Oracle® Database
SQL Language Reference

23ai
F47038-26
July 2025

ORACLE"

Oracle Database SQL Language Reference, 23ai
F47038-26

Copyright © 1996, 2025, Oracle and/or its affiliates.
Primary Author: Usha Krishnamurthy

Contributors: Abhishek Munnolimath , Adrian Daniel Popescu, Alan Williams, Alfonso Colunga Sosa , Andy Witkowski,
Atif Chaudhry, Beda Hammerschmidt, Bill Lee, Chris Saxon, Drew Adams, Gerald Venzl, Giridhar Ravipati, Gopal
Mulagund, Gregg Christman, Hermann Baer, Huagang Li , lan Neall, James Stamos, Jan Michels, Josh Spiegel,
Laurent Daynes, Loic Lefevre, Mahesh Girkar, Mark Dilman, Martin Bach, Mary Beth Roeser, Meichun Hsu, Naveen
Gopal, Nigel Bayliss, Nishant Chaudhary, Oskar Van Rest, Patricia Huey, Peter Knaggs, Sabrina Petride, Shashaanka
Agrawal, Sriram Krishnamurthy, Sergiusz Wolicki, Thomas Baby, Vlad loan Haprian, Ya Li, Yanfei Fan, Yi Ouyang,
Yunrui Li, Zhen Hua Li , Zhengiang Fan

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Related Documents [
Conventions ii

Changes in This Release for Oracle Database SQL Language Reference

Changes in Oracle Database Release 23ai i

1 Introduction to Oracle SQL

History of SQL 1

SQL Standards 1

How SQL Works 1

Common Language for All Relational Databases 2

Using Enterprise Manager 2

Lexical Conventions 2

Tools Support 3

2 Basic Elements of Oracle SQL

Data Types 1
Oracle Built-in Data Types

Character Data Types 8

Numeric Data Types 12

LONG Data Type 17

Datetime and Interval Data Types 18

RAW and LONG RAW Data Types 27

Large Object (LOB) Data Types 28

JSON Data Type 30

Extended Data Types 33

Boolean Data Type 34

Vector Data Type 39

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page i of xxvi

Rowid Data Types 42

ROWID Data Type 42
UROWID Data Type 43
ANSI, DB2, and SQL/DS Data Types 43
User-Defined Types 45
Object Types 45
REF Data Types 45
Varrays 46
Nested Tables 46
Oracle-Supplied Types 46
Any Types 47
ANYTYPE 47
ANYDATA 47
ANYDATASET 47
XML Types 47
XMLType 47
URI Data Types 48
URIFactory Package 49
Spatial Types 49
SDO_GEOMETRY 49
SDO_TOPO_GEOMETRY 50
SDO_GEORASTER 50
Data Type Comparison Rules 50
Numeric Values 50
Datetime Values 51
Binary Values 51
Character Values 51
Object Values 54
Varrays and Nested Tables 54
Data Type Precedence 55
Data Conversion 55
Implicit and Explicit Data Conversion 55
Implicit Data Conversion 55
Implicit Data Conversion Examples 58
Explicit Data Conversion 58
Security Considerations for Data Conversion 60
Literals 61
Text Literals 62
Numeric Literals 63
Integer Literals 63
NUMBER and Floating-Point Literals 64
Datetime Literals 66

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page ii of xxvi

Interval Literals
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
Format Models
Number Format Models
Number Format Elements
Datetime Format Models
Datetime Format Elements
Datetime Format Elements and Globalization Support
ISO Standard Date Format Elements
The RR Datetime Format Element
Datetime Format Element Suffixes
Format Model Modifiers
Format Model Examples
String-to-Date Conversion Rules
XML Format Model
Nulls
Nulls in SQL Functions
Nulls with Comparison Conditions
Nulls in Conditions
Comments
Comments Within SQL Statements
Comments on Schema and Nonschema Objects
Hints
Alphabetical Listing of Hints
ALL_ROWS Hint
APPEND Hint
APPEND_VALUES Hint
CACHE Hint
CHANGE_DUPKEY_ERROR_INDEX Hint
CLUSTER Hint
CLUSTERING Hint
COMPRESS_IMMEDIATE Hint
CONTAINERS Hint
CURSOR_SHARING_EXACT Hint
DISABLE_PARALLEL_DML Hint
DRIVING_SITE Hint
DYNAMIC_SAMPLING Hint
ENABLE_PARALLEL_DML Hint
FACT Hint
FIRST_ROWS Hint
FRESH_MV Hint

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

69
70
71
73
73
74
76
77
82
83
83
84
84
85
87
88
89
90
90
90
91
91
92
92
98
98
99
99
100
100
101
101
102
102
103
103
103
104
104
105
105
105

July 30, 2025
Page iii of xxvi

FULL Hint 106

GATHER_OPTIMIZER_STATISTICS Hint 106
GROUPING Hint 107
HASH Hint 107
IGNORE_ROW_ON_DUPKEY_INDEX Hint 107
INDEX Hint 108
INDEX_ASC Hint 109
INDEX_COMBINE Hint 109
INDEX_DESC Hint 110
INDEX_FFS Hint 110
INDEX_JOIN Hint 110
INDEX_SS Hint 111
INDEX_SS_ASC Hint 111
INDEX_SS_DESC Hint 112
INMEMORY Hint 112
INMEMORY_PRUNING Hint 113
IVF_ITERATION Hint 113
LEADING Hint 113
MERGE Hint 113
MODEL_MIN_ANALYSIS Hint 114
MONITOR Hint 114
NATIVE_FULL_OUTER_JOIN Hint 115
NOAPPEND Hint 115
NOCACHE Hint 115
NO_CLUSTERING Hint 115
NO_EXPAND Hint 116
NO_FACT Hint 116
NO_GATHER_OPTIMIZER_STATISTICS Hint 116
NO_INDEX Hint 117
NO_INDEX_FFS Hint 117
NO_INDEX_SS Hint 118
NO_INMEMORY Hint 118
NO_INMEMORY_PRUNING Hint 118
NO_MERGE Hint 118
NO_MONITOR Hint 119
NO_NATIVE_FULL_OUTER_JOIN Hint 119
NO_PARALLEL Hint 119
NOPARALLEL Hint 120
NO_PARALLEL_INDEX Hint 120
NOPARALLEL_INDEX Hint 120
NO_PQ_CONCURRENT_UNION Hint 120
NO_PQ_SKEW Hint 121

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page iv of xxvi

NO_PUSH_PRED Hint 121

NO_PUSH_SUBQ Hint 121
NO_PX_JOIN_FILTER Hint 122
NO_QUERY_TRANSFORMATION Hint 122
NO_RESULT_CACHE Hint 122
NO_REWRITE Hint 122
NOREWRITE Hint 123
NO_STAR_TRANSFORMATION Hint 123
NO_STATEMENT_QUEUING Hint 123
NO_UNNEST Hint 123
NO_USE_BAND Hint 124
NO_USE_CUBE Hint 124
NO_USE_HASH Hint 124
NO_USE_MERGE Hint 124
NO_USE_NL Hint 125
NO_XML_QUERY_REWRITE Hint 125
NO_XMLINDEX_REWRITE Hint 125
NO_ZONEMAP Hint 126
OPTIMIZER_FEATURES_ENABLE Hint 126
OPT_PARAM Hint 126
ORDERED Hint 127
PARALLEL Hint 127
PARALLEL_INDEX Hint 130
PQ_CONCURRENT_UNION Hint 130
PQ_DISTRIBUTE Hint 131
PQ_FILTER Hint 133
PQ_SKEW Hint 134
PUSH_PRED Hint 134
PUSH_SUBQ Hint 134
PX_JOIN_FILTER Hint 135
QB_NAME Hint 135
RESULT_CACHE Hint 135
RETRY_ON_ROW_CHANGE Hint 137
REWRITE Hint 137
STAR_TRANSFORMATION Hint 138
STATEMENT_QUEUING Hint 138
UNNEST Hint 139
USE_BAND Hint 139
USE_CONCAT Hint 140
USE_CUBE Hint 140
USE_HASH Hint 141
USE_MERGE Hint 141

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page v of xxvi

SQL Language Reference

USE_NL Hint 141
USE_NL_WITH_INDEX Hint 142
Database Objects 142
Schema Objects 142
Nonschema Objects 143
Database Object Names and Qualifiers 144
Database Object Naming Rules 144
Schema Object Naming Examples 148
Schema Object Naming Guidelines 149
Syntax for Schema Objects and Parts in SQL Statements 149
How Oracle Database Resolves Schema Object References 150
References to Objects in Other Schemas 151
References to Objects in Remote Databases 151
Creating Database Links 151
References to Database Links 152
References to Partitioned Tables and Indexes 153
References to Object Type Attributes and Methods 155
3 Pseudocolumns
Hierarchical Query Pseudocolumns 1
CONNECT_BY_ISCYCLE Pseudocolumn 1
CONNECT_BY_ISLEAF Pseudocolumn 2
LEVEL Pseudocolumn 2
Sequence Pseudocolumns 3
Where to Use Sequence Values 4
How to Use Sequence Values 4
Version Query Pseudocolumns 6
COLUMN_VALUE Pseudocolumn 6
OBJECT _ID Pseudocolumn 8
OBJECT_VALUE Pseudocolumn 8
ORA_ROWSCN Pseudocolumn 9
ORA_SHARDSPACE_NAME Pseudocolumn 10
ROWID Pseudocolumn 10
ROWNUM Pseudocolumn 11
XMLDATA Pseudocolumn 12
4 Operators
About SQL Operators
Unary and Binary Operators
Operator Precedence
July 30, 2025

F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

Page vi of xxvi

Arithmetic Operators 2
COLLATE Operator 3
Concatenation Operator 4
Hierarchical Query Operators 5
PRIOR 5
CONNECT_BY_ROOT 6
Set Operators 6
Multiset Operators 6
MULTISET EXCEPT 7
MULTISET INTERSECT 8
MULTISET UNION 9
SHARD_CHUNK_ID Operator 9
User-Defined Operators 11
Data Quality Operators 11
FUZZY_MATCH 11
PHONIC_ENCODE 13
GRAPH_TABLE Operator 15
Graph Reference 18
Graph Pattern 20
Path Pattern 22
Element Pattern 25
Quantified Path Pattern 35
Parenthesized Path Pattern 38

Graph Pattern WHERE Clause 40

Graph Table Shape 41
COLUMNS Clause 41

Rows Clause 44

Value Expressions for GRAPH_TABLE 49
Property Reference 49

Vertex and Edge ID Functions 51

Vertex and Edge Equal Predicates 53
SOURCE and DESTINATION Predicates 54
Aggregation in GRAPH_TABLE 55

JSON Object Access Expressions for Property Graphs 58
MATCHNUM 59
ELEMENT_NUMBER 61
PATH_NAME 62

IS LABELED 64
PROPERTY_EXISTS 65
JSON_ID Operator 66

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page vii of xxvi

5 Expressions

About SQL Expressions
Simple Expressions
Analytic View Expressions

Examples of Analytic View Expressions 23
Compound Expressions 26
CASE Expressions 27
Column Expressions 29
CURSOR Expressions 29
Datetime Expressions 31
Function Expressions 32
Interval Expressions 33
JSON Object Access Expressions 34
Model Expressions 36
Object Access Expressions 38
Placeholder Expressions 39
Scalar Subquery Expressions 39
Type Constructor Expressions 40
Expression Lists 41
BOOLEAN Expressions 43

6 Conditions

About SQL Conditions 1
Condition Precedence 3
Comparison Conditions 3
Simple Comparison Conditions 5
Group Comparison Conditions 6
Floating-Point Conditions 8
Logical Conditions 9
Model Conditions 10
IS ANY Condition 10
IS PRESENT Condition 11
Multiset Conditions 12
IS A SET Condition 12
IS EMPTY Condition 13
MEMBER Condition 14
SUBMULTISET Condition 14
Pattern-matching Conditions 15
LIKE Condition 15
REGEXP_LIKE Condition 19

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page viii of xxvi

Null Conditions 21

XML Conditions 21
EQUALS_PATH Condition 21
UNDER_PATH Condition 22

SQL For JSON Conditions 23
IS JSON Condition 23
JSON_EQUAL Condition 30
JSON_EXISTS Condition 30
JSON_TEXTCONTAINS Condition 34

Compound Conditions 36

BETWEEN Condition 37

EXISTS Condition 38

IN Condition 38

IS OF type Condition 41

BOOLEAN Test Condition 42

7 Functions

About SQL Functions 2

Aggregate Functions

Analytic Functions 6

Data Cartridge Functions 13

Model Functions 14

Object Reference Functions 14

OLAP Functions 14

Single-Row Functions 14
Numeric Functions 14
Character Functions Returning Character Values 15
Character Functions Returning Number Values 16
Character Set Functions 16
Collation Functions 16
Datetime Functions 16
General Comparison Functions 17
Conversion Functions 18
Large Object Functions 19
Collection Functions 19
Hierarchical Functions 19
Oracle Machine Learning for SQL Functions 19
XML Functions 20
JSON Functions 21
Encoding and Decoding Functions 21
NULL-Related Functions 21

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page ix of xxvi

Environment and Identifier Functions 22

Domain Functions 22

Vector Functions 22

UUID Functions 23
ABS 23
ACOS 24
ADD_MONTHS 24
ANY_VALUE 25
APPROX_COUNT 26
APPROX_COUNT_DISTINCT 27
APPROX_COUNT_DISTINCT_AGG 28
APPROX_COUNT_DISTINCT_DETAIL 29
APPROX_MEDIAN 32
APPROX_PERCENTILE 35
APPROX_PERCENTILE_AGG 38
APPROX_PERCENTILE_DETAIL 38
APPROX_RANK 42
APPROX_SUM 43
ASCII 44
ASCIISTR 44
ASIN 45
ATAN 46
ATAN2 46
AVG 47
BFILENAME 49
BIN_TO_NUM 50
BITAND 51
BIT_AND_AGG 53
BITMAP_BIT_POSITION 54
BITMAP_BUCKET_NUMBER 54
BITMAP_CONSTRUCT_AGG 55
BITMAP_COUNT 55
BITMAP_OR_AGG 56
BIT_OR_AGG 56
BIT_XOR_AGG 57
BOOLEAN_AND_AGG 58
BOOLEAN_OR_AGG 59
CARDINALITY 60
CAST 60
CEIL (datetime) 67
CEIL (interval) 68
CEIL (number) 69

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page x of xxvi

CHARTOROWID 70

CHECKSUM 70
CHR 71
CLUSTER_DETAILS 73
CLUSTER_DISTANCE 76
CLUSTER_ID 78
CLUSTER_PROBABILITY 81
CLUSTER_SET 83
COALESCE 86
COLLATION 87
COLLECT 88
COMPOSE 89
CON_DBID_TO_ID 90
CON_GUID_TO_ID 91
CON_ID_TO_CON_NAME 92
CON_ID_TO_DBID 92
CON_ID_TO_GUID 93
CON_ID_TO_UID 94
CON_NAME_TO_ID 94
CON_UID_TO_ID 95
CONCAT 96
CONVERT 97
CORR 99
CORR_* 100

CORR_S 102

CORR_K 102
cos 103
COSH 103
COUNT 104
COVAR_POP 106
COVAR_SAMP 108
CUBE_TABLE 109
CUME_DIST 111
CURRENT_DATE 112
CURRENT_TIMESTAMP 113
cv 114
DATAOBJ_TO_MAT_PARTITION 115
DATAOBJ_TO_PARTITION 116
DBTIMEZONE 117
DECODE 117
DECOMPOSE 119
DENSE_RANK 120

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xi of xxvi

DEPTH 122

DEREF 123
DOMAIN_CHECK 124
DOMAIN_CHECK_TYPE 129
DOMAIN_DISPLAY 133
DOMAIN_NAME 135
DOMAIN_ORDER 137
DUMP 139
EMPTY_BLOB, EMPTY_CLOB 141
EVERY 141
EXISTSNODE 142
EXP 143
EXTRACT (datetime) 144
EXTRACT (XML) 146
EXTRACTVALUE 147
FEATURE_COMPARE 148
FEATURE_DETAILS 150
FEATURE_ID 153
FEATURE_SET 155
FEATURE_VALUE 158
FIRST 161
FIRST_VALUE 163
FLOOR (datetime) 165
FLOOR (interval) 166
FLOOR (number) 167
FROM_Tz 168
FROM_VECTOR 168
GREATEST 170
GROUP_ID 171
GROUPING 172
GROUPING_ID 173
HEXTORAW 174
INITCAP 175
INSTR 175
ITERATION_NUMBER 177
IS_UUID 179
JSON_ARRAY 179
JSON_ARRAYAGG 182
JSON_DATAGUIDE 185
JSON_MERGEPATCH 186
JSON_OBJECT 188
JSON_OBJECTAGG 193

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xii of xxvi

JSON_QUERY 195

JSON_SCALAR 202
JSON_SERIALIZE 203
JSON_TABLE 205
JSON_TRANSFORM 216
JSON_VALUE 229
JSON Type Constructor 236
KURTOSIS_POP 237
KURTOSIS_SAMP 238
LAG 238
LAST 240
LAST_DAY 240
LAST VALUE 241
LEAD 244
LEAST 245
LENGTH 246
LISTAGG 247
LN 251
LNNVL 252
LOCALTIMESTAMP 253
LOG 254
LOWER 254
LPAD 255
LTRIM 256
MAKE_REF 257
MAX 257
MEDIAN 259
MIN 261
MOD 262
MONTHS_BETWEEN 264
NANVL 264
NCHR 265
NEW_TIME 266
NEXT_DAY 267
NLS_CHARSET_DECL_LEN 267
NLS_CHARSET_ID 268
NLS CHARSET_NAME 268
NLS_COLLATION_ID 269
NLS_COLLATION_NAME 269
NLS_INITCAP 271
NLS_LOWER 272
NLS_UPPER 272

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xiii of xxvi

NLSSORT 273

NTH_VALUE 276
NTILE 278
NULLIF 279
NUMTODSINTERVAL 280
NUMTOYMINTERVAL 281
NVL 282
NVL2 283
ORA_DM_PARTITION_NAME 284
ORA_DST_AFFECTED 285
ORA_DST_CONVERT 285
ORA_DST_ERROR 286
ORA_HASH 287
ORA_INVOKING_USER 288
ORA_INVOKING_USERID 288
PATH 289
PERCENT_RANK 290
PERCENTILE_CONT 292
PERCENTILE_DISC 294
POWER 296
POWERMULTISET 297
POWERMULTISET_BY_CARDINALITY 298
PREDICTION 299
PREDICTION_BOUNDS 303
PREDICTION_COST 305
PREDICTION_DETAILS 309
PREDICTION_PROBABILITY 313
PREDICTION_SET 317
PRESENTNNV 320
PRESENTV 322
PREVIOUS 323
RANK 324
RATIO_TO_REPORT 326
RAWTOHEX 326
RAWTONHEX 327
RAW_TO_UUID 328
REF 328
REFTOHEX 329
REGEXP_COUNT 330
REGEXP_INSTR 335
REGEXP_REPLACE 338
REGEXP_SUBSTR 343

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xiv of xxvi

REGR_ (Linear Regression) Functions 346

REMAINDER 351
REPLACE 352
ROUND (datetime) 353
ROUND (interval) 353
ROUND (number) 354
ROUND_TIES_TO_EVEN (number) 356
ROW_NUMBER 356
ROWIDTOCHAR 358
ROWIDTONCHAR 359
RPAD 359
RTRIM 360
SCN_TO_TIMESTAMP 361
SESSIONTIMEZONE 363
SET 363
SIGN 364
SIN 365
SINH 365
SKEWNESS_POP 366
SKEWNESS_SAMP 366
SOUNDEX 367
SQRT 368
STANDARD_HASH 369
STATS_BINOMIAL_TEST 369
STATS_CROSSTAB 371
STATS_F_TEST 372
STATS_KS_TEST 373
STATS_MODE 374
STATS_MW_TEST 376
STATS_ONE_WAY_ANOVA 377
STATS_T_TEST_* 378

STATS_T_TEST_ONE 380

STATS_T_TEST_PAIRED 380

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU 380
STATS_WSR_TEST 382
STDDEV 382
STDDEV_POP 384
STDDEV_SAMP 385
SUBSTR 387
SUM 388
SYS_CONNECT_BY_PATH 390
SYS_CONTEXT 391

