Source code for torch.nn.functional

"""Functional interface"""

from numbers import Integral
import warnings
import math

import torch
from torch._C import _infer_size
from . import _functions
from .modules import utils
from ._functions.linear import Bilinear
from ._functions.padding import ConstantPad2d
from ._functions.vision import GridSampler, AffineGridGenerator
from ..autograd import _functions as _autograd_functions
from torch.autograd import Variable
from .modules.utils import _single, _pair, _triple

# Convolutions
ConvNd = torch._C._functions.ConvNd


[docs]def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): """Applies a 2D convolution over an input image composed of several input planes. See :class:`~torch.nn.Conv2d` for details and output shape. Args: input: input tensor (minibatch x in_channels x iH x iW) weight: filters tensor (out_channels, in_channels/groups, kH, kW) bias: optional bias tensor (out_channels) stride: the stride of the convolving kernel. Can be a single number or a tuple (sh x sw). Default: 1 padding: implicit zero padding on the input. Can be a single number or a tuple. Default: 0 dilation: the spacing between kernel elements. Default: 1 groups: split input into groups, in_channels should be divisible by the number of groups Examples: >>> # With square kernels and equal stride >>> filters = autograd.Variable(torch.randn(8,4,3,3)) >>> inputs = autograd.Variable(torch.randn(1,4,5,5)) >>> F.conv2d(inputs, filters, padding=1) """ if input is not None and input.dim() != 4: raise ValueError("Expected 4D tensor as input, got {}D tensor instead.".format(input.dim())) f = ConvNd(_pair(stride), _pair(padding), _pair(dilation), False, _pair(0), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled) return f(input, weight, bias)
[docs]def conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): """Applies a 1D convolution over an input signal composed of several input planes. See :class:`~torch.nn.Conv1d` for details and output shape. Args: input: input tensor of shape (minibatch x in_channels x iW) weight: filters of shape (out_channels, in_channels, kW) bias: optional bias of shape (out_channels) stride: the stride of the convolving kernel, default 1 padding: implicit zero padding on the input. Can be a single number or a tuple. Default: 0 dilation: the spacing between kernel elements. Default: 1 groups: split input into groups, in_channels should be divisible by the number of groups Examples: >>> filters = autograd.Variable(torch.randn(33, 16, 3)) >>> inputs = autograd.Variable(torch.randn(20, 16, 50)) >>> F.conv1d(inputs, filters) """ if input is not None and input.dim() != 3: raise ValueError("Expected 3D tensor as input, got {}D tensor instead.".format(input.dim())) f = ConvNd(_single(stride), _single(padding), _single(dilation), False, _single(0), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled) return f(input, weight, bias)
[docs]def conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): """Applies a 3D convolution over an input image composed of several input planes. See :class:`~torch.nn.Conv3d` for details and output shape. Args: input: input tensor of shape (minibatch x in_channels x iT x iH x iW) weight: filters tensor of shape (out_channels, in_channels, kT, kH, kW) bias: optional bias tensor of shape (out_channels) stride: the stride of the convolving kernel. Can be a single number or a tuple (st x sh x sw). Default: 1 padding: implicit zero padding on the input. Can be a single number or a tuple. Default: 0 dilation: the spacing between kernel elements. Default: 1 groups: split input into groups, in_channels should be divisible by the number of groups Examples: >>> filters = autograd.Variable(torch.randn(33, 16, 3, 3, 3)) >>> inputs = autograd.Variable(torch.randn(20, 16, 50, 10, 20)) >>> F.conv3d(inputs, filters) """ if input is not None and input.dim() != 5: raise ValueError("Expected 5D tensor as input, got {}D tensor instead.".format(input.dim())) f = ConvNd(_triple(stride), _triple(padding), _triple(dilation), False, _triple(0), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled) return f(input, weight, bias)
[docs]def conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1): """Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution". See :class:`~torch.nn.ConvTranspose1d` for details and output shape. Args: input: input tensor of shape (minibatch x in_channels x iW) weight: filters of shape (in_channels x out_channels x kW) bias: optional bias of shape (out_channels) stride: the stride of the convolving kernel. Default: 1 padding: implicit zero padding on the input. Default: 0 groups: split input into groups, in_channels should be divisible by the number of groups output_padding: A zero-padding of 0 <= padding < stride that should be added to the output. Default: 0 dilation: the spacing between kernel elements. Default: 1 """ if input is not None and input.dim() != 3: raise ValueError("Expected 3D tensor as input, got {}D tensor instead.".format(input.dim())) f = ConvNd(_single(stride), _single(padding), _single(dilation), True, _single(output_padding), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled) return f(input, weight, bias)
