
Spring Integration Reference Guide
Mark Fisher, Marius Bogoevici, Iwein Fuld, Jonas Partner, Oleg Zhurakousky,

Gary Russell, Dave Syer, Josh Long, David Turanski, Gunnar Hillert, Artem Bilan,
Amol Nayak, Jay Bryant

Version 5.4.0

Table of Contents
Preface. 2

1. Requirements . 3

1.1. Compatible Java Versions. 3

1.2. Compatible Versions of the Spring Framework . 3

2. Code Conventions . 4

3. Conventions in This Guide. 5

What’s New? . 6

4. What’s New in Spring Integration 5.4? . 7

4.1. New Components . 7

4.2. General Changes . 7

4.3. TCP/UDP Changes . 8

4.4. RMI Changes . 8

4.5. AMQP Changes . 8

4.6. Mail Changes . 8

Overview of Spring Integration Framework . 9

5. Spring Integration Overview . 10

5.1. Background . 10

5.2. Goals and Principles . 10

5.3. Main Components . 11

5.4. Message Endpoints . 13

5.5. Configuration and @EnableIntegration . 19

5.6. Programming Considerations . 21

5.7. Programming Tips and Tricks. 24

5.8. POJO Method invocation . 27

Core Messaging . 30

6. Messaging Channels . 31

6.1. Message Channels . 31

6.2. Poller . 55

6.3. Channel Adapter. 61

6.4. Messaging Bridge . 65

7. Message . 69

7.1. The Message Interface . 69

7.2. Message Headers . 69

7.3. Message Implementations . 74

7.4. The MessageBuilder Helper Class . 74

8. Message Routing . 77

8.1. Routers . 77

8.2. Filter . 102

8.3. Splitter . 106

8.4. Aggregator . 110

8.5. Resequencer . 134

8.6. Message Handler Chain . 138

8.7. Scatter-Gather. 142

8.8. Thread Barrier . 146

9. Message Transformation . 149

9.1. Transformer . 149

9.2. Content Enricher . 159

9.3. Claim Check. 168

9.4. Codec. 172

10. Messaging Endpoints . 176

10.1. Message Endpoints . 176

10.2. Endpoint Roles . 190

10.3. Leadership Event Handling. 192

10.4. Messaging Gateways . 193

10.5. Service Activator . 214

10.6. Delayer . 219

10.7. Scripting Support . 224

10.8. Groovy support . 228

10.9. Adding Behavior to Endpoints . 232

10.10. Logging Channel Adapter . 256

10.11. java.util.function Interfaces Support . 258

11. Java DSL. 262

11.1. DSL Basics . 263

11.2. Message Channels . 265

11.3. Pollers . 267

11.4. DSL and Endpoint Configuration. 268

11.5. Transformers . 269

11.6. Inbound Channel Adapters . 269

11.7. Message Routers. 270

11.8. Splitters . 272

11.9. Aggregators and Resequencers . 273

11.10. Service Activators and the .handle() method. 274

11.11. Operator log() . 275

11.12. Operator intercept() . 275

11.13. MessageChannelSpec.wireTap(). 276

11.14. Working With Message Flows . 277

11.15. FunctionExpression . 278

11.16. Sub-flows support . 278

11.17. Using Protocol Adapters. 282

11.18. IntegrationFlowAdapter . 284

11.19. Dynamic and Runtime Integration Flows . 287

11.20. IntegrationFlow as a Gateway. 290

11.21. DSL Extensions. 292

12. Kotlin DSL . 294

13. System Management. 296

13.1. Metrics and Management . 296

13.2. JMX Support . 299

13.3. Message History . 307

13.4. Message Store . 309

13.5. Metadata Store . 313

13.6. Control Bus . 315

13.7. Orderly Shutdown . 316

13.8. Integration Graph . 317

13.9. Integration Graph Controller . 324

Integration Endpoints . 326

14. Endpoint Quick Reference Table . 327

15. AMQP Support . 331

15.1. Inbound Channel Adapter . 331

15.2. Polled Inbound Channel Adapter . 339

15.3. Inbound Gateway . 339

15.4. Inbound Endpoint Acknowledge Mode . 343

15.5. Outbound Channel Adapter . 344

15.6. Outbound Channel Adapter . 344

15.7. Outbound Gateway . 349

15.8. Asynchronous Outbound Gateway . 354

15.9. Alternative Mechanism for Publisher Confirms and Returns . 360

15.10. Inbound Message Conversion . 361

15.11. Outbound Message Conversion . 361

15.12. Outbound User ID . 363

15.13. Delayed Message Exchange. 363

15.14. AMQP-backed Message Channels . 364

15.15. AMQP Message Headers . 367

15.16. Strict Message Ordering. 370

15.17. AMQP Samples . 371

16. Spring ApplicationEvent Support. 373

16.1. Receiving Spring Application Events . 373

16.2. Sending Spring Application Events . 375

17. Feed Adapter. 378

17.1. Feed Inbound Channel Adapter . 378

17.2. Duplicate Entries . 379

17.3. Other Options . 379

17.4. Java DSL Configuration . 380

18. File Support. 381

18.1. Reading Files. 381

18.2. Writing files . 394

18.3. File Transformers . 402

18.4. File Splitter . 403

18.5. Remote Persistent File List Filters . 407

19. FTP/FTPS Adapters . 409

19.1. FTP Session Factory. 409

19.2. Advanced Configuration . 411

19.3. Delegating Session Factory . 413

19.4. FTP Inbound Channel Adapter . 414

19.5. FTP Streaming Inbound Channel Adapter. 422

19.6. Inbound Channel Adapters: Polling Multiple Servers and Directories. 425

19.7. Inbound Channel Adapters: Controlling Remote File Fetching . 426

19.8. FTP Outbound Channel Adapter . 427

19.9. FTP Outbound Gateway . 433

19.10. FTP Session Caching . 441

19.11. Using RemoteFileTemplate. 442

19.12. Using MessageSessionCallback . 443

19.13. Apache Mina FTP Server Events . 444

19.14. Remote File Information . 445

20. Pivotal GemFire and Apache Geode Support . 446

20.1. Inbound Channel Adapter . 447

20.2. Continuous Query Inbound Channel Adapter . 448

20.3. Outbound Channel Adapter . 449

20.4. Gemfire Message Store . 450

20.5. Gemfire Lock Registry . 451

20.6. Gemfire Metadata Store . 452

21. HTTP Support . 454

21.1. Http Inbound Components . 454

21.2. HTTP Outbound Components . 457

21.3. HTTP Namespace Support . 458

21.4. Configuring HTTP Endpoints with Java . 470

21.5. Timeout Handling . 471

21.6. HTTP Proxy configuration . 474

21.7. HTTP Header Mappings . 475

21.8. Integration Graph Controller . 476

21.9. HTTP Samples. 477

22. JDBC Support . 479

22.1. Inbound Channel Adapter . 479

22.2. Outbound Channel Adapter . 483

22.3. Outbound Gateway . 486

22.4. JDBC Message Store . 487

22.5. Stored Procedures . 492

22.6. JDBC Lock Registry . 503

22.7. JDBC Metadata Store . 504

23. JPA Support . 506

23.1. Functionality. 507

23.2. Supported Persistence Providers . 507

23.3. Java Implementation . 507

23.4. Namespace Support . 508

23.5. Inbound Channel Adapter . 512

23.6. Outbound Channel Adapter . 517

23.7. Outbound Gateways . 525

24. JMS Support . 536

24.1. Inbound Channel Adapter . 537

24.2. Message-driven Channel Adapter . 538

24.3. Outbound Channel Adapter . 540

24.4. Inbound Gateway . 541

24.5. Outbound Gateway . 543

24.6. Mapping Message Headers to and from JMS Message . 550

24.7. Message Conversion, Marshalling, and Unmarshalling . 552

24.8. JMS-backed Message Channels . 552

24.9. Using JMS Message Selectors . 554

24.10. JMS Samples . 554

24.11. JMX Support . 555

25. Spring for Apache Kafka Support . 564

25.1. Overview . 564

25.2. Outbound Channel Adapter . 564

25.3. Message-driven Channel Adapter . 568

25.4. Inbound Channel Adapter . 571

25.5. Outbound Gateway . 573

25.6. Inbound Gateway . 575

25.7. Channels Backed by Kafka Topics . 577

25.8. Message Conversion . 581

25.9. Null Payloads and Log Compaction 'Tombstone' Records . 582

25.10. Calling a Spring Integration flow from a KStream . 582

25.11. Performance Considerations for read/process/write Scenarios. 583

26. Mail Support . 587

26.1. Mail-sending Channel Adapter. 587

26.2. Mail-receiving Channel Adapter . 588

26.3. Inbound Mail Message Mapping . 590

26.4. Mail Namespace Support . 591

26.5. Marking IMAP Messages When \Recent Is Not Supported. 597

26.6. Email Message Filtering . 597

26.7. Transaction Synchronization . 598

26.8. Configuring channel adapters with the Java DSL . 600

27. MongoDb Support . 601

27.1. Connecting to MongoDb. 601

27.2. MongoDB Message Store . 603

27.3. MongoDB Inbound Channel Adapter . 606

27.4. MongoDB Change Stream Inbound Channel Adapter. 608

27.5. MongoDB Outbound Channel Adapter . 609

27.6. MongoDB Outbound Gateway . 610

27.7. MongoDB Reactive Channel Adapters . 613

28. MQTT Support . 615

28.1. Inbound (Message-driven) Channel Adapter . 615

28.2. Outbound Channel Adapter . 621

28.3. Events . 625

29. R2DBC Support. 626

29.1. R2DBC Inbound Channel Adapter . 626

29.2. R2DBC Outbound Channel Adapter. 627

30. Redis Support . 629

30.1. Connecting to Redis. 629

30.2. Messaging with Redis . 631

30.3. Redis Message Store . 637

30.4. Redis Metadata Store . 638

30.5. Redis Store Inbound Channel Adapter . 639

30.6. RedisStore Outbound Channel Adapter . 642

30.7. Redis Outbound Command Gateway . 643

30.8. Redis Queue Outbound Gateway . 645

30.9. Redis Queue Inbound Gateway . 646

30.10. Redis Stream Outbound Channel Adapter. 648

30.11. Redis Stream Inbound Channel Adapter . 648

30.12. Redis Lock Registry . 650

31. Resource Support . 651

31.1. Resource Inbound Channel Adapter . 651

32. RMI Support . 653

32.1. Outbound RMI . 653

32.2. Inbound RMI. 653

32.3. RMI namespace support . 654

32.4. Configuring with Java Configuration . 655

33. RSocket Support. 656

33.1. RSocket Inbound Gateway. 658

33.2. RSocket Outbound Gateway . 659

33.3. RSocket Namespace Support. 660

33.4. Configuring RSocket Endpoints with Java . 662

34. SFTP Adapters . 665

34.1. SFTP Session Factory. 665

34.2. Proxy Factory Bean . 668

34.3. Delegating Session Factory . 668

34.4. SFTP Session Caching . 669

34.5. Using RemoteFileTemplate . 670

34.6. SFTP Inbound Channel Adapter. 671

34.7. SFTP Streaming Inbound Channel Adapter. 678

34.8. Inbound Channel Adapters: Polling Multiple Servers and Directories. 681

34.9. Inbound Channel Adapters: Controlling Remote File Fetching . 682

34.10. SFTP Outbound Channel Adapter . 683

34.11. SFTP Outbound Gateway . 688

34.12. SFTP/JSCH Logging . 696

34.13. MessageSessionCallback . 697

34.14. Apache Mina SFTP Server Events . 697

34.15. Remote File Information . 698

35. STOMP Support . 700

35.1. Overview . 700

35.2. STOMP Inbound Channel Adapter. 701

35.3. STOMP Outbound Channel Adapter . 701

35.4. STOMP Headers Mapping . 701

35.5. STOMP Integration Events. 702

35.6. STOMP Adapters Java Configuration. 702

35.7. STOMP Namespace Support . 704

36. Stream Support . 707

36.1. Reading from Streams . 707

36.2. Writing to Streams . 709

36.3. Stream Namespace Support . 709

37. Syslog Support . 711

37.1. Syslog Inbound Channel Adapter . 711

38. TCP and UDP Support . 715

38.1. Introduction . 715

38.2. UDP Adapters . 716

38.3. TCP Connection Factories . 721

38.4. Testing Connections . 728

38.5. TCP Connection Interceptors . 729

38.6. TCP Connection Events. 730

38.7. TCP Adapters. 731

38.8. TCP Gateways . 733

38.9. TCP Message Correlation . 735

38.10. About Non-blocking I/O (NIO). 738

38.11. SSL/TLS Support. 742

38.12. Advanced Techniques. 744

38.13. IP Configuration Attributes . 749

38.14. IP Message Headers . 756

38.15. Annotation-Based Configuration . 757

39. WebFlux Support. 760

39.1. WebFlux Inbound Components . 760

39.2. WebFlux Outbound Components. 762

39.3. WebFlux Namespace Support. 763

39.4. Configuring WebFlux Endpoints with Java . 766

39.5. WebFlux Header Mappings. 768

40. WebSockets Support . 769

40.1. Overview . 770

40.2. WebSocket Inbound Channel Adapter . 771

40.3. WebSocket Outbound Channel Adapter. 772

40.4. WebSockets Namespace Support . 772

40.5. Using ClientStompEncoder . 778

41. Web Services Support. 780

41.1. Outbound Web Service Gateways . 780

41.2. Inbound Web Service Gateways. 781

41.3. Web Service Namespace Support . 782

41.4. Web Service Java DSL Support . 783

41.5. Outbound URI Configuration . 785

41.6. WS Message Headers . 786

41.7. MTOM Support . 789

42. XML Support - Dealing with XML Payloads . 791

42.1. Namespace Support . 792

42.2. Transforming XML Payloads. 796

42.3. Transforming XML Messages with XPath . 803

42.4. Splitting XML Messages . 805

42.5. Routing XML Messages with XPath . 807

42.6. XPath Header Enricher . 809

42.7. Using the XPath Filter . 812

42.8. #xpath SpEL Function. 813

42.9. XML Validating Filter . 814

43. XMPP Support . 816

43.1. XMPP Connection. 817

43.2. XMPP Messages . 817

43.3. XMPP Presence. 820

43.4. Advanced Configuration . 821

43.5. XMPP Message Headers . 823

43.6. XMPP Extensions . 823

44. ZeroMQ Support . 827

44.1. ZeroMQ Proxy. 827

44.2. ZeroMQ Message Channel . 828

44.3. ZeroMQ Inbound Channel Adapter. 829

44.4. ZeroMQ Outbound Channel Adapter . 830

44.5. ZeroMQ Java DSL Support . 831

45. Zookeeper Support . 832

45.1. Zookeeper Metadata Store. 832

45.2. Zookeeper Lock Registry . 833

45.3. Zookeeper Leadership Event Handling . 833

Appendices. 835

Appendix A: Error Handling . 836

Appendix B: Spring Expression Language (SpEL) . 838

B.1. SpEL Evaluation Context Customization . 838

B.2. SpEL Functions. 840

B.3. Property Accessors . 842

Appendix C: Message Publishing . 843

C.1. Message Publishing Configuration . 843

Appendix D: Transaction Support . 852

D.1. Understanding Transactions in Message flows . 852

D.2. Transaction Boundaries. 855

D.3. Transaction Synchronization . 855

D.4. Pseudo Transactions. 858

D.5. Reactive Transactions . 858

Appendix E: Security in Spring Integration. 859

E.1. Securing channels . 859

E.2. Security Context Propagation . 861

Appendix F: Configuration . 864

F.1. Namespace Support . 864

F.2. Configuring the Task Scheduler . 866

F.3. Global Properties . 867

F.4. Annotation Support. 869

F.5. Messaging Meta-Annotations . 876

F.6. Message Mapping Rules and Conventions. 881

Appendix G: Testing support. 887

G.1. Testing Utilities . 888

G.2. Spring Integration and the Test Context . 892

G.3. Integration Mocks . 894

G.4. Other Resources. 896

Appendix H: Spring Integration Samples. 897

H.1. Where to Get Samples . 897

H.2. Submitting Samples or Sample Requests . 898

H.3. Samples Structure. 898

H.4. Samples . 900

Appendix I: Additional Resources . 912

Appendix J: Change History . 913

J.1. Changes between 5.2 and 5.3 . 913

J.2. New Components . 913

J.3. General Changes . 914

J.4. AMQP Changes . 914

J.5. HTTP Changes . 915

J.6. Web Services Changes . 915

J.7. TCP Changes . 915

J.8. RSocket Changes . 915

J.9. Zookeeper Changes . 915

J.10. MQTT Changes. 915

J.11. (S)FTP Changes . 916

J.12. File Changes . 916

J.13. Changes between 5.1 and 5.2 . 916

J.14. Package and Class Changes . 916

J.15. Behavior Changes. 916

J.16. New Components . 916

J.17. General Changes . 917

J.18. Changes between 5.0 and 5.1 . 919

J.19. Changes between 4.3 and 5.0 . 924

J.20. Changes between 4.2 and 4.3 . 931

J.21. Changes between 4.1 and 4.2 . 937

J.22. Changes between 4.0 and 4.1 . 944

J.23. Changes between 3.0 and 4.0 . 948

J.24. Changes Between 2.2 and 3.0. 953

J.25. Changes between 2.1 and 2.2 . 962

J.26. Changes between 2.0 and 2.1 . 966

J.27. Changes between Versions 1.0 and 2.0 . 970

© 2009 - 2020 Pivotal Software, Inc. All rights reserved.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

1

Preface
This chapter includes:

• Requirements

• Code Conventions

• Conventions in This Guide

2

Chapter 1. Requirements
This section details the compatible Java and Spring Framework versions.

1.1. Compatible Java Versions
For Spring Integration 5.2.x, the minimum compatible Java version is Java SE 8. Older versions of
Java are not supported.

1.2. Compatible Versions of the Spring Framework
Spring Integration 5.2.x requires Spring Framework 5.2 or later.

3

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://spring.io/projects/spring-framework

Chapter 2. Code Conventions
Spring Framework 2.0 introduced support for namespaces, which simplifies the XML configuration
of the application context and lets Spring Integration provide broad namespace support.

In this reference guide, the int namespace prefix is used for Spring Integration’s core namespace
support. Each Spring Integration adapter type (also called a module) provides its own namespace,
which is configured by using the following convention:

The following example shows the int, int-event, and int-stream namespaces in use:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-webflux="http://www.springframework.org/schema/integration/webflux"
 xmlns:int-stream="http://www.springframework.org/schema/integration/stream"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/webflux
 https://www.springframework.org/schema/integration/webflux/spring-integration-
webflux.xsd
 http://www.springframework.org/schema/integration/stream
 https://www.springframework.org/schema/integration/stream/spring-integration-
stream.xsd">
…
</beans>

For a detailed explanation regarding Spring Integration’s namespace support, see Namespace
Support.



The namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, you should apply the convention that best
suits your application. Be aware, though, that SpringSource Tool Suite™ (STS) uses
the same namespace conventions for Spring Integration as used in this reference
guide.

4

./configuration.pdf#configuration-namespace
./configuration.pdf#configuration-namespace

Chapter 3. Conventions in This Guide
In some cases, to aid formatting when specifying long fully qualified class names, we shorten
org.springframework to o.s and org.springframework.integration to o.s.i, such as with
o.s.i.transaction.TransactionSynchronizationFactory.

5

What’s New?
For those who are already familiar with Spring Integration, this chapter provides a brief overview
of the new features of version 5.4.

If you are interested in the changes and features that were introduced in earlier versions, see the
Change History.

6

./history.pdf#history

Chapter 4. What’s New in Spring Integration
5.4?
If you are interested in more details, see the Issue Tracker tickets that were resolved as part of the
5.4 development process.

4.1. New Components

4.1.1. Apache Kafka Channel Adapters

The standalone Spring Integration Kafka project has been merged as a spring-integration-kafka
module to this project.

The KafkaProducerMessageHandler sendTimeoutExpression default has changed.

You can now access the Future<?> for underlying send() operations.

See Spring for Apache Kafka Support for more information.

4.1.2. R2DBC Channel Adapters

The Channel Adapters for R2DBC database interaction have been introduced. See R2DBC Support
for more information.

4.1.3. Redis Stream Support

The Channel Adapters for Redis Stream support have been introduced. See Redis Stream Outbound
Channel Adapter for more information.

4.1.4. Renewable Lock Registry

A Renewable lock registry has been introduced to allow renew lease of a distributed lock. See JDBC
implementation for more information.

4.1.5. ZeroMQ Support

ZeroMqChannel, ZeroMqMessageHandler and ZeroMqMessageProducer have been introduced. See ZeroMQ
Support for more information.

4.2. General Changes
The one-way messaging gateway (the void method return type) now sets a nullChannel explicitly
into the replyChannel header to ignore any possible downstream replies. See Setting the Default
Reply Channel for more information.

Also the gateway method invokers (GatewayProxyFactoryBean.MethodInvocationGateway) are now
supplied with the managed bean name as a combination of gateway proxy bean name plus method

7

https://projects.spring.io/spring-integration-kafka/
./kafka.pdf#kafka
./r2dbc.pdf#r2dbc
./redis.pdf#redis-stream-outbound
./redis.pdf#redis-stream-outbound
./jdbc.pdf#jdbc-lock-registry
./jdbc.pdf#jdbc-lock-registry
./zeromq.pdf#zeromq
./zeromq.pdf#zeromq
./gateway.pdf#gateway-default-reply-channel
./gateway.pdf#gateway-default-reply-channel

signature. For example: sampleGateway#echo(String). This effects message history and metrics
exposed for the gateway method calls and also give fine-grained logs during start and close of
application context.

The aggregator (and resequencer) can now expire orphaned groups (groups in a persistent store
where no new messages arrive after an application restart). See Aggregator Expiring Groups for
more information.

The legacy metrics that were replaced by Micrometer meters have been removed.

The Thread Barrier has now two separate timeout options: requestTimeout and triggerTimeout.

4.3. TCP/UDP Changes
Connection factories now support multiple sending components (TcpSender); they remain limited to
one receiving component (TcpListener). This allows, for example, an inbound gateway and
outbound channel adapter to share the same factory, supporting both request/reply and arbitrary
messaging from the server to the client. Shared factories should not be used with outbound
gateways, unless single-use connections or the ThreadAffinityClientConnectionFactory are being
used. See Collaborating Channel Adapters and TCP Gateways for more information.

The UDP channel adapters can now be configured with a SocketCustomizer which allows the setting
of socket properties that are not directly supported by the adapters. See UDP Adapters for more
information.

4.4. RMI Changes
The spring-integration-rmi module is deprecated with no replacement and is going to be removed
in the next major version. See RMI Support for more information.

4.5. AMQP Changes
The outbound endpoints now have a new mechanism for handling publisher confirms and returns.
See Alternative Mechanism for Publisher Confirms and Returns for more information.

A new BatchMode.EXTRACT_PAYLOAD_WITH_HEADERS is supported by the AmqpInboundChannelAdapter. See
Inbound Channel Adapter for more information.

4.6. Mail Changes
The AbstractMailReceiver can now produce the MimeMessage as-is without eager fetching its content.
See Mail-receiving Channel Adapter for more information.

8

./aggregator.pdf#aggregator-expiring-groups
./barrier.pdf#barrier
./ip.pdf#ip-collaborating-adapters
./ip.pdf#tcp-gateways
./ip.pdf#udp-adapters
./rmi.pdf#rmi
./amqp.pdf#alternative-confirms-returns
./amqp.pdf#amqp-inbound-channel-adapter
./mail.pdf#mail-inbound

Overview of Spring Integration
Framework
Spring Integration provides an extension of the Spring programming model to support the well
known Enterprise Integration Patterns. It enables lightweight messaging within Spring-based
applications and supports integration with external systems through declarative adapters. Those
adapters provide a higher level of abstraction over Spring’s support for remoting, messaging, and
scheduling.

Spring Integration’s primary goal is to provide a simple model for building enterprise integration
solutions while maintaining the separation of concerns that is essential for producing
maintainable, testable code.

9

https://www.enterpriseintegrationpatterns.com/

Chapter 5. Spring Integration Overview
This chapter provides a high-level introduction to Spring Integration’s core concepts and
components. It includes some programming tips to help you make the most of Spring Integration.

5.1. Background
One of the key themes of the Spring Framework is Inversion of Control (IoC). In its broadest sense,
this means that the framework handles responsibilities on behalf of the components that are
managed within its context. The components themselves are simplified, because they are relieved
of those responsibilities. For example, dependency injection relieves the components of the
responsibility of locating or creating their dependencies. Likewise, aspect-oriented programming
relieves business components of generic cross-cutting concerns by modularizing them into reusable
aspects. In each case, the end result is a system that is easier to test, understand, maintain, and
extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model
for building enterprise applications. Developers benefit from the consistency of this model and
especially from the fact that it is based upon well established best practices, such as programming
to interfaces and favoring composition over inheritance. Spring’s simplified abstractions and
powerful support libraries boost developer productivity while simultaneously increasing the level
of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring
programming model into the messaging domain and builds upon Spring’s existing enterprise
integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain
business logic should run and where the response should be sent. It supports routing and
transformation of messages so that different transports and different data formats can be
integrated without impacting testability. In other words, the messaging and integration concerns
are handled by the framework. Business components are further isolated from the infrastructure,
and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options, including annotations, XML with namespace support, XML with generic
“bean” elements, and direct usage of the underlying API. That API is based upon well defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration’s design is inspired by
the recognition of a strong affinity between common patterns within Spring and the well known
patterns described in Enterprise Integration Patterns, by Gregor Hohpe and Bobby Woolf (Addison
Wesley, 2004). Developers who have read that book should be immediately comfortable with the
Spring Integration concepts and terminology.

5.2. Goals and Principles
Spring Integration is motivated by the following goals:

• Provide a simple model for implementing complex enterprise integration solutions.

10

https://www.enterpriseintegrationpatterns.com/

• Facilitate asynchronous, message-driven behavior within a Spring-based application.

• Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

• Components should be loosely coupled for modularity and testability.

• The framework should enforce separation of concerns between business logic and integration
logic.

• Extension points should be abstract in nature (but within well-defined boundaries) to promote
reuse and portability.

5.3. Main Components
From a vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for
following this best practice for the full stack of an enterprise application. Message-driven
architectures add a horizontal perspective, yet these same goals are still relevant. Just as “layered
architecture” is an extremely generic and abstract paradigm, messaging systems typically follow
the similarly abstract “pipes-and-filters” model. The “filters” represent any components capable of
producing or consuming messages, and the “pipes” transport the messages between filters so that
the components themselves remain loosely-coupled. It is important to note that these two high-level
paradigms are not mutually exclusive. The underlying messaging infrastructure that supports the
“pipes” should still be encapsulated in a layer whose contracts are defined as interfaces. Likewise,
the “filters” themselves should be managed within a layer that is logically above the application’s
service layer, interacting with those services through interfaces in much the same way that a web
tier would.

5.3.1. Message

In Spring Integration, a message is a generic wrapper for any Java object combined with metadata
used by the framework while handling that object. It consists of a payload and headers. The
payload can be of any type, and the headers hold commonly required information such as ID,
timestamp, correlation ID, and return address. Headers are also used for passing values to and
from connected transports. For example, when creating a message from a received file, the file
name may be stored in a header to be accessed by downstream components. Likewise, if a
message’s content is ultimately going to be sent by an outbound mail adapter, the various
properties (to, from, cc, subject, and others) may be configured as message header values by an
upstream component. Developers can also store any arbitrary key-value pairs in the headers.

11

Figure 1. Message

5.3.2. Message Channel

A message channel represents the “pipe” of a pipes-and-filters architecture. Producers send
messages to a channel, and consumers receive messages from a channel. The message channel
therefore decouples the messaging components and also provides a convenient point for
interception and monitoring of messages.

Figure 2. Message Channel

A message channel may follow either point-to-point or publish-subscribe semantics. With a point-
to-point channel, no more than one consumer can receive each message sent to the channel.
Publish-subscribe channels, on the other hand, attempt to broadcast each message to all
subscribers on the channel. Spring Integration supports both of these models.

Whereas “point-to-point” and "publish-subscribe" define the two options for how many consumers
ultimately receive each message, there is another important consideration: Should the channel
buffer messages? In Spring Integration, pollable channels are capable of buffering Messages within
a queue. The advantage of buffering is that it allows for throttling the inbound messages and
thereby prevents overloading a consumer. However, as the name suggests, this also adds some
complexity, since a consumer can only receive the messages from such a channel if a poller is
configured. On the other hand, a consumer connected to a subscribable channel is simply message-
driven. Message Channel Implementations has a detailed discussion of the variety of channel
implementations available in Spring Integration.

5.3.3. Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise
integration solutions through inversion of control. This means that you should not have to
implement consumers and producers directly, and you should not even have to build messages and
invoke send or receive operations on a message channel. Instead, you should be able to focus on
your specific domain model with an implementation based on plain objects. Then, by providing
declarative configuration, you can “connect” your domain-specific code to the messaging
infrastructure provided by Spring Integration. The components responsible for these connections

12

./channel.pdf#channel-implementations

are message endpoints. This does not mean that you should necessarily connect your existing
application code directly. Any real-world enterprise integration solution requires some amount of
code focused upon integration concerns such as routing and transformation. The important thing is
to achieve separation of concerns between the integration logic and the business logic. In other
words, as with the Model-View-Controller (MVC) paradigm for web applications, the goal should be
to provide a thin but dedicated layer that translates inbound requests into service layer invocations
and then translates service layer return values into outbound replies. The next section provides an
overview of the message endpoint types that handle these responsibilities, and, in upcoming
chapters, you can see how Spring Integration’s declarative configuration options provide a non-
invasive way to use each of these.

5.4. Message Endpoints
A Message Endpoint represents the “filter” of a pipes-and-filters architecture. As mentioned earlier,
the endpoint’s primary role is to connect application code to the messaging framework and to do so
in a non-invasive manner. In other words, the application code should ideally have no awareness
of the message objects or the message channels. This is similar to the role of a controller in the MVC
paradigm. Just as a controller handles HTTP requests, the message endpoint handles messages. Just
as controllers are mapped to URL patterns, message endpoints are mapped to message channels.
The goal is the same in both cases: isolate application code from the infrastructure. These concepts
and all of the patterns that follow are discussed at length in the Enterprise Integration Patterns
book. Here, we provide only a high-level description of the main endpoint types supported by
Spring Integration and the roles associated with those types. The chapters that follow elaborate and
provide sample code as well as configuration examples.

5.4.1. Message Transformer

A message transformer is responsible for converting a message’s content or structure and
returning the modified message. Probably the most common type of transformer is one that
converts the payload of the message from one format to another (such as from XML to
java.lang.String). Similarly, a transformer can add, remove, or modify the message’s header
values.

5.4.2. Message Filter

A message filter determines whether a message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a
property value, the presence of a header, or other conditions. If the message is accepted, it is sent to
the output channel. If not, it is dropped (or, for a more severe implementation, an Exception could
be thrown). Message filters are often used in conjunction with a publish-subscribe channel, where
multiple consumers may receive the same message and use the criteria of the filter to narrow down
the set of messages to be processed.

13

https://www.enterpriseintegrationpatterns.com/



Be careful not to confuse the generic use of “filter” within the pipes-and-filters
architectural pattern with this specific endpoint type that selectively narrows
down the messages flowing between two channels. The pipes-and-filters concept of
a “filter” matches more closely with Spring Integration’s message endpoint: any
component that can be connected to a message channel in order to send or receive
messages.

5.4.3. Message Router

A message router is responsible for deciding what channel or channels (if any) should receive the
message next. Typically, the decision is based upon the message’s content or the metadata available
in the message headers. A message router is often used as a dynamic alternative to a statically
configured output channel on a service activator or other endpoint capable of sending reply
messages. Likewise, a message router provides a proactive alternative to the reactive message
filters used by multiple subscribers, as described earlier.

Figure 3. Message Router

5.4.4. Splitter

A splitter is another type of message endpoint whose responsibility is to accept a message from its
input channel, split that message into multiple messages, and send each of those to its output
channel. This is typically used for dividing a “composite” payload object into a group of messages
containing the subdivided payloads.

5.4.5. Aggregator

Basically a mirror-image of the splitter, the aggregator is a type of message endpoint that receives
multiple messages and combines them into a single message. In fact, aggregators are often
downstream consumers in a pipeline that includes a splitter. Technically, the aggregator is more
complex than a splitter, because it is required to maintain state (the messages to be aggregated), to
decide when the complete group of messages is available, and to timeout if necessary. Furthermore,
in case of a timeout, the aggregator needs to know whether to send the partial results, discard
them, or send them to a separate channel. Spring Integration provides a CorrelationStrategy, a
ReleaseStrategy, and configurable settings for timeout, whether to send partial results upon
timeout, and a discard channel.

5.4.6. Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input message channel must be configured, and, if the service method to be invoked is capable

14

of returning a value, an output message Channel may also be provided.


The output channel is optional, since each message may also provide its own
'Return Address' header. This same rule applies for all consumer endpoints.

The service activator invokes an operation on some service object to process the request message,
extracting the request message’s payload and converting (if the method does not expect a message-
typed parameter). Whenever the service object’s method returns a value, that return value is
likewise converted to a reply message if necessary (if it is not already a message type). That reply
message is sent to the output channel. If no output channel has been configured, the reply is sent to
the channel specified in the message’s “return address”, if available.

A request-reply service activator endpoint connects a target object’s method to input and output
Message Channels.

Figure 4. Service Activator


As discussed earlier, in Message Channel, channels can be pollable or subscribable.
In the preceding diagram, this is depicted by the “clock” symbol and the solid
arrow (poll) and the dotted arrow (subscribe).

5.4.7. Channel Adapter

A channel adapter is an endpoint that connects a message channel to some other system or
transport. Channel adapters may be either inbound or outbound. Typically, the channel adapter
does some mapping between the message and whatever object or resource is received from or sent
to the other system (file, HTTP Request, JMS message, and others). Depending on the transport, the
channel adapter may also populate or extract message header values. Spring Integration provides a
number of channel adapters, which are described in upcoming chapters.

Figure 5. An inbound channel adapter endpoint connects a source system to a MessageChannel.

15


Message sources can be pollable (for example, POP3) or message-driven (for
example, IMAP Idle). In the preceding diagram, this is depicted by the “clock”
symbol and the solid arrow (poll) and the dotted arrow (message-driven).

Figure 6. An outbound channel adapter endpoint connects a MessageChannel to a target system.


As discussed earlier in Message Channel, channels can be pollable or subscribable.
In the preceding diagram, this is depicted by the “clock” symbol and the solid
arrow (poll) and the dotted arrow (subscribe).

5.4.8. Endpoint Bean Names

Consuming endpoints (anything with an inputChannel) consist of two beans, the consumer and the
message handler. The consumer has a reference to the message handler and invokes it as messages
arrive.

Consider the following XML example:

<int:service-activator id = "someService" ... />

Given the preceding example, the bean names are as follows:

• Consumer: someService (the id)

• Handler: someService.handler

When using Enterprise Integration Pattern (EIP) annotations, the names depend on several factors.
Consider the following example of an annotated POJO:

@Component
public class SomeComponent {

 @ServiceActivator(inputChannel = ...)
 public String someMethod(...) {
 ...
 }

}

16

Given the preceding example, the bean names are as follows:

• Consumer: someComponent.someMethod.serviceActivator

• Handler: someComponent.someMethod.serviceActivator.handler

Starting with version 5.0.4, you can modify these names by using the @EndpointId annotation, as the
following example shows:

@Component
public class SomeComponent {

 @EndpointId("someService")
 @ServiceActivator(inputChannel = ...)
 public String someMethod(...) {
 ...
 }

}

Given the preceding example, the bean names are as follows:

• Consumer: someService

• Handler: someService.handler

The @EndpointId creates names as created by the id attribute with XML configuration. Consider the
following example of an annotated bean:

@Configuration
public class SomeConfiguration {

 @Bean
 @ServiceActivator(inputChannel = ...)
 public MessageHandler someHandler() {
 ...
 }

}

Given the preceding example, the bean names are as follows:

• Consumer: someConfiguration.someHandler.serviceActivator

• Handler: someHandler (the @Bean name)

Starting with version 5.0.4, you can modify these names by using the @EndpointId annotation, as the

17

following example shows:

@Configuration
public class SomeConfiguration {

 @Bean("someService.handler") ①
 @EndpointId("someService") ②
 @ServiceActivator(inputChannel = ...)
 public MessageHandler someHandler() {
 ...
 }

}

① Handler: someService.handler (the bean name)

② Consumer: someService (the endpoint ID)

The @EndpointId annotation creates names as created by the id attribute with XML configuration, as
long as you use the convention of appending .handler to the @Bean name.

There is one special case where a third bean is created: For architectural reasons, if a
MessageHandler @Bean does not define an AbstractReplyProducingMessageHandler, the framework
wraps the provided bean in a ReplyProducingMessageHandlerWrapper. This wrapper supports request
handler advice handling and emits the normal 'produced no reply' debug log messages. Its bean
name is the handler bean name plus .wrapper (when there is an @EndpointId — otherwise, it is the
normal generated handler name).

Similarly Pollable Message Sources create two beans, a SourcePollingChannelAdapter (SPCA) and a
MessageSource.

Consider the following XML configuration:

<int:inbound-channel-adapter id = "someAdapter" ... />

Given the preceding XML configuration, the bean names are as follows:

• SPCA: someAdapter (the id)

• Handler: someAdapter.source

Consider the following Java configuration of a POJO to define an @EndpointId:

18

./polling-consumer.pdf#pollable-message-source

@EndpointId("someAdapter")
@InboundChannelAdapter(channel = "channel3", poller = @Poller(fixedDelay = "5000"
))
public String pojoSource() {
 ...
}

Given the preceding Java configuration example, the bean names are as follows:

• SPCA: someAdapter

• Handler: someAdapter.source

Consider the following Java configuration of a bean to define an @EndpointID:

@Bean("someAdapter.source")
@EndpointId("someAdapter")
@InboundChannelAdapter(channel = "channel3", poller = @Poller(fixedDelay = "5000"
))
public MessageSource<?> source() {
 return () -> {
 ...
 };
}

Given the preceding example, the bean names are as follows:

• SPCA: someAdapter

• Handler: someAdapter.source (as long as you use the convention of appending .source to the
@Bean name)

5.5. Configuration and @EnableIntegration
Throughout this document, you can see references to XML namespace support for declaring
elements in a Spring Integration flow. This support is provided by a series of namespace parsers
that generate appropriate bean definitions to implement a particular component. For example,
many endpoints consist of a MessageHandler bean and a ConsumerEndpointFactoryBean into which the
handler and an input channel name are injected.

The first time a Spring Integration namespace element is encountered, the framework
automatically declares a number of beans (a task scheduler, an implicit channel creator, and
others) that are used to support the runtime environment.

19



Version 4.0 introduced the @EnableIntegration annotation, to allow the registration
of Spring Integration infrastructure beans (see the Javadoc). This annotation is
required when only Java configuration is used — for example with Spring Boot or
Spring Integration Messaging Annotation support and Spring Integration Java DSL
with no XML integration configuration.

The @EnableIntegration annotation is also useful when you have a parent context with no Spring
Integration components and two or more child contexts that use Spring Integration. It lets these
common components be declared once only, in the parent context.

The @EnableIntegration annotation registers many infrastructure components with the application
context. In particular, it:

• Registers some built-in beans, such as errorChannel and its LoggingHandler, taskScheduler for
pollers, jsonPath SpEL-function, and others.

• Adds several BeanFactoryPostProcessor instances to enhance the BeanFactory for global and
default integration environment.

• Adds several BeanPostProcessor instances to enhance or convert and wrap particular beans for
integration purposes.

• Adds annotation processors to parse messaging annotations and registers components for them
with the application context.

The @IntegrationComponentScan annotation also permits classpath scanning. This annotation plays a
similar role as the standard Spring Framework @ComponentScan annotation, but it is restricted to
components and annotations that are specific to Spring Integration, which the standard Spring
Framework component scan mechanism cannot reach. For an example, see @MessagingGateway
Annotation.

The @EnablePublisher annotation registers a PublisherAnnotationBeanPostProcessor bean and
configures the default-publisher-channel for those @Publisher annotations that are provided
without a channel attribute. If more than one @EnablePublisher annotation is found, they must all
have the same value for the default channel. See Annotation-driven Configuration with the
@Publisher Annotation for more information.

The @GlobalChannelInterceptor annotation has been introduced to mark ChannelInterceptor beans
for global channel interception. This annotation is an analogue of the <int:channel-interceptor>
XML element (see Global Channel Interceptor Configuration). @GlobalChannelInterceptor
annotations can be placed at the class level (with a @Component stereotype annotation) or on @Bean
methods within @Configuration classes. In either case, the bean must implement ChannelInterceptor.

Starting with version 5.1, global channel interceptors apply to dynamically registered
channels — such as beans that are initialized by using beanFactory.initializeBean() or through the
IntegrationFlowContext when using the Java DSL. Previously, interceptors were not applied when
beans were created after the application context was refreshed.

The @IntegrationConverter annotation marks Converter, GenericConverter, or ConverterFactory beans
as candidate converters for integrationConversionService. This annotation is an analogue of the
<int:converter> XML element (see Payload Type Conversion). You can place @IntegrationConverter

20

https://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/config/EnableIntegration.html
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation
./channel.pdf#global-channel-configuration-interceptors
./endpoint.pdf#payload-type-conversion

annotations at the class level (with a @Component stereotype annotation) or on @Bean methods within
@Configuration classes.

See Annotation Support for more information about messaging annotations.

5.6. Programming Considerations
You should use plain old java objects (POJOs) whenever possible and only expose the framework in
your code when absolutely necessary. See POJO Method invocation for more information.

If you do expose the framework to your classes, there are some considerations that need to be taken
into account, especially during application startup:

• If your component is ApplicationContextAware, you should generally not use the
ApplicationContext in the setApplicationContext() method. Instead, store a reference and defer
such uses until later in the context lifecycle.

• If your component is an InitializingBean or uses @PostConstruct methods, do not send any
messages from these initialization methods. The application context is not yet initialized when
these methods are called, and sending such messages is likely to fail. If you need to send a
messages during startup, implement ApplicationListener and wait for the
ContextRefreshedEvent. Alternatively, implement SmartLifecycle, put your bean in a late phase,
and send the messages from the start() method.

5.6.1. Considerations When Using Packaged (for example, Shaded) Jars

Spring Integration bootstraps certain features by using Spring Framework’s SpringFactories
mechanism to load several IntegrationConfigurationInitializer classes. This includes the -core jar
as well as certain others, including -http and -jmx. The information for this process is stored in a
META-INF/spring.factories file in each jar.

Some developers prefer to repackage their application and all dependencies into a single jar by
using well known tools, such as the Apache Maven Shade Plugin.

By default, the shade plugin does not merge the spring.factories files when producing the shaded
jar.

In addition to spring.factories, other META-INF files (spring.handlers and spring.schemas) are used
for XML configuration. These files also need to be merged.



Spring Boot’s executable jar mechanism takes a different approach, in that it nests
the jars, thus retaining each spring.factories file on the class path. So, with a
Spring Boot application, nothing more is needed if you use its default executable
jar format.

Even if you do not use Spring Boot, you can still use the tooling provided by Boot to enhance the
shade plugin by adding transformers for the above mentioned files.

You may wish to consult the current spring-boot-starter-parent pom to see the current settings that
boot uses. The following example shows how to configure the plugin:

21

./configuration.pdf#annotations
https://maven.apache.org/plugins/maven-shade-plugin/
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-starters/spring-boot-starter-parent/pom.xml

Example 1. pom.xml

22

...
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <configuration>
 <keepDependenciesWithProvidedScope>
true</keepDependenciesWithProvidedScope>
 <createDependencyReducedPom>true</createDependencyReducedPom>
 </configuration>
 <dependencies>
 <dependency> ①
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${spring.boot.version}</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers> ②
 <transformer
 implementation=
"org.apache.maven.plugins.shade.resource.AppendingTransformer">
 <resource>META-INF/spring.handlers</resource>
 </transformer>
 <transformer
 implementation=
"org.springframework.boot.maven.PropertiesMergingResourceTransformer">
 <resource>META-INF/spring.factories</resource>
 </transformer>
 <transformer
 implementation=
"org.apache.maven.plugins.shade.resource.AppendingTransformer">
 <resource>META-INF/spring.schemas</resource>
 </transformer>
 <transformer
 implementation=
"org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />
 </transformers>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
...

23

Specifically,

① Add the spring-boot-maven-plugin as a dependency.

② Configure the transformers.

You can add a property for ${spring.boot.version} or use an explicit version.

5.7. Programming Tips and Tricks
This section documents some of the ways to get the most from Spring Integration.

5.7.1. XML Schemas

When using XML configuration, to avoid getting false schema validation errors, you should use a
“Spring-aware” IDE, such as the Spring Tool Suite (STS), Eclipse with the Spring IDE plugins, or
IntelliJ IDEA. These IDEs know how to resolve the correct XML schema from the classpath (by using
the META-INF/spring.schemas file in the jars). When using STS or Eclipse with the plugin, you must
enable Spring Project Nature on the project.

The schemas hosted on the internet for certain legacy modules (those that existed in version 1.0)
are the 1.0 versions for compatibility reasons. If your IDE uses these schemas, you are likely to see
false errors.

Each of these online schemas has a warning similar to the following:



This schema is for the 1.0 version of Spring Integration Core. We cannot update it
to the current schema because that will break any applications using 1.0.3 or
lower. For subsequent versions, the unversioned schema is resolved from the
classpath and obtained from the jar. Please refer to github:

github.com/spring-projects/spring-integration/tree/master/spring-integration-core/
src/main/resources/org/springframework/integration/config

The affected modules are

• core (spring-integration.xsd)

• file

• http

• jms

• mail

• rmi

• security

• stream

• ws

24

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config
https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

• xml

5.7.2. Finding Class Names for Java and DSL Configuration

With XML configuration and Spring Integration Namespace support, the XML parsers hide how
target beans are declared and wired together. For Java configuration, it is important to understand
the Framework API for target end-user applications.

The first-class citizens for EIP implementation are Message, Channel, and Endpoint (see Main
Components, earlier in this chapter). Their implementations (contracts) are:

• org.springframework.messaging.Message: See Message;

• org.springframework.messaging.MessageChannel: See Message Channels;

• org.springframework.integration.endpoint.AbstractEndpoint: See Poller.

The first two are simple enough to understand how to implement, configure, and use. The last one
deserves more attention

The AbstractEndpoint is widely used throughout the Spring Framework for different component
implementations. Its main implementations are:

• EventDrivenConsumer, used when we subscribe to a SubscribableChannel to listen for messages.

• PollingConsumer, used when we poll for messages from a PollableChannel.

When you use messaging annotations or the Java DSL, you need to worry about these components,
because the Framework automatically produces them with appropriate annotations and
BeanPostProcessor implementations. When building components manually, you should use the
ConsumerEndpointFactoryBean to help determine the target AbstractEndpoint consumer
implementation to create, based on the provided inputChannel property.

On the other hand, the ConsumerEndpointFactoryBean delegates to an another first class citizen in the
Framework - org.springframework.messaging.MessageHandler. The goal of the implementation of this
interface is to handle the message consumed by the endpoint from the channel. All EIP components
in Spring Integration are MessageHandler implementations (for example, AggregatingMessageHandler,
MessageTransformingHandler, AbstractMessageSplitter, and others). The target protocol outbound
adapters (FileWritingMessageHandler, HttpRequestExecutingMessageHandler,
AbstractMqttMessageHandler, and others) are also MessageHandler implementations. When you
develop Spring Integration applications with Java configuration, you should look into the Spring
Integration module to find an appropriate MessageHandler implementation to use for the
@ServiceActivator configuration. For example, to send an XMPP message (see XMPP Support) you
should configure something like the following:

25

./message.pdf#message
./channel.pdf#channel
./polling-consumer.pdf#polling-consumer
./xmpp.pdf#xmpp

@Bean
@ServiceActivator(inputChannel = "input")
public MessageHandler sendChatMessageHandler(XMPPConnection xmppConnection) {
 ChatMessageSendingMessageHandler handler = new
ChatMessageSendingMessageHandler(xmppConnection);

 DefaultXmppHeaderMapper xmppHeaderMapper = new DefaultXmppHeaderMapper();
 xmppHeaderMapper.setRequestHeaderNames("*");
 handler.setHeaderMapper(xmppHeaderMapper);

 return handler;
}

The MessageHandler implementations represent the outbound and processing part of the message
flow.

The inbound message flow side has its own components, which are divided into polling and
listening behaviors. The listening (message-driven) components are simple and typically require
only one target class implementation to be ready to produce messages. Listening components can
be one-way MessageProducerSupport implementations, (such as
AbstractMqttMessageDrivenChannelAdapter and ImapIdleChannelAdapter) or request-reply
MessagingGatewaySupport implementations (such as AmqpInboundGateway and
AbstractWebServiceInboundGateway).

Polling inbound endpoints are for those protocols that do not provide a listener API or are not
intended for such a behavior, including any file based protocol (such as FTP), any data bases
(RDBMS or NoSQL), and others.

These inbound endpoints consist of two components: the poller configuration, to initiate the polling
task periodically, and a message source class to read data from the target protocol and produce a
message for the downstream integration flow. The first class for the poller configuration is a
SourcePollingChannelAdapter. It is one more AbstractEndpoint implementation, but especially for
polling to initiate an integration flow. Typically, with the messaging annotations or Java DSL, you
should not worry about this class. The Framework produces a bean for it, based on the
@InboundChannelAdapter configuration or a Java DSL builder spec.

Message source components are more important for the target application development, and they
all implement the MessageSource interface (for example, MongoDbMessageSource and
AbstractTwitterMessageSource). With that in mind, our config for reading data from an RDBMS table
with JDBC could resemble the following:

26

@Bean
@InboundChannelAdapter(value = "fooChannel", poller = @Poller(fixedDelay="5000"))
public MessageSource<?> storedProc(DataSource dataSource) {
 return new JdbcPollingChannelAdapter(dataSource, "SELECT * FROM foo where
status = 0");
}

You can find all the required inbound and outbound classes for the target protocols in the
particular Spring Integration module (in most cases, in the respective package). For example, the
spring-integration-websocket adapters are:

• o.s.i.websocket.inbound.WebSocketInboundChannelAdapter: Implements MessageProducerSupport to
listen for frames on the socket and produce message to the channel.

• o.s.i.websocket.outbound.WebSocketOutboundMessageHandler: The one-way
AbstractMessageHandler implementation to convert incoming messages to the appropriate frame
and send over websocket.

If you are familiar with Spring Integration XML configuration, starting with version 4.3, we provide
information in the XSD element definitions about which target classes are used to declare beans for
the adapter or gateway, as the following example shows:

<xsd:element name="outbound-async-gateway">
 <xsd:annotation>
 <xsd:documentation>
Configures a Consumer Endpoint for the
'o.s.i.amqp.outbound.AsyncAmqpOutboundGateway'
that will publish an AMQP Message to the provided Exchange and expect a reply
Message.
The sending thread returns immediately; the reply is sent asynchronously; uses
'AsyncRabbitTemplate.sendAndReceive()'.
 </xsd:documentation>
 </xsd:annotation>

5.8. POJO Method invocation
As discussed in Programming Considerations, we recommend using a POJO programming style, as
the following example shows:

@ServiceActivator
public String myService(String payload) { ... }

27

In this case, the framework extracts a String payload, invokes your method, and wraps the result in
a message to send to the next component in the flow (the original headers are copied to the new
message). In fact, if you use XML configuration, you do not even need the @ServiceActivator
annotation, as the following paired examples show:

<int:service-activator ... ref="myPojo" method="myService" />

public String myService(String payload) { ... }

You can omit the method attribute as long as there is no ambiguity in the public methods on the
class.

You can also obtain header information in your POJO methods, as the following example shows:

@ServiceActivator
public String myService(@Payload String payload, @Header("foo") String fooHeader)
{ ... }

You can also dereference properties on the message, as the following example shows:

@ServiceActivator
public String myService(@Payload("payload.foo") String foo, @Header("bar.baz")
String barbaz) { ... }

Because various POJO method invocations are available, versions prior to 5.0 used SpEL (Spring
Expression Language) to invoke the POJO methods. SpEL (even interpreted) is usually “fast enough”
for these operations, when compared to the actual work usually done in the methods. However,
starting with version 5.0, the
org.springframework.messaging.handler.invocation.InvocableHandlerMethod is used by default
whenever possible. This technique is usually faster to execute than interpreted SpEL and is
consistent with other Spring messaging projects. The InvocableHandlerMethod is similar to the
technique used to invoke controller methods in Spring MVC. There are certain methods that are still
always invoked when using SpEL. Examples include annotated parameters with dereferenced
properties, as discussed earlier. This is because SpEL has the capability to navigate a property path.

There may be some other corner cases that we have not considered that also do not work with
InvocableHandlerMethod instances. For this reason, we automatically fall back to using SpEL in those
cases.

If you wish, you can also set up your POJO method such that it always uses SpEL, with the

28

UseSpelInvoker annotation, as the following example shows:

@UseSpelInvoker(compilerMode = "IMMEDIATE")
public void bar(String bar) { ... }

If the compilerMode property is omitted, the spring.expression.compiler.mode system property
determines the compiler mode. See SpEL compilation for more information about compiled SpEL.

29

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-spel-compilation

Core Messaging
This section covers all aspects of the core messaging API in Spring Integration. It covers messages,
message channels, and message endpoints. It also covers many of the enterprise integration
patterns, such as filter, router, transformer, service activator , splitter, and aggregator.

This section also contains material about system management, including the control bus and
message history support.

30

Chapter 6. Messaging Channels

6.1. Message Channels
While the Message plays the crucial role of encapsulating data, it is the MessageChannel that decouples
message producers from message consumers.

6.1.1. The MessageChannel Interface

Spring Integration’s top-level MessageChannel interface is defined as follows:

public interface MessageChannel {

 boolean send(Message message);

 boolean send(Message message, long timeout);
}

When sending a message, the return value is true if the message is sent successfully. If the send call
times out or is interrupted, it returns false.

PollableChannel

Since message channels may or may not buffer messages (as discussed in the Spring Integration
Overview), two sub-interfaces define the buffering (pollable) and non-buffering (subscribable)
channel behavior. The following listing shows the definition of the PollableChannel interface:

public interface PollableChannel extends MessageChannel {

 Message<?> receive();

 Message<?> receive(long timeout);

}

As with the send methods, when receiving a message, the return value is null in the case of a
timeout or interrupt.

SubscribableChannel

The SubscribableChannel base interface is implemented by channels that send messages directly to
their subscribed MessageHandler instances. Therefore, they do not provide receive methods for
polling. Instead, they define methods for managing those subscribers. The following listing shows
the definition of the SubscribableChannel interface:

31

./overview.pdf#overview
./overview.pdf#overview

public interface SubscribableChannel extends MessageChannel {

 boolean subscribe(MessageHandler handler);

 boolean unsubscribe(MessageHandler handler);

}

6.1.2. Message Channel Implementations

Spring Integration provides several different message channel implementations. The following
sections briefly describe each one.

PublishSubscribeChannel

The PublishSubscribeChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending event messages, whose primary role is
notification (as opposed to document messages, which are generally intended to be processed by a
single handler). Note that the PublishSubscribeChannel is intended for sending only. Since it
broadcasts to its subscribers directly when its send(Message) method is invoked, consumers cannot
poll for messages (it does not implement PollableChannel and therefore has no receive() method).
Instead, any subscriber must itself be a MessageHandler, and the subscriber’s handleMessage(Message)
method is invoked in turn.

Prior to version 3.0, invoking the send method on a PublishSubscribeChannel that had no subscribers
returned false. When used in conjunction with a MessagingTemplate, a MessageDeliveryException was
thrown. Starting with version 3.0, the behavior has changed such that a send is always considered
successful if at least the minimum subscribers are present (and successfully handle the message).
This behavior can be modified by setting the minSubscribers property, which defaults to 0.


If you use a TaskExecutor, only the presence of the correct number of subscribers is
used for this determination, because the actual handling of the message is
performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the PublishSubscribeChannel, the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default
no-argument constructor (providing an essentially unbounded capacity of Integer.MAX_VALUE) as
well as a constructor that accepts the queue capacity, as the following listing shows:

public QueueChannel(int capacity)

32

A channel that has not reached its capacity limit stores messages in its internal queue, and the
send(Message<?>) method returns immediately, even if no receiver is ready to handle the message. If
the queue has reached capacity, the sender blocks until room is available in the queue.
Alternatively, if you use the send method that has an additional timeout parameter, the queue
blocks until either room is available or the timeout period elapses, whichever occurs first. Similarly,
a receive() call returns immediately if a message is available on the queue, but, if the queue is
empty, then a receive call may block until either a message is available or the timeout, if provided,
elapses. In either case, it is possible to force an immediate return regardless of the queue’s state by
passing a timeout value of 0. Note, however, that calls to the versions of send() and receive() with
no timeout parameter block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in-first-out (FIFO) ordering, the PriorityChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon
a priority. By default, the priority is determined by the priority header within each message.
However, for custom priority determination logic, a comparator of type Comparator<Message<?>> can
be provided to the PriorityChannel constructor.

RendezvousChannel

The RendezvousChannel enables a “direct-handoff” scenario, wherein a sender blocks until another
party invokes the channel’s receive() method. The other party blocks until the sender sends the
message. Internally, this implementation is quite similar to the QueueChannel, except that it uses a
SynchronousQueue (a zero-capacity implementation of BlockingQueue). This works well in situations
where the sender and receiver operate in different threads, but asynchronously dropping the
message in a queue is not appropriate. In other words, with a RendezvousChannel, the sender knows
that some receiver has accepted the message, whereas with a QueueChannel, the message would have
been stored to the internal queue and potentially never received.



Keep in mind that all of these queue-based channels are storing messages in-
memory only by default. When persistence is required, you can either provide a
'message-store' attribute within the 'queue' element to reference a persistent
MessageStore implementation or you can replace the local channel with one that is
backed by a persistent broker, such as a JMS-backed channel or channel adapter.
The latter option lets you take advantage of any JMS provider’s implementation for
message persistence, as discussed in JMS Support. However, when buffering in a
queue is not necessary, the simplest approach is to rely upon the DirectChannel,
discussed in the next section.

The RendezvousChannel is also useful for implementing request-reply operations. The sender can
create a temporary, anonymous instance of RendezvousChannel, which it then sets as the
'replyChannel' header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for
a reply Message. This is very similar to the implementation used internally by many of Spring
Integration’s request-reply components.

33

./jms.pdf#jms

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
PublishSubscribeChannel than any of the queue-based channel implementations described earlier. It
implements the SubscribableChannel interface instead of the PollableChannel interface, so it
dispatches messages directly to a subscriber. As a point-to-point channel, however, it differs from
the PublishSubscribeChannel in that it sends each Message to a single subscribed MessageHandler.

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on “both sides” of the channel. For
example, if a handler subscribes to a DirectChannel, then sending a Message to that channel triggers
invocation of that handler’s handleMessage(Message) method directly in the sender’s thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support
transactions that must span across the channel while still benefiting from the abstraction and loose
coupling that the channel provides. If the send call is invoked within the scope of a transaction, the
outcome of the handler’s invocation (for example, updating a database record) plays a role in
determining the ultimate result of that transaction (commit or rollback).



Since the DirectChannel is the simplest option and does not add any additional
overhead that would be required for scheduling and managing the threads of a
poller, it is the default channel type within Spring Integration. The general idea is
to define the channels for an application, consider which of those need to provide
buffering or to throttle input, and modify those to be queue-based
PollableChannels. Likewise, if a channel needs to broadcast messages, it should not
be a DirectChannel but rather a PublishSubscribeChannel. Later, we show how each
of these channels can be configured.

The DirectChannel internally delegates to a message dispatcher to invoke its subscribed message
handlers, and that dispatcher can have a load-balancing strategy exposed by load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the message
dispatcher to help determine how messages are distributed amongst message handlers when
multiple message handlers subscribe to the same channel. As a convenience, the load-balancer
attribute exposes an enumeration of values pointing to pre-existing implementations of
LoadBalancingStrategy. round-robin (load-balances across the handlers in rotation) and none (for the
cases where one wants to explicitly disable load balancing) are the only available values. Other
strategy implementations may be added in future versions. However, since version 3.0, you can
provide your own implementation of the LoadBalancingStrategy and inject it by using the load-
balancer-ref attribute, which should point to a bean that implements LoadBalancingStrategy, as the
following example shows:

A FixedSubscriberChannel is a SubscribableChannel that only supports a single MessageHandler
subscriber that cannot be unsubscribed. This is useful for high-throughput performance use-cases
when no other subscribers are involved and no channel interceptors are needed.

34

<int:channel id="lbRefChannel">
 <int:dispatcher load-balancer-ref="lb"/>
</int:channel>

<bean id="lb" class="foo.bar.SampleLoadBalancingStrategy"/>

Note that the load-balancer and load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in conjunction with a boolean failover property. If the failover
value is true (the default), the dispatcher falls back to any subsequent handlers (as necessary) when
preceding handlers throw exceptions. The order is determined by an optional order value defined
on the handlers themselves or, if no such value exists, the order in which the handlers subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler and then fall
back in the same fixed order sequence every time an error occurs, no load-balancing strategy
should be provided. In other words, the dispatcher still supports the failover boolean property
even when no load-balancing is enabled. Without load-balancing, however, the invocation of
handlers always begins with the first, according to their order. For example, this approach works
well when there is a clear definition of primary, secondary, tertiary, and so on. When using the
namespace support, the order attribute on any endpoint determines the order.



Keep in mind that load-balancing and failover apply only when a channel has
more than one subscribed message handler. When using the namespace support,
this means that more than one endpoint shares the same channel reference
defined in the input-channel attribute.

Starting with version 5.2, when failover is true, a failure of the current handler together with the
failed message is logged under debug or info if configured respectively.

ExecutorChannel

The ExecutorChannel is a point-to-point channel that supports the same dispatcher configuration as
DirectChannel (load-balancing strategy and the failover boolean property). The key difference
between these two dispatching channel types is that the ExecutorChannel delegates to an instance of
TaskExecutor to perform the dispatch. This means that the send method typically does not block, but
it also means that the handler invocation may not occur in the sender’s thread. It therefore does not
support transactions that span the sender and receiving handler.



The sender can sometimes block. For example, when using a TaskExecutor with a
rejection policy that throttles the client (such as the
ThreadPoolExecutor.CallerRunsPolicy), the sender’s thread can execute the method
any time the thread pool is at its maximum capacity and the executor’s work
queue is full. Since that situation would only occur in a non-predictable way, you
should not rely upon it for transactions.

35

FluxMessageChannel

The FluxMessageChannel is an org.reactivestreams.Publisher implementation for "sinking" sent
messages into an internal reactor.core.publisher.Flux for on demand consumption by reactive
subscribers downstream. This channel implementation is neither a SubscribableChannel, nor a
PollableChannel, so only org.reactivestreams.Subscriber instances can be used to consume from
this channel honoring back-pressure nature of reactive streams. On the other hand, the
FluxMessageChannel implements a ReactiveStreamsSubscribableChannel with its
subscribeTo(Publisher<Message<?>>) contract allowing receiving events from reactive source
publishers, bridging a reactive stream into the integration flow. To achieve fully reactive behavior
for the whole integration flow, such a channel must be placed between all the endpoints in the flow.

See Reactive Streams Support for more information about interaction with Reactive Streams.

Scoped Channel

Spring Integration 1.0 provided a ThreadLocalChannel implementation, but that has been removed as
of 2.0. Now the more general way to handle the same requirement is to add a scope attribute to a
channel. The value of the attribute can be the name of a scope that is available within the context.
For example, in a web environment, certain scopes are available, and any custom scope
implementations can be registered with the context. The following example shows a thread-local
scope being applied to a channel, including the registration of the scope itself:

<int:channel id="threadScopedChannel" scope="thread">
 <int:queue />
</int:channel>

<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="thread" value=
"org.springframework.context.support.SimpleThreadScope" />
 </map>
 </property>
</bean>

The channel defined in the previous example also delegates to a queue internally, but the channel is
bound to the current thread, so the contents of the queue are similarly bound. That way, the thread
that sends to the channel can later receive those same messages, but no other thread would be able
to access them. While thread-scoped channels are rarely needed, they can be useful in situations
where DirectChannel instances are being used to enforce a single thread of operation but any reply
messages should be sent to a “terminal” channel. If that terminal channel is thread-scoped, the
original sending thread can collect its replies from the terminal channel.

Now, since any channel can be scoped, you can define your own scopes in addition to thread-Local.

36

./reactive-streams.pdf#reactive-streams

6.1.3. Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive
way. Since the Message instances are sent to and received from MessageChannel instances, those
channels provide an opportunity for intercepting the send and receive operations. The
ChannelInterceptor strategy interface, shown in the following listing, provides methods for each of
those operations:

public interface ChannelInterceptor {

 Message<?> preSend(Message<?> message, MessageChannel channel);

 void postSend(Message<?> message, MessageChannel channel, boolean sent);

 void afterSendCompletion(Message<?> message, MessageChannel channel, boolean
sent, Exception ex);

 boolean preReceive(MessageChannel channel);

 Message<?> postReceive(Message<?> message, MessageChannel channel);

 void afterReceiveCompletion(Message<?> message, MessageChannel channel,
Exception ex);
}

After implementing the interface, registering the interceptor with a channel is just a matter of
making the following call:

channel.addInterceptor(someChannelInterceptor);

The methods that return a Message instance can be used for transforming the Message or can return
'null' to prevent further processing (of course, any of the methods can throw a RuntimeException).
Also, the preReceive method can return false to prevent the receive operation from proceeding.



Keep in mind that receive() calls are only relevant for PollableChannels. In fact,
the SubscribableChannel interface does not even define a receive() method. The
reason for this is that when a Message is sent to a SubscribableChannel, it is sent
directly to zero or more subscribers, depending on the type of channel (for
example, a PublishSubscribeChannel sends to all of its subscribers). Therefore, the
preReceive(…), postReceive(…), and afterReceiveCompletion(…) interceptor
methods are invoked only when the interceptor is applied to a PollableChannel.

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple

37

https://www.enterpriseintegrationpatterns.com/WireTap.html

interceptor that sends the Message to another channel without otherwise altering the existing flow.
It can be very useful for debugging and monitoring. An example is shown in Wire Tap.

Because it is rarely necessary to implement all of the interceptor methods, the interface provides
no-op methods (methods returning void method have no code, the Message-returning methods
return the Message as-is, and the boolean method returns true).



The order of invocation for the interceptor methods depends on the type of
channel. As described earlier, the queue-based channels are the only ones where
the receive method is intercepted in the first place. Additionally, the relationship
between send and receive interception depends on the timing of the separate
sender and receiver threads. For example, if a receiver is already blocked while
waiting for a message, the order could be as follows: preSend, preReceive,
postReceive, postSend. However, if a receiver polls after the sender has placed a
message on the channel and has already returned, the order would be as follows:
preSend, postSend (some-time-elapses), preReceive, postReceive. The time that
elapses in such a case depends on a number of factors and is therefore generally
unpredictable (in fact, the receive may never happen). The type of queue also
plays a role (for example, rendezvous versus priority). In short, you cannot rely on
the order beyond the fact that preSend precedes postSend and preReceive precedes
postReceive.

Starting with Spring Framework 4.1 and Spring Integration 4.1, the ChannelInterceptor provides
new methods: afterSendCompletion() and afterReceiveCompletion(). They are invoked after send()'
and 'receive() calls, regardless of any exception that is raised, which allow for resource cleanup.
Note that the channel invokes these methods on the ChannelInterceptor list in the reverse order of
the initial preSend() and preReceive() calls.

Starting with version 5.1, global channel interceptors now apply to dynamically registered channels
- such as through beans that are initialized by using beanFactory.initializeBean() or
IntegrationFlowContext when using the Java DSL. Previously, interceptors were not applied when
beans were created after the application context was refreshed.

Also, starting with version 5.1, ChannelInterceptor.postReceive() is no longer called when no
message is received; it is no longer necessary to check for a null Message<?>. Previously, the method
was called. If you have an interceptor that relies on the previous behavior, implement
afterReceiveCompleted() instead, since that method is invoked, regardless of whether a message is
received or not.


Starting with version 5.2, the ChannelInterceptorAware is deprecated in favor of
InterceptableChannel from the Spring Messaging module, which it extends now for
backward compatibility.