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xv of xxvi

SYS_DBURIGEN 400

SYS_EXTRACT_UTC 401
SYS_GUID 401
SYS_OP_ZONE_ID 402
SYS_ROW_ETAG 404
SYS_TYPEID 405
SYS_XMLAGG 406
SYS_XMLGEN 406
SYSDATE 407
SYSTIMESTAMP 408
TAN 409
TANH 410
TIMESTAMP_TO_SCN 411
TIME_BUCKET (datetime) 412
TO_APPROX_COUNT_DISTINCT 415
TO_APPROX_PERCENTILE 416
TO_BINARY_DOUBLE 417
TO_BINARY_FLOAT 419
TO_BLOB (bfile) 420
TO_BLOB (raw) 421
TO_BOOLEAN 422
TO_CHAR (bfile|blob) 423
TO_CHAR (boolean) 423
TO_CHAR (character) 424
TO_CHAR (datetime) 426
TO_CHAR (number) 431
TO_CLOB (bfile|blob) 433
TO_CLOB (character) 434
TO_DATE 435
TO_DSINTERVAL 437
TO_LOB 439
TO_MULTI_BYTE 440
TO_NCHAR (boolean) 441
TO_NCHAR (character) 441
TO_NCHAR (datetime) 442
TO_NCHAR (number) 443
TO_NCLOB 443
TO_NUMBER 444
TO_SINGLE_BYTE 445
TO_TIMESTAMP 446
TO_TIMESTAMP_TZ 448
TO_UTC_TIMESTAMP_TZ 450

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xvi of xxvi

TO_VECTOR 452

TO_YMINTERVAL 453
TRANSLATE 455
TRANSLATE ... USING 456
TREAT 457
TRIM 459
TRUNC (datetime) 460
TRUNC (interval) 461
TRUNC (number) 462
TZ OFFSET 463
uID 464
UNISTR 464
UPPER 465
USER 466
USERENV 466
uuID 468
UUID_TO_RAW 468
VALIDATE_CONVERSION 469
VALUE 472
VAR_POP 472
VAR_SAMP 474
VARIANCE 475
VECTOR 476
VECTOR_CHUNKS 477
VECTOR_DISTANCE 484

L1_DISTANCE 486

L2_DISTANCE 487

COSINE_DISTANCE 487

INNER_PRODUCT 487
VECTOR_DIMS 488
VECTOR_DIMENSION_COUNT 488
VECTOR_DIMENSION_FORMAT 489
VECTOR_EMBEDDING 490
VECTOR_NORM 491
VECTOR_SERIALIZE 492
VSIZE 493
WIDTH_BUCKET 494
XMLAGG 495
XMLCAST 496
XMLCDATA 497
XMLCOLATTVAL 498
XMLCOMMENT 499

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xvii of xxvi

XMLCONCAT 499

XMLDIFF 500
XMLELEMENT 502
XMLEXISTS 505
XMLFOREST 505
XMLISVALID 506
XMLPARSE 507
XMLPATCH 508
XMLPI 509
XMLQUERY 510
XMLSEQUENCE 511
XMLSERIALIZE 513
XMLTABLE 514
XMLTRANSFORM 517
CEIL, FLOOR, ROUND, and TRUNC Date Functions 518
About User-Defined Functions 520
Prerequisites 520
Name Precedence 521
Naming Conventions 521

8 Common SQL DDL Clauses

allocate_extent_clause 1
constraint

deallocate_unused_clause 32
file_specification 33
logging_clause 42
parallel_clause 45
physical_attributes_clause a7
size clause 50
storage_clause 51
annotations_clause 60

O SQL Queries and Subqueries

About Queries and Subqueries
Creating Simple Queries
Hierarchical Queries

Hierarchical Query Examples

o Oo1T NN

The Set Operators
Sorting Query Results 11
Joins 12

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xviii of xxvi

Join Conditions 12

Equijoins 12
Band Joins 13
Self Joins 13
Cartesian Products 13
Inner Joins 13
Outer Joins 14
Antijoins 15
Semijoins 15
Using Subqueries 16
Unnesting of Nested Subqueries 17
Selecting from the DUAL Table 18
Distributed Queries 19

10 SQL Statements: ADMINISTER KEY MANAGEMENT to ALTER JSON
RELATIONAL DUALITY VIEW

Types of SQL Statements 1
Data Definition Language (DDL) Statements 2
Data Manipulation Language (DML) Statements 3
Transaction Control Statements 3
Session Control Statements 4
System Control Statements 4
Embedded SQL Statements 4

How the SQL Statement Chapters are Organized 4

ADMINISTER KEY MANAGEMENT 5

ALTER ANALYTIC VIEW 33

ALTER ATTRIBUTE DIMENSION 35

ALTER AUDIT POLICY (Unified Auditing) 37

ALTER CLUSTER 42

ALTER DATABASE 47

ALTER DATABASE DICTIONARY 100

ALTER DATABASE LINK 102

ALTER DIMENSION 103

ALTER DISKGROUP 106

ALTER DOMAIN 139

ALTER FLASHBACK ARCHIVE 141

ALTER FUNCTION 144

ALTER HIERARCHY 145

ALTER INDEX 146

ALTER INDEXTYPE 169

ALTER INMEMORY JOIN GROUP 172

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xix of xxvi

ALTER JAVA 174
ALTER JSON RELATIONAL DUALITY VIEW 176

11 SQL Statements: ALTER LIBRARY to ALTER SESSION

ALTER LIBRARY
ALTER LOCKDOWN PROFILE

ALTER MATERIALIZED VIEW 15
ALTER MATERIALIZED VIEW LOG 37
ALTER MATERIALIZED ZONEMAP 45
ALTER MLE ENV 48
ALTER MLE MODULE 50
ALTER OPERATOR 51
ALTER OUTLINE 55
ALTER PACKAGE 56
ALTER PLUGGABLE DATABASE 58
ALTER PMEM FILESTORE 86
ALTER PROCEDURE 88
ALTER PROFILE 89
ALTER PROPERTY GRAPH 92
ALTER RESOURCE COST 94
ALTER ROLE 96
ALTER ROLLBACK SEGMENT 98
ALTER SEQUENCE 101
ALTER SESSION 105

Initialization Parameters and ALTER SESSION 113

Session Parameters and ALTER SESSION 113

12 SQL Statements: ALTER SYNONYM to COMMENT

ALTER SYNONYM 1
ALTER SYSTEM

ALTER TABLE 28
ALTER TABLESPACE 181
ALTER TABLESPACE SET 198
ALTER TRIGGER 200
ALTER TYPE 202
ALTER USER 204
ALTER VIEW 217
ANALYZE 220
ASSOCIATE STATISTICS 228
AUDIT (Traditional Auditing) 233

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xx of xxvi

AUDIT (Unified Auditing) 233
CALL 238
COMMENT 242

13 SQL Statements: COMMIT to CREATE JSON RELATIONAL DUALITY

VIEW

COMMIT

CREATE ANALYTIC VIEW

CREATE ATTRIBUTE DIMENSION 15
CREATE AUDIT POLICY (Unified Auditing) 26
CREATE CLUSTER 37
CREATE CONTEXT 47
CREATE CONTROLFILE 50
CREATE DATABASE 57
CREATE DATABASE LINK 74
CREATE DIMENSION 80
CREATE DIRECTORY 85
CREATE DISKGROUP 89
CREATE DOMAIN 97
CREATE EDITION 114
CREATE FLASHBACK ARCHIVE 117
CREATE FUNCTION 120
CREATE HIERARCHY 122
CREATE HYBRID VECTOR INDEX 126
CREATE INDEX 127
CREATE INDEXTYPE 163
CREATE INMEMORY JOIN GROUP 168
CREATE JAVA 169
CREATE JSON RELATIONAL DUALITY VIEW 175

14 SQL Statements: CREATE LIBRARY to CREATE SCHEMA

CREATE LIBRARY 1
CREATE LOCKDOWN PROFILE 3
CREATE LOGICAL PARTITION TRACKING 5
CREATE MATERIALIZED VIEW 6
CREATE MATERIALIZED VIEW LOG 39
CREATE MATERIALIZED ZONEMAP 51
CREATE MLE ENV 60
CREATE MLE MODULE 61
CREATE OPERATOR 63

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xxi of xxvi

CREATE OUTLINE 68
CREATE PACKAGE 71
CREATE PACKAGE BODY 73
CREATE PFILE 75
CREATE PLUGGABLE DATABASE 77
CREATE PMEM FILESTORE 101
CREATE PROCEDURE 102
CREATE PROFILE 105
CREATE PROPERTY GRAPH 115
CREATE RESTORE POINT 129
CREATE ROLE 133
CREATE ROLLBACK SEGMENT 137
CREATE SCHEMA 140
15 SQL Statements: CREATE SEQUENCE to DROP CLUSTER
CREATE SEQUENCE
CREATE SPFILE
CREATE SYNONYM 13
CREATE TABLE 17
CREATE TABLESPACE 158
CREATE TABLESPACE SET 179
CREATE TRIGGER 182
CREATE TRUE CACHE 184
CREATE TYPE 184
CREATE TYPE BODY 187
CREATE USER 189
CREATE VECTOR INDEX 200
CREATE VIEW 203
DELETE 220
DISASSOCIATE STATISTICS 231
DROP ANALYTIC VIEW 233
DROP ATTRIBUTE DIMENSION 234
DROP AUDIT POLICY (Unified Auditing) 235
DROP CLUSTER 236
16 SQL Statements: DROP CONTEXT to DROP JAVA
DROP CONTEXT 1
DROP DATABASE 2
DROP DATABASE LINK 3
DROP DIMENSION 4
SQL Language Reference
F47038-26 July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates.

Page xxii of xxvi

DROP DIRECTORY
DROP DISKGROUP

DROP DOMAIN 8
DROP EDITION 10
DROP FLASHBACK ARCHIVE 11
DROP FUNCTION 12
DROP HIERARCHY 13
DROP INDEX 14
DROP INDEXTYPE 16
DROP INMEMORY JOIN GROUP 18
DROP JAVA 19
17 SQL Statements: DROP LIBRARY to DROP SYNONYM
DROP LIBRARY 1
DROP LOCKDOWN PROFILE 2
DROP MATERIALIZED VIEW 3
DROP MATERIALIZED VIEW LOG 5
DROP MATERIALIZED ZONEMAP 7
DROP MLE ENV 8
DROP MLE MODULE 8
DROP OPERATOR 9
DROP OUTLINE 11
DROP PACKAGE 12
DROP PLUGGABLE DATABASE 13
DROP PMEM FILESTORE 15
DROP PROCEDURE 16
DROP PROFILE 17
DROP PROPERTY GRAPH 18
DROP RESTORE POINT 18
DROP ROLE 20
DROP ROLLBACK SEGMENT 21
DROP SEQUENCE 22
DROP SYNONYM 23
18 SQL Statements: DROP TABLE to LOCK TABLE
DROP TABLE 1
DROP TABLESPACE 5
DROP TABLESPACE SET 9
DROP TRIGGER 10
DROP TYPE 11
SQL Language Reference
F47038-26 July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates.

Page xxiii of xxvi

DROP TYPE BODY 13

DROP USER 14
DROP VIEW 16
EXPLAIN PLAN 17
FLASHBACK DATABASE 20
FLASHBACK TABLE 24
GRANT 29
INSERT 67
LOCK TABLE 90

19 SQL Statements: MERGE to UPDATE

MERGE 1
NOAUDIT (Traditional Auditing) 11
NOAUDIT (Unified Auditing) 16
PURGE 20
RENAME 22
REVOKE 24
ROLLBACK 36
SAVEPOINT 38
SELECT 39
SET CONSTRAINTIS] 138
SET ROLE 140
SET TRANSACTION 142
TRUNCATE CLUSTER 145
TRUNCATE TABLE 147
UPDATE 151

A How to Read Syntax Diagrams

Graphic Syntax Diagrams A-1
Required Keywords and Parameters A-2
Optional Keywords and Parameters A-3
Syntax Loops A-4
Multipart Diagrams A-4

Backus-Naur Form Syntax A-5

B Automatic and Manual Locking Mechanisms During SQL Operations

List of Nonblocking DDLs B-1
Automatic Locks in DML Operations B-3
Automatic Locks in DDL Operations B-6

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xxiv of xxvi

SQL Language Reference

Exclusive DDL Locks B-6

Share DDL Locks B-6

Breakable Parse Locks B-6
Manual Data Locking B-7
Oracle and Standard SQL
ANSI Standards C-1
ISO Standards C-2
Oracle Compliance to Core SQL C-3
Oracle Support for Optional Features of SQL/Foundation C-8
Oracle Compliance with SQL/CLI C-24
Oracle Compliance with SQL/PSM C-24
Oracle Compliance with SQL/MED C-25
Oracle Compliance with SQL/OLB C-25
Oracle Compliance with SQL/JRT C-25
Oracle Compliance with SQL/XML C-25
Oracle Compliance with SQL/MDA C-30
Oracle Compliance with SQL/PGQ C-30
Oracle Compliance with FIPS 127-2 C-31
Oracle Extensions to Standard SQL C-33
Oracle Compliance with Older Standards C-33
Character Set Support C-33
Oracle Regular Expression Support
Multilingual Regular Expression Syntax D-1
Regular Expression Operator Multilingual Enhancements D-2
Perl-influenced Extensions in Oracle Regular Expressions D-3
Oracle SQL Reserved Words and Keywords
Oracle SQL Reserved Words E-1
Oracle SQL Keywords E-4
Extended Examples
Using Extensible Indexing F-1
Using XML in SQL Statements F-8

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates.

Page xxv of xxvi

Index

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page xxvi of xxvi

ORACLE’

Preface

Audience

This reference contains a complete description of the Structured Query Language (SQL) used
to manage information in an Oracle Database. Oracle SQL is a superset of the American
National Standards Institute (ANSI) and the International Organization for Standardization
(ISO) SQL standard.

This Preface contains these topics:
* Audience

Documentation Accessibility

* Related Documents

 Conventions

The Oracle Database SQL Language Reference is intended for all users of Oracle SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

e Oracle Database PL/SQL Language Reference for information on PL/SQL, the procedural
language extension to Oracle SQL

e Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer’s Guide for detailed
descriptions of Oracle embedded SQL

Many of the examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database installation. Refer to
Oracle Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE’

Preface
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in

examples, text that appears on the screen, or text that you enter.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page ii of ii

ORACLE’

Changes in This Release for Oracle Database
SQL Language Reference

This preface contains:

¢ Changes in Oracle Database Release 23ai

Changes in Oracle Database Release 23ali

New Features

The following features are new in Release 23ai:

Vector Utility API

The Vector Utility API provides a SQL function VECTOR_CHUNKS which processes text into
pieces (chunks) in preparation for the generation of embeddings to be used with a vector
index. The API is configurable in terms of size of chunks and rules for splitting chunks.

Support for ONNX-Format Models as First-Class Database Objects

The Open Neural Network Exchange (ONNX) is an open format to represent machine learning
models. It faciliates the exchange of models between systems and is supported by an ONNX
runtime environment that enables using models for scoring/inference.

You can import ONNX-format models to Oracle Database for the machine learning techniques
classification, regression, clustering, and embeddings.

The models will be imported as first-class MINING MODEL objects in your schema. Inference
can be done using the family of OML scoring operators, including PREDICTION, CLUSTER, and
VECTOR_EMBEDDING.

Vector Data Type

This feature provides a built-in VECTOR data type that enables vector similarity searches within
the database.

With a built-in VECTOR data type, you can run run Al-powered vector similarity searches within
the database instead of having to move business data to a separate vector database. Avoiding
data movement reduces complexity, improves security, and enables searches on current data.
You also can run far more powerful searches with Oracle Al Vector Search by combining
sophisticated business data searches with Al vector similarity search using simple, intuitive
SQL and the full power of the converged database - JSON, Graph, Text, Spatial, Relational
and Vector - all within a single query.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page i of iv

ORACLE’

Changes in This Release for Oracle Database SQL Language Reference

Support of Vector Data type in JISON Type

This functionality extends the standard JSON scalar types, to include the new Vector data type.
It is fully supported by all Oracle JSON constructs, and a vector scalar JSON value is
convertible to/from a JSON array of numbers.

Embedding vector values in JSON-type data is important for interoperability between SQL
values and JSON values. For example, a table with a VECTOR column can be exposed in JSON
data without a loss of data-type information allowing developers to create the next generation
of Al applications.

Vector Indexes

SQL Support for Boolean Data Type

Oracle Database now supports the BOOLEAN data type in compliance with the ISO SQL
standard.

With the BOOLEAN data type you can store TRUE and FALSE values inside tables use boolean
expressions in SQL statements.

Native Representation of Graphs in Oracle Database
Oracle Database now has native support for property graph data structures and graph queries.

Property graphs provide an intuitive way to find direct or indirect dependencies in data
elements and extract insights from these relationships. The enterprise-grade manageability,
security features, and performance features of Oracle Database are extended to property
graphs. Developers can easily build graph applications using existing tools, languages, and
development frameworks. They can use graphs in conjunction with transactional data, JSON,
Spatial, and other data types.

Support for the ISO/IEC SQL Property Graph Queries (SQL/PGQ) Standard

The ISO SQL standard has been extended to include comprehensive support for property
graph queries and creating property graphs in SQL. Oracle is among the first commercial
software products to support this standard.

Developers can easily build graph applications with SQL using existing SQL development tools
and frameworks. Support of the ISO SQL standard allows for greater code portability and
reduces the risk of application lock-in.

Direct Joins for UPDATE and DELETE Statements

Join the target table in UPDATE and DELETE statements to other tables using the FROM clause.
These other tables can limit the rows changed or be the source of new values. Direct joins
make it easier to write SQL to change and delete data.

Multilingual Engine Module Calls

Multilingual Engine (MLE) Module Calls allow you to invoke JavaScript functions stored in
modules from SQL and PL/SQL. Call Specifications written in PL/SQL link JavaScript to
PL/SQL code units.

DEFAULT ON NULL for UPDATE Statements

You can define columns as DEFAULT ON NULL for update operations, which was previously only
possible for insert operations. Columns specified as DEFAULT ON NULL are automatically
updated to the specific default value when an update operation tries to update a value to NULL.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page ii of iv

ORACLE’

Changes in This Release for Oracle Database SQL Language Reference

GROUP BY Column Alias or Position

You can now use column alias or SELECT item position in GROUP BY, GROUP BY CUBE, GROUP BY
ROLLUP, and GROUP BY GROUPING SETS clauses. Additionally, the HAVING clause supports
column aliases. These enhancements make it easier to write GROUP BY and HAVING clauses. It
can make SQL queries much more readable and maintainable while providing better SQL code
portability.

SELECT Without FROM Clause

You can now run SELECT expression-only queries without a FROM clause. This new feature
improves SQL code portability and ease of use.

SQL UPDATE RETURN Clause Enhancements

The RETURNING INTO clause for INSERT, UPDATE, and DELETE statements are enhanced to
report old and new values affected by the respective statement. This allows developers to use
the same logic for each of these DML types to obtain values before and after statement
execution. Old and new values are valid only for UPDATE statements. INSERT statements do not
report old values and DELETE statements do not report new values.

Data Use Case Domains

A data use case domain is a dictionary object that belongs to a schema and encapsulates a
set of optional properties and constraints for common values, such as credit card numbers or
email addresses. After you define a data use case domain, you can define table columns to be
associated with that domain, thereby explicitly applying the domain's optional properties and
constraints to those columns.

With data use case domains, you can define how you intend to use data centrally. This make it
easier to ensure you handle values consistently across applications and improve data quality.

DBMS Blockchain Versions

The blockchain table row version feature allows you to have multiple historical versions of a
row that is maintained within a blockchain table corresponding to a set of user-defined
columns. A view bctable_last$ on top of the blockchain table allows you to see just the latest
version of a row. This feature allows you to guarantee row versioning when using tamper-
resistant blockchain tables in your application.

CEIL FLOOR for DATE, TIMESTAMP, and INTERVAL Types

You can now pass DATE, TIMESTAMP, and INTERVAL values to the CEIL and FLOOR functions.
These functions include an optional second argument to specify a rounding unit. You can also
pass INTERVAL values to ROUND and TRUNC functions.

These functions make it easy to find the upper and lower bounds for date and time values for a
specified unit.

IF [NOT] EXISTS Syntax Support

DDL object creation, modification, and deletion now support the IF EXISTS and IF NOT EXISTS
syntax modifiers. This enables you to control whether an error should be raised if a given
object exists or does not exist.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page iii of iv

ORACLE’

Changes in This Release for Oracle Database SQL Language Reference

Schema Annotations

Annotations help you use database objects in the same way across all applications. This
simplifies development and improves data quality. Annotations enable you to store and retrieve
metadata about database objects. These are name-value pairs or simply a name. These are
freeform text fields applications can use to customize business logic or user interfaces.

JSON-Relational Duality View

JSON Relational Duality Views are fully updatable JSON views over relational data. Data is still
stored in relational tables in a highly efficient normalized format but can be accessed by
applications in the form of JSON documents.