[docs]def conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1): """Applies a 2D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution". See :class:`~torch.nn.ConvTranspose2d` for details and output shape. Args: input: input tensor of shape (minibatch x in_channels x iH x iW) weight: filters of shape (in_channels x out_channels x kH x kW) bias: optional bias of shape (out_channels) stride: the stride of the convolving kernel, a single number or a tuple (sh x sw). Default: 1 padding: implicit zero padding on the input, a single number or a tuple (padh x padw). Default: 0 groups: split input into groups, in_channels should be divisible by the number of groups output_padding: A zero-padding of 0 <= padding < stride that should be added to the output. Can be a single number or a tuple. Default: 0 dilation: the spacing between kernel elements. Default: 1 """ if input is not None and input.dim() != 4: raise ValueError("Expected 4D tensor as input, got {}D tensor instead.".format(input.dim())) f = ConvNd(_pair(stride), _pair(padding), _pair(dilation), True, _pair(output_padding), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled) return f(input, weight, bias)
[docs]def conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1): """Applies a 3D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution" See :class:`~torch.nn.ConvTranspose3d` for details and output shape. Args: input: input tensor of shape (minibatch x in_channels x iT x iH x iW) weight: filters of shape (in_channels x out_channels x kH x kW) bias: optional bias of shape (out_channels) stride: the stride of the convolving kernel, a single number or a tuple (sh x sw). Default: 1 padding: implicit zero padding on the input, a single number or a tuple (padh x padw). Default: 0 output_padding: A zero-padding of 0 <= padding < stride that should be added to the output. Can be a single number or a tuple. Default: 0 groups: split input into groups, in_channels should be divisible by the number of groups dilation: the spacing between kernel elements. Default: 1 """ if input is not None and input.dim() != 5: raise ValueError("Expected 5D tensor as input, got {}D tensor instead.".format(input.dim())) f = ConvNd(_triple(stride), _triple(padding), _triple(dilation), True, _triple(output_padding), groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled) return f(input, weight, bias)
# Pooling
[docs]def avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True): r"""Applies a 1D average pooling over an input signal composed of several input planes. See :class:`~torch.nn.AvgPool1d` for details and output shape. Args: kernel_size: the size of the window stride: the stride of the window. Default value is :attr:`kernel_size` padding: implicit zero padding to be added on both sides ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape count_include_pad: when True, will include the zero-padding in the averaging calculation Example: >>> # pool of square window of size=3, stride=2 >>> input = Variable(torch.Tensor([[[1,2,3,4,5,6,7]]])) >>> F.avg_pool1d(input, kernel_size=3, stride=2) Variable containing: (0 ,.,.) = 2 4 6 [torch.FloatTensor of size 1x1x3] """ if input.dim() != 3: raise ValueError('expected 3D input (got {} dimensions)' .format(input.dim())) kernel_size = _single(kernel_size) + (1,) stride = _single(stride) + (1,) if stride is not None else kernel_size padding = _single(padding) + (0,) return _functions.thnn.AvgPool2d.apply(input.unsqueeze(3), kernel_size, stride, padding, ceil_mode, count_include_pad).squeeze(3)
[docs]def avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True): """Applies 2D average-pooling operation in kh x kw regions by step size dh x dw steps. The number of output features is equal to the number of input planes. See :class:`~torch.nn.AvgPool2d` for details and output shape. Args: input: input tensor (minibatch x in_channels x iH x iW) kernel_size: size of the pooling region, a single number or a tuple (kh x kw) stride: stride of the pooling operation, a single number or a tuple (sh x sw). Default is equal to kernel size padding: implicit zero padding on the input, a single number or a tuple (padh x padw), Default: 0 ceil_mode: when True, will use `ceil` instead of `floor` in the formula to compute the output shape count_include_pad: when True, will include the zero-padding in th averaging calculation """ return _functions.thnn.AvgPool2d.apply(input, kernel_size, stride, padding, ceil_mode, count_include_pad)