6.1.4. MessagingTemplate

When the endpoints and their various configuration options are introduced, Spring Integration
provides a foundation for messaging components that enables non-invasive invocation of your
application code from the messaging system. However, it is sometimes necessary to invoke the

38

messaging system from your application code. For convenience when implementing such use cases,
Spring Integration provides a MessagingTemplate that supports a variety of operations across the
message channels, including request and reply scenarios. For example, it is possible to send a
request and wait for a reply, as follows:

MessagingTemplate template = new MessagingTemplate();

Message reply = template.sendAndReceive(someChannel, new GenericMessage("test"));

In the preceding example, a temporary anonymous channel would be created internally by the
template. The 'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and
other exchange types are also supported. The following listing shows the signatures for such
methods:

public boolean send(final MessageChannel channel, final Message<?> message) { ...
}

public Message<?> sendAndReceive(final MessageChannel channel, final Message<?>
request) { ...
}

public Message<?> receive(final PollableChannel<?> channel) { ...
}


A less invasive approach that lets you invoke simple interfaces with payload or
header values instead of Message instances is described in Enter the
GatewayProxyFactoryBean.

6.1.5. Configuring Message Channels

To create a message channel instance, you can use the <channel/> element, as follows:

<int:channel id="exampleChannel"/>

The equivalent Java configuration declares a DirectChannel @Bean:

39

./gateway.pdf#gateway-proxy
./gateway.pdf#gateway-proxy

@Bean
public MessageChannel exampleChannel() {
 return new DirectChannel();
}

The default channel type is point-to-point. To create a publish-subscribe channel, use the <publish-
subscribe-channel/> element, as follows:

<int:publish-subscribe-channel id="exampleChannel"/>

The Java configuration is:

@Bean
public MessageChannel exampleChannel() {
 return new PublishSubscribeChannel();
}

When you use the <channel/> element without any sub-elements, it creates a DirectChannel instance
(a SubscribableChannel).

However, you can alternatively provide a variety of <queue/> sub-elements to create any of the
pollable channel types (as described in Message Channel Implementations). The following sections
shows examples of each channel type.

DirectChannel Configuration

As mentioned earlier, DirectChannel is the default type. The following listing shows who to define
one:

<int:channel id="directChannel"/>

In Java Configuration:

40

@Bean
public MessageChannel directChannel() {
 return new DirectChannel();
}

A default channel has a round-robin load-balancer and also has failover enabled (see DirectChannel
for more detail). To disable one or both of these, add a <dispatcher/> sub-element and configure the
attributes as follows:

<int:channel id="failFastChannel">
 <int:dispatcher failover="false"/>
</channel>

<int:channel id="channelWithFixedOrderSequenceFailover">
 <int:dispatcher load-balancer="none"/>
</int:channel>

In Java Configuration:

@Bean
public MessageChannel failFastChannel() {
 DirectChannel channel = new DirectChannel();
 channel.setFailover(false);
 return channel;
}

@Bean
public MessageChannel failFastChannel() {
 return new DirectChannel(null);
}

Datatype Channel Configuration

Sometimes, a consumer can process only a particular type of payload, forcing you to ensure the
payload type of the input messages. The first thing that comes to mind may be to use a message
filter. However, all that message filter can do is filter out messages that are not compliant with the
requirements of the consumer. Another way would be to use a content-based router and route
messages with non-compliant data-types to specific transformers to enforce transformation and
conversion to the required data type. This would work, but a simpler way to accomplish the same
thing is to apply the Datatype Channel pattern. You can use separate datatype channels for each
specific payload data type.

41

https://www.enterpriseintegrationpatterns.com/DatatypeChannel.html

To create a datatype channel that accepts only messages that contain a certain payload type,
provide the data type’s fully-qualified class name in the channel element’s datatype attribute, as the
following example shows:

<int:channel id="numberChannel" datatype="java.lang.Number"/>

In Java Configuration:

@Bean
public MessageChannel numberChannel() {
 DirectChannel channel = new DirectChannel();
 channel.setDatatypes(Number.class);
 return channel;
}

Note that the type check passes for any type that is assignable to the channel’s datatype. In other
words, the numberChannel in the preceding example would accept messages whose payload is
java.lang.Integer or java.lang.Double. Multiple types can be provided as a comma-delimited list, as
the following example shows:

<int:channel id="stringOrNumberChannel" datatype=
"java.lang.String,java.lang.Number"/>

So the 'numberChannel' in the preceding example accepts only messages with a data type of
java.lang.Number. But what happens if the payload of the message is not of the required type? It
depends on whether you have defined a bean named integrationConversionService that is an
instance of Spring’s Conversion Service. If not, then an Exception would be thrown immediately.
However, if you have defined an integrationConversionService bean, it is used in an attempt to
convert the message’s payload to the acceptable type.

You can even register custom converters. For example, suppose you send a message with a String
payload to the 'numberChannel' we configured above. You might handle the message as follows:

MessageChannel inChannel = context.getBean("numberChannel", MessageChannel.class);
inChannel.send(new GenericMessage<String>("5"));

Typically this would be a perfectly legal operation. However, since we use Datatype Channel, the
result of such operation would generate an exception similar to the following:

42

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Exception in thread "main"
org.springframework.integration.MessageDeliveryException:
Channel 'numberChannel'
expected one of the following datataypes [class java.lang.Number],
but received [class java.lang.String]
…

The exception happens because we require the payload type to be a Number, but we sent a String. So
we need something to convert a String to a Number. For that, we can implement a converter similar
to the following example:

public static class StringToIntegerConverter implements Converter<String, Integer>
{
 public Integer convert(String source) {
 return Integer.parseInt(source);
 }
}

Then we can register it as a converter with the Integration Conversion Service, as the following
example shows:

<int:converter ref="strToInt"/>

<bean id="strToInt" class=
"org.springframework.integration.util.Demo.StringToIntegerConverter"/>

With Java Configuration you must use an @IntegrationConverter next to a @Bean annotation:

@Bean
@IntegrationConverter
public StringToIntegerConverter strToInt {
 return new StringToIntegerConverter();
}

Or on the StringToIntegerConverter class when it is marked with the @Component annotation for auto-
scanning.

When the 'converter' element is parsed, it creates the integrationConversionService bean if one is
not already defined. With that converter in place, the send operation would now be successful,

43

because the datatype channel uses that converter to convert the String payload to an Integer.

For more information regarding payload type conversion, see Payload Type Conversion.

Beginning with version 4.0, the integrationConversionService is invoked by the
DefaultDatatypeChannelMessageConverter, which looks up the conversion service in the application
context. To use a different conversion technique, you can specify the message-converter attribute on
the channel. This must be a reference to a MessageConverter implementation. Only the fromMessage
method is used. It provides the converter with access to the message headers (in case the
conversion might need information from the headers, such as content-type). The method can
return only the converted payload or a full Message object. If the latter, the converter must be
careful to copy all the headers from the inbound message.

Alternatively, you can declare a <bean/> of type MessageConverter with an ID of
datatypeChannelMessageConverter, and that converter is used by all channels with a datatype.

QueueChannel Configuration

To create a QueueChannel, use the <queue/> sub-element. You may specify the channel’s capacity as
follows:

<int:channel id="queueChannel">
 <queue capacity="25"/>
</int:channel>


If you do not provide a value for the 'capacity' attribute on this <queue/> sub-
element, the resulting queue is unbounded. To avoid issues such as running out of
memory, we highly recommend that you set an explicit value for a bounded queue.

With Java Configuration:

@Bean
public PollableChannel queueChannel() {
 return new QueueChannel(25);
}

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer messages but does so in-memory only by
default, it also introduces a possibility that messages could be lost in the event of a system failure.
To mitigate this risk, a QueueChannel may be backed by a persistent implementation of the
MessageGroupStore strategy interface. For more details on MessageGroupStore and MessageStore, see
Message Store.

44

./endpoint.pdf#payload-type-conversion
./message-store.pdf#message-store

 The capacity attribute is not allowed when the message-store attribute is used.

When a QueueChannel receives a Message, it adds the message to the message store. When a Message is
polled from a QueueChannel, it is removed from the message store.

By default, a QueueChannel stores its messages in an in-memory queue, which can lead to the lost
message scenario mentioned earlier. However, Spring Integration provides persistent stores, such
as the JdbcChannelMessageStore.

You can configure a message store for any QueueChannel by adding the message-store attribute, as the
following example shows:

<int:channel id="dbBackedChannel">
 <int:queue message-store="channelStore"/>
</int:channel>

<bean id="channelStore" class="o.s.i.jdbc.store.JdbcChannelMessageStore">
 <property name="dataSource" ref="dataSource"/>
 <property name="channelMessageStoreQueryProvider" ref="queryProvider"/>
</bean>

(See samples below for Java Configuration options.)

The Spring Integration JDBC module also provides a schema Data Definition Language (DDL) for a
number of popular databases. These schemas are located in the
org.springframework.integration.jdbc.store.channel package of that module (spring-integration-
jdbc).



One important feature is that, with any transactional persistent store (such as
JdbcChannelMessageStore), as long as the poller has a transaction configured, a
message removed from the store can be permanently removed only if the
transaction completes successfully. Otherwise the transaction rolls back, and the
Message is not lost.

Many other implementations of the message store are available as the growing number of Spring
projects related to “NoSQL” data stores come to provide underlying support for these stores. You
can also provide your own implementation of the MessageGroupStore interface if you cannot find
one that meets your particular needs.

Since version 4.0, we recommend that QueueChannel instances be configured to use a
ChannelMessageStore, if possible. These are generally optimized for this use, as compared to a
general message store. If the ChannelMessageStore is a ChannelPriorityMessageStore, the messages are
received in FIFO within priority order. The notion of priority is determined by the message store
implementation. For example, the following example shows the Java configuration for the
MongoDB Channel Message Store:

45

./mongodb.pdf#mongodb-priority-channel-message-store

@Bean
public BasicMessageGroupStore mongoDbChannelMessageStore(MongoDbFactory
mongoDbFactory) {
 MongoDbChannelMessageStore store = new MongoDbChannelMessageStore
(mongoDbFactory);
 store.setPriorityEnabled(true);
 return store;
}

@Bean
public PollableChannel priorityQueue(BasicMessageGroupStore
mongoDbChannelMessageStore) {
 return new PriorityChannel(new MessageGroupQueue(mongoDbChannelMessageStore,
"priorityQueue"));
}


Pay attention to the MessageGroupQueue class. That is a BlockingQueue
implementation to use the MessageGroupStore operations.

The same implementation with Java DSL might look like the following example:

@Bean
public IntegrationFlow priorityFlow(PriorityCapableChannelMessageStore
mongoDbChannelMessageStore) {
 return IntegrationFlows.from((Channels c) ->
 c.priority("priorityChannel", mongoDbChannelMessageStore, "priorityGroup"
))

 .get();
}

Another option to customize the QueueChannel environment is provided by the ref attribute of the
<int:queue> sub-element or its particular constructor. This attribute supplies the reference to any
java.util.Queue implementation. For example, a Hazelcast distributed IQueue can be configured as
follows:

46

https://hazelcast.com/use-cases/imdg/imdg-messaging/

@Bean
public HazelcastInstance hazelcastInstance() {
 return Hazelcast.newHazelcastInstance(new Config()
 .setProperty("hazelcast.logging.type",
"log4j"));
}

@Bean
public PollableChannel distributedQueue() {
 return new QueueChannel(hazelcastInstance()
 .getQueue("springIntegrationQueue"));
}

PublishSubscribeChannel Configuration

To create a PublishSubscribeChannel, use the <publish-subscribe-channel/> element. When using this
element, you can also specify the task-executor used for publishing messages (if none is specified, it
publishes in the sender’s thread), as follows:

<int:publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

With Java Configuration:

@Bean
public MessageChannel pubsubChannel() {
 return new PublishSubscribeChannel(someExecutor());
}

If you provide a resequencer or aggregator downstream from a PublishSubscribeChannel, you can
set the 'apply-sequence' property on the channel to true. Doing so indicates that the channel should
set the sequence-size and sequence-number message headers as well as the correlation ID prior to
passing along the messages. For example, if there are five subscribers, the sequence-size would be
set to 5, and the messages would have sequence-number header values ranging from 1 to 5.

Along with the Executor, you can also configure an ErrorHandler. By default, the
PublishSubscribeChannel uses a MessagePublishingErrorHandler implementation to send an error to
the MessageChannel from the errorChannel header or into the global errorChannel instance. If an
Executor is not configured, the ErrorHandler is ignored and exceptions are thrown directly to the
caller’s thread.

If you provide a Resequencer or Aggregator downstream from a PublishSubscribeChannel, you can set
the 'apply-sequence' property on the channel to true. Doing so indicates that the channel should set

47

the sequence-size and sequence-number message headers as well as the correlation ID prior to
passing along the messages. For example, if there are five subscribers, the sequence-size would be
set to 5, and the messages would have sequence-number header values ranging from 1 to 5.

The following example shows how to set the apply-sequence header to true:

<int:publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

@Bean
public MessageChannel pubsubChannel() {
 PublishSubscribeChannel channel = new PublishSubscribeChannel();
 channel.setApplySequence(false);
 return channel;
}



The apply-sequence value is false by default so that a publish-subscribe channel
can send the exact same message instances to multiple outbound channels. Since
Spring Integration enforces immutability of the payload and header references,
when the flag is set to true, the channel creates new Message instances with the
same payload reference but different header values.

ExecutorChannel

To create an ExecutorChannel, add the <dispatcher> sub-element with a task-executor attribute. The
attribute’s value can reference any TaskExecutor within the context. For example, doing so enables
configuration of a thread pool for dispatching messages to subscribed handlers. As mentioned
earlier, doing so breaks the single-threaded execution context between sender and receiver so that
any active transaction context is not shared by the invocation of the handler (that is, the handler
may throw an Exception, but the send invocation has already returned successfully). The following
example shows how to use the dispatcher element and specify an executor in the task-executor
attribute:

<int:channel id="executorChannel">
 <int:dispatcher task-executor="someExecutor"/>
</int:channel>

In Java Configuration you must use an ExecutorChannel bean definition:

48

@Bean
public MessageChannel executorChannel() {
 return new ExecutorChannel(someExecutor());
}



The load-balancer and failover options are also both available on the
<dispatcher/> sub-element, as described earlier in DirectChannel Configuration.
The same defaults apply. Consequently, the channel has a round-robin load-
balancing strategy with failover enabled unless explicit configuration is provided
for one or both of those attributes, as the following example shows:

<int:channel id="executorChannelWithoutFailover">
 <int:dispatcher task-executor="someExecutor" failover="false"/>
</int:channel>

PriorityChannel Configuration

To create a PriorityChannel, use the <priority-queue/> sub-element, as the following example
shows:

<int:channel id="priorityChannel">
 <int:priority-queue capacity="20"/>
</int:channel>

In JavaConfiguration:

@Bean
public PollableChannel priorityChannel() {
 return new PriorityChannel(20);
}

By default, the channel consults the priority header of the message. However, you can instead
provide a custom Comparator reference. Also, note that the PriorityChannel (like the other types)
does support the datatype attribute. As with the QueueChannel, it also supports a capacity attribute.
The following example demonstrates all of these:

49

<int:channel id="priorityChannel" datatype="example.Widget">
 <int:priority-queue comparator="widgetComparator"
 capacity="10"/>
</int:channel>

@Bean
public PollableChannel priorityChannel() {
 PriorityChannel channel = new PriorityChannel(20, widgetComparator());
 channel.setDatatypes(example.Widget.class);
 return channel;
}

Since version 4.0, the priority-channel child element supports the message-store option (comparator
and capacity are not allowed in that case). The message store must be a
PriorityCapableChannelMessageStore. Implementations of the PriorityCapableChannelMessageStore
are currently provided for Redis, JDBC, and MongoDB. See QueueChannel Configuration and Message
Store for more information. You can find sample configuration in Backing Message Channels.

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options to those described earlier, and its queue does not
accept any capacity value, since it is a zero-capacity direct handoff queue. The following example
shows how to declare a RendezvousChannel:

<int:channel id="rendezvousChannel"/>
 <int:rendezvous-queue/>
</int:channel>

@Bean
public PollableChannel rendezvousChannel() {
 return new RendezvousChannel();
}

Scoped Channel Configuration

Any channel can be configured with a scope attribute, as the following example shows:

50

./message-store.pdf#message-store
./message-store.pdf#message-store
./jdbc.pdf#jdbc-message-store-channels

<int:channel id="threadLocalChannel" scope="thread"/>

Channel Interceptor Configuration

Message channels may also have interceptors, as described in Channel Interceptors. The
<interceptors/> sub-element can be added to a <channel/> (or the more specific element types). You
can provide the ref attribute to reference any Spring-managed object that implements the
ChannelInterceptor interface, as the following example shows:

<int:channel id="exampleChannel">
 <int:interceptors>
 <ref bean="trafficMonitoringInterceptor"/>
 </int:interceptors>
</int:channel>

In general, we recommend defining the interceptor implementations in a separate location, since
they usually provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channel interceptors provide a clean and concise way of applying cross-cutting behavior per
individual channel. If the same behavior should be applied on multiple channels, configuring the
same set of interceptors for each channel would not be the most efficient way. To avoid repeated
configuration while also enabling interceptors to apply to multiple channels, Spring Integration
provides global interceptors. Consider the following pair of examples:

<int:channel-interceptor pattern="input*, thing2*, thing1, !cat*" order="3">
 <bean class="thing1.thing2SampleInterceptor"/>
</int:channel-interceptor>

<int:channel-interceptor ref="myInterceptor" pattern="input*, thing2*, thing1,
!cat*" order="3"/>

<bean id="myInterceptor" class="thing1.thing2SampleInterceptor"/>

Each <channel-interceptor/> element lets you define a global interceptor, which is applied on all
channels that match any patterns defined by the pattern attribute. In the preceding case, the global
interceptor is applied on the 'thing1' channel and all other channels that begin with 'thing2' or
'input' but not to channels starting with 'thing3' (since version 5.0).

51



The addition of this syntax to the pattern causes one possible (though perhaps
unlikely) problem. If you have a bean named !thing1 and you included a pattern of
!thing1 in your channel interceptor’s pattern patterns, it no longer matches. The
pattern now matches all beans not named thing1. In this case, you can escape the !
in the pattern with \. The pattern \!thing1 matches a bean named !thing1.

The order attribute lets you manage where this interceptor is injected when there are multiple
interceptors on a given channel. For example, channel 'inputChannel' could have individual
interceptors configured locally (see below), as the following example shows:

<int:channel id="inputChannel">
 <int:interceptors>
 <int:wire-tap channel="logger"/>
 </int:interceptors>
</int:channel>

A reasonable question is “how is a global interceptor injected in relation to other interceptors
configured locally or through other global interceptor definitions?” The current implementation
provides a simple mechanism for defining the order of interceptor execution. A positive number in
the order attribute ensures interceptor injection after any existing interceptors, while a negative
number ensures that the interceptor is injected before existing interceptors. This means that, in the
preceding example, the global interceptor is injected after (since its order is greater than 0) the
'wire-tap' interceptor configured locally. If there were another global interceptor with a matching
pattern, its order would be determined by comparing the values of both interceptors' order
attributes. To inject a global interceptor before the existing interceptors, use a negative value for
the order attribute.


Note that both the order and pattern attributes are optional. The default value for
order will be 0 and for pattern, the default is '*' (to match all channels).

Starting with version 4.3.15, you can configure the spring.integration.postProcessDynamicBeans =
true property to apply any global interceptors to dynamically created MessageChannel beans. See
Global Properties for more information.

Wire Tap

As mentioned earlier, Spring Integration provides a simple wire tap interceptor. You can configure
a wire tap on any channel within an <interceptors/> element. Doing so is especially useful for
debugging and can be used in conjunction with Spring Integration’s logging channel adapter as
follows:

52

./configuration.pdf#global-properties

<int:channel id="in">
 <int:interceptors>
 <int:wire-tap channel="logger"/>
 </int:interceptors>
</int:channel>

<int:logging-channel-adapter id="logger" level="DEBUG"/>



The 'logging-channel-adapter' also accepts an 'expression' attribute so that you can
evaluate a SpEL expression against the 'payload' and 'headers' variables.
Alternatively, to log the full message toString() result, provide a value of true for
the 'log-full-message' attribute. By default, it is false so that only the payload is
logged. Setting it to true enables logging of all headers in addition to the payload.
The 'expression' option provides the most flexibility (for example,
expression="payload.user.name").

One of the common misconceptions about the wire tap and other similar components (Message
Publishing Configuration) is that they are automatically asynchronous in nature. By default, wire
tap as a component is not invoked asynchronously. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the message channel. What makes certain
parts of the message flow synchronous or asynchronous is the type of Message Channel that has
been configured within that flow. That is one of the primary benefits of the message channel
abstraction. From the inception of the framework, we have always emphasized the need and the
value of the message channel as a first-class citizen of the framework. It is not just an internal,
implicit realization of the EIP pattern. It is fully exposed as a configurable component to the end
user. So, the wire tap component is only responsible for performing the following tasks:

• Intercept a message flow by tapping into a channel (for example, channelA)

• Grab each message

• Send the message to another channel (for example, channelB)

It is essentially a variation of the bridge pattern, but it is encapsulated within a channel definition
(and hence easier to enable and disable without disrupting a flow). Also, unlike the bridge, it
basically forks another message flow. Is that flow synchronous or asynchronous? The answer
depends on the type of message channel that 'channelB' is. We have the following options: direct
channel, pollable channel, and executor channel. The last two break the thread boundary, making
communication over such channels asynchronous, because the dispatching of the message from
that channel to its subscribed handlers happens on a different thread than the one used to send the
message to that channel. That is what is going to make your wire-tap flow synchronous or
asynchronous. It is consistent with other components within the framework (such as message
publisher) and adds a level of consistency and simplicity by sparing you from worrying in advance
(other than writing thread-safe code) about whether a particular piece of code should be
implemented as synchronous or asynchronous. The actual wiring of two pieces of code (say,
component A and component B) over a message channel is what makes their collaboration
synchronous or asynchronous. You may even want to change from synchronous to asynchronous in

53

./message-publishing.pdf#message-publishing-config
./message-publishing.pdf#message-publishing-config

the future, and message channel lets you to do it swiftly without ever touching the code.

One final point regarding the wire tap is that, despite the rationale provided above for not being
asynchronous by default, you should keep in mind that it is usually desirable to hand off the
message as soon as possible. Therefore, it would be quite common to use an asynchronous channel
option as the wire tap’s outbound channel. However we doe not enforce asynchronous behavior by
default. There are a number of use cases that would break if we did, including that you might not
want to break a transactional boundary. Perhaps you use the wire tap pattern for auditing
purposes, and you do want the audit messages to be sent within the original transaction. As an
example, you might connect the wire tap to a JMS outbound channel adapter. That way, you get the
best of both worlds: 1) the sending of a JMS Message can occur within the transaction while 2) it is
still a “fire-and-forget” action, thereby preventing any noticeable delay in the main message flow.



Starting with version 4.0, it is important to avoid circular references when an
interceptor (such as the WireTap class) references a channel. You need to exclude
such channels from those being intercepted by the current interceptor. This can be
done with appropriate patterns or programmatically. If you have a custom
ChannelInterceptor that references a channel, consider implementing
VetoCapableInterceptor. That way, the framework asks the interceptor if it is OK to
intercept each channel that is a candidate, based on the supplied pattern. You can
also add runtime protection in the interceptor methods to ensure that the channel
is not one that is referenced by the interceptor. The WireTap uses both of these
techniques.

Starting with version 4.3, the WireTap has additional constructors that take a channelName instead of a
MessageChannel instance. This can be convenient for Java configuration and when channel auto-
creation logic is being used. The target MessageChannel bean is resolved from the provided
channelName later, on the first interaction with the interceptor.


Channel resolution requires a BeanFactory, so the wire tap instance must be a
Spring-managed bean.

This late-binding approach also allows simplification of typical wire-tapping patterns with Java DSL
configuration, as the following example shows:

@Bean
public PollableChannel myChannel() {
 return MessageChannels.queue()
 .wireTap("loggingFlow.input")
 .get();
}

@Bean
public IntegrationFlow loggingFlow() {
 return f -> f.log();
}

54

https://docs.spring.io/autorepo/docs/spring-integration/current/api/org/springframework/integration/channel/interceptor/WireTap.html
https://docs.spring.io/autorepo/docs/spring-integration/current/api/org/springframework/integration/channel/interceptor/WireTap.html

Conditional Wire Taps

Wire taps can be made conditional by using the selector or selector-expression attributes. The
selector references a MessageSelector bean, which can determine at runtime whether the message
should go to the tap channel. Similarly, the selector-expression is a boolean SpEL expression that
performs the same purpose: If the expression evaluates to true, the message is sent to the tap
channel.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the Global Channel Interceptor
Configuration. To do so, configure a top level wire-tap element. Now, in addition to the normal wire-
tap namespace support, the pattern and order attributes are supported and work in exactly the
same way as they do for the channel-interceptor. The following example shows how to configure a
global wire tap:

<int:wire-tap pattern="input*, thing2*, thing1" order="3" channel="wiretapChannel
"/>



A global wire tap provides a convenient way to configure a single-channel wire tap
externally without modifying the existing channel configuration. To do so, set the
pattern attribute to the target channel name. For example, you can use this
technique to configure a test case to verify messages on a channel.

6.1.6. Special Channels

If namespace support is enabled, two special channels are defined within the application context by
default: errorChannel and nullChannel. The 'nullChannel' acts like /dev/null, logging any message
sent to it at the DEBUG level and returning immediately. Any time you face channel resolution errors
for a reply that you do not care about, you can set the affected component’s output-channel
attribute to 'nullChannel' (the name, 'nullChannel', is reserved within the application context). The
'errorChannel' is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in Error Handling.

See also Message Channels in the Java DSL chapter for more information about message channel
and interceptors.

6.2. Poller
This section describes how polling works in Spring Integration.

6.2.1. Polling Consumer

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following instances:

55

./error-handling.pdf#error-handling
./dsl.pdf#java-dsl-channels

• PollingConsumer

• EventDrivenConsumer

The actual implementation depends on the type of channel to which these endpoints connect. A
channel adapter connected to a channel that implements the
org.springframework.messaging.SubscribableChannel interface produces an instance of
EventDrivenConsumer. On the other hand, a channel adapter connected to a channel that implements
the org.springframework.messaging.PollableChannel interface (such as a QueueChannel) produces an
instance of PollingConsumer.

Polling consumers let Spring Integration components actively poll for Messages rather than process
messages in an event-driven manner.

They represent a critical cross-cutting concern in many messaging scenarios. In Spring Integration,
polling consumers are based on the pattern with the same name, which is described in the book
Enterprise Integration Patterns, by Gregor Hohpe and Bobby Woolf. You can find a description of
the pattern on the book’s website.

6.2.2. Pollable Message Source

Spring Integration offers a second variation of the polling consumer pattern. When inbound
channel adapters are used, these adapters are often wrapped by a SourcePollingChannelAdapter. For
example, when retrieving messages from a remote FTP Server location, the adapter described in
FTP Inbound Channel Adapter is configured with a poller to periodically retrieve messages. So,
when components are configured with pollers, the resulting instances are of one of the following
types:

• PollingConsumer

• SourcePollingChannelAdapter

This means that pollers are used in both inbound and outbound messaging scenarios. Here are
some use cases in which pollers are used:

• Polling certain external systems, such as FTP Servers, Databases, and Web Services

• Polling internal (pollable) message channels

• Polling internal services (such as repeatedly executing methods on a Java class)

56

https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
https://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/SubscribableChannel.html
https://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/PollableChannel.html
https://www.enterpriseintegrationpatterns.com/PollingConsumer.html
./ftp.pdf#ftp-inbound
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html



AOP advice classes can be applied to pollers, in an advice-chain, such as a
transaction advice to start a transaction. Starting with version 4.1, a PollSkipAdvice
is provided. Pollers use triggers to determine the time of the next poll. The
PollSkipAdvice can be used to suppress (skip) a poll, perhaps because there is some
downstream condition that would prevent the message being processed. To use
this advice, you have to provide it with an implementation of a PollSkipStrategy.
Starting with version 4.2.5, a SimplePollSkipStrategy is provided. To use it, you can
add an instance as a bean to the application context, inject it into a PollSkipAdvice,
and add that to the poller’s advice chain. To skip polling, call skipPolls(). To
resume polling, call reset(). Version 4.2 added more flexibility in this area. See
Conditional Pollers for Message Sources.

This chapter is meant to only give a high-level overview of polling consumers and how they fit into
the concept of message channels (see Message Channels) and channel adapters (see Channel
Adapter). For more information regarding messaging endpoints in general and polling consumers
in particular, see Message Endpoints.

6.2.3. Deferred Acknowledgment Pollable Message Source

Starting with version 5.0.1, certain modules provide MessageSource implementations that support
deferring acknowledgment until the downstream flow completes (or hands off the message to
another thread). This is currently limited to the AmqpMessageSource and the KafkaMessageSource.

With these message sources, the IntegrationMessageHeaderAccessor.ACKNOWLEDGMENT_CALLBACK header
(see MessageHeaderAccessor API) is added to the message. When used with pollable message sources,
the value of the header is an instance of AcknowledgmentCallback, as the following example shows:

57

./channel.pdf#channel
./channel-adapter.pdf#channel-adapter
./channel-adapter.pdf#channel-adapter
./endpoint.pdf#endpoint
./message.pdf#message-header-accessor
./message.pdf#message-header-accessor

@FunctionalInterface
public interface AcknowledgmentCallback {

 void acknowledge(Status status);

 boolean isAcknowledged();

 void noAutoAck();

 default boolean isAutoAck();

 enum Status {

 /**
 * Mark the message as accepted.
 */
 ACCEPT,

 /**
 * Mark the message as rejected.
 */
 REJECT,

 /**
 * Reject the message and requeue so that it will be redelivered.
 */
 REQUEUE

 }

}

Not all message sources (for example, Kafka) support the REJECT status. It is treated the same as
ACCEPT.

Applications can acknowledge a message at any time, as the following example shows:

Message<?> received = source.receive();

...

StaticMessageHeaderAccessor.getAcknowledgmentCallback(received)
 .acknowledge(Status.ACCEPT);

If the MessageSource is wired into a SourcePollingChannelAdapter, when the poller thread returns to
the adapter after the downstream flow completes, the adapter checks whether the acknowledgment
has already been acknowledged and, if not, sets its status to ACCEPT it (or REJECT if the flow throws
an exception). The status values are defined in the AcknowledgmentCallback.Status enumeration.

58

https://docs.spring.io/spring-integration/api/org/springframework/integration/support/AcknowledgmentCallback.Status.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/support/AcknowledgmentCallback.Status.html

Spring Integration provides MessageSourcePollingTemplate to perform ad-hoc polling of a
MessageSource. This, too, takes care of setting ACCEPT or REJECT on the AcknowledgmentCallback when
the MessageHandler callback returns (or throws an exception). The following example shows how to
poll with the MessageSourcePollingTemplate:

MessageSourcePollingTemplate template =
 new MessageSourcePollingTemplate(this.source);
template.poll(h -> {
 ...
});

In both cases (SourcePollingChannelAdapter and MessageSourcePollingTemplate), you can disable auto
ack/nack by calling noAutoAck() on the callback. You might do this if you hand off the message to
another thread and wish to acknowledge later. Not all implementations support this (for example,
Apache Kafka does not, because the offset commit has to be performed on the same thread).

6.2.4. Conditional Pollers for Message Sources

This section covers how to use conditional pollers.

Background

Advice objects, in an advice-chain on a poller, advise the whole polling task (both message retrieval
and processing). These “around advice” methods do not have access to any context for the
poll — only the poll itself. This is fine for requirements such as making a task transactional or
skipping a poll due to some external condition, as discussed earlier. What if we wish to take some
action depending on the result of the receive part of the poll or if we want to adjust the poller
depending on conditions? For those instances, Spring Integration offers “Smart” Polling.

“Smart” Polling

Version 5.3 introduced the ReceiveMessageAdvice interface. (The AbstractMessageSourceAdvice has
been deprecated in favor of default methods in the MessageSourceMutator.) Any Advice objects in the
advice-chain that implement this interface are applied only to the receive operation -
MessageSource.receive() and PollableChannel.receive(timeout). Therefore they can be applied only
for the SourcePollingChannelAdapter or PollingConsumer. Such classes implement the following
methods:

• beforeReceive(Object source) This method is called before the Object.receive() method. It lets
you examine and reconfigure the source. Returning false cancels this poll (similar to the
PollSkipAdvice mentioned earlier).

• Message<?> afterReceive(Message<?> result, Object source) This method is called after the
receive() method. Again, you can reconfigure the source or take any action (perhaps depending
on the result, which can be null if there was no message created by the source). You can even
return a different message

59



Thread safety

If an advice mutates the the, you should not configure the poller with a
TaskExecutor. If an advice mutates the source, such mutations are not thread safe
and could cause unexpected results, especially with high frequency pollers. If you
need to process poll results concurrently, consider using a downstream
ExecutorChannel instead of adding an executor to the poller.



Advice Chain Ordering

You should understand how the advice chain is processed during initialization.
Advice objects that do not implement ReceiveMessageAdvice are applied to the
whole poll process and are all invoked first, in order, before any
ReceiveMessageAdvice. Then ReceiveMessageAdvice objects are invoked in order
around the source receive() method. If you have, for example, Advice objects a, b,
c, d, where b and d are ReceiveMessageAdvice, the objects are applied in the
following order: a, c, b, d. Also, if a source is already a Proxy, the
ReceiveMessageAdvice is invoked after any existing Advice objects. If you wish to
change the order, you must wire up the proxy yourself.

SimpleActiveIdleReceiveMessageAdvice

(The previous SimpleActiveIdleMessageSourceAdvice for only MessageSource is deprecated.) This
advice is a simple implementation of ReceiveMessageAdvice. When used in conjunction with a
DynamicPeriodicTrigger, it adjusts the polling frequency, depending on whether or not the previous
poll resulted in a message or not. The poller must also have a reference to the same
DynamicPeriodicTrigger.



Important: Async Handoff

SimpleActiveIdleReceiveMessageAdvice modifies the trigger based on the receive()
result. This works only if the advice is called on the poller thread. It does not work
if the poller has a task-executor. To use this advice where you wish to use async
operations after the result of a poll, do the async handoff later, perhaps by using
an ExecutorChannel.

CompoundTriggerAdvice

This advice allows the selection of one of two triggers based on whether a poll returns a message or
not. Consider a poller that uses a CronTrigger. CronTrigger instances are immutable, so they cannot
be altered once constructed. Consider a use case where we want to use a cron expression to trigger
a poll once each hour but, if no message is received, poll once per minute and, when a message is
retrieved, revert to using the cron expression.

The advice (and poller) use a CompoundTrigger for this purpose. The trigger’s primary trigger can be a
CronTrigger. When the advice detects that no message is received, it adds the secondary trigger to
the CompoundTrigger. When the CompoundTrigger instance’s nextExecutionTime method is invoked, it
delegates to the secondary trigger, if present. Otherwise, it delegates to the primary trigger.

The poller must also have a reference to the same CompoundTrigger.

60

The following example shows the configuration for the hourly cron expression with a fallback to
every minute:

<int:inbound-channel-adapter channel="nullChannel" auto-startup="false">
 <bean class="org.springframework.integration.endpoint.PollerAdviceTests.Source" />
 <int:poller trigger="compoundTrigger">
 <int:advice-chain>
 <bean class="org.springframework.integration.aop.CompoundTriggerAdvice">
 <constructor-arg ref="compoundTrigger"/>
 <constructor-arg ref="secondary"/>
 </bean>
 </int:advice-chain>
 </int:poller>
</int:inbound-channel-adapter>

<bean id="compoundTrigger" class="
org.springframework.integration.util.CompoundTrigger">
 <constructor-arg ref="primary" />
</bean>

<bean id="primary" class="org.springframework.scheduling.support.CronTrigger">
 <constructor-arg value="0 0 * * * *" /> <!-- top of every hour -->
</bean>

<bean id="secondary" class="org.springframework.scheduling.support.PeriodicTrigger">
 <constructor-arg value="60000" />
</bean>



Important: Async Handoff

CompoundTriggerAdvice modifies the trigger based on the receive() result. This
works only if the advice is called on the poller thread. It does not work if the poller
has a task-executor. To use this advice where you wish to use async operations
after the result of a poll, do the async handoff later, perhaps by using an
ExecutorChannel.

MessageSource-only Advices

Some advices might be applied only for the MessageSource.receive() and they don’t make sense for
PollableChannel. For this purpose a MessageSourceMutator interface (an extension of the
ReceiveMessageAdvice) is still present. With default methods it fully replaces already deprecated
AbstractMessageSourceAdvice and should be used in those implementations where only
MessageSource proxying is expected. See Inbound Channel Adapters: Polling Multiple Servers and
Directories for more information.

6.3. Channel Adapter
A channel adapter is a message endpoint that enables connecting a single sender or receiver to a
message channel. Spring Integration provides a number of adapters to support various transports,

61

./ftp.pdf#ftp-rotating-server-advice
./ftp.pdf#ftp-rotating-server-advice

such as JMS, file, HTTP, web services, mail, and more. Upcoming chapters of this reference guide
discuss each adapter. However, this chapter focuses on the simple but flexible method-invoking
channel adapter support. There are both inbound and outbound adapters, and each may be
configured with XML elements provided in the core namespace. These provide an easy way to
extend Spring Integration, as long as you have a method that can be invoked as either a source or a
destination.

6.3.1. Configuring An Inbound Channel Adapter

An inbound-channel-adapter element can invoke any method on a Spring-managed object and send
a non-null return value to a MessageChannel after converting the method’s output to a Message. When
the adapter’s subscription is activated, a poller tries to receive messages from the source. The poller
is scheduled with the TaskScheduler according to the provided configuration. To configure the
polling interval or cron expression for an individual channel adapter, you can provide a 'poller'
element with one of the scheduling attributes, such as 'fixed-rate' or 'cron'. The following example
defines two inbound-channel-adapter instances:

<int:inbound-channel-adapter ref="source1" method="method1" channel="channel1">
 <int:poller fixed-rate="5000"/>
</int:inbound-channel-adapter>

<int:inbound-channel-adapter ref="source2" method="method2" channel="channel2">
 <int:poller cron="30 * 9-17 * * MON-FRI"/>
</int:channel-adapter>

See also Channel Adapter Expressions and Scripts.


If no poller is provided, then a single default poller must be registered within the
context. See Endpoint Namespace Support for more detail.

62

./endpoint.pdf#endpoint-namespace



Important: Poller Configuration

Some inbound-channel-adapter types are backed by a SourcePollingChannelAdapter,
which means they contain a poller configuration that polls the MessageSource (to
invoke a custom method that produces the value that becomes a Message payload)
based on the configuration specified in the Poller. The following example shows
the configuration of two pollers:

<int:poller max-messages-per-poll="1" fixed-rate="1000"/>

<int:poller max-messages-per-poll="10" fixed-rate="1000"/>

In the the first configuration, the polling task is invoked once per poll, and, during
each task (poll), the method (which results in the production of the message) is
invoked once, based on the max-messages-per-poll attribute value. In the second
configuration, the polling task is invoked 10 times per poll or until it returns 'null',
thus possibly producing ten messages per poll while each poll happens at one-
second intervals. However, what happens if the configuration looks like the
following example:

<int:poller fixed-rate="1000"/>

Note that there is no max-messages-per-poll specified. As we cover later, the
identical poller configuration in the PollingConsumer (for example, service-
activator, filter, router, and others) would have a default value of -1 for max-
messages-per-poll, which means “execute the polling task non-stop unless the
polling method returns null (perhaps because there are no more messages in the
QueueChannel)” and then sleep for one second.

However, in the SourcePollingChannelAdapter, it is a bit different. The default value
for max-messages-per-poll is 1, unless you explicitly set it to a negative value (such
as -1). This makes sure that the poller can react to lifecycle events (such as start
and stop) and prevents it from potentially spinning in an infinite loop if the
implementation of the custom method of the MessageSource has a potential to never
return null and happens to be non-interruptible.

However, if you are sure that your method can return null and you need to poll for
as many sources as available per each poll, you should explicitly set max-messages-
per-poll to a negative value, as the following example shows:

<int:poller max-messages-per-poll="-1" fixed-rate="1000"/>

63

6.3.2. Configuring An Outbound Channel Adapter

An outbound-channel-adapter element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of messages sent to that channel. The following
example shows how to define an outbound channel adapter:

<int:outbound-channel-adapter channel="channel1" ref="target" method="handle"/>

<beans:bean id="target" class="org.MyPojo"/>

If the channel being adapted is a PollableChannel, you must provide a poller sub-element, as the
following example shows:

<int:outbound-channel-adapter channel="channel2" ref="target" method="handle">
 <int:poller fixed-rate="3000" />
</int:outbound-channel-adapter>

<beans:bean id="target" class="org.MyPojo"/>

You should use a ref attribute if the POJO consumer implementation can be reused in other
<outbound-channel-adapter> definitions. However, if the consumer implementation is referenced by
only a single definition of the <outbound-channel-adapter>, you can define it as an inner bean, as the
following example shows:

<int:outbound-channel-adapter channel="channel" method="handle">
 <beans:bean class="org.Foo"/>
</int:outbound-channel-adapter>


Using both the ref attribute and an inner handler definition in the same
<outbound-channel-adapter> configuration is not allowed, as it creates an
ambiguous condition. Such a configuration results in an exception being thrown.

Any channel adapter can be created without a channel reference, in which case it implicitly creates
an instance of DirectChannel. The created channel’s name matches the id attribute of the <inbound-
channel-adapter> or <outbound-channel-adapter> element. Therefore, if channel is not provided, id is
required.

6.3.3. Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <inbound-channel-adapter> and <outbound-
channel-adapter> also provide support for SpEL expression evaluation. To use SpEL, provide the

64

expression string in the 'expression' attribute instead of providing the 'ref' and 'method' attributes
that are used for method-invocation on a bean. When an expression is evaluated, it follows the
same contract as method-invocation where: the expression for an <inbound-channel-adapter>
generates a message any time the evaluation result is a non-null value, while the expression for an
<outbound-channel-adapter> must be the equivalent of a void-returning method invocation.

Starting with Spring Integration 3.0, an <int:inbound-channel-adapter/> can also be configured with
a SpEL <expression/> (or even with a <script/>) sub-element, for when more sophistication is
required than can be achieved with the simple 'expression' attribute. If you provide a script as a
Resource by using the location attribute, you can also set refresh-check-delay, which allows the
resource to be periodically refreshed. If you want the script to be checked on each poll, you would
need to coordinate this setting with the poller’s trigger, as the following example shows:

<int:inbound-channel-adapter ref="source1" method="method1" channel="channel1">
 <int:poller max-messages-per-poll="1" fixed-delay="5000"/>
 <script:script lang="ruby" location="Foo.rb" refresh-check-delay="5000"/>
</int:inbound-channel-adapter>

See also the cacheSeconds property on the ReloadableResourceBundleExpressionSource when using the
<expression/> sub-element. For more information regarding expressions, see Spring Expression
Language (SpEL). For scripts, see Groovy support and Scripting Support.



The <int:inbound-channel-adapter/> is endpoint starts a message flow by
periodically triggering to poll some underlying MessageSource. Since, at the time of
polling, there is no message object, expressions and scripts do not have access to a
root Message, so there are no payload or headers properties that are available in
most other messaging SpEL expressions. The script can generate and return a
complete Message object with headers and payload or only a payload, which is
added to a message with basic headers.

6.4. Messaging Bridge
A messaging bridge is a relatively trivial endpoint that connects two message channels or channel
adapters. For example, you may want to connect a PollableChannel to a SubscribableChannel so that
the subscribing endpoints do not have to worry about any polling configuration. Instead, the
messaging bridge provides the polling configuration.

By providing an intermediary poller between two channels, you can use a messaging bridge to
throttle inbound messages. The poller’s trigger determines the rate at which messages arrive on the
second channel, and the poller’s maxMessagesPerPoll property enforces a limit on the throughput.

Another valid use for a messaging bridge is to connect two different systems. In such a scenario,
Spring Integration’s role is limited to making the connection between these systems and managing
a poller, if necessary. It is probably more common to have at least a transformer between the two
systems, to translate between their formats. In that case, the channels can be provided as the 'input-
channel' and 'output-channel' of a transformer endpoint. If data format translation is not required,

65

./spel.pdf#spel
./spel.pdf#spel
./groovy.pdf#groovy
./scripting.pdf#scripting

the messaging bridge may indeed be sufficient.

6.4.1. Configuring a Bridge with XML

You can use the <bridge> element is used to create a messaging bridge between two message
channels or channel adapters. To do so, provide the input-channel and output-channel attributes, as
the following example shows:

<int:bridge input-channel="input" output-channel="output"/>

As mentioned above, a common use case for the messaging bridge is to connect a PollableChannel to
a SubscribableChannel. When performing this role, the messaging bridge may also serve as a
throttler:

<int:bridge input-channel="pollable" output-channel="subscribable">
 <int:poller max-messages-per-poll="10" fixed-rate="5000"/>
 </int:bridge>

You can use a similar mechanism to connecting channel adapters. The following example shows a
simple “echo” between the stdin and stdout adapters from Spring Integration’s stream namespace:

<int-stream:stdin-channel-adapter id="stdin"/>

 <int-stream:stdout-channel-adapter id="stdout"/>

 <int:bridge id="echo" input-channel="stdin" output-channel="stdout"/>

Similar configurations work for other (potentially more useful) Channel Adapter bridges, such as
file-to-JMS or mail-to-file. Upcoming chapters cover the various channel adapters.


If no 'output-channel' is defined on a bridge, the reply channel provided by the
inbound message is used, if available. If neither an output nor a reply channel is
available, an exception is thrown.

6.4.2. Configuring a Bridge with Java Configuration

The following example shows how to configure a bridge in Java by using the @BridgeFrom
annotation:

66

@Bean
public PollableChannel polled() {
 return new QueueChannel();
}

@Bean
@BridgeFrom(value = "polled", poller = @Poller(fixedDelay = "5000",
maxMessagesPerPoll = "10"))
public SubscribableChannel direct() {
 return new DirectChannel();
}

The following example shows how to configure a bridge in Java by using the @BridgeTo annotation:

@Bean
@BridgeTo(value = "direct", poller = @Poller(fixedDelay = "5000", maxMessagesPerPoll =
"10"))
public PollableChannel polled() {
 return new QueueChannel();
}

@Bean
public SubscribableChannel direct() {
 return new DirectChannel();
}

Alternately, you can use a BridgeHandler, as the following example shows:

@Bean
@ServiceActivator(inputChannel = "polled",
 poller = @Poller(fixedRate = "5000", maxMessagesPerPoll = "10"))
public BridgeHandler bridge() {
 BridgeHandler bridge = new BridgeHandler();
 bridge.setOutputChannelName("direct");
 return bridge;
}

6.4.3. Configuring a Bridge with the Java DSL

You can use the Java Domain Specific Language (DSL) to configure a bridge, as the following
example shows:

67

@Bean
public IntegrationFlow bridgeFlow() {
 return IntegrationFlows.from("polled")
 .bridge(e -> e.poller(Pollers.fixedDelay(5000).maxMessagesPerPoll(10)))
 .channel("direct")
 .get();
}

68

Chapter 7. Message
The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message instance includes headers containing user-extensible properties as key-
value pairs.

7.1. The Message Interface
The following listing shows the definition of the Message interface:

public interface Message<T> {

 T getPayload();

 MessageHeaders getHeaders();

}

The Message interface is a core part of the API. By encapsulating the data in a generic wrapper, the
messaging system can pass it around without any knowledge of the data’s type. As an application
evolves to support new types or when the types themselves are modified or extended, the
messaging system is not affected. On the other hand, when some component in the messaging
system does require access to information about the Message, such metadata can typically be stored
to and retrieved from the metadata in the message headers.

7.2. Message Headers
Just as Spring Integration lets any Object be used as the payload of a Message, it also supports any
Object types as header values. In fact, the MessageHeaders class implements the java.util.Map_
interface, as the following class definition shows:

public final class MessageHeaders implements Map<String, Object>, Serializable {
 ...
}



Even though the MessageHeaders class implements Map, it is effectively a read-only
implementation. Any attempt to put a value in the Map results in an
UnsupportedOperationException. The same applies for remove and clear. Since
messages may be passed to multiple consumers, the structure of the Map cannot be
modified. Likewise, the message’s payload Object can not be set after the initial
creation. However, the mutability of the header values themselves (or the payload
Object) is intentionally left as a decision for the framework user.

69

As an implementation of Map, the headers can be retrieved by calling get(..) with the name of the
header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. The following
example shows each of these three options:

Object someValue = message.getHeaders().get("someKey");

CustomerId customerId = message.getHeaders().get("customerId", CustomerId.class);

Long timestamp = message.getHeaders().getTimestamp();

The following table describes the pre-defined message headers:

Table 1. Pre-defined Message Headers

Header Name Header Type Usage

 MessageHeaders.ID java.util.UUID An identifier for this message instance. Changes each
time a message is mutated.

 MessageHeaders.
TIMESTAMP

 java.lang.Long The time the message was created. Changes each time
a message is mutated.

 MessageHeaders.
REPLY_CHANNEL

 java.lang.Object
(String or
MessageChannel)

A channel to which a reply (if any) is sent when no
explicit output channel is configured and there is no
ROUTING_SLIP or the ROUTING_SLIP is exhausted. If the
value is a String, it must represent a bean name or
have been generated by a ChannelRegistry.

 MessageHeaders.
ERROR_CHANNEL

 java.lang.Object
(String or
MessageChannel)

A channel to which errors are sent. If the value is a
String, it must represent a bean name or have been
generated by a ChannelRegistry.

Many inbound and outbound adapter implementations also provide or expect certain headers, and
you can configure additional user-defined headers. Constants for these headers can be found in
those modules where such headers exist — for example. AmqpHeaders, JmsHeaders, and so on.

7.2.1. MessageHeaderAccessor API

Starting with Spring Framework 4.0 and Spring Integration 4.0, the core messaging abstraction has
been moved to the spring-messaging module, and the MessageHeaderAccessor API has been
introduced to provide additional abstraction over messaging implementations. All (core) Spring
Integration-specific message headers constants are now declared in the
IntegrationMessageHeaderAccessor class. The following table describes the pre-defined message
headers:

Table 2. Pre-defined Message Headers

70

Header Name Header Type Usage

 IntegrationMessageHeaderAccessor
.
CORRELATION_ID

 java.lang.Object Used to correlate two or more
messages.

 IntegrationMessageHeaderAccessor
.
SEQUENCE_NUMBER

 java.lang.Integer Usually a sequence number with a
group of messages with a
SEQUENCE_SIZE but can also be used in
a <resequencer/> to resequence an
unbounded group of messages.

 IntegrationMessageHeaderAccessor
.
SEQUENCE_SIZE

 java.lang.Integer The number of messages within a
group of correlated messages.

 IntegrationMessageHeaderAccessor
.
EXPIRATION_DATE

 java.lang.Long Indicates when a message is expired.
Not used by the framework directly
but can be set with a header enricher
and used in a <filter/> that is
configured with an
UnexpiredMessageSelector.

 IntegrationMessageHeaderAccessor
.
PRIORITY

 java.lang.Integer Message priority — for example,
within a PriorityChannel.

 IntegrationMessageHeaderAccessor
.
DUPLICATE_MESSAGE

 java.lang.Boolean True if a message was detected as a
duplicate by an idempotent receiver
interceptor. See Idempotent Receiver
Enterprise Integration Pattern.

 IntegrationMessageHeaderAccessor
.
CLOSEABLE_RESOURCE

 java.io.Closeable This header is present if the message
is associated with a Closeable that
should be closed when message
processing is complete. An example
is the Session associated with a
streamed file transfer using FTP,
SFTP, and so on.

 IntegrationMessageHeaderAccessor
.
DELIVERY_ATTEMPT

 java.lang.
AtomicInteger

If a message-driven channel adapter
supports the configuration of a
RetryTemplate, this header contains
the current delivery attempt.

 IntegrationMessageHeaderAccessor
.
ACKNOWLEDGMENT_CALLBACK

 o.s.i.support.
Acknowledgment
Callback

If an inbound endpoint supports it, a
call back to accept, reject, or requeue
a message. See Deferred
Acknowledgment Pollable Message
Source and MQTT Manual Acks.

Convenient typed getters for some of these headers are provided on the
IntegrationMessageHeaderAccessor class, as the following example shows:

71

./handler-advice.pdf#idempotent-receiver
./handler-advice.pdf#idempotent-receiver
./polling-consumer.pdf#deferred-acks-message-source
./polling-consumer.pdf#deferred-acks-message-source
./polling-consumer.pdf#deferred-acks-message-source
./mqtt.pdf#mqtt-ack-mode

IntegrationMessageHeaderAccessor accessor = new IntegrationMessageHeaderAccessor
(message);
int sequenceNumber = accessor.getSequenceNumber();
Object correlationId = accessor.getCorrelationId();
...

The following table describes headers that also appear in the IntegrationMessageHeaderAccessor but
are generally not used by user code (that is, they are generally used by internal parts of Spring
Integration — their inclusion here is for completeness):

Table 3. Pre-defined Message Headers

Header Name Header Type Usage

 IntegrationMessageHeaderAccessor
.
SEQUENCE_DETAILS

 java.util.
List<List<Object>>

A stack of correlation data used
when nested correlation is needed
(for example, splitter→…
→splitter→…→aggregator→…
→aggregator).

 IntegrationMessageHeaderAccessor
.
ROUTING_SLIP

 java.util.
Map<List<Object>,
Integer>

See Routing Slip.

7.2.2. Message ID Generation

When a message transitions through an application, each time it is mutated (for example, by a
transformer) a new message ID is assigned. The message ID is a UUID. Beginning with Spring
Integration 3.0, the default strategy used for IS generation is more efficient than the previous
java.util.UUID.randomUUID() implementation. It uses simple random numbers based on a secure
random seed instead of creating a secure random number each time.

A different UUID generation strategy can be selected by declaring a bean that implements
org.springframework.util.IdGenerator in the application context.



Only one UUID generation strategy can be used in a classloader. This means that, if
two or more application contexts run in the same classloader, they share the same
strategy. If one of the contexts changes the strategy, it is used by all contexts. If two
or more contexts in the same classloader declare a bean of type
org.springframework.util.IdGenerator, they must all be an instance of the same
class. Otherwise, the context attempting to replace a custom strategy fails to
initialize. If the strategy is the same, but parameterized, the strategy in the first
context to be initialized is used.

In addition to the default strategy, two additional IdGenerators are provided.
org.springframework.util.JdkIdGenerator uses the previous UUID.randomUUID() mechanism. You can
use o.s.i.support.IdGenerators.SimpleIncrementingIdGenerator when a UUID is not really needed
and a simple incrementing value is sufficient.

72

./router.pdf#routing-slip

7.2.3. Read-only Headers

The MessageHeaders.ID and MessageHeaders.TIMESTAMP are read-only headers and cannot be
overridden.

Since version 4.3.2, the MessageBuilder provides the readOnlyHeaders(String… readOnlyHeaders) API
to customize a list of headers that should not be copied from an upstream Message. Only the
MessageHeaders.ID and MessageHeaders.TIMESTAMP are read only by default. The global
spring.integration.readOnly.headers property (see Global Properties) is provided to customize
DefaultMessageBuilderFactory for framework components. This can be useful when you would like
do not populate some out-of-the-box headers, such as contentType by the ObjectToJsonTransformer
(see JSON Transformers).

When you try to build a new message using MessageBuilder, this kind of header is ignored and a
particular INFO message is emitted to logs.

Starting with version 5.0, Messaging Gateway, Header Enricher, Content Enricher and Header Filter
do not let you configure the MessageHeaders.ID and MessageHeaders.TIMESTAMP header names when
DefaultMessageBuilderFactory is used, and they throw BeanInitializationException.

7.2.4. Header Propagation

When messages are processed (and modified) by message-producing endpoints (such as a service
activator), in general, inbound headers are propagated to the outbound message. One exception to
this is a transformer, when a complete message is returned to the framework. In that case, the user
code is responsible for the entire outbound message. When a transformer just returns the payload,
the inbound headers are propagated. Also, a header is only propagated if it does not already exist in
the outbound message, letting you change header values as needed.

Starting with version 4.3.10, you can configure message handlers (that modify messages and
produce output) to suppress the propagation of specific headers. To configure the header(s) you do
not want to be copied, call the setNotPropagatedHeaders() or addNotPropagatedHeaders() methods on
the MessageProducingMessageHandler abstract class.

You can also globally suppress propagation of specific message headers by setting the
readOnlyHeaders property in META-INF/spring.integration.properties to a comma-delimited list of
headers.

Starting with version 5.0, the setNotPropagatedHeaders() implementation on the
AbstractMessageProducingHandler applies simple patterns (xxx*, xxx, *xxx, or xxx*yyy) to allow
filtering headers with a common suffix or prefix. See PatternMatchUtils Javadoc for more
information. When one of the patterns is * (asterisk), no headers are propagated. All other patterns
are ignored. In that case, the service activator behaves the same way as a transformer and any
required headers must be supplied in the Message returned from the service method. The
notPropagatedHeaders() option is available in the ConsumerEndpointSpec for the Java DSL It is also
available for XML configuration of the <service-activator> component as a not-propagated-headers
attribute.

73

./configuration.pdf#global-properties
./transformer.pdf#json-transformers
./gateway.pdf#gateway
./content-enrichment.pdf#header-enricher
./content-enrichment.pdf#payload-enricher
./transformer.pdf#header-filter
./service-activator.pdf#service-activator
./service-activator.pdf#service-activator
./transformer.pdf#transformer
https://docs.spring.io/spring-integration/api/org/springframework/integration/util/PatternMatchUtils.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/util/PatternMatchUtils.html


Header propagation suppression does not apply to those endpoints that do not
modify the message, such as bridges and routers.

7.3. Message Implementations
The base implementation of the Message interface is GenericMessage<T>, and it provides two
constructors, shown in the following listing:

new GenericMessage<T>(T payload);

new GenericMessage<T>(T payload, Map<String, Object> headers)

When a Message is created, a random unique ID is generated. The constructor that accepts a Map of
headers copies the provided headers to the newly created Message.

There is also a convenient implementation of Message designed to communicate error conditions.
This implementation takes a Throwable object as its payload, as the following example shows:

ErrorMessage message = new ErrorMessage(someThrowable);

Throwable t = message.getPayload();

Note that this implementation takes advantage of the fact that the GenericMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

7.4. The MessageBuilder Helper Class
You may notice that the Message interface defines retrieval methods for its payload and headers but
provides no setters. The reason for this is that a Message cannot be modified after its initial creation.
Therefore, when a Message instance is sent to multiple consumers (for example, through a publish-
subscribe Channel), if one of those consumers needs to send a reply with a different payload type, it
must create a new Message. As a result, the other consumers are not affected by those changes. Keep
in mind that multiple consumers may access the same payload instance or header value, and
whether such an instance is itself immutable is a decision left to you. In other words, the contract
for Message instances is similar to that of an unmodifiable Collection, and the MessageHeaders map
further exemplifies that. Even though the MessageHeaders class implements java.util.Map, any
attempt to invoke a put operation (or 'remove' or 'clear') on a MessageHeaders instance results in an
UnsupportedOperationException.

Rather than requiring the creation and population of a Map to pass into the GenericMessage
constructor, Spring Integration does provide a far more convenient way to construct Messages:

74

./bridge.pdf#bridge
./router.pdf#router

MessageBuilder. The MessageBuilder provides two factory methods for creating Message instances
from either an existing Message or with a payload Object. When building from an existing Message,
the headers and payload of that Message are copied to the new Message, as the following example
shows:

Message<String> message1 = MessageBuilder.withPayload("test")
 .setHeader("foo", "bar")
 .build();

Message<String> message2 = MessageBuilder.fromMessage(message1).build();

assertEquals("test", message2.getPayload());
assertEquals("bar", message2.getHeaders().get("foo"));

If you need to create a Message with a new payload but still want to copy the headers from an
existing Message, you can use one of the 'copy' methods, as the following example shows:

Message<String> message3 = MessageBuilder.withPayload("test3")
 .copyHeaders(message1.getHeaders())
 .build();

Message<String> message4 = MessageBuilder.withPayload("test4")
 .setHeader("foo", 123)
 .copyHeadersIfAbsent(message1.getHeaders())
 .build();

assertEquals("bar", message3.getHeaders().get("foo"));
assertEquals(123, message4.getHeaders().get("foo"));

Note that the copyHeadersIfAbsent method does not overwrite existing values. Also, in the preceding
example, you can see how to set any user-defined header with setHeader. Finally, there are set
methods available for the predefined headers as well as a non-destructive method for setting any
header (MessageHeaders also defines constants for the pre-defined header names).

You can also use MessageBuilder to set the priority of messages, as the following example shows:

75

Message<Integer> importantMessage = MessageBuilder.withPayload(99)
 .setPriority(5)
 .build();

assertEquals(5, importantMessage.getHeaders().getPriority());

Message<Integer> lessImportantMessage = MessageBuilder.fromMessage(importantMessage)
 .setHeaderIfAbsent(IntegrationMessageHeaderAccessor.PRIORITY, 2)
 .build();

assertEquals(2, lessImportantMessage.getHeaders().getPriority());

The priority header is considered only when using a PriorityChannel (as described in the next
chapter). It is defined as a java.lang.Integer.

76

Chapter 8. Message Routing
This chapter covers the details of using Spring Integration to route messages.

8.1. Routers
This section covers how routers work. It includes the following topics:

• Overview

• Common Router Parameters

• Router Implementations

• Configuring a Generic Router

• Routers and the Spring Expression Language (SpEL)

• Dynamic Routers

8.1.1. Overview

Routers are a crucial element in many messaging architectures. They consume messages from a
message channel and forward each consumed message to one or more different message channels
depending on a set of conditions.

Spring Integration provides the following routers:

• Payload Type Router

• Header Value Router

• Recipient List Router

• XPath Router (part of the XML module)

• Error Message Exception Type Router

• (Generic) Router

Router implementations share many configuration parameters. However, certain differences exist
between routers. Furthermore, the availability of configuration parameters depends on whether
routers are used inside or outside of a chain. In order to provide a quick overview, all available
attributes are listed in the two following tables .

The following table shows the configuration parameters available for a router outside of a chain:

Table 4. Routers Outside of a Chain

Attribute router header
value
router

xpath
router

payload
type
router

recipient
list route

exception
type
router

apply-sequence

77

./xml.pdf#xml-xpath-routing

Attribute router header
value
router

xpath
router

payload
type
router

recipient
list route

exception
type
router

default-output-channel

resolution-required

ignore-send-failures

timeout

id

auto-startup

input-channel

order

method

ref

expression

header-name

evaluate-as-string

xpath-expression-ref

converter

The following table shows the configuration parameters available for a router inside of a chain:

Table 5. Routers Inside of a Chain

78

Attribute router header
value
router

xpath
router

payload
type
router

recipient
list router

exception
type
router

apply-sequence

default-output-channel

resolution-required

ignore-send-failures

timeout

id

auto-startup

input-channel

order

method

ref

expression

header-name

evaluate-as-string

xpath-expression-ref

converter

79



As of Spring Integration 2.1, router parameters have been more standardized
across all router implementations. Consequently, a few minor changes may break
older Spring Integration based applications.

Since Spring Integration 2.1, the ignore-channel-name-resolution-failures attribute
is removed in favor of consolidating its behavior with the resolution-required
attribute. Also, the resolution-required attribute now defaults to true.

Prior to these changes, the resolution-required attribute defaulted to false,
causing messages to be silently dropped when no channel was resolved and no
default-output-channel was set. The new behavior requires at least one resolved
channel and, by default, throws a MessageDeliveryException if no channel was
determined (or an attempt to send was not successful).

If you do desire to drop messages silently, you can set default-output-
channel="nullChannel".

8.1.2. Common Router Parameters

This section describes the parameters common to all router parameters (the parameters with all
their boxes ticked in the two tables shown earlier in this chapter).

Inside and Outside of a Chain

The following parameters are valid for all routers inside and outside of chains.

apply-sequence

This attribute specifies whether sequence number and size headers should be added to each
message. This optional attribute defaults to false.

default-output-channel

If set, this attribute provides a reference to the channel where messages should be sent if
channel resolution fails to return any channels. If no default output channel is provided, the
router throws an exception. If you would like to silently drop those messages instead, set the
default output channel attribute value to nullChannel.


A message is sent only to the default-output-channel if resolution-required is
false and the channel is not resolved.

resolution-required

This attribute specifies whether channel names must always be successfully resolved to channel
instances that exist. If set to true, a MessagingException is raised when the channel cannot be
resolved. Setting this attribute to false causes any unresovable channels to be ignored. This
optional attribute defaults to true.


A Message is sent only to the default-output-channel, if specified, when
resolution-required is false and the channel is not resolved.

80

ignore-send-failures

If set to true, failures to send to a message channel is ignored. If set to false, a
MessageDeliveryException is thrown instead, and, if the router resolves more than one channel,
any subsequent channels do not receive the message.

The exact behavior of this attribute depends on the type of the Channel to which the messages
are sent. For example, when using direct channels (single threaded), send failures can be caused
by exceptions thrown by components much further downstream. However, when sending
messages to a simple queue channel (asynchronous), the likelihood of an exception to be thrown
is rather remote.



While most routers route to a single channel, they can return more than one
channel name. The recipient-list-router, for instance, does exactly that. If you
set this attribute to true on a router that only routes to a single channel, any
caused exception is swallowed, which usually makes little sense. In that case, it
would be better to catch the exception in an error flow at the flow entry point.
Therefore, setting the ignore-send-failures attribute to true usually makes
more sense when the router implementation returns more than one channel
name, because the other channel(s) following the one that fails would still
receive the message.

This attribute defaults to false.

timeout

The timeout attribute specifies the maximum amount of time in milliseconds to wait when
sending messages to the target Message Channels. By default, the send operation blocks
indefinitely.

Top-Level (Outside of a Chain)

The following parameters are valid only across all top-level routers that are outside of chains.

id

Identifies the underlying Spring bean definition, which, in the case of routers, is an instance of
EventDrivenConsumer or PollingConsumer, depending on whether the router’s input-channel is a
SubscribableChannel or a PollableChannel, respectively. This is an optional attribute.

auto-startup

This “lifecycle” attribute signaled whether this component should be started during startup of
the application context. This optional attribute defaults to true.

input-channel

The receiving message channel of this endpoint.

order

This attribute defines the order for invocation when this endpoint is connected as a subscriber
to a channel. This is particularly relevant when that channel uses a failover dispatching strategy.
It has no effect when this endpoint itself is a polling consumer for a channel with a queue.

81

8.1.3. Router Implementations

Since content-based routing often requires some domain-specific logic, most use cases require
Spring Integration’s options for delegating to POJOs by using either the XML namespace support or
annotations. Both of these are discussed later. However, we first present a couple of
implementations that fulfill common requirements.

PayloadTypeRouter

A PayloadTypeRouter sends messages to the channel defined by payload-type mappings, as the
following example shows:

<bean id="payloadTypeRouter"
 class="org.springframework.integration.router.PayloadTypeRouter">
 <property name="channelMapping">
 <map>
 <entry key="java.lang.String" value-ref="stringChannel"/>
 <entry key="java.lang.Integer" value-ref="integerChannel"/>
 </map>
 </property>
</bean>

Configuration of the PayloadTypeRouter is also supported by the namespace provided by Spring
Integration (see Namespace Support), which essentially simplifies configuration by combining the
<router/> configuration and its corresponding implementation (defined by using a <bean/> element)
into a single and more concise configuration element. The following example shows a
PayloadTypeRouter configuration that is equivalent to the one above but uses the namespace
support:

<int:payload-type-router input-channel="routingChannel">
 <int:mapping type="java.lang.String" channel="stringChannel" />
 <int:mapping type="java.lang.Integer" channel="integerChannel" />
</int:payload-type-router>

The following example shows the equivalent router configured in Java:

82

./configuration.pdf#configuration-namespace

@ServiceActivator(inputChannel = "routingChannel")
@Bean
public PayloadTypeRouter router() {
 PayloadTypeRouter router = new PayloadTypeRouter();
 router.setChannelMapping(String.class.getName(), "stringChannel");
 router.setChannelMapping(Integer.class.getName(), "integerChannel");
 return router;
}

When using the Java DSL, there are two options.

First, you can define the router object as shown in the preceding example:

@Bean
public IntegrationFlow routerFlow1() {
 return IntegrationFlows.from("routingChannel")
 .route(router())
 .get();
}

public PayloadTypeRouter router() {
 PayloadTypeRouter router = new PayloadTypeRouter();
 router.setChannelMapping(String.class.getName(), "stringChannel");
 router.setChannelMapping(Integer.class.getName(), "integerChannel");
 return router;
}

Note that the router can be, but does not have to be, a @Bean. The flow registers it if it is not a @Bean.