Deprecated Features

The following features are deprecated since Release 23, and may be desupported in a future
release:

Starting from Oracle Database Release 23, the GOST256 and SEED128 encryption algorithms are
deprecated and no longer available for new encryption keys. Oracle recommends that you use
the stronger AES256 or ARIA256 encryption algorithms.

Desupported Features

The following features are desupported in Oracle Database Release 23:

For a full list of desupported features for Release 23, please see the Oracle Database Upgrade
Guide.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page iv of iv

Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs and users
access data in an Oracle Database. Application programs and Oracle tools often allow users
access to the database without using SQL directly, but these applications in turn must use SQL
when executing the user's request. This chapter provides background information on SQL as
used by most database systems.

This chapter contains these topics:

e History of SQL
e SQL Standards

* Lexical Conventions

e Tools Support

History of SQL

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared Data Banks",
in June 1970 in the Association of Computer Machinery (ACM) journal, Communications of the
ACM. Codd's model is now accepted as the definitive model for relational database
management systems (RDBMS). The language, Structured English Query Language
(SEQUEL) was developed by IBM Corporation, Inc., to use Codd's model. SEQUEL later
became SQL (still pronounced "sequel”). In 1979, Relational Software, Inc. (now Oracle)
introduced the first commercially available implementation of SQL. Today, SQL is accepted as
the standard RDBMS language.

SQL Standards

Oracle strives to comply with industry-accepted standards and participates actively in SQL
standards committees. Industry-accepted committees are the American National Standards
Institute (ANSI) and the International Organization for Standardization (1ISO), which is affiliated
with the International Electrotechnical Commission (IEC). Both ANSI and the ISO/IEC have
accepted SQL as the standard language for relational databases. When a new SQL standard
is simultaneously published by these organizations, the names of the standards conform to
conventions used by the organization, but the standards are technically identical.

@ See Also

Oracle and Standard SQL for a detailed description of Oracle Database conformance
to the SQL standard

How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically speaking, SQL

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE’

Chapter 1
Using Enterprise Manager

is a data sublanguage. The purpose of SQL is to provide an interface to a relational database
such as Oracle Database, and all SQL statements are instructions to the database. In this SQL
differs from general-purpose programming languages like C and BASIC. Among the features of
SQL are the following:

e It processes sets of data as groups rather than as individual units.
e |t provides automatic navigation to the data.

e |t uses statements that are complex and powerful individually, and that therefore stand
alone. Flow-control statements, such as begin-end, if-then-else, loops, and exception
condition handling, were initially not part of SQL and the SQL standard, but they can now
be found in ISO/IEC 9075-4 - Persistent Stored Modules (SQL/PSM). The PL/SQL
extension to Oracle SQL is similar to PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example, to retrieve a
set of rows from a table, you define a condition used to filter the rows. All rows satisfying the
condition are retrieved in a single step and can be passed as a unit to the user, to another SQL
statement, or to an application. You need not deal with the rows one by one, nor do you have
to worry about how they are physically stored or retrieved. All SQL statements use the
optimizer, a part of Oracle Database that determines the most efficient means of accessing
the specified data. Oracle also provides techniques that you can use to make the optimizer
perform its job better.

SQL provides statements for a variety of tasks, including:
* Querying data

* Inserting, updating, and deleting rows in a table

« Creating, replacing, altering, and dropping objects

* Controlling access to the database and its objects

* Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

Common Language for All Relational Databases

All major relational database management systems support SQL, so you can transfer all skills
you have gained with SQL from one database to another. In addition, all programs written in
SQL are portable. They can often be moved from one database to another with very little
modification.

Using Enterprise Manager

Many of the operations you can accomplish using SQL syntax can be done much more easily
using Enterprise Manager. For more information, see the Oracle Enterprise Manager
documentation set, Oracle Database 2 Day DBA, or any of the Oracle Database 2 Day +
books.

Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to the Oracle
Database implementation of SQL, but are generally acceptable in other SQL implementations.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE’

Chapter 1
Tools Support

When you issue a SQL statement, you can include one or more tabs, carriage returns, spaces,
or comments anywhere a space occurs within the definition of the statement. Thus, Oracle
Database evaluates the following two statements in the same manner:

SELECT last_name,salary*12, MONTHS_BETWEEN(SYSDATE,hire_date)
FROM employees
WHERE department_id = 30
ORDER BY last_name;

SELECT last_name,
salary * 12,
MONTHS_BETWEEN(SYSDATE, hire_date)
FROM employees
WHERE department_id=30
ORDER BY last_name;

Case is insignificant in reserved words, keywords, identifiers, and parameters. However, case
is significant in text literals and quoted names. Refer to Text Literals for a syntax description of
text literals.

@® Note

SQL statements are terminated differently in different programming environments. This
documentation set uses the default SQL*Plus character, the semicolon (;).

Tools Support

Oracle provides a number of utilities to facilitate your SQL development process:

e Oracle SQL Developer is a graphical tool that lets you browse, create, edit, and delete
(drop) database objects, edit and debug PL/SQL code, run SQL statements and scripts,
manipulate and export data, and create and view reports.

Using SQL Developer, you can connect to any target Oracle Database schema using
standard Oracle Database authentication. DBAs can also use SQL Developer to
administer and monitor their database, with interfaces for Data Pump, RMAN, and Auditing
also included.

Once connected, you can perform operations on objects in the database. You can also
connect to schemas for selected databases, such as MySQL, Microsoft SQL Server, and
Amazon Redshift, view metadata and data in these databases, and migrate these
databases to Oracle Database.

e Oracle SQL Developer Command Line (SQLcl) is a free command line interface for Oracle
Database. It allows you to interactively or batch execute SQL and PL/SQL.

SQLcl offers integrated Oracle Cloud (OCI) support, client side scripting with JavaScript,
custom commands, and updated SQL*Plus commands (INFO vs DESC). Additionally,
SQLcl provides native vi or Emacs editing, statement completion, and persistent command
recall for a feature-rich experience, all while supporting your previously written SQL*Plus
scripts.

- Database Actions delivers your favorite Oracle Database desktop tool’s features and
experience to your web browser. Delivered as a single-page web application, Database
Actions is powered by Oracle REST Data Services (ORDS).

Database Actions offers a worksheet for running queries and scripts, the ability to manage
and browse your data dictionary, a REST development environment for your REST APIs

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 1
Tools Support

and AUTOREST enabled objects, an interface for Oracle’'s JSON Document Store
(SODA), a DBA console for managing the database, a data model reporting solution, and
access to PerfHub. Database Actions is also available automatically for any Oracle
Autonomous Database OCI Service.

e SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database server or client installation. It has a command-line user interface.

@ See Also

SQL*Plus User's Guide and Reference and Oracle APEX App Builder User’s Guide for
more information on these products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL statements
within a procedure programming language.

* The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

e The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded SQL
statements and translate them into statements that can be understood by C/C++ and
COBOL compilers, respectively.

@ See Also

Oracle C++ Call Interface Developer's Guide, Pro*COBOL Developer's Guide, and
Oracle Call Interface Developer's Guide for additional information on the embedded
SQL statements allowed in each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using does not
support this complete functionality, then you can find a discussion of the restrictions in the
manual describing the tool, such as SQL*Plus User's Guide and Reference.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 4 of 4

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL. These
elements are the simplest building blocks of SQL statements. Therefore, before using the SQL
statements described in this book, you should familiarize yourself with the concepts covered in
this chapter.

This chapter contains these sections:

« Data Types
 Data Type Comparison Rules

 Literals

e Format Models
* Nulls

¢ Comments

 Database Objects

 Database Object Names and Qualifiers

e Syntax for Schema Objects and Parts in SOL Statements

Data Types

Each value manipulated by Oracle Database has a data type. The data type of a value
associates a fixed set of properties with the value. These properties cause Oracle to treat
values of one data type differently from values of another. For example, you can add values of
NUMBER data type, but not values of RAW data type.

When you create a table or cluster, you must specify a data type for each of its columns. When
you create a procedure or stored function, you must specify a data type for each of its
arguments. These data types define the domain of values that each column can contain or
each argument can have. For example, DATE columns cannot accept the value February 29
(except for a leap year) or the values 2 or 'SHOE'. Each value subsequently placed in a
column assumes the data type of the column. For example, if you insert '01-JAN-98' into a DATE
column, then Oracle treats the '01-JAN-98' character string as a DATE value after verifying that it
translates to a valid date.

Oracle Database provides a number of built-in data types as well as several categories for
user-defined types that can be used as data types. The syntax of Oracle data types appears in
the diagrams that follow. The text of this section is divided into the following sections:

e Oracle Built-in Data Types

* Rowid Data Types
« ANSI, DB2, and SQL/DS Data Types

» User-Defined Types

e Oracle-Supplied Types
 Any Types

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 1 of 156

ORACLE’

Chapter 2
Data Types

« XML Types

e Spatial Types

A data type is either scalar or nonscalar. A scalar type contains an atomic value, whereas a
nonscalar (sometimes called a "collection™) contains a set of values. A large object (LOB) is a
special form of scalar data type representing a large scalar value of binary or character data.
LOBs are subject to some restrictions that do not affect other scalar types because of their
size. Those restrictions are documented in the context of the relevant SQL syntax.

@ See Also

Restrictions on LOB Columns

The Oracle precompilers recognize other data types in embedded SQL programs. These data
types are called external data types and are associated with host variables. Do not confuse
built-in data types and user-defined types with external data types. For information on external
data types, including how Oracle converts between them and built-in data types or user-
defined types, see Pro*COBOL Developer's Guide, and Pro*C/C++ Developer's Guide.

datatype::=

Q
Qo
(=X
@D
o
=
=
o
Qo
5y
QO
)
~<
=}
@D
j"’/

|

Rowid_datatypes

—(ANSLsuppor‘ted,datatypes)—

User_defined_types

Oracle_supplied_types

Any_types

XML_types

Spatial_types

il

The Oracle built-in data types appear in the figures that follows. For descriptions, refer to
Oracle Built-in Data Types.

Oracle_built_in_datatypes::=

character_datatypes

number_datatypes

I

—(Iong,and,raw,datatypes)—

datetime_datatypes

large_object_datatypes
rowid_datatypes

json_datatype

.

boolean_datatype

SQL Language Reference
F47038-26

Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 2 of 156

ORACLE Chapter 2
Data Types

character_datatypes::=

BYTE

(E=
size %
f| CHAR

jaay

CHAR

- o@ = Ly
-

NCHAR

number_datatypes::=

OlGEDI0

BINARY_FLOAT

NUMBER

BINARY_DOUBLE

long_and _raw_datatypes::=

IEnlEn
FHO@O

datetime_datatypes::=

,| DATE
LOCAL

re@e(fractional,seoonds,precisionm WITH [T— TIME |5 ZONE
—| TIMESTAMP
® 0
H INTERVAL | YEAR | { 0 H MoNTH
0 a ﬁ@»{fractional,seconds,precisionm
INTERVAL {5 DAY TO H SECOND

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 3 of 156

ORACLE’

large_object_datatypes::=

rowid_datatypes::=

ROWID
-
UROWID

Chapter 2
Data Types

The ANSI-supported data types appear in the figure that follows. ANSI, DB2, and SQL/DS
Data Types discusses the mapping of ANSI-supported data types to Oracle built-in data types.

ANSI_supported_datatypes::=

[VARYING |
| CHARACTER ﬁ-_\

VARG (D]

NCHAR

Hl

[vRew (D)

scale
0@ N g
-+ DECIMAL

DE

— INT

e

D@D

FLOAT

:

-| DOUBLE |_>| PRECISION }

\| REAL

For descriptions of user-defined types, refer to User-Defined Types .

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 4 of 156

ORACLE Chapter 2
Data Types

The Oracle-supplied data types appear in the figures that follows. For descriptions, refer to
Oracle-Supplied Types .

Oracle_supplied_types::=

G
I XML_types '
spatial_types

any_types::=

SYS.AnyData
l SYS.AnyType .
l SYS.AnyDataSet l

For descriptions of the Any types, refer to Any Types .

XML _types::=
=)

For descriptions of the XML types, refer to XML Types .

spatial_types::=

SDO_Geometry

SDO_Topo_Geometry

SDO_GeoRaster

For descriptions of the spatial types, refer to Spatial Types .

Oracle Built-in Data Types

The Built-In Data Type Summary table lists the built-in data types available. Oracle Database
uses a code to identify the data type internally. This is the number in the Code column of the

Built-In Data Type Summary table. You can verify the codes in the table using the DUMP
function.

In addition to the built-in data types listed in the Built-ln Data Type Summary table, Oracle
Database uses many data types internally that are visible via the DUMP function.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 5 of 156

ORACLE Chapter 2
Data Types

Table 2-1 Built-In Data Type Summary

- __|]
Code Data Type Description

1 VARCHAR2(size [BYTE | CHAR]) Variable-length character string having maximum length size bytes or
characters. You must specify size for VARCHAR2. Minimum sizeis 1
byte or 1 character. Maximum size is:

* 32767 bytes or characters if MAX_STRING_SIZE = EXTENDED
* 4000 bytes or characters if MAX_STRING_SIZE = STANDARD
Refer to Extended Data Types for more information on the
MAX_STRING_SIZE initialization parameter.

BYTE indicates that the column will have byte length semantics. CHAR
indicates that the column will have character semantics.

1 NVARCHAR2(size) Variable-length Unicode character string having maximum length size
characters. You must specify size for NVARCHAR2. The number of
bytes can be up to two times size for ALI6UTF16 encoding and three
times size for UTF8 encoding. Maximum size is determined by the
national character set definition, with an upper limit of:

* 32767 bytes if MAX_STRING_SIZE = EXTENDED
* 4000 bytes if MAX_STRING_SIZE = STANDARD

Refer to Extended Data Types for more information on the
MAX_STRING_SIZE initialization parameter.

2 NUMBERT[(p[, 9])] Number having precision p and scale S. The precision p can range
from 1 to 38. The scale s can range from -84 to 127. Both precision
and scale are in decimal digits. A NUMBER value requires from 1 to 22
bytes.

2 FLOAT [(p)] A subtype of the NUMBER data type having precision p. A FLOAT
value is represented internally as NUMBER. The precision p can range
from 1 to 126 binary digits. A FLOAT value requires from 1 to 22 bytes.

8 LONG Character data of variable length up to 2 gigabytes, or 231 -1 bytes.
Provided for backward compatibility.
12 DATE Valid date range from January 1, 4712 BC, to December 31, 9999 AD.

The default format is determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY parameter. The size is
fixed at 7 bytes. This data type contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, and SECOND. It does not have
fractional seconds or a time zone.

100 BINARY_FLOAT 32-bit floating point number. This data type requires 4 bytes.
101 BINARY_DOUBLE 64-bit floating point number. This data type requires 8 bytes.
180 TIMESTAMP [(fractional_seconds _precision)] Year, month, and day values of date, as well as hour, minute, and

second values of time, where fractional_seconds precision is the number
of digits in the fractional part of the SECOND datetime field. Accepted
values of fractional_seconds_precision are 0 to 9. The default is 6. The
default format is determined explicitly by the
NLS_TIMESTAMP_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 7 or 11 bytes, depending on
the precision. This data type contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, and SECOND. It contains fractional
seconds but does not have a time zone.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 6 of 156

ORACLE’

Chapter 2
Data Types

Table 2-1 (Cont.) Built-In Data Type Summary

Code

Data Type

Description

181

TIMESTAMP [(fractional_seconds_precision)]
WITH TIME ZONE

All values of TIMESTAMP as well as time zone displacement value,
where fractional_seconds precision is the number of digits in the
fractional part of the SECOND datetime field. Accepted values are 0 to
9. The default is 6. The default date format for the TIMESTAMP WITH
TIME ZONE data type is determined by the
NLS_TIMESTAMP_TZ_FORMAT initialization parameter. The size is
fixed at 13 bytes. This data type contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, and
TIMEZONE_MINUTE. It has fractional seconds and an explicit time
zone.

231

TIMESTAMP [(fractional_seconds_precision)]
WITH LOCAL TIME ZONE

All values of TIMESTAMP WITH TIME ZONE, with the following

exceptions:

. Data is normalized to the database time zone when it is stored in
the database.

» When the data is retrieved, users see the data in the session time
zone.

The default format is determined explicitly by the

NLS_TIMESTAMP_FORMAT parameter or implicitly by the

NLS_TERRITORY parameter. The size is 7 or 11 bytes, depending on

the precision.

182

INTERVAL YEAR [(year_precision)] TO
MONTH

Stores a period of time in years and months, where year_precision is
the number of digits in the YEAR datetime field. Accepted values are 0
to 9. The default is 2. The size is fixed at 5 bytes.

183

INTERVAL DAY [(day precision)] TO
SECOND [(fractional_seconds_precision)]

Stores a period of time in days, hours, minutes, and seconds, where

* day _precision is the maximum number of digits in the DAY datetime
field. Accepted values are 0 to 9. The default is 2.

» fractional_seconds precision is the number of digits in the fractional
part of the SECOND field. Accepted values are 0 to 9. The default
is 6.

The size is fixed at 11 bytes.

23

RAW(size)

Raw binary data of length size bytes. You must specify size for a RAW
value. Maximum size is:

e 32767 bytes if MAX_STRING_SIZE = EXTENDED

s 2000 bytes if MAX_STRING_SIZE = STANDARD

Refer to Extended Data Types for more information on the
MAX_STRING_SIZE initialization parameter.

24

LONG RAW

Raw binary data of variable length up to 2 gigabytes.

69

ROWID

Base 64 string representing the unique address of a row in its table.
This data type is primarily for values returned by the ROWID
pseudocolumn.

208

UROWID [(size)]

Base 64 string representing the logical address of a row of an index-
organized table. The optional Size is the size of a column of type
UROWID. The maximum size and default is 4000 bytes.

96

CHAR [(size [BYTE | CHAR])]

Fixed-length character data of length Size bytes or characters.
Maximum Size is 2000 bytes or characters. Default and minimum Size is
1 byte.

BYTE and CHAR have the same semantics as for VARCHAR?2.

SQL Language Reference

F47038-26

Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 7 of 156

ORACLE’

Chapter 2
Data Types

Table 2-1 (Cont.) Built-In Data Type Summary

Code

Data Type

Description

96

NCHAR[(sz8)]

Fixed-length character data of length Size characters. The number of
bytes can be up to two times size for AL16UTF16 encoding and three
times size for UTF8 encoding. Maximum size is determined by the
national character set definition, with an upper limit of 2000 bytes.
Default and minimum size is 1 character.

112

CLOB

A character large object containing single-byte or multibyte characters.
Both fixed-width and variable-width character sets are supported, both
using the database character set. Maximum size is (4 gigabytes - 1) *
(database block size).

112

NCLOB

A character large object containing Unicode characters. Both fixed-
width and variable-width character sets are supported, both using the
database national character set. Maximum size is (4 gigabytes - 1) *
(database block size). Stores national character set data.

113

BLOB

A binary large object. Maximum size is (4 gigabytes - 1) * (database
block size).

114

BFILE

Contains a locator to a large binary file stored outside the database.
Enables byte stream 1/O access to external LOBs residing on the
database server. Maximum size is 4 gigabytes.

119

JSON

Maximum size is 32 megabytes.

252

BOOLEAN

The BOOLEAN data type comprises the distinct truth values True and
False. Unless prohibited by a NOT NULL constraint, the boolean data
type also supports the truth value UNKNOWN as the null value.

127

VECTOR

The VECTOR data type represents a vector as a series of numbers
stored in one of the following formats:

* INT8 (8-bit integers)

* FLOAT32 (32-bit floating-point numbers)

* FLOAT64 (64-bit floating-point numbers)

* BINARY

FLOAT32 and FLOAT64 are IEEE standards. Oracle Database
automatically casts the values as needed.

Character Data Types

The sections that follow describe the Oracle data types as they are stored in Oracle Database.
For information on specifying these data types as literals, refer to Literals .

Character data types store character (alphanumeric) data, which are words and free-form text,
in the database character set or national character set. They are less restrictive than other data
types and consequently have fewer properties. For example, character columns can store all
alphanumeric values, but NUMBER columns can store only numeric values.

Character data is stored in strings with byte values corresponding to one of the character sets,
such as 7-bit ASCII or EBCDIC, specified when the database was created. Oracle Database
supports both single-byte and multibyte character sets.

These data types are used for character data:

¢ CHAR Data Type

¢ NCHAR Data Type

SQL Language Reference

F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 8 of 156

ORACLE’

Chapter 2
Data Types

* VARCHARZ2 Data Type
+ NVARCHARZ2 Data Type

For information on specifying character data types as literals, refer to Text Literals .

CHAR Data Type

The CHAR data type specifies a fixed-length character string in the database character set. You
specify the database character set when you create your database.

When you create a table with a CHAR column, you specify the column length as size optionally
followed by a length qualifier. The qualifier BYTE denotes byte length semantics while the
qualifier CHAR denotes character length semantics. In the byte length semantics, size is the
number of bytes to store in the column. In the character length semantics, size is the number of
code points in the database character set to store in the column. A code point may have from 1
to 4 bytes depending on the database character set and the particular character encoded by
the code point. Oracle recommends that you specify one of the length qualifiers to explicitly
document the desired length semantics of the column. If you do not specify a qualifier, the
value of the NLS_LENGTH_SEMANTICS parameter of the session creating the column defines the
length semantics, unless the table belongs to the schema SYS, in which case the default
semantics is BYTE.

Oracle ensures that all values stored in a CHAR column have the length specified by size in the
selected length semantics. If you insert a value that is shorter than the column length, then
Oracle blank-pads the value to column length. If you try to insert a value that is too long for the
column, then Oracle returns an error. Note that if the column length is expressed in characters
(code points), blank-padding does not guarantee that all column values have the same byte
length.

You can omit size from the column definition. The default value is 1.

The maximum value of size is 2000, which means 2000 bytes or characters (code points),
depending on the selected length semantics. However, independently, the absolute maximum
length of any character value that can be stored into a CHAR column is 2000 bytes. For
example, even if you define the column length to be 2000 characters, Oracle returns an error if
you try to insert a 2000-character value in which one or more code points are wider than 1
byte. The value of size in characters is a length constraint, not guaranteed capacity. If you want
a CHAR column to be always able to store size characters in any database character set, use a
value of size that is less than or equal to 500.

To ensure proper data conversion between databases and clients with different character sets,
you must ensure that CHAR data consists of well-formed strings.

@ See Also

Oracle Database Globalization Support Guide for more information on character set
support and Data Type Comparison Rules for information on comparison semantics

NCHAR Data Type

The NCHAR data type specifies a fixed-length character string in the national character set. You
specify the national character set as either ALL6UTF16 or UTF8 when you create your
database. AL16UTF16 and UTF8 are two encoding forms of the Unicode character set
(UTF-16 and CESU-8, correspondingly) and hence NCHAR is a Unicode-only data type.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 9 of 156

ORACLE’

Chapter 2
Data Types

When you create a table with an NCHAR column, you specify the column length as size
characters, or more precisely, code points in the national character set. One code point has
always 2 bytes in AL16UTF16 and from 1 to 3 bytes in UTF8, depending on the particular
character encoded by the code point.

Oracle ensures that all values stored in an NCHAR column have the length of size characters. If
you insert a value that is shorter than the column length, then Oracle blank-pads the value to
the column length. If you try to insert a value that is too long for the column, then Oracle
returns an error. Note that if the national character set is UTF8, blank-padding does not
guarantee that all column values have the same byte length.

You can omit size from the column definition. The default value is 1.

The maximum value of sizeis 1000 characters when the national character set is ALL6UTF16,
and 2000 characters when the national character set is UTF8. However, independently, the
absolute maximum length of any character value that can be stored into an NCHAR column is
2000 bytes. For example, even if you define the column length to be 1000 characters, Oracle
returns an error if you try to insert a 1000-character value but the national character set is
UTF8 and all code points are 3 bytes wide. The value of sizeis a length constraint, not
guaranteed capacity. If you want an NCHAR column to be always able to store size characters in
both national character sets, use a value of size that is less than or equal to 666.

To ensure proper data conversion between databases and clients with different character sets,
you must ensure that NCHAR data consists of well-formed strings.

If you assign a CHAR value to an NCHAR column, the value is implicitly converted from the
database character set to the national character set. If you assign an NCHAR value to a CHAR
column, the value is implicitly converted from the national character set to the database
character set. If some of the characters from the NCHAR value cannot be represented in the
database character set, then if the value of the session parameter NLS_NCHAR_CONV_EXCP is
TRUE, then Oracle reports an error. If the value of the parameter is FALSE, non-representable
characters are replaced with the default replacement character of the database character set,
which is usually the question mark '?' or the inverted question mark '¢,".

@ See Also

Oracle Database Globalization Support Guide for information on Unicode data type
support

VARCHAR?Z2 Data Type

The VARCHAR? data type specifies a variable-length character string in the database character
set. You specify the database character set when you create your database.

When you create a table with a VARCHAR2 column, you must specify the column length as size
optionally followed by a length qualifier. The qualifier BYTE denotes byte length semantics while
the qualifier CHAR denotes character length semantics. In the byte length semantics, sizeis the
maximum number of bytes that can be stored in the column. In the character length semantics,
size is the maximum number of code points in the database character set that can be stored in
the column. A code point may have from 1 to 4 bytes depending on the database character set
and the particular character encoded by the code point. Oracle recommends that you specify
one of the length qualifiers to explicitly document the desired length semantics of the column. If
you do not specify a qualifier, the value of the NLS LENGTH_SEMANTICS parameter of the
session creating the column defines the length semantics, unless the table belongs to the
schema SYS, in which case the default semantics is BYTE.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 10 of 156

ORACLE’

Chapter 2
Data Types

Oracle stores a character value in a VARCHAR?2 column exactly as you specify it, without any
blank-padding, provided the value does not exceed the length of the column. If you try to insert
a value that exceeds the specified length, then Oracle returns an error.

The minimum value of sizeis 1. The maximum value is:

e 32767 bytes if MAX_STRING_SIZE = EXTENDED
e 4000 bytes if MAX_STRING_SIZE = STANDARD

Refer to Extended Data Types for more information on the MAX_STRING_SIZE initialization
parameter and the internal storage mechanisms for extended data types.

While size may be expressed in bytes or characters (code points) the independent absolute
maximum length of any character value that can be stored into a VARCHAR2 column is 32767 or
4000 bytes, depending on MAX_STRING_SIZE. For example, even if you define the column
length to be 32767 characters, Oracle returns an error if you try to insert a 32767-character
value in which one or more code points are wider than 1 byte. The value of size in characters is
a length constraint, not guaranteed capacity. If you want a VARCHAR2 column to be always able
to store size characters in any database character set, use a value of size that is less than or
equal to 8191, if MAX_STRING_SIZE = EXTENDED, or 1000, if MAX_STRING_SIZE = STANDARD.

Oracle compares VARCHAR? values using non-padded comparison semantics.

To ensure proper data conversion between databases with different character sets, you must
ensure that VARCHAR?2 data consists of well-formed strings. See Oracle Database Globalization
Support Guide for more information on character set support.

@ See Also

Data Type Comparison Rules for information on comparison semantics

VARCHAR Data Type

Do not use the VARCHAR data type. Use the VARCHAR? data type instead. Although the
VARCHAR data type is currently synonymous with VARCHAR2, the VARCHAR data type might be
redefined in a future release as a separate data type used for variable-length character strings
compared with different comparison semantics.

NVARCHAR?Z2 Data Type

The NVARCHAR? data type specifies a variable-length character string in the national character
set. You specify the national character set as either ALLI6UTF16 or UTF8 when you create your
database. AL16UTF16 and UTF8 are two encoding forms of the Unicode character set
(UTF-16 and CESU-8, correspondingly) and hence NVARCHAR? is a Unicode-only data type.

When you create a table with an NVARCHAR2 column, you must specify the column length as
size characters, or more precisely, code points in the national character set. One code point has
always 2 bytes in AL16UTF16 and from 1 to 3 bytes in UTF8, depending on the particular
character encoded by the code point.

Oracle stores a character value in an NVARCHAR2 column exactly as you specify it, without any
blank-padding, provided the value does not exceed the length of the column. If you try to insert
a value that exceeds the specified length, then Oracle returns an error.

The minimum value of sizeis 1. The maximum value is:

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 11 of 156

ORACLE’

Chapter 2
Data Types

e 16383 if MAX_STRING_SIZE = EXTENDED and the national character set is ALI6UTF16
e 32767 if MAX_STRING_SIZE = EXTENDED and the national character set is UTF8

e 2000 if MAX_STRING_SIZE = STANDARD and the national character set is ALI6UTF16
e 4000 if MAX_STRING_SIZE = STANDARD and the national character set is UTF8

Refer to Extended Data Types for more information on the MAX_STRING_SIZE initialization
parameter and the internal storage mechanisms for extended data types.

Independently of the maximum column length in characters, the absolute maximum length of
any value that can be stored into an NVARCHAR2 column is 32767 or 4000 bytes, depending on
MAX_STRING_SIZE. For example, even if you define the column length to be 16383 characters,
Oracle returns an error if you try to insert a 16383-character value but the national character
set is UTF8 and all code points are 3 bytes wide. The value of sizeis a length constraint, not
guaranteed capacity. If you want an NVARCHAR?2 column to be always able to store size
characters in both national character sets, use a value of size that is less than or equal to
10922, if MAX_STRING_SIZE = EXTENDED, or 1333, if MAX_STRING_SIZE = STANDARD.

Oracle compares NVARCHAR? values using non-padded comparison semantics.

To ensure proper data conversion between databases and clients with different character sets,
you must ensure that NVARCHAR2 data consists of well-formed strings.

If you assign a VARCHAR? value to an NVARCHAR2 column, the value is implicitly converted from
the database character set to the national character set. If you assign an NVARCHAR? value to a
VARCHAR2 column, the value is implicitly converted from the national character set to the
database character set. If some of the characters from the NVARCHAR2 value cannot be
represented in the database character set, then if the value of the session parameter
NLS_NCHAR_CONV_EXCP is TRUE, then Oracle reports an error. If the value of the parameter is
FALSE, non-representable characters are replaced with the default replacement character of the
database character set, which is usually the question mark '?' or the inverted question mark '¢,".

@ See Also

Oracle Database Globalization Support Guide for information on Unicode data type
support.

Numeric Data Types

The Oracle Database numeric data types store positive and negative fixed and floating-point
numbers, zero, infinity, and values that are the undefined result of an operation—"not a
number" or NAN. For information on specifying numeric data types as literals, refer to Numeric
Literals .

NUMBER Data Type

The NUMBER data type stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 107130 to but not including 1.0 x 10126, If you specify an arithmetic
expression whose value has an absolute value greater than or equal to 1.0 x 10126, then
Oracle returns an error. Each NUMBER value requires from 1 to 22 bytes.

Specify a fixed-point number using the following form:

NUMBER(p,s)

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 12 of 156

ORACLE’

Chapter 2
Data Types

where:

e pis the precision, or the maximum number of significant decimal digits, where the most
significant digit is the left-most nonzero digit, and the least significant digit is the right-most
known digit. Oracle guarantees the portability of numbers with precision of up to 20
base-100 digits, which is equivalent to 39 or 40 decimal digits depending on the position of
the decimal point.

e sisthe scale, or the number of digits from the decimal point to the least significant digit.
The scale can range from -84 to 127.

— Positive scale is the number of significant digits to the right of the decimal point to and
including the least significant digit.

— Negative scale is the number of significant digits to the left of the decimal point, to but
not including the least significant digit. For negative scale the least significant digit is
on the left side of the decimal point, because the actual data is rounded to the
specified number of places to the left of the decimal point. For example, a specification
of (10,-2) means to round to hundreds.

Scale can be greater than precision, most commonly when e notation is used. When scale is
greater than precision, the precision specifies the maximum number of significant digits to the
right of the decimal point. For example, a column defined as NUMBER(4,5) requires a zero for
the first digit after the decimal point and rounds all values past the fifth digit after the decimal
point.

It is good practice to specify the scale and precision of a fixed-point number column for extra
integrity checking on input. Specifying scale and precision does not force all values to a fixed
length. If a value exceeds the precision, then Oracle returns an error. If a value exceeds the
scale, then Oracle rounds it.

Specify an integer using the following form:

NUMBER(p)

This represents a fixed-point number with precision p and scale 0 and is equivalent to
NUMBER(p,0).

Specify a floating-point number using the following form:

NUMBER

The absence of precision and scale designators specifies the maximum range and precision
for an Oracle number.

@ See Also

Floating-Point Numbers

Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision
|

Actual Data Specified As Stored As
123.89 NUMBER 123.89
123.89 NUMBER(3) 124

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 13 of 156

ORACLE’

Chapter 2
Data Types

Table 2-2 (Cont.) Storage of Scale and Precision

Actual Data Specified As Stored As
123.89 NUMBER(3,2) exceeds precision
123.89 NUMBER(4,2) exceeds precision
123.89 NUMBER(5,2) 123.89
123.89 NUMBER(6,1) 123.9
123.89 NUMBER(6,-2) 100
.01234 NUMBER(4,5) .01234
.00012 NUMBER(4.5) .00012
.000127 NUMBER(4,5) .00013
.0000012 NUMBER(2,7) .0000012
.00000123 NUMBER(2,7) .0000012
1.2e-4 NUMBER(2,5) 0.00012
1.2e-5 NUMBER(2,5) 0.00001

FLOAT Data Type

The FLOAT data type is a subtype of NUMBER. It can be specified with or without precision,
which has the same definition it has for NUMBER and can range from 1 to 126. Scale cannot be
specified, but is interpreted from the data. Each FLOAT value requires from 1 to 22 bytes.

To convert from binary to decimal precision, multiply n by 0.30103. To convert from decimal to
binary precision, multiply the decimal precision by 3.32193. The maximum of 126 digits of
binary precision is roughly equivalent to 38 digits of decimal precision.

The difference between NUMBER and FLOAT is best illustrated by example. In the following
example the same values are inserted into NUMBER and FLOAT columns:

CREATE TABLE test (col1 NUMBER(5,2), col2 FLOAT(5));

INSERT INTO test VALUES (1.23, 1.23);
INSERT INTO test VALUES (7.89, 7.89);
INSERT INTO test VALUES (12.79, 12.79);
INSERT INTO test VALUES (123.45, 123.45);

SELECT * FROM ftest;
CoL1 coL2
123 12
789 79

12.79 13
12345 120

In this example, the FLOAT value returned cannot exceed 5 binary digits. The largest decimal
number that can be represented by 5 binary digits is 31. The last row contains decimal values
that exceed 31. Therefore, the FLOAT value must be truncated so that its significant digits do
not require more than 5 binary digits. Thus 123.45 is rounded to 120, which has only two
significant decimal digits, requiring only 4 binary digits.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 14 of 156

ORACLE’

Chapter 2
Data Types

Oracle Database uses the Oracle FLOAT data type internally when converting ANSI FLOAT data.
Oracle FLOAT is available for you to use, but Oracle recommends that you use the
BINARY_FLOAT and BINARY_DOUBLE data types instead, as they are more robust. Refer to
Floating-Point Numbers for more information.

Floating-Point Numbers

Floating-point numbers can have a decimal point anywhere from the first to the last digit or can
have no decimal point at all. An exponent may optionally be used following the number to
increase the range, for example, 1.777 €20, A scale value is not applicable to floating-point
numbers, because the number of digits that can appear after the decimal point is not restricted.

Binary floating-point numbers differ from NUMBER in the way the values are stored internally by
Oracle Database. Values are stored using decimal precision for NUMBER. All literals that are
within the range and precision supported by NUMBER are stored exactly as NUMBER. Literals
are stored exactly because literals are expressed using decimal precision (the digits 0 through
9). Binary floating-point numbers are stored using binary precision (the digits 0 and 1). Such a
storage scheme cannot represent all values using decimal precision exactly. Frequently, the
error that occurs when converting a value from decimal to binary precision is undone when the
value is converted back from binary to decimal precision. The literal 0.1 is such an example.

Oracle Database provides two numeric data types exclusively for floating-point numbers:

BINARY_FLOAT

BINARY_FLOAT is a 32-bit, single-precision floating-point number data type. Each BINARY_FLOAT
value requires 4 bytes.

BINARY_DOUBLE

BINARY_DOUBLE is a 64-bit, double-precision floating-point number data type. Each
BINARY_DOUBLE value requires 8 bytes.

In a NUMBER column, floating point numbers have decimal precision. In a BINARY_FLOAT or
BINARY_DOUBLE column, floating-point numbers have binary precision. The binary floating-
point numbers support the special values infinity and NaN (not a number).

You can specify floating-point numbers within the limits listed in Table 2-3. The format for
specifying floating-point numbers is defined in Numeric Literals .

Table 2-3 Floating Point Number Limits
]

Value BINARY_FLOAT BINARY_DOUBLE
Maximum positive finite value 3.40282E+38F 1.79769313486231E+308
Minimum positive finite value 1.17549E-38F 2.22507485850720E-308

IEEE754 Conformance

The Oracle implementation of floating-point data types conforms substantially with the Institute
of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic,
IEEE Standard 754-1985 (IEEE754). The floating-point data types conform to IEEE754 in the
following areas:

e The SQL function SQRT implements square root. See SQRT .
e The SQL function REMAINDER implements remainder. See REMAINDER .

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 15 of 156

ORACLE’

Chapter 2
Data Types

Arithmetic operators conform. See Arithmetic Operators .

Comparison operators conform, except for comparisons with NaN. Oracle orders NaN
greatest with respect to all other values, and evaluates NaN equal to NaN. See Floating-
Point Conditions .

Conversion operators conform. See Conversion Functions .

The default rounding mode is supported.
The default exception handling mode is supported.
The special values INF, -INF, and NaN are supported. See Floating-Point Conditions .

Rounding of BINARY_FLOAT and BINARY_DOUBLE values to integer-valued BINARY_FLOAT
and BINARY_DOUBLE values is provided by the SQL functions ROUND, TRUNC, CEIL, and
FLOOR.

Rounding of BINARY_FLOAT/BINARY_DOUBLE to decimal and decimal to BINARY_FLOAT/
BINARY_DOUBLE is provided by the SQL functions TO_CHAR, TO_NUMBER, TO_NCHAR,
TO_BINARY_FLOAT, TO_BINARY_DOUBLE, and CAST.

The floating-point data types do not conform to IEEE754 in the following areas:

-0 is coerced to +0.

Comparison with NaN is not supported.

All NaN values are coerced to either BINARY_FLOAT_NAN or BINARY_DOUBLE_NAN.
Non-default rounding modes are not supported.

Non-default exception handling mode are not supported.

Numeric Precedence

Numeric precedence determines, for operations that support numeric data types, the data
type Oracle uses if the arguments to the operation have different data types. BINARY_DOUBLE
has the highest numeric precedence, followed by BINARY_FLOAT, and finally by NUMBER.
Therefore, in any operation on multiple numeric values:

If any of the operands is BINARY_DOUBLE, then Oracle attempts to convert all the operands
implicitly to BINARY_DOUBLE before performing the operation.

If none of the operands is BINARY_DOUBLE but any of the operands is BINARY_FLOAT, then
Oracle attempts to convert all the operands implicitly to BINARY_FLOAT before performing
the operation.

Otherwise, Oracle attempts to convert all the operands to NUMBER before performing the
operation.

If any implicit conversion is needed and fails, then the operation fails. Refer to Table 2-9 for
more information on implicit conversion.

In the context of other data types, numeric data types have lower precedence than the
datetime/interval data types and higher precedence than character and all other data types.

SQL Language Reference
F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 16 of 156

ORACLE Chapter 2
Data Types

LONG Data Type

@® Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, BLOB) instead.
LONG columns are supported only for backward compatibility.

LONG columns store variable-length character strings containing up to 2 gigabytes -1, or 231-1
bytes. LONG columns have many of the characteristics of VARCHAR2 columns. You can use
LONG columns to store long text strings. The length of LONG values may be limited by the
memory available on your computer. LONG literals are formed as described for Text Literals .

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns. Further, LOB functionality is
enhanced in every release, whereas LONG functionality has been static for several releases.
See the modify_col_properties clause of ALTER TABLE and TO_LOB for more information on
converting LONG columns to LOB.

You can reference LONG columns in SQL statements in these places:

e SELECT lists
e SET clauses of UPDATE statements
* VALUES clauses of INSERT statements

The use of LONG values is subject to these restrictions:

e Atable can contain only one LONG column.
* You cannot create an object type with a LONG attribute.

e LONG columns cannot appear in WHERE clauses or in integrity constraints (except that they
can appear in NULL and NOT NULL constraints).

¢ LONG columns cannot be indexed.
* LONG data cannot be specified in regular expressions.
e A stored function cannot return a LONG value.

* You can declare a variable or argument of a PL/SQL program unit using the LONG data
type. However, you cannot then call the program unit from SQL.

e Within a single SQL statement, all LONG columns, updated tables, and locked tables must
be located on the same database.

e LONG and LONG RAW columns cannot be used in distributed SQL statements and cannot
be replicated.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 17 of 156

ORACLE’

Chapter 2
Data Types

e If a table has both LONG and LOB columns, then you cannot bind more than 4000 bytes of
data to both the LONG and LOB columns in the same SQL statement. However, you can
bind more than 4000 bytes of data to either the LONG or the LOB column.

In addition, LONG columns cannot appear in these parts of SQL statements:

e GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the DISTINCT
operator in SELECT statements

e The UNIQUE operator of a SELECT statement

e The column list of a CREATE CLUSTER statement

* The CLUSTER clause of a CREATE MATERIALIZED VIEW statement
e SQL built-in functions, expressions, or conditions

e SELECT lists of queries containing GROUP BY clauses

e SELECT lists of subqueries or queries combined by the UNION, INTERSECT, or MINUS set
operators

e SELECT lists of CREATE TABLE ... AS SELECT statements
e ALTER TABLE ... MOVE statements
e SELECT lists in subqueries in INSERT statements

Triggers can use the LONG data type in the following manner:

e A SQL statement within a trigger can insert data into a LONG column.

e If data from a LONG column can be converted to a constrained data type (such as CHAR
and VARCHAR?2), then a LONG column can be referenced in a SQL statement within a
trigger.

e Variables in triggers cannot be declared using the LONG data type.
* :NEW and :0LD cannot be used with LONG columns.

You can use Oracle Call Interface functions to retrieve a portion of a LONG value from the
database.

@ See Also

Oracle Call Interface Developer's Guide

Datetime and Interval Data Types

The datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP
WITH LOCAL TIME ZONE. Values of datetime data types are sometimes called datetimes. The
interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND. Values of
interval data types are sometimes called intervals. For information on expressing datetime
and interval values as literals, refer to Datetime Literals and Interval Literals.

Both datetimes and intervals are made up of fields. The values of these fields determine the
value of the data type. Table 2-4 lists the datetime fields and their possible values for datetimes
and intervals.

To avoid unexpected results in your DML operations on datetime data, you can verify the
database and session time zones by querying the built-in SQL functions DBTIMEZONE and

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 18 of 156

ORACLE’

Chapter 2
Data Types

SESSIONTIMEZONE. If the time zones have not been set manually, then Oracle Database uses
the operating system time zone by default. If the operating system time zone is not a valid

Oracle time zone, then Oracle uses UTC as the default value.

Table 2-4 Datetime Fields and Values
]

Datetime Field

Valid Values for Datetime

Valid Values for INTERVAL

YEAR -4712 to 9999 (excluding year 0) Any positive or negative integer

MONTH 01to 12 Oto 11

DAY 01 to 31 (limited by the values of MONTH and YEAR, Any positive or negative integer
according to the rules of the current NLS calendar
parameter)

HOUR 00 to 23 0to 23

MINUTE 00 to 59 0 to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the

fractional seconds. The 9(n) portion is not applicable for

DATE.

precision of interval fractional
seconds

TIMEZONE_HOUR

-12 to 14 (This range accommodates daylight saving
time changes.) Not applicable for DATE or TIMESTAMP.

Not applicable

TIMEZONE_MINUTE
(See note at end of table)

00 to 59. Not applicable for DATE or TIMESTAMP.

Not applicable

TIMEZONE_REGION

Query the TZNAME column of the V$TIMEZONE_NAMES
data dictionary view. Not applicable for DATE or
TIMESTAMP. For a complete listing of all time zone
region names, refer to Oracle Database Globalization

Support Guide.

Not applicable

TIMEZONE_ABBR

Query the TZABBREYV column of the
V$TIMEZONE_NAMES data dictionary view. Not
applicable for DATE or TIMESTAMP.

Not applicable

@® Note

TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together and interpreted as an
entity in the format +|- hh:mi, with values ranging from -12:59 to +14:00. Refer to Oracle
Data Provider for .NET Developer's Guide for information on specifying time zone
values for that API.

DATE Data Type

The DATE data type stores date and time information. Although date and time information can
be represented in both character and number data types, the DATE data type has special
associated properties. For each DATE value, Oracle stores the following information: year,

month, day, hour, minute, and second.

You can specify a DATE value as a literal, or you can convert a character or numeric value to a
date value with the TO_DATE function. For examples of expressing DATE values in both these
ways, refer to Datetime Literals .

SQL Language Reference
F47038-26

Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 19 of 156

ORACLE’

Chapter 2
Data Types

Using Julian Days

A Julian day number is the number of days since January 1, 4712 BC. Julian days allow
continuous dating from a common reference. You can use the date format model "J" with date
functions TO_DATE and TO_CHAR to convert between Oracle DATE values and their Julian
equivalents.

@® Note

Oracle Database uses the astronomical system of calculating Julian days, in which the
year 4713 BC is specified as -4712. The historical system of calculating Julian days, in
contrast, specifies 4713 BC as -4713. If you are comparing Oracle Julian days with
values calculated using the historical system, then take care to allow for the 365-day
difference in BC dates.

The default date values are determined as follows:

e The year is the current year, as returned by SYSDATE.

e The month is the current month, as returned by SYSDATE.
e The day is 01 (the first day of the month).

* The hour, minute, and second are all 0.

These default values are used in a query that requests date values where the date itself is not
specified, as in the following example, which is issued in the month of May:

SELECT TO_DATE(2009','YYYY")
FROM DUAL;

TO_DATE(

01-MAY-09

Example
This statement returns the Julian equivalent of January 1, 2009:

SELECT TO_CHAR(TO_DATE(01-01-2009', 'MM-DD-YYYY'),J)
FROM DUAL;

TO_CHAR

2454833

® See Also
Selecting from the DUAL Table for a description of the DUAL table

TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATE data type. It stores the year, month, and
day of the DATE data type, plus hour, minute, and second values. This data type is useful for

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 20 of 156

ORACLE’

Chapter 2
Data Types

storing precise time values and for collecting and evaluating date information across
geographic regions. Specify the TIMESTAMP data type as follows:

TIMESTAMP [(fractional_seconds_precision)]

where fractional_seconds precision optionally specifies the number of digits Oracle stores in the
fractional part of the SECOND datetime field. When you create a column of this data type, the
value can be a number in the range 0 to 9. The default is 6.

® See Also
TO_TIMESTAMP for information on converting character data to TIMESTAMP data

TIMESTAMP WITH TIME ZONE Data Type

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone region hame
or a time zone offset in its value. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time).
This data type is useful for preserving local time zone information.

Specify the TIMESTAMP WITH TIME ZONE data type as follows:

TIMESTAMP [(fractional _seconds_precision)] WITH TIME ZONE

where fractional_seconds precision optionally specifies the number of digits Oracle stores in the
fractional part of the SECOND datetime field. When you create a column of this data type, the
value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at http://
www.iana.org/time-zones/. Oracle time zone data may not reflect the most recent data available at
this site.

@ See Also

e Oracle Database Globalization Support Guide for more information on Oracle time
zone data

» Support for Daylight Saving Times and Table 2-20 for information on daylight
saving support

e TO_TIMESTAMP_TZ for information on converting character data to TIMESTAMP
WITH TIME ZONE data

 ALTER SESSION for information on the ERROR_ON_OVERLAP_TIME session
parameter

TIMESTAMP WITH LOCAL TIME ZONE Data Type

TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP that is sensitive to time
zone information. It differs from TIMESTAMP WITH TIME ZONE in that data stored in the database
is normalized to the database time zone, and the time zone information is not stored as part of
the column data. When a user retrieves the data, Oracle returns it in the user's local session

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 21 of 156

http://www.iana.org/time-zones/
http://www.iana.org/time-zones/

ORACLE’

Chapter 2
Data Types

time zone. This data type is useful for date information that is always to be displayed in the
time zone of the client system in a two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONE data type as follows:

TIMESTAMP [(fractional _seconds_precision)] WITH LOCAL TIME ZONE

where fractional_seconds precision optionally specifies the number of digits Oracle stores in the
fractional part of the SECOND datetime field. When you create a column of this data type, the
value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at http:/
www.iana.org/time-zones/. Oracle time zone data may not reflect the most recent data available at
this site.

@ See Also

e Oracle Database Globalization Support Guide for more information on Oracle time
zone data

e Oracle Database Development Guide for examples of using this data type and
CAST for information on converting character data to TIMESTAMP WITH LOCAL
TIME ZONE

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
This data type is useful for representing the difference between two datetime values when only
the year and month values are significant.

Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

where year_precision is the number of digits in the YEAR datetime field. The default value of
year_precision is 2.

You have a great deal of flexibility when specifying interval values as literals. Refer to Interval
Literals for detailed information on specifying interval values as literals. Also see Datetime and
Interval Examples for an example using intervals.

INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. This data type is useful for representing the precise difference between two datetime
values.

Specify this data type as follows:

INTERVAL DAY [(day_precision)]
TO SECOND |[(fractional_seconds precision)]

where

e day precision is the number of digits in the DAY datetime field. Accepted values are 0 to 9.
The default is 2.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 22 of 156

http://www.iana.org/time-zones/
http://www.iana.org/time-zones/

ORACLE’

Chapter 2
Data Types

fractional_seconds_precision is the number of digits in the fractional part of the SECOND datetime
field. Accepted values are 0 to 9. The default is 6.

You have a great deal of flexibility when specifying interval values as literals. Refer to Interval
Literals for detailed information on specify interval values as literals. Also see Datetime and
Interval Examples for an example using intervals.

Datetime/Interval Arithmetic

You can perform a number of arithmetic operations on date (DATE), timestamp (TIMESTAMP,
TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval (INTERVAL
DAY TO SECOND and INTERVAL YEAR TO MONTH) data. Oracle calculates the results based on
the following rules:

SQL Language Reference

F47038-26

You can use NUMBER constants in arithmetic operations on date and timestamp values, but
not interval values. Oracle internally converts timestamp values to date values and
interprets NUMBER constants in arithmetic datetime and interval expressions as numbers of
days. For example, SYSDATE + 1 is tomorrow. SYSDATE - 7 is one week ago. SYSDATE +
(10/1440) is ten minutes from now. Subtracting the hire_date column of the sample table
employees from SYSDATE returns the number of days since each employee was hired. You
cannot multiply or divide date or timestamp values.

Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to NUMBER.

Each DATE value contains a time component, and the result of many date operations
include a fraction. This fraction means a portion of one day. For example, 1.5 days is 36
hours. These fractions are also returned by Oracle built-in functions for common
operations on DATE data. For example, the MONTHS _BETWEEN function returns the number
of months between two dates. The fractional portion of the result represents that portion of
a 31-day month.

If one operand is a DATE value or a numeric value, neither of which contains time zone or
fractional seconds components, then:

— Oracle implicitly converts the other operand to DATE data. The exception is
multiplication of a numeric value times an interval, which returns an interval.

— If the other operand has a time zone value, then Oracle uses the session time zone in
the returned value.

— If the other operand has a fractional seconds value, then the fractional seconds value
is lost.

When you pass a timestamp, interval, or numeric value to a built-in function that was
designed only for the DATE data type, Oracle implicitly converts the non-DATE value to a
DATE value. Refer to Datetime Functions for information on which functions cause implicit
conversion to DATE.

When interval calculations return a datetime value, the result must be an actual datetime
value or the database returns an error. For example, the next two statements return errors:

SELECT TO_DATE('31-AUG-2004''DD-MON-YYYY") + TO_YMINTERVAL('0-1)
FROM DUAL;

SELECT TO_DATE('29-FEB-2004',/DD-MON-YYYY') + TO_YMINTERVAL('1-0")
FROM DUAL;

The first fails because adding one month to a 31-day month would result in September 31,
which is not a valid date. The second fails because adding one year to a date that exists
only every four years is not valid. However, the next statement succeeds, because adding
four years to a February 29 date is valid:

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 23 of 156

ORACLE’

SELECT TO_DATE('29-FEB-2004', 'DD-MON-YYYY') + TO_YMINTERVAL('4-0")

FROM DUAL,;

TO_DATE(

29-FEB-08

Chapter 2
Data Types

e Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH LOCAL TIME
ZONE, Oracle converts the datetime value from the database time zone to UTC and
converts back to the database time zone after performing the arithmetic. For TIMESTAMP
WITH TIME ZONE, the datetime value is always in UTC, so no conversion is necessary.

Table 2-5 is a matrix of datetime arithmetic operations. Dashes represent operations that are

not supported.

Table 2-5 Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric
DATE

+ — — DATE DATE

- NUMBER INTERVAL DATE DATE

* J— J— J— J—

/ — — — —
TIMESTAMP

+ — — TIMESTAMP DATE

- INTERVAL INTERVAL TIMESTAMP DATE

* — — — —

/ — _ — —
INTERVAL

+ DATE TIMESTAMP INTERVAL —

- — — INTERVAL —

* — — — INTERVAL
/ — — — INTERVAL
Numeric

+ DATE DATE — NA

- — — — NA

* — — INTERVAL NA

/ — — — NA
Examples

You can add an interval value expression to a start time. Consider the sample table oe.orders
with a column order_date. The following statement adds 30 days to the value of the order_date

column:

SELECT order_id, order_date + INTERVAL '30' DAY AS "Due Date"

FROM orders
ORDER BY order_id, "Due Date";

SQL Language Reference
F47038-26
Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 24 of 156

ORACLE Chapter 2
Data Types

Support for Daylight Saving Times

Oracle Database automatically determines, for any given time zone region, whether daylight
saving is in effect and returns local time values accordingly. The datetime value is sufficient for
Oracle to determine whether daylight saving time is in effect for a given region in all cases
except boundary cases. A boundary case occurs during the period when daylight saving goes
into or comes out of effect. For example, in the US-Pacific region, when daylight saving goes
into effect, the time changes from 2:00 a.m. to 3:00 a.m. The one hour interval between 2 and
3 a.m. does not exist. When daylight saving goes out of effect, the time changes from 2:00
a.m. back to 1:00 a.m., and the one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZR and TZD format elements, as described
in Table 2-20. TZR represents the time zone region name in datetime input strings. Examples
are 'Australia/North’, 'UTC', and 'Singapore'. TZD represents an abbreviated form of the time zone
region name with daylight saving information. Examples are 'PST' for US/Pacific standard time
and 'PDT' for US/Pacific daylight time. To see a listing of valid values for the TZR and TZD format
elements, query the TZNAME and TZABBREV columns of the VSTIMEZONE_NAMES dynamic
performance view.

@® Note

Time zone region names are needed by the daylight saving feature. These names are
stored in two types of time zone files: one large and one small. One of these files is
the default file, depending on your environment and the release of Oracle Database
you are using. For more information regarding time zone files and names, see Oracle
Database Globalization Support Guide.

For a complete listing of the time zone region names in both files, refer to Oracle Database
Globalization Support Guide.

Oracle time zone data is derived from the public domain information available at http:/
www.iana.org/time-zones/. Oracle time zone data may not reflect the most recent data available at
this site.

@ See Also

» Datetime Format Models for information on the format elements and the session
parameter ERROR_ON_OVERLAP_TIME .

* Oracle Database Globalization Support Guide for more information on Oracle time
zone data

» Oracle Database Reference for information on the dynamic performance views

Datetime and Interval Examples

The following example shows an INTERVAL aggregation query:

SELECT job_name,
SUM(cpu_used)
FROM DBA_SCHEDULER_JOB_RUN_DETAILS

SQL Language Reference
F47038-26 July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 25 of 156

http://www.iana.org/time-zones/
http://www.iana.org/time-zones/

ORACLE’

Chapter 2
Data Types

GROUP BY job_name
HAVING SUM (cpu_used) > interval '5' minute;

The view DBA_SCHEDULER_JOB_RUN_DETAILS contains the log run details for all scheduler jobs
in the database. The column CPU_USED of type INTERVAL DAY(3) TO SECOND(2) displays the
amount of CPU used for the job run. This query returns the names of all the scheduler jobs that
have lasted more than 5 minutes.

The following example shows how to specify some datetime and interval data types.

CREATE TABLE time_table

(start_time TIMESTAMP,

duration_1 INTERVAL DAY (6) TO SECOND (5),
duration_2 INTERVAL YEAR TO MONTH);

The start_time column is of type TIMESTAMP. The implicit fractional seconds precision of
TIMESTAMP is 6.

The duration_1 column is of type INTERVAL DAY TO SECOND. The maximum number of digits in
field DAY is 6 and the maximum number of digits in the fractional second is 5. The maximum
number of digits in all other datetime fields is 2.

The duration_2 column is of type INTERVAL YEAR TO MONTH. The maximum number of digits of
the value in each field (YEAR and MONTH) is 2.

Interval data types do not have format models. Therefore, to adjust their presentation, you
must combine character functions such as EXTRACT and concatenate the components. For
example, the following examples query the hremployees and oe.orders tables, respectively, and
change interval output from the form "yy-mm" to "yy years mm months" and from "dd-hh" to
"dddd days hh hours":

SELECT last_name, EXTRACT(YEAR FROM (SYSDATE - hire_date) YEAR TO MONTH)
|| years'
| EXTRACT(MONTH FROM (SYSDATE - hire_date) YEAR TO MONTH)
|| ' months' "Interval"
FROM employees;

LAST NAME Interval
OConnell 2 years 3 months
Grant 1 years 9 months
Whalen 6 years 1 months
Hartstein 5 years 8 months
Fay 4 years 2 months
Mavris 7 years 4 months
Baer 7 years 4 months
Higgins 7 years 4 months
Gietz 7 years 4 months

SELECT order_id, EXTRACT(DAY FROM (SYSDATE - order_date) DAY TO SECOND)
|| days*
| EXTRACT(HOUR FROM (SYSDATE - order_date) DAY TO SECOND)
|| hours' "Interval”
FROM orders;

ORDER_ID Interval

2458 780 days 23 hours
2397 685 days 22 hours
2454 733 days 21 hours
2354 447 days 20 hours

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 26 of 156

ORACLE’

Chapter 2
Data Types

2358 635 days 20 hours
2381 508 days 18 hours
2440 765 days 17 hours
2357 1365 days 16 hours
2394 602 days 15 hours
2435 763 days 15 hours

RAW and LONG RAW Data Types

@® Note

All forms of LONG data types (LONG, LONG RAW, LONG VARCHAR, LONG VARRAW) were
deprecated in Oracle8i Release 8.1.6. For succeeding releases, the LONG data type
was provided for backward compatibility with existing applications. In new applications
developed with later releases, Oracle strongly recommends that you use CLOB and
NCLOB data types for large amounts of character data.

The RAW and LONG RAW data types store data that is not to be explicitly converted by Oracle
Database when moving data between different systems. These data types are intended for
binary data or byte strings. For example, you can use LONG RAW to store graphics, sound,
documents, or arrays of binary data, for which the interpretation is dependent on the use.

Oracle strongly recommends that you convert LONG RAW columns to binary LOB (BLOB)
columns. LOB columns are subject to far fewer restrictions than LONG columns. See TO_LOB
for more information.

RAW is a variable-length data type like VARCHAR2, except that Oracle Net (which connects
client software to a database or one database to another) and the Oracle import and export
utilities do not perform character conversion when transmitting RAW or LONG RAW data. In
contrast, Oracle Net and the Oracle import and export utilities automatically convert CHAR,
VARCHAR2, and LONG data between different database character sets, if data is transported
between databases, or between the database character set and the client character set, if data
is transported between a database and a client. The client character set is determined by the
type of the client interface, such as OCI or JDBC, and the client configuration (for example, the
NLS_LANG environment variable).

When Oracle implicitly converts RAW or LONG RAW data to character data, the resulting
character value contains a hexadecimal representation of the binary input, where each
character is a hexadecimal digit (0-9, A-F) representing four consecutive bits of RAW data. For
example, one byte of RAW data with bits 11001011 becomes the value CB.

When Oracle implicitly converts character data to RAW or LONG RAW, it interprets each
consecutive input character as a hexadecimal representation of four consecutive bits of binary
data and builds the resulting RAW or LONG RAW value by concatenating those bits. If any of the
input characters is not a hexadecimal digit (0-9, A-F, a-f), then an error is reported. If the number
of characters is odd, then the result is undefined.

The SQL functions RAWTOHEX and HEXTORAW perform explicit conversions that are equivalent
to the above implicit conversions. Other types of conversions between RAW and character data
are possible with functions in the Oracle-supplied PL/SQL packages UTL_RAW and UTL_I18N.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 27 of 156

ORACLE Chapter 2
Data Types

Large Object (LOB) Data Types

The built-in LOB data types BLOB, CLOB, and NCLOB (stored internally) and BFILE (stored
externally) can store large and unstructured data such as text, image, video, and spatial data.
The size of BLOB, CLOB, and NCLOB data can be up to (232-1 bytes) * (the value of the CHUNK
parameter of LOB storage). If the tablespaces in your database are of standard block size, and
if you have used the default value of the CHUNK parameter of LOB storage when creating a
LOB column, then this is equivalent to (232-1 bytes) * (database block size). BFILE data can be
up to 2%4-1 bytes, although your operating system may impose restrictions on this maximum.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the table.

CLOB, NCLOB, and BLOB values up to approximately 4000 bytes are stored inline if you enable
storage in row at the time the LOB column is created. LOBs greater than 4000 bytes are
always stored externally. Refer to ENABLE STORAGE IN ROW for more information.

LOB columns contain LOB locators that can refer to internal (in the database) or external
(outside the database) LOB values. Selecting a LOB from a table actually returns the LOB
locator and not the entire LOB value. The DBMS_LOB package and Oracle Call Interface (OCI)
operations on LOBs are performed through these locators.

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

* LOBs can be attributes of an object type (user-defined data type).

e The LOB locator is stored in the table column, either with or without the actual LOB value.
BLOB, NCLOB, and CLOB values can be stored in separate tablespaces. BFILE data is stored
in an external file on the server.

* When you access a LOB column, the locator is returned.

« A LOB can be up to (232-1 bytes)*(database block size) in size. BFILE data can be up to
264-1 bytes, although your operating system may impose restrictions on this maximum.

* LOBs permit efficient, random, piece-wise access to and manipulation of data.

* You can define more than one LOB column in a table.

e With the exception of NCLOB, you can define one or more LOB attributes in an object.
* You can declare LOB bind variables.

* You can select LOB columns and LOB attributes.

* You can insert a new row or update an existing row that contains one or more LOB
columns or an object with one or more LOB attributes. In update operations, you can set
the internal LOB value to NULL, empty, or replace the entire LOB with data. You can set the
BFILE to NULL or make it point to a different file.

* You can update a LOB row-column intersection or a LOB attribute with another LOB row-
column intersection or LOB attribute.

* You can delete a row containing a LOB column or LOB attribute and thereby also delete
the LOB value. For BFILEs, the actual operating system file is not deleted.

You can access and populate rows of an inline LOB column (a LOB column stored in the
database) or a LOB attribute (an attribute of an object type column stored in the database)
simply by issuing an INSERT or UPDATE statement.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 28 of 156

ORACLE’

Chapter 2
Data Types

Restrictions on LOB Columns

LOB columns are subject to a number of rules and restrictions. See Oracle Database
SecureFiles and Large Objects Developer's Guide for a complete listing.

@ See Also

e Oracle Database PL/SQL Packages and Types Reference and Oracle Call
Interface Developer's Guide for more information about these interfaces and LOBs

e the modify_col_properties clause of ALTER TABLE and TO_LOB for more information
on converting LONG columns to LOB columns

BFILE Data Type

The BFILE data type enables access to binary file LOBs that are stored in file systems outside
Oracle Database. A BFILE column or attribute stores a BFILE locator, which serves as a pointer
to a binary file on the server file system. The locator maintains the directory name and the
filename.

You can change the filename and path of a BFILE without affecting the base table by using the
BFILENAME function. Refer to BEILENAME for more information on this built-in SQL function.

Binary file LOBs do not participate in transactions and are not recoverable. Rather, the
underlying operating system provides file integrity and durability. BFILE data can be up to 264-1
bytes, although your operating system may impose restrictions on this maximum.

The database administrator must ensure that the external file exists and that Oracle processes
have operating system read permissions on the file.

The BFILE data type enables read-only support of large binary files. You cannot modify or
replicate such a file. Oracle provides APIs to access file data. The primary interfaces that you
use to access file data are the DBMS_LOB package and Oracle Call Interface (OCI).

@ See Also

Oracle Database SecureFiles and Large Objects Developer's Guide and Oracle Call
Interface Programmer's Guide for more information about LOBs and CREATE
DIRECTORY

BLOB Data Type

The BLOB data type stores unstructured binary large objects. BLOB objects can be thought of
as bitstreams with no character set semantics. BLOB objects can store binary data up to (4
gigabytes -1) * (the value of the CHUNK parameter of LOB storage). If the tablespaces in your
database are of standard block size, and if you have used the default value of the CHUNK
parameter of LOB storage when creating a LOB column, then this is equivalent to (4 gigabytes
- 1) * (database block size).

BLOB objects have full transactional support. Changes made through SQL, the DBMS_LOB
package, or Oracle Call Interface (OCI) participate fully in the transaction. BLOB value

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 29 of 156

ORACLE Chapter 2
Data Types

manipulations can be committed and rolled back. However, you cannot save a BLOB locator in
a PL/SQL or OCI variable in one transaction and then use it in another transaction or session.

CLOB Data Type

The CLOB data type stores single-byte and multibyte character data. Both fixed-width and
variable-width character sets are supported, and both use the database character set. CLOB
objects can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of
character data. If the tablespaces in your database are of standard block size, and if you have
used the default value of the CHUNK parameter of LOB storage when creating a LOB column,
then this is equivalent to (4 gigabytes - 1) * (database block size).

CLOB objects have full transactional support. Changes made through SQL, the DBMS_LOB
package, or Oracle Call Interface (OCI) participate fully in the transaction. CLOB value
manipulations can be committed and rolled back. However, you cannot save a CLOB locator in
a PL/SQL or OCI variable in one transaction and then use it in another transaction or session.

NCLOB Data Type

The NCLOB data type stores Unicode data. Both fixed-width and variable-width character sets
are supported, and both use the national character set. NCLOB objects can store up to (4
gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of character text data. If the
tablespaces in your database are of standard block size, and if you have used the default
value of the CHUNK parameter of LOB storage when creating a LOB column, then this is
equivalent to (4 gigabytes - 1) * (database block size).

NCLOB objects have full transactional support. Changes made through SQL, the DBMS_LOB
package, or OCI participate fully in the transaction. NCLOB value manipulations can be
committed and rolled back. However, you cannot save an NCLOB locator in a PL/SQL or OCI
variable in one transaction and then use it in another transaction or session.

@ See Also

Oracle Database Globalization Support Guide for information on Unicode data type
support

JSON Data Type

You can create a database table that has one or more JSON columns, alone or with relational
columns. Oracle recommends that you use JSON data type for the JSON columns.

When using textual JSON data to perform an INSERT or UPDATE operation on a JSON type
column, the data is implicitly wrapped with constructor JSON. If the column is not JSON but
VARCHARZ2, CLOB, or BLOB, then use condition IS JSON as a check constraint, to ensure that the
data inserted is well-formed JSON data.

For examples see Creating Tables With JISON Columns of the JSON Developer's Guide.

json_type_column::=

—>Ccolumn_name)—(JSON_type_specification)e

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 30 of 156

ORACLE’

JSON_type_specification::=

JSON_type_modifier_Iis%
JSON_array_modifier

JSON_modifier_limit

JSON_type_modifier

©

JSON_modifier_limit

—>| JSON

(JSON type modifier list..=, JSON _array modifier::=, JISON_modifier limit.:=,

JSON _type modifier::=)

JSON_type_modifier_list::=

f’\,
o } ~((JSON_modifier_fimit }—
JSON_type_modifier

JSON_type_modifier::=

OBJECT

JSON_scalar_modifier ’_)

SCALAR

JSON_scalar_modifier::=

NUMBER

STRING

BINARY_DOUBLE

BINARY_FLOAT

DATE

i

] [_>| WITH |_>| TIME |->| ZONE |_\
TIMESTAMP

—

NULL

BOOLEAN

BINARY

R

SQL Language Reference
F47038-26

YEAR |->| TO |->| MONTH
INTERVAL
- DAY |->| TO H SECOND

Copyright © 1996, 2025, Oracle and/or its affiliates.

Chapter 2
Data Types

July 30, 2025
Page 31 of 156

ORACLE Chapter 2
Data Types

JSON_modifier_limit::=

JSON_array_modifier::=

=) O@iamse) AO{]

—{ ARRAY F@{JSON,scalar,modmer)

JSON_modifier_limit::=

JSON_array_size::=

(&=

® Note
You can create tables with JISON data type only in ASSM tablespaces.

You can use the JSON data type to store JSON data natively in binary format. This improves
query performance because textual JSON data no longer needs to be parsed. You can create
JSON type instances from other SQL data, and conversely.

You must set the database initialization parameter compatible to 20 in order to use the new JSON
data type.

The other SQL data types that support JSON data, besides JSON type, are VARCHAR2, CLOB,
and BLOB. Non-JSON type data is called textual, or serialized, JSON data. It is unparsed
character data.

You can use the JSON constructor function to convert textual JSON data to JSON type data.
To convert JSON type data to textual data, you can use the JSON_SERIALIZE function.

You can create complex JSON type data from non-JSON type data using the JSON generation
functions: JSON_OBJECT, JSON_ARRAY, JSON_OBJECTAGG, and JSON_ARRAYAGG.

You can create a JSON type instance with a scalar JSON value using the function
JSON_SCALAR .

In the other direction, you can use the function JSON_VALUE to query JSON type data and return
an instance of a SQL object type or collection type.

When defining a JISON-type column you can follow the type keyword JSON with a JSON-type
modifier, in parentheses: (OBJECT), (ARRAY), or (SCALAR). This requires the column content to

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 32 of 156

ORACLE’

Chapter 2
Data Types

be a JSON object, array, or scalar value, respectively. (This is similar to using VARCHAR(42)
instead of just VARCHAR2.)

Modifier keyword SCALAR can be followed by a keyword that specifies the required type of
scalar: BOOLEAN, BINARY, BINARY_DOUBLE, BINARY_FLOAT, DATE, INTERVAL DAY TO SECOND ,
INTERVAL YEAR TO MONTH, NULL, NUMBER, STRING, TIMESTAMP, or TIMESTAMP WITH TIME ZONE.

You can provide more than one modifier between the parentheses, separating them with
commas. For example, (OBJECT, ARRAY) requires nonscalar values, and (OBJECT, SCALAR
DATE) allows only objects or dates.

Create a Table with a JSON Type Column of JSON OBJECT: Example

The following table definition requires the JSON data type column po_document to be a JSON
object by using a JSON maodifier:

CREATE TABLE j_purchaseorder
(id VARCHAR? (32) NOT NULL PRIMARY KEY,
date_loaded TIMESTAMP (6) WITH TIME ZONE,
po_document JSON (OBJECT));

Restrictions

If you specify SORT in the clause json_array modifer, then you must also specify JSON_array size.
When you use SORT you need to explicitly use * for JSON_array size to show that there is no size
limit.

® See Also
* JSON Data Type of the JSON Developer's Guide.

* For more information on creating a JSON column see Creating a Table with a
JSON Column of the JSON developer's Guide.

* For the syntax of JSON modifiers see IS JSON Condition

Extended Data Types

Beginning with Oracle Database 12c, you can specify a maximum size of 32767 bytes for the
VARCHAR2, NVARCHAR2, and RAW data types. You can control whether your database supports
this new maximum size by setting the initialization parameter MAX_STRING_SIZE as follows:

e If MAX_STRING_SIZE = STANDARD, then the size limits for releases prior to Oracle Database
12c apply: 4000 bytes for the VARCHAR2 and NVARCHAR? data types, and 2000 bytes for
the RAW data type. This is the default.

« If MAX_STRING_SIZE = EXTENDED, then the size limit is 32767 bytes for the VARCHAR?2,
NVARCHAR?, and RAW data types.

@ See Also

Setting MAX_STRING_SIZE = EXTENDED may update database objects and possibly
invalidate them. Refer to Oracle Database Reference for complete information on the
implications of this parameter and how to set and enable this new functionality.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 33 of 156

ORACLE’

Chapter 2
Data Types

A VARCHAR?2 or NVARCHAR? data type with a declared size of greater than 4000 bytes, or a RAW
data type with a declared size of greater than 2000 bytes, is an extended data type. Extended
data type columns are stored out-of-line, leveraging Oracle's LOB technology. The LOB
storage is always aligned with the table. In tablespaces managed with Automatic Segment
Space Management (ASSM), extended data type columns are stored as SecureFiles LOBs.
Otherwise, they are stored as BasicFiles LOBs. The use of LOBs as a storage mechanism is
internal only. Therefore, you cannot manipulate these LOBs using the DBMS_LOB package.

@® Note

e Oracle strongly recommends the use of SecureFiles LOBs as a storage
mechanism. Note that BasicFiles LOBs impose restrictions on the capabilities of
extended data type columns.

e Extended data types are subject to the same rules and restrictions as LOBs. Refer
to Oracle Database SecureFiles and Large Objects Developer's Guide for more
information.

Note that, although you must set MAX_STRING_SIZE = EXTENDED in order to set the size of a
RAW data type to greater than 2000 bytes, a RAW data type is stored as an out-of-line LOB only
if it has a size of greater than 4000 bytes. For example, you must set MAX_STRING_SIZE =
EXTENDED in order to declare a RAW(3000) data type. However, the column is stored inline.

You can use extended data types just as you would standard data types, with the following
considerations:

* For special considerations when creating an index on an extended data type column, or
when requiring an index to enforce a primary key or unique constraint, see Creating an
Index on an Extended Data Type Column.

* If the partitioning key column for a list partition is an extended data type column, then the
list of values that you want to specify for a partition may exceed the 4K byte limit for the
partition bounds. See the list partitions clause of CREATE TABLE for information on how to
work around this issue.

e The value of the initialization parameter MAX_STRING_SIZE affects the following:
— The maximum length of a text literal. See Text Literals for more information.

— The size limit for concatenating two character strings. See Concatenation Operator for
more information.

— The length of the collation key returned by the NLSSORT function. See NLSSORT .

— The size of some of the attributes of the XMLFormat object. See XML Format Model for
more information.

— The size of some expressions in the following XML functions: XMLCOLATTVAL ,
XMLELEMENT , XMLFOREST , XMLPI , and XMLTABLE .

Boolean Data Type

Release 23 introduces the SQL boolean data type. The data type boolean has the truth values
TRUE and FALSE. If there is no NOT NULL constraint, the boolean data type also supports the
truth value UNKNOWN as the null value.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 34 of 156

ORACLE’

Chapter 2
Data Types

You can use the boolean data type wherever data type appears in Oracle SQL syntax. For
example, you can specify a boolean column with the keywords BOOLEAN or BOOL in CREATE
TABLE:

CREATE TABLE example (id NUMBER, c1 BOOLEAN, c2 BOOL);

You can use SQL keywords TRUE, FALSE and NULL to represent states “TRUE”, “FALSE”, and
“NULL" respectively. For example, using the table example created above, you can insert the
following:

INSERT INTO example VALUES (1, TRUE, NULL);

INSERT INTO example VALUES (2, FALSE, true);

You can use literals to represent "TRUE" and "FALSE" states. Case is not enforced in "TRUE"
and "FALSE", you can have all lower case, all upper case, or a combination of upper and lower
case. Leading and trailing white spaces are ignored.

Table 2-6 String Literals To Represent "TRUE" and "FALSE"
]

STATE TRUE FALSE
- ‘true’ ‘false’
- 'yes' 'no’
- ‘'on' ‘off'
. 1 0
- 't f
- y' n'

Note that numbers are translated into boolean as follows:

e Otranslates to FALSE.
* Non 0 values like 42 or -3.14 translate to TRUE.

Given the table example created below with two boolean columns ¢l and c2:

CREATE TABLE example (id NUMBER, c1 BOOLEAN, c2 BOOL);

Insert into example the following rows:

INSERT INTO example VALUES (1, TRUE, NULL);
INSERT INTO example VALUES (2, FALSE, trug);
INSERT INTO example VALUES (3, 0, 'off");
INSERT INTO example VALUES (4, 'no', 'yes");
INSERT INTO example VALUES (5, f, 't);
INSERT INTO example VALUES (6, false, true);
INSERT INTO example VALUES (7, 'on’, 'off");
INSERT INTO example VALUES (8, -3.14, 1);

SELECT of a boolean type column always returns TRUE , FALSE. A value of NULL returns nothing.

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 35 of 156

ORACLE’

Chapter 2

Data Types
SELECT * FROM example;
ID Cl cC2
1 TRUE
2 FALSE TRUE
3 FALSE FALSE
4 FALSE TRUE
5 FALSE TRUE
6 FALSE TRUE
7 TRUE FALSE
8 TRUE TRUE
8 rows selected.
Constraints on Boolean Columns
The following constraints are supported on boolean columns:
e NOTNULL
e UNIQUE
* PRIMARY KEY
e FOREIGN KEY
e CHECK
Comparison and Assignment of Booleans
The following comparison operators are supported to compare boolean values: =, =, <>, <, <=, >,

>=, GREATEST, LEAST, [NOT] IN
SELECT * FROM example WHERE c1 = c2;

ID C1 C2

3 FALSE FALSE
8 TRUE TRUE

SELECT * FROM example el
WHERE c1 >= ALL (SELECT ¢2 FROM example e2 WHERE e2.id > el.id);

1 TRUE
7 TRUE FALSE
8 TRUE TRUE

Operations on Booleans that Return Booleans

You can use the NOT, AND, and OR operators on SQL conditions, boolean columns, and
boolean constants. For example:

SELECT * FROM example WHERE NOT c2;

ID C1 C2

3 FALSE FALSE
7 TRUE FALSE

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 36 of 156

ORACLE’

Chapter 2

Data Types

SELECT * FROM example WHERE c1 AND c2;

ID C1 C2

8 TRUE TRUE
SELECT * FROM example WHERE c1 AND TRUE;

ID C1 C2

7 TRUE FALSE

8 TRUE TRUE

1 TRUE
SELECT * FROM example WHERE c¢1 OR ¢2;

ID C1 C2

1 TRUE

2 FALSE TRUE

4 FALSE TRUE

5 FALSE TRUE

6 FALSE TRUE

7 TRUE FALSE

8 TRUE TRUE
7 rows selected.
Boolean Operator NOT
The NOT (TRUE) is FALSE. NOT (FALSE) is true. NOT (NULL) is NULL.
Boolean Operator AND
Truth Table for the AND Boolean Operator
AND TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL FALSE FALSE NULL
Boolean Operator OR
Truth Table for the OR Boolean Operator
OR TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

SQL Language Reference
F47038-26 July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates.

Page 37 of 156

ORACLE’

Boolean Operator 1S

Truth Table for the IS Boolean Operator

Chapter 2
Data Types

IS TRUE FALSE NULL
TRUE TRUE FALSE FALSE
FALSE FALSE TRUE FALSE
NULL FALSE FALSE TRUE
Boolean Operator 1S NOT

Truth Table for the IS NOT Boolean Operator

IS NOT TRUE FALSE NULL
TRUE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE
NULL TRUE TRUE FALSE

In addition to supporting SQL conditions, the NOT, AND, and OR operators support operations
on boolean columns and boolean constants. For example, these are all valid statements:

SELECT * FROM example WHERE NOT c2;
SELECT * FROM example WHERE c1 AND c2;

SELECT * FROM example WHERE c1 AND TRUE;
SELECT * FROM example WHERE c1 OR c2;

You can use IS [NOT] NULL on a boolean value expression to determine its state. For example:

SELECT * FROM example WHERE ¢2 IS NULL;

IDC1 C2

1 TRUE

Booleans in SQL Expressions
Boolean expressions are supported in SQL syntax wherever expr is used.

SQL expressions and conditions have been enhanced to support the new boolean data type.
Links to relevant SQL syntax:

BOOLEAN Expressions

CAST Between Boolean Data Type and Other Oracle Built-In Data Types
The rules to cast between BOOLEAN and other Oracle built-in data types are as follows:

When casting BOOLEAN to numeric :
e If the boolean value is true, then resulting value is 1.

< If the boolean value is false, then resulting value is 0.

When casting numeric to BOOLEAN :

e If the numeric value is non-zero (e.g., 1, 2, -3, 1.2), then resulting value is true.

SQL Language Reference

F47038-26

Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025
Page 38 of 156

ORACLE Chapter 2
Data Types
e If the numeric value is zero, then resulting value is false.
When casting BOOLEAN to CHAR(n) and NCHAR(n):
e If the boolean value is true and n is not less than 4, then the resulting value is 'TRUE'
extended on the right by n - 4 spaces.
« If the boolean value is false and n is not less than 5, then the resulting value is 'FALSE'
extended on the right by n — 5 spaces.
« Otherwise, a data exception error is raised.
When casting a character string to boolean, leading and trailing spaces of the character string
are ignored. If the resulting character string is one of the accepted literals used to determine a
valid boolean value, then the result is that valid boolean value.
When casting BOOLEAN to VARCHAR(n), NVARCHAR(n)
e If the boolean value is true and n is not less than 4, then resulting value is true.
« If the boolean value is false and n is not less than 5, then resulting value is false.
» Otherwise, a data exception error is raised.
You can use the function TO_BOOLEAN to explicitly convert character value expressions or
numeric value expressions to boolean values.
Functions TO_CHAR, TO_NCHAR, TO_CLOB, TO_NCLOB, TO_NUMBER, TO_BINARY DOUBLE, and
TO_BINARY_FLOAT have boolean overloads to convert boolean values to number or character
types.
@ Note
TO_BOOLEAN
Vector Data Type

Vector is a new Oracle built-in data type. This data type represents a vector as an array of
numbers, called dimensions stored in one of the following formats:

e INT8 (8-hit integers)

e FLOAT32 (32-hit, single precision floating-point numbers)

e FLOAT64 (64-bit, double precision floating-point numbers)

* BINARY (packed UINT8 bytes where each dimension is a single bit)
FLOAT32 and FLOAT64 are IEEE standards.

You can declare a column as vector data type, and optionally specify the dimension count and
dimension format.

Syntax Examples:

CREATE TABLE t
CREATE TABLE t
CREATE TABLE t
CREATE TABLE t

v VECTOR);

v VECTOR(*, *));

v VECTOR(100));

v VECTOR(100, *));

—_— e~~~ —~

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 39 of 156

ORACLE’

Chapter 2
Data Types

CREATE TABLE t (v VECTOR(*, FLOAT32));
CREATE TABLE t (v VECTOR(100, FLOAT32));

Rules

If you specify the number of dimensions at declaration, then you must input the same
number of dimensions.

If you do not specify the number of dimensions, then you can input any number of
dimensions.

If you specify the storage format at declaration and the input’s format is different from the
declared format, it is converted, either up or down, to the declared format.

If the storage format is not specified, every vector will have its dimensions stored without
format modification.

The number of dimensions must be an integer greater than 0. Note that the number of
dimensions must not be 0.

Vectors are nullable, but dimensions are not (e.g., you cannot have [1.1, NULL, 2.2]).

In an UNION ALL statement, if the number of dimensions and the storage format are
different between any two branches, then the result vector’s number of dimensions and
format are flexible.

Declaration Formats for the VECTOR Data Type

The following table lists the possible declaration format for a VECTOR data type:

Possible Declaration Format Explanation

VECTOR Vectors can have an arbitrary number of

dimensions and formats.

VECTOR(*, *) Vectors can have an arbitrary number of

dimensions and formats. VECTOR and
VECTOR(*,*) are equivalent.

equivalent to

VECTOR(number_of_dimensions, *) Vectors must all have the specified number of

dimensions or an error is thrown. Every vector will
have its dimensions stored without format

VECTOR(number_of_dimensions) modification.

VECTOR(*, dimension_element_format) Vectors can have an arbitrary number of

dimensions, but their format will be up-converted or
down-converted to the specified dimension element
format (INT8, FLOAT32, FLOAT64,).

A vector can be NULL but its dimensions cannot (for example, you cannot have a VECTOR with
a NULL dimension such as [1.1, NULL, 2.2]).

The following example shows how the system interprets various vector definitions:

CREATE TABLE my _vect tab (

v1 VECTOR(3, FLOAT32),
v2 VECTOR(2, FLOAT64),
v3 VECTOR(L, INT8),

v4 VECTOR(L, *),

v5 VECTOR(*, FLOAT32),
V6 VECTOR(*, *),

v7 VECTOR

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 40 of 156

ORACLE’

)

Table created.

DESC my _vect tab;
Name Null? Type

V1
V2
V3
V4
V5
V6
V7

VECTOR(3 , FLOAT32)
VECTOR(2 , FLOAT64)
VECTOR(1, INT8)
VECTOR(1, *)
VECTOR(* , FLOAT32)
VECTOR(* , *)
VECTOR(* , *)

Restrictions

You cannot define VECTOR columns in:

External Tables

IOTs (neither as Primary Key nor as non-Key column)
Clusters or Cluster Tables

Global Temporary Tables

MSSM tablespaces (only SYS user can create VECTORS as Basicfiles in MSSM
tablespace)

CQN queries

Non-vector indexes such as B-tree, Bitmap, Reverse Key, Text, Spatial indexes

You cannot define a VECTOR column as a:

Partitioning or Subpartitioning Key
Primary Key

Foreign Key

Unique Constraint

Check Constraint

Default Value

Modify Column

Chapter 2
Data Types

Oracle Database does not support the following SQL constructs with VECTOR columns:

Distinct, Count Distinct
Order By, Group By
Join condition

Comparison operators (>, <, =)

Create Tables with Column as a VECTOR Data Type

Example 1: Create a table with a column of type vector

SQL Language Reference

F47038-26

Copyright © 1996, 2025, Oracle and/or its affiliates.

July 30, 2025

Page 41 of 156

ORACLE Chapter 2
Data Types

The following command creates a table my_vectors with two columns: id of type NUMBER and
embedding of type VECTOR:

CREATE TABLE my_vectors (id NUMBER, embedding VECTOR);

Example 2: Create a table with a column of type vector and specify dimensions and
format

CREATE TABLE my_vectors (id NUMBER, embedding VECTOR(768, INT8)) ;

In the my_vectors table above, each vector that is stored:

¢ Must have 768 dimensions.

* Each dimension must be formatted as INTS.

* The number of dimensions must be strictly greater than zero with no practical upper limit.

There are a new set of SQL functions that use the VECTOR data type. See Vector Functions

Rowid Data Types

Each row in the database has an address. The sections that follow describe the two forms of
row address in an Oracle Database.

ROWID Data Type

The rows in heap-organized tables that are native to Oracle Database have row addresses
called rowids. You can examine a rowid row address by querying the pseudocolumn ROWID.
Values of this pseudocolumn are strings representing the address of each row. These strings
have the data type ROWID. Refer to Pseudocolumns for more information on the ROWID
pseudocolumn.

Rowids contain the following information:

* The data block of the data file containing the row. The length of this string depends on
your operating system.

 The row in the data block.

* The database file containing the row. The first data file has the number 1. The length of
this string depends on your operating system.

* The data object number, which is an identification number assigned to every database
segment. You can retrieve the data object number from the data dictionary views
USER_OBJECTS, DBA OBJECTS, and ALL_OBJECTS. Objects that share the same segment
(clustered tables in the same cluster, for example) have the same object number.

Rowids are stored as base 64 values that can contain the characters A-Z, a-z, 0-9, and the
plus sign (+) and forward slash (/). Rowids are not available directly. You can use the supplied
package DBMS_ROWID to interpret rowid contents. The package functions extract and provide
information on the four rowid elements listed above.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 42 of 156

ORACLE’

Chapter 2
Data Types

@ See Also

Oracle Database PL/SQL Packages and Types Reference for information on the
functions available with the DBMS_ROWID package and how to use them

UROWID Data Type

ANSI, DB2,

The rows of some tables have addresses that are not physical or permanent or were not
generated by Oracle Database. For example, the row addresses of index-organized tables are
stored in index leaves, which can move. Rowids of foreign tables (such as DB2 tables
accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and foreign
tables. Index-organized tables have logical urowids and foreign tables have foreign urowids.
Both types of urowid are stored in the ROWID pseudocolumn (as are the physical rowids of
heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids do not
change as long as the primary key does not change. The ROWID pseudocolumn of an index-
organized table has a data type of UROWID. You can access this pseudocolumn as you would
the ROWID pseudocolumn of a heap-organized table (using a SELECT ... ROWID statement). If
you want to store the rowids of an index-organized table, then you can define a column of type
UROWID for the table and retrieve the value of the ROWID pseudocolumn into that column.

and SQL/DS Data Types

SQL statements that create tables and clusters can also use ANSI data types and data types
from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or IBM data type name
that differs from the Oracle Database data type name. It converts the data type to the
equivalent Oracle data type, records the Oracle data type as the name of the column data
type, and stores the column data in the Oracle data type based on the conversions shown in
the tables that follow.

Table 2-7 ANSI Data Types Converted to Oracle Data Types

ANSI SQL Data Type Oracle Data Type
CHARACTER(n) CHAR(n)

CHAR(n)

CHARACTER VARYING(n) VARCHAR2(n)
CHAR VARYING(n)

NATIONAL CHARACTER(n) NCHAR(n)
NATIONAL CHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n) NVARCHAR2(n)

NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)

NUMERIC[(ps)] NUMBER(p,s)
DECIMAL[(p,s)] (Note 1)

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 43 of 156

ORACLE Chapter 2
Data Types

Table 2-7 (Cont.) ANSI Data Types Converted to Oracle Data Types

ANSI SQL Data Type Oracle Data Type
INTEGER NUMBER(38)

INT

SMALLINT

FLOAT (Note 2) FLOAT(126)
DOUBLE PRECISION (Note 3) FLOAT(126)

REAL (Note 4) FLOAT(63)
Notes:

1. The NUMERIC and DECIMAL data types can specify only fixed-point numbers. For those
data types, the scale (s) defaults to 0.

2. The FLOAT data type is a floating-point number with a binary precision b. The default
precision for this data type is 126 binary, or 38 decimal.

3. The DOUBLE PRECISION data type is a floating-point number with binary precision 126.
4. The REAL data type is a floating-point number with a binary precision of 63, or 18 decimal.

Do not define columns with the following SQL/DS and DB2 data types, because they have no
corresponding Oracle data type:

* GRAPHIC

* LONG VARGRAPHIC
* VARGRAPHIC

« TIME

Note that data of type TIME can also be expressed as Oracle datetime data.

@ See Also

Datetime and Interval Data Types

Table 2-8 SQL/DS and DB2 Data Types Converted to Oracle Data Types

SQLI/DS or DB2 Data Type Oracle Data Type
CHARACTER(n) CHAR(n)
VARCHAR(n) VARCHAR(n)
LONG VARCHAR LONG
DECIMAL(p,s) (Note 1) NUMBER(p,s)
INTEGER NUMBER(p,0)
SMALLINT

FLOAT (Note 2) NUMBER

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 44 of 156

ORACLE’

Chapter 2
Data Types

Notes:

1. The DECIMAL data type can specify only fixed-point numbers. For this data type, s defaults
to 0.

2. The FLOAT data type is a floating-point number with a binary precision b. The default
precision for this data type is 126 binary or 38 decimal.

User-Defined Types

Object Types

User-defined data types use Oracle built-in data types and other user-defined data types as
the building blocks of object types that model the structure and behavior of data in applications.
The sections that follow describe the various categories of user-defined types.

@ See Also

* Oracle Database Concepts for information about Oracle built-in data types

 CREATE TYPE and the CREATE TYPE BODY for information about creating
user-defined types

* Oracle Database Object-Relational Developer's Guide for information about using
user-defined types

Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds of
components:

* A name, which identifies the object type uniquely within that schema.

e Attributes, which are built-in types or other user-defined types. Attributes model the
structure of the real-world entity.

* Methods, which are functions or procedures written in PL/SQL and stored in the database,
or written in a language like C or Java and stored externally. Methods implement
operations the application can perform on the real-world entity.

REF Data Types

An object identifier (represented by the keyword OID) uniquely identifies an object and
enables you to reference the object from other objects or from relational tables. A data type
category called REF represents such references. A REF data type is a container for an object
identifier. REF values are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling”. A dangling
REF is different from a null REF. To determine whether a REF is dangling or not, use the
condition IS [NOT] DANGLING. For example, given object view oc_orders in the sample schema oe,
the column customer _ref is of type REF to type customer_typ, which has an attribute cust_email:

SELECT o.customer_ref.cust_email
FROM oc_orders 0
WHERE o.customer_ref IS NOT DANGLING;

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 45 of 156

ORACLE’

Varrays

Chapter 2
Data Types

An array is an ordered set of data elements. All elements of a given array are of the same data
type. Each element has an index, which is a number corresponding to the position of the
element in the array.

The number of elements in an array is the size of the array. Oracle arrays are of variable size,
which is why they are called varrays. You must specify a maximum size when you declare the
varray.

When you declare a varray, it does not allocate space. It defines a type, which you can use as:

e The data type of a column of a relational table
e An object type attribute
e A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (as part of the row data) or out of line (in a
LOB), depending on its size. However, if you specify separate storage characteristics for a
varray, then Oracle stores it out of line, regardless of its size. Refer to the

varray col properties of CREATE TABLE for more information about varray storage.

Nested Tables

A nested table type models an unordered set of elements. The elements may be built-in types
or user-defined types. You can view a nested table as a single-column table or, if the nested
table is an object type, as a multicolumn table, with a column for each attribute of the object

type.

A nested table definition does not allocate space. It defines a type, which you can use to
declare:

* The data type of a column of a relational table
* An object type attribute
e A PL/SQL variable, parameter, or function return type

When a nested table appears as the type of a column in a relational table or as an attribute of
the underlying object type of an object table, Oracle stores all of the nested table data in a
single table, which it associates with the enclosing relational or object table.

Oracle-Supplied Types

Oracle provides SQL-based interfaces for defining new types when the built-in or ANSI-
supported types are not sufficient. The behavior for these types can be implemented in C/C++,
Java, or PL/ SQL. Oracle Database automatically provides the low-level infrastructure services
needed for input-output, heterogeneous client-side access for new data types, and
optimizations for data transfers between the application and the database.

These interfaces can be used to build user-defined (or object) types and are also used by
Oracle to create some commonly useful data types. Several such data types are supplied with
the server, and they serve both broad horizontal application areas (for example, the Any types)
and specific vertical ones (for example, the spatial types).

The Oracle-supplied types, along with cross-references to the documentation of their
implementation and use, are described in the following sections:

* Any Types

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 46 of 156

ORACLE’

Any Types

Chapter 2
Data Types

e XML Types
e Spatial Types

The Any types provide highly flexible modeling of procedure parameters and table columns

where the actual type is not known. These data types let you dynamically encapsulate and

access type descriptions, data instances, and sets of data instances of any other SQL type.
These types have OCIl and PL/SQL interfaces for construction and access.

ANYTYPE
This type can contain a type description of any named SQL type or unnamed transient type.
ANYDATA
This type contains an instance of a given type, with data, plus a description of the type.
ANYDATA can be used as a table column data type and lets you store heterogeneous values in
a single column. The values can be of SQL built-in types as well as user-defined types.
ANYDATASET

XML Types

XMLType

This type contains a description of a given type plus a set of data instances of that type.
ANYDATASET can be used as a procedure parameter data type where such flexibility is needed.
The values of the data instances can be of SQL built-in types as well as user-defined types.

@ See Also

Oracle Database PL/SQL Packages and Types Reference for information on the
ANYTYPE, ANYDATA, and ANYDATASET types

Extensible Markup Language (XML) is a standard format developed by the World Wide Web
Consortium (W3C) for representing structured and unstructured data on the World Wide Web.
Universal resource identifiers (URIs) identify resources such as Web pages anywhere on the
Web. Oracle provides types to handle XML and URI data, as well as a class of URIs called
DBURIRef types to access data stored within the database itself. It also provides a set of types
to store and access both external and internal URIs from within the database.

This Oracle-supplied type can be used to store and query XML data in the database. XMLType
has member functions you can use to access, extract, and query the XML data using XPath
expressions. XPath is another standard developed by the W3C committee to traverse XML
documents. Oracle XMLType functions support many W3C XPath expressions. Oracle also
provides a set of SQL functions and PL/SQL packages to create XMLType values from existing
relational or object-relational data.

XMLType is a system-defined type, so you can use it as an argument of a function or as the data
type of a table or view column. You can also create tables and views of XMLType. When you

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 47 of 156

ORACLE’

Chapter 2
Data Types

create an XMLType column in a table, you can choose to store the XML data in a CLOB column,
as binary XML (stored internally as a BLOB), or object relationally.

You can also register the schema (using the DBMS_XMLSCHEMA package) and create a table or
column conforming to the registered schema. In this case Oracle stores the XML data in
underlying object-relational columns by default, but you can specify storage in a CLOB or binary
XML column even for schema-based data.

Queries and DML on XMLType columns operate the same regardless of the storage
mechanism.

@ See Also

Oracle XML DB Developer’s Guidefor information about using XMLType columns

URI Data Types

Oracle supplies a family of URI types—URIType, DBURIType, XDBURIType, and HTTPURIType—
which are related by an inheritance hierarchy. URIType is an object type and the others are
subtypes of URIType. Since URIType is the supertype, you can create columns of this type and
store DBURIType or HTTPURIType type instances in this column.

HTTPURIType

You can use HTTPURIType to store URLS to external Web pages or to files. Oracle accesses
these files using HTTP (Hypertext Transfer Protocol).

XDBURIType

You can use XDBURIType to expose documents in the XML database hierarchy as URIs that can
be embedded in any URIType column in a table. The XDBURIType consists of a URL, which
comprises the hierarchical name of the XML document to which it refers and an optional
fragment representing the XPath syntax. The fragment is separated from the URL part by a
pound sign (#). The following lines are examples of XDBURIType:

/home/oe/docl.xml
/home/oe/docl.xml#/orders/order_item

DBURIType

DBURIType can be used to store DBURIRef values, which reference data inside the database.
Storing DBURIRef values lets you reference data stored inside or outside the database and
access the data consistently.

DBURIRef values use an XPath-like representation to reference data inside the database. If you
imagine the database as an XML tree, then you would see the tables, rows, and columns as
elements in the XML document. For example, the sample human resources user hr would see
the following XML tree:

<HR>
<EMPLOYEES>
<ROW>
<EMPLOYEE_ID>205</EMPLOYEE_ID>
<LAST NAME>Higgins</LAST NAME>
<SALARY>12008</SALARY>
.. <!-- other columns -->

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 48 of 156

ORACLE’

Chapter 2
Data Types

</ROW>
... <l-- other rows -->
</[EMPLOYEES>
<!-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBURIRef is an XPath expression over this virtual XML document. So to reference the
SALARY value in the EMPLOYEES table for the employee with employee number 205, you can
write a DBURIRef as,

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns and expose
them as URLSs to the external world.

URIFactory Package

Oracle also provides the URIFactory package, which can create and return instances of the
various subtypes of the URITypes. The package analyzes the URL string, identifies the type of
URL (HTTP, DBURI, and so on), and creates an instance of the subtype. To create a DBURI
instance, the URL must begin with the prefix /oradh. For example, URIFactory.getURI('/oradb/HR/
EMPLOYEES') would create a DBURIType instance and URIFactory.getUri('/sys/schema’) would create an
XDBURIType instance.

@ See Also

* Oracle Database Object-Relational Developer's Guide for general information on
object types and type inheritance

e Oracle XML DB Developer’s Guide for more information about these supplied
types and their implementation

* Oracle Database Advanced Queuing User's Guide for information about using
XMLType with Oracle Advanced Queuing

Spatial Types

Oracle Spatial and Graph is designed to make spatial data management easier and more
natural to users of location-enabled applications, geographic information system (GIS)
applications, and geoimaging applications. After the spatial data is stored in an Oracle
Database, you can easily manipulate, retrieve, and relate it to all the other data stored in the
database. The following data types are available only if you have installed Oracle Spatial and
Graph.

SDO_GEOMETRY

The geometric description of a spatial object is stored in a single row, in a single column of
object type SDO_GEOMETRY in a user-defined table. Any table that has a column of type
SDO_GEOMETRY must have another column, or set of columns, that defines a unique primary
key for that table. Tables of this sort are sometimes called geometry tables.

The SDO_GEOMETRY object type has the following definition:

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 49 of 156

ORACLE Chapter 2
Data Type Comparison Rules

CREATE TYPE SDO_GEOMETRY AS OBJECT
(sgo_gtype NUMBER,

sdo_srid NUMBER,

sdo_point ~ SDO_POINT_TYPE,
sdo_elem_info SDO_ELEM_INFO_ARRAY,
sdo_ordinates SDO_ORDINATE_ARRAY);

SDO_TOPO GEOMETRY

This type describes a topology geometry, which is stored in a single row, in a single column of
object type SDO_TOPO_GEOMETRY in a user-defined table.

The SDO_TOPO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_TOPO_GEOMETRY AS OBJECT
(tg_type NUMBER,
tg_id NUMBER,
tg_layer_id NUMBER,
topology_id NUMBER);
/

SDO_GEORASTER

In the GeoRaster object-relational model, a raster grid or image object is stored in a single row,
in a single column of object type SDO_GEORASTER in a user-defined table. Tables of this sort are
called GeoRaster tables.

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO_GEORASTER AS OBJECT
(rasterType NUMBER,
spatialExtent SDO_GEOMETRY,
rasterDataTable VARCHAR2(32),
rasterID NUMBER,
metadata XMLType);

@ See Also

Oracle Spatial Developer's Guide, Oracle Spatial Topology and Network Data Model
Developer's Guide, and Oracle Spatial GeoRaster Developer's Guide for information
on the full implementation of the spatial data types and guidelines for using them

Data Type Comparison Rules

This section describes how Oracle Database compares values of each data type.

Numeric Values

A larger value is considered greater than a smaller one. All negative numbers are less than
zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric value and is
equal to itself.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 50 of 156

ORACLE Chapter 2
Data Type Comparison Rules

@ See Also

Numeric Precedence and Floating-Point Numbers for more information on comparison
semantics

Datetime Values

A later date or timestamp is considered greater than an earlier one. For example, the date
equivalent of '29-MAR-2005' is less than that of '05-JAN-2006' and the timestamp equivalent of
'05-JAN-2006 1:35pm' is greater than that of '05-JAN-2005 10:09am'.

When two timestamps with time zone are compared, they are first normalized to UTC, that is,
to the timezone offset '+00:00'. For example, the timestamp with time zone equivalent of '16-
OCT-2016 05:59am Europe/Warsaw' is equal to that of '15-OCT-2016 08:59pm US/Pacific'.
Both represent the same absolute point in time, which represented in UTC is October 16th,
2016, 03:59am.

Binary Values

A binary value of the data type RAW or BLOB is a sequence of bytes. When two binary values
are compared, the corresponding, consecutive bytes of the two byte sequences are compared
in turn. If the first bytes of both compared values are different, the binary value that contains
the byte with the lower numeric value is considered smaller. If the first bytes are equal, second
bytes are compared analogously, and so on, until either the compared bytes differ or the
comparison process reaches the end of one of the values. In the latter case, the value that is
shorter is considered smaller.

Binary values of the data type BLOB cannot be compared directly in comparison conditions.
However, they can be compared with the PL/SQL function DBMS_LOB.COMPARE.

@ See Also

Oracle Database PL/SQL Packages and Types Reference for more information on the
DBMS_LOB.COMPARE function

Character Values

Character values are compared on the basis of two measures:

e Binary or linguistic collation
* Blank-padded or nonpadded comparison semantics

The following subsections describe the two measures.

Binary and Linguistic Collation

In binary collation, which is the default, Oracle compares character values like binary values.
Two sequences of bytes that form the encodings of two character values in their storage
character set are treated as binary values and compared as described in Binary Values . The
result of this comparison is returned as the result of the binary comparison of the source
character values.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 51 of 156

ORACLE Chapter 2
Data Type Comparison Rules

@ See Also

Oracle Database Globalization Support Guide for more information on character sets

For many languages, the binary collation can yield a linguistically incorrect ordering of
character values. For example, in most common character sets, all the uppercase Latin letters
have character codes with lower values than all the lowercase Latin letters. Hence, the binary
collation yields the following order:

MacDonald
MaclIntosh
Macdonald
Macintosh

However, most users expect these four values to be presented in the order:

MacDonald
Macdonald
Maclntosh
Macintosh

This shows that binary collation may not be suitable even for English character values.

Oracle Database supports linguistic collations that order strings according to rules of various
spoken languages. It also supports collation variants that match character values case- and
accent-insensitively. Linguistic collations are more expensive but they provide superior user
experience.

@ See Also

Oracle Database Globalization Support Guide for more information about linguistic
sorting

Restrictions for Linguistic Collations

Comparison conditions, ORDER BY, GROUP BY and MATCH_RECOGNIZE query clauses,
COUNT(DISTINCT) and statistical aggregate functions, LIKE conditions, and ORDER BY and
PARTITION BY analytic clauses generate collation keys when using linguistic collations. The
collation keys are the same values that are returned by the function NLSSORT and are subject to
the same restrictions that are described in NLSSORT .

Blank-Padded and Nonpadded Comparison Semantics

With blank-padded semantics, if the two values have different lengths, then Oracle first adds
blanks to the end of the shorter one so their lengths are equal. Oracle then compares the
values character by character up to the first character that differs. The value with the greater
character in the first differing position is considered greater. If two values have no differing
characters, then they are considered equal. This rule means that two values are equal if they
differ only in the number of trailing blanks. Oracle uses blank-padded comparison semantics
only when both values in the comparison are either expressions of data type CHAR, NCHAR,
text literals, or values returned by the USER function.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 52 of 156

ORACLE’

Chapter 2
Data Type Comparison Rules

With nonpadded semantics, Oracle compares two values character by character up to the first
character that differs. The value with the greater character in that position is considered
greater. If two values of different length are identical up to the end of the shorter one, then the
longer value is considered greater. If two values of equal length have no differing characters,
then the values are considered equal. Oracle uses nonpadded comparison semantics
whenever one or both values in the comparison have the data type VARCHAR2 or NVARCHAR?2.

The results of comparing two character values using different comparison semantics may vary.
The table that follows shows the results of comparing five pairs of character values using each
comparison semantic. Usually, the results of blank-padded and nonpadded comparisons are
the same. The last comparison in the table illustrates the differences between the blank-
padded and nonpadded comparison semantics.

Blank-Padded Nonpadded
‘ac' > ‘ab’ ‘ac' > 'ab’
‘ab'>"a’ ‘ab'>"a"

‘ab' > ab' > 'a

‘ab’ = "ab’ ‘ab’ = "ab’
a'="a' a'>"a’

Data-Bound Collation

Starting with Oracle Database 12c¢ Release 2 (12.2), the collation to use when comparing or
matching a given character value is associated with the value itself. It is called the data-bound
collation. The data-bound collation can be viewed as an attribute of the data type of the value.

In previous Oracle Database releases, the session parameters NLS_ COMP and NLS_SORT
coarsely determined the collation for all collation-sensitive SQL operations in a database
session. The data-bound collation architecture enables applications to consistently apply
language-specific comparison rules to exactly the data that needs these rules.

Oracle Database 12c Release 2 (12.2) allows you to declare a collation for a table column.
When a column is passed as an argument to a collation-sensitive SQL operation, the SQL
operation uses the column's declared collation to process the column's values. If the SQL
operation has multiple character arguments that are compared to each other, the collation
determination rules determine the collation to use.

There are two types of data-bound collations:

* Named Collation: This collation is a particular set of collating rules specified by a collation
name. Named collations are the same collations that are specified as values for the
NLS_SORT parameter. A named collation can be either a binary collation or a linguistic
collation.

* Pseudo-collation: This collation does not directly specify the collating rules for a SQL
operation. Instead, it instructs the operation to check the values of the session parameters
NLS_SORT and NLS_COMP for the actual named collation to use. Pseudo-collations are the
bridge between the new declarative method of specifying collations and the old method
that uses session parameters. In particular, the pseudo-collation USING_NLS COMP directs a
SQL operation to behave exactly as it used to behave before Oracle Database 12¢
Release 2.

When you declare a named collation for a column, you statically determine how the column
values are compared. When you declare a pseudo-collation, you can dynamically control
comparison behavior with the session parameter NLS_ COMP and NLS_SORT. However, static
objects, such as indexes and constraints, defined on a column declared with a pseudo-

SQL Language Reference

F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 53 of 156

ORACLE Chapter 2
Data Type Comparison Rules

collation, fall back to using a binary collation. Dynamically settable collating rules cannot be
used to compare values for a static object.

The collation for a character literal or bind variable that is used in an expression is derived from
the default collation of the database object containing the expression, such as a view or
materialized view query, a PL/SQL stored unit code, a user-defined type method code, or a
standalone DML or query statement. In Oracle Database 12c Release 2, the default collation of
PL/SQL stored units, user-defined type methods, and standalone SQL statements is always
the pseudo-collation USING_NLS COMP. The default collation of views and materialized views
can be specified in the DEFAULT COLLATION clause of the CREATE VIEW and CREATE
MATERIALIZED VIEW statements.

If a SQL operation returns character values, the collation derivation rules determine the
derived collation for the result, so that its collation is known, when the result is passed as an
argument to another collation-sensitive SQL operation in the expression tree or to a top-level
consumer, such as an SQL statement clause in a SELECT statement. If a SQL operation
operates on character argument values, then the derived collation of its character result is
based on the collations of the arguments. Otherwise, the derivation rules are the same as for a
character literal.

You can override the derived collation of an expression node, such as a simple expression or
an operator result, by using the COLLATE operator.

Oracle Database allows you to declare a case-insensitive collation for a column, table or
schema, so that the column or all character columns in a table or a schema can be always
compared in a case-insensitive way.

@ See Also

* Oracle Database Globalization Support Guide for more information on data-bound
collation architecture, including the detailed collation derivation and determination
rules

e COLLATE Operator

Object Values

Object values are compared using one of two comparison functions: MAP and ORDER. Both
functions compare object type instances, but they are quite different from one another. These
functions must be specified as part of any object type that will be compared with other object

types.

@ See Also

CREATE TYPE for a description of MAP and ORDER methods and the values they
return

Varrays and Nested Tables

Comparison of nested tables is described in Comparison Conditions .

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 54 of 156

ORACLE’

Chapter 2
Data Type Comparison Rules

Data Type Precedence

Oracle uses data type precedence to determine implicit data type conversion, which is
discussed in the section that follows. Oracle data types take the following precedence:

Datetime and interval data types
BINARY_DOUBLE

BINARY_FLOAT

NUMBER

Character data types

All other built-in data types

Data Conversion

Generally an expression cannot contain values of different data types. For example, an
expression cannot multiply 5 by 10 and then add 'JAMES'. However, Oracle supports both
implicit and explicit conversion of values from one data type to another.

Implicit and Explicit Data Conversion

Oracle recommends that you specify explicit conversions, rather than rely on implicit or
automatic conversions, for these reasons:

SQL statements are easier to understand when you use explicit data type conversion
functions.

Implicit data type conversion can have a negative impact on performance, especially if the
data type of a column value is converted to that of a constant rather than the other way
around.

Implicit conversion depends on the context in which it occurs and may not work the same
way in every case. For example, implicit conversion from a datetime value to a VARCHAR2
value may return an unexpected year depending on the value of the NLS_DATE_FORMAT
parameter.

Algorithms for implicit conversion are subject to change across software releases and
among Oracle products. Behavior of explicit conversions is more predictable.

If implicit data type conversion occurs in an index expression, then Oracle Database might
not use the index because it is defined for the pre-conversion data type. This can have a
negative impact on performance.

Implicit Data Conversion

Oracle Database automatically converts a value from one data type to another when such a
conversion makes sense.

Table 2-9 is a matrix of Oracle implicit conversions. The table shows all possible conversions,
without regard to the direction of the conversion or the context in which it is made.

The cells with an 'X" indicate the possible implicit conversions from source to destination data
type.

SQL Language Reference
F47038-26

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 55 of 156

ORACLE Chapter 2
Data Type Comparison Rules

Table 2-9 Implicit Type Conversion Matrix

Data CHA VAR NCH NVA DAT DAT NU BIN BIN LON RA RO CLO BLO NCL BOOLEAN
Type R CHA AR RCH E ETI MB ARY ARY G w WID B B oB
R2 AR2 ME/ ER _FL _DO

INT OAT UBL

ERV E

AL
CHAR - X X X X X X X X X X X X
VARCH X - X X X X X X X X X X X -- X -
AR2
NCHAR X X - X X X X X X X X X X -- X X
NVARC X X X - X X X X X X X X X = X -
HAR2
DATE X X X X — — - - = -
DATETI X X X X — — — — = X — -
ME/
INTERV
AL
NUMBE X X X X - — — X X - - = < < T x
R
BINARY X X X X - — X —« X — — - < < < x
_FLOAT
BINARY X X X X - - X X — = = = < < < X
_DOUBL
E
LONG X X X X - xt — - - < X - X - X -
RAW X X X X = — = = X I X -
ROWID X X X X - - — - = - - o o
CLOB X X X X — — — — - X - < I x -
BLOB - =~ = = = e e e o e X e e e e -
NCLOB X X X X -~ — — — - X — < X = < -
JSON - - X - -
BOOLE X X X X - — X X X — — —« = - < -
AN

1 vou cannot convert LONG to INTERVAL directly, but you can convert LONG to VARCHAR?2 using TO_CHAR(interval), and then
convert the resulting VARCHAR2 value to INTERVAL.

Implicit Data Type Conversion Rules

» During INSERT and UPDATE operations, Oracle converts the value to the data type of the
affected column.

e During SELECT FROM operations, Oracle converts the data from the column to the type of
the target variable.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 56 of 156

ORACLE’

SQL Language Reference

F47038-26

Chapter 2
Data Type Comparison Rules

When manipulating numeric values, Oracle usually adjusts precision and scale to allow for
maximum capacity. In such cases, the numeric data type resulting from such operations
can differ from the numeric data type found in the underlying tables.

When comparing a character value with a numeric value, Oracle converts the character
data to a numeric value.

Conversions between character values or NUMBER values and floating-point number
values can be inexact, because the character types and NUMBER use decimal precision to
represent the numeric value, and the floating-point numbers use binary precision.

When converting a CLOB value into a character data type such as VARCHAR2, or converting
BLOB to RAW data, if the data to be converted is larger than the target data type, then the
database returns an error.

During conversion from a timestamp value to a DATE value, the fractional seconds portion
of the timestamp value is truncated. This behavior differs from earlier releases of Oracle
Database, when the fractional seconds portion of the timestamp value was rounded.

Conversions from BINARY_FLOAT to BINARY_DOUBLE are exact.

Conversions from BINARY_DOUBLE to BINARY_FLOAT are inexact if the BINARY_DOUBLE
value uses more bits of precision that supported by the BINARY_FLOAT.

When comparing a character value with a DATE value, Oracle converts the character data
to DATE.

When you use a SQL function or operator with an argument of a data type other than the
one it accepts, Oracle converts the argument to the accepted data type.

When making assignments, Oracle converts the value on the right side of the equal sign
(=) to the data type of the target of the assignment on the left side.

During concatenation operations, Oracle converts from noncharacter data types to CHAR or
NCHAR.

During arithmetic operations on and comparisons between character and noncharacter
data types, Oracle converts from any character data type to a numeric, date, or rowid, as
appropriate. In arithmetic operations between CHAR/VARCHAR2 and NCHAR/NVARCHAR?2,
Oracle converts to a NUMBER.

Most SQL character functions are enabled to accept CLOBs as parameters, and Oracle
performs implicit conversions between CLOB and character types. Therefore, functions that
are not yet enabled for CLOBs can accept CLOBs through implicit conversion. In such
cases, Oracle converts the CLOBs to CHAR or VARCHAR? before the function is invoked. If
the CLOB is larger than 4000 bytes, then Oracle converts only the first 4000 bytes to CHAR.

When converting RAW or LONG RAW data to or from character data, the binary data is
represented in hexadecimal form, with one hexadecimal character representing every four
bits of RAW data. Refer to "RAW and LONG RAW Data Types " for more information.

Comparisons between CHAR and VARCHAR?2 and between NCHAR and NVARCHAR? types
may entail different character sets. The default direction of conversion in such cases is
from the database character set to the national character set. Table 2-10 shows the
direction of implicit conversions between different character types.

Table 2-10 Conversion Direction of Different Character Types

Source to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
Data Type
from CHAR - VARCHAR?2 NCHAR NVARCHAR?2

July 30, 2025

Copyright © 1996, 2025, Oracle and/or its affiliates. Page 57 of 156

ORACLE Chapter 2
Data Type Comparison Rules

Table 2-10 (Cont.) Conversion Direction of Different Character Types
]

Source to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
Data Type

from VARCHAR2 VARCHAR2 - NVARCHAR2 NVARCHAR2
from NCHAR NCHAR NCHAR - NVARCHAR?
from NVARCHAR2 NVARCHAR2 NVARCHAR2 -
NVARCHAR2

User-defined types such as collections cannot be implicitly converted, but must be explicitly
converted using CAST ... MULTISET.

Implicit Data Conversion Examples

Text Literal Example

The text literal '10' has data type CHAR. Oracle implicitly converts it to the NUMBER data type if
it appears in a numeric expression as in the following statement:

SELECT salary + '10'
FROM employees;

Character and Number Values Example

When a condition compares a character value and a NUMBER value, Oracle implicitly converts
the character value to a NUMBER value, rather than converting the NUMBER value to a character
value. In the following statement, Oracle implicitly converts '200' to 200:

SELECT last_name
FROM employees
WHERE employee_id = '200";

Date Example

In the following statement, Oracle implicitly converts '24-JUN-06' to a DATE value using the
default date format 'DD-MON-YY":

SELECT last_name
FROM employees
WHERE hire_date = '24-JUN-06";

Explicit Data Conversion

You can explicitly specify data type conversions using SQL conversion functions. Table 2-11
shows SQL functions that explicitly convert a value from one data type to another.

You cannot specify LONG and LONG RAW values in cases in which Oracle can perform implicit
data type conversion. For example, LONG and LONG RAW values cannot appear in expressions
with functions or operators. Refer to LONG Data Type for information on the limitations on
LONG and LONG RAW data types.

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 58 of 156

ORACLE Chapter 2
Data Type Comparison Rules

Table 2-11 Explicit Type Conversions

Source to CHAR, to to Datetime/ to RAW to to to to to to BOOLEAN
Data Type VARCHAR2 NUMB Interval ROWID LO CLOB, BINAR BINAR
, ER NG, NCLOB, Y_FLO Y_DOU
NCHAR, LO BLOB AT BLE
NVARCHAR NG
2 RA
w
from TO_CHAR TO_NU TO_DATE HEXTOR CHART -- TO CLO TO BIN TO BIN TO _BOOLEAN
CHAR, (char) MBER 70 TIMESTA AW 0- B ARY_FL ARY_DO
VARCHA T0 NCHAR MP =ROWI TO NcL OAT UBLE
R2, (char,) TO_TIMESTA D 0B
NCHAR, MP TZ
NVARCH -
AR? TO_YMINTER
VAL
TO_DSINTER
VAL
from TO.CHAR - TODATE - - - - TO_BIN TO_BIN TO_BOOLEAN
NUMBER (number) NUMTOYM- ARY_FL ARY_DO
TO_NCHAR INTERVAL OAT UBLE
(number) NUMTODS-
INTERVAL
from TO_CHAR - - - - - -- -- - -

Datetime/ (date)
Interval TO_NCHAR

(datetime)
from RAW RAWTOHEX - - - - - TOBLO - - -
RAWTONHE B
X
from ROWIDTOCH -- - - - - . - -
ROWID AR
from - - - - - - TOLOB - - -
LONG /
LONG
RAW
from TO CHAR - - - - - TOCLO - - -
CLOB, TO NCHAR B
NCLOB, TO_NCL
BLOB 0B
from TO_CHAR - - - - - TOCLO - - -
CLOB, TO NCHAR B
NCLOB, TO_NCL
BLOB 0B
from TO CHAR TONU - - - - - TO BIN TO BIN TO_BOOLEAN
BINARY_ (char) MBER ARY_FL ARY_DO
FLOAT 7O NCHAR OAT UBLE
(char.)

SQL Language Reference
F47038-26 July 30, 2025
Copyright © 1996, 2025, Oracle and/or its affiliates. Page 59 of 156

ORACLE’

Chapter 2
Data Type Comparison Rules

Table 2-11 (Cont.) Explicit Type Conversions

Source to CHAR, to to Datetime/ to RAW to to to to to to BOOLEAN
Data Type VARCHAR2 NUMB Interval ROWID LO CLOB, BINAR BINAR

, ER NG, NCLOB, Y_FLO Y_DOU

NCHAR, LO BLOB AT BLE

NVARCHAR NG

2 RA

w

from TO_CHAR TO NU -- - - - -- TO BIN TO BIN TO _BOOLEAN
BINARY_ (char) MBER ARY_FL ARY_DO
DOUBLE T0O NCHAR OAT UBLE

(char.)
from TO_CHAR TO NU -- - - - -- TO BIN TO_BIN TO_BOOLEAN
BOOLEA (boolean) MBER ARY_FL ARY_DO
N TO_NCHAR OAT UBLE

(boolean)

® See Also

Conversion Functions for details on all of the explicit conversion functions

Security Considerations for Data Conversion

When a datetime value is converted to text, either by implicit conversion or by explicit
conversion that does not specify a format model, the format model is defined by one of the
globalization session parameters. Depending on the source data type, the parameter name is
NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, or NLS_TIMESTAMP_TZ_FORMAT. The values of
these parameters can be specified in the client environment or in an ALTER SESSION statement.

The dependency of format models on session parameters can have a negative impact on
database security when conversion without an explicit format model is applied to a datetime
value that is being concatenated to text of a dynamic SQL statement. Dynamic SQL
statements are those statements whose text is concatenated from fragments before being
passed to a database for execution. Dynamic SQL is frequently associated with the built-in
PL/SQL package DBMS_SQL or with the PL/SQL statement EXECUTE IMMEDIATE, but these are
not the only places where dynamically constructed SQL text may be passed as argument. For
example:

EXECUTE IMMEDIATE
'SELECT last_name FROM employees WHERE hire_date >