[docs]def avg_pool3d(input, kernel_size, stride=None): """Applies 3D average-pooling operation in kt x kh x kw regions by step size dt x dh x dw steps. The number of output features is equal to the number of input planes / dt. """ return _functions.thnn.AvgPool3d.apply(input, kernel_size, stride)
# share the same interface
[docs]def max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False): ret = _functions.thnn.MaxPool1d.apply(input, kernel_size, stride, padding, dilation, ceil_mode) return ret if return_indices else ret[0]
[docs]def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False): ret = _functions.thnn.MaxPool2d.apply(input, kernel_size, stride, padding, dilation, ceil_mode) return ret if return_indices else ret[0]
[docs]def max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False): ret = _functions.thnn.MaxPool3d.apply(input, kernel_size, stride, padding, dilation, ceil_mode) return ret if return_indices else ret[0]
def _unpool_output_size(input, kernel_size, stride, padding, output_size): input_size = input.size() default_size = [] for d in range(len(kernel_size)): default_size.append((input_size[d + 2] - 1) * stride[d] + kernel_size[d] - 2 * padding[d]) if output_size is None: return default_size output_size = list(output_size) if len(output_size) == len(kernel_size) + 2: output_size = output_size[2:] if len(output_size) != len(kernel_size): raise ValueError("output_size should be a sequence containing " "{} or {} elements, but it has a length of '{}'" .format(len(kernel_size), len(kernel_size) + 2, len(output_size))) for d in range(len(kernel_size)): min_size = default_size[d] - stride[d] max_size = default_size[d] + stride[d] if not (min_size < output_size[d] < max_size): raise ValueError( 'invalid output_size "{}" (dim {} must be between {} and {})' .format(output_size, d, min_size, max_size)) return output_size
[docs]def max_unpool1d(input, indices, kernel_size, stride=None, padding=0, output_size=None): kernel_size = _single(kernel_size) stride = _single(stride) padding = _single(padding) output_size = _unpool_output_size(input, kernel_size, stride, padding, output_size) return _functions.thnn.MaxUnpool2d.apply(input.unsqueeze(3), indices.unsqueeze(3), output_size + [1]).squeeze(3)
[docs]def max_unpool2d(input, indices, kernel_size, stride=None, padding=0, output_size=None): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) output_size = _unpool_output_size(input, kernel_size, stride, padding, output_size) return _functions.thnn.MaxUnpool2d.apply(input, indices, output_size)
[docs]def max_unpool3d(input, indices, kernel_size, stride=None, padding=0, output_size=None): kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) output_size = _unpool_output_size(input, kernel_size, stride, padding, output_size) return _functions.thnn.MaxUnpool3d.apply(input, indices, output_size, stride, padding)
[docs]def lp_pool2d(input, norm_type, kernel_size, stride=None, ceil_mode=False): kw, kh = utils._pair(kernel_size) out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode) return out.mul(kw * kh).pow(1. / norm_type)
[docs]def adaptive_max_pool1d(input, output_size, return_indices=False): r"""Applies a 1D adaptive max pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape. Args: output_size: the target output size (single integer) return_indices: whether to return pooling indices """ return _functions.thnn.AdaptiveMaxPool1d.apply(input, output_size, return_indices)
[docs]def adaptive_max_pool2d(input, output_size, return_indices=False): r"""Applies a 2D adaptive max pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape. Args: output_size: the target output size (single integer or double-integer tuple) return_indices: whether to return pooling indices """ return _functions.thnn.AdaptiveMaxPool2d.apply(input, output_size, return_indices)
[docs]def adaptive_avg_pool1d(input, output_size): r"""Applies a 1D adaptive average pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape. Args: output_size: the target output size (single integer) """ return _functions.thnn.AdaptiveAvgPool1d.apply(input, output_size)
[docs]def adaptive_avg_pool2d(input, output_size): r"""Applies a 2D adaptive average pooling over an input signal composed of several input planes. See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape. Args: output_size: the target output size (single integer or double-integer tuple) """ return _functions.thnn.AdaptiveAvgPool2d.apply(input, output_size)
# Activation functions
[docs]def dropout(input, p=0.5, training=False, inplace=False): return _functions.dropout.Dropout.apply(input, p, training, inplace)
[docs]def alpha_dropout(input, p=0.5, training=False): r"""Applies alpha dropout to the input. See :class:`~torch.nn.AlphaDropout` for details. Args: p (float, optional): the drop probability training (bool, optional): switch between training and evaluation mode """ if p < 0 or p > 1: raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p)) if p == 0 or not training: return input alpha = -1.7580993408473766 keep_prob = 1 - p # TODO avoid casting to byte after resize noise = input.data.new().resize_(input.size()) noise.bernoulli_(p) noise = Variable(noise.byte()) output = input.masked_fill(noise, alpha) a = (keep_prob + alpha ** 2 * keep_prob * (1 - keep_prob)) ** (-0.5) b = -a * alpha * (1 - keep_prob) return output.mul_(a).add_(b)