Second, you can define the routing function within the DSL flow itself, as the following example
shows:

@Bean
public IntegrationFlow routerFlow2() {
 return IntegrationFlows.from("routingChannel")
 .<Object, Class<?>>route(Object::getClass, m -> m
 .channelMapping(String.class, "stringChannel")
 .channelMapping(Integer.class, "integerChannel"))
 .get();
}

HeaderValueRouter

A HeaderValueRouter sends Messages to the channel based on the individual header value mappings.

83

When a HeaderValueRouter is created, it is initialized with the name of the header to be evaluated.
The value of the header could be one of two things:

• An arbitrary value

• A channel name

If it is an arbitrary value, additional mappings for these header values to channel names are
required. Otherwise, no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
HeaderValueRouter. The following example demonstrates configuration for the HeaderValueRouter
when mapping of header values to channels is required:

<int:header-value-router input-channel="routingChannel" header-name="testHeader">
 <int:mapping value="someHeaderValue" channel="channelA" />
 <int:mapping value="someOtherHeaderValue" channel="channelB" />
</int:header-value-router>

During the resolution process, the router defined in the preceding example may encounter channel
resolution failures, causing an exception. If you want to suppress such exceptions and send
unresolved messages to the default output channel (identified with the default-output-channel
attribute) set resolution-required to false.

Normally, messages for which the header value is not explicitly mapped to a channel are sent to the
default-output-channel. However, when the header value is mapped to a channel name but the
channel cannot be resolved, setting the resolution-required attribute to false results in routing
such messages to the default-output-channel.


As of Spring Integration 2.1, the attribute was changed from ignore-channel-name-
resolution-failures to resolution-required. Attribute resolution-required defaults
to true.

The following example shows the equivalent router configured in Java:

@ServiceActivator(inputChannel = "routingChannel")
@Bean
public HeaderValueRouter router() {
 HeaderValueRouter router = new HeaderValueRouter("testHeader");
 router.setChannelMapping("someHeaderValue", "channelA");
 router.setChannelMapping("someOtherHeaderValue", "channelB");
 return router;
}

When using the Java DSL, there are two options. First, you can define the router object as shown in

84

the preceding example:

@Bean
public IntegrationFlow routerFlow1() {
 return IntegrationFlows.from("routingChannel")
 .route(router())
 .get();
}

public HeaderValueRouter router() {
 HeaderValueRouter router = new HeaderValueRouter("testHeader");
 router.setChannelMapping("someHeaderValue", "channelA");
 router.setChannelMapping("someOtherHeaderValue", "channelB");
 return router;
}

Note that the router can be, but does not have to be, a @Bean. The flow registers it if it is not a @Bean.

Second, you can define the routing function within the DSL flow itself, as the following example
shows:

@Bean
public IntegrationFlow routerFlow2() {
 return IntegrationFlows.from("routingChannel")
 .<Message<?>, String>route(m -> m.getHeaders().get("testHeader",
String.class), m -> m
 .channelMapping("someHeaderValue", "channelA")
 .channelMapping("someOtherHeaderValue", "channelB"),
 e -> e.id("headerValueRouter"))
 .get();
}

Configuration where mapping of header values to channel names is not required, because header
values themselves represent channel names. The following example shows a router that does not
require mapping of header values to channel names:

<int:header-value-router input-channel="routingChannel" header-name="testHeader"/>

85



Since Spring Integration 2.1, the behavior of resolving channels is more explicit.
For example, if you omit the default-output-channel attribute, the router was
unable to resolve at least one valid channel, and any channel name resolution
failures were ignored by setting resolution-required to false, then a
MessageDeliveryException is thrown.

Basically, by default, the router must be able to route messages successfully to at
least one channel. If you really want to drop messages, you must also have
default-output-channel set to nullChannel.

RecipientListRouter

A RecipientListRouter sends each received message to a statically defined list of message channels.
The following example creates a RecipientListRouter:

<bean id="recipientListRouter"
 class="org.springframework.integration.router.RecipientListRouter">
 <property name="channels">
 <list>
 <ref bean="channel1"/>
 <ref bean="channel2"/>
 <ref bean="channel3"/>
 </list>
 </property>
</bean>

Spring Integration also provides namespace support for the RecipientListRouter configuration (see
Namespace Support) as the following example shows:

<int:recipient-list-router id="customRouter" input-channel="routingChannel"
 timeout="1234"
 ignore-send-failures="true"
 apply-sequence="true">
 <int:recipient channel="channel1"/>
 <int:recipient channel="channel2"/>
</int:recipient-list-router>

The following example shows the equivalent router configured in Java:

86

./configuration.pdf#configuration-namespace

@ServiceActivator(inputChannel = "routingChannel")
@Bean
public RecipientListRouter router() {
 RecipientListRouter router = new RecipientListRouter();
 router.setSendTimeout(1_234L);
 router.setIgnoreSendFailures(true);
 router.setApplySequence(true);
 router.addRecipient("channel1");
 router.addRecipient("channel2");
 router.addRecipient("channel3");
 return router;
}

The following example shows the equivalent router configured by using the Java DSL:

@Bean
public IntegrationFlow routerFlow() {
 return IntegrationFlows.from("routingChannel")
 .routeToRecipients(r -> r
 .applySequence(true)
 .ignoreSendFailures(true)
 .recipient("channel1")
 .recipient("channel2")
 .recipient("channel3")
 .sendTimeout(1_234L))
 .get();
}



The 'apply-sequence' flag here has the same effect as it does for a publish-
subscribe-channel, and, as with a publish-subscribe-channel, it is disabled by
default on the recipient-list-router. See PublishSubscribeChannel Configuration
for more information.

Another convenient option when configuring a RecipientListRouter is to use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. Doing so is similar to using
a filter at the beginning of a 'chain' to act as a “selective consumer”. However, in this case, it is all
combined rather concisely into the router’s configuration, as the following example shows:

<int:recipient-list-router id="customRouter" input-channel="routingChannel">
 <int:recipient channel="channel1" selector-expression="payload.equals('foo')"/>
 <int:recipient channel="channel2" selector-expression="headers.containsKey('bar')
"/>
</int:recipient-list-router>

87

./channel.pdf#channel-configuration-pubsubchannel
./channel.pdf#channel-configuration-pubsubchannel

In the preceding configuration, a SpEL expression identified by the selector-expression attribute is
evaluated to determine whether this recipient should be included in the recipient list for a given
input message. The evaluation result of the expression must be a boolean. If this attribute is not
defined, the channel is always among the list of recipients.

RecipientListRouterManagement

Starting with version 4.1, the RecipientListRouter provides several operations to manipulate
recipients dynamically at runtime. These management operations are presented by
RecipientListRouterManagement through the @ManagedResource annotation. They are available by
using Control Bus as well as by using JMX, as the following example shows:

<control-bus input-channel="controlBus"/>

<recipient-list-router id="simpleRouter" input-channel="routingChannelA">
 <recipient channel="channel1"/>
</recipient-list-router>

<channel id="channel2"/>

messagingTemplate.convertAndSend(controlBus,
"@'simpleRouter.handler'.addRecipient('channel2')");

From the application start up the simpleRouter, has only one channel1 recipient. But after the
addRecipient command, channel2 recipient is added. It is a “registering an interest in something that
is part of the message” use case, when we may be interested in messages from the router at some
time period, so we are subscribing to the the recipient-list-router and, at some point, decide to
unsubscribe.

Because of the runtime management operation for the <recipient-list-router>, it can be
configured without any <recipient> from the start. In this case, the behavior of RecipientListRouter
is the same when there is no one matching recipient for the message. If defaultOutputChannel is
configured, the message is sent there. Otherwise the MessageDeliveryException is thrown.

XPath Router

The XPath Router is part of the XML Module. See Routing XML Messages with XPath.

Routing and Error Handling

Spring Integration also provides a special type-based router called ErrorMessageExceptionTypeRouter
for routing error messages (defined as messages whose payload is a Throwable instance).
ErrorMessageExceptionTypeRouter is similar to the PayloadTypeRouter. In fact, they are almost
identical. The only difference is that, while PayloadTypeRouter navigates the instance hierarchy of a
payload instance (for example, payload.getClass().getSuperclass()) to find the most specific type
and channel mappings, the ErrorMessageExceptionTypeRouter navigates the hierarchy of 'exception

88

./control-bus.pdf#control-bus
./xml.pdf#xml-xpath-routing

causes' (for example, payload.getCause()) to find the most specific Throwable type or channel
mappings and uses mappingClass.isInstance(cause) to match the cause to the class or any super
class.


The channel mapping order in this case matters. So, if there is a requirement to get
mapping for an IllegalArgumentException, but not a RuntimeException, the last one
must be configured on router first.


Since version 4.3 the ErrorMessageExceptionTypeRouter loads all mapping classes
during the initialization phase to fail-fast for a ClassNotFoundException.

The following example shows a sample configuration for ErrorMessageExceptionTypeRouter:

<int:exception-type-router input-channel="inputChannel"
 default-output-channel="defaultChannel">
 <int:mapping exception-type="java.lang.IllegalArgumentException"
 channel="illegalChannel"/>
 <int:mapping exception-type="java.lang.NullPointerException"
 channel="npeChannel"/>
</int:exception-type-router>

<int:channel id="illegalChannel" />
<int:channel id="npeChannel" />

8.1.4. Configuring a Generic Router

Spring Integration provides a generic router. You can use it for general-purpose routing (as opposed
to the other routers provided by Spring Integration, each of which has some form of specialization).

Configuring a Content-based Router with XML

The router element provides a way to connect a router to an input channel and also accepts the
optional default-output-channel attribute. The ref attribute references the bean name of a custom
router implementation (which must extend AbstractMessageRouter). The following example shows
three generic routers:

89

<int:router ref="payloadTypeRouter" input-channel="input1"
 default-output-channel="defaultOutput1"/>

<int:router ref="recipientListRouter" input-channel="input2"
 default-output-channel="defaultOutput2"/>

<int:router ref="customRouter" input-channel="input3"
 default-output-channel="defaultOutput3"/>

<beans:bean id="customRouterBean" class="org.foo.MyCustomRouter"/>

Alternatively, ref may point to a POJO that contains the @Router annotation (shown later), or you
can combine the ref with an explicit method name. Specifying a method applies the same behavior
described in the @Router annotation section, later in this document. The following example defines a
router that points to a POJO in its ref attribute:

<int:router input-channel="input" ref="somePojo" method="someMethod"/>

We generally recommend using a ref attribute if the custom router implementation is referenced in
other <router> definitions. However if the custom router implementation should be scoped to a
single definition of the <router>, you can provide an inner bean definition, as the following
example shows:

<int:router method="someMethod" input-channel="input3"
 default-output-channel="defaultOutput3">
 <beans:bean class="org.foo.MyCustomRouter"/>
</int:router>


Using both the ref attribute and an inner handler definition in the same <router>
configuration is not allowed. Doing so creates an ambiguous condition and throws
an exception.



If the ref attribute references a bean that extends AbstractMessageProducingHandler
(such as routers provided by the framework itself), the configuration is optimized
to reference the router directly. In this case, each ref attribute must refer to a
separate bean instance (or a prototype-scoped bean) or use the inner <bean/>
configuration type. However, this optimization applies only if you do not provide
any router-specific attributes in the router XML definition. If you inadvertently
reference the same message handler from multiple beans, you get a configuration
exception.

90

The following example shows the equivalent router configured in Java:

@Bean
@Router(inputChannel = "routingChannel")
public AbstractMessageRouter myCustomRouter() {
 return new AbstractMessageRouter() {

 @Override
 protected Collection<MessageChannel> determineTargetChannels(Message<?>
message) {
 return // determine channel(s) for message
 }

 };
}

The following example shows the equivalent router configured by using the Java DSL:

@Bean
public IntegrationFlow routerFlow() {
 return IntegrationFlows.from("routingChannel")
 .route(myCustomRouter())
 .get();
}

public AbstractMessageRouter myCustomRouter() {
 return new AbstractMessageRouter() {

 @Override
 protected Collection<MessageChannel> determineTargetChannels(Message<?>
message) {
 return // determine channel(s) for message
 }

 };
}

Alternately, you can route on data from the message payload, as the following example shows:

91

@Bean
public IntegrationFlow routerFlow() {
 return IntegrationFlows.from("routingChannel")
 .route(String.class, p -> p.contains("foo") ? "fooChannel" :
"barChannel")
 .get();
}

8.1.5. Routers and the Spring Expression Language (SpEL)

Sometimes, the routing logic may be simple, and writing a separate class for it and configuring it as
a bean may seem like overkill. As of Spring Integration 2.0, we offer an alternative that lets you use
SpEL to implement simple computations that previously required a custom POJO router.


For more information about the Spring Expression Language, see the relevant
chapter in the Spring Framework Reference Guide:

Generally, a SpEL expression is evaluated and its result is mapped to a channel, as the following
example shows:

<int:router input-channel="inChannel" expression="payload.paymentType">
 <int:mapping value="CASH" channel="cashPaymentChannel"/>
 <int:mapping value="CREDIT" channel="authorizePaymentChannel"/>
 <int:mapping value="DEBIT" channel="authorizePaymentChannel"/>
</int:router>

The following example shows the equivalent router configured in Java:

@Router(inputChannel = "routingChannel")
@Bean
public ExpressionEvaluatingRouter router() {
 ExpressionEvaluatingRouter router = new ExpressionEvaluatingRouter(
"payload.paymentType");
 router.setChannelMapping("CASH", "cashPaymentChannel");
 router.setChannelMapping("CREDIT", "authorizePaymentChannel");
 router.setChannelMapping("DEBIT", "authorizePaymentChannel");
 return router;
}

The following example shows the equivalent router configured in the Java DSL:

92

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

@Bean
public IntegrationFlow routerFlow() {
 return IntegrationFlows.from("routingChannel")
 .route("payload.paymentType", r -> r
 .channelMapping("CASH", "cashPaymentChannel")
 .channelMapping("CREDIT", "authorizePaymentChannel")
 .channelMapping("DEBIT", "authorizePaymentChannel"))
 .get();
}

To simplify things even more, the SpEL expression may evaluate to a channel name, as the
following expression shows:

<int:router input-channel="inChannel" expression="payload + 'Channel'"/>

In the preceding configuration, the result channel is computed by the SpEL expression, which
concatenates the value of the payload with the literal String, 'Channel'.

Another virtue of SpEL for configuring routers is that an expression can return a Collection,
effectively making every <router> a recipient list router. Whenever the expression returns multiple
channel values, the message is forwarded to each channel. The following example shows such an
expression:

<int:router input-channel="inChannel" expression="headers.channels"/>

In the above configuration, if the message includes a header with a name of 'channels' and the
value of that header is a List of channel names, the message is sent to each channel in the list. You
may also find collection projection and collection selection expressions useful when you need to
select multiple channels. For further information, see:

• Collection Projection

• Collection Selection

Configuring a Router with Annotations

When using @Router to annotate a method, the method may return either a MessageChannel or a
String type. In the latter case, the endpoint resolves the channel name as it does for the default
output channel. Additionally, the method may return either a single value or a collection. If a
collection is returned, the reply message is sent to multiple channels. To summarize, the following
method signatures are all valid:

93

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-collection-projection
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-collection-selection

@Router
public MessageChannel route(Message message) {...}

@Router
public List<MessageChannel> route(Message message) {...}

@Router
public String route(Foo payload) {...}

@Router
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a message may be routed based on metadata available within
the message header as either a property or an attribute. In this case, a method annotated with
@Router may include a parameter annotated with @Header, which is mapped to a header value as the
following example shows and documented in Annotation Support:

@Router
public List<String> route(@Header("orderStatus") OrderStatus status)


For routing of XML-based Messages, including XPath support, see XML Support -
Dealing with XML Payloads.

See also Message Routers in the Java DSL chapter for more information about router configuration.

8.1.6. Dynamic Routers

Spring Integration provides quite a few different router configurations for common content-based
routing use cases as well as the option of implementing custom routers as POJOs. For example,
PayloadTypeRouter provides a simple way to configure a router that computes channels based on the
payload type of the incoming message while HeaderValueRouter provides the same convenience in
configuring a router that computes channels by evaluating the value of a particular message
Header. There are also expression-based (SpEL) routers, in which the channel is determined based
on evaluating an expression. All of these type of routers exhibit some dynamic characteristics.

However, these routers all require static configuration. Even in the case of expression-based
routers, the expression itself is defined as part of the router configuration, which means that the
same expression operating on the same value always results in the computation of the same
channel. This is acceptable in most cases, since such routes are well defined and therefore
predictable. But there are times when we need to change router configurations dynamically so that
message flows may be routed to a different channel.

For example, you might want to bring down some part of your system for maintenance and
temporarily re-reroute messages to a different message flow. As another example, you may want to

94

./configuration.pdf#annotations
./xml.pdf#xml
./xml.pdf#xml
./dsl.pdf#java-dsl-routers

introduce more granularity to your message flow by adding another route to handle a more
concrete type of java.lang.Number (in the case of PayloadTypeRouter).

Unfortunately, with static router configuration to accomplish either of those goals, you would have
to bring down your entire application, change the configuration of the router (change routes), and
bring the application back up. This is obviously not a solution anyone wants.

The dynamic router pattern describes the mechanisms by which you can change or configure
routers dynamically without bringing down the system or individual routers.

Before we get into the specifics of how Spring Integration supports dynamic routing, we need to
consider the typical flow of a router:

1. Compute a channel identifier, which is a value calculated by the router once it receives the
message. Typically, it is a String or an instance of the actual MessageChannel.

2. Resolve the channel identifier to a channel name. We describe specifics of this process later in
this section.

3. Resolve the channel name to the actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual
instance of the MessageChannel, because the MessageChannel is the final product of any router’s job.
However, if the first step results in a channel identifier that is not an instance of MessageChannel,
you have quite a few possible ways to influence the process of deriving the MessageChannel.
Consider the following example of a payload type router:

<int:payload-type-router input-channel="routingChannel">
 <int:mapping type="java.lang.String" channel="channel1" />
 <int:mapping type="java.lang.Integer" channel="channel2" />
</int:payload-type-router>

Within the context of a payload type router, the three steps mentioned earlier would be realized as
follows:

1. Compute a channel identifier that is the fully qualified name of the payload type (for example,
java.lang.String).

2. Resolve the channel identifier to a channel name, where the result of the previous step is used
to select the appropriate value from the payload type mapping defined in the mapping element.

3. Resolve the channel name to the actual instance of the MessageChannel as a reference to a bean
within the application context (which is hopefully a MessageChannel) identified by the result of
the previous step.

In other words, each step feeds the next step until the process completes.

Now consider an example of a header value router:

95

https://www.enterpriseintegrationpatterns.com/DynamicRouter.html

<int:header-value-router input-channel="inputChannel" header-name="testHeader">
 <int:mapping value="foo" channel="fooChannel" />
 <int:mapping value="bar" channel="barChannel" />
</int:header-value-router>

Now we can consider how the three steps work for a header value router:

1. Compute a channel identifier that is the value of the header identified by the header-name
attribute.

2. Resolve the channel identifier a to channel name, where the result of the previous step is used
to select the appropriate value from the general mapping defined in the mapping element.

3. Resolve the channel name to the actual instance of the MessageChannel as a reference to a bean
within the application context (which is hopefully a MessageChannel) identified by the result of
the previous step.

The preceding two configurations of two different router types look almost identical. However, if
you look at the alternate configuration of the HeaderValueRouter we clearly see that there is no
mapping sub element, as the following listing shows:

<int:header-value-router input-channel="inputChannel" header-name="testHeader">

However, the configuration is still perfectly valid. So the natural question is what about the
mapping in the second step?

The second step is now optional. If mapping is not defined, then the channel identifier value
computed in the first step is automatically treated as the channel name, which is now resolved to the
actual MessageChannel, as in the third step. What it also means is that the second step is one of the
key steps to providing dynamic characteristics to the routers, since it introduces a process that lets
you change the way channel identifier resolves to the channel name, thus influencing the process
of determining the final instance of the MessageChannel from the initial channel identifier.

For example, in the preceding configuration, assume that the testHeader value is 'kermit', which is
now a channel identifier (the first step). Since there is no mapping in this router, resolving this
channel identifier to a channel name (the second step) is impossible and this channel identifier is
now treated as the channel name. However, what if there was a mapping but for a different value?
The end result would still be the same, because, if a new value cannot be determined through the
process of resolving the channel identifier to a channel name, the channel identifier becomes the
channel name.

All that is left is for the third step to resolve the channel name ('kermit') to an actual instance of the
MessageChannel identified by this name. That basically involves a bean lookup for the provided
name. Now all messages that contain the header-value pair as testHeader=kermit are going to be
routed to a MessageChannel whose bean name (its id) is 'kermit'.

96

But what if you want to route these messages to the 'simpson' channel? Obviously changing a static
configuration works, but doing so also requires bringing your system down. However, if you had
access to the channel identifier map, you could introduce a new mapping where the header-value
pair is now kermit=simpson, thus letting the second step treat 'kermit' as a channel identifier while
resolving it to 'simpson' as the channel name.

The same obviously applies for PayloadTypeRouter, where you can now remap or remove a
particular payload type mapping. In fact, it applies to every other router, including expression-
based routers, since their computed values now have a chance to go through the second step to be
resolved to the actual channel name.

Any router that is a subclass of the AbstractMappingMessageRouter (which includes most framework-
defined routers) is a dynamic router, because the channelMapping is defined at the
AbstractMappingMessageRouter level. That map’s setter method is exposed as a public method along
with the 'setChannelMapping' and 'removeChannelMapping' methods. These let you change, add,
and remove router mappings at runtime, as long as you have a reference to the router itself. It also
means that you could expose these same configuration options through JMX (see JMX Support) or
the Spring Integration control bus (see Control Bus) functionality.



Falling back to the channel key as the channel name is flexible and convenient.
However, if you don’t trust the message creator, a malicious actor (who has
knowledge of the system) could create a message that is routed to an unexpected
channel. For example, if the key is set to the channel name of the router’s input
channel, such a message would be routed back to the router, eventually resulting
in a stack overflow error. You may therefore wish to disable this feature (set the
channelKeyFallback property to false), and change the mappings instead if needed.

Manage Router Mappings using the Control Bus

One way to manage the router mappings is through the control bus pattern, which exposes a
control channel to which you can send control messages to manage and monitor Spring Integration
components, including routers.

 For more information about the control bus, see Control Bus.

Typically, you would send a control message asking to invoke a particular operation on a particular
managed component (such as a router). The following managed operations (methods) are specific
to changing the router resolution process:

• public void setChannelMapping(String key, String channelName): Lets you add a new or modify
an existing mapping between channel identifier and channel name

• public void removeChannelMapping(String key): Lets you remove a particular channel mapping,
thus disconnecting the relationship between channel identifier and channel name

Note that these methods can be used for simple changes (such as updating a single route or adding
or removing a route). However, if you want to remove one route and add another, the updates are
not atomic. This means that the routing table may be in an indeterminate state between the
updates. Starting with version 4.0, you can now use the control bus to update the entire routing

97

./jmx.pdf#jmx
./control-bus.pdf#control-bus
https://www.enterpriseintegrationpatterns.com/ControlBus.html
./control-bus.pdf#control-bus

table atomically. The following methods let you do so:

• public Map<String, String>getChannelMappings(): Returns the current mappings.

• public void replaceChannelMappings(Properties channelMappings): Updates the mappings. Note
that the channelMappings parameter is a Properties object. This arrangement lets a control bus
command use the built-in StringToPropertiesConverter, as the following example shows:

"@'router.handler'.replaceChannelMappings('foo=qux \n baz=bar')"

Note that each mapping is separated by a newline character (\n). For programmatic changes to the
map, we recommend that you use the setChannelMappings method, due to type-safety concerns.
replaceChannelMappings ignores keys or values that are not String objects.

Manage Router Mappings by Using JMX

You can also use Spring’s JMX support to expose a router instance and then use your favorite JMX
client (for example, JConsole) to manage those operations (methods) for changing the router’s
configuration.

 For more information about Spring Integration’s JMX support, see JMX Support.

Routing Slip

Starting with version 4.1, Spring Integration provides an implementation of the routing slip
enterprise integration pattern. It is implemented as a routingSlip message header, which is used to
determine the next channel in AbstractMessageProducingHandler instances, when an outputChannel is
not specified for the endpoint. This pattern is useful in complex, dynamic cases, when it can
become difficult to configure multiple routers to determine message flow. When a message arrives
at an endpoint that has no output-channel, the routingSlip is consulted to determine the next
channel to which the message is sent. When the routing slip is exhausted, normal replyChannel
processing resumes.

Configuration for the routing slip is presented as a HeaderEnricher option — a semicolon-separated
routing slip that contains path entries, as the following example shows:

98

./jmx.pdf#jmx
https://www.enterpriseintegrationpatterns.com/RoutingTable.html

<util:properties id="properties">
 <beans:prop key="myRoutePath1">channel1</beans:prop>
 <beans:prop key="myRoutePath2">
request.headers[myRoutingSlipChannel]</beans:prop>
</util:properties>

<context:property-placeholder properties-ref="properties"/>

<header-enricher input-channel="input" output-channel="process">
 <routing-slip
 value="${myRoutePath1}; @routingSlipRoutingPojo.get(request, reply);
 routingSlipRoutingStrategy; ${myRoutePath2}; finishChannel"/>
</header-enricher>

The preceding example has:

• A <context:property-placeholder> configuration to demonstrate that the entries in the routing
slip path can be specified as resolvable keys.

• The <header-enricher> <routing-slip> sub-element is used to populate the
RoutingSlipHeaderValueMessageProcessor to the HeaderEnricher handler.

• The RoutingSlipHeaderValueMessageProcessor accepts a String array of resolved routing slip path
entries and returns (from processMessage()) a singletonMap with the path as key and 0 as initial
routingSlipIndex.

Routing Slip path entries can contain MessageChannel bean names, RoutingSlipRouteStrategy bean
names, and Spring expressions (SpEL). The RoutingSlipHeaderValueMessageProcessor checks each
routing slip path entry against the BeanFactory on the first processMessage invocation. It converts
entries (which are not bean names in the application context) to
ExpressionEvaluatingRoutingSlipRouteStrategy instances. RoutingSlipRouteStrategy entries are
invoked multiple times, until they return null or an empty String.

Since the routing slip is involved in the getOutputChannel process, we have a request-reply context.
The RoutingSlipRouteStrategy has been introduced to determine the next outputChannel that uses
the requestMessage and the reply object. An implementation of this strategy should be registered as
a bean in the application context, and its bean name is used in the routing slip path. The
ExpressionEvaluatingRoutingSlipRouteStrategy implementation is provided. It accepts a SpEL
expression and an internal ExpressionEvaluatingRoutingSlipRouteStrategy.RequestAndReply object is
used as the root object of the evaluation context. This is to avoid the overhead of EvaluationContext
creation for each ExpressionEvaluatingRoutingSlipRouteStrategy.getNextPath() invocation. It is a
simple Java bean with two properties: Message<?> request and Object reply. With this expression
implementation, we can specify routing slip path entries by using SpEL (for example,
@routingSlipRoutingPojo.get(request, reply) and request.headers[myRoutingSlipChannel]) and
avoid defining a bean for the RoutingSlipRouteStrategy.

99



The requestMessage argument is always a Message<?>. Depending on context, the
reply object may be a Message<?>, an AbstractIntegrationMessageBuilder, or an
arbitrary application domain object (when, for example, it is returned by a POJO
method invoked by a service activator). In the first two cases, the usual Message
properties (payload and headers) are available when using SpEL (or a Java
implementation). For an arbitrary domain object, these properties are not
available. For this reason, be careful when you use routing slips in conjunction
with POJO methods if the result is used to determine the next path.



If a routing slip is involved in a distributed environment, we recommend not using
inline expressions for the Routing Slip path. This recommendation applies to
distributed environments such as cross-JVM applications, using a request-reply
through a message broker (such asAMQP Support or JMS Support), or using a
persistent MessageStore (Message Store) in the integration flow. The framework
uses RoutingSlipHeaderValueMessageProcessor to convert them to
ExpressionEvaluatingRoutingSlipRouteStrategy objects, and they are used in the
routingSlip message header. Since this class is not Serializable (it cannot be,
because it depends on the BeanFactory), the entire Message becomes non-
serializable and, in any distributed operation, we end up with a
NotSerializableException. To overcome this limitation, register an
ExpressionEvaluatingRoutingSlipRouteStrategy bean with the desired SpEL and use
its bean name in the routing slip path configuration.

For Java configuration, you can add a RoutingSlipHeaderValueMessageProcessor instance to the
HeaderEnricher bean definition, as the following example shows:

@Bean
@Transformer(inputChannel = "routingSlipHeaderChannel")
public HeaderEnricher headerEnricher() {
 return new HeaderEnricher(Collections.singletonMap
(IntegrationMessageHeaderAccessor.ROUTING_SLIP,
 new RoutingSlipHeaderValueMessageProcessor("myRoutePath1",

"@routingSlipRoutingPojo.get(request, reply)",
 "
routingSlipRoutingStrategy",

"request.headers[myRoutingSlipChannel]",
 "finishChannel")));
}

The routing slip algorithm works as follows when an endpoint produces a reply and no
outputChannel has been defined:

• The routingSlipIndex is used to get a value from the routing slip path list.

100

./amqp.pdf#amqp
./jms.pdf#jms
./message-store.pdf#message-store

• If the value from routingSlipIndex is String, it is used to get a bean from BeanFactory.

• If a returned bean is an instance of MessageChannel, it is used as the next outputChannel and the
routingSlipIndex is incremented in the reply message header (the routing slip path entries
remain unchanged).

• If a returned bean is an instance of RoutingSlipRouteStrategy and its getNextPath does not return
an empty String, that result is used as a bean name for the next outputChannel. The
routingSlipIndex remains unchanged.

• If RoutingSlipRouteStrategy.getNextPath returns an empty String or null, the routingSlipIndex is
incremented and the getOutputChannelFromRoutingSlip is invoked recursively for the next
Routing Slip path item.

• If the next routing slip path entry is not a String, it must be an instance of
RoutingSlipRouteStrategy.

• When the routingSlipIndex exceeds the size of the routing slip path list, the algorithm moves to
the default behavior for the standard replyChannel header.

8.1.7. Process Manager Enterprise Integration Pattern

Enterprise integration patterns include the process manager pattern. You can now easily
implement this pattern by using custom process manager logic encapsulated in a
RoutingSlipRouteStrategy within the routing slip. In addition to a bean name, the
RoutingSlipRouteStrategy can return any MessageChannel object, and there is no requirement that
this MessageChannel instance be a bean in the application context. This way, we can provide
powerful dynamic routing logic when there is no way to predict which channel should be used. A
MessageChannel can be created within the RoutingSlipRouteStrategy and returned. A
FixedSubscriberChannel with an associated MessageHandler implementation is a good combination
for such cases. For example, you can route to a Reactive Streams, as the following example shows:

101

https://www.enterpriseintegrationpatterns.com/ProcessManager.html
https://projectreactor.io/docs/core/release/reference/#getting-started

@Bean
public PollableChannel resultsChannel() {
 return new QueueChannel();
}
@Bean
public RoutingSlipRouteStrategy routeStrategy() {
 return (requestMessage, reply) -> requestMessage.getPayload() instanceof
String
 ? new FixedSubscriberChannel(m ->
 Mono.just((String) m.getPayload())
 .map(String::toUpperCase)
 .subscribe(v -> messagingTemplate().convertAndSend
(resultsChannel(), v)))
 : new FixedSubscriberChannel(m ->
 Mono.just((Integer) m.getPayload())
 .map(v -> v * 2)
 .subscribe(v -> messagingTemplate().convertAndSend
(resultsChannel(), v)));
}

8.2. Filter
Message filters are used to decide whether a Message should be passed along or dropped based on
some criteria, such as a message header value or message content itself. Therefore, a message filter
is similar to a router, except that, for each message received from the filter’s input channel, that
same message may or may not be sent to the filter’s output channel. Unlike the router, it makes no
decision regarding which message channel to send the message to but decides only whether to send
the message at all.


As we describe later in this section, the filter also supports a discard channel. In
certain cases, it can play the role of a very simple router (or “switch”), based on a
boolean condition.

In Spring Integration, you can configure a message filter as a message endpoint that delegates to an
implementation of the MessageSelector interface. That interface is itself quite simple, as the
following listing shows:

public interface MessageSelector {

 boolean accept(Message<?> message);

}

102

The MessageFilter constructor accepts a selector instance, as the following example shows:

MessageFilter filter = new MessageFilter(someSelector);

In combination with the namespace and SpEL, you can configure powerful filters with very little
Java code.

8.2.1. Configuring a Filter with XML

You can use the <filter> element is used to create a message-selecting endpoint. In addition to
input-channel and output-channel attributes, it requires a ref attribute. The ref can point to a
MessageSelector implementation, as the following example shows:

<int:filter input-channel="input" ref="selector" output-channel="output"/>

<bean id="selector" class="example.MessageSelectorImpl"/>

Alternatively, you can add the method attribute. In that case, the ref attribute may refer to any
object. The referenced method may expect either the Message type or the payload type of inbound
messages. The method must return a boolean value. If the method returns 'true', the message is sent
to the output channel. The following example shows how to configure a filter that uses the method
attribute:

<int:filter input-channel="input" output-channel="output"
 ref="exampleObject" method="someBooleanReturningMethod"/>

<bean id="exampleObject" class="example.SomeObject"/>

If the selector or adapted POJO method returns false, a few settings control the handling of the
rejected message. By default (if configured as in the preceding example), rejected messages are
silently dropped. If rejection should instead result in an error condition, set the throw-exception-on-
rejection attribute to true, as the following example shows:

<int:filter input-channel="input" ref="selector"
 output-channel="output" throw-exception-on-rejection="true"/>

If you want rejected messages to be routed to a specific channel, provide that reference as the
discard-channel, as the following example shows:

103

<int:filter input-channel="input" ref="selector"
 output-channel="output" discard-channel="rejectedMessages"/>

See also Advising Filters.



Message filters are commonly used in conjunction with a publish-subscribe
channel. Many filter endpoints may be subscribed to the same channel, and they
decide whether or not to pass the message to the next endpoint, which could be
any of the supported types (such as a service activator). This provides a reactive
alternative to the more proactive approach of using a message router with a single
point-to-point input channel and multiple output channels.

We recommend using a ref attribute if the custom filter implementation is referenced in other
<filter> definitions. However, if the custom filter implementation is scoped to a single <filter>
element, you should provide an inner bean definition, as the following example shows:

<int:filter method="someMethod" input-channel="inChannel" output-channel=
"outChannel">
 <beans:bean class="org.foo.MyCustomFilter"/>
</filter>


Using both the ref attribute and an inner handler definition in the same <filter>
configuration is not allowed, as it creates an ambiguous condition and throws an
exception.



If the ref attribute references a bean that extends MessageFilter (such as filters
provided by the framework itself), the configuration is optimized by injecting the
output channel into the filter bean directly. In this case, each ref must be to a
separate bean instance (or a prototype-scoped bean) or use the inner <bean/>
configuration type. However, this optimization applies only if you do not provide
any filter-specific attributes in the filter XML definition. If you inadvertently
reference the same message handler from multiple beans, you get a configuration
exception.

With the introduction of SpEL support, Spring Integration added the expression attribute to the
filter element. It can be used to avoid Java entirely for simple filters, as the following example
shows:

<int:filter input-channel="input" expression="payload.equals('nonsense')"/>

104

./handler-advice.pdf#advising-filters

The string passed as the value of the expression attribute is evaluated as a SpEL expression with the
message available in the evaluation context. If you must include the result of an expression in the
scope of the application context, you can use the #{} notation, as defined in the SpEL reference
documentation, as the following example shows:

<int:filter input-channel="input"
 expression="payload.matches(#{filterPatterns.nonsensePattern})"/>

If the expression itself needs to be dynamic, you can use an 'expression' sub-element. That provides
a level of indirection for resolving the expression by its key from an ExpressionSource. That is a
strategy interface that you can implement directly, or you can rely upon a version available in
Spring Integration that loads expressions from a “resource bundle” and can check for modifications
after a given number of seconds. All of this is demonstrated in the following configuration example,
where the expression could be reloaded within one minute if the underlying file had been
modified:

<int:filter input-channel="input" output-channel="output">
 <int:expression key="filterPatterns.example" source="myExpressions"/>
</int:filter>

<beans:bean id="myExpressions" id="myExpressions"
 class="o.s.i.expression.ReloadableResourceBundleExpressionSource">
 <beans:property name="basename" value="config/integration/expressions"/>
 <beans:property name="cacheSeconds" value="60"/>
</beans:bean>

If the ExpressionSource bean is named expressionSource, you need not provide the` source`
attribute on the <expression> element. However, in the preceding example, we show it for
completeness.

The 'config/integration/expressions.properties' file (or any more-specific version with a locale
extension to be resolved in the typical way that resource-bundles are loaded) can contain a
key/value pair, as the following example shows:

filterPatterns.example=payload > 100

105

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions-beandef
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions-beandef



All of these examples that use expression as an attribute or sub-element can also
be applied within transformer, router, splitter, service-activator, and header-
enricher elements. The semantics and role of the given component type would
affect the interpretation of the evaluation result, in the same way that the return
value of a method-invocation would be interpreted. For example, an expression
can return strings that are to be treated as message channel names by a router
component. However, the underlying functionality of evaluating the expression
against the message as the root object and resolving bean names if prefixed with
'@' is consistent across all of the core EIP components within Spring Integration.

8.2.2. Configuring a Filter with Annotations

The following example shows how to configure a filter by using annotations:

public class PetFilter {
 ...
 @Filter ①
 public boolean dogsOnly(String input) {
 ...
 }
}

① An annotation indicating that this method is to be used as a filter. It must be specified if this
class is to be used as a filter.

All of the configuration options provided by the XML element are also available for the @Filter
annotation.

The filter can be either referenced explicitly from XML or, if the @MessageEndpoint annotation is
defined on the class, detected automatically through classpath scanning.

See also Advising Endpoints Using Annotations.

8.3. Splitter
The splitter is a component whose role is to partition a message into several parts and send the
resulting messages to be processed independently. Very often, they are upstream producers in a
pipeline that includes an aggregator.

8.3.1. Programming Model

The API for performing splitting consists of one base class, AbstractMessageSplitter. It is a
MessageHandler implementation that encapsulates features common to splitters, such as filling in the
appropriate message headers (CORRELATION_ID, SEQUENCE_SIZE, and SEQUENCE_NUMBER) on the messages
that are produced. This filling enables tracking down the messages and the results of their
processing (in a typical scenario, these headers get copied to the messages that are produced by the
various transforming endpoints). The values can then be used, for example, by a composed
message processor.

106

./handler-advice.pdf#advising-with-annotations
https://www.enterpriseintegrationpatterns.com/DistributionAggregate.html
https://www.enterpriseintegrationpatterns.com/DistributionAggregate.html

The following example shows an excerpt from AbstractMessageSplitter:

public abstract class AbstractMessageSplitter
 extends AbstractReplyProducingMessageConsumer {
 ...
 protected abstract Object splitMessage(Message<?> message);

}

To implement a specific splitter in an application, you can extend AbstractMessageSplitter and
implement the splitMessage method, which contains logic for splitting the messages. The return
value can be one of the following:

• A Collection or an array of messages or an Iterable (or Iterator) that iterates over messages. In
this case, the messages are sent as messages (after the CORRELATION_ID, SEQUENCE_SIZE and
SEQUENCE_NUMBER are populated). Using this approach gives you more control — for example, to
populate custom message headers as part of the splitting process.

• A Collection or an array of non-message objects or an Iterable (or Iterator) that iterates over
non-message objects. It works like the prior case, except that each collection element is used as
a message payload. Using this approach lets you focus on the domain objects without having to
consider the messaging system and produces code that is easier to test.

• a Message or non-message object (but not a collection or an array). It works like the previous
cases, except that a single message is sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a
method that accepts a single argument and has a return value. In this case, the return value of the
method is interpreted as described earlier. The input argument might either be a Message or a
simple POJO. In the latter case, the splitter receives the payload of the incoming message. We
recommend this approach, because it decouples the code from the Spring Integration API and is
typically easier to test.

Iterators

Starting with version 4.1, the AbstractMessageSplitter supports the Iterator type for the value to
split. Note, in the case of an Iterator (or Iterable), we don’t have access to the number of
underlying items and the SEQUENCE_SIZE header is set to 0. This means that the default
SequenceSizeReleaseStrategy of an <aggregator> won’t work and the group for the CORRELATION_ID
from the splitter won’t be released; it will remain as incomplete. In this case you should use an
appropriate custom ReleaseStrategy or rely on send-partial-result-on-expiry together with group-
timeout or a MessageGroupStoreReaper.

Starting with version 5.0, the AbstractMessageSplitter provides protected obtainSizeIfPossible()
methods to allow the determination of the size of the Iterable and Iterator objects if that is
possible. For example XPathMessageSplitter can determine the size of the underlying NodeList
object. And starting with version 5.0.9, this method also properly returns a size of the
com.fasterxml.jackson.core.TreeNode.

An Iterator object is useful to avoid the need for building an entire collection in the memory before

107

splitting. For example, when underlying items are populated from some external system (e.g.
DataBase or FTP MGET) using iterations or streams.

Stream and Flux

Starting with version 5.0, the AbstractMessageSplitter supports the Java Stream and Reactive
Streams Publisher types for the value to split. In this case, the target Iterator is built on their
iteration functionality.

In addition, if the splitter’s output channel is an instance of a ReactiveStreamsSubscribableChannel,
the AbstractMessageSplitter produces a Flux result instead of an Iterator, and the output channel is
subscribed to this Flux for back-pressure-based splitting on downstream flow demand.

Starting with version 5.2, the splitter supports a discardChannel option for sending those request
messages for which a split function has returned an empty container (collection, array, stream, Flux
etc.). In this case there is just no item to iterate for sending to the outputChannel. The null splitting
result remains as an end of flow indicator.

8.3.2. Configuring a Splitter with XML

A splitter can be configured through XML as follows:

108

<int:channel id="inputChannel"/>

<int:splitter id="splitter" ①
 ref="splitterBean" ②
 method="split" ③
 input-channel="inputChannel" ④
 output-channel="outputChannel" ⑤
 discard-channel="discardChannel" /> ⑥

<int:channel id="outputChannel"/>

<beans:bean id="splitterBean" class="sample.PojoSplitter"/>

① The ID of the splitter is optional.

② A reference to a bean defined in the application context. The bean must implement the
splitting logic, as described in the earlier section. Optional. If a reference to a bean is not
provided, it is assumed that the payload of the message that arrived on the input-channel is
an implementation of java.util.Collection and the default splitting logic is applied to the
collection, incorporating each individual element into a message and sending it to the
output-channel.

③ The method (defined on the bean) that implements the splitting logic. Optional.

④ The input channel of the splitter. Required.

⑤ The channel to which the splitter sends the results of splitting the incoming message.
Optional (because incoming messages can specify a reply channel themselves).

⑥ The channel to which the request message is sent in case of empty splitting result. Optional
(the will stop as in case of null result).

We recommend using a ref attribute if the custom splitter implementation can be referenced in
other <splitter> definitions. However if the custom splitter handler implementation should be
scoped to a single definition of the <splitter>, you can configure an inner bean definition, as the
following example follows:

<int:splitter id="testSplitter" input-channel="inChannel" method="split"
 output-channel="outChannel">
 <beans:bean class="org.foo.TestSplitter"/>
</int:splitter>


Using both a ref attribute and an inner handler definition in the same
<int:splitter> configuration is not allowed, as it creates an ambiguous condition
and results in an exception being thrown.

109



If the ref attribute references a bean that extends AbstractMessageProducingHandler
(such as splitters provided by the framework itself), the configuration is optimized
by injecting the output channel into the handler directly. In this case, each ref
must be a separate bean instance (or a prototype-scoped bean) or use the inner
<bean/> configuration type. However, this optimization applies only if you do not
provide any splitter-specific attributes in the splitter XML definition. If you
inadvertently reference the same message handler from multiple beans, you get a
configuration exception.

8.3.3. Configuring a Splitter with Annotations

The @Splitter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a Collection of any type. If
the returned values are not actual Message objects, each item is wrapped in a Message as the payload
of the Message. Each resulting Message is sent to the designated output channel for the endpoint on
which the @Splitter is defined.

The following example shows how to configure a splitter by using the @Splitter annotation:

@Splitter
List<LineItem> extractItems(Order order) {
 return order.getItems()
}

See also Advising Endpoints Using Annotations.

See also Splitters in the Java DSL chapter.

8.4. Aggregator
Basically a mirror-image of the splitter, the aggregator is a type of message handler that receives
multiple messages and combines them into a single message. In fact, an aggregator is often a
downstream consumer in a pipeline that includes a splitter.

Technically, the aggregator is more complex than a splitter, because it is stateful. It must hold the
messages to be aggregated and determine when the complete group of messages is ready to be
aggregated. In order to do so, it requires a MessageStore.

8.4.1. Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the
group is deemed to be complete. At that point, the aggregator creates a single message by
processing the whole group and sends the aggregated message as output.

Implementing an aggregator requires providing the logic to perform the aggregation (that is, the
creation of a single message from many). Two related concepts are correlation and release.

110

./handler-advice.pdf#advising-with-annotations
./dsl.pdf#java-dsl-splitters

Correlation determines how messages are grouped for aggregation. In Spring Integration,
correlation is done by default, based on the IntegrationMessageHeaderAccessor.CORRELATION_ID
message header. Messages with the same IntegrationMessageHeaderAccessor.CORRELATION_ID are
grouped together. However, you can customize the correlation strategy to allow other ways of
specifying how the messages should be grouped together. To do so, you can implement a
CorrelationStrategy (covered later in this chapter).

To determine the point at which a group of messages is ready to be processed, a ReleaseStrategy is
consulted. The default release strategy for the aggregator releases a group when all messages
included in a sequence are present, based on the IntegrationMessageHeaderAccessor.SEQUENCE_SIZE
header. You can override this default strategy by providing a reference to a custom ReleaseStrategy
implementation.

8.4.2. Programming Model

The Aggregation API consists of a number of classes:

• The interface MessageGroupProcessor, and its subclasses:
MethodInvokingAggregatingMessageGroupProcessor and
ExpressionEvaluatingMessageGroupProcessor

• The ReleaseStrategy interface and its default implementation:
SimpleSequenceSizeReleaseStrategy

• The CorrelationStrategy interface and its default implementation:
HeaderAttributeCorrelationStrategy

AggregatingMessageHandler

The AggregatingMessageHandler (a subclass of AbstractCorrelatingMessageHandler) is a MessageHandler
implementation, encapsulating the common functionality of an aggregator (and other correlating
use cases), which are as follows:

• Correlating messages into a group to be aggregated

• Maintaining those messages in a MessageStore until the group can be released

• Deciding when the group can be released

• Aggregating the released group into a single message

• Recognizing and responding to an expired group

The responsibility for deciding how the messages should be grouped together is delegated to a
CorrelationStrategy instance. The responsibility for deciding whether the message group can be
released is delegated to a ReleaseStrategy instance.

The following listing shows a brief highlight of the base AbstractAggregatingMessageGroupProcessor
(the responsibility for implementing the aggregatePayloads method is left to the developer):

111

public abstract class AbstractAggregatingMessageGroupProcessor
 implements MessageGroupProcessor {

 protected Map<String, Object> aggregateHeaders(MessageGroup group) {
 // default implementation exists
 }

 protected abstract Object aggregatePayloads(MessageGroup group, Map<String,
Object> defaultHeaders);

}

See DefaultAggregatingMessageGroupProcessor, ExpressionEvaluatingMessageGroupProcessor and
MethodInvokingMessageGroupProcessor as out-of-the-box implementations of the
AbstractAggregatingMessageGroupProcessor.

Starting with version 5.2, a Function<MessageGroup, Map<String, Object>> strategy is available for
the AbstractAggregatingMessageGroupProcessor to merge and compute (aggregate) headers for an
output message. The DefaultAggregateHeadersFunction implementation is available with logic that
returns all headers that have no conflicts among the group; an absent header on one or more
messages within the group is not considered a conflict. Conflicting headers are omitted. Along with
the newly introduced DelegatingMessageGroupProcessor, this function is used for any arbitrary (non-
AbstractAggregatingMessageGroupProcessor) MessageGroupProcessor implementation. Essentially, the
framework injects a provided function into an AbstractAggregatingMessageGroupProcessor instance
and wraps all other implementations into a DelegatingMessageGroupProcessor. The difference in
logic between the AbstractAggregatingMessageGroupProcessor and the
DelegatingMessageGroupProcessor that the latter doesn’t compute headers in advance, before calling
the delegate strategy, and doesn’t invoke the function if the delegate returns a Message or
AbstractIntegrationMessageBuilder. In that case, the framework assumes that the target
implementation has taken care of producing a proper set of headers populated into the returned
result. The Function<MessageGroup, Map<String, Object>> strategy is available as the headers-
function reference attribute for XML configuration, as the AggregatorSpec.headersFunction() option
for the Java DSL and as AggregatorFactoryBean.setHeadersFunction() for plain Java configuration.

The CorrelationStrategy is owned by the AbstractCorrelatingMessageHandler and has a default value
based on the IntegrationMessageHeaderAccessor.CORRELATION_ID message header, as the following
example shows:

112

public AbstractCorrelatingMessageHandler(MessageGroupProcessor processor,
MessageGroupStore store,
 CorrelationStrategy correlationStrategy, ReleaseStrategy releaseStrategy)
{
 ...
 this.correlationStrategy = correlationStrategy == null ?
 new HeaderAttributeCorrelationStrategy(IntegrationMessageHeaderAccessor
.CORRELATION_ID) : correlationStrategy;
 this.releaseStrategy = releaseStrategy == null ? new
SimpleSequenceSizeReleaseStrategy() : releaseStrategy;
 ...
}

As for the actual processing of the message group, the default implementation is the
DefaultAggregatingMessageGroupProcessor. It creates a single Message whose payload is a List of the
payloads received for a given group. This works well for simple scatter-gather implementations
with a splitter, a publish-subscribe channel, or a recipient list router upstream.



When using a publish-subscribe channel or a recipient list router in this type of
scenario, be sure to enable the apply-sequence flag. Doing so adds the necessary
headers: CORRELATION_ID, SEQUENCE_NUMBER, and SEQUENCE_SIZE. That behavior is
enabled by default for splitters in Spring Integration, but it is not enabled for
publish-subscribe channels or for recipient list routers because those components
may be used in a variety of contexts in which these headers are not necessary.

When implementing a specific aggregator strategy for an application, you can extend
AbstractAggregatingMessageGroupProcessor and implement the aggregatePayloads method. However,
there are better solutions, less coupled to the API, for implementing the aggregation logic, which
can be configured either through XML or through annotations.

In general, any POJO can implement the aggregation algorithm if it provides a method that accepts
a single java.util.List as an argument (parameterized lists are supported as well). This method is
invoked for aggregating messages as follows:

• If the argument is a java.util.Collection<T> and the parameter type T is assignable to Message,
the whole list of messages accumulated for aggregation is sent to the aggregator.

• If the argument is a non-parameterized java.util.Collection or the parameter type is not
assignable to Message, the method receives the payloads of the accumulated messages.

• If the return type is not assignable to Message, it is treated as the payload for a Message that is
automatically created by the framework.



In the interest of code simplicity and promoting best practices such as low
coupling, testability, and others, the preferred way of implementing the
aggregation logic is through a POJO and using the XML or annotation support for
configuring it in the application.

113

Starting with version 5.3, after processing message group, an AbstractCorrelatingMessageHandler
performs a MessageBuilder.popSequenceDetails() message headers modification for the proper
splitter-aggregator scenario with several nested levels. It is done only if the message group release
result is not a collection of messages. In that case a target MessageGroupProcessor is responsible for
the MessageBuilder.popSequenceDetails() call while building those messages.

If the MessageGroupProcessor returns a Message, a MessageBuilder.popSequenceDetails() will be
performed on the output message only if the sequenceDetails matches with first message in group.
(Previously this has been done only if a plain payload or an AbstractIntegrationMessageBuilder has
been returned from the MessageGroupProcessor.)

This functionality can be controlled by a new popSequence boolean property, so the
MessageBuilder.popSequenceDetails() can be disabled in some scenarios when correlation details
have not been populated by the standard splitter. This property, essentially, undoes what has been
done by the nearest upstream applySequence = true in the AbstractMessageSplitter. See Splitter for
more information.



The SimpleMessageGroup.getMessages() method returns an unmodifiableCollection.
Therefore, if your aggregating POJO method has a Collection<Message> parameter,
the argument passed in is exactly that Collection instance and, when you use a
SimpleMessageStore for the aggregator, that original Collection<Message> is cleared
after releasing the group. Consequently, the Collection<Message> variable in the
POJO is cleared too, if it is passed out of the aggregator. If you wish to simply
release that collection as-is for further processing, you must build a new
Collection (for example, new ArrayList<Message>(messages)). Starting with version
4.3, the framework no longer copies the messages to a new collection, to avoid
undesired extra object creation.

If the processMessageGroup method of the MessageGroupProcessor returns a collection, it must be a
collection of Message<?> objects. In this case, the messages are individually released. Prior to version
4.2, it was not possible to provide a MessageGroupProcessor by using XML configuration. Only POJO
methods could be used for aggregation. Now, if the framework detects that the referenced (or
inner) bean implements MessageProcessor, it is used as the aggregator’s output processor.

If you wish to release a collection of objects from a custom MessageGroupProcessor as the payload of
a message, your class should extend AbstractAggregatingMessageGroupProcessor and implement
aggregatePayloads().

Also, since version 4.2, a SimpleMessageGroupProcessor is provided. It returns the collection of
messages from the group, which, as indicated earlier, causes the released messages to be sent
individually.

This lets the aggregator work as a message barrier, where arriving messages are held until the
release strategy fires and the group is released as a sequence of individual messages.

ReleaseStrategy

The ReleaseStrategy interface is defined as follows:

114

./splitter.pdf#splitter

public interface ReleaseStrategy {

 boolean canRelease(MessageGroup group);

}

In general, any POJO can implement the completion decision logic if it provides a method that
accepts a single java.util.List as an argument (parameterized lists are supported as well) and
returns a boolean value. This method is invoked after the arrival of each new message, to decide
whether the group is complete or not, as follows:

• If the argument is a java.util.List<T> and the parameter type T is assignable to Message, the
whole list of messages accumulated in the group is sent to the method.

• If the argument is a non-parametrized java.util.List or the parameter type is not assignable to
Message, the method receives the payloads of the accumulated messages.

• The method must return true if the message group is ready for aggregation or false otherwise.

The following example shows how to use the @ReleaseStrategy annotation for a List of type Message:

public class MyReleaseStrategy {

 @ReleaseStrategy
 public boolean canMessagesBeReleased(List<Message<?>>) {...}
}

The following example shows how to use the @ReleaseStrategy annotation for a List of type String:

public class MyReleaseStrategy {

 @ReleaseStrategy
 public boolean canMessagesBeReleased(List<String>) {...}
}

Based on the signatures in the preceding two examples, the POJO-based release strategy is passed a
Collection of not-yet-released messages (if you need access to the whole Message) or a Collection of
payload objects (if the type parameter is anything other than Message). This satisfies the majority of
use cases. However if, for some reason, you need to access the full MessageGroup, you should provide
an implementation of the ReleaseStrategy interface.

115



When handling potentially large groups, you should understand how these
methods are invoked, because the release strategy may be invoked multiple times
before the group is released. The most efficient is an implementation of
ReleaseStrategy, because the aggregator can invoke it directly. The second most
efficient is a POJO method with a Collection<Message<?>> parameter type. The least
efficient is a POJO method with a Collection<Something> type. The framework has
to copy the payloads from the messages in the group into a new collection (and
possibly attempt conversion on the payloads to Something) every time the release
strategy is called. Using Collection<?> avoids the conversion but still requires
creating the new Collection.

For these reasons, for large groups, we recommended that you implement
ReleaseStrategy.

When the group is released for aggregation, all its not-yet-released messages are processed and
removed from the group. If the group is also complete (that is, if all messages from a sequence have
arrived or if there is no sequence defined), then the group is marked as complete. Any new
messages for this group are sent to the discard channel (if defined). Setting expire-groups-upon-
completion to true (the default is false) removes the entire group, and any new messages (with the
same correlation ID as the removed group) form a new group. You can release partial sequences by
using a MessageGroupStoreReaper together with send-partial-result-on-expiry being set to true.



To facilitate discarding of late-arriving messages, the aggregator must maintain
state about the group after it has been released. This can eventually cause out-of-
memory conditions. To avoid such situations, you should consider configuring a
MessageGroupStoreReaper to remove the group metadata. The expiry parameters
should be set to expire groups once a point has been reach after after which late
messages are not expected to arrive. For information about configuring a reaper,
see Managing State in an Aggregator: MessageGroupStore.

Spring Integration provides an implementation for ReleaseStrategy:
SimpleSequenceSizeReleaseStrategy. This implementation consults the SEQUENCE_NUMBER and
SEQUENCE_SIZE headers of each arriving message to decide when a message group is complete and
ready to be aggregated. As shown earlier, it is also the default strategy.


Before version 5.0, the default release strategy was SequenceSizeReleaseStrategy,
which does not perform well with large groups. With that strategy, duplicate
sequence numbers are detected and rejected. This operation can be expensive.

If you are aggregating large groups, you don’t need to release partial groups, and you don’t need to
detect/reject duplicate sequences, consider using the SimpleSequenceSizeReleaseStrategy instead - it
is much more efficient for these use cases, and is the default since version 5.0 when partial group
release is not specified.

Aggregating Large Groups

The 4.3 release changed the default Collection for messages in a SimpleMessageGroup to HashSet (it
was previously a BlockingQueue). This was expensive when removing individual messages from

116

large groups (an O(n) linear scan was required). Although the hash set is generally much faster to
remove, it can be expensive for large messages, because the hash has to be calculated on both
inserts and removes. If you have messages that are expensive to hash, consider using some other
collection type. As discussed in Using MessageGroupFactory, a SimpleMessageGroupFactory is provided
so that you can select the Collection that best suits your needs. You can also provide your own
factory implementation to create some other Collection<Message<?>>.

The following example shows how to configure an aggregator with the previous implementation
and a SimpleSequenceSizeReleaseStrategy:

<int:aggregator input-channel="aggregate"
 output-channel="out" message-store="store" release-strategy="releaser" />

<bean id="store" class="org.springframework.integration.store.SimpleMessageStore">
 <property name="messageGroupFactory">
 <bean class=
"org.springframework.integration.store.SimpleMessageGroupFactory">
 <constructor-arg value="BLOCKING_QUEUE"/>
 </bean>
 </property>
</bean>

<bean id="releaser" class="SimpleSequenceSizeReleaseStrategy" />

Correlation Strategy

The CorrelationStrategy interface is defined as follows:

public interface CorrelationStrategy {

 Object getCorrelationKey(Message<?> message);

}

The method returns an Object that represents the correlation key used for associating the message
with a message group. The key must satisfy the criteria used for a key in a Map with respect to the
implementation of equals() and hashCode().

In general, any POJO can implement the correlation logic, and the rules for mapping a message to a
method’s argument (or arguments) are the same as for a ServiceActivator (including support for
@Header annotations). The method must return a value, and the value must not be null.

Spring Integration provides an implementation for CorrelationStrategy:
HeaderAttributeCorrelationStrategy. This implementation returns the value of one of the message
headers (whose name is specified by a constructor argument) as the correlation key. By default, the

117

./message-store.pdf#message-group-factory
./message-store.pdf#message-group-factory

correlation strategy is a HeaderAttributeCorrelationStrategy that returns the value of the
CORRELATION_ID header attribute. If you have a custom header name you would like to use for
correlation, you can configure it on an instance of HeaderAttributeCorrelationStrategy and provide
that as a reference for the aggregator’s correlation strategy.

Lock Registry

Changes to groups are thread safe. So, when you send messages for the same correlation ID
concurrently, only one of them will be processed in the aggregator, making it effectively as a single-
threaded per message group. A LockRegistry is used to obtain a lock for the resolved correlation
ID. A DefaultLockRegistry is used by default (in-memory). For synchronizing updates across servers
where a shared MessageGroupStore is being used, you must configure a shared lock registry.

Avoiding Deadlocks

As discussed above, when message groups are mutated (messages added or released) a lock is held.

Consider the following flow:

...->aggregator1-> ... ->aggregator2-> ...

If there are multiple threads, and the aggregators share a common lock registry, it is possible to
get a deadlock. This will cause hung threads and jstack <pid> might present a result such as:

Found one Java-level deadlock:
=============================
"t2":
 waiting for ownable synchronizer 0x000000076c1cbfa0, (a
java.util.concurrent.locks.ReentrantLock$NonfairSync),
 which is held by "t1"
"t1":
 waiting for ownable synchronizer 0x000000076c1ccc00, (a
java.util.concurrent.locks.ReentrantLock$NonfairSync),
 which is held by "t2"

There are several ways to avoid this problem:

• ensure each aggregator has its own lock registry (this can be a shared registry across
application instances but two or more aggregators in the flow must each have a distinct
registry)

• use an ExecutorChannel or QueueChannel as the output channel of the aggregator so that the
downstream flow runs on a new thread

• starting with version 5.1.1, set the releaseLockBeforeSend aggregator property to true

118


This problem can also be caused if, for some reason, the output of a single
aggregator is eventually routed back to the same aggregator. Of course, the first
solution above does not apply in this case.

8.4.3. Configuring an Aggregator in Java DSL

See Aggregators and Resequencers for how to configure an aggregator in Java DSL.

Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator with XML through the <aggregator/>
element. The following example shows an example of an aggregator:

119

./dsl.pdf#java-dsl-aggregators

<channel id="inputChannel"/>

<int:aggregator id="myAggregator" ①
 auto-startup="true" ②
 input-channel="inputChannel" ③
 output-channel="outputChannel" ④
 discard-channel="throwAwayChannel" ⑤
 message-store="persistentMessageStore" ⑥
 order="1" ⑦
 send-partial-result-on-expiry="false" ⑧
 send-timeout="1000" ⑨

 correlation-strategy="correlationStrategyBean" ⑩
 correlation-strategy-method="correlate" ⑪
 correlation-strategy-expression="headers['foo']" ⑫

 ref="aggregatorBean" ⑬
 method="aggregate" ⑭

 release-strategy="releaseStrategyBean" ⑮
 release-strategy-method="release" ⑯
 release-strategy-expression="size() == 5" ⑰

 expire-groups-upon-completion="false" ⑱
 empty-group-min-timeout="60000" ⑲

 lock-registry="lockRegistry" ⑳

 group-timeout="60000"
 group-timeout-expression="size() ge 2 ? 100 : -1"
 expire-groups-upon-timeout="true"

 scheduler="taskScheduler" >
 <expire-transactional/>
 <expire-advice-chain/>
</aggregator>

<int:channel id="outputChannel"/>

<int:channel id="throwAwayChannel"/>

<bean id="persistentMessageStore" class=
"org.springframework.integration.jdbc.store.JdbcMessageStore">
 <constructor-arg ref="dataSource"/>
</bean>

<bean id="aggregatorBean" class="sample.PojoAggregator"/>

<bean id="releaseStrategyBean" class="sample.PojoReleaseStrategy"/>

120

<bean id="correlationStrategyBean" class="sample.PojoCorrelationStrategy"/>

① The id of the aggregator is optional.

② Lifecycle attribute signaling whether the aggregator should be started during application
context startup. Optional (the default is 'true').

③ The channel from which where aggregator receives messages. Required.

④ The channel to which the aggregator sends the aggregation results. Optional (because
incoming messages can themselves specify a reply channel in the 'replyChannel' message
header).

⑤ The channel to which the aggregator sends the messages that timed out (if send-partial-
result-on-expiry is false). Optional.

⑥ A reference to a MessageGroupStore used to store groups of messages under their correlation
key until they are complete. Optional. By default, it is a volatile in-memory store. See
Message Store for more information.

⑦ The order of this aggregator when more than one handle is subscribed to the same
DirectChannel (use for load-balancing purposes). Optional.

⑧ Indicates that expired messages should be aggregated and sent to the 'output-channel' or
'replyChannel' once their containing MessageGroup is expired (see
MessageGroupStore.expireMessageGroups(long)). One way of expiring a MessageGroup is by
configuring a MessageGroupStoreReaper. However you can alternatively expire MessageGroup
by calling MessageGroupStore.expireMessageGroups(timeout). You can accomplish that
through a Control Bus operation or, if you have a reference to the MessageGroupStore
instance, by invoking expireMessageGroups(timeout). Otherwise, by itself, this attribute does
nothing. It serves only as an indicator of whether to discard or send to the output or reply
channel any messages that are still in the MessageGroup that is about to be expired. Optional
(the default is false). NOTE: This attribute might more properly be called send-partial-
result-on-timeout, because the group may not actually expire if expire-groups-upon-timeout
is set to false.

⑨ The timeout interval to wait when sending a reply Message to the output-channel or discard-
channel. Defaults to -1, which results in blocking indefinitely. It is applied only if the output
channel has some 'sending' limitations, such as a QueueChannel with a fixed 'capacity'. In this
case, a MessageDeliveryException is thrown. For AbstractSubscribableChannel
implementations, the send-timeout is ignored . For group-timeout(-expression), the
MessageDeliveryException from the scheduled expire task leads this task to be rescheduled.
Optional.

⑩ A reference to a bean that implements the message correlation (grouping) algorithm. The
bean can be an implementation of the CorrelationStrategy interface or a POJO. In the latter
case, the correlation-strategy-method attribute must be defined as well. Optional (by
default, the aggregator uses the IntegrationMessageHeaderAccessor.CORRELATION_ID header).

⑪ A method defined on the bean referenced by correlation-strategy. It implements the
correlation decision algorithm. Optional, with restrictions (correlation-strategy must be
present).

⑫ A SpEL expression representing the correlation strategy. Example: "headers['something']".

121

./message-store.pdf#message-store
https://docs.spring.io/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html#expireMessageGroups-long

Only one of correlation-strategy or correlation-strategy-expression is allowed.

⑬ A reference to a bean defined in the application context. The bean must implement the
aggregation logic, as described earlier. Optional (by default, the list of aggregated messages
becomes a payload of the output message).

⑭ A method defined on the bean referenced by the ref attribute. It implements the message
aggregation algorithm. Optional (it depends on ref attribute being defined).

⑮ A reference to a bean that implements the release strategy. The bean can be an
implementation of the ReleaseStrategy interface or a POJO. In the latter case, the release-
strategy-method attribute must be defined as well. Optional (by default, the aggregator uses
the IntegrationMessageHeaderAccessor.SEQUENCE_SIZE header attribute).

⑯ A method defined on the bean referenced by the release-strategy attribute. It implements
the completion decision algorithm. Optional, with restrictions (release-strategy must be
present).

⑰ A SpEL expression representing the release strategy. The root object for the expression is a
MessageGroup. Example: "size() == 5". Only one of release-strategy or release-strategy-
expression is allowed.

⑱ When set to true (the default is false), completed groups are removed from the message
store, letting subsequent messages with the same correlation form a new group. The default
behavior is to send messages with the same correlation as a completed group to the
discard-channel.

⑲ Applies only if a MessageGroupStoreReaper is configured for the MessageStore of the
<aggregator>. By default, when a MessageGroupStoreReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is normally
released. The empty groups enable the detection and discarding of late-arriving messages.
If you wish to expire empty groups on a longer schedule than expiring partial groups, set
this property. Empty groups are then not removed from the MessageStore until they have
not been modified for at least this number of milliseconds. Note that the actual time to
expire an empty group is also affected by the reaper’s timeout property, and it could be as
much as this value plus the timeout.

⑳ A reference to a org.springframework.integration.util.LockRegistry bean. It used to obtain
a Lock based on the groupId for concurrent operations on the MessageGroup. By default, an
internal DefaultLockRegistry is used. Use of a distributed LockRegistry, such as the
ZookeeperLockRegistry, ensures only one instance of the aggregator can operate on a group
concurrently. See Redis Lock Registry, Gemfire Lock Registry, and Zookeeper Lock Registry
for more information.

A timeout (in milliseconds) to force the MessageGroup complete when the ReleaseStrategy does
not release the group when the current message arrives. This attribute provides a built-in
time-based release strategy for the aggregator when there is a need to emit a partial result (or
discard the group) if a new message does not arrive for the MessageGroup within the timeout
which counts from the time the last message arrived. To set up a timeout which counts from
the time the MessageGroup was created see group-timeout-expression information. When a new
message arrives at the aggregator, any existing ScheduledFuture<?> for its MessageGroup is
canceled. If the ReleaseStrategy returns false (meaning do not release) and groupTimeout > 0,
a new task is scheduled to expire the group. We do not advise setting this attribute to zero (or

122

./redis.pdf#redis-lock-registry
./gemfire.pdf#gemfire-lock-registry
./zookeeper.pdf#zk-lock-registry

a negative value). Doing so effectively disables the aggregator, because every message group
is immediately completed. You can, however, conditionally set it to zero (or a negative value)
by using an expression. See group-timeout-expression for information. The action taken
during the completion depends on the ReleaseStrategy and the send-partial-group-on-expiry
attribute. See Aggregator and Group Timeout for more information. It is mutually exclusive
with 'group-timeout-expression' attribute.

