PERCONA

www.percona.com

Percona Operator for PostgreSQL
Release 1.2.0

Percona LLC and/or its affiliates 2009-2022

Apr 06, 2022

I

Requirements

System Requirements

1.1 Officially supported platforms

Design overview

Installation guide
Install Percona Distribution for PostgreSQL on Kubernetes
Install Percona Distribution for PostgreSQL on OpenShift
Install Percona Distribution for PostgreSQL on Minikube

Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)
6.1 Prerequisites
6.2 Configuring default settings for the cluster

Install Percona Distribution for PostgreSQL using Helm

Tl Pre-requiSites v v v v i e e e e e e e e e e e e e e
7.2 Imstallation e
7.3 Installing Percona Distribution for PostgreSQL with customized parameters

III Configuration and Management

8

9

Users

8.1 SystemUSers o e e e e e e
YAML Object Format
8.2 Application USers e e e e e e

8.1.1

Providing Backups

9.1 Configuring the S3-compatible backup storage
9.2 Use Google Cloud Storage for backups

9.3 Scheduling backups
9.4 Making on-demand backup

9.7 Delete a previously saved backup

6.3 Installing the Operator i it

9.5 Listexistingbackups L
9.6 Restore the cluster from a previously saved backup

CONTENTS

10
12

15

.......... 15
.......... 15
.......... 16

10 Changing PostgreSQL Options
10.1 Creating a cluster with custom options o v i v it e e e e
10.2 Modifying options for the existing cluster L e

11 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes
11.1 Affinity and anti-affinity L e
11.2 Tolerations o i i e e e e e e e e

12 Pause/resume PostgreSQL Cluster

13 Update Percona Operator for PostgreSQL
13.1 Upgrading the Operator ottt ittt e e e e e e e
13.2 Upgrading Percona Distribution for PostgreSQL
13.2.1 Automaticupgrade e e e e e e e e e e e e e
13.2.2 Semi-automatic upgrade L. Lo

14 Scale Percona Distribution for PostgreSQL on Kubernetes and OpenShift

15 Transport Layer Security (TLS)
15.1 Allow the Operator to generate certificates automatically
15.2 Generate certificates manually L. L e e e
15.3 Check connectivity tothe cluster. L
15.4 Run Percona Distribution for PostgreSQL without TLS

16 Monitoring
16.1 Installingthe PMM Server e
16.2 Installing the PMM Client 0 0 i e e e e e e e

IV. HOWTOs

17 How to deploy a standby cluster for Disaster Recovery

V Reference

18 Custom Resource options
18.1 Upgrade Options SECtiOn vt i v it e e e e e e e e
18.2 pgPrimary Section e e
18.3 Tablespaces Storage SeCtion v v i it e e e e e e e e e e e e e e e
18.4 Write-ahead Log Storage Section e e e
18.5 Backup Section e e e e e e e
18.6 PMM Section o i i i e e e e e
18.7 pgBouncer Section L e e e e
18.8 pgReplicas Section e e e e e e e e
18.9 pgBadger Section. L e e e e e

19 Percona certified images

20 Frequently Asked Questions

29
29
30

32
32
33

34

35
35
36
36
37

39

40
40
40
42
43

44
44
44

46

47

50

51
52
53
54
55
56
59
60
61
63

64

66

20.1 Why do we need to follow “the Kubernetes way” when Kubernetes was never intended to run databases? 66

20.2 How canIcontactthe developers? e
20.3 How can I analyze PostgreSQL logs with pgBadger?
20.4 How can I set the Operator to control PostgreSQL in several namespaces?

66
66
67

21 Percona Distribution for PostgreSQL Operator 1.2.0 Release Notes 69

21.1

21.2

21.3

21.4

21.5

Index

Percona Operator for PostgreSOQL 1.2.0 e e e e e 69
21.1.1 Release Highlights e 69
21.1.2 Improvements i it e e e e e e e e e e e e e e e e e e e 69
21.1.3 BugsFixed 70
21.1.4 Options Changes o v it it i e e e e e e e 70
21.1.5 Supported platforms e e e e e e e e e e e e 70
Percona Distribution for PostgreSQL Operator 1.1.0 70
21.2.1 Release Highlights e 70
21.2.2 New Features e e e 70
21.2.3 ImMProvements o v vttt e 71
21.2.4 BugsFixed e 71
Percona Distribution for PostgreSQL Operator 1.0.0 71
21.3.1 Release Highlights e 72
21.3.2 New Features and Improvements oL 72
21.3.3 Supported Platforms 72
Percona Distribution for PostgreSQL Operator 0.2.0 v, 72
21.4.1 New Features and Improvements o v v vt i vt e e e 73
Percona Distribution for PostgreSQL Operator 0.1.0 73

75

Percona Operator for PostgreSQL, Release 1.2.0

Kubernetes have added a way to manage containerized systems, including database clusters. This management is
achieved by controllers, declared in configuration files. These controllers provide automation with the ability to create
objects, such as a container or a group of containers called pods, to listen for an specific event and then perform a task.

This automation adds a level of complexity to the container-based architecture and stateful applications, such as a
database. A Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The
Operator extends the Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for configuration and setup of a Percona Distribution
for PostgreSQL cluster. The benefits of the Operator are many, but saving time and delivering a consistent and vetted
environment is key.

CONTENTS 1

https://github.com/percona/percona-postgresql-operator

Part I

Requirements

CHAPTER
ONE

SYSTEM REQUIREMENTS

The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is cloud native and
storage agnostic, working with a wide variety of storage classes, hostPath, and NFS.

1.1 Officially supported platforms

The following platforms were tested and are officially supported by the Operator 1.2.0:
* Google Kubernetes Engine (GKE) 1.19 - 1.22
* Amazon Elastic Container Service for Kubernetes (EKS) 1.19 - 1.21
e OpenShift 4.7 - 4.9

Other Kubernetes platforms may also work but have not been tested.

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift

CHAPTER
TWO

DESIGN OVERVIEW

The Percona Operator for PostgreSQL automates and simplifies deploying and managing open source PostgreSQL

clusters on Kubernetes. The Operator is based on CrunchyData’s PostgreSQL Operator.

PostgreSQL containers deployed with the Operator include the following components:

&) - l

i

¥o)

P
==

Storage
Area
Network

Kubernetes API Operator
clusters primary b
(perconapgcluster) PostgreSQL pgbouncer

O
—» tasks replica backrest
(pgtasks) PostgreSQL pgbackres
R
Custom Resource) _
_ Definitions) U Container Suite)

1
o

* The PostgreSQL database management system, including:

PostgreSQL Additional Supplied Modules,

pgAudit PostgreSQL auditing extension,

PostgreSQL set_user Extension Module,

wal2json output plugin,

— -

&)

https://crunchydata.github.io/postgres-operator/latest/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json

Percona Operator for PostgreSQL, Release 1.2.0

* The pgBackRest Backup & Restore utility,

* The pgBouncer connection pooler for PostgreSQL,

* The PostgreSQL high-availability implementation based on the Patroni template,
¢ the pg_stat_monitor PostgreSQL Query Performance Monitoring utility,

e LLVM (for JIT compilation).

To provide high availability the Operator involves node affinity to run PostgreSQL Cluster instances on separate worker
nodes if possible. If some node fails, the Pod with it is automatically re-created on another node.

H 4
Kubernetes API J
o

e

Operator
-0 0 - 0
DB Pod 1 DB Pod 2 DB Pod N

Percona Distribution for PostgreSQL
Namespace

- J

— T

Storage

oo
O 0O .

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC)
is used to implement the automatic storage provisioning to pods. If a failure occurs, the Container Storage Interface
(CSI) should be able to re-mount storage on a different node.

0-

The Operator functionality extends the Kubernetes API with Custom Resources Definitions. These CRDs provide
extensions to the Kubernetes API, and, in the case of the Operator, allow you to perform actions such as creating a
PostgreSQL Cluster, updating PostgreSQL Cluster resource allocations, adding additional utilities to a PostgreSQL
cluster, e.g. pgBouncer for connection pooling and more.

When a new Custom Resource is created or an existing one undergoes some changes or deletion, the Operator au-
tomatically creates/changes/deletes all needed Kubernetes objects with the appropriate settings to provide a proper
Percona PostgreSQL Cluster operation.

Following CRDs are created while the Operator installation:

* pgclusters stores information required to manage a PostgreSQL cluster. This includes things like the cluster
name, what storage and resource classes to use, which version of PostgreSQL to run, information about how to
maintain a high-availability cluster, etc.

* pgreplicas stores information required to manage the replicas within a PostgreSQL cluster. This includes
things like the number of replicas, what storage and resource classes to use, special affinity rules, etc.

https://pgbackrest.org/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/

Percona Operator for PostgreSQL, Release 1.2.0

* pgtasks is a general purpose CRD that accepts a type of task that is needed to run against a cluster (e.g. take
a backup) and tracks the state of said task through its workflow.

Part 11

Installation guide

CHAPTER
THREE

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL ON
KUBERNETES

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL in a
Kubernetes-based environment.

1. First of all, clone the percona-postgresql-operator repository:

git clone -b v1.2.0 https://github.com/percona/percona-postgresgl-operator
cd percona-postgresgl-operator

Note: It is crucial to specify the right branch with —b option while cloning the code on this step. Please be
careful.

2. The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent context
for further steps:

$ kubectl create namespace pgo
$ kubectl config set-context $(kubectl config current-context) —--namespace=pgo

Note: To use different namespace, you should edit all occurrences of the namespace: pgo line in both
deploy/cr.yaml and deploy/operator.yaml configuration files.

3. Deploy the operator with the following command:

’$ kubectl apply —-f deploy/operator.yaml

4. After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following
command:

’$ kubectl apply —-f deploy/cr.yaml

Creation process will take some time. The process is over when both operator and replica set pod have reached
their Running status:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
backrest-backup-clusterl-j275w 0/1 Completed O 10m
clusterl-85486d645f-gpxzb 1/1 Running 0 10m
clusterl-backrest-shared-repo-6495464548-c8wvl 1/1 Running 0 10m
clusterl-pgbouncer-fc45869f7-s86rf 1/1 Running 0 10m

Percona Operator for PostgreSQL, Release 1.2.0

pgo—-deploy—-rhvok 0/1 Completed 0 S5m
postgres—-operator-8646c68b57-z28m62 4/4 Running 1 S5m

5. During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use kubectl get secrets command to see the list of Secrets objects (by default Secrets ob-
ject you are interested in has clusterl-pguser—-secret name). Then kubectl get secret
clusterl-pguser—-secret -o yaml will return the YAML file with generated secrets, including the
password which should look as follows:

data:

password: cGdlc2VyX3Bhc3N3b3JkCg==

Here the actual password is base64-encoded, and echo 'cGd1lc2VyX3Bhc3N3b3JkCg==' | base64
——decode will bring it back to a human-readable form (in this example it will be a pguser_password
string).

6. Check connectivity to newly created cluster

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-
—postgresgl:14.2 —--restart=Never -- bash -il

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psgl -h clusterl-pgbouncer -
—p 5432 -U pguser pgdb

This command will connect you to the PostgreSQL interactive terminal.

psgl (14.2)
Type "help" for help.
pgdb=>

https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER
FOUR

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL ON
OPENSHIFT

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL on
Red Hat OpenShift platform. For more information on the OpenShift, see its official documentation.

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL on
OpenShift.

1. First of all, clone the percona-postgresql-operator repository:

git clone -b v1.2.0 https://github.com/percona/percona-postgresqgl-operator
cd percona-postgresgl-operator

Note: It is crucial to specify the right branch with —b option while cloning the code on this step. Please be
careful.

2. The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent context
for further steps:

$ oc create namespace pgo
$ oc config set-context $(kubectl config current-context) --namespace=pgo

Note: To use different namespace, you should edit all occurrences of the namespace: pgo line in both
deploy/cr.yaml and deploy/operator.yaml configuration files.

3. Deploy the operator with the following command:

’$ oc apply -f deploy/operator.yaml

4. After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following
command:

’$ oc apply -f deploy/cr.yaml

Creation process will take some time. The process is over when both operator and replica set pod have reached
their Running status:

$ oc get pods

NAME READY STATUS RESTARTS AGE
backrest-backup-clusterl-j275w 0/1 Completed 0 10m
clusterl1-85486d645f-gpxzb 1/1 Running 0 10m

10

https://access.redhat.com/documentation/en-us/openshift_container_platform

Percona Operator for PostgreSQL, Release 1.2.0

clusterl-backrest-shared-repo-6495464548-c8wvl 1/1 Running 0 10m
clusterl-pgbouncer-£fc45869f7-s86rf 1/1 Running 0 10m
pgo-deploy-rhvok 0/1 Completed 0 S5m
postgres-operator-8646c68b57-z8m62 4/4 Running 1 5m

5. During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use oc get secrets command to see the list of Secrets objects (by default Secrets object
you are interested in has clusterl-pguser—secret name). Then kubectl get secret
clusterl-pguser—secret —-o yaml will return the YAML file with generated secrets, including the
password which should look as follows:

data:

password: cGdlc2VyX3Bhc3N3b3JkCg==

Here the actual password is base64-encoded, and echo 'cGd1lc2VyX3Bhc3N3b3JkCg=="' | base64
——decode will bring it back to a human-readable form (in this example it will be a pguser_password
string).

6. Check connectivity to newly created cluster

$ oc run -i --rm --tty pg-client --image=perconalab/percona-distribution-—
—postgresgl:14.2 —--restart=Never -- bash -il

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psgl -h clusterl-pgbouncer -
—p 5432 -U pguser pgdb

This command will connect you to the PostgreSQL interactive terminal.

psgl (14.2)
Type "help" for help.
pgdb=>

11

https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER
FIVE

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL ON
MINIKUBE

Installing the Percona Operator for PostgreSQL on minikube is the easiest way to try it locally without a cloud provider.
Minikube runs Kubernetes on GNU/Linux, Windows, or macOS system using a system-wide hypervisor, such as
VirtualBox, KVM/QEMU, VMware Fusion or Hyper-V. Using it is a popular way to test the Kubernetes application
locally prior to deploying it on a cloud.

The following steps are needed to run Percona Operator for PostgreSQL on minikube:

1. Install minikube, using a way recommended for your system. This includes the installation of the following
three components:

(a) kubectl tool,
(b) a hypervisor, if it is not already installed,
(c) actual minikube package

After the installation, runminikube start command. Being executed, this command will download needed
virtualized images, then initialize and run the cluster. After minikube is successfully started, you can option-
ally run the Kubernetes dashboard, which visually represents the state of your cluster. Executing minikube
dashboard will start the dashboard and open it in your default web browser.

2. The first thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent context
for further steps:

$ kubectl create namespace pgo
$ kubectl config set-context $(kubectl config current-context) —--namespace=pgo

Note: To use different namespace, you should edit all occurrences of the namespace: pgo line in both
deploy/cr.yaml and deploy/operator.yaml configuration files.

If you use Kubernetes dashboard, choose your newly created namespace to be shown instead of the default one:

12

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/

Percona Operator for PostgreSQL, Release 1.2.0

kubernetes Search

pgo
Workloads All namespaces
NAMESPACES
Workloads ‘N
Cron Jobs Pgo
Daemon Sets

Deployments

3. Deploy the operator with the following command:

$ kubectl apply —-f https://raw.githubusercontent.com/percona/percona-postgresql-
—operator/vl.2.0/deploy/operator.yaml

4. Deploy Percona Distribution for PostgreSQL:

$ kubectl apply —-f https://raw.githubusercontent.com/percona/percona-postgresql-
—operator/vl.2.0/deploy/cr-minimal.yaml

This deploys PostgreSQL on one node, because deploy/cr-minimal . yaml is for minimal non-production
deployment. For more configuration options please see deploy/cr.yaml and Custom Resource Options.

Creation process will take some time. The process is over when both operator and replica set pod have reached
their Running status:

$ kubectl get pods

NAME READY STATUS o
—~RESTARTS AGE

backrest-backup-minimal-cluster-dcvkw 0/1 Completed 0 .
— 68s

minimal-cluster-6dfd645d94-42xsr 1/1 Running 0 o
. 2m5s

minimal-cluster-backrest-shared-repo-77bd498dfd-9msvp 1/1 Running 0 o
- 2m23s

minimal-cluster-pgbouncer-594bf56d-kjwrp 1/1 Running 0 o
— 84s

pgo-deploy-1lnbv7 0/1 Completed 0 o
- 4mlds

postgres—-operator-6c4c558c5-dkk8v 4/4 Running 0 o
— 3m37s

You can also track the progress via the Kubernetes dashboard:

13

Percona Operator for PostgreSQL, Release 1.2.0

Workloads

Workload Status

Succeeded: 2 ‘

Running: 4 ‘

Running: 44 Succeeded: 2- Running: 44
Deployments Jobs Pods Replica Sets
Deployments FH

Name Images Labels Pods Created 1
crunchy-pgbouncer: true

minimal-cluster-pgbouncer B P ST name: minimal-cluster-pgbouncer 1/1 3 minutes ago
pg-cluster: minimalcluster ~ Show all
crunchy-pgha-scope: minimal-cluster

minimal-cluster o e P ST deployment-name: minimal-cluster 171 5 minutes ago

name: minimal-cluster Show all

name: minimal-cluster-backrest-shared-repo ‘

minimal-cluster-backrest-shared-repo P ‘main-pp b cluster: minimal-cluster 171 5 minutes ago

g14-pgbackrest-repo

pgo-backrest-repo: true Show all

5. During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use kubectl get secrets command to see the list of Secrets objects(by default Secrets ob-
ject you are interested in has clusterl-pguser-secret name). Then kubectl get secret
clusterl-pguser-secret -o yaml will return the YAML file with generated secrets, including the
password which should look as follows:

data:

password: cGdlc2VyX3Bhc3N3b3JkCg==

Here the actual password is base64-encoded, and echo 'cGdlc2VyX3Bhc3N3b3JkCg==' | baset64
——decode will bring it back to a human-readable form (in this example it will be a pguser_password
string).

6. Check connectivity to a newly created cluster.

Run new Pod to use it as a client and connect its console output to your terminal (running it may require some
time to deploy). When you see the command line prompt of the newly created Pod, run run psqgl tool using the
password obtained from the secret:

$ kubectl run -i --rm --tty pg-client —--image=perconalab/percona-distribution-—
—postgresqgl:14.2 —--restart=Never -- bash -il

[postgres@pg—-client /]$ PGPASSWORD='pguser_password' psgl -h clusterl-pgbouncer -
—p 5432 -U pguser pgdb

This command will connect you to the PostgreSQL interactive terminal.

psgl (14.2)
Type "help" for help.
pgdb=>

14

https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER
SIX

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL ON
GOOGLE KUBERNETES ENGINE (GKE)

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL with
the Google Kubernetes Engine. The document assumes some experience with Google Kubernetes Engine (GKE). For
more information on the GKE, see the Kubernetes Engine Quickstart.

6.1 Prerequisites

All commands from this quickstart can be run either in the Google Cloud shell or in your local shell.
To use Google Cloud shell, you need nothing but a modern web browser.
If you would like to use your local shell, install the following:

1. gcloud. This tool is part of the Google Cloud SDK. To install it, select your operating system on the official
Google Cloud SDK documentation page and then follow the instructions.

2. kubectl. It is the Kubernetes command-line tool you will use to manage and deploy applications. To install the
tool, run the following command:

$ gcloud auth login
$ gcloud components install kubectl

6.2 Configuring default settings for the cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local shell
(if you have installed Google Cloud SDK locally on the previous step). The following command will create a cluster
named my—-cluster—1:

$ gcloud container clusters create cluster-1 —--project <project name> --zone us-—
—centrall-a —--cluster-version {{{gkerecommended}}} —--machine-type nl-standard-4 --
—num-nodes=3

Note: You must edit the following command and other command-line statements to replace the <project name>
placeholder with your project name. You may also be required to edit the zone location, which is setto us—-centrall
in the above example. Other parameters specify that we are creating a cluster with 3 nodes and with machine type of
4 vCPUs and 45 GB memory.

15

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart

Percona Operator for PostgreSQL, Release 1.2.0

You may wait a few minutes for the cluster to be generated, and then you will see it listed in the Google Cloud console
(select Kubernetes Engine — Clusters in the left menu panel):

0O e clusterl europe-west3-b 3 12 45GB
/" Edit
< Connect

W Delete

Now you should configure the command-line access to your newly created cluster to make kubect1 be able to use
it.
In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You will

see the connect statement configures command-line access. After you have edited the statement, you may run the
command in your local shell:

$ gcloud container clusters get-credentials cluster-1 --zone us-centrall-a —--project
—<project name>

6.3 Installing the Operator

1. First of all, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster. The
following command will give you the ability to create Roles and RoleBindings:

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-
—admin —--user $(gcloud config get-value core/account)

The return statement confirms the creation:

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

2. Use the following git clone command to download the correct branch of the percona-postgresql-operator
repository:

git clone -b v1.2.0 https://github.com/percona/percona-postgresgl-operator
cd percona-postgresgl-operator

3. The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent context
for further steps:

$ kubectl create namespace pgo
$ kubectl config set-context $(kubectl config current-context) —--namespace=pgo

Note: To use different namespace, you should edit all occurrences of the namespace: pgo line in both
deploy/cr.yaml and deploy/operator.yaml configuration files.

4. Deploy the operator with the following command:

$ kubectl apply —-f deploy/operator.yaml

5. After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following
commands:

6.3. Installing the Operator 16

https://cloud.google.com/iam

Percona Operator for PostgreSQL, Release 1.2.0

$ kubectl apply —-f deploy/cr.yaml

Creation process will take some time. The process is over when the Operator and PostgreSQL Pods have reached
their Running status:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
backrest-backup-clusterl-4ng2x 0/1 Completed O 10m
clusterl-6c9d4£f9678-qgdfx2 1/1 Running 0 10m
clusterl-backrest-shared-repo-7cb4dd8£f8f-sh5gg 1/1 Running 0 10m
clusterl-pgbouncer-6cd69d8966-vlxdt 1/1 Running 0 10m
pgo-deploy-bp2ts 0/1 Completed 0 S5m
postgres-operator-67£58bcb8c-9p4tl 4/4 Running 1 S5m

Also, you can see the same information when browsing Pods of your cluster in Google Cloud console via the

Object Browser:
Name Status Type Namespace Cluster Location
w core AP| Group
¥ Pod Kind

backrest-backup-clusterl-t6s42 @ Succeeded Pod pgo clusterl europe-west3-b
clusterl-6c9d4f9678-qdfx2 @& Running Pod pgo clusterl europe-west3-b
clusterl-backrest-shared-repo-7cb4dd8f8f-sh5gg @& Running Pod pgo clusterl europe-west3-b
clusterl-pgbouncer-6cd69d8966-vixdt @& Running Pod pgo clusterl europe-west3-b
pgo-deploy-bp2ts & Succeeded Pod pgo clusterl europe-west3-b
postgres-operator-67f58bcb8c-9p4tl & Running Pod pgo clusterl europe-west3-b

6. During previous steps, the Operator has generated several secrets, including the password for the pguser user,
which you will need to access the cluster.

Use kubectl get secrets command to see the list of Secrets objects (by default Secrets ob-
ject you are interested in has clusterl-pguser-secret name). Then kubectl get secret
clusterl-pguser—-secret —-o yaml will return the YAML file with generated secrets, including the
password which should look as follows:

data:

password: cGdlc2VyX3Bhc3N3b3JkCg==

Here the actual password is base64-encoded, and echo 'cGd1lc2VyX3Bhc3N3b3JkCg=="' | base64
——decode will bring it back to a human-readable form (in this example it will be a pguser_password
string).

7. Check connectivity to newly created cluster

$ kubectl run -i --rm —--tty pg-client —--image=perconalab/percona-distribution-—
—postgresgl:14.2 —--restart=Never -- bash -il

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psgl -h clusterl-pgbouncer -
—p 5432 -U pguser pgdb

This command will connect you to the PostgreSQL interactive terminal.

psgl (14.2)
Type "help" for help.
pgdb=>

6.3. Installing the Operator 17

https://kubernetes.io/docs/concepts/configuration/secret/

CHAPTER
SEVEN

INSTALL PERCONA DISTRIBUTION FOR POSTGRESQL USING
HELM

Helm is the package manager for Kubernetes. Percona Helm charts can be found in percona/percona-helm-charts
repository in Github.

7.1 Pre-requisites

Install Helm following its official installation instructions.

Note: Helm v3 is needed to run the following steps.

7.2 Installation

1. Add the Percona’s Helm charts repository and make your Helm client up to date with it:

$ helm repo add percona https://percona.github.io/percona-helm-charts/
$ helm repo update

2. Install the Percona Operator for PostgreSQL:

$ helm install my-operator percona/pg-operator —--version 1.2.0

The my—-operator parameter in the above example is the name of a new release object which is created for
the Operator when you install its Helm chart (use any name you like).

Note: If nothing explicitly specified, helm install command will work with default namespace. To use
different namespace, provide it with the following additional parameter: ——namespace my-namespace.

3. Install PostgreSQL:

$ helm install my-db percona/pg-db —--version 1.2.0 —--namespace my-namespace

The my—db parameter in the above example is the name of a new release object which is created for the Percona
Distribution for PostgreSQL when you install its Helm chart (use any name you like).

18

https://github.com/helm/helm
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

Percona Operator for PostgreSQL, Release 1.2.0

7.3 Installing Percona Distribution for PostgreSQL with customized
parameters

The command above installs Percona Distribution for PostgreSQL with default parameters. Custom options can be
passed to ahelm install command asa -—-set key=value[, key=value] argument. The options passed
with a chart can be any of the Operator’s Custom Resource options.

The following example will deploy a Percona Distribution for PostgreSQL Cluster in the pgdb namespace, with
enabled Percona Monitoring and Management (PMM) and 20 Gi storage for a Primary PostgreSQL node:

$ helm install my-db percona/pg-db —-namespace pgdb \
-—-set pgPrimary.volumeSpec.size=20Gi \
——set pmm.enabled=true

7.3. Installing Percona Distribution for PostgreSQL with customized parameters 19

https://www.percona.com/doc/percona-monitoring-and-management/2.x/index.html

Part 111

Configuration and Management

20

CHAPTER
EIGHT

USERS

User accounts within the Cluster can be divided into two different groups:

* application-level users: the unprivileged user accounts,

 system-level users: the accounts needed to automate the cluster deployment and management tasks.

» System Users
— YAML Object Format

* Application users

8.1 System Users

Credentials for system users are stored as a Kubernetes Secrets object. The Operator requires to be deployed before
PostgreSQL Cluster is started. The name of the required secrets (clusterl-users by default) should be set in the
spec.secretsName option of the deploy/cr.yaml configuration file.

The following table shows system users’ names and purposes.

Warning: These users should not be used to run an application.

The default PostgreSQL instance installation via the Percona Distribution for PostgreSQL Operator comes with the
following users:

Role name Attributes

postgres Superuser, Create role, Create DB, Replication, Bypass RLS
primaryuser | Replication

pguser Non-privileged user

pgbouncer Administrative user for the pgBouncer connection pooler

The postgres user will be the admin user for the database instance. The primaryuser is used for replication
between primary and replicas. The pguser is the default non-privileged user (you can configure different name of
this user in the spec.user Custom Resource option).

8.1.1 YAML Object Format

The default name of the Secrets object for these users is clusterl-users and can be set in the CR for your cluster
in spec.secretName to something different. When you create the object yourself, it should match the following

21

https://kubernetes.io/docs/concepts/configuration/secret/
http://pgbouncer.github.io/

Percona Operator for PostgreSQL, Release 1.2.0

simple format:

apiVersion: vl

kind: Secret

metadata:
name: clusterl-users

type: Opaque

stringData:
pgbouncer: pgbouncer_password
postgres: postgres_password
primaryuser: primaryuser_password

pguser: pguser_password

The example above matches what is shipped in the deploy/secrets.yaml file.

As you can see, we use the stringData type when creating the Secrets object, so all values for each key/value
pair are stated in plain text format convenient from the user’s point of view. But the resulting Secrets object contains
passwords stored as data - i.e., base64-encoded strings. If you want to update any field, you’ll need to encode the
value into base64 format. To do this, you can run echo —-n "password" | base64 in your local shell to get
valid values. For example, setting the PMM Server user’s password to new_password in the clusterl—-users
object can be done with the following command:

kubectl patch secret/clusterl-users -p '{"data":{"pguser": '$(echo -n new_password
—baseo6cd) '} }!

I

8.2 Application users

By default you can connect to PostgreSQL as non-privileged pguser user. You can login as postgres (the supe-
ruser) to PostgreSQL Pods, but pgBouncer (the connection pooler for PostgreSQL) doesn’t allow postgres user
access by default. That’s done for security reasons.

If you still need to provide postgres user access to PostgreSQL instances from the outside, you can edit the
clusterl-pgbouncer-secret Kubernetes Secret, and add an additional line with the user credential to the
‘users.txt’ option. This line should follow the PgBouncer authentication file format:

"username" "password hash"

The “password hash” string consists of the following parts:
* “md5” string,
e MDS5 hash of concatenated password and username.

You can generate MDS5 hashsum for the password with the following command, substituting <password> and
<login> fields with the real password and login:

$ echo "MD5"'echo -n <password><login> | md5sum’

Note: Allowing postgres user access to the cluster is not recommended. Also, the Operator will not track password
changes in this case, so you should maintain synchronization between PostgreSQL postgres password and its MDS5
hash for PgBouncer manually.

8.2. Application users 22

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/users-secret.yaml
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.pgbouncer.org/config.html#authentication-file-format

CHAPTER
NINE

PROVIDING BACKUPS

The Operator allows doing backups in two ways. Scheduled backups are configured in the deploy/cr.yaml file to be
executed automatically in proper time. On-demand backups can be done manually at any moment.

» Configuring the S3-compatible backup storage
* Use Google Cloud Storage for backups

» Scheduling backups

* Making on-demand backup

* List existing backups

* Restore the cluster from a previously saved backup

* Delete a previously saved backup

The Operator uses the open source pgBackRest backup and restore utility. A special pgBackRest repository is created
by the Operator along with creating a new PostgreSQL cluster to facilitate the usage of the pgBackRest features in it.

The Operator can store PostgreSQL backups on Amazon S3, any S3-compatible storage and Google Cloud Storage
outside the Kubernetes cluster. Storing backups on Persistent Volume attached to the pgBackRest Pod is also pos-
sible. At PostgreSQL cluster creation time, you can specify a specific Storage Class for the pgBackRest repository.
Additionally, you can also specify the type of the pgBackRest repository that can be used for backups:

* local: Uses the storage that is provided by the Kubernetes cluster’s Storage Class that you select,
* s3: Use Amazon S3 or an object storage system that uses the S3 protocol,

e local, s3: Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select
AND Amazon S3 (or equivalent object storage system that uses the S3 protocol).

* gcs: Use Google Cloud Storage,

* local, gcs: Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select
AND Google Cloud Storage.

The pgBackRest repository consists of the following Kubernetes objects:
* A Deployment,

¢ A Secret that contains information that is specific to the PostgreSQL cluster that it is deployed with (e.g. SSH
keys, AWS S3 keys, etc.),

¢ A Pod with a number of supporting scripts,

e A Service.

23

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Percona Operator for PostgreSQL, Release 1.2.0

The PostgreSQL primary is automatically configured to use the pgbackrest archive-push and push the write-
ahead log (WAL) archives to the correct repository. The PostgreSQL Operator supports three types of pgBackRest
backups:

e Full (full): A full backup of all the contents of the PostgreSQL cluster,
* Differential (diff): A backup of only the files that have changed since the last full backup,

¢ Incremental (incr): A backup of only the files that have changed since the last full or differential backup.
Incremental backup is the default choice.

The Operator also supports setting pgBackRest retention policies for backups. Backup retention can be controlled by
the following pgBackRest options:

e ——repol-retention—full the number of full backups to retain,
e ——repol-retention-diff the number of differential backups to retain,

e ——repol-retention-archive how many sets of write-ahead log archives to retain alongside the full and
differential backups that are retained.

You can set both backups type and retention policy when Making on-demand backup.

Also you should first configure the backup storage in the deploy/cr.yaml configuration file to have backups
enabled.

9.1 Configuring the S3-compatible backup storage

In order to use S3-compatible storage for backups you need to provide some S3-related information, such as proper
S3 bucket name, endpoint, etc. This information can be passed to pgBackRest via the following deploy/cr.yaml
options in the backup . storages subsection:

* bucket specifies the AWS S3 bucket that should be utilized, for example
my—-postgresgl-backups—-example,

* endpointUrl specifies the S3 endpoint that should be utilized, for example s3.amazonaws . com,
* region specifies the AWS S3 region that should be utilized, for example us-east-1,

* uriStyle specifies whether host or path style URIs should be utilized,

e verifyTLS should be set to t rue to enable TLS verification or set to false to disable it,

¢ type should be set to s 3.

You also need to supply pgBackRest with base64-encoded AWS S3 key and AWS S3 key secret stored along with other
sensitive information in Kubernetes Secrets (e.g. encoding needed data with the echo "string-to-encode"
| base64 command). Edit the deploy/backup/clusterl-backrest-repo-config-secret.yaml
configuration file: set there proper cluster name, AWS S3 key, and key secret:

apivVersion: vl

kind: Secret

metadata:
name: <cluster-name>-backrest-repo-config

type: Opaque

data:
aws-s3-key: <base64-encoded-AWS-S3-key>
aws—s3-key-secret: <baseb4-encoded-AWS-S3-key-secret>

‘When done, create the secret as follows:

9.1. Configuring the S3-compatible backup storage 24

https://kubernetes.io/docs/concepts/configuration/secret/

Percona Operator for PostgreSQL, Release 1.2.0

’$ kubectl apply —-f deploy/backup/clusterl-backrest-repo-config-secret.yaml

Finally, create or update the cluster:

’$ kubectl apply —-f deploy/cr.yaml

9.2 Use Google Cloud Storage for backups

You can configure Google Cloud Storage as an object store for backups similarly to S3 storage.

In order to use Google Cloud Storage (GCS) for backups you need to provide some GCS-related information, such
as a proper GCS bucket name. This information can be passed to pgBackRest via the following options in the
backup.storages subsection of the deploy/cr.yaml configuration file:

* bucket should contain the proper bucket name,
e type should be set to gcs.
The Operator will also need your service account key to access storage.
1. Create your service account key following the official Google Cloud instructions.
2. Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin — Service Accounts in the left menu
panel, then click your account and open the KEYS tab):

< my-service-account

DETAILS PERMISSIONS KEYS METRICS LOGS

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the
Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.
Learn more about setting organization policies for service accounts

ADDKEY ~

Click the ADD KEY button, chose Create new key and chose JSON as a key type. These actions will result in
downloading a file in JSON format with your new private key and related information.

3. Now you should use a base64-encoded version of this file and to create the Kubernetes Secret. You can encode
the file with the base64 <filename> command. When done, create the following yaml file with your
cluster name and base64-encoded file contents:

apiVersion: vl
kind: Secret
metadata:
name: <cluster-name>-backrest-repo-config
type: Opaque
data:
gcs—key: <base64-encoded-json-file-contents>

When done, create the secret as follows:

9.2. Use Google Cloud Storage for backups 25

https://cloud.google.com/storage
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://kubernetes.io/docs/concepts/configuration/secret/

Percona Operator for PostgreSQL, Release 1.2.0

’$ kubectl apply —-f ./my-gcs—account-secret.yaml

4. Finally, create or update the cluster:

’$ kubectl apply —-f deploy/cr.yaml

9.3 Scheduling backups

Backups schedule is defined in the backup section of the deploy/cr.yaml file. This section contains following sub-
sections:

* storages subsection contains data needed to access the S3-compatible cloud to store backups.
* schedule subsection allows to actually schedule backups (the schedule is specified in crontab format).

Here is an example of deploy/cr.yaml which uses Amazon S3 storage for backups:

backup:

schedule:

- name: "sat-night-backup"
schedule: "0 0 * *x 6"
keep: 3
type: full

storage: s3

The schedule is specified in crontab format as explained in Custom Resource options.

9.4 Making on-demand backup

To make an on-demand backup, the user should use a backup configuration file. The example of the backup configu-
ration file is deploy/backup/backup.yaml.

The following keys are most important in the parameters section of this file:

* parameters.backrest-opts is the string with command line options which will be passed to pgBack-
Rest, for example ——type=full —--repol-retention-full=5,

* parameters.pg-cluster is the name of the PostgreSQL cluster to back up, for example clusterl.

When the backup options are configured, execute the actual backup command:

’$ kubectl apply —-f deploy/backup/backup.yaml

9.5 List existing backups

To get list of all existing backups in the pgBackrest repo, use the following command:

’$ kubectl exec <name-of-backrest-shared-repo-pod> -it —-- pgbackrest info

9.3. Scheduling backups 26

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup/backup.yaml

Percona Operator for PostgreSQL, Release 1.2.0

9.6 Restore the cluster from a previously saved backup

The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery.
There are two types of ways to restore a cluster:

* restore to a new cluster using the pgDataSource.restoreFrom option (and possibly, pgDataSource.restoreOpts
for custom pgBackRest options),

* restore in-place, to an existing cluster (note that this is destructive).

Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL cluster that can run
alongside an existing one. There are several scenarios where using this technique is helpful:

» Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is
creating a clone.

* Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To restore the previously saved backup the user should use a backup restore configuration file. The example of the
backup configuration file is deploy/backup/restore.yaml.

The following keys are the most important in the parameters section of this file:

* parameters.backrest-restore-cluster specifies the name of a PostgreSQL cluster which will be
restored (this option had name parameters.backrest-restore-from-cluster before the Operator
1.2.0). This includes stopping the database and recreating a new primary with the restored data (for example,
clusterl),

* parameters.backrest-restore-opts specifies additional options for pgBackRest (for example,
——type=time --target="2021-04-16 15:13:32" to perform a point-in-time-recovery),

* parameters.backrest-storage-type the type of the pgBackRest repository, (for example, local).

The actual restoration process can be started as follows:

$ kubectl apply —-f deploy/backup/restore.yaml

To create a new PostgreSQL cluster from either the active one, or a former cluster whose pgBackRest repository still
exists, use the pgDataSource.restoreFrom option.

The following example will create a new cluster named cluster2 from an existing one named‘‘cluster] ‘.

1. First, create the cluster2-config-secrets.yaml configuration file with the following content:

apiVersion: vl
data:
password: <base64-encoded-password-for-pguser—>
username: <baseb64-encoded-pguser—-user-name>
kind: Secret
metadata:
labels:
pg-cluster: cluster2
vendor: crunchydata
name: cluster2-pguser-secret
type: Opaque

apiVersion: vl
data:
password: <base64-encoded-password-for-primaryuser>
username: <base64-encoded-primaryuser-user-name>
kind: Secret

9.6. Restore the cluster from a previously saved backup 27

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup/restore.yaml

Percona Operator for PostgreSQL, Release 1.2.0

metadata:
labels:
pg-cluster: cluster2
vendor: crunchydata
name: cluster2-primaryuser-secret
type: Opaque
apiVersion: vl
data:
password: <baseb64-encoded-password-for-postgres-user>
username: <base64-encoded-pguser-postgres-name>
kind: Secret
metadata:
labels:
pg-cluster: cluster2
vendor: crunchydata
name: cluster2-postgres-—secret
type: Opaque

2. When done, create the secrets as follows:

$ kubectl apply -f ./cluster2-config-secrets.yaml

3. Edit the deploy/cr.yaml configuration file:
e set a new cluster name (cluster?2),
* set the option pgDataSource.restoreFrom to clusterl.

Create the cluster as follows:

’$ kubectl apply -f deploy/cr.yaml

9.7 Delete a previously saved backup

The maximum amount of stored backups is controlled by the backup.schedule.keep option (only successful backups
are counted). Older backups are automatically deleted, so that amount of stored backups do not exceed this number.

If you want to delete some backup manually, you need to delete both the pgtask object and the corresponding job
itself. Deletion of the backup object can be done using the same YAML file which was used for the on-demand backup:

’$ kubectl delete -f deploy/backup/backup.yaml

Deletion of the job which corresponds to the backup can be done using kubectl delete jobs command with

the backup name:

’$ kubectl delete jobs clusterl-backrest-full-backup

9.7. Delete a previously saved backup

28

CHAPTER
TEN

CHANGING POSTGRESQL OPTIONS

You may require a configuration change for your application. PostgreSQL allows customizing the database with
configuration files. You can use a ConfigMap to provide the PostgreSQL configuration options specific to the following
configuration files:

* PostgreSQL main configuration, postgresql.conf,
* client authentication configuration, pg_hba.conf,
* user name configuration, pg_ident.conf.
Configuration options may be applied in two ways:
* globally to all database servers in the cluster via Patroni Distributed Configuration Store (DCS),

* locally to each database server (Primary and Replica) within the cluster.

Note: PostgreSQL cluster is managed by the Operator, and so there is no need to set custom configuration options
in common usage scenarios. Also, changing certain options may cause PostgreSQL cluster malfunction. Do not
customize configuration unless you know what you are doing!

Use the kubect 1 command to create the ConfigMap from external resources, for more information, see Configure a
Pod to use a ConfigMap.

You can either create a PostgreSQL Cluster With Custom Configuration, or use ConfigMap to set options for the
already existing cluster.

To create a cluster with custom options, you should first place these options in a postgres—ha.yaml file under
specific boot strap section, then use kubectl create configmap command with this file to create a Con-
figMap, and finally put the ConfigMap name to pgPrimary.customconfig key in the deploy/cr.yaml configuration
file.

To change options for an existing cluster, you can do the same but put options in apostgres—ha.yamnl file directly,
without the boot st rap section.

In both cases, the postgres-ha.yaml file doesn’t fully overwrite PostgreSQL configuration files: options present
in postgres—ha.yaml will be overwritten, while non-present options will be left intact.

10.1 Creating a cluster with custom options

For example, you can create a cluster with a custom max_connections option in a postgresqgl.conf config-
uration file using the following postgres—ha.yaml contents:

29

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://www.postgresql.org/docs/current/config-setting.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/auth-username-maps.html
https://patroni.readthedocs.io/en/latest/dynamic_configuration.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap

Percona Operator for PostgreSQL, Release 1.2.0

bootstrap:
dcs:
postgresqgl:
parameters:
max_connections: 30

..note:: dsc.postgresql subsection means that option will be applied globally to postgresgl.conf of
all database servers.

You can create a ConfigMap from this file. The syntax for kubectl create configmap command is:

’kubectl -n <namespace> create configmap <configmap-name> --from-file=postgres-ha.yaml

ConfigMap name should include your cluster name and a dash as a prefix (clusterl- by default).

The following example defines clusterl-custom—-config as the ConfigMap name:

’$ kubectl create -n pgo configmap clusterl-custom-config —--from-file=postgres-ha.yaml

To view the created ConfigMap, use the following command:

’$ kubectl describe configmaps clusterl-custom-config

Don’t forget to put the name of your ConfigMap to the deploy/cr.yaml configuration file:

spec:

pgPrimary:

customconfig: "clusterl-custom-config"

Now you can create the cluster following the regular installation instructions.

10.2 Modifying options for the existing cluster

For example, you can change max_connections option in a postgresqgl.conf configuration file with the
following postgres—ha.yaml contents:

dcs:
postgresqgl:
parameters:
max_connections: 50

..note:: dsc.postgresql subsection means that option will be applied globally to postgresgl.conf of
all database servers.

You can create a ConfigMap from this file. The syntax for kubectl create configmap command is:

kubectl -n <namespace> create configmap <configmap-name> —-—-from-file=postgres-ha.yaml

ConfigMap name should include your cluster name and a dash as a prefix (cluster1- by default).

The following example defines clusterl-custom-config as the ConfigMap name:

10.2. Modifying options for the existing cluster 30

Percona Operator for PostgreSQL, Release 1.2.0

’$ kubectl create -n pgo configmap clusterl-custom-config --from-file=postgres-ha.yaml

To view the created ConfigMap, use the following command:

’$ kubectl describe configmaps clusterl-custom-config

You can also use a similar kubectl edit configmap command to change the already existing ConfigMap with
your default text editor:

’$ kubectl edit -n pgo configmap clusterl-custom-config

Don’t forget to put the name of your ConfigMap to the deploy/cr.yaml configuration file if it isn’t already there:

spec:
pgPrimary:

customconfig: "clusterl-custom-config"

Now you should restart the cluster to ensure the update took effect.

10.2. Modifying options for the existing cluster 31

CHAPTER
ELEVEN

BINDING PERCONA DISTRIBUTION FOR POSTGRESQL
COMPONENTS TO SPECIFIC KUBERNETES/OPENSHIFT NODES

The operator does good job automatically assigning new Pods to nodes with sufficient resources to achieve balanced
distribution across the cluster. Still there are situations when it is worth to ensure that pods will land on specific nodes:
for example, to get speed advantages of the SSD equipped machine, or to reduce network costs choosing nodes in a
same availability zone.

Appropriate sections of the deploy/cr.yaml file (such as pgPrimary or pgReplicas) contain keys which can be
used to do this, depending on what is the best for a particular situation.

11.1 Affinity and anti-affinity

Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which already has
Pods with specific labels. Particularly, this approach is good to to reduce costs making sure several Pods with intensive
data exchange will occupy the same availability zone or even the same node - or, on the contrary, to make them land
on different nodes or even different availability zones for the high availability and balancing purposes.

Pod anti-affinity is controlled by the antiAffinityType option, which can be put into pgPrimary,
pgBouncer, and backup sections of the deploy/cr.yaml configuration file. This option can be set to one
of two values:

* preferred Pod anti-affinity is a sort of a soft rule. It makes Kubernetes trying to schedule Pods matching
the anti-affinity rules to different Nodes. If it is not possible, then one or more Pods are scheduled to the same
Node. This variant is used by default.

* required Pod anti-affinity is a sort of a hard rule. It forces Kubernetes to schedule each Pod matching the
anti-affinity rules to different Nodes. If it is not possible, then a Pod will not be scheduled at all.

The following anti-affinity rules are applied to all Percona Distribution for PostgreSQL Pods:

affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- podAffinityTerm:
labelSelector:
matchExpressions:
- key: vendor
operator: In
values:
— crunchydata
— key: pg-pod-anti-affinity
operator: Exists
- key: pg-cluster

32

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Percona Operator for PostgreSQL, Release 1.2.0

operator: In

values:
- clusterl
topologyKey: kubernetes.io/hostname
weight: 1

You can see the explanation of these affinity options in Kubernetes documentation.

Note: Setting required anti-affinity type will result in placing all Pods on separate nodes, so default configuration
will require 7 Kubernetes nodes to deploy the cluster with separate nodes assigned to one PostgreSQL primary, two
PostgreSQL replica instances, three pgBouncer and one pgBackrest Pod.

11.2 Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is expressed as a
key with and operator, whichis either exists or equal (the latter variant also requires a value the key is equal
to). Moreover, toleration should have a specified e f fect, which may be a self-explanatory NoSchedule, less strict
PreferNoSchedule, or NoExecute. The last variant means that if a taint with NoExecute is assigned to node,
then any Pod not tolerating this taint will be removed from the node, immediately or after the tolerationSeconds
interval, like in the following example:

You can use pgPrimary.tolerations key in the deploy/cr.yaml configuration file as follows:

tolerations:

- key: "node.alpha.kubernetes.io/unreachable"
operator: "Exists"
effect: "NoExecute"
tolerationSeconds: 6000

The Kubernetes Taints and Toleratins contains more examples on this topic.

11.2. Tolerations 33

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

CHAPTER
TWELVE

PAUSE/RESUME POSTGRESQL CLUSTER

There may be external situations when it is needed to pause your Cluster for a while and then start it back up (some
works related to the maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.pause key for this. Setting it to t rue gracefully stops the
cluster:

To start the cluster after it was paused just revert the spec.pause key to false.

Note: There is an option also to put the cluster into a standby (read-only) mode instead of completely shutting it
down. This is done by a special spec.standby key, which should be set to t rue for read-only state or should be
set to false for normal cluster operation:

standby: false

34

https://www.postgresql.org/docs/12/warm-standby.html

CHAPTER
THIRTEEN

UPDATE PERCONA OPERATOR FOR POSTGRESQL

Percona Operator for PostgreSQL allows upgrades to newer versions. This includes upgrades of the Operator itself,
and upgrades of the Percona Distribution for PostgreSQL.

* Upgrading the Operator
* Upgrading Percona Distribution for PostgreSQL

— Automatic upgrade

— Semi-automatic upgrade

13.1 Upgrading the Operator

Note: Only the incremental update to a nearest minor version of the Operator is supported. To update to a newer
version, which differs from the current version by more than one, make several incremental updates sequentially.

The following steps will allow you to update the Operator to current version (use the name of your cluster instead of
the <cluster-name> placeholder).

1. Pause the cluster in order to stop all possible activities:

$ kubectl patch perconapgcluster/<cluster-name> --type Jjson -p '[{"op": "replace",
— "path": "/spec/pause", "value": true}, {"op":"replace", "path":"/spec/pgBouncer/

—size","value":0}]"

2. If you upgrade the Operator from a version earlier than 1.1.0, the following additional step is needed for the
1.0.0 — 1.1.0 upgrade.

$ export CLUSTER=<cluster-name>

$ for user in postgres primaryuser $ (kubectl get perconapgcluster/${CLUSTER} -o,
—yaml | yg r — 'spec.user'); do args+="--from-literal=Suser=$ (kubectl get secret/
—${CLUSTER}-${user}-o yaml | ygq r - 'data.password' | base64 -d) "; done; eval,
—kubectl create secret generic ${CLUSTER}-users "S${args}"

This command creates users’ secrets with existing passwords. Otherwise, new secrets with autogenerated pass-
words will be created automatically, so existing passwords will be overwritten.

Note: The pgbouncer user password is stored in encrypted form, and therefore it is not included in the
above command. If you know this password and/or would like to update it, please add it as pgbouncer:

35

Percona Operator for PostgreSQL, Release 1.2.0

base64encodednewpassword to the resulted Secret manually. Otherwise, this password needs no actions
and will be overwritten by the Operator during upgrade.

3. Remove the old Operator and start the new Operator version:

$ kubectl delete \

serviceaccounts/pgo-deployer—-sa \
clusterroles/pgo-deployer-cr \
configmaps/pgo-deployer—cm \
configmaps/pgo-config \
clusterrolebindings/pgo-deployer—-crb \
jobs.batch/pgo-deploy \
deployment/postgres-operator

$ kubectl create —-f https://raw.githubusercontent.com/percona/percona-postgresqgl—
—operator/vl1.2.0/deploy/operator.yaml
$ kubectl wait --for=condition=Complete job/pgo-deploy —--timeout=90s

13.2 Upgrading Percona Distribution for PostgreSQL

13.2.1 Automatic upgrade

Starting from version 1.1.0, the Operator does fully automatic upgrades to the newer versions of Percona PostgreSQL
Cluster within the method named Smart Updates.

The Operator will carry on upgrades according to the following algorithm. It will query a special Version Service
server at scheduled times to obtain fresh information about version numbers and valid image paths needed for the
upgrade. If the current version should be upgraded, the Operator updates the CR to reflect the new image paths and
carries on sequential Pods deletion in a safe order, allowing the cluster Pods to be re-deployed with the new image.

Note: Version Service is in technical preview status and is disabled by default for the Operator version 1.1.0. Dis-
abling Version Service makes Smart Updates rely on the image keys in the Operator’s Custom Resource.

The upgrade details are set in the upgradeOptions section of the deploy/cr.yaml configuration file. Make
the following edits to configure updates:

1. Set the apply option to one of the following values:

recommended - automatic upgrades will choose the most recent version of software flagged as recom-
mended (for clusters created from scratch, the Percona Distribution for PostgreSQL 14 version will be
selected instead of the Percona Distribution for PostgreSQL 13 or 12 version regardless of the image path;
for already existing clusters, 14 vs. 13 or 12 branch choice will be preserved),

l4-recommended, 13-recommended, 12-recommended - same as above, but preserves specific
major Percona Distribution for PostgreSQL version for newly provisioned clusters (for example, 14 will
not be automatically used instead of 13),

latest - automatic upgrades will choose the most recent version of the software available,

l4-latest, 13-latest, 12-latest - same as above, but preserves specific major Percona Distri-
bution for PostgreSQL version for newly provisioned clusters (for example, 14 will not be automatically
used instead of 13),

version number - specify the desired version explicitly,

13.2. Upgrading Percona Distribution for PostgreSQL 36

Percona Operator for PostgreSQL, Release 1.2.0

* never or disabled - disable automatic upgrades

Note: When automatic upgrades are disabled by the apply option, Smart Update functionality will con-
tinue working for changes triggered by other events, such as updating a ConfigMap, rotating a password,
or changing resource values.

2. Make sure the versionServiceEndpoint key is set to a valid Version Server URL (otherwise Smart
Updates will not occur).

(@) You can use the URL of the official Percona’s Version Service (default). Set
versionServiceEndpoint to https://check.percona.com.

(b) Alternatively, you can run Version Service inside your cluster. This can be done with the kubect1
command as follows:

$ kubectl run version-service —--image=perconalab/version-service —-—-env="SERVE_
—HTTP=true" —--port 11000 --expose

Note: Version Service is never checked if automatic updates are disabled. If automatic updates are enabled,
but Version Service URL can not be reached, upgrades will not occur.

3. Use the schedule option to specify the update checks time in CRON format.

The following example sets the midnight update checks with the official Percona’s Version Service:

spec:
upgradeOptions:
apply: recommended
versionServiceEndpoint: https://check.percona.com
schedule: "0 4 »x x x"

13.2.2 Semi-automatic upgrade
Semi-automatic update of Percona Distribution for PostgreSQL should be used with the Operator version 1.0.0 or
earlier. For all newer versions, use automatic update instead.

The following steps will allow you to update the Operator to current version (use the name of your cluster instead of
the <cluster-name> placeholder).

1. Pause the cluster in order to stop all possible activities:

$ kubectl patch perconapgcluster/<cluster—-name> —--type Jjson -p '[{"op": "replace",
< "path": "/spec/pause", "value": true}, {"op":"replace", "path":"/spec/pgBouncer/
—size","value":0}]"

2. Now you can switch the cluster to a new version:

$ kubectl patch perconapgcluster/<cluster—name> —-type Jjson -p '[{"op": "replace",
< "path": "/spec/backup/backrestRepoImage", "value": "percona/percona-postgresql-
—operator:1.2.0-ppgl3-pgbackrest-repo"}, {"op":"replace", "path":"/spec/backup/
—image", "value":"percona/percona-postgresgl-operator:1.2.0-ppgl3-pgbackrest"}, {
—"op":"replace", "path":"/spec/pgBadger/image", "value" : "percona/percona-
—postgresqgl-operator:1.2.0-ppgl3-pgbadger"}, {"op":"replace", "path":"/spec/
—pgBouncer/image", "value" :"percona/percona-postgresql-operator:1.2.0-ppgl3-

—pgpbouncer*, {trop* Tt reptace™, fpathtt T Y/ spec/poPrimary/ tmage t, tvatue Tt percona
—percona-postgresgl-operator:1.2.0-ppgl3-postgres-ha"}, {"op":"replace", "path":"/
13.2. Upgra éﬁﬁ%@ﬁdméfr‘iﬁﬁﬁb‘?ﬁo P@%‘E@reémz 0"}, {"op":"replace", "path":"/
ﬁmetadata/labels pgo-version","value":"v1.2.0"}, {"op": "replace", "path": "/spec/
—pause", "value": false}]'

Percona Operator for PostgreSQL, Release 1.2.0

Note: The above example is composed in asumption of using PostgreSQL 13 as a database management

system. For PostgreSQL 12 you should change all occurrences of the ppgl 3 substring to ppgl?2.

This will carry on the image update, cluster version update and the pause status switch.

3. Now you can enable the pgbouncer again:

$ kubectl patch perconapgcluster/<cluster-name --type json -p \
"
{"op":"replace", "path":"/spec/pgBouncer/size", "value":1}

J '

Wait until the cluster is ready.

13.2. Upgrading Percona Distribution for PostgreSQL

38

CHAPTER
FOURTEEN

SCALE PERCONA DISTRIBUTION FOR POSTGRESQL ON
KUBERNETES AND OPENSHIFT

One of the great advantages brought by Kubernetes and the OpenShift platform is the ease of an application scaling.
Scaling an application results in adding or removing the Pods and scheduling them to available Kubernetes nodes.

Size of the cluster is dynamically controlled by a pgReplicas. REPLICA-NAME.size key in the Custom Resource options
configuration. That’s why scaling the cluster needs nothing more but changing this option and applying the updated
configuration file. This may be done in a specifically saved config, or on the fly, using the following command:

$ kubectl scale —--replicas=5 perconapgcluster/clusterl

In this example we have changed the number of PostgreSQL Replicas to 5 instances.

39

CHAPTER
FIFTEEN

TRANSPORT LAYER SECURITY (TLS)

The Percona Operator for PostgreSQL uses Transport Layer Security (TLS) cryptographic protocol for the following
types of communication:

¢ Internal - communication between PostgreSQL instances in the cluster

» External - communication between the client application and the cluster
The internal certificate is also used as an authorization method for PostgreSQL Replica instances.
TLS security can be configured in several ways:

* the Operator can generate certificates automatically at cluster creation time,

* you can also generate certificates manually.

You can also use pre-generated certificates available in the deploy/ssl-secrets.yaml file for test purposes,
but we strongly recommend avoiding their usage on any production system!

The following subsections explain how to configure TLS security with the Operator yourself, as well as how to tem-
porarily disable it if needed.

* Allow the Operator to generate certificates automatically
* Generate certificates manually

* Check connectivity to the cluster

* Run Percona Distribution for PostgreSQL without TLS

15.1 Allow the Operator to generate certificates automatically

By default, the Operator generates long-term certificates automatically and turns on encryption at cluster creation time,
if there are no certificate secrets available. You do not need to perform any specific actions to make this work.

15.2 Generate certificates manually

To generate certificates manually, follow these steps:
1. Provision a CA (Certificate authority) to generate TLS certificates,
2. Generate a CA key and certificate file with the server details,

3. Create the server TLS certificates using the CA keys, certs, and server details.

40

Percona Operator for PostgreSQL, Release 1.2.0

The set of commands generates certificates with the following attributes:
e Server—-pemn - Certificate
* Server-key.pem - the private key
* ca.pemn - Certificate Authority
You should generate one set of certificates for external communications, and another set for internal ones.

Supposing that your cluster name is clusterl, you can use the following commands to generate certificates:

CLUSTER_NAME=clusterl
NAMESPACE=default
cat <<EOF | cfssl gencert -initca - | cfssljson -bare ca

~— W

"CN": "x",

"key": {
"algo": "ecdsa",
"size": 384

}
EOF

$ cat <<EOF > ca-config.json

{

"signing": {
"default": {
"expiry": "87600h",
"usages": ["digital signature", "key encipherment", "content commitment"]
}
}
}
EOF
$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=./ca-config.json -,

—| cfssljson -bare server
{
"hosts": [
"localhost",
"S{CLUSTER_NAME}",
"$S{CLUSTER_NAME} .S {NAMESPACE}",
"S$S{CLUSTER_NAME}.S${NAMESPACE}.svc.cluster.local",
"${CLUSTER_NAME } -pgbouncer",
"${CLUSTER_NAME}-pgbouncer.${NAMESPACE}",
"${CLUSTER_NAME } -pgbouncer.${NAMESPACE}.svc.cluster.local",
"x.${CLUSTER_NAME}",
"x . ${CLUSTER_NAME} .S {NAMESPACE}",
"x.${CLUSTER_NAME}.S${NAMESPACE}.svc.cluster.local",
"% .${CLUSTER_NAME } -pgbouncer",
"% .${CLUSTER_NAME}-pgbouncer. ${NAMESPACE}",
"% .${CLUSTER_NAME } -pgbouncer.${NAMESPACE}.svc.cluster.local"
1,

"CN": "S{CLUSTER_NAME}",
"key" . {
"algo": "ecdsa",
"size": 384

EOF

15.2. Generate certificates manually 41

Percona Operator for PostgreSQL, Release 1.2.0

$ kubectl create secret generic ${CLUSTER_NAME}-ssl-ca --from-file=ca.crt=ca.pem
$ kubectl create secret tls ${CLUSTER_NAME}-ssl-keypair --cert=server.pem —-—
—key=server—-key.pem

If your PostgreSQL cluster includes replica instances (this feature is on by default), generate certificates for them in a
similar way:

$ cat <<EOF | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem —-config=./ca-config.json -
—| cfssljson -bare replicas

{

"CN": "primaryuser",
llkey" . {
"algo": "ecdsa",

"size": 384

}
EOF

$ kubectl create secret tls S${CLUSTER_NAME}-ssl-replicas —--cert=replicas.pem —-—
—key=replicas-key.pem

When certificates are generated, set the following keys in the deploy/cr.yaml configuration file:

* spec.ssl1CA key should contain the name of the secret with TLS CA used for both connection encryption
(external traffic), and replication (internal traffic),

* spec.sslSecretName key should contain the name of the secret created to encrypt external communica-
tions,

* spec.secrets.sslReplicationSecretName key should contain the name of the secret created to
encrypt internal communications,

* spec.tlsOnly is setto t rue by default and enforces encryption

Don’t forget to apply changes as usual:

’$ kubectl apply —-f deploy/cr.yaml

15.3 Check connectivity to the cluster

You can check TLS communication with use of the psql, the standard interactive terminal-based frontend to Post-
greSQL. The following command will spawn a new pg-client container, which includes needed command and can
be used for the check (use your real cluster name instead of the <cluster—name> placeholder):

$ cat <<EOF | kubectl apply -f -
apivVersion: apps/vl
kind: Deployment
metadata:
name: pg-client
spec:
replicas: 1
selector:
matchLabels:
name: pg-client
template:
metadata:

15.3. Check connectivity to the cluster 42

Percona Operator for PostgreSQL, Release 1.2.0

labels:
name: pg-client
spec:
containers:

- name: pg-client
image: perconalab/percona-distribution-postgresgl:14.2
imagePullPolicy: Always
command:
- sleep
args:
- "100500"
volumeMounts:
- name: ca
mountPath: "/tmp/tls"
volumes:
- name: ca
secret:
secretName: <cluster_name>-ssl-ca
items:
- key: ca.crt
path: ca.crt
mode: 0777
EOF

Now get shell access to the newly created container, and launch the PostgreSQL interactive terminal to check connec-
tivity over the encrypted channel (please use real cluster-name, PostgreSQL user login and password):

$ kubectl exec -it deployment/pg-client -- bash -il

[postgres@pg-client /]$ PGSSLMODE=verify-ca PGSSLROOTCERT=/tmp/tls/ca.crt psql
—postgres://<postgresgl-user>:<postgresgl-password>@<cluster—-name>-pgbouncer.
—<namespace>.svc.cluster.local

Now you should see the prompt of PostgreSQL interactive terminal:

psql (14.2)
Type "help" for help.
pgdb=>

15.4 Run Percona Distribution for PostgreSQL without TLS

Omitting TLS is also possible, but we recommend that you run your cluster with the TLS protocol enabled.

To disable TLS protocol (e.g. for demonstration purposes) set the spec.t1lsOnly key to false, and make sure
that there are no certificate secrets configured in the deploy/cr.yaml file.

15.4. Run Percona Distribution for PostgreSQL without TLS 43

CHAPTER
SIXTEEN

MONITORING

Percona Monitoring and Management (PMM) provides an excellent solution to monitor Percona Distribution for
PostgreSQL.

Note: Only PMM 2.x versions are supported by the Operator.

PMM is a client/server application. PMM Client runs on each node with the database you wish to monitor: it collects
needed metrics and sends gathered data to PMM Server. As a user, you connect to PMM Server to see database metrics
on a number of dashboards.

That’s why PMM Server and PMM Client need to be installed separately.

16.1 Installing the PMM Server

PMM Server runs as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the official PMM
documentation for the installation instructions.

16.2 Installing the PMM Client

The following steps are needed for the PMM client installation in your Kubernetes-based environment:
1. The PMM client installation is initiated by updating the pmm section in the deploy/cr.yaml file.
* set pmm.enabled=true
* set the pmm. serverHost key to your PMM Server hostname,
* check that the serverUser key contains your PMM Server user name (admin by default),

* make sure the pmmserver key in the deploy/pmm-secret.yaml secrets file contains the password specified
for the PMM Server during its installation.

Apply changes with the kubectl apply -f deploy/pmm-secret.yaml command.

Note: You use deploy/pmm-secret.yaml file to create Secrets Object. The file contains all val-
ues for each key/value pair in a convenient plain text format. But the resulting Secrets contain pass-
words stored as base64-encoded strings. If you want to update password field, you’ll need to encode the
value into base64 format. To do this, you can run echo -n "password" | base64 in your local
shell to get valid values. For example, setting the PMM Server user’s password to new_password* in the
clusterl-pmm-secret object can be done with the following command:

44

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html
https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/pmm-secret.yaml

Percona Operator for PostgreSQL, Release 1.2.0

kubectl patch secret/clusterl-pmm-secret -p '{"data":{"pmmserver": 'S$(echo -n,
—new_password | base64)'}}’'

When done, apply the edited deploy/cr.yaml file:

$ kubectl apply —-f deploy/cr.yaml

2. Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors
on the previous steps:

$ kubectl get pods
$ kubectl logs clusterl-7b7£7898d5-7f5pz —-c pmm-client

3. Now you can access PMM via https in a web browser, with the login/password authentication, and the browser
is configured to show Percona Distribution for PostgreSQL metrics.

16.2. Installing the PMM Client 45

Part IV

HOWTOs

46

CHAPTER
SEVENTEEN

HOW TO DEPLOY A STANDBY CLUSTER FOR DISASTER
RECOVERY

Deployment of a standby PostgreSQL cluster is mainly targeted for Disaster Recovery (DR), though it can also be
used for migrations.

In both cases, it involves using some object storage system for backups, such as AWS S3 or GCP Cloud Storage, which
the standby cluster can access:

~
Operator Operator
0 O- S -Q O
e pgBackRest pgBackRest e
DB Pods Backup storage DB Pods
cluster1 cluster2 (standby)
U _J _ _J

* there is a primary cluster with configured pgbackrest tool, which pushes the write-ahead log (WAL) archives
to the correct remote repository,

e the standby cluster is built from one of these backups, and it is kept in sync with the primary cluster by con-
suming the WAL files copied from the remote repository.

Note: The primary node in the standby cluster is not a streaming replica from any of the nodes in the primary
cluster. It relies only on WAL archives to replicate events. For this reason, this approach cannot be used as a High
Auvailability solution.

Creating such a standby cluster involves the following steps:

47

https://www.postgresql.org/docs/12/warm-standby.html

Percona Operator for PostgreSQL, Release 1.2.0

* Copy needed passwords from the primary cluster Secrets and adjust them to use the standby cluster name. The
following commands save the secrets files from clusterl under /tmp/copied-secrets directory and
prepare them to be used in cluster?2:

Note: Make sure you have the yq tool installed in your system.

—

kubectl get

eval
eval
eval
eval
eval
eval

-\

yg eval

—

-\

yq eval
>/tmp/copied-secrets/${secrets/$primary_cluster_name/$standby_cluster_name}

mkdir -p /tmp/copied-secrets/

export primary_cluster_name=clusterl

export standby_cluster_name=cluster?2

export secrets="${primary_cluster_name}-users"
secret/$secrets -o yaml \

'del (.metadata.creationTimestamp)' - \

'del (.metadata.uid) ' - \

'del (.metadata.selflLink)"' - \

'del (.metadata.resourceVersion)' - \

'del (.metadata.namespace) ' - \

'del (.metadata.annotations."kubectl.kubernetes.io/last-applied-configuration")
' .metadata.name = "'"${secrets/S$Sprimary_cluster_name/S$standby_cluster_name}"'"
' .metadata.labels.pg-cluster = "'"${standby_cluster_name}"'"' - \

* Create the Operator in the Kubernetes environment for the standby cluster, if not done:

$ kubectl apply —-f deploy/operator.yaml

* Apply the Adjusted Kubernetes Secrets:

$ export standby_cluster_name=cluster2 $ kubectl create -f /tmp/copied-
secrets/${standby_cluster_name }-users

* Supply your standby cluster with the Kubernetes Secret used by pgBackRest of the primary cluster to Access
the Storage Bucket. The name of this Secret is <cluster-name>-backrest-repo-config, and its
content depends on the cloud used for backups (refer to the Operator’s backups documentation for this step).
The contents of the Secret needs to be the same for both primary and standby clusters except for the name: e.g.
clusterl-backrest-repo-config should be recreated as cluster2-backrest-repo-config.

 Enable the standby option in your standby cluster’s deploy/cr.yaml file:

standby: true

When you have applied your new cluster configuration with the usual kubectl -f deploy/cr.yaml command,
it starts the synchronization via pgBackRest, and your Disaster Recovery preparations are over.

When you need to actually use your new cluster, get it out from standby mode, changing the standby option in your
deploy/cr.yaml file:

standby: false

Please take into account, that your clusterl cluster should not exist at the moment when you get out your
cluster?2 from standby:

48

https://github.com/mikefarah/yq/#install

Percona Operator for PostgreSQL, Release 1.2.0

ods

cluster1

Backup storage

Operator
0
-0 Q
pgBackRest e
DB Pods
cluster2
_

Note: If clusterl still exists for some reason, make sure it can not connect to backup storage. Otherwise, both
clusters sending WAL archives to it would cause data corruption!

49

Part V

Reference

50

CHAPTER
EIGHTEEN

The Cluster is configured via the deploy/cr.yaml file.

The metadata part of this file contains the following keys:

CUSTOM RESOURCE OPTIONS

* name (clusterl by default) sets the name of your Percona Distribution for PostgreSQL Cluster; it should
include only URL-compatible characters, not exceed 22 characters, start with an alphabetic character, and end
with an alphanumeric character;

The spec part of the deploy/cr.yaml file contains the following sections:

Key Value | De- | Description
type fault
pause boolean | false¢ Pause/resume: setting it to t rue gracefully stops the cluster, and setting it to
false after shut down starts the cluster back.
up- subdoc Percona Distribution for PostgreSQL upgrade options section
gradeOp-
tions
pgPri- subdoc PostgreSQL Primary instance options section
mary
walStor- subdoc Write-ahead Log Storage Section
age
pmm subdoc Percona Monitoring and Management section
backup subdoc Section to configure backups and pgBackRest
pg- subdoc The pgBouncer connection pooler section
Bouncer
pgRepli- subdoc Section required to manage the replicas within a PostgreSQL cluster
cas
pgBadger | subdoc The pgBadger PostgreSQL log analyzer section
Key database
Value string
Example pgdb
Description The name of a database that the PostgreSQL user can log into after the PostgreSQL cluster is
created
Key disableAutofail
Value boolean
Example false
Description Turns high availability on or off. By default, every cluster can have high availability if there is at

least one replica

Continued on next page

51

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/
https://github.com/darold/pgbadger

Percona Operator for PostgreSQL, Release 1.2.0

Table 18.1 — continued from previous page

Key tIsOnly

Value boolean

Example false

Description Enforece Operator to use only Transport Layer Security (TLS) for both internal and external
communications

Key ssICA

Value string

Example clusterl-ssl-ca

Description The name of the secret with TLS CA used for both connection encryption (external traffic), and
replication (internal traffic)

Key sslSecretName

Value string

Example clusterl-ssl-keypair

Description The name of the secret created to encrypt external communications

Key ssIReplicationSecretName

Value string

Example clusterl-ssl-keypair"

Description The name of the secret created to encrypt internal communications

Key keepData

Value boolean

Example true

Description If true, PVCs will be kept after the cluster deletion

Key keepBackups

Value boolean

Example true

Description If t rue, local backups will be kept after the cluster deletion

Key pgDataSource.restoreFrom

Value string

Example ne

Description The name of a data source PostgreSQL cluster, which is used to restore backup to a new cluster

Key pgDataSource.restoreOpts

Value string

Example nn

Description Custom pgBackRest options to restore backup to a new cluster

18.1 Upgrade Options Section

The upgradeOptions section in the deploy/cr.yaml file contains various configuration options to control Percona
Distribution for PostgreSQL upgrades.

18.1. Upgrade Options Section 52

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Percona Operator for PostgreSQL, Release 1.2.0

Key upgradeOptions.versionServiceEndpoint

Value string

Example https://check.percona.com

Description The Version Service URL used to check versions compatibility for upgrade

Key
upgradeOptions.apply

Value string

Example l4-recommended

Description Specifies how updates are processed by the Operator. Never or Disabled will completely
disable automatic upgrades, otherwise it can be set to Latest or Recommended or to a specific
version number of Percona Distribution for PostgreSQL to have it version-locked (so that the user
can control the version running, but use automatic upgrades to move between them).

Key
upgradeOptions.schedule

Value string

Example 0 2 « » *

Description Scheduled time to check for updates, specified in the crontab format

18.2 pgPrimary Section

The pgPrimary section controls the PostgreSQL Primary instance.

Key pgPrimary.image
Value string
Example perconalab/percona-postgresgl-operator:main-ppgl3-postgres—ha
Description The Docker image of the PostgreSQL Primary instance
Key pgPrimary.imagePullPolicy
Value string
Example Always
Description This option is used to set the policy for updating pgPrimary and pgReplicas images
Key pgPrimary.resources.requests.memory
Value int
Example 256Mi
Description The Kubernetes memory requests for a PostgreSQL Primary container
Key pgPrimary.resources.requests.cpu
Value string
Example 500m
Description Kubernetes CPU requests for a PostgreSQL Primary container
Key pgPrimary.resources.limits.cpu
Value string
Example 500m
Description Kubernetes CPU limits for a PostgreSQL Primary container
Key \ pgPrimary.resources.limits.memory
Continued on next page

18.2. pgPrimary Section

53

https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Percona Operator for PostgreSQL, Release 1.2.0

Table 18.2 — continued from previous page

Value string

Example 256Mi

Description The Kubernetes memory limits for a PostgreSQL Primary container

Key pgPrimary.tolerations

Value subdoc

Example node.alpha.kubernetes.io/unreachable

Description Kubernetes Pod tolerations

Key pgPrimary.volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Primary storage

Key pgPrimary.volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Primary storage

Key pgPrimary.volumeSpec.storagetype

Value string

Example dynamic

Description Type of the PostgreSQL Primary storage provisioning: create (the default variant; used if
storage is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage provisioner, e.g.
via a StorageClass)

Key pgPrimary.volumeSpec.storageclass

Value string

Example "o

Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Primary storage Persis-
tentVolumeClaim

Key pgPrimary.volumeSpec.matchLabels

Value string

Example nn

Description A PostgreSQL Primary storage label selector

Key pgPrimary.customconfig

Value string

Example "

Description Name of the Custom configuration options ConfigMap for PostgreSQL cluster

18.3 Tablespaces Storage Section

The tablespaceStorages section in the deploy/cr.yaml file contains configuration options for PostgreSQL Ta-

blespace.

18.3. Tablespaces Storage Section 54

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://www.postgresql.org/docs/current/manage-ag-tablespaces.html

Percona Operator for PostgreSQL, Release 1.2.0

Key
tablespaceStorages.<storage-name>.volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Tablespaces storage

Key
tablespaceStorages.<storage-name>.volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Tablespaces storage

Key
tablespaceStorages.<storage-name>.volumeSpec.storagetype

Value string

Example dynamic

Description Type of the PostgreSQL Tablespaces storage provisioning: create (the default variant; used if
storage is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage provisioner, e.g.
via a StorageClass)

Key
tablespaceStorages.<storage-name>.volumeSpec.storageclass

Value string

Example "

Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Tablespaces storage
PersistentVolumeClaim

Key
tablespaceStorages.<storage-name>.volumeSpec.matchLabels

Value string

Example "

Description A PostgreSQL Tablespaces storage label selector

18.4 Write-ahead Log Storage Section

The walStorage section in the deploy/cr.yaml file contains configuration options for PostgreSQL write-ahead log-

ging.

18.4. Write-ahead Log Storage Section 55

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/docs/current/wal-intro.html

Percona Operator for PostgreSQL, Release 1.2.0

Key
walStorage.volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Write-ahead Log storage

Key
walStorage.volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Write-ahead Log stor-
age

Key
walStorage.volumeSpec.storagetype

Value string

Example dynamic

Description Type of the PostgreSQL Write-ahead Log storage provisioning: create (the default variant;
used if storage is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage provi-
sioner, e.g. via a StorageClass)

Key
walStorage.volumeSpec.storageclass

Value string

Example "

Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Write-ahead Log storage
PersistentVolumeClaim

Key
walStorage.volumeSpec.matchLabels

Value string

Example "

Description A PostgreSQL Write-ahead Log storage label selector

18.5 Backup Section

The backup section in the deploy/cr.yaml file contains the following configuration options for the regular Percona
Distribution for PostgreSQL backups.

Key backup.image
Value string
Example perconalab/percona-postgresql-operator:main-ppgl3-pgbackrest
Description The Docker image for pgBackRest
Key backup.backrestRepolmage
Value string
Example perconalab/percona-postgresgl-operator:main-ppgl3-pgbackrest-repo
Description The Docker image for the BackRest repository
Key backup.resources.requests.cpu
Value string
Example 500m
Continued on next page

18.5. Backup Section 56

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Percona Operator for PostgreSQL, Release 1.2.0

Table 18.3 — continued from previous page

Description \ Kubernetes CPU requests for a pgBackRest container

Key backup.resources.requests.memory

Value int

Example 48Mi

Description The Kubernetes memory requests for a pgBackRest container

Key backup.resources.limits.cpu

Value int

Example 1

Description Kubernetes CPU limits for a pgBackRest container

Key backup.resources.limits.memory

Value int

Example 64Mi

Description The Kubernetes memory limits for a pgBackRest container

Key backup.volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the pgBackRest Storage

Key backup.volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the pgBackRest Storage

Key backup.volumeSpec.storagetype

Value string

Example dynamic

Description Type of the pgBackRest storage provisioning: create (the default variant; used if storage is
provisioned, e.g. using hostpath) or dynamic (for a dynamic storage provisioner, e.g. via a
StorageClass)

Key backup.volumeSpec.storageclass

Value string

Example "o

Description Optionally sets the Kubernetes storage class to use with the pgBackRest Storage PersistentVol-
umeClaim

Key backup.volumeSpec.matchLabels

Value string

Example "o

Description A pgBackRest storage label selector

Key backup.storages.<storage-name>.type

Value string

Example s3

Description Type of the storage used for backups

Continued on next page

18.5. Backup Section

57

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

Percona Operator for PostgreSQL, Release 1.2.0

Table 18.3 — continued from previous page

Key backup.storages.<storage-name>.endpointURL

Value string

Example minio—gateway-svc:9000

Description The endpoint URL of the S3-compatible storage to be used for backups (not needed for the orig-
inal Amazon S3 cloud)

Key backup.storages.<storage-name>.bucket

Value string

Example nn

Description The Amazon S3 bucket or Google Cloud Storage bucket name used for backups

Key backup.storages.<storage-name>.region

Value boolean

Example us-east-1

Description The AWS region to use for Amazon and all S3-compatible storages

Key backup.storages.<storage-name>.uriStyle

Value string

Example path

Description Optional parameter that specifies if pgBackRest should use the path or host S3 URI style

Key backup.storages.<storage-name>.verifyTLS

Value boolean

Example false

Description Enables or disables TLS verification for pgBackRest

Key backup.storageTypes

Value array

Example ["s3"]

Description The backup storage types for the pgBackRest repository

Key backup.repoPath

Value string

Example ne

Description Custom path for pgBackRest repository backups

Key backup.schedule.name

Value string

Example sat—-night-backup

Description The backup name

Key backup.schedule.schedule

Value string

Example 00 x 6

Description Scheduled time to make a backup specified in the crontab format

Key backup.schedule.keep

Value int

Example 3

Continued on next page

18.5. Backup Section 58

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://en.wikipedia.org/wiki/Cron

Percona Operator for PostgreSQL, Release 1.2.0

Table 18.3 — continued from previous page

Description The amount of most recent backups to store. Older backups are automatically deleted. Set keep
to zero or completely remove it to disable automatic deletion of backups

Key backup.schedule.type

Value string

Example full

Description The rype of the pgBackRest backup

Key backup.schedule.storage

Value string

Example local

Description The type of the pgBackRest repository

Key backup.customconfig

Value string

Example "

Description Name of the ConfigMap to pass custom pgBackRest configuration options

18.6 PMM Section

The pmm section in the deploy/cr.yaml file contains configuration options for Percona Monitoring and Management.

Key pmm.enabled
Value boolean
Example false
Description Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM
Key pmm.image
Value string
Example percona/pmm-client:2.24.0
Description Percona Monitoring and Management (PMM) Client Docker image
Key pmm.serverHost
Value string
Example monitoring-service
Description Address of the PMM Server to collect data from the cluster
Key pmm.serverUser
Value string
Example admin
Description The PMM Server User. The PMM Server password should be configured using Secrets
Key pmm.pmmSecret
Value string
Example clusterl-pmm-secret
Description Name of the Kubernetes Secret object for the PMM Server password
Key pmm.resources.requests.memory
Value string
Continued on next page

18.6. PMM Section 59

https://kubernetes.io/docs/concepts/configuration/configmap/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/glossary.option.html
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

Percona Operator for PostgreSQL, Release 1.2.0

Table 18.4 — continued from previous page

Example 200M

Description The Kubernetes memory requests for a PMM container
Key pmm.resources.requests.cpu

Value string

Example 500m

Description Kubernetes CPU requests for a PMM container

Key pmm.resources.limits.cpu

Value string

Example 500m

Description Kubernetes CPU limits for a PMM container

Key pmm.resources.limits.memory

Value string

Example 200M

Description The Kubernetes memory limits for a PMM container

18.7 pgBouncer Section

The pgBouncer section in the deploy/cr.yaml file contains configuration options for the pgBouncer connection

pooler for PostgreSQL.
Key pgBouncer.image
Value string
Example perconalab/percona-postgresql-operator:main-ppgl3-pgbouncer
Description Docker image for the pgBouncer connection pooler
Key pgBouncer.size
Value int
Example 1G
Description The number of the pgBouncer Pods to provide connection pooling
Key pgBouncer.resources.requests.cpu
Value int
Example 1
Description Kubernetes CPU requests for a pgBouncer container
Key pgBouncer.resources.requests.memory
Value int
Example 128Mi
Description The Kubernetes memory requests for a pgBouncer container
Key pgBouncer.resources.limits.cpu
Value int
Example 2
Description Kubernetes CPU limits for a pgBouncer container
Key \ pgBouncer.resources.limits.memory
Continued on next page

18.7. pgBouncer Section

60

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/
http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Percona Operator for PostgreSQL, Release 1.2.0

Table 18.5 — continued from previous page

Value int

Example 512Mi

Description The Kubernetes memory limits for a pgBouncer container

Key pgBouncer.expose.serviceType

Value string

Example ClusterIP

Description Specifies the type of Kubernetes Service for pgBouncer

Key pgBouncer.expose.loadBalancerSourceRanges

Value string

Example "10.0.0.0/8"

Description The range of client IP addresses from which the load balancer should be reachable (if not set,
there is no limitations)

Key pgBouncer.expose.annotations

Value label

Example pg-cluster—-annot: clusterl

Description The Kubernetes annotations metadata for pgBouncer

Key pgBouncer.expose.labels

Value label

Example pg-cluster-label: clusterl

Description Set labels for the pgBouncer Service

18.8 pgReplicas Section

The pgReplicas section in the deploy/cr.yaml file stores information required to manage the replicas within a

PostgreSQL cluster.
Key pgReplicas.<replica-name>.size
Value int
Example 1G
Description The number of the PostgreSQL Replica Pods
Key pgReplicas.<replica-name>.resources.requests.cpu
Value int
Example 500m
Description Kubernetes CPU requests for a PostgreSQL Replica container
Key pgReplicas.<replica-name>.resources.requests.memory
Value int
Example 256Mi
Description The Kubernetes memory requests for a PostgreSQL Replica container
Key pgReplicas.<replica-name>.resources.limits.cpu
Value int
Example 500m
Description Kubernetes CPU limits for a PostgreSQL Replica container
Continued on next page

18.8. pgReplicas Section 61

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Percona Operator for PostgreSQL, Release 1.2.0

Table 18.6 — continued from previous page

Key pgReplicas.<replica-name>.resources.limits.memory

Value int

Example 256Mi

Description The Kubernetes memory limits for a PostgreSQL Replica container

Key pgReplicas.<replica-name>.volumeSpec.accessmode

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Replica storage

Key pgReplicas.<replica-name>.volumeSpec.size

Value int

Example 1G

Description The Kubernetes PersistentVolumeClaim size for the PostgreSQL Replica storage

Key pgReplicas.<replica-name>.volumeSpec.storagetype

Value string

Example dynamic

Description Type of the PostgreSQL Replica storage provisioning: create (the default variant; used if stor-
age is provisioned, e.g. using hostpath) or dynamic (for a dynamic storage provisioner, e.g. via
a StorageClass)

Key pgReplicas.<replica-name>.volumeSpec.storageclass

Value string

Example standard

Description Optionally sets the Kubernetes storage class to use with the PostgreSQL Replica storage Persis-
tentVolumeClaim

Key pgReplicas.<replica-name>.volumeSpec.matchLabels

Value string

Example "o

Description A PostgreSQL Replica storage label selector

Key pgReplicas.<replica-name>.labels

Value label

Example pg-cluster-label: clusterl

Description Set labels for PostgreSQL Replica Pods

Key pgReplicas.<replica-name>.annotations

Value label

Example pg-cluster—-annot: clusterl-1

Description The Kubernetes annotations metadata for PostgreSQL Replica

Key pgReplicas.<replica-name>.expose.serviceType

Value string

Example ClusterIP

Description Specifies the type of Kubernetes Service for for PostgreSQL Replica

Key \ pgReplicas.<replica-name>.expose.loadBalancerSourceRanges

Continued on next page

18.8. pgReplicas Section

62

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

Percona Operator for PostgreSQL, Release 1.2.0

Table 18.6 — continued from previous page

Value string

Example "10.0.0.0/8"

Description The range of client IP addresses from which the load balancer should be reachable (if not set,
there is no limitations)

Key pgReplicas.<replica-name>.expose.annotations

Value label

Example pg-cluster—-annot: clusterl

Description The Kubernetes annotations metadata for PostgreSQL Replica

Key pgReplicas.<replica-name>.expose.labels

Value label

Example pg-cluster-label: clusterl

Description Set labels for the PostgreSQL Replica Service

18.9 pgBadger Section

The pgBadger section in the deploy/cr.yaml file contains configuration options for the pgBadger PostgreSQL log

analyzer.
Key
pgBadger.enabled
Value boolean
Example false
Description Enables or disables the pgBadger PostgreSQL log analyzer
Key
pgBadger.image
Value string
Example perconalab/percona-postgresqgl-operator:main-ppgl3-pgbadger
Description pgBadger PostgreSQL log analyzer Docker image
Key
pgBadger.port
Value int
Example 10000
Description The port number for pgBadger

18.9. pgBadger Section 63

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger
https://github.com/darold/pgbadger

CHAPTER
NINETEEN

PERCONA CERTIFIED IMAGES

Following table presents Percona’s certified docker images to be used with the Percona Operator for PostgreSQL:

64

Percona Operator for PostgreSQL, Release 1.2.0

Image

Digest

percona/percona-postgresql-
operator:1.2.0-pgo-deployer

sha256:6bf41a9¢ca3b156730666742a780bb331c3ff9f58b20c42c713c4falb32c92e4

percona/percona-postgresql-
operator:1.2.0-postgres-operator

sha256:e14a7578df7ad3088dabd696d59aef5b48956f4635317b11f46f0cddfdb4301f

percona/percona-postgresql-
operator:1.2.0-pgo-scheduler

sha256:22918925e14c618dfal4266e70b3c5c06c9f72035090708c02403f56a2f93bff

percona/percona-postgresql-
operator:1.2.0-pgo-rmdata

sha256:31293d6cd6558610a80450b68359e7b7t33ad635tfc75517t73e6367a358¢eaa4

percona/percona-postgresql-
operator:1.2.0-pgo-event

sha256:42bf1b4903518d9c6057fd7765d56b7d3f98aadefd2ad38dd0f41cde62855{0f

percona/percona-postgresql-
operator:1.2.0-pgo-apiserver

sha256:63f15aleb54ca9605e9f8973dbb3e590b1c9797¢c3b50a8a565524f7d6cbbe7c3

percona/percona-postgresql-
operator:1.2.0-ppg12-pgbadger

sha256:44db3f464b9723766aba4fd188b3087243e7bd00427733378a76a97d4d384df3

percona/percona-postgresql-
operator:1.2.0-ppg13-pgbadger

sha256:e28c8b484185d43806d9%e855aalfd7f765186e14fdfed5582460032bb46cf2e0

percona/percona-postgresql-
operator:1.2.0-ppg14-pgbadger

sha256:326a2a31dc9acaa7dac0f9f6171986bc901c4d3bcef8614d2dcd7bc7324830a3

percona/percona-postgresql-
operator:1.2.0-ppg12-postgres-ha

sha256:82572f12b730c8d22b40f8fc9f614e8c4478c395d097823b2c2bbb9bcb9da936

percona/percona-postgresql-
operator:1.2.0-ppg13-postgres-ha

sha256:f815f1156c91ca2c93c2a69a176351513831e52fb6fcf9ccc2f047e14734c401

percona/percona-postgresql-
operator:1.2.0-ppg14-postgres-ha

sha256:e3735bca5681f6bc91b914d04fadcc75a2a24ab34d7cca96e5a5e772521db71b

percona/percona-postgresql-
operator:1.2.0-ppg12-pgbouncer

sha256:78a21alf5e0aabbcddlea87ec24973e068fe89eaf48a938e4916a9901236464¢

percona/percona-postgresql-
operator:1.2.0-ppg13-pgbouncer

sha256:d748e1d69e957665061c881266826a95a6829e6ddd954fc45cbb77973c6fc0b9

percona/percona-postgresql-
operator:1.2.0-ppg14-pgbouncer

sha256:111625cbal56836a93181c01362de9e52a08412273432900dee51d06a2d2f56f

percona/percona-postgresql-
operator:1.2.0-ppg12-pgbackrest

sha256:cf3e64fe780be26b6e799a422192cd184df2955af9028f70ed7d88842c74{c81

percona/percona-postgresql-
operator:1.2.0-ppg13-pgbackrest

sha256:1f863eble4fd3de9ad28e11f116dae3f58311a03ec6a5f3318a237f2931239a3

percona/percona-postgresql-
operator:1.2.0-ppgl4-pgbackrest

sha256:fa84a0efe020ecc3d86466b30557a8313873d915934£89ce9d711fded98b99b5

percona/percona-postgresql-
operator:1.2.0-ppg12-pgbackrest-
repo

sha256:74820277a6a069ccd3f8b6f9813ade51fe087efdd 1f3b46f3957dd4889034a20

percona/percona-postgresql-
operator:1.2.0-ppg13-pgbackrest-
repo

sha256:b8aef322e21623549156923e1c71292661e849a73a3b71035392c40a8ce3a5b

percona/percona-postgresql-
operator:1.2.0-ppg14-pgbackrest-
repo

sha256:78bc70772c66697d5572bff929¢259b2289572c5b22e2ce938c97f27ed575654

65

CHAPTER
TWENTY

FREQUENTLY ASKED QUESTIONS

* Why do we need to follow “the Kubernetes way” when Kubernetes was never intended to run databases?
* How can I contact the developers?

* How can I analyze PostgreSQL logs with pgBadger?

* How can I set the Operator to control PostgreSQL in several namespaces?

20.1 Why do we need to follow “the Kubernetes way” when Kuber-
netes was never intended to run databases?

As it is well known, the Kubernetes approach is targeted at stateless applications but provides ways to store state (in
Persistent Volumes, etc.) if the application needs it. Generally, a stateless mode of operation is supposed to provide
better safety, sustainability, and scalability, it makes the already-deployed components interchangeable. You can find
more about substantial benefits brought by Kubernetes to databases in this blog post.

The architecture of state-centric applications (like databases) should be composed in a right way to avoid crashes,
data loss, or data inconsistencies during hardware failure. Percona Operator for PostgreSQL provides out-of-the-
box functionality to automate provisioning and management of highly available PostgreSQL database clusters on
Kubernetes.

20.2 How can | contact the developers?

The best place to discuss Percona Operator for PostgreSQL with developers and other community members is the
community forum.

If you would like to report a bug, use the Percona Operator for PostgreSQL project in JIRA.

20.3 How can | analyze PostgreSQL logs with pgBadger?

pgBadger is a report generator for PostgreSQL, which can analyze PostgreSQL logs and provide you web-based
representation with charts and various statistics. You can configure it via the pgBadger Section in the deploy/cr.yaml
file. The most important option there is pgBadger.enabled, which is off by default. When enabled, a separate pgBadger
sidecar container with a specialized HTTP server is added to each PostgreSQL Pod.

66

https://www.percona.com/blog/2020/10/08/the-criticality-of-a-kubernetes-operator-for-databases/
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG
https://pgbadger.darold.net/
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Percona Operator for PostgreSQL, Release 1.2.0

You can generate the log report and access it through an exposed port (10000 by default) and an /api/
badgergenerate endpoint: http://<Pod-address>:10000/api/badgergenerate. Also, this report
is available in the appropriate pgBadger container as a /report/index.html file.

20.4 How can | set the Operator to control PostgreSQL in several
namespaces?

Sometimes it is convenient to have one Operator watching for PostgreSQL Cluster custom resources in several names-

paces.

You can set additional namespace to be watched by the Operator as follows:

1. First of all clean up the installer artifacts:

$ kubectl delete -f deploy/operator.yaml

2. Make changes in the deploy/operator.yaml file:

Find the pgo-deployer—-cm ConfigMap. It contains the values.yaml configuration file. Find the
namespace key in this file (it is set to "pgo" by default) and append your additional namespace to it in

a comma-separated list.

apiVersion: vl
kind: ConfigMap
metadata:

name: pgo-deployer-cm
data:

values.yaml: |-

namespace: "pgo,myadditionalnamespace"

Find the pgo-deploy container template in the pgo—-deploy job spec.

DEPLOY_ACTION, which you should change from install to update:

It has env element named

apiVersion: batch/vl
kind: Job

metadata:

name: pgo-deploy

containers:
- name: pgo-deploy

env:
— name: DEPLOY_ACTION
value: update

3. Now apply your changes as usual:

$ kubectl apply —-f deploy/operator.yaml

20.4. How can | set the Operator to control PostgreSQL in several namespaces? 67

Percona Operator for PostgreSQL, Release 1.2.0

Note: You need to perform cleanup between each DEPLOY_ACTION activity, which can be either install,
update,or uninstall.

20.4. How can | set the Operator to control PostgreSQL in several namespaces? 68

CHAPTER
TWENTYONE

PERCONA DISTRIBUTION FOR POSTGRESQL OPERATOR 1.2.0
RELEASE NOTES

21.1 Percona Operator for PostgreSQL 1.2.0

Date April 6, 2022

Installation Percona Operator for PostgreSQL

21.1.1 Release Highlights
» With this release, the Operator turns to a simplified naming convention and changes its official name to Percona
Operator for PostgreSQL

* Starting from this release, the Operator automatically generates TLS certificates and turns on encryption by de-
fault at cluster creation time. This includes both external certificates which allow users to connect to pgBouncer
and PostgreSQL via the encrypted channel, and internal ones used for communication between PostgreSQL
cluster nodes

* Various cleanups in the deploy/cr.yaml configuration file simplify the deployment of the cluster, making no need
in going into YAML manifests and tuning them

21.1.2 Improvements
* K8SPG-149: It is now possible to explicitly set the version of PostgreSQL for newly provisioned clusters. Before
that, all new clusters were started with the latest PostgreSQL version if Version Service was enabled

* K8SPG-148: Add possibility of specifying imagePullPolicy option for all images in the Custom Resource
of the cluster to run in air-gapped environments

* K8SPG-147: Users now can pass additional customizations to pgBackRest with the pgBackRest configuration
options provided via ConfigMap

e K8SPG-142: Introduce deploy/cr-minimal.yaml configuration file to deploy minimal viable clusters - useful for
developers to deploy PostgreSQL on local Kubernetes clusters, such as Minikube

o K8SPG-141: YAML manifest cleanup simplifies cluster deployment, reducing it to just two commands

* K8SPG-112: Enable automated generation of TLS certificates and provide encryption for all new clusters by
default

* K8SPG-161: The Operator documentation now has a how-to that covers deploying a standby PostgreSQL cluster
on Kubernetes

69

https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://jira.percona.com/browse/K8SPG-149
https://jira.percona.com/browse/K8SPG-148
https://jira.percona.com/browse/K8SPG-147
https://jira.percona.com/browse/K8SPG-142
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr-minimal.yaml
https://jira.percona.com/browse/K8SPG-141
https://jira.percona.com/browse/K8SPG-112
https://jira.percona.com/browse/K8SPG-161

Percona Operator for PostgreSQL, Release 1.2.0

21.1.3 Bugs Fixed
* K8SPG-115: Fix the bug that caused creation a “cloned” cluster with pgDataSource to fail due to missing
Secrets

* K8SPG-163: Fix the security vulnerability CVE-2021-40346 by removing the unused dependency in the Oper-
ator images

* K8SPG-152: Fix the bug that prevented deploying the Operator in disabled/readonly namespace mode. It is
now possible to deploy several operators in different namespaces in the same cluster

21.1.4 Options Changes

* K8SPG-116: The Dbackrest-restore-from-cluster parameter was renamed to
backrest-restore-cluster for clarity in the deploy/backup/restore.yaml file used to restore the
cluster from a previously saved backup

21.1.5 Supported platforms

The following platforms were tested and are officially supported by the Operator 1.2.0:
* Google Kubernetes Engine (GKE) 1.19 - 1.22
¢ Amazon Elastic Container Service for Kubernetes (EKS) 1.19 - 1.21
e OpenShift 4.7 - 4.9

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process.
Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

21.2 Percona Distribution for PostgreSQL Operator 1.1.0

Date December 7, 2021

Installation Installing Percona Distribution for PostgreSQL Operator

21.2.1 Release Highlights

* A Kubernetes-native horizontal scaling capability was added to the Custom Resource to unblock Horizontal Pod
Autoscaler and Kubernetes Event-driven Autoscaling (KEDA) usage

e The Smart Upgrade functionality along with the technical preview of the Version Service allows users to auto-
matically get the latest version of the software compatible with the Operator and apply it safely

* Percona Distribution for PostgreSQL Operator now supports PostgreSQL 14

21.2.2 New Features

¢ K8SPG-101: Add support for Kubernetes horizontal scaling to set the number of Replicas dynamically via the
kubectl scale command or Horizontal Pod Autoscaler
* K8SPG-77: Add support for PostgreSQL 14 in the Operator

» K8SPG-75: Manage Operator’s system users hrough a single Secret resource even after cluster creation

21.2. Percona Distribution for PostgreSQL Operator 1.1.0 70

https://jira.percona.com/browse/K8SPG-115
https://jira.percona.com/browse/K8SPG-163
https://nvd.nist.gov/vuln/detail/CVE-2021-20329
https://jira.percona.com/browse/K8SPG-152
https://jira.percona.com/browse/K8SPG-116
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup/restore.yaml
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://jira.percona.com/browse/K8SPG-101
https://jira.percona.com/browse/K8SPG-77
https://jira.percona.com/browse/K8SPG-75

Percona Operator for PostgreSQL, Release 1.2.0

* K8SPG-71: Add Smart Upgrade functionality to automate Percona Distribution for PostgreSQL upgrades

21.2.3 Improvements

* K8SPG-96: PMM container does not cause the crash of the whole database Pod if pmm-agent is not working
properly

21.2.4 Bugs Fixed

* K8SPG-120: The Operator default behavior is now to keep backups and PVCs when the cluster is deleted

Supported platforms

The following platforms were tested and are officially supported by the Operator 1.1.0:
* Google Kubernetes Engine (GKE) 1.19 - 1.22
¢ Amazon Elastic Container Service for Kubernetes (EKS) 1.18 - 1.21
e OpenShift 4.7 - 4.9

This list only includes the platforms that the Percona Operators are specifically tested on as part of the release process.
Other Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

21.3 Percona Distribution for PostgreSQL Operator 1.0.0

Date October 7, 2021
Installation Installing Percona Distribution for PostgreSQL Operator
Percona announces the general availability of Percona Distribution for PostgreSQL Operator 1.0.0.

The Percona Distribution for PostgreSQL Operator automates the lifecycle, simplifies deploying and managing open
source PostgreSQL clusters on Kubernetes.

The Operator follows best practices for configuration and setup of the Percona Distribution for PostgreSQL. The
Operator provides a consistent way to package, deploy, manage, and perform a backup and a restore for a Kubernetes
application. Operators deliver automation advantages in cloud-native applications.

The advantages are the following:

* Deploy a Percona Distribution for PostgreSQL with no single point of failure and environment which can span
multiple availability zones

* Modify the Percona Distribution for PostgreSQL size parameter to add or remove PostgreSQL instances
 Use single Custom Resource as a universal entry point to configure the cluster, similar to other Percona Operators
 Carry on semi-automatic upgrades of the Operator and PostgreSQL to newer versions

¢ Integrate with Percona Monitoring and Management (PMM) to seamlessly monitor your Percona Distribution
for PostgreSQL

¢ Automate backups or perform on-demand backups as needed with support for performing an automatic restore
* Use cloud storage with S3-compatible APIs or Google Cloud for backups

e Use Transport Layer Security (TLS) for the replication and client traffic

21.3. Percona Distribution for PostgreSQL Operator 1.0.0 71

https://jira.percona.com/browse/K8SPG-71
https://jira.percona.com/browse/K8SPG-96
https://jira.percona.com/browse/K8SPG-120
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://www.percona.com/doc/postgresql/LATEST/index.html

Percona Operator for PostgreSQL, Release 1.2.0

* Support advanced Kubernetes features such as pod disruption budgets, node selector, constraints, tolerations,
priority classes, and affinity/anti-affinity

Percona Distribution for PostgreSQL Operator is based on Postgres Operator developed by Crunchy Data.

21.3.1 Release Highlights

e Itis now possible to configure scheduled backups following the declarative approach in the deploy/cr.yaml
file, similar to other Percona Kubernetes Operators

* OpenShift compatibility allows running Percona Distribution for PostgreSQL on Red Hat OpenShift Container
Platform

* For the first time, the main functionality of the Operator is covered by functional tests, which ensure the overall
quality and stability

21.3.2 New Features and Improvements
* K8SPG-96: PMM Client container does not cause the crash of the whole database Pod if pmm-agent is not
working properly
* K8SPG-86: The Operator is now compatible with the OpenShift platform
* K8SPG-62: Configuring scheduled backups through the main Custom Resource is now supported

* K8SPG-99, K8SPG-131: The Operator documentation was substantially improved, and now it covers among
other things the usage of Transport Layer Security (TLS) for internal and external communications, and cluster
upgrades

21.3.3 Supported Platforms

The following platforms were tested and are officially supported by Operator 1.0.0:
* OpenShift 4.6 - 4.8
* Google Kubernetes Engine (GKE) 1.17 - 1.21
¢ Amazon Elastic Container Service for Kubernetes (EKS) 1.21

This list only includes the platforms that the Operator is specifically tested on as a part of the release process. Other
Kubernetes flavors and versions depend on the backward compatibility offered by Kubernetes itself.

21.4 Percona Distribution for PostgreSQL Operator 0.2.0

Date August 12, 2021
Installation Installing Percona Distribution for PostgreSQL Operator

Version 0.2.0 of the Percona Distribution for PostgreSQL Operator is a Beta release, and it is not recommended
for production environments.

21.4. Percona Distribution for PostgreSQL Operator 0.2.0 72

https://crunchydata.github.io/postgres-operator/latest/
https://jira.percona.com/browse/K8SPG-96
https://jira.percona.com/browse/K8SPG-86
https://jira.percona.com/browse/K8SPG-62
https://jira.percona.com/browse/K8SPG-99
https://jira.percona.com/browse/K8SPG-131
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide

Percona Operator for PostgreSQL, Release 1.2.0

21.4.1 New Features and Improvements

» K8SPG-80: The Custom Resource structure was reworked to provide the same look and feel as in other Percona
Operators. Read more about Custom Resource options in the documentation and review the default deploy/
cr.yaml configuration file on GitHub.

* K8SPG-53: Merged upstream CrunchyData Operator v4.7.0 made it possible to use Google Cloud Storage as
an object store for backups without using third-party tools

* K8SPG-42: There is no need to specify the name of the pgBackrest Pod in the backup manifest anymore as it is
detected automatically by the Operator

* K8SPG-30: Replicas management is now performed through a main Custom Resource manifest instead of
creating separate Kubernetes resources. This also adds the possibility of scaling up/scaling down replicas via
the ‘deploy/cr.yaml’ configuration file

¢ K8SPG-66: Helm chart is now officially provided with the Operator

21.5 Percona Distribution for PostgreSQL Operator 0.1.0

Date May 10, 2021
Installation Installing Percona Distribution for PostgreSQL Operator

The Percona Operator is based on best practices for configuration and setup of a Percona Distribution for PostgreSQL
on Kubernetes. The benefits of the Operator are many, but saving time and delivering a consistent and vetted environ-
ment is key.

Kubernetes provides users with a distributed orchestration system that automates the deployment, management, and
scaling of containerized applications. The Operator extends the Kubernetes API with a new custom resource for
deploying, configuring, and managing the application through the whole life cycle. You can compare the Kubernetes
Operator to a System Administrator who deploys the application and watches the Kubernetes events related to it,
taking administrative/operational actions when needed.

Version 0.1.0 of the Percona Distribution for PostgreSQL Operator is a tech preview release and it is not rec-
ommended for production environments.

You can install Percona Distribution for PostgreSQL Operator on Kubernetes, Google Kubernetes Engine (GKE),
and Amazon Elastic Kubernetes Service (EKS) clusters. The Operator is based on Postgres Operator developed by
Crunchy Data.

Here are the main differences between v 0.1.0 and the original Operator:
* Percona Distribution for PostgreSQL is now used as the main container image.

* It is possible to specify custom images for all components separately. For example, users can easily build and
use custom images for one or several components (e.g. pgBouncer) while all other images will be the official
ones. Also, users can build and use all custom images.

* All container images are reworked and simplified. They are built on Red Hat Universal Base Image (UBI) 8.
* The Operator has built-in integration with Percona Monitoring and Management v2.

* A build/test infrastructure was created, and we have started adding e2e tests to be sure that all pieces of the
cluster work together as expected.

* We have phased out the pgo CLI tool, and the Custom Resource UX will be completely aligned with other
Percona Operators in the following release.

21.5. Percona Distribution for PostgreSQL Operator 0.1.0 73

https://jira.percona.com/browse/K8SPG-80
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://jira.percona.com/browse/K8SPG-53
https://github.com/CrunchyData/postgres-operator/releases/tag/v4.7.0
https://jira.percona.com/browse/K8SPG-42
https://jira.percona.com/browse/K8SPG-30
https://jira.percona.com/browse/K8SPG-66
https://www.percona.com/doc/kubernetes-operator-for-postgresql/index.html#installation-guide
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://access.crunchydata.com/documentation/postgres-operator/latest/

Percona Operator for PostgreSQL, Release 1.2.0

Once Percona Operator is promoted to GA, users would be able to get the full package of services from Percona teams.

While the Operator is in its very first release, instructions on how to install and configure it are already available along
with the source code hosted in our Github repository.

Help us improve our software quality by reporting any bugs you encounter using our bug tracking system.

21.5. Percona Distribution for PostgreSQL Operator 0.1.0 74

https://percona.com/doc/kubernetes-operator-for-postgresql
https://github.com/percona/percona-postgresql-operator
https://jira.percona.com/secure/Dashboard.jspa

Symbols

0.1.0 (release notes), 73
0.2.0 (release notes), 72
1.0.0 (release notes), 71
1.1.0 (release notes), 70
1.2.0 (release notes), 69

INDEX

75

	I Requirements
	System Requirements
	Officially supported platforms

	Design overview

	II Installation guide
	Install Percona Distribution for PostgreSQL on Kubernetes
	Install Percona Distribution for PostgreSQL on OpenShift
	Install Percona Distribution for PostgreSQL on Minikube
	Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)
	Prerequisites
	Configuring default settings for the cluster
	Installing the Operator

	Install Percona Distribution for PostgreSQL using Helm
	Pre-requisites
	Installation
	Installing Percona Distribution for PostgreSQL with customized parameters

	III Configuration and Management
	Users
	System Users
	YAML Object Format

	Application users

	Providing Backups
	Configuring the S3-compatible backup storage
	Use Google Cloud Storage for backups
	Scheduling backups
	Making on-demand backup
	List existing backups
	Restore the cluster from a previously saved backup
	Delete a previously saved backup

	Changing PostgreSQL Options
	Creating a cluster with custom options
	Modifying options for the existing cluster

	Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes
	Affinity and anti-affinity
	Tolerations

	Pause/resume PostgreSQL Cluster
	Update Percona Operator for PostgreSQL
	Upgrading the Operator
	Upgrading Percona Distribution for PostgreSQL
	Automatic upgrade
	Semi-automatic upgrade

	Scale Percona Distribution for PostgreSQL on Kubernetes and OpenShift
	Transport Layer Security (TLS)
	Allow the Operator to generate certificates automatically
	Generate certificates manually
	Check connectivity to the cluster
	Run Percona Distribution for PostgreSQL without TLS

	Monitoring
	Installing the PMM Server
	Installing the PMM Client

	IV HOWTOs
	How to deploy a standby cluster for Disaster Recovery

	V Reference
	Custom Resource options
	Upgrade Options Section
	pgPrimary Section
	Tablespaces Storage Section
	Write-ahead Log Storage Section
	Backup Section
	PMM Section
	pgBouncer Section
	pgReplicas Section
	pgBadger Section

	Percona certified images
	Frequently Asked Questions
	Why do we need to follow the Kubernetes way when Kubernetes was never intended to run databases?
	How can I contact the developers?
	How can I analyze PostgreSQL logs with pgBadger?
	How can I set the Operator to control PostgreSQL in several namespaces?

	Percona Distribution for PostgreSQL Operator 1.2.0 Release Notes
	Percona Operator for PostgreSQL 1.2.0
	Release Highlights
	Improvements
	Bugs Fixed
	Options Changes
	Supported platforms

	Percona Distribution for PostgreSQL Operator 1.1.0
	Release Highlights
	New Features
	Improvements
	Bugs Fixed

	Percona Distribution for PostgreSQL Operator 1.0.0
	Release Highlights
	New Features and Improvements
	Supported Platforms

	Percona Distribution for PostgreSQL Operator 0.2.0
	New Features and Improvements

	Percona Distribution for PostgreSQL Operator 0.1.0

	Index