[docs]def dropout2d(input, p=0.5, training=False, inplace=False): return _functions.dropout.FeatureDropout.apply(input, p, training, inplace)
[docs]def dropout3d(input, p=0.5, training=False, inplace=False): return _functions.dropout.FeatureDropout.apply(input, p, training, inplace)
[docs]def threshold(input, threshold, value, inplace=False): return _functions.thnn.Threshold.apply(input, threshold, value, inplace)
[docs]def relu(input, inplace=False): return _functions.thnn.Threshold.apply(input, 0, 0, inplace)
def glu(input, dim=-1): ndim = input.dim() if dim < -ndim or dim >= ndim: raise IndexError("dim {} is out of range for tensor of dimension {}" .format(dim, ndim)) if dim < 0: dim += ndim return _functions.thnn.GatedLinear.apply(input, dim)
[docs]def hardtanh(input, min_val=-1., max_val=1., inplace=False): return _functions.thnn.auto.Hardtanh.apply(input, min_val, max_val, inplace)
[docs]def relu6(input, inplace=False): return _functions.thnn.auto.Hardtanh.apply(input, 0, 6, inplace)
[docs]def elu(input, alpha=1., inplace=False): return _functions.thnn.auto.ELU.apply(input, alpha, inplace)
[docs]def selu(input, inplace=False): return _functions.thnn.SELU.apply(input, inplace)
[docs]def leaky_relu(input, negative_slope=1e-2, inplace=False): return _functions.thnn.LeakyReLU.apply(input, negative_slope, inplace)
[docs]def prelu(input, weight): return _functions.thnn.PReLU.apply(input, weight)
[docs]def rrelu(input, lower=1. / 8, upper=1. / 3, training=False, inplace=False): return _functions.thnn.RReLU(lower, upper, training, inplace)(input)
[docs]def logsigmoid(input): return _functions.thnn.LogSigmoid.apply(input)
[docs]def hardshrink(input, lambd=0.5): return _functions.thnn.auto.Hardshrink.apply(input, lambd)
[docs]def tanhshrink(input): return input - _autograd_functions.Tanh.apply(input)
[docs]def softsign(input): return _functions.activation.Softsign.apply(input)
[docs]def softplus(input, beta=1, threshold=20): return _functions.thnn.auto.Softplus.apply(input, beta, threshold)
[docs]def softmin(input): return _functions.thnn.Softmin()(input)
[docs]def softmax(input): return _functions.thnn.auto.Softmax.apply(input)
[docs]def softshrink(input, lambd=0.5): return _functions.thnn.auto.Softshrink.apply(input, lambd)
[docs]def log_softmax(input): return _functions.thnn.LogSoftmax.apply(input)
[docs]def tanh(input): return _autograd_functions.Tanh.apply(input)
[docs]def sigmoid(input): return _autograd_functions.Sigmoid.apply(input)
# etc.
[docs]def linear(input, weight, bias=None): if input.dim() == 2 and bias is not None: # fused op is marginally faster return torch.addmm(bias, input, weight.t()) output = input.matmul(weight.t()) if bias is not None: output += bias return output
def bilinear(input1, input2, weight, bias=None): if bias is None: return Bilinear.apply(input1, input2, weight) else: return Bilinear.apply(input1, input2, weight, bias) def embedding(input, embedding_matrix, max_norm=None, norm_type=2, scale_grad_by_freq=False, sparse=False): r"""A simple lookup table that looks up embeddings in a fixed dictionary and size. This module is often used to retrieve word embeddings using indices. The input to the module is a list of indices, and the embedding matrix, and the output is the corresponding word embeddings. Args: input: tensor, containing indices into the embedding matrix embedding_matrix: Number of rows should correspond to the maximum possible index + 1, number of columns is the embedding size max_norm (float, optional): If given, will renormalize the embeddings to always have a norm lesser than this norm_type (float, optional): The p of the p-norm to compute for the max_norm option scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the frequency of the words in the mini-batch. Shape: - Input: LongTensor `(N, W)`, N = mini-batch, W = number of indices to extract per mini-batch - Embedding_matrix: FloatTensor `(V, embedding_dim)`, V = maximum index + 1, embedding_dim = embedding size - Output: `(N, W, embedding_dim)` Examples:: >>> # a batch of 2 samples of 4 indices each >>> input = Variable(torch.LongTensor([[1,2,4,5],[4,3,2,9]])) >>> # an embedding matrix containing 10 tensors of size 3 >>> embedding_matrix = Variable(torch.rand(10, 3)) >>> torch.nn.functional.embedding(input, embedding_matrix) Variable containing: (0 ,.,.) = -1.0822 1.2522 0.2434 0.8393 -0.6062 -0.3348 0.6597 0.0350 0.0837 0.5521 0.9447 0.0498 (1 ,.,.) = 0.6597 0.0350 0.0837 -0.1527 0.0877 0.4260 0.8393 -0.6062 -0.3348 -0.8738 -0.9054 0.4281 [torch.FloatTensor of size 2x4x3] >>> # example with padding_idx >>> embedding_matrix = Variable(torch.rand(10, 3)) >>> embedding_matrix[0].zero_() >>> input = Variable(torch.LongTensor([[0,2,0,5]])) >>> torch.nn.functional.embedding(input, embedding_matrix) Variable containing: (0 ,.,.) = 0.0000 0.0000 0.0000 0.3452 0.4937 -0.9361 0.0000 0.0000 0.0000 0.0706 -2.1962 -0.6276 [torch.FloatTensor of size 1x4x3] """ return torch.nn.backends.thnn.backend.Embedding.apply( input, embedding_matrix, -1, max_norm, norm_type, scale_grad_by_freq, sparse )