The SpEL expression that evaluates to a groupTimeout with the MessageGroup as the #root
evaluation context object. Used for scheduling the MessageGroup to be forced complete. If the
expression evaluates to null, the completion is not scheduled. If it evaluates to zero, the group
is completed immediately on the current thread. In effect, this provides a dynamic group-
timeout property. As an example, if you wish to forcibly complete a MessageGroup after 10
seconds have elapsed since the time the group was created you might consider using the
following SpEL expression: timestamp + 10000 - T(System).currentTimeMillis() where
timestamp is provided by MessageGroup.getTimestamp() as the MessageGroup here is the #root
evaluation context object. Bear in mind however that the group creation time might differ
from the time of the first arrived message depending on other group expiration properties'
configuration. See group-timeout for more information. Mutually exclusive with 'group-
timeout' attribute.

When a group is completed due to a timeout (or by a MessageGroupStoreReaper), the group is
expired (completely removed) by default. Late arriving messages start a new group. You can
set this to false to complete the group but have its metadata remain so that late arriving
messages are discarded. Empty groups can be expired later using a MessageGroupStoreReaper
together with the empty-group-min-timeout attribute. It defaults to 'true'.

A TaskScheduler bean reference to schedule the MessageGroup to be forced complete if no new
message arrives for the MessageGroup within the groupTimeout. If not provided, the default
scheduler (taskScheduler) registered in the ApplicationContext (ThreadPoolTaskScheduler) is
used. This attribute does not apply if group-timeout or group-timeout-expression is not
specified.

Since version 4.1. It lets a transaction be started for the forceComplete operation. It is initiated
from a group-timeout(-expression) or by a MessageGroupStoreReaper and is not applied to the
normal add, release, and discard operations. Only this sub-element or <expire-advice-chain/>
is allowed.

Since version 4.1. It allows the configuration of any Advice for the forceComplete operation. It
is initiated from a group-timeout(-expression) or by a MessageGroupStoreReaper and is not
applied to the normal add, release, and discard operations. Only this sub-element or <expire-
transactional/> is allowed. A transaction Advice can also be configured here by using the
Spring tx namespace.



Expiring Groups

There are two attributes related to expiring (completely removing) groups. When a
group is expired, there is no record of it, and, if a new message arrives with the
same correlation, a new group is started. When a group is completed (without
expiry), the empty group remains and late-arriving messages are discarded. Empty
groups can be removed later by using a MessageGroupStoreReaper in combination
with the empty-group-min-timeout attribute.

123

expire-groups-upon-completion relates to “normal” completion when the
ReleaseStrategy releases the group. This defaults to false.

If a group is not completed normally but is released or discarded because of a
timeout, the group is normally expired. Since version 4.1, you can control this
behavior by using expire-groups-upon-timeout. It defaults to true for backwards
compatibility.



When a group is timed out, the ReleaseStrategy is given one more
opportunity to release the group. If it does so and expire-groups-
upon-timeout is false, expiration is controlled by expire-groups-
upon-completion. If the group is not released by the release
strategy during timeout, then the expiration is controlled by the
expire-groups-upon-timeout. Timed-out groups are either
discarded or a partial release occurs (based on send-partial-
result-on-expiry).

Since version 5.0, empty groups are also scheduled for removal after empty-group-
min-timeout. If expireGroupsUponCompletion == false and
minimumTimeoutForEmptyGroups > 0, the task to remove the group is scheduled when
normal or partial sequences release happens.

Starting with version 5.4, the aggregator (and resequencer) can be configured to
expire orphaned groups (groups in a persistent message store that might not
otherwise be released). The expireTimeout (if greater than 0) indicates that groups
older than this value in the store should be purged. The purgeOrphanedGroups()
method is called on start up and, together with the provided expireDuration,
periodically within a scheduled task. This method is also can be called externally
at any time. The expiration logic is fully delegated to the
forceComplete(MessageGroup) functionality according to the provided expiration
options mentioned above. Such a periodic purge functionality is useful when a
message store is needed to be cleaned up from those old groups which are not
going to be released any more with regular message arrival logic. In most cases
this happens after an application restart, when using a persistent message group
store. The functionality is similar to the MessageGroupStoreReaper with a scheduled
task, but provides a convenient way to deal with old groups within specific
components, when using group timeout instead of a reaper. The MessageGroupStore
must be provided exclusively for the current correlation endpoint. Otherwise one
aggregator may purge groups from another. With the aggregator, groups expired
using this technique will either be discarded or released as a partial group,
depending on the expireGroupsUponCompletion property.

We generally recommend using a ref attribute if a custom aggregator handler implementation may
be referenced in other <aggregator> definitions. However, if a custom aggregator implementation is
only being used by a single definition of the <aggregator>, you can use an inner bean definition
(starting with version 1.0.3) to configure the aggregation POJO within the <aggregator> element, as
the following example shows:

124

<aggregator input-channel="input" method="sum" output-channel="output">
 <beans:bean class="org.foo.PojoAggregator"/>
</aggregator>


Using both a ref attribute and an inner bean definition in the same <aggregator>
configuration is not allowed, as it creates an ambiguous condition. In such cases,
an Exception is thrown.

The following example shows an implementation of the aggregator bean:

public class PojoAggregator {

 public Long add(List<Long> results) {
 long total = 0l;
 for (long partialResult: results) {
 total += partialResult;
 }
 return total;
 }
}

An implementation of the completion strategy bean for the preceding example might be as follows:

public class PojoReleaseStrategy {
...
 public boolean canRelease(List<Long> numbers) {
 int sum = 0;
 for (long number: numbers) {
 sum += number;
 }
 return sum >= maxValue;
 }
}


Wherever it makes sense to do so, the release strategy method and the aggregator
method can be combined into a single bean.

An implementation of the correlation strategy bean for the example above might be as follows:

125

public class PojoCorrelationStrategy {
...
 public Long groupNumbersByLastDigit(Long number) {
 return number % 10;
 }
}

The aggregator in the preceding example would group numbers by some criterion (in this case, the
remainder after dividing by ten) and hold the group until the sum of the numbers provided by the
payloads exceeds a certain value.


Wherever it makes sense to do so, the release strategy method, the correlation
strategy method, and the aggregator method can be combined in a single bean.
(Actually, all of them or any two of them can be combined.)

Aggregators and Spring Expression Language (SpEL)

Since Spring Integration 2.0, you can handle the various strategies (correlation, release, and
aggregation) with SpEL, which we recommend if the logic behind such a release strategy is
relatively simple. Suppose you have a legacy component that was designed to receive an array of
objects. We know that the default release strategy assembles all aggregated messages in the List.
Now we have two problems. First, we need to extract individual messages from the list. Second, we
need to extract the payload of each message and assemble the array of objects. The following
example solves both problems:

public String[] processRelease(List<Message<String>> messages){
 List<String> stringList = new ArrayList<String>();
 for (Message<String> message : messages) {
 stringList.add(message.getPayload());
 }
 return stringList.toArray(new String[]{});
}

However, with SpEL, such a requirement could actually be handled relatively easily with a one-line
expression, thus sparing you from writing a custom class and configuring it as a bean. The
following example shows how to do so:

<int:aggregator input-channel="aggChannel"
 output-channel="replyChannel"
 expression="#this.![payload].toArray()"/>

126

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

In the preceding configuration, we use a collection projection expression to assemble a new
collection from the payloads of all the messages in the list and then transform it to an array, thus
achieving the same result as the earlier Java code.

You can apply the same expression-based approach when dealing with custom release and
correlation strategies.

Instead of defining a bean for a custom CorrelationStrategy in the correlation-strategy attribute,
you can implement your simple correlation logic as a SpEL expression and configure it in the
correlation-strategy-expression attribute, as the following example shows:

correlation-strategy-expression="payload.person.id"

In the preceding example, we assume that the payload has a person attribute with an id, which is
going to be used to correlate messages.

Likewise, for the ReleaseStrategy, you can implement your release logic as a SpEL expression and
configure it in the release-strategy-expression attribute. The root object for evaluation context is
the MessageGroup itself. The List of messages can be referenced by using the message property of the
group within the expression.


In releases prior to version 5.0, the root object was the collection of Message<?>, as
the previous example shows:

release-strategy-expression="!messages.?[payload==5].empty"

In the preceding example, the root object of the SpEL evaluation context is the MessageGroup itself,
and you are stating that, as soon as there is a message with payload of 5 in this group, the group
should be released.

Aggregator and Group Timeout

Starting with version 4.0, two new mutually exclusive attributes have been introduced: group-
timeout and group-timeout-expression (see the earlier description). See Configuring an Aggregator
with XML. In some cases, you may need to emit the aggregator result (or discard the group) after a
timeout if the ReleaseStrategy does not release when the current message arrives. For this purpose,
the groupTimeout option lets scheduling the MessageGroup be forced to complete, as the following
example shows:

127

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

<aggregator input-channel="input" output-channel="output"
 send-partial-result-on-expiry="true"
 group-timeout-expression="size() ge 2 ? 10000 : -1"
 release-strategy-expression="messages[0].headers.sequenceNumber ==
messages[0].headers.sequenceSize"/>

With this example, the normal release is possible if the aggregator receives the last message in
sequence as defined by the release-strategy-expression. If that specific message does not arrive,
the groupTimeout forces the group to complete after ten seconds, as long as the group contains at
least two Messages.

The results of forcing the group to complete depends on the ReleaseStrategy and the send-partial-
result-on-expiry. First, the release strategy is again consulted to see if a normal release is to be
made. While the group has not changed, the ReleaseStrategy can decide to release the group at this
time. If the release strategy still does not release the group, it is expired. If send-partial-result-on-
expiry is true, existing messages in the (partial) MessageGroup are released as a normal aggregator
reply message to the output-channel. Otherwise, it is discarded.

There is a difference between groupTimeout behavior and MessageGroupStoreReaper (see Configuring
an Aggregator with XML). The reaper initiates forced completion for all MessageGroup s in the
MessageGroupStore periodically. The groupTimeout does it for each MessageGroup individually if a new
message does not arrive during the groupTimeout. Also, the reaper can be used to remove empty
groups (empty groups are retained in order to discard late messages if expire-groups-upon-
completion is false).

Configuring an Aggregator with Annotations

The following example shows an aggregator configured with annotations:

128

public class Waiter {
 ...

 @Aggregator ①
 public Delivery aggregatingMethod(List<OrderItem> items) {
 ...
 }

 @ReleaseStrategy ②
 public boolean releaseChecker(List<Message<?>> messages) {
 ...
 }

 @CorrelationStrategy ③
 public String correlateBy(OrderItem item) {
 ...
 }
}

① An annotation indicating that this method should be used as an aggregator. It must be
specified if this class is used as an aggregator.

② An annotation indicating that this method is used as the release strategy of an aggregator. If
not present on any method, the aggregator uses the SimpleSequenceSizeReleaseStrategy.

③ An annotation indicating that this method should be used as the correlation strategy of an
aggregator. If no correlation strategy is indicated, the aggregator uses the
HeaderAttributeCorrelationStrategy based on CORRELATION_ID.

All of the configuration options provided by the XML element are also available for the @Aggregator
annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined
on the class, detected automatically through classpath scanning.

Annotation configuration (@Aggregator and others) for the Aggregator component covers only
simple use cases, where most default options are sufficient. If you need more control over those
options when using annotation configuration, consider using a @Bean definition for the
AggregatingMessageHandler and mark its @Bean method with @ServiceActivator, as the following
example shows:

129

@ServiceActivator(inputChannel = "aggregatorChannel")
@Bean
public MessageHandler aggregator(MessageGroupStore jdbcMessageGroupStore) {
 AggregatingMessageHandler aggregator =
 new AggregatingMessageHandler(new
DefaultAggregatingMessageGroupProcessor(),
 jdbcMessageGroupStore);
 aggregator.setOutputChannel(resultsChannel());
 aggregator.setGroupTimeoutExpression(new ValueExpression<>(500L));
 aggregator.setTaskScheduler(this.taskScheduler);
 return aggregator;
}

See Programming Model and Annotations on @Bean Methods for more information.


Starting with version 4.2, the AggregatorFactoryBean is available to simplify Java
configuration for the AggregatingMessageHandler.

8.4.4. Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires
decisions to be made based on a group of messages that have arrived over a period of time, all with
the same correlation key. The design of the interfaces in the stateful patterns (such as
ReleaseStrategy) is driven by the principle that the components (whether defined by the framework
or by a user) should be able to remain stateless. All state is carried by the MessageGroup and its
management is delegated to the MessageGroupStore. The MessageGroupStore interface is defined as
follows:

130

./configuration.pdf#annotations_on_beans
./configuration.pdf#annotations_on_beans
./configuration.pdf#annotations_on_beans

public interface MessageGroupStore {

 int getMessageCountForAllMessageGroups();

 int getMarkedMessageCountForAllMessageGroups();

 int getMessageGroupCount();

 MessageGroup getMessageGroup(Object groupId);

 MessageGroup addMessageToGroup(Object groupId, Message<?> message);

 MessageGroup markMessageGroup(MessageGroup group);

 MessageGroup removeMessageFromGroup(Object key, Message<?> messageToRemove);

 MessageGroup markMessageFromGroup(Object key, Message<?> messageToMark);

 void removeMessageGroup(Object groupId);

 void registerMessageGroupExpiryCallback(MessageGroupCallback callback);

 int expireMessageGroups(long timeout);
}

For more information, see the Javadoc.

The MessageGroupStore accumulates state information in MessageGroups while waiting for a release
strategy to be triggered, and that event might not ever happen. So, to prevent stale messages from
lingering, and for volatile stores to provide a hook for cleaning up when the application shuts
down, the MessageGroupStore lets you register callbacks to apply to its MessageGroups when they
expire. The interface is very straightforward, as the following listing shows:

public interface MessageGroupCallback {

 void execute(MessageGroupStore messageGroupStore, MessageGroup group);

}

The callback has direct access to the store and the message group so that it can manage the
persistent state (for example, by entirely removing the group from the store).

The MessageGroupStore maintains a list of these callbacks, which it applies, on demand, to all
messages whose timestamps are earlier than a time supplied as a parameter (see the
registerMessageGroupExpiryCallback(..) and expireMessageGroups(..) methods, described earlier).

131

https://docs.spring.io/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html

For more detail, see Managing State in an Aggregator: MessageGroupStore.



It is important not to use the same MessageGroupStore instance in different
aggregator components, when you intend to rely on the expireMessageGroups
functionality. Every AbstractCorrelatingMessageHandler registers its own
MessageGroupCallback based on the forceComplete() callback. This way each group
for expiration may be completed or discarded by the wrong aggregator. Starting
with version 5.0.10, a UniqueExpiryCallback is used from the
AbstractCorrelatingMessageHandler for the registration callback in the
MessageGroupStore. The MessageGroupStore, in turn, checks for presence an instance
of this class and logs an error with an appropriate message if one is already
present in the callbacks set. This way the Framework disallows usage of the
MessageGroupStore instance in different aggregators/resequencers to avoid the
mentioned side effect of expiration the groups not created by the particular
correlation handler.

You can call the expireMessageGroups method with a timeout value. Any message older than the
current time minus this value is expired and has the callbacks applied. Thus, it is the user of the
store that defines what is meant by message group “expiry”.

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the
form of a MessageGroupStoreReaper, as the following example shows:

<bean id="reaper" class="org...MessageGroupStoreReaper">
 <property name="messageGroupStore" ref="messageStore"/>
 <property name="timeout" value="30000"/>
</bean>

<task:scheduled-tasks scheduler="scheduler">
 <task:scheduled ref="reaper" method="run" fixed-rate="10000"/>
</task:scheduled-tasks>

The reaper is a Runnable. In the preceding example, the message group store’s expire method is
called every ten seconds. The timeout itself is 30 seconds.



It is important to understand that the 'timeout' property of
MessageGroupStoreReaper is an approximate value and is impacted by the the rate of
the task scheduler, since this property is only checked on the next scheduled
execution of the MessageGroupStoreReaper task. For example, if the timeout is set for
ten minutes but the MessageGroupStoreReaper task is scheduled to run every hour
and the last execution of the MessageGroupStoreReaper task happened one minute
before the timeout, the MessageGroup does not expire for the next 59 minutes.
Consequently, we recommend setting the rate to be at least equal to the value of
the timeout or shorter.

In addition to the reaper, the expiry callbacks are invoked when the application shuts down

132

through a lifecycle callback in the AbstractCorrelatingMessageHandler.

The AbstractCorrelatingMessageHandler registers its own expiry callback, and this is the link with
the boolean flag send-partial-result-on-expiry in the XML configuration of the aggregator. If the
flag is set to true, then, when the expiry callback is invoked, any unmarked messages in groups that
are not yet released can be sent on to the output channel.



When a shared MessageStore is used for different correlation endpoints, you must
configure a proper CorrelationStrategy to ensure uniqueness for group IDs.
Otherwise, unexpected behavior may happen when one correlation endpoint
releases or expire messages from others. Messages with the same correlation key
are stored in the same message group.

Some MessageStore implementations allow using the same physical resources, by
partitioning the data. For example, the JdbcMessageStore has a region property, and
the MongoDbMessageStore has a collectionName property.

For more information about the MessageStore interface and its implementations,
see Message Store.

8.4.5. Flux Aggregator

In version 5.2, the FluxAggregatorMessageHandler component has been introduced. It is based on the
Project Reactor Flux.groupBy() and Flux.window() operators. The incoming messages are emitted
into the FluxSink initiated by the Flux.create() in the constructor of this component. If the
outputChannel is not provided or it is not an instance of ReactiveStreamsSubscribableChannel, the
subscription to the main Flux is done from the Lifecycle.start() implementation. Otherwise it is
postponed to the subscription done by the ReactiveStreamsSubscribableChannel implementation. The
messages are grouped by the Flux.groupBy() using a CorrelationStrategy for the group key. By
default, the IntegrationMessageHeaderAccessor.CORRELATION_ID header of the message is consulted.

By default every closed window is released as a Flux in payload of a message to produce. This
message contains all the headers from the first message in the window. This Flux in the output
message payload must be subscribed and processed downstream. Such a logic can be customized
(or superseded) by the setCombineFunction(Function<Flux<Message<?>>, Mono<Message<?>>>)
configuration option of the FluxAggregatorMessageHandler. For example, if we would like to have a
List of payloads in the final message, we can configure a Flux.collectList() like this:

fluxAggregatorMessageHandler.setCombineFunction(
 (messageFlux) ->
 messageFlux
 .map(Message::getPayload)
 .collectList()
 .map(GenericMessage::new));

There are several options in the FluxAggregatorMessageHandler to select an appropriate window

133

./message-store.pdf#message-store

strategy:

• setBoundaryTrigger(Predicate<Message<?>>) - is propagated to the Flux.windowUntil() operator.
See its JavaDocs for more information. Has a precedence over all other window options.

• setWindowSize(int) and setWindowSizeFunction(Function<Message<?>, Integer>) - is propagated
to the Flux.window(int) or windowTimeout(int, Duration). By default a window size is calculated
from the first message in group and its IntegrationMessageHeaderAccessor.SEQUENCE_SIZE header.

• setWindowTimespan(Duration) - is propagated to the Flux.window(Duration) or windowTimeout(int,
Duration) depending in the window size configuration.

• setWindowConfigurer(Function<Flux<Message<?>>, Flux<Flux<Message<?>>>>) - a function to apply
a transformation into the grouped fluxes for any custom window operation not covered by the
exposed options.

Since this component is a MessageHandler implementation it can simply be used as a @Bean definition
together with a @ServiceActivator messaging annotation. With Java DSL it can be used from the
.handle() EIP-method. The sample below demonstrates how we can register an IntegrationFlow at
runtime and how a FluxAggregatorMessageHandler can be correlated with a splitter upstream:

IntegrationFlow fluxFlow =
 (flow) -> flow
 .split()
 .channel(MessageChannels.flux())
 .handle(new FluxAggregatorMessageHandler());

IntegrationFlowContext.IntegrationFlowRegistration registration =
 this.integrationFlowContext.registration(fluxFlow)
 .register();

@SuppressWarnings("unchecked")
Flux<Message<?>> window =
 registration.getMessagingTemplate()
 .convertSendAndReceive(new Integer[] { 0, 1, 2, 3, 4, 5, 6, 7, 8,
9 }, Flux.class);

8.5. Resequencer
The resequencer is related to the aggregator but serves a different purpose. While the aggregator
combines messages, the resequencer passes messages through without changing them.

8.5.1. Functionality

The resequencer works in a similar way to the aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups. The difference is that the Resequencer does not process
the messages in any way. Instead, it releases them in the order of their SEQUENCE_NUMBER header
values.

134

With respect to that, you can opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, and other possibilities) or as soon as a valid sequence is available.
(We cover what we mean by "a valid sequence" later in this chapter.)


The resequencer is intended to resequence relatively short sequences of messages
with small gaps. If you have a large number of disjoint sequences with many gaps,
you may experience performance issues.

8.5.2. Configuring a Resequencer

See Aggregators and Resequencers for configuring a resequencer in Java DSL.

Configuring a resequencer requires only including the appropriate element in XML.

The following example shows a resequencer configuration:

135

./dsl.pdf#java-dsl-aggregators

<int:channel id="inputChannel"/>

<int:channel id="outputChannel"/>

<int:resequencer id="completelyDefinedResequencer" ①
 input-channel="inputChannel" ②
 output-channel="outputChannel" ③
 discard-channel="discardChannel" ④
 release-partial-sequences="true" ⑤
 message-store="messageStore" ⑥
 send-partial-result-on-expiry="true" ⑦
 send-timeout="86420000" ⑧
 correlation-strategy="correlationStrategyBean" ⑨
 correlation-strategy-method="correlate" ⑩
 correlation-strategy-expression="headers['something']" ⑪
 release-strategy="releaseStrategyBean" ⑫
 release-strategy-method="release" ⑬
 release-strategy-expression="size() == 10" ⑭
 empty-group-min-timeout="60000" ⑮

 lock-registry="lockRegistry" ⑯

 group-timeout="60000" ⑰
 group-timeout-expression="size() ge 2 ? 100 : -1" ⑱
 scheduler="taskScheduler" /> ⑲
 expire-group-upon-timeout="false" /> ⑳

① The id of the resequencer is optional.

② The input channel of the resequencer. Required.

③ The channel to which the resequencer sends the reordered messages. Optional.

④ The channel to which the resequencer sends the messages that timed out (if send-partial-
result-on-timeout is set to false). Optional.

⑤ Whether to send out ordered sequences as soon as they are available or only after the
whole message group arrives. Optional. (The default is false.)

⑥ A reference to a MessageGroupStore that can be used to store groups of messages under their
correlation key until they are complete. Optional. (The default is a volatile in-memory
store.)

⑦ Whether, upon the expiration of the group, the ordered group should be sent out (even if
some of the messages are missing). Optional. (The default is false.) See Managing State in an
Aggregator: MessageGroupStore.

⑧ The timeout interval to wait when sending a reply Message to the output-channel or discard-
channel. Defaults to -1, which blocks indefinitely. It is applied only if the output channel has
some 'sending' limitations, such as a QueueChannel with a fixed 'capacity'. In this case, a
MessageDeliveryException is thrown. The send-timeout is ignored for
AbstractSubscribableChannel implementations. For group-timeout(-expression), the

136

./aggregator.pdf#reaper
./aggregator.pdf#reaper
./aggregator.pdf#reaper

MessageDeliveryException from the scheduled expire task leads this task to be rescheduled.
Optional.

⑨ A reference to a bean that implements the message correlation (grouping) algorithm. The
bean can be an implementation of the CorrelationStrategy interface or a POJO. In the latter
case, the correlation-strategy-method attribute must also be defined. Optional. (By default,
the aggregator uses the IntegrationMessageHeaderAccessor.CORRELATION_ID header.)

⑩ A method that is defined on the bean referenced by correlation-strategy and that
implements the correlation decision algorithm. Optional, with restrictions (requires
correlation-strategy to be present).

⑪ A SpEL expression representing the correlation strategy. Example: "headers['something']".
Only one of correlation-strategy or correlation-strategy-expression is allowed.

⑫ A reference to a bean that implements the release strategy. The bean can be an
implementation of the ReleaseStrategy interface or a POJO. In the latter case, the release-
strategy-method attribute must also be defined. Optional (by default, the aggregator will use
the IntegrationMessageHeaderAccessor.SEQUENCE_SIZE header attribute).

⑬ A method that is defined on the bean referenced by release-strategy and that implements
the completion decision algorithm. Optional, with restrictions (requires release-strategy to
be present).

⑭ A SpEL expression representing the release strategy. The root object for the expression is a
MessageGroup. Example: "size() == 5". Only one of release-strategy or release-strategy-
expression is allowed.

⑮ Only applies if a MessageGroupStoreReaper is configured for the <resequencer> MessageStore.
By default, when a MessageGroupStoreReaper is configured to expire partial groups, empty
groups are also removed. Empty groups exist after a group is released normally. This is to
enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups
are then not removed from the MessageStore until they have not been modified for at least
this number of milliseconds. Note that the actual time to expire an empty group is also
affected by the reaper’s timeout property, and it could be as much as this value plus the
timeout.

⑯ See Configuring an Aggregator with XML.

⑰ See Configuring an Aggregator with XML.

⑱ See Configuring an Aggregator with XML.

⑲ See Configuring an Aggregator with XML.

⑳ By default, when a group is completed due to a timeout (or by a MessageGroupStoreReaper),
the empty group’s metadata is retained. Late arriving messages are immediately discarded.
Set this to true to remove the group completely. Then, late arriving messages start a new
group and are not be discarded until the group again times out. The new group is never
released normally because of the “hole” in the sequence range that caused the timeout.
Empty groups can be expired (completely removed) later by using a
MessageGroupStoreReaper together with the empty-group-min-timeout attribute. Starting with
version 5.0, empty groups are also scheduled for removal after the empty-group-min-timeout
elapses. The default is 'false'.

137

./aggregator.pdf#aggregator-xml
./aggregator.pdf#aggregator-xml
./aggregator.pdf#aggregator-xml
./aggregator.pdf#aggregator-xml

Also see Aggregator Expiring Groups for more information.


Since there is no custom behavior to be implemented in Java classes for
resequencers, there is no annotation support for it.

8.6. Message Handler Chain
The MessageHandlerChain is an implementation of MessageHandler that can be configured as a single
message endpoint while actually delegating to a chain of other handlers, such as filters,
transformers, splitters, and so on. When several handlers need to be connected in a fixed, linear
progression, this can lead to a much simpler configuration. For example, it is fairly common to
provide a transformer before other components. Similarly, when you provide a filter before some
other component in a chain, you essentially create a selective consumer. In either case, the chain
requires only a single input-channel and a single output-channel, eliminating the need to define
channels for each individual component.



Spring Integration’s Filter provides a boolean property:
throwExceptionOnRejection. When you provide multiple selective consumers on the
same point-to-point channel with different acceptance criteria, you should set this
value 'true' (the default is false) so that the dispatcher knows that the message was
rejected and, as a result, tries to pass the message on to other subscribers. If the
exception were not thrown, it would appear to the dispatcher that the message
had been passed on successfully even though the filter had dropped the message to
prevent further processing. If you do indeed want to “drop” the messages, the
filter’s 'discard-channel' might be useful, since it does give you a chance to
perform some operation with the dropped message (such as sending it to a JMS
queue or writing it to a log).

The handler chain simplifies configuration while internally maintaining the same degree of loose
coupling between components, and it is trivial to modify the configuration if at some point a non-
linear arrangement is required.

Internally, the chain is expanded into a linear setup of the listed endpoints, separated by
anonymous channels. The reply channel header is not taken into account within the chain. Only
after the last handler is invoked is the resulting message forwarded to the reply channel or the
chain’s output channel. Because of this setup, all handlers except the last must implement the
MessageProducer interface (which provides a 'setOutputChannel()' method). If the outputChannel on
the MessageHandlerChain is set, the last handler needs only an output channel.



As with other endpoints, the output-channel is optional. If there is a reply message
at the end of the chain, the output-channel takes precedence. However, if it is not
available, the chain handler checks for a reply channel header on the inbound
message as a fallback.

In most cases, you need not implement MessageHandler yourself. The next section focuses on
namespace support for the chain element. Most Spring Integration endpoints, such as service
activators and transformers, are suitable for use within a MessageHandlerChain.

138

./aggregator.pdf#aggregator-expiring-groups
https://www.enterpriseintegrationpatterns.com/MessageSelector.html

8.6.1. Configuring a Chain

The <chain> element provides an input-channel attribute. If the last element in the chain is capable
of producing reply messages (optional), it also supports an output-channel attribute. The sub-
elements are then filters, transformers, splitters, and service-activators. The last element may also
be a router or an outbound channel adapter. The following example shows a chain definition:

<int:chain input-channel="input" output-channel="output">
 <int:filter ref="someSelector" throw-exception-on-rejection="true"/>
 <int:header-enricher>
 <int:header name="thing1" value="thing2"/>
 </int:header-enricher>
 <int:service-activator ref="someService" method="someMethod"/>
</int:chain>

The <header-enricher> element used in the preceding example sets a message header named thing1
with a value of thing2 on the message. A header enricher is a specialization of Transformer that
touches only header values. You could obtain the same result by implementing a MessageHandler
that did the header modifications and wiring that as a bean, but the header-enricher is a simpler
option.

The <chain> can be configured as the last “closed-box” consumer of the message flow. For this
solution, you can to put it at the end of the <chain> some <outbound-channel-adapter>, as the
following example shows:

<int:chain input-channel="input">
 <int-xml:marshalling-transformer marshaller="marshaller" result-type=
"StringResult" />
 <int:service-activator ref="someService" method="someMethod"/>
 <int:header-enricher>
 <int:header name="thing1" value="thing2"/>
 </int:header-enricher>
 <int:logging-channel-adapter level="INFO" log-full-message="true"/>
</int:chain>

139



Disallowed Attributes and Elements

Certain attributes, such as order and input-channel are not allowed to be specified
on components used within a chain. The same is true for the poller sub-element.

For the Spring Integration core components, the XML schema itself enforces some
of these constraints. However, for non-core components or your own custom
components, these constraints are enforced by the XML namespace parser, not by
the XML schema.

These XML namespace parser constraints were added with Spring Integration 2.2.
If you try to use disallowed attributes and elements, the XML namespace parser
throws a BeanDefinitionParsingException.

8.6.2. Using the 'id' Attribute

Beginning with Spring Integration 3.0, if a chain element is given an id attribute, the bean name for
the element is a combination of the chain’s id and the id of the element itself. Elements without id
attributes are not registered as beans, but each one is given a componentName that includes the chain
id. Consider the following example:

<int:chain id="somethingChain" input-channel="input">
 <int:service-activator id="somethingService" ref="someService" method=
"someMethod"/>
 <int:object-to-json-transformer/>
</int:chain>

In the preceding example:

• The <chain> root element has an id of 'somethingChain'. Consequently, the AbstractEndpoint
implementation (PollingConsumer or EventDrivenConsumer, depending on the input-channel type)
bean takes this value as its bean name.

• The MessageHandlerChain bean acquires a bean alias ('somethingChain.handler'), which allows
direct access to this bean from the BeanFactory.

• The <service-activator> is not a fully fledged messaging endpoint (it is not a PollingConsumer or
EventDrivenConsumer). It is a MessageHandler within the <chain>. In this case, the bean name
registered with the BeanFactory is 'somethingChain$child.somethingService.handler'.

• The componentName of this ServiceActivatingHandler takes the same value but without the
'.handler' suffix. It becomes 'somethingChain$child.somethingService'.

• The last <chain> sub-component, <object-to-json-transformer>, does not have an id attribute. Its
componentName is based on its position in the <chain>. In this case, it is 'somethingChain$child#1'.
(The final element of the name is the order within the chain, beginning with '#0'). Note, this
transformer is not registered as a bean within the application context, so it does not get a
beanName. However its componentName has a value that is useful for logging and other purposes.

140

The id attribute for <chain> elements lets them be eligible for JMX export, and they are trackable in
the message history. You can access them from the BeanFactory by using the appropriate bean
name, as discussed earlier.


It is useful to provide an explicit id attribute on <chain> elements to simplify the
identification of sub-components in logs and to provide access to them from the
BeanFactory etc.

8.6.3. Calling a Chain from within a Chain

Sometimes, you need to make a nested call to another chain from within a chain and then come
back and continue execution within the original chain. To accomplish this, you can use a messaging
gateway by including a <gateway> element, as the following example shows:

<int:chain id="main-chain" input-channel="in" output-channel="out">
 <int:header-enricher>
 <int:header name="name" value="Many" />
 </int:header-enricher>
 <int:service-activator>
 <bean class="org.foo.SampleService" />
 </int:service-activator>
 <int:gateway request-channel="inputA"/>
</int:chain>

<int:chain id="nested-chain-a" input-channel="inputA">
 <int:header-enricher>
 <int:header name="name" value="Moe" />
 </int:header-enricher>
 <int:gateway request-channel="inputB"/>
 <int:service-activator>
 <bean class="org.foo.SampleService" />
 </int:service-activator>
</int:chain>

<int:chain id="nested-chain-b" input-channel="inputB">
 <int:header-enricher>
 <int:header name="name" value="Jack" />
 </int:header-enricher>
 <int:service-activator>
 <bean class="org.foo.SampleService" />
 </int:service-activator>
</int:chain>

In the preceding example, nested-chain-a is called at the end of main-chain processing by the
'gateway' element configured there. While in nested-chain-a, a call to a nested-chain-b is made after
header enrichment. Then the flow comes back to finish execution in nested-chain-b. Finally, the
flow returns to main-chain. When the nested version of a <gateway> element is defined in the chain,

141

./jmx.pdf#jmx-mbean-exporter
./message-history.pdf#message-history

it does not require the service-interface attribute. Instead, it takes the message in its current state
and places it on the channel defined in the request-channel attribute. When the downstream flow
initiated by that gateway completes, a Message is returned to the gateway and continues its journey
within the current chain.

8.7. Scatter-Gather
Starting with version 4.1, Spring Integration provides an implementation of the scatter-gather
enterprise integration pattern. It is a compound endpoint for which the goal is to send a message to
the recipients and aggregate the results. As noted in Enterprise Integration Patterns, it is a
component for scenarios such as “best quote”, where we need to request information from several
suppliers and decide which one provides us with the best term for the requested item.

Previously, the pattern could be configured by using discrete components. This enhancement brings
more convenient configuration.

The ScatterGatherHandler is a request-reply endpoint that combines a PublishSubscribeChannel (or a
RecipientListRouter) and an AggregatingMessageHandler. The request message is sent to the scatter
channel, and the ScatterGatherHandler waits for the reply that the aggregator sends to the
outputChannel.

8.7.1. Functionality

The Scatter-Gather pattern suggests two scenarios: “auction” and “distribution”. In both cases, the
aggregation function is the same and provides all the options available for the
AggregatingMessageHandler. (Actually, the ScatterGatherHandler requires only an
AggregatingMessageHandler as a constructor argument.) See Aggregator for more information.

Auction

The auction Scatter-Gather variant uses “publish-subscribe” logic for the request message, where
the “scatter” channel is a PublishSubscribeChannel with apply-sequence="true". However, this
channel can be any MessageChannel implementation (as is the case with the request-channel in the
ContentEnricher — see Content Enricher). However, in this case, you should create your own custom
correlationStrategy for the aggregation function.

Distribution

The distribution Scatter-Gather variant is based on the RecipientListRouter (see
RecipientListRouter) with all available options for the RecipientListRouter. This is the second
ScatterGatherHandler constructor argument. If you want to rely on only the default
correlationStrategy for the recipient-list-router and the aggregator, you should specify apply-
sequence="true". Otherwise, you should supply a custom correlationStrategy for the aggregator.
Unlike the PublishSubscribeChannel variant (the auction variant), having a recipient-list-router
selector option lets filter target suppliers based on the message. With apply-sequence="true", the
default sequenceSize is supplied, and the aggregator can release the group correctly. The
distribution option is mutually exclusive with the auction option.

For both the auction and the distribution variants, the request (scatter) message is enriched with

142

https://www.enterpriseintegrationpatterns.com/BroadcastAggregate.html
https://www.enterpriseintegrationpatterns.com/
./aggregator.pdf#aggregator
./content-enrichment.pdf#content-enricher
./router.pdf#router-implementations-recipientlistrouter

the gatherResultChannel header to wait for a reply message from the aggregator.

By default, all suppliers should send their result to the replyChannel header (usually by omitting the
output-channel from the ultimate endpoint). However, the gatherChannel option is also provided,
letting suppliers send their reply to that channel for the aggregation.

8.7.2. Configuring a Scatter-Gather Endpoint

The following example shows Java configuration for the bean definition for Scatter-Gather:

@Bean
public MessageHandler distributor() {
 RecipientListRouter router = new RecipientListRouter();
 router.setApplySequence(true);
 router.setChannels(Arrays.asList(distributionChannel1(), distributionChannel2
(),
 distributionChannel3()));
 return router;
}

@Bean
public MessageHandler gatherer() {
 return new AggregatingMessageHandler(
 new ExpressionEvaluatingMessageGroupProcessor("^[payload gt 5] ?: -1D
"),
 new SimpleMessageStore(),
 new HeaderAttributeCorrelationStrategy(
 IntegrationMessageHeaderAccessor.CORRELATION_ID),
 new ExpressionEvaluatingReleaseStrategy("size() == 2"));
}

@Bean
@ServiceActivator(inputChannel = "distributionChannel")
public MessageHandler scatterGatherDistribution() {
 ScatterGatherHandler handler = new ScatterGatherHandler(distributor(),
gatherer());
 handler.setOutputChannel(output());
 return handler;
}

In the preceding example, we configure the RecipientListRouter distributor bean with
applySequence="true" and the list of recipient channels. The next bean is for an
AggregatingMessageHandler. Finally, we inject both those beans into the ScatterGatherHandler bean
definition and mark it as a @ServiceActivator to wire the scatter-gather component into the
integration flow.

The following example shows how to configure the <scatter-gather> endpoint by using the XML
namespace:

143

<scatter-gather
 id="" ①
 auto-startup="" ②
 input-channel="" ③
 output-channel="" ④
 scatter-channel="" ⑤
 gather-channel="" ⑥
 order="" ⑦
 phase="" ⑧
 send-timeout="" ⑨
 gather-timeout="" ⑩
 requires-reply="" > ⑪
 <scatterer/> ⑫
 <gatherer/> ⑬
</scatter-gather>

① The id of the endpoint. The ScatterGatherHandler bean is registered with an alias of id +
'.handler'. The RecipientListRouter bean is registered with an alias of id + '.scatterer'.
The AggregatingMessageHandler`bean is registered with an alias of `id + '.gatherer'.
Optional. (The BeanFactory generates a default id value.)

② Lifecycle attribute signaling whether the endpoint should be started during application
context initialization. In addition, the ScatterGatherHandler also implements Lifecycle and
starts and stops gatherEndpoint, which is created internally if a gather-channel is provided.
Optional. (The default is true.)

③ The channel on which to receive request messages to handle them in the
ScatterGatherHandler. Required.

④ The channel to which the ScatterGatherHandler sends the aggregation results. Optional.
(Incoming messages can specify a reply channel themselves in the replyChannel message
header).

⑤ The channel to which to send the scatter message for the auction scenario. Optional.
Mutually exclusive with the <scatterer> sub-element.

⑥ The channel on which to receive replies from each supplier for the aggregation. It is used as
the replyChannel header in the scatter message. Optional. By default, the
FixedSubscriberChannel is created.

⑦ The order of this component when more than one handler is subscribed to the same
DirectChannel (use for load balancing purposes). Optional.

⑧ Specifies the phase in which the endpoint should be started and stopped. The startup order
proceeds from lowest to highest, and the shutdown order is from highest to lowest. By
default, this value is Integer.MAX_VALUE, meaning that this container starts as late as possible
and stops as soon as possible. Optional.

⑨ The timeout interval to wait when sending a reply Message to the output-channel. By default,
the send blocks for one second. It applies only if the output channel has some 'sending'
limitations — for example, a QueueChannel with a fixed 'capacity' that is full. In this case, a
MessageDeliveryException is thrown. The send-timeout is ignored for

144

AbstractSubscribableChannel implementations. For group-timeout(-expression), the
MessageDeliveryException from the scheduled expire task leads this task to be rescheduled.
Optional.

⑩ Lets you specify how long the scatter-gather waits for the reply message before returning.
By default, it waits indefinitely. 'null' is returned if the reply times out. Optional. It defaults
to -1, meaning to wait indefinitely.

⑪ Specifies whether the scatter-gather must return a non-null value. This value is true by
default. Consequently, a ReplyRequiredException is thrown when the underlying aggregator
returns a null value after gather-timeout. Note, if null is a possibility, the gather-timeout
should be specified to avoid an indefinite wait.

⑫ The <recipient-list-router> options. Optional. Mutually exclusive with scatter-channel
attribute.

⑬ The <aggregator> options. Required.

8.7.3. Error Handling

Since Scatter-Gather is a multi request-reply component, error handling has some extra complexity.
In some cases, it is better to just catch and ignore downstream exceptions if the ReleaseStrategy
allows the process to finish with fewer replies than requests. In other cases something like a
“compensation message” should be considered for returning from sub-flow, when an error
happens.

Every async sub-flow should be configured with a errorChannel header for the proper error
message sending from the MessagePublishingErrorHandler. Otherwise, an error will be sent to the
global errorChannel with the common error handling logic. See Error Handling for more
information about async error processing.

Synchronous flows may use an ExpressionEvaluatingRequestHandlerAdvice for ignoring the
exception or returning a compensation message. When an exception is thrown from one of the sub-
flows to the ScatterGatherHandler, it is just re-thrown to upstream. This way all other sub-flows will
work for nothing and their replies are going to be ignored in the ScatterGatherHandler. This might
be an expected behavior sometimes, but in most cases it would be better to handle the error in the
particular sub-flow without impacting all others and the expectations in the gatherer.

Starting with version 5.1.3, the ScatterGatherHandler is supplied with the errorChannelName option. It
is populated to the errorChannel header of the scatter message and is used in the when async error
happens or can be used in the regular synchronous sub-flow for directly sending an error message.

The sample configuration below demonstrates async error handling by returning a compensation
message:

145

./error-handling.pdf#error-handling

@Bean
public IntegrationFlow scatterGatherAndExecutorChannelSubFlow(TaskExecutor
taskExecutor) {
 return f -> f
 .scatterGather(
 scatterer -> scatterer
 .applySequence(true)
 .recipientFlow(f1 -> f1.transform(p -> "Sub-flow#1"))
 .recipientFlow(f2 -> f2
 .channel(c -> c.executor(taskExecutor))
 .transform(p -> {
 throw new RuntimeException("Sub-flow#2");
 })),
 null,
 s -> s.errorChannel("scatterGatherErrorChannel"));
}

@ServiceActivator(inputChannel = "scatterGatherErrorChannel")
public Message<?> processAsyncScatterError(MessagingException payload) {
 return MessageBuilder.withPayload(payload.getCause().getCause())
 .copyHeaders(payload.getFailedMessage().getHeaders())
 .build();
}

To produce a proper reply, we have to copy headers (including replyChannel and errorChannel) from
the failedMessage of the MessagingException that has been sent to the scatterGatherErrorChannel by
the MessagePublishingErrorHandler. This way the target exception is returned to the gatherer of the
ScatterGatherHandler for reply messages group completion. Such an exception payload can be
filtered out in the MessageGroupProcessor of the gatherer or processed other way downstream, after
the scatter-gather endpoint.



Before sending scattering results to the gatherer, ScatterGatherHandler reinstates
the request message headers, including reply and error channels if any. This way
errors from the AggregatingMessageHandler are going to be propagated to the caller,
even if an async hand off is applied in scatter recipient subflows. For successful
operation, a gatherResultChannel, originalReplyChannel and originalErrorChannel
headers must be transferred back to replies from scatter recipient subflows. In this
case a reasonable, finite gatherTimeout must be configured for the
ScatterGatherHandler. Otherwise it is going to be blocked waiting for a reply from
the gatherer forever, by default.

8.8. Thread Barrier
Sometimes, we need to suspend a message flow thread until some other asynchronous event
occurs. For example, consider an HTTP request that publishes a message to RabbitMQ. We might
wish to not reply to the user until the RabbitMQ broker has issued an acknowledgment that the

146

message was received.

In version 4.2, Spring Integration introduced the <barrier/> component for this purpose. The
underlying MessageHandler is the BarrierMessageHandler. This class also implements
MessageTriggerAction, in which a message passed to the trigger() method releases a corresponding
thread in the handleRequestMessage() method (if present).

The suspended thread and trigger thread are correlated by invoking a CorrelationStrategy on the
messages. When a message is sent to the input-channel, the thread is suspended for up to
requestTimeout milliseconds, waiting for a corresponding trigger message. The default correlation
strategy uses the IntegrationMessageHeaderAccessor.CORRELATION_ID header. When a trigger message
arrives with the same correlation, the thread is released. The message sent to the output-channel
after release is constructed by using a MessageGroupProcessor. By default, the message is a
Collection<?> of the two payloads, and the headers are merged by using a
DefaultAggregatingMessageGroupProcessor.



If the trigger() method is invoked first (or after the main thread times out), it is
suspended for up to triggerTimeout waiting for the suspending message to arrive.
If you do not want to suspend the trigger thread, consider handing off to a
TaskExecutor instead so that its thread is suspended instead.



Prior version 5.4, there was only one timeout option for both request and trigger
messages, but in some use-case it is better to have different timeouts for those
actions. Therefore requestTimeout and triggerTimeout options have been
introduced.

The requires-reply property determines the action to take if the suspended thread times out before
the trigger message arrives. By default, it is false, which means the endpoint returns null, the flow
ends, and the thread returns to the caller. When true, a ReplyRequiredException is thrown.

You can call the trigger() method programmatically (obtain the bean reference by using the name,
barrier.handler — where barrier is the bean name of the barrier endpoint). Alternatively, you can
configure an <outbound-channel-adapter/> to trigger the release.


Only one thread can be suspended with the same correlation. The same
correlation can be used multiple times but only once concurrently. An exception is
thrown if a second thread arrives with the same correlation.

The following example shows how to use a custom header for correlation:

147

<int:barrier id="barrier1" input-channel="in" output-channel="out"
 correlation-strategy-expression="headers['myHeader']"
 output-processor="myOutputProcessor"
 discard-channel="lateTriggerChannel"
 timeout="10000">
</int:barrier>

<int:outbound-channel-adapter channel="release" ref="barrier1.handler" method="
trigger" />

Depending on which one has a message arrive first, either the thread sending a message to in or the
thread sending a message to release waits for up to ten seconds until the other message arrives.
When the message is released, the out channel is sent a message that combines the result of
invoking the custom MessageGroupProcessor bean, named myOutputProcessor. If the main thread
times out and a trigger arrives later, you can configure a discard channel to which the late trigger is
sent. The following example shows the Java configuration to do so:

@Configuration
@EnableIntegration
public class Config {

 @ServiceActivator(inputChannel="in")
 @Bean
 public BarrierMessageHandler barrier() {
 BarrierMessageHandler barrier = new BarrierMessageHandler(10000);
 barrier.setOutputChannel(out());
 barrier.setDiscardChannel(lateTriggers());
 return barrier;
 }

 @ServiceActivator (inputChannel="release")
 @Bean
 public MessageHandler releaser() {
 return new MessageHandler() {

 @Override
 public void handleMessage(Message<?> message) throws MessagingException {
 barrier().trigger(message);
 }

 };
 }

}

For an example of this component, see the barrier sample application.

148

https://github.com/spring-projects/spring-integration-samples/tree/master/basic/barrier

Chapter 9. Message Transformation

9.1. Transformer
Message transformers play a very important role in enabling the loose-coupling of message
producers and message consumers. Rather than requiring every message-producing component to
know what type is expected by the next consumer, you can add transformers between those
components. Generic transformers, such as one that converts a String to an XML Document, are
also highly reusable.

For some systems, it may be best to provide a canonical data model, but Spring Integration’s
general philosophy is not to require any particular format. Rather, for maximum flexibility, Spring
Integration aims to provide the simplest possible model for extension. As with the other endpoint
types, the use of declarative configuration in XML or Java annotations enables simple POJOs to be
adapted for the role of message transformers. The rest of this chapter describes these configuration
options.



For the sake of maximizing flexibility, Spring does not require XML-based message
payloads. Nevertheless, the framework does provide some convenient
transformers for dealing with XML-based payloads if that is indeed the right
choice for your application. For more information on those transformers, see XML
Support - Dealing with XML Payloads.

9.1.1. Configuring a Transformer with XML

The <transformer> element is used to create a message-transforming endpoint. In addition to input-
channel and output-channel attributes, it requires a ref attribute. The ref may either point to an
object that contains the @Transformer annotation on a single method (see Configuring a Transformer
with Annotations), or it may be combined with an explicit method name value provided in the
method attribute.

<int:transformer id="testTransformer" ref="testTransformerBean" input-channel=
"inChannel"
 method="transform" output-channel="outChannel"/>
<beans:bean id="testTransformerBean" class="org.foo.TestTransformer" />

Using a ref attribute is generally recommended if the custom transformer handler implementation
can be reused in other <transformer> definitions. However, if the custom transformer handler
implementation should be scoped to a single definition of the <transformer>, you can define an
inner bean definition, as the following example shows:

149

https://www.enterpriseintegrationpatterns.com/CanonicalDataModel.html
./xml.pdf#xml
./xml.pdf#xml

<int:transformer id="testTransformer" input-channel="inChannel" method="transform"
 output-channel="outChannel">
 <beans:bean class="org.foo.TestTransformer"/>
</transformer>


Using both the ref attribute and an inner handler definition in the same
<transformer> configuration is not allowed, as it creates an ambiguous condition
and results in an exception being thrown.



If the ref attribute references a bean that extends AbstractMessageProducingHandler
(such as transformers provided by the framework itself), the configuration is
optimized by injecting the output channel into the handler directly. In this case,
each ref must be to a separate bean instance (or a prototype-scoped bean) or use
the inner <bean/> configuration type. If you inadvertently reference the same
message handler from multiple beans, you get a configuration exception.

When using a POJO, the method that is used for transformation may expect either the Message type
or the payload type of inbound messages. It may also accept message header values either
individually or as a full map by using the @Header and @Headers parameter annotations, respectively.
The return value of the method can be any type. If the return value is itself a Message, that is passed
along to the transformer’s output channel.

As of Spring Integration 2.0, a message transformer’s transformation method can no longer return
null. Returning null results in an exception, because a message transformer should always be
expected to transform each source message into a valid target message. In other words, a message
transformer should not be used as a message filter, because there is a dedicated <filter> option for
that. However, if you do need this type of behavior (where a component might return null and that
should not be considered an error), you could use a service activator. Its requires-reply value is
false by default, but that can be set to true in order to have exceptions thrown for null return
values, as with the transformer.

9.1.2. Transformers and Spring Expression Language (SpEL)

Like routers, aggregators, and other components, as of Spring Integration 2.0, transformers can also
benefit from SpEL support whenever transformation logic is relatively simple. The following
example shows how to use a SpEL expression:

<int:transformer input-channel="inChannel"
 output-channel="outChannel"
 expression="payload.toUpperCase() + '- [' + T(System).currentTimeMillis() +
']'"/>

The preceding example transforms the payload without writing a custom transformer. Our payload

150

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

(assumed to be a String) is upper-cased, concatenated with the current timestamp, and has some
formatting applied.

9.1.3. Common Transformers

Spring Integration provides a few transformer implementations.

Object-to-String Transformer

Because it is fairly common to use the toString() representation of an Object, Spring Integration
provides an ObjectToStringTransformer whose output is a Message with a String payload. That String
is the result of invoking the toString() operation on the inbound Message’s payload. The following
example shows how to declare an instance of the object-to-string transformer:

<int:object-to-string-transformer input-channel="in" output-channel="out"/>

A potential use for this transformer would be sending some arbitrary object to the 'outbound-
channel-adapter' in the file namespace. Whereas that channel adapter only supports String, byte-
array, or java.io.File payloads by default, adding this transformer immediately before the adapter
handles the necessary conversion. That works fine as long as the result of the toString() call is
what you want to be written to the file. Otherwise, you can provide a custom POJO-based
transformer by using the generic 'transformer' element shown previously.


When debugging, this transformer is not typically necessary, since the logging-
channel-adapter is capable of logging the message payload. See Wire Tap for more
detail.



The object-to-string transformer is very simple. It invokes toString() on the
inbound payload. Since Spring Integration 3.0, there are two exceptions to this
rule:

• If the payload is a char[], it invokes new String(payload).

• If the payload is a byte[], it invokes new String(payload, charset), where
charset is UTF-8 by default. The charset can be modified by supplying the
charset attribute on the transformer.

For more sophistication (such as selection of the charset dynamically, at runtime),
you can use a SpEL expression-based transformer instead, as the following
example shows:

<int:transformer input-channel="in" output-channel="out"
 expression="new java.lang.String(payload, headers['myCharset']"
/>

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object,

151

./channel.pdf#channel-wiretap

Spring Integration provides symmetrical serialization transformers. These use standard Java
serialization by default, but you can provide an implementation of Spring 3.0’s serializer or
seserializer strategies by using the serializer and deserializer attributes, respectively. The
following example shows to use Spring’s serializer and deserializer:

<int:payload-serializing-transformer input-channel="objectsIn" output-channel=
"bytesOut"/>

<int:payload-deserializing-transformer input-channel="bytesIn" output-channel=
"objectsOut"
 allow-list="com.mycom.*,com.yourcom.*"/>


When deserializing data from untrusted sources, you should consider adding a
allow-list of package and class patterns. By default, all classes are deserialized.

Object-to-Map and Map-to-Object Transformers

Spring Integration also provides Object-to-Map and Map-to-Object transformers, which use the JSON to
serialize and de-serialize the object graphs. The object hierarchy is introspected to the most
primitive types (String, int, and so on). The path to this type is described with SpEL, which becomes
the key in the transformed Map. The primitive type becomes the value.

Consider the following example:

public class Parent{
 private Child child;
 private String name;
 // setters and getters are omitted
}

public class Child{
 private String name;
 private List<String> nickNames;
 // setters and getters are omitted
}

The two classes in the preceding example are transformed to the following Map:

{person.name=George, person.child.name=Jenna, person.child.nickNames[0]=Jen ...}

The JSON-based Map lets you describe the object structure without sharing the actual types, which
lets you restore and rebuild the object graph into a differently typed object graph, as long as you

152

maintain the structure.

For example, the preceding structure could be restored back to the following object graph by using
the Map-to-Object transformer:

public class Father {
 private Kid child;
 private String name;
 // setters and getters are omitted
}

public class Kid {
 private String name;
 private List<String> nickNames;
 // setters and getters are omitted
}

If you need to create a “structured” map, you can provide the flatten attribute. The default is 'true'.
If you set it to 'false', the structure is a Map of Map objects.

Consider the following example:

public class Parent {
 private Child child;
 private String name;
 // setters and getters are omitted
}

public class Child {
 private String name;
 private List<String> nickNames;
 // setters and getters are omitted
}

The two classes in the preceding example are transformed to the following Map:

{name=George, child={name=Jenna, nickNames=[Bimbo, ...]}}

To configure these transformers, Spring Integration provides namespace support for Object-to-Map,
as the following example shows:

153

<int:object-to-map-transformer input-channel="directInput" output-channel="output
"/>

You can also set the flatten attribute to false, as follows:

<int:object-to-map-transformer input-channel="directInput" output-channel="output"
flatten="false"/>

Spring Integration provides namespace support for Map-to-Object, as the following example shows:

<int:map-to-object-transformer input-channel="input"
 output-channel="output"
 type="org.something.Person"/>

Alterately, you could use a ref attribute and a prototype-scoped bean, as the following example
shows:

<int:map-to-object-transformer input-channel="inputA"
 output-channel="outputA"
 ref="person"/>
<bean id="person" class="org.something.Person" scope="prototype"/>


The 'ref' and 'type' attributes are mutually exclusive. Also, if you use the 'ref'
attribute, you must point to a 'prototype' scoped bean. Otherwise, a
BeanCreationException is thrown.

Starting with version 5.0, you can supply the ObjectToMapTransformer with a customized
JsonObjectMapper — for when you need special formats for dates or nulls for empty collections (and
other uses). See JSON Transformers for more information about JsonObjectMapper implementations.

Stream Transformer

The StreamTransformer transforms InputStream payloads to a byte[](or a String if a charset is
provided).

The following example shows how to use the stream-transformer element in XML:

154

<int:stream-transformer input-channel="directInput" output-channel="output"/> <!--
byte[] -->

<int:stream-transformer id="withCharset" charset="UTF-8"
 input-channel="charsetChannel" output-channel="output"/> <!-- String -->

The following example shows how to use the StreamTransformer class and the @Transformer
annotation to configure a stream transformer in Java:

@Bean
@Transformer(inputChannel = "stream", outputChannel = "data")
public StreamTransformer streamToBytes() {
 return new StreamTransformer(); // transforms to byte[]
}

@Bean
@Transformer(inputChannel = "stream", outputChannel = "data")
public StreamTransformer streamToString() {
 return new StreamTransformer("UTF-8"); // transforms to String
}

JSON Transformers

Spring Integration provides Object-to-JSON and JSON-to-Object transformers. The following pair of
examples show how to declare them in XML:

<int:object-to-json-transformer input-channel="objectMapperInput"/>

<int:json-to-object-transformer input-channel="objectMapperInput"
 type="foo.MyDomainObject"/>

By default, the transformers in the preceding listing use a vanilla JsonObjectMapper. It is based on an
implementation from the classpath. You can provide your own custom JsonObjectMapper
implementation with appropriate options or based on a required library (such as GSON), as the
following example shows:

<int:json-to-object-transformer input-channel="objectMapperInput"
 type="something.MyDomainObject" object-mapper="customObjectMapper"/>

155



Beginning with version 3.0, the object-mapper attribute references an instance of a
new strategy interface: JsonObjectMapper. This abstraction lets multiple
implementations of JSON mappers be used. Implementation that wraps Jackson 2
is provided, with the version being detected on the classpath. The class is
Jackson2JsonObjectMapper, respectively.

You may wish to consider using a FactoryBean or a factory method to create the JsonObjectMapper
with the required characteristics. The following example shows how to use such a factory:

public class ObjectMapperFactory {

 public static Jackson2JsonObjectMapper getMapper() {
 ObjectMapper mapper = new ObjectMapper();
 mapper.configure(JsonParser.Feature.ALLOW_COMMENTS, true);
 return new Jackson2JsonObjectMapper(mapper);
 }
}

The following example shows how to do the same thing in XML

<bean id="customObjectMapper" class="something.ObjectMapperFactory"
 factory-method="getMapper"/>



Beginning with version 2.2, the object-to-json-transformer sets the content-type
header to application/json, by default, if the input message does not already have
that header.

It you wish to set the content-type header to some other value or explicitly
overwrite any existing header with some value (including application/json), use
the content-type attribute. If you wish to suppress the setting of the header, set the
content-type attribute to an empty string (""). Doing so results in a message with
no content-type header, unless such a header was present on the input message.

Beginning with version 3.0, the ObjectToJsonTransformer adds headers, reflecting the source type, to
the message. Similarly, the JsonToObjectTransformer can use those type headers when converting the
JSON to an object. These headers are mapped in the AMQP adapters so that they are entirely
compatible with the Spring-AMQP JsonMessageConverter.

This enables the following flows to work without any special configuration:

• …→amqp-outbound-adapter---→

• ---→amqp-inbound-adapter→json-to-object-transformer→…

156

https://github.com/FasterXML
https://docs.spring.io/spring-amqp/api/

Where the outbound adapter is configured with a JsonMessageConverter and the inbound
adapter uses the default SimpleMessageConverter.

• …→object-to-json-transformer→amqp-outbound-adapter---→

• ---→amqp-inbound-adapter→…

Where the outbound adapter is configured with a SimpleMessageConverter and the inbound
adapter uses the default JsonMessageConverter.

• …→object-to-json-transformer→amqp-outbound-adapter---→

• ---→amqp-inbound-adapter→json-to-object-transformer→

Where both adapters are configured with a SimpleMessageConverter.


When using the headers to determine the type, you should not provide a class
attribute, because it takes precedence over the headers.

In addition to JSON Transformers, Spring Integration provides a built-in #jsonPath SpEL function
for use in expressions. For more information see Spring Expression Language (SpEL).

Since version 3.0, Spring Integration also provides a built-in #xpath SpEL function for use in
expressions. For more information see #xpath SpEL Function.

Beginning with version 4.0, the ObjectToJsonTransformer supports the resultType property, to specify
the node JSON representation. The result node tree representation depends on the implementation
of the provided JsonObjectMapper. By default, the ObjectToJsonTransformer uses a
Jackson2JsonObjectMapper and delegates the conversion of the object to the node tree to the
ObjectMapper#valueToTree method. The node JSON representation provides efficiency for using the
JsonPropertyAccessor when the downstream message flow uses SpEL expressions with access to the
properties of the JSON data. See Property Accessors for more information.

Beginning with version 5.1, the resultType can be configured as BYTES to produce a message with
the byte[] payload for convenience when working with downstream handlers which operate with
this data type.

Starting with version 5.2, the JsonToObjectTransformer can be configured with a ResolvableType to
support generics during deserialization with the target JSON processor. Also this component now
consults request message headers first for the presence of the JsonHeaders.RESOLVABLE_TYPE or
JsonHeaders.TYPE_ID and falls back to the configured type otherwise. The ObjectToJsonTransformer
now also populates a JsonHeaders.RESOLVABLE_TYPE header based on the request message payload for
any possible downstream scenarios.

Starting with version 5.2.6, the JsonToObjectTransformer can be supplied with a valueTypeExpression
to resolve a ResolvableType for the payload to convert from JSON at runtime against the request
message. By default it consults JsonHeaders in the request message. If this expression returns null or
ResolvableType building throws a ClassNotFoundException, the transformer falls back to the provided
targetType. This logic is present as an expression because JsonHeaders may not have real class
values, but rather some type ids which have to be mapped to target classes according some external
registry.

157

./spel.pdf#spel
./xml.pdf#xpath-spel-function
./spel.pdf#spel-property-accessors

Apache Avro Transformers

Version 5.2 added simple transformers to transform to/from Apache Avro.

They are unsophisticated in that there is no schema registry; the transformers simply use the
schema embedded in the SpecificRecord implementation generated from the Avro schema.

Messages sent to the SimpleToAvroTransformer must have a payload that implements SpecificRecord;
the transformer can handle multiple types. The SimpleFromAvroTransformer must be configured with
a SpecificRecord class which is used as the default type to deserialize. You can also specify a SpEL
expression to determine the type to deserialize using the setTypeExpression method. The default
SpEL expression is headers[avro_type] (AvroHeaders.TYPE) which, by default, is populated by the
SimpleToAvroTransformer with the fully qualified class name of the source class. If the expression
returns null, the defaultType is used.

The SimpleToAvroTransformer also has a setTypeExpression method. This allows decoupling of the
producer and consumer where the sender can set the header to some token representing the type
and the consumer then maps that token to a type.

9.1.4. Configuring a Transformer with Annotations

You can add the @Transformer annotation to methods that expect either the Message type or the
message payload type. The return value is handled in the exact same way as described earlier in
the section describing the <transformer> element. The following example shows how to use the
@Transformer annotation to transform a String into an Order:

@Transformer
Order generateOrder(String productId) {
 return new Order(productId);
}

Transformer methods can also accept the @Header and @Headers annotations, as documented in
Annotation Support. The following examples shows how to use the @Header annotation:

@Transformer
Order generateOrder(String productId, @Header("customerName") String customer) {
 return new Order(productId, customer);
}

See also Advising Endpoints Using Annotations.

9.1.5. Header Filter

Sometimes, your transformation use case might be as simple as removing a few headers. For such a
use case, Spring Integration provides a header filter that lets you specify certain header names that

158

./configuration.pdf#annotations
./handler-advice.pdf#advising-with-annotations

should be removed from the output message (for example, removing headers for security reasons
or a value that was needed only temporarily). Basically, the header filter is the opposite of the
header enricher. The latter is discussed in Header Enricher. The following example defines a
header filter:

<int:header-filter input-channel="inputChannel"
 output-channel="outputChannel" header-names="lastName, state"/>

As you can see, configuration of a header filter is quite simple. It is a typical endpoint with input
and output channels and a header-names attribute. That attribute accepts the names of the headers
(delimited by commas if there are multiple) that need to be removed. So, in the preceding example,
the headers named 'lastName' and 'state' are not present on the outbound message.

9.1.6. Codec-Based Transformers

See Codec.

9.2. Content Enricher
At times, you may have a requirement to enhance a request with more information than was
provided by the target system. The data enricher pattern describes various scenarios as well as the
component (Enricher) that lets you address such requirements.

The Spring Integration Core module includes two enrichers:

• Header Enricher

• Payload Enricher

It also includes three adapter-specific header enrichers:

• XPath Header Enricher (XML Module)

• Mail Header Enricher (Mail Module)

• XMPP Header Enricher (XMPP Module)

See the adapter-specific sections of this reference manual to learn more about those adapters.

For more information regarding expressions support, see Spring Expression Language (SpEL).

9.2.1. Header Enricher

If you need do nothing more than add headers to a message and the headers are not dynamically
determined by the message content, referencing a custom implementation of a transformer may be
overkill. For that reason, Spring Integration provides support for the header enricher pattern. It is
exposed through the <header-enricher> element. The following example shows how to use it:

159

./content-enrichment.pdf#header-enricher
./codec.pdf#codec
https://www.enterpriseintegrationpatterns.com/DataEnricher.html
./xml.pdf#xml-xpath-header-enricher
./mail.pdf#mail-namespace
./xmpp.pdf#xmpp-message-outbound-channel-adapter
./spel.pdf#spel

<int:header-enricher input-channel="in" output-channel="out">
 <int:header name="foo" value="123"/>
 <int:header name="bar" ref="someBean"/>
</int:header-enricher>

The header enricher also provides helpful sub-elements to set well known header names, as the
following example shows:

<int:header-enricher input-channel="in" output-channel="out">
 <int:error-channel ref="applicationErrorChannel"/>
 <int:reply-channel ref="quoteReplyChannel"/>
 <int:correlation-id value="123"/>
 <int:priority value="HIGHEST"/>
 <routing-slip value="channel1; routingSlipRoutingStrategy;
request.headers[myRoutingSlipChannel]"/>
 <int:header name="bar" ref="someBean"/>
</int:header-enricher>

The preceding configuration shows that, for well known headers (such as errorChannel,
correlationId, priority, replyChannel, routing-slip, and others), instead of using generic <header>
sub-elements where you would have to provide both header 'name' and 'value', you can use
convenient sub-elements to set those values directly.

Starting with version 4.1, the header enricher provides a routing-slip sub-element. See Routing Slip
for more information.

POJO Support

Often, a header value cannot be defined statically and has to be determined dynamically based on
some content in the message. That is why the header enricher lets you also specify a bean reference
by using the ref and method attributes. The specified method calculates the header value. Consider
the following configuration and a bean with a method that modifies a String:

160

./router.pdf#routing-slip

<int:header-enricher input-channel="in" output-channel="out">
 <int:header name="something" method="computeValue" ref="myBean"/>
</int:header-enricher>

<bean id="myBean" class="thing1.thing2.MyBean"/>

public class MyBean {

 public String computeValue(String payload){
 return payload.toUpperCase() + "_US";
 }
}

You can also configure your POJO as an inner bean, as the following example shows:

<int:header-enricher input-channel="inputChannel" output-channel="outputChannel">
 <int:header name="some_header">
 <bean class="org.MyEnricher"/>
 </int:header>
</int:header-enricher>

You can similarly point to a Groovy script, as the following example shows:

<int:header-enricher input-channel="inputChannel" output-channel="outputChannel">
 <int:header name="some_header">
 <int-groovy:script location="org/SampleGroovyHeaderEnricher.groovy"/>
 </int:header>
</int:header-enricher>

SpEL Support

In Spring Integration 2.0, we introduced the convenience of the Spring Expression Language (SpEL)
to help configure many different components. The header enricher is one of them. Look again at
the POJO example shown earlier. You can see that the computation logic to determine the header
value is pretty simple. A natural question would be: "Is there an even simpler way to accomplish
this?". That is where SpEL shows its true power. Consider the following example:

161

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

<int:header-enricher input-channel="in" output-channel="out">
 <int:header name="foo" expression="payload.toUpperCase() + '_US'"/>
</int:header-enricher>

By using SpEL for such simple cases, you no longer have to provide a separate class and configure it
in the application context. All you need do is configured the expression attribute with a valid SpEL
expression. The 'payload' and 'headers' variables are bound to the SpEL evaluation context, giving
you full access to the incoming message.

Configuring a Header Enricher with Java Configuration

The following two examples show how to use Java Configuration for header enrichers:

@Bean
@Transformer(inputChannel = "enrichHeadersChannel", outputChannel = "emailChannel
")
public HeaderEnricher enrichHeaders() {
 Map<String, ? extends HeaderValueMessageProcessor<?>> headersToAdd =
 Collections.singletonMap("emailUrl",
 new StaticHeaderValueMessageProcessor<>(this.imapUrl));
 HeaderEnricher enricher = new HeaderEnricher(headersToAdd);
 return enricher;
}

@Bean
@Transformer(inputChannel="enrichHeadersChannel", outputChannel="emailChannel")
public HeaderEnricher enrichHeaders() {
 Map<String, HeaderValueMessageProcessor<?>> headersToAdd = new HashMap<>();
 headersToAdd.put("emailUrl", new StaticHeaderValueMessageProcessor<String>
(this.imapUrl));
 Expression expression = new SpelExpressionParser().parseExpression(
"payload.from[0].toString()");
 headersToAdd.put("from",
 new ExpressionEvaluatingHeaderValueMessageProcessor<>(expression,
String.class));
 HeaderEnricher enricher = new HeaderEnricher(headersToAdd);
 return enricher;
}

The first example adds a single literal header. The second example adds two headers, a literal
header and one based on a SpEL expression.

Configuring a Header Enricher with the Java DSL

The following example shows Java DSL Configuration for a header enricher:

162

@Bean
public IntegrationFlow enrichHeadersInFlow() {
 return f -> f
 ...
 .enrichHeaders(h -> h.header("emailUrl", this.emailUrl)
 .headerExpression("from",
"payload.from[0].toString()"))
 .handle(...);
}

Header Channel Registry

Starting with Spring Integration 3.0, a new sub-element <int:header-channels-to-string/> is
available. It has no attributes. This new sub-element converts existing replyChannel and
errorChannel headers (when they are a MessageChannel) to a String and stores the channels in a
registry for later resolution, when it is time to send a reply or handle an error. This is useful for
cases where the headers might be lost — for example, when serializing a message into a message
store or when transporting the message over JMS. If the header does not already exist or it is not a
MessageChannel, no changes are made.

Using this functionality requires the presence of a HeaderChannelRegistry bean. By default, the
framework creates a DefaultHeaderChannelRegistry with the default expiry (60 seconds). Channels
are removed from the registry after this time. To change this behavior, define a bean with an id of
integrationHeaderChannelRegistry and configure the required default delay by using a constructor
argument (in milliseconds).

Since version 4.1, you can set a property called removeOnGet to true on the <bean/> definition, and the
mapping entry is removed immediately on first use. This might be useful in a high-volume
environment and when the channel is only used once, rather than waiting for the reaper to remove
it.

The HeaderChannelRegistry has a size() method to determine the current size of the registry. The
runReaper() method cancels the current scheduled task and runs the reaper immediately. The task
is then scheduled to run again based on the current delay. These methods can be invoked directly
by getting a reference to the registry, or you can send a message with, for example, the following
content to a control bus:

"@integrationHeaderChannelRegistry.runReaper()"

This sub-element is a convenience, and is the equivalent of specifying the following configuration:

163

<int:reply-channel
 expression=
"@integrationHeaderChannelRegistry.channelToChannelName(headers.replyChannel)"
 overwrite="true" />
<int:error-channel
 expression=
"@integrationHeaderChannelRegistry.channelToChannelName(headers.errorChannel)"
 overwrite="true" />

Starting with version 4.1, you can now override the registry’s configured reaper delay so that the
the channel mapping is retained for at least the specified time, regardless of the reaper delay. The
following example shows how to do so:

<int:header-enricher input-channel="inputTtl" output-channel="next">
 <int:header-channels-to-string time-to-live-expression="120000" />
</int:header-enricher>

<int:header-enricher input-channel="inputCustomTtl" output-channel="next">
 <int:header-channels-to-string
 time-to-live-expression="headers['channelTTL'] ?: 120000" />
</int:header-enricher>

In the first case, the time to live for every header channel mapping will be two minutes. In the
second case, the time to live is specified in the message header and uses an Elvis operator to use
two minutes if there is no header.

9.2.2. Payload Enricher

In certain situations, the header enricher, as discussed earlier, may not be sufficient and payloads
themselves may have to be enriched with additional information. For example, order messages that
enter the Spring Integration messaging system have to look up the order’s customer based on the
provided customer number and then enrich the original payload with that information.

Spring Integration 2.1 introduced the payload enricher. The payload enricher defines an endpoint
that passes a Message to the exposed request channel and then expects a reply message. The reply
message then becomes the root object for evaluation of expressions to enrich the target payload.

The payload enricher provides full XML namespace support through the enricher element. In order
to send request messages, the payload enricher has a request-channel attribute that lets you
dispatch messages to a request channel.

Basically, by defining the request channel, the payload enricher acts as a gateway, waiting for the
message sent to the request channel to return. The enricher then augments the message’s payload
with the data provided by the reply message.

164

When sending messages to the request channel, you also have the option to send only a subset of
the original payload by using the request-payload-expression attribute.

The enriching of payloads is configured through SpEL expressions, providing a maximum degree of
flexibility. Therefore, you can not only enrich payloads with direct values from the reply channel’s
Message, but you can use SpEL expressions to extract a subset from that message or to apply
additional inline transformations, letting you further manipulate the data.

If you need only to enrich payloads with static values, you need not provide the request-channel
attribute.



Enrichers are a variant of transformers. In many cases, you could use a payload
enricher or a generic transformer implementation to add additional data to your
message payloads. You should familiarize yourself with all transformation-capable
components that are provided by Spring Integration and carefully select the
implementation that semantically fits your business case best.

Configuration

The following example shows all available configuration options for the payload enricher:

<int:enricher request-channel="" ①
 auto-startup="true" ②
 id="" ③
 order="" ④
 output-channel="" ⑤
 request-payload-expression="" ⑥
 reply-channel="" ⑦
 error-channel="" ⑧
 send-timeout="" ⑨
 should-clone-payload="false"> ⑩
 <int:poller></int:poller> ⑪
 <int:property name="" expression="" null-result-expression="'Could not determine
the name'"/> ⑫
 <int:property name="" value="23" type="java.lang.Integer" null-result-expression=
"'0'"/>
 <int:header name="" expression="" null-result-expression=""/> ⑬
 <int:header name="" value="" overwrite="" type="" null-result-expression=""/>
</int:enricher>

① Channel to which a message is sent to get the data to use for enrichment. Optional.

② Lifecycle attribute signaling whether this component should be started during the application
context startup. Defaults to true. Optional.

③ ID of the underlying bean definition, which is either an EventDrivenConsumer or a
PollingConsumer. Optional.

④ Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a “failover” dispatching strategy. It has
no effect when this endpoint is itself a polling consumer for a channel with a queue. Optional.

165

⑤ Identifies the message channel where a message is sent after it is being processed by this
endpoint. Optional.

⑥ By default, the original message’s payload is used as payload that is sent to the request-channel.
By specifying a SpEL expression as the value for the request-payload-expression attribute, you
can use a subset of the original payload, a header value, or any other resolvable SpEL expression
as the basis for the payload that is sent to the request-channel. For the expression evaluation,
the full message is available as the 'root object'. For instance, the following SpEL expressions
(among others) are possible: payload.something, headers.something, new java.util.Date(),
'thing1' + 'thing2'

⑦ Channel where a reply message is expected. This is optional. Typically, the auto-generated
temporary reply channel suffices. Optional.

⑧ The channel to which an ErrorMessage is sent if an Exception occurs downstream of the request-
channel. This enables you to return an alternative object to use for enrichment. If it is not set, an
Exception is thrown to the caller. Optional.

⑨ Maximum amount of time in milliseconds to wait when sending a message to the channel, if the
channel might block. For example, a queue channel can block until space is available, if its
maximum capacity has been reached. Internally, the send timeout is set on the
MessagingTemplate and ultimately applied when invoking the send operation on the
MessageChannel. By default, the send timeout is set to '-1', which can cause the send operation on
the MessageChannel, depending on the implementation, to block indefinitely. Optional.

⑩ Boolean value indicating whether any payload that implements Cloneable should be cloned prior
to sending the message to the request channel for acquiring the enriching data. The cloned
version would be used as the target payload for the ultimate reply. The default is false. Optional.

⑪ Lets you configure a message poller if this endpoint is a polling consumer. Optional.

⑫ Each property sub-element provides the name of a property (through the mandatory name
attribute). That property should be settable on the target payload instance. Exactly one of the
value or expression attributes must be provided as well — the former for a literal value to set
and the latter for a SpEL expression to be evaluated. The root object of the evaluation context is
the message that was returned from the flow initiated by this enricher — the input message if
there is no request channel or the application context (using the @<beanName>.<beanProperty>
SpEL syntax). Starting with version 4.0, when specifying a value attribute, you can also specify
an optional type attribute. When the destination is a typed setter method, the framework
coerces the value appropriately (as long as a PropertyEditor) exists to handle the conversion. If,
however, the target payload is a Map, the entry is populated with the value without conversion.
The type attribute lets you, for example, convert a String containing a number to an Integer
value in the target payload. Starting with version 4.1, you can also specify an optional null-
result-expression attribute. When the enricher returns null, it is evaluated, and the output of the
evaluation is returned instead.

⑬ Each header sub-element provides the name of a message header (through the mandatory name
attribute). Exactly one of the value or expression attributes must also be provided — the former
for a literal value to set and the latter for a SpEL expression to be evaluated. The root object of
the evaluation context is the message that was returned from the flow initiated by this
enricher — the input message if there is no request channel or the application context (using the
'@<beanName>.<beanProperty>' SpEL syntax). Note that, similarly to the <header-enricher>, the
<enricher> element’s header element has type and overwrite attributes. However, a key

166

difference is that, with the <enricher>, the overwrite attribute is true by default, to be consistent
with the <enricher> element’s <property> sub-element. Starting with version 4.1, you can also
specify an optional null-result-expression attribute. When the enricher returns null, it is
evaluated, and the output of the evaluation is returned instead.

Examples

This section contains several examples of using a payload enricher in various situations.


The code samples shown here are part of the Spring Integration Samples project.
See Spring Integration Samples.

In the following example, a User object is passed as the payload of the Message:

<int:enricher id="findUserEnricher"
 input-channel="findUserEnricherChannel"
 request-channel="findUserServiceChannel">
 <int:property name="email" expression="payload.email"/>
 <int:property name="password" expression="payload.password"/>
</int:enricher>

The User has several properties, but only the username is set initially. The enricher’s request-channel
attribute is configured to pass the User to the findUserServiceChannel.

Through the implicitly set reply-channel, a User object is returned and, by using the property sub-
element, properties from the reply are extracted and used to enrich the original payload.

How Do I Pass Only a Subset of Data to the Request Channel?

When using a request-payload-expression attribute, a single property of the payload instead of the
full message can be passed on to the request channel. In the following example, the username
property is passed on to the request channel:

<int:enricher id="findUserByUsernameEnricher"
 input-channel="findUserByUsernameEnricherChannel"
 request-channel="findUserByUsernameServiceChannel"
 request-payload-expression="payload.username">
 <int:property name="email" expression="payload.email"/>
 <int:property name="password" expression="payload.password"/>
</int:enricher>

Keep in mind that, although only the username is passed, the resulting message to the request
channel contains the full set of MessageHeaders.

167

./samples.pdf#samples

How Can I Enrich Payloads that Consist of Collection Data?

In the following example, instead of a User object, a Map is passed in:

<int:enricher id="findUserWithMapEnricher"
 input-channel="findUserWithMapEnricherChannel"
 request-channel="findUserByUsernameServiceChannel"
 request-payload-expression="payload.username">
 <int:property name="user" expression="payload"/>
</int:enricher>

The Map contains the username under the username map key. Only the username is passed on to the
request channel. The reply contains a full User object, which is ultimately added to the Map under
the user key.

How Can I Enrich Payloads with Static Information without Using a Request Channel?

The following example does not use a request channel at all but solely enriches the message’s
payload with static values:

<int:enricher id="userEnricher"
 input-channel="input">
 <int:property name="user.updateDate" expression="new java.util.Date()"/>
 <int:property name="user.firstName" value="William"/>
 <int:property name="user.lastName" value="Shakespeare"/>
 <int:property name="user.age" value="42"/>
</int:enricher>

Note that the word, 'static', is used loosely here. You can still use SpEL expressions for setting those
values.

9.3. Claim Check
In earlier sections, we covered several content enricher components that can help you deal with
situations where a message is missing a piece of data. We also discussed content filtering, which lets
you remove data items from a message. However, there are times when we want to hide data
temporarily. For example, in a distributed system, we may receive a message with a very large
payload. Some intermittent message processing steps may not need access to this payload and some
may only need to access certain headers, so carrying the large message payload through each
processing step may cause performance degradation, may produce a security risk, and may make
debugging more difficult.

The store in library (or claim check) pattern describes a mechanism that lets you store data in a
well known place while maintaining only a pointer (a claim check) to where that data is located.

168

https://www.enterpriseintegrationpatterns.com/StoreInLibrary.html

You can pass that pointer around as the payload of a new message, thereby letting any component
within the message flow get the actual data as soon as it needs it. This approach is very similar to
the certified mail process, where you get a claim check in your mailbox and then have to go to the
post office to claim your actual package. It is also the same idea as baggage claim after a flight or in
a hotel.

Spring Integration provides two types of claim check transformers:

• Incoming Claim Check Transformer

• Outgoing Claim Check Transformer

Convenient namespace-based mechanisms are available to configure them.

9.3.1. Incoming Claim Check Transformer

An incoming claim check transformer transforms an incoming message by storing it in the message
store identified by its message-store attribute. The following example defines an incoming claim
check transformer:

<int:claim-check-in id="checkin"
 input-channel="checkinChannel"
 message-store="testMessageStore"
 output-channel="output"/>

In the preceding configuration, the message that is received on the input-channel is persisted to the
message store identified with the message-store attribute and indexed with a generated ID. That ID
is the claim check for that message. The claim check also becomes the payload of the new
(transformed) message that is sent to the output-channel.

Now, assume that at some point you do need access to the actual message. You can access the
message store manually and get the contents of the message, or you can use the same approach
(creating a transformer) except that now you transform the Claim Check to the actual message by
using an outgoing claim check transformer.

The following listing provides an overview of all available parameters of an incoming claim check
transformer:

169

<int:claim-check-in auto-startup="true" ①
 id="" ②
 input-channel="" ③
 message-store="messageStore" ④
 order="" ⑤
 output-channel="" ⑥
 send-timeout=""> ⑦
 <int:poller></int:poller> ⑧
</int:claim-check-in>

① Lifecycle attribute signaling whether this component should be started during application
context startup. It defaults to true. This attribute is not available inside a Chain element.
Optional.

② ID identifying the underlying bean definition (MessageTransformingHandler). This attribute is
not available inside a Chain element. Optional.

③ The receiving message channel of this endpoint. This attribute is not available inside a
Chain element. Optional.

④ Reference to the MessageStore to be used by this claim check transformer. If not specified,
the default reference is to a bean named messageStore. Optional.

⑤ Specifies the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel uses a failover dispatching
strategy. It has no effect when this endpoint is itself a polling consumer for a channel with a
queue. This attribute is not available inside a Chain element. Optional.

⑥ Identifies the message channel where the message is sent after being processed by this
endpoint. This attribute is not available inside a Chain element. Optional.

⑦ Specifies the maximum amount of time (in milliseconds) to wait when sending a reply
message to the output channel. Defaults to -1 — blocking indefinitely. This attribute is not
available inside a Chain element. Optional.

⑧ Defines a poller. This element is not available inside a Chain element. Optional.

9.3.2. Outgoing Claim Check Transformer

An outgoing claim check transformer lets you transform a message with a claim check payload into
a message with the original content as its payload.

<int:claim-check-out id="checkout"
 input-channel="checkoutChannel"
 message-store="testMessageStore"
 output-channel="output"/>

In the preceding configuration, the message received on the input-channel should have a claim

170

check as its payload. The outgoing claim check transformer transforms it into a message with the
original payload by querying the message store for a message identified by the provided claim
check. It then sends the newly checked-out message to the output-channel.

The following listing provides an overview of all available parameters of an outgoing claim check
transformer:

<int:claim-check-out auto-startup="true" ①
 id="" ②
 input-channel="" ③
 message-store="messageStore" ④
 order="" ⑤
 output-channel="" ⑥
 remove-message="false" ⑦
 send-timeout=""> ⑧
 <int:poller></int:poller> ⑨
</int:claim-check-out>

① Lifecycle attribute signaling whether this component should be started during application
context startup. It defaults to true. This attribute is not available inside a Chain element.
Optional.

② ID identifying the underlying bean definition (MessageTransformingHandler). This attribute is
not available inside a Chain element. Optional.

③ The receiving message channel of this endpoint. This attribute is not available inside a
Chain element. Optional.

④ Reference to the MessageStore to be used by this claim check transformer. If not specified,
the default reference is to a bean named messageStore. Optional.

⑤ Specifies the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel is using a failover dispatching
strategy. It has no effect when this endpoint is itself a polling consumer for a channel with a
queue. This attribute is not available inside a Chain element. Optional.

⑥ Identifies the message channel where the message is sent after being processed by this
endpoint. This attribute is not available inside a Chain element. Optional.

⑦ If set to true, the message is removed from the MessageStore by this transformer. This
setting is useful when Message can be “claimed” only once. It defaults to false. Optional.

⑧ Specifies the maximum amount of time (in milliseconds) to wait when sending a reply
message to the output channel. It defaults to -1 — blocking indefinitely. This attribute is not
available inside a Chain element. Optional.

⑨ Defines a poller. This element is not available inside a Chain element. Optional.

9.3.3. Claim Once

Sometimes, a particular message must be claimed only once. As an analogy, consider process of
handling airplane luggage. You checking in your luggage on departure and claiming it on arrival.

171

Once the luggage has been claimed, it can not be claimed again without first checking it back in. To
accommodate such cases, we introduced a remove-message boolean attribute on the claim-check-out
transformer. This attribute is set to false by default. However, if set to true, the claimed message is
removed from the MessageStore so that it cannot be claimed again.

This feature has an impact in terms of storage space, especially in the case of the in-memory Map
-based SimpleMessageStore, where failing to remove messages could ultimately lead to an
OutOfMemoryException. Therefore, if you do not expect multiple claims to be made, we recommend
that you set the remove-message attribute’s value to true. The following example show how to use the
remove-message attribute:

<int:claim-check-out id="checkout"
 input-channel="checkoutChannel"
 message-store="testMessageStore"
 output-channel="output"
 remove-message="true"/>

9.3.4. A Word on Message Store

Although we rarely care about the details of the claim checks (as long as they work), you should
know that the current implementation of the actual claim check (the pointer) in Spring Integration
uses a UUID to ensure uniqueness.

org.springframework.integration.store.MessageStore is a strategy interface for storing and
retrieving messages. Spring Integration provides two convenient implementations of it:

• SimpleMessageStore: An in-memory, Map-based implementation (the default, good for testing)

• JdbcMessageStore: An implementation that uses a relational database over JDBC

9.4. Codec
Version 4.2 of Spring Integration introduced the Codec abstraction. Codecs encode and decode
objects to and from byte[]. They offer an alternative to Java serialization. One advantage is that,
typically, objects need not implement Serializable. We provide one implementation that uses Kryo
for serialization, but you can provide your own implementation for use in any of the following
components:

• EncodingPayloadTransformer

• DecodingTransformer

• CodecMessageConverter

9.4.1. EncodingPayloadTransformer

This transformer encodes the payload to a byte[] by using the codec. It does not affect message
headers.

172

https://github.com/EsotericSoftware/kryo

See the Javadoc for more information.

9.4.2. DecodingTransformer

This transformer decodes a byte[] by using the codec. It needs to be configured with the Class to
which the object should be decoded (or an expression that resolves to a Class). If the resulting
object is a Message<?>, inbound headers are not retained.

See the Javadoc for more information.

9.4.3. CodecMessageConverter

Certain endpoints (such as TCP and Redis) have no concept of message headers. They support the
use of a MessageConverter, and the CodecMessageConverter can be used to convert a message to or
from a byte[] for transmission.

See the Javadoc for more information.

9.4.4. Kryo

Currently, this is the only implementation of Codec, and it provides two kinds of Codec:

• PojoCodec: Used in the transformers

• MessageCodec: Used in the CodecMessageConverter

The framework provides several custom serializers:

• FileSerializer

• MessageHeadersSerializer

• MutableMessageHeadersSerializer

The first can be used with the PojoCodec by initializing it with the FileKryoRegistrar. The second and
third are used with the MessageCodec, which is initialized with the MessageKryoRegistrar.

Customizing Kryo

By default, Kryo delegates unknown Java types to its FieldSerializer. Kryo also registers default
serializers for each primitive type, along with String, Collection, and Map. FieldSerializer uses
reflection to navigate the object graph. A more efficient approach is to implement a custom
serializer that is aware of the object’s structure and can directly serialize selected primitive fields.
The following example shows such a serializer:

173

https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/EncodingPayloadTransformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/DecodingTransformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/codec/CodecMessageConverter.html

public class AddressSerializer extends Serializer<Address> {

 @Override
 public void write(Kryo kryo, Output output, Address address) {
 output.writeString(address.getStreet());
 output.writeString(address.getCity());
 output.writeString(address.getCountry());
 }

 @Override
 public Address read(Kryo kryo, Input input, Class<Address> type) {
 return new Address(input.readString(), input.readString(), input
.readString());
 }
}

The Serializer interface exposes Kryo, Input, and Output, which provide complete control over
which fields are included and other internal settings, as described in the Kryo documentation.



When registering your custom serializer, you need a registration ID. The
registration IDs are arbitrary. However, in our case, the IDs must be explicitly
defined, because each Kryo instance across the distributed application must use
the same IDs. Kryo recommends small positive integers and reserves a few ids
(value < 10). Spring Integration currently defaults to using 40, 41, and 42 (for the
file and message header serializers mentioned earlier). We recommend you start
at 60, to allow for expansion in the framework. You can override these framework
defaults by configuring the registrars mentioned earlier.

Using a Custom Kryo Serializer

If you need custom serialization, see the Kryo documentation, because you need to use the native
API to do the customization. For an example, see the MessageCodec implementation.

Implementing KryoSerializable

If you have write access to the domain object source code, you can implement KryoSerializable as
described here. In this case, the class provides the serialization methods itself and no further
configuration is required. However benchmarks have shown this is not quite as efficient as
registering a custom serializer explicitly. The following example shows a custom Kryo serializer:

174

https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
https://github.com/spring-projects/spring-integration/blob/master/spring-integration-core/src/main/java/org/springframework/integration/codec/kryo/MessageCodec.java
https://github.com/EsotericSoftware/kryo#kryoserializable

public class Address implements KryoSerializable {
 ...

 @Override
 public void write(Kryo kryo, Output output) {
 output.writeString(this.street);
 output.writeString(this.city);
 output.writeString(this.country);
 }

 @Override
 public void read(Kryo kryo, Input input) {
 this.street = input.readString();
 this.city = input.readString();
 this.country = input.readString();
 }
}

You can also use this technique to wrap a serialization library other than Kryo.

Using the @DefaultSerializer Annotation

Kryo also provides a @DefaultSerializer annotation, as described here.

@DefaultSerializer(SomeClassSerializer.class)
public class SomeClass {
 // ...
}

If you have write access to the domain object, this may be a simpler way to specify a custom
serializer. Note that this does not register the class with an ID, which may make the technique
unhelpful for certain situations.

175

https://github.com/EsotericSoftware/kryo#default-serializers

Chapter 10. Messaging Endpoints

10.1. Message Endpoints
The first part of this chapter covers some background theory and reveals quite a bit about the
underlying API that drives Spring Integration’s various messaging components. This information
can be helpful if you want to really understand what goes on behind the scenes. However, if you
want to get up and running with the simplified namespace-based configuration of the various
elements, feel free to skip ahead to Endpoint Namespace Support for now.

As mentioned in the overview, message endpoints are responsible for connecting the various
messaging components to channels. Over the next several chapters, we cover a number of different
components that consume messages. Some of these are also capable of sending reply messages.
Sending messages is quite straightforward. As shown earlier in Message Channels, you can send a
message to a message channel. However, receiving is a bit more complicated. The main reason is
that there are two types of consumers: polling consumers and event-driven consumers.

Of the two, event-driven consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially listeners with a callback method. When connecting to
one of Spring Integration’s subscribable message channels, this simple option works great.
However, when connecting to a buffering, pollable message channel, some component has to
schedule and manage the polling threads. Spring Integration provides two different endpoint
implementations to accommodate these two types of consumers. Therefore, the consumers
themselves need only implement the callback interface. When polling is required, the endpoint acts
as a container for the consumer instance. The benefit is similar to that of using a container for
hosting message-driven beans, but, since these consumers are Spring-managed objects running
within an ApplicationContext, it more closely resembles Spring’s own MessageListener containers.

10.1.1. Message Handler

Spring Integration’s MessageHandler interface is implemented by many of the components within the
framework. In other words, this is not part of the public API, and you would not typically
implement MessageHandler directly. Nevertheless, it is used by a message consumer for actually
handling the consumed messages, so being aware of this strategy interface does help in terms of
understanding the overall role of a consumer. The interface is defined as follows:

public interface MessageHandler {

 void handleMessage(Message<?> message);

}

Despite its simplicity, this interface provides the foundation for most of the components (routers,
transformers, splitters, aggregators, service activators, and others) covered in the following
chapters. Those components each perform very different functionality with the messages they

176

./channel.pdf#channel
https://www.enterpriseintegrationpatterns.com/PollingConsumer.html
https://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html

handle, but the requirements for actually receiving a message are the same, and the choice
between polling and event-driven behavior is also the same. Spring Integration provides two
endpoint implementations that host these callback-based handlers and let them be connected to
message channels.

10.1.2. Event-driven Consumer

Because it is the simpler of the two, we cover the event-driven consumer endpoint first. You may
recall that the SubscribableChannel interface provides a subscribe() method and that the method
accepts a MessageHandler parameter (as shown in SubscribableChannel). The following listing shows
the definition of the subscribe method:

subscribableChannel.subscribe(messageHandler);

Since a handler that is subscribed to a channel does not have to actively poll that channel, this is an
event-driven consumer, and the implementation provided by Spring Integration accepts a
SubscribableChannel and a MessageHandler, as the following example shows:

SubscribableChannel channel = context.getBean("subscribableChannel",
SubscribableChannel.class);

EventDrivenConsumer consumer = new EventDrivenConsumer(channel, exampleHandler);

10.1.3. Polling Consumer

Spring Integration also provides a PollingConsumer, and it can be instantiated in the same way
except that the channel must implement PollableChannel, as the following example shows:

PollableChannel channel = context.getBean("pollableChannel", PollableChannel.
class);

PollingConsumer consumer = new PollingConsumer(channel, exampleHandler);


For more information regarding polling consumers, see Poller and Channel
Adapter.

There are many other configuration options for the polling consumer. For example, the trigger is a
required property. The following example shows how to set the trigger:

177

./channel.pdf#channel-interfaces-subscribablechannel
./polling-consumer.pdf#polling-consumer
./channel-adapter.pdf#channel-adapter
./channel-adapter.pdf#channel-adapter

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setTrigger(new IntervalTrigger(30, TimeUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface:
IntervalTrigger and CronTrigger. The IntervalTrigger is typically defined with a simple interval (in
milliseconds) but also supports an initialDelay property and a boolean fixedRate property (the
default is false — that is, no fixed delay). The following example sets both properties:

IntervalTrigger trigger = new IntervalTrigger(1000);
trigger.setInitialDelay(5000);
trigger.setFixedRate(true);

The result of the three settings in the preceding example is a trigger that waits five seconds and
then triggers every second.

The CronTrigger requires a valid cron expression. See the Javadoc for details. The following
example sets a new CronTrigger:

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

The result of the trigger defined in the previous example is a trigger that triggers every ten seconds,
Monday through Friday.

In addition to the trigger, you can specify two other polling-related configuration properties:
maxMessagesPerPoll and receiveTimeout. The following example shows how to set these two
properties:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setMaxMessagesPerPoll(10);
consumer.setReceiveTimeout(5000);

The maxMessagesPerPoll property specifies the maximum number of messages to receive within a
given poll operation. This means that the poller continues calling receive() without waiting, until
either null is returned or the maximum value is reached. For example, if a poller has a ten-second
interval trigger and a maxMessagesPerPoll setting of 25, and it is polling a channel that has 100
messages in its queue, all 100 messages can be retrieved within 40 seconds. It grabs 25, waits ten
seconds, grabs the next 25, and so on.

178

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/support/CronTrigger.html

The receiveTimeout property specifies the amount of time the poller should wait if no messages are
available when it invokes the receive operation. For example, consider two options that seem
similar on the surface but are actually quite different: The first has an interval trigger of 5 seconds
and a receive timeout of 50 milliseconds, while the second has an interval trigger of 50 milliseconds
and a receive timeout of 5 seconds. The first one may receive a message up to 4950 milliseconds
later than it arrived on the channel (if that message arrived immediately after one of its poll calls
returned). On the other hand, the second configuration never misses a message by more than 50
milliseconds. The difference is that the second option requires a thread to wait. However, as a
result, it can respond much more quickly to arriving messages. This technique, known as “long
polling”, can be used to emulate event-driven behavior on a polled source.

A polling consumer can also delegate to a Spring TaskExecutor, as the following example shows:

PollingConsumer consumer = new PollingConsumer(channel, handler);

TaskExecutor taskExecutor = context.getBean("exampleExecutor", TaskExecutor.class
);
consumer.setTaskExecutor(taskExecutor);

Furthermore, a PollingConsumer has a property called adviceChain. This property lets you to specify
a List of AOP advices for handling additional cross cutting concerns including transactions. These
advices are applied around the doPoll() method. For more in-depth information, see the sections on
AOP advice chains and transaction support under Endpoint Namespace Support.

The earlier examples show dependency lookups. However, keep in mind that these consumers are
most often configured as Spring bean definitions. In fact, Spring Integration also provides a
FactoryBean called ConsumerEndpointFactoryBean that creates the appropriate consumer type based
on the type of channel. Also, Spring Integration has full XML namespace support to even further
hide those details. The namespace-based configuration is in this guide featured as each component
type is introduced.



Many of the MessageHandler implementations can generate reply messages. As
mentioned earlier, sending messages is trivial when compared to receiving
messages. Nevertheless, when and how many reply messages are sent depends on
the handler type. For example, an aggregator waits for a number of messages to
arrive and is often configured as a downstream consumer for a splitter, which can
generate multiple replies for each message it handles. When using the namespace
configuration, you do not strictly need to know all of the details. However, it still
might be worth knowing that several of these components share a common base
class, the AbstractReplyProducingMessageHandler, and that it provides a
setOutputChannel(..) method.

10.1.4. Endpoint Namespace Support

Throughout this reference manual, you can find specific configuration examples for endpoint
elements, such as router, transformer, service-activator, and so on. Most of these support an input-

179

channel attribute and many support an output-channel attribute. After being parsed, these endpoint
elements produce an instance of either the PollingConsumer or the EventDrivenConsumer, depending
on the type of the input-channel that is referenced: PollableChannel or SubscribableChannel,
respectively. When the channel is pollable, the polling behavior is based on the endpoint element’s
poller sub-element and its attributes.

The following listing lists all of the available configuration options for a poller:

<int:poller cron="" ①
 default="false" ②
 error-channel="" ③
 fixed-delay="" ④
 fixed-rate="" ⑤
 id="" ⑥
 max-messages-per-poll="" ⑦
 receive-timeout="" ⑧
 ref="" ⑨
 task-executor="" ⑩
 time-unit="MILLISECONDS" ⑪
 trigger=""> ⑫
 <int:advice-chain /> ⑬
 <int:transactional /> ⑭
</int:poller>

① Provides the ability to configure pollers by using Cron expressions. The underlying
implementation uses an org.springframework.scheduling.support.CronTrigger. If this attribute is
set, none of the following attributes must be specified: fixed-delay, trigger, fixed-rate, and ref.

② By setting this attribute to true, you can define exactly one global default poller. An exception is
raised if more than one default poller is defined in the application context. Any endpoints
connected to a PollableChannel (PollingConsumer) or any SourcePollingChannelAdapter that does
not have an explicitly configured poller then uses the global default poller. It defaults to false.
Optional.

③ Identifies the channel to which error messages are sent if a failure occurs in this poller’s
invocation. To completely suppress exceptions, you can provide a reference to the nullChannel.
Optional.

④ The fixed delay trigger uses a PeriodicTrigger under the covers. If you do not use the time-unit
attribute, the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: fixed-rate, trigger, cron, and ref.

⑤ The fixed rate trigger uses a PeriodicTrigger under the covers. If you do not use the time-unit
attribute, the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: fixed-delay, trigger, cron, and ref.

⑥ The ID referring to the poller’s underlying bean-definition, which is of type
org.springframework.integration.scheduling.PollerMetadata. The id attribute is required for a
top-level poller element, unless it is the default poller (default="true").

⑦ See Configuring An Inbound Channel Adapter for more information. If not specified, the default
value depends on the context. If you use a PollingConsumer, this attribute defaults to -1.

180

./channel-adapter.pdf#channel-adapter-namespace-inbound

However, if you use a SourcePollingChannelAdapter, the max-messages-per-poll attribute defaults
to 1. Optional.

⑧ Value is set on the underlying class PollerMetadata. If not specified, it defaults to 1000
(milliseconds). Optional.

⑨ Bean reference to another top-level poller. The ref attribute must not be present on the top-level
poller element. However, if this attribute is set, none of the following attributes must be
specified: fixed-rate, trigger, cron, and fixed-delay.

⑩ Provides the ability to reference a custom task executor. See TaskExecutor Support for further
information. Optional.

⑪ This attribute specifies the java.util.concurrent.TimeUnit enum value on the underlying
org.springframework.scheduling.support.PeriodicTrigger. Therefore, this attribute can be used
only in combination with the fixed-delay or fixed-rate attributes. If combined with either cron
or a trigger reference attribute, it causes a failure. The minimal supported granularity for a
PeriodicTrigger is milliseconds. Therefore, the only available options are milliseconds and
seconds. If this value is not provided, any fixed-delay or fixed-rate value is interpreted as
milliseconds. Basically, this enum provides a convenience for seconds-based interval trigger
values. For hourly, daily, and monthly settings, we recommend using a cron trigger instead.

⑫ Reference to any Spring-configured bean that implements the
org.springframework.scheduling.Trigger interface. However, if this attribute is set, none of the
following attributes must be specified: fixed-delay, fixed-rate, cron, and ref. Optional.

⑬ Allows specifying extra AOP advices to handle additional cross-cutting concerns. See Transaction
Support for further information. Optional.

⑭ Pollers can be made transactional. See AOP Advice chains for further information. Optional.

Examples

A simple interval-based poller with a 1-second interval can be configured as follows:

<int:transformer input-channel="pollable"
 ref="transformer"
 output-channel="output">
 <int:poller fixed-rate="1000"/>
</int:transformer>

As an alternative to using the fixed-rate attribute, you can also use the fixed-delay attribute.

For a poller based on a Cron expression, use the cron attribute instead, as the following example
shows:

181

<int:transformer input-channel="pollable"
 ref="transformer"
 output-channel="output">
 <int:poller cron="*/10 * * * * MON-FRI"/>
</int:transformer>

If the input channel is a PollableChannel, the poller configuration is required. Specifically, as
mentioned earlier, the trigger is a required property of the PollingConsumer class. Therefore, if you
omit the poller sub-element for a polling consumer endpoint’s configuration, an exception may be
thrown. The exception may also be thrown if you attempt to configure a poller on the element that
is connected to a non-pollable channel.

It is also possible to create top-level pollers, in which case only a ref attribute is required, as the
following example shows:

<int:poller id="weekdayPoller" cron="*/10 * * * * MON-FRI"/>

<int:transformer input-channel="pollable"
 ref="transformer"
 output-channel="output">
 <int:poller ref="weekdayPoller"/>
</int:transformer>


The ref attribute is allowed only on the inner poller definitions. Defining this
attribute on a top-level poller results in a configuration exception being thrown
during initialization of the application context.

Global Default Pollers

To simplify the configuration even further, you can define a global default poller. A single top-level
poller within an ApplicationContext may have the default attribute set to true. In that case, any
endpoint with a PollableChannel for its input channel, that is defined within the same
ApplicationContext, and has no explicitly configured poller sub-element uses that default. The
following example shows such a poller and a transformer that uses it:

<int:poller id="defaultPoller" default="true" max-messages-per-poll="5" fixed-rate=
"3000"/>

<!-- No <poller/> sub-element is necessary, because there is a default -->
<int:transformer input-channel="pollable"
 ref="transformer"
 output-channel="output"/>

182

Transaction Support

Spring Integration also provides transaction support for the pollers so that each receive-and-
forward operation can be performed as an atomic unit of work. To configure transactions for a
poller, add the <transactional/> sub-element. The following example shows the available attributes:

<int:poller fixed-delay="1000">
 <int:transactional transaction-manager="txManager"
 propagation="REQUIRED"
 isolation="REPEATABLE_READ"
 timeout="10000"
 read-only="false"/>
</int:poller>

For more information, see Poller Transaction Support.

AOP Advice chains

Since Spring transaction support depends on the proxy mechanism with TransactionInterceptor
(AOP Advice) handling transactional behavior of the message flow initiated by the poller, you must
sometimes provide extra advices to handle other cross cutting behavior associated with the poller.
For that, the poller defines an advice-chain element that lets you add more advices in a class
that implements the MethodInterceptor interface. The following example shows how to define an
advice-chain for a poller:

<int:service-activator id="advicedSa" input-channel="goodInputWithAdvice" ref=
"testBean"
 method="good" output-channel="output">
 <int:poller max-messages-per-poll="1" fixed-rate="10000">
 <int:advice-chain>
 <ref bean="adviceA" />
 <beans:bean class="org.something.SampleAdvice" />
 <ref bean="txAdvice" />
 </int:advice-chain>
 </int:poller>
</int:service-activator>

For more information on how to implement the MethodInterceptor interface, see the AOP sections of
the Spring Framework Reference Guide. An advice chain can also be applied on a poller that does
not have any transaction configuration, letting you enhance the behavior of the message flow
initiated by the poller.


When using an advice chain, the <transactional/> child element cannot be
specified. Instead, declare a <tx:advice/> bean and add it to the <advice-chain/>.
See Poller Transaction Support for complete configuration details.

183

./transactions.pdf#transaction-poller
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop-api
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop-api
./transactions.pdf#transaction-poller

TaskExecutor Support

The polling threads may be executed by any instance of Spring’s TaskExecutor abstraction. This
enables concurrency for an endpoint or group of endpoints. As of Spring 3.0, the core Spring
Framework has a task namespace, and its <executor/> element supports the creation of a simple
thread pool executor. That element accepts attributes for common concurrency settings, such as
pool-size and queue-capacity. Configuring a thread-pooling executor can make a substantial
difference in how the endpoint performs under load. These settings are available for each
endpoint, since the performance of an endpoint is one of the major factors to consider (the other
major factor being the expected volume on the channel to which the endpoint subscribes). To
enable concurrency for a polling endpoint that is configured with the XML namespace support,
provide the task-executor reference on its <poller/> element and then provide one or more of the
properties shown in the following example:

<int:poller task-executor="pool" fixed-rate="1000"/>

<task:executor id="pool"
 pool-size="5-25"
 queue-capacity="20"
 keep-alive="120"/>

If you do not provide a task-executor, the consumer’s handler is invoked in the caller’s thread. Note
that the caller is usually the default TaskScheduler (see Configuring the Task Scheduler). You should
also keep in mind that the task-executor attribute can provide a reference to any implementation of
Spring’s TaskExecutor interface by specifying the bean name. The executor element shown earlier is
provided for convenience.

As mentioned earlier in the background section for polling consumers, you can also configure a
polling consumer in such a way as to emulate event-driven behavior. With a long receive-timeout
and a short interval-trigger, you can ensure a very timely reaction to arriving messages even on a
polled message source. Note that this applies only to sources that have a blocking wait call with a
timeout. For example, the file poller does not block. Each receive() call returns immediately and
either contains new files or not. Therefore, even if a poller contains a long receive-timeout, that
value would never be used in such a scenario. On the other hand, when using Spring Integration’s
own queue-based channels, the timeout value does have a chance to participate. The following
example shows how a polling consumer can receive messages nearly instantaneously:

<int:service-activator input-channel="someQueueChannel"
 output-channel="output">
 <int:poller receive-timeout="30000" fixed-rate="10"/>

</int:service-activator>

Using this approach does not carry much overhead, since, internally, it is nothing more then a

184

./configuration.pdf#namespace-taskscheduler

timed-wait thread, which does not require nearly as much CPU resource usage as (for example) a
thrashing, infinite while loop.

10.1.5. Changing Polling Rate at Runtime

When configuring a poller with a fixed-delay or a fixed-rate attribute, the default implementation
uses a PeriodicTrigger instance. The PeriodicTrigger is part of the core Spring Framework. It
accepts the interval only as a constructor argument. Therefore, it cannot be changed at runtime.

However, you can define your own implementation of the org.springframework.scheduling.Trigger
interface. You could even use the PeriodicTrigger as a starting point. Then you can add a setter for
the interval (period), or you can even embed your own throttling logic within the trigger itself. The
period property is used with each call to nextExecutionTime to schedule the next poll. To use this
custom trigger within pollers, declare the bean definition of the custom trigger in your application
context and inject the dependency into your poller configuration by using the trigger attribute,
which references the custom trigger bean instance. You can now obtain a reference to the trigger
bean and change the polling interval between polls.

For an example, see the Spring Integration Samples project. It contains a sample called dynamic-
poller, which uses a custom trigger and demonstrates the ability to change the polling interval at
runtime.

The sample provides a custom trigger that implements the org.springframework.scheduling.Trigger
interface. The sample’s trigger is based on Spring’s PeriodicTrigger implementation. However, the
fields of the custom trigger are not final, and the properties have explicit getters and setters, letting
you dynamically change the polling period at runtime.



It is important to note, though, that because the Trigger method is
nextExecutionTime(), any changes to a dynamic trigger do not take effect until the
next poll, based on the existing configuration. It is not possible to force a trigger to
fire before its currently configured next execution time.

10.1.6. Payload Type Conversion

Throughout this reference manual, you can also see specific configuration and implementation
examples of various endpoints that accept a message or any arbitrary Object as an input parameter.
In the case of an Object, such a parameter is mapped to a message payload or part of the payload or
header (when using the Spring Expression Language). However, the type of input parameter of the
endpoint method sometimes does not match the type of the payload or its part. In this scenario, we
need to perform type conversion. Spring Integration provides a convenient way for registering type
converters (by using the Spring ConversionService) within its own instance of a conversion service
bean named integrationConversionService. That bean is automatically created as soon as the first
converter is defined by using the Spring Integration infrastructure. To register a converter, you can
implement org.springframework.core.convert.converter.Converter,
org.springframework.core.convert.converter.GenericConverter, or
org.springframework.core.convert.converter.ConverterFactory.

The Converter implementation is the simplest and converts from a single type to another. For more
sophistication, such as converting to a class hierarchy, you can implement a GenericConverter and

185

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/scheduling/Trigger.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/scheduling/support/PeriodicTrigger.html

possibly a ConditionalConverter. These give you complete access to the from and to type descriptors,
enabling complex conversions. For example, if you have an abstract class called Something that is
the target of your conversion (parameter type, channel data type, and so on), you have two
concrete implementations called Thing1 and Thing, and you wish to convert to one or the other
based on the input type, the GenericConverter would be a good fit. For more information, see the
Javadoc for these interfaces:

• org.springframework.core.convert.converter.Converter

• org.springframework.core.convert.converter.GenericConverter

• org.springframework.core.convert.converter.ConverterFactory

When you have implemented your converter, you can register it with convenient namespace
support, as the following example shows:

<int:converter ref="sampleConverter"/>

<bean id="sampleConverter" class="foo.bar.TestConverter"/>

Alternately, you can use an inner bean, as the following example shows:

<int:converter>
 <bean class="o.s.i.config.xml.ConverterParserTests$TestConverter3"/>
</int:converter>

Starting with Spring Integration 4.0, you can use annotations to create the preceding configuration,
as the following example shows:

@Component
@IntegrationConverter
public class TestConverter implements Converter<Boolean, Number> {

 public Number convert(Boolean source) {
 return source ? 1 : 0;
 }

}

Alternately, you can use the @Configuration annotation, as the following example shows:

186

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/core/convert/converter/Converter.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/core/convert/converter/package-summary.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/convert/converter/ConverterFactory.html

@Configuration
@EnableIntegration
public class ContextConfiguration {

 @Bean
 @IntegrationConverter
 public SerializingConverter serializingConverter() {
 return new SerializingConverter();
 }

}



When configuring an application context, the Spring Framework lets you add a
conversionService bean (see Configuring a ConversionService chapter). This
service is used, when needed, to perform appropriate conversions during bean
creation and configuration.

In contrast, the integrationConversionService is used for runtime conversions.
These uses are quite different. Converters that are intended for use when wiring
bean constructor arguments and properties may produce unintended results if
used at runtime for Spring Integration expression evaluation against messages
within data type channels, payload type transformers, and so on.

However, if you do want to use the Spring conversionService as the Spring
Integration integrationConversionService, you can configure an alias in the
application context, as the following example shows:

<alias name="conversionService" alias="
integrationConversionService"/>

In this case, the converters provided by the conversionService are available for
Spring Integration runtime conversion.

10.1.7. Content Type Conversion

Starting with version 5.0, by default, the method invocation mechanism is based on the
org.springframework.messaging.handler.invocation.InvocableHandlerMethod infrastructure. Its
HandlerMethodArgumentResolver implementations (such as PayloadArgumentResolver and
MessageMethodArgumentResolver) can use the MessageConverter abstraction to convert an incoming
payload to the target method argument type. The conversion can be based on the contentType
message header. For this purpose, Spring Integration provides the
ConfigurableCompositeMessageConverter, which delegates to a list of registered converters to be
invoked until one of them returns a non-null result. By default, this converter provides (in strict
order):

187

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#core-convert-Spring-config

1. MappingJackson2MessageConverter if the Jackson processor is present on the classpath

2. ByteArrayMessageConverter

3. ObjectStringMessageConverter

4. GenericMessageConverter

See the Javadoc (linked in the preceding list) for more information about their purpose and
appropriate contentType values for conversion. The ConfigurableCompositeMessageConverter is used
because it can be be supplied with any other MessageConverter implementations, including or
excluding the previously mentioned default converters. It can also be registered as an appropriate
bean in the application context, overriding the default converter, as the following example shows:

@Bean(name = IntegrationContextUtils.
ARGUMENT_RESOLVER_MESSAGE_CONVERTER_BEAN_NAME)
public ConfigurableCompositeMessageConverter compositeMessageConverter() {
 List<MessageConverter> converters =
 Arrays.asList(new MarshallingMessageConverter(jaxb2Marshaller()),
 new JavaSerializationMessageConverter());
 return new ConfigurableCompositeMessageConverter(converters);
}

Those two new converters are registered in the composite before the defaults. You can also not use
a ConfigurableCompositeMessageConverter but provide your own MessageConverter by registering a
bean with the name, integrationArgumentResolverMessageConverter (by setting the
IntegrationContextUtils.ARGUMENT_RESOLVER_MESSAGE_CONVERTER_BEAN_NAME property).


The MessageConverter-based (including contentType header) conversion is not
available when using SpEL method invocation. In this case, only the regular class-
to-class conversion mentioned above in the Payload Type Conversion is available.

10.1.8. Asynchronous Polling

If you want the polling to be asynchronous, a poller can optionally specify a task-executor attribute
that points to an existing instance of any TaskExecutor bean (Spring 3.0 provides a convenient
namespace configuration through the task namespace). However, there are certain things you must
understand when configuring a poller with a TaskExecutor.

The problem is that there are two configurations in place, the poller and the TaskExecutor. They
must be in tune with each other. Otherwise, you might end up creating an artificial memory leak.

Consider the following configuration:

188

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jms/support/converter/MappingJackson2MessageConverter.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/converter/ByteArrayMessageConverter.html
https://docs.spring.io/spring-integration/docs/current/api//org/springframework/integration/support/converter/ObjectStringMessageConverter.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/converter/GenericMessageConverter.html

<int:channel id="publishChannel">
 <int:queue />
</int:channel>

<int:service-activator input-channel="publishChannel" ref="myService">
 <int:poller receive-timeout="5000" task-executor="taskExecutor" fixed-rate="
50" />
</int:service-activator>

<task:executor id="taskExecutor" pool-size="20" />

The preceding configuration demonstrates an out-of-tune configuration.

By default, the task executor has an unbounded task queue. The poller keeps scheduling new tasks
even though all the threads are blocked, waiting for either a new message to arrive or the timeout
to expire. Given that there are 20 threads executing tasks with a five-second timeout, they are
executed at a rate of 4 per second. However, new tasks are being scheduled at a rate of 20 per
second, so the internal queue in the task executor grows at a rate of 16 per second (while the
process is idle), so we have a memory leak.

One of the ways to handle this is to set the queue-capacity attribute of the task executor. Even 0 is a
reasonable value. You can also manage it by specifying what to do with messages that can not be
queued by setting the rejection-policy attribute of the Task Executor (for example, to DISCARD). In
other words, there are certain details you must understand when configuring TaskExecutor. See
“Task Execution and Scheduling” in the Spring reference manual for more detail on the subject.

10.1.9. Endpoint Inner Beans

Many endpoints are composite beans. This includes all consumers and all polled inbound channel
adapters. Consumers (polled or event-driven) delegate to a MessageHandler. Polled adapters obtain
messages by delegating to a MessageSource. Often, it is useful to obtain a reference to the delegate
bean, perhaps to change configuration at runtime or for testing. These beans can be obtained from
the ApplicationContext with well known names. MessageHandler instances are registered with the
application context with bean IDs similar to someConsumer.handler (where 'consumer' is the value of
the endpoint’s id attribute). MessageSource instances are registered with bean IDs similar to
somePolledAdapter.source, where 'somePolledAdapter' is the ID of the adapter.

The preceding only applies to the framework component itself. You can instead use an inner bean
definition, as the following example shows:

<int:service-activator id="exampleServiceActivator" input-channel="inChannel"
 output-channel = "outChannel" method="foo">
 <beans:bean class="org.foo.ExampleServiceActivator"/>
</int:service-activator>

189

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling

The bean is treated like any inner bean declared and is not registered with the application context.
If you wish to access this bean in some other manner, declare it at the top level with an id and use
the ref attribute instead. See the Spring Documentation for more information.

10.2. Endpoint Roles
Starting with version 4.2, endpoints can be assigned to roles. Roles let endpoints be started and
stopped as a group. This is particularly useful when using leadership election, where a set of
endpoints can be started or stopped when leadership is granted or revoked, respectively. For this
purpose the framework registers a SmartLifecycleRoleController bean in the application context
with the name IntegrationContextUtils.INTEGRATION_LIFECYCLE_ROLE_CONTROLLER. Whenever it is
necessary to control lifecycles, this bean can be injected or @Autowired:

<bean class="com.some.project.SomeLifecycleControl">
 <property name="roleController" ref="integrationLifecycleRoleController"/>
</bean>

You can assign endpoints to roles using XML, Java configuration, or programmatically. The
following example shows how to configure endpoint roles with XML:

<int:inbound-channel-adapter id="ica" channel="someChannel" expression="'foo'"
role="cluster"
 auto-startup="false">
 <int:poller fixed-rate="60000" />
</int:inbound-channel-adapter>

The following example shows how to configure endpoint roles for a bean created in Java:

@Bean
@ServiceActivator(inputChannel = "sendAsyncChannel", autoStartup="false")
@Role("cluster")
public MessageHandler sendAsyncHandler() {
 return // some MessageHandler
}

The following example shows how to configure endpoint roles on a method in Java:

190

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-inner-beans

@Payload("#args[0].toLowerCase()")
@Role("cluster")
public String handle(String payload) {
 return payload.toUpperCase();
}

The following example shows how to configure endpoint roles by using the
SmartLifecycleRoleController in Java:

@Autowired
private SmartLifecycleRoleController roleController;
...
 this.roleController.addSmartLifeCycleToRole("cluster", someEndpoint);
...

The following example shows how to configure endpoint roles by using an IntegrationFlow in Java:

IntegrationFlow flow -> flow
 .handle(..., e -> e.role("cluster"));

Each of these adds the endpoint to the cluster role.

Invoking roleController.startLifecyclesInRole("cluster") and the corresponding stop… method
starts and stops the endpoints.


Any object that implements SmartLifecycle can be programmatically added — not
just endpoints.

The SmartLifecycleRoleController implements ApplicationListener<AbstractLeaderEvent> and it
automatically starts and stops its configured SmartLifecycle objects when leadership is granted or
revoked (when some bean publishes OnGrantedEvent or OnRevokedEvent, respectively).


When using leadership election to start and stop components, it is important to set
the auto-startup XML attribute (autoStartup bean property) to false so that the
application context does not start the components during context initialization.

Starting with version 4.3.8, the SmartLifecycleRoleController provides several status methods:

191

public Collection<String> getRoles() ①

public boolean allEndpointsRunning(String role) ②

public boolean noEndpointsRunning(String role) ③

public Map<String, Boolean> getEndpointsRunningStatus(String role) ④

① Returns a list of the roles being managed.

② Returns true if all endpoints in the role are running.

③ Returns true if none of the endpoints in the role are running.

④ Returns a map of component name : running status. The component name is usually the bean
name.

10.3. Leadership Event Handling
Groups of endpoints can be started and stopped based on leadership being granted or revoked,
respectively. This is useful in clustered scenarios where shared resources must be consumed by
only a single instance. An example of this is a file inbound channel adapter that is polling a shared
directory. (See Reading Files).

To participate in a leader election and be notified when elected leader, when leadership is revoked,
or on failure to acquire the resources to become leader, an application creates a component in the
application context called a “leader initiator”. Normally, a leader initiator is a SmartLifecycle, so it
starts (optionally) when the context starts and then publishes notifications when leadership
changes. You can also receive failure notifications by setting the publishFailedEvents to true
(starting with version 5.0), for cases when you want take a specific action if a failure occurs. By
convention, you should provide a Candidate that receives the callbacks. You can also revoke the
leadership through a Context object provided by the framework. Your code can also listen for
o.s.i.leader.event.AbstractLeaderEvent instances (the super class of OnGrantedEvent and
OnRevokedEvent) and respond accordingly (for instance, by using a SmartLifecycleRoleController).
The events contain a reference to the Context object. The following listing shows the definition of
the Context interface:

192

./file.pdf#file-reading

public interface Context {

 boolean isLeader();

 void yield();

 String getRole();

}

Starting with version 5.0.6, the context provides a reference to the candidate’s role.

Spring Integration provides a basic implementation of a leader initiator that is based on the
LockRegistry abstraction. To use it, you need to create an instance as a bean, as the following
example shows:

@Bean
public LockRegistryLeaderInitiator leaderInitiator(LockRegistry locks) {
 return new LockRegistryLeaderInitiator(locks);
}

If the lock registry is implemented correctly, there is only ever at most one leader. If the lock
registry also provides locks that throw exceptions (ideally, InterruptedException) when they expire
or are broken, the duration of the leaderless periods can be as short as is allowed by the inherent
latency in the lock implementation. By default, the busyWaitMillis property adds some additional
latency to prevent CPU starvation in the (more usual) case that the locks are imperfect and you only
know they expired when you try to obtain one again.

See Zookeeper Leadership Event Handling for more information about leadership election and
events that use Zookeeper.

10.4. Messaging Gateways
A gateway hides the messaging API provided by Spring Integration. It lets your application’s
business logic be unaware of the Spring Integration API. By using a generic Gateway, your code
interacts with only a simple interface.

10.4.1. Enter the GatewayProxyFactoryBean

As mentioned earlier, it would be great to have no dependency on the Spring Integration
API — including the gateway class. For that reason, Spring Integration provides the
GatewayProxyFactoryBean, which generates a proxy for any interface and internally invokes the
gateway methods shown below. By using dependency injection, you can then expose the interface
to your business methods.

193

./zookeeper.pdf#zk-leadership

The following example shows an interface that can be used to interact with Spring Integration:

package org.cafeteria;

public interface Cafe {

 void placeOrder(Order order);

}

10.4.2. Gateway XML Namespace Support

Namespace support is also provided. It lets you configure an interface as a service, as the following
example shows:

<int:gateway id="cafeService"
 service-interface="org.cafeteria.Cafe"
 default-request-channel="requestChannel"
 default-reply-timeout="10000"
 default-reply-channel="replyChannel"/>

With this configuration defined, the cafeService can now be injected into other beans, and the code
that invokes the methods on that proxied instance of the Cafe interface has no awareness of the
Spring Integration API. The general approach is similar to that of Spring Remoting (RMI,
HttpInvoker, and so on). See the “Samples” Appendix for an example that uses the gateway element
(in the Cafe demo).

The defaults in the preceding configuration are applied to all methods on the gateway interface. If a
reply timeout is not specified, the calling thread waits indefinitely for a reply. See Gateway
Behavior When No response Arrives.

The defaults can be overridden for individual methods. See Gateway Configuration with
Annotations and XML.

10.4.3. Setting the Default Reply Channel

Typically, you need not specify the default-reply-channel, since a Gateway auto-creates a
temporary, anonymous reply channel, where it listens for the reply. However, some cases may
prompt you to define a default-reply-channel (or reply-channel with adapter gateways, such as
HTTP, JMS, and others).

For some background, we briefly discuss some of the inner workings of the gateway. A gateway
creates a temporary point-to-point reply channel. It is anonymous and is added to the message
headers with the name, replyChannel. When providing an explicit default-reply-channel (reply-

194

./samples.pdf#samples

channel with remote adapter gateways), you can point to a publish-subscribe channel, which is so
named because you can add more than one subscriber to it. Internally, Spring Integration creates a
bridge between the temporary replyChannel and the explicitly defined default-reply-channel.

Suppose you want your reply to go not only to the gateway but also to some other consumer. In this
case, you want two things:

• A named channel to which you can subscribe

• That channel to be a publish-subscribe-channel

The default strategy used by the gateway does not satisfy those needs, because the reply channel
added to the header is anonymous and point-to-point. This means that no other subscriber can get a
handle to it and, even if it could, the channel has point-to-point behavior such that only one
subscriber would get the message. By defining a default-reply-channel you can point to a channel
of your choosing. In this case, that is a publish-subscribe-channel. The gateway creates a bridge
from it to the temporary, anonymous reply channel that is stored in the header.

You might also want to explicitly provide a reply channel for monitoring or auditing through an
interceptor (for example, wiretap). To configure a channel interceptor, you need a named channel.



Starting with version 5.4, when gateway method return type is void, the
framework populates a replyChannel header as a nullChannel bean reference if
such a header is not provided explicitly. This allows any possible reply from the
downstream flow to be discarded, meeting the one-way gateway contract.

10.4.4. Gateway Configuration with Annotations and XML

Consider the following example, which expands on the previous Cafe interface example by adding a
@Gateway annotation:

public interface Cafe {

 @Gateway(requestChannel="orders")
 void placeOrder(Order order);

}

The @Header annotation lets you add values that are interpreted as message headers, as the
following example shows:

195

./channel.pdf#channel-wiretap

public interface FileWriter {

 @Gateway(requestChannel="filesOut")
 void write(byte[] content, @Header(FileHeaders.FILENAME) String filename);

}

If you prefer the XML approach to configuring gateway methods, you can add method elements to
the gateway configuration, as the following example shows:

<int:gateway id="myGateway" service-interface="org.foo.bar.TestGateway"
 default-request-channel="inputC">
 <int:default-header name="calledMethod" expression="#gatewayMethod.name"/>
 <int:method name="echo" request-channel="inputA" reply-timeout="2" request-
timeout="200"/>
 <int:method name="echoUpperCase" request-channel="inputB"/>
 <int:method name="echoViaDefault"/>
</int:gateway>

You can also use XML to provide individual headers for each method invocation. This could be
useful if the headers you want to set are static in nature and you do not want to embed them in the
gateway’s method signature by using @Header annotations. For example, in the loan broker example,
we want to influence how aggregation of the loan quotes is done, based on what type of request
was initiated (single quote or all quotes). Determining the type of the request by evaluating which
gateway method was invoked, although possible, would violate the separation of concerns
paradigm (the method is a Java artifact). However, expressing your intention (meta information) in
message headers is natural in a messaging architecture. The following example shows how to add a
different message header for each of two methods:

<int:gateway id="loanBrokerGateway"
 service-interface=
"org.springframework.integration.loanbroker.LoanBrokerGateway">
 <int:method name="getLoanQuote" request-channel="loanBrokerPreProcessingChannel
">
 <int:header name="RESPONSE_TYPE" value="BEST"/>
 </int:method>
 <int:method name="getAllLoanQuotes" request-channel=
"loanBrokerPreProcessingChannel">
 <int:header name="RESPONSE_TYPE" value="ALL"/>
 </int:method>
</int:gateway>

196

In the preceding example a different value is set for the 'RESPONSE_TYPE' header, based on the
gateway’s method.

Expressions and “Global” Headers

The <header/> element supports expression as an alternative to value. The SpEL expression is
evaluated to determine the value of the header. Starting with version 5.2, the #root object of the
evaluation context is a MethodArgsHolder with getMethod() and getArgs() accessors.

These two expression evaluation context variables are deprecated since version 5.2:

• #args: An Object[] containing the method arguments

• #gatewayMethod: The object (derived from java.reflect.Method) that represents the method in
the service-interface that was invoked. A header containing this variable can be used later in
the flow (for example, for routing). For example, if you wish to route on the simple method
name, you might add a header with the following expression: #gatewayMethod.name.



The java.reflect.Method is not serializable. A header with an expression of method
is lost if you later serialize the message. Consequently, you may wish to use
method.name or method.toString() in those cases. The toString() method provides a
String representation of the method, including parameter and return types.

Since version 3.0, <default-header/> elements can be defined to add headers to all the messages
produced by the gateway, regardless of the method invoked. Specific headers defined for a method
take precedence over default headers. Specific headers defined for a method here override any
@Header annotations in the service interface. However, default headers do NOT override any @Header
annotations in the service interface.

The gateway now also supports a default-payload-expression, which is applied for all methods
(unless overridden).

10.4.5. Mapping Method Arguments to a Message

Using the configuration techniques in the previous section allows control of how method
arguments are mapped to message elements (payload and headers). When no explicit configuration
is used, certain conventions are used to perform the mapping. In some cases, these conventions
cannot determine which argument is the payload and which should be mapped to headers.
Consider the following example:

public String send1(Object thing1, Map thing2);

public String send2(Map thing1, Map thing2);

In the first case, the convention is to map the first argument to the payload (as long as it is not a Map)
and the contents of the second argument become headers.

197

In the second case (or the first when the argument for parameter thing1 is a Map), the framework
cannot determine which argument should be the payload. Consequently, mapping fails. This can
generally be resolved using a payload-expression, a @Payload annotation, or a @Headers annotation.

Alternatively (and whenever the conventions break down), you can take the entire responsibility
for mapping the method calls to messages. To do so, implement an MethodArgsMessageMapper and
provide it to the <gateway/> by using the mapper attribute. The mapper maps a MethodArgsHolder,
which is a simple class that wraps the java.reflect.Method instance and an Object[] containing the
arguments. When providing a custom mapper, the default-payload-expression attribute and
<default-header/> elements are not allowed on the gateway. Similarly, the payload-expression
attribute and <header/> elements are not allowed on any <method/> elements.

Mapping Method Arguments

The following examples show how method arguments can be mapped to the message and shows
some examples of invalid configuration:

198

public interface MyGateway {

 void payloadAndHeaderMapWithoutAnnotations(String s, Map<String, Object> map);

 void payloadAndHeaderMapWithAnnotations(@Payload String s, @Headers Map<
String, Object> map);

 void headerValuesAndPayloadWithAnnotations(@Header("k1") String x, @Payload
String s, @Header("k2") String y);

 void mapOnly(Map<String, Object> map); // the payload is the map and no custom
headers are added

 void twoMapsAndOneAnnotatedWithPayload(@Payload Map<String, Object> payload,
Map<String, Object> headers);

 @Payload("#args[0] + #args[1] + '!'")
 void payloadAnnotationAtMethodLevel(String a, String b);

 @Payload("@someBean.exclaim(#args[0])")
 void payloadAnnotationAtMethodLevelUsingBeanResolver(String s);

 void payloadAnnotationWithExpression(@Payload("toUpperCase()") String s);

 void payloadAnnotationWithExpressionUsingBeanResolver(@Payload(
"@someBean.sum(#this)") String s); // ①

 // invalid
 void twoMapsWithoutAnnotations(Map<String, Object> m1, Map<String, Object> m2
);

 // invalid
 void twoPayloads(@Payload String s1, @Payload String s2);

 // invalid
 void payloadAndHeaderAnnotationsOnSameParameter(@Payload @Header("x") String
s);

 // invalid
 void payloadAndHeadersAnnotationsOnSameParameter(@Payload @Headers Map<String,
Object> map);

}

① Note that, in this example, the SpEL variable, #this, refers to the argument — in this case, the
value of s.

The XML equivalent looks a little different, since there is no #this context for the method argument.

199

However, expressions can refer to method arguments by using the #args variable, as the following
example shows:

<int:gateway id="myGateway" service-interface="org.something.MyGateway">
 <int:method name="send1" payload-expression="#args[0] + 'thing2'"/>
 <int:method name="send2" payload-expression="@someBean.sum(#args[0])"/>
 <int:method name="send3" payload-expression="#method"/>
 <int:method name="send4">
 <int:header name="thing1" expression="#args[2].toUpperCase()"/>
 </int:method>
</int:gateway>

10.4.6. @MessagingGateway Annotation

Starting with version 4.0, gateway service interfaces can be marked with a @MessagingGateway
annotation instead of requiring the definition of a <gateway /> xml element for configuration. The
following pair of examples compares the two approaches for configuring the same gateway:

200

<int:gateway id="myGateway" service-interface="org.something.TestGateway"
 default-request-channel="inputC">
 <int:default-header name="calledMethod" expression="#gatewayMethod.name"/>
 <int:method name="echo" request-channel="inputA" reply-timeout="2" request-
timeout="200"/>
 <int:method name="echoUpperCase" request-channel="inputB">
 <int:header name="thing1" value="thing2"/>
 </int:method>
 <int:method name="echoViaDefault"/>
</int:gateway>

@MessagingGateway(name = "myGateway", defaultRequestChannel = "inputC",
 defaultHeaders = @GatewayHeader(name = "calledMethod",
 expression="#gatewayMethod.name"))
public interface TestGateway {

 @Gateway(requestChannel = "inputA", replyTimeout = 2, requestTimeout = 200)
 String echo(String payload);

 @Gateway(requestChannel = "inputB", headers = @GatewayHeader(name = "thing1",
value="thing2"))
 String echoUpperCase(String payload);

 String echoViaDefault(String payload);

}



Similarly to the XML version, when Spring Integration discovers these annotations
during a component scan, it creates the proxy implementation with its messaging
infrastructure. To perform this scan and register the BeanDefinition in the
application context, add the @IntegrationComponentScan annotation to a
@Configuration class. The standard @ComponentScan infrastructure does not deal
with interfaces. Consequently, we introduced the custom
@IntegrationComponentScan logic to fine the @MessagingGateway annotation on the
interfaces and register GatewayProxyFactoryBean instances for them. See also
Annotation Support.

Along with the @MessagingGateway annotation you can mark a service interface with the @Profile
annotation to avoid the bean creation, if such a profile is not active.


If you have no XML configuration, the @EnableIntegration annotation is required
on at least one @Configuration class. See Configuration and @EnableIntegration for
more information.

201

./configuration.pdf#annotations
./overview.pdf#configuration-enable-integration
./overview.pdf#configuration-enable-integration

10.4.7. Invoking No-Argument Methods

When invoking methods on a Gateway interface that do not have any arguments, the default
behavior is to receive a Message from a PollableChannel.

Sometimes, however, you may want to trigger no-argument methods so that you can interact with
other components downstream that do not require user-provided parameters, such as triggering
no-argument SQL calls or stored procedures.

To achieve send-and-receive semantics, you must provide a payload. To generate a payload, method
parameters on the interface are not necessary. You can either use the @Payload annotation or the
payload-expression attribute in XML on the method element. The following list includes a few
examples of what the payloads could be:

• a literal string

• #gatewayMethod.name

• new java.util.Date()

• @someBean.someMethod()'s return value

The following example shows how to use the @Payload annotation:

public interface Cafe {

 @Payload("new java.util.Date()")
 List<Order> retrieveOpenOrders();

}

If a method has no argument and no return value but does contain a payload expression, it is
treated as a send-only operation.

10.4.8. Invoking default Methods

An interface for gateway proxy may have default methods as well and starting with version 5.3, the
framework injects a DefaultMethodInvokingMethodInterceptor into a proxy for calling default
methods using a java.lang.invoke.MethodHandle approach instead of proxying. The interfaces from
JDK, such as java.util.function.Function, still can be used for gateway proxy, but their default
methods cannot be called because of internal Java security reasons for a MethodHandles.Lookup
instantiation against JDK classes. These methods also can be proxied (losing their implementation
logic and, at the same time, restoring previous gateway proxy behavior) using an explicit @Gateway
annotation on the method, or proxyDefaultMethods on the @MessagingGateway annotation or <gateway>
XML component.

10.4.9. Error Handling

The gateway invocation can result in errors. By default, any error that occurs downstream is re-
thrown “as is” upon the gateway’s method invocation. For example, consider the following simple

202

flow:

gateway -> service-activator

If the service invoked by the service activator throws a MyException (for example), the framework
wraps it in a MessagingException and attaches the message passed to the service activator in the
failedMessage property. Consequently, any logging performed by the framework has full the context
of the failure. By default, when the exception is caught by the gateway, the MyException is
unwrapped and thrown to the caller. You can configure a throws clause on the gateway method
declaration to match the particular exception type in the cause chain. For example, if you want to
catch a whole MessagingException with all the messaging information of the reason of downstream
error, you should have a gateway method similar to the following:

public interface MyGateway {

 void performProcess() throws MessagingException;

}

Since we encourage POJO programming, you may not want to expose the caller to messaging
infrastructure.

If your gateway method does not have a throws clause, the gateway traverses the cause tree, looking
for a RuntimeException that is not a MessagingException. If none is found, the framework throws the
MessagingException. If the MyException in the preceding discussion has a cause of SomeOtherException
and your method throws SomeOtherException, the gateway further unwraps that and throws it to the
caller.

When a gateway is declared with no service-interface, an internal framework interface
RequestReplyExchanger is used.

Consider the following example:

public interface RequestReplyExchanger {

 Message<?> exchange(Message<?> request) throws MessagingException;

}

Before version 5.0, this exchange method did not have a throws clause and, as a result, the exception
was unwrapped. If you use this interface and want to restore the previous unwrap behavior, use a
custom service-interface instead or access the cause of the MessagingException yourself.

However, you may want to log the error rather than propagating it or you may want to treat an

203

exception as a valid reply (by mapping it to a message that conforms to some "error message"
contract that the caller understands). To accomplish this, the gateway provides support for a
message channel dedicated to the errors by including support for the error-channel attribute. In the
following example, a 'transformer' creates a reply Message from the Exception:

<int:gateway id="sampleGateway"
 default-request-channel="gatewayChannel"
 service-interface="foo.bar.SimpleGateway"
 error-channel="exceptionTransformationChannel"/>

<int:transformer input-channel="exceptionTransformationChannel"
 ref="exceptionTransformer" method="createErrorResponse"/>

The exceptionTransformer could be a simple POJO that knows how to create the expected error
response objects. That becomes the payload that is sent back to the caller. You could do many more
elaborate things in such an “error flow”, if necessary. It might involve routers (including Spring
Integration’s ErrorMessageExceptionTypeRouter), filters, and so on. Most of the time, a simple
'transformer' should be sufficient, however.

Alternatively, you might want to only log the exception (or send it somewhere asynchronously). If
you provide a one-way flow, nothing would be sent back to the caller. If you want to completely
suppress exceptions, you can provide a reference to the global nullChannel (essentially a /dev/null
approach). Finally, as mentioned above, if no error-channel is defined, then the exceptions
propagate as usual.

When you use the @MessagingGateway annotation (see @MessagingGateway Annotation), you can use
use the errorChannel attribute.

Starting with version 5.0, when you use a gateway method with a void return type (one-way flow),
the error-channel reference (if provided) is populated in the standard errorChannel header of each
sent message. This feature allows a downstream asynchronous flow, based on the standard
ExecutorChannel configuration (or a QueueChannel), to override a default global errorChannel
exceptions sending behavior. Previously you had to manually specify an errorChannel header with
the @GatewayHeader annotation or the <header> element. The error-channel property was ignored for
void methods with an asynchronous flow. Instead, error messages were sent to the default
errorChannel.

204



Exposing the messaging system through simple POJI Gateways provides benefits,
but “hiding” the reality of the underlying messaging system does come at a price,
so there are certain things you should consider. We want our Java method to
return as quickly as possible and not hang for an indefinite amount of time while
the caller is waiting on it to return (whether void, a return value, or a thrown
Exception). When regular methods are used as a proxies in front of the messaging
system, we have to take into account the potentially asynchronous nature of the
underlying messaging. This means that there might be a chance that a message
that was initiated by a gateway could be dropped by a filter and never reach a
component that is responsible for producing a reply. Some service activator
method might result in an exception, thus providing no reply (as we do not
generate null messages). In other words, multiple scenarios can cause a reply
message to never come. That is perfectly natural in messaging systems. However,
think about the implication on the gateway method. The gateway’s method input
arguments were incorporated into a message and sent downstream. The reply
message would be converted to a return value of the gateway’s method. So you
might want to ensure that, for each gateway call, there is always a reply message.
Otherwise, your gateway method might never return and hang indefinitely. One
way to handle this situation is by using an asynchronous gateway (explained later
in this section). Another way of handling it is to explicitly set the reply-timeout
attribute. That way, the gateway does not hang any longer than the time specified
by the reply-timeout and returns 'null' if that timeout does elapse. Finally, you
might want to consider setting downstream flags, such as 'requires-reply', on a
service-activator or 'throw-exceptions-on-rejection' on a filter. These options are
discussed in more detail in the final section of this chapter.



If the downstream flow returns an ErrorMessage, its payload (a Throwable) is treated
as a regular downstream error. If there is an error-channel configured, it is sent to
the error flow. Otherwise the payload is thrown to the caller of the gateway.
Similarly, if the error flow on the error-channel returns an ErrorMessage, its
payload is thrown to the caller. The same applies to any message with a Throwable
payload. This can be useful in asynchronous situations when when you need to
propagate an Exception directly to the caller. To do so, you can either return an
Exception (as the reply from some service) or throw it. Generally, even with an
asynchronous flow, the framework takes care of propagating an exception thrown
by the downstream flow back to the gateway. The TCP Client-Server Multiplex
sample demonstrates both techniques to return the exception to the caller. It
emulates a socket IO error to the waiting thread by using an aggregator with group-
timeout (see Aggregator and Group Timeout) and a MessagingTimeoutException reply
on the discard flow.

10.4.10. Gateway Timeouts

Gateways have two timeout properties: requestTimeout and replyTimeout. The request timeout
applies only if the channel can block (for example, a bounded QueueChannel that is full). The
replyTimeout value is how long the gateway waits for a reply or returns null. It defaults to infinity.

205

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/tcp-client-server-multiplex
./aggregator.pdf#agg-and-group-to

The timeouts can be set as defaults for all methods on the gateway (defaultRequestTimeout and
defaultReplyTimeout) or on the MessagingGateway interface annotation. Individual methods can
override these defaults (in <method/> child elements) or on the @Gateway annotation.

Starting with version 5.0, the timeouts can be defined as expressions, as the following example
shows:

@Gateway(payloadExpression = "#args[0]", requestChannel = "someChannel",
 requestTimeoutExpression = "#args[1]", replyTimeoutExpression = "#args[2]
")
String lateReply(String payload, long requestTimeout, long replyTimeout);

The evaluation context has a BeanResolver (use @someBean to reference other beans), and the #args
array variable is available.

When configuring with XML, the timeout attributes can be a long value or a SpEL expression, as the
following example shows:

<method name="someMethod" request-channel="someRequestChannel"
 payload-expression="#args[0]"
 request-timeout="1000"
 reply-timeout="#args[1]">
</method>

10.4.11. Asynchronous Gateway

As a pattern, the messaging gateway offers a nice way to hide messaging-specific code while still
exposing the full capabilities of the messaging system. As described earlier, the
GatewayProxyFactoryBean provides a convenient way to expose a proxy over a service-interface
giving you POJO-based access to a messaging system (based on objects in your own domain,
primitives/Strings, or other objects). However, when a gateway is exposed through simple POJO
methods that return values, it implies that, for each request message (generated when the method
is invoked), there must be a reply message (generated when the method has returned). Since
messaging systems are naturally asynchronous, you may not always be able to guarantee the
contract where “for each request, there will always be be a reply”. Spring Integration 2.0
introduced support for an asynchronous gateway, which offers a convenient way to initiate flows
when you may not know if a reply is expected or how long it takes for replies to arrive.

To handle these types of scenarios, Spring Integration uses java.util.concurrent.Future instances to
support an asynchronous gateway.

From the XML configuration, nothing changes, and you still define asynchronous gateway the same
way as you define a regular gateway, as the following example shows:

206

<int:gateway id="mathService"
 service-interface=
"org.springframework.integration.sample.gateway.futures.MathServiceGateway"
 default-request-channel="requestChannel"/>

However, the gateway interface (a service interface) is a little different, as follows:

public interface MathServiceGateway {

 Future<Integer> multiplyByTwo(int i);

}

As the preceding example shows, the return type for the gateway method is a Future. When
GatewayProxyFactoryBean sees that the return type of the gateway method is a Future, it immediately
switches to the asynchronous mode by using an AsyncTaskExecutor. That is the extent of the
differences. The call to such a method always returns immediately with a Future instance. Then you
can interact with the Future at your own pace to get the result, cancel, and so on. Also, as with any
other use of Future instances, calling get() may reveal a timeout, an execution exception, and so on.
The following example shows how to use a Future that returns from an asynchronous gateway:

MathServiceGateway mathService = ac.getBean("mathService", MathServiceGateway
.class);
Future<Integer> result = mathService.multiplyByTwo(number);
// do something else here since the reply might take a moment
int finalResult = result.get(1000, TimeUnit.SECONDS);

For a more detailed example, see the async-gateway sample in the Spring Integration samples.

ListenableFuture

Starting with version 4.1, asynchronous gateway methods can also return ListenableFuture
(introduced in Spring Framework 4.0). These return types let you provide a callback, which is
invoked when the result is available (or an exception occurs). When the gateway detects this return
type and the task executor is an AsyncListenableTaskExecutor, the executor’s submitListenable()
method is invoked. The following example shows how to use a ListenableFuture:

207

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/async-gateway

ListenableFuture<String> result = this.asyncGateway.async("something");
result.addCallback(new ListenableFutureCallback<String>() {

 @Override
 public void onSuccess(String result) {
 ...
 }

 @Override
 public void onFailure(Throwable t) {
 ...
 }
});

AsyncTaskExecutor

By default, the GatewayProxyFactoryBean uses
org.springframework.core.task.SimpleAsyncTaskExecutor when submitting internal
AsyncInvocationTask instances for any gateway method whose return type is a Future. However, the
async-executor attribute in the <gateway/> element’s configuration lets you provide a reference to
any implementation of java.util.concurrent.Executor available within the Spring application
context.

The (default) SimpleAsyncTaskExecutor supports both Future and ListenableFuture return types,
returning FutureTask or ListenableFutureTask respectively. See CompletableFuture. Even though
there is a default executor, it is often useful to provide an external one so that you can identify its
threads in logs (when using XML, the thread name is based on the executor’s bean name), as the
following example shows:

@Bean
public AsyncTaskExecutor exec() {
 SimpleAsyncTaskExecutor simpleAsyncTaskExecutor = new SimpleAsyncTaskExecutor
();
 simpleAsyncTaskExecutor.setThreadNamePrefix("exec-");
 return simpleAsyncTaskExecutor;
}

@MessagingGateway(asyncExecutor = "exec")
public interface ExecGateway {

 @Gateway(requestChannel = "gatewayChannel")
 Future<?> doAsync(String foo);

}

208

If you wish to return a different Future implementation, you can provide a custom executor or
disable the executor altogether and return the Future in the reply message payload from the
downstream flow. To disable the executor, set it to null in the GatewayProxyFactoryBean (by using
setAsyncTaskExecutor(null)). When configuring the gateway with XML, use async-executor="".
When configuring by using the @MessagingGateway annotation, use code similar to the following:

@MessagingGateway(asyncExecutor = AnnotationConstants.NULL)
public interface NoExecGateway {

 @Gateway(requestChannel = "gatewayChannel")
 Future<?> doAsync(String foo);

}



If the return type is a specific concrete Future implementation or some other sub-
interface that is not supported by the configured executor, the flow runs on the
caller’s thread and the flow must return the required type in the reply message
payload.

CompletableFuture

Starting with version 4.2, gateway methods can now return CompletableFuture<?>. There are two
modes of operation when returning this type:

• When an async executor is provided and the return type is exactly CompletableFuture (not a
subclass), the framework runs the task on the executor and immediately returns a
CompletableFuture to the caller. CompletableFuture.supplyAsync(Supplier<U> supplier, Executor
executor) is used to create the future.

• When the async executor is explicitly set to null and the return type is CompletableFuture or the
return type is a subclass of CompletableFuture, the flow is invoked on the caller’s thread. In this
scenario, the downstream flow is expected to return a CompletableFuture of the appropriate
type.

Usage Scenarios

In the following scenario, the caller thread returns immediately with a CompletableFuture<Invoice>,
which is completed when the downstream flow replies to the gateway (with an Invoice object).

CompletableFuture<Invoice> order(Order order);

<int:gateway service-interface="something.Service" default-request-channel="
orders" />

209

In the following scenario, the caller thread returns with a CompletableFuture<Invoice> when the
downstream flow provides it as the payload of the reply to the gateway. Some other process must
complete the future when the invoice is ready.

CompletableFuture<Invoice> order(Order order);

<int:gateway service-interface="foo.Service" default-request-channel="orders"
 async-executor="" />

In the following scenario, the caller thread returns with a CompletableFuture<Invoice> when the
downstream flow provides it as the payload of the reply to the gateway. Some other process must
complete the future when the invoice is ready. If DEBUG logging is enabled, a log entry is emitted,
indicating that the async executor cannot be used for this scenario.

MyCompletableFuture<Invoice> order(Order order);

<int:gateway service-interface="foo.Service" default-request-channel="orders" />

CompletableFuture instances can be used to perform additional manipulation on the reply, as the
following example shows:

CompletableFuture<String> process(String data);

...

CompletableFuture result = process("foo")
 .thenApply(t -> t.toUpperCase());

...

String out = result.get(10, TimeUnit.SECONDS);

Reactor Mono

Starting with version 5.0, the GatewayProxyFactoryBean allows the use of Project Reactor with
gateway interface methods, using a Mono<T> return type. The internal AsyncInvocationTask is
wrapped in a Mono.fromCallable().

A Mono can be used to retrieve the result later (similar to a Future<?>), or you can consume from it

210

https://projectreactor.io/
https://github.com/reactor/reactor-core

with the dispatcher by invoking your Consumer when the result is returned to the gateway.



The Mono is not immediately flushed by the framework. Consequently, the
underlying message flow is not started before the gateway method returns (as it is
with a Future<?> Executor task). The flow starts when the Mono is subscribed to.
Alternatively, the Mono (being a “Composable”) might be a part of Reactor stream,
when the subscribe() is related to the entire Flux. The following example shows
how to create a gateway with Project Reactor:

@MessagingGateway
public static interface TestGateway {

 @Gateway(requestChannel = "promiseChannel")
 Mono<Integer> multiply(Integer value);

 }

 ...

 @ServiceActivator(inputChannel = "promiseChannel")
 public Integer multiply(Integer value) {
 return value * 2;
 }

 ...

 Flux.just("1", "2", "3", "4", "5")
 .map(Integer::parseInt)
 .flatMap(this.testGateway::multiply)
 .collectList()
 .subscribe(integers -> ...);

Another example that uses Project Reactor is a simple callback scenario, as the following example
shows:

Mono<Invoice> mono = service.process(myOrder);

mono.subscribe(invoice -> handleInvoice(invoice));

The calling thread continues, with handleInvoice() being called when the flow completes.

Downstream Flows Returning an Asynchronous Type

As mentioned in the ListenableFuture section above, if you wish some downstream component to

211

return a message with an async payload (Future, Mono, and others), you must explicitly set the async
executor to null (or "" when using XML configuration). The flow is then invoked on the caller
thread and the result can be retrieved later.

void Return Type

Unlike the return types mentioned earlier, when the method return type is void, the framework
cannot implicitly determine that you wish the downstream flow to run asynchronously, with the
caller thread returning immediately. In this case, you must annotate the interface method with
@Async, as the following example shows:

@MessagingGateway
public interface MyGateway {

 @Gateway(requestChannel = "sendAsyncChannel")
 @Async
 void sendAsync(String payload);

}

Unlike the Future<?> return types, there is no way to inform the caller if some exception is thrown
by the flow, unless some custom TaskExecutor (such as an ErrorHandlingTaskExecutor) is associated
with the @Async annotation.

10.4.12. Gateway Behavior When No response Arrives

As explained earlier, the gateway provides a convenient way of interacting with a messaging
system through POJO method invocations. However, a typical method invocation, which is
generally expected to always return (even with an Exception), might not always map one-to-one to
message exchanges (for example, a reply message might not arrive — the equivalent to a method
not returning).

The rest of this section covers various scenarios and how to make the gateway behave more
predictably. Certain attributes can be configured to make synchronous gateway behavior more
predictable, but some of them might not always work as you might expect. One of them is reply-
timeout (at the method level or default-reply-timeout at the gateway level). We examine the reply-
timeout attribute to see how it can and cannot influence the behavior of the synchronous gateway
in various scenarios. We examine a single-threaded scenario (all components downstream are
connected through a direct channel) and multi-threaded scenarios (for example, somewhere
downstream you may have a pollable or executor channel that breaks the single-thread boundary).

Long-running Process Downstream

Sync Gateway, single-threaded

If a component downstream is still running (perhaps because of an infinite loop or a slow
service), setting a reply-timeout has no effect, and the gateway method call does not return until
the downstream service exits (by returning or throwing an exception).

212

Sync Gateway, multi-threaded

If a component downstream is still running (perhaps because of an infinite loop or a slow
service) in a multi-threaded message flow, setting the reply-timeout has an effect by allowing
gateway method invocation to return once the timeout has been reached, because the
GatewayProxyFactoryBean polls on the reply channel, waiting for a message until the timeout
expires. However, if the timeout has been reached before the actual reply was produced, it could
result in a 'null' return from the gateway method. You should understand that the reply message
(if produced) is sent to a reply channel after the gateway method invocation might have
returned, so you must be aware of that and design your flow with it in mind.

Downstream Component Returns 'null'

Sync Gateway — single-threaded

If a component downstream returns 'null' and no reply-timeout has been configured, the
gateway method call hangs indefinitely, unless a reply-timeout has been configured or the
requires-reply attribute has been set on the downstream component (for example, a service
activator) that might return 'null'. In this case, an exception would be thrown and propagated to
the gateway.

Sync Gateway — multi-threaded

The behavior is the same as the previous case.

Downstream Component Return Signature is 'void' While Gateway Method Signature Is Non-
void

Sync Gateway — single-threaded

If a component downstream returns 'void' and no reply-timeout has been configured, the
gateway method call hangs indefinitely unless a reply-timeout has been configured.

Sync Gateway — multi-threaded

The behavior is the same as the previous case.

Downstream Component Results in Runtime Exception

Sync Gateway — single-threaded

If a component downstream throws a runtime exception, the exception is propagated through
an error message back to the gateway and re-thrown.

Sync Gateway — multi-threaded

The behavior is the same as the previous case.

213



You should understand that, by default, reply-timeout is unbounded. Consequently,
if you do not explicitly set the reply-timeout, your gateway method invocation
might hang indefinitely. So, to make sure you analyze your flow and if there is
even a remote possibility of one of these scenarios to occur, you should set the
reply-timeout attribute to a "'safe'" value. Even better, you can set the requires-
reply attribute of the downstream component to 'true' to ensure a timely response,
as produced by the throwing of an exception as soon as that downstream
component returns null internally. However you should also realize that there are
some scenarios (see the first one) where reply-timeout does not help. That means it
is also important to analyze your message flow and decide when to use a
synchronous gateway rather than an asynchrnous gateway. As described earlier,
the latter case is a matter of defining gateway methods that return Future
instances. Then you are guaranteed to receive that return value, and you have
more granular control over the results of the invocation. Also, when dealing with a
router, you should remember that setting the resolution-required attribute to
'true' results in an exception thrown by the router if it can not resolve a particular
channel. Likewise, when dealing with a Filter, you can set the throw-exception-on-
rejection attribute. In both of these cases, the resulting flow behaves like it contain
a service activator with the 'requires-reply' attribute. In other words, it helps to
ensure a timely response from the gateway method invocation.



reply-timeout is unbounded for <gateway/> elements (created by the
GatewayProxyFactoryBean). Inbound gateways for external integration (WS, HTTP,
and so on) share many characteristics and attributes with these gateways.
However, for those inbound gateways, the default reply-timeout is 1000
milliseconds (one second). If a downstream asynchronous hand-off is made to
another thread, you may need to increase this attribute to allow enough time for
the flow to complete before the gateway times out.



You should understand that the timer starts when the thread returns to the
gateway — that is, when the flow completes or a message is handed off to another
thread. At that time, the calling thread starts waiting for the reply. If the flow was
completely synchronous, the reply is immediately available. For asynchronous
flows, the thread waits for up to this time.

See IntegrationFlow as Gateway in the Java DSL chapter for options to define gateways through
IntegrationFlows.

10.5. Service Activator
The service activator is the endpoint type for connecting any Spring-managed object to an input
channel so that it may play the role of a service. If the service produces output, it may also be
connected to an output channel. Alternatively, an output-producing service may be located at the
end of a processing pipeline or message flow, in which case the inbound message’s replyChannel
header can be used. This is the default behavior if no output channel is defined. As with most of the
configuration options described here, the same behavior actually applies for most of the other

214

./dsl.pdf#java-dsl-gateway
./dsl.pdf#java-dsl-gateway

components.

10.5.1. Configuring Service Activator

To create a service activator, use the 'service-activator' element with the 'input-channel' and 'ref'
attributes, as the following example shows:

<int:service-activator input-channel="exampleChannel" ref="exampleHandler"/>

The preceding configuration selects all the methods from the exampleHandler that meet one of the
messaging requirements, which are as follows:

• annotated with @ServiceActivator

• is public

• not return void if requiresReply == true

The target method for invocation at runtime is selected for each request message by their payload
type or as a fallback to the Message<?> type if such a method is present on target class.

Starting with version 5.0, one service method can be marked with the
@org.springframework.integration.annotation.Default as a fallback for all non-matching cases. This
can be useful when using content-type conversion with the target method being invoked after
conversion.

To delegate to an explicitly defined method of any object, you can add the method attribute, as the
following example shows:

<int:service-activator input-channel="exampleChannel" ref="somePojo" method=
"someMethod"/>

In either case, when the service method returns a non-null value, the endpoint tries to send the
reply message to an appropriate reply channel. To determine the reply channel, it first checks
whether an output-channel was provided in the endpoint configuration, as the following example
shows:

<int:service-activator input-channel="exampleChannel" output-channel="
replyChannel"
 ref="somePojo" method="someMethod"/>

If the method returns a result and no output-channel is defined, the framework then checks the
request message’s replyChannel header value. If that value is available, it then checks its type. If it is

215

./endpoint.pdf#content-type-conversion

a MessageChannel, the reply message is sent to that channel. If it is a String, the endpoint tries to
resolve the channel name to a channel instance. If the channel cannot be resolved, a
DestinationResolutionException is thrown. It it can be resolved, the message is sent there. If the
request message does not have a replyChannel header and the reply object is a Message, its
replyChannel header is consulted for a target destination. This is the technique used for request-
reply messaging in Spring Integration, and it is also an example of the return address pattern.

If your method returns a result and you want to discard it and end the flow, you should configure
the output-channel to send to a NullChannel. For convenience, the framework registers one with the
name, nullChannel. See Special Channels for more information.

The service activator is one of those components that is not required to produce a reply message. If
your method returns null or has a void return type, the service activator exits after the method
invocation, without any signals. This behavior can be controlled by the
AbstractReplyProducingMessageHandler.requiresReply option, which is also exposed as requires-
reply when configuring with the XML namespace. If the flag is set to true and the method returns
null, a ReplyRequiredException is thrown.

The argument in the service method could be either a message or an arbitrary type. If the latter,
then it is assumed to be a message payload, which is extracted from the message and injected into
the service method. We generally recommend this approach, as it follows and promotes a POJO
model when working with Spring Integration. Arguments may also have @Header or @Headers
annotations, as described in Annotation Support.



The service method is not required to have any arguments, which means you can
implement event-style service activators (where all you care about is an invocation
of the service method) and not worry about the contents of the message. Think of
it as a null JMS message. An example use case for such an implementation is a
simple counter or monitor of messages deposited on the input channel.

Starting with version 4.1, the framework correctly converts message properties (payload and
headers) to the Java 8 Optional POJO method parameters, as the following example shows:

216

./channel.pdf#channel-special-channels
./configuration.pdf#annotations

public class MyBean {
 public String computeValue(Optional<String> payload,
 @Header(value="foo", required=false) String foo1,
 @Header(value="foo") Optional<String> foo2) {
 if (payload.isPresent()) {
 String value = payload.get();
 ...
 }
 else {
 ...
 }
 }

}

We generally recommend using a ref attribute if the custom service activator handler
implementation can be reused in other <service-activator> definitions. However, if the custom
service activator handler implementation is only used within a single definition of the <service-
activator>, you can provide an inner bean definition, as the following example shows:

<int:service-activator id="exampleServiceActivator" input-channel="inChannel"
 output-channel = "outChannel" method="someMethod">
 <beans:bean class="org.something.ExampleServiceActivator"/>
</int:service-activator>


Using both the ref attribute and an inner handler definition in the same <service-
activator> configuration is not allowed, as it creates an ambiguous condition and
results in an exception being thrown.



If the ref attribute references a bean that extends AbstractMessageProducingHandler
(such as handlers provided by the framework itself), the configuration is
optimized by injecting the output channel into the handler directly. In this case,
each ref must be to a separate bean instance (or a prototype-scoped bean) or use
the inner <bean/> configuration type. If you inadvertently reference the same
message handler from multiple beans, you get a configuration exception.

Service Activators and the Spring Expression Language (SpEL)

Since Spring Integration 2.0, service activators can also benefit from SpEL.

For example, you can invoke any bean method without pointing to the bean in a ref attribute or
including it as an inner bean definition, as follows:

217

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

<int:service-activator input-channel="in" output-channel="out"
 expression="@accountService.processAccount(payload, headers.accountId)"/>

 <bean id="accountService" class="thing1.thing2.Account"/>

In the preceding configuration, instead of injecting 'accountService' by using a ref or as an inner
bean, we use SpEL’s @beanId notation and invoke a method that takes a type compatible with the
message payload. We also pass a header value. Any valid SpEL expression can be evaluated against
any content in the message. For simple scenarios, your service activators need not reference a bean
if all logic can be encapsulated in such an expression, as the following example shows:

<int:service-activator input-channel="in" output-channel="out" expression="payload
* 2"/>

In the preceding configuration, our service logic is to multiply the payload value by two. SpEL lets
us handle it relatively easily.

See Service Activators and the .handle() method in the Java DSL chapter for more information
about configuring service activator.

10.5.2. Asynchronous Service Activator

The service activator is invoked by the calling thread. This is an upstream thread if the input
channel is a SubscribableChannel or a poller thread for a PollableChannel. If the service returns a
ListenableFuture<?>, the default action is to send that as the payload of the message sent to the
output (or reply) channel. Starting with version 4.3, you can now set the async attribute to true (by
using setAsync(true) when using Java configuration). If the service returns a ListenableFuture<?>
when this the async attribute is set to true, the calling thread is released immediately and the reply
message is sent on the thread (from within your service) that completes the future. This is
particularly advantageous for long-running services that use a PollableChannel, because the poller
thread is released to perform other services within the framework.

If the service completes the future with an Exception, normal error processing occurs. An
ErrorMessage is sent to the errorChannel message header, if present. Otherwise, an ErrorMessage is
sent to the default errorChannel (if available).

10.5.3. Service Activator and Method Return Type

The service method can return any type which becomes reply message payload. In this case a new
Message<?> object is created and all the headers from a request message are copied. This works the
same way for most Spring Integration MessageHandler implementations, when interaction is based
on a POJO method invocation.

A complete Message<?> object can also be returned from the method. However keep in mind that,

218

./dsl.pdf#java-dsl-handle
./dsl.pdf#java-dsl-handle
./dsl.pdf#java-dsl-handle

unlike transformers, for a Service Activator this message will be modified by copying the headers
from the request message if they are not already present in the returned message. So, if your
method parameter is a Message<?> and you copy some, but not all, existing headers in your service
method, they will reappear in the reply message. It is not a Service Activator responsibility to
remove headers from a reply message and, pursuing the loosely-coupled principle, it is better to
add a HeaderFilter in the integration flow. Alternatively, a Transformer can be used instead of a
Service Activator but, in that case, when returning a full Message<?> the method is completely
responsible for the message, including copying request message headers (if needed). You must
ensure that important framework headers (e.g. replyChannel, errorChannel), if present, have to be
preserved.

10.6. Delayer
A delayer is a simple endpoint that lets a message flow be delayed by a certain interval. When a
message is delayed, the original sender does not block. Instead, the delayed messages are scheduled
with an instance of org.springframework.scheduling.TaskScheduler to be sent to the output channel
after the delay has passed. This approach is scalable even for rather long delays, since it does not
result in a large number of blocked sender threads. On the contrary, in the typical case, a thread
pool is used for the actual execution of releasing the messages. This section contains several
examples of configuring a delayer.

10.6.1. Configuring a Delayer

The <delayer> element is used to delay the message flow between two message channels. As with
the other endpoints, you can provide the 'input-channel' and 'output-channel' attributes, but the
delayer also has 'default-delay' and 'expression' attributes (and the 'expression' element) that
determine the number of milliseconds by which each message should be delayed. The following
example delays all messages by three seconds:

<int:delayer id="delayer" input-channel="input"
 default-delay="3000" output-channel="output"/>

If you need to determine the delay for each message, you can also provide the SpEL expression by
using the 'expression' attribute, as the following expression shows:

<int:delayer id="delayer" input-channel="input" output-channel="output"
 default-delay="3000" expression="headers['delay']"/>

In the preceding example, the three-second delay applies only when the expression evaluates to
null for a given inbound message. If you want to apply a delay only to messages that have a valid
result of the expression evaluation, you can use a 'default-delay' of 0 (the default). For any message
that has a delay of 0 (or less), the message is sent immediately, on the calling thread.

219

./transformer.pdf#transformer

The following example shows the Java configuration equivalent of the preceding example:

@ServiceActivator(inputChannel = "input")
@Bean
public DelayHandler delayer() {
 DelayHandler handler = new DelayHandler("delayer.messageGroupId");
 handler.setDefaultDelay(3_000L);
 handler.setDelayExpressionString("headers['delay']");
 handler.setOutputChannelName("output");
 return handler;
}

The following example shows the Java DSL equivalent of the preceding example:

@Bean
public IntegrationFlow flow() {
 return IntegrationFlows.from("input")
 .delay("delayer.messageGroupId", d -> d
 .defaultDelay(3_000L)
 .delayExpression("headers['delay']"))
 .channel("output")
 .get();
}

 The XML parser uses a message group ID of <beanName>.messageGroupId.



The delay handler supports expression evaluation results that represent an
interval in milliseconds (any Object whose toString() method produces a value
that can be parsed into a Long) as well as java.util.Date instances representing an
absolute time. In the first case, the milliseconds are counted from the current time
(for example a value of 5000 would delay the message for at least five seconds from
the time it is received by the delayer). With a Date instance, the message is not
released until the time represented by that Date object. A value that equates to a
non-positive delay or a Date in the past results in no delay. Instead, it is sent
directly to the output channel on the original sender’s thread. If the expression
evaluation result is not a Date and can not be parsed as a Long, the default delay (if
any — the default is 0) is applied.

220



The expression evaluation may throw an evaluation exception for various reasons,
including an invalid expression or other conditions. By default, such exceptions
are ignored (though logged at the DEBUG level) and the delayer falls back to the
default delay (if any). You can modify this behavior by setting the ignore-
expression-failures attribute. By default, this attribute is set to true and the
delayer behavior is as described earlier. However, if you wish to not ignore
expression evaluation exceptions and throw them to the delayer’s caller, set the
ignore-expression-failures attribute to false.



In the preceding example, the delay expression is specified as headers['delay'].
This is the SpEL Indexer syntax to access a Map element (MessageHeaders implements
Map). It invokes: headers.get("delay"). For simple map element names (that do not
contain '.') you can also use the SpEL “dot accessor” syntax, where the header
expression shown earlier can be specified as headers.delay. However, different
results are achieved if the header is missing. In the first case, the expression
evaluates to null. The second results in something similar to the following:

 org.springframework.expression.spel.SpelEvaluationException:
EL1008E:(pos 8):
 Field or property 'delay' cannot be found on object of
type 'org.springframework.messaging.MessageHeaders'

Consequently, if there is a possibility of the header being omitted and you want to
fall back to the default delay, it is generally more efficient (and recommended) to
use the indexer syntax instead of dot property accessor syntax, because detecting
the null is faster than catching an exception.

The delayer delegates to an instance of Spring’s TaskScheduler abstraction. The default scheduler
used by the delayer is the ThreadPoolTaskScheduler instance provided by Spring Integration on
startup. See Configuring the Task Scheduler. If you want to delegate to a different scheduler, you
can provide a reference through the delayer element’s 'scheduler' attribute, as the following
example shows:

<int:delayer id="delayer" input-channel="input" output-channel="output"
 expression="headers.delay"
 scheduler="exampleTaskScheduler"/>

<task:scheduler id="exampleTaskScheduler" pool-size="3"/>

221

./configuration.pdf#namespace-taskscheduler



If you configure an external ThreadPoolTaskScheduler, you can set
waitForTasksToCompleteOnShutdown = true on this property. It allows successful
completion of 'delay' tasks that are already in the execution state (releasing the
message) when the application is shutdown. Before Spring Integration 2.2, this
property was available on the <delayer> element, because DelayHandler could
create its own scheduler on the background. Since 2.2, the delayer requires an
external scheduler instance and waitForTasksToCompleteOnShutdown was deleted.
You should use the scheduler’s own configuration.



ThreadPoolTaskScheduler has a property errorHandler, which can be injected with
some implementation of org.springframework.util.ErrorHandler. This handler
allows processing an Exception from the thread of the scheduled task sending the
delayed message. By default, it uses an
org.springframework.scheduling.support.TaskUtils$LoggingErrorHandler, and you
can see a stack trace in the logs. You might want to consider using an
org.springframework.integration.channel.MessagePublishingErrorHandler, which
sends an ErrorMessage into an error-channel, either from the failed message’s
header or into the default error-channel. This error handling is performed after a
transaction rolls back (if present). See Release Failures.

10.6.2. Delayer and a Message Store

The DelayHandler persists delayed messages into the message group in the provided MessageStore.
(The 'groupId' is based on the required 'id' attribute of the <delayer> element.) A delayed message is
removed from the MessageStore by the scheduled task immediately before the DelayHandler sends
the message to the output-channel. If the provided MessageStore is persistent (such as
JdbcMessageStore), it provides the ability to not lose messages on the application shutdown. After
application startup, the DelayHandler reads messages from its message group in the MessageStore
and reschedules them with a delay based on the original arrival time of the message (if the delay is
numeric). For messages where the delay header was a Date, that Date is used when rescheduling. If
a delayed message remains in the MessageStore more than its 'delay', it is sent immediately after
startup.

The <delayer> can be enriched with either of two mutually exclusive elements: <transactional> and
<advice-chain>. The List of these AOP advices is applied to the proxied internal
DelayHandler.ReleaseMessageHandler, which has the responsibility to release the message, after the
delay, on a Thread of the scheduled task. It might be used, for example, when the downstream
message flow throws an exception and the transaction of the ReleaseMessageHandler is rolled back.
In this case, the delayed message remains in the persistent MessageStore. You can use any custom
org.aopalliance.aop.Advice implementation within the <advice-chain>. The <transactional> element
defines a simple advice chain that has only the transactional advice. The following example shows
an advice-chain within a <delayer>:

222

<int:delayer id="delayer" input-channel="input" output-channel="output"
 expression="headers.delay"
 message-store="jdbcMessageStore">
 <int:advice-chain>
 <beans:ref bean="customAdviceBean"/>
 <tx:advice>
 <tx:attributes>
 <tx:method name="*" read-only="true"/>
 </tx:attributes>
 </tx:advice>
 </int:advice-chain>
</int:delayer>

The DelayHandler can be exported as a JMX MBean with managed operations (getDelayedMessageCount
and reschedulePersistedMessages), which allows the rescheduling of delayed persisted messages at
runtime — for example, if the TaskScheduler has previously been stopped. These operations can be
invoked through a Control Bus command, as the following example shows:

Message<String> delayerReschedulingMessage =
 MessageBuilder.withPayload("@'delayer.handler'.reschedulePersistedMessages()"
).build();
 controlBusChannel.send(delayerReschedulingMessage);


For more information regarding the message store, JMX, and the control bus, see
System Management.

10.6.3. Release Failures

Starting with version 5.0.8, there are two new properties on the delayer:

• maxAttempts (default 5)

• retryDelay (default 1 second)

When a message is released, if the downstream flow fails, the release will be attempted after the
retryDelay. If the maxAttempts is reached, the message is discarded (unless the release is
transactional, in which case the message will remain in the store, but will no longer be scheduled
for release, until the application is restarted, or the reschedulePersistedMessages() method is
invoked, as discussed above).

In addition, you can configure a delayedMessageErrorChannel; when a release fails, an ErrorMessage is
sent to that channel with the exception as the payload and has the originalMessage property. The
ErrorMessage contains a header IntegrationMessageHeaderAccessor.DELIVERY_ATTEMPT containing the
current count.

223

./system-management.pdf#system-management-chapter

If the error flow consumes the error message and exits normally, no further action is taken; if the
release is transactional, the transaction will commit and the message deleted from the store. If the
error flow throws an exception, the release will be retried up to maxAttempts as discussed above.

10.7. Scripting Support
Spring Integration 2.1 added support for the JSR223 Scripting for Java specification, introduced in
Java version 6. It lets you use scripts written in any supported language (including Ruby, JRuby,
Javascript, Groovy and Kotlin) to provide the logic for various integration components, similar to
the way the Spring Expression Language (SpEL) is used in Spring Integration. For more information
about JSR223, see the documentation.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-scripting</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-scripting:5.4.0"

In addition you need to add a script engine implementation, e.g. JRuby, Jython.

Starting with version 5.2, Spring Integration provides a Kotlin Jsr223 support. You need to add these
dependencies into your project to make it working:

runtime 'org.jetbrains.kotlin:kotlin-script-util'
runtime 'org.jetbrains.kotlin:kotlin-compiler-embeddable'
runtime 'org.jetbrains.kotlin:kotlin-scripting-compiler-embeddable'

The KotlinScriptExecutor is selected by the provided kotlin language indicator or script file comes
with the .kts extension.

 Note that this feature requires Java 6 or higher.

In order to use a JVM scripting language, a JSR223 implementation for that language must be
included in your class path. Java 6 natively supports Javascript. The Groovy and JRuby projects
provide JSR233 support in their standard distributions.

224

https://www.jcp.org/en/jsr/detail?id=223
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/api.html
https://groovy-lang.org/
https://www.jruby.org



Various JSR223 language implementations have been developed by third parties. A
particular implementation’s compatibility with Spring Integration depends on how
well it conforms to the specification and the implementer’s interpretation of the
specification.


If you plan to use Groovy as your scripting language, we recommended you use
Spring-Integration’s Groovy Support as it offers additional features specific to
Groovy. However, this section is relevant as well.

10.7.1. Script Configuration

Depending on the complexity of your integration requirements, scripts may be provided inline as
CDATA in XML configuration or as a reference to a Spring resource that contains the script. To
enable scripting support, Spring Integration defines a ScriptExecutingMessageProcessor, which
binds the message payload to a variable named payload and the message headers to a headers
variable, both accessible within the script execution context. All you need to do is write a script that
uses these variables. The following pair of examples show sample configurations that create filters:

Example 2. Filter

<int:filter input-channel="referencedScriptInput">
 <int-script:script location="some/path/to/ruby/script/RubyFilterTests.rb"/>
</int:filter>

<int:filter input-channel="inlineScriptInput">
 <int-script:script lang="groovy">
 <![CDATA[
 return payload == 'good'
]]>
 </int-script:script>
</int:filter>

As the preceding examples show, the script can be included inline or can be included by reference
to a resource location (by using the location attribute). Additionally, the lang attribute corresponds
to the language name (or its JSR223 alias)

Other Spring Integration endpoint elements that support scripting include router, service-
activator, transformer, and splitter. The scripting configuration in each case would be identical to
the above (besides the endpoint element).

Another useful feature of scripting support is the ability to update (reload) scripts without having to
restart the application context. To do so, specify the refresh-check-delay attribute on the script
element, as the following example shows:

225

./groovy.pdf#groovy

<int-script:script location="..." refresh-check-delay="5000"/>

In the preceding example, the script location is checked for updates every 5 seconds. If the script is
updated, any invocation that occurs later than 5 seconds since the update results in running the
new script.

Consider the following example:

<int-script:script location="..." refresh-check-delay="0"/>

In the preceding example, the context is updated with any script modifications as soon as such
modification occurs, providing a simple mechanism for 'real-time' configuration. Any negative
value means the script is not reloaded after initialization of the application context. This is the
default behavior. The following example shows a script that never updates:

<int-script:script location="..." refresh-check-delay="-1"/>

 Inline scripts can not be reloaded.

Script Variable Bindings

Variable bindings are required to enable the script to reference variables externally provided to the
script’s execution context. By default, payload and headers are used as binding variables. You can
bind additional variables to a script by using <variable> elements, as the following example shows:

<script:script lang="js" location="foo/bar/MyScript.js">
 <script:variable name="foo" value="thing1"/>
 <script:variable name="bar" value="thing2"/>
 <script:variable name="date" ref="date"/>
</script:script>

As shown in the preceding example, you can bind a script variable either to a scalar value or to a
Spring bean reference. Note that payload and headers are still included as binding variables.

With Spring Integration 3.0, in addition to the variable element, the variables attribute has been
introduced. This attribute and the variable elements are not mutually exclusive, and you can
combine them within one script component. However, variables must be unique, regardless of
where they are defined. Also, since Spring Integration 3.0, variable bindings are allowed for inline

226

scripts, too, as the following example shows:

<service-activator input-channel="input">
 <script:script lang="ruby" variables="thing1=THING1, date-ref=dateBean">
 <script:variable name="thing2" ref="thing2Bean"/>
 <script:variable name="thing3" value="thing2"/>
 <![CDATA[
 payload.foo = thing1
 payload.date = date
 payload.bar = thing2
 payload.baz = thing3
 payload
]]>
 </script:script>
</service-activator>

The preceding example shows a combination of an inline script, a variable element, and a
variables attribute. The variables attribute contains a comma-separated value, where each segment
contains an '=' separated pair of the variable and its value. The variable name can be suffixed with
-ref, as in the date-ref variable in the preceding example. That means that the binding variable has
the name, date, but the value is a reference to the dateBean bean from the application context. This
may be useful when using property placeholder configuration or command-line arguments.

If you need more control over how variables are generated, you can implement your own Java class
that uses the ScriptVariableGenerator strategy, which is defined by the following interface:

public interface ScriptVariableGenerator {

 Map<String, Object> generateScriptVariables(Message<?> message);

}

This interface requires you to implement the generateScriptVariables(Message) method. The
message argument lets you access any data available in the message payload and headers, and the
return value is the Map of bound variables. This method is called every time the script is executed
for a message. The following example shows how to provide an implementation of
ScriptVariableGenerator and reference it with the script-variable-generator attribute:

<int-script:script location="foo/bar/MyScript.groovy"
 script-variable-generator="variableGenerator"/>

<bean id="variableGenerator" class="foo.bar.MyScriptVariableGenerator"/>

227

If a script-variable-generator is not provided, script components use
DefaultScriptVariableGenerator, which merges any provided <variable> elements with payload and
headers variables from the Message in its generateScriptVariables(Message) method.


You cannot provide both the script-variable-generator attribute and <variable>
element(s). They are mutually exclusive.

10.8. Groovy support
In Spring Integration 2.0, we added Groovy support, letting you use the Groovy scripting language
to provide the logic for various integration components — similar to the way the Spring Expression
Language (SpEL) is supported for routing, transformation, and other integration concerns. For
more information about Groovy, see the Groovy documentation, which you can find on the project
website.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-groovy</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-groovy:5.4.0"

10.8.1. Groovy Configuration

With Spring Integration 2.1, the configuration namespace for the Groovy support is an extension of
Spring Integration’s scripting support and shares the core configuration and behavior described in
detail in the Scripting Support section. Even though Groovy scripts are well supported by generic
scripting support, the Groovy support provides the Groovy configuration namespace, which is
backed by the Spring Framework’s org.springframework.scripting.groovy.GroovyScriptFactory and
related components, offering extended capabilities for using Groovy. The following listing shows
two sample configurations:

228

https://groovy-lang.org/
https://groovy-lang.org/
./scripting.pdf#scripting

Example 3. Filter

<int:filter input-channel="referencedScriptInput">
 <int-groovy:script location="some/path/to/groovy/file/GroovyFilterTests.groovy
"/>
</int:filter>

<int:filter input-channel="inlineScriptInput">
 <int-groovy:script><![CDATA[
 return payload == 'good'
]]></int-groovy:script>
</int:filter>

As the preceding examples show, the configuration looks identical to the general scripting support
configuration. The only difference is the use of the Groovy namespace, as indicated by the int-
groovy namespace prefix. Also note that the lang attribute on the <script> tag is not valid in this
namespace.

10.8.2. Groovy Object Customization

If you need to customize the Groovy object itself (beyond setting variables) you can reference a
bean that implements GroovyObjectCustomizer by using the customizer attribute. For example, this
might be useful if you want to implement a domain-specific language (DSL) by modifying the
MetaClass and registering functions to be available within the script. The following example shows
how to do so:

<int:service-activator input-channel="groovyChannel">
 <int-groovy:script location="somewhere/SomeScript.groovy" customizer=
"groovyCustomizer"/>
</int:service-activator>

<beans:bean id="groovyCustomizer" class="org.something.MyGroovyObjectCustomizer"/>

Setting a custom GroovyObjectCustomizer is not mutually exclusive with <variable> elements or the
script-variable-generator attribute. It can also be provided when defining an inline script.

Spring Integration 3.0 introduced the variables attribute, which works in conjunction with the
variable element. Also, groovy scripts have the ability to resolve a variable to a bean in the
BeanFactory, if a binding variable was not provided with the name. The following example shows
how to use a variable (entityManager):

229

<int-groovy:script>
 <![CDATA[
 entityManager.persist(payload)
 payload
]]>
</int-groovy:script>

entityManager must be an appropriate bean in the application context.

For more information regarding the <variable> element, the variables attribute, and the script-
variable-generator attribute, see Script Variable Bindings.

10.8.3. Groovy Script Compiler Customization

The @CompileStatic hint is the most popular Groovy compiler customization option. It can be used
on the class or method level. For more information, see the Groovy Reference Manual and,
specifically, @CompileStatic. To utilize this feature for short scripts (in integration scenarios), we
are forced to change simple scripts to more Java-like code. Consider the following <filter> script:

headers.type == 'good'

The preceding script becomes the following method in Spring Integration:

@groovy.transform.CompileStatic
String filter(Map headers) {
 headers.type == 'good'
}

filter(headers)

With that, the filter() method is transformed and compiled to static Java code, bypassing the
Groovy dynamic phases of invocation, such as getProperty() factories and CallSite proxies.

Starting with version 4.3, you can configure the Spring Integration Groovy components with the
compile-static boolean option, specifying that ASTTransformationCustomizer for @CompileStatic
should be added to the internal CompilerConfiguration. With that in place, you can omit the method
declaration with @CompileStatic in our script code and still get compiled plain Java code. In this
case, the preceding script can be short but still needs to be a little more verbose than interpreted
script, as the following example shows:

230

./scripting.pdf#scripting-script-variable-bindings
https://groovy-lang.org/metaprogramming.html#section-typechecked
https://groovy-lang.org/metaprogramming.html#xform-CompileStatic

binding.variables.headers.type == 'good'

You must access the headers and payload (or any other) variables through the groovy.lang.Script
binding property because, with @CompileStatic, we do not have the dynamic
GroovyObject.getProperty() capability.

In addition, we introduced the compiler-configuration bean reference. With this attribute, you can
provide any other required Groovy compiler customizations, such as ImportCustomizer. For more
information about this feature, see the Groovy Documentation for advanced compiler
configuration.



Using compilerConfiguration does not automatically add an
ASTTransformationCustomizer for the @CompileStatic annotation, and it overrides
the compileStatic option. If you still need CompileStatic, you should manually add
a new ASTTransformationCustomizer(CompileStatic.class) into the
CompilationCustomizers of that custom compilerConfiguration.


The Groovy compiler customization does not have any effect on the refresh-check-
delay option, and reloadable scripts can be statically compiled, too.

10.8.4. Control Bus

As described in (Enterprise Integration Patterns), the idea behind the control bus is that you can use
the same messaging system for monitoring and managing the components within the framework as
is used for “application-level” messaging. In Spring Integration, we build upon the adapters
described earlier so that you can send Messages as a means of invoking exposed operations. One
option for those operations is Groovy scripts. The following example configures a Groovy script for
the control bus:

<int-groovy:control-bus input-channel="operationChannel"/>

The control bus has an input channel that can be accessed to invoke operations on the beans in the
application context.

The Groovy control bus runs messages on the input channel as Groovy scripts. It takes a message,
compiles the body to a script, customizes it with a GroovyObjectCustomizer, and runs it. The control
bus' MessageProcessor exposes all beans in the application context that are annotated with
@ManagedResource and implement Spring’s Lifecycle interface or extend Spring’s
CustomizableThreadCreator base class (for example, several of the TaskExecutor and TaskScheduler
implementations).

231

https://melix.github.io/blog/2011/05/12/customizing_groovy_compilation_process.html
https://melix.github.io/blog/2011/05/12/customizing_groovy_compilation_process.html
https://www.enterpriseintegrationpatterns.com/ControlBus.html



Be careful about using managed beans with custom scopes (such as 'request') in
the Control Bus' command scripts, especially inside an asynchronous message
flow. If MessageProcessor of the control bus cannot expose a bean from the
application context, you may end up with some BeansException during the
command script’s run. For example, if a custom scope’s context is not established,
the attempt to get a bean within that scope triggers a BeanCreationException.

If you need to further customize the Groovy objects, you can also provide a reference to a bean that
implements GroovyObjectCustomizer through the customizer attribute, as the following example
shows:

<int-groovy:control-bus input-channel="input"
 output-channel="output"
 customizer="groovyCustomizer"/>

<beans:bean id="groovyCustomizer" class="org.foo.MyGroovyObjectCustomizer"/>

10.9. Adding Behavior to Endpoints
Prior to Spring Integration 2.2, you could add behavior to an entire Integration flow by adding an
AOP Advice to a poller’s <advice-chain/> element. However, suppose you want to retry, say, just a
REST Web Service call, and not any downstream endpoints.

For example, consider the following flow:

inbound-adapter->poller->http-gateway1->http-gateway2->jdbc-outbound-adapter

If you configure some retry-logic into an advice chain on the poller and the call to http-gateway2
failed because of a network glitch, the retry causes both http-gateway1 and http-gateway2 to be
called a second time. Similarly, after a transient failure in the jdbc-outbound-adapter, both HTTP
gateways are called a second time before again calling the jdbc-outbound-adapter.

Spring Integration 2.2 adds the ability to add behavior to individual endpoints. This is achieved by
the addition of the <request-handler-advice-chain/> element to many endpoints. The following
example shows how to the <request-handler-advice-chain/> element within an outbound-gateway:

<int-http:outbound-gateway id="withAdvice"
 url-expression="'http://localhost/test1'"
 request-channel="requests"
 reply-channel="nextChannel">
 <int-http:request-handler-advice-chain>
 <ref bean="myRetryAdvice" />
 </int-http:request-handler-advice-chain>
</int-http:outbound-gateway>

232

In this case, myRetryAdvice is applied only locally to this gateway and does not apply to further
actions taken downstream after the reply is sent to nextChannel. The scope of the advice is limited to
the endpoint itself.



At this time, you cannot advise an entire <chain/> of endpoints. The schema does
not allow a <request-handler-advice-chain> as a child element of the chain itself.

However, a <request-handler-advice-chain> can be added to individual reply-
producing endpoints within a <chain> element. An exception is that, in a chain that
produces no reply, because the last element in the chain is an outbound-channel-
adapter, that last element cannot be advised. If you need to advise such an element,
it must be moved outside of the chain (with the output-channel of the chain being
the input-channel of the adapter). The adapter can then be advised as usual. For
chains that produce a reply, every child element can be advised.

10.9.1. Provided Advice Classes

In addition to providing the general mechanism to apply AOP advice classes, Spring Integration
provides these out-of-the-box advice implementations:

• RequestHandlerRetryAdvice (described in Retry Advice)

• RequestHandlerCircuitBreakerAdvice (described in Circuit Breaker Advice)

• ExpressionEvaluatingRequestHandlerAdvice (described in Expression Evaluating Advice)

• RateLimiterRequestHandlerAdvice (described in Rate Limiter Advice)

• CacheRequestHandlerAdvice (described in Caching Advice)

• ReactiveRequestHandlerAdvice (described in Reactive Advice)

Retry Advice

The retry advice (o.s.i.handler.advice.RequestHandlerRetryAdvice) leverages the rich retry
mechanisms provided by the Spring Retry project. The core component of spring-retry is the
RetryTemplate, which allows configuration of sophisticated retry scenarios, including RetryPolicy
and BackoffPolicy strategies (with a number of implementations) as well as a RecoveryCallback
strategy to determine the action to take when retries are exhausted.

Stateless Retry

Stateless retry is the case where the retry activity is handled entirely within the advice. The
thread pauses (if configured to do so) and retries the action.

Stateful Retry

Stateful retry is the case where the retry state is managed within the advice but where an
exception is thrown and the caller resubmits the request. An example for stateful retry is when
we want the message originator (for example,JMS) to be responsible for resubmitting, rather
than performing it on the current thread. Stateful retry needs some mechanism to detect a
retried submission.

For more information on spring-retry, see the project’s Javadoc and the reference documentation

233

https://github.com/spring-projects/spring-retry
https://docs.spring.io/spring-integration/api/

for Spring Batch, where spring-retry originated.



The default back off behavior is to not back off. Retries are attempted immediately.
Using a back off policy that causes threads to pause between attempts may cause
performance issues, including excessive memory use and thread starvation. In
high-volume environments, back off policies should be used with caution.

Configuring the Retry Advice

The examples in this section use the following <service-activator> that always throws an
exception:

public class FailingService {

 public void service(String message) {
 throw new RuntimeException("error");
 }
}

Simple Stateless Retry

The default RetryTemplate has a SimpleRetryPolicy which tries three times. There is no
BackOffPolicy, so the three attempts are made back-to-back-to-back with no delay between
attempts. There is no RecoveryCallback, so the result is to throw the exception to the caller after
the final failed retry occurs. In a Spring Integration environment, this final exception might be
handled by using an error-channel on the inbound endpoint. The following example uses
RetryTemplate and shows its DEBUG output:

<int:service-activator input-channel="input" ref="failer" method="service">
 <int:request-handler-advice-chain>
 <bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice"/>
 </int:request-handler-advice-chain>
</int:service-activator>

DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]
DEBUG [task-scheduler-2]Retry: count=0
DEBUG [task-scheduler-2]Checking for rethrow: count=1
DEBUG [task-scheduler-2]Retry: count=1
DEBUG [task-scheduler-2]Checking for rethrow: count=2
DEBUG [task-scheduler-2]Retry: count=2
DEBUG [task-scheduler-2]Checking for rethrow: count=3
DEBUG [task-scheduler-2]Retry failed last attempt: count=3

Simple Stateless Retry with Recovery

The following example adds a RecoveryCallback to the preceding example and uses an

234

https://docs.spring.io/spring-batch/reference/html/retry.html

ErrorMessageSendingRecoverer to send an ErrorMessage to a channel:

<int:service-activator input-channel="input" ref="failer" method="service">
 <int:request-handler-advice-chain>
 <bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice">
 <property name="recoveryCallback">
 <bean class="o.s.i.handler.advice.ErrorMessageSendingRecoverer
">
 <constructor-arg ref="myErrorChannel" />
 </bean>
 </property>
 </bean>
 </int:request-handler-advice-chain>
</int:service-activator>

DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]
DEBUG [task-scheduler-2]Retry: count=0
DEBUG [task-scheduler-2]Checking for rethrow: count=1
DEBUG [task-scheduler-2]Retry: count=1
DEBUG [task-scheduler-2]Checking for rethrow: count=2
DEBUG [task-scheduler-2]Retry: count=2
DEBUG [task-scheduler-2]Checking for rethrow: count=3
DEBUG [task-scheduler-2]Retry failed last attempt: count=3
DEBUG [task-scheduler-2]Sending ErrorMessage :failedMessage:[Payload=...]

Stateless Retry with Customized Policies, and Recovery

For more sophistication, we can provide the advice with a customized RetryTemplate. This
example continues to use the SimpleRetryPolicy but increases the attempts to four. It also adds
an ExponentialBackoffPolicy where the first retry waits one second, the second waits five
seconds and the third waits 25 (for four attempts in all). The following listing shows the example
and its DEBUG output:

235

<int:service-activator input-channel="input" ref="failer" method="service">
 <int:request-handler-advice-chain>
 <bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice">
 <property name="recoveryCallback">
 <bean class="o.s.i.handler.advice.ErrorMessageSendingRecoverer
">
 <constructor-arg ref="myErrorChannel" />
 </bean>
 </property>
 <property name="retryTemplate" ref="retryTemplate" />
 </bean>
 </int:request-handler-advice-chain>
</int:service-activator>

<bean id="retryTemplate" class="
org.springframework.retry.support.RetryTemplate">
 <property name="retryPolicy">
 <bean class="org.springframework.retry.policy.SimpleRetryPolicy">
 <property name="maxAttempts" value="4" />
 </bean>
 </property>
 <property name="backOffPolicy">
 <bean class="
org.springframework.retry.backoff.ExponentialBackOffPolicy">
 <property name="initialInterval" value="1000" />
 <property name="multiplier" value="5.0" />
 <property name="maxInterval" value="60000" />
 </bean>
 </property>
</bean>

27.058 DEBUG [task-scheduler-1]preSend on channel 'input', message:
[Payload=...]
27.071 DEBUG [task-scheduler-1]Retry: count=0
27.080 DEBUG [task-scheduler-1]Sleeping for 1000
28.081 DEBUG [task-scheduler-1]Checking for rethrow: count=1
28.081 DEBUG [task-scheduler-1]Retry: count=1
28.081 DEBUG [task-scheduler-1]Sleeping for 5000
33.082 DEBUG [task-scheduler-1]Checking for rethrow: count=2
33.082 DEBUG [task-scheduler-1]Retry: count=2
33.083 DEBUG [task-scheduler-1]Sleeping for 25000
58.083 DEBUG [task-scheduler-1]Checking for rethrow: count=3
58.083 DEBUG [task-scheduler-1]Retry: count=3
58.084 DEBUG [task-scheduler-1]Checking for rethrow: count=4
58.084 DEBUG [task-scheduler-1]Retry failed last attempt: count=4
58.086 DEBUG [task-scheduler-1]Sending ErrorMessage
:failedMessage:[Payload=...]

236

Namespace Support for Stateless Retry

Starting with version 4.0, the preceding configuration can be greatly simplified, thanks to the
namespace support for the retry advice, as the following example shows:

<int:service-activator input-channel="input" ref="failer" method="service">
 <int:request-handler-advice-chain>
 <ref bean="retrier" />
 </int:request-handler-advice-chain>
</int:service-activator>

<int:handler-retry-advice id="retrier" max-attempts="4" recovery-channel=
"myErrorChannel">
 <int:exponential-back-off initial="1000" multiplier="5.0" maximum="60000"
/>
</int:handler-retry-advice>

In the preceding example, the advice is defined as a top-level bean so that it can be used in
multiple request-handler-advice-chain instances. You can also define the advice directly within
the chain, as the following example shows:

<int:service-activator input-channel="input" ref="failer" method="service">
 <int:request-handler-advice-chain>
 <int:retry-advice id="retrier" max-attempts="4" recovery-channel=
"myErrorChannel">
 <int:exponential-back-off initial="1000" multiplier="5.0" maximum=
"60000" />
 </int:retry-advice>
 </int:request-handler-advice-chain>
</int:service-activator>

A <handler-retry-advice> can have a <fixed-back-off> or <exponential-back-off> child element
or have no child element. A <handler-retry-advice> with no child element uses no back off. If
there is no recovery-channel, the exception is thrown when retries are exhausted. The
namespace can only be used with stateless retry.

For more complex environments (custom policies etc), use normal <bean> definitions.

Simple Stateful Retry with Recovery

To make retry stateful, we need to provide the advice with a RetryStateGenerator
implementation. This class is used to identify a message as being a resubmission so that the
RetryTemplate can determine the current state of retry for this message. The framework provides
a SpelExpressionRetryStateGenerator, which determines the message identifier by using a SpEL
expression. This example again uses the default policies (three attempts with no back off). As
with stateless retry, these policies can be customized. The following listing shows the example

237

and its DEBUG output:

238

<int:service-activator input-channel="input" ref="failer" method="service">
 <int:request-handler-advice-chain>
 <bean class="o.s.i.handler.advice.RequestHandlerRetryAdvice">
 <property name="retryStateGenerator">
 <bean class=
"o.s.i.handler.advice.SpelExpressionRetryStateGenerator">
 <constructor-arg value="headers['jms_messageId']" />
 </bean>
 </property>
 <property name="recoveryCallback">
 <bean class="o.s.i.handler.advice.ErrorMessageSendingRecoverer
">
 <constructor-arg ref="myErrorChannel" />
 </bean>
 </property>
 </bean>
 </int:request-handler-advice-chain>
</int:service-activator>

24.351 DEBUG [Container#0-1]preSend on channel 'input', message: [Payload=...]
24.368 DEBUG [Container#0-1]Retry: count=0
24.387 DEBUG [Container#0-1]Checking for rethrow: count=1
24.387 DEBUG [Container#0-1]Rethrow in retry for policy: count=1
24.387 WARN [Container#0-1]failure occurred in gateway sendAndReceive
org.springframework.integration.MessagingException: Failed to invoke handler
...
Caused by: java.lang.RuntimeException: foo
...
24.391 DEBUG [Container#0-1]Initiating transaction rollback on application
exception
...
25.412 DEBUG [Container#0-1]preSend on channel 'input', message: [Payload=...]
25.412 DEBUG [Container#0-1]Retry: count=1
25.413 DEBUG [Container#0-1]Checking for rethrow: count=2
25.413 DEBUG [Container#0-1]Rethrow in retry for policy: count=2
25.413 WARN [Container#0-1]failure occurred in gateway sendAndReceive
org.springframework.integration.MessagingException: Failed to invoke handler
...
Caused by: java.lang.RuntimeException: foo
...
25.414 DEBUG [Container#0-1]Initiating transaction rollback on application
exception
...
26.418 DEBUG [Container#0-1]preSend on channel 'input', message: [Payload=...]
26.418 DEBUG [Container#0-1]Retry: count=2
26.419 DEBUG [Container#0-1]Checking for rethrow: count=3
26.419 DEBUG [Container#0-1]Rethrow in retry for policy: count=3
26.419 WARN [Container#0-1]failure occurred in gateway sendAndReceive
org.springframework.integration.MessagingException: Failed to invoke handler

239

...
Caused by: java.lang.RuntimeException: foo
...
26.420 DEBUG [Container#0-1]Initiating transaction rollback on application
exception
...
27.425 DEBUG [Container#0-1]preSend on channel 'input', message: [Payload=...]
27.426 DEBUG [Container#0-1]Retry failed last attempt: count=3
27.426 DEBUG [Container#0-1]Sending ErrorMessage :failedMessage:[Payload=...]

If you compare the preceding example with the stateless examples, you can see that, with
stateful retry, the exception is thrown to the caller on each failure.

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry.
The default configuration retries for all exceptions and the exception classifier looks at the top-
level exception. If you configure it to, say, retry only on MyException and your application throws
a SomeOtherException where the cause is a MyException, retry does not occur.

Since Spring Retry 1.0.3, the BinaryExceptionClassifier has a property called traverseCauses (the
default is false). When true, it traverses exception causes until it finds a match or runs out of
causes to traverse.

To use this classifier for retry, use a SimpleRetryPolicy created with the constructor that takes the
max attempts, the Map of Exception objects, and the traverseCauses boolean. Then you can inject
this policy into the RetryTemplate.


traverseCauses is required in this case because user exceptions may be wrapped in
a MessagingException.

Circuit Breaker Advice

The general idea of the circuit breaker pattern is that, if a service is not currently available, do not
waste time (and resources) trying to use it. The
o.s.i.handler.advice.RequestHandlerCircuitBreakerAdvice implements this pattern. When the
circuit breaker is in the closed state, the endpoint attempts to invoke the service. The circuit
breaker goes to the open state if a certain number of consecutive attempts fail. When it is in the
open state, new requests “fail fast” and no attempt is made to invoke the service until some time
has expired.

When that time has expired, the circuit breaker is set to the half-open state. When in this state, if
even a single attempt fails, the breaker immediately goes to the open state. If the attempt succeeds,
the breaker goes to the closed state, in which case it does not go to the open state again until the
configured number of consecutive failures again occur. Any successful attempt resets the state to
zero failures for the purpose of determining when the breaker might go to the open state again.

Typically, this advice might be used for external services, where it might take some time to fail
(such as a timeout attempting to make a network connection).

240

The RequestHandlerCircuitBreakerAdvice has two properties: threshold and halfOpenAfter. The
threshold property represents the number of consecutive failures that need to occur before the
breaker goes open. It defaults to 5. The halfOpenAfter property represents the time after the last
failure that the breaker waits before attempting another request. The default is 1000 milliseconds.

The following example configures a circuit breaker and shows its DEBUG and ERROR output:

<int:service-activator input-channel="input" ref="failer" method="service">
 <int:request-handler-advice-chain>
 <bean class="o.s.i.handler.advice.RequestHandlerCircuitBreakerAdvice">
 <property name="threshold" value="2" />
 <property name="halfOpenAfter" value="12000" />
 </bean>
 </int:request-handler-advice-chain>
</int:service-activator>

05.617 DEBUG [task-scheduler-1]preSend on channel 'input', message: [Payload=...]
05.638 ERROR [task-scheduler-
1]org.springframework.messaging.MessageHandlingException:
java.lang.RuntimeException: foo
...
10.598 DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]
10.600 ERROR [task-scheduler-
2]org.springframework.messaging.MessageHandlingException:
java.lang.RuntimeException: foo
...
15.598 DEBUG [task-scheduler-3]preSend on channel 'input', message: [Payload=...]
15.599 ERROR [task-scheduler-3]org.springframework.messaging.MessagingException:
Circuit Breaker is Open for ServiceActivator
...
20.598 DEBUG [task-scheduler-2]preSend on channel 'input', message: [Payload=...]
20.598 ERROR [task-scheduler-2]org.springframework.messaging.MessagingException:
Circuit Breaker is Open for ServiceActivator
...
25.598 DEBUG [task-scheduler-5]preSend on channel 'input', message: [Payload=...]
25.601 ERROR [task-scheduler-
5]org.springframework.messaging.MessageHandlingException:
java.lang.RuntimeException: foo
...
30.598 DEBUG [task-scheduler-1]preSend on channel 'input', message:
[Payload=foo...]
30.599 ERROR [task-scheduler-1]org.springframework.messaging.MessagingException:
Circuit Breaker is Open for ServiceActivator

In the preceding example, the threshold is set to 2 and halfOpenAfter is set to 12 seconds. A new
request arrives every 5 seconds. The first two attempts invoked the service. The third and fourth
failed with an exception indicating that the circuit breaker is open. The fifth request was attempted
because the request was 15 seconds after the last failure. The sixth attempt fails immediately

241

because the breaker immediately went to open.

