileges on the cluster, and requires you to re-create
the indexes and cluster on the table and respecify its storage parameters. Truncating has none
of these effects.

Removing rows with the TRUNCATE CLUSTER statement can be faster than removing all rows
with the DELETE statement, especially if the cluster has numerous indexes and other
dependencies.

See Also

• DELETE and DROP CLUSTER for information on other ways of dropping data
from a cluster

• TRUNCATE TABLE for information on truncating a table

Prerequisites

You must have the DROP ANY CLUSTER and DROP ANY TABLE system or schema privileges to
truncate a cluster. You must be able to drop a cluster to be able to truncate it or have the
sufficient privileges to truncate a cluster. Additionally, you must have the privileges to drop all
tables related to the cluster or have the DROP ANY TABLE system or schema privilege.

Chapter 19
TRUNCATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 145 of 164

See Also

"Restrictions on Truncating Tables"

Syntax

truncate_cluster::=

TRUNCATE CLUSTER

schema .

cluster

DROP

REUSE

STORAGE

;

Semantics

CLUSTER Clause

Specify the schema and name of the cluster to be truncated. You can truncate only an indexed
cluster, not a hash cluster. If you omit schema, then the database assumes the cluster is in your
own schema.

When you truncate a cluster, the database also automatically deletes all data in the indexes of
the cluster tables.

STORAGE Clauses

The STORAGE clauses let you determine what happens to the space freed by the truncated
rows. The DROP STORAGE clause and REUSE STORAGE clause also apply to the space freed by
the data deleted from associated indexes.

DROP STORAGE

Specify DROP STORAGE to deallocate all space from the deleted rows from the cluster except
the space allocated by the MINEXTENTS parameter of the cluster. This space can subsequently
be used by other objects in the tablespace. Oracle Database also sets the NEXT storage
parameter to the size of the last extent removed from the segment in the truncation process.
This is the default.

REUSE STORAGE

Specify REUSE STORAGE to retain the space from the deleted rows allocated to the cluster.
Storage values are not reset to the values when the table or cluster was created. This space
can subsequently be used only by new data in the cluster resulting from insert or update
operations. This clause leaves storage parameters at their current settings.

If you have specified more than one free list for the object you are truncating, then the REUSE
STORAGE clause also removes any mapping of free lists to instances and resets the high-water
mark to the beginning of the first extent.

Examples

Truncating a Cluster: Example

The following statement removes all rows from all tables in the personnel cluster, but leaves the
freed space allocated to the tables:

Chapter 19
TRUNCATE CLUSTER

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 146 of 164

TRUNCATE CLUSTER personnel REUSE STORAGE;

The preceding statement also removes all data from all indexes on the tables in the personnel
cluster.

TRUNCATE TABLE
Purpose

Note

You cannot roll back a TRUNCATE TABLE statement, nor can you use a FLASHBACK
TABLE statement to retrieve the contents of a table that has been truncated.

Use the TRUNCATE TABLE statement to remove all rows from a table. By default, Oracle
Database also performs the following tasks:

• Deallocates all space used by the removed rows except that specified by the MINEXTENTS
storage parameter

• Sets the NEXT storage parameter to the size of the last extent removed from the segment
by the truncation process

Removing rows with the TRUNCATE TABLE statement can be more efficient than dropping and
re-creating a table. Dropping and re-creating a table invalidates dependent objects of the table,
and requires you to repeat the following actions:

• Grant object privileges on the table

• Create the indexes, integrity constraints, and triggers on the table

• Specify the storage parameters of the table

Truncating has none of these effects.

Removing rows with the TRUNCATE TABLE statement can be faster than removing all rows with
the DELETE statement, especially if the table has numerous triggers, indexes, and other
dependencies.

See Also

• DELETE and DROP TABLE for information on other ways of removing data from a
table

• TRUNCATE CLUSTER for information on truncating a cluster

Prerequisites

To truncate a table, the table must be in your schema or you must have the DROP ANY TABLE
system privilege.

To specify the CASCADE clause, all affected child tables must be in your schema or you must
have the DROP ANY TABLE system privilege.

Chapter 19
TRUNCATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 147 of 164

You can truncate a private temporary table with the existing TRUNCATE TABLE command.
Truncating a private temporary table will not commit and existing transaction. This applies to
both transaction-specific and session-specific private temporary tables. Note that a truncated
private temporary table will not go into the RECYCLEBIN.

See Also

"Restrictions on Truncating Tables"

Syntax

truncate_table::=

TRUNCATE TABLE

schema .

table

PRESERVE

PURGE

MATERIALIZED VIEW LOG

DROP

ALL

REUSE

STORAGE

CASCADE

;

Semantics

TABLE Clause

Specify the schema and name of the table to be truncated. This table cannot be part of a
cluster. If you omit schema, then Oracle Database assumes the table is in your own schema.

• You can truncate index-organized tables and temporary tables. When you truncate a
temporary table, only the rows created during the current session are removed.

• Oracle Database changes the NEXT storage parameter of table to be the size of the last
extent deleted from the segment in the process of truncation.

• Oracle Database also automatically truncates and resets any existing UNUSABLE indicators
for the following indexes on table: range and hash partitions of local indexes and
subpartitions of local indexes.

• If table is not empty, then the database marks UNUSABLE all nonpartitioned indexes and all
partitions of global partitioned indexes on the table. However, when the table is truncated,
the index is also truncated, and a new high water mark is calculated for the index segment.
This operation is equivalent to creating a new segment for the index. Therefore, at the end
of the truncate operation, the indexes are once again USABLE.

• For a domain index, this statement invokes the appropriate truncate routine to truncate the
domain index data.

Chapter 19
TRUNCATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 148 of 164

See Also

Oracle Database Data Cartridge Developer's Guide for more information on
domain indexes

• If a regular or index-organized table contains LOB columns, then all LOB data and LOB
index segments are truncated.

• If table is partitioned, then all partitions or subpartitions, as well as the LOB data and LOB
index segments for each partition or subpartition, are truncated.

Note

When you truncate a table, Oracle Database automatically removes all data in the
table's indexes and any materialized view direct-path INSERT information held in
association with the table. This information is independent of any materialized
view log. If this direct-path INSERT information is removed, then an incremental
refresh of the materialized view may lose data.

• All cursors are invalidated.

Restrictions on Truncating Tables

This statement is subject to the following restrictions:

• You cannot roll back a TRUNCATE TABLE statement.

• You cannot flash back to the state of the table before the truncate operation.

• You cannot individually truncate a table that is part of a cluster. You must either truncate
the cluster, delete all rows from the table, or drop and re-create the table.

• You cannot truncate the parent table of an enabled foreign key constraint. You must
disable the constraint before truncating the table. An exception is that you can truncate the
table if the integrity constraint is self-referential.

• If a domain index is defined on table, then neither the index nor any index partitions can be
marked IN_PROGRESS.

• You cannot truncate the parent table of a reference-partitioned table. You must first drop
the reference-partitioned child table.

• You cannot truncate a duplicated table.

MATERIALIZED VIEW LOG Clause

The MATERIALIZED VIEW LOG clause lets you specify whether a materialized view log defined
on the table is to be preserved or purged when the table is truncated. This clause permits
materialized view master tables to be reorganized through export or import without affecting
the ability of primary key materialized views defined on the master to be fast refreshed. To
support continued fast refresh of primary key materialized views, the materialized view log
must record primary key information.

Chapter 19
TRUNCATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 149 of 164

Note

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

PRESERVE

Specify PRESERVE if any materialized view log should be preserved when the master table is
truncated. This is the default.

PURGE

Specify PURGE if any materialized view log should be purged when the master table is
truncated.

See Also

Oracle Database Administrator’s Guide for more information about materialized view
logs and the TRUNCATE statement

STORAGE Clauses

The STORAGE clauses let you determine what happens to the space freed by the truncated
rows. The DROP STORAGE clause, DROP ALL STORAGE clause, and REUSE STORAGE clause also
apply to the space freed by the data deleted from associated indexes.

DROP STORAGE

Specify DROP STORAGE to deallocate all space from the deleted rows from the table except the
space allocated by the MINEXTENTS parameter of the table. This space can subsequently be
used by other objects in the tablespace. Oracle Database also sets the NEXT storage
parameter to the size of the last extent removed from the segment in the truncation process.
This setting, which is the default, is useful for small and medium-sized objects. The extent
management in locally managed tablespace is very fast in these cases, so there is no need to
reserve space.

DROP ALL STORAGE

Specify DROP ALL STORAGE to deallocate all space from the deleted rows from the table,
including the space allocated by the MINEXTENTS parameter. All segments for the table, as well
as all segments for its dependent objects, will be deallocated.

Restrictions on DROP ALL STORAGE

This clause is subject to the same restrictions as described in "Restrictions on Deferred
Segment Creation".

REUSE STORAGE

Specify REUSE STORAGE to retain the space from the deleted rows allocated to the table.
Storage values are not reset to the values when the table was created. This space can
subsequently be used only by new data in the table resulting from insert or update operations.
This clause leaves storage parameters at their current settings.

Chapter 19
TRUNCATE TABLE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 150 of 164

This setting is useful as an alternative to deleting all rows of a very large table—when the
number of rows is very large, the table entails many thousands of extents, and when data is to
be reinserted in the future.

This clause is not valid for temporary tables. A session becomes unbound from the temporary
table when the table is truncated, so the storage is automatically dropped.

If you have specified more than one free list for the object you are truncating, then the REUSE
STORAGE clause also removes any mapping of free lists to instances and resets the high-water
mark to the beginning of the first extent.

CASCADE

If you specify CASCADE, then Oracle Database truncates all child tables that reference table with
an enabled ON DELETE CASCADE referential constraint. This is a recursive operation that will
truncate all child tables, granchild tables, and so on, using the specified options.

Examples

Truncating a Table: Example

The following statement removes all rows from a hypothetical copy of the sample table
hr.employees and returns the freed space to the tablespace containing employees:

TRUNCATE TABLE employees_demo;

The preceding statement also removes all data from all indexes on employees and returns the
freed space to the tablespaces containing them.

Preserving Materialized View Logs After Truncate: Example

The following statements are examples of TRUNCATE statements that preserve materialized
view logs:

TRUNCATE TABLE sales_demo PRESERVE MATERIALIZED VIEW LOG;

TRUNCATE TABLE orders_demo;

UPDATE
Purpose

Use the UPDATE statement to change existing values in a table or in the base table of a view or
the master table of a materialized view.

Prerequisites

For you to update values in a table, the table must be in your own schema or you must have
the UPDATE object privilege on the table.

For you to update values in the base table of a view:

• You must have the UPDATE object privilege on the view, and

• Whoever owns the schema containing the view must have the UPDATE object privilege on
the base table.

The UPDATE ANY TABLE system privilege also allows you to update values in any table or in the
base table of any view.

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 151 of 164

To update values in an object on a remote database, you must also have the READ or SELECT
object privilege on the object.

To specify the returning_clause, you must have the READ or SELECT object privilege on the object.

If the SQL92_SECURITY initialization parameter is set to TRUE and the UPDATE operation
references table columns, such as the columns in a where_clause or returning_clause, then you must
have the SELECT object privilege on the object you want to update.

Syntax

update::=

UPDATE

hint dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

update_set_clause

from_using_clause where_clause order_by_clause returning_clause error_logging_clause

(DML_table_expression_clause::=, update_set_clause::=, where_clause::=,
returning_clause::=, error_logging_clause::=, from_using_clause::=)

DML_table_expression_clause::=

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

(subquery

subquery_restriction_clause

)

table_collection_expression

(partition_extension_clause::=, subquery::=--part of SELECT, subquery_restriction_clause::=,
table_collection_expression::=)

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 152 of 164

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)

(+)

update_set_clause::=

SET

column_value_pairs

VALUE (t_alias) =
expr

(subquery)

column_value_pairs::=

(column

,

) = (

subquery

expr

(subquery)

DEFAULT

,
)

column =

expr

(subquery)

DEFAULT

,

from_using_clause::=

FROM

USING

table_reference

join_clause

(join_clause)

inline_analytic_view

,

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 153 of 164

where_clause::=

WHERE condition

order_by_clause::=

See order_by_clause::=

returning_clause::=

RETURN

RETURNING

OLD

NEW

expr

,

INTO data_item

,

error_logging_clause::=

LOG ERRORS

INTO

schema .

table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

Semantics

hint

Specify a comment that passes instructions to the optimizer on choosing an execution plan for
the statement.

You can place a parallel hint immediately after the UPDATE keyword to parallelize both the
underlying scan and UPDATE operations.

See Also

• "Hints " for the syntax and description of hints

• Oracle Database Concepts for detailed information about parallel execution

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 154 of 164

DML_table_expression_clause

The ONLY clause applies only to views. Specify ONLY syntax if the view in the UPDATE clause is
a view that belongs to a hierarchy and you do not want to update rows from any of its
subviews.

See Also

"Restrictions on the DML_table_expression_clause" and "Updating a Table: Examples"

schema

Specify the schema containing the object to be updated. If you omit schema, then the database
assumes the object is in your own schema.

table | view | materialized_view |subquery

Specify the name of the table, view, materialized view, or the columns returned by a subquery
to be updated. Issuing an UPDATE statement against a table fires any UPDATE triggers
associated with the table.

• If you specify view, then the database updates the base table of the view. You cannot
update a view except with INSTEAD OF triggers if the defining query of the view contains
one of the following constructs:

A set operator
A DISTINCT operator
An aggregate or analytic function
A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause
A collection expression in a SELECT list
A subquery in a SELECT list
A subquery designated WITH READ ONLY

A recursive WITH clause
Joins, with some exceptions, as documented in Oracle Database Administrator's Guide

• You cannot update more than one base table through a view.

• In addition, if the view was created with the WITH CHECK OPTION, then you can update the
view only if the resulting data satisfies the view's defining query.

• If table or the base table of view contains one or more domain index columns, then this
statement executes the appropriate indextype update routine.

• You cannot update rows in a read-only materialized view. If you update rows in a writable
materialized view, then the database updates the rows from the underlying container table.
However, the updates are overwritten at the next refresh operation. If you update rows in
an updatable materialized view that is part of a materialized view group, then the database
also updates the corresponding rows in the master table.

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 155 of 164

See Also

• Oracle Database Data Cartridge Developer's Guide for more information on the
indextype update routines

• CREATE MATERIALIZED VIEW for information on creating updatable
materialized views

partition_extension_clause

Specify the name or partition key value of the partition or subpartition within table targeted for
updates. You need not specify the partition name when updating values in a partitioned table.
However in some cases specifying the partition name can be more efficient than a complicated
where_clause.

See Also

"References to Partitioned Tables and Indexes " and "Updating a Partition: Example"

dblink

Specify a complete or partial name of a database link to a remote database where the object is
located. You can use a database link to update a remote object only if you are using Oracle
Database distributed functionality.

If you omit dblink, then the database assumes the object is on the local database.

Note

Starting with Oracle Database 12c Release 2 (12.2), the UPDATE statement accepts
remote LOB locators as bind variables. Refer to the “Distributed LOBs” chapter in
Oracle Database SecureFiles and Large Objects Developer's Guide for more
information.

See Also

"References to Objects in Remote Databases " for information on referring to
database links

subquery_restriction_clause

Use the subquery_restriction_clause to restrict the subquery in one of the following ways:

WITH READ ONLY

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 156 of 164

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to the
table or view that would produce rows that are not included in the subquery. When used in the
subquery of a DML statement, you can specify this clause in a subquery in the FROM clause
but not in subquery in the WHERE clause.

CONSTRAINT constraint

Specify the name of the CHECK OPTION constraint. If you omit this identifier, then Oracle
automatically assigns the constraint a name of the form SYS_Cn, where n is an integer that
makes the constraint name unique within the database.

See Also

"Using the WITH CHECK OPTION Clause: Example"

table_collection_expression

The table_collection_expression lets you inform Oracle that the value of collection_expression should be
treated as a table for purposes of query and DML operations. The collection_expression can be a
subquery, a column, a function, or a collection constructor. Regardless of its form, it must
return a collection value—that is, a value whose type is nested table or varray. This process of
extracting the elements of a collection is called collection unnesting.

The optional plus (+) is relevant if you are joining the TABLE collection expression with the
parent table. The + creates an outer join of the two, so that the query returns rows from the
outer table even if the collection expression is null.

Note

In earlier releases of Oracle, when collection_expression was a subquery,
table_collection_expression was expressed as THE subquery. That usage is now deprecated.

You can use a table_collection_expression to update rows in one table based on rows from another
table. For example, you could roll up four quarterly sales tables into a yearly sales table.

t_alias

Specify a correlation name (alias) for the table, view, or subquery to be referenced elsewhere
in the statement. This alias is required if the DML_table_expression_clause references any object
type attributes or object type methods.

See Also

"Correlated Update: Example"

Restrictions on the DML_table_expression_clause

This clause is subject to the following restrictions:

• You cannot execute this statement if table or the base table of view contains any domain
indexes marked IN_PROGRESS or FAILED.

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 157 of 164

• You cannot insert into a partition if any affected index partitions are marked UNUSABLE.

• You cannot specify the order_by_clause in the subquery of the DML_table_expression_clause.

• If you specify an index, index partition, or index subpartition that has been marked
UNUSABLE, then the UPDATE statement will fail unless the SKIP_UNUSABLE_INDEXES session
parameter has been set to TRUE.

See Also

ALTER SESSION for information on the SKIP_UNUSABLE_INDEXES session parameter

update_set_clause

The update_set_clause lets you set column values.

column

Specify the name of a column of the object that is to be updated. If you omit a column of the
table from the update_set_clause, then the value of that column remains unchanged.

If column refers to a LOB object attribute, then you must first initialize it with a value of empty or
null. You cannot update it with a literal. Also, if you are updating a LOB value using some
method other than a direct UPDATE SQL statement, then you must first lock the row containing
the LOB. See for_update_clause for more information.

If column is a virtual column, you cannot specify it here. Rather, you must update the values
from which the virtual column is derived.

If column is part of the partitioning key of a partitioned table, then UPDATE will fail if you change a
value in the column that would move the row to a different partition or subpartition, unless you
enable row movement. Refer to the row_movement_clause of CREATE TABLE or ALTER TABLE.

In addition, if column is part of the partitioning key of a list-partitioned table, then UPDATE will fail
if you specify a value for the column that does not already exist in the partition_key_value list of
one of the partitions.

subquery

Specify a subquery that returns exactly one row for each row updated.

• If you specify only one column in the update_set_clause, then the subquery can return only one
value.

• If you specify multiple columns in the update_set_clause, then the subquery must return as
many values as you have specified columns.

• If the subquery returns no rows, then the column is assigned a null.

• If this subquery refers to remote objects, then the UPDATE operation can run in parallel as
long as the reference does not loop back to an object on the local database. However, if
the subquery in the DML_table_expression_clause refers to any remote objects, then the UPDATE
operation will run serially without notification.

You can use the flashback_query_clause within the subquery to update table with past data. Refer to
the flashback_query_clause of SELECT for more information on this clause.

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 158 of 164

See Also

• SELECT and "Using Subqueries "

• parallel_clause in the CREATE TABLE documentation

expr

Specify an expression that resolves to the new value assigned to the corresponding column.

Note

Expressions for the syntax of expr and "Updating an Object Table: Example"

DEFAULT

Specify DEFAULT to set the column to the value previously specified as the default value for the
column. If no default value for the corresponding column has been specified, then the
database sets the column to null.

Restriction on Updating to Default Values

You cannot specify DEFAULT if you are updating a view.

You cannot use the DEFAULT clause in an UPDATE statement if the table that you are specifying
has an Oracle Label Security policy enabled.

VALUE Clause

The VALUE clause lets you specify the entire row of an object table.

Restriction on the VALUE clause

You can specify this clause only for an object table.

Note

If you insert string literals into a RAW column, then during subsequent queries, Oracle
Database will perform a full table scan rather than using any index that might exist on
the RAW column.

See Also

"Updating an Object Table: Example"

from_using_clause

Use this clause to filter the rows UPDATE changes, or to provide the values for the columns in
the target table. Specify the join conditions in the where_clause. You can outer join source tables
to the target table with (+). The target table cannot be the outer table in the join.

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 159 of 164

You can join many tables, views, and inline views. Specify the join conditions in the where_clause
or use the join_clause to join these to each other with ANSI join syntax.

You can specify the same table in the dml_table_expression_clause and from_clause. When you do so
they must have unique aliases.

Example: Update With Direct-Join

In this example, the join condition between table employees e and table jobs j determines
which rows of employees are updated. The column jobs.max_salary supplies the new values for
employees.salary:

UPDATE employees e
SET e.salary = j.max_salary
FROM jobs j
WHERE j.job_id = e.job_id;

Direct joins for UPDATE have the same semantics and restrictions as SELECT in the from_clause
and where_clause. The target table has the same restrictions as UPDATE. Triggers on the target
table fire as normal.

Restrictions

• You cannot specify ANSI join syntax involving the dml_table_expression_clause. However, ANSI
join syntax is allowed between the tables specified in the FROM clause. Right and full outer
joins are not allowed.

• The UPDATE can change each row at most once. If the join condition results in the same
row being updated more than once, the statement will raise an ORA-30926 error.

• You can only specify one table, view, or materialized view in dml_table_expression_clause when
the from_clause is present.

• The left-hand side of update_set_clause must be a column from the dml_table_expression_clause and
not from the from_clause.

• You can use a lateral view in the FROM clause, but it cannot reference a column from the
update target. It may be outer-joined.

• Order by position is not allowed in the order_by_clause.

• UPDATE with from_clause supports returning_clause and error_logging_clause.

• Hint clause can be used to specify instructions to the optimizer for joins involving the
from_clause.

where_clause

The where_clause lets you restrict the rows updated to those for which the specified condition is
true. If you omit this clause, then the database updates all rows in the table or view. Refer to
Conditions for the syntax of condition.

The where_clause determines the rows in which values are updated. If you do not specify the
where_clause, then all rows are updated. For each row that satisfies the where_clause, the columns
to the left of the equality operator (=) in the update_set_clause are set to the values of the
corresponding expressions to the right of the operator. The expressions are evaluated as the
row is updated.

order_by_clause

The following restrictions apply to the ORDER BY clause:

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 160 of 164

• When used in an analytic function, the order_by_clause must take an expression expr.

• The SIBLINGS keyword is not valid (it is relevant only in hierarchical queries)

• The position alias is invalid.

See order_by_clause

returning_clause

You can specify this clause for tables, views, and materialized views with a single base table.

When operating on a single row, a DML statement with a returning_clause can retrieve column
values using the affected row, rowid, and REFs to the affected row and store them in host
variables or PL/SQL variables.

When operating on multiple rows, a DML statement with the returning_clause returns values from
expressions, rowids, and REFs involving the affected rows in bind arrays.

expr

Each item in the expr list must be a valid expression syntax.

INTO

The INTO clause indicates that the values of the changed rows are to be stored in the
variable(s) specified in data_item list.

data_item

Each data_item is a host variable or PL/SQL variable that stores the retrieved expr value.

For each expression in the RETURNING list, you must specify a corresponding type-compatible
PL/SQL variable or host variable in the INTO list.

Given columns c1 and c2 in a table, you can specify OLD for a column c1, (for example OLD c1).
You can also specify OLD for a column referenced by a column expression (for example c1+OLD
c2). When OLD is specified for a column, the column value before the update is returned. In the
case of a column referenced by a column expression, what is returned is the result from
evaluating the column expression using the column value before the update.

NEW can be explicitly specified for a column, or column referenced in an expression to return a
column value after the update, or an expression result that uses the after update value of a
column.

When OLD and NEW are both omitted for a column or an expression, the after update column
value, or expression result computed using after update column values, is returned.

Restrictions

The following restrictions apply to the RETURNING clause:

• The expr is restricted as follows:

– For UPDATE and DELETE statements each expr must be a simple expression or a single-
set aggregate function expression. You cannot combine simple expressions and
single-set aggregate function expressions in the same returning_clause. For INSERT
statements, each expr must be a simple expression. Aggregate functions are not
supported in an INSERT statement RETURNING clause.

– Single-set aggregate function expressions cannot include the DISTINCT keyword.

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 161 of 164

• If the expr list contains a primary key column or other NOT NULL column, then the update
statement fails if the table has a BEFORE UPDATE trigger defined on it.

• You cannot specify the returning_clause for a multitable insert.

• You cannot use this clause with parallel DML or with remote objects.

• You cannot retrieve LONG types with this clause.

• You cannot specify this clause for a view on which an INSTEAD OF trigger has been defined.

See Also

Oracle Database PL/SQL Language Reference for information on using the BULK
COLLECT clause to return multiple values to collection variables

error_logging_clause

The error_logging_clause has the same behavior in an UPDATE statement as it does in an INSERT
statement. Refer to the INSERT statement error_logging_clause for more information.

See Also

"Inserting Into a Table with Error Logging: Example"

Examples

Updating a Table: Examples

The following statement gives null commissions to all employees with the job SH_CLERK:

UPDATE employees
 SET commission_pct = NULL
 WHERE job_id = 'SH_CLERK';

The following statement promotes Douglas Grant to manager of Department 20 with a $1,000
raise:

UPDATE employees SET
 job_id = 'SA_MAN', salary = salary + 1000, department_id = 120
 WHERE first_name||' '||last_name = 'Douglas Grant';

The following statement increases the salary of an employee in the employees table on the remote
database:

UPDATE employees@remote
 SET salary = salary*1.1
 WHERE last_name = 'Baer';

The next example shows the following syntactic constructs of the UPDATE statement:

• Both forms of the update_set_clause together in a single statement

• A correlated subquery

• A where_clause to limit the updated rows

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 162 of 164

UPDATE employees a
 SET department_id =
 (SELECT department_id
 FROM departments
 WHERE location_id = '2100'),
 (salary, commission_pct) =
 (SELECT 1.1*AVG(salary), 1.5*AVG(commission_pct)
 FROM employees b
 WHERE a.department_id = b.department_id)
 WHERE department_id IN
 (SELECT department_id
 FROM departments
 WHERE location_id = 2900
 OR location_id = 2700);

The preceding UPDATE statement performs the following operations:

• Updates only those employees who work in Geneva or Munich (locations 2900 and 2700)

• Sets department_id for these employees to the department_id corresponding to Bombay
(location_id 2100)

• Sets each employee's salary to 1.1 times the average salary of their department

• Sets each employee's commission to 1.5 times the average commission of their
department

Updating a Partition: Example

The following example updates values in a single partition of the sales table:

UPDATE sales PARTITION (sales_q1_1999) s
 SET s.promo_id = 494
 WHERE amount_sold > 1000;

Updating an Object Table: Example

The following statement creates two object tables, people_demo1 and people_demo2, of the people_typ
object created in Table Collections: Examples. The example shows how to update a row of
people_demo1 by selecting a row from people_demo2:

CREATE TABLE people_demo1 OF people_typ;

CREATE TABLE people_demo2 OF people_typ;

UPDATE people_demo1 p SET VALUE(p) =
 (SELECT VALUE(q) FROM people_demo2 q
 WHERE p.department_id = q.department_id)
 WHERE p.department_id = 10;

The example uses the VALUE object reference function in both the SET clause and the
subquery.

Correlated Update: Example

For an example that uses a correlated subquery to update nested table rows, refer to "Table
Collections: Examples".

Using the RETURNING Clause During UPDATE: Example

The following example returns values from the updated row and stores the result in PL/SQL
variables bnd1, bnd2, bnd3:

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 163 of 164

UPDATE employees
 SET job_id ='SA_MAN', salary = salary + 1000, department_id = 140
 WHERE last_name = 'Jones'
 RETURNING salary*0.25, last_name, department_id
 INTO :bnd1, :bnd2, :bnd3;

The following example shows that you can specify a single-set aggregate function in the
expression of the returning clause:

UPDATE employees
 SET salary = salary * 1.1
 WHERE department_id = 100
 RETURNING SUM(salary) INTO :bnd1;

Update Using Direct Join: Example

The following example sets every employee's salary to the max salary for their job:

UPDATE hr.employees e
 SET e.salary = j.max_salary
 FROM hr.jobs j
 WHERE e.job_id = j.job_id;

Chapter 19
UPDATE

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 164 of 164

A
How to Read Syntax Diagrams

This appendix describes how to read syntax diagrams.

This reference presents Oracle SQL syntax in both graphic diagrams and in text (Backus-Naur
Form—BNF). This appendix contains these sections:

• Graphic Syntax Diagrams

• Backus-Naur Form Syntax

Graphic Syntax Diagrams
Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram, trace it from
left to right, in the direction shown by the arrows.

Commands and other keywords appear in UPPERCASE inside rectangles. Type them exactly
as shown in the rectangles. Parameters appear in lowercase inside ovals. Variables are used
for the parameters. Punctuation, operators, delimiters, and terminators appear inside circles.

If the syntax diagram has more than one path, then you can choose any path. For example, in
the following syntax you can specify either NOPARALLEL or PARALLEL:

parallel_clause::=

NOPARALLEL

PARALLEL

integer

If you have the choice of more than one keyword, operator, or parameter, then your options
appear in a vertical list. For example, in the following syntax diagram, you can specify one or
more of the four parameters in the stack:

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

The following table shows parameters that appear in the syntax diagrams and provides
examples of the values you might substitute for them in your statements:

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix A-1 of A-5

Table A-1 Syntax Parameters

Parameter Description Examples

table The substitution value must be the name of an object
of the type specified by the parameter. For a list of all
types of objects, see the section, "Schema Objects ".

employees

c The substitution value must be a single character
from your database character set.

T

s

'text' The substitution value must be a text string in single
quotation marks. See the syntax description of 'text' in
"Text Literals ".

'Employee records'

char The substitution value must be an expression of data
type CHAR or VARCHAR2 or a character literal in
single quotation marks.

last_name

'Smith'

condition The substitution value must be a condition that
evaluates to TRUE or FALSE. See the syntax
description of condition in Conditions.

last_name >'A'

date

d

The substitution value must be a date constant or an
expression of DATE data type.

TO_DATE(

'01-Jan-2002',

'DD-MON-YYYY')

expr The substitution value can be an expression of any
data type as defined in the syntax description of expr
in "About SQL Expressions ".

salary + 1000

integer The substitution value must be an integer as defined
by the syntax description of integer in "Integer Literals
".

72

number

m

n

The substitution value must be an expression of
NUMBER data type or a number constant as defined
in the syntax description of number in "Numeric
Literals ".

AVG(salary)

15 * 7

raw The substitution value must be an expression of data
type RAW.

HEXTORAW('7D')

subquery The substitution value must be a SELECT statement
that will be used in another SQL statement. See
SELECT .

SELECT last_name

FROM employees

db_name The substitution value must be the name of a
nondefault database in an embedded SQL program.

sales_db

db_string The substitution value must be the database
identification string for an Oracle Net database
connection. For details, see the user's guide for your
specific Oracle Net protocol.

—

Required Keywords and Parameters
Required keywords and parameters can appear singly or in a vertical list of alternatives. Single
required keywords and parameters appear on the main path, which is the horizontal line you
are currently traveling. In the following example, library_name is a required parameter:

Appendix A
Graphic Syntax Diagrams

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix A-2 of A-5

drop_library::=

DROP LIBRARY

IF EXISTS

library_name

If there is a library named HQ_LIB, then, according to the diagram, the following statement is
valid:

DROP LIBRARY hq_lib;

If multiple keywords or parameters appear in a vertical list that intersects the main path, then
one of them is required. You must choose one of the keywords or parameters, but not
necessarily the one that appears on the main path. In the following example, you must choose
ALL, STANDBY, or NONE:

security_clause::=

GUARD

ALL

STANDBY

NONE

Optional Keywords and Parameters
If keywords and parameters appear in a vertical list above the main path, then they are
optional. In the following example, instead of traveling down a vertical line, you can continue
along the main path:

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

size_clause::=

integer

K

M

G

T

P

E

Appendix A
Graphic Syntax Diagrams

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix A-3 of A-5

According to the diagrams, all of the following statements are valid:

DEALLOCATE UNUSED;
DEALLOCATE UNUSED KEEP 1000;
DEALLOCATE UNUSED KEEP 10G;
DEALLOCATE UNUSED 8T;

Syntax Loops
Loops let you repeat the syntax within them as many times as you like. In the following
example, after choosing one value expression, you can go back repeatedly to choose another,
separated by commas.

query_partition_clause::=

PARTITION BY

expr

,

(expr

,

)

Multipart Diagrams
Read a multipart diagram as if all the main paths were joined end to end. The following
example is a three-part diagram:

alter_java::=

ALTER JAVA

IF EXISTS SOURCE

CLASS

schema .

object_name

RESOLVER ((match_string

, schema_name

–
))

COMPILE

RESOLVE

invoker_rights_clause

According to the diagram, the following statement is valid:

ALTER JAVA SOURCE jsource_1 COMPILE;

Appendix A
Graphic Syntax Diagrams

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix A-4 of A-5

Backus-Naur Form Syntax
Each graphic syntax diagram in this reference is followed by a link to a text description of the
graphic. The text descriptions consist of a simple variant of Backus-Naur Form (BNF) that
includes the following symbols and conventions:

Symbol or Convention Meaning

[] Brackets enclose optional items.

{ } Braces enclose items only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

... Ellipsis points show that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, vertical bars, and ellipses must be
entered as shown.

boldface Words appearing in boldface are keywords. They must be typed as
shown. (Keywords are case-sensitive in some, but not all, operating
systems.) Words that are not in boldface are placeholders for which you
must substitute a name or value.

Appendix A
Backus-Naur Form Syntax

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix A-5 of A-5

B
Automatic and Manual Locking Mechanisms
During SQL Operations

This appendix describes mechanisms that lock data either automatically or as specified by the
user during SQL statements. For a general discussion of locking mechanisms in the context of
data concurrency and consistency, see Oracle Database Concepts.

This appendix contains the following sections:

• Automatic Locks in DML Operations

• Automatic Locks in DDL Operations

• Manual Data Locking

• List of Nonblocking DDLs

List of Nonblocking DDLs
Release 23

The following nonblocking DDLs are added in Release 23.3:

• alter table add column

• alter table set column unused

• alter table add constraint enable novalidate

• alter table drop constraint

Release 21

The following nonblocking DDLs are added in Release 21c:

• alter table modify default attributes tablespace

• alter table modify default attributes lob tablespace

• alter index modify default attributes tablespace

• alter table modify default attributes for partition tablespace

• alter table modify default attributes for partition lob tablespace

• alter index modify default attributes for partition tablespace

Release 12.2.0.2

List of Nonblocking DDLs Added in 12.2.0.2

• Alter table merge partition online

• alter table modify partition by .. online (to change the partitioning schema of a table)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix B-1 of B-7

Release 12.2.0.1

List of Nonblocking DDLs Added in 12.2.0.1

• alter table split partition [subpartition] online

• alter table move online (move of a non-partitioned table)

• alter table modify partition by .. online (to convert a non-partitioned table to partitioned
state)

Release 12.1

The following nonblocking DDLs are added as of Release 12.1. Some nonblocking DDLs are
downgraded to blocking in the presence of supplemental logging.

List of Nonblocking DDLs Added in 12.1

• drop index online

• alter index unusable online

• alter table move partition online

• alter table move subpartition online

List of Nonblocking DDLs Added in 12.1 that Downgrade to Blocking During
Supplemental Logging

• alter table set unused column online

• alter table drop constraint online

• alter table modify column visible / invisible

• alter table add nullable column with default value

Release 11.2

The following nonblocking DDLs are added as of Release 11.2. Some nonblocking DDLs are
downgraded to blocking in the presence of supplemental logging.

List of Nonblocking DDLs Added in 11.2

• create index online

• alter index rebuild online

• alter index rebuild partition online

• alter index rebuild subpartition online

• alter index visible / novisible

List of Nonblocking DDLs Added in 11.2 that Downgrade to Blocking During
Supplemental Logging

• alter table add column not null with default value

• alter table add constraint enable novalidate

• alter table modify constraint validate

• alter table add column (without any default)

Appendix B
List of Nonblocking DDLs

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix B-2 of B-7

Automatic Locks in DML Operations
The purpose of a DML lock, also called a data lock, is to guarantee the integrity of data being
accessed concurrently by multiple users. For example, a DML lock can prevent multiple
customers from buying the last copy of a book available from an online bookseller. DML locks
prevent destructive interference of simultaneous conflicting DML or DDL operations.

DML statements automatically acquire locks at both the table level and the row level. In the
sections that follow, the acronym in parentheses after each type of lock or lock mode is the
abbreviation used in the Locks Monitor of Oracle Enterprise Manager. Enterprise Manager
might display "TM" for any table lock, rather than indicate the mode of table lock (such as RS
or SRX).

The types of row and table locks are summarized here. For a more complete discussion of the
types of row and table locks, see Oracle Database Concepts.

Row Locks (TX)

A row lock, also called a TX lock, is a lock on a single row of a table. A transaction acquires a
row lock for each row modified by one of the following statements: INSERT, UPDATE, DELETE,
MERGE, and SELECT ... FOR UPDATE. The row lock exists until the transaction commits or rolls
back.

When a transaction obtains a row lock for a row, the transaction also acquires a table lock for
the table in which the row resides. The table lock prevents conflicting DDL operations that
would override data changes in a current transaction.

Table Locks (TM)

A transaction automatically acquires a table lock (TM lock) when a table is modified with the
following statements: INSERT, UPDATE, DELETE, MERGE, and SELECT ... FOR UPDATE. These DML
operations require table locks to reserve DML access to the table on behalf of a transaction
and to prevent DDL operations that would conflict with the transaction. You can explicitly obtain
a table lock using the LOCK TABLE statement, as described in "Manual Data Locking".

A table lock can be held in any of the following modes:

• A row share lock (RS), also called a subshare table lock (SS), indicates that the
transaction holding the lock on the table has locked rows in the table and intends to update
them. An SS lock is the least restrictive mode of table lock, offering the highest degree of
concurrency for a table.

• A row exclusive lock (RX), also called a subexclusive table lock (SX), indicates that the
transaction holding the lock has updated table rows or issued SELECT ... FOR UPDATE. An
SX lock allows other transactions to query, insert, update, delete, or lock rows concurrently
in the same table. Therefore, SX locks allow multiple transactions to obtain simultaneous
SX and SS locks for the same table.

• A share table lock (S) held by one transaction allows other transactions to query the table
(without using SELECT ... FOR UPDATE) but allows updates only if a single transaction holds
the share table lock. Multiple transactions may hold a share table lock concurrently, so
holding this lock is not sufficient to ensure that a transaction can modify the table.

• A share row exclusive table lock (SRX), also called a share-subexclusive table lock
(SSX), is more restrictive than a share table lock. Only one transaction at a time can
acquire an SSX lock on a given table. An SSX lock held by a transaction allows other
transactions to query the table (except for SELECT ... FOR UPDATE) but not to update the
table.

Appendix B
Automatic Locks in DML Operations

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix B-3 of B-7

• An exclusive table lock (X) is the most restrictive mode of table lock, allowing the
transaction that holds the lock exclusive write access to the table. Only one transaction can
obtain an X lock for a table.

See Also

"Manual Data Locking"

Locks in DML Operations

Oracle Database automatically obtains row-level and table-level locks on behalf of DML
operations. The type of operation determines the locking behavior. Table B-1 summarizes the
information in this section.

Note

The implicit SX locks shown for the DML statements in Table B-1 can sometimes be
exclusive (X) locks for a short time owing to side effects from constraints.

Table B-1 Summary of Locks Obtained by DML Statements

SQL Statement Row
Locks

Table
Lock
Mode

RS RX S SRX X

SELECT ... FROM table... — none Y Y Y Y Y

INSERT INTO table ... Yes SX Y Y N N N

UPDATE table ... Yes SX Y1 Y1 N N N

MERGE INTO table ... Yes SX Y Y N N N

DELETE FROM table ... Yes SX Y1 Y1 N N N

SELECT ... FROM table FOR UPDATE OF ... Yes SX Y1 Y1 N N N

LOCK TABLE table IN ... —

 ROW SHARE MODE SS Y Y Y Y N

 ROW EXCLUSIVE MODE SX Y Y N N N

 SHARE MODE S Y N Y N N

 SHARE ROW EXCLUSIVE MODE SSX Y N N N N

 EXCLUSIVE MODE X N N N N N

1 Yes, if no conflicting row locks are held by another transaction. Otherwise, waits occur.

Locks When Rows Are Queried

A query can be explicit, as in the SELECT statement, or implicit, as in most INSERT, MERGE,
UPDATE, and DELETE statements. The only DML statement that does not necessarily include a
query component is an INSERT statement with a VALUES clause. Because queries only read
data, they are the SQL statements least likely to interfere with other SQL statements.

The following characteristics apply to a query without the FOR UPDATE clause:

Appendix B
Automatic Locks in DML Operations

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix B-4 of B-7

• The query acquires no data locks. Therefore, other transactions can query and update a
table being queried, including the specific rows being queried. Because queries without the
FOR UPDATE clause do not acquire any data locks to block other operations, such queries
are often referred to as nonblocking queries.

• The query does not have to wait for any data locks to be released. Therefore, the query
can always proceed. An exception to this rule is that queries may have to wait for data
locks in some very specific cases of pending distributed transactions.

Locks When Rows Are Modified

Some databases use a lock manager to maintain a list of locks in memory. Oracle Database, in
contrast, stores lock information in the data block that contains the locked row. Each row lock
affects only a single row.

Oracle Database uses a queuing mechanism for acquisition of row locks. If a transaction
requires a row lock, and if the row is not already locked, then the transaction acquires a lock in
the row's data block. The transaction itself has an entry in the interested transaction list (ITL)
section of the block header. Each row modified by this transaction points to a copy of the
transaction ID stored in the ITL. Thus, 100 rows in the same block modified by a single
transaction require 100 row locks, but all 100 rows reference a single transaction ID.

When a transaction ends, the transaction ID remains in the ITL section of the data block
header. If a new transaction wants to modify a row, then it uses the transaction ID to determine
whether the lock is active. If the lock is active, then the session of the new transaction asks to
be notified when the lock is released; otherwise, the new transaction acquires the lock.

The characteristics of INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE statements are as
follows:

• A transaction containing a DML statement acquires exclusive row locks on the rows
modified by the statement. Therefore, other transactions cannot update or delete the
locked rows until the locking transaction either commits or rolls back.

• In addition to these row locks, a transaction containing a DML statement that modifies data
also requires at least a subexclusive table lock (SX) on the table that contains the affected
rows. If the transaction already holds an S, SRX, or X table lock for the table, which are
more restrictive than an SX lock, then the SX lock is not needed and is not acquired. If the
containing transaction already holds only an SS lock, however, then Oracle Database
automatically converts the SS lock to an SX lock.

• A transaction that contains a DML statement does not require row locks on any rows
selected by a subquery or an implicit query.

In the following sample UPDATE statement, the SELECT statement in parentheses is a
subquery, whereas the WHERE a > 5 clause is an implicit query:

UPDATE t SET x = (SELECT y FROM t2 WHERE t2.z = t.z) WHERE a > 5;

A subquery or implicit query inside a DML statement is guaranteed to be consistent as of
the start of the query and does not see the effects of the DML statement of which it forms a
part.

• A query in a transaction can see the changes made by previous DML statements in the
same transaction, but not the uncommitted changes of other transactions.

See Also

Oracle Database Concepts for information on locks in foreign keys

Appendix B
Automatic Locks in DML Operations

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix B-5 of B-7

Automatic Locks in DDL Operations
A data dictionary (DDL) lock protects the definition of a schema object while it is acted upon
or referred to by an ongoing DDL operation. For example, when a user creates a procedure,
Oracle Database automatically acquires DDL locks for all schema objects referenced in the
procedure definition. The DDL locks prevent these objects from being altered or dropped
before procedure compilation is complete.

Oracle Database acquires a DDL lock automatically on behalf of any DDL transaction requiring
it. Users cannot explicitly request DDL locks. Only individual schema objects that are modified
or referenced are locked during DDL operations. The whole data dictionary is never locked.

DDL operations also acquire DML locks on the schema object to be modified.

Exclusive DDL Locks
An exclusive DDL lock prevents other session from obtaining a DDL or DML lock.

Most DDL operations require exclusive DDL locks to prevent destructive interference with other
DDL operations that might modify or reference the same schema object. For example, a DROP
TABLE operation is not allowed to drop a table while an ALTER TABLE operation is adding a
column to it, and vice versa. However, a query against the table is not blocked.

Exclusive DDL locks last for the duration of DDL statement execution and automatic commit.
During the acquisition of an exclusive DDL lock, if another DDL lock is already held on the
schema object by another operation, then the acquisition waits until the older DDL lock is
released and then proceeds.

Share DDL Locks
A share DDL lock for a resource prevents destructive interference with conflicting DDL
operations, but allows data concurrency for similar DDL operations.

For example, when a CREATE PROCEDURE statement is run, the containing transaction acquires
share DDL locks for all referenced tables. Other transactions can concurrently create
procedures that reference the same tables and acquire concurrent share DDL locks on the
same tables, but no transaction can acquire an exclusive DDL lock on any referenced table.

A share DDL lock lasts for the duration of DDL statement execution and automatic commit.
Thus, a transaction holding a share DDL lock is guaranteed that the definition of the referenced
schema object is constant for the duration of the transaction.

Breakable Parse Locks
A parse lock is held by a SQL statement or PL/SQL program unit for each schema object that
it references. Parse locks are acquired so that the associated shared SQL area can be
invalidated if a referenced object is altered or dropped. A parse lock is called a breakable
parse lock because it does not disallow any DDL operation and can be broken to allow
conflicting DDL operations.

A parse lock is acquired in the shared pool during the parse phase of SQL statement
execution. The lock is held as long as the shared SQL area for that statement remains in the
shared pool.

Appendix B
Automatic Locks in DDL Operations

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix B-6 of B-7

Manual Data Locking
Oracle Database always performs locking automatically to ensure data concurrency, data
integrity, and statement-level read consistency. However, you can override the Oracle default
locking mechanisms. This can be useful in situations such as the following:

• When your application requires consistent data for the duration of the transaction, not
reflecting changes by other transactions, you can achieve transaction-level read
consistency by using explicit locking, read-only transactions, serializable transactions, or
by overriding default locking.

• When your application requires that a transaction have exclusive access to a resource so
that the transaction does not have to wait for other transactions to complete, you can
explicitly lock the data for the duration of the transaction.

You can override automatic locking at two levels:

• Transaction. You can override transaction-level locking with the following SQL statements:

– SET TRANSACTION ISOLATION LEVEL

– LOCK TABLE

– SELECT ... FOR UPDATE

Locks acquired by these statements are released after the transaction commits or rolls
back.

• Session. A session can set the required transaction isolate level with an ALTER SESSION
SET ISOLATION LEVEL statement.

Note

When overriding Oracle default locking, the database administrator or application
developer should ensure that data integrity is guaranteed, data concurrency is
acceptable, and deadlocks are not possible or, if possible, are appropriately handled.
For more information on these criteria, see Oracle Database Concepts.

Appendix B
Manual Data Locking

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix B-7 of B-7

C
Oracle and Standard SQL

This appendix declares Oracle's conformance to the SQL standards established by the
American National Standards Institute (ANSI) and the International Organization for
Standardization (ISO).

The ISO SQL standard consists of eleven parts (SQL/Framework, SQL/Foundation, SQL/CLI,
SQL/PSM, SQL/MED, SQL/OLB, SQL/Schemata, SQL/JRT, SQL/XML, SQL/MDA, and SQL/
PGQ). The ANSI SQL standard consists of the same eleven parts.

The mandatory portion of SQL is known as Core SQL and is found in Part 2 (Foundation) and
Part 11 (Schemata).

This appendix contains the following sections:

• ANSI Standards

• ISO Standards

• Oracle Compliance to Core SQL

• Oracle Support for Optional Features of SQL/Foundation

• Oracle Compliance with SQL/CLI

• Oracle Compliance with SQL/PSM

• Oracle Compliance with SQL/MED

• Oracle Compliance with SQL/OLB

• Oracle Compliance with SQL/JRT

• Oracle Compliance with SQL/XML

• Oracle Compliance with SQL/MDA

• Oracle Compliance with SQL/PGQ

• Oracle Compliance with FIPS 127-2

• Oracle Extensions to Standard SQL

• Oracle Compliance with Older Standards

• Character Set Support

ANSI Standards
The following documents of the American National Standards Institute (ANSI) relate to SQL:

• INCITS/ANSI/ISO/IEC 9075-1:2016, Information technology—Database languages—SQL
—Part 1: Framework (SQL/Framework)

• INCITS/ANSI/ISO/IEC 9075-2:2016, Information technology—Database languages—SQL
—Part 2: Foundation (SQL/Foundation)

• INCITS/ANSI/ISO/IEC 9075-3:2016, Information technology—Database languages—SQL
—Part 3: Call-Level Interface (SQL/CLI)

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-1 of C-34

• INCITS/ANSI/ISO/IEC 9075-4:2016, Information technology—Database languages—SQL
—Part 4: Persistent Stored Modules (SQL/PSM)

• INCITS/ANSI/ISO/IEC 9075-9:2016, Information technology—Database languages—SQL
—Part 9: Management of External Data (SQL/MED)

• INCITS/ANSI/ISO/IEC 9075-10:2016, Information technology—Database languages—SQL
—Part 10: Object Language Bindings (SQL/OLB)

• INCITS/ANSI/ISO/IEC 9075-11:2016, Information technology—Database languages—SQL
—Part 11: Information and Definition Schemas (SQL/Schemata)

• INCITS/ANSI/ISO/IEC 9075-13:2016, Information technology—Database languages—SQL
—Part 13: SQL Routines and Types using the Java Programming Language (SQL/JRT)

• INCITS/ANSI/ISO/IEC 9075-14:2016, Information technology—Database languages—SQL
—Part 14: XML-Related Specifications (SQL/XML)

• INCITS/ANSI/ISO/IEC 9075-15:2023, Information technology—Database language SQL—
Part 15: Multidimensional arrays (SQL/MDA)

• INCITS/ANSI/ISO/IEC 9075-16:2023, Information technology—Database language SQL—
Part 16: Property Graph Queries (SQL/PGQ)

These standards are identical to the corresponding ISO standards listed in the next section.

You can obtain a copy of ANSI standards from this address:

American National Standards Institute
25 West 43rd Street, fourth floor
New York, NY 10036 USA
Telephone: +1.212.642.4900
Fax: +1.212.398.0023
Web site: http://www.ansi.org/

A subset of ANSI standards, including the SQL standard, are INCITS standards. You can
obtain these from the InterNational Committee for Information Technology Standards (INCITS)
at:

http://www.incits.org/

ISO Standards
The following documents of the International Organization for Standardization (ISO) relate to
SQL:

• ISO/IEC 9075-1:2016, Information technology—Database languages—SQL—Part 1:
Framework (SQL/Framework)

• ISO/IEC 9075-2:2016, Information technology—Database languages—SQL—Part 2:
Foundation (SQL/Foundation)

• ISO/IEC 9075-3:2016, Information technology—Database languages—SQL—Part 3: Call-
Level Interface (SQL/CLI)

• ISO/IEC 9075-4:2016, Information technology—Database languages—SQL—Part 4:
Persistent Stored Modules (SQL/PSM)

• ISO/IEC 9075-9:2016, Information technology—Database languages—SQL—Part 9:
Management of External Data (SQL/MED)

• ISO/IEC 9075-10:2016, Information technology—Database languages—SQL—Part 10:
Object Language Bindings (SQL/OLB)

Appendix C
ISO Standards

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-2 of C-34

http://www.ansi.org/
http://www.incits.org/

• ISO/IEC 9075-11:2016, Information technology—Database languages—SQL—Part 11:
Information and Definition Schemas (SQL/Schemata)

• ISO/IEC 9075-13:2016, Information technology—Database languages—SQL—Part 13:
SQL Routines and Types using the Java Programming Language (SQL/JRT)

• ISO/IEC 9075-14:2016, Information technology—Database languages—SQL—Part 14:
XML-Related Specifications (SQL/XML)

You can obtain a copy of ISO standards from this address:

International Organization for Standardization
1, ch. de la Voie-Creuse
Case postale 56
CH-1211, Geneva 20, Switzerland
Phone: +41.22.749.0111
Fax: +41.22.733.3430
Web site: http://www.iso.org/

or from their Web store:

http://www.iso.org/iso/store.htm

Oracle Compliance to Core SQL
The ANSI and ISO SQL standards require conformance claims to state the type of
conformance and the implemented facilities. The minimum claim of conformance is called Core
SQL and is defined in Part 2, SQL/Foundation, and Part 11, SQL/Schemata, of the standard.
The following products provide full or partial conformance with Core SQL as described in the
tables that follow:

• Oracle Database server, release 12.2

• OTT (Oracle Type Translator), release 12.2

• Pro*C/C++, release 12.2

• Pro*COBOL, release 12.2

The SQL standards conformance features can be used either as a guide to portability, or as a
guide to functionality. From the standpoint of portability, the user is interested in conformance
to both the precise syntax and semantics of the standard feature. From the standpoint of
functionality, the user is less concerned about the precise syntax and more concerned with
issues of semantics. The tables in this appendix use the following terms regarding support for
standard syntax and semantics:

• Full Support: The feature is supported with standard syntax and semantics.

• Partial Support: Some, but not all, of the standard syntax is supported; whatever is
supported has standard semantics.

• Enhanced Support: The standard semantics is supported, as well as additional
functionality.

• Equivalent Support: The standard semantics is supported using non-standard syntax.

• Similar Support: Neither the standard's syntax nor semantics are supported precisely, but
similar functionality is provided.

Oracle's support for the features of Core SQL is listed in Table C-1:

Appendix C
Oracle Compliance to Core SQL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-3 of C-34

http://www.iso.org/iso/store.htm

Table C-1 Oracle Support of Core SQL Features

Feature ID Feature Support

E011, Numeric
data types

Oracle fully supports this feature.

E021, Character
data types

Oracle fully supports these subfeatures:

• E021-01, CHARACTER data type
• E021-07, Character concatenation
• E021-08, UPPER and LOWER functions
• E021-09, TRIM function
• E021-10, Implicit casting among character data types
Oracle partially supports these subfeatures:

• E021-02, CHARACTER VARYING data type (Oracle does not distinguish a zero-
length VARCHAR string from NULL)

• E021-03, Character literals (Oracle regards the zero-length literal '' as being
null)

• E021-12, Character comparison (Oracle's rules for padding the shorter of two
strings to be compared differs from the standard)

Oracle has equivalent functionality for these subfeatures:

• E021-04, CHARACTER_LENGTH function: use LENGTH function instead
• E021-05, OCTET_LENGTH function: use LENGTHB function instead
• E021-06, SUBSTRING function: use SUBSTR function instead
• E021-11, POSITION function: use INSTR function instead

E031, Identifiers Oracle supports this feature, with the following exceptions:

• Oracle does not support the escape sequence to permit a double quote within
a quoted identifier

• A non-quoted identifier may not be equivalent to an Oracle reserved word (the
list of Oracle reserved words differs from the standard's list)

• A column name may not be ROWID, even as a quoted identifier
Oracle extends this feature as follows:

• An identifier may be up to 128 characters long
• A non-quoted identifier may have dollar sign ($) or pound sign (#)

E051, Basic query
specification

Oracle fully supports the following subfeatures:

• E051-01, SELECT DISTINCT
• E051-02, GROUP BY clause
• E051-04, GROUP BY can contain columns not in SELECT list
• E051-05, SELECT list items can be renamed
• E051-06, HAVING clause
• E051-07, Qualified * in SELECT list
Oracle partially supports the following subfeatures:

• E051-08, Correlation names in FROM clause (Oracle supports correlation
names, but not the optional AS keyword)

Oracle has equivalent functionality for the following subfeature:

• E051-09, Rename columns in the FROM clause (column names can be
renamed in a subquery in the FROM clause)

E061, Basic
predicates and
search conditions

Oracle fully supports this feature, except that Oracle comparison of character
strings differs from the standard as follows: In the standard, two character strings of
unequal length are compared by either padding the shorter string with spaces or a
fictitious character that is less than all actual characters. The decision on padding is
made on the basis of the character set. In Oracle, the decision is based on whether
the comparands are of fixed or varying length.

Appendix C
Oracle Compliance to Core SQL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-4 of C-34

Table C-1 (Cont.) Oracle Support of Core SQL Features

Feature ID Feature Support

E071, Basic query
expressions

Oracle fully supports the following subfeatures:

• E071-01, UNION DISTINCT table operator
• E071-02, UNION ALL table operator
• E071-05, Columns combined by table operators need not have exactly the

same type
• E071-06, table operators in subqueries
Oracle has equivalent functionality for the following subfeature:

• E071-03, EXCEPT DISTINCT table operator: Use MINUS instead of EXCEPT
DISTINCT

E081, Basic
privileges

Oracle fully supports all subfeatures of this feature, except E081-09, USAGE
privileges. In the standard, the USAGE privilege permits the user to use domains,
collations, character sets, transliterations, user-defined types and sequence
generators. Oracle does not support domains or transliterations. No privileges are
required to access collations and character sets. The Oracle privilege to use a user-
defined type is EXECUTE. The Oracle privilege to use a sequence type is SELECT.

E091, Set
functions

Oracle fully supports this feature.

E101, Basic data
manipulation

Oracle fully supports this feature.

E111, Single row
SELECT statement

Oracle fully supports this feature.

E121, Basic cursor
support

Oracle fully supports the following subfeatures:

• E121-02, ORDER BY columns need not be in SELECT list
• E121-03, Value expressions in ORDER BY clause
• E121-04, OPEN statement
• E121-06, Positioned UPDATE statement
• E121-07, Positioned DELETE statement
• E121-08, CLOSE statement
Oracle provides partial support for the following subfeatures:

• E121-01, DECLARE CURSOR - fully supported, except for the FOR READ ONLY
syntax

• E121-10 FETCH statement, implicit NEXT - fully supported, except for the noise
word FROM

Oracle provides enhanced support for the following subfeature:

• E121-17, WITH HOLD cursors (in the standard, a cursor is not held through a
ROLLBACK, but Oracle does hold through ROLLBACK)

E131, Null value
support

Oracle fully supports this feature, with this exception: In Oracle, a null of character
type is indistinguishable from a zero-length character string.

E141, Basic
integrity
constraints

Oracle fully supports this feature.

E151, Transaction
support

Oracle fully supports this feature.

E152, Basic SET
TRANSACTION
statement

Oracle fully supports this feature.

Appendix C
Oracle Compliance to Core SQL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-5 of C-34

Table C-1 (Cont.) Oracle Support of Core SQL Features

Feature ID Feature Support

E153, Updatable
queries with
subqueries

Oracle fully supports this feature.

E161, SQL
comments using
leading double
minus

Oracle fully supports this feature.

E171, SQLSTATE
support

Oracle fully supports this feature.

E182, Host
language binding

Oracle fully supports this feature through Pro*C/C++ and Pro*COBOL

F021, Basic
information
schema

Oracle does not have any of the views in this feature. However, Oracle makes the
same information available in other metadata views:

• Instead of TABLES, use ALL_TABLES.
• Instead of COLUMNS, use ALL_TAB_COLUMNS.
• Instead of VIEWS, use ALL_VIEWS.

However, Oracle's ALL_VIEWS does not display whether a user view was
defined WITH CHECK OPTION or if it is updatable. To see whether a view has
WITH CHECK OPTION, use ALL_CONSTRAINTS, with TABLE_NAME equal to
the view name and look for CONSTRAINT_TYPE equal to 'V'.

• Instead of TABLE_CONSTRAINTS, REFERENTIAL_CONSTRAINTS, and
CHECK_CONSTRAINTS, use ALL_CONSTRAINTS.

However, Oracle's ALL_CONSTRAINTS does not display whether a constraint is
deferrable or initially deferred.

F031, Basic
schema
manipulation

Oracle fully supports these subfeatures:

• F031-01, CREATE TABLE statement to create persistent base tables
• F031-02, CREATE VIEW statement
• F031-03, GRANT statement
Oracle provides equivalent support for this subfeature:

• F031-04, ALTER TABLE statement: ADD COLUMN clause (Oracle does not
support the optional keyword COLUMN in this syntax. Also, Oracle requires the
column definition to be enclosed in parentheses, unlike the standard.)

Oracle does not support these subfeatures (because Oracle does not support the
keyword RESTRICT):

• F031-13, DROP TABLE statement: RESTRICT clause
• F031-16, DROP VIEW statement: RESTRICT clause
• F031-19, REVOKE statement: RESTRICT clause

(Oracle DROP commands enhance the standard by invalidating dependent objects,
so that they can be subsequently revalidated without user action, rather than either
cascading all drops to dependent objects or prohibiting a drop if there is a
dependent object.)

F041, Basic joined
table

Oracle fully supports this feature.

F051, Basic date
and time

Oracle fully supports this feature, except the following subfeatures are not
supported:

• F051-02, TIME data type
• F051-07, LOCALTIME

Appendix C
Oracle Compliance to Core SQL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-6 of C-34

Table C-1 (Cont.) Oracle Support of Core SQL Features

Feature ID Feature Support

F081, UNION and
EXCEPT in views

Oracle fully supports UNION in views.

F131, Grouped
operations

Oracle fully supports this feature.

F181, Multiple
module support

Oracle fully supports this feature.

F201, CAST
function

Oracle fully supports this feature.

F221, Explicit
defaults

Oracle's DEFAULT ON NULL capability in a column definition provides equivalent
functionality for the INSERT statement though not for the UPDATE statement.

F261, CASE
expressions

Oracle fully supports this feature.

F311, Schema
definition
statement

Oracle fully supports this feature.

F471, Scalar
subquery values

Oracle fully supports this feature.

F481, Expanded
null predicate

Oracle fully supports this feature.

F501, Feature and
conformance
views

Oracle does not support this feature.

F812, Basic
flagging

Oracle has a flagger, but it flags SQL-92 compliance rather than SQL:2011
compliance.

S011, Distinct
types

Distinct types are strongly typed scalar types. A distinct type can be emulated in
Oracle using an object type with only one attribute. The standard's Information
Schema view called USER_DEFINED_TYPES is equivalent to Oracle's metadata view
ALL_TYPES.

Appendix C
Oracle Compliance to Core SQL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-7 of C-34

Table C-1 (Cont.) Oracle Support of Core SQL Features

Feature ID Feature Support

T321, Basic SQL-
invoked routines

Oracle fully supports these subfeatures:

• T321-03, function invocation
• T321-04, CALL statement
Oracle supports these subfeatures with syntactic differences:

• T321-01, user-defined functions with no overloading
• T321-02, user-defined procedures with no overloading

The Oracle syntax for CREATE FUNCTION and CREATE PROCEDURE differs from
the standard as follows:

• In the standard, the mode of a parameter (IN, OUT, or INOUT) comes before
the parameter name, whereas in Oracle it comes after the parameter name.

• The standard uses INOUT, whereas Oracle uses IN OUT.
• Oracle requires either IS or AS after the return type and before the definition of

the routine body, while the standard lacks these keywords.
• If the routine body is in C (for example), then the standard uses the keywords

LANGUAGE C EXTERNAL NAME to name the routine, whereas Oracle uses
LANGUAGE C NAME.

• If the routine body is in SQL, then Oracle uses its proprietary procedural
extension called PL/SQL.

Oracle supports the following subfeature in PL/SQL but not in Oracle SQL:

• T321-05, RETURN statement
Oracle provides equivalent functionality for the following subfeatures:

• T321-06, ROUTINES view: Use the ALL PROCEDURES metadata view.
• T321-07, PARAMETERS view: Use the ALL_ARGUMENTS and

ALL_METHOD_PARAMS metadata views.

T631, IN predicate
with one list
element

Oracle fully supports this feature.

Oracle Support for Optional Features of SQL/Foundation
Oracle's support for optional features of SQL/Foundation is listed in Table C-2:

Table C-2 Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

B012, Embedded C Oracle fully supports this feature.

B013, Embedded COBOL Oracle fully supports this feature.

B021, Direct SQL Oracle fully supports this feature, as SQL*Plus.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-8 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

B031, Basic dynamic SQL Oracle supports dynamic SQL in two styles, documented in the
embedded language manuals as "Oracle dynamic SQL" and "ANSI
dynamic SQL."

ANSI dynamic SQL is an implementation of the standard, with the
following restrictions:

• Oracle supports a subset of the descriptor items.
• For <input using clause>, Oracle only supports <using input

descriptor>.
• For <output using clause>, Oracle only supports <into descriptor>.
• Dynamic parameters are indicated by a colon followed by an

identifier rather than a question mark.
Oracle dynamic SQL is similar to standard dynamic SQL, with the
following modifications:

• Parameters are indicated by a colon followed by an identifier,
instead of a question mark.

• Oracle's DESCRIBE SELECT LIST FOR statement replaces the
standard's DESCRIBE OUTPUT.

• Oracle provides DECLARE STATEMENT if you want to declare a
cursor using a dynamic SQL statement physically prior to the
PREPARE statement that prepares the dynamic SQL statement.

B032, Extended dynamic SQL In ANSI dynamic SQL, Oracle only implements the ability to declare
global statements and global cursors from this feature; the rest of the
feature is not supported.

In Oracle dynamic SQL, Oracle's DESCRIBE BIND VARIABLES is
equivalent to the standard's DESCRIBE INPUT; the rest of this feature is
not supported.

B122, Routine language C Oracle supports external routines written in C, though Oracle does not
support the standard syntax for creating such routines.

B128, Routine language SQL Oracle supports routines written in PL/SQL, which is Oracle's
equivalent to the standard procedural language SQL/PSM.

F032, CASCADE drop behavior In Oracle, a DROP command invalidates all of the dropped object's
dependent objects. Invalidated objects are effectively unusable until
the dropped object is redefined in such a way to allow successful
recompilation of the invalidated object.

F033, ALTER TABLE statement:
DROP COLUMN clause

Oracle provides a DROP COLUMN clause, but without the RESTRICT or
CASCADE options found in the standard.

F034, Extended REVOKE
statement

Oracle supports the following parts of this feature:

• F034-01, REVOKE statement performed by other than the owner
of a schema object

• F034-03, REVOKE statement to revoke a privilege that the grantee
has WITH GRANT OPTION

Oracle provides equivalent functionality for the following parts of this
feature:

• CASCADE: In Oracle, a REVOKE invalidates all dependent objects,
which become effectively unusable until the metadata is changed
through subsequent CREATE and GRANT commands enabling the
invalidated object to be successfully recompiled.

F052, Intervals and datetime
arithmetic

Oracle only supports the INTERVAL YEAR TO MONTH and INTERVAL
DAY TO SECOND data types.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-9 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

F111, Isolations levels other
than SERIALIZABLE

In addition to SERIALIZABLE, Oracle supports the READ COMMITTED
isolation level.

F121, Basic diagnostics
management

Much of the functionality of this feature is provided through the SQLCA
in embedded languages.

F191, Referential delete actions Oracle supports ON DELETE CASCADE and ON DELETE SET NULL.

F200, TRUNCATE TABLE Oracle fully supports this feature, and extends it by permitting
truncation of a table that references itself in a referential integrity
constraint, and the ability to cascade to child tables with enabled ON
DELETE CASCADE referential constraints.

F231, Privilege tables Oracle makes this information available in the following metadata
views:

• Instead of TABLE_PRIVILEGES, use ALL_TAB_PRIVS.
• Instead of COLUMN_PRIVILEGES, use ALL_COL_PRIVS.
• Oracle does not support USAGE privileges so there is no

equivalent to USAGE_PRIVILEGES.

F281, LIKE enhancements Oracle fully supports this feature.

F291, UNIQUE predicate The IS A SET condition may be used to test whether a multiset is a set;
that is, each row is unique. Thus, the equivalent of

UNIQUE <table subquery>

is

CAST (<table subquery> AS MULTISET) IS A SET

F302, INTERSECT table
operator

Syntactically, Oracle differs from the standard in that UNION,
INTERSECT, and MINUS have the same precedence.

F312, MERGE statement The Oracle MERGE statement is almost the same as the standard, with
these exceptions:

• Oracle does not support the optional AS keyword before a table
alias.

• Oracle does not support the ability to rename columns of the table
specified in the USING clause with a parenthesized list of column
names following the table alias.

• Oracle does not support the <override clause>.

F314, MERGE statement with
DELETE branch

Oracle has similar functionality, though in Oracle you must first update
a row, after which you can delete it if the revised row meets a
condition.

F321, User authorization Oracle provides equivalent functionality for the following subfeatures:

• Use SYS_CONTEXT ('USERENV', 'SESSION_USER') instead of
SESSION_USER

• Use SYS_CONTEXT ('USERENV', 'CURRENT_USER') instead of
CURRENT_USER

Oracle does not support the following subfeatures:

• SYSTEM_USER
• SET SESSION AUTHORIZATION statement

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-10 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

F341, Usage tables Oracle makes this information available in the views
ALL_DEPENDENCIES, DBA_DEPENDENCIES, and
USER_DEPENDENCIES.

F381, Extended schema
manipulation

Oracle fully supports the following element of this feature:

• Oracle supports the standard syntax to add a table constraint
using ALTER TABLE.

Oracle partially supports the following element of this feature:

• Oracle supports the standard syntax to drop a table constraint,
except that Oracle does not support RESTRICT.

Oracle provides equivalent functionality for the following element of this
feature:

• To alter the default value of a column, use the MODIFY option of
ALTER TABLE.

Oracle does not support the following parts of this feature:

• DROP SCHEMA statement
• ALTER ROUTINE statement

F382, Alter column data type Oracle supports this functionality, though with non-standard syntax. As
an extension to the standard, Oracle allows you to reduce the size or
precision of a column.

F383, Set column not null
clause

Oracle provides equivalent functionality for the two subfeatures of this
feature:

• To add a NOT NULL constraint to an existing column, use ALTER
TABLE ... MODIFY

• To drop a NOT NULL constraint, use ALTER TABLE to drop the
constraint by name

F384, Drop identity property
clause

Oracle provides equivalent functionality using ALTER TABLE ...
MODIFY (... DROP IDENTITY)

F386, Set identity column
generation clause

Oracle provides equivalent functionality. Oracle's syntax and semantics
are the same as the standard, with this exception:

• Oracle does not support RESTART; use START WITH instead.
When restarting an identity column, the values of the other
parameters for the identity column are reset to their defaults
unless explicitly set in the ALTER TABLE statement.

Oracle's START WITH LIMIT VALUE option is an extension on the
standard.

F391, Long identifiers Oracle supports identifiers up to 128 characters in length.

F393, Unicode escapes in
literals

The Oracle UNISTR function supports numeric escape sequences for
all Unicode characters.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-11 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

F394, Optional normal form
specification

This feature adds the keywords NFC, NFD, NFKC, and NKD to the
NORMALIZE function and the IS NORMAL predicate. Without these
keywords, NFC is the default (see Feature T061, UCS support). Oracle
supports all four normalization forms, with nonstandard syntax, as
follows:

• For NFC, use COMPOSE
• For NFD, use DECOMPOSE with the CANONICAL option
• For NFKD, use DECOMPOSE with the COMPATIBILITY option
• For NFKC, use DECOMPOSE with the CANONICAL option followed

by COMPOSE
Oracle does not support the IS NORMAL predicate.

F401, Extended joined table Oracle supports FULL outer joins, CROSS joins, and NATURAL joins.

F402, Named column joins for
LOBs, arrays and multisets

Oracle supports named column joins for columns whose declared type
is nested table. Oracle does not support named column joins for LOBs
or arrays.

F403, Partitioned join tables Oracle supports this feature, except with FULL outer joins.

F411, Time zone specification Oracle fully supports TIMESTAMP WITH TIME ZONE, but does not
support TIME WITH TIME ZONE.

F421, National character Oracle fully supports this feature.

F431, Read-only scrollable
cursors

Oracle fully supports this feature.

F441, Extended set function
support

Oracle supports the following parts of this feature:

• The ability in the WHERE clause to reference a column that is
defined using an aggregate, either in a view or an inline view

• COUNT without DISTINCT of an expression
• Aggregates that reference columns that are outer references with

respect to the aggregating query. However, Oracle defines the
aggregating query as the innermost query containing the
aggregate, rather than the innermost query that defines a range
variable referenced in the aggregate.

F442, Mixed column references
in set functions

Oracle fully supports this feature.

F461, Named character sets Oracle supports many character sets with Oracle-defined names.
Oracle does not support any other aspect of this feature.

F491, Constraint management Oracle fully supports this feature.

F492, Optional table constraint
enforcement

ENFORCED in the standard is equivalent to ENABLE VALIDATE in
Oracle. NOT ENFORCED in the standard is equivalent to DISABLE
NOVALIDATE in Oracle. Other combinations of the ENABLE | DISABLE,
VALIDATE | NOVALIDATE, and RELY | NORELY options are extensions
of the standard.

F531, Temporary tables Oracle supports GLOBAL TEMPORARY tables.

F555, Enhanced seconds
precision

Oracle provides enhanced support for this feature, supporting up to 9
places after the decimal point.

F561, Full value expressions Oracle fully supports this feature.

F571, Truth value tests Oracle's LNNVL function is equivalent to the standard's IS NOT TRUE
predicate.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-12 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

F591, Derived tables Oracle supports <derived table>, with the exception of:

• Oracle does not support the optional AS keyword before a table
alias.

• Oracle does not support <derived column list>.

F641, Row and table
constructors

In Oracle, a row constructor may be used in an equality or inequality
comparison with another row constructor or with a subquery. Oracle
does not support anything else in this feature.

F690, Collation support Oracle's NLSSORT function may be used to change the collation of
character expressions.

F693, SQL-sessions and client
module collations

To set a session collation, use ALTER SESSION SET NLS_COMP =
'LINGUISTIC' and also set NLS_SORT to your desired collation. Oracle
does not support client module collations.

F695, Translation support The Oracle CONVERT function can convert between the database
character set and the national character set. For other character sets,
store the data in the RAW data type and use the PL/SQL package
function UTL_RAW.CONVERT. Oracle does not provide the ability to
add or drop character set conversions.

F721, Deferrable constraints Oracle fully supports this feature.

F731, INSERT column privileges Oracle fully supports this feature.

F761, Session management Oracle provides the following equivalents for elements of this feature:

• The equivalent to the standard's SET SESSION CHARACTERISTICS
AS TRANSACTION SERIALIZABLE is ALTER SESSION SET
ISOLATION_LEVEL = SERIALIZABLE.

• The equivalent to the standard's SET SCHEMA is ALTER SESSION
SET CURRENT_SCHEMA.

• The equivalent to the standard's SET COLLATION is ALTER
SESSION SET NLS_SORT.

F763, CURRENT_SCHEMA Oracle's equivalent is SYS_CONTEXT ('USERENV',
'CURRENT_SCHEMA')

F771, Connection management Oracle's CONNECT statement provides the same functionality as the
standard's CONNECT statement, though with different syntax. Instead
of using the standard's SET CONNECTION, Oracle provides the AT
clause to indicate which connection a SQL statement should be
performed on. Oracle embedded languages let you disconnect from a
connection by using the RELEASE option of either COMMIT or
ROLLBACK.

F781, Self-referencing
operations

Oracle fully supports this feature.

F801, Full set function Oracle fully supports this feature.

F831, Full cursor update Oracle supports the combination of FOR UPDATE and ORDER BY
clauses in a query.

F841, LIKE_REGEX predicate Oracle's equivalent is REGEXP_LIKE. Oracle's pattern syntax lacks
some of the features of the standard's. Oracle's match parameter has
the same capabilities as the standard's, though with a few spelling
differences.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-13 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

F842, OCCURRENCES_REGEX
function

Oracle's equivalent is REGEXP_COUNT. Oracle's pattern syntax lacks
some of the features of the standard's. Oracle's match parameter has
the same capabilities as the standard's, though with a few spelling
differences.

F843, POSITION_REGEX
function

Oracle's equivalent is REGEXP_INSTR. Oracle's pattern syntax lacks
some of the features of the standard's. Oracle's match parameter has
the same capabilities as the standard's, though with a few spelling
differences.

F844, SUBSTRING_REGEX
function

Oracle's equivalent is REGEXP_SUBSTR. Oracle's pattern syntax lacks
some of the features of the standard's. Oracle's match parameter has
the same capabilities as the standard's, though with a few spelling
differences.

F845, TRANSLATE_REGEX
function

Oracle's equivalent is REGEXP_REPLACE. Oracle's pattern syntax
lacks some of the features of the standard's. Oracle's match parameter
has the same capabilities as the standard's, though with a few spelling
differences.

F850, Top-level <order by
clause> in <query expression>

Oracle fully supports this feature.

F851, <order by clause> in
subqueries

Oracle fully supports this feature.

F852, Top-level <order by
clause> in views

Oracle fully supports this feature.

F855, Nested <order by
clause> in <query expression>

Oracle fully supports this feature.

F856, Nested <fetch first
clause> in <query expression>

Oracle fully supports this feature.

F857, Top-level <fetch first
clause> in a <query
expression>

Oracle fully supports this feature.

F858, <fetch first clause> in
subqueries

Oracle fully supports this feature.

F859, Top-level <fetch first
clause> in views

Oracle fully supports this feature.

F860, Dynamic <fetch first row
count> in <fetch first clause>

Oracle fully supports this feature.

F861, Top-level <result offset
clause> in <query expression>

Oracle fully supports this feature.

F862, <result offset clause> in
subqueries

Oracle fully supports this feature.

F863, Nested <result offset
clause> in <query expression>

Oracle fully supports this feature.

F864, Top-level <result offset
clause> in views

Oracle fully supports this feature.

F865, Dynamic <offset row
count> in <result offset clause>

Oracle fully supports this feature.

F866, FETCH FIRST clause:
PERCENT option

Oracle fully supports this feature.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-14 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

F867, FETCH FIRST clause:
WITH TIES option

Oracle fully supports this feature.

R010, Row pattern recognition:
FROM clause

Oracle fully supports this feature.

S023, Basic structured types Oracle's object types are equivalent to structured types in the
standard.

S024, Enhanced structured
types

Oracle's syntax is non-standard, but provides equivalents for the
following:

• NOT INSTANTIABLE
• STATIC methods
• RELATIVE, MAP, and STATE orderings. The keyword in Oracle for

RELATIVE orderings is ORDER. There is no keyword for STATE
orderings (this is the default, if no other ordering is defined).
Unlike the standard, Oracle does not support EQUALS ONLY on
non-STATE orderings. (See also Feature S251, User-defined
orderings.)

• SELF AS RESULT in the signature of constructor methods

S025, Final structured types Oracle's final object types are equivalent to final structured types in the
standard.

S026, Self-referencing
structured types

In Oracle, an object type OT may have a reference that references OT.

S041, Basic reference types Oracle's reference types are equivalent to reference types in the
standard. To dereference a reference, dot notation is used, instead of -
> as in the standard.

S043, Enhanced reference
types

Oracle supports the following elements of this feature:

• DEREF operator to return the object referenced by a reference
• SCOPE clause as a constraint on columns of tables or materialized

views
• Adding and dropping the scope of a column
• References that are either system-generated or derived from the

primary key (but not from any other list of columns, nor from a list
of attributes of the type)

S051, Create table of type Oracle's object tables are equivalent to tables of structured type in the
standard.

S081, Subtables Oracle supports hierarchies of object views, but not of object base
tables. To emulate a hierarchy of base tables, create a hierarchy of
views on those base tables.

S091, Basic array support Oracle VARRAY types are equivalent to array types in the standard.
However, Oracle does not support storage of arrays of LOBs. To
access a single element of an array using a subscript, you must use
PL/SQL. Oracle supports the following aspects of this feature with
nonstandard syntax:

• To construct an instance of varray type, including an empty array,
use the varray type constructor.

• To unnest a varray in the FROM clause, use the TABLE operator.
• To get the cardinality of a varray, use the COUNT method in PL/

SQL.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-15 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

S092, Arrays of user-defined
types

Oracle supports VARRAYs of object types.

S094, Arrays of reference types Oracle supports VARRAYs of references.

S095, Array constructors by
query

Oracle supports this using CAST (MULTISET (SELECT ...) AS
varray_type). The ability to order the elements of the array using ORDER
BY is not supported.

S097, Array element
assignment

In PL/SQL, you can assign to array elements, using syntax that is
similar to the standard (SQL/PSM).

S098, ARRAY_AGG Oracle does not have an aggregate that results in a varray. Instead, the
COLLECT aggregate may be used to create a multiset, which can be
cast to an array of the element type.

S111, ONLY in query
expressions

Oracle supports the ONLY clause for view hierarchies; Oracle does not
support hierarchies of base tables.

S151, Type predicate Oracle fully supports this feature.

S161, Subtype treatment Oracle fully supports this feature.

S162, Subtype treatment for
references

Supported, with a minor syntactic difference: The standard requires
parentheses around the referenced type's name; Oracle does not
support parentheses in this position.

S201, SQL-invoked routines on
arrays

PL/SQL provides the ability to pass arrays as parameters and return
arrays as the result of functions. Procedures and functions written in C
may pass arrays and return arrays as the result of functions using the
Oracle Type Translator (OTT).

S202, SQL-invoked routines on
multisets

A PL/SQL routine may have nested tables as parameters, and may
return a nested table. Routines written in C may pass arrays and return
arrays as the result of functions using the Oracle Type Translator.

S232, Array locators Oracle Type Translator supports descriptors for arrays, which achieve
the same purpose as locators.

S233, Multiset locators Oracle supports locators for nested tables.

S241, Transform functions The Oracle Type Translator provides the same capability as
transforms.

S251, User-defined orderings Oracle's object type ordering capabilities correspond to the standard's
capabilities as follows:

• Oracle's MAP ordering corresponds to the standard's ORDER
FULL BY MAP ordering.

• Oracle's ORDER ordering corresponds to the standard's ORDER
FULL BY RELATIVE ordering.

• If an Oracle object type has neither MAP nor ORDER declared,
then this corresponds to EQUALS ONLY BY STATE in the standard.

• Oracle does not have unordered object types; you can alter the
ordering but you cannot drop it.

S261, Specified type method The GetTypeName method of the ANYDATA type may be used to learn
the name of a type.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-16 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

S271, Basic multiset support Multisets in the standard are supported as nested table types in
Oracle. The Oracle nested table data type based on a scalar type ST
is equivalent, in standard terminology, to a multiset of rows having a
single field of type ST and named column_value. The Oracle nested
table type based on an object type is equivalent to a multiset of
structured type in the standard.

Oracle supports the following elements of this feature on nested tables
using the same syntax as the standard has for multisets:

• The CARDINALITY function
• The SET function
• The MEMBER predicate
• The IS A SET predicate
• The COLLECT aggregate
All other aspects of this feature are supported with non-standard
syntax, as follows:

• To create an empty multiset, denoted MULTISET[] in the standard,
use an empty constructor of the nested table type.

• To obtain the sole element of a multiset with one element, denoted
ELEMENT (<multiset value expression>) in the standard, use a
scalar subquery to select the single element from the nested
table.

• To construct a multiset by enumeration, use the constructor of the
nested table type.

• To construct a multiset by query, use CAST with a multiset
argument, casting to the nested table type.

• To unnest a multiset, use the TABLE operator in the FROM clause.

S272, Multisets of user-defined
types

Oracle's nested table type permits a multiset of structured types.
Oracle does not have distinct types, so a multiset of distinct types is
not supported.

S274, Multisets of reference
types

A nested table type can have one or more columns of reference type.

S275, Advanced multiset
support

Oracle supports the following elements of this feature on nested tables
using the same syntax as the standard has for multisets:

• The MULTISET UNION, MULTISET INTERSECTION, and
MULTISET EXCEPT operators

• The SUBMULTISET predicate
• = and <> predicates

Oracle does not support the FUSION or INTERSECTION aggregates.

S281, Nested collection types Oracle permits nesting of its collection types (varray and nested table).

S401, Distinct types based on
array types

Oracle's varray types are strongly typed.

S403,
ARRAY_MAX_CARDINALITY

In PL/SQL, the LIMIT method of a varray returns its maximum
cardinality.

S404, TRIM_ARRAY In PL/SQL, the TRIM method of a varray can be used to trim the
varray.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-17 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

T041, Basic LOB data type
support

Oracle supports the following aspects of this feature:

• The keywords BLOB, CLOB, and NCLOB
• Concatenation, UPPER, LOWER on CLOBs
Oracle provides equivalent support for the following aspects of this
feature:

• Use INSTR instead of POSITION.
• Use LENGTH instead of CHAR_LENGTH.
Oracle does not support the following aspects of this feature:

• The keywords BINARY LARGE OBJECT, CHARACTER LARGE
OBJECT, and NATIONAL CHARACTER LARGE OBJECT as
synonyms for BLOB, CLOB, and NCLOB, respectively

• <binary string literal>
• The ability to specify an upper bound on the length of a BLOB or

CLOB
• Concatenation of BLOBs

T042, Extended LOB support Oracle fully supports the following element of this feature:

• TRIM function on a CLOB argument
Oracle provides equivalent functionality for the following elements of
this feature:

• BLOB and CLOB substring, supported using SUBSTR
• SIMILAR predicate, supported using REGEXPR_LIKE to perform

pattern matching with a Perl-like syntax
The following elements of this feature are not supported:

• Comparison predicates with BLOB or CLOB operands
• CAST with a BLOB or CLOB operand
• OVERLAY (This may be emulated using SUBSTR and string

concatenation.)
• LIKE predicate with BLOB or CLOB operands

T051, Row types Oracle object types can be used in place of the standard's row types.

T061, UCS support Oracle provides equivalent functionality for the following elements of
this feature:

• Oracle supports the keyword CHAR instead of CHARACTERS, and
BYTE instead of OCTETS, in a character data type declaration.

• The Oracle COMPOSE function is equivalent to the standard's
NORMALIZE function.

Oracle does not support the IS NORMALIZED predicate.

T071, BIGINT data type On many implementations, BIGINT refers to a binary integer type with
64 bits, which supports almost 19 decimal digits. The Oracle NUMBER
type supports 39 decimal digits.

T111, Updatable joins, unions
and columns

Oracle's updatable join views are similar to the standard's updatable
join capabilities. Unlike the standard, Oracle does not require an
updatable join view to display the strong candidate key in the SELECT
list. Although an updatable join view might have more than one key-
preserved table, only one of them may be modified using an UPDATE
or DELETE, unlike the standard, which modifies all key-preserved
tables of an updatable join.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-18 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

T121, WITH (excluding
RECURSIVE) in query
expression

Oracle fully supports this feature.

T122, WITH (excluding
RECURSIVE) in subquery

Oracle fully supports this feature.

T131, Recursive query Oracle supports the use of a WITH clause element that references
itself, but without the RECURSIVE keyword. Alternatively, Oracle's
START WITH and CONNECT BY clauses can be used to perform many
recursive queries.

T132, Recursive query in
subquery

Oracle supports the use of a WITH clause element that references
itself, but without the RECURSIVE keyword. Alternatively, Oracle's
START WITH and CONNECT BY clauses can be used to perform many
recursive queries.

T141, SIMILAR predicate Oracle provides REGEXP_LIKE for pattern matching with a Perl-like
syntax.

T172, AS subquery clause in
table definition

Oracle's AS subquery feature of CREATE TABLE has substantially the
same functionality as the standard, though there are some syntactic
differences.

T174, Identity columns Oracle supports this feature, with the following syntactic differences:

• Oracle uses NOMINVALUE and NOMAXVALUE instead of the
standard's NO MINVALUE and NO MAXVALUE.

• To restart an identity column, in an ALTER TABLE MODIFY
statement, use START WITH LIMIT VALUE to restart at the highest
value (for an increasing identity column) or the lowest value (for a
decreasing identity column); use START WITH number to restart at
a specific number.

GENERATED BY DEFAULT ON NULL is an Oracle extension.

T175, Generated columns Oracle supports this feature, with the following restrictions:

• Generated columns are not supported in temporary tables.
• The data type of a generated column may not be LOB or XML.

T176, Sequence generator
support

Oracle's sequences have the same capabilities as the standard's,
though with different syntax.

T178, Identity columns: simple
restart option

Oracle's START WITH LIMIT VALUE is the same as the standard's
simple restart if the identity column has not cycled.

T180, System-versioned tables Oracle's Flashback capability is substantially the same as the
standard's system-versioned tables. Some key differences are:

• In Oracle you do not need to designate particular tables for
journaling; all tables are journaled.

• In Oracle, LOB columns need to be individually designated for
journaling, because of the potential for large amounts of data. The
standard has no analogous provision.

• In Oracle you need a privilege in order to read historical data.
• In the standard, journaled tables have columns to record the start

and end timestamps for the row. In Oracle, this is provided through
pseudocolumns.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-19 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

T181, Application-time period
tables

Oracle supports the following elements of this feature:

• Application-time period definition during CREATE TABLE
• Adding and dropping an application-time period definition using

ALTER TABLE with a minor syntactic difference: Oracle requires
parentheses around the period specification; the standard does
not support parentheses in this position.

Oracle extends this feature:

• With the ability to have more than one application-time period per
table.

• By making the start time and end time columns optional. In this
case, Oracle will create these columns implicitly.

• By allowing NULL for the start time column to indicate that the row
is considered valid for any point in time before the value of the end
time column.

• By allowing NULL for the end time column to indicate that the row
is considered valid for any point in time on or after the value of the
start time column.

• By querying an application-time period table using the flashback
query options VERSIONS PERIOD FOR and AS OF PERIOD FOR.

T201, Comparable data types
for referential constraints

Oracle fully supports this feature.

T211, Basic trigger capability Oracle's triggers differ from the standard as follows:

• Oracle does not provide the optional syntax FOR EACH
STATEMENT for the default case, the statement trigger.

• Oracle does not support OLD TABLE and NEW TABLE; the
transition tables specified in the standard (the multiset of before
and after images of affected rows) are not available.

• The trigger body is written in PL/SQL, which is functionally
equivalent to the standard's procedural language PSM, but not the
same.

• In the trigger body, the new and old transition variables are
referenced beginning with a colon.

• Oracle's row triggers are executed as the row is processed,
instead of buffering them and executing all of them after
processing all rows. The standard's semantics are deterministic,
but Oracle's in-flight row triggers are more performant.

• Oracle's before-row and before-statement triggers can perform
DML statements, which is forbidden in the standard. However,
Oracle's after-row statements cannot perform DML, while it is
permitted in the standard.

• When multiple triggers apply, the standard says they are executed
in order of definition. In Oracle the execution order is
nondeterministic, unless specified using FOLLOWS.

• Oracle uses the system privileges CREATE TRIGGER and CREATE
ANY TRIGGER to regulate creation of triggers, instead of the
standard's TRIGGER privilege, which is a table privilege.

T212, Enhanced trigger
capability

This feature permits statements triggers, which Oracle supports, as
described for feature T211, Basic trigger capability.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-20 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

T213, INSTEAD OF triggers Oracle supports INSTEAD OF triggers on views, with syntax and
semantics agreeing with the standard except as noted for feature
T211, Basic trigger capability. Oracle permits an INSTEAD OF trigger
on a view that specified WITH CHECK OPTION, unlike the standard.

T241, START TRANSACTION
statement

Oracle's SET TRANSACTION statement starts a transaction making it
equivalent to the standard's START TRANSACTION rather than the
standard's SET TRANSACTION. Oracle's READ ONLY transactions are
at SERIALIZABLE isolation level.

T271, Savepoints Oracle supports this feature, except:

• Oracle does not support RELEASE SAVEPOINT.
• Oracle does not support savepoint levels.

T285, Enhanced derived
column names

This feature pertains only to derived columns in a SELECT list with no
column alias and consisting of a SQL parameter reference. In that
case, the column name defaults to the parameter name, the same as
in the standard.

T323, Explicit security for
external routines

The Oracle syntax AUTHID { CURRENT USER | DEFINER } when used
when creating an external function, procedure, or package is
equivalent to the standard's EXTERNAL SECURITY { DEFINER |
INVOKER }.

T324, Explicit security for SQL
routines

Oracle's syntax AUTHID { CURRENT USER | DEFINER } when used
when creating a PL/SQL function, procedure, or package is equivalent
to the standard's SQL SECURITY { DEFINER | INVOKER }.

T325, Qualified SQL parameter
reference

PL/SQL supports the use of a routine name to qualify a parameter
name.

T326, Table functions Oracle provides equivalents for the following elements of this feature:

• <multiset value constructor by query> is supported using CAST
(MULTISET (<query expression>) AS <nested table type>)

• <table function derived table> is supported using the TABLE
operator in the FROM clause with a varray or nested table as the
argument

• <collection value expression> is equivalent to an Oracle
expression resulting in a varray or nested table

• <returns table type> is equivalent to a PL/SQL function that
returns a nested table

T331, Basic roles Oracle supports this feature, except for REVOKE ADMIN OPTION FOR
<role name>.

T341, Overloading of SQL-
invoked functions and
procedures

Oracle supports overloading of functions and procedures. However,
the rules for handling certain data type combinations are not the same
as the standard. For example, the standard permits the coexistence of
two functions of the same name differing only in the numeric types of
the arguments, whereas Oracle does not permit this.

T351, Bracketed comments Oracle fully supports this feature.

T431, Extended grouping
capabilities

Oracle fully supports this feature.

T432, Nested and concatenated
GROUPING SETS

Oracle supports concatenated GROUPING SETS, but not nested
GROUPING SETS.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-21 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

T433, Multiargument function
GROUPING

The Oracle GROUP_ID function can be used to conveniently distinguish
groups in a grouped query, serving the same purpose as the standard
multiargument GROUPING function.

T441, ABS and MOD functions Oracle supports the ABS function. Oracle's MOD function is similar to
the standard, though the behavior is different if the two arguments are
of opposite sign.

T471, Result sets return value PL/SQL ref cursors provide all the functionality of the standard's result
set cursors.

T491, LATERAL derived tables Oracle fully supports this feature.

T501, Enhanced EXISTS
predicate

Oracle fully supports this feature.

T511, Transaction counts Oracle supports the count of transactions committed and rolled back
via the system views V$STATNAME and V$SESSTAT.

T521, Named arguments in
CALL statement

Oracle fully supports this feature.

T522, Default values for IN
parameters of SQL-invoked
procedures

Oracle fully supports this feature.

T524, Named arguments in
routine invocations other than a
CALL statement

Oracle fully supports this feature.

T525, Default values for
parameters of SQL-invoked
functions

Oracle fully supports this feature.

T571, Array-returning external
SQL-invoked function

Oracle table functions returning a varray can be defined in external
programming languages. When declaring such functions in SQL, use
the CREATE FUNCTION command with the PIPELINED USING clause.

T572, Multiset-returning
external SQL-invoked function

Oracle table functions returning a nested table can be defined in
external programming languages. When declaring such functions in
SQL, use the CREATE FUNCTION command with the PIPELINED
USING clause. In the body of the function, use the OCITable interface.
The function must be invoked within the TABLE operator in the FROM
clause.

T581, Regular expressions
substring functions

Oracle provides the REGEXP_SUBSTR function to perform substring
operations using regular expression matching.

T591, UNIQUE constraints of
possibly null columns

Oracle permits a UNIQUE constraint on one or more nullable columns.
If the UNIQUE constraint is on a single column, then the semantics are
the same as the standard (the constraint permits any number of rows
that are null in the designated column). If the UNIQUE constraint is on
two or more columns, then the semantics are nonstandard. Oracle
permits any number of rows that are null in all the designated columns.
Unlike the standard, if a row is non-null in at least one of the
designated columns, then another row having the same values in the
non-null columns of the constraint is a constraint violation and not
permitted.

T611, Elementary OLAP
operations

Oracle fully supports this feature, except that DISTINCT is only
supported in conjunction with window partitioning but not with window
framing.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-22 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

T612, Advanced OLAP
operations

Oracle supports the following elements of this feature:
PERCENT_RANK, CUME_DIST, WIDTH_BUCKET, hypothetical set
functions, PERCENTILE_CONT, PERCENTILE_DISC, and
ROW_NUMBER.

Oracle does not support the following element of this feature:

• ROW_NUMBER without ORDER BY

T613, Sampling Oracle uses the keyword SAMPLE instead of the standard's keyword,
TABLESAMPLE. Oracle uses the keyword BLOCK instead of the
standard's keyword, SYSTEM. Oracle uses the absence of the keyword
BLOCK to indicate a Bernoulli sampling of rows, indicated in the
standard by the keyword BERNOULLI. Oracle does not support
sampling of derived tables or views that are not key-preserving. Oracle
does not permit sampling in a subquery of a DELETE, UPDATE or
MERGE statement.

T614, NTILE function Oracle fully supports this feature.

T615, LEAD and LAG functions Oracle fully supports this feature.

T616, Null treatment option for
LEAD and LAG functions

Oracle fully supports this feature.

T617, FIRST_VALUE and
LAST_VALUE functions

Oracle fully supports this feature.

T618, NTH_VALUE function Oracle fully supports this feature.

T621, Enhanced numeric
functions

Oracle fully supports this feature, except for the alternate spelling
CEILING of the CEIL function.

T622, Trigonometric functions Oracle fully supports this feature.

T623, General logarithm
function

Oracle fully supports this feature.

T625, LISTAGG Oracle fully supports this feature.

T641, Multiple column
assignment

The standard syntax to assign to multiple columns is supported if the
assignment source is a subquery.

T652, SQL-dynamic statements
in SQL routines.

PL/SQL supports dynamic SQL.

T654, SQL-dynamic statements
in external routines

Oracle supports dynamic SQL in embedded C, which may be used to
create an external routine.

T655, Cyclically dependent
routines

PL/SQL supports recursion.

T811, Basic SQL/JSON
constructor functions

Oracle fully supports this feature, except for the JSON_ARRAY
constructor by query.

T812, SQL/JSON:
JSON_OBJECTAGG

Oracle fully supports this feature.

T813, SQL/JSON:
JSON_ARRAYAGG with ORDER
BY

Oracle fully supports this feature.

T821, Basic SQL/JSON query
operators

Oracle fully supports this feature.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-23 of C-34

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID Feature Support

T822, SQL/JSON: IS JSON
WITH UNIQUE KEYS predicate

Oracle fully supports this feature.

T823, SQL/JSON: PASSING
clause

Oracle supports the PASSING clause in JSON_EXISTS.

T825, SQL/JSON: ON EMPTY
and ON ERROR clauses

Oracle fully supports this feature, except that:

• The ON ERROR clause for JSON_EXISTS does not support
UNKNOWN.

• JSON_TABLE does not support a column-level ON EMPTY clause.

T828, JSON_QUERY Oracle fully supports this feature.

T829, JSON_QUERY: array
wrapper options

Oracle fully supports this feature.

T832, SQL/JSON path
language: item method

Oracle fully supports the following item methods:

• abs
• ceiling
• double
• floor
Oracle provides the following comparable support:

• date and timestamp are comparable to the standard’s datetime
Oracle extends this feature by supporting the following item methods:

• length
• lower
• number
• string
• upper

T833, SQL/JSON path
language: multiple subscripts

Oracle fully supports this feature, except that subscripts have to be
specified in strictly monotonically increasing order.

T834, SQL/JSON path
language: wildcard member
accessor

Oracle fully supports this feature.

T835, SQL/JSON path
language: filter expression

Oracle supports the filter expression as the last step of the SQL/JSON
path expression in JSON_EXISTS.

T839, Formatted cast of
datetimes to/from character
strings

Oracle supports this feature with a minor syntactic difference: Oracle
uses a comma instead of the keyword FORMAT.

Oracle Compliance with SQL/CLI
The Oracle ODBC driver conforms to SQL/CLI.

Oracle Compliance with SQL/PSM
Oracle PL/SQL provides functionality equivalent to SQL/PSM, with minor syntactic differences,
such as the spelling or arrangement of keywords.

Appendix C
Oracle Compliance with SQL/CLI

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-24 of C-34

Oracle Compliance with SQL/MED
Oracle does not comply with SQL/MED.

Oracle Compliance with SQL/OLB
Oracle SQLJ conforms to SQL/OLB:1999 and not yet to SQL/OLB:2016.

Oracle Compliance with SQL/JRT
Oracle fully supports stored routines and SQL types implemented in Java(TM). Oracle provides
equivalent support for the creation and maintenance of such types and procedures. Oracle's
capabilities are in general a superset of the functionality defined by the standard.

Oracle Compliance with SQL/XML
The XML data type in the standard is XML. The Oracle equivalent data type is XMLType. A
feature of the standard is considered to be fully supported if the only difference between Oracle
and the standard is the spelling of the data type name.

Table C-3 describes Oracle's support for the features of SQL/XML.

Table C-3 Oracle Support for Features of SQL/XML

Feature ID Feature Support

X010, XML type Oracle fully supports this feature.

X011, Arrays of XML types Oracle supports this feature using named array types

X012, Multisets of XML type The Oracle equivalent of a multiset of XML type is a nested table with
a single column of XML type.

X013, Distinct types of XML A distinct type can be emulated using an object type with a single
attribute.

X014, Attributes of XML type In Oracle, attributes of object types may be of type XMLType, but the
syntax for creating object types is nonstandard.

X015, Fields of XML type Oracle object types may be used instead of row types; Oracle
supports object types with attributes of XMLType.

X016, Persistent XML values Oracle fully supports this feature.

X020, XMLConcat Oracle fully supports this feature.

X025, XMLCast Oracle supports this feature, with the following restrictions:

• The source expression must be of XMLType and the target data
type may not be XMLType. (Since Oracle has only one XML type,
there is no need to cast from XML to XML.)

• Oracle does not support <XML passing mechanism>; the
behavior is the same as BY VALUE in the standard.

Oracle extends this feature with the ability to cast to type REF
XMLTYPE.

X031, XMLElement Oracle fully supports this feature.

X032, XMLForest Oracle fully supports this feature.

Appendix C
Oracle Compliance with SQL/MED

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-25 of C-34

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID Feature Support

X034, XMLAgg Oracle fully supports this feature.

X035, XMLAgg: ORDER BY
option

Oracle fully supports this feature.

X036, XMLComment Oracle fully supports this feature.

X036, XMLPi Oracle fully supports this feature.

X038, XMLText The Oracle XMLCData function may be used to create a text node.

X040, Basic table mapping Oracle table mappings are available through a Java interface and
through a package. Oracle table mappings have been generalized to
map queries and not just tables. To map only a table: SELECT * FROM
table_name. This provides support for the following elements of this
feature:

• X041, Basic table mapping: null absent
• X042, Basic table mapping: null as nil
• X043, Basic table mapping: table as forest
• X044, Basic table mapping: table as element
• X045, Basic table mapping: with target namespace
• X046, Basic table mapping: data mapping
• X047, Basic table mapping: metadata mapping
• X049, Basic table mapping: hex encoding
Oracle does not support the following element of this feature:

• X048, Basic table mapping: base64 encoding

X041, Basic table mapping: null
absent

See X040.

X042, Basic table mapping: null
as nil

See X040.

X043, Basic table mapping: table
as forest

See X040.

X044, Basic table mapping: table
as element

See X040.

X045, Basic table mapping: with
target namespace

See X040.

X046, Basic table mapping: data
mapping

See X040.

X047, Basic table mapping:
metadata mapping

See X040.

X049, Basic table mapping: hex
encoding

See X040.

X060, XMLParse: Character string
input and CONTENT option

Oracle does not support the {PRESERVE | STRIP} WHITESPACE
syntax. The behavior is always STRIP WHITESPACE.

X061, XMLParse: Character string
input and DOCUMENT option

Oracle does not support the {PRESERVE | STRIP} WHITESPACE
syntax. The behavior is always STRIP WHITESPACE.

X069, XMLSERIALIZE: INDENT Oracle extends this feature with the ability to specify an indent size.

Appendix C
Oracle Compliance with SQL/XML

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-26 of C-34

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID Feature Support

X070, XMLSerialize: Character
string serialization and CONTENT
option

Oracle supports this feature, with this restriction:

• In the standard, the choice of DOCUMENT or CONTENT is
optional; in Oracle, you must specify one of these.

Oracle extends this feature as follows: the standard requires a target
data type; Oracle defaults to CLOB.

X071, XMLSerialize: Character
string serialization and
DOCUMENT option

Oracle fully supports this feature.

X072, XMLSerialize: Character
string serialization

Oracle fully supports this feature.

X073, XMLSerialize: BLOB
serialization and CONTENT
option

Oracle fully supports this feature.

X074, XMLSerialize: BLOB
serialization and DOCUMENT
option

Oracle fully supports this feature.

X075, XMLSerialize: BLOB
serialization

Oracle fully supports this feature.

X076, XMLSerialize: VERSION
option

Oracle fully supports this feature.

X077, XMLSerialize: explicit
ENCODING option

Oracle fully supports this feature.

X080, Namespaces in XML
publishing

In the Oracle implementation of XMLElement, XMLAttributes are used
to define namespaces (XMLNamespaces is not implemented).
However, XMLAttributes is not supported for XMLForest.

X086, XML namespace
declarations in XMLTable

Oracle fully supports this feature.

X090, XML document predicate In Oracle, you can test whether an XML value is a document by using
the ISFRAGMENT method.

X096, XMLExists Oracle fully supports this feature, with this exception: Oracle only
supports passing by value, so the keywords BY VALUE are optional
at the beginning of the PASSING clause, and not supported on
individual arguments.

X120, XML parameters in SQL
routines

Oracle fully supports this feature.

X121, XML parameters in
external routines

Oracle supports XML values passed to external routines using a non-
standard interface.

X141, IS VALID predicate: data
drive case

The XMLISVALID method is equivalent to the IS VALID predicate,
and supports the data-driven case.

X142, IS VALID predicate:
ACCORDING TO clause

The XMLISVALID method is equivalent to the IS VALID predicate,
and includes the equivalent of the ACCORDING TO clause.

X143, IS VALID predicate:
ELEMENT clause

The XMLISVALID method is equivalent to the IS VALID predicate,
and includes the equivalent of the ELEMENT clause.

X144, IS VALID predicate:
schema location

The XMLISVALID method is equivalent to the IS VALID predicate,
and supports the specification of a schema location for a registered
XML Schema.

Appendix C
Oracle Compliance with SQL/XML

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-27 of C-34

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID Feature Support

X145, IS VALID predicate outside
check constraints

The XMLISVALID method is equivalent to the IS VALID predicate,
and may be used outside check constraints.

X151, IS VALID predicate with
DOCUMENT option

The XMLISVALID method is equivalent to the IS VALID predicate,
and performs validation equivalent to the DOCUMENT clause.
(XMLISVALID does not support "content" validation.)

X156, IS VALID predicate:
optional NAMESPACE with
ELEMENT clause

The XMLISVALID method is equivalent to the IS VALID predicate,
and may be used to validate against an element in any namespace.

X157, IS VALID predicate: NO
NAMESPACE with ELEMENT
clause

The XMLISVALID method is equivalent to the IS VALID predicate,
and may be used to validate against an element in the "no name"
namespace.

X160, Basic Information Schema
for registered XML Schemas

The Oracle static data dictionary view ALL_XML_SCHEMAS provides
a list of the registered XML schemas that are accessible to the
current user. The ALL_XML_SCHEMAS.SCHEMA_URL column
corresponds to the standard
XML_SCHEMAS.XML_SCHEMA_LOCATION column. The target
namespace of the registered XML Schemas can be learned by
examining ALL_XML_SCHEMAS.SCHEMA. Oracle has no equivalents
for the other columns of the standard's XML_SCHEMAS.

X161, Advanced Information
Schema for registered XML
Schemas

Oracle does not have static data dictionary views corresponding to
XML_SCHEMA_NAMESPACES and XML_SCHEMA_ELEMENTS in the
standard. However, all the information about registered XML
Schemas may be learned by examining the actual XML Schema,
which is found in the ALL_XML_SCHEMAS.SCHEMA column. This
may also be examined to learn whether a registered XML Schema is
nondeterministic, and which of its namespaces and elements are
nondeterministic.

X191, XML(DOCUMENT
(XMLSCHEMA)) type

Oracle does not support this syntax. However, a column of a table
can be constrained by a registered XML Schema, in which case all
values of the column will be of XML(DOCUMENT(XMLSCHEMA))
type.

X200, XMLQuery Oracle fully supports the following elements of this feature:

• X201, XMLQuery: RETURNING CONTENT
• X203, XMLQuery: passing a context item
• X204, XMLQuery: initializing an XQuery variable
• X206, XMLQuery: NULL ON EMPTY option

Oracle only supports passing by value, so the keywords BY VALUE
are optional at the beginning of the PASSING clause, and not
supported on individual arguments.

X201, XMLQuery: RETURNING
CONTENT

See X200.

X203, XMLQuery: passing a
context item

See X200.

X204, XMLQuery: initializing an
XQuery variable

See X200.

X206, XMLQuery: NULL ON
EMPTY option

See X200.

Appendix C
Oracle Compliance with SQL/XML

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-28 of C-34

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID Feature Support

X221, XML passing mechanism
BY VALUE

Oracle supports the BY VALUE clause in XMLQuery, XMLTable and
XMLExists. In these, BY VALUE is supported as optional syntax at the
beginning of an argument list, but not as a modifier on an individual
argument or column.

X232, XML(CONTENT(ANY))
type

Oracle does not support this syntax as a type modifier, but the Oracle
XMLType supports this data type for transient values. Persistent
values are of type XML(DOCUMENT(ANY)), which is a subset of
XML(CONTENT(ANY)).

X241, RETURNING CONTENT in
XML publishing

Oracle does not support this syntax. In Oracle, the behavior of the
publishing functions (XMLAgg, XMLComment, XMLConcat,
XMLElement, XMLForest, and XMLPi) is always RETURNING
CONTENT.

X251, Persistent XML values of
XML(DOCUMENT(UNTYPED))
type

Oracle fully supports this feature.

X252, Persistent values of type
XML(DOCUMENT(ANY))

Oracle fully supports this feature.

X256, Persistent values of
XML(DOCUMENT(XMLSCHEMA)
) type

Oracle fully supports this feature.

X260, XML type, ELEMENT
clause

Oracle does not support this syntax. However, a column of a table
may be constrained by a top-level element in a registered XML
Schema.

X263, XML type: NO
NAMESPACE with ELEMENT
clause

Oracle does not support this syntax. However, a column of a table
may be constrained by a top-level element in the "no name"
namespace of a registered XML Schema.

X264, XML type: schema
location

Oracle does not support this syntax. However, a column of a table
may be constrained by a registered XML Schema that is identified by
a schema location.

X271, XMLValidate: data driven
case

The SCHEMAVALIDATE method is equivalent to XMLValidate, and
supports the data-driven case.

X272, XMLValidate: ACCORDING
TO clause

The SCHEMAVALIDATE method is equivalent to XMLValidate, and
may be used to specify a particular registered XML Schema.

X273, XMLValidate: ELEMENT
clause

The SCHEMAVALIDATE method is equivalent to XMLValidate, and
may be used to specify a particular element of a particular registered
XML Schema.

X274, XMLValidate: schema
location

The SCHEMAVALIDATE method is equivalent to XMLValidate, and
may be used to specify a particular registered XML Schema by its
schema location URL.

X281, XMLValidate with
DOCUMENT option

The SCHEMAVALIDATE method is equivalent to XMLValidate.
SCHEMAVALIDATE performs validation only of XML documents (not
content).

X286, XMLValidate: NO
NAMESPACE with ELEMENT
clause

The SCHEMAVALIDATE method is equivalent to XMLValidate, and
may be used to specify a particular element in the "no name"
namespace of a particular registered XML Schema.

Appendix C
Oracle Compliance with SQL/XML

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-29 of C-34

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID Feature Support

X300, XMLTable Oracle does not support reverse axes in the column path
expressions. Aside from that restriction, Oracle fully supports the
following elements of this feature:

• X086, XML namespace declarations in XMLTable
• X302, XMLTable with ordinality column
• X303, XMLTable: column default option
• X304, XMLTable: passing a context item
• X305, XMLTable: initializing an XQuery variable

Oracle only supports passing by value, so the keywords BY VALUE
are optional at the beginning of the PASSING clause, and not
supported on individual arguments.

X302, XMLTable with ordinality
column

See X300.

X303, XMLTable: column default
option

See X300.

X304, XMLTable: passing a
context item

See X300.

X305, XMLTable: initializing an
XQuery variable

See X300.

Oracle Compliance with SQL/MDA

Oracle does not comply with SQL/MDA.

Oracle Compliance with SQL/PGQ
Table Table C-4 describes Oracle's support for the features of SQL/PGQ.

Table C-4 Oracle Support for Features of SQL/PGQ

Feature ID Feature Support

G000, Graph pattern Oracle fully supports this feature.

G001, Repeatable-elements match mode Oracle fully supports this feature.

G008, Graph pattern WHERE clause Oracle fully supports this feature.

G034, Path concatenation Oracle fully supports this feature.

G035, Quantified paths Oracle fully supports this feature.

G036, Quantified edges Oracle fully supports this feature.

G037, Questioned paths Oracle fully supports this feature.

G040, Vertex pattern Oracle fully supports this feature.

G042, Basic full edge patterns Oracle fully supports this feature.

G044, Basic abbreviated edge patterns Oracle fully supports this feature.

G060, Bounded graph pattern quantifiers Oracle fully supports this feature.

Appendix C
Oracle Compliance with SQL/MDA

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-30 of C-34

Table C-4 (Cont.) Oracle Support for Features of SQL/PGQ

Feature ID Feature Support

G070, Label expression: label disjunction Oracle fully supports this feature.

G071, Label expression: label conjunction Oracle provides equivalent functionality using label
expressions on different graph patterns with the
same graph element variable name.

G073, Label expression: individual label name Oracle fully supports this feature.

G090, Property reference Oracle fully supports this feature.

G100, ELEMENT_ID function Oracle provides equivalent functionality using
EDGE_ID and VERTEX_ID operators.

G112, IS SOURCE and IS DESTINATION predicate Oracle fully supports this feature.

G114, SAME predicate Oracle provides equivalent functionality using
VERTEX_EQUAL and EDGE_EQUAL predicates.

G120, Within-match aggregates Oracle fully supports this feature.

G900, GRAPH_TABLE Oracle fully supports this feature.

G904, All properties reference Oracle supports this feature in the COLUMNS
clause.

G920, DDL-based SQL-property graphs Oracle fully supports this feature with the following
exception: the keyword RESTRICT is not supported
for the DROP PROPERTY GRAPH statement.

G924, Explicit key clause for element tables Oracle fully supports this feature.

G925, Explicit label and properties clause for
element tables

Oracle fully supports this feature.

G926, More than one label for vertex tables Oracle fully supports this feature.

G927, More than one label for edge tables Oracle fully supports this feature.

G928, Value expressions as properties and
renaming of properties

Oracle fully supports this feature.

G929, Labels and properties: EXCEPT list Oracle fully supports this feature.

G940, Multi-sourced and multi-destined edges Oracle fully supports this feature.

G941, Implicit removal of incomplete edges Oracle fully supports this feature.

Oracle Compliance with FIPS 127-2
Oracle complied fully with last Federal Information Processing Standard (FIPS), which was
FIPS PUB 127-2. That standard is no longer published. However, for users whose applications
depend on information about the sizes of some database constructs that were defined in FIPS
127-2, the details of our compliance are listed in Table C-5.

Table C-5 Sizing for Database Constructs

Database Constructs FIPS Oracle Database

Length of an identifier (in bytes) 18 128

Length of CHARACTER data type (in bytes) 240 2,000

Decimal precision of NUMERIC data type 15 38

Appendix C
Oracle Compliance with FIPS 127-2

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-31 of C-34

Table C-5 (Cont.) Sizing for Database Constructs

Database Constructs FIPS Oracle Database

Decimal precision of DECIMAL data type 15 38

Decimal precision of INTEGER data type 9 38

Decimal precision of SMALLINT data type 4 38

Binary precision of FLOAT data type 20 126

Binary precision of REAL data type 20 63

Binary precision of DOUBLE PRECISION data type 30 126

Columns in a table 100 1,000

Values in an INSERT statement 100 1,000

SET clauses in an UPDATE statement (Note 1) 20 1,000

Length of a row (Note2, Note 3) 2,000 2,000,000

Columns in a UNIQUE constraint 6 32

Length of a UNIQUE constraint (Note 2) 120 (Note 4)

Length of foreign key column list (Note 2) 120 (Note 4)

Columns in a GROUP BY clause 6 255 (Note 5)

Length of GROUP BY column list 120 (Note 5)

Sort specifications in ORDER BY clause 6 255 (Note 5)

Length of ORDER BY column list 120 (Note 5)

Columns in a referential integrity constraint 6 32

Tables referenced in a SQL statement 15 No limit

Cursors simultaneously open 10 (Note 6)

Items in a SELECT list 100 1,000

Note 1: The number of SET clauses in an UPDATE statement refers to the number items
separated by commas following the SET keyword.

Note 2: The FIPS PUB defines the length of a collection of columns to be the sum of: twice the
number of columns, the length of each character column in bytes, decimal precision plus 1 of
each exact numeric column, binary precision divided by 4 plus 1 of each approximate numeric
column.

Note 3: The Oracle limit for the maximum row length is based on the maximum length of a row
containing a LONG value of length 2 gigabytes and 999 VARCHAR2 values, each of length 4000
bytes: 2(254) + 231 + (999(4000)).

Note 4: The Oracle limit for a UNIQUE key is half the size of an Oracle data block (specified by
the initialization parameter DB_BLOCK_SIZE) minus some overhead.

Note 5: Oracle places no limit on the number of columns in a GROUP BY clause or the number
of sort specifications in an ORDER BY clause. However, the sum of the sizes of all the
expressions in either a GROUP BY clause or an ORDER BY clause is limited to the size of an
Oracle data block (specified by the initialization parameter DB_BLOCK_SIZE) minus some
overhead.

Appendix C
Oracle Compliance with FIPS 127-2

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-32 of C-34

Note 6: The Oracle limit for the number of cursors simultaneously opened is specified by the
initialization parameter OPEN_CURSORS. The maximum value of this parameter depends on the
memory available on your operating system and exceeds 100 in all cases.

Oracle Extensions to Standard SQL
Oracle supports numerous features that extend beyond standard SQL. If you are concerned
with the portability of your applications to other implementations of SQL, then use Oracle's
FIPS Flagger to help identify the use of Oracle extensions to Entry SQL-92 in your embedded
SQL programs. The FIPS Flagger is part of the Oracle precompilers and the SQL*Module
compiler. The FIPS Flagger can also be enabled in SQL*Plus by using ALTER SESSION SET
FLAGGER = ENTRY. While SQL-92 has been superseded by SQL:2016, there has been no
conformance testing authority for any version of SQL since SQL-92; hence, Entry SQL-92
offers you the most assurance of portability.

See Also

Pro*COBOL Programmer's Guide and Pro*C/C++ Programmer's Guide for information
on how to use the FIPS Flagger

Oracle Compliance with Older Standards
This release of Oracle Database conforms to SQL:2016, the most recent edition of the SQL
standard when this guide was published, as itemized in preceding sections of this appendix.
Oracle does not formally claim that this release of the database conforms to SQL-92—and in
particular, to SQL-92 Entry Level—or to SQL:1999, because those standards have been
superseded by SQL:2016. Some, mostly minor, changes between editions of the SQL standard
might affect applications. The SQL standard, or a reference discussing that standard, can be
consulted to determine the details of any incompatibilities that have been introduced. One
important source is Annex E of SQL/Foundation:1999, SQL/Foundation:2003, SQL/
Foundation:2008, SQL/Foundation:2011, and SQL/Foundation:2016.

In some cases, this release of Oracle Database might continue to recognize constructs from
older editions of SQL. Such recognition is often allowed as a valid vendor extension. It is the
general policy of Oracle to keep incompatibilities between versions of the database as few as
possible. This policy extends to retention of older forms when that is feasible. In any case, the
differences between older SQL and SQL:2016 (as noted above) are relatively inconsequential.

Character Set Support
Oracle supports most national, international, and vendor-specific encoded character set
standards. A complete list of character sets supported by Oracle appears in Oracle Database
Globalization Support Guide.

Unicode is a universal encoded character set that lets you store information from any language
using a single character set. Unicode is required by modern standards such as XML, Java,
JavaScript, and LDAP. Unicode is compliant with ISO/IEC standard 10646. For information on
ISO standards, visit the Web site of the International Organization for Standardization:

http://www.iso.ch/

Appendix C
Oracle Extensions to Standard SQL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-33 of C-34

http://www.iso.ch/

Oracle Database Release 23 complies with version 15.0 of the Unicode Standard. For up-to-
date information on the Unicode Standard, visit the Web site of the Unicode Consortium:

http://www.unicode.org

Oracle supports the UTF-8 encoding scheme of the Unicode Standard through the AL32UTF8
character set, the UTF-16BE encoding scheme through the AL16UTF16 character set, and the
UTF-16LE encoding scheme through the AL16UTF16LE character set. AL32UTF8 is valid as
the client and database character set on ASCII-based platforms. AL16UTF16 is valid as the
national (NCHAR) character set on all platforms. AL16UTF16LE is not valid as the client,
database, or national character set.

Oracle implements two deprecated Unicode compatibility encoding forms: CESU-8 through the
UTF8 character set and UTF-EBCDIC through the UTFE character set. The UTF8 and UTFE
character sets are not guaranteed to include updates to the Unicode standard beyond version
3.0. UTF8 is valid as the client and database character set on ASCII-based platforms and as
the national (NCHAR) character set on all platforms. UTFE is valid as the database character
set on EBCDIC-based platforms.

All mentioned Oracle character sets are supported in conversion functions.

Oracle recommends that databases on ASCII-based platforms are created with the AL32UTF8
character set and the AL16UTF16 national (NCHAR) character set. Oracle recommends that
you avoid the use of the NCHAR data types and the associated national character set as they
are not supported by some RDBMS components, such as Oracle Text and Oracle XDB.

See Also

Oracle Database Globalization Support Guide for details on Oracle character set
support

Appendix C
Character Set Support

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix C-34 of C-34

http://www.unicode.org

D
Oracle Regular Expression Support

Oracle's implementation of regular expressions conforms with the IEEE Portable Operating
System Interface (POSIX) regular expression standard and to the Unicode Regular Expression
Guidelines of the Unicode Consortium.

This appendix contains the following sections:

• Multilingual Regular Expression Syntax

• Regular Expression Operator Multilingual Enhancements

• Perl-influenced Extensions in Oracle Regular Expressions

Multilingual Regular Expression Syntax
Table D-1 lists the full set of operators defined in the POSIX standard Extended Regular
Expression (ERE) syntax. Oracle follows the exact syntax and matching semantics for these
operators as defined in the POSIX standard for matching ASCII (English language) data. For
more complete descriptions of the operators, examples of their use, and Oracle multilingual
enhancements of the operators, refer to Oracle Database Development Guide. Notes following
the table provide more complete descriptions of the operators and their functions, as well as
Oracle multilingual enhancements of the operators. Table D-2 summarizes Oracle support for
and multilingual enhancement of the POSIX operators.

Table D-1 Regular Expression Operators and Metasymbols

Operator Description

\ The backslash character can have four different meanings depending on the
context. It can:

• Stand for itself
• Quote the next character
• Introduce an operator
• Do nothing

* Matches zero or more occurrences

+ Matches one or more occurrences

? Matches zero or one occurrence

| Alternation operator for specifying alternative matches

^ Matches the beginning of a string by default. In multiline mode, it matches the
beginning of any line anywhere within the source string.

$ Matches the end of a string by default. In multiline mode, it matches the end of
any line anywhere within the source string.

. Matches any character in the supported character set except NULL

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix D-1 of D-4

Table D-1 (Cont.) Regular Expression Operators and Metasymbols

Operator Description

[] Bracket expression for specifying a matching list that should match any one of the
expressions represented in the list. A non-matching list expression begins with a
circumflex (^) and specifies a list that matches any character except for the
expressions represented in the list.

To specify a right bracket (]) in the bracket expression, place it first in the list (after
the initial circumflex (^), if any).

To specify a hyphen in the bracket expression, place it first in the list (after the
initial circumflex (^), if any), last in the list, or as an ending range point in a range
expression.

() Grouping expression, treated as a single subexpression

{m} Matches exactly m times

{m,} Matches at least m times

{m,n} Matches at least m times but no more than n times

\n The backreference expression (n is a digit between 1 and 9) matches the nth

subexpression enclosed between '(' and ')' preceding the \n

[..] Specifies one collation element, and can be a multicharacter element (for
example, [.ch.] in Spanish)

[: :] Specifies character classes (for example, [:alpha:]). It matches any character
within the character class.

[==] Specifies equivalence classes. For example, [=a=] matches all characters having
base letter 'a'.

Regular Expression Operator Multilingual Enhancements
When applied to multilingual data, Oracle's implementation of the POSIX operators extends
beyond the matching capabilities specified in the POSIX standard. Table D-2 shows the
relationship of the operators in the context of the POSIX standard.

• The first column lists the supported operators.

• The second and third columns indicate whether the POSIX standard (Basic Regular
Expression—BRE and Extended Regular Expression—ERE, respectively) defines the
operator

• The fourth column indicates whether Oracle's implementation extends the operator's
semantics for handling multilingual data.

Oracle lets you enter multibyte characters directly, if you have a direct input method, or you can
use functions to compose the multibyte characters. You cannot use the Unicode hexadecimal
encoding value of the form '\xxxx'. Oracle evaluates the characters based on the byte values
used to encode the character, not the graphical representation of the character. All accented
characters are considered word characters.

Table D-2 POSIX and Multilingual Operator Relationships

Operator POSIX BRE syntax POSIX ERE Syntax Multilingual
Enhancement

\ Yes Yes —

Appendix D
Regular Expression Operator Multilingual Enhancements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix D-2 of D-4

Table D-2 (Cont.) POSIX and Multilingual Operator Relationships

Operator POSIX BRE syntax POSIX ERE Syntax Multilingual
Enhancement

* Yes Yes —

+ -- Yes —

? — Yes —

| — Yes —

^ Yes Yes Yes

$ Yes Yes Yes

. Yes Yes Yes

[] Yes Yes Yes

() Yes Yes —

{m} Yes Yes —

{m,} Yes Yes —

{m,n} Yes Yes —

\n Yes Yes Yes

[..] Yes Yes Yes

[::] Yes Yes Yes

[==] Yes Yes Yes

Perl-influenced Extensions in Oracle Regular Expressions
Oracle Database regular expression functions and conditions accept a number of Perl-
influenced operators that are in common use, although not part of the POSIX standard.
Table D-3 lists those operators. For more complete descriptions with examples, refer to Oracle
Database Development Guide.

Table D-3 Perl-influenced Operators in Oracle Regular Expressions

Operator Description

\d A digit character.

\D A nondigit character.

\w A word character.

\W A nonword character.

\s A whitespace character.

\S A non-whitespace character.

\A Matches only at the beginning of a string, or before a newline character
at the end of a string.

\Z Matches only at the end of a string.

*? Matches the preceding pattern element 0 or more times (nongreedy).

+? Matches the preceding pattern element 1 or more times (nongreedy).

?? Matches the preceding pattern element 0 or 1 time (nongreedy).

Appendix D
Perl-influenced Extensions in Oracle Regular Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix D-3 of D-4

Table D-3 (Cont.) Perl-influenced Operators in Oracle Regular Expressions

Operator Description

{n}? Matches the preceding pattern element exactly n times (nongreedy).

{n,}? Matches the preceding pattern element at least n times (nongreedy).

{n,m}? Matches the preceding pattern element at least n but not more than m
times (nongreedy).

Appendix D
Perl-influenced Extensions in Oracle Regular Expressions

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix D-4 of D-4

E
Oracle SQL Reserved Words and Keywords

This appendix contains the following sections:

• Oracle SQL Reserved Words

• Oracle SQL Keywords

Oracle SQL Reserved Words
This section lists Oracle SQL reserved words. You cannot use Oracle SQL reserved words as
nonquoted identifiers. Quoted identifiers can be reserved words, although this is not
recommended.

Note

In addition to the following reserved words, Oracle uses system-generated names
beginning with "SYS_" for implicitly generated schema objects and subobjects. Oracle
discourages you from using this prefix in the names you explicitly provide to your
schema objects and subobjects to avoid possible conflict in name resolution.

The V$RESERVED_WORDS data dictionary view provides additional information on each reserved
word, including whether it is always reserved or is reserved only for particular uses. Refer to
Oracle Database Reference for more information.

Words followed by an asterisk (*) are also ANSI reserved words.

ACCESS
ADD
ALL *
ALTER *
AND *
ANY *
AS *
ASC
AUDIT
BETWEEN *
BY *
CHAR *
CHECK *
CLUSTER
COLUMN *
COLUMN_VALUE (See Note 1 at the end of this list)
COMMENT
COMPRESS
CONNECT *

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix E-1 of E-4

CREATE *
CURRENT *
DATE *
DECIMAL *
DEFAULT *
DELETE *
DESC
DISTINCT *
DROP *
ELSE *
EXCLUSIVE
EXISTS *
FILE
FLOAT *
FOR *
FROM *
GRANT *
GROUP *
HAVING *
IDENTIFIED
IMMEDIATE
IN *
INCREMENT
INDEX
INITIAL
INSERT *
INTEGER *
INTERSECT *
INTO *
IS *
LEVEL
LIKE *
LOCK
LONG
MAXEXTENTS
MINUS
MLSLABEL
MODE
MODIFY
NESTED_TABLE_ID (See Note 1 at the end of this list)
NOAUDIT
NOCOMPRESS
NOT *
NOWAIT
NULL *
NUMBER
OF *
OFFLINE
ON *
ONLINE

Appendix E
Oracle SQL Reserved Words

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix E-2 of E-4

OPTION
OR *
ORDER *
PCTFREE
PRIOR
PUBLIC
RAW
RENAME
RESOURCE
REVOKE *
ROW *
ROWID (See Note 2 at the end of this list)
ROWNUM
ROWS *
SELECT *
SESSION
SET *
SHARE
SIZE
SMALLINT *
START *
SUCCESSFUL
SYNONYM
SYSDATE
TABLE *
THEN *
TO *
TRIGGER *
UID
UNION *
UNIQUE *
UPDATE *
USER *
VALIDATE
VALUES *
VARCHAR *
VARCHAR2
VIEW
WHENEVER *
WHERE *
WITH *

Note 1: This keyword is only reserved for use as an attribute name.

Note 2: You cannot use the uppercase word ROWID, either quoted or nonquoted, as a column
name. However, you can use the uppercase word as a quoted identifier that is not a column
name, and you can use the word with one or more lowercase letters (for example, "Rowid" or
"rowid") as any quoted identifier, including a column name.

Appendix E
Oracle SQL Reserved Words

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix E-3 of E-4

Oracle SQL Keywords
Oracle SQL keywords are not reserved. However, Oracle uses them internally in specific ways.
Therefore, if you use these words as names for objects and object parts, then your SQL
statements may be more difficult to read and may lead to unpredictable results.

You can obtain a list of keywords by querying the V$RESERVED_WORDS data dictionary view. All
keywords in the view that are not listed as always reserved or reserved for a specific use are
Oracle SQL keywords. Refer to Oracle Database Reference for more information.

Appendix E
Oracle SQL Keywords

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix E-4 of E-4

F
Extended Examples

The body of the SQL Language Reference contains examples for almost every reference topic.
This appendix contains lengthy examples that are not appropriate in the context of a single
SQL statement. These examples are intended to provide uninterrupted the series of steps that
you would use to take advantage of particular Oracle functionality. They do not replace the
syntax diagrams and semantics found for each individual SQL statement in the body of the
reference. Use the cross-references provided to access additional information, such as
privileges required and restrictions, as well as syntax.

This appendix contains the following sections:

• Using Extensible Indexing

• Using XML in SQL Statements

Using Extensible Indexing
This section provides examples of the steps entailed in a simple but realistic extensible
indexing scenario.

Suppose you want to rank the salaries in the HR.employees table and then find those that rank
between 10 and 20. You could use the DENSE_RANK function, as follows:

SELECT last_name, salary FROM
 (SELECT last_name, DENSE_RANK() OVER
 (ORDER BY salary DESC) rank_val, salary FROM employees)
 WHERE rank_val BETWEEN 10 AND 20;

See Also

DENSE_RANK

This nested query is somewhat complex, and it requires a full scan of the employees table as well
as a sort. An alternative would be to use extensible indexing to achieve the same goal. The
resulting query will be simpler. The query will require only an index scan and a table access by
rowid, and will therefore perform much more efficiently.

The first step is to create the implementation type position_im, including method headers for
index definition, maintenance, and creation. Most of the type body uses PL/SQL, which is
shown in italics.

The type must created with the AUTHID CURRENT_USER clause because of the EXECUTE
IMMEDIATE statement inside the function ODCIINDEXCREATE(). By default that function runs with
the definer rights. When the function is called in the subsequent creation of the domain index,
the invoker does not have the same rights.

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-1 of F-11

See Also

• CREATE TYPE and CREATE TYPE BODY

• Oracle Database Data Cartridge Developer's Guide for complete information on
the ODCI routines in this statement

CREATE OR REPLACE TYPE position_im AUTHID CURRENT_USER AS OBJECT
(
 curnum NUMBER,
 howmany NUMBER,
 lower_bound NUMBER,
 upper_bound NUMBER,
/* lower_bound and upper_bound are used for the
index-based functional implementation */
 STATIC FUNCTION ODCIGETINTERFACES(ifclist OUT SYS.ODCIOBJECTLIST) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXCREATE
 (ia SYS.ODCIINDEXINFO, parms VARCHAR2, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXTRUNCATE (ia SYS.ODCIINDEXINFO,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXDROP(ia SYS.ODCIINDEXINFO,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXINSERT(ia SYS.ODCIINDEXINFO, rid ROWID,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXDELETE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXUPDATE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXSTART(SCTX IN OUT position_im, ia SYS.ODCIINDEXINFO,
 op SYS.ODCIPREDINFO, qi SYS.ODCIQUERYINFO,
 strt NUMBER, stop NUMBER, lower_pos NUMBER,
 upper_pos NUMBER, env SYS.ODCIEnv) RETURN NUMBER,
 MEMBER FUNCTION ODCIINDEXFETCH(SELF IN OUT position_im, nrows NUMBER,
 rids OUT SYS.ODCIRIDLIST, env SYS.ODCIEnv)
 RETURN NUMBER,
 MEMBER FUNCTION ODCIINDEXCLOSE(env SYS.ODCIEnv) RETURN NUMBER
);
/

CREATE OR REPLACE TYPE BODY position_im
IS
 STATIC FUNCTION ODCIGETINTERFACES(ifclist OUT SYS.ODCIOBJECTLIST)
 RETURN NUMBER IS
 BEGIN
 ifclist := SYS.ODCIOBJECTLIST(SYS.ODCIOBJECT('SYS','ODCIINDEX2'));
 RETURN ODCICONST.SUCCESS;
 END ODCIGETINTERFACES;
 STATIC FUNCTION ODCIINDEXCREATE (ia SYS.ODCIINDEXINFO, parms VARCHAR2, env SYS.ODCIEnv) RETURN
 NUMBER
 IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'Create Table ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB' || '(col_val, base_rowid, constraint pk PRIMARY KEY ' ||
 '(col_val, base_rowid)) ORGANIZATION INDEX AS SELECT ' ||
 ia.INDEXCOLS(1).COLNAME || ', ROWID FROM ' ||
 ia.INDEXCOLS(1).TABLESCHEMA || '.' || ia.INDEXCOLS(1).TABLENAME;
 EXECUTE IMMEDIATE stmt;

Appendix F
Using Extensible Indexing

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-2 of F-11

 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXDROP(ia SYS.ODCIINDEXINFO, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'DROP TABLE ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB';
/* Execute the statement */
 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXTRUNCATE(ia SYS.ODCIINDEXINFO, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'TRUNCATE TABLE ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME || '_STORAGE_TAB';

 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXINSERT(ia SYS.ODCIINDEXINFO, rid ROWID,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'INSERT INTO ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB VALUES (''' || newval || ''' , ''' || rid || ''')';
/* Execute the SQL statement */
 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;

 STATIC FUNCTION ODCIINDEXDELETE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 env SYS.ODCIEnv)
 RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'DELETE FROM ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB WHERE col_val = ''' || oldval || ''' AND base_rowid = ''' || rid || '''';
/* Execute the statement */
 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXUPDATE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'UPDATE ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB SET col_val = ''' || newval || ''' WHERE f2 = '''|| rid ||'''';
/* Execute the statement */
 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXSTART(SCTX IN OUT position_im, ia SYS.ODCIINDEXINFO,
 op SYS.ODCIPREDINFO, qi SYS.ODCIQUERYINFO,
 strt NUMBER, stop NUMBER, lower_pos NUMBER,
 upper_pos NUMBER, env SYS.ODCIEnv) RETURN NUMBER IS
 rid VARCHAR2(5072);
 storage_tab_name VARCHAR2(65);

Appendix F
Using Extensible Indexing

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-3 of F-11

 lower_bound_stmt VARCHAR2(2000);
 upper_bound_stmt VARCHAR2(2000);
 range_query_stmt VARCHAR2(2000);
 lower_bound NUMBER;
 upper_bound NUMBER;
 cnum INTEGER;
 nrows INTEGER;

 BEGIN
/* Take care of some error cases.
 The only predicates in which position operator can appear are
 op() = 1 OR
 op() = 0 OR
 op() between 0 and 1
*/
 IF (((strt != 1) AND (strt != 0)) OR
 ((stop != 1) AND (stop != 0)) OR
 ((strt = 1) AND (stop = 0))) THEN
 RAISE_APPLICATION_ERROR(-20101,
 'incorrect predicate for position_between operator');
 END IF;
 IF (lower_pos > upper_pos) THEN
 RAISE_APPLICATION_ERROR(-20101, 'Upper Position must be greater than or
 equal to Lower Position');
 END IF;
 IF (lower_pos <= 0) THEN
 RAISE_APPLICATION_ERROR(-20101, 'Both Positions must be greater than zero');
 END IF;
 storage_tab_name := ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB';
 upper_bound_stmt := 'Select MIN(col_val) FROM (Select /*+ INDEX_DESC(' ||
 storage_tab_name || ') */ DISTINCT ' ||
 'col_val FROM ' || storage_tab_name || ' ORDER BY ' ||
 'col_val DESC) WHERE rownum <= ' || lower_pos;
 EXECUTE IMMEDIATE upper_bound_stmt INTO upper_bound;
 IF (lower_pos != upper_pos) THEN
 lower_bound_stmt := 'Select MIN(col_val) FROM (Select /*+ INDEX_DESC(' ||
 storage_tab_name || ') */ DISTINCT ' ||
 'col_val FROM ' || storage_tab_name ||
 ' WHERE col_val < ' || upper_bound || ' ORDER BY ' ||
 'col_val DESC) WHERE rownum <= ' ||
 (upper_pos - lower_pos);
 EXECUTE IMMEDIATE lower_bound_stmt INTO lower_bound;
 ELSE
 lower_bound := upper_bound;
 END IF;
 IF (lower_bound IS NULL) THEN
 lower_bound := upper_bound;
 END IF;
 range_query_stmt := 'Select base_rowid FROM ' || storage_tab_name ||
 ' WHERE col_val BETWEEN ' || lower_bound || ' AND ' ||
 upper_bound;
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, range_query_stmt, DBMS_SQL.NATIVE);
/* set context as the cursor number */
 SCTX := position_im(cnum, 0, 0, 0);
/* return success */
 RETURN ODCICONST.SUCCESS;
 END;
 MEMBER FUNCTION ODCIINDEXFETCH(SELF IN OUT position_im, nrows NUMBER,
 rids OUT SYS.ODCIRIDLIST, env SYS.ODCIEnv)
 RETURN NUMBER IS

Appendix F
Using Extensible Indexing

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-4 of F-11

 cnum INTEGER;
 rid_tab DBMS_SQL.Varchar2_table;
 rlist SYS.ODCIRIDLIST := SYS.ODCIRIDLIST();
 i INTEGER;
 d INTEGER;
 BEGIN
 cnum := SELF.curnum;
 IF self.howmany = 0 THEN
 dbms_sql.define_array(cnum, 1, rid_tab, nrows, 1);
 d := DBMS_SQL.EXECUTE(cnum);
 END IF;
 d := DBMS_SQL.FETCH_ROWS(cnum);
 IF d = nrows THEN
 rlist.extend(d);
 ELSE
 rlist.extend(d+1);
 END IF;
 DBMS_SQL.COLUMN_VALUE(cnum, 1, rid_tab);
 for i in 1..d loop
 rlist(i) := rid_tab(i+SELF.howmany);
 end loop;
 SELF.howmany := SELF.howmany + d;
 rids := rlist;
 RETURN ODCICONST.SUCCESS;
 END;
 MEMBER FUNCTION ODCIINDEXCLOSE(env SYS.ODCIEnv) RETURN NUMBER IS
 cnum INTEGER;
 BEGIN
 cnum := SELF.curnum;
 DBMS_SQL.CLOSE_CURSOR(cnum);
 RETURN ODCICONST.SUCCESS;
 END;
END;
/

The next step is to create the functional implementation function_for_position_between for the
operator that will be associated with the indextype. (The PL/SQL blocks are shown in
parentheses.)

This function is for use with an index-based function evaluation. Therefore, it takes an index
context and scan context as parameters.

See Also

• Oracle Database Data Cartridge Developer's Guide for information on creating
index-based functional implementation

• CREATE FUNCTION and Oracle Database PL/SQL Language Reference

CREATE OR REPLACE FUNCTION function_for_position_between
 (col NUMBER, lower_pos NUMBER, upper_pos NUMBER,
 indexctx IN SYS.ODCIIndexCtx,
 scanctx IN OUT position_im,
 scanflg IN NUMBER)
RETURN NUMBER AS
 rid ROWID;
 storage_tab_name VARCHAR2(65);
 lower_bound_stmt VARCHAR2(2000);
 upper_bound_stmt VARCHAR2(2000);

Appendix F
Using Extensible Indexing

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-5 of F-11

 col_val_stmt VARCHAR2(2000);
 lower_bound NUMBER;
 upper_bound NUMBER;
 column_value NUMBER;
BEGIN
 IF (indexctx.IndexInfo IS NOT NULL) THEN
 storage_tab_name := indexctx.IndexInfo.INDEXSCHEMA || '.' ||
 indexctx.IndexInfo.INDEXNAME || '_STORAGE_TAB';
 IF (scanctx IS NULL) THEN
/* This is the first call. Open a cursor for future calls.
 First, do some error checking
*/
 IF (lower_pos > upper_pos) THEN
 RAISE_APPLICATION_ERROR(-20101,
 'Upper Position must be greater than or equal to Lower Position');
 END IF;
 IF (lower_pos <= 0) THEN
 RAISE_APPLICATION_ERROR(-20101,
 'Both Positions must be greater than zero');
 END IF;
/* Obtain the upper and lower value bounds for the range we're interested in.
*/
 upper_bound_stmt := 'Select MIN(col_val) FROM (Select /*+ INDEX_DESC(' ||
 storage_tab_name || ') */ DISTINCT ' ||
 'col_val FROM ' || storage_tab_name || ' ORDER BY ' ||
 'col_val DESC) WHERE rownum <= ' || lower_pos;
 EXECUTE IMMEDIATE upper_bound_stmt INTO upper_bound;
 IF (lower_pos != upper_pos) THEN
 lower_bound_stmt := 'Select MIN(col_val) FROM (Select /*+ INDEX_DESC(' ||
 storage_tab_name || ') */ DISTINCT ' ||
 'col_val FROM ' || storage_tab_name ||
 ' WHERE col_val < ' || upper_bound || ' ORDER BY ' ||
 'col_val DESC) WHERE rownum <= ' ||
 (upper_pos - lower_pos);
 EXECUTE IMMEDIATE lower_bound_stmt INTO lower_bound;
 ELSE
 lower_bound := upper_bound;
 END IF;
 IF (lower_bound IS NULL) THEN
 lower_bound := upper_bound;
 END IF;
/* Store the lower and upper bounds for future function invocations for
 the positions.
*/
 scanctx := position_im(0, 0, lower_bound, upper_bound);
 END IF;
/* Fetch the column value corresponding to the rowid, and see if it falls
 within the determined range.
*/
 col_val_stmt := 'Select col_val FROM ' || storage_tab_name ||
 ' WHERE base_rowid = ''' || indexctx.Rid || '''';
 EXECUTE IMMEDIATE col_val_stmt INTO column_value;
 IF (column_value <= scanctx.upper_bound AND
 column_value >= scanctx.lower_bound AND
 scanflg = ODCICONST.RegularCall) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
 ELSE
 RAISE_APPLICATION_ERROR(-20101, 'A column that has a domain index of' ||
 'Position indextype must be the first argument');

Appendix F
Using Extensible Indexing

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-6 of F-11

 END IF;
END;
/

Next, create the position_between operator, which uses the function_for_position_between function. The
operator takes an indexed NUMBER column as the first argument, followed by a NUMBER lower
and upper bound as the second and third arguments.

See Also

CREATE OPERATOR

CREATE OR REPLACE OPERATOR position_between
 BINDING (NUMBER, NUMBER, NUMBER) RETURN NUMBER
 WITH INDEX CONTEXT, SCAN CONTEXT position_im
 USING function_for_position_between;

In this CREATE OPERATOR statement, the WITH INDEX CONTEXT, SCAN CONTEXT position_im clause
is included so that the index context and scan context are passed in to the functional
evaluation, which is index based.

Now create the position_indextype indextype for the position_operator:

See Also

CREATE INDEXTYPE

CREATE INDEXTYPE position_indextype
 FOR position_between(NUMBER, NUMBER, NUMBER)
 USING position_im;

The operator position_between uses an index-based functional implementation. Therefore, a
domain index must be defined on the referenced column so that the index information can be
passed into the functional evaluation. So the final step is to create the domain index salary_index
using the position_indextype indextype:

See Also

CREATE INDEX

CREATE INDEX salary_index ON employees(salary)
 INDEXTYPE IS position_indextype;

Now you can use the position_between operator function to rewrite the original query as follows:

SELECT last_name, salary FROM employees
 WHERE position_between(salary, 10, 20)=1
 ORDER BY salary DESC, last_name;

LAST_NAME SALARY

Appendix F
Using Extensible Indexing

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-7 of F-11

------------------------- ----------
Tucker 10000
King 10000
Baer 10000
Bloom 10000
Fox 9600
Bernstein 9500
Sully 9500
Greene 9500
Hunold 9000
Faviet 9000
McEwen 9000
Hall 9000
Hutton 8800
Taylor 8600
Livingston 8400
Gietz 8300
Chen 8200
Fripp 8200
Weiss 8000
Olsen 8000
Smith 8000
Kaufling 7900

Using XML in SQL Statements
This section describes some of the ways you can use XMLType data in the database.

XMLType Tables

The sample schema oe contains a table warehouses, which contains an XMLType column
warehouse_spec. Suppose you want to create a separate table with the warehouse_spec information.
The following example creates a very simple XMLType table with one CLOB column:

CREATE TABLE xwarehouses OF XMLTYPE
 XMLTYPE STORE AS CLOB;

You can insert into such a table using XMLType syntax, as shown in the next statement. (The
data inserted in this example corresponds to the data in the warehouse_spec column of the sample
table oe.warehouses where warehouse_id = 1.)

INSERT INTO xwarehouses VALUES
 (xmltype('<?xml version="1.0"?>
 <Warehouse>
 <WarehouseId>1</WarehouseId>
 <WarehouseName>Southlake, Texas</WarehouseName>
 <Building>Owned</Building>
 <Area>25000</Area>
 <Docks>2</Docks>
 <DockType>Rear load</DockType>
 <WaterAccess>true</WaterAccess>
 <RailAccess>N</RailAccess>
 <Parking>Street</Parking>
 <VClearance>10</VClearance>
 </Warehouse>'));

Appendix F
Using XML in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-8 of F-11

See Also

Oracle XML DB Developer's Guide for information on XMLType and its member
methods

You can query this table with the following statement:

SELECT e.getClobVal() FROM xwarehouses e;

CLOB columns are subject to all of the restrictions on LOB columns. To avoid these restrictions,
create an XMLSchema-based table. The XMLSchema maps the XML elements to their object-
relational equivalents. The following example registers an XMLSchema locally. The
XMLSchema (xwarhouses.xsd) reflects the same structure as the xwarehouses table. (XMLSchema
declarations use PL/SQL and the DBMS_XMLSCHEMA package, so the example is shown in
italics.)

See Also

Oracle XML DB Developer's Guide for information on creating XMLSchemas

begin
 dbms_xmlschema.registerSchema(
 'http://www.example.com/xwarehouses.xsd',
 '<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com/xwarehouses.xsd"
 xmlns:who="http://www.example.com/xwarehouses.xsd"
 version="1.0">

 <simpleType name="RentalType">
 <restriction base="string">
 <enumeration value="Rented"/>
 <enumeration value="Owned"/>
 </restriction>
 </simpleType>

 <simpleType name="ParkingType">
 <restriction base="string">
 <enumeration value="Street"/>
 <enumeration value="Lot"/>
 </restriction>
 </simpleType>

 <element name = "Warehouse">
 <complexType>
 <sequence>
 <element name = "WarehouseId" type = "positiveInteger"/>
 <element name = "WarehouseName" type = "string"/>
 <element name = "Building" type = "who:RentalType"/>
 <element name = "Area" type = "positiveInteger"/>
 <element name = "Docks" type = "positiveInteger"/>
 <element name = "DockType" type = "string"/>
 <element name = "WaterAccess" type = "boolean"/>
 <element name = "RailAccess" type = "boolean"/>
 <element name = "Parking" type = "who:ParkingType"/>

Appendix F
Using XML in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-9 of F-11

 <element name = "VClearance" type = "positiveInteger"/>
 </sequence>
 </complexType>
 </element>
</schema>',
 TRUE, TRUE, FALSE, FALSE);
end;
/

Now you can create an XMLSchema-based table, as shown in the following example:

CREATE TABLE xwarehouses OF XMLTYPE
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

By default, Oracle stores this as an object-relational table. Therefore, you can insert into it as
shown in the example that follows. (The data inserted in this example corresponds to the data
in the warehouse_spec column of the sample table oe.warehouses where warehouse_id = 1.)

INSERT INTO xwarehouses VALUES(xmltype.createxml('<?xml version="1.0"?>
 <who:Warehouse xmlns:who="http://www.example.com/xwarehouses.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/xwarehouses.xsd
 http://www.example.com/xwarehouses.xsd">
 <WarehouseId>1</WarehouseId>
 <WarehouseName>Southlake, Texas</WarehouseName>
 <Building>Owned</Building>
 <Area>25000</Area>
 <Docks>2</Docks>
 <DockType>Rear load</DockType>
 <WaterAccess>true</WaterAccess>
 <RailAccess>false</RailAccess>
 <Parking>Street</Parking>
 <VClearance>10</VClearance>
 </who:Warehouse>'));
...

You can define constraints on an XMLSchema-based table. To do so, you use the XMLDATA
pseudocolumn to refer to the appropriate attribute within the Warehouse XML element:

ALTER TABLE xwarehouses ADD (PRIMARY KEY(XMLDATA."WarehouseId"));

Because the data in xwarehouses is stored object relationally, Oracle rewrites queries to this
XMLType table to go to the underlying storage when possible. Therefore the following queries
would use the index created by the primary key constraint in the preceding example:

SELECT * FROM xwarehouses x
 WHERE EXISTSNODE(VALUE(x), '/Warehouse[WarehouseId="1"]',
 'xmlns:who="http://www.example.com/xwarehouses.xsd"') = 1;

SELECT * FROM xwarehouses x
 WHERE EXTRACTVALUE(VALUE(x), '/Warehouse/WarehouseId',
 'xmlns:who="http://www.example.com/xwarehouses.xsd"') = 1;

You can also explicitly create indexes on XMLSchema-based tables, which greatly enhance
the performance of subsequent queries. You can create object-relational views on XMLType
tables, and you can create XMLType views on object-relational tables.

Appendix F
Using XML in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-10 of F-11

See Also

• XMLDATA Pseudocolumn for information on the XMLDATA pseudocolumn

• "Creating an XMLType View: Example"

• Creating an Index on an XMLType Table: Example

XMLType Columns

The sample table oe.warehouses was created with a warehouse_spec column of type XMLType. The
examples in this section create a shortened form of the oe.warehouses table, using two different
types of storage.

The first example creates a table with an XMLType table stored as a CLOB. This table does not
require an XMLSchema, so the content structure is not predetermined:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS CLOB
 (TABLESPACE example
 STORAGE (INITIAL 6144)
 CHUNK 4000
 NOCACHE LOGGING);

The following example creates a similar table, but stores the XMLType data in an object-
relational XMLType column whose structure is determined by the specified XMLSchema:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

Appendix F
Using XML in SQL Statements

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Appendix F-11 of F-11

Index

Symbols
+ (plus sign) in Oracle Automatic Storage

Management filenames, 33

Numerics
20th century, 83
21st century, 83
3GL functions and procedures, calling, 1

A
ABORT LOGICAL STANDBY clause

of ALTER DATABASE, 89
About SQL Conditions, 1, 42
ABS function, 23
ACCESSED GLOBALLY clause

of CREATE CONTEXT, 49
ACCOUNT LOCK clause

of ALTER USER. See CREATE USER, 206
of CREATE USER, 197

ACCOUNT UNLOCK clause
of ALTER USER. See CREATE USER, 206
of CREATE USER, 197

ACOS function, 24
ACTIVATE STANDBY DATABASE clause

of ALTER DATABASE, 85
AD and A.D. datetime format elements, 82
ADD clause

of ALTER DIMENSION, 105
of ALTER INDEXTYPE, 171
of ALTER TABLE, 28
of ALTER VIEW, 219

ADD DATAFILE clause
of ALTER TABLESPACE, 181

ADD LOGFILE clause
of ALTER DATABASE, 54

ADD LOGFILE GROUP clause
of ALTER DATABASE, 79

ADD LOGFILE INSTANCE clause
of ALTER DATABASE, 78

ADD LOGFILE MEMBER clause
of ALTER DATABASE, 54, 79

ADD LOGFILE THREAD clause
of ALTER DATABASE, 78

ADD MEASURES keywords, 39
ADD OVERFLOW clause

of ALTER TABLE, 28
ADD PARTITION clause

of ALTER TABLE, 28
ADD PRIMARY KEY clause

of ALTER MATERIALIZED VIEW LOG, 42
ADD ROWID clause

of ALTER MATERIALIZED VIEW, 42
ADD SUPPLEMENTAL LOG DATA clause

of ALTER DATABASE, 81
ADD SUPPLEMENTAL LOG GROUP clause

of ALTER TABLE, 92
ADD TEMPFILE clause

of ALTER TABLESPACE, 181
ADD VALUES clause

of ALTER TABLE ... MODIFY PARTITION,
130, 131

ADD_MONTHS function, 24
adding a constraint to a table, 121
ADMIN USER clause

of CREATE PLUGGABLE DATABASE, 85
ADMINISTER ANY SQL TUNING SET system

privilege, 42
ADMINISTER KEY MANAGEMENT statement, 5
ADMINISTER KEY MANAGEMENT system

privilege, 45
ADMINISTER SQL MANAGEMENT OBJECT

system privilege, 42
ADMINISTER SQL TUNING SET system

privilege, 42
advanced index compression

definition, 146
disabling, 146
enabling, 159
of index rebuild, 159

Advanced Row Compression, 84
ADVISE clause

of ALTER SESSION, 106
aggregate functions, 4
alias

for a column, 2
for an expressions in a view query, 210
specifying in queries and subqueries, 39

ALL clause
of SELECT, 64

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-1 of Index-53

ALL clause (continued)
of SET CONSTRAINTS, 139
of SET ROLE, 141

ALL operator, 3
ALL PRIVILEGES clause

of GRANT, 38
of REVOKE, 30

ALL_COL_COMMENTS data dictionary view, 243
ALL_INDEXTYPE_COMMENTS data dictionary

view, 244
ALL_MVIEW_COMMENTS data dictionary view,

244
ALL_OPERATOR_COMMENTS data dictionary

view, 244
ALL_ROWS hint, 98
ALL_TAB_COMMENTS data dictionary view, 243
all-column wildcard, 64
ALLOCATE EXTENT clause

of ALTER CLUSTER, 42, 43
of ALTER INDEX, 146
of ALTER MATERIALIZED VIEW, 22
of ALTER TABLE, 92

ALLOW CORRUPTION clause
of ALTER DATABASE ... RECOVER, 67

ALTER ANALYTIC VIEW statement, 33
ALTER ANY SQL PROFILE system privilege, 42
ALTER ATTRIBUTE DIMENSION statement, 35
ALTER AUDIT POLICY statement, 37
ALTER CLUSTER statement, 42
ALTER DATABASE LINK system privilege, 43
ALTER DATABASE statement, 47
ALTER DIMENSION statement, 103
ALTER DISKGROUP statement, 106
ALTER DOMAIN statement, 139
ALTER FLASHBACK ARCHIVE statement, 141
ALTER FUNCTION statement, 144
ALTER HIERARCHY statement, 145
ALTER INDEX statement, 146
ALTER INDEXTYPE statement, 169
ALTER INMEMORY JOIN GROUP statement,

172
ALTER JAVA CLASS statement, 174
ALTER JAVA SOURCE statement, 174
ALTER JSON RELATIONAL DUALITY VIEW, 176
ALTER LIBRARY statement, 1
ALTER LOCKDOWN PROFILE statement, 2
ALTER MATERIALIZED VIEW LOG statement, 37
ALTER MATERIALIZED VIEW statement, 15
ALTER MATERIALIZED ZONEMAP statement, 45
ALTER MLE ENV, 48
ALTER MLE MODULE, 48, 50
ALTER object privilege

on a SQL translation profile, 63
ALTER OPERATOR statement, 51
ALTER OUTLINE statement, 55
ALTER PACKAGE statement, 56

ALTER PLUGGABLE DATABASE statement, 58
ALTER PROCEDURE statement, 88
ALTER PROFILE statement, 89
ALTER PROPERTY GRAPH statement, 92
ALTER PUBLIC DATABASE LINK system

privilege, 43
ALTER RESOURCE COST statement, 94
ALTER ROLE statement, 96
ALTER ROLLBACK SEGMENT statement, 98
ALTER SEQUENCE statement, 101
ALTER SESSION statement, 105
ALTER SNAPSHOT

See ALTER MATERIALIZED VIEW
ALTER SNAPSHOT LOG

See ALTER MATERIALIZED VIEW LOG
ALTER SYSTEM statement, 3
ALTER TABLE statement, 28
ALTER TABLESPACE SET statement, 198
ALTER TABLESPACE statement, 181
ALTER TRIGGER statement, 200
ALTER TYPE statement, 202
ALTER USER statement, 204
ALTER VIEW statement, 217
alter_external_table clause

of ALTER TABLE, 59
altering storage

of PDBs, 71
AM and A.M. datetime format elements, 82
American National Standards Institute (ANSI), 1

data types, 43
conversion to Oracle data types, 43

standards, 1, C-1
supported data types, 1

analytic functions, 6
analytic views

adding measures in a query of, 39
altering, 33
creating, 6
dropping, 233
filtering facts in a query of, 39
granting system privileges for, 29
inline, 39
measure expressions, 4
retrieving data from, 39
transitory, 39

ANALYZE CLUSTER statement, 220
ANALYZE INDEX statement, 220
ANALYZE TABLE statement, 220
ANCILLARY TO clause

of CREATE OPERATOR, 66
AND condition, 9
AND DATAFILES clause

of DROP TABLESPACE, 8
annotations_clause, 60
ANSI

See American National Standards Institute (ANSI)

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-2 of Index-53

antijoins, 15
ANY operator, 3
ANY_VALUE function, 25
APPEND hint, 99
APPEND_VALUES hint, 99
application servers

allowing connection as user, 204
applications

allowing connection as user, 204
securing, 47
validating, 47

APPROX_COUNT function, 26
APPROX_COUNT_DISTINCT function, 27
APPROX_COUNT_DISTINCT_AGG function, 28
APPROX_COUNT_DISTINCT_DETAIL function,

29
APPROX_MEDIAN function, 32
APPROX_PERCENTILE function, 35
APPROX_PERCENTILE_AGG function, 38
APPROX_PERCENTILE_DETAIL function, 38
APPROX_RANK function, 42
APPROX_SUM function, 43
ARCHIVE LOG clause

of ALTER SYSTEM, 3
archive mode

specifying, 65
archived redo logs

location, 66
ARCHIVELOG clause

of ALTER DATABASE, 54
of CREATE CONTROLFILE, 55
of CREATE DATABASE, 65

arguments
of operators, 1

arithmetic
with DATE values, 23

arithmetic operators, 2
AS CLONE clause

of CREATE PLUGGABLE DATABASE, 96
AS source_char clause

of CREATE JAVA, 169
AS subquery clause

of CREATE MATERIALIZED VIEW, 6
of CREATE TABLE, 136
of CREATE VIEW, 214

ASC clause
of CREATE INDEX, 145

ASCII function, 44
ASCIISTR function, 44
ASIN function, 45
ASSOCIATE STATISTICS statement, 228
asterisk

all-column wildcard in queries, 64
asynchronous commit, 4
ATAN function, 46
ATAN2 function, 46

ATTRIBUTE clause
of ALTER DIMENSION, 105
of CREATE DIMENSION, 80, 81

attribute clustering, 126
attribute dimensions

altering, 35
creating, 15
dropping, 234
granting system privileges for, 29

attributes
adding to a dimension, 105
dropping from a dimension, 106
maximum number of in object type, 62
of dimensions, defining, 80
of disk groups, 106, 93

audit policies
comments on, 243
creating, 26
dropping, 235
modifying, 37

AUDIT statement, 233
for unified auditing, 233
locks, B-6

auditing
options

for SQL statements, 233
SQL statements

stopping, 11
AUTHENTICATED BY clause

of CREATE DATABASE LINK, 74
AUTHENTICATED clause

of ALTER USER, 215
AUTHENTICATION REQUIRED clause

of ALTER USER, 215
AUTHID CURRENT_USER clause

of ALTER JAVA, 174
of CREATE JAVA, 169, 170

AUTHID DEFINER clause
of ALTER JAVA, 174
of CREATE JAVA, 169, 170

AUTOALLOCATE clause
of CREATE TABLESPACE, 158

AUTOEXTEND clause
of ALTER DATABASE, 54
of CREATE DATABASE, 59

automatic segment-space management, 172
automatic undo mode, 98, 57
AVG function, 47

B
BACKUP CONTROLFILE clause

of ALTER DATABASE, 57, 83
backups, 92
band joins, 13
basic table compression, 83

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-3 of Index-53

BC and B.C. datetime format elements, 82
BECOME USER system privilege, 52
BEGIN BACKUP clause

of ALTER DATABASE, 71
of ALTER TABLESPACE, 188

BEQUEATH clause
of CREATE VIEW, 213

BETWEEN condition, 37
BFILE

data type, 29
locators, 29

BFILENAME function, 49
BIN_TO_NUM function, 50
binary large objects

See BLOB
binary operators, 1
binary XML format, 17
binary XML storage, 17
bindings

adding to an operator, 51
dropping from an operator, 54

bit vectors
converting to numbers, 50

BIT_AND_AGG function, 53
BIT_OR_AGG function, 56
BIT_XOR_AGG function, 57
BITAND function, 51
BITMAP clause

of CREATE INDEX, 137
bitmap indexes, 137

creating join indexes, 130
BITMAP_OR_AGG function, 56
blank padding

specifying in format models, 84
suppressing, 84

BLOB data type, 29
BLOCKSIZE clause

of CREATE TABLESPACE, 167
Boolean data type, 34
Boolean Expressions

in SQL syntax, 43
BOOLEAN Test Condition, 42
BOOLEAN_AND_AGG function, 58
BOOLEAN_OR_AGG function, 59
bottom-N reporting, 121, 324, 357
buffer cache

flushing, 11
BUFFER_POOL parameter

of STORAGE clause, 58
BUILD DEFERRED clause

of CREATE MATERIALIZED VIEW, 6
BUILD IMMEDIATE clause

of CREATE MATERIALIZED VIEW, 6
BYTE character semantics, 9, 11
BYTE length semantics, 109

C
CACHE clause

of ALTER MATERIALIZED VIEW, 29
of ALTER MATERIALIZED VIEW LOG, 42
of ALTER TABLE, 128
of CREATE CLUSTER, 44
of CREATE MATERIALIZED VIEW, 25
of CREATE MATERIALIZED VIEW LOG, 45

CACHE hint, 100
CACHE parameter

of ALTER SEQUENCE. See CREATE
SEQUENCE, 101

of CREATE SEQUENCE, 6
CACHE READS clause

of ALTER TABLE, 105
of CREATE TABLE, 128

cached cursors
execution plan for, 17

calculated measure expressions, 4, 23
call spec

See call specifications
call specifications,

in procedures, 102
CALL statement, 238
calls

limiting CPU time for, 110
limiting data blocks read, 111

CARDINALITY function, 60
Cartesian products, 13
CASCADE clause

of CREATE TABLE, 132
of DROP PROFILE, 17
of DROP USER, 15

CASCADE CONSTRAINTS clause
of DROP CLUSTER, 237
of DROP TABLE, 4
of DROP TABLESPACE, 8
of DROP VIEW, 17
of REVOKE, 30

CASE expressions, 27
searched, 27
simple, 27

CAST function, 60
CATSEARCH condition, 2
CATSEARCH operator, 1
CDBs,

creating, 72
modifying, 48

CEIL (datetimes) function, 67
CEIL function, 69
CEIL(interval) function, 68
chained rows

listing, 226
of clusters, 220

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-4 of Index-53

CHANGE CATEGORY clause
of ALTER OUTLINE, 56

CHANGE NOTIFICATION system privilege, 52
CHANGE_DUPKEY_ERROR_INDEX hint, 100
changing state

of a PDB, 75
of multiple PDBs, 79

CHAR character semantics, 9, 11
CHAR data type, 9

converting to VARCHAR2, 73
CHAR length semantics, 109
character functions

returning character values, 15
returning number values, 16

character large objects
See CLOB

character length semantics, 109
character literal

See text
character set

changing, 90
character set functions, 16
CHARACTER SET parameter

of CREATE CONTROLFILE, 56
of CREATE DATABASE, 63

character sets
database, specifying, 63
multibyte characters, 146
specifying for database, 63

character strings
comparison rules, 51
exact matching, 84
fixed-length, 9
national character set, 9
variable-length, 10, 17

CHARTOROWID function, 70
CHECK clause

of constraints, 3
of CREATE TABLE, 17

check constraints, 3
CHECK DATAFILES clause

of ALTER SYSTEM, 10
CHECKPOINT clause

of ALTER SYSTEM, 10
checkpoints

forcing, 10
CHECKSUM function, 70
CHR function, 71
CHUNK clause

of ALTER TABLE, 106
of CREATE TABLE, 100

CLEAR LOGFILE clause
of ALTER DATABASE, 54, 77

CLOB data type, 30
clone databases

mounting, 62

CLOSE DATABASE LINK clause
of ALTER SESSION, 106

CLUSTER clause
of ANALYZE, 220
of CREATE INDEX, 127
of CREATE TABLE, 97
of TRUNCATE, 146

CLUSTER hint, 101
CLUSTER_DETAILS function, 73
CLUSTER_DISTANCE function, 76
CLUSTER_ID function, 78
CLUSTER_PROBABILITY function, 81
CLUSTER_SET function, 83
CLUSTERING hint, 101
clusters

assigning tables to, 97
caching retrieved blocks, 44
cluster indexes, 127
collecting statistics on, 220
creating, 37
deallocating unused extents, 43
degree of parallelism

changing, 44, 45
when creating, 37

dropping tables, 237
extents, allocating, 42, 43
granting system privileges for, 29
hash, 42

single-table, 43
sorted, 41, 65

indexed, 42
key values

allocating space for, 42
modifying space for, 44

migrated and chained rows in, 220, 226
modifying, 42
physical attributes

changing, 43
specifying, 37

releasing unused space, 42
removing from the database, 236
SQL examples, 236
storage attributes

changing, 43
storage characteristics

changing, 42
tablespace in which created, 42
validating structure, 225

COALESCE clause
for partitions, 28
of ALTER INDEX, 163
of ALTER TABLE, 99, 101, 129
of ALTER TABLESPACE, 187

COALESCE function, 86
as a variety of CASE expression, 86

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-5 of Index-53

COALESCE SUBPARTITION clause
of ALTER TABLE, 129

COLLATE operator, 3
COLLATION function, 87
collation functions, 16
COLLECT function, 88
collection functions, 19
collection types

multilevel, 105
collection-typed values

converting to data types, 60
collections

inserting rows into, 67
modifying, 28
modifying retrieval method, 50
nested tables, 46
testing for empty, 13
treating as a table, 67, 39, 151
unnesting, 39

examples, 133
varrays, 46

column expressions, 29
column REF constraints, 3

of CREATE TABLE, 17
column values

unpivoting into rows, 76
COLUMN_VALUE pseudocolumn, 6
columns

adding, 28
aliases for, 2
altering storage, 104
associating statistics types with, 228
basing an index on, 127
comments on, 243
creating comments about, 242
defining, 17
disassociating statistics types from, 231
dropping from a table, 113
LOB

storage attributes, 28
maximum number of, 62
modifying existing, 107
parent-child relationships between, 80
properties, altering, 51, 104
qualifying names of, 2
REF

describing, 3
renaming, 28
restricting values for, 3
specifying

as primary key, 3
constraints on, 17
default values, 66

storage properties, 98
substitutable, identifying type, 405

columns (continued)
virtual

adding to a table, 104
creating, 17
modifying, 104

COLUMNS clause
of ASSOCIATE STATISTICS, 228, 231
of DISASSOCIATE STATISTICS, 231

COMMENT clause
of COMMIT, 3

COMMENT statement, 242
comments, 91

adding to objects, 242
associating with a transaction, 5
dropping from objects, 242
in SQL statements, 91
on editions, 243
on indextypes, 244
on mining models, 244
on operators, 244
on schema objects, 92
on table columns, 243
on tables, 243
on unified audit policies, 243
removing from the data dictionary, 242
specifying, 91
viewing, 243

commit
asynchronous, 4
automatic, 2

COMMIT IN PROCEDURE clause
of ALTER SESSION, 107

COMMIT statement, 1
COMMIT TO SWITCHOVER clause

of ALTER DATABASE, 87
Common SQL DDL Clauses

annotations_clause, 60
comparison conditions, 3
comparison functions, 17
comparison semantics

of character strings, 51
COMPILE | RECOMPILE clause

of ALTER VIEW, 219
COMPILE clause

of ALTER DIMENSION, 106
of ALTER JAVA SOURCE, 175
of ALTER MATERIALIZED VIEW, 34
of CREATE JAVA, 171

COMPOSE function, 89
composite foreign keys, 3
composite partitioning

range-list, 28, 122
when creating a table, 51, 119

composite primary keys, 3
composite range partitions, 119

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-6 of Index-53

COMPOSITE_LIMIT parameter
of ALTER PROFILE, 90
of CREATE PROFILE, 111

compound conditions, 36
compound expressions, 26
COMPRESS clause

of ALTER INDEX ... REBUILD, 146
of CREATE TABLE, 93

COMPRESS_IMMEDIATE hint, 102
compression

of index keys, 150
of tables, 83
of tablespaces, 83

CON_DBID_TO_ID function, 90
CON_GUID_TO_ID function, 91
CON_ID_TO_CON_NAME function, 92
CON_ID_TO_DBID function, 92
CON_ID_TO_GUID function, 93
CON_ID_TO_UID function, 94
CON_NAME_TO_ID function, 94
CON_UID_TO_ID function, 95
CONCAT function, 96
concatenation operator, 4
conditions

BETWEEN, 37
comparison, 3
compound, 36
EXISTS, 21, 38
floating-point, 8
group comparison, 6
IN, 38
in SQL syntax, 1
interval, 37
IS ANY, 10
IS JSON, 23
IS OF type, 41
IS PRESENT, 11
JSON_EQUAL, 30
JSON_EXISTS, 30
JSON_TEXTCONTAINS, 34
LIKE, 15
logical, 9
MEMBER, 14
membership, 14, 38
model, 10
multiset, 12
IS [NOT] EMPTY, 13
null, 21
pattern matching, 15
range, 37
REGEXP_LIKE, 19
SET, 12
simple comparison, 5
SQL For JSON, 23
SUBMULTISET, 14
UNDER_PATH, 22

conditions (continued)
XML, 21

CONNECT BY clause
of queries and subqueries, 39
of SELECT, 4, 39

CONNECT clause
of SELECT and subqueries, 50

CONNECT TO clause
of CREATE DATABASE LINK, 77

CONNECT_BY_ISCYCLE pseudocolumn, 1
CONNECT_BY_ISLEAF pseudocolumn, 2
CONNECT_BY_ROOT operator, 6
CONNECT_TIME parameter

of ALTER PROFILE, 90
of ALTER RESOURCE COST, 95

connection qualifier, 152
CONSIDER FRESH clause

of ALTER MATERIALIZED VIEW, 34
constant values

See literals
CONSTRAINT(S) session parameter, 113
constraints,

adding to a table, 121
altering, 50
check, 3
checking

at end of transaction, 3
at start of transaction, 3
at the end of each DML statement, 3

column REF, 3
deferrable, 3, 138

enforcing, 113
defining, 3, 17

for a table, 17
on a column, 17

disabling, 17
after table creation, 161
cascading, 132
during table creation, 55

dropping, 50, 122, 8
enabling, 17, 132

after table creation, 161
during table creation, 55

foreign key, 3
modifying existing, 28
on views

dropping, 219, 17
partitioning referential, 121, 123
primary key, 3

attributes of index, 3
enabling, 132

referential integrity, 3
renaming, 122
restrictions, 8
setting state for a transaction, 138
storing rows in violation, 148

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-7 of Index-53

constraints (continued)
table REF, 3
unique

attributes of index, 3
enabling, 132

CONTAINER hint, 102
CONTAINS condition, 2
CONTAINS operator, 1
context namespaces

accessible to instance, 49
associating with package, 47
initializing using OCI, 49
initializing using the LDAP directory, 49
removing from the database, 1

contexts
creating namespaces for, 47
granting system privileges for, 29

control file clauses
of ALTER DATABASE, 57

control files
allowing reuse, 52, 62
backing up, 83
force logging mode, 55
re-creating, 50
standby, creating, 83

CONTROLFILE REUSE clause
of CREATE DATABASE, 62

conversion
functions, 18
rules, string to date, 87

CONVERT function, 97
COPY clause

of CREATE PLUGGABLE DATABASE, 97
CORR function, 99
CORR_K function, 102
CORR_S function, 102
correlated subqueries, 16
correlation functions

Kendall’s tau-b, 100
Pearson’s, 99
Spearman’s rho, 100

correlation names
in DELETE, 220
in SELECT, 39

COS function, 103
COSH function, 103
COSINE_DISTANCE function, 487
COUNT function, 104
COVAR_POP function, 106
COVAR_SAMP function, 108
CPU_PER_CALL parameter

of ALTER PROFILE, 90
of CREATE PROFILE, 110

CPU_PER_SESSION parameter
of ALTER PROFILE, 90
of ALTER RESOURCE COST, 95

CPU_PER_SESSION parameter (continued)
of CREATE PROFILE, 110

CREATE ANALYTIC VIEW statement, 6
CREATE ANY SQL PROFILE system privilege, 42
CREATE ATTRIBUTE DIMENSION statement, 15
CREATE AUDIT POLICY statement, 26
CREATE CLUSTER statement, 37
CREATE CONTEXT statement, 47
CREATE CONTROLFILE statement, 50
CREATE DATABASE LINK statement, 74
CREATE DATABASE statement, 57
CREATE DATAFILE clause

of ALTER DATABASE, 52, 72
CREATE DIMENSION statement, 80
CREATE DIRECTORY statement, 85
CREATE DISKGROUP statement, 89
CREATE DOMAIN statement, 97
CREATE FLASHBACK ARCHIVE statement, 117
CREATE FUNCTION statement, 120
CREATE HIERARCHY statement, 122
CREATE HYBRID VECTOR INDEX, 126
CREATE INDEX statement, 127
CREATE INDEXTYPE statement, 163
CREATE INMEMORY JOIN GROUP statement,

168
CREATE JAVA statement, 169
CREATE JSON RELATIONAL DUALITY VIEW,

175
CREATE LIBRARY statement, 1
CREATE LOCKDOWN PROFILE statement, 3
CREATE LOGICAL PARTITION TRACKING

statement, 5
CREATE MATERIALIZED VIEW LOG statement,

39
CREATE MATERIALIZED VIEW statement, 6
CREATE MATERIALIZED ZONEMAP statement,

51
CREATE MLE ENV, 60
CREATE MLE MODULE, 60, 61
CREATE OPERATOR statement, 63
CREATE OUTLINE statement, 68
CREATE PACKAGE BODY statement, 73
CREATE PACKAGE statement, 71

locks, B-6
CREATE PFILE statement, 75
CREATE PLUGGABLE DATABASE statement, 77
CREATE PLUGGABLE DATABASE system

privilege, 48
CREATE PROCEDURE statement, 102

locks, B-6
CREATE PROFILE statement, 105
CREATE PROPERTY GRAPH statement, 115
CREATE RESTORE POINT statement, 129
CREATE ROLE statement, 133
CREATE ROLLBACK SEGMENT statement, 137
CREATE SCHEMA statement, 140

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-8 of Index-53

CREATE SEQUENCE statement, 1
CREATE SPFILE statement, 9
CREATE STANDBY CONTROLFILE clause

of ALTER DATABASE, 57, 83
CREATE SYNONYM statement, 13
CREATE TABLE statement, 17
CREATE TABLESPACE SET statement, 179
CREATE TABLESPACE statement, 158
CREATE TRIGGER statement, 182
CREATE TRUE CACHE statement, 184
CREATE TYPE BODY statement, 187
CREATE TYPE statement, 184
CREATE USER statement, 189
CREATE VECTOR INDEX statement, 200
CREATE VIEW statement, 203
cross joins, 79
CUBE clause

of SELECT statements, 85
CUBE_TABLE function, 109
cubes

extracting data, 109
CUME_DIST function, 111
cumulative distributions, 111
currency

group separators, 75
currency symbol

ISO, 74
local, 75
union, 75

CURRENT_DATE function, 112
CURRENT_SCHEMA session parameter, 113
CURRENT_TIMESTAMP function, 113
CURRENT_USER clause

of CREATE DATABASE LINK, 77
CURRVAL pseudocolumn, 3, 2
CURSOR expressions, 29
CURSOR_SHARING_EXACT hint, 103
cursors

cached, 17
CV function, 114
CYCLE parameter

of ALTER SEQUENCE. See CREATE
SEQUENCE, 101

of CREATE SEQUENCE, 6

D
data

aggregation
composite columns of GROUP BY, 85
concatenated grouping sets of GROUP

BY, 85
grouping sets, 85

analyzing a subset, 287
caching frequently used, 128
independence, 13

data (continued)
integrity checking on input, 13
locks on, B-3
pivoting, 74
retrieving, 1
specifying as temporary, 57
undo

preserving, 181, 158
unpivoting, 76

data cartridge functions, 13
data conversion, 55

between character data types, 57
implicit

disadvantages, 55
implicit versus explicit, 55
when performed implicitly, 55, 58
when specified explicitly, 58

data definition language
locks, B-6

data definition language (DDL), 2
statements, 2

and implicit commit, 2
causing recompilation, 2
PL/SQL support, 2

statements requiring exclusive access, 2
data dictionary

adding comments to, 242
locks, B-6

data files
bringing online, 47
changing size of, 73
creating new, 72
defining for a tablespace, 159, 163, 164
defining for the database, 60
designing media recovery, 65
dropping, 190, 8
enabling autoextend, 33
end online backup of, 73, 189
extending automatically, 33
online backup of, 188
online, updating information on, 10
putting online, 73
re-creating lost or damaged, 72
recover damaged, 65
recovering, 67
renaming, 72
resizing, 47
reusing, 33
size of, 33
specifying, 33

for a tablespace, 166
for database, 67

system generated, 72
taking offline, 47, 73
temporary

shrinking, 190

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-9 of Index-53

data manipulation language (DML), 3
allowing during indexing, 146
operations

during index creation, 149
during index rebuild, 155
restricting, 15

parallelizing, 17
retrieving rows affected by, 227, 78, 161
statements, 3

PL/SQL support, 3
data quality operators, 11

FUZZY_MATCH, 11
PHONIC_CODE, 13

data redaction
granting system privileges for, 29

data types, 1
"Any" types, 47
ANSI-supported, 1
BFILE, 29
BLOB, 29
Boolean, 34
built-in, 5
CHAR, 9
character, 8
CLOB, 30
comparison rules, 50
converting to collection-typed values, 60
converting to other data types, 60
DATE, 19
datetime, 18
interval, 18
INTERVAL DAY TO SECOND, 22
INTERVAL YEAR TO MONTH, 22
JSON, 30
length semantics, 9, 11
LONG, 17
LONG RAW, 27
NCHAR, 9
NCLOB, 30
NUMBER, 12
numeric, 12
NVARCHAR2, 11
Oracle-supplied types, 46
RAW, 27
ROWID, 42
SDO_TOPO_GEOMETRY, 50
spatial types, 49
TIMESTAMP, 20
TIMESTAMP WITH LOCAL TIME ZONE, 21
TIMESTAMP WITH TIME ZONE, 21
UROWID, 43
user-defined, 45
VARCHAR, 11
VARCHAR2, 10
Vector, 39
XML types, 47

database links, 19
altering, 102
closing, 106
creating, 151, 74
creating synonyms with, 13
current user, 77
granting system privileges for, 29
naming, 151
public, 76

dropping, 4
referring to, 152
removing from the database, 3
shared, 76
syntax, 151
updating passwords, 102
username and password, 152

database objects
dropping, 15
nonschema, 143
schema, 142

Database Smart Flash Cache, 51
database triggers

See triggers
databases

accounts
creating, 189

allowing changes to, 105
allowing generation of redo logs, 47
allowing reuse of control files, 62
allowing unlimited resources to users, 110
archive mode, specifying, 65
beginning backup of, 71
blocks

specifying size, 167
cancel-based recovery

terminating, 68
changing characteristics, 50
changing global name, 92
changing name, 50, 53
character set, specifying, 63
committing to standby status, 87
connect strings, 152
controlling use, 95
create script for, 47
creating, 57
data files

modifying, 47
specifying, 67

default edition, setting, 90
designing media recovery, 65
dropping, 2
ending backup of, 71
erasing all data from, 57
flashing back, 20
granting system privileges for, 29
in FLASHBACK mode, 47

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-10 of Index-53

databases (continued)
in FORCE LOGGING mode, 76, 55, 65
instances of, 63
limiting resources for users, 105
log files

modifying, 47
specifying, 64

managed recovery, 51
modifying, 47
mounting, 62, 57
moving a subset to a different database, 28
namespaces, 147
naming, 62, 68
national character set, specifying, 63
no-data-loss mode, 85
online

adding log files, 78
opening, 63, 57
prepare to re-create, 47
preventing changes to, 47
protection mode of, 85
quiesced state, 15
re-creating control file for, 50
read-only, 63
read/write, 63
reconstructing damaged, 65
recovering, 47, 66
recovery

allowing corrupt blocks, 67
testing, 67
with backup control file, 47

remote
accessing, 19
authenticating users to, 74
connecting to, 77
inserting into, 67
service name of, 74
table locks on, 90

restoring earlier version of, 47, 181, 158
restricting users to read-only transactions, 47
resuming activity, 15
returning to a past time, 20
standby

adding log files, 78
suspending activity, 15
system user passwords, 62
temp files

modifying, 47
time zone

determining, 117
setting, valid values for, 95, 57

DATAFILE clause
of CREATE DATABASE, 67

DATAFILE clauses
of ALTER DATABASE, 52, 73

DATAFILE OFFLINE clause
of ALTER DATABASE, 47

DATAFILE ONLINE clause
of ALTER DATABASE, 47

DATAFILE RESIZE clause
of ALTER DATABASE, 47

DATAOBJ_TO_MAT_PARTITION function, 115
DATAOBJ_TO_PARTITION function, 116
DATE columns

converting to datetime columns, 108
DATE data type, 19

julian, 20
date format models, 76, 78

long, 78
punctuation in, 77
short, 78
text in, 77

date functions, 16
dates

arithmetic, 23
comparison rules, 51

datetime arithmetic, 23
boundary cases, 113
calculating daylight saving time, 25

datetime columns
creating from DATE columns, 108

datetime data types, 18
daylight saving time, 25

datetime expressions, 31
datetime field

extracting from a datetime or interval value,
144

datetime format elements, 77
and Globalization Support, 82
capitalization, 77
ISO standard, 83
RR, 83
suffixes, 84

datetime functions, 16
datetime literals, 66
DAY datetime format element, 82
daylight saving time, 25

boundary cases, 25
going into or coming out of effect, 25

DB2 data types, 43
restrictions on, 44

DBA_2PC_PENDING data dictionary view, 106
DBA_COL_COMMENTS data dictionary view,

243
DBA_INDEXTYPE_COMMENTS data dictionary

view, 244
DBA_MVIEW_COMMENTS data dictionary view,

244
DBA_OPERATOR_COMMENTS data dictionary

view, 244
DBA_ROLLBACK_SEGS data dictionary view, 21

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-11 of Index-53

DBA_TAB_COMMENTS data dictionary view, 243
DBMS_ROWID package

and extended rowids, 42
DBTIMEZONE function, 117
DDL

See data definition language (DDL)
DEALLOCATE UNUSED clause

of ALTER CLUSTER, 42, 43
of ALTER INDEX, 148
of ALTER TABLE, 92

debugging
granting system privileges for, 29

decimal characters
specifying, 74

DECODE function, 117
decoding functions, 21
DECOMPOSE function, 119
DEFAULT clause

of ALTER TABLE, 102
of CREATE TABLE, 17, 66

DEFAULT COST clause
of ASSOCIATE STATISTICS, 228, 230

default index, suppressing, 26
DEFAULT profile

assigning to users, 17
DEFAULT ROLE clause

of ALTER USER, 210
DEFAULT SELECTIVITY clause

of ASSOCIATE STATISTICS, 228, 230
default tablespace, 68
DEFAULT TABLESPACE clause

of ALTER DATABASE, 91
of ALTER PLUGGABLE DATABASE, 69
of ALTER USER, 209
of ALTER USER. See CREATE USER, 206
of CREATE USER, 195

default tablespaces
specifying for a user, 209

DEFAULT TEMPORARY TABLESPACE clause
of ALTER DATABASE, 91
of ALTER PLUGGABLE DATABASE, 70
of CREATE DATABASE, 59

DEFERRABLE clause
of constraints, 3

deferrable constraints, 138
DEFERRED clause

of SET CONSTRAINTS, 139
definer’s rights views, 214
DELETE statement, 220

error logging, 220
DELETE STATISTICS clause

of ANALYZE, 227
DENSE_RANK function, 120
DEPTH function, 122
DEREF function, 123

DESC clause
of CREATE INDEX, 145

dictionaries
granting system privileges for, 44

dimensional objects
extracting data, 109

dimensions
attributes

adding, 105
changing, 103
defining, 80
dropping, 106

compiling invalidated, 106
creating, 80
defining levels, 81
examples, 80
extracting data, 109
granting system privileges for, 29
hierarchies

adding, 105
changing, 103
defining, 80
dropping, 106

levels
adding, 105
defining, 80
dropping, 106
parent-child hierarchy, 82

removing from the database, 4
direct-path INSERT, 99, 68
directories

See directory objects
directory objects,

as aliases for operating system directories, 85
creating, 85
granting system privileges for, 29
redefining, 87
removing from the database, 5

DISABLE ALL TRIGGERS clause
of ALTER TABLE, 162

DISABLE clause
of ALTER INDEX, 162
of CREATE TABLE, 17

DISABLE DISTRIBUTED RECOVERY clause
of ALTER SYSTEM, 10

DISABLE PARALLEL DML clause
of ALTER SESSION, 107

DISABLE QUERY REWRITE clause
of ALTER MATERIALIZED VIEW, 33
of CREATE MATERIALIZED VIEW, 33

DISABLE RESTRICTED SESSION clause
of ALTER SYSTEM, 18

DISABLE RESUMABLE clause
of ALTER SESSION, 108

DISABLE ROW MOVEMENT clause
of ALTER TABLE, 28

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-12 of Index-53

DISABLE ROW MOVEMENT clause (continued)
of CREATE TABLE, 17, 38

DISABLE STORAGE IN ROW clause
of ALTER TABLE, 106
of CREATE TABLE, 100

DISABLE TABLE LOCK clause
of ALTER TABLE, 161

DISABLE_PARALLEL_DML hint, 103
DISASSOCIATE STATISTICS statement, 231
DISCONNECT SESSION clause

of ALTER SYSTEM, 13
disk group files

changing permission settings, 131
setting owner or user group, 131

disk groups
altering, 106
creating, 89

a tablespace in, 166
failure groups, 118, 92
files in, 33

dropping, 6
managing Oracle ADVM volumes, 128
rebalancing, 106
setting attributes, 106, 93
specifying files in, 33
specifying files in control files, 54

disks
bringing online, 120
QUORUM, 91
REGULAR, 91
replacing, 119
taking offline, 121

dispatcher processes
creating additional, 23
terminating, 23

DISTINCT clause
of SELECT, 64

distinct queries, 64
distributed queries, 19

restrictions on, 19
distribution

hints for, 131
DML

See data manipulation language (DML)
domain functions, 22
domain indexes, 127, 163

and LONG columns, 108
associating statistics types with, 228
creating, prerequisites, 153
determining user-defined CPU and I/O costs,

17
disassociating statistics types from, 231, 14
example, F-1
invoking drop routines for, 1
local partitioned, 154
modifying, 160

domain indexes (continued)
parallelizing creation of, 154
rebuilding, 146
removing from the database, 14
system managed, 167

DOMAIN_CHECK function, 124
DOMAIN_CHECK_TYPE function, 129
DOMAIN_DISPLAY function, 133
DOMAIN_FUNCTIONS

DOMAIN_CHECK, 124, 129
DOMAIN_DISPLAY, 133
DOMAIN_NAME, 135
DOMAIN_ORDER, 137

domain_index_clause
of CREATE INDEX, 133

DOMAIN_NAME function, 135
DOMAIN_ORDER function, 137
DOWNGRADE clause

of ALTER DATABASE, 63
DROP ANALYTIC VIEW statement, 233
DROP ANY SQL PROFILE system privilege, 42
DROP ATTRIBUTE DIMENSION statement, 234
DROP AUDIT POLICY statement, 235
DROP clause

of ALTER DIMENSION, 106
of ALTER INDEXTYPE, 171

DROP CLUSTER statement, 236
DROP COLUMN clause

of ALTER TABLE, 113
DROP constraint clause

of ALTER VIEW, 219
DROP CONSTRAINT clause

of ALTER TABLE, 122
DROP CONTEXT statement, 1
DROP DATABASE LINK statement, 3
DROP DATABASE statement, 2
DROP DIMENSION statement, 4
DROP DIRECTORY statement, 5
DROP DISKGROUP statement, 6
DROP DOMAIN statement, 8
DROP FLASHBACK ARCHIVE statement, 11
DROP FUNCTION statement, 12
DROP HIERARCHY statement, 13
DROP INDEX statement, 14
DROP INDEXTYPE statement, 16
DROP INMEMORY JOIN GROUP statement, 18
DROP JAVA statement, 19
DROP LIBRARY statement, 1
DROP LOCKDOWN PROFILE statement, 2
DROP LOGFILE clause

of ALTER DATABASE, 54, 80
DROP LOGFILE MEMBER clause

of ALTER DATABASE, 54, 80
DROP MATERIALIZED VIEW LOG statement, 5
DROP MATERIALIZED VIEW statement, 3
DROP MATERIALIZED ZONEMAP statement, 7

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-13 of Index-53

DROP MLE ENV, 8
DROP MLE MODULE, 8
DROP OPERATOR statement, 9
DROP OUTLINE statement, 11
DROP PACKAGE BODY statement, 12
DROP PACKAGE statement, 12
DROP PARTITION clause

of ALTER INDEX, 146
of ALTER TABLE, 137

DROP PLUGGABLE DATABASE statement, 13
DROP PRIMARY constraint clause

of ALTER TABLE, 122
DROP PROCEDURE statement, 16
DROP PROFILE statement, 17
DROP PROPERTY GRAPH statement, 18
DROP RESTORE POINT statement, 18
DROP ROLE statement, 20
DROP ROLLBACK SEGMENT statement, 21
DROP SEQUENCE statement, 22
DROP SUPPLEMENTAL LOG DATA clause

of ALTER DATABASE, 82
DROP SUPPLEMENTAL LOG GROUP clause

of ALTER TABLE, 92
DROP SYNONYM statement, 23
DROP TABLE statement, 1
DROP TABLESPACE SET statement, 9
DROP TABLESPACE statement, 5
DROP TRIGGER statement, 10
DROP TYPE BODY statement, 13
DROP TYPE statement, 11
DROP UNIQUE constraint clause

of ALTER TABLE, 122
DROP USER statement, 14
DROP VALUES clause

of ALTER TABLE ... MODIFY PARTITION,
130, 131

DROP VIEW statement, 16
DUAL dummy table, 146, 18
DUMP function, 139
DY datetime format element, 82
DYNAMIC_SAMPLING hint, 104

E
editioning views, 207
editions

comments on, 243
creating, 114
dropping, 10
granting system privileges for, 29
setting default for a PDB, 69
setting default for database, 90
setting for a session, 110

embedded SQL, 4
precompiler support, 4

EMPTY_BLOB function, 141

EMPTY_CLOB function, 141
ENABLE ALL TRIGGERS clause

of ALTER TABLE, 161
ENABLE clause

of ALTER INDEX, 161
of ALTER TRIGGER, 202
of CREATE TABLE, 17

ENABLE DISTRIBUTED RECOVERY clause
of ALTER SYSTEM, 10

ENABLE NOVALIDATE constraint state, 3
ENABLE PARALLEL DML clause

of ALTER SESSION, 107
ENABLE QUERY REWRITE clause

of ALTER MATERIALIZED VIEW, 33
of CREATE MATERIALIZED VIEW, 33

ENABLE RESTRICTED SESSION clause
of ALTER SYSTEM, 18

ENABLE RESUMABLE clause
of ALTER SESSION, 108

ENABLE ROW MOVEMENT clause
of ALTER TABLE, 28
of CREATE TABLE, 17, 38

ENABLE STORAGE IN ROW clause
of ALTER TABLE, 106
of CREATE TABLE, 100

ENABLE TABLE LOCK clause
of ALTER TABLE, 161

ENABLE VALIDATE constraint state, 3
ENABLE_PARALLEL_DML hint, 104
encoding functions, 21
encryption, 69

of tablespaces, 51
encryption keys

managing, 5
END BACKUP clause

of ALTER DATABASE, 71
of ALTER DATABASE ... DATAFILE, 47
of ALTER TABLESPACE, 189

enterprise users
allowing connection as database users, 204

environment functions, 22
equality test, 3
equijoins, 12

defining for a dimension, 80
equivalency tests, 38
error logging

of DELETE operations, 220
of INSERT operations, 82
of MERGE operations, 1

ERROR_ON_OVERLAP_TIME session
parameter, 113

EVERY function, 141
EXCEPTIONS INTO clause

of ALTER TABLE, 148
EXCHANGE PARTITION clause

of ALTER TABLE, 28, 73

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-14 of Index-53

EXCHANGE SUBPARTITION clause
of ALTER TABLE, 28, 73

exchanging partitions
restrictions on, 148

EXCLUDING NEW VALUES clause
of ALTER MATERIALIZED VIEW LOG, 43
of CREATE MATERIALIZED VIEW LOG, 48

EXCLUSIVE lock mode, 93
exclusive locks

row locks (TX), B-3
table locks (TM), B-3

EXECUTE object privilege
on a directory, 60

execution plans
determining, 17
dropping outlines for, 11
saving, 68

EXISTS condition, 21, 38
EXISTSNODE function, 142
EXP function, 143
EXPLAIN PLAN statement, 17
explicit data conversion, 55, 58
expressions

analytic view, 4, 23
CASE, 27
changing declared type of, 457
column, 29
comparing, 117
compound, 26
computing with the DUAL table, 18
CURSOR, 29
datetime, 31
in SQL syntax, 1
interval, 33
JSON Object Access Expressions, 34
lists of, 41
model, 36
object access, 38
placeholder, 39
scalar subqueries as, 39
simple, 3
type constructor, 40

extended rowids
base 64, 42
not directly available, 42

extensible indexing
example, F-1

EXTENT MANAGEMENT clause
of CREATE DATABASE, 60
of CREATE TABLESPACE, 158, 163

EXTENT MANAGEMENT DICTIONARY clause
of CREATE TABLESPACE, 172

EXTENT MANAGEMENT LOCAL clause
of CREATE DATABASE, 66

extents
allocating for partitions, 92

extents (continued)
allocating for subpartitions, 92
allocating for tables, 92
restricting access by instances, 146
specifying maximum number for an object, 56
specifying number allocated upon object

creation, 55
specifying the first for an object, 54
specifying the percentage of size increase, 55
specifying the second for an object, 54

external functions, 121, 102
external LOBs, 28
external procedures, 102
external tables, 92

access drivers, 96
altering, 28
creating, 17
ORACLE_DATAPUMP access driver, 96
ORACLE_HDFS access driver, 96
ORACLE_HIVE access driver, 96
ORACLE_LOADER access driver, 96
restrictions on, 95

external users, 135, 193
EXTRACT (datetime) function, 144
EXTRACT (XML) function, 146
EXTRACTVALUE function, 147

F
FACT hint, 105
FAILED_LOGIN_ATTEMPTS parameter

of ALTER PROFILE, 90
of CREATE PROFILE, 111

failure groups
creating for a disk group, 118, 92

fast refresh, 39
FEATURE_DETAILS function, 150
FEATURE_ID function, 153
FEATURE_SET function, 155
FEATURE_VALUE function, 158
FETCH

row_limiting_clause, 39
files

specifying as a redo log file group, 33
specifying as data files, 33
specifying as temp files, 33

FILTER FACT keywords, 39
FIPS

compliance, C-31
flagging, 113

FIRST function, 161
FIRST_ROWS(n) hint, 105
FIRST_VALUE function, 163
FLAGGER session parameter, 113
flash cache, 51

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-15 of Index-53

FLASH_CACHE parameter
of STORAGE clause, 51

FLASHBACK ARCHIVE object privilege, 61
flashback data archives

creating, 117
dropping, 11
modifying, 141
privileges for, 29
specifying for a table, 95, 134

FLASHBACK DATABASE statement, 20
flashback queries, 39

pseudocolumns for, 6
using with inserts, 67, 151

FLASHBACK TABLE statement, 24
floating-point conditions, 8
floating-point numbers, 15

converting to, 417, 419
handling NaN, 264

FLOOR function, 167
FLOOR(datetimes) function, 165
FLOOR(interval) function, 166
FLUSH BUFFER_CACHE clause

of ALTER SYSTEM, 11
FLUSH GLOBAL CONTEXT clause

of ALTER SYSTEM, 11
FLUSH REDO clause

of ALTER SYSTEM, 12
FLUSH SHARED_POOL clause

of ALTER SYSTEM, 11
FM format model modifier, 84
FOR clause

of CREATE INDEXTYPE, 166
of EXPLAIN PLAN, 19, 24

FOR UPDATE clause
of SELECT, 39, 55

FORCE clause
of COMMIT, 5
of CREATE VIEW, 207
of DISASSOCIATE STATISTICS, 232
of DROP INDEX, 15
of DROP INDEXTYPE, 17
of DROP OPERATOR, 10
of DROP TYPE, 12
of REVOKE, 30
of ROLLBACK, 24, 37

force full database caching, 93
FORCE LOGGING clause

of ALTER DATABASE, 76
of ALTER TABLESPACE, 191
of CREATE CONTROLFILE, 55
of CREATE DATABASE, 65
of CREATE TABLESPACE, 168

FORCE PARALLEL DML clause
of ALTER SESSION, 107

foreign key constraints, 3

foreign tables
rowids of, 43

format models, 73
changing the return format, 86
date, 76

changing, 76
default format, 76
format elements, 77
maximum length, 76

modifiers, 84
number, 73
number, elements of, 74
specifying, 85
XML, 88

formats
for dates and numbers. See format models,

73
of return values from the database, 73
of values stored in the database, 73

free lists
specifying for a table, partition, cluster, or

index, 57
specifying for LOBs, 101

FREELIST GROUPS parameter
of STORAGE clause, 57

FREELISTS parameter
of STORAGE clause, 57

FREEPOOLS parameter
of LOB storage, 101

FRESH_MV hint, 105
FROM clause

of CREATE PLUGGABLE DATABASE, 91
of queries, 13

FROM COLUMNS clause
of DISASSOCIATE STATISTICS, 232

FROM FUNCTIONS clause
of DISASSOCIATE STATISTICS, 232

FROM INDEXES clause
of DISASSOCIATE STATISTICS, 232

FROM INDEXTYPES clause
of DISASSOCIATE STATISTICS, 232

FROM PACKAGES clause
of DISASSOCIATE STATISTICS, 232

FROM TYPES clause
of DISASSOCIATE STATISTICS, 232

FROM_TZ function, 168
FROM_VECTOR function, 168
FULL hint, 106
full indexes, 127
full outer joins, 39
function expressions

built-in, 32
user-defined, 32

function-based indexes, 127
creating, 127
disabling, 146, 162

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-16 of Index-53

function-based indexes (continued)
enabling, 146, 161
refreshing, 89

functions, 520
3GL,calling, 1
associating statistics types with, 228
avoiding run-time compilation, 144
built_in

as expressions, 32
calling, 238
changing the declaration of, 122
changing the definition of, 122
defining an index on, 127
disassociating statistics types from, 231
executing, 238
external, 121, 102
inverse distribution, 292, 294
issuing COMMIT or ROLLBACK statements,

107
linear regression, 346
naming rules, 148
OLAP, 14
re-creating, 122, 171
recompiling invalid, 144
removing from the database, 12
statistics, assigning default cost, 230
statistics, defining default selectivity, 230
stored, 120
storing return value of, 238
synonyms for, 13
user-defined, 520

as expressions, 32
XML, 20

See also SQL functions
FUNCTIONS clause

of ASSOCIATE STATISTICS, 228, 231
of DISASSOCIATE STATISTICS, 231

FUZZY_MATCH operator, 11
FX format model modifier, 84

G
GATHER_OPTIMIZER_STATISTICS hint, 106
general comparison functions, 17
general recovery clause

of ALTER DATABASE, 50, 65
geoimaging, 49
global indexes

See indexes, globally partitioned
GLOBAL parameter

of CREATE SEQUENCE, 8
GLOBAL PARTITION BY HASH clause

of CREATE INDEX, 150
GLOBAL PARTITION BY RANGE clause

of CREATE INDEX, 133, 150
global sequences, 8

GLOBAL TEMPORARY clause
of CREATE TABLE, 57

global users, 135, 194
GLOBAL_TOPIC_ENABLED system parameter,

23
globally partitioned indexes, 127, 150
GRANT CONNECT THROUGH clause

of ALTER USER, 204, 206
GRANT statement

locks, B-6
GRAPH

CREATE PROPERTY GRAPH, 115
Graph Table Operator, 40
graph_pattern, 22
Graph_Pattern

path_pattern, 20
GRAPH_TABLE Operator, 15, 25–27, 29, 32, 34,

35, 41, 44, 49, 54, 55, 58, 59, 61, 62, 64,
65

Graph Pattern, 53
GRAPHIC data type

DB2, 44
SQL/DS, 44

greater than or equal to tests, 3
greater than tests, 3
GREATEST function, 170
GROUP BY clause

CUBE extension, 85
identifying duplicate groupings, 171
of SELECT and subqueries, 39, 50
ROLLUP extension of, 84

group comparison conditions, 6
group separator

specifying, 75
GROUP_ID function, 171
GROUPING, 107
GROUPING function, 172
GROUPING Hint, 107
grouping sets, 85
GROUPING SETS clause

of SELECT and subqueries, 85
GROUPING_ID function, 173
groupings

filtering out duplicate, 171
GUARD ALL clause

of ALTER DATABASE, 95
GUARD clause

of ALTER DATABASE, 47
overriding, 105

GUARD NONE clause
of ALTER DATABASE, 95

GUARD STANDBY clause
of ALTER DATABASE, 95

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-17 of Index-53

H
hash clusters

creating, 42
range-partitioned, 44
single-table, creating, 43
specifying hash function for, 37

HASH hint, 107
HASH IS clause

of CREATE CLUSTER, 37
hash partitioning clause

of CREATE TABLE, 17, 55
hash partitions

adding, 28
coalescing, 129

HASHKEYS clause
of CREATE CLUSTER, 42

HAVING condition
of GROUP BY clause, 86

heap-organized tables
creating, 17

hexadecimal value
returning, 75

HEXTORAW function, 174
hierarchical functions, 19
hierarchical queries, 2, 39

child rows, 2, 4
illustrated, 2
leaf rows, 2
operators in, 5

CONNECT_BY_ROOT, 6
PRIOR, 5

ordering, 92
parent rows, 2, 4
pseudocolumns in, 1

CONNECT_BY_ISCYCLE, 1
CONNECT_BY_ISLEAF, 2
LEVEL, 2

retrieving root and node values, 390
hierarchical query clause

of SELECT and subqueries, 50
hierarchies

adding to a dimension, 105
altering, 145
creating, 122
dropping, 13
dropping from a dimension, 106
granting system privileges for, 29
of dimensions, defining, 80
retrieving data from, 39

HIERARCHY clause
of CREATE DIMENSION, 80, 81

hierarchy expressions
analytic view, 4

high water mark
of clusters, 42

high water mark (continued)
of indexes, 146
of tables, 92, 222

hints, 2
ALL_ROWS, 98
APPEND, 99
APPEND_VALUES, 99
CACHE, 100
CLUSTER, 101
CLUSTERING, 101
COMPRESS_IMMEDIATE, 102
CONTAINER, 102
CURSOR_SHARING_EXACT, 103
DISABLE_PARALLEL_DML, 103
DYNAMIC_SAMPLING, 104
ENABLE_PARALLEL_DML, 104
FACT, 105
FIRST_ROWS(n), 105
FRESH_MV, 105
FULL, 106
GATHER_OPTIMIZER_STATISTICS, 106
HASH, 107
in SQL statements, 92
INDEX, 108
INDEX_ASC, 109
INDEX_COMBINE, 109
INDEX_DESC, 110
INDEX_FFS, 110
INDEX_JOIN, 110
INDEX_SS, 111
INDEX_SS_ASC, 111
INDEX_SS_DESC, 112
INMEMORY, 112
INMEMORY_PRUNING, 113
IVF_ITERATION, 113
LEADING, 113
location syntax, 92
MERGE, 113
MODEL_MIN_ANALYSIS, 114
MONITOR, 114
NO_CLUSTERING, 115
NO_EXPAND, 116
NO_FACT, 116
NO_GATHER_OPTIMIZER_STATISTICS,

116
NO_INDEX, 117
NO_INDEX_FFS, 117
NO_INDEX_SS, 118
NO_INMEMORY, 118
NO_INMEMORY_PRUNING, 118
NO_MERGE, 118
NO_MONITOR, 119
NO_PARALLEL, 119
NO_PARALLEL_INDEX, 120
NO_PQ_CONCURRENT_UNION, 120
NO_PQ_SKEW, 121

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-18 of Index-53

hints (continued)
NO_PUSH_PRED, 121
NO_PUSH_SUBQ, 121
NO_PX_JOIN_FILTER, 122
NO_QUERY_TRANSFORMATION, 122
NO_RESULT_CACHE, 122
NO_REWRITE, 122
NO_STAR_TRANSFORMATION, 123
NO_STATEMENT_QUEUING, 123
NO_UNNEST, 123
NO_USE_BAND, 124
NO_USE_CUBE, 124
NO_USE_HASH, 124
NO_USE_MERGE, 124
NO_USE_NL, 125
NO_XML_QUERY_REWRITE, 125
NO_XMLINDEX_REWRITE, 125
NO_ZONEMAP, 126
NOAPPEND, 115
NOCACHE, 115
NOPARALLEL, 119
NOPARALLEL_INDEX, 120
NOREWRITE, 122
OPT_PARAM, 126
ORDERED, 127
PARALLEL, 127
PARALLEL_INDEX, 130
passing to the optimizer, 151
PQ_CONCURRENT_UNION, 130
PQ_DISTRIBUTE, 131
PQ_FILTER, 133
PQ_SKEW, 134
PUSH_PRED, 134
PUSH_SUBQ, 134
PX_JOIN_FILTER, 135
QB_NAME, 135
REWRITE, 138
specifying a query block, 92
STAR_TRANSFORMATION, 138
STATEMENT_QUEUING, 138
syntax, 96
UNNEST, 139
USE_BAND, 139
USE_CONCAT, 140
USE_CUBE, 140
USE_HASH, 141
USE_MERGE, 141
USE_NL, 141
USE_NL_WITH_INDEX, 142

histograms
creating equiwidth, 494

Hybrid Columnar Compression, 84

I
IDENTIFIED BY clause

of ALTER ROLE. See CREATE ROLE, 96
of CREATE DATABASE LINK, 78

IDENTIFIED EXTERNALLY clause
of ALTER ROLE. See CREATE ROLE, 96,

135
of ALTER USER. See CREATE USER, 193
of CREATE ROLE, 135
of CREATE USER, 193

IDENTIFIED GLOBALLY clause
of ALTER ROLE. See CREATE ROLE, 96
of CREATE ROLE, 135
of CREATE USER, 194

identifier functions, 22
identity column, 68
IDLE_TIME parameter

of ALTER PROFILE, 90
IEEE754

floating-point arithmetic, 15
Oracle conformance with, 15

IGNORE_ROW_ON_DUPKEY_INDEX hint, 107
IMMEDIATE clause

of SET CONSTRAINTS, 139
implicit data conversion, 55, 58
IN conditions, 38
in-doubt transactions

forcing, 5
forcing commit of, 5
forcing rollback, 24, 37
rolling back, 36

INCLUDING CONTENTS clause
of DROP TABLESPACE, 7

INCLUDING DATAFILES clause
of ALTER DATABASE TEMPFILE DROP

clause, 75
INCLUDING NEW VALUES clause

of ALTER MATERIALIZED VIEW LOG, 43
of CREATE MATERIALIZED VIEW LOG, 48

INCLUDING TABLES clause
of DROP CLUSTER, 237

incomplete object types, 185
creating, 184

INCREMENT BY clause
of ALTER SEQUENCE. See CREATE

SEQUENCE, 102
INCREMENT BY parameter

of CREATE SEQUENCE, 5
incremental

and block change tracking, 92
INDEX clause

of ANALYZE, 223
of CREATE CLUSTER, 42

INDEX hint, 108

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-19 of Index-53

index keys
compression, 150

index partitions
creating subpartitions, 137

index subpartitions, 137
INDEX_ASC hint, 109
INDEX_COMBINE hint, 109
INDEX_DESC hint, 110
INDEX_FFS hint, 110
INDEX_JOIN hint, 110
INDEX_SS hint, 111
INDEX_SS_ASC hint, 111
INDEX_SS_DESC hint, 112
index-organized tables

bitmap indexes on, creating, 93
creating, 17
mapping tables, 155

creating, 93
moving, 132

merging contents of index blocks, 101
modifying, 28, 100
moving, 155
overflow segments

specifying storage, 99, 118
partitioned, updating secondary indexes, 165
PCT_ACCESS_DIRECT statistics, 222
primary key indexes

coalescing, 99
rebuilding, 28
rowids of, 43
secondary indexes, updating, 164

indexed clusters
creating, 42

indexes, 146
advanced index compression of, 146
advanced index compression, enabling, 159
allocating new extents for, 146
application-specific, 163
ascending, 145
B-tree, 127
based on indextypes, 127
bitmap, 137
bitmap join, 127
changing attributes, 146
changing parallelism of, 146
collecting statistics on, 223
creating, 127
creating as usable or unusable, 156
creating on a cluster, 130
creating on a table, 130
deallocating unused space from, 146
descending, 145

and query rewrite, 145
as function-based indexes, 145

direct-path inserts, logging, 146
domain, 127, 163

indexes (continued)
domain, example, F-1
dropping index partitions, 14
examples, 127
full, 127
full fast scans, 110
function-based, 127

creating, 127
global partitioned, creating, 133
globally partitioned, 127, 150

updating, 28
granting system privileges for, 29
invisible to the optimizer, 162, 148
join, bitmap, 127
local domain, 154
locally partitioned, 127
logging rebuild operations, 146
marking as USABLE or UNUSABLE, 162
merging block contents, 146
merging contents of index blocks, 163
merging contents of index partition blocks,

165
modifying attributes, 146
moving, 146
on clusters, 127
on composite-partitioned tables, 127
on composite-partitioned tables, creating, 136
on hash-partitioned tables, 127

creating, 136
on index-organized tables, 127
on list-partitioned tables

creating, 136
on nested table storage tables, 127
on partitioned tables, 127
on range-partitioned tables, 127
on range-partitioned tables, creating, 135
on scalar typed object attributes, 127
on table columns, 127
on XMLType tables, 158
online, 149
parallelizing creation of, 149
partial, 127
partitioned, 153, 127

user-defined, 150
partitioning, 149
partitions, 149

adding hash, 146
adding new, 146
changing default attributes, 146
changing physical attributes, 146
changing storage characteristics, 146
coalescing hash partitions, 146
deallocating unused space from, 146
dropping, 146
marking UNUSABLE, 146, 149
modifying the real characteristics, 146

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-20 of Index-53

indexes (continued)
partitions (continued)
preventing use of, 162
re-creating, 146
rebuilding, 146
rebuilding unusable, 149
removing, 146
renaming, 146
specifying tablespace for, 146, 159
splitting, 146

prefix compression of, 146
prefix compression, enabling, 159
preventing use of, 162
purging from the recycle bin, 20
re-creating, 146
rebuilding, 146
removing from the database, 14
renaming, 146, 162
reverse, 146, 158, 159, 148
specifying tablespace for, 146, 159
statistics on usage, 163
subpartitions

allocating extents for, 146
changing default attributes, 146
changing physical attributes, 146
changing storage characteristics, 146
deallocating unused space from, 146
marking UNUSABLE, 146
modifying, 146
moving, 146
preventing use of, 162
re-creating, 146
rebuilding, 146
renaming, 146
specifying tablespace for, 146, 159

tablespace containing, 146
unique, 137
unsorted, 147
used to enforce constraints, 122, 17
validating structure, 225

INDEXES clause
of ASSOCIATE STATISTICS, 228, 231
of DISASSOCIATE STATISTICS, 231

indexing property, 17
INDEXTYPE clause

of CREATE INDEX, 127, 133
indextypes

adding operators, 169
altering, 169
associating statistics types with, 228
changing implementation type, 169
comments on, 244
creating, 163
disassociating statistics types from, 231, 17
drop routines, invoking, 14
granting system privileges for, 29

indextypes (continued)
indexes based on, 127
instances, 127
removing from the database, 16

INDEXTYPES clause
of ASSOCIATE STATISTICS, 228, 231
of DISASSOCIATE STATISTICS, 231

inequality test, 3
INHERIT PRIVILEGES object privilege

on a user, 64
INITCAP function, 175
INITIAL parameter

of STORAGE clause, 54
initialization parameters

changing session settings, 105
setting using ALTER SESSION, 113

INITIALIZED EXTERNALLY clause
of CREATE CONTEXT, 49

INITIALIZED GLOBALLY clause
of CREATE CONTEXT, 49

INITIALLY DEFERRED clause
of constraints, 3

INITIALLY IMMEDIATE clause
of constraints, 3

INITRANS parameter
of ALTER CLUSTER, 42
of ALTER INDEX, 146
of ALTER MATERIALIZED VIEW LOG, 38
of ALTER TABLE, 28
of CREATE INDEX. See CREATE TABLE,

145
of CREATE MATERIALIZED VIEW LOG. See

CREATE TABLE, 39
of CREATE MATERIALIZED VIEW. See

CREATE TABLE, 6
of CREATE TABLE, 49

inline analytic views, 39
inline constraints

of ALTER TABLE, 28
of CREATE TABLE, 17

inline views, 16
lateral, 67

INMEMORY hint, 112
INMEMORY_PRUNING hint, 113
inner joins, 13, 39
INNER_PRODUCT function, 487
inner-N reporting, 357
INSERT

direct-path versus conventional, 68
INSERT clause

of MERGE, 3
INSERT statement, 67

append, 99, 115
error logging, 82

insert_into_clause, 67

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-21 of Index-53

inserts
and simultaneous update, 1
conditional, 67
conventional, 68
direct-path, 68
multi-table, 67

examples, 85
multitable, 67
single-table, 67
using MERGE, 3

instance recovery
continue after interruption, 65

INSTANCE session parameter, 113
instances

making index extents available to, 146
setting parameters for, 19

INSTR function, 175
INSTR2 function, 175
INSTR4 function, 175
INSTRB function, 175
INSTRC function, 175
integers

generating unique, 1
in SQL syntax, 63
precision of, 64
syntax of, 63

integrity constraints
See constraints

internal LOBs, 28
International Organization for Standardization

(ISO), 1
standards, 1, C-1

INTERSECT set operator, 6
interval

arithmetic, 23
data types, 18
literals, 69

interval conditions, 37
INTERVAL DAY TO SECOND data type, 22
INTERVAL expressions, 33
interval partitioning, 126, 113

changing the interval, 126
INTERVAL YEAR TO MONTH data type, 22
INTO clause

of EXPLAIN PLAN, 19
of INSERT, 67

INVALIDATE GLOBAL INDEXES clause
of ALTER TABLE, 28

inverse distribution functions, 292, 294
invoker rights

altering for a Java class, 174
defining for a Java class, 169, 170

invoker’s rights views, 213
IS [NOT] EMPTY conditions, 13
IS ANY condition, 10
IS JSON condition, 23

IS OF type condition, 41
IS PRESENT condition, 11
IS_UUID function, 179
ISO

See International Organization for Standardization
(ISO)

ITERATION_NUMBER function, 177
IVF_ITERATION hint, 113

J
Java

class
creating, 169, 172
dropping, 19
resolving, 174, 171

Java source schema object
creating, 171

resource
creating, 169, 172
dropping, 19

schema object
name resolution of, 173

source
compiling, 174, 171
creating, 169
dropping, 19

job scheduler object privileges, 29
JOIN clause

of CREATE DIMENSION, 81
join groups

altering, 172
creating, 168
dropping, 18

JOIN KEY clause
of ALTER DIMENSION, 105
of CREATE DIMENSION, 80

join views
example, 218
making updatable, 215
modifying, 226, 74, 155

joins, 12
antijoins, 15
band, 13
conditions

defining, 12
cross, 79
equijoins, 12
full outer, 39
inner, 13, 39
left outer, 39
natural, 80
outer, 14

and data densification, 14
on grouped tables, 14
restrictions, 14

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-22 of Index-53

joins (continued)
parallel, 131
right outer, 39
self, 13
semijoins, 15
without join conditions, 13

JSON data type, 30
JSON Object Access Expressions, 34
JSON Type Constructor function, 236
JSON_ARRAY function, 179
JSON_ARRAYAGG function, 182
JSON_DATAGUIDE function, 185
JSON_EQUAL condition, 30
JSON_EXISTS condition, 30
JSON_MERGEPATCH function, 186
JSON_OBJECT function, 188
JSON_OBJECTAGG function, 193
JSON_QUERY function, 195
JSON_SCALAR function, 202
JSON_SERIALIZE function, 203
JSON_TABLE function, 205
JSON_TEXTCONTAINS condition, 34
JSON_TRANSFORM function, 216
JSON_VALUE function, 229
Julian dates, 20

K
KEEP DATAFILES clause

of DROP PLUGGABLE DATABASE, 15
KEEP keyword

of FIRST function, 162
of LAST function, 162
with aggregate functions, 4

KEEP parameter
of CREATE SEQUENCE, 6

KEEP SEQUENCE object privilege
on a sequence, 63

key compression
See prefix compression

key management framework
granting system privileges for, 29
managing, 5

key-preserved tables, 215
keys, eliminating repetition, 146
keywords, 146

in object names, 146
optional, A-3
required, A-2

KILL SESSION clause
of ALTER SYSTEM, 13

KURTOSIS_POP function, 237
KURTOSIS_SAMP function, 238

L
L1_DISTANCE function, 486
L2_DISTANCE function, 487
LAG function, 238
large object functions, 19
large objects

See LOB data types
LAST function, 240
LAST_DAY function, 240
LAST_VALUE function, 241
lateral inline views, 67
LEAD function, 244
LEADING hint, 113
LEAST function, 245
left outer joins, 39
LENGTH function, 246
LENGTH2 function, 246
LENGTH4 function, 246
LENGTHB function, 246
LENGTHC function, 246
less than tests, 3
LEVEL clause

of ALTER DIMENSION, 104
of CREATE DIMENSION, 80, 81

level columns
specifying default values, 17

LEVEL pseudocolumn, 2, 39
levels

adding to a dimension, 105
dropping from a dimension, 106
of dimensions, defining, 80

libraries
creating, 1
granting system privileges for, 29
re-creating, 2
removing from the database, 1

library units
See Java schema objects

LIKE conditions, 15
linear regression functions, 346
LIST CHAINED ROWS clause

of ANALYZE, 226
list partitioning

adding default partition, 28
adding partitions, 28
adding values, 130, 131
creating a default partition, 17
creating partitions, 17
dropping values, 130, 131
merging default with nondefault partitions, 28
splitting default partition, 140

list subpartitions
adding, 28

LISTAGG function, 247

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-23 of Index-53

listeners
registering, 19

literals, 61
datetime, 66
interval, 69

LN function, 251
LNNVL function, 252
LOB columns

adding, 28
compressing, 102
creating from LONG columns, 17, 108
deduplication, 102
defining properties

for materialized views, 15
encrypting, 103
modifying, 107
modifying storage, 28
restricted in joins, 12
restrictions on, 28
storage characteristics of materialized views,

15
LOB data types, 28
LOB storage clause

for partitions, 28
of ALTER MATERIALIZED VIEW, 15, 20
of ALTER TABLE, 28, 54
of CREATE MATERIALIZED VIEW, 6, 15, 17
of CREATE TABLE, 17, 34

LOBs
attributes, initializing, 28
columns

difference from LONG and LONG RAW,
28

populating, 28
external, 28
internal, 28
locators, 28
logging attribute, 17
modifying physical attributes, 28
number of bytes manipulated in, 100
saving old versions, 100, 101
saving values in a cache, 105, 128
specifying directories for, 85
storage

attributes, 17
characteristics, 47
in-line, 17

tablespace for
defining, 82

LOCAL clause
of CREATE INDEX, 127, 135

local users, 135, 192
locale independent, 78
locally managed tablespaces

altering, 186
storage attributes, 54

locally partitioned indexes, 127
LOCALTIMESTAMP function, 253
location transparency, 13
LOCK TABLE statement, 90
locking, overriding automatic, 90
locks, 90

data, B-3
dictionary, B-6
row (TX), B-3
table (TM), B-3

See also table locks
log data

collection during update operations, 81
log file clauses

of ALTER DATABASE, 54
log files

adding, 47
dropping, 47
modifying, 47
registering, 86
renaming, 72
specifying for the database, 64

LOG function, 254
log groups

adding, 92
dropping, 92

LOGFILE clause
OF CREATE DATABASE, 64

LOGFILE GROUP clause
of CREATE CONTROLFILE, 50

logging
and redo log size, 43
specifying minimal, 43
supplemental

dropping, 82
supplemental, adding log groups, 28
supplemental, dropping log groups, 28

LOGGING clause,
of ALTER INDEX, 146
of ALTER MATERIALIZED VIEW, 28
of ALTER MATERIALIZED VIEW LOG, 37
of ALTER TABLE, 86
of ALTER TABLESPACE, 181
of CREATE MATERIALIZED VIEW, 6
of CREATE MATERIALIZED VIEW LOG, 45
of CREATE TABLE, 17
of CREATE TABLESPACE, 158

logical conditions, 9
logical standby database

aborting, 89
activating, 85
stopping, 89

LOGICAL_READS_PER_CALL parameter
of ALTER PROFILE, 90

LOGICAL_READS_PER_SESSION parameter
of ALTER PROFILE, 90

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-24 of Index-53

LOGICAL_READS_PER_SESSION parameter (continued)
of ALTER RESOURCE COST, 95

LogMiner
granting system privileges for, 29
supplemental logging, 28, 17

LONG columns
and domain indexes, 108
converting to LOB, 17, 108
restrictions on, 17
to store text strings, 17
to store view definitions, 17
where referenced from, 17

LONG data type, 17
in triggers, 18

LONG RAW data type, 27
converting from CHAR data, 27

LONG VARGRAPHIC data type
DB2, 44
SQL/DS, 44

LOWER function, 254
LPAD function, 255
LTRIM function, 256

M
MAKE_REF function, 257
managed recovery

of database, 51
managed standby recovery

as background process, 69
create a logical standby from the physical

standby, 70
overriding delays, 69
returning control during, 69, 70
terminating existing, 70, 71

MANAGED STANDBY RECOVERY clause
of ALTER DATABASE, 68

MAPPING TABLE clause
of ALTER TABLE, 132, 155

mapping tables
of index-organized tables, 155, 93

modifying, 28
master databases, 6
master tables, 6
MATCH

row_pattern_clause, 39
MATCH_RECOGNIZE

of row_pattern_clause of SELECT, 55
row_pattern_clause, 39

MATCHES condition, 2
MATCHES operator, 1
materialized join views, 40
materialized view logs, 39

creating, 39
excluding new values from, 43
logging changes to, 37

materialized view logs (continued)
object ID based, 42
parallelizing creation, 39
partition attributes, changing, 37
partitioned, 39
physical attributes

changing, 37
specifying, 39

purging, 43, 48
refreshing, 44, 49
removing from the database, 5
required for fast refresh, 39
required for synchronous refresh, 39
rowid based, 42
saving new values in, 43
saving old values in, 48
staging logs, 39
storage attributes

specifying, 39
materialized views, 26

changing from rowid-based to primary-key-
based, 32

changing to primary-key-based, 42
complete refresh, 30, 27
compression of, 27, 23
constraints on, 3
creating, 6
creating comments about, 242
degree of parallelism, 15, 37

during creation, 6
enabling and disabling query rewrite, 33
examples, 6, 39
fast refresh, 30, 26, 27
for data warehousing, 6
for replication, 6
forced refresh, 31
granting system privileges for, 29
index characteristics

changing, 28
indexes that maintain, 25
join, 40
LOB storage attributes, 15
logging changes to, 28
master table, dropping, 5
object type, creating, 6
partitions, 15

compression of, 27, 23
physical attributes, 6

changing, 15, 45
primary key, 29

recording values in master table, 42
query rewrite

eligibility for, 3
enabling and disabling, 33

re-creating during refresh, 30

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-25 of Index-53

materialized views (continued)
refresh, 89

after DML on master table, 31, 28
mode, changing, 15
on next COMMIT, 31, 27
using trusted constraints, 31

refresh, time, changing, 15
refreshing, 89
removing from the database, 3
restricting scope of, 6
retrieving data from, 39
revalidating, 34
rowid, 6
rowid values

recording in master table, 42
saving blocks in a cache, 29
storage attributes, 6

changing, 15, 45
subquery, 6
suppressing creation of default index, 26
synonyms for, 13
when to populate, 6

MAX function, 257
MAXDATAFILES parameter

of CREATE CONTROLFILE, 55
of CREATE DATABASE, 62

MAXEXTENTS parameter
of STORAGE clause, 56

MAXINSTANCES parameter
of CREATE CONTROLFILE, 55
OF CREATE DATABASE, 63

MAXLOGFILES parameter
of CREATE CONTROLFILE, 54
of CREATE DATABASE, 65

MAXLOGHISTORY parameter
of CREATE CONTROLFILE, 55
of CREATE DATABASE, 65

MAXLOGMEMBERS parameter
of CREATE CONTROLFILE, 55
of CREATE DATABASE, 65

MAXSIZE clause
of ALTER DATABASE, 54

MAXTRANS parameter
of physical_attributes_clause, 50

MAXVALUE parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 102
of CREATE SEQUENCE, 5

measure expressions
analytic view, 4

MEASURES
query_block, 39

media recovery
avoid on startup, 73
designing, 65
disabling, 71

media recovery (continued)
from specified redo logs, 65
of data files, 65
of database, 65
of standby database, 65
of tablespaces, 65
performing ongoing, 68
preparing for, 76
restrictions, 65
sustained standby recovery, 68

MEDIAN function, 259
median values, 294
MEMBER conditions, 14
membership conditions, 14, 38
MERGE ANY VIEW system privilege, 52
MERGE hint, 113
MERGE PARTITIONS clause

of ALTER TABLE, 28
MERGE statement, 1

deletes during, 1
error logging, 1
inserts during, 1
updates during, 1

MERGE VIEW object privilege on a view, 64
merge_insert_clause

of MERGE, 1
migrated rows

listing, 226
of clusters, 220

MIN function, 261
MINEXTENTS parameter

of STORAGE clause, 55
MINIMIZE RECORDS PER BLOCK clause

of ALTER TABLE, 94
MINIMUM EXTENT clause

of ALTER TABLESPACE, 186
of CREATE TABLESPACE, 167

mining models
comments on, 244

MINUS set operator, 6
MINVALUE parameter

of ALTER SEQUENCE. See CREATE
SEQUENCE, 101

of CREATE SEQUENCE, 5
MOD function, 262
MODE clause

of LOCK TABLE, 90
MODEL clause

of SELECT, 39, 51
model conditions, 10

IS ANY, 10
IS PRESENT, 11

model expression, 36
model functions, 14
MODEL_MIN_ANALYSIS hint, 114

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-26 of Index-53

MODIFY clause
of ALTER TABLE, 107

MODIFY CONSTRAINT clause
of ALTER TABLE, 28, 50
of ALTER VIEW, 218

MODIFY DEFAULT ATTRIBUTES clause
of ALTER INDEX, 146, 151
of ALTER TABLE, 28

MODIFY LOB storage clause
of ALTER MATERIALIZED VIEW, 15, 21
of ALTER TABLE, 28

MODIFY NESTED TABLE clause
of ALTER TABLE, 28, 50

MODIFY PARTITION clause
of ALTER INDEX, 146
of ALTER MATERIALIZED VIEW, 28
of ALTER TABLE, 127

MODIFY scoped_table_ref_constraint clause
of ALTER MATERIALIZED VIEW, 15

MODIFY SUBPARTITION clause
of ALTER INDEX, 146

MODIFY VARRAY clause
of ALTER TABLE, 28, 57

MON datetime format element, 82
MONITOR hint, 114
MONITORING USAGE clause

of ALTER INDEX, 163
MONTH datetime format element, 82
MONTHS_BETWEEN function, 264
MOUNT clause

of ALTER DATABASE, 62
MOVE clause

of ALTER TABLE, 28, 80
of CREATE PLUGGABLE DATABASE, 97

MOVE ONLINE clause
of ALTER TABLE, 155

MOVE SUBPARTITION clause
of ALTER TABLE, 28

MTS
See shared server

multi-table inserts
examples, 85

multi-threaded server
See shared server

multilevel collections, 105
multiset conditions, 12
MULTISET EXCEPT operator, 7
MULTISET INTERSECT operator, 8
MULTISET keyword

of CAST function, 61
multiset operators, 6

MULTISET EXCEPT, 7
MULTISET INTERSECT, 8
MULTISET UNION, 9

MULTISET UNION operator, 9

multitable inserts, 67
conditional, 67
unconditional, 67

multitenant container databases
See CDBs

N
NAME clause

of SET TRANSACTION, 144
NAMED clause

of CREATE JAVA, 172
namespaces

and object naming rules, 147
database, 147
for nonschema objects, 147
for schema objects, 147

NANVL function, 264
national character set

changing, 90
multibyte character data, 30
variable-length strings, 11

NATIONAL CHARACTER SET parameter
of CREATE DATABASE, 63

natural joins, 80
NCHAR data type, 9
NCHR function, 265
NCLOB data type, 30
nested subqueries, 16
NESTED TABLE clause

of ALTER TABLE, 28, 52
of CREATE TABLE, 17, 33

nested tables, 46, 12, 297, 363
changing returned value, 28
combining, 6
compared with varrays, 54
comparison rules, 54
creating, 184
creating from existing columns, 88
defining as index-organized tables, 28
determining hierarchy, 14
dropping the body of, 13
dropping the specification of, 11
in materialized views, 15, 16
indexing columns of, 127
modifying, 28
modifying column properties, 52
multilevel, 105
partitioned nested table columns, 141
storage characteristics of, 28, 17

NEW_TIME function, 266
NEXT clause

of ALTER MATERIALIZED VIEW ...
REFRESH, 31

NEXT parameter
of STORAGE clause, 54

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-27 of Index-53

NEXT_DAY function, 267
NEXTVAL pseudocolumn, 3, 2
NLS_CHARSET_DECL_LEN function, 267
NLS_CHARSET_ID function, 268
NLS_CHARSET_NAME function, 268
NLS_COLLATION_ID function, 269
NLS_COLLATION_NAME function, 269
NLS_DATE_LANGUAGE initialization parameter,

82
NLS_INITCAP function, 271
NLS_LANGUAGE initialization parameter, 82
NLS_LOWER function, 272
NLS_TERRITORY initialization parameter, 82
NLS_UPPER function, 272
NLSSORT function, 273
NO FORCE LOGGING clause

of ALTER DATABASE, 76
of ALTER TABLESPACE, 191

NO_CLUSTERING hint, 115
NO_EXPAND hint, 116
NO_FACT hint, 116
NO_GATHER_OPTIMIZER_STATISTICS hint,

116
NO_INDEX hint, 117
NO_INDEX_FFS hint, 117
NO_INDEX_SS hint, 118
NO_INMEMORY hint, 118
NO_INMEMORY_PRUNING hint, 118
NO_MERGE hint, 118
NO_MONITOR hint, 119
NO_PARALLEL hint, 119
NO_PARALLEL_INDEX, 120
NO_PQ_CONCURRENT_UNION hint, 120
NO_PQ_SKEW hint, 121
NO_PUSH_PRED hint, 121
NO_PUSH_SUBQ hint, 121
NO_PX_JOIN_FILTER hint, 122
NO_QUERY_TRANSFORMATION hint, 122
NO_RESULT_CACHE hint, 122
NO_REWRITE hint, 122
NO_STAR_TRANSFORMATION hint, 123
NO_STATEMENT_QUEUING hint, 123
NO_UNNEST hint, 123
NO_USE_BAND hint, 124
NO_USE_CUBE hint, 124
NO_USE_HASH hint, 124
NO_USE_MERGE hint, 124
NO_USE_NL hint, 125
NO_XML_QUERY_REWRITE hint, 125
NO_XMLINDEX_REWRITE hint, 125
NO_ZONEMAP hint, 126
NOAPPEND hint, 115
NOARCHIVELOG clause

of ALTER DATABASE, 54
of CREATE CONTROLFILE, 55
OF CREATE DATABASE, 65, 65

NOAUDIT statement, 11
for unified auditing, 16
locks, B-6

NOCACHE clause
of ALTER MATERIALIZED VIEW, 29
of ALTER MATERIALIZED VIEW LOG, 42
of ALTER SEQUENCE. See CREATE

SEQUENCE, 102
of ALTER TABLE, 128
of CREATE CLUSTER, 44
of CREATE MATERIALIZED VIEW, 25
of CREATE MATERIALIZED VIEW LOG, 45
of CREATE SEQUENCE, 6

NOCACHE hint, 115
NOCOMPRESS clause

of ALTER INDEX ... REBUILD, 146
of CREATE TABLE, 93

NOCOPY clause
of CREATE PLUGGABLE DATABASE, 97

NOCYCLE parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 101
of CREATE SEQUENCE, 6

NOFORCE clause
of CREATE JAVA, 171
of CREATE VIEW, 207

NOKEEP parameter
of CREATE SEQUENCE, 7

NOLOGGING mode
and force logging mode, 43
for nonpartitioned objects, 43
for partitioned objects, 43

NOMAXVALUE parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 101
of CREATE SEQUENCE, 5

NOMINIMIZE RECORDS PER BLOCK clause
of ALTER TABLE, 94

NOMINVALUE parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 101
of CREATE SEQUENCE, 5

NOMONITORING USAGE clause
of ALTER INDEX, 163

NONE clause
of SET ROLE, 142

nonempty subsets of, 297
nonequivalency tests, 38
nonschema objects

list of, 143
namespaces, 147

NOORDER parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 102
of CREATE SEQUENCE, 6

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-28 of Index-53

NOPARALLEL clause
of CREATE INDEX, 46, 130

NOPARALLEL hint, 119
NOPARALLEL_INDEX hint, 120
NORELY clause

of constraints, 3
NORESETLOGS clause

of CREATE CONTROLFILE, 54
NOREVERSE parameter

of ALTER INDEX ... REBUILD, 158, 159
NOREWRITE hint, 122
NOROWDEPENDENCIES clause

of CREATE CLUSTER, 44
of CREATE TABLE, 131

NOSORT clause
of ALTER INDEX, 147

NOT condition, 9
NOT DEFERRABLE clause

of constraints, 3
NOT IDENTIFIED clause

of ALTER ROLE. See CREATE ROLE, 96
of CREATE ROLE, 135

NOT IN subqueries
converting to NOT EXISTS subqueries, 252

NOT NULL clause
of CREATE TABLE, 17

NOWAIT clause
of LOCK TABLE, 93

NTH_VALUE function, 276
NTILE function, 278
null, 89

difference from zero, 89
in conditions, 90

table of, 90
in functions, 2
with comparison conditions, 90

null conditions, 21
NULL-related functions, 21
NULLIF function, 279

as a form of CASE expression, 279
NUMBER data type, 12

converting to VARCHAR2, 73
precision, 12
scale, 12

number format models, 73
number functions, 14
numbers

comparison rules, 50
floating-point, 12, 15
in SQL syntax, 63
precision of, 64
spelling out, 84
syntax of, 64

numeric data type, 12
numeric functions, 14
numeric precedence, 16

NUMTODSINTERVAL function, 280
NUMTOYMINTERVAL function, 281
NVARCHAR2 data type, 11
NVL function, 282
NVL2 function, 283

O
object access expressions, 38
OBJECT IDENTIFIER clause

of CREATE TABLE, 17
object identifiers, 45

contained in REFs, 45
primary key, 17
specifying, 17
specifying an index on, 17
system-generated, 17

object instances
types of, 41

object privileges
granting, 133

multiple, 140
on specific columns, 29

on a database object
revoking, 24

revoking, 27
from a role, 24, 30
from a user, 24, 29
from PUBLIC, 30

object reference functions, 14
object tables

adding rows to, 67
as part of hierarchy, 17
creating, 17, 21
querying, 17
system-generated column name, 139, 140,

211, 213
updating to latest version, 28
upgrading, 28

object type columns
defining properties

for materialized views, 15
in a type hierarchy, 17
membership in hierarchy, 28
modifying properties

for tables, 28, 51
substitutability, 28

object type materialized views
creating, 6

object types, 45
associating statistics types with, 228
attributes, 155

in a type hierarchy, 17
membership in hierarchy, 28
substitutability, 28

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-29 of Index-53

object types (continued)
bodies

creating, 187
re-creating, 188

comparison rules, 54
MAP function, 54
ORDER function, 54

components of, 45
creating, 184
defining member methods of, 187
disassociating statistics types from, 231, 11
dropping the body of, 13
dropping the specification of, 11
granting system privileges for, 29
identifiers, 8
incomplete, 185
methods, 155
privileges on subtypes, 40
references to. See REFs, 45
statistics types, 228
values of, 8

object views, 203
base tables

adding rows, 67
creating, 211
defining, 203
querying, 203

OBJECT_ID pseudocolumn, 8, 139, 140, 211, 213
OBJECT_VALUE pseudocolumn, 8
objects

See object types or database objects
ODCIIndexInsert method

indextype support of, 169, 163
OF clause

of CREATE VIEW, 211
of CREATE OPERATOR, 64
OFFLINE clause

of ALTER TABLESPACE, 192
of CREATE TABLESPACE, 171

OFFSET
row_limiting_clause, 39

OIDINDEX clause
of CREATE TABLE, 17

OIDs
See object identifiers

OLAP functions, 14
ON clause

of CREATE OUTLINE, 70
ON COMMIT clause

of CREATE TABLE, 80
ON DEFAULT clause

of NOAUDIT, 11
ON DELETE CASCADE clause

of constraints, 3
ON DELETE SET NULL clause

of constraints, 3

ON DIRECTORY clause
of NOAUDIT, 11

ON object clause
of NOAUDIT, 11
of REVOKE, 24

ON PREBUILT TABLE clause
of CREATE MATERIALIZED VIEW, 21

online backup
of tablespaces, ending, 189

ONLINE clause
of ALTER TABLESPACE, 192
of CREATE INDEX, 149
of CREATE TABLESPACE, 171

online indexes, 149
rebuilding, 155

online redo logs
reinitializing, 77

OPEN clause
of ALTER DATABASE, 63

OPEN READ ONLY clause
of ALTER DATABASE, 47

OPEN READ WRITE clause
of ALTER DATABASE, 47

operands, 1
operating system files

dropping, 8
removing, 75

operators, 1
adding to indextypes, 171
altering, 51
arithmetic, 2
binary, 1
COLLATE, 3
comments on, 244
concatenation, 4
CONNECT_BY_ROOT, 6
dropping from indextypes, 171
granting system privileges for, 29
GRAPH_TABLE, 25–27, 29, 32, 34, 35, 49,

53–55, 58, 59, 61, 62, 64, 65
MULTISET EXCEPT, 7
MULTISET INTERSECT, 8
MULTISET UNION, 9
precedence, 2
PRIOR, 5
set, 6
SHARD_CHUNK_ID, 9
specifying implementation of, 64
unary, 1
user-defined, 11

binding to a function, 51, 63
compiling, 51
creating, 63
dropping, 9
how bindings are implemented, 66
implementation type, 66

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-30 of Index-53

Operators
Graph Table Operator, 40
GRAPH_TABLE, 15, 22, 41, 44

Graph_Pattern, 20
GRAPH_REFERENCE, 18

OPT_PARAM hint, 126
OPTIMAL parameter

of STORAGE clause, 58
OR condition, 10
OR REPLACE clause

of CREATE CONTEXT, 48
of CREATE DIRECTORY, 87
of CREATE FUNCTION, 122, 171
of CREATE LIBRARY, 2
of CREATE OUTLINE, 69
of CREATE PACKAGE, 72
of CREATE PACKAGE BODY, 74
of CREATE PROCEDURE, 104
of CREATE TRIGGER, 183
of CREATE TYPE, 186
of CREATE TYPE BODY, 188
of CREATE VIEW, 207

ORA_DST_AFFECTED function, 285
ORA_DST_CONVERT function, 285
ORA_DST_ERROR function, 286
ORA_HASH function, 287
ORA_INVOKING_USER function, 288
ORA_INVOKING_USERID function, 288
ORA_ROWSCN pseudocolumn, 9
Oracle ADVM volumes, 128
Oracle Automatic Storage Management

migrating nodes in a cluster, 16
Oracle Call Interface, 3
oracle machine learning for SQL functions, 19
Oracle reserved words, E-1
Oracle Text

built-in conditions, 2
CATSEARCH, 2
CONTAINS, 2
creating domain indexes, 154
MATCHES, 2
operators, 1

CATSEARCH, 1
CONTAINS, 1
MATCHES, 1
SCORE, 1

Oracle Tools
support of SQL, 3

ORDER BY clause
of queries, 11
of SELECT, 11, 39, 53

with ROWNUM, 11
ORDER clause

of ALTER SEQUENCE. See CREATE
SEQUENCE, 102

ORDER parameter
of CREATE SEQUENCE, 6

ORDER SIBLINGS BY clause
of SELECT, 92

ORDERED hint, 127
ordinal numbers

specifying, 84
spelling out, 84

ORGANIZATION EXTERNAL clause
of CREATE TABLE, 17, 92

ORGANIZATION HEAP clause
of CREATE TABLE, 91

ORGANIZATION INDEX clause
of CREATE TABLE, 91

out-of-line constraints
of CREATE TABLE, 17

outer joins, 14
restrictions, 14

outlines
assign to a different category, 56
assigning to a different category, 55, 56
copying, 70
creating, 68
creating on statements, 70
dropping from the database, 11
enabling and disabling dynamically, 69
for use by current session, 69
for use by PUBLIC, 69
granting system privileges for, 29
private, use by the optimizer, 113
rebuilding, 55, 56
recompiling, 56
renaming, 55, 56
replacing, 69
storing groups of, 70
use by the optimizer, 23
use to generate execution plans, 113
used to generate execution plans, 68

OVER clause
of analytic functions, 6

OVERFLOW clause
of ALTER INDEX, 153
of ALTER TABLE, 28
of CREATE TABLE, 94

P
P.M. datetime format element, 82
package bodies

creating, 73
re-creating, 74
removing from the database, 12

packaged procedures
dropping, 16

packages
associating statistics types with, 228

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-31 of Index-53

packages (continued)
creating, 71
disassociating statistics types from, 231, 12
redefining, 72
removing from the database, 12
synonyms for, 13

PACKAGES clause
of ASSOCIATE STATISTICS, 228, 231
of DISASSOCIATE STATISTICS, 231

PARALLEL clause
of ALTER CLUSTER, 44, 45
of ALTER INDEX, 146
of ALTER MATERIALIZED VIEW, 15, 22
of ALTER MATERIALIZED VIEW LOG, 37, 39
of ALTER TABLE, 28
of CREATE CLUSTER, 37
of CREATE INDEX, 149
of CREATE MATERIALIZED VIEW, 6, 18
of CREATE MATERIALIZED VIEW LOG, 39,

43
of CREATE TABLE, 17, 55

parallel execution, 45
hints, 127
of DDL statements, 107
of DML statements, 107

PARALLEL hint, 127
PARALLEL_INDEX hint, 130
parameter files

creating, 75
from memory, 76

parameters
in syntax

optional, A-3
required, A-2

PARAMETERS clause
of CREATE INDEX, 154, 155

partial indexes, 127
PARTITION ... LOB storage clause

of ALTER TABLE, 28
PARTITION BY HASH clause

of CREATE TABLE, 17, 44
PARTITION BY LIST clause

of CREATE TABLE, 17, 45
PARTITION BY RANGE clause

of CREATE TABLE, 17, 44
PARTITION BY REFERENCE clause

of CREATE TABLE, 46, 123
PARTITION clause

of ANALYZE, 223
of CREATE INDEX, 151
of CREATE TABLE, 114
of DELETE, 224
of INSERT, 74
of LOCK TABLE, 90
of UPDATE, 156

partition-extended table names
in DML statements, 154
restrictions on, 153
syntax, 153

partitioned index-organized tables
secondary indexes, updating, 165

partitioned indexes, 153, 127
local, creating, 135
user-defined, 150

partitioned tables, 153
partitioning

by hash, 17, 44
by list, 17, 45
by range, 17, 44
by reference, 46, 123
clauses

of ALTER INDEX, 151
of ALTER TABLE, 124

interval, 113
of materialized view logs, 37, 39
of materialized views, 15, 6, 10
range with interval partitions, 113
referential constraint, 121, 123
system, 124

partitions
adding, 124
adding rows to, 67
allocating extents for, 92
based on literal values, 17
composite

specifying, 119
converting into nonpartitioned tables, 28
deallocating unused space from, 92
dropping, 137
exchanging with tables, 73
extents

allocating for an index, 146
hash

adding, 28
coalescing, 28
specifying, 17

index, 149
inserting rows into, 74
list, adding, 28
LOB storage characteristics of, 28
locking, 90
logging attribute, 17
logging insert operations, 86
merging, 28
modifying, 124, 127
physical attributes

changing, 85
range

adding, 28
specifying, 17

removing rows from, 28, 224

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-32 of Index-53

partitions (continued)
renaming, 28
revising values in, 156
splitting, 140
storage characteristics, 47
tablespace for

defining, 82
PASSWORD EXPIRE clause

of ALTER USER. See CREATE USER, 206
of CREATE USER, 197

PASSWORD_GRACE_TIME parameter
of ALTER PROFILE, 90
of CREATE PROFILE, 112

PASSWORD_LIFE_TIME parameter
of ALTER PROFILE, 90
of CREATE PROFILE, 111

PASSWORD_LOCK_TIME parameter
of ALTER PROFILE, 90
of CREATE PROFILE, 112

PASSWORD_REUSE_MAX parameter
of ALTER PROFILE, 90
of CREATE PROFILE, 112

PASSWORD_REUSE_TIME parameter
of ALTER PROFILE, 90
of CREATE PROFILE, 112

PASSWORD_VERIFY_FUNCTION parameter
of ALTER PROFILE, 90
of CREATE PROFILE, 112

passwords
expiration of, 197
grace period, 105
guaranteeing complexity, 105
limiting use and reuse, 105
locking, 105
making unavailable, 105
parameters

of CREATE PROFILE, 106
special characters in, 192

PATH function, 289
path_pattern, 22
PATH_VIEW, 21, 22
PATTERN

row_pattern_clause, 39
pattern-matching conditions, 15
PCT_ACCESS_DIRECT statistics

for index-organized tables, 222
PCTFREE parameter

of ALTER CLUSTER, 42
of ALTER INDEX, 146
of ALTER MATERIALIZED VIEW LOG, 38
of ALTER TABLE, 28
of CREATE MATERIALIZED VIEW LOG. See

CREATE TABLE., 39
of CREATE MATERIALIZED VIEW. See

CREATE TABLE., 6
of CREATE TABLE, 48

PCTINCREASE parameter
of STORAGE clause, 55

PCTTHRESHOLD parameter
of CREATE TABLE, 17

PCTUSED parameter
of ALTER CLUSTER, 42
of ALTER INDEX, 146
of ALTER MATERIALIZED VIEW LOG, 38
of ALTER TABLE, 28
of CREATE INDEX. See CREATE TABLE,

145
of CREATE MATERIALIZED VIEW LOG. See

CREATE TABLE., 39
of CREATE MATERIALIZED VIEW. See

CREATE TABLE., 6
of CREATE TABLE, 48

PCTVERSION parameter
of LOB storage, 100
of LOB storage clause, 119

PDBs, 77
administrative user, 85
backup, 75
changing

global name, 70
state, 75, 79
storage limits, 71

cloning, 90
creating

by cloning a source PDB, 90
using the seed database, 85

default edition, setting, 69
examples

creating, 77
dropping, 13
modifying, 58

generating file names, 86
granting system privileges for, 29
modifying data files, 70
modifying temporary files, 70
plugging into a CDB, 95
recovery, 75
setting the time zone of, 70
storage limits, 86
unplugging, 68
XML file for plugging in, 96

PERCENT_RANK function, 290
PERCENTILE_CONT function, 292
PERCENTILE_DISC function, 294
PERMANENT clause

of ALTER TABLESPACE, 193
PHONIC_CODE operator, 13
physical attributes clause

of ALTER CLUSTER, 43
of ALTER INDEX, 146
of ALTER MATERIALIZED VIEW LOG, 38
of ALTER TABLE, 85

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-33 of Index-53

physical attributes clause (continued)
of CREATE CLUSTER, 38
of CREATE MATERIALIZED VIEW, 12
of CREATE TABLE, 17, 39

physical standby database
activating, 85
converting to snapshot standby database, 89

pivot operations, 74
examples, 125
syntax, 46

placeholder expressions, 39
plan management

granting system privileges for, 29
plan stability, 68
PLAN_TABLE sample table, 17
pluggable databases

See PDBs
PM datetime format element, 82
POSIX regular expression standard, D-1
POWER function, 296
POWERMULTISET function, 297
POWERMULTISET_BY_CARDINALITY function,

298
PQ_CONCURRENT_UNION hint, 130
PQ_DISTRIBUTE hint, 131
PQ_FILTER hint, 133
PQ_SKEW hint, 134
precedence

of conditions, 3
of numbers, 16
of operators, 2

precision
number of digits of, 64
of NUMBER data type, 12

precompilers, 3
predefined roles, 29
PREDICTION function, 299
PREDICTION_BOUNDS function, 303
PREDICTION_COST function, 305
PREDICTION_DETAILS function, 309
PREDICTION_PROBABILITY function, 313
PREDICTION_SET function, 317
prefix compression, 93

definition, 146
disabling, 146
enabling, 159
of index rebuild, 159
of index-organized tables, 93

PREPARE TO SWITCHOVER clause
of ALTER DATABASE, 87

PRESENTNNV function, 320
PRESENTV function, 322
pretty-printing of XML output, 513
PREVIOUS function, 323
primary database

converting to physical standby database, 89

PRIMARY KEY clause
of constraints, 3
of CREATE TABLE, 17

primary key constraints, 3
enabling, 132
index on, 17

primary keys
generating values for, 1

PRIOR clause
of hierarchical queries, 2

PRIOR operator, 5
PRIVATE clause

of CREATE OUTLINE, 69
private outlines

use by the optimizer, 113
PRIVATE_SGA parameter

of ALTER PROFILE, 90
of ALTER RESOURCE COST, 95

privileges, 133
on subtypes of object types, 40
revoking from a grantee, 26

See also system privileges or object privileges
procedures

3GL,calling, 1
calling, 238
creating, 102
executing, 238
external, 102
granting system privileges for, 29
invalidating local objects dependent on, 16
issuing COMMIT or ROLLBACK statements,

107
naming rules, 148
re-creating, 104
recompiling, 88
removing from the database, 16
synonyms for, 13

PROFILE clause
of ALTER USER. See CREATE USER, 206
of CREATE USER, 197

profiles
adding resource limits, 89
assigning to a user, 197
changing resource limits, 89
creating, 105

examples, 105
deassigning from users, 17
dropping resource limits, 89
granting system privileges for, 29
modifying, examples, 91
removing from the database, 17

PROPERTY GRAPH
CREATE PROPERTY GRAPH, 115

proxy clause
of ALTER USER, 204, 206

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-34 of Index-53

pseudocolumns, 1
COLUMN_VALUE, 6
CONNECT_BY_ISCYCLE, 1
CONNECT_BY_ISLEAF, 2
CURRVAL, 3
flashback queries, 6
in hierarchical queries, 1
LEVEL, 2
NEXTVAL, 3
OBJECT_ID, 8, 139, 140, 211, 213
OBJECT_VALUE, 8
ORA_ROWSCN, 9
ROWID, 10
ROWNUM, 11
version queries, 6
XMLDATA, 12

PUBLIC clause
of CREATE OUTLINE, 69
of CREATE SYNONYM, 14
of DROP DATABASE LINK, 4

public database links
dropping, 4

public synonyms, 14
dropping, 23

PURGE statement, 20
PUSH_PRED hint, 134
PUSH_SUBQ hint, 134
PX_JOIN_FILTER hint, 135

Q
QB_NAME hint, 135
queries, 1, 39

comments in, 2
compound, 11
correlated

left correlation, 39
default locking of, B-4
defined, 1
distributed, 19
grouping returned rows on a value, 39
hierarchical, ordering, 92
hierarchical. See hierarchical queries, 2
hints in, 2
join, 12, 39
locking rows during, 39
multiple versions of rows, 39
of past data, 39
ordering returned rows, 39
outer joins in, 74
referencing multiple tables, 12
select lists of, 2
selecting all columns, 64
selecting from a random sample of rows, 39
sorting results, 11
syntax, 1

queries (continued)
top-level, 1
top-N, 11, 39

query rewrite
and dimensions, 80
defined, 39

QUIESCE RESTRICTED clause
of ALTER SYSTEM, 15

QUOTA clause
of ALTER USER. See CREATE USER, 206
of CREATE USER, 196

R
range conditions, 37
range partitioning

converting to interval partitioning, 126
range partitions

adding, 28
creating, 17
values of, 17

RANK function, 324
RATIO_TO_REPORT function, 326
RAW data type, 27

converting from CHAR data, 27
RAW_TO_UUID function, 328
RAWTOHEX function, 326
RAWTONHEX function, 327
READ ANY TABLE system privilege, 50, 59
READ object privilege

on a materialized view, 61
on a table, 63
on a view, 64

READ ONLY clause
of ALTER TABLESPACE, 193
of ALTER VIEW, 219

READ WRITE clause
of ALTER TABLESPACE, 193
of ALTER VIEW, 219

REBUILD clause
of ALTER INDEX, 146
of ALTER OUTLINE, 56

REBUILD PARTITION clause
of ALTER INDEX, 158

REBUILD SUBPARTITION clause
of ALTER INDEX, 158

REBUILD UNUSABLE LOCAL INDEXES clause
of ALTER TABLE, 149

RECOVER AUTOMATIC clause
of ALTER DATABASE, 65

RECOVER CANCEL clause
of ALTER DATABASE, 50, 68

RECOVER clause
of ALTER DATABASE, 65

RECOVER CONTINUE clause
of ALTER DATABASE, 50, 68

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-35 of Index-53

RECOVER DATABASE clause
of ALTER DATABASE, 50, 66

RECOVER DATAFILE clause
of ALTER DATABASE, 50, 67

RECOVER LOGFILE clause
of ALTER DATABASE, 50, 67

RECOVER MANAGED STANDBY DATABASE
clause

of ALTER DATABASE, 51
RECOVER TABLESPACE clause

of ALTER DATABASE, 50, 67
RECOVERABLE, 156, 91

See also LOGGING clause
recovery

discarding data, 63
distributed, enabling, 10
instance, continue after interruption, 65
media, designing, 65
media, performing ongoing, 68
of database, 50

recovery clauses
of ALTER DATABASE, 50

recursive subquery factoring, 60
recycle bin

purging objects from, 20
redo log files

specifying, 33
specifying for a control file, 51

redo logs, 63
adding, 47, 78
applying to logical standby database, 89
archive location, 10
automatic archiving, 3
automatic name generation, 65
clearing, 47
dropping, 47, 80
enabling and disabling thread, 47
manual archiving, 3

all, 9
by group number, 9
by SCN, 9
current, 9
next, 9
with sequence numbers, 8

members
adding to existing groups, 79
dropping, 80
renaming, 72

remove changes from, 63
reusing, 33
size of, 33
specifying, 33, 64

for media recovery, 67
specifying archive mode, 65
switching groups, 14

REF columns
rescoping, 15
specifying, 17
specifying from table or column, 17

REF constraints
defining scope, for materialized views, 25
of ALTER TABLE, 28

REF function, 328
reference partitioning, 123
reference-partitioned tables, 124

maintenance operations, 149
REFERENCES clause

of CREATE TABLE, 17
referential integrity constraints, 3
REFRESH clause

of ALTER MATERIALIZED VIEW, 15, 25
of CREATE MATERIALIZED VIEW, 11

REFRESH COMPLETE clause
of ALTER MATERIALIZED VIEW, 30
of CREATE MATERIALIZED VIEW, 6

REFRESH FAST clause
of ALTER MATERIALIZED VIEW, 30
of CREATE MATERIALIZED VIEW, 6

REFRESH FORCE clause
of ALTER MATERIALIZED VIEW, 31
of CREATE MATERIALIZED VIEW, 6

REFRESH ON COMMIT clause
of ALTER MATERIALIZED VIEW, 31
of CREATE MATERIALIZED VIEW, 6

REFRESH ON DEMAND clause
of ALTER MATERIALIZED VIEW, 31
of CREATE MATERIALIZED VIEW, 6

REFs, 45, 3
as containers for object identifiers, 45
dangling, 225
updating, 225
validating, 225

REFTOHEX function, 329
REGEXP_COUNT function, 330
REGEXP_INSTR function, 335
REGEXP_LIKE condition, 19
REGEXP_REPLACE function, 338
REGEXP_SUBSTR function, 343
REGISTER clause

of ALTER SYSTEM, 19
REGISTER LOGFILE clause

of ALTER DATABASE, 86
REGR_AVGX function, 346
REGR_AVGY function, 346
REGR_COUNT function, 346
REGR_INTERCEPT function, 346
REGR_R2 function, 346
REGR_SLOPE function, 346
REGR_SXX function, 346
REGR_SXY function, 346
REGR_SYY function, 346

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-36 of Index-53

regular expressions
multilingual syntax, D-1
operators, multilingual enhancements, D-2
Oracle support of, D-1
Perl-influenced operators, D-3
subexpressions, 336, 344

relational tables
creating, 17, 20

RELY clause
of constraints, 3

REMAINDER function, 351
RENAME clause

of ALTER INDEX, 162
of ALTER OUTLINE, 56
of ALTER TABLE, 95
of ALTER TABLESPACE, 187
of ALTER TRIGGER, 202

RENAME CONSTRAINT clause
of ALTER TABLE, 122

RENAME DATAFILE clause
of ALTER TABLESPACE, 181

RENAME FILE clause
of ALTER DATABASE, 47, 72

RENAME GLOBAL_NAME clause
of ALTER DATABASE, 92
of ALTER PLUGGABLE DATABASE, 70

RENAME PARTITION clause
of ALTER INDEX, 146
of ALTER TABLE, 28

RENAME statement, 22
RENAME SUBPARTITION clause

of ALTER INDEX, 146
of ALTER TABLE, 28

REPLACE function, 352
replication

row-level dependency tracking, 44, 131
reserved words, 145, E-1
reset sequence of, 63
RESETLOGS parameter

of CREATE CONTROLFILE, 54
RESOLVE clause

of ALTER JAVA CLASS, 175
of CREATE JAVA, 171

RESOLVER clause
of CREATE JAVA, 173

Resource Manager, 15
resource parameters

of CREATE PROFILE, 106
RESOURCE_VIEW, 21, 22
response time

optimizing, 105
restore points

guaranteed, 132
preserved, 132
using

to flash back a table, 26

restore points (continued)
using (continued)
to flashback the database, 23

result cache, 129
RESULT_CACHE hint, 135
resumable space allocation, 108
RESUME clause

of ALTER SYSTEM, 15
RETENTION parameter

of LOB storage, 101
RETRY_ON_ROW_CHANGE hint, 137
RETURNING clause

of DELETE, 220
of INSERT, 70
of UPDATE, 154, 161

REUSE clause
of CREATE CONTROLFILE, 52
of file specifications, 33

REVERSE clause
of CREATE INDEX, 148

reverse indexes, 148
REVERSE parameter

of ALTER INDEX ... REBUILD, 158, 159
REVOKE CONNECT THROUGH clause

of ALTER USER, 204, 206
REVOKE statement, 24

locks, B-6
REWRITE hint, 137
right outer joins, 39
roles, 29

authorization
by a password, 135
by an external service, 135
by the database, 135
by the enterprise directory service, 135
changing, 96

creating, 133
disabling

for the current session, 140, 142
enabling

for the current session, 140, 141
granting, 29

system privileges for, 29
to a user, 34
to another role, 34
to PUBLIC, 34

identifying by password, 135
identifying externally, 135
identifying through enterprise directory

service, 135
identifying using a package, 135
removing from the database, 20
revoking, 24

from another role, 20, 28
from PUBLIC, 28
from users, 20, 28

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-37 of Index-53

ROLES clause
of CREATE PLUGGABLE DATABASE, 85

rollback segments
removing from the database, 21
specifying optimal size of, 58

rollback segments granting
system privileges for, 29

ROLLBACK statement, 36
rollback undo, 98, 57
ROLLUP clause

of SELECT statements, 84
ROUND (date) function, 353

format models, 518
ROUND (number) function, 354
ROUND(interval) function, 353
routines

calling, 238
executing, 238

row constructor, 42
ROW EXCLUSIVE lock mode, 92
row limiting, 39
row locking, B-3
ROW SHARE lock mode, 92
row value constructor, 42
row values

pivoting into columns, 74
ROW_NUMBER function, 356
row-level dependency tracking, 44, 131
row-level locking, B-3
ROWDEPENDENCIES clause

of CREATE CLUSTER, 44
of CREATE TABLE, 131

ROWID data type, 42
ROWID pseudocolumn, 42, 43, 10
rowids, 42

description of, 42
extended

base 64, 42
not directly available, 42

nonphysical, 43
of foreign tables, 43
of index-organized tables, 43
uses for, 10

ROWIDTOCHAR function, 358
ROWIDTONCHAR function, 359
ROWNUM pseudocolumn, 11
rows

adding to a table, 67
allowing movement of between partitions, 38
inserting

into partitions, 74
into remote databases, 67
into subpartitions, 74

locking, B-3
locks on, B-3
movement between partitions, 17

rows (continued)
removing

from a cluster, 145, 147
from a table, 145, 147
from partitions and subpartitions, 224
from tables and views, 220

selecting in hierarchical order, 2
specifying constraints on, 3
storing if in violation of constraints, 148

RPAD function, 359
RR datetime format element, 83
RTRIM function, 360
run-time compilation

avoiding, 88, 217

S
SAMPLE clause

of SELECT, 39
of SELECT and subqueries, 47

SAVEPOINT statement, 38
savepoints

erasing, 1
rolling back to, 37
specifying, 38

scalar subqueries, 39
scale

greater than precision, 13
of NUMBER data type, 12

SCHEMA clause
of CREATE JAVA, 172

schema objects, 142
defining default buffer pool for, 58
dropping, 14
in other schemas, 151
list of, 142
name resolution, 150
namespaces, 147
naming

examples, 148
guidelines, 149
rules, 144

object types, 45
on remote databases, 151
partitioned indexes, 153
partitioned tables, 153
parts of, 144
protecting location, 13
protecting owner, 13
providing alternate names for, 13
reauthorizing, 2
recompiling, 2
referring to, 149, 113
remote, accessing, 74
validating structure, 225

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-38 of Index-53

schemas
changing for a session, 113
creating, 140
definition of, 142

scientific notation, 74
SCN_TO_TIMESTAMP function, 361
SCOPE FOR clause

of ALTER MATERIALIZED VIEW, 25
of CREATE MATERIALIZED VIEW, 6

SCORE operator, 1
SDO_GEOMETRY data type, 49
SDO_GEORASTER data type, 49
SDO_TOPO_GEOMETRY data type, 50
security

enforcing, 182
security clauses

of ALTER SYSTEM, 18
segment attributes clause

of CREATE TABLE, 38
SEGMENT MANAGEMENT clause

of CREATE TABLESPACE, 158
segments

space management
automatic, 158
manual, 158
using bitmaps, 158
using free lists, 158

table
compacting, 155, 29, 41, 95

select lists, 2
ordering, 11

SELECT object privilege
granting on a view, 37

SELECT statement, 1, 39
self joins, 13
semijoins, 15
sequences, 3, 2

accessing values of, 2
changing

the increment value, 101
creating, 1
creating without limit, 4
global, 8
granting system privileges for, 29
guarantee consecutive values, 6
how to use, 4
increment value, setting, 5
incrementing, 1
initial value, setting, 5
keeping values during transaction replay, 6
maximum value

eliminating, 102
setting, 5
setting or changing, 101

minimum value
eliminating, 102

sequences (continued)
minimum value (continued)
setting, 5
setting or changing, 101

number of cached values, changing, 101
ordering values, 101
preallocating values, 6
recycling values, 101
removing from the database, 22
renaming, 22
restarting, 22

at a predefined limit, 4
values, 6

reusing, 2
session, 8
stopping at a predefined limit, 4
synonyms for, 13
where to use, 4

server parameter files
creating, 9

from memory, 12
service name

of remote database, 74
session control statements, 4

PL/SQL support of, 4
session locks

releasing, 13
SESSION parameter

of CREATE SEQUENCE, 8
session parameters

changing settings, 113
INSTANCE, 113

session sequences, 8
SESSION_ROLES view, 140
sessions

calculating resource cost limits, 94
changing resource cost limits, 94
disconnecting, 13
granting system privileges for, 29
limiting CPU time, 95
limiting data block reads, 95
limiting inactive periods, 89
limiting private SGA space, 95
limiting resource costs, 94
limiting total elapsed time, 95
limiting total resources, 89
modifying characteristics of, 105
restricting, 15
restricting to privileged users, 18
switching to a different instance, 113
terminating, 13
terminating across instances, 13
time zone setting, 113

SESSIONS_PER_USER parameter
of ALTER PROFILE, 90

SESSIONTIMEZONE function, 363

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-39 of Index-53

SET clause
of ALTER SESSION, 105
of ALTER SYSTEM, 19

SET conditions, 12
SET CONSTRAINT(S) statement, 138
SET CONTAINER system privilege, 48
SET DANGLING TO NULL clause

of ANALYZE, 225
SET DATABASE clause

of CREATE CONTROLFILE, 53
SET function, 363
set operators, 6

INTERSECT, 6
MINUS, 6
UNION, 6
UNION ALL, 6

SET ROLE statement, 140
SET STANDBY DATABASE clause

of ALTER DATABASE, 85
SET STATEMENT_ID clause

of EXPLAIN PLAN, 18
SET TIME_ZONE clause

of ALTER DATABASE, 60, 95
of ALTER PLUGGABLE DATABASE, 70
of ALTER SESSION, 113
of CREATE DATABASE, 60

SET TRANSACTION statement, 142
SET UNUSED clause

of ALTER TABLE, 113
SGA

See system global area (SGA)
SHARD_CHUNK_ID Operator, 9
SHARE ROW EXCLUSIVE lock mode, 92
SHARE UPDATE lock mode, 92
SHARED clause

of CREATE DATABASE LINK, 76
shared pool

flushing, 11
shared server,

processes
creating additional, 23
terminating, 23

system parameters, 23
short-circuit evaluation

DECODE function, 118
SHRINK SPACE clause

of ALTER INDEX, 155
of ALTER MATERIALIZED VIEW, 29
of ALTER MATERIALIZED VIEW LOG, 41
of ALTER TABLE, 95

SHUTDOWN clause
of ALTER SYSTEM, 18

siblings
ordering in a hierarchical query, 92

SIGN function, 364
simple comparison conditions, 5

simple expressions, 3
SIN function, 365
SINGLE TABLE clause

of CREATE CLUSTER, 43
single-row functions, 14
single-table insert, 67
SINH function, 365
SIZE clause

of ALTER CLUSTER, 44
of CREATE CLUSTER, 42
of file specifications, 33

SKEWNESS_POP function, 366
SKEWNESS_SAMP function, 366
SOME operator, 3
SOUNDEX function, 367
SOURCE_FILE_NAME_CONVERT clause

of CREATE PLUGGABLE DATABASE, 97
SP datetime format element suffix, 84
special characters

in passwords, 112
spelled numbers

specifying, 84
SPLIT PARTITION clause

of ALTER INDEX, 146
of ALTER TABLE, 140

SPTH datetime format element suffix, 84
SQL

See Structured Query Language (SQL)
SQL Developer, 3
SQL For JSON

conditions, 23
SQL Function

FEATURE_COMPARE, 148
Oracle Machine Learning for SQL, 148

SQL functions, 2, 520
ABS, 23
ACOS, 24
ADD_MONTHS, 24
aggregate functions, 4
analytic functions, 6
applied to LOB columns, 2
APPROX_COUNT, 26
APPROX_COUNT_DISTINCT, 27
APPROX_COUNT_DISTINCT_AGG, 28
APPROX_COUNT_DISTINCT_DETAIL, 29
APPROX_MEDIAN, 32
APPROX_PERCENTILE, 35
APPROX_PERCENTILE_AGG, 38
APPROX_PERCENTILE_DETAIL, 38
APPROX_RANK, 42
APPROX_SUM, 43
ASCII, 44
ASCIISTR, 44
ASIN, 45
ATAN, 46
ATAN2, 46

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-40 of Index-53

SQL functions (continued)
AVG, 47
BFILENAME, 49
BIN_TO_NUM, 50
BITAND, 51
BOOLEAN_AND_AGG, 58
BOOLEAN_OR_AGG, 59
CARDINALITY, 60
CAST, 60
CEIL, 69
CEIL (datetimes), 67
CEIL(interval), 68
character functions

returning character values, 15
returning number values, 16

character set functions, 16
CHARTOROWID, 70
CHR, 71
CLUSTER_DETAILS, 73
CLUSTER_DISTANCE, 76
CLUSTER_ID, 78
CLUSTER_PROBABILITY, 81
CLUSTER_SET, 83
COALESCE, 86
COLLATION, 87
collation functions, 16
COLLECT, 88
collection functions, 19
COMPOSE, 89
CON_DBID_TO_ID, 90
CON_GUID_TO_ID, 91
CON_ID_TO_CON_NAME, 92
CON_ID_TO_DBID, 92
CON_ID_TO_GUID, 93
CON_ID_TO_UID, 94
CON_NAME_TO_ID, 94
CON_UID_TO_ID, 95
CONCAT, 96
conversion functions, 18
CONVERT, 97
CORR, 99
CORR_K, 102
CORR_S, 102
COS, 103
COSH, 103
COSINE_DISTANCE, 487
COUNT, 104
COVAR_POP, 106
COVAR_SAMP, 108
CUBE_TABLE, 109
CUME_DIST, 111
CURRRENT_DATE, 112
CURRRENT_TIMESTAMP, 113
CV, 114
data cartridge functions, 13
DATAOBJ_TO_MAT_PARTITION, 115

SQL functions (continued)
DATAOBJ_TO_PARTITION, 116
datetime functions, 16
DBTIMEZONE, 117
DECODE, 117
DECOMPOSE, 119
DENSE_RANK, 120
DEPTH, 122
DEREF, 123
domain functions, 22
DUMP, 139
EMPTY_BLOB, 141
EMPTY_CLOB, 141
encoding and decoding functions, 21
environment and identifier functions, 22
EVERY, 141
EXISTSNODE, 142
EXP, 143
EXTRACT (datetime), 144
EXTRACT (XML), 146
EXTRACTVALUE, 147
FEATURE_DETAILS, 150
FEATURE_ID, 153
FEATURE_SET, 155
FEATURE_VALUE, 158
FIRST, 161
FIRST_VALUE, 163
FLOOR, 167
FLOOR(datetimes), 165
FLOOR(interval), 166
FROM_TZ, 168
FROM_VECTOR, 168
general comparison functions, 17
GREATEST, 170
GROUP_ID, 171
GROUPING, 172
GROUPING_ID, 173
HEXTORAW, 174
hierarchical functions, 19
INITCAP, 175
INNER_PRODUCT, 487
INSTR, 175
INSTR2, 175
INSTR4, 175
INSTRB, 175
INSTRC, 175
IS_UUID, 179
ITERATION_NUMBER, 177
JSON Type Constructor, 236
JSON_ARRAY, 179
JSON_ARRAYAGG, 182
JSON_DATAGUIDE, 185
JSON_MERGEPATCH, 186
JSON_OBJECT, 188
JSON_OBJECTAGG, 193
JSON_QUERY, 195

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-41 of Index-53

SQL functions (continued)
JSON_SCALAR, 202
JSON_SERIALIZE, 203
JSON_TABLE, 205
JSON_TRANSFORM, 216
JSON_VALUE, 229
L1_DISTANCE, 486
L2_DISTANCE, 487
LAG, 238
large object functions, 19
LAST, 240
LAST_DAY, 240
LAST_VALUE, 241
LEAD, 244
LEAST, 245
LENGTH, 246
LENGTH2, 246
LENGTH4, 246
LENGTHB, 246
LENGTHC, 246
linear regression, 346
LISTAGG, 247
LN, 251
LNNVL, 252
LOCALTIMESTAMP, 253
LOG, 254
LOWER, 254
LPAD, 255
LTRIM, 256
MAKE_REF, 257
MAX, 257
MEDIAN, 259
MIN, 261
MOD, 262
model functions, 14
MONTHS_BETWEEN, 264
NANVL, 264
NCHR, 265
NEW_TIME, 266
NEXT_DAY, 267
NLS_CHARSET_DECL_LEN, 267
NLS_CHARSET_ID, 268
NLS_CHARSET_NAME, 268
NLS_COLLATION_ID, 269
NLS_COLLATION_NAME, 269
NLS_INITCAP, 271
NLS_LOWER, 272
NLS_UPPER, 272
NLSSORT, 273
NTH_VALUE, 276
NTILE, 278
NULL-related functions, 21
NULLIF, 279
numeric functions, 14
NUMTODSINTERVAL, 280
NUMTOYMINTERVAL, 281

SQL functions (continued)
NVL, 282
NVL2, 283
object reference functiions, 14
OLAP functions, 14
ORA_DM_PARTITION_NAME, 284
ORA_DST_AFFECTED, 285
ORA_DST_CONVERT, 285
ORA_DST_ERROR, 286
ORA_HASH, 287
ORA_INVOKING_USER, 288
ORA_INVOKING_USERID, 288
oracle machine learning for SQL functions,

19
PATH, 289
PERCENT_RANK, 290
PERCENTILE_CONT, 292
PERCENTILE_DISC, 294
POWER, 296
POWERMULTISET, 297
POWERMULTISET_BY_CARDINALITY,

298
PREDICTION, 299
PREDICTION_BOUNDS, 303
PREDICTION_COST, 305
PREDICTION_DETAILS, 309
PREDICTION_PROBABILITY, 313
PREDICTION_SET, 317
PRESENTNNV, 320
PRESENTV, 322
PREVIOUS, 323
RANK, 324
RATIO_TO_REPORT, 326
RAW_TO_UUID, 328
RAWTOHEX, 326
RAWTONHEX, 327
REF, 328
REFTOHEX, 329
REGEXP_COUNT, 330
REGEXP_INSTR, 335
REGEXP_REPLACE, 338
REGEXP_SUBSTR, 343
REGR_AVGX, 346
REGR_AVGY, 346
REGR_COUNT, 346
REGR_INTERCEPT, 346
REGR_R2, 346
REGR_SLOPE, 346
REGR_SXX, 346
REGR_SXY, 346
REGR_SYY, 346
REMAINDER, 351
REPLACE, 352
ROUND (date), 353
ROUND (number), 354
ROUND(interval), 353

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-42 of Index-53

SQL functions (continued)
ROW_NUMBER, 356
ROWIDTOCHAR, 358
ROWIDTONCHAR, 359
RPAD, 359
RTRIM, 360
SCN_TO_TIMESTAMP, 361
SESSIONTIMEZONE, 363
SET, 363
SIGN, 364
SIN, 365
single-row functions, 14
Single-Row Functions, 22
SINH, 365
SOUNDEX, 367
SQRT, 368
STANDARD_HASH, 369
STATS_BINOMIAL_TEST, 369
STATS_CROSSTAB, 371
STATS_F_TEST, 372
STATS_KS_TEST, 373
STATS_MODE, 374
STATS_MW_TEST, 376
STATS_ONE_WAY_ANOVA, 377
STATS_T_TEST_INDEP, 379, 380
STATS_T_TEST_INDEPU, 379, 380
STATS_T_TEST_ONE, 379, 380
STATS_T_TEST_PAIRED, 379, 380
STATS_WSR_TEST, 382
STDDEV, 382
STDDEV_POP, 384
STDDEV_SAMP, 385
SUBSTR, 387
SUBSTR2, 387
SUBSTR4, 387
SUBSTRB, 387
SUBSTRC, 387
SUM, 388
SYS_CONNECT_BY_PATH, 390
SYS_CONTEXT, 391
SYS_DBURIGEN, 400
SYS_EXTRACT_UTC, 401
SYS_GUID, 401
SYS_OP_ZONE_ID, 402
SYS_ROW_ETAG, 404
SYS_TYPEID, 405
SYS_XMLAGG, 406
SYS_XMLGEN, 406
SYSDATE, 407
SYSTIMESTAMP, 408
t-test, 378
TAN, 409
TANH, 410
TIME_BUCKET, 412
TIMESTAMP_TO_SCN, 411
TO_APPROX_COUNT_DISTINCT, 415

SQL functions (continued)
TO_APPROX_PERCENTILE, 416
TO_BINARY_DOUBLE, 417
TO_BINARY_FLOAT, 419
TO_BLOB (bfile), 420
TO_BLOB (raw), 421
TO_BOOLEAN, 422
TO_CHAR (bfile|blob), 423
TO_CHAR (character), 424
TO_CHAR (datetime), 426
TO_CHAR (number), 431
TO_CHAR(boolean), 423
TO_CLOB (bfile|blob), 433
TO_CLOB (character), 434
TO_DATE, 435
TO_DSINTERVAL, 437
TO_LOB, 439
TO_MULTI_BYTE, 440
TO_NCHAR (character), 441
TO_NCHAR (datetime), 442
TO_NCHAR (number), 443
TO_NCHAR(boolean), 441
TO_NCLOB, 443
TO_NUMBER, 444
TO_SINGLE_BYTE, 445
TO_TIMESTAMP, 446
TO_TIMESTAMP_TZ, 448
TO_UTC_TIMESTAMP_TZ, 450
TO_VECTOR, 452
TO_YMINTERVAL, 453
TRANSLATE, 455
TRANSLATE ... USING, 456
TREAT, 457
TRIM, 459
TRUNC (date), 460
TRUNC (number), 462
TRUNC(interval), 461
TZ_OFFSET, 463
UID, 464
UNISTR, 464
UPPER, 465
USER, 466
USERENV, 466
UUID, 468
UUID_TO_RAW, 468
VALIDATE_CONVERSION, 469
VALUE, 472
VAR_POP, 472
VAR_SAMP, 474
VARIANCE, 475
VECTOR, 476
VECTOR_CHUNKS, 477
VECTOR_DIMENSION_COUNT, 488, 489
VECTOR_DIMS, 488
VECTOR_DISTANCE, 484
VECTOR_EMBEDDING, 490

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-43 of Index-53

SQL functions (continued)
VECTOR_NORM, 491
VECTOR_SERIALIZE, 492
VSIZE, 493
WIDTH_BUCKET, 494
XML functions, 20
XMLAGG, 495
XMLCAST, 496
XMLCDATA, 497
XMLCOLATTVAL, 498
XMLCOMMENT, 499
XMLCONCAT, 499
XMLDIFF, 500
XMLELEMENT, 502
XMLEXISTS, 505
XMLFOREST, 505
XMLISVALID, 506
XMLPARSE, 507
XMLPATCH, 508
XMLPI, 509
XMLQUERY, 510
XMLSEQUENCE, 511
XMLSERIALIZE, 513
XMLTABLE, 514
XMLTRANSFORM, 517

SQL statements
ALTER FLASHBACK ARCHIVE, 141
auditing

stopping, 11
CREATE FLASHBACK ARCHIVE, 117
DDL, 2
determining the execution plan for, 17
DML, 3
DROP FLASHBACK ARCHIVE, 11
organization of, 4
rolling back, 36
session control, 4
space allocation, resumable, 108
storage in the result cache, 129
suspending and completing, 108
system control, 4
transaction control, 3
type of, 1
undoing, 36

SQL translation profiles
granting object privileges for, 63, 64
granting system privileges for, 49, 58

SQL*Loader inserts, logging, 146
SQL/DS data types, 43

restrictions on, 44
SQRT function, 368
staging log, 39
standalone procedures

dropping, 16
standard SQL, C-1

Oracle extensions to, C-33

STANDARD_HASH function, 369
standby database

synchronizing with primary database, 110
standby databases

activating, 85
and Data Guard, 89
committing to primary status, 87
controlling use, 95
converting to physical standby, 89
designing media recovery, 65
mounting, 62
recovering, 47

STAR_TRANSFORMATION hint, 138
START LOGICAL STANDBY APPLY clause

of ALTER DATABASE, 89
START WITH clause

of ALTER MATERIALIZED VIEW ...
REFRESH, 31

of queries and subqueries, 39
of SELECT and subqueries, 50

START WITH parameter
of CREATE SEQUENCE, 5

startup_clauses
of ALTER DATABASE, 50

STATEMENT_QUEUING hint, 138
statistics

collection during index rebuild, 146
deleting from the data dictionary, 227
forcing disassociation, 232
gathering for bulk loads, 106, 116
on index usage, 163
on scalar object attributes

collecting, 220
on schema objects

collecting, 220
deleting, 220

user-defined
dropping, 14, 17, 12, 1, 11

statistics types
associating

with columns, 228
with domain indexes, 228
with functions, 228
with indextypes, 228
with object types, 228
with packages, 228

disassociating
from columns, 231
from domain indexes, 231
from functions, 231
from indextypes, 231
from object types, 231
from packages, 231

STATS_BINOMIAL_TEST function, 369
STATS_CROSSTAB function, 371
STATS_F_TEST function, 372

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-44 of Index-53

STATS_KS_TEST function, 373
STATS_MODE function, 374
STATS_MW_TEST function, 376
STATS_ONE_WAY_ANOVA function, 377
STATS_T_TEST_INDEP function, 379, 380
STATS_T_TEST_INDEPU function, 379, 380
STATS_T_TEST_ONE function, 379, 380
STATS_T_TEST_PAIRED function, 379, 380
STATS_WSR_TEST function, 382
STDDEV function, 382
STDDEV_POP function, 384
STDDEV_SAMP function, 385
STOP LOGICAL STANDBY clause

of ALTER DATABASE, 89
STORAGE clause

of ALTER CLUSTER, 42
of ALTER INDEX, 146
of ALTER MATERIALIZED VIEW LOG, 38
of CREATE MATERIALIZED VIEW LOG. See

CREATE TABLE, 39
of CREATE TABLE, 47

storage parameters
resetting, 145, 147

STORE IN clause
of ALTER TABLE, 99, 118

stored functions, 120
string literals

See text literals.
strings, 62

converting to ASCII values, 44
converting to unicode, 89

See also text literals.
Structured Query Language (SQL),

description, 1
functions, 2
keywords, A-2
Oracle Tools support of, 3
parameters, A-2
standards, 1, C-1
statements

determining the cost of, 17
syntax, 4, A-1

structures
locking, B-6

subexpressions
of regular expressions, 336, 344

SUBMULTISET condition, 14
SUBPARTITION BY HASH clause

of CREATE TABLE, 17, 51
SUBPARTITION BY LIST clause

of CREATE TABLE, 122
SUBPARTITION clause

of ANALYZE, 223
of DELETE, 224
of INSERT, 74
of LOCK TABLE, 90

SUBPARTITION clause (continued)
of UPDATE, 156

subpartition template
creating, 28
replacing, 28

subpartition-extended table names
in DML statements, 154
restrictions on, 153
syntax, 153

subpartitions
adding, 28
adding rows to, 67
allocating extents for, 92
coalescing, 129
converting into nonpartitioned tables, 28
creating, 51
creating a template for, 28, 17
deallocating unused space from, 92
exchanging with tables, 73
hash, 17
inserting rows into, 74
list, 122
list, adding, 28
locking, 90
logging insert operations, 86
moving to a different segment, 28
physical attributes

changing, 85
removing rows from, 28, 224
renaming, 28
revising values in, 156
specifying, 119
template, creating, 17
template, dropping, 28
template, replacing, 28

subqueries, 1, 16, 39, 40
containing subqueries, 16
correlated, 16
defined, 1
extended subquery unnesting, 18
inline views, 16
nested, 16
of past data, 39
scalar, 39
to insert table data, 136
unnesting, 17
using in place of expressions, 39

SUBSTR function, 387
SUBSTR2 function, 387
SUBSTR4 function, 387
SUBSTRB function, 387
SUBSTRC function, 387
subtotal values

deriving, 84
subtypes

dropping safely, 12

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-45 of Index-53

SUM function, 388
supplemental logging

identification key (full), 81
minimal, 81

SUSPEND clause
of ALTER SYSTEM, 15

sustained standby recovery mode, 68
SWITCH LOGFILE clause

of ALTER SYSTEM, 14
SYNC WITH PRIMARY

clause of ALTER SESSION, 110
synchronous refresh, 39
synonyms

changing the definition of, 23
creating, 13
granting system privileges for, 29
local, 13
private, dropping, 23
public, 14

dropping, 23
remote, 13
removing from the database, 23
renaming, 22, 23
synonyms for, 13

syntax diagrams, A-1
loops, A-4
multipart diagrams, A-4

SYS user
assigning password for, 62

SYS_CONNECT_BY_PATH function, 390
SYS_CONTEXT function, 391
SYS_DBURIGEN function, 400
SYS_EXTRACT_UTC function, 401
SYS_GUID function, 401
SYS_NC_ROWINFO$ column, 17, 203
SYS_OP_ZONE_ID function, 402
SYS_ROW_ETAG function, 404
SYS_SESSION_ROLES namespace, 392
SYS_TYPEID function, 405
SYS_XMLAGG function, 406
SYS_XMLGEN function, 406
SYSAUX clause

of CREATE DATABASE, 68
SYSAUX tablespace

creating, 68
SYSDATE function, 407
system change numbers

obtaining, 9
system control statements, 4

PL/SQL support of, 4
system global area

flushing, 11
updating, 10

system parameters
GLOBAL_TOPIC_ENABLED, 23

system partitioning, 124

system privileges
ADMINISTER ANY SQL TUNING SET, 42
ADMINISTER KEY MANAGEMENT, 45
ADMINISTER SQL MANAGEMENT OBJECT,

42
ADMINISTER SQL TUNING SET, 42
ALTER ANY SQL PROFILE, 42
ALTER DATABASE LINK, 43
ALTER PUBLIC DATABASE LINK, 43
BECOME USER, 52
CHANGE NOTIFICATION, 52
CREATE ANY SQL PROFILE, 42
CREATE PLUGGABLE DATABASE, 48
DROP ANY SQL PROFILE, 42
for job scheduler tasks, 29
for the Advisor framework, 42
granting, 133, 29

to a role, 34
to a user, 34
to PUBLIC, 34

MERGE ANY VIEW, 52
READ ANY TABLE, 50, 59
revoking, 24

from a role, 28
from a user, 28
from PUBLIC, 28

SET CONTAINER, 48
SYSTEM tablespace

locally managed, 66
SYSTEM user

assigning password for, 62
SYSTIMESTAMP function, 408

T
TABLE clause

of ANALYZE, 222
of INSERT, 67
of SELECT, 39
of TRUNCATE, 148
of UPDATE, 151

TABLE collection expression, 39
table compression, 27, 86, 23, 83

Advanced Row Compression, 84
basic, 83
during bulk load operations, 84
for archiving data, 84
Hybrid Columnar, 84

table locks,
and queries, 90
disabling, 161
duration of, 90
enabling, 161
EXCLUSIVE, 90, 93
modes of, 90
on partitions, 90

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-46 of Index-53

table locks (continued)
on remote database, 90
on subpartitions, 90
ROW EXCLUSIVE, 90, 92
ROW SHARE, 90, 92
SHARE, 90
SHARE ROW EXCLUSIVE, 92
SHARE UPDATE, 92

table partitions
compression of, 86, 83

table REF constraints, 3
of CREATE TABLE, 17

tables
adding a constraint to, 121
adding rows to, 67
aliases, 155

in DELETE, 220
allocating extents for, 92
assigning to a cluster, 97
changing degree of parallelism on, 28
changing existing values in, 151
collecting statistics on, 222
comments on, 243
compression of, 86, 83
creating, 17

multiple, 140
creating comments about, 242
data stored outside database, 17
deallocating unused space from, 92
default physical attributes

changing, 85
degree of parallelism

specifying, 17
disassociating statistics types from, 1
dropping

along with cluster, 237
along with owner, 15
indexes of, 1
partitions of, 1

enabling tracking, 134
external, 92

creating, 17
restrictions on, 95

externally organized, 92
flashing back to an earlier version, 24
granting system privileges for, 29
heap organized, 91
index-organized, 91

overflow segment for, 94
space in index block, 93

inserting rows with a subquery, 136
inserting using the direct-path method, 68
joining in a query, 39
LOB storage of, 47
locking, 90

tables (continued)
logging

insert operations, 86
table creation, 17

migrated and chained rows in, 226
moving, 80
moving to a new segment, 28
moving, index-organized, 155
nested

storage characteristics, 17
object

creating, 21
querying, 17

of XMLType, creating, 17
organization, defining, 91
parallel creation of, 17
parallelism

setting default degree, 17
partition attributes of, 28
partitioning, 153, 17

allowing rows to move between partitions,
28

default attributes of, 28
physical attributes

changing, 85
purging from the recycle bin, 20
read-only mode, 97
read/write mode, 97
reference-partitioned, 124, 149, 123
relational

creating, 20
remote, accessing, 74
removing from the database, 1
removing rows from, 220
renaming, 95, 22
restricting

records in a block, 94
retrieving data from, 39
saving blocks in a cache, 128
SQL examples, 17
storage attributes

defining, 17
storage characteristics

defining, 47
storage properties of, 17, 98
subpartition attributes of, 28
synonyms for, 13
tablespace for

defining, 17, 82
temporary

duration of data, 80
session-specific, 57
transaction specific, 57

unclustering, 236
updating through views, 215
validating structure, 225

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-47 of Index-53

tables (continued)
XMLType, querying, 17

TABLESPACE clause
of ALTER INDEX ... REBUILD, 159
of CREATE CLUSTER, 42
of CREATE INDEX, 146
of CREATE MATERIALIZED VIEW, 22
of CREATE MATERIALIZED VIEW LOG, 45
of CREATE TABLE, 82

tablespaces
allocating space for users, 196
allowing write operations on, 193
automatic segment-space management, 172
backing up data files, 188
bigfile, 164

database default, 63
default temporary, 68
resizing, 187
undo, 57

bringing online, 192, 171
coalescing free extents, 187
converting

from permanent to temporary, 193
from temporary to permanent, 193

creating, 158
data files

adding, 181
renaming, 181

default, 91
specifying for a user, 209

default permanent, 68
default temporary, 91

learning name of, 91
designing media recovery, 65
dropping contents, 7
encrypting, 51
ending online backup, 189
extent size, 167
granting system privileges for, 29
in FLASHBACK mode, 181, 158
in FORCE LOGGING mode, 191, 168
locally managed, 54

altering, 186
logging attribute, 181, 158
managing extents of, 158
read only, 193
reconstructing lost or damaged, 65, 72
recovering, 65, 67
removing from the database, 5
renaming, 187
size of free extents in, 186
smallfile, 164

database default, 63
default temporary, 68
undo, 57

tablespaces (continued)
specifying

data files for, 166
for a table, 17
for a user, 195
for index rebuild, 156

taking offline, 192, 171
temp files

adding, 181
temporary

creating, 175
defining for the database, 59
shrinking, 187
specifying for a user, 209, 196

undo
altering, 186
creating, 57, 174
dropping, 6

TAN function, 409
TANH function, 410
TDE

See Transparent Data Encryption
temp files

bringing online, 75
defining for a tablespace, 159, 163, 164
defining for the database, 60
disabling autoextend, 75
dropping, 75, 190
enabling autoextend, 33, 75
extending automatically, 33
renaming, 72
resizing, 75
reusing, 33
shrinking, 190
size of, 33
specifying, 33
taking offline, 75

TEMPFILE clause
of ALTER DATABASE, 52, 75

TEMPORARY clause
of ALTER TABLESPACE, 193
of CREATE TABLESPACE, 175

temporary tables
creating, 17, 57
session-specific, 57
transaction-specific, 57

TEMPORARY TABLESPACE clause
of ALTER USER, 209
of ALTER USER. See CREATE USER, 206
of CREATE USER, 196

temporary tablespace groups
reassigning for a user, 209
specifying for a user, 196

temporary tablespaces
creating, 175
default, 91

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-48 of Index-53

temporary tablespaces (continued)
specifying extent management during

database creation, 60
specifying for a user, 209, 196

TEST clause
of ALTER DATABASE ... RECOVER, 67

testing for a set, 12
text, 62

date and number formats, 73
literals

in SQL syntax, 62
properties of CHAR and VARCHAR2 data

types, 63
syntax of, 62

text literals
conversion to database character set, 62

TH datetime format element suffix, 84
throughput

optimizing, 98
THSP datetime format element suffix, 84
TIME data type

DB2, 44
SQL/DS, 44

time format models
short, 76, 80

time zone
changing time zone data file, 285
converting data to particular, 31
determining for session, 363
formatting, 80
setting for the database, 57

TIME_BUCKET function, 412
TIME_ZONE session parameter, 113
timestamp

converting to local time zone, 31
TIMESTAMP data type, 20

DB2, 44
SQL/DS, 44

TIMESTAMP WITH LOCAL TIME ZONE data
type, 21

TIMESTAMP WITH TIME ZONE data type, 21
TIMESTAMP_TO_SCN function, 411
TO SAVEPOINT clause

of ROLLBACK, 37
TO_APPROX_COUNT_DISTINCT function, 415
TO_APPROX_PERCENTILE function, 416
TO_BINARY_DOUBLE function, 417
TO_BINARY_FLOAT function, 419
TO_BLOB (bfile) function, 420
TO_BLOB (raw) function, 421
TO_BOOLEAN function, 422
TO_CHAR (bfile|blob) function, 423
TO_CHAR (character) function, 424
TO_CHAR (datetime) function, 426

format models, 76, 84

TO_CHAR (number) function, 431
format models, 73, 84

TO_CHAR(boolean) function, 423
TO_CLOB (bfile|blob) function, 433
TO_CLOB (character) function, 434
TO_DATE function, 435

format models, 76, 83, 84
TO_DSINTERVAL function, 437
TO_LOB function, 439
TO_MULTI_BYTE function, 440
TO_NCHAR (character) function, 441
TO_NCHAR (datetime) function, 442
TO_NCHAR (number) function, 443
TO_NCHAR(boolean) function, 441
TO_NCLOB function, 443
TO_NUMBER function, 444

format models, 73
TO_SINGLE_BYTE function, 445
TO_TIMESTAMP function, 446
TO_TIMESTAMP_TZ function, 448
TO_UTC_TIMESTAMP_TZ function, 450
TO_VECTOR function, 452
TO_YMINTERVAL function, 453
top-N reporting, 11, 121, 324, 357, 39
tracking

enabling for a table, 95, 134
transaction control statements, 3

PL/SQL support of, 4
transactions

allowing to complete, 13
assigning

rollback segment to, 142
automatically committing, 2
changes, making permanent, 1
commenting on, 3
distributed, forcing, 106
ending, 1
implicit commit of, 2–4
in-doubt

committing, 2
forcing, 5
resolving, 144

isolation level, 142
locks, releasing, 1
naming, 144
read-only, 142
read/write, 142
rolling back, 13, 36

to a savepoint, 37
savepoints for, 38

TRANSLATE ... USING function, 456
TRANSLATE function, 455
TRANSLATE SQL object privilege

on a user, 64
Transparent Data Encryption, 69

key management, 5

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-49 of Index-53

TREAT function, 457
triggers,

compiling, 200
creating, 182
database

altering, 200
dropping, 10, 15

disabling, 162, 200
enabling, 161, 200, 202, 182
granting system privileges for, 29
INSTEAD OF

dropping, 207
re-creating, 183
removing from the database, 10
renaming, 202

TRIM function, 459
TRUNC (date) function, 460

format models, 518
TRUNC (number) function, 462
TRUNC(interval) function, 461
TRUNCATE PARTITION clause

of ALTER TABLE, 28
TRUNCATE SUBPARTITION clause

of ALTER TABLE, 28
TRUNCATE_CLUSTER statement, 145
TRUNCATE_TABLE statement, 147
type constructor expressions, 40
types

See object types or data types
TYPES clause

of ASSOCIATE STATISTICS, 228, 231
of DISASSOCIATE STATISTICS, 231

TZ_OFFSET function, 463

U
UID function, 464
unary operators, 1
UNDER object privilege

on a view, 64
UNDER_PATH condition, 22
undo

rollback, 98, 57
system managed, 98, 57

UNDO tablespace clause
of CREATE DATABASE, 57
of CREATE TABLESPACE, 174

undo tablespaces
creating, 57, 174
dropping, 6
modifying, 186
preserving unexpired data, 181, 158

UNDO_RETENTION initialization parameter
setting with ALTER SYSTEM, 24

unified audit policies
comments on, 243

unified audit policies (continued)
creating, 26
dropping, 235
modifying, 37

unified auditing
ALTER AUDIT POLICY statement, 37
AUDIT statement, 233
CREATE AUDIT POLICY statement, 26
DROP AUDIT POLICY statement, 235
NOAUDIT statement, 16

UNIFORM clause
of CREATE TABLESPACE, 158

UNION ALL set operator, 6
UNION set operator, 6
UNIQUE clause

of CREATE INDEX, 137
of CREATE TABLE, 17
of SELECT, 64

unique constraints
conditional, 160
enabling, 132
index on, 17

unique elements of, 363
unique indexes, 137
unique queries, 64
UNISTR function, 464
universal rowids

See urowids
UNNEST hint, 139
unnesting collections, 39

examples, 133
unnesting subqueries, 17
unpivot operations, 76

examples, 125
syntax, 47

UNQUIESCE clause
of ALTER SYSTEM, 15

UNRECOVERABLE, 156, 91
See also NOLOGGING clause

unsorted indexes, 147
UNUSABLE clause

of ALTER INDEX, 162
UNUSABLE LOCAL INDEXES clause

of ALTER MATERIALIZED VIEW, 28
of ALTER TABLE, 149

UPDATE BLOCK REFERENCES clause
of ALTER INDEX, 164, 165

UPDATE GLOBAL INDEXES clause
of ALTER TABLE, 28

update operations
collecting supplemental log data for, 81

UPDATE SET clause
of MERGE, 3

UPDATE statement, 151
updates

and simultaneous insert, 1

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-50 of Index-53

updates (continued)
using MERGE, 1, 3

UPGRADE clause
of ALTER DATABASE, 63
of ALTER TABLE, 28

UPPER function, 465
URLs

generating, 400
UROWID data type, 43
urowids, 43

and foreign tables, 43
and index-organized tables, 43
description of, 43

USABLE clause
of ALTER INDEX, 162

USE object privilege
on a SQL translation profile, 63

USE_BAND hint, 139
USE_CONCAT hint, 140
USE_CUBE hint, 140
USE_HASH hint, 141
USE_MERGE hint, 141
USE_NL hint, 141
USE_NL_WITH_INDEX hint, 142
USE_PRIVATE_OUTLINES session parameter,

113
USE_STORED_OUTLINES session parameter,

113, 23
USER function, 466
user groups

adding or dropping a member, 130
adding to a disk group, 130
dropping from a disk group, 130

USER SYS clause
of CREATE DATABASE, 62

USER SYSTEM clause
of CREATE DATABASE, 62

USER_COL_COMMENTS data dictionary view,
243

USER_INDEXTYPE_COMMENTS data dictionary
view, 244

USER_MVIEW_COMMENTS data dictionary
view, 244

USER_OPERATOR_COMMENTS data dictionary
view, 244

USER_TAB_COMMENTS data dictionary view,
243

user-defined functions, 520
name precedence of, 521
naming conventions, 521

user-defined operators, 11
user-defined statistics

dropping, 14, 17, 12, 1, 11
user-defined types, 45
USERENV function, 466
USERENV namespace, 391

users
allocating space for, 196
and database links, 77
assigning

default roles, 210
profiles, 197

authenticating, 215
authenticating to a remote server, 74
changing authentication, 215
creating, 189
default tablespaces for, 209, 195
denying access to tables and views, 90
external, 135, 193
global, 135, 194
granting system privileges for, 29
local, 135, 192
locking accounts, 197
operating system

adding to a disk group, 130
dropping from a disk group, 131

password expiration of, 197
removing from the database, 14
SQL examples, 189
temporary tablespaces for, 209, 196

USING BFILE clause
of CREATE JAVA, 174

USING BLOB clause
of CREATE JAVA, 174

USING clause
of ALTER INDEXTYPE, 171
of ASSOCIATE STATISTICS, 228, 230
of CREATE DATABASE LINK, 74
of CREATE INDEXTYPE, 166
of CREATE PLUGGABLE DATABASE, 96

USING CLOB clause
of CREATE JAVA, 174

USING INDEX clause
of ALTER MATERIALIZED VIEW, 29
of ALTER TABLE, 82
of constraints, 3
of CREATE MATERIALIZED VIEW, 25
of CREATE TABLE, 17

USING NO INDEX clause
of CREATE MATERIALIZED VIEW, 26

USING ROLLBACK SEGMENT clause
of ALTER MATERIALIZED VIEW ...

REFRESH, 32
of CREATE MATERIALIZED VIEW, 30

UTC
extracting from a datetime value, 401

UTC offset
replacing with time zone region name, 69

UTLCHN.SQL script, 226
UTLEXPT1.SQL script, 148
UTLXPLAN.SQL script, 17
UUID function, 468

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-51 of Index-53

UUID_TO_RAW function, 468

V
VALIDATE clause

of DROP TYPE, 12
VALIDATE REF UPDATE clause

of ANALYZE, 225
VALIDATE STRUCTURE clause

of ANALYZE, 225
VALIDATE_CONVERSION function, 469
validation

of clusters, 225
of database objects

offline, 226
of database objects, online, 226
of indexes, 225
of tables, 225

VALUE function, 472
VALUES clause

of CREATE INDEX, 151
of INSERT, 67

VALUES LESS THAN clause
of CREATE TABLE, 17

VAR_POP function, 472
VAR_SAMP function, 474
VARCHAR data type, 11
VARCHAR2 data type, 10

converting to NUMBER, 73
VARGRAPHIC data type

DB2, 44
SQL/DS, 44

VARIANCE function, 475
VARRAY clause

of ALTER TABLE, 53, 54
VARRAY column properties

of ALTER TABLE, 28, 53, 54
of CREATE MATERIALIZED VIEW, 16
of CREATE TABLE, 17, 33

varrays, 46
changing returned value, 28
compared with nested tables, 54
comparison rules, 54
creating, 184
dropping the body of, 13
dropping the specification of, 11
modifying column properties, 57
storage characteristics, 28, 17
storing out of line, 46

varying arrays
See varrays

Vector data type, 39
VECTOR function, 476
Vector Functions, 22
VECTOR_CHUNKS function, 477

VECTOR_DIMENSION_COUNT function, 488,
489

VECTOR_DIMS function, 488
VECTOR_DISTANCE function, 484
VECTOR_EMBEDDING function, 490
VECTOR_NORM function, 491
VECTOR_SERIALIZE function, 492
version queries

pseudocolumns for, 6
view constraints, 3, 211

and materialized views, 3
dropping, 17
modifying, 218

views
base tables

adding rows, 67
changing

definition, 16
values in base tables, 151

creating
before base tables, 207
comments about, 242
multiple, 140

definer’s rights, 214
defining, 203
dropping constraints on, 219
editioning, 207
granting system privileges for, 29
invoker’s rights, 213
modifying constraints on, 218
object, creating, 211
re-creating, 207
recompiling, 217
remote, accessing, 74
removing

from the database, 16
rows from the base table of, 220

renaming, 22
retrieving data from, 39
subquery of, 214

restricting, 203
synonyms for, 13
updatable, 215
with joins

and key-preserved tables, 215
making updatable, 215

XMLType, 203
XMLType, creating, 219
XMLType, querying, 203

virtual columns
adding to a table, 104
creating, 17
modifying, 104

VSIZE function, 493

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-52 of Index-53

W
WHERE clause

of DELETE, 227
of queries and subqueries, 39
of SELECT, 4
of UPDATE, 151

WIDTH_BUCKET function, 494
WITH ... AS clause

of SELECT, 39
WITH ADMIN OPTION clause

of GRANT, 36
WITH CHECK OPTION clause

of CREATE VIEW, 203, 206
of DELETE, 220
of INSERT, 67
of SELECT, 47
of UPDATE, 151

WITH clause
of SELECT, 60

WITH GRANT OPTION clause
of GRANT, 40

WITH HIERARCHY OPTION
of GRANT, 40

WITH INDEX CONTEXT clause
of CREATE OPERATOR, 66

WITH OBJECT ID clause
of CREATE MATERIALIZED VIEW LOG, 46

WITH PRIMARY KEY clause
of ALTER MATERIALIZED VIEW, 32
of CREATE MATERIALIZED VIEW ...

REFRESH, 29
of CREATE MATERIALIZED VIEW LOG, 46

WITH READ ONLY clause
of CREATE VIEW, 203, 206
of DELETE, 220
of INSERT, 67
of SELECT, 47
of UPDATE, 151

WITH ROWID clause
of column ref constraints, 3
of CREATE MATERIALIZED VIEW ...

REFRESH, 6
of CREATE MATERIALIZED VIEW LOG, 46

WITH SEQUENCE clause
of CREATE MATERIALIZED VIEW LOG, 46

WRITE clause
of COMMIT, 4

X
XML

conditions, 21
data

storage of, 17

XML (continued)
data (continued)

database repository
SQL access to, 21, 22

documents
producing from XML fragments, 406
retrieving from the database, 400

examples, F-8
format models, 88
fragments, 146
functions, 20

XMLAGG function, 495
XMLCAST function, 496
XMLCDATA function, 497
XMLCOLATTVAL function, 498
XMLCOMMENT function, 499
XMLCONCAT function, 499
XMLDATA pseudocolumn, 12
XMLDIFF function, 500
XMLELEMENT function, 502
XMLEXISTS function, 505
XMLFOREST function, 505
XMLGenFormatType object, 88
XMLIndex

creating, 155
modifying, 160

XMLISVALID function, 506
XMLPARSE function, 507
XMLPATCH function, 508
XMLPI function, 509
XMLQUERY function, 510
XMLSchemas

adding to a table, 17
single and multiple, 17

XMLSEQUENCE function, 511
XMLSERIALIZE function, 513
XMLTABLE function, 514
XMLTRANSFORM function, 517
XMLType columns

properties of, 28, 17
storage of, 17
storing in binary XML format, 17

XMLType storage clause
of CREATE TABLE, 17

XMLType tables
creating, 17, 149
creating index on, 158

XMLType views, 203
querying, 203

Z
zone maps

creating, 51
modifying, 45
removing from the database, 7

Index

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Index-53 of Index-53

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database SQL Language Reference
	Changes in Oracle Database Release 23ai
	New Features
	Deprecated Features
	Desupported Features

	1 Introduction to Oracle SQL
	History of SQL
	SQL Standards
	How SQL Works
	Common Language for All Relational Databases

	Using Enterprise Manager
	Lexical Conventions
	Tools Support

	2 Basic Elements of Oracle SQL
	Data Types
	Oracle Built-in Data Types
	Character Data Types
	CHAR Data Type
	NCHAR Data Type
	VARCHAR2 Data Type
	VARCHAR Data Type
	NVARCHAR2 Data Type

	Numeric Data Types
	NUMBER Data Type
	FLOAT Data Type
	Floating-Point Numbers
	BINARY_FLOAT
	BINARY_DOUBLE
	IEEE754 Conformance

	Numeric Precedence

	LONG Data Type
	Datetime and Interval Data Types
	DATE Data Type
	Using Julian Days

	TIMESTAMP Data Type
	TIMESTAMP WITH TIME ZONE Data Type
	TIMESTAMP WITH LOCAL TIME ZONE Data Type
	INTERVAL YEAR TO MONTH Data Type
	INTERVAL DAY TO SECOND Data Type
	Datetime/Interval Arithmetic
	Support for Daylight Saving Times
	Datetime and Interval Examples

	RAW and LONG RAW Data Types
	Large Object (LOB) Data Types
	BFILE Data Type
	BLOB Data Type
	CLOB Data Type
	NCLOB Data Type

	JSON Data Type
	Extended Data Types
	Boolean Data Type
	Vector Data Type

	Rowid Data Types
	ROWID Data Type
	UROWID Data Type

	ANSI, DB2, and SQL/DS Data Types
	User-Defined Types
	Object Types
	REF Data Types
	Varrays
	Nested Tables

	Oracle-Supplied Types
	Any Types
	ANYTYPE
	ANYDATA
	ANYDATASET

	XML Types
	XMLType
	URI Data Types
	URIFactory Package

	Spatial Types
	SDO_GEOMETRY
	SDO_TOPO_GEOMETRY
	SDO_GEORASTER

	Data Type Comparison Rules
	Numeric Values
	Datetime Values
	Binary Values
	Character Values
	Object Values
	Varrays and Nested Tables
	Data Type Precedence
	Data Conversion
	Implicit and Explicit Data Conversion
	Implicit Data Conversion
	Implicit Data Conversion Examples
	Explicit Data Conversion

	Security Considerations for Data Conversion

	Literals
	Text Literals
	Numeric Literals
	Integer Literals
	NUMBER and Floating-Point Literals

	Datetime Literals
	Interval Literals
	INTERVAL YEAR TO MONTH
	INTERVAL DAY TO SECOND

	Format Models
	Number Format Models
	Number Format Elements

	Datetime Format Models
	Datetime Format Elements
	Uppercase Letters in Date Format Elements
	Punctuation and Character Literals in Datetime Format Models

	Datetime Format Elements and Globalization Support
	ISO Standard Date Format Elements
	The RR Datetime Format Element
	RR Datetime Format Examples

	Datetime Format Element Suffixes

	Format Model Modifiers
	Format Model Examples

	String-to-Date Conversion Rules
	XML Format Model

	Nulls
	Nulls in SQL Functions
	Nulls with Comparison Conditions
	Nulls in Conditions

	Comments
	Comments Within SQL Statements
	Comments on Schema and Nonschema Objects
	Hints
	Alphabetical Listing of Hints
	ALL_ROWS Hint
	APPEND Hint
	APPEND_VALUES Hint
	CACHE Hint
	CHANGE_DUPKEY_ERROR_INDEX Hint
	CLUSTER Hint
	CLUSTERING Hint
	COMPRESS_IMMEDIATE Hint
	CONTAINERS Hint
	CURSOR_SHARING_EXACT Hint
	DISABLE_PARALLEL_DML Hint
	DRIVING_SITE Hint
	DYNAMIC_SAMPLING Hint
	ENABLE_PARALLEL_DML Hint
	FACT Hint
	FIRST_ROWS Hint
	FRESH_MV Hint
	FULL Hint
	GATHER_OPTIMIZER_STATISTICS Hint
	GROUPING Hint
	HASH Hint
	IGNORE_ROW_ON_DUPKEY_INDEX Hint
	INDEX Hint
	INDEX_ASC Hint
	INDEX_COMBINE Hint
	INDEX_DESC Hint
	INDEX_FFS Hint
	INDEX_JOIN Hint
	INDEX_SS Hint
	INDEX_SS_ASC Hint
	INDEX_SS_DESC Hint
	INMEMORY Hint
	INMEMORY_PRUNING Hint
	IVF_ITERATION Hint
	LEADING Hint
	MERGE Hint
	MODEL_MIN_ANALYSIS Hint
	MONITOR Hint
	NATIVE_FULL_OUTER_JOIN Hint
	NOAPPEND Hint
	NOCACHE Hint
	NO_CLUSTERING Hint
	NO_EXPAND Hint
	NO_FACT Hint
	NO_GATHER_OPTIMIZER_STATISTICS Hint
	NO_INDEX Hint
	NO_INDEX_FFS Hint
	NO_INDEX_SS Hint
	NO_INMEMORY Hint
	NO_INMEMORY_PRUNING Hint
	NO_MERGE Hint
	NO_MONITOR Hint
	NO_NATIVE_FULL_OUTER_JOIN Hint
	NO_PARALLEL Hint
	NOPARALLEL Hint
	NO_PARALLEL_INDEX Hint
	NOPARALLEL_INDEX Hint
	NO_PQ_CONCURRENT_UNION Hint
	NO_PQ_SKEW Hint
	NO_PUSH_PRED Hint
	NO_PUSH_SUBQ Hint
	NO_PX_JOIN_FILTER Hint
	NO_QUERY_TRANSFORMATION Hint
	NO_RESULT_CACHE Hint
	NO_REWRITE Hint
	NOREWRITE Hint
	NO_STAR_TRANSFORMATION Hint
	NO_STATEMENT_QUEUING Hint
	NO_UNNEST Hint
	NO_USE_BAND Hint
	NO_USE_CUBE Hint
	NO_USE_HASH Hint
	NO_USE_MERGE Hint
	NO_USE_NL Hint
	NO_XML_QUERY_REWRITE Hint
	NO_XMLINDEX_REWRITE Hint
	NO_ZONEMAP Hint
	OPTIMIZER_FEATURES_ENABLE Hint
	OPT_PARAM Hint
	ORDERED Hint
	PARALLEL Hint
	PARALLEL_INDEX Hint
	PQ_CONCURRENT_UNION Hint
	PQ_DISTRIBUTE Hint
	PQ_FILTER Hint
	PQ_SKEW Hint
	PUSH_PRED Hint
	PUSH_SUBQ Hint
	PX_JOIN_FILTER Hint
	QB_NAME Hint
	RESULT_CACHE Hint
	RETRY_ON_ROW_CHANGE Hint
	REWRITE Hint
	STAR_TRANSFORMATION Hint
	STATEMENT_QUEUING Hint
	UNNEST Hint
	USE_BAND Hint
	USE_CONCAT Hint
	USE_CUBE Hint
	USE_HASH Hint
	USE_MERGE Hint
	USE_NL Hint
	USE_NL_WITH_INDEX Hint

	Database Objects
	Schema Objects
	Nonschema Objects

	Database Object Names and Qualifiers
	Database Object Naming Rules
	Schema Object Naming Examples
	Schema Object Naming Guidelines

	Syntax for Schema Objects and Parts in SQL Statements
	How Oracle Database Resolves Schema Object References
	References to Objects in Other Schemas
	References to Objects in Remote Databases
	Creating Database Links
	Database Link Names
	Username and Password
	Database Connect String

	References to Database Links

	References to Partitioned Tables and Indexes
	References to Object Type Attributes and Methods

	3 Pseudocolumns
	Hierarchical Query Pseudocolumns
	CONNECT_BY_ISCYCLE Pseudocolumn
	CONNECT_BY_ISLEAF Pseudocolumn
	LEVEL Pseudocolumn

	Sequence Pseudocolumns
	Where to Use Sequence Values
	How to Use Sequence Values

	Version Query Pseudocolumns
	COLUMN_VALUE Pseudocolumn
	OBJECT_ID Pseudocolumn
	OBJECT_VALUE Pseudocolumn
	ORA_ROWSCN Pseudocolumn
	ORA_SHARDSPACE_NAME Pseudocolumn
	ROWID Pseudocolumn
	ROWNUM Pseudocolumn
	XMLDATA Pseudocolumn

	4 Operators
	About SQL Operators
	Unary and Binary Operators
	Operator Precedence

	Arithmetic Operators
	COLLATE Operator
	Concatenation Operator
	Hierarchical Query Operators
	PRIOR
	CONNECT_BY_ROOT

	Set Operators
	Multiset Operators
	MULTISET EXCEPT
	MULTISET INTERSECT
	MULTISET UNION

	SHARD_CHUNK_ID Operator
	User-Defined Operators
	Data Quality Operators
	FUZZY_MATCH
	PHONIC_ENCODE

	GRAPH_TABLE Operator
	Graph Reference
	Graph Pattern
	Path Pattern
	Element Pattern
	Vertex Pattern
	Edge Pattern
	Element Pattern Filler
	Element Variable
	Label Expression
	Element Pattern WHERE Clause

	Quantified Path Pattern
	Parenthesized Path Pattern
	Graph Pattern WHERE Clause

	Graph Table Shape
	COLUMNS Clause
	Rows Clause

	Value Expressions for GRAPH_TABLE
	Property Reference
	Vertex and Edge ID Functions
	Vertex and Edge Equal Predicates
	SOURCE and DESTINATION Predicates
	Aggregation in GRAPH_TABLE
	JSON Object Access Expressions for Property Graphs
	MATCHNUM
	ELEMENT_NUMBER
	PATH_NAME
	IS LABELED
	PROPERTY_EXISTS

	JSON_ID Operator

	5 Expressions
	About SQL Expressions
	Simple Expressions
	Analytic View Expressions
	Examples of Analytic View Expressions

	Compound Expressions
	CASE Expressions
	Column Expressions
	CURSOR Expressions
	Datetime Expressions
	Function Expressions
	Interval Expressions
	JSON Object Access Expressions
	Model Expressions
	Object Access Expressions
	Placeholder Expressions
	Scalar Subquery Expressions
	Type Constructor Expressions
	Expression Lists
	BOOLEAN Expressions

	6 Conditions
	About SQL Conditions
	Condition Precedence

	Comparison Conditions
	Simple Comparison Conditions
	Group Comparison Conditions

	Floating-Point Conditions
	Logical Conditions
	Model Conditions
	IS ANY Condition
	IS PRESENT Condition

	Multiset Conditions
	IS A SET Condition
	IS EMPTY Condition
	MEMBER Condition
	SUBMULTISET Condition

	Pattern-matching Conditions
	LIKE Condition
	REGEXP_LIKE Condition

	Null Conditions
	XML Conditions
	EQUALS_PATH Condition
	UNDER_PATH Condition

	SQL For JSON Conditions
	IS JSON Condition
	JSON_EQUAL Condition
	JSON_EXISTS Condition
	JSON_TEXTCONTAINS Condition

	Compound Conditions
	BETWEEN Condition
	EXISTS Condition
	IN Condition
	IS OF type Condition
	BOOLEAN Test Condition

	7 Functions
	About SQL Functions
	Aggregate Functions
	Analytic Functions
	Data Cartridge Functions
	Model Functions
	Object Reference Functions
	OLAP Functions
	Single-Row Functions
	Numeric Functions
	Character Functions Returning Character Values
	Character Functions Returning Number Values
	Character Set Functions
	Collation Functions
	Datetime Functions
	General Comparison Functions
	Conversion Functions
	Large Object Functions
	Collection Functions
	Hierarchical Functions
	Oracle Machine Learning for SQL Functions
	XML Functions
	JSON Functions
	Encoding and Decoding Functions
	NULL-Related Functions
	Environment and Identifier Functions
	Domain Functions
	Vector Functions
	UUID Functions

	ABS
	ACOS
	ADD_MONTHS
	ANY_VALUE
	APPROX_COUNT
	APPROX_COUNT_DISTINCT
	APPROX_COUNT_DISTINCT_AGG
	APPROX_COUNT_DISTINCT_DETAIL
	APPROX_MEDIAN
	APPROX_PERCENTILE
	APPROX_PERCENTILE_AGG
	APPROX_PERCENTILE_DETAIL
	APPROX_RANK
	APPROX_SUM
	ASCII
	ASCIISTR
	ASIN
	ATAN
	ATAN2
	AVG
	BFILENAME
	BIN_TO_NUM
	BITAND
	BIT_AND_AGG
	BITMAP_BIT_POSITION
	BITMAP_BUCKET_NUMBER
	BITMAP_CONSTRUCT_AGG
	BITMAP_COUNT
	BITMAP_OR_AGG
	BIT_OR_AGG
	BIT_XOR_AGG
	BOOLEAN_AND_AGG
	BOOLEAN_OR_AGG
	CARDINALITY
	CAST
	CEIL (datetime)
	CEIL (interval)
	CEIL (number)
	CHARTOROWID
	CHECKSUM
	CHR
	CLUSTER_DETAILS
	CLUSTER_DISTANCE
	CLUSTER_ID
	CLUSTER_PROBABILITY
	CLUSTER_SET
	COALESCE
	COLLATION
	COLLECT
	COMPOSE
	CON_DBID_TO_ID
	CON_GUID_TO_ID
	CON_ID_TO_CON_NAME
	CON_ID_TO_DBID
	CON_ID_TO_GUID
	CON_ID_TO_UID
	CON_NAME_TO_ID
	CON_UID_TO_ID
	CONCAT
	CONVERT
	CORR
	CORR_*
	CORR_S
	CORR_K

	COS
	COSH
	COUNT
	COVAR_POP
	COVAR_SAMP
	CUBE_TABLE
	CUME_DIST
	CURRENT_DATE
	CURRENT_TIMESTAMP
	CV
	DATAOBJ_TO_MAT_PARTITION
	DATAOBJ_TO_PARTITION
	DBTIMEZONE
	DECODE
	DECOMPOSE
	DENSE_RANK
	DEPTH
	DEREF
	DOMAIN_CHECK
	DOMAIN_CHECK_TYPE
	DOMAIN_DISPLAY
	DOMAIN_NAME
	DOMAIN_ORDER
	DUMP
	EMPTY_BLOB, EMPTY_CLOB
	EVERY
	EXISTSNODE
	EXP
	EXTRACT (datetime)
	EXTRACT (XML)
	EXTRACTVALUE
	FEATURE_COMPARE
	FEATURE_DETAILS
	FEATURE_ID
	FEATURE_SET
	FEATURE_VALUE
	FIRST
	FIRST_VALUE
	FLOOR (datetime)
	FLOOR (interval)
	FLOOR (number)
	FROM_TZ
	FROM_VECTOR
	GREATEST
	GROUP_ID
	GROUPING
	GROUPING_ID
	HEXTORAW
	INITCAP
	INSTR
	ITERATION_NUMBER
	IS_UUID
	JSON_ARRAY
	JSON_ARRAYAGG
	JSON_DATAGUIDE
	JSON_MERGEPATCH
	JSON_OBJECT
	JSON_OBJECTAGG
	JSON_QUERY
	JSON_SCALAR
	JSON_SERIALIZE
	JSON_TABLE
	JSON_TRANSFORM
	JSON_VALUE
	JSON Type Constructor
	KURTOSIS_POP
	KURTOSIS_SAMP
	LAG
	LAST
	LAST_DAY
	LAST_VALUE
	LEAD
	LEAST
	LENGTH
	LISTAGG
	LN
	LNNVL
	LOCALTIMESTAMP
	LOG
	LOWER
	LPAD
	LTRIM
	MAKE_REF
	MAX
	MEDIAN
	MIN
	MOD
	MONTHS_BETWEEN
	NANVL
	NCHR
	NEW_TIME
	NEXT_DAY
	NLS_CHARSET_DECL_LEN
	NLS_CHARSET_ID
	NLS_CHARSET_NAME
	NLS_COLLATION_ID
	NLS_COLLATION_NAME
	NLS_INITCAP
	NLS_LOWER
	NLS_UPPER
	NLSSORT
	NTH_VALUE
	NTILE
	NULLIF
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	NVL
	NVL2
	ORA_DM_PARTITION_NAME
	ORA_DST_AFFECTED
	ORA_DST_CONVERT
	ORA_DST_ERROR
	ORA_HASH
	ORA_INVOKING_USER
	ORA_INVOKING_USERID
	PATH
	PERCENT_RANK
	PERCENTILE_CONT
	PERCENTILE_DISC
	POWER
	POWERMULTISET
	POWERMULTISET_BY_CARDINALITY
	PREDICTION
	PREDICTION_BOUNDS
	PREDICTION_COST
	PREDICTION_DETAILS
	PREDICTION_PROBABILITY
	PREDICTION_SET
	PRESENTNNV
	PRESENTV
	PREVIOUS
	RANK
	RATIO_TO_REPORT
	RAWTOHEX
	RAWTONHEX
	RAW_TO_UUID
	REF
	REFTOHEX
	REGEXP_COUNT
	REGEXP_INSTR
	REGEXP_REPLACE
	REGEXP_SUBSTR
	REGR_ (Linear Regression) Functions
	REMAINDER
	REPLACE
	ROUND (datetime)
	ROUND (interval)
	ROUND (number)
	ROUND_TIES_TO_EVEN (number)
	ROW_NUMBER
	ROWIDTOCHAR
	ROWIDTONCHAR
	RPAD
	RTRIM
	SCN_TO_TIMESTAMP
	SESSIONTIMEZONE
	SET
	SIGN
	SIN
	SINH
	SKEWNESS_POP
	SKEWNESS_SAMP
	SOUNDEX
	SQRT
	STANDARD_HASH
	STATS_BINOMIAL_TEST
	STATS_CROSSTAB
	STATS_F_TEST
	STATS_KS_TEST
	STATS_MODE
	STATS_MW_TEST
	STATS_ONE_WAY_ANOVA
	STATS_T_TEST_*
	STATS_T_TEST_ONE
	STATS_T_TEST_PAIRED
	STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU

	STATS_WSR_TEST
	STDDEV
	STDDEV_POP
	STDDEV_SAMP
	SUBSTR
	SUM
	SYS_CONNECT_BY_PATH
	SYS_CONTEXT
	SYS_DBURIGEN
	SYS_EXTRACT_UTC
	SYS_GUID
	SYS_OP_ZONE_ID
	SYS_ROW_ETAG
	SYS_TYPEID
	SYS_XMLAGG
	SYS_XMLGEN
	SYSDATE
	SYSTIMESTAMP
	TAN
	TANH
	TIMESTAMP_TO_SCN
	TIME_BUCKET (datetime)
	TO_APPROX_COUNT_DISTINCT
	TO_APPROX_PERCENTILE
	TO_BINARY_DOUBLE
	TO_BINARY_FLOAT
	TO_BLOB (bfile)
	TO_BLOB (raw)
	TO_BOOLEAN
	TO_CHAR (bfile|blob)
	TO_CHAR (boolean)
	TO_CHAR (character)
	TO_CHAR (datetime)
	TO_CHAR (number)
	TO_CLOB (bfile|blob)
	TO_CLOB (character)
	TO_DATE
	TO_DSINTERVAL
	TO_LOB
	TO_MULTI_BYTE
	TO_NCHAR (boolean)
	TO_NCHAR (character)
	TO_NCHAR (datetime)
	TO_NCHAR (number)
	TO_NCLOB
	TO_NUMBER
	TO_SINGLE_BYTE
	TO_TIMESTAMP
	TO_TIMESTAMP_TZ
	TO_UTC_TIMESTAMP_TZ
	TO_VECTOR
	TO_YMINTERVAL
	TRANSLATE
	TRANSLATE ... USING
	TREAT
	TRIM
	TRUNC (datetime)
	TRUNC (interval)
	TRUNC (number)
	TZ_OFFSET
	UID
	UNISTR
	UPPER
	USER
	USERENV
	UUID
	UUID_TO_RAW
	VALIDATE_CONVERSION
	VALUE
	VAR_POP
	VAR_SAMP
	VARIANCE
	VECTOR
	VECTOR_CHUNKS
	VECTOR_DISTANCE
	L1_DISTANCE
	L2_DISTANCE
	COSINE_DISTANCE
	INNER_PRODUCT

	VECTOR_DIMS
	VECTOR_DIMENSION_COUNT
	VECTOR_DIMENSION_FORMAT
	VECTOR_EMBEDDING
	VECTOR_NORM
	VECTOR_SERIALIZE
	VSIZE
	WIDTH_BUCKET
	XMLAGG
	XMLCAST
	XMLCDATA
	XMLCOLATTVAL
	XMLCOMMENT
	XMLCONCAT
	XMLDIFF
	XMLELEMENT
	XMLEXISTS
	XMLFOREST
	XMLISVALID
	XMLPARSE
	XMLPATCH
	XMLPI
	XMLQUERY
	XMLSEQUENCE
	XMLSERIALIZE
	XMLTABLE
	XMLTRANSFORM
	CEIL, FLOOR, ROUND, and TRUNC Date Functions
	About User-Defined Functions
	Prerequisites
	Name Precedence
	Naming Conventions

	8 Common SQL DDL Clauses
	allocate_extent_clause
	constraint
	deallocate_unused_clause
	file_specification
	logging_clause
	parallel_clause
	physical_attributes_clause
	size_clause
	storage_clause
	annotations_clause

	9 SQL Queries and Subqueries
	About Queries and Subqueries
	Creating Simple Queries
	Hierarchical Queries
	Hierarchical Query Examples

	The Set Operators
	Sorting Query Results
	Joins
	Join Conditions
	Equijoins
	Band Joins
	Self Joins
	Cartesian Products
	Inner Joins
	Outer Joins
	Antijoins
	Semijoins

	Using Subqueries
	Unnesting of Nested Subqueries
	Selecting from the DUAL Table
	Distributed Queries

	10 SQL Statements: ADMINISTER KEY MANAGEMENT to ALTER JSON RELATIONAL DUALITY VIEW
	Types of SQL Statements
	Data Definition Language (DDL) Statements
	Data Manipulation Language (DML) Statements
	Transaction Control Statements
	Session Control Statements
	System Control Statements
	Embedded SQL Statements

	How the SQL Statement Chapters are Organized
	ADMINISTER KEY MANAGEMENT
	ALTER ANALYTIC VIEW
	ALTER ATTRIBUTE DIMENSION
	ALTER AUDIT POLICY (Unified Auditing)
	ALTER CLUSTER
	ALTER DATABASE
	ALTER DATABASE DICTIONARY
	ALTER DATABASE LINK
	ALTER DIMENSION
	ALTER DISKGROUP
	ALTER DOMAIN
	ALTER FLASHBACK ARCHIVE
	ALTER FUNCTION
	ALTER HIERARCHY
	ALTER INDEX
	ALTER INDEXTYPE
	ALTER INMEMORY JOIN GROUP
	ALTER JAVA
	ALTER JSON RELATIONAL DUALITY VIEW

	11 SQL Statements: ALTER LIBRARY to ALTER SESSION
	ALTER LIBRARY
	ALTER LOCKDOWN PROFILE
	ALTER MATERIALIZED VIEW
	ALTER MATERIALIZED VIEW LOG
	ALTER MATERIALIZED ZONEMAP
	ALTER MLE ENV
	ALTER MLE MODULE
	ALTER OPERATOR
	ALTER OUTLINE
	ALTER PACKAGE
	ALTER PLUGGABLE DATABASE
	ALTER PMEM FILESTORE
	ALTER PROCEDURE
	ALTER PROFILE
	ALTER PROPERTY GRAPH
	ALTER RESOURCE COST
	ALTER ROLE
	ALTER ROLLBACK SEGMENT
	ALTER SEQUENCE
	ALTER SESSION
	Initialization Parameters and ALTER SESSION
	Session Parameters and ALTER SESSION

	12 SQL Statements: ALTER SYNONYM to COMMENT
	ALTER SYNONYM
	ALTER SYSTEM
	ALTER TABLE
	ALTER TABLESPACE
	ALTER TABLESPACE SET
	ALTER TRIGGER
	ALTER TYPE
	ALTER USER
	ALTER VIEW
	ANALYZE
	ASSOCIATE STATISTICS
	AUDIT (Traditional Auditing)
	AUDIT (Unified Auditing)
	CALL
	COMMENT

	13 SQL Statements: COMMIT to CREATE JSON RELATIONAL DUALITY VIEW
	COMMIT
	CREATE ANALYTIC VIEW
	CREATE ATTRIBUTE DIMENSION
	CREATE AUDIT POLICY (Unified Auditing)
	CREATE CLUSTER
	CREATE CONTEXT
	CREATE CONTROLFILE
	CREATE DATABASE
	CREATE DATABASE LINK
	CREATE DIMENSION
	CREATE DIRECTORY
	CREATE DISKGROUP
	CREATE DOMAIN
	CREATE EDITION
	CREATE FLASHBACK ARCHIVE
	CREATE FUNCTION
	CREATE HIERARCHY
	CREATE HYBRID VECTOR INDEX
	CREATE INDEX
	CREATE INDEXTYPE
	CREATE INMEMORY JOIN GROUP
	CREATE JAVA
	CREATE JSON RELATIONAL DUALITY VIEW

	14 SQL Statements: CREATE LIBRARY to CREATE SCHEMA
	CREATE LIBRARY
	CREATE LOCKDOWN PROFILE
	CREATE LOGICAL PARTITION TRACKING
	CREATE MATERIALIZED VIEW
	CREATE MATERIALIZED VIEW LOG
	CREATE MATERIALIZED ZONEMAP
	CREATE MLE ENV
	CREATE MLE MODULE
	CREATE OPERATOR
	CREATE OUTLINE
	CREATE PACKAGE
	CREATE PACKAGE BODY
	CREATE PFILE
	CREATE PLUGGABLE DATABASE
	CREATE PMEM FILESTORE
	CREATE PROCEDURE
	CREATE PROFILE
	CREATE PROPERTY GRAPH
	CREATE RESTORE POINT
	CREATE ROLE
	CREATE ROLLBACK SEGMENT
	CREATE SCHEMA

	15 SQL Statements: CREATE SEQUENCE to DROP CLUSTER
	CREATE SEQUENCE
	CREATE SPFILE
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLESPACE
	CREATE TABLESPACE SET
	CREATE TRIGGER
	CREATE TRUE CACHE
	CREATE TYPE
	CREATE TYPE BODY
	CREATE USER
	CREATE VECTOR INDEX
	CREATE VIEW
	DELETE
	DISASSOCIATE STATISTICS
	DROP ANALYTIC VIEW
	DROP ATTRIBUTE DIMENSION
	DROP AUDIT POLICY (Unified Auditing)
	DROP CLUSTER

	16 SQL Statements: DROP CONTEXT to DROP JAVA
	DROP CONTEXT
	DROP DATABASE
	DROP DATABASE LINK
	DROP DIMENSION
	DROP DIRECTORY
	DROP DISKGROUP
	DROP DOMAIN
	DROP EDITION
	DROP FLASHBACK ARCHIVE
	DROP FUNCTION
	DROP HIERARCHY
	DROP INDEX
	DROP INDEXTYPE
	DROP INMEMORY JOIN GROUP
	DROP JAVA

	17 SQL Statements: DROP LIBRARY to DROP SYNONYM
	DROP LIBRARY
	DROP LOCKDOWN PROFILE
	DROP MATERIALIZED VIEW
	DROP MATERIALIZED VIEW LOG
	DROP MATERIALIZED ZONEMAP
	DROP MLE ENV
	DROP MLE MODULE
	DROP OPERATOR
	DROP OUTLINE
	DROP PACKAGE
	DROP PLUGGABLE DATABASE
	DROP PMEM FILESTORE
	DROP PROCEDURE
	DROP PROFILE
	DROP PROPERTY GRAPH
	DROP RESTORE POINT
	DROP ROLE
	DROP ROLLBACK SEGMENT
	DROP SEQUENCE
	DROP SYNONYM

	18 SQL Statements: DROP TABLE to LOCK TABLE
	DROP TABLE
	DROP TABLESPACE
	DROP TABLESPACE SET
	DROP TRIGGER
	DROP TYPE
	DROP TYPE BODY
	DROP USER
	DROP VIEW
	EXPLAIN PLAN
	FLASHBACK DATABASE
	FLASHBACK TABLE
	GRANT
	INSERT
	LOCK TABLE

	19 SQL Statements: MERGE to UPDATE
	MERGE
	NOAUDIT (Traditional Auditing)
	NOAUDIT (Unified Auditing)
	PURGE
	RENAME
	REVOKE
	ROLLBACK
	SAVEPOINT
	SELECT
	SET CONSTRAINT[S]
	SET ROLE
	SET TRANSACTION
	TRUNCATE CLUSTER
	TRUNCATE TABLE
	UPDATE

	A How to Read Syntax Diagrams
	Graphic Syntax Diagrams
	Required Keywords and Parameters
	Optional Keywords and Parameters
	Syntax Loops
	Multipart Diagrams

	Backus-Naur Form Syntax

	B Automatic and Manual Locking Mechanisms During SQL Operations
	List of Nonblocking DDLs
	Automatic Locks in DML Operations
	Automatic Locks in DDL Operations
	Exclusive DDL Locks
	Share DDL Locks
	Breakable Parse Locks

	Manual Data Locking

	C Oracle and Standard SQL
	ANSI Standards
	ISO Standards
	Oracle Compliance to Core SQL
	Oracle Support for Optional Features of SQL/Foundation
	Oracle Compliance with SQL/CLI
	Oracle Compliance with SQL/PSM
	Oracle Compliance with SQL/MED
	Oracle Compliance with SQL/OLB
	Oracle Compliance with SQL/JRT
	Oracle Compliance with SQL/XML
	Oracle Compliance with SQL/MDA
	Oracle Compliance with SQL/PGQ
	Oracle Compliance with FIPS 127-2
	Oracle Extensions to Standard SQL
	Oracle Compliance with Older Standards
	Character Set Support

	D Oracle Regular Expression Support
	Multilingual Regular Expression Syntax
	Regular Expression Operator Multilingual Enhancements
	Perl-influenced Extensions in Oracle Regular Expressions

	E Oracle SQL Reserved Words and Keywords
	Oracle SQL Reserved Words
	Oracle SQL Keywords

	F Extended Examples
	Using Extensible Indexing
	Using XML in SQL Statements

	Index