[docs]def batch_norm(input, running_mean, running_var, weight=None, bias=None, training=False, momentum=0.1, eps=1e-5): f = torch._C._functions.BatchNorm(running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled) return f(input, weight, bias)
# loss
[docs]def nll_loss(input, target, weight=None, size_average=True, ignore_index=-100): r"""The negative log likelihood loss. See :class:`~torch.nn.NLLLoss` for details. Args: input: :math:`(N, C)` where `C = number of classes` or `(N, C, H, W)` in case of 2D - Loss target: :math:`(N)` where each value is `0 <= targets[i] <= C-1` weight (Variable, optional): a manual rescaling weight given to each class. If given, has to be a Variable of size "nclasses" size_average (bool, optional): By default, the losses are averaged over observations for each minibatch. If size_average is False, the losses are summed for each minibatch. ignore_index (int, optional): Specifies a target value that is ignored and does not contribute to the input gradient. When size_average is True, the loss is averaged over non-ignored targets. Example: >>> # input is of size nBatch x nClasses = 3 x 5 >>> input = autograd.Variable(torch.randn(3, 5)) >>> # each element in target has to have 0 <= value < nclasses >>> target = autograd.Variable(torch.LongTensor([1, 0, 4])) >>> output = F.nll_loss(F.log_softmax(input), target) >>> output.backward() """ dim = input.dim() if dim == 2: return _functions.thnn.NLLLoss.apply(input, target, weight, size_average, ignore_index) elif dim == 4: return _functions.thnn.NLLLoss2d.apply(input, target, weight, size_average, ignore_index) else: raise ValueError('Expected 2 or 4 dimensions (got {})'.format(dim))
[docs]def poisson_nll_loss(input, target, log_input=True, full=False, size_average=True): r"""Poisson negative log likelihood loss. See :class:`~torch.nn.PoissonNLLLoss` for details. Args: input: expectation of underlying Poisson distribution. target: random sample :math:`target \sim Pois(input)`. log_input: if True the loss is computed as `exp(input) - target * input`, if False then loss is `input - target * log(input)`. full: whether to compute full loss, i. e. to add the Stirling approximation term `target * log(target) - target + 0.5 * log(2 * pi * target)`. size_average: By default, the losses are averaged over observations for each minibatch. However, if the field sizeAverage is set to False, the losses are instead summed for each minibatch. """ if log_input: loss = torch.exp(input) - target * input else: loss = input - target * torch.log(input) if full: mask = target > 1 loss[mask] += (target * torch.log(target) - target + 0.5 * torch.log(2 * math.pi * target))[mask] if size_average: return torch.mean(loss) else: return torch.sum(loss)
[docs]def kl_div(input, target, size_average=True, weight=None): r"""The `Kullback-Leibler divergence`_ Loss. See :class:`~torch.nn.KLDivLoss` for details. Args: input: Variable of arbitrary shape target: Variable of the same shape as input size_average: if True the output is divided by the number of elements in input tensor weight (Tensor, optional): a manual rescaling weight given to each class. If given, has to be a Tensor of size "nclasses" """ return _functions.thnn.KLDivLoss.apply(input, target, size_average)
[docs]def cross_entropy(input, target, weight=None, size_average=True, ignore_index=-100): r"""This criterion combines `log_softmax` and `nll_loss` in a single function. See :class:`torch.nn.CrossEntropyLoss` for details. Args: input: Variable :math:`(N, C)` where `C = number of classes` target: Variable :math:`(N)` where each value is `0 <= targets[i] <= C-1` weight (Tensor, optional): a manual rescaling weight given to each class. If given, has to be a Tensor of size "nclasses" size_average (bool, optional): By default, the losses are averaged over observations for each minibatch. However, if the field sizeAverage is set to False, the losses are instead summed for each minibatch. ignore_index (int, optional): Specifies a target value that is ignored and does not contribute to the input gradient. When size_average is True, the loss is averaged over non-ignored targets. """ return nll_loss(log_softmax(input), target, weight, size_average, ignore_index)
[docs]def binary_cross_entropy(input, target, weight=None, size_average=True): r"""Function that measures the Binary Cross Entropy between the target and the output: See :class:`~torch.nn.BCELoss` for details. Args: input: Variable of arbitrary shape target: Variable of the same shape as input weight (Variable, optional): a manual rescaling weight if provided it's repeated to match input tensor shape size_average (bool, optional): By default, the losses are averaged over observations for each minibatch. However, if the field sizeAverage is set to False, the losses are instead summed for each minibatch. """ if not target.is_same_size(input): warnings.warn("Using a target size ({}) that is different to the input size ({}) is deprecated. " "Please ensure they have the same size.".format(target.size(), input.size())) if input.nelement() != target.nelement(): raise ValueError("Target and input must have the same number of elements. target nelement ({}) " "!= input nelement ({})".format(target.nelement(), input.nelement())) if weight is not None: new_size = _infer_size(target.size(), weight.size()) weight = weight.expand(new_size) return _functions.thnn.BCELoss.apply(input, target, weight, size_average)
[docs]def binary_cross_entropy_with_logits(input, target, weight=None, size_average=True): r"""Function that measures Binary Cross Entropy between target and output logits: See :class:`~torch.nn.BCEWithLogitsLoss` for details. Args: input: Variable of arbitrary shape target: Variable of the same shape as input weight (Variable, optional): a manual rescaling weight if provided it's repeated to match input tensor shape size_average (bool, optional): By default, the losses are averaged over observations for each minibatch. However, if the field sizeAverage is set to False, the losses are instead summed for each minibatch. """ if not target.is_same_size(input): raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size())) max_val = (-input).clamp(min=0) loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log() if weight is not None: loss = loss * weight if size_average: return loss.mean() else: return loss.sum()
[docs]def smooth_l1_loss(input, target, size_average=True): return _functions.thnn.SmoothL1Loss.apply(input, target, size_average)
[docs]def l1_loss(input, target, size_average=True): return _functions.thnn.L1Loss.apply(input, target, size_average)
[docs]def mse_loss(input, target, size_average=True): return _functions.thnn.MSELoss.apply(input, target, size_average)
[docs]def margin_ranking_loss(input1, input2, target, margin=0, size_average=True): return _functions.loss.MarginRankingLoss(margin, size_average)(input1, input2, target)
[docs]def hinge_embedding_loss(input, target, margin=1.0, size_average=True): return _functions.loss.HingeEmbeddingLoss(margin, size_average)(input, target)
[docs]def multilabel_margin_loss(input, target, size_average=True): return _functions.thnn.MultiLabelMarginLoss.apply(input, target, size_average)
[docs]def soft_margin_loss(input, target, size_average=True): return _functions.thnn.SoftMarginLoss.apply(input, target, size_average)
[docs]def multilabel_soft_margin_loss(input, target, weight=None, size_average=True): input = torch.sigmoid(input) return binary_cross_entropy(input, target, weight, size_average)
[docs]def cosine_embedding_loss(input1, input2, target, margin=0, size_average=True): return _functions.loss.CosineEmbeddingLoss(margin, size_average)(input1, input2, target)
[docs]def multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=True): if p != 1 and p != 2: raise ValueError('only p == 1 and p == 2 supported') if weight is not None and weight.dim() != 1: raise ValueError('weight must be one-dimensional') return _functions.thnn.MultiMarginLoss.apply(input, target, weight, size_average, p, margin)
[docs]def pixel_shuffle(input, upscale_factor): r"""Rearranges elements in a tensor of shape ``[*, C*r^2, H, W]`` to a tensor of shape ``[C, H*r, W*r]``. See :class:`~torch.nn.PixelShuffle` for details. Args: input (Variable): Input upscale_factor (int): factor to increase spatial resolution by Examples: >>> ps = nn.PixelShuffle(3) >>> input = autograd.Variable(torch.Tensor(1, 9, 4, 4)) >>> output = ps(input) >>> print(output.size()) torch.Size([1, 1, 12, 12]) """ batch_size, channels, in_height, in_width = input.size() channels //= upscale_factor ** 2 out_height = in_height * upscale_factor out_width = in_width * upscale_factor input_view = input.contiguous().view( batch_size, channels, upscale_factor, upscale_factor, in_height, in_width) shuffle_out = input_view.permute(0, 1, 4, 2, 5, 3).contiguous() return shuffle_out.view(batch_size, channels, out_height, out_width)
[docs]def upsample(input, size=None, scale_factor=None, mode='nearest'): """Upsamples the input to either the given :attr:`size` or the given :attr:`scale_factor` The algorithm used for upsampling is determined by :attr:`mode`. Currently spatial and volumetric upsampling are supported, i.e. expected inputs are 4-D or 5-D in shape. The input dimensions are interpreted in the form: `mini-batch x channels x [depth] x height x width` The modes available for upsampling are: `nearest`, `bilinear` (4D-only), `trilinear` (5D-only) Args: input (Variable): input size (int or Tuple[int, int] or Tuple[int, int, int]): output spatial size. scale_factor (int): multiplier for spatial size. Has to be an integer. mode (string): algorithm used for upsampling: 'nearest' | 'bilinear' | 'trilinear'. Default: 'nearest' """ if input.dim() == 4 and mode == 'nearest': return _functions.thnn.UpsamplingNearest2d(_pair(size), scale_factor)(input) elif input.dim() == 5 and mode == 'nearest': return _functions.thnn.UpsamplingNearest3d(_triple(size), scale_factor)(input) elif input.dim() == 4 and mode == 'bilinear': return _functions.thnn.UpsamplingBilinear2d(_pair(size), scale_factor)(input) elif input.dim() == 4 and mode == 'trilinear': raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input") elif input.dim() == 5 and mode == 'bilinear': raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input") elif input.dim() == 5 and mode == 'trilinear': return _functions.thnn.UpsamplingTrilinear3d(_triple(size), scale_factor)(input) else: raise NotImplementedError("Input Error: Only 4D and 5D input Tensors supported" " (got {}D) for the modes: nearest | bilinear | trilinear" " (got {})".format(input.dim(), mode))
[docs]def upsample_nearest(input, size=None, scale_factor=None): """Upsamples the input, using nearest neighbours' pixel values. **Note:: This function is deprecated. Use nn.functional.upsample instead** Currently spatial and volumetric upsampling are supported (i.e. expected inputs are 4 or 5 dimensional). Args: input (Variable): input size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia size. scale_factor (int): multiplier for spatial size. Has to be an integer. """ # DeprecationWarning is ignored by default warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.upsample instead.") return upsample(input, size, scale_factor, mode='nearest')
[docs]def upsample_bilinear(input, size=None, scale_factor=None): """Upscales the input, using bilinear upsampling. **Note:: This function is deprecated. Use nn.functional.upsample instead** Expected inputs are spatial (4 dimensional). Use upsample_trilinear fo volumetric (5 dimensional) inputs. Args: input (Variable): input size (int or Tuple[int, int]): output spatial size. scale_factor (int or Tuple[int, int]): multiplier for spatial size """ # DeprecationWarning is ignored by default warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.upsample instead.") return upsample(input, size, scale_factor, mode='bilinear')
[docs]def grid_sample(input, grid, mode='bilinear'): """Given an :attr:`input` and a flow-field :attr:`grid`, computes the `output` using input pixel locations from the grid. Uses bilinear interpolation to sample the input pixels. Currently, only spatial (4 dimensional) inputs are supported. For each output location, :attr:`grid` has `x` and `y` input pixel locations which are used to compute output. :attr:`grid` has values in the range of `[-1, 1]`. This is because the pixel locations are normalized by the input height and width. For example, values: x: -1, y: -1 is the left-top pixel of the input values: x: 1, y: 1 is the right-bottom pixel of the input If :attr:`grid` has values outside the range of `[-1, 1]`, those locations are ignored (i.e. 0 is used as a contribution to the bilinear interpolation) .. Note:: This function is used in building Spatial Transformer Networks Args: input (Variable): input batch of images (N x C x IH x IW) grid (Variable): flow-field of size (N x OH x OW x 2) Returns: output (Variable): output Tensor """ batch_size, channels, in_height, in_width = input.size() return GridSampler.apply(input, grid)
[docs]def affine_grid(theta, size): """Generates a 2d flow field, given a batch of affine matrices :attr:`theta` Generally used in conjunction with :func:`grid_sample` to implement Spatial Transformer Networks. Args: theta (Variable): input batch of affine matrices (N x 2 x 3) size (torch.Size): the target output image size (N x C x H x W) Example: torch.Size(32, 3, 24, 24) Returns: output (Variable): output Tensor of size (N x H x W x 2) """ return AffineGridGenerator.apply(theta, size)
[docs]def pad(input, pad, mode='constant', value=0): """Pads tensor. Currently only 2D and 3D padding supported. In case of 4D input tensor pad should be in form (pad_l, pad_r, pad_t, pad_b ). In case of 5D pad should be (pleft, pright, ptop, pbottom, pfront, pback) Args: input (Variable): 4D or 5D tensor pad (tuple): 4-elem or 6-elem tuple mode: 'constant', 'reflect' or 'replicate' value: fill value for 'constant' padding """ if input.dim() == 4: assert len(pad) == 4, '4D tensors expect 4 values for padding' if mode == 'constant': return ConstantPad2d.apply(input, pad, value) elif mode == 'reflect': return _functions.thnn.ReflectionPad2d.apply(input, *pad) elif mode == 'replicate': return _functions.thnn.ReplicationPad2d.apply(input, *pad) elif input.dim() == 5: assert len(pad) == 6, '5D tensors expect 6 values for padding' if mode == 'constant': raise NotImplementedError elif mode == 'reflect': raise NotImplementedError elif mode == 'replicate': return _functions.thnn.ReplicationPad3d.apply(input, *pad) else: raise NotImplementedError("Only 4D and 5D padding is supported for now")
# distance
[docs]def pairwise_distance(x1, x2, p=2, eps=1e-6): r""" Computes the batchwise pairwise distance between vectors v1,v2: .. math :: \Vert x \Vert _p := \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p} Args: x1: first input tensor x2: second input tensor p: the norm degree. Default: 2 Shape: - Input: :math:`(N, D)` where `D = vector dimension` - Output: :math:`(N, 1)` >>> input1 = autograd.Variable(torch.randn(100, 128)) >>> input2 = autograd.Variable(torch.randn(100, 128)) >>> output = F.pairwise_distance(input1, input2, p=2) >>> output.backward() """ assert x1.size() == x2.size(), "Input sizes must be equal." assert x1.dim() == 2, "Input must be a 2D matrix." diff = torch.abs(x1 - x2) out = torch.pow(diff + eps, p).sum(dim=1, keepdim=True) return torch.pow(out, 1. / p)
[docs]def cosine_similarity(x1, x2, dim=1, eps=1e-8): r"""Returns cosine similarity between x1 and x2, computed along dim. .. math :: \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)} Args: x1 (Variable): First input. x2 (Variable): Second input (of size matching x1). dim (int, optional): Dimension of vectors. Default: 1 eps (float, optional): Small value to avoid division by zero. Default: 1e-8 Shape: - Input: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`. - Output: :math:`(\ast_1, \ast_2)` where 1 is at position `dim`. >>> input1 = autograd.Variable(torch.randn(100, 128)) >>> input2 = autograd.Variable(torch.randn(100, 128)) >>> output = F.cosine_similarity(input1, input2) >>> print(output) """ w12 = torch.sum(x1 * x2, dim) w1 = torch.norm(x1, 2, dim) w2 = torch.norm(x2, 2, dim) return (w12 / (w1 * w2).clamp(min=eps)).squeeze()
[docs]def triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-6, swap=False): r"""Creates a criterion that measures the triplet loss given an input tensors x1, x2, x3 and a margin with a value greater than 0. This is used for measuring a relative similarity between samples. A triplet is composed by `a`, `p` and `n`: anchor, positive examples and negative example respectively. The shape of all input variables should be :math:`(N, D)`. The distance swap is described in detail in the paper `Learning shallow convolutional feature descriptors with triplet losses`_ by V. Balntas, E. Riba et al. .. math:: L(a, p, n) = \frac{1}{N} \left( \sum_{i=1}^N \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\} \right) where :math:`d(x_i, y_i) = \| {\bf x}_i - {\bf y}_i \|_2^2`. Args: anchor: anchor input tensor positive: positive input tensor negative: negative input tensor p: the norm degree. Default: 2 eps: small epsilon value to avoid numerical issues swap: compute distance swap Shape: - Input: :math:`(N, D)` where `D = vector dimension` - Output: :math:`(N, 1)` >>> input1 = autograd.Variable(torch.randn(100, 128)) >>> input2 = autograd.Variable(torch.randn(100, 128)) >>> input3 = autograd.Variable(torch.randn(100, 128)) >>> output = F.triplet_margin_loss(input1, input2, input3, p=2) >>> output.backward() .. _Learning shallow convolutional feature descriptors with triplet losses: http://www.iis.ee.ic.ac.uk/%7Evbalnt/shallow_descr/TFeat_paper.pdf """ assert anchor.size() == positive.size(), "Input sizes between positive and negative must be equal." assert anchor.size() == negative.size(), "Input sizes between anchor and negative must be equal." assert positive.size() == negative.size(), "Input sizes between positive and negative must be equal." assert anchor.dim() == 2, "Inputd must be a 2D matrix." assert margin > 0.0, 'Margin should be positive value.' d_p = pairwise_distance(anchor, positive, p, eps) d_n = pairwise_distance(anchor, negative, p, eps) if swap: d_s = pairwise_distance(positive, negative, p, eps) d_n = torch.min(d_n, d_s) dist_hinge = torch.clamp(margin + d_p - d_n, min=0.0) loss = torch.mean(dist_hinge) return loss
[docs]def normalize(input, p=2, dim=1, eps=1e-12): r"""Performs :math:`L_p` normalization of inputs over specified dimension. Does: .. math:: v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)} for each subtensor v over dimension dim of input. Each subtensor is flattened into a vector, i.e. :math:`\lVert v \rVert_p` is not a matrix norm. With default arguments normalizes over the second dimension with Euclidean norm. Args: input: input tensor of any shape p (float): the exponent value in the norm formulation dim (int): the dimension to reduce eps (float): small value to avoid division by zero """ return input / input.norm(p, dim, True).clamp(min=eps).expand_as(input)