Expression Evaluating Advice

The final supplied advice class is the
o.s.i.handler.advice.ExpressionEvaluatingRequestHandlerAdvice. This advice is more general than
the other two advices. It provides a mechanism to evaluate an expression on the original inbound
message sent to the endpoint. Separate expressions are available to be evaluated, after either
success or failure. Optionally, a message containing the evaluation result, together with the input
message, can be sent to a message channel.

A typical use case for this advice might be with an <ftp:outbound-channel-adapter/>, perhaps to
move the file to one directory if the transfer was successful or to another directory if it fails:

The advice has properties to set an expression when successful, an expression for failures, and
corresponding channels for each. For the successful case, the message sent to the successChannel is
an AdviceMessage, with the payload being the result of the expression evaluation. An additional
property, called inputMessage, contains the original message sent to the handler. A message sent to
the failureChannel (when the handler throws an exception) is an ErrorMessage with a payload of
MessageHandlingExpressionEvaluatingAdviceException. Like all MessagingException instances, this
payload has failedMessage and cause properties, as well as an additional property called
evaluationResult, which contains the result of the expression evaluation.


Starting with version 5.1.3, if channels are configured, but expressions are not
provided, the default expression is used to evaluate to the payload of the message.

When an exception is thrown in the scope of the advice, by default, that exception is thrown to the
caller after any failureExpression is evaluated. If you wish to suppress throwing the exception, set
the trapException property to true. The following advice shows how to configure an advice with
Java DSL:

242

@SpringBootApplication
public class EerhaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context = SpringApplication.run
(EerhaApplication.class, args);
 MessageChannel in = context.getBean("advised.input", MessageChannel.class
);
 in.send(new GenericMessage<>("good"));
 in.send(new GenericMessage<>("bad"));
 context.close();
 }

 @Bean
 public IntegrationFlow advised() {
 return f -> f.handle((GenericHandler<String>) (payload, headers) -> {
 if (payload.equals("good")) {
 return null;
 }
 else {
 throw new RuntimeException("some failure");
 }
 }, c -> c.advice(expressionAdvice()));
 }

 @Bean
 public Advice expressionAdvice() {
 ExpressionEvaluatingRequestHandlerAdvice advice = new
ExpressionEvaluatingRequestHandlerAdvice();
 advice.setSuccessChannelName("success.input");
 advice.setOnSuccessExpressionString("payload + ' was successful'");
 advice.setFailureChannelName("failure.input");
 advice.setOnFailureExpressionString(
 "payload + ' was bad, with reason: ' + #exception.cause.message");
 advice.setTrapException(true);
 return advice;
 }

 @Bean
 public IntegrationFlow success() {
 return f -> f.handle(System.out::println);
 }

 @Bean
 public IntegrationFlow failure() {
 return f -> f.handle(System.out::println);
 }

}

243

Rate Limiter Advice

The Rate Limiter advice (RateLimiterRequestHandlerAdvice) allows to ensure that an endpoint does
not get overloaded with requests. When the rate limit is breached the request will go in a blocked
state.

A typical use case for this advice might be an external service provider not allowing more than n
number of request per minute.

The RateLimiterRequestHandlerAdvice implementation is fully based on the Resilience4j project and
requires either RateLimiter or RateLimiterConfig injections. Can also be configured with defaults
and/or custom name.

The following example configures a rate limiter advice with one request per 1 second:

@Bean
public RateLimiterRequestHandlerAdvice rateLimiterRequestHandlerAdvice() {
 return new RateLimiterRequestHandlerAdvice(RateLimiterConfig.custom()
 .limitRefreshPeriod(Duration.ofSeconds(1))
 .limitForPeriod(1)
 .build());
}

@ServiceActivator(inputChannel = "requestChannel", outputChannel = "resultChannel
",
 adviceChain = "rateLimiterRequestHandlerAdvice")
public String handleRequest(String payload) {
 ...
}

Caching Advice

Starting with version 5.2, the CacheRequestHandlerAdvice has been introduced. It is based on the
caching abstraction in Spring Framework and aligned with the concepts and functionality provided
by the @Caching annotation family. The logic internally is based on the CacheAspectSupport extension,
where proxying for caching operations is done around the
AbstractReplyProducingMessageHandler.RequestHandler.handleRequestMessage method with the
request Message<?> as the argument. This advice can be configured with a SpEL expression or a
Function to evaluate a cache key. The request Message<?> is available as the root object for the SpEL
evaluation context, or as the Function input argument. By default, the payload of the request
message is used for the cache key. The CacheRequestHandlerAdvice must be configured with
cacheNames, when a default cache operation is a CacheableOperation, or with a set of any arbitrary
CacheOperation s. Every CacheOperation can be configured separately or have shared options, like a
CacheManager, CacheResolver and CacheErrorHandler, can be reused from the
CacheRequestHandlerAdvice configuration. This configuration functionality is similar to Spring
Framework’s @CacheConfig and @Caching annotation combination. If a CacheManager is not provided,
a single bean is resolved by default from the BeanFactory in the CacheAspectSupport.

244

https://github.com/resilience4j/resilience4j#ratelimiter
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

The following example configures two advices with different set of caching operations:

@Bean
public CacheRequestHandlerAdvice cacheAdvice() {
 CacheRequestHandlerAdvice cacheRequestHandlerAdvice = new
CacheRequestHandlerAdvice(TEST_CACHE);
 cacheRequestHandlerAdvice.setKeyExpressionString("payload");
 return cacheRequestHandlerAdvice;
}

@Transformer(inputChannel = "transformerChannel", outputChannel = "nullChannel",
adviceChain = "cacheAdvice")
public Object transform(Message<?> message) {
 ...
}

@Bean
public CacheRequestHandlerAdvice cachePutAndEvictAdvice() {
 CacheRequestHandlerAdvice cacheRequestHandlerAdvice = new
CacheRequestHandlerAdvice();
 cacheRequestHandlerAdvice.setKeyExpressionString("payload");
 CachePutOperation.Builder cachePutBuilder = new CachePutOperation.Builder();
 cachePutBuilder.setCacheName(TEST_PUT_CACHE);
 CacheEvictOperation.Builder cacheEvictBuilder = new CacheEvictOperation
.Builder();
 cacheEvictBuilder.setCacheName(TEST_CACHE);
 cacheRequestHandlerAdvice.setCacheOperations(cachePutBuilder.build(),
cacheEvictBuilder.build());
 return cacheRequestHandlerAdvice;
}

@ServiceActivator(inputChannel = "serviceChannel", outputChannel = "nullChannel",
 adviceChain = "cachePutAndEvictAdvice")
public Message<?> service(Message<?> message) {
 ...
}

10.9.2. Reactive Advice

Starting with version 5.3, a ReactiveRequestHandlerAdvice can be used for request message handlers
producing a Mono replies. A BiFunction<Message<?>, Mono<?>, Publisher<?>> has to be provided for
this advice and it is called from the Mono.transform() operator on a reply produced by the
intercepted handleRequestMessage() method implementation. Typically such a Mono customization is
necessary when we would like to control network fluctuations via timeout(), retry() and similar
support operators. For example when we can an HTTP request over WebFlux client, we could use
below configuration to not wait for response more than 5 seconds:

245

.handle(WebFlux.outboundGateway("https://somehost/"),
 e -> e.customizeMonoReply((message, mono) -> mono.timeout
(Duration.ofSeconds(5))));

The message argument is the request message for the message handler and can be used to
determine request-scope attributes. The mono argument is the result of this message handler’s
handleRequestMessage() method implementation. A nested Mono.transform() can also be called from
this function to apply, for example, a Reactive Circuit Breaker.

10.9.3. Custom Advice Classes

In addition to the provided advice classes described earlier, you can implement your own advice
classes. While you can provide any implementation of org.aopalliance.aop.Advice (usually
org.aopalliance.intercept.MethodInterceptor), we generally recommend that you subclass
o.s.i.handler.advice.AbstractRequestHandlerAdvice. This has the benefit of avoiding the writing of
low-level aspect-oriented programming code as well as providing a starting point that is specifically
tailored for use in this environment.

Subclasses need to implement the doInvoke() method, the definition of which follows:

/**
 * Subclasses implement this method to apply behavior to the {@link
MessageHandler} callback.execute()
 * invokes the handler method and returns its result, or null).
 * @param callback Subclasses invoke the execute() method on this interface to
invoke the handler method.
 * @param target The target handler.
 * @param message The message that will be sent to the handler.
 * @return the result after invoking the {@link MessageHandler}.
 * @throws Exception
 */
protected abstract Object doInvoke(ExecutionCallback callback, Object target,
Message<?> message) throws Exception;

The callback parameter is a convenience to avoid subclasses that deal with AOP directly. Invoking
the callback.execute() method invokes the message handler.

The target parameter is provided for those subclasses that need to maintain state for a specific
handler, perhaps by maintaining that state in a Map keyed by the target. This feature allows the
same advice to be applied to multiple handlers. The RequestHandlerCircuitBreakerAdvice uses advice
this to keep circuit breaker state for each handler.

The message parameter is the message sent to the handler. While the advice cannot modify the
message before invoking the handler, it can modify the payload (if it has mutable properties).

246

https://spring.io/projects/spring-cloud-circuitbreaker

Typically, an advice would use the message for logging or to send a copy of the message somewhere
before or after invoking the handler.

The return value would normally be the value returned by callback.execute(). However, the advice
does have the ability to modify the return value. Note that only
AbstractReplyProducingMessageHandler instances return values. The following example shows a
custom advice class that extends AbstractRequestHandlerAdvice:

public class MyAdvice extends AbstractRequestHandlerAdvice {

 @Override
 protected Object doInvoke(ExecutionCallback callback, Object target, Message<
?> message) throws Exception {
 // add code before the invocation
 Object result = callback.execute();
 // add code after the invocation
 return result;
 }
}



In addition to the execute() method, ExecutionCallback provides an additional
method: cloneAndExecute(). This method must be used in cases where the
invocation might be called multiple times within a single execution of doInvoke(),
such as in the RequestHandlerRetryAdvice. This is required because the Spring AOP
org.springframework.aop.framework.ReflectiveMethodInvocation object maintains
state by keeping track of which advice in a chain was last invoked. This state must
be reset for each call.

For more information, see the ReflectiveMethodInvocation Javadoc.

10.9.4. Other Advice Chain Elements

While the abstract class mentioned above is a convenience, you can add any Advice, including a
transaction advice, to the chain.

10.9.5. Handling Message Advice

As discussed in the introduction to this section, advice objects in a request handler advice chain are
applied to just the current endpoint, not the downstream flow (if any). For MessageHandler objects
that produce a reply (such as those that extend AbstractReplyProducingMessageHandler), the advice is
applied to an internal method: handleRequestMessage() (called from
MessageHandler.handleMessage()). For other message handlers, the advice is applied to
MessageHandler.handleMessage().

There are some circumstances where, even if a message handler is an
AbstractReplyProducingMessageHandler, the advice must be applied to the handleMessage method. For

247

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/aop/framework/ReflectiveMethodInvocation.html

example, the idempotent receiver might return null, which would cause an exception if the
handler’s replyRequired property is set to true. Another example is the
BoundRabbitChannelAdvice — see Strict Message Ordering.

Starting with version 4.3.1, a new HandleMessageAdvice interface and its base implementation
(AbstractHandleMessageAdvice) have been introduced. Advice objects that implement
HandleMessageAdvice are always applied to the handleMessage() method, regardless of the handler
type.

It is important to understand that HandleMessageAdvice implementations (such as idempotent
receiver), when applied to a handlers that return responses, are dissociated from the adviceChain
and properly applied to the MessageHandler.handleMessage() method.

 Because of this disassociation, the advice chain order is not honored.

Consider the following configuration:

<some-reply-producing-endpoint ... >
 <int:request-handler-advice-chain>
 <tx:advice ... />
 <ref bean="myHandleMessageAdvice" />
 </int:request-handler-advice-chain>
</some-reply-producing-endpoint>

In the preceding example, the <tx:advice> is applied to the
AbstractReplyProducingMessageHandler.handleRequestMessage(). However, myHandleMessageAdvice is
applied for to MessageHandler.handleMessage(). Therefore, it is invoked before the <tx:advice>. To
retain the order, you should follow the standard Spring AOP configuration approach and use an
endpoint id together with the .handler suffix to obtain the target MessageHandler bean. Note that, in
that case, the entire downstream flow is within the transaction scope.

In the case of a MessageHandler that does not return a response, the advice chain order is retained.

Starting with version 5.3, the HandleMessageAdviceAdapter is present to let apply any existing
MethodInterceptor for the MessageHandler.handleMessage() and, therefore, whole sub-flow. For
example a RetryOperationsInterceptor could be applied for the whole sub-flow starting from some
endpoint, which is not possible by default because consumer endpoint applies advices only for the
AbstractReplyProducingMessageHandler.RequestHandler.handleRequestMessage(). Starting with
version 5.3, the HandleMessageAdviceAdapter is provided to apply any MethodInterceptor for the
MessageHandler.handleMessage() method and, therefore, the whole sub-flow. For example, a
RetryOperationsInterceptor could be applied to the whole sub-flow starting from some endpoint;
this is not possible, by default, because the consumer endpoint applies advices only to the
AbstractReplyProducingMessageHandler.RequestHandler.handleRequestMessage().

248

./amqp.pdf#amqp-strict-ordering
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#aop-api

10.9.6. Transaction Support

Starting with version 5.0, a new TransactionHandleMessageAdvice has been introduced to make the
whole downstream flow transactional, thanks to the HandleMessageAdvice implementation. When a
regular TransactionInterceptor is used in the <request-handler-advice-chain> element (for example,
through configuring <tx:advice>), a started transaction is only applied only for an internal
AbstractReplyProducingMessageHandler.handleRequestMessage() and is not propagated to the
downstream flow.

To simplify XML configuration, along with the <request-handler-advice-chain>, a <transactional>
element has been added to all <outbound-gateway> and <service-activator> and related components.
The following example shows <transactional> in use:

<int-rmi:outbound-gateway remote-channel="foo" host="localhost"
 request-channel="good" reply-channel="reply" port="#{@port}">
 <int-rmi:transactional/>
</int-rmi:outbound-gateway>

<bean id="transactionManager" class="org.mockito.Mockito" factory-method="mock">
 <constructor-arg value="org.springframework.transaction.TransactionManager"/>
</bean>

If you are familiar with the JPA integration components, such a configuration is not new, but now
we can start a transaction from any point in our flow — not only from the <poller> or a message-
driven channel adapter such as JMS.

Java configuration can be simplified by using the TransactionInterceptorBuilder, and the result
bean name can be used in the messaging annotations adviceChain attribute, as the following
example shows:

249

./jpa.pdf#jpa
./jms.pdf#jms-message-driven-channel-adapter
./configuration.pdf#annotations

@Bean
public ConcurrentMetadataStore store() {
 return new SimpleMetadataStore(hazelcastInstance()
 .getMap("idempotentReceiverMetadataStore"));
}

@Bean
public IdempotentReceiverInterceptor idempotentReceiverInterceptor() {
 return new IdempotentReceiverInterceptor(
 new MetadataStoreSelector(
 message -> message.getPayload().toString(),
 message -> message.getPayload().toString().toUpperCase(), store()
));
}

@Bean
public TransactionInterceptor transactionInterceptor() {
 return new TransactionInterceptorBuilder(true)
 .transactionManager(this.transactionManager)
 .isolation(Isolation.READ_COMMITTED)
 .propagation(Propagation.REQUIRES_NEW)
 .build();
}

@Bean
@org.springframework.integration.annotation.Transformer(inputChannel = "input",
 outputChannel = "output",
 adviceChain = { "idempotentReceiverInterceptor",
 "transactionInterceptor" })
public Transformer transformer() {
 return message -> message;
}

Note the true parameter on the TransactionInterceptorBuilder constructor. It causes the creation of
a TransactionHandleMessageAdvice, not a regular TransactionInterceptor.

Java DSL supports an Advice through the .transactional() options on the endpoint configuration, as
the following example shows:

@Bean
public IntegrationFlow updatingGatewayFlow() {
 return f -> f
 .handle(Jpa.updatingGateway(this.entityManagerFactory),
 e -> e.transactional(true))
 .channel(c -> c.queue("persistResults"));
}

250

10.9.7. Advising Filters

There is an additional consideration when advising Filter advices. By default, any discard actions
(when the filter returns false) are performed within the scope of the advice chain. This could
include all the flow downstream of the discard channel. So, for example, if an element downstream
of the discard channel throws an exception and there is a retry advice, the process is retried. Also, if
throwExceptionOnRejection is set to true (the exception is thrown within the scope of the advice).

Setting discard-within-advice to false modifies this behavior and the discard (or exception) occurs
after the advice chain is called.

10.9.8. Advising Endpoints Using Annotations

When configuring certain endpoints by using annotations (@Filter, @ServiceActivator, @Splitter,
and @Transformer), you can supply a bean name for the advice chain in the adviceChain attribute. In
addition, the @Filter annotation also has the discardWithinAdvice attribute, which can be used to
configure the discard behavior, as discussed in Advising Filters. The following example causes the
discard to be performed after the advice:

@MessageEndpoint
public class MyAdvisedFilter {

 @Filter(inputChannel="input", outputChannel="output",
 adviceChain="adviceChain", discardWithinAdvice="false")
 public boolean filter(String s) {
 return s.contains("good");
 }
}

10.9.9. Ordering Advices within an Advice Chain

Advice classes are “around” advices and are applied in a nested fashion. The first advice is the
outermost, while the last advice is the innermost (that is, closest to the handler being advised). It is
important to put the advice classes in the correct order to achieve the functionality you desire.

For example, suppose you want to add a retry advice and a transaction advice. You may want to
place the retry advice advice first, followed by the transaction advice. Consequently, each retry is
performed in a new transaction. On the other hand, if you want all the attempts and any recovery
operations (in the retry RecoveryCallback) to be scoped within the transaction, you could put the
transaction advice first.

10.9.10. Advised Handler Properties

Sometimes, it is useful to access handler properties from within the advice. For example, most
handlers implement NamedComponent to let you access the component name.

The target object can be accessed through the target argument (when subclassing
AbstractRequestHandlerAdvice) or invocation.getThis() (when implementing

251

org.aopalliance.intercept.MethodInterceptor).

When the entire handler is advised (such as when the handler does not produce replies or the
advice implements HandleMessageAdvice), you can cast the target object to an interface, such as
NamedComponent, as shown in the following example:

String componentName = ((NamedComponent) target).getComponentName();

When you implement MethodInterceptor directly, you could cast the target object as follows:

String componentName = ((NamedComponent) invocation.getThis()).getComponentName();

When only the handleRequestMessage() method is advised (in a reply-producing handler), you need
to access the full handler, which is an AbstractReplyProducingMessageHandler. The following example
shows how to do so:

AbstractReplyProducingMessageHandler handler =
 ((AbstractReplyProducingMessageHandler.RequestHandler) target)
.getAdvisedHandler();

String componentName = handler.getComponentName();

10.9.11. Idempotent Receiver Enterprise Integration Pattern

Starting with version 4.1, Spring Integration provides an implementation of the Idempotent
Receiver Enterprise Integration Pattern. It is a functional pattern and the whole idempotency logic
should be implemented in the application. However, to simplify the decision-making, the
IdempotentReceiverInterceptor component is provided. This is an AOP Advice that is applied to the
MessageHandler.handleMessage() method and that can filter a request message or mark it as a
duplicate, according to its configuration.

Previously, you could have implemented this pattern by using a custom MessageSelector in a
<filter/> (see Filter), for example. However, since this pattern really defines the behavior of an
endpoint rather than being an endpoint itself, the idempotent receiver implementation does not
provide an endpoint component. Rather, it is applied to endpoints declared in the application.

The logic of the IdempotentReceiverInterceptor is based on the provided MessageSelector and, if the
message is not accepted by that selector, it is enriched with the duplicateMessage header set to true.
The target MessageHandler (or downstream flow) can consult this header to implement the correct
idempotency logic. If the IdempotentReceiverInterceptor is configured with a discardChannel or
throwExceptionOnRejection = true, the duplicate message is not sent to the target

252

https://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
https://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
./filter.pdf#filter

MessageHandler.handleMessage(). Rather, it is discarded. If you want to discard (do nothing with) the
duplicate message, the discardChannel should be configured with a NullChannel, such as the default
nullChannel bean.

To maintain state between messages and provide the ability to compare messages for the
idempotency, we provide the MetadataStoreSelector. It accepts a MessageProcessor implementation
(which creates a lookup key based on the Message) and an optional ConcurrentMetadataStore
(Metadata Store). See the MetadataStoreSelector Javadoc for more information. You can also
customize the value for ConcurrentMetadataStore by using an additional MessageProcessor. By default,
MetadataStoreSelector uses the timestamp message header.

Normally, the selector selects a message for acceptance if there is no existing value for the key. In
some cases, it is useful to compare the current and new values for a key, to determine whether the
message should be accepted. Starting with version 5.3, the compareValues property is provided
which references a BiPredicate<String, String>; the first parameter is the old value; return true to
accept the message and replace the old value with the new value in the MetadataStore. This can be
useful to reduce the number of keys; for example, when processing lines in a file, you can store the
file name in the key and the current line number in the value. Then, after a restart, you can skip
lines that have already been processed. See Idempotent Downstream Processing a Split File for an
example.

For convenience, the MetadataStoreSelector options are configurable directly on the <idempotent-
receiver> component. The following listing shows all the possible attributes:

253

./meta-data-store.pdf#metadata-store
https://docs.spring.io/spring-integration/api/org/springframework/integration/selector/MetadataStoreSelector.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/selector/MetadataStoreSelector.html
./file.pdf#idempotent-file-splitter

<idempotent-receiver
 id="" ①
 endpoint="" ②
 selector="" ③
 discard-channel="" ④
 metadata-store="" ⑤
 key-strategy="" ⑥
 key-expression="" ⑦
 value-strategy="" ⑧
 value-expression="" ⑨
 compare-values="" ⑩
 throw-exception-on-rejection="" /> ⑪

① The ID of the IdempotentReceiverInterceptor bean. Optional.

② Consumer endpoint name(s) or pattern(s) to which this interceptor is applied. Separate
names (patterns) with commas (,), such as endpoint="aaa, bbb*, ccc, *ddd, eee*fff".
Endpoint bean names matching these patterns are then used to retrieve the target
endpoint’s MessageHandler bean (using its .handler suffix), and the
IdempotentReceiverInterceptor is applied to those beans. Required.

③ A MessageSelector bean reference. Mutually exclusive with metadata-store and key-strategy
(key-expression). When selector is not provided, one of key-strategy or key-strategy-
expression is required.

④ Identifies the channel to which to send a message when the IdempotentReceiverInterceptor
does not accept it. When omitted, duplicate messages are forwarded to the handler with a
duplicateMessage header. Optional.

⑤ A ConcurrentMetadataStore reference. Used by the underlying MetadataStoreSelector.
Mutually exclusive with selector. Optional. The default MetadataStoreSelector uses an
internal SimpleMetadataStore that does not maintain state across application executions.

⑥ A MessageProcessor reference. Used by the underlying MetadataStoreSelector. Evaluates an
idempotentKey from the request message. Mutually exclusive with selector and key-
expression. When a selector is not provided, one of key-strategy or key-strategy-expression
is required.

⑦ A SpEL expression to populate an ExpressionEvaluatingMessageProcessor. Used by the
underlying MetadataStoreSelector. Evaluates an idempotentKey by using the request message
as the evaluation context root object. Mutually exclusive with selector and key-strategy.
When a selector is not provided, one of key-strategy or key-strategy-expression is
required.

⑧ A MessageProcessor reference. Used by the underlying MetadataStoreSelector. Evaluates a
value for the idempotentKey from the request message. Mutually exclusive with selector and
value-expression. By default, the 'MetadataStoreSelector' uses the 'timestamp' message
header as the Metadata 'value'.

⑨ A SpEL expression to populate an ExpressionEvaluatingMessageProcessor. Used by the
underlying MetadataStoreSelector. Evaluates a value for the idempotentKey by using the
request message as the evaluation context root object. Mutually exclusive with selector and

254

value-strategy. By default, the 'MetadataStoreSelector' uses the 'timestamp' message header
as the metadata 'value'.

⑩ A reference to a BiPredicate<String, String> bean which allows you to optionally select a
message by comparing the old and new values for the key; null by default.

⑪ Whether to throw an exception if the IdempotentReceiverInterceptor rejects the message.
Defaults to false. It is applied regardless of whether or not a discard-channel is provided.

For Java configuration, Spring Integration provides the method-level @IdempotentReceiver
annotation. It is used to mark a method that has a messaging annotation (@ServiceActivator, @Router,
and others) to specify which `IdempotentReceiverInterceptor objects are applied to this endpoint.
The following example shows how to use the @IdempotentReceiver annotation:

@Bean
public IdempotentReceiverInterceptor idempotentReceiverInterceptor() {
 return new IdempotentReceiverInterceptor(new MetadataStoreSelector(m ->
 m.getHeaders().get
(INVOICE_NBR_HEADER)));
}

@Bean
@ServiceActivator(inputChannel = "input", outputChannel = "output")
@IdempotentReceiver("idempotentReceiverInterceptor")
public MessageHandler myService() {

}

When you use the Java DSL, you can add the interceptor to the endpoint’s advice chain, as the
following example shows:

@Bean
public IntegrationFlow flow() {
 ...
 .handle("someBean", "someMethod",
 e -> e.advice(idempotentReceiverInterceptor()))
 ...
}



The IdempotentReceiverInterceptor is designed only for the
MessageHandler.handleMessage(Message<?>) method. Starting with version 4.3.1, it
implements HandleMessageAdvice, with the AbstractHandleMessageAdvice as a base
class, for better dissociation. See Handling Message Advice for more information.

255

10.10. Logging Channel Adapter
The <logging-channel-adapter> is often used in conjunction with a wire tap, as discussed in Wire
Tap. However, it can also be used as the ultimate consumer of any flow. For example, consider a
flow that ends with a <service-activator> that returns a result, but you wish to discard that result.
To do that, you could send the result to NullChannel. Alternatively, you can route it to an INFO level
<logging-channel-adapter>. That way, you can see the discarded message when logging at INFO level
but not see it when logging at (for example) the WARN level. With a NullChannel, you would see only
the discarded message when logging at the DEBUG level. The following listing shows all the possible
attributes for the logging-channel-adapter element:

<int:logging-channel-adapter
 channel="" ①
 level="INFO" ②
 expression="" ③
 log-full-message="false" ④
 logger-name="" /> ⑤

① The channel connecting the logging adapter to an upstream component.

② The logging level at which messages sent to this adapter will be logged. Default: INFO.

③ A SpEL expression representing exactly what parts of the message are logged. Default:
payload — only the payload is logged. if log-full-message is specified, this attribute cannot be
specified.

④ When true, the entire message (including headers) is logged. Default: false — only the payload is
logged. This attribute cannot be specified if expression is specified.

⑤ Specifies the name of the logger (known as category in log4j). Used to identify log messages
created by this adapter. This enables setting the log name (in the logging subsystem) for
individual adapters. By default, all adapters log under the following name:
org.springframework.integration.handler.LoggingHandler.

10.10.1. Using Java Configuration

The following Spring Boot application shows an example of configuring the LoggingHandler by using
Java configuration:

256

./channel.pdf#channel-wiretap
./channel.pdf#channel-wiretap

@SpringBootApplication
public class LoggingJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(LoggingJavaApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 gateway.sendToLogger("foo");
 }

 @Bean
 @ServiceActivator(inputChannel = "logChannel")
 public LoggingHandler logging() {
 LoggingHandler adapter = new LoggingHandler(LoggingHandler.Level.DEBUG);
 adapter.setLoggerName("TEST_LOGGER");
 adapter.setLogExpressionString("headers.id + ': ' + payload");
 return adapter;
 }

 @MessagingGateway(defaultRequestChannel = "logChannel")
 public interface MyGateway {

 void sendToLogger(String data);

 }

}

10.10.2. Configuring with the Java DSL

The following Spring Boot application shows an example of configuring the logging channel
adapter by using the Java DSL:

257

@SpringBootApplication
public class LoggingJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(LoggingJavaApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 gateway.sendToLogger("foo");
 }

 @Bean
 public IntegrationFlow loggingFlow() {
 return IntegrationFlows.from(MyGateway.class)
 .log(LoggingHandler.Level.DEBUG, "TEST_LOGGER",
 m -> m.getHeaders().getId() + ": " + m.getPayload());
 }

 @MessagingGateway
 public interface MyGateway {

 void sendToLogger(String data);

 }

}

10.11. java.util.function Interfaces Support
Starting with version 5.1, Spring Integration provides direct support for interfaces in the
java.util.function package. All messaging endpoints, (Service Activator, Transformer, Filter, etc.)
can now refer to Function (or Consumer) beans. The Messaging Annotations can be applied directly
on these beans similar to regular MessageHandler definitions. For example if you have this Function
bean definition:

258

./configuration.pdf#annotations

@Configuration
public class FunctionConfiguration {

 @Bean
 public Function<String, String> functionAsService() {
 return String::toUpperCase;
 }

}

You can use it as a simple reference in an XML configuration file:

<service-activator input-channel="processorViaFunctionChannel" ref=
"functionAsService"/>

When we configure our flow with Messaging Annotations, the code is straightforward:

@Bean
@Transformer(inputChannel = "functionServiceChannel")
public Function<String, String> functionAsService() {
 return String::toUpperCase;
}

When the function returns an array, Collection (essentially, any Iterable), Stream or Reactor Flux,
@Splitter can be used on such a bean to perform iteration over the result content.

The java.util.function.Consumer interface can be used for an <int:outbound-channel-adapter> or,
together with the @ServiceActivator annotation, to perform the final step of a flow:

259

@Bean
@ServiceActivator(inputChannel = "messageConsumerServiceChannel")
public Consumer<Message<?>> messageConsumerAsService() {
 // Has to be an anonymous class for proper type inference
 return new Consumer<Message<?>>() {

 @Override
 public void accept(Message<?> e) {
 collector().add(e);
 }

 };
}

Also, pay attention to the comment in the code snippet above: if you would like to deal with the
whole message in your Function/Consumer you cannot use a lambda definition. Because of Java type
erasure we cannot determine the target type for the apply()/accept() method call.

The java.util.function.Supplier interface can simply be used together with the
@InboundChannelAdapter annotation, or as a ref in an <int:inbound-channel-adapter>:

@Bean
@InboundChannelAdapter(value = "inputChannel", poller = @Poller(fixedDelay = "
1000"))
public Supplier<String> pojoSupplier() {
 return () -> "foo";
}

With the Java DSL we just need to use a reference to the function bean in the endpoint definitions.
Meanwhile an implementation of the Supplier interface can be used as regular MessageSource
definition:

260

@Bean
public Function<String, String> toUpperCaseFunction() {
 return String::toUpperCase;
}

@Bean
public Supplier<String> stringSupplier() {
 return () -> "foo";
}

@Bean
public IntegrationFlow supplierFlow() {
 return IntegrationFlows.from(stringSupplier())
 .transform(toUpperCaseFunction())
 .channel("suppliedChannel")
 .get();
}

This function support is useful when used together with the Spring Cloud Function framework,
where we have a function catalog and can refer to its member functions from an integration flow
definition.

10.11.1. Kotlin Lambdas

The Framework also has been improved to support Kotlin lambdas for functions so now you can
use a combination of the Kotlin language and Spring Integration flow definitions:

@Bean
@Transformer(inputChannel = "functionServiceChannel")
fun kotlinFunction(): (String) -> String {
 return { it.toUpperCase() }
}

@Bean
@ServiceActivator(inputChannel = "messageConsumerServiceChannel")
fun kotlinConsumer(): (Message<Any>) -> Unit {
 return { print(it) }
}

@Bean
@InboundChannelAdapter(value = "counterChannel",
 poller = [Poller(fixedRate = "10", maxMessagesPerPoll = "1")])
fun kotlinSupplier(): () -> String {
 return { "baz" }
}

261

https://cloud.spring.io/spring-cloud-function/

Chapter 11. Java DSL
The Spring Integration Java configuration and DSL provides a set of convenient builders and a
fluent API that lets you configure Spring Integration message flows from Spring @Configuration
classes.

(See also Kotlin DSL.)

The Java DSL for Spring Integration is essentially a facade for Spring Integration. The DSL provides
a simple way to embed Spring Integration Message Flows into your application by using the fluent
Builder pattern together with existing Java configuration from Spring Framework and Spring
Integration. We also use and support lambdas (available with Java 8) to further simplify Java
configuration.

The cafe offers a good example of using the DSL.

The DSL is presented by the IntegrationFlows factory for the IntegrationFlowBuilder. This produces
the IntegrationFlow component, which should be registered as a Spring bean (by using the @Bean
annotation). The builder pattern is used to express arbitrarily complex structures as a hierarchy of
methods that can accept lambdas as arguments.

The IntegrationFlowBuilder only collects integration components (MessageChannel instances,
AbstractEndpoint instances, and so on) in the IntegrationFlow bean for further parsing and
registration of concrete beans in the application context by the IntegrationFlowBeanPostProcessor.

The Java DSL uses Spring Integration classes directly and bypasses any XML generation and
parsing. However, the DSL offers more than syntactic sugar on top of XML. One of its most
compelling features is the ability to define inline lambdas to implement endpoint logic, eliminating
the need for external classes to implement custom logic. In some sense, Spring Integration’s support
for the Spring Expression Language (SpEL) and inline scripting address this, but lambdas are easier
and much more powerful.

The following example shows how to use Java Configuration for Spring Integration:

262

./kotlin-dsl.pdf#kotlin-dsl
https://github.com/spring-projects/spring-integration-samples/tree/master/dsl/cafe-dsl

@Configuration
@EnableIntegration
public class MyConfiguration {

 @Bean
 public AtomicInteger integerSource() {
 return new AtomicInteger();
 }

 @Bean
 public IntegrationFlow myFlow() {
 return IntegrationFlows.from(integerSource::getAndIncrement,
 c -> c.poller(Pollers.fixedRate(100)))
 .channel("inputChannel")
 .filter((Integer p) -> p > 0)
 .transform(Object::toString)
 .channel(MessageChannels.queue())
 .get();
 }
}

The result of the preceding configuration example is that it creates, after ApplicationContext start
up, Spring Integration endpoints and message channels. Java configuration can be used both to
replace and augment XML configuration. You need not replace all of your existing XML
configuration to use Java configuration.

11.1. DSL Basics
The org.springframework.integration.dsl package contains the IntegrationFlowBuilder API
mentioned earlier and a number of IntegrationComponentSpec implementations, which are also
builders and provide the fluent API to configure concrete endpoints. The IntegrationFlowBuilder
infrastructure provides common enterprise integration patterns (EIP) for message-based
applications, such as channels, endpoints, pollers, and channel interceptors.

Endpoints are expressed as verbs in the DSL to improve readability. The following list includes the
common DSL method names and the associated EIP endpoint:

• transform → Transformer

• filter → Filter

• handle → ServiceActivator

• split → Splitter

• aggregate → Aggregator

• route → Router

• bridge → Bridge

263

https://www.enterpriseintegrationpatterns.com/

Conceptually, integration processes are constructed by composing these endpoints into one or more
message flows. Note that EIP does not formally define the term 'message flow', but it is useful to
think of it as a unit of work that uses well known messaging patterns. The DSL provides an
IntegrationFlow component to define a composition of channels and endpoints between them, but
now IntegrationFlow plays only the configuration role to populate real beans in the application
context and is not used at runtime. However the bean for IntegrationFlow can be autowired as a
Lifecycle to control start() and stop() for the whole flow which is delegated to all the Spring
Integration components associated with this IntegrationFlow. The following example uses the
IntegrationFlows factory to define an IntegrationFlow bean by using EIP-methods from
IntegrationFlowBuilder:

@Bean
public IntegrationFlow integerFlow() {
 return IntegrationFlows.from("input")
 .<String, Integer>transform(Integer::parseInt)
 .get();
}

The transform method accepts a lambda as an endpoint argument to operate on the message
payload. The real argument of this method is GenericTransformer<S, T>. Consequently, any of the
provided transformers (ObjectToJsonTransformer, FileToStringTransformer, and other) can be used
here.

Under the covers, IntegrationFlowBuilder recognizes the MessageHandler and the endpoint for it,
with MessageTransformingHandler and ConsumerEndpointFactoryBean, respectively. Consider another
example:

@Bean
public IntegrationFlow myFlow() {
 return IntegrationFlows.from("input")
 .filter("World"::equals)
 .transform("Hello "::concat)
 .handle(System.out::println)
 .get();
}

The preceding example composes a sequence of Filter → Transformer → Service Activator. The
flow is "'one way'". That is, it does not provide a reply message but only prints the payload to
STDOUT. The endpoints are automatically wired together by using direct channels.

264



Lambdas And Message<?> Arguments

When using lambdas in EIP methods, the "input" argument is generally the
message payload. If you wish to access the entire message, use one of the
overloaded methods that take a Class<?> as the first parameter. For example, this
won’t work:

.<Message<?>, Foo>transform(m -> newFooFromMessage(m))

This will fail at runtime with a ClassCastException because the lambda doesn’t
retain the argument type and the framework will attempt to cast the payload to a
Message<?>.

Instead, use:

.(Message.class, m -> newFooFromMessage(m))



Bean Definitions override

The Java DSL can register beans for the object defined in-line in the flow
definition, as well as can reuse existing, injected beans. In case of the same bean
name defined for in-line object and existing bean definition, a
BeanDefinitionOverrideException is thrown indicating that such a configuration is
wrong. However when you deal with prototype beans, there is no way to detect
from the integration flow processor an existing bean definition because every time
we call a prototype bean from the BeanFactory we get a new instance. This way a
provided instance is used in the IntegrationFlow as is without any bean
registration and any possible check against existing prototype bean definition.
However BeanFactory.initializeBean() is called for this object if it has an explicit
id and bean definition for this name is in prototype scope.

11.2. Message Channels
In addition to the IntegrationFlowBuilder with EIP methods, the Java DSL provides a fluent API to
configure MessageChannel instances. For this purpose the MessageChannels builder factory is
provided. The following example shows how to use it:

@Bean
public MessageChannel priorityChannel() {
 return MessageChannels.priority(this.mongoDbChannelMessageStore,
"priorityGroup")
 .interceptor(wireTap())
 .get();
}

265

The same MessageChannels builder factory can be used in the channel() EIP method from
IntegrationFlowBuilder to wire endpoints, similar to wiring an input-channel/output-channel pair in
the XML configuration. By default, endpoints are wired with DirectChannel instances where the
bean name is based on the following pattern:
[IntegrationFlow.beanName].channel#[channelNameIndex]. This rule is also applied for unnamed
channels produced by inline MessageChannels builder factory usage. However all MessageChannels
methods have a variant that is aware of the channelId that you can use to set the bean names for
MessageChannel instances. The MessageChannel references and beanName can be used as bean-method
invocations. The following example shows the possible ways to use the channel() EIP method:

@Bean
public MessageChannel queueChannel() {
 return MessageChannels.queue().get();
}

@Bean
public MessageChannel publishSubscribe() {
 return MessageChannels.publishSubscribe().get();
}

@Bean
public IntegrationFlow channelFlow() {
 return IntegrationFlows.from("input")
 .fixedSubscriberChannel()
 .channel("queueChannel")
 .channel(publishSubscribe())
 .channel(MessageChannels.executor("executorChannel", this.
taskExecutor))
 .channel("output")
 .get();
}

• from("input") means "'find and use the MessageChannel with the "input" id, or create one'".

• fixedSubscriberChannel() produces an instance of FixedSubscriberChannel and registers it with a
name of channelFlow.channel#0.

• channel("queueChannel") works the same way but uses an existing queueChannel bean.

• channel(publishSubscribe()) is the bean-method reference.

• channel(MessageChannels.executor("executorChannel", this.taskExecutor)) is the
IntegrationFlowBuilder that exposes IntegrationComponentSpec to the ExecutorChannel and
registers it as executorChannel.

• channel("output") registers the DirectChannel bean with output as its name, as long as no beans
with this name already exist.

Note: The preceding IntegrationFlow definition is valid, and all of its channels are applied to
endpoints with BridgeHandler instances.

266



Be careful to use the same inline channel definition through MessageChannels
factory from different IntegrationFlow instances. Even if the DSL parser registers
non-existent objects as beans, it cannot determine the same object (MessageChannel)
from different IntegrationFlow containers. The following example is wrong:

@Bean
public IntegrationFlow startFlow() {
 return IntegrationFlows.from("input")
 .transform(...)
 .channel(MessageChannels.queue("queueChannel"))
 .get();
}

@Bean
public IntegrationFlow endFlow() {
 return IntegrationFlows.from(MessageChannels.queue("queueChannel"))
 .handle(...)
 .get();
}

The result of that bad example is the following exception:

Caused by: java.lang.IllegalStateException:
Could not register object [queueChannel] under bean name 'queueChannel':
 there is already object [queueChannel] bound
 at
o.s.b.f.s.DefaultSingletonBeanRegistry.registerSingleton(DefaultSingletonBeanRegistry.
java:129)

To make it work, you need to declare @Bean for that channel and use its bean method from different
IntegrationFlow instances.

11.3. Pollers
Spring Integration also provides a fluent API that lets you configure PollerMetadata for
AbstractPollingEndpoint implementations. You can use the Pollers builder factory to configure
common bean definitions or those created from IntegrationFlowBuilder EIP methods, as the
following example shows:

@Bean(name = PollerMetadata.DEFAULT_POLLER)
public PollerSpec poller() {
 return Pollers.fixedRate(500)
 .errorChannel("myErrors");
}

See Pollers and PollerSpec in the Javadoc for more information.

267

https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/Pollers.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/PollerSpec.html


If you use the DSL to construct a PollerSpec as a @Bean, do not call the get() method
in the bean definition. The PollerSpec is a FactoryBean that generates the
PollerMetadata object from the specification and initializes all of its properties.

11.4. DSL and Endpoint Configuration
All IntegrationFlowBuilder EIP methods have a variant that applies the lambda parameter to
provide options for AbstractEndpoint instances: SmartLifecycle, PollerMetadata, request-handler-
advice-chain, and others. Each of them has generic arguments, so it lets you configure an endpoint
and even its MessageHandler in the context, as the following example shows:

@Bean
public IntegrationFlow flow2() {
 return IntegrationFlows.from(this.inputChannel)
 .transform(new PayloadSerializingTransformer(),
 c -> c.autoStartup(false).id("
payloadSerializingTransformer"))
 .transform((Integer p) -> p * 2, c -> c.advice(this
.expressionAdvice()))
 .get();
}

In addition, the EndpointSpec provides an id() method to let you register an endpoint bean with a
given bean name, rather than a generated one.

If the MessageHandler is referenced as a bean, then any existing adviceChain configuration will be
overridden if the .advice() method is present in the DSL definition:

@Bean
public TcpOutboundGateway tcpOut() {
 TcpOutboundGateway gateway = new TcpOutboundGateway();
 gateway.setConnectionFactory(cf());
 gateway.setAdviceChain(Collections.singletonList(fooAdvice()));
 return gateway;
}

@Bean
public IntegrationFlow clientTcpFlow() {
 return f -> f
 .handle(tcpOut(), e -> e.advice(testAdvice()))
 .transform(Transformers.objectToString());
}

That is they are not merged, only the testAdvice() bean is used in this case.

268

11.5. Transformers
The DSL API provides a convenient, fluent Transformers factory to be used as inline target object
definition within the .transform() EIP method. The following example shows how to use it:

@Bean
public IntegrationFlow transformFlow() {
 return IntegrationFlows.from("input")
 .transform(Transformers.fromJson(MyPojo.class))
 .transform(Transformers.serializer())
 .get();
}

It avoids inconvenient coding using setters and makes the flow definition more straightforward.
Note that you can use Transformers to declare target Transformer instances as @Bean instances and,
again, use them from IntegrationFlow definition as bean methods. Nevertheless, the DSL parser
takes care of bean declarations for inline objects, if they are not yet defined as beans.

See Transformers in the Javadoc for more information and supported factory methods.

Also see Lambdas And Message<?> Arguments.

11.6. Inbound Channel Adapters
Typically, message flows start from an inbound channel adapter (such as <int-jdbc:inbound-
channel-adapter>). The adapter is configured with <poller>, and it asks a MessageSource<?> to
periodically produce messages. Java DSL allows for starting IntegrationFlow from a
MessageSource<?>, too. For this purpose, the IntegrationFlows builder factory provides an overloaded
IntegrationFlows.from(MessageSource<?> messageSource) method. You can configure the
MessageSource<?> as a bean and provide it as an argument for that method. The second parameter of
IntegrationFlows.from() is a Consumer<SourcePollingChannelAdapterSpec> lambda that lets you
provide options (such as PollerMetadata or SmartLifecycle) for the SourcePollingChannelAdapter. The
following example shows how to use the fluent API and a lambda to create an IntegrationFlow:

269

https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/Transformers.html

@Bean
public MessageSource<Object> jdbcMessageSource() {
 return new JdbcPollingChannelAdapter(this.dataSource, "SELECT * FROM
something");
}

@Bean
public IntegrationFlow pollingFlow() {
 return IntegrationFlows.from(jdbcMessageSource(),
 c -> c.poller(Pollers.fixedRate(100).maxMessagesPerPoll(1)))
 .transform(Transformers.toJson())
 .channel("furtherProcessChannel")
 .get();
}

For those cases that have no requirements to build Message objects directly, you can use the
IntegrationFlows.from() variant that is based on the java.util.function.Supplier . The result of the
Supplier.get() is automatically wrapped in a Message (if it is not already a Message).

11.7. Message Routers
Spring Integration natively provides specialized router types, including:

• HeaderValueRouter

• PayloadTypeRouter

• ExceptionTypeRouter

• RecipientListRouter

• XPathRouter

As with many other DSL IntegrationFlowBuilder EIP methods, the route() method can apply any
AbstractMessageRouter implementation or, for convenience, a String as a SpEL expression or a ref-
method pair. In addition, you can configure route() with a lambda and use a lambda for a
Consumer<RouterSpec<MethodInvokingRouter>>. The fluent API also provides
AbstractMappingMessageRouter options such as channelMapping(String key, String channelName)
pairs, as the following example shows:

270

@Bean
public IntegrationFlow routeFlowByLambda() {
 return IntegrationFlows.from("routerInput")
 .<Integer, Boolean>route(p -> p % 2 == 0,
 m -> m.suffix("Channel")
 .channelMapping(true, "even")
 .channelMapping(false, "odd")
)
 .get();
}

The following example shows a simple expression-based router:

@Bean
public IntegrationFlow routeFlowByExpression() {
 return IntegrationFlows.from("routerInput")
 .route("headers['destChannel']")
 .get();
}

The routeToRecipients() method takes a Consumer<RecipientListRouterSpec>, as the following
example shows:

271

@Bean
public IntegrationFlow recipientListFlow() {
 return IntegrationFlows.from("recipientListInput")
 .<String, String>transform(p -> p.replaceFirst("Payload", ""))
 .routeToRecipients(r -> r
 .recipient("thing1-channel", "'thing1' == payload")
 .recipientMessageSelector("thing2-channel", m ->
 m.getHeaders().containsKey("recipient")
 && (boolean) m.getHeaders().get("recipient"))
 .recipientFlow("'thing1' == payload or 'thing2' == payload or
'thing3' == payload",
 f -> f.<String, String>transform(String::toUpperCase)
 .channel(c -> c.queue(
"recipientListSubFlow1Result")))
 .recipientFlow((String p) -> p.startsWith("thing3"),
 f -> f.transform("Hello "::concat)
 .channel(c -> c.queue(
"recipientListSubFlow2Result")))
 .recipientFlow(new FunctionExpression<Message<?>>(m ->
 "thing3".equals(m.getPayload())),
 f -> f.channel(c -> c.queue(
"recipientListSubFlow3Result")))
 .defaultOutputToParentFlow())
 .get();
}

The .defaultOutputToParentFlow() of the .routeToRecipients() definition lets you set the router’s
defaultOutput as a gateway to continue a process for the unmatched messages in the main flow.

Also see Lambdas And Message<?> Arguments.

11.8. Splitters
To create a splitter, use the split() EIP method. By default, if the payload is an Iterable, an
Iterator, an Array, a Stream, or a reactive Publisher, the split() method outputs each item as an
individual message. It accepts a lambda, a SpEL expression, or any AbstractMessageSplitter
implementation. Alternatively, you can use it without parameters to provide the
DefaultMessageSplitter. The following example shows how to use the split() method by providing
a lambda:

272

@Bean
public IntegrationFlow splitFlow() {
 return IntegrationFlows.from("splitInput")
 .split(s -> s.applySequence(false).delimiters(","))
 .channel(MessageChannels.executor(taskExecutor()))
 .get();
}

The preceding example creates a splitter that splits a message containing a comma-delimited
String.

Also see Lambdas And Message<?> Arguments.

11.9. Aggregators and Resequencers
An Aggregator is conceptually the opposite of a Splitter. It aggregates a sequence of individual
messages into a single message and is necessarily more complex. By default, an aggregator returns
a message that contains a collection of payloads from incoming messages. The same rules are
applied for the Resequencer. The following example shows a canonical example of the splitter-
aggregator pattern:

@Bean
public IntegrationFlow splitAggregateFlow() {
 return IntegrationFlows.from("splitAggregateInput")
 .split()
 .channel(MessageChannels.executor(this.taskExecutor()))
 .resequence()
 .aggregate()
 .get();
}

The split() method splits the list into individual messages and sends them to the ExecutorChannel.
The resequence() method reorders messages by sequence details found in the message headers. The
aggregate() method collects those messages.

However, you can change the default behavior by specifying a release strategy and correlation
strategy, among other things. Consider the following example:

.aggregate(a ->
 a.correlationStrategy(m -> m.getHeaders().get("myCorrelationKey"))
 .releaseStrategy(g -> g.size() > 10)
 .messageStore(messageStore()))

The preceding example correlates messages that have myCorrelationKey headers and releases the
messages once at least ten have been accumulated.

273

Similar lambda configurations are provided for the resequence() EIP method.

11.10. Service Activators and the .handle() method
The .handle() EIP method’s goal is to invoke any MessageHandler implementation or any method on
some POJO. Another option is to define an “activity” by using lambda expressions. Consequently, we
introduced a generic GenericHandler<P> functional interface. Its handle method requires two
arguments: P payload and MessageHeaders headers (starting with version 5.1). Having that, we can
define a flow as follows:

@Bean
public IntegrationFlow myFlow() {
 return IntegrationFlows.from("flow3Input")
 .<Integer>handle((p, h) -> p * 2)
 .get();
}

The preceding example doubles any integer it receives.

However, one main goal of Spring Integration is loose coupling, through runtime type conversion
from message payload to the target arguments of the message handler. Since Java does not support
generic type resolution for lambda classes, we introduced a workaround with an additional
payloadType argument for the most EIP methods and LambdaMessageProcessor. Doing so delegates the
hard conversion work to Spring’s ConversionService, which uses the provided type and the
requested message to target method arguments. The following example shows what the resulting
IntegrationFlow might look like:

@Bean
public IntegrationFlow integerFlow() {
 return IntegrationFlows.from("input")
 .<byte[], String>transform(p - > new String(p, "UTF-8"))
 .handle(Integer.class, (p, h) -> p * 2)
 .get();
}

We also can register some BytesToIntegerConverter within ConversionService to get rid of that
additional .transform():

274

@Bean
@IntegrationConverter
public BytesToIntegerConverter bytesToIntegerConverter() {
 return new BytesToIntegerConverter();
}

@Bean
public IntegrationFlow integerFlow() {
 return IntegrationFlows.from("input")
 .handle(Integer.class, (p, h) -> p * 2)
 .get();
}

Also see Lambdas And Message<?> Arguments.

11.11. Operator log()
For convenience, to log the message journey through the Spring Integration flow (<logging-channel-
adapter>), a log() operator is presented. Internally, it is represented by the WireTap
ChannelInterceptor with a LoggingHandler as its subscriber. It is responsible for logging the incoming
message into the next endpoint or the current channel. The following example shows how to use
LoggingHandler:

.filter(...)

.log(LoggingHandler.Level.ERROR, "test.category", m -> m.getHeaders().getId())

.route(...)

In the preceding example, an id header is logged at the ERROR level onto test.category only for
messages that passed the filter and before routing.

When this operator is used at the end of a flow, it is a one-way handler and the flow ends. To make
it as a reply-producing flow, you can either use a simple bridge() after the log() or, starting with
version 5.1, you can use a logAndReply() operator instead. logAndReply can only be used at the end of
a flow.

11.12. Operator intercept()
Starting with version 5.3, the intercept() operator allows to register one or more
ChannelInterceptor instances at the current MessageChannel in the flow. This is an alternative to
creating an explicit MessageChannel via the MessageChannels API. The following example uses a
MessageSelectingInterceptor to reject certain messages with an exception:

275

.transform(...)

.intercept(new MessageSelectingInterceptor(m -> m.getPayload().isValid()))

.handle(...)

11.13. MessageChannelSpec.wireTap()
Spring Integration includes a .wireTap() fluent API MessageChannelSpec builders. The following
example shows how to use the wireTap method to log input:

@Bean
public QueueChannelSpec myChannel() {
 return MessageChannels.queue()
 .wireTap("loggingFlow.input");
}

@Bean
public IntegrationFlow loggingFlow() {
 return f -> f.log();
}



If the MessageChannel is an instance of InterceptableChannel, the log(), wireTap() or
intercept() operators are applied to the current MessageChannel. Otherwise, an
intermediate DirectChannel is injected into the flow for the currently configured
endpoint. In the following example, the WireTap interceptor is added to myChannel
directly, because DirectChannel implements InterceptableChannel:

@Bean
MessageChannel myChannel() {
 return new DirectChannel();
}

...
 .channel(myChannel())
 .log()
}

When the current MessageChannel does not implement InterceptableChannel, an implicit
DirectChannel and BridgeHandler are injected into the IntegrationFlow, and the WireTap is added to
this new DirectChannel. The following example does not have any channel declaration:

276

.handle(...)

.log()
}

In the preceding example (and any time no channel has been declared), an implicit DirectChannel is
injected in the current position of the IntegrationFlow and used as an output channel for the
currently configured ServiceActivatingHandler (from the .handle(), described earlier).

11.14. Working With Message Flows
IntegrationFlowBuilder provides a top-level API to produce integration components wired to
message flows. When your integration may be accomplished with a single flow (which is often the
case), this is convenient. Alternately IntegrationFlow instances can be joined via MessageChannel
instances.

By default, MessageFlow behaves as a “chain” in Spring Integration parlance. That is, the endpoints
are automatically and implicitly wired by DirectChannel instances. The message flow is not actually
constructed as a chain, which offers much more flexibility. For example, you may send a message to
any component within the flow, if you know its inputChannel name (that is, if you explicitly define
it). You may also reference externally defined channels within a flow to allow the use of channel
adapters (to enable remote transport protocols, file I/O, and so on), instead of direct channels. As
such, the DSL does not support the Spring Integration chain element, because it does not add much
value in this case.

Since the Spring Integration Java DSL produces the same bean definition model as any other
configuration options and is based on the existing Spring Framework @Configuration infrastructure,
it can be used together with XML definitions and wired with Spring Integration messaging
annotation configuration.

You can also define direct IntegrationFlow instances by using a lambda. The following example
shows how to do so:

@Bean
public IntegrationFlow lambdaFlow() {
 return f -> f.filter("World"::equals)
 .transform("Hello "::concat)
 .handle(System.out::println);
}

The result of this definition is the same set of integration components that are wired with an
implicit direct channel. The only limitation here is that this flow is started with a named direct
channel - lambdaFlow.input. Also, a Lambda flow cannot start from MessageSource or MessageProducer.

Starting with version 5.1, this kind of IntegrationFlow is wrapped to the proxy to expose lifecycle

277

control and provide access to the inputChannel of the internally associated StandardIntegrationFlow.

Starting with version 5.0.6, the generated bean names for the components in an IntegrationFlow
include the flow bean followed by a dot (.) as a prefix. For example, the
ConsumerEndpointFactoryBean for the .transform("Hello "::concat) in the preceding sample results
in a bean name of lambdaFlow.o.s.i.config.ConsumerEndpointFactoryBean#0. (The o.s.i is a
shortened from org.springframework.integration to fit on the page.) The Transformer
implementation bean for that endpoint has a bean name of lambdaFlow.transformer#0 (starting with
version 5.1), where instead of a fully qualified name of the MethodInvokingTransformer class, its
component type is used. The same pattern is applied for all the NamedComponent s when the bean
name has to be generated within the flow. These generated bean names are prepended with the
flow ID for purposes such as parsing logs or grouping components together in some analysis tool, as
well as to avoid a race condition when we concurrently register integration flows at runtime. See
Dynamic and Runtime Integration Flows for more information.

11.15. FunctionExpression
We introduced the FunctionExpression class (an implementation of SpEL’s Expression interface) to
let us use lambdas and generics. The Function<T, R> option is provided for the DSL components,
along with an expression option, when there is the implicit Strategy variant from Core Spring
Integration. The following example shows how to use a function expression:

.enrich(e -> e.requestChannel("enrichChannel")
 .requestPayload(Message::getPayload)
 .propertyFunction("date", m -> new Date()))

The FunctionExpression also supports runtime type conversion, as is done in SpelExpression.

11.16. Sub-flows support
Some of if…else and publish-subscribe components provide the ability to specify their logic or
mapping by using sub-flows. The simplest sample is .publishSubscribeChannel(), as the following
example shows:

278

@Bean
public IntegrationFlow subscribersFlow() {
 return flow -> flow
 .publishSubscribeChannel(Executors.newCachedThreadPool(), s -> s
 .subscribe(f -> f
 .<Integer>handle((p, h) -> p / 2)
 .channel(c -> c.queue("subscriber1Results")))
 .subscribe(f -> f
 .<Integer>handle((p, h) -> p * 2)
 .channel(c -> c.queue("subscriber2Results"))))
 .<Integer>handle((p, h) -> p * 3)
 .channel(c -> c.queue("subscriber3Results"));
}

You can achieve the same result with separate IntegrationFlow @Bean definitions, but we hope you
find the sub-flow style of logic composition useful. We find that it results in shorter (and so more
readable) code.

Starting with version 5.3, a BroadcastCapableChannel-based publishSubscribeChannel()
implementation is provided to configure sub-flow subscribers on broker-backed message channels.
For example we now can configure several subscribers as sub-flows on the
Jms.publishSubscribeChannel():

279

@Bean
public BroadcastCapableChannel jmsPublishSubscribeChannel() {
 return Jms.publishSubscribeChannel(jmsConnectionFactory())
 .destination("pubsub")
 .get();
}

@Bean
public IntegrationFlow pubSubFlow() {
 return f -> f
 .publishSubscribeChannel(jmsPublishSubscribeChannel(),
 pubsub -> pubsub
 .subscribe(subFlow -> subFlow
 .channel(c -> c.queue("jmsPubSubBridgeChannel1")))
 .subscribe(subFlow -> subFlow
 .channel(c -> c.queue("jmsPubSubBridgeChannel2"))
));
}

@Bean
public BroadcastCapableChannel jmsPublishSubscribeChannel(ConnectionFactory
jmsConnectionFactory) {
 return (BroadcastCapableChannel) Jms.publishSubscribeChannel
(jmsConnectionFactory)
 .destination("pubsub")
 .get();
}

A similar publish-subscribe sub-flow composition provides the .routeToRecipients() method.

Another example is using .discardFlow() instead of .discardChannel() on the .filter() method.

The .route() deserves special attention. Consider the following example:

@Bean
public IntegrationFlow routeFlow() {
 return f -> f
 .<Integer, Boolean>route(p -> p % 2 == 0,
 m -> m.channelMapping("true", "evenChannel")
 .subFlowMapping("false", sf ->
 sf.<Integer>handle((p, h) -> p * 3)))
 .transform(Object::toString)
 .channel(c -> c.queue("oddChannel"));
}

280

The .channelMapping() continues to work as it does in regular Router mapping, but the
.subFlowMapping() tied that sub-flow to the main flow. In other words, any router’s sub-flow returns
to the main flow after .route().



Sometimes, you need to refer to an existing IntegrationFlow @Bean from the
.subFlowMapping(). The following example shows how to do so:

@Bean
public IntegrationFlow splitRouteAggregate() {
 return f -> f
 .split()
 .<Integer, Boolean>route(o -> o % 2 == 0,
 m -> m
 .subFlowMapping(true, oddFlow())
 .subFlowMapping(false, sf -> sf.gateway
(evenFlow())))
 .aggregate();
}

@Bean
public IntegrationFlow oddFlow() {
 return f -> f.handle(m -> System.out.println("odd"));
}

@Bean
public IntegrationFlow evenFlow() {
 return f -> f.handle((p, h) -> "even");
}

In this case, when you need to receive a reply from such a sub-flow and continue
the main flow, this IntegrationFlow bean reference (or its input channel) has to be
wrapped with a .gateway() as shown in the preceding example. The oddFlow()
reference in the preceding example is not wrapped to the .gateway(). Therefore,
we do not expect a reply from this routing branch. Otherwise, you end up with an
exception similar to the following:

Caused by: org.springframework.beans.factory.BeanCreationException:
 The 'currentComponent'
(org.springframework.integration.router.MethodInvokingRouter@7965a51c)
 is a one-way 'MessageHandler' and it isn't appropriate to configure
'outputChannel'.
 This is the end of the integration flow.

When you configure a sub-flow as a lambda, the framework handles the request-
reply interaction with the sub-flow and a gateway is not needed.

Sub-flows can be nested to any depth, but we do not recommend doing so. In fact, even in the

281

router case, adding complex sub-flows within a flow would quickly begin to look like a plate of
spaghetti and be difficult for a human to parse.



In cases where the DSL supports a subflow configuration, when a channel is
normally needed for the component being configured, and that subflow starts with
a channel() element, the framework implicitly places a bridge() between the
component output channel and the flow’s input channel. For example, in this
filter definition:

.filter(p -> p instanceof String, e -> e
 .discardFlow(df -> df
 .channel(MessageChannels.queue())
 ...)

the Framework internally creates a DirectChannel bean for injecting into the
MessageFilter.discardChannel. Then it wraps the subflow into an IntegrationFlow
starting with this implicit channel for the subscription and places a bridge before
the channel() specified in the flow. When an existing IntegrationFlow bean is used
as a subflow reference (instead of an inline subflow, e.g. a lambda), there is no
such bridge required because the framework can resolve the first channel from
the flow bean. With an inline subflow, the input channel is not yet available.

11.17. Using Protocol Adapters
All of the examples shown so far illustrate how the DSL supports a messaging architecture by using
the Spring Integration programming model. However, we have yet to do any real integration. Doing
so requires access to remote resources over HTTP, JMS, AMQP, TCP, JDBC, FTP, SMTP, and so on or
access to the local file system. Spring Integration supports all of these and more. Ideally, the DSL
should offer first class support for all of them, but it is a daunting task to implement all of these and
keep up as new adapters are added to Spring Integration. So the expectation is that the DSL is
continually catching up with Spring Integration.

Consequently, we provide the high-level API to seamlessly define protocol-specific messaging. We
do so with the factory and builder patterns and with lambdas. You can think of the factory classes
as “Namespace Factories”, because they play the same role as the XML namespace for components
from the concrete protocol-specific Spring Integration modules. Currently, Spring Integration Java
DSL supports the Amqp, Feed, Jms, Files, (S)Ftp, Http, JPA, MongoDb, TCP/UDP, Mail, WebFlux, and Scripts
namespace factories. The following example shows how to use three of them (Amqp, Jms, and Mail):

282

@Bean
public IntegrationFlow amqpFlow() {
 return IntegrationFlows.from(Amqp.inboundGateway(this.rabbitConnectionFactory,
queue()))
 .transform("hello "::concat)
 .transform(String.class, String::toUpperCase)
 .get();
}

@Bean
public IntegrationFlow jmsOutboundGatewayFlow() {
 return IntegrationFlows.from("jmsOutboundGatewayChannel")
 .handle(Jms.outboundGateway(this.jmsConnectionFactory)
 .replyContainer(c ->
 c.concurrentConsumers(3)
 .sessionTransacted(true))
 .requestDestination("jmsPipelineTest"))
 .get();
}

@Bean
public IntegrationFlow sendMailFlow() {
 return IntegrationFlows.from("sendMailChannel")
 .handle(Mail.outboundAdapter("localhost")
 .port(smtpPort)
 .credentials("user", "pw")
 .protocol("smtp")
 .javaMailProperties(p -> p.put("mail.debug", "true")),
 e -> e.id("sendMailEndpoint"))
 .get();
}

The preceding example shows how to use the “namespace factories” as inline adapters
declarations. However, you can use them from @Bean definitions to make the IntegrationFlow
method chain more readable.


We are soliciting community feedback on these namespace factories before we
spend effort on others. We also appreciate any input into prioritization for which
adapters and gateways we should support next.

You can find more Java DSL samples in the protocol-specific chapters throughout this reference
manual.

All other protocol channel adapters may be configured as generic beans and wired to the
IntegrationFlow, as the following examples show:

283

@Bean
public QueueChannelSpec wrongMessagesChannel() {
 return MessageChannels
 .queue()
 .wireTap("wrongMessagesWireTapChannel");
}

@Bean
public IntegrationFlow xpathFlow(MessageChannel wrongMessagesChannel) {
 return IntegrationFlows.from("inputChannel")
 .filter(new StringValueTestXPathMessageSelector("namespace-uri(/*)",
"my:namespace"),
 e -> e.discardChannel(wrongMessagesChannel))
 .log(LoggingHandler.Level.ERROR, "test.category", m -> m.getHeaders()
.getId())
 .route(xpathRouter(wrongMessagesChannel))
 .get();
}

@Bean
public AbstractMappingMessageRouter xpathRouter(MessageChannel
wrongMessagesChannel) {
 XPathRouter router = new XPathRouter("local-name(/*)");
 router.setEvaluateAsString(true);
 router.setResolutionRequired(false);
 router.setDefaultOutputChannel(wrongMessagesChannel);
 router.setChannelMapping("Tags", "splittingChannel");
 router.setChannelMapping("Tag", "receivedChannel");
 return router;
}

11.18. IntegrationFlowAdapter
The IntegrationFlow interface can be implemented directly and specified as a component for
scanning, as the following example shows:

284

@Component
public class MyFlow implements IntegrationFlow {

 @Override
 public void configure(IntegrationFlowDefinition<?> f) {
 f.<String, String>transform(String::toUpperCase);
 }

}

It is picked up by the IntegrationFlowBeanPostProcessor and correctly parsed and registered in the
application context.

For convenience and to gain the benefits of loosely coupled architecture, we provide the
IntegrationFlowAdapter base class implementation. It requires a buildFlow() method
implementation to produce an IntegrationFlowDefinition by using one of from() methods, as the
following example shows:

285

@Component
public class MyFlowAdapter extends IntegrationFlowAdapter {

 private final AtomicBoolean invoked = new AtomicBoolean();

 public Date nextExecutionTime(TriggerContext triggerContext) {
 return this.invoked.getAndSet(true) ? null : new Date();
 }

 @Override
 protected IntegrationFlowDefinition<?> buildFlow() {
 return from(this::messageSource,
 e -> e.poller(p -> p.trigger(this::nextExecutionTime)))
 .split(this)
 .transform(this)
 .aggregate(a -> a.processor(this, null), null)
 .enrichHeaders(Collections.singletonMap("thing1", "THING1"))
 .filter(this)
 .handle(this)
 .channel(c -> c.queue("myFlowAdapterOutput"));
 }

 public String messageSource() {
 return "T,H,I,N,G,2";
 }

 @Splitter
 public String[] split(String payload) {
 return StringUtils.commaDelimitedListToStringArray(payload);
 }

 @Transformer
 public String transform(String payload) {
 return payload.toLowerCase();
 }

 @Aggregator
 public String aggregate(List<String> payloads) {
 return payloads.stream().collect(Collectors.joining());
 }

 @Filter
 public boolean filter(@Header Optional<String> thing1) {
 return thing1.isPresent();
 }

 @ServiceActivator
 public String handle(String payload, @Header String thing1) {
 return payload + ":" + thing1;

286

 }

}

11.19. Dynamic and Runtime Integration Flows
IntegrationFlow and all its dependent components can be registered at runtime. Before version 5.0,
we used the BeanFactory.registerSingleton() hook. Starting in the Spring Framework 5.0, we use
the instanceSupplier hook for programmatic BeanDefinition registration. The following example
shows how to programmatically register a bean:

BeanDefinition beanDefinition =
 BeanDefinitionBuilder.genericBeanDefinition((Class<Object>) bean.
getClass(), () -> bean)
 .getRawBeanDefinition();

((BeanDefinitionRegistry) this.beanFactory).registerBeanDefinition(beanName,
beanDefinition);

Note that, in the preceding example, the instanceSupplier hook is the last parameter to the
genericBeanDefinition method, provided by a lambda in this case.

All the necessary bean initialization and lifecycle is done automatically, as it is with the standard
context configuration bean definitions.

To simplify the development experience, Spring Integration introduced IntegrationFlowContext to
register and manage IntegrationFlow instances at runtime, as the following example shows:

287

@Autowired
private AbstractServerConnectionFactory server1;

@Autowired
private IntegrationFlowContext flowContext;

...

@Test
public void testTcpGateways() {
 TestingUtilities.waitListening(this.server1, null);

 IntegrationFlow flow = f -> f
 .handle(Tcp.outboundGateway(Tcp.netClient("localhost", this.server1
.getPort())
 .serializer(TcpCodecs.crlf())
 .deserializer(TcpCodecs.lengthHeader1())
 .id("client1"))
 .remoteTimeout(m -> 5000))
 .transform(Transformers.objectToString());

 IntegrationFlowRegistration theFlow = this.flowContext.registration(flow)
.register();
 assertThat(theFlow.getMessagingTemplate().convertSendAndReceive("foo", String
.class), equalTo("FOO"));
}

This is useful when we have multiple configuration options and have to create several instances of
similar flows. To do so, we can iterate our options and create and register IntegrationFlow instances
within a loop. Another variant is when our source of data is not Spring-based and we must create it
on the fly. Such a sample is Reactive Streams event source, as the following example shows:

288

Flux<Message<?>> messageFlux =
 Flux.just("1,2,3,4")
 .map(v -> v.split(","))
 .flatMapIterable(Arrays::asList)
 .map(Integer::parseInt)
 .map(GenericMessage<Integer>::new);

QueueChannel resultChannel = new QueueChannel();

IntegrationFlow integrationFlow =
 IntegrationFlows.from(messageFlux)
 .<Integer, Integer>transform(p -> p * 2)
 .channel(resultChannel)
 .get();

this.integrationFlowContext.registration(integrationFlow)
 .register();

The IntegrationFlowRegistrationBuilder (as a result of the IntegrationFlowContext.registration())
can be used to specify a bean name for the IntegrationFlow to register, to control its autoStartup,
and to register, non-Spring Integration beans. Usually, those additional beans are connection
factories (AMQP, JMS, (S)FTP, TCP/UDP, and others.), serializers and deserializers, or any other
required support components.

You can use the IntegrationFlowRegistration.destroy() callback to remove a dynamically registered
IntegrationFlow and all its dependent beans when you no longer need them. See the
IntegrationFlowContext Javadoc for more information.



Starting with version 5.0.6, all generated bean names in an IntegrationFlow
definition are prepended with the flow ID as a prefix. We recommend always
specifying an explicit flow ID. Otherwise, a synchronization barrier is initiated in
the IntegrationFlowContext, to generate the bean name for the IntegrationFlow and
register its beans. We synchronize on these two operations to avoid a race
condition when the same generated bean name may be used for different
IntegrationFlow instances.

Also, starting with version 5.0.6, the registration builder API has a new method:
useFlowIdAsPrefix(). This is useful if you wish to declare multiple instances of the same flow and
avoid bean name collisions when components in the flows have the same ID, as the following
example shows:

289

https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/context/IntegrationFlowContext.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/dsl/context/IntegrationFlowContext.html

private void registerFlows() {
 IntegrationFlowRegistration flow1 =
 this.flowContext.registration(buildFlow(1234))
 .id("tcp1")
 .useFlowIdAsPrefix()
 .register();

 IntegrationFlowRegistration flow2 =
 this.flowContext.registration(buildFlow(1235))
 .id("tcp2")
 .useFlowIdAsPrefix()
 .register();
}

private IntegrationFlow buildFlow(int port) {
 return f -> f
 .handle(Tcp.outboundGateway(Tcp.netClient("localhost", port)
 .serializer(TcpCodecs.crlf())
 .deserializer(TcpCodecs.lengthHeader1())
 .id("client"))
 .remoteTimeout(m -> 5000))
 .transform(Transformers.objectToString());
}

In this case, the message handler for the first flow can be referenced with bean a name of
tcp1.client.handler.

 An id attribute is required when you usE useFlowIdAsPrefix().

11.20. IntegrationFlow as a Gateway
The IntegrationFlow can start from the service interface that provides a GatewayProxyFactoryBean
component, as the following example shows:

290

public interface ControlBusGateway {

 void send(String command);
}

...

@Bean
public IntegrationFlow controlBusFlow() {
 return IntegrationFlows.from(ControlBusGateway.class)
 .controlBus()
 .get();
}

All the proxy for interface methods are supplied with the channel to send messages to the next
integration component in the IntegrationFlow. You can mark the service interface with the
@MessagingGateway annotation and mark the methods with the @Gateway annotations. Nevertheless,
the requestChannel is ignored and overridden with that internal channel for the next component in
the IntegrationFlow. Otherwise, creating such a configuration by using IntegrationFlow does not
make sense.

By default a GatewayProxyFactoryBean gets a conventional bean name, such as
[FLOW_BEAN_NAME.gateway]. You can change that ID by using the @MessagingGateway.name() attribute or
the overloaded IntegrationFlows.from(Class<?> serviceInterface, Consumer<GatewayProxySpec>
endpointConfigurer) factory method. Also all the attributes from the @MessagingGateway annotation
on the interface are applied to the target GatewayProxyFactoryBean. When annotation configuration
is not applicable, the Consumer<GatewayProxySpec> variant can be used for providing appropriate
option for the target proxy. This DSL method is available starting with version 5.2.

With Java 8, you can even create an integration gateway with the java.util.function interfaces, as
the following example shows:

@Bean
public IntegrationFlow errorRecovererFlow() {
 return IntegrationFlows.from(Function.class, (gateway) -> gateway.beanName(
"errorRecovererFunction"))
 .handle((GenericHandler<?>) (p, h) -> {
 throw new RuntimeException("intentional");
 }, e -> e.advice(retryAdvice()))
 .get();
}

That errorRecovererFlow can be used as follows:

291

@Autowired
@Qualifier("errorRecovererFunction")
private Function<String, String> errorRecovererFlowGateway;

11.21. DSL Extensions
Starting with version 5.3, an IntegrationFlowExtension has been introduced to allow extension of
the existing Java DSL with custom or composed EIP-operators. All that is needed is an extension of
this class that provides methods which can be used in the IntegrationFlow bean definitions. The
extension class can also be used for custom IntegrationComponentSpec configuration; for example,
missed or default options can be implemented in the existing IntegrationComponentSpec extension.
The sample below demonstrates a composite custom operator and usage of an AggregatorSpec
extension for a default custom outputProcessor:

public class CustomIntegrationFlowDefinition
 extends IntegrationFlowExtension<CustomIntegrationFlowDefinition> {

 public CustomIntegrationFlowDefinition upperCaseAfterSplit() {
 return split()
 .transform("payload.toUpperCase()");
 }

 public CustomIntegrationFlowDefinition customAggregate(Consumer
<CustomAggregatorSpec> aggregator) {
 return register(new CustomAggregatorSpec(), aggregator);
 }

}

public class CustomAggregatorSpec extends AggregatorSpec {

 CustomAggregatorSpec() {
 outputProcessor(group ->
 group.getMessages()
 .stream()
 .map(Message::getPayload)
 .map(String.class::cast)
 .collect(Collectors.joining(", ")));
 }

}

For a method chain flow the new DSL operator in these extensions must return the extension class.
This way a target IntegrationFlow definition will work with new and existing DSL operators:

292

@Bean
public IntegrationFlow customFlowDefinition() {
 return
 new CustomIntegrationFlowDefinition()
 .log()
 .upperCaseAfterSplit()
 .channel("innerChannel")
 .customAggregate(customAggregatorSpec ->
 customAggregatorSpec.expireGroupsUponCompletion(true))
 .logAndReply();
}

293

Chapter 12. Kotlin DSL
The Kotlin DSL is a wrapper and extension to Java DSL and aimed to make Spring Integration
development on Kotlin as smooth and straightforward as possible with interoperability with the
existing Java API and Kotlin language-specific structures.

All you need to get started is just an import for
org.springframework.integration.dsl.integrationFlow - an overloaded global function for Kotlin
DSL.

For IntegrationFlow definitions as lambdas we typically don’t need anything else from Kotlin and
just declare a bean like this:

@Bean
fun oddFlow() =
IntegrationFlow { flow ->
 flow.handle<Any> { _, _ -> "odd" }
}

In this case Kotlin understands that the lambda should be translated into IntegrationFlow
anonymous instance and target Java DSL processor parses this construction properly into Java
objects.

As an alternative to the construction above and for consistency with use-cases explained below, a
Kotlin-specif DSL should be used for declaring integration flows in the builder pattern style:

@Bean
fun flowLambda() =
 integrationFlow {
 filter<String> { it === "test" }
 wireTap {
 handle { println(it.payload) }
 }
 transform<String, String> { it.toUpperCase() }
 }

Such a global integrationFlow() function expects a lambda in builder style for a
KotlinIntegrationFlowDefinition (a Kotlin wrapper for the IntegrationFlowDefinition) and produces
a regular IntegrationFlow lambda implementation. See more overloaded integrationFlow() variants
below.

Many other scenarios require an IntegrationFlow to be started from source of data (e.g.
JdbcPollingChannelAdapter, JmsInboundGateway or just an existing MessageChannel). For this purpose,
the Spring Integration Java DSL provides an IntegrationFlows factory with its large number of

294

./dsl.pdf#java-dsl

overloaded from() methods. This factory can be used in Kotlin as well:

@Bean
fun flowFromSupplier() =
 IntegrationFlows.from<String>({ "bar" }) { e -> e.poller { p ->
p.fixedDelay(10).maxMessagesPerPoll(1) } }
 .channel { c -> c.queue("fromSupplierQueue") }
 .get()

But unfortunately not all from() methods are compatible with Kotlin structures. To fix the gap, this
project provides a Kotlin DSL around an IntegrationFlows factory. It is implemented as a set of
overloaded integrationFlow() functions. With a consumer for a KotlinIntegrationFlowDefinition to
declare the rest of the flow as an IntegrationFlow lambda to reuse the mentioned above experience
and also avoid get() call in the end. For example:

@Bean
fun functionFlow() =
 integrationFlow<Function<String, String>>({ beanName("functionGateway") })
{
 transform<String, String> { it.toUpperCase() }
 }

@Bean
fun messageSourceFlow() =
 integrationFlow(MessageProcessorMessageSource { "testSource" },
 { poller { it.fixedDelay(10).maxMessagesPerPoll(1) } }) {
 channel { queue("fromSupplierQueue") }
 }

In addition, Kotlin extensions are provided for the Java DSL API which needs some refinement for
Kotlin structures. For example IntegrationFlowDefinition<*> requires a reifying for many methods
with Class<P> argument:

@Bean
fun convertFlow() =
 integrationFlow("convertFlowInput") {
 convert<TestPojo>()
 }

295

Chapter 13. System Management

13.1. Metrics and Management
This section describes how to capture metrics for Spring Integration. In recent versions, we have
relied more on Micrometer (see micrometer.io), and we plan to use Micrometer even more in
future releases.

13.1.1. Legacy Metrics

Legacy metrics were removed in Version 5.4; see Micrometer Integration below.

13.1.2. Disabling Logging in High Volume Environments

You can control debug logging in the main message flow. In very high volume applications, calls to
isDebugEnabled() can be quite expensive with some logging subsystems. You can disable all such
logging to avoid this overhead. Exception logging (debug or otherwise) is not affected by this
setting.

The following listing shows the available options for controlling logging:

<int:management default-logging-enabled="true"/> ①

@Configuration
@EnableIntegration
@EnableIntegrationManagement(
 defaultLoggingEnabled = "true" <1>)

public static class ContextConfiguration {
...
}

① Set to false to disable all logging in the main message flow, regardless of the log system category
settings. Set to 'true' to enable debug logging (if also enabled by the logging subsystem). Only
applied if you have not explicitly configured the setting in a bean definition. The default is true.


defaultLoggingEnabled is applied only if you have not explicitly configured the
corresponding setting in a bean definition.

13.1.3. Micrometer Integration

Overview

Starting with version 5.0.3, the presence of a Micrometer MeterRegistry in the application context

296

https://micrometer.io
https://micrometer.io/

triggers support for Micrometer metrics.

To use Micrometer, add one of the MeterRegistry beans to the application context.

For each MessageHandler and MessageChannel, timers are registered. For each MessageSource, a
counter is registered.

This only applies to objects that extend AbstractMessageHandler, AbstractMessageChannel, and
AbstractMessageSource (which is the case for most framework components).

The Timer Meters for send operations on message channels have the following names or tags:

• name: spring.integration.send

• tag: type:channel

• tag: name:<componentName>

• tag: result:(success|failure)

• tag: exception:(none|exception simple class name)

• description: Send processing time

(A failure result with a none exception means the channel’s send() operation returned false.)

The Counter Meters for receive operations on pollable message channels have the following names
or tags:

• name: spring.integration.receive

• tag: type:channel

• tag: name:<componentName>

• tag: result:(success|failure)

• tag: exception:(none|exception simple class name)

• description: Messages received

The Timer Meters for operations on message handlers have the following names or tags:

• name: spring.integration.send

• tag: type:handler

• tag: name:<componentName>

• tag: result:(success|failure)

• tag: exception:(none|exception simple class name)

• description: Send processing time

The Counter meters for message sources have the following names/tags:

• name: spring.integration.receive

• tag: type:source

297

• tag: name:<componentName>

• tag: result:success

• tag: exception:none

• description: Messages received

In addition, there are three Gauge Meters:

• spring.integration.channels: The number of MessageChannels in the application.

• spring.integration.handlers: The number of MessageHandlers in the application.

• spring.integration.sources: The number of MessageSources in the application.

It is possible to customize the names and tags of Meters created by integration components by
providing a subclass of MicrometerMetricsCaptor. The MicrometerCustomMetricsTests test case
shows a simple example of how to do that. You can also further customize the meters by
overloading the build() methods on builder subclasses.

Starting with version 5.1.13, the QueueChannel exposes Micrometer gauges for queue size and
remaining capacity:

• name: spring.integration.channel.queue.size

• tag: type:channel

• tag: name:<componentName>

• description: The size of the queue channel

and

• name: spring.integration.channel.queue.remaining.capacity

• tag: type:channel

• tag: name:<componentName>

• description: The remaining capacity of the queue channel

Disabling Meters

With the Legacy Metrics (which have now been removed), you could specify which integration
components would collect metrics. By default, all meters are registered when first used. Now, with
Micrometer, you can add MeterFilter s to the MeterRegistry to prevent some or all from being
registered. You can filter out (deny) meters by any of the properties provided, name, tag, etc. See
Meter Filters in the Micrometer documentation for more information.

For example, given:

298

https://github.com/spring-projects/spring-integration/blob/master/spring-integration-core/src/test/java/org/springframework/integration/support/management/micrometer/MicrometerCustomMetricsTests.java
https://micrometer.io/docs/concepts#_meter_filters

@Bean
public QueueChannel noMeters() {
 return new QueueChannel(10);
}

You can suppress registration of meters for just this channel with:

registry.config().meterFilter(MeterFilter.deny(id ->
 "channel".equals(id.getTag("type")) &&
 "noMeters".equals(id.getTag("name"))));

13.2. JMX Support
Spring Integration provides channel Adapters for receiving and publishing JMX Notifications.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-jmx</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-jmx:5.4.0"

An inbound channel adapter allows for polling JMX MBean attribute values, and an outbound
channel adapter allows for invoking JMX MBean operations.

13.2.1. Notification-listening Channel Adapter

The notification-listening channel adapter requires a JMX ObjectName for the MBean that publishes
notifications to which this listener should be registered. A very simple configuration might
resemble the following:

299

<int-jmx:notification-listening-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=publisher"/>



The notification-listening-channel-adapter registers with an MBeanServer at
startup, and the default bean name is mbeanServer, which happens to be the same
bean name generated when using Spring’s <context:mbean-server/> element. If you
need to use a different name, be sure to include the mbean-server attribute.

The adapter can also accept a reference to a NotificationFilter and a “handback” object to provide
some context that is passed back with each notification. Both of those attributes are optional.
Extending the preceding example to include those attributes as well as an explicit MBeanServer bean
name produces the following example:

<int-jmx:notification-listening-channel-adapter id="adapter"
 channel="channel"
 mbean-server="someServer"
 object-name="example.domain:name=somePublisher"
 notification-filter="notificationFilter"
 handback="myHandback"/>

The _Notification-listening channel adapter is event-driven and registered with the MBeanServer
directly. It does not require any poller configuration.



For this component only, the object-name attribute can contain an object name
pattern (for example, "org.something:type=MyType,name=*"). In that case, the
adapter receives notifications from all MBeans with object names that match the
pattern. In addition, the object-name attribute can contain a SpEL reference to a
<util:list> of object name patterns, as the following example shows:

<jmx:notification-listening-channel-adapter id=
"manyNotificationsAdapter"
 channel="manyNotificationsChannel"
 object-name="#{patterns}"/>

<util:list id="patterns">
 <value>org.foo:type=Foo,name=*</value>
 <value>org.foo:type=Bar,name=*</value>
</util:list>

The names of the located MBean(s) are logged when DEBUG level logging is
enabled.

300

13.2.2. Notification-publishing Channel Adapter

The notification-publishing channel adapter is relatively simple. It requires only a JMX object name
in its configuration, as the following example shows:

<context:mbean-export/>

<int-jmx:notification-publishing-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=publisher"/>

It also requires that an MBeanExporter be present in the context. That is why the <context:mbean-
export/> element is also shown in the preceding example.

When messages are sent to the channel for this adapter, the notification is created from the
message content. If the payload is a String, it is passed as the message text for the notification. Any
other payload type is passed as the userData of the notification.

JMX notifications also have a type, and it should be a dot-delimited String. There are two ways to
provide the type. Precedence is always given to a message header value associated with the
JmxHeaders.NOTIFICATION_TYPE key. Alternatively, you can provide a fallback default-notification-
type attribute in the configuration, as the following example shows:

<context:mbean-export/>

<int-jmx:notification-publishing-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=publisher"
 default-notification-type="some.default.type"/>

13.2.3. Attribute-polling Channel Adapter

The attribute-polling channel adapter is useful when you need to periodically check on some value
that is available through an MBean as a managed attribute. You can configured the poller in the
same way as any other polling adapter in Spring Integration (or you can rely on the default poller).
The object-name and the attribute-name are required. An MBeanServer reference is also required.
However, by default, it automatically checks for a bean named mbeanServer, same as the
notification-listening channel adapter described earlier. The following example shows how to
configure an attribute-polling channel adapter with XML:

301

<int-jmx:attribute-polling-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=someService"
 attribute-name="InvocationCount">
 <int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-jmx:attribute-polling-channel-adapter>

13.2.4. Tree-polling Channel Adapter

The tree-polling channel adapter queries the JMX MBean tree and sends a message with a payload
that is the graph of objects that matches the query. By default, the MBeans are mapped to primitives
and simple objects, such as Map, List, and arrays. Doing so permits simple transformation to (for
example) JSON. An MBeanServer reference is also required. However, by default, it automatically
checks for a bean named mbeanServer, same as the notification-listening channel adapter described
earlier. The following example shows how to configure an tree-polling channel adapter with XML:

<int-jmx:tree-polling-channel-adapter id="adapter"
 channel="channel"
 query-name="example.domain:type=*">
 <int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-jmx:tree-polling-channel-adapter>

The preceding example includes all of the attributes on the selected MBeans. You can filter the
attributes by providing an MBeanObjectConverter that has an appropriate filter configured. You can
provide the converter as a reference to a bean definition by using the converter attribute, or you
can use an inner <bean/> definition. Spring Integration provides a DefaultMBeanObjectConverter that
can take a MBeanAttributeFilter in its constructor argument.

Spring Integration provides two standard filters. The NamedFieldsMBeanAttributeFilter lets you
specify a list of attributes to include. The NotNamedFieldsMBeanAttributeFilter lets you specify a list
of attributes to exclude. You can also implement your own filter.

13.2.5. Operation-invoking Channel Adapter

The operation-invoking channel adapter enables message-driven invocation of any managed
operation exposed by an MBean. Each invocation requires the operation name to be invoked and
the object name of the target MBean. Both of these must be explicitly provided by adapter
configuration or via JmxHeaders.OBJECT_NAME and JmxHeaders.OPERATION_NAME message headers,
respectively:

302

<int-jmx:operation-invoking-channel-adapter id="adapter"
 object-name="example.domain:name=TestBean"
 operation-name="ping"/>

Then the adapter only needs to be able to discover the mbeanServer bean. If a different bean name is
required, then provide the mbean-server attribute with a reference.

The payload of the message is mapped to the parameters of the operation, if any. A Map-typed
payload with String keys is treated as name/value pairs, whereas a List or array is passed as a
simple argument list (with no explicit parameter names). If the operation requires a single
parameter value, the payload can represent that single value. Also, if the operation requires no
parameters, the payload would be ignored.

If you want to expose a channel for a single common operation to be invoked by messages that
need not contain headers, that last option works well.

13.2.6. Operation-invoking Outbound Gateway

Similarly to the operation-invoking channel adapter, Spring Integration also provides an operation-
invoking outbound gateway, which you can use when dealing with non-void operations when a
return value is required. The return value is sent as the message payload to the reply-channel
specified by the gateway. The following example shows how to configure an operation-invoking
outbound gateway with XML:

<int-jmx:operation-invoking-outbound-gateway request-channel="requestChannel"
 reply-channel="replyChannel"
 object-name="o.s.i.jmx.config:type=TestBean,name=testBeanGateway"
 operation-name="testWithReturn"/>

If you do not provide the reply-channel attribute, the reply message is sent to the channel identified
by the IntegrationMessageHeaderAccessor.REPLY_CHANNEL header. That header is typically auto-
created by the entry point into a message flow, such as any gateway component. However, if the
message flow was started by manually creating a Spring Integration message and sending it
directly to a channel, you must specify the message header explicitly or use the reply-channel
attribute.

13.2.7. MBean Exporter

Spring Integration components may themselves be exposed as MBeans when the
IntegrationMBeanExporter is configured. To create an instance of the IntegrationMBeanExporter,
define a bean and provide a reference to an MBeanServer and a domain name (if desired). You can
leave out the domain, in which case the default domain is org.springframework.integration. The
following example shows how to declare an instance of an IntegrationMBeanExporter and an
associated MBeanServer instance:

303

<int-jmx:mbean-export id="integrationMBeanExporter"
 default-domain="my.company.domain" server="mbeanServer"/>

<bean id="mbeanServer" class=
"org.springframework.jmx.support.MBeanServerFactoryBean">
 <property name="locateExistingServerIfPossible" value="true"/>
</bean>



The MBean exporter is orthogonal to the one provided in Spring core. It registers
message channels and message handlers but does not register itself. You can
expose the exporter itself (and certain other components in Spring Integration) by
using the standard <context:mbean-export/> tag. The exporter has some metrics
attached to it — for instance, a count of the number of handlers and the number of
queued messages.

It also has a useful operation, as discussed in Orderly Shutdown Managed
Operation.

Spring Integration 4.0 introduced the @EnableIntegrationMBeanExport annotation to allow for
convenient configuration of a default integrationMbeanExporter bean of type
IntegrationMBeanExporter with several useful options at the @Configuration class level. The following
example shows how to configure this bean:

@Configuration
@EnableIntegration
@EnableIntegrationMBeanExport(server = "mbeanServer", managedComponents = "input")
public class ContextConfiguration {

 @Bean
 public MBeanServerFactoryBean mbeanServer() {
 return new MBeanServerFactoryBean();
 }
}

If you need to provide more options or have several IntegrationMBeanExporter beans (such as for
different MBean Servers or to avoid conflicts with the standard Spring MBeanExporter — such as
through @EnableMBeanExport), you can configure an IntegrationMBeanExporter as a generic bean.

MBean Object Names

All the MessageChannel, MessageHandler, and MessageSource instances in the application are wrapped
by the MBean exporter to provide management and monitoring features. The generated JMX object
names for each component type are listed in the following table:

304

Table 6. MBean Object Names

Component Type Object Name

MessageChannel `o.s.i:type=MessageChannel,name=<channelName>`

MessageSource `o.s.i:type=MessageSource,name=<channelName>,bean=<source>`

MessageHandler `o.s.i:type=MessageSource,name=<channelName>,bean=<source>`

The bean attribute in the object names for sources and handlers takes one of the values in the
following table:

Table 7. bean ObjectName Part

Bean Value Description

endpoint The bean name of the enclosing endpoint (for example <service-
activator>), if there is one

anonymous An indication that the enclosing endpoint did not have a user-specified
bean name, so the JMX name is the input channel name.

internal For well known Spring Integration default components

handler/source None of the above. Fall back to the toString() method of the object being
monitored (handler or source)

You can append custom elements to the object name by providing a reference to a Properties object
in the object-name-static-properties attribute.

Also, since Spring Integration 3.0, you can use a custom ObjectNamingStrategy by setting the object-
naming-strategy attribute. Doing so permits greater control over the naming of the MBeans, such as
grouping all integration MBeans under an 'Integration' type. The following example shows one
possible custom naming strategy implementation:

public class Namer implements ObjectNamingStrategy {

 private final ObjectNamingStrategy realNamer = new KeyNamingStrategy();
 @Override
 public ObjectName getObjectName(Object managedBean, String beanKey) throws
MalformedObjectNameException {
 String actualBeanKey = beanKey.replace("type=",
"type=Integration,componentType=");
 return realNamer.getObjectName(managedBean, actualBeanKey);
 }

}

The beanKey argument is a String that contain the standard object name, beginning with the
default-domain and including any additional static properties. The preceding example moves the
standard type part to componentType and sets the type to 'Integration', enabling selection of all

305

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/ObjectNamingStrategy.html

Integration MBeans in one query:`my.domain:type=Integration,*`. Doing so also groups the beans
under one tree entry under the domain in such tools as VisualVM.



The default naming strategy is a MetadataNamingStrategy. The exporter propagates
the default-domain to that object to let it generate a fallback object name if parsing
of the bean key fails. If your custom naming strategy is a MetadataNamingStrategy
(or a subclass of it), the exporter does not propagate the default-domain. You must
configure it on your strategy bean.

Starting with version 5.1; any bean names (represented by the name key in the object name) will be
quoted if they contain any characters that are not allowed in a Java identifier (or period .).

JMX Improvements

Version 4.2 introduced some important improvements, representing a fairly major overhaul to the
JMX support in the framework. These resulted in a significant performance improvement of the
JMX statistics collection and much more control thereof. However, it has some implications for user
code in a few specific (uncommon) situations. These changes are detailed below, with a caution
where necessary.

@IntegrationManagedResource

Similar to the @ManagedResource annotation, the @IntegrationManagedResource marks a class as
being eligible to be exported as an MBean. However, it is exported only if the application context
has an IntegrationMBeanExporter.

Certain Spring Integration classes (in the org.springframework.integration) package) that were
previously annotated with @ManagedResource are now annotated with both @ManagedResource and
@IntegrationManagedResource. This is for backwards compatibility (see the next item). Such
MBeans are exported by any context MBeanServer or by an IntegrationMBeanExporter (but not
both — if both exporters are present, the bean is exported by the integration exporter if the bean
matches a managed-components pattern).

MBean Exporter Bean Name Patterns

Previously, the managed-components patterns were inclusive only. If a bean name matched one of
the patterns, it would be included. Now, the pattern can be negated by prefixing it with !. For
example, !thing*, things matches all bean names that do not start with thing except things.
Patterns are evaluated left to right. The first match (positive or negative) wins, and then no
further patterns are applied.



The addition of this syntax to the pattern causes one possible (although perhaps
unlikely) problem. If you have a bean named "!thing" and you included a
pattern of !thing in your MBean exporter’s managed-components patterns, it no
longer matches; the pattern now matches all beans not named thing. In this
case, you can escape the ! in the pattern with \. The \!thing pattern matches a
bean named !thing.

IntegrationMBeanExporter changes

The IntegrationMBeanExporter no longer implements SmartLifecycle. This means that start() and

306

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/MetadataNamingStrategy.html

stop() operations are no longer available to register and unregister MBeans. The MBeans are
now registered during context initialization and unregistered when the context is destroyed.

Orderly Shutdown Managed Operation

The MBean exporter lets a JMX operation shut down the application in an orderly manner. It is
intended for use before stopping the JVM. The following example shows how to use it:

public void stopActiveComponents(long howLong)

Its use and operation are described in Orderly Shutdown.

13.3. Message History
The key benefit of a messaging architecture is loose coupling such that participating components do
not maintain any awareness about one another. This fact alone makes an application extremely
flexible, letting you change components without affecting the rest of the flow, change messaging
routes, change message consuming styles (polling versus event driven), and so on. However, this
unassuming style of architecture could prove to be difficult when things go wrong. When
debugging, you probably want as much information (its origin, the channels it has traversed, and
other details) about the message as you can get.

Message history is one of those patterns that helps by giving you an option to maintain some level
of awareness of a message path either for debugging purposes or for maintaining an audit trail.
Spring integration provides a simple way to configure your message flows to maintain the message
history by adding a header to the message and updating that header every time a message passes
through a tracked component.

13.3.1. Message History Configuration

To enable message history, you need only define the message-history element in your configuration,
as shown in the following example:

<int:message-history/>

Now every named component (component that has an 'id' defined) is tracked. The framework sets
the 'history' header in your message. Its value a List<Properties>.

Consider the following configuration example:

307

./shutdown.pdf#jmx-shutdown

<int:gateway id="sampleGateway"
 service-interface=
"org.springframework.integration.history.sample.SampleGateway"
 default-request-channel="bridgeInChannel"/>

<int:chain id="sampleChain" input-channel="chainChannel" output-channel=
"filterChannel">
 <int:header-enricher>
 <int:header name="baz" value="baz"/>
 </int:header-enricher>
</int:chain>

The preceding configuration produces a simple message history structure, with output similar to
the following:

[{name=sampleGateway, type=gateway, timestamp=1283281668091},
 {name=sampleChain, type=chain, timestamp=1283281668094}]

To get access to message history, you need only access the MessageHistory header. The folloiwng
example shows how to do so:

Iterator<Properties> historyIterator =
 message.getHeaders().get(MessageHistory.HEADER_NAME, MessageHistory.class)
.iterator();
assertTrue(historyIterator.hasNext());
Properties gatewayHistory = historyIterator.next();
assertEquals("sampleGateway", gatewayHistory.get("name"));
assertTrue(historyIterator.hasNext());
Properties chainHistory = historyIterator.next();
assertEquals("sampleChain", chainHistory.get("name"));

You might not want to track all of the components. To limit the history to certain components based
on their names, you can provide the tracked-components attribute and specify a comma-delimited
list of component names and patterns that match the components you want to track. The following
example shows how to do so:

<int:message-history tracked-components="*Gateway, sample*, aName"/>

In the preceding example, message history is maintained only for the components that end with
'Gateway', start with 'sample', or match the name, 'aName', exactly.

308

Starting with version 4.0, you can also use the @EnableMessageHistory annotation in a @Configuration
class. In addition, the MessageHistoryConfigurer bean is now exposed as a JMX MBean by the
IntegrationMBeanExporter (see MBean Exporter), letting you change the patterns at runtime. Note,
however, that the bean must be stopped (turning off message history) in order to change the
patterns. This feature might be useful to temporarily turn on history to analyze a system. The
MBean’s object name is <domain>:name=messageHistoryConfigurer,type=MessageHistoryConfigurer.


If multiple beans (declared by @EnableMessageHistory and <message-history/>) exist,
they must all have identical component name patterns (when trimmed and
sorted). Do not use a generic <bean/> definition for the MessageHistoryConfigurer.



By definition, the message history header is immutable (you cannot re-write
history). Therefore, when writing message history values, the components either
create new messages (when the component is an origin) or they copy the history
from a request message, modifying it and setting the new list on a reply message.
In either case, the values can be appended even if the message itself is crossing
thread boundaries. That means that the history values can greatly simplify
debugging in an asynchronous message flow.

13.4. Message Store
The Enterprise Integration Patterns (EIP) book identifies several patterns that have the ability to
buffer messages. For example, an aggregator buffers messages until they can be released, and a
QueueChannel buffers messages until consumers explicitly receive those messages from that channel.
Because of the failures that can occur at any point within your message flow, EIP components that
buffer messages also introduce a point where messages could be lost.

To mitigate the risk of losing messages, EIP defines the message store pattern, which lets EIP
components store messages, typically in some type of persistent store (such as an RDBMS).

Spring Integration provides support for the message store pattern by:

• Defining an org.springframework.integration.store.MessageStore strategy interface

• Providing several implementations of this interface

• Exposing a message-store attribute on all components that have the capability to buffer
messages so that you can inject any instance that implements the MessageStore interface.

Details on how to configure a specific message store implementation and how to inject a
MessageStore implementation into a specific buffering component are described throughout the
manual (see the specific component, such as QueueChannel, Aggregator, Delayer, and others). The
following pair of examples show how to add a reference to a message store for a QueueChannel and
for an aggregator:

309

./jmx.pdf#jmx-mbean-exporter
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/MessageStore.html
./channel.pdf#channel-configuration-queuechannel
./aggregator.pdf#aggregator
./delayer.pdf#delayer

Example 4. QueueChannel

<int:channel id="myQueueChannel">
 <int:queue message-store="refToMessageStore"/>
<int:channel>

Example 5. Aggregator

<int:aggregator … message-store="refToMessageStore"/>

By default, messages are stored in-memory by using o.s.i.store.SimpleMessageStore, an
implementation of MessageStore. That might be fine for development or simple low-volume
environments where the potential loss of non-persistent messages is not a concern. However, the
typical production application needs a more robust option, not only to mitigate the risk of message
loss but also to avoid potential out-of-memory errors. Therefore, we also provide MessageStore
implementations for a variety of data-stores. The following is a complete list of supported
implementations:

• JDBC Message Store: Uses an RDBMS to store messages

• Redis Message Store: Uses a Redis key/value datastore to store messages

• MongoDB Message Store: Uses a MongoDB document store to store messages

• Gemfire Message Store: Uses a Gemfire distributed cache to store messages

310

./jdbc.pdf#jdbc-message-store
./redis.pdf#redis-message-store
./mongodb.pdf#mongodb-message-store
./gemfire.pdf#gemfire-message-store



However, be aware of some limitations while using persistent implementations of
the MessageStore.

The Message data (payload and headers) is serialized and deserialized by using
different serialization strategies, depending on the implementation of the
MessageStore. For example, when using JdbcMessageStore, only Serializable data is
persisted by default. In this case, non-Serializable headers are removed before
serialization occurs. Also, be aware of the protocol-specific headers that are
injected by transport adapters (such as FTP, HTTP, JMS, and others). For example,
<http:inbound-channel-adapter/> maps HTTP headers into message headers, and
one of them is an ArrayList of non-serializable org.springframework.http.MediaType
instances. However, you can inject your own implementation of the Serializer
and Deserializer strategy interfaces into some MessageStore implementations (such
as JdbcMessageStore) to change the behavior of serialization and deserialization.

Pay special attention to the headers that represent certain types of data. For
example, if one of the headers contains an instance of some Spring bean, upon
deserialization, you may end up with a different instance of that bean, which
directly affects some of the implicit headers created by the framework (such as
REPLY_CHANNEL or ERROR_CHANNEL). Currently, they are not serializable, but, even if
they were, the deserialized channel would not represent the expected instance.

Beginning with Spring Integration version 3.0, you can resolve this issue with a
header enricher configured to replace these headers with a name after registering
the channel with the HeaderChannelRegistry.

Also, consider what happens when you configure a message-flow as follows:
gateway → queue-channel (backed by a persistent Message Store) → service-
activator. That gateway creates a temporary reply channel, which is lost by the
time the service-activator’s poller reads from the queue. Again, you can use the
header enricher to replace the headers with a String representation.

For more information, see Header Enricher.

Spring Integration 4.0 introduced two new interfaces:

• ChannelMessageStore: To implement operations specific for QueueChannel instances

• PriorityCapableChannelMessageStore: To mark MessageStore implementations to be used for
PriorityChannel instances and to provide priority order for persisted messages.

The real behavior depends on the implementation. The framework provides the following
implementations, which can be used as a persistent MessageStore for QueueChannel and
PriorityChannel:

• Redis Channel Message Stores

• MongoDB Channel Message Store

• Backing Message Channels

311

./content-enrichment.pdf#header-enricher
./redis.pdf#redis-cms
./mongodb.pdf#mongodb-priority-channel-message-store
./jdbc.pdf#jdbc-message-store-channels



Caution about SimpleMessageStore

Starting with version 4.1, the SimpleMessageStore no longer copies the message
group when calling getMessageGroup(). For large message groups, this was a
significant performance problem. 4.0.1 introduced a boolean copyOnGet property
that lets you control this behavior. When used internally by the aggregator, this
property was set to false to improve performance. It is now false by default.

Users accessing the group store outside of components such as aggregators now
get a direct reference to the group being used by the aggregator instead of a copy.
Manipulation of the group outside of the aggregator may cause unpredictable
results.

For this reason, you should either not perform such manipulation or set the
copyOnGet property to true.

13.4.1. Using MessageGroupFactory

Starting with version 4.3, some MessageGroupStore implementations can be injected with a custom
MessageGroupFactory strategy to create and customize the MessageGroup instances used by the
MessageGroupStore. This defaults to a SimpleMessageGroupFactory, which produces SimpleMessageGroup
instances based on the GroupType.HASH_SET (LinkedHashSet) internal collection. Other possible
options are SYNCHRONISED_SET and BLOCKING_QUEUE, where the last one can be used to reinstate the
previous SimpleMessageGroup behavior. Also the PERSISTENT option is available. See the next section
for more information. Starting with version 5.0.1, the LIST option is also available for when the
order and uniqueness of messages in the group does not matter.

13.4.2. Persistent MessageGroupStore and Lazy-load

Starting with version 4.3, all persistent MessageGroupStore instances retrieve MessageGroup instances
and their messages from the store in the lazy-load manner. In most cases, it is useful for the
correlation MessageHandler instances (see Aggregator and Resequencer), when it would add
overhead to load entire the MessageGroup from the store on each correlation operation.

You can use the AbstractMessageGroupStore.setLazyLoadMessageGroups(false) option to switch off the
lazy-load behavior from the configuration.

Our performance tests for lazy-load on MongoDB MessageStore (MongoDB Message Store) and
<aggregator> (Aggregator) use a custom release-strategy similar to the following:

<int:aggregator input-channel="inputChannel"
 output-channel="outputChannel"
 message-store="mongoStore"
 release-strategy-expression="size() == 1000"/>

It produces results similar to the following for 1000 simple messages:

312

./aggregator.pdf#aggregator
./resequencer.pdf#resequencer
./mongodb.pdf#mongodb-message-store
./aggregator.pdf#aggregator

...
StopWatch 'Lazy-Load Performance': running time (millis) = 38918

ms % Task name

02652 007% Lazy-Load
36266 093% Eager
...

13.5. Metadata Store
Many external systems, services, or resources are not transactional (Twitter, RSS, file systems, and
so on), and there is not any ability to mark the data as read. Also, sometimes, you may need to
implement the Enterprise Integration Pattern idempotent receiver in some integration solutions. To
achieve this goal and store some previous state of the endpoint before the next interaction with
external system or to deal with the next message, Spring Integration provides the metadata store
component as an an implementation of the
org.springframework.integration.metadata.MetadataStore interface with a general key-value
contract.

The metadata store is designed to store various types of generic metadata (for example, the
published date of the last feed entry that has been processed) to help components such as the feed
adapter deal with duplicates. If a component is not directly provided with a reference to a
MetadataStore, the algorithm for locating a metadata store is as follows: First, look for a bean with a
metadataStore ID in the application context. If one is found, use it. Otherwise, create a new instance
of SimpleMetadataStore, which is an in-memory implementation that persists only metadata within
the lifecycle of the currently running application context. This means that, upon restart, you may
end up with duplicate entries.

If you need to persist metadata between application context restarts, the framework provides the
following persistent MetadataStores:

• PropertiesPersistingMetadataStore

• Gemfire Metadata Store

• JDBC Metadata Store

• MongoDB Metadata Store

• Redis Metadata Store

• Zookeeper Metadata Store

The PropertiesPersistingMetadataStore is backed by a properties file and a PropertiesPersister.

By default, it persists only the state when the application context is closed normally. It implements
Flushable so that you can persist the state at will, by invoking flush(). The following example shows
how to configure a 'PropertiesPersistingMetadataStore' with XML:

313

https://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
./gemfire.pdf#gemfire-metadata-store
./jdbc.pdf#jdbc-metadata-store
./mongodb.pdf#mongodb-metadata-store
./redis.pdf#redis-metadata-store
./zookeeper.pdf#zk-metadata-store
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/util/PropertiesPersister.html

<bean id="metadataStore"
 class="org.springframework.integration.metadata.PropertiesPersistingMetadataStore
"/>

Alternatively, you can provide your own implementation of the MetadataStore interface (for
example, JdbcMetadataStore) and configure it as a bean in the application context.

Starting with version 4.0, SimpleMetadataStore, PropertiesPersistingMetadataStore, and
RedisMetadataStore implement ConcurrentMetadataStore. These provide for atomic updates and can
be used across multiple component or application instances.

13.5.1. Idempotent Receiver and Metadata Store

The metadata store is useful for implementing the EIP idempotent receiver pattern when there is
need to filter an incoming message if it has already been processed and you can discard it or
perform some other logic on discarding. The following configuration shows an example of how to
do so:

<int:filter input-channel="serviceChannel"
 output-channel="idempotentServiceChannel"
 discard-channel="discardChannel"
 expression="@metadataStore.get(headers.businessKey) == null"/>

<int:publish-subscribe-channel id="idempotentServiceChannel"/>

<int:outbound-channel-adapter channel="idempotentServiceChannel"
 expression="@metadataStore.put(headers.businessKey,
'')"/>

<int:service-activator input-channel="idempotentServiceChannel" ref="service"/>

The value of the idempotent entry may be an expiration date, after which that entry should be
removed from metadata store by some scheduled reaper.

See also Idempotent Receiver Enterprise Integration Pattern.

13.5.2. MetadataStoreListener

Some metadata stores (currently only zookeeper) support registering a listener to receive events
when items change, as the following example shows:

314

https://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
./handler-advice.pdf#idempotent-receiver

public interface MetadataStoreListener {

 void onAdd(String key, String value);

 void onRemove(String key, String oldValue);

 void onUpdate(String key, String newValue);
}

See the Javadoc for more information. The MetadataStoreListenerAdapter can be subclassed if you
are interested only in a subset of events.

13.6. Control Bus
As described in the Enterprise Integration Patterns (EIP) book, the idea behind the control bus is
that the same messaging system can be used for monitoring and managing the components within
the framework as is used for “application-level” messaging. In Spring Integration, we build upon
the adapters described above so that you can send messages as a means of invoking exposed
operations.

The following example shows how to configure a control bus with XML:

<int:control-bus input-channel="operationChannel"/>

The control bus has an input channel that can be accessed for invoking operations on the beans in
the application context. It also has all the common properties of a service activating endpoint. For
example, you can specify an output channel if the result of the operation has a return value that
you want to send on to a downstream channel.

The control bus runs messages on the input channel as Spring Expression Language (SpEL)
expressions. It takes a message, compiles the body to an expression, adds some context, and then
runs it. The default context supports any method that has been annotated with @ManagedAttribute or
@ManagedOperation. It also supports the methods on Spring’s Lifecycle interface (and its Pausable
extension since version 5.2), and it supports methods that are used to configure several of Spring’s
TaskExecutor and TaskScheduler implementations. The simplest way to ensure that your own
methods are available to the control bus is to use the @ManagedAttribute or @ManagedOperation
annotations. Since those annotations are also used for exposing methods to a JMX MBean registry,
they offer a convenient by-product: Often, the same types of operations you want to expose to the
control bus are reasonable for exposing through JMX). Resolution of any particular instance within
the application context is achieved in the typical SpEL syntax. To do so, provide the bean name with
the SpEL prefix for beans (@). For example, to execute a method on a Spring Bean, a client could
send a message to the operation channel as follows:

315

https://docs.spring.io/spring-integration/api/org/springframework/integration/metadata/MetadataStoreListenerAdapter.html
https://www.enterpriseintegrationpatterns.com/

Message operation = MessageBuilder.withPayload("@myServiceBean.shutdown()").build
();
operationChannel.send(operation)

The root of the context for the expression is the Message itself, so you also have access to the payload
and headers as variables within your expression. This is consistent with all the other expression
support in Spring Integration endpoints.

With Java annotations, you can configured the control bus as follows:

@Bean
@ServiceActivator(inputChannel = "operationChannel")
public ExpressionControlBusFactoryBean controlBus() {
 return new ExpressionControlBusFactoryBean();
}

Similarly, you can configure Java DSL flow definitions as follows:

@Bean
public IntegrationFlow controlBusFlow() {
 return IntegrationFlows.from("controlBus")
 .controlBus()
 .get();
}

If you prefer to use lambdas with automatic DirectChannel creation, you can create a control bus as
follows:

@Bean
public IntegrationFlow controlBus() {
 return IntegrationFlowDefinition::controlBus;
}

In this case, the channel is named controlBus.input.

13.7. Orderly Shutdown
As described in "MBean Exporter", the MBean exporter provides a JMX operation called
stopActiveComponents, which is used to stop the application in an orderly manner. The operation has

316

./jmx.pdf#jmx-mbean-exporter

a single Long parameter. The parameter indicates how long (in milliseconds) the operation waits to
allow in-flight messages to complete. The operation works as follows:

1. Call beforeShutdown() on all beans that implement OrderlyShutdownCapable.

Doing so lets such components prepare for shutdown. Examples of components that implement
this interface and what they do with this call include JMS and AMQP message-driven adapters
that stop their listener containers, TCP server connection factories that stop accepting new
connections (while keeping existing connections open), TCP inbound endpoints that drop (log)
any new messages received, and HTTP inbound endpoints that return 503 - Service
Unavailable for any new requests.

2. Stop any active channels, such as JMS- or AMQP-backed channels.

3. Stop all MessageSource instances.

4. Stop all inbound MessageProducer s (that are not OrderlyShutdownCapable).

5. Wait for any remaining time left, as defined by the value of the Long parameter passed in to the
operation.

Doing so lets any in-flight messages complete their journeys. It is therefore important to select
an appropriate timeout when invoking this operation.

6. Call afterShutdown() on all OrderlyShutdownCapable components.

Doing so lets such components perform final shutdown tasks (closing all open sockets, for
example).

As discussed in Orderly Shutdown Managed Operation, this operation can be invoked by using JMX.
If you wish to programmatically invoke the method, you need to inject or otherwise get a reference
to the IntegrationMBeanExporter. If no id attribute is provided on the <int-jmx:mbean-export/>
definition, the bean has a generated name. This name contains a random component to avoid
ObjectName collisions if multiple Spring Integration contexts exist in the same JVM (MBeanServer).

For this reason, if you wish to invoke the method programmatically, we recommend that you
provide the exporter with an id attribute so that you can easily access it in the application context.

Finally, the operation can be invoked by using the <control-bus> element. See the monitoring Spring
Integration sample application for details.



The algorithm described earlier was improved in version 4.1. Previously, all task
executors and schedulers were stopped. This could cause mid-flow messages in
QueueChannel instances to remain. Now the shutdown leaves pollers running, to let
these messages be drained and processed.

13.8. Integration Graph
Starting with version 4.3, Spring Integration provides access to an application’s runtime object
model, which can, optionally, include component metrics. It is exposed as a graph, which may be
used to visualize the current state of the integration application. The

317

./jmx.pdf#jmx-mbean-shutdown
https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/monitoring
https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/monitoring

o.s.i.support.management.graph package contains all the required classes to collect, build, and
render the runtime state of Spring Integration components as a single tree-like Graph object. The
IntegrationGraphServer should be declared as a bean to build, retrieve, and refresh the Graph object.
The resulting Graph object can be serialized to any format, although JSON is flexible and convenient
to parse and represent on the client side. A Spring Integration application with only the default
components would expose a graph as follows:

318

{
 "contentDescriptor" : {
 "providerVersion" : "5.4.0",
 "providerFormatVersion" : 1.2,
 "provider" : "spring-integration",
 "name" : "myAppName:1.0"
 },
 "nodes" : [{
 "nodeId" : 1,
 "componentType" : "null-channel",
 "integrationPatternType" : "null_channel",
 "integrationPatternCategory" : "messaging_channel",
 "properties" : { },
 "sendTimers" : {
 "successes" : {
 "count" : 1,
 "mean" : 0.0,
 "max" : 0.0
 },
 "failures" : {
 "count" : 0,
 "mean" : 0.0,
 "max" : 0.0
 }
 },
 "receiveCounters" : {
 "successes" : 0,
 "failures" : 0
 },
 "name" : "nullChannel"
 }, {
 "nodeId" : 2,
 "componentType" : "publish-subscribe-channel",
 "integrationPatternType" : "publish_subscribe_channel",
 "integrationPatternCategory" : "messaging_channel",
 "properties" : { },
 "sendTimers" : {
 "successes" : {
 "count" : 1,
 "mean" : 7.807002,
 "max" : 7.807002
 },
 "failures" : {
 "count" : 0,
 "mean" : 0.0,
 "max" : 0.0
 }
 },
 "name" : "errorChannel"

319

 }, {
 "nodeId" : 3,
 "componentType" : "logging-channel-adapter",
 "integrationPatternType" : "outbound_channel_adapter",
 "integrationPatternCategory" : "messaging_endpoint",
 "properties" : { },
 "output" : null,
 "input" : "errorChannel",
 "sendTimers" : {
 "successes" : {
 "count" : 1,
 "mean" : 6.742722,
 "max" : 6.742722
 },
 "failures" : {
 "count" : 0,
 "mean" : 0.0,
 "max" : 0.0
 }
 },
 "name" : "errorLogger"
 }],
 "links" : [{
 "from" : 2,
 "to" : 3,
 "type" : "input"
 }]
}


Version 5.2 deprecated the legacy metrics in favor of Micrometer meters as
discussed Metrics Management. The legacy metrics were removed in Version 5.4
and will no longer appear in the graph.

In the preceding example, the graph consists of three top-level elements.

The contentDescriptor graph element contains general information about the application providing
the data. The name can be customized on the IntegrationGraphServer bean or in the
spring.application.name application context environment property. Other properties are provided
by the framework and let you distinguish a similar model from other sources.

The links graph element represents connections between nodes from the nodes graph element and,
therefore, between integration components in the source Spring Integration application. For
example, from a MessageChannel to an EventDrivenConsumer with some MessageHandler or from an
AbstractReplyProducingMessageHandler to a MessageChannel. For convenience and to let you
determine a link’s purpose, the model includes the type attribute. The possible types are:

• input: Identifies the direction from MessageChannel to the endpoint, inputChannel, or
requestChannel property

320

./metrics.pdf#metrics-management

• output: The direction from the MessageHandler, MessageProducer, or SourcePollingChannelAdapter
to the MessageChannel through an outputChannel or replyChannel property

• error: From MessageHandler on PollingConsumer or MessageProducer or
SourcePollingChannelAdapter to the MessageChannel through an errorChannel property;

• discard: From DiscardingMessageHandler (such as MessageFilter) to the MessageChannel through
an errorChannel property.

• route: From AbstractMappingMessageRouter (such as HeaderValueRouter) to the MessageChannel.
Similar to output but determined at run-time. May be a configured channel mapping or a
dynamically resolved channel. Routers typically retain only up to 100 dynamic routes for this
purpose, but you can modify this value by setting the dynamicChannelLimit property.

The information from this element can be used by a visualization tool to render connections
between nodes from the nodes graph element, where the from and to numbers represent the value
from the nodeId property of the linked nodes. For example, the link element can be used to
determine the proper port on the target node.

The following “text image” shows the relationships between the types:

 +---(discard)
 |
 +----o----+
 | |
 | |
 | |
(input)--o o---(output)
 | |
 | |
 | |
 +----o----+
 |
 +---(error)

The nodes graph element is perhaps the most interesting, because its elements contain not only the
runtime components with their componentType instances and name values but can also optionally
contain metrics exposed by the component. Node elements contain various properties that are
generally self-explanatory. For example, expression-based components include the expression
property that contains the primary expression string for the component. To enable the metrics, add
an @EnableIntegrationManagement to a @Configuration class or add an <int:management/> element to
your XML configuration. See Metrics and Management for complete information.

The nodeId represents a unique incremental identifier to let you distinguish one component from
another. It is also used in the links element to represent a relationship (connection) of this
component to others, if any. The input and output attributes are for the inputChannel and
outputChannel properties of the AbstractEndpoint, MessageHandler, SourcePollingChannelAdapter, or
MessageProducerSupport. See the next section for more information.

321

./metrics.pdf#metrics-management

Starting with version 5.1, the IntegrationGraphServer accepts a Function<NamedComponent,
Map<String, Object>> additionalPropertiesCallback for population of additional properties on the
IntegrationNode for a particular NamedComponent. For example you can expose the SmartLifecycle
autoStartup and running properties into the target graph:

server.setAdditionalPropertiesCallback(namedComponent -> {
 Map<String, Object> properties = null;
 if (namedComponent instanceof SmartLifecycle) {
 SmartLifecycle smartLifecycle = (SmartLifecycle) namedComponent;
 properties = new HashMap<>();
 properties.put("auto-startup", smartLifecycle.isAutoStartup());
 properties.put("running", smartLifecycle.isRunning());
 }
 return properties;
 });

13.8.1. Graph Runtime Model

Spring Integration components have various levels of complexity. For example, any polled
MessageSource also has a SourcePollingChannelAdapter and a MessageChannel to which to periodically
send messages from the source data. Other components might be middleware request-reply
components (such as JmsOutboundGateway) with a consuming AbstractEndpoint to subscribe to (or
poll) the requestChannel (input) for messages, and a replyChannel (output) to produce a reply
message to send downstream. Meanwhile, any MessageProducerSupport implementation (such as
ApplicationEventListeningMessageProducer) wraps some source protocol listening logic and sends
messages to the outputChannel.

Within the graph, Spring Integration components are represented by using the IntegrationNode
class hierarchy, which you can find in the o.s.i.support.management.graph package. For example,
you can use the ErrorCapableDiscardingMessageHandlerNode for the AggregatingMessageHandler
(because it has a discardChannel option) and can produce errors when consuming from a
PollableChannel by using a PollingConsumer. Another example is CompositeMessageHandlerNode — for
a MessageHandlerChain when subscribed to a SubscribableChannel by using an EventDrivenConsumer.


The @MessagingGateway (see Messaging Gateways) provides nodes for each of its
method, where the name attribute is based on the gateway’s bean name and the
short method signature. Consider the following example of a gateway:

322

./gateway.pdf#gateway

@MessagingGateway(defaultRequestChannel = "four")
public interface Gate {

 void foo(String foo);

 void foo(Integer foo);

 void bar(String bar);

}

The preceding gateway produces nodes similar to the following:

{
 "nodeId" : 10,
 "name" : "gate.bar(class java.lang.String)",
 "stats" : null,
 "componentType" : "gateway",
 "integrationPatternType" : "gateway",
 "integrationPatternCategory" : "messaging_endpoint",
 "output" : "four",
 "errors" : null
},
{
 "nodeId" : 11,
 "name" : "gate.foo(class java.lang.String)",
 "stats" : null,
 "componentType" : "gateway",
 "integrationPatternType" : "gateway",
 "integrationPatternCategory" : "messaging_endpoint",
 "output" : "four",
 "errors" : null
},
{
 "nodeId" : 12,
 "name" : "gate.foo(class java.lang.Integer)",
 "stats" : null,
 "componentType" : "gateway",
 "integrationPatternType" : "gateway",
 "integrationPatternCategory" : "messaging_endpoint",
 "output" : "four",
 "errors" : null
}

You can use this IntegrationNode hierarchy for parsing the graph model on the client side as well as

323

to understand the general Spring Integration runtime behavior. See also Programming Tips and
Tricks for more information.

Version 5.3 introduced an IntegrationPattern abstraction and all out-of-the-box components, which
represent an Enterprise Integration Pattern (EIP), implement this abstraction and provide an
IntegrationPatternType enum value. This information can be useful for some categorizing logic in
the target application or, being exposed into the graph node, it can be used by a UI to determine
how to draw the component.

13.9. Integration Graph Controller
If your application is web-based (or built on top of Spring Boot with an embedded web container)
and the Spring Integration HTTP or WebFlux module (see HTTP Support and WebFlux Support,
respectively) is present on the classpath, you can use a IntegrationGraphController to expose the
IntegrationGraphServer functionality as a REST service. For this purpose, the
@EnableIntegrationGraphController and @Configuration class annotations and the <int-http:graph-
controller/> XML element are available in the HTTP module. Together with the @EnableWebMvc
annotation (or <mvc:annotation-driven/> for XML definitions), this configuration registers an
IntegrationGraphController @RestController where its @RequestMapping.path can be configured on
the @EnableIntegrationGraphController annotation or <int-http:graph-controller/> element. The
default path is /integration.

The IntegrationGraphController @RestController provides the following services:

• @GetMapping(name = "getGraph"): To retrieve the state of the Spring Integration components
since the last IntegrationGraphServer refresh. The o.s.i.support.management.graph.Graph is
returned as a @ResponseBody of the REST service.

• @GetMapping(path = "/refresh", name = "refreshGraph"): To refresh the current Graph for the
actual runtime state and return it as a REST response. It is not necessary to refresh the graph for
metrics. They are provided in real-time when the graph is retrieved. Refresh can be called if the
application context has been modified since the graph was last retrieved. In that case, the graph
is completely rebuilt.

You can set security and cross-origin restrictions for the IntegrationGraphController with the
standard configuration options and components provided by the Spring Security and Spring MVC
projects. The following example achieves those goals:

324

./overview.pdf#programming-tips
./overview.pdf#programming-tips
./http.pdf#http
./webflux.pdf#webflux

<mvc:annotation-driven />

<mvc:cors>
 <mvc:mapping path="/myIntegration/**"
 allowed-origins="http://localhost:9090"
 allowed-methods="GET" />
</mvc:cors>

<security:http>
 <security:intercept-url pattern="/myIntegration/**" access="ROLE_ADMIN" />
</security:http>

<int-http:graph-controller path="/myIntegration" />

The following example shows how to do the same thing with Java configuration:

@Configuration
@EnableWebMvc // or @EnableWebFlux
@EnableWebSecurity // or @EnableWebFluxSecurity
@EnableIntegration
@EnableIntegrationGraphController(path = "/testIntegration", allowedOrigins=
"http://localhost:9090")
public class IntegrationConfiguration extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/testIntegration/**").hasRole("ADMIN")
 // ...
 .formLogin();
 }

 //...

}

Note that, for convenience, the @EnableIntegrationGraphController annotation provides an
allowedOrigins attribute. This provides GET access to the path. For more sophistication, you can
configure the CORS mappings by using standard Spring MVC mechanisms.

325

Integration Endpoints
This section covers the various channel adapters and messaging gateways provided by Spring
Integration to support message-based communication with external systems.

Each system, from AMQP to Zookeeper, has its own integration requirements, and this section
covers them.

326

Chapter 14. Endpoint Quick Reference Table
As discussed in the earlier sections, Spring Integration provides a number of endpoints used to
interface with external systems, file systems, and others.

For transparent dependency management Spring Integration provides a bill-of-materials POM to be
imported into the Maven configuration:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-bom</artifactId>
 <version>5.4.0</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

To recap:

• Inbound channel adapters are used for one-way integration to bring data into the messaging
application.

• Outbound channel adapters are used for one-way integration to send data out of the messaging
application.

• Inbound gateways are used for a bidirectional integration flow, where some other system
invokes the messaging application and receives a reply.

• Outbound Gateways are used for a bidirectional integration flow, where the messaging
application invokes some external service or entity and expects a result.

The following table summarizes the various endpoints with quick links to the appropriate chapter.

Table 8. Endpoint Quick Reference

Module Inbound Adapter Outbound
Adapter

Inbound Gateway Outbound
Gateway

AMQP Inbound Channel
Adapter

Outbound Channel
Adapter

Inbound Gateway Outbound
Gateway

Events Receiving Spring
Application Events

Sending Spring
Application Events

N N

Feed Feed Inbound
Channel Adapter

N N N

327

./amqp.pdf#amqp-inbound-channel-adapter
./amqp.pdf#amqp-inbound-channel-adapter
./amqp.pdf#amqp-outbound-channel-adapter
./amqp.pdf#amqp-outbound-channel-adapter
./amqp.pdf#amqp-inbound-gateway
./amqp.pdf#amqp-outbound-gateway
./amqp.pdf#amqp-outbound-gateway
./event.pdf#appevent-inbound
./event.pdf#appevent-inbound
./event.pdf#appevent-outbound
./event.pdf#appevent-outbound
./feed.pdf#feed-inbound-channel-adapter
./feed.pdf#feed-inbound-channel-adapter

Module Inbound Adapter Outbound
Adapter

Inbound Gateway Outbound
Gateway

File Reading Files and
'tail’ing Files

Writing files N Writing files

FTP(S) FTP Inbound
Channel Adapter

FTP Outbound
Channel Adapter

N FTP Outbound
Gateway

Gemfire Inbound Channel
Adapter and
Continuous Query
Inbound Channel
Adapter

Outbound Channel
Adapter

N N

HTTP HTTP Namespace
Support

HTTP Namespace
Support

Http Inbound
Components

HTTP Outbound
Components

JDBC Inbound Channel
Adapter and
Stored Procedure
Inbound Channel
Adapter

Outbound Channel
Adapter and
Stored Procedure
Outbound Channel
Adapter

N Outbound
Gateway and
Stored Procedure
Outbound
Gateway

JMS Inbound Channel
Adapter and
Message-driven
Channel Adapter

Outbound Channel
Adapter

Inbound Gateway Outbound
Gateway

JMX Notification-
listening Channel
Adapter and
Attribute-polling
Channel Adapter
and Tree-polling
Channel Adapter

Notification-
publishing
Channel Adapter
and Operation-
invoking Channel
Adapter

N Operation-
invoking
Outbound
Gateway

JPA Inbound Channel
Adapter

Outbound Channel
Adapter

N Updating
Outbound
Gateway and
Retrieving
Outbound
Gateway

Apache Kafka Message Driven
Channel Adapter
and Inbound
Channel Adapter

Outbound Channel
Adapter

Inbound Gateway Outbound
Gateway

Mail Mail-receiving
Channel Adapter

Mail-sending
Channel Adapter

N N

328

./file.pdf#file-reading
./file.pdf#file-tailing
./file.pdf#file-writing
./file.pdf#file-writing
./ftp.pdf#ftp-inbound
./ftp.pdf#ftp-inbound
./ftp.pdf#ftp-outbound
./ftp.pdf#ftp-outbound
./ftp.pdf#ftp-outbound-gateway
./ftp.pdf#ftp-outbound-gateway
./gemfire.pdf#gemfire-inbound
./gemfire.pdf#gemfire-inbound
./gemfire.pdf#gemfire-cq
./gemfire.pdf#gemfire-cq
./gemfire.pdf#gemfire-cq
./gemfire.pdf#gemfire-outbound
./gemfire.pdf#gemfire-outbound
./http.pdf#http-namespace
./http.pdf#http-namespace
./http.pdf#http-namespace
./http.pdf#http-namespace
./http.pdf#http-inbound
./http.pdf#http-inbound
./http.pdf#http-outbound
./http.pdf#http-outbound
./jdbc.pdf#jdbc-inbound-channel-adapter
./jdbc.pdf#jdbc-inbound-channel-adapter
./jdbc.pdf#stored-procedure-inbound-channel-adapter
./jdbc.pdf#stored-procedure-inbound-channel-adapter
./jdbc.pdf#stored-procedure-inbound-channel-adapter
./jdbc.pdf#jdbc-outbound-channel-adapter
./jdbc.pdf#jdbc-outbound-channel-adapter
./jdbc.pdf#stored-procedure-outbound-channel-adapter
./jdbc.pdf#stored-procedure-outbound-channel-adapter
./jdbc.pdf#stored-procedure-outbound-channel-adapter
./jdbc.pdf#jdbc-outbound-gateway
./jdbc.pdf#jdbc-outbound-gateway
./jdbc.pdf#stored-procedure-outbound-gateway
./jdbc.pdf#stored-procedure-outbound-gateway
./jdbc.pdf#stored-procedure-outbound-gateway
./jms.pdf#jms-inbound-channel-adapter
./jms.pdf#jms-inbound-channel-adapter
./jms.pdf#jms-message-driven-channel-adapter
./jms.pdf#jms-message-driven-channel-adapter
./jms.pdf#jms-outbound-channel-adapter
./jms.pdf#jms-outbound-channel-adapter
./jms.pdf#jms-inbound-gateway
./jms.pdf#jms-outbound-gateway
./jms.pdf#jms-outbound-gateway
./jmx.pdf#jmx-notification-listening-channel-adapter
./jmx.pdf#jmx-notification-listening-channel-adapter
./jmx.pdf#jmx-notification-listening-channel-adapter
./jmx.pdf#jmx-attribute-polling-channel-adapter
./jmx.pdf#jmx-attribute-polling-channel-adapter
./jmx.pdf#tree-polling-channel-adapter
./jmx.pdf#tree-polling-channel-adapter
./jmx.pdf#jmx-notification-publishing-channel-adapter
./jmx.pdf#jmx-notification-publishing-channel-adapter
./jmx.pdf#jmx-notification-publishing-channel-adapter
./jmx.pdf#jmx-operation-invoking-channel-adapter
./jmx.pdf#jmx-operation-invoking-channel-adapter
./jmx.pdf#jmx-operation-invoking-channel-adapter
./jmx.pdf#jmx-operation-invoking-outbound-gateway
./jmx.pdf#jmx-operation-invoking-outbound-gateway
./jmx.pdf#jmx-operation-invoking-outbound-gateway
./jmx.pdf#jmx-operation-invoking-outbound-gateway
./jpa.pdf#jpa-inbound-channel-adapter
./jpa.pdf#jpa-inbound-channel-adapter
./jpa.pdf#jpa-outbound-channel-adapter
./jpa.pdf#jpa-outbound-channel-adapter
./jpa.pdf#jpa-updating-outbound-gateway
./jpa.pdf#jpa-updating-outbound-gateway
./jpa.pdf#jpa-updating-outbound-gateway
./jpa.pdf#jpa-retrieving-outbound-gateway
./jpa.pdf#jpa-retrieving-outbound-gateway
./jpa.pdf#jpa-retrieving-outbound-gateway
./kafka.pdf#kafka-inbound
./kafka.pdf#kafka-inbound
./kafka.pdf#kafka-inbound-pollable
./kafka.pdf#kafka-inbound-pollable
./kafka.pdf#kafka-outbound
./kafka.pdf#kafka-outbound
./kafka.pdf#kafka-inbound-gateway
./kafka.pdf#kafka-outbound-gateway
./kafka.pdf#kafka-outbound-gateway
./mail.pdf#mail-inbound
./mail.pdf#mail-inbound
./mail.pdf#mail-outbound
./mail.pdf#mail-outbound

Module Inbound Adapter Outbound
Adapter

Inbound Gateway Outbound
Gateway

MongoDB MongoDB Inbound
Channel Adapter

MongoDB
Outbound Channel
Adapter

N N

MQTT Inbound (Message-
driven) Channel
Adapter

Outbound Channel
Adapter

N N

R2DBC R2DBC Inbound
Channel Adapter

R2DBC Outbound
Channel Adapter

N N

Redis Redis Inbound
Channel Adapter,
Redis Queue
Inbound Channel
Adapter, Redis
Store Inbound
Channel Adapter,
Redis Stream
Inbound Channel
Adapter

Redis Outbound
Channel Adapter,
Redis Queue
Outbound Channel
Adapter,
RedisStore
Outbound Channel
Adapter, Redis
Stream Outbound
Channel Adapter

Redis Queue
Inbound Gateway

Redis Outbound
Command
Gateway and
Redis Queue
Outbound
Gateway

Resource Resource Inbound
Channel Adapter

N N N

RMI N N Inbound RMI Outbound RMI

RSocket N N RSocket Inbound
Gateway

RSocket Outbound
Gateway

SFTP SFTP Inbound
Channel Adapