
Documentation

2.0.0 (December 30, 2022)

Percona Technical Documentation Team

Percona LLC and/or its affiliates, © 2009 - 2022

Table of contents

31. Percona Operator for PostgreSQL

32. Requirements

33. Quickstart guides

34. Detailed installation guides

35. Configuration

36. Management

47. Reference

58. Requirements

58.1 System Requirements

68.2 Design overview

99. Quickstart guides

99.1 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)

129.2 Install Percona Distribution for PostgreSQL using Helm

1410. Detailed installation guide

1510.1 Install Percona Distribution for PostgreSQL on Kubernetes

1811. Configuration

1811.1 Users

1911.2 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes

2111.3 Telemetry

2212. Management

2212.1 Providing Backups

2912.2 Monitoring

3112.3 Pause/resume PostgreSQL Cluster

3213. Reference

3213.1 Custom Resource options

4913.2 Percona certified images

5014. Release Notes

5014.1 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

Table of contents

- 2/51 - Percona LLC and/or its affiliates, © 2009 - 2022

1. Percona Operator for PostgreSQL

Kubernetes have added a way to manage containerized systems, including database clusters. This management is achieved by

controllers, declared in configuration files. These controllers provide automation with the ability to create objects, such as a

container or a group of containers called pods, to listen for an specific event and then perform a task.

This automation adds a level of complexity to the container-based architecture and stateful applications, such as a database. A

Kubernetes Operator is a special type of controller introduced to simplify complex deployments. The Operator extends the

Kubernetes API with custom resources.

The Percona Operator for PostgreSQL is based on best practices for configuration and setup of a Percona Distribution for

PostgreSQL cluster. The benefits of the Operator are many, but saving time and delivering a consistent and vetted environment is

key.

2. Requirements

System Requirements

Design and architecture

3. Quickstart guides

Install on Google Kubernetes Engine (GKE)

Install with Helm

4. Detailed installation guides

Generic Kubernetes installation

5. Configuration

Application and system users

Anti-affinity and tolerations

Telemetry

6. Management

Backup and restore

Monitor with Percona Monitoring and Management (PMM)

Restart or pause the cluster

This is version 2.0.0 of the Percona Operator for PostgreSQL. It is a tech preview release and it is not recommended for

production environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-ready and

contains everything you need to quickly and consistently deploy and scale PostgreSQL clusters in a Kubernetes-based environment,

on-premises or in the cloud.

Note

•

•

•

•

•

•

•

•

•

•

•

1. Percona Operator for PostgreSQL

- 3/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://www.percona.com/https://docs.percona.com/percona-operator-for-postgresql/index.html
https://github.com/percona/percona-postgresql-operator

7. Reference

Custom Resource options

Percona certified images

Frequently Asked Questions

Release Notes

•

•

•

•

Last update: 2022-12-30

7. Reference

- 4/51 - Percona LLC and/or its affiliates, © 2009 - 2022

8. Requirements

8.1 System Requirements

The Operator is validated for deployment on Kubernetes, GKE and EKS clusters. The Operator is cloud native and storage

agnostic, working with a wide variety of storage classes, hostPath, and NFS.

8.1.1 Officially supported platforms

The following platforms were tested and are officially supported by the Operator 2.0.0:

Google Kubernetes Engine (GKE) 1.22 - 1.25

Other Kubernetes platforms may also work but have not been tested.

•

Last update: 2022-12-28

8. Requirements

- 5/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://cloud.google.com/kubernetes-engine

8.2 Design overview

The Percona Operator for PostgreSQL automates and simplifies deploying and managing open source PostgreSQL clusters on

Kubernetes. The Operator is based on CrunchyData’s PostgreSQL Operator.

DB Pod N

Kubernetes API Operator

CSI

Storage

Area

Network

Container Suite
Custom Resource

Definitions

clusters

(perconapgcluster)

backup, restore

(perconapgbackups,

perconapgrestores)

pgbouncer
primary

PostgreSQL

replica

PostgreSQL
pgbackrest

PostgreSQL containers deployed with the Operator include the following components:

The PostgreSQL database management system, including:

PostgreSQL Additional Supplied Modules,

pgAudit PostgreSQL auditing extension,

PostgreSQL set_user Extension Module,

wal2json output plugin,

The pgBackRest Backup & Restore utility,

The pgBouncer connection pooler for PostgreSQL,

The PostgreSQL high-availability implementation based on the Patroni template,

the pg_stat_monitor PostgreSQL Query Performance Monitoring utility,

LLVM (for JIT compilation).

•

•

•

•

•

•

•

•

•

•

8.2 Design overview

- 6/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://crunchydata.github.io/postgres-operator/latest/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/contrib.html
https://www.pgaudit.org/
https://github.com/pgaudit/set_user
https://github.com/eulerto/wal2json
https://pgbackrest.org/
http://pgbouncer.github.io/
https://patroni.readthedocs.io/
https://github.com/percona/pg_stat_monitor/

To provide high availability the Operator involves node affinity to run PostgreSQL Cluster instances on separate worker nodes if

possible. If some node fails, the Pod with it is automatically re-created on another node.

DB Pod N

DB Pod 1 DB Pod 2 DB Pod N

Storage

Area

Network

Kubernetes API

Operator

CSI

Percona Distribution for PostgreSQL

Namespace

To provide data storage for stateful applications, Kubernetes uses Persistent Volumes. A PersistentVolumeClaim (PVC) is used to

implement the automatic storage provisioning to pods. If a failure occurs, the Container Storage Interface (CSI) should be able to

re-mount storage on a different node.

The Operator functionality extends the Kubernetes API with Custom Resources Definitions. These CRDs provide extensions to the

Kubernetes API, and, in the case of the Operator, allow you to perform actions such as creating a PostgreSQL Cluster, updating

PostgreSQL Cluster resource allocations, adding additional utilities to a PostgreSQL cluster, e.g. pgBouncer for connection

pooling and more.

When a new Custom Resource is created or an existing one undergoes some changes or deletion, the Operator automatically

creates/changes/deletes all needed Kubernetes objects with the appropriate settings to provide a proper Percona PostgreSQL

Cluster operation.

8.2 Design overview

- 7/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://www.pgbouncer.org/

Following CRDs are created while the Operator installation:

perconapgclusters stores information required to manage a PostgreSQL cluster. This includes things like the cluster name,

what storage and resource classes to use, which version of PostgreSQL to run, information about how to maintain a high-

availability cluster, etc.

perconapgbackups and perconapgrestores are in charge for making backups and restore them.

•

•

Last update: 2022-12-28

8.2 Design overview

- 8/51 - Percona LLC and/or its affiliates, © 2009 - 2022

9. Quickstart guides

9.1 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL with the Google

Kubernetes Engine. The document assumes some experience with Google Kubernetes Engine (GKE). For more information on the

GKE, see the Kubernetes Engine Quickstart.

9.1.1 Prerequisites

All commands from this quickstart can be run either in the Google Cloud shell or in your local shell.

To use Google Cloud shell, you need nothing but a modern web browser.

If you would like to use your local shell, install the following:

gcloud. This tool is part of the Google Cloud SDK. To install it, select your operating system on the official Google Cloud SDK

documentation page and then follow the instructions.

kubectl. It is the Kubernetes command-line tool you will use to manage and deploy applications. To install the tool, run the

following command:

9.1.2 Create and configure the GKE cluster

You can configure the settings using the gcloud tool. You can run it either in the Cloud Shell or in your local shell (if you have

installed Google Cloud SDK locally on the previous step). The following command will create a cluster named my-cluster-1 :

You may wait a few minutes for the cluster to be generated.

Select Kubernetes Engine → Clusters in the left menu panel:

cluster1 europe-west3-b 3 12 45 GB —

Edit

Connect

Delete

Now you should configure the command-line access to your newly created cluster to make kubectl be able to use it.

In the Google Cloud Console, select your cluster and then click the Connect shown on the above image. You will see the connect

statement which configures the command-line access. After you have edited the statement, you may run the command in your

local shell:

1.

2.

$ gcloud auth login

$ gcloud components install kubectl

$ gcloud container clusters create cluster-1 --project <project name> --zone us-central1-a --cluster-version --machine-type n1-standard-4 --num-nodes=3

You must edit the following command and other command-line statements to replace the <project name> placeholder with your project

name. You may also be required to edit the zone location, which is set to us-central1 in the above example. Other parameters specify

that we are creating a cluster with 3 nodes and with machine type of 4 vCPUs and 45 GB memory.

Note

When the process is over, you can see it listed in the Google Cloud console

9. Quickstart guides

- 9/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/kubernetes-engine/docs/quickstart#choosing_a_shell
https://cloud.google.com/shell/docs/quickstart

Finally, use your Cloud Identity and Access Management (Cloud IAM) to control access to the cluster. The following command will

give you the ability to create Roles and RoleBindings:

9.1.3 Install the Operator and deploy your PostgreSQL cluster

First of all, use the following git clone command to download the correct branch of the percona-postgresql-operator repository:

The next thing to do is to add the postgres-operator namespace to Kubernetes, not forgetting to set the correspondent context for

further steps:

Deploy the operator with the following command:

After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following commands:

Creation process will take some time. The process is over when the Operator and PostgreSQL Pods have reached their Running

status:

Also, you can see the same information when browsing Pods of your cluster in Google Cloud console via the Object Browser:

$ gcloud container clusters get-credentials cluster-1 --zone us-central1-a --project <project name>

$ kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user $(gcloud config get-value core/account)

Expected output

clusterrolebinding.rbac.authorization.k8s.io/cluster-admin-binding created

1.

$ git clone -b v2.0.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

2.

$ kubectl create namespace postgres-operator

$ kubectl config set-context $(kubectl config current-context) --namespace=postgres-operator

To use different namespace, you should edit all occurrences of the namespace: postgres-operator line in both deploy/cr.yaml and deploy/

bundle.yaml configuration files.

Note

3.

$ kubectl apply -f deploy/bundle.yaml

4.

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-backup-7hsq-9ch48 0/1 Completed 0 35s

cluster1-instance1-mtnz-0 4/4 Running 0 87s

cluster1-pgbouncer-f4dcfffc8-lrs2d 2/2 Running 0 87s

cluster1-repo-host-0 2/2 Running 0 87s

percona-postgresql-operator-75fd989d98-wvx4h 1/1 Running 0 109s

9.1.3 Install the Operator and deploy your PostgreSQL cluster

- 10/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://cloud.google.com/iam

Name Status Type Namespace ClusterPods

cluster1-backup-7hsq OK Job pg-opertor cluster10/1

cluster1-instance1-mntz OK Stateful Set pg-opertor cluster11/1

cluster1-pgbouncer OK Deployment pg-opertor cluster11/1

cluster1-repo-host OK Stateful Set pg-opertor cluster11/1

cluster1-repo1-full OK Cron Job pg-opertor cluster10/0

percona-postgresql-operator OK Deployment pg-opertor cluster11/1

During previous steps, the Operator has generated several secrets, including the password for the default unprivileged user

named after the cluster (the cluster1 user by default).

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as

<clusterName>-pguser-<clusterName> , so the default variant will be cluster1-pguser-cluster1 . Then kubectl get secret cluster1-pguser-cluster1 -o

yaml will return the YAML file with generated secrets, including the password which should look as follows:

Here the actual password is base64-encoded, and echo 'cGd1c2VyX3Bhc3N3b3JkCg==' | base64 --decode will bring it back to a human-

readable form (in this example it will be a pguser_password string).

Check connectivity to newly created cluster. Run a new Pod to use it as a client and connect its console output to your terminal

(running it may require some time to deploy). When you see the command line prompt of the newly created Pod, run psql tool

using the password obtained from the secret. The following command will do this, naming the new Pod pg-client :

This command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

5.

...

data:

 ...

 password: cGd1c2VyX3Bhc3N3b3JkCg==

6.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:14.4 --restart=Never -- bash -il

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer -p 5432 -U cluster1 cluster1

$ psql (14.4)

Type "help" for help.

pgdb=>

Last update: 2022-12-29

9.1.3 Install the Operator and deploy your PostgreSQL cluster

- 11/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/secret/

9.2 Install Percona Distribution for PostgreSQL using Helm

Helm is the package manager for Kubernetes. Percona Helm charts can be found in percona/percona-helm-charts repository in

Github.

9.2.1 Pre-requisites

Install Helm following its official installation instructions.

9.2.2 Installation

Add the Percona’s Helm charts repository and make your Helm client up to date with it:

Install the Percona Operator for PostgreSQL:

The my-operator parameter in the above example is the name of a new release object which is created for the Operator when you

install its Helm chart (use any name you like).

Install PostgreSQL:

The my-db parameter in the above example is the name of a new release object which is created for the Percona Distribution for

PostgreSQL when you install its Helm chart (use any name you like).

Helm v3 is needed to run the following steps.

Note

1.

$ helm repo add percona https://percona.github.io/percona-helm-charts/

$ helm repo update

2.

$ helm install my-operator percona/pg-operator --version 2.0.0

If nothing explicitly specified, helm install command will work with default namespace. To use different namespace, provide it with

the following additional parameter: --namespace my-namespace .

Note

3.

$ helm install my-db percona/pg-db --version 2.0.0 --namespace my-namespace

Last update: 2022-12-28

9.2 Install Percona Distribution for PostgreSQL using Helm

- 12/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/helm/helm
https://github.com/percona/percona-helm-charts
https://docs.helm.sh/using_helm/#installing-helm
https://helm.sh/docs/intro/using_helm/#three-big-concepts
https://helm.sh/docs/intro/using_helm/#three-big-concepts

9.2.2 Installation

- 13/51 - Percona LLC and/or its affiliates, © 2009 - 2022

10. Detailed installation guide

10. Detailed installation guide

- 14/51 - Percona LLC and/or its affiliates, © 2009 - 2022

10.1 Install Percona Distribution for PostgreSQL on Kubernetes

Following steps will allow you to install the Operator and use it to manage Percona Distribution for PostgreSQL in a Kubernetes-

based environment.

10.1 Install Percona Distribution for PostgreSQL on Kubernetes

- 15/51 - Percona LLC and/or its affiliates, © 2009 - 2022

First of all, clone the percona-postgresql-operator repository:

The next thing to do is to add the pgo namespace to Kubernetes, not forgetting to set the correspondent context for further

steps:

Deploy the operator with the following command:

After the operator is started Percona Distribution for PostgreSQL can be created at any time with the following command:

Creation process will take some time. The process is over when both operator and replica set pod have reached their Running

status:

During previous steps, the Operator has generated several secrets, including the password for the default unprivileged user

named after the cluster (the cluster1 user by default).

Use kubectl get secrets command to see the list of Secrets objects. The Secrets object you are interested in is named as

<clusterName>-pguser-<clusterName> , so the default variant will be cluster1-pguser-cluster1 . Then kubectl get secret cluster1-pguser-cluster1 -o

yaml will return the YAML file with generated secrets, including the password which should look as follows:

Here the actual password is base64-encoded, and echo 'cGd1c2VyX3Bhc3N3b3JkCg==' | base64 --decode will bring it back to a human-

readable form (in this example it will be a pguser_password string).

Check connectivity to newly created cluster. Run a new Pod to use it as a client and connect its console output to your terminal

(running it may require some time to deploy). When you see the command line prompt of the newly created Pod, run psql tool

using the password obtained from the secret. The following command will do this, naming the new Pod pg-client :

1.

$ git clone -b v2.0.0 https://github.com/percona/percona-postgresql-operator

$ cd percona-postgresql-operator

It is crucial to specify the right branch with -b option while cloning the code on this step. Please be careful.

Note

2.

$ kubectl create namespace postgres-operator

$ kubectl config set-context $(kubectl config current-context) --namespace=postgres-operator

To use different namespace, you should edit all occurrences of the namespace: postgres-operator line in both deploy/cr.yaml and deploy/

bundle.yaml configuration files.

Note

3.

$ kubectl apply -f deploy/bundle.yaml

4.

$ kubectl apply -f deploy/cr.yaml

$ kubectl get pods

Expected output

NAME READY STATUS RESTARTS AGE

cluster1-backup-7hsq-9ch48 0/1 Completed 0 35s

cluster1-instance1-mtnz-0 4/4 Running 0 87s

cluster1-pgbouncer-f4dcfffc8-lrs2d 2/2 Running 0 87s

cluster1-repo-host-0 2/2 Running 0 87s

percona-postgresql-operator-75fd989d98-wvx4h 1/1 Running 0 109s

5.

...

data:

 ...

 password: cGd1c2VyX3Bhc3N3b3JkCg==

6.

$ kubectl run -i --rm --tty pg-client --image=perconalab/percona-distribution-postgresql:14.4 --restart=Never -- bash -il

[postgres@pg-client /]$ PGPASSWORD='pguser_password' psql -h cluster1-pgbouncer -p 5432 -U cluster1 cluster1

10.1 Install Percona Distribution for PostgreSQL on Kubernetes

- 16/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/secret/

This command will connect you as a cluster1 user to a cluster1 database via the PostgreSQL interactive terminal.

$ psql (14.4)

Type "help" for help.

pgdb=>

Last update: 2022-12-29

10.1 Install Percona Distribution for PostgreSQL on Kubernetes

- 17/51 - Percona LLC and/or its affiliates, © 2009 - 2022

11. Configuration

11.1 Users

User accounts within the Cluster can be divided into two different groups:

application-level users: the unprivileged user accounts,

system-level users: the accounts needed to automate the cluster deployment and management tasks.

11.1.1 System Users

Credentials for system users are stored as a Kubernetes Secrets object. The Operator requires to be deployed before PostgreSQL

Cluster is started. The name of the required secrets (cluster1-users by default) should be set in the spec.secretsName option of the

deploy/cr.yaml configuration file.

The following table shows system users’ names and purposes.

The default PostgreSQL instance installation via the Percona Operator for PostgreSQL comes with the following users:

The postgres user will be the admin user for the database instance. The _crunchyrepl is used for replication between primary and

replicas. The cluster1 is the default non-privileged user and is always named after the name of the cluster.

11.1.2 Application users

By default you can connect to PostgreSQL as non-privileged cluster1 user. Also, you can login as postgres (the superuser) to

PostgreSQL Pods, but pgBouncer (the connection pooler for PostgreSQL) doesn’t allow postgres user access by default. That’s

done for security reasons.

•

•

These users should not be used to run an application.

Warning

Role name Attributes

postgres Superuser, Create role, Create DB, Replication, Bypass RLS

_crunchyrepl Replication

cluster1 Non-privileged user

_crunchypgbouncer Administrative user for the pgBouncer connection pooler

Last update: 2022-12-28

11. Configuration

- 18/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/secret/
http://pgbouncer.github.io/
http://pgbouncer.github.io/

11.2 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift

Nodes

The operator does good job automatically assigning new Pods to nodes with sufficient resources to achieve balanced distribution

across the cluster. Still there are situations when it is worth to ensure that pods will land on specific nodes: for example, to get

speed advantages of the SSD equipped machine, or to reduce network costs choosing nodes in a same availability zone.

Appropriate sections of the deploy/cr.yaml file (such as proxy.pgBouncer) contain keys which can be used to do this, depending on

what is the best for a particular situation.

11.2.1 Affinity and anti-affinity

Affinity makes Pod eligible (or not eligible - so called “anti-affinity”) to be scheduled on the node which already has Pods with

specific labels, or has specific labels itself (so called “Node affinity”). Particularly, Pod anti-affinity is good to reduce costs making

sure several Pods with intensive data exchange will occupy the same availability zone or even the same node - or, on the contrary,

to make them land on different nodes or even different availability zones for the high availability and balancing purposes. Node

affinity is useful to assign PostgreSQL instances to specific Kubernetes Nodes (ones with specific hardware, zone, etc.).

Pod anti-affinity is controlled by the affinity.podAntiAffinity subsection, which can be put into proxy.pgBouncer and

backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration file.

podAntiAffinity allows you to use standard Kubernetes affinity constraints of any complexity:

You can see the explanation of these affinity options in Kubernetes documentation.

11.2.2 Topology Spread Constraints

Topology Spread Constraints allow you to control how Pods are distributed across the cluster based on regions, zones, nodes,

and other topology specifics. This can be useful for both high availability and resource efficiency.

Pod topology spread constraints are controlled by the topologySpreadConstraints subsection, which can be put into proxy.pgBouncer and

backups.pgbackrest.repoHost sections of the deploy/cr.yaml configuration file as follows:

You can see the explanation of these affinity options in Kubernetes documentation.

11.2.3 Tolerations

Tolerations allow Pods having them to be able to land onto nodes with matching taints. Toleration is expressed as a key with and

operator , which is either exists or equal (the latter variant also requires a value the key is equal to). Moreover, toleration should

have a specified effect , which may be a self-explanatory NoSchedule , less strict PreferNoSchedule , or NoExecute . The last variant means

that if a taint with NoExecute is assigned to node, then any Pod not tolerating this taint will be removed from the node, immediately

or after the tolerationSeconds interval, like in the following example.

affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 podAffinityTerm:

 labelSelector:

 matchLabels:

 postgres-operator.crunchydata.com/cluster: keycloakdb

 postgres-operator.crunchydata.com/role: pgbouncer

 topologyKey: kubernetes.io/hostname

topologySpreadConstraints:

 - maxSkew: 1

 topologyKey: my-node-label

 whenUnsatisfiable: DoNotSchedule

 labelSelector:

 matchLabels:

 postgres-operator.crunchydata.com/instance-set: instance1

11.2 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes

- 19/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

You can use instances.tolerations and backups.pgbackrest.jobs.tolerations subsections in the deploy/cr.yaml configuration file as follows:

The Kubernetes Taints and Toleratins contains more examples on this topic.

tolerations:

- effect: NoSchedule

 key: role

 operator: Equal

 value: connection-poolers

Last update: 2022-12-30

11.2.3 Tolerations

- 20/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

11.3 Telemetry

The Telemetry function enables the Operator gathering and sending basic anonymous data to Percona, which helps us to

determine where to focus the development and what is the uptake for each release of Operator.

The following information is gathered:

ID of the Custom Resource (the metadata.uid field)

Kubernetes version

Platform (is it Kubernetes or Openshift)

PMM Version

Operator version

PostgreSQL version

PgBackRest version

We do not gather anything that identify a system, but the following thing should be mentioned: Custom Resource ID is a unique

ID generated by Kubernetes for each Custom Resource.

Telemetry is enabled by default and is sent to the Version Service server when the Operator connects to it at scheduled times to

obtain fresh information about version numbers and valid image paths needed for the upgrade.

The landing page for this service, check.percona.com, explains what this service is.

You can disable telemetry with a special option when installing the Operator:

if you install the Operator with helm, use the following installation command:

if you don’t use helm for installation, you have to edit the operator.yaml before applying it with the kubectl apply -f deploy/

operator.yaml command. Open the operator.yaml file with your text editor, find the disable_telemetry key and set it to true :

•

•

•

•

•

•

•

•

$ helm install my-db percona/pg-db --version 2.0.0 --namespace my-namespace --set disable_telemetry="true"

•

...

disable_telemetry: "true"

...

Last update: 2022-12-30

11.3 Telemetry

- 21/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://check.percona.com/

12. Management

12.1 Providing Backups

The Operator allows doing backups in two ways. Scheduled backups are configured in the deploy/cr.yaml file to be executed

automatically in proper time. On-demand backups can be done manually at any moment.

The Operator uses the open source pgBackRest backup and restore utility.

Backup repositories

A special pgBackRest repository is created by the Operator along with creating a new PostgreSQL cluster to facilitate the usage

of the pgBackRest features in it.

The Operator can use the following variants of cloud storage outside the Kubernetes cluster to keep PostgreSQL backups:

Amazon S3, or any S3-compatible storage,

Google Cloud Storage,

Azure Blob Storage

It is also possible to store backups in Kubernetes, just on a Persistent Volume attached to the pgBackRest Pod.

Each pgBackRest repository consists of the following Kubernetes objects:

A Deployment,

A Secret that contains information that is specific to the PostgreSQL cluster (e.g. SSH keys, AWS S3 keys, etc.),

A Pod with a number of supporting scripts,

A Service.

12.1.1 Backup types

The PostgreSQL Operator supports three types of pgBackRest backups:

full : A full backup of all the contents of the PostgreSQL cluster,

differential : A backup of only the files that have changed since the last full backup,

incremental : A backup of only the files that have changed since the last full or differential backup. Incremental backup is the

default choice.

12.1.2 Backup retention

The Operator also supports setting pgBackRest retention policies for full and differential backups. When a full backup expires

according to the retention policy, pgBackRest cleans up all the files related to this backup and to write-ahead log. So, expiring of

a full backup with some incremental backups based on it results in expiring all these incremental backups.

Backup retention can be controlled by the following pgBackRest options:

--<repo name>-retention-full how much full backups to retain,

--<repo name>-retention-diff how much differential backups to retain.

Backup retention type can be either count (the number of backups to keep) or time (the number of days a backup should be kept

for).

You can set both backups type and retention policy for each of 4 repositories as follows.

•

•

•

•

•

•

•

•

•

•

•

•

backups:

 pgbackrest:

12. Management

- 22/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://pgbackrest.org/
https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://cloud.google.com/storage
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

12.1.3 Backup storage

You should configure backup storage for your repositories in the backups.pgbackrest.repos section of the deploy/cr.yaml configuration

file.

Configuring the S3-compatible backup storage

In order to use S3-compatible storage for backups you need to provide some S3-related information, such as proper S3 bucket

name, endpoint, etc. This information can be passed to pgBackRest via the following deploy/cr.yaml options in the

backups.pgbackrest.repos subsection:

bucket specifies the AWS S3 bucket that should be utilized, for example my-postgresql-backups-example ,

endpointUrl specifies the S3 endpoint that should be utilized, for example s3.amazonaws.com ,

region specifies the AWS S3 region that should be utilized, for example us-east-1 .

...

 global:

 repo1-retention-full: "14"

 repo1-retention-full-type: time

 ...

•

•

•

12.1.3 Backup storage

- 23/51 - Percona LLC and/or its affiliates, © 2009 - 2022

You also need to supply pgBackRest with base64-encoded AWS S3 key and AWS S3 key secret stored along with other sensitive

information in Kubernetes Secrets.

Put your AWS S3 key and AWS S3 key secret into the base64 encoded pgBackRest configuration as follows:

Create the Secret configuration file with the resulted base64-encoded string as the following cluster1-pgbackrest-secrets.yaml

example:

When done, create the Secrets object from this yaml file:

Update your deploy/cr.yaml configuration with the your S3 credentials Secret in the backups.pgbackrest.configuration subsection, and

put all other S3 related information into the options of one of your repositories in the backups.pgbackrest.repos subsection. For

example, the S3 storage for the repo2 repository would look as follows.

Finally, create or update the cluster:

Configuring Google Cloud Storage for backups

You can configure Google Cloud Storage as an object store for backups similarly to S3 storage.

In order to use Google Cloud Storage (GCS) for backups you need to provide a proper GCS bucket name. Bucket name can be

passed to pgBackRest via the gcs.bucket key in the backups.pgbackrest.repos subsection of deploy/cr.yaml .

1.

in Linux

in macOS

$ cat <<EOF | base64 --wrap=0

[global]

repo1-s3-key=<YOUR_AWS_S3_KEY>

repo1-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

EOF

$ cat <<EOF | base64

[global]

repo1-s3-key=<YOUR_AWS_S3_KEY>

repo1-s3-key-secret=<YOUR_AWS_S3_KEY_SECRET>

EOF

2.

apiVersion: v1

kind: Secret

metadata:

 name: cluster1-pgbackrest-secrets

type: Opaque

data:

 s3.conf: <base64-encoded-configuration-contents>

This Secret can store credentials for several repositories presented as separate data keys.

Note

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml

3.

...

backups:

 pgbackrest:

 ...

 configuration:

 - secret:

 name: cluster1-pgbackrest-secrets

 ...

 repos:

 ...

 - name: repo2

 s3:

 bucket: "<YOUR_AWS_S3_BUCKET_NAME>"

 endpoint: "<YOUR_AWS_S3_ENDPOINT>"

 region: "<YOUR_AWS_S3_REGION>"

4.

$ kubectl apply -f deploy/cr.yaml

12.1.3 Backup storage

- 24/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/secret/
https://cloud.google.com/storage

The Operator will also need your service account key to access storage.

Create your service account key following the official Google Cloud instructions.

Export this key from your Google Cloud account.

You can find your key in the Google Cloud console (select IAM & Admin → Service Accounts in the left menu panel, then click

your account and open the KEYS tab):

my-service-account

Add a new key pair or upload a public key certificate from an existing key pair.

Block service account key creation using organization policies.

Learn more about setting organization policies for service accounts

Keys

Service account keys could pose a security risk if compromised. We recommend you avoid downloading service account keys and instead use the

Workload Identity Federation . You can learn more about the best way to authenticate service accounts on Google Cloud here .

ADD KEY

DETAILS PERMISSIONS KEYS METRICS LOGS

Click the ADD KEY button, chose Create new key and chose JSON as a key type. These actions will result in downloading a file

in JSON format with your new private key and related information.

Now you should use a base64-encoded version of this file and create the Kubernetes Secret. You can encode the file with the

base64 <filename> command. When done, create a yaml file with your cluster name and base64-encoded file contents as the

following cluster1-pgbackrest-secrets.yaml example:

Create the Secrets object from this yaml file:

Update your deploy/cr.yaml configuration with the your GCS credentials Secret in the backups.pgbackrest.configuration subsection,

and put GCS bucket name into the bucket option of one of your repositories in the backups.pgbackrest.repos subsection. For

example, GCS storage for the repo3 repository would look as follows.

Finally, create or update the cluster:

1.

2.

3.

apiVersion: v1

kind: Secret

metadata:

 name: cluster1-pgbackrest-secrets

type: Opaque

data:

 gcs-key.json: <base64-encoded-json-file-contents>

This Secret can store credentials for several repositories presented as separate data keys.

Note

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml

4.

...

backups:

 pgbackrest:

 ...

 configuration:

 - secret:

 name: cluster1-pgbackrest-secrets

 ...

 repos:

 ...

 - name: repo3

 gcs:

 bucket: "<YOUR_GCS_BUCKET_NAME>"

5.

$ kubectl apply -f deploy/cr.yaml

12.1.3 Backup storage

- 25/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://kubernetes.io/docs/concepts/configuration/secret/

Configuring Azure Blob Storage for backups

You can configure Microsoft Azure Blob Storage as an object store for backups similarly to S3 or GCS storage.

In order to use Azure Blob Storage for backups you need to provide a proper Azure container name. It can be passed to pgBackRest

via the azure.container key in the backups.pgbackrest.repos subsection of deploy/cr.yaml .

The Operator will also need a Kubernetes Secret with your Azure Storage credentials to access the storage.

Put your Azure storage account name and key into the base64 encoded pgBackRest configuration as follows:

Create the Secret configuration file with the resulted base64-encoded string as the following cluster1-pgbackrest-secrets.yaml

example:

When done, create the Secrets object from this yaml file:

Update your deploy/cr.yaml configuration with the your S3 credentials Secret in the backups.pgbackrest.configuration subsection, and

put all other S3 related information into the options of one of your repositories in the backups.pgbackrest.repos subsection. For

example, the S3 storage for the repo4 repository would look as follows.

Finally, create or update the cluster:

12.1.4 Scheduling backups

Backups schedule is defined on per-repository basis in the backups.pgbackrest.repos subsection of the deploy/cr.yaml file. You can

supply each repository with a schedules.<backup type> key equal to an actual schedule specified in crontab format.

1.

in Linux

in macOS

$ cat <<EOF | base64 --wrap=0

[global]

repo1-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>

repo1-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

$ cat <<EOF | base64

[global]

repo1-azure-account=<AZURE_STORAGE_ACCOUNT_NAME>

repo1-azure-key=<AZURE_STORAGE_ACCOUNT_KEY>

EOF

2.

apiVersion: v1

kind: Secret

metadata:

 name: cluster1-pgbackrest-secrets

type: Opaque

data:

 azure.conf: <base64-encoded-configuration-contents>

This Secret can store credentials for several repositories presented as separate data keys.

Note

$ kubectl apply -f cluster1-pgbackrest-secrets.yaml

3.

...

backups:

 pgbackrest:

 ...

 configuration:

 - secret:

 name: cluster1-pgbackrest-secrets

 ...

 repos:

 ...

 - name: repo4

 azure:

 container: "<YOUR_AZURE_CONTAINER>"

4.

$ kubectl apply -f deploy/cr.yaml

12.1.4 Scheduling backups

- 26/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://azure.microsoft.com/en-us/services/storage/blobs/
https://kubernetes.io/docs/concepts/configuration/secret/

Here is an example of deploy/cr.yaml which uses repo1 repository for backups:

The schedule is specified in crontab format as explained in Custom Resource options.

12.1.5 Making on-demand backup

To make an on-demand backup, the user should use a backup configuration file. The example of the backup configuration file is

deploy/backup.yaml:

Fill it with the proper repository name to be used for this backup, and any needed pgBackRest command line options.

When the backup options are configured, execute the actual backup command:

12.1.6 Restore the cluster from a previously saved backup

The Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery. There are

two types of ways to restore a cluster:

restore to a new cluster using the dataSource.postgresCluster subsection,

restore in-place, to an existing cluster (note that this is destructive) using the backups.restore subsection.

Restore to an existing PostgreSQL cluster

To restore the previously saved backup the user should use a backup restore configuration file. The example of the backup

configuration file is deploy/restore.yaml:

The following keys are the most important ones:

pgCluster specifies the name of your cluster,

repoName specifies the name of one of the 4 pgBackRest repositories, already configured in the backups.pgbackrest.repos

subsection,

options passes through any pgBackRest command line options.

The actual restoration process can be started as follows:

...

backups:

 pgbackrest:

 ...

 repos:

 - name: repo1

 schedules:

 full: "0 0 * * 6"

 differential: "0 1 * * 1-6"

 ...

apiVersion: pg.percona.com/v2beta1

kind: PerconaPGBackup

metadata:

 name: backup1

spec:

 pgCluster: cluster1

 repoName: repo1

options:

- --type=full

$ kubectl apply -f deploy/backup.yaml

•

•

apiVersion: pg.percona.com/v2beta1

kind: PerconaPGRestore

metadata:

 name: restore1

spec:

 pgCluster: cluster1

 repoName: repo1

 options:

 - --type=time

 - --target="2022-11-30 15:12:11+03"

•

•

•

12.1.5 Making on-demand backup

- 27/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/backup.yaml
https://pgbackrest.org/configuration.html
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/restore.yaml
https://pgbackrest.org/configuration.html

Restore the cluster with point-in-time recovery

Point-in-time recovery functionality allows users to revert the database back to a state before an unwanted change had occurred.

You can set up a point-in-time recovery using the normal restore command of pgBackRest with few additional spec.options fields in

deploy/restore.yaml :

set --type option to time ,

set --target to a specific time you would like to restore to. You can use the typical string formatted as <YYYY-MM-DD HH:MM:DD> ,

optionally followed by a timezone offset: "2021-04-16 15:13:32+00" (+00 in the above example means just UTC),

optional --set argument allows you to choose the backup which will be the starting point for point-in-time recovery (look

through the available backups to find out the proper backup name). This option must be specified if the target is one or

more backups away from the current moment.

After setting these options in the backup restore configuration file, follow the standard restore instructions.

Restore to a new PostgreSQL cluster

Restoring to a new PostgreSQL cluster allows you to take a backup and create a new PostgreSQL cluster that can run alongside

an existing one. There are several scenarios where using this technique is helpful:

Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is creating a clone.

Restore to a point-in-time and inspect the state of the data without affecting the current cluster.

To create a new PostgreSQL cluster from either the active one, or a former cluster whose pgBackRest repository still exists, use

the dataSource.postgresCluster subsection options. The content of this subsection should copy the backups keys of the original

cluster - ones needed to carry on the restore:

dataSource.postgresCluster.clusterName should contain the new cluster name,

dataSource.postgresCluster.options allow you to set the needed pgBackRest command line options,

dataSource.postgresCluster.repoName should contain the name of the pgBackRest repository, while the actual storage configuration

keys for this repository should be placed into dataSource.pgbackrest.repo subsection,

dataSource.pgbackrest.configuration.secret.name should contain the name of a Kubernetes Secret with credentials needed to access

cloud storage, if any.

$ kubectl apply -f deploy/restore.yaml

•

•

•

Make sure you have a backup that is older than your desired point in time. You obviously can’t restore from a time where you do not

have a backup. All relevant write-ahead log files must be successfully pushed before you make the restore.

Note

•

•

•

•

•

•

Last update: 2022-12-30

12.1.6 Restore the cluster from a previously saved backup

- 28/51 - Percona LLC and/or its affiliates, © 2009 - 2022

12.2 Monitoring

Percona Monitoring and Management (PMM) provides an excellent solution to monitor Percona Distribution for PostgreSQL.

PMM is a client/server application. PMM Client runs on each node with the database you wish to monitor: it collects needed

metrics and sends gathered data to PMM Server. As a user, you connect to PMM Server to see database metrics on a number of

dashboards.

That’s why PMM Server and PMM Client need to be installed separately.

12.2.1 Installing the PMM Server

PMM Server runs as a Docker image, a virtual appliance, or on an AWS instance. Please refer to the official PMM documentation

for the installation instructions.

Only PMM 2.x versions are supported by the Operator.

Note

12.2 Monitoring

- 29/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-server
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-overview.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instance-summary.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/dashboards/dashboard-postgresql-instances-compare.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/server/index.html

12.2.2 Installing the PMM Client

The following steps are needed for the PMM client installation in your Kubernetes-based environment:

The PMM client installation is initiated by updating the pmm section in the deploy/cr.yaml file.

set pmm.enabled=true

set the pmm.serverHost key to your PMM Server hostname,

check that the serverUser key contains your PMM Server user name (admin by default),

make sure the pmmserver key in the deploy/pmm-secret.yaml secrets file contains the password specified for the PMM Server

during its installation.

Apply changes with the kubectl apply -f deploy/pmm-secret.yaml command.

When done, apply the edited deploy/cr.yaml file:

Check that corresponding Pods are not in a cycle of stopping and restarting. This cycle occurs if there are errors on the

previous steps:

Now you can access PMM via https in a web browser, with the login/password authentication, and the browser is configured to

show Percona Distribution for PostgreSQL metrics.

1.

•

•

•

•

You use deploy/pmm-secret.yaml file to create Secrets Object. The file contains all values for each key/value pair in a convenient plain

text format. But the resulting Secrets contain passwords stored as base64-encoded strings. If you want to update password field,

you’ll need to encode the value into base64 format. To do this, you can run echo -n "password" | base64 --wrap=0 (or just echo -n "password"

| base64 in case of Apple macOS) in your local shell to get valid values. For example, setting the PMM Server user’s password to

new_password in the cluster1-pmm-secret object can be done with the following command:

Info

in Linux

in macOS

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"pmmserver": '$(echo -n new_password | base64 --wrap=0)'}}'

$ kubectl patch secret/cluster1-pmm-secret -p '{"data":{"pmmserver": '$(echo -n new_password | base64)'}}'

$ kubectl apply -f deploy/cr.yaml

2.

$ kubectl get pods

$ kubectl logs cluster1-7b7f7898d5-7f5pz -c pmm-client

3.

Last update: 2022-12-20

12.2.2 Installing the PMM Client

- 30/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/percona/percona-postgresql-operator/blob/master/deploy/cr.yaml
https://github.com/percona/percona-postgresql-operator/blob/main/deploy/pmm-secret.yaml

12.3 Pause/resume PostgreSQL Cluster

There may be external situations when it is needed to pause your Cluster for a while and then start it back up (some works

related to the maintenance of the enterprise infrastructure, etc.).

The deploy/cr.yaml file contains a special spec.shutdown key for this. Setting it to true gracefully stops the cluster:

To start the cluster after it was paused just revert the spec.shutdown key to false .

spec:

 shutdown: true

There is an option also to put the cluster into a standby (read-only) mode instead of completely shutting it down. This is done by a

special spec.standby key, which should be set to true for read-only state or should be set to false for normal cluster operation:

Note

spec:

 standby: false

Last update: 2022-12-28

12.3 Pause/resume PostgreSQL Cluster

- 31/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://www.postgresql.org/docs/12/warm-standby.html

13. Reference

13.1 Custom Resource options

The Cluster is configured via the deploy/cr.yaml file.

The metadata part of this file contains the following keys:

name (cluster1 by default) sets the name of your Percona Distribution for PostgreSQL Cluster; it should include only URL-

compatible characters, not exceed 22 characters, start with an alphabetic character, and end with an alphanumeric

character;

•

13. Reference

- 32/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-2.3

The spec part of the deploy/cr.yaml file contains the following:

13.1 Custom Resource options

- 33/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Key standby.enabled

Value boolean

Example false

Description Enables or disables running the cluster in a standby mode (read-only copy of an existing cluster, useful for

disaster recovery, etc)

Key standby.host

Value string

Example "<primary-ip>"

Description Host address of the primary cluster this standby cluster connects to

Key standby.port

Value string

Example "<primary-port>"

Description Port number used by a standby copy to connect to the primary cluster

Key openshift

Value boolean

Example true

Description Set to true if the cluster is being deployed on OpenShift, set to false otherwise, or unset it for

autodetection

Key users.name

Value string

Example rhino

Description The name of the PostgreSQL user

Key users.databases

Value string

Example zoo

Description Databases accessible by a specific PostgreSQL user with rights to create objects in them (the option is

ignored for postgres user; also, modifying it can’t be used to revoke the already given access)

Key users.options

Value string

Example "SUPERUSER"

Description The ALTER ROLE options other than password (the option is ignored for postgres user)

Key databaseInitSQL.key

Value string

Example init.sql

13.1 Custom Resource options

- 34/51 - Percona LLC and/or its affiliates, © 2009 - 2022

Description Data key for the Custom configuration options ConfigMap with the init SQL file, which will be executed at

cluster creation time

Key databaseInitSQL.name

Value string

Example cluster1-init-sql

Description Name of the ConfigMap with the init SQL file, which will be executed at cluster creation time

Key shutdown

Value string

Example false

Description Setting it to true gracefully stops the cluster, scaling workloads are scaled to zero and suspending

CronJobs; setting it to false after shut down starts the cluster back

Key paused

Value string

Example false

Description Setting it to true stops the Operator’s activity including the rollout and reconciliation of changes made in

the Custom Resource; setting it to false starts the Operator’s activity back

Key dataSource.postgresCluster.clusterName

Value string

Example cluster1

Description Name of an existing cluster to use as the data source when restoring backup to a new cluster

Key dataSource.postgresCluster.repoName

Value string

Example repo1

Description Name of the pgBackRest repository in the source cluster that contains the backup to be restored to a new

cluster

Key dataSource.postgresCluster.options

Value string

Example

Description The pgBackRest command-line options for the pgBackRest restore command

Key dataSource.pgbackrest.stanza

Value string

Example db

Description Name of the pgBackRest stanza to use as the data source when restoring backup to a new cluster

Key dataSource.pgbackrest.configuration.secret.name

13.1 Custom Resource options

- 35/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://pgbackrest.org/command.html

Value string

Example pgo-s3-creds

Description Name of the Kubernetes Secret object with custom pgBackRest configuration, which will be added to the

pgBackRest configuration generated by the Operator

Key dataSource.pgbackrest.global

Value subdoc

Example /pgbackrest/postgres-operator/hippo/repo1

Description Settings, which are to be included in the global section of the pgBackRest configuration generated by the

Operator

Key dataSource.pgbackrest.repo.name

Value string

Example repo1

Description Name of the pgBackRest repository

Key dataSource.pgbackrest.repo.s3.bucket

Value string

Example "my-bucket"

Description The Amazon S3 bucket or Google Cloud Storage bucket

name used for

backups

Key dataSource.pgbackrest.repo.s3.endpointURL

Value string

Example "s3.ca-central-1.amazonaws.com"

Description The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original

Amazon S3 cloud)

Key dataSource.pgbackrest.repo.s3.region

Value boolean

Example "ca-central-1"

Description The AWS region to use for Amazon and all S3-compatible storages

Key image

Value string

Example perconalab/percona-postgresql-operator:main-ppg14-postgres

Description The PostgreSQL Docker image to use

Key imagePullPolicy

Value string

Example Always

13.1 Custom Resource options

- 36/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.aws.amazon.com/general/latest/gr/rande.html

Description This option is used to set the policy for updating PostgreSQL images

Key postgresVersion

Value int

Example 14

Description The major version of PostgreSQL to use

Key port

Value int

Example 5432

Description The port number for PostgreSQL

Key expose.annotations

Value label

Example my-annotation: value1

Description The Kubernetes annotations metadata for PostgreSQL

Key expose.labels

Value label

Example my-label: value2

Description Set labels for the PostgreSQL Service

Key expose.type

Value string

Example LoadBalancer

Description Specifies the type of Kubernetes Service for PostgreSQL

Key instances.name

Value string

Example rs 0

Description The name of the PostgreSQL instance

Key instances.replicas

Value int

Example 3

Description The number of Replicas to create for the PostgreSQL instance

Key instances.resources.limits.cpu

Value string

Example 2.0

Description Kubernetes CPU limits for a PostgreSQL instance

13.1 Custom Resource options

- 37/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

Key instances.resources.limits.memory

Value string

Example 4Gi

Description The Kubernetes memory limits for a PostgreSQL instance

Key instances.sidecars.image

Value string

Example mycontainer1:latest

Description Image for the custom sidecar container for PostgreSQL Pods

Key instances.sidecars.name

Value string

Example testcontainer

Description Name of the custom sidecar container for PostgreSQL Pods

Key instances.topologySpreadConstraints.maxSkew

Value int

Example 1

Description The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread

Constraints

Key instances.topologySpreadConstraints.topologyKey

Value string

Example my-node-label

Description The key of node labels for the Kubernetes Pod Topology Spread Constraints

Key instances.topologySpreadConstraints.whenUnsatisfiable

Value string

Example DoNotSchedule

Description What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints

Key instances.topologySpreadConstraints.labelSelector.matchLabels

Value label

Example postgres-operator.crunchydata.com/instance-set: instance1

Description The Label selector for the Kubernetes Pod Topology Spread Constraints

Key instances.tolerations.effect

Value string

Example NoSchedule

Description The Kubernetes Pod tolerations effect for the PostgreSQL instance

13.1 Custom Resource options

- 38/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Key instances.tolerations.key

Value string

Example role

Description The Kubernetes Pod tolerations key for the PostgreSQL instance

Key instances.tolerations.operator

Value string

Example Equal

Description The Kubernetes Pod tolerations operator for the PostgreSQL instance

Key instances.tolerations.value

Value string

Example connection-poolers

Description The Kubernetes Pod tolerations value for the PostgreSQL instance

Key instances.priorityClassName

Value string

Example high-priority

Description The Kuberentes Pod priority class for PostgreSQL instance Pods

Key instances.walVolumeClaimSpec.accessModes

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Write-ahead Log storage

Key instances.walVolumeClaimSpec.resources.requests.storage

Value string

Example 1Gi

Description The Kubernetes storage requests for the storage the PostgreSQL instance will use

Key instances.dataVolumeClaimSpec.accessModes

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the PostgreSQL Write-ahead Log storage

Key instances.dataVolumeClaimSpec.resources.requests.storage

Value string

Example 1Gi

Description The Kubernetes storage requests for the storage the PostgreSQL instance will use

13.1 Custom Resource options

- 39/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container

13.1.1 Backup Section

The backup section in the deploy/cr.yaml file contains the following configuration options for the regular Percona Distribution for

PostgreSQL backups.

13.1.1 Backup Section

- 40/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml

Key backups.pgbackrest.image

Value string

Example perconalab/percona-postgresql-operator:main-ppg14-pgbackrest

Description The Docker image for pgBackRest

Key backups.pgbackrest.configuration.secret.name

Value string

Example cluster1-pgbackrest-secrets

Description Name of the Kubernetes Secret object with custom pgBackRest configuration, which will be added to the

pgBackRest configuration generated by the Operator

Key backups.pgbackrest.jobs.priorityClassName

Value string

Example high-priority

Description The Kuberentes Pod priority class for pgBackRest jobs

Key backups.pgbackrest.jobs.resources.limits.cpu

Value int

Example 200

Description Kubernetes CPU limits for a pgBackRest job

Key backups.pgbackrest.jobs.resources.limits.memory

Value int

Example 128Mi

Description The Kubernetes memory limits for a pgBackRest job

Key backups.pgbackrest.jobs.tolerations.effect

Value string

Example NoSchedule

Description The Kubernetes Pod tolerations effect for a pgBackRest job

Key backups.pgbackrest.jobs.tolerations.key

Value string

Example role

Description The Kubernetes Pod tolerations key for a pgBackRest job

Key backups.pgbackrest.jobs.tolerations.operator

Value string

Example Equal

Description The Kubernetes Pod tolerations operator for a pgBackRest job

13.1.1 Backup Section

- 41/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts

Key backups.pgbackrest.jobs.tolerations.value

Value string

Example connection-poolers

Description The Kubernetes Pod tolerations value for a pgBackRest job

Key backups.pgbackrest.global

Value subdoc

Example /pgbackrest/postgres-operator/hippo/repo1

Description Settings, which are to be included in the global section of the pgBackRest configuration generated by the

Operator

Key backups.pgbackrest.repoHost.priorityClassName

Value string

Example high-priority

Description The Kuberentes Pod priority class for pgBackRest repo

Key backups.pgbackrest.repoHost.topologySpreadConstraints.maxSkew

Value int

Example 1

Description The degree to which Pods may be unevenly distributed under the Kubernetes Pod Topology Spread

Constraints

Key backups.pgbackrest.repoHost.topologySpreadConstraints.topologyKey

Value string

Example my-node-label

Description The key of node labels for the Kubernetes Pod Topology Spread Constraints

Key backups.pgbackrest.repoHost.topologySpreadConstraints.whenUnsatisfiable

Value string

Example ScheduleAnyway

Description What to do with a Pod if it doesn’t satisfy the Kubernetes Pod Topology Spread Constraints

Key backups.pgbackrest.repoHost.topologySpreadConstraints.labelSelector.matchLabels

Value label

Example postgres-operator.crunchydata.com/pgbackrest: ""

Description The Label selector for the Kubernetes Pod Topology Spread Constraints

Key backups.pgbackrest.repoHost.affinity.podAntiAffinity

Value subdoc

Example

Description Pod anti-affinity, allows setting the standard Kubernetes affinity constraints of any complexity

13.1.1 Backup Section

- 42/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/#concepts
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Key backups.pgbackrest.manual.repoName

Value string

Example repo1

Description Name of the pgBackRest repository for on-demand backups

Key backups.pgbackrest.manual.options

Value string

Example --type=full

Description The on-demand backup command-line options which will be passed to pgBackRest for on-demand backups

Key backups.pgbackrest.repos.name

Value string

Example repo1

Description Name of the pgBackRest repository for backups

Key backups.pgbackrest.repos.schedules.full

Value string

Example 0 0 * * 6

Description Scheduled time to make a full backup specified in the crontab format

Key backups.pgbackrest.repos.schedules.differential

Value string

Example 0 0 * * 6

Description Scheduled time to make a differential backup specified in the crontab format

Key backups.pgbackrest.repos.volume.volumeClaimSpec.accessModes

Value string

Example ReadWriteOnce

Description The Kubernetes PersistentVolumeClaim access modes for the pgBackRest Storage

Key backups.pgbackrest.repos.volume.volumeClaimSpec.resources.requests.storage

Value string

Example 1Gi

Description The Kubernetes storage requests for the pgBackRest storage

Key backups.pgbackrest.repos.s3.bucket

Value string

Example "my-bucket"

Description The Amazon S3 bucket

name used for

backups

13.1.1 Backup Section

- 43/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

Key backups.pgbackrest.repos.s3.endpointURL

Value string

Example "s3.ca-central-1.amazonaws.com"

Description The endpoint URL of the S3-compatible storage to be used for backups (not needed for the original

Amazon S3 cloud)

Key backups.pgbackrest.repos.s3.region

Value boolean

Example "ca-central-1"

Description The AWS region to use for Amazon and all S3-compatible storages

Key backups.pgbackrest.repos.gcs.bucket

Value string

Example "my-bucket"

Description The Google Cloud Storage bucket

name used for

backups

Key backups.pgbackrest.repos.azure.container

Value string

Example my-container

Description Name of the Azure Blob Storage container for backups

Key backups.restore.enabled

Value boolean

Example false

Description Enables or disables restoring a previously made backup

Key backups.restore.repoName

Value string

Example repo1

Description Name of the pgBackRest repository that contains the backup to be restored

Key backups.restore.options

Value string

Example

Description The pgBackRest command-line options for the pgBackRest restore command

13.1.1 Backup Section

- 44/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://cloud.google.com/storage/docs/key-terms#buckets
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction#containers

13.1.2 PMM Section

The pmm section in the deploy/cr.yaml file contains configuration options for Percona Monitoring and Management.

Key pmm.enabled

Value boolean

Example false

Description Enables or disables monitoring Percona Distribution for PostgreSQL cluster with PMM

Key pmm.image

Value string

Example percona/pmm-client:2.32.0

Description Percona Monitoring and Management (PMM) Client Docker image

Key pmm.imagePullPolicy

Value string

Example IfNotPresent

Description This option is used to set the policy for updating PMM Client images

Key pmm.pmmSecret

Value string

Example cluster1-pmm-secret

Description Name of the Kubernetes Secret object for the PMM Server password

Key pmm.serverHost

Value string

Example monitoring-service

Description Address of the PMM Server to collect data from the cluster

13.1.2 PMM Section

- 45/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
https://www.percona.com/doc/percona-monitoring-and-management/2.x/setting-up/client/postgresql.html
https://www.percona.com/doc/percona-monitoring-and-management/2.x/details/architecture.html#pmm-client
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

13.1.3 proxy Section

The proxy section in the deploy/cr.yaml file contains configuration options for the pgBouncer connection pooler for PostgreSQL.

13.1.3 proxy Section

- 46/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://github.com/percona/percona-postgresql-operator/blob/main/deploy/cr.yaml
http://pgbouncer.github.io/

Key proxy.pgBouncer.replicas

Value int

Example 3

Description The number of the pgBouncer Pods to provide connection pooling

Key proxy.pgBouncer.image

Value string

Example perconalab/percona-postgresql-operator:main-ppg14-pgbouncer

Description Docker image for the pgBouncer connection pooler

Key proxy.pgBouncer.exposePostgresUser

Value boolean

Example false

Description Enables or disables exposing postgres user through pgBouncer

Key proxy.pgBouncer.resources.limits.cpu

Value int

Example 200m

Description Kubernetes CPU limits for a pgBouncer container

Key proxy.pgBouncer.resources.limits.memory

Value int

Example 128Mi

Description The Kubernetes memory limits for a pgBouncer container

Key proxy.pgBouncer.expose.type

Value string

Example ClusterIP

Description Specifies the type of Kubernetes Service for pgBouncer

Key proxy.pgBouncer.expose.annotations

Value label

Example pg-cluster-annot: cluster1

Description The Kubernetes annotations metadata for pgBouncer

Key proxy.pgBouncer.expose.labels

Value label

Example pg-cluster-label: cluster1

Description Set labels for the pgBouncer Service

Value string

13.1.3 proxy Section

- 47/51 - Percona LLC and/or its affiliates, © 2009 - 2022

http://pgbouncer.github.io/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Example preferred

Description Pod anti-affinity type, can be either preferred or required

Last update: 2022-12-30

13.1.3 proxy Section

- 48/51 - Percona LLC and/or its affiliates, © 2009 - 2022

13.2 Percona certified images

Following table presents Percona’s certified docker images to be used with the Percona Operator for PostgreSQL:

Image Digest

percona/percona-postgresql-

operator:2.0.0

sha256:b60849c110ab166fa004e6cdbb5a2f1ec93b676306fdd9c6d9dbbdb4a6d92331

percona/percona-postgresql-

operator:2.0.0-ppg12-pgbadger

sha256:3134cf61e45ac213d60a53c46fad297dbda95bd3063e5f8049df5b818a8de840

percona/percona-postgresql-

operator:2.0.0-ppg13-pgbadger

sha256:a442f77d8b56392501721f8d47bea436ac6ca9d2af9bbec30e0defaf3f326796

percona/percona-postgresql-

operator:2.0.0-ppg14-pgbadger

sha256:81f22f4b2ae18f14b5748cc06e216bf0e6fc2cdefb406d7f3a4fe042652dd145

percona/percona-postgresql-

operator:2.0.0-ppg12-postgres

sha256:be6cb4c8bfe1531b6442e17a78698137ede885f88bb4a34002f2b740582b991a

percona/percona-postgresql-

operator:2.0.0-ppg13-postgres

sha256:27a7e284a3a1b59673ae38f6dbaac7f8618563facc60b5c0c2adf65348ffbfb3

percona/percona-postgresql-

operator:2.0.0-ppg14-postgres

sha256:bf47531669ab49a26479f46efc78ed42b9393325cfac1b00c3e340987c8869f0

percona/percona-postgresql-

operator:2.0.0-ppg12-pgbouncer

sha256:016b90e6b3dc3b40889fb13e4a4ddc3c856a8b478c18412aebf6c6fc1afeac87

percona/percona-postgresql-

operator:2.0.0-ppg13-pgbouncer

sha256:34bf707e32412599976b1cdbd995d5fe4744d03fc0551cb74fbeb2aa455c9c5f

percona/percona-postgresql-

operator:2.0.0-ppg14-pgbouncer

sha256:64de9cd659e2d6f75bea9263b23a72e5aa9b00560ae403249c92a3439a2fd527

percona/percona-postgresql-

operator:2.0.0-ppg12-pgbackrest

sha256:ec0ee54b0558c802a11b0dfc1784e1d017e57465dfac6f2a712ed49e1d2a6d77

percona/percona-postgresql-

operator:2.0.0-ppg13-pgbackrest

sha256:5b8391f3cd3b821dd5a124058eb8e6f09d3241ee3872ff0c5c2d5374b270e0bd

percona/percona-postgresql-

operator:2.0.0-ppg14-pgbackrest

sha256:9bcac75e97204eb78296f4befff555cad1600373ed5fd76576e0401a8c8eb4e6

percona/pmm-client:2.32.0 sha256:ee2f3db541857e0a71633270596933441c4be579ce8e33c22cf150ead4f3622f

Last update: 2022-12-30

13.2 Percona certified images

- 49/51 - Percona LLC and/or its affiliates, © 2009 - 2022

14. Release Notes

14.1 Percona Operator for PostgreSQL 2.0.0 (Tech preview)

Date

December 30, 2022

Installation

Installing Percona Operator for PostgreSQL

The Percona Operator is based on best practices for configuration and setup of a Percona Distribution for PostgreSQL on

Kubernetes. The benefits of the Operator are many, but saving time and delivering a consistent and vetted environment is key.

The Percona Operator for PostgreSQL 2.x is based on the 5.x branch of the Postgres Operator developed by Crunchy Data. Please

see the main changes in this version below.

14.1.1 Architecture

Operator SDK is now used to build and package the Operator. It simplifies the development and brings more contribution

friendliness to the code, resulting in better potential for growing the community. Users now have full control over Custom

Resource Definitions that Operator relies on, which simplifies the deployment and management of the operator.

In version 1.x we relied on Deployment resources to run PostgreSQL clusters, whereas in 2.0 Statefulsets are used, which are the

de-facto standard for running stateful workloads in Kubernetes. This change improves stability of the clusters and removes a lot

of complexity from the Operator.

14.1.2 Backups

One of the biggest challenges in version 1.x is backups and restores. There are two main problems that our user faced:

Not possible to change backup configuration for the existing cluster

Restoration from backup to the newly deployed cluster required workarounds

In this version both these issues are fixed. In addition to that:

Run up to 4 pgBackrest repositories

Bootstrap the cluster from the existing backup through Custom Resource

Azure Blob Storage support

14.1.3 Operations

Deploying complex topologies in Kubernetes is not possible without affinity and anti-affinity rules. In version 1.x there were

various limitations and issues, whereas this version comes with substantial improvements that enables users to craft the topology

of their choice.

Within the same cluster users can deploy multiple instances. These instances are going to have the same data, but can have

different configuration and resources. This can be useful if you plan to migrate to new hardware or need to test the new topology.

•

•

Version 2.0.0 of the Percona Operator for PostgreSQL is a tech preview release and it is not recommended for production

environments. As of today, we recommend using Percona Operator for PostgreSQL 1.x, which is production-ready and contains

everything you need to quickly and consistently deploy and scale PostgreSQL clusters in a Kubernetes-based environment, on-

premises or in the cloud.

Note

•

•

•

•

•

14. Release Notes

- 50/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://www.percona.com/doc/kubernetes-operator-for-postgresql/2.0/index.html#installation-guide
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/doc/postgresql/LATEST/index.html
https://www.percona.com/https://docs.percona.com/percona-operator-for-postgresql/index.html
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://sdk.operatorframework.io/
https://docs.percona.com/percona-operator-for-postgresql/2.0/backups.html
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#use-azure-blob-storage-for-backups
https://docs.percona.com/percona-operator-for-postgresql/2.0/constraints.html
https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#instances-name

Each postgreSQL node can have sidecar containers now to provide integration with your existing tools or expand the capabilities

of the cluster.

14.1.4 Try it out now

Excited with what you read above?

We encourage you to install the Operator following our documentation.

Feel free to share feedback with us on the forum or raise a bug or feature request in JIRA.

See the source code in our Github repository.

•

•

•

Last update: 2022-12-30

14.1.4 Try it out now

- 51/51 - Percona LLC and/or its affiliates, © 2009 - 2022

https://docs.percona.com/percona-operator-for-postgresql/2.0/operator.html#instances-sidecars-image
https://docs.percona.com/percona-operator-for-postgresql/2.0/index.html#quickstart-guides
https://forums.percona.com/c/postgresql/percona-kubernetes-operator-for-postgresql/68
https://jira.percona.com/projects/K8SPG/issues
https://github.com/percona/percona-postgresql-operator

	Documentation
	1. Percona Operator for PostgreSQL
	2. Requirements
	3. Quickstart guides
	4. Detailed installation guides
	5. Configuration
	6. Management
	7. Reference
	8. Requirements
	8.1 System Requirements
	8.1.1 Officially supported platforms

	8.2 Design overview

	9. Quickstart guides
	9.1 Install Percona Distribution for PostgreSQL on Google Kubernetes Engine (GKE)
	9.1.1 Prerequisites
	9.1.2 Create and configure the GKE cluster
	9.1.3 Install the Operator and deploy your PostgreSQL cluster

	9.2 Install Percona Distribution for PostgreSQL using Helm
	9.2.1 Pre-requisites
	9.2.2 Installation

	10. Detailed installation guide
	10.1 Install Percona Distribution for PostgreSQL on Kubernetes

	11. Configuration
	11.1 Users
	11.1.1 System Users
	11.1.2 Application users

	11.2 Binding Percona Distribution for PostgreSQL components to Specific Kubernetes/OpenShift Nodes
	11.2.1 Affinity and anti-affinity
	11.2.2 Topology Spread Constraints
	11.2.3 Tolerations

	11.3 Telemetry

	12. Management
	12.1 Providing Backups
	Backup repositories
	12.1.1 Backup types
	12.1.2 Backup retention
	12.1.3 Backup storage
	Configuring the S3-compatible backup storage
	Configuring Google Cloud Storage for backups
	Configuring Azure Blob Storage for backups

	12.1.4 Scheduling backups
	12.1.5 Making on-demand backup
	12.1.6 Restore the cluster from a previously saved backup
	Restore to an existing PostgreSQL cluster
	Restore the cluster with point-in-time recovery
	Restore to a new PostgreSQL cluster

	12.2 Monitoring
	12.2.1 Installing the PMM Server
	12.2.2 Installing the PMM Client

	12.3 Pause/resume PostgreSQL Cluster

	13. Reference
	13.1 Custom Resource options
	13.1.1 Backup Section
	13.1.2 PMM Section
	13.1.3 proxy Section

	13.2 Percona certified images

	14. Release Notes
	14.1 Percona Operator for PostgreSQL 2.0.0 (Tech preview)
	14.1.1 Architecture
	14.1.2 Backups
	14.1.3 Operations
	14.1.4 Try it out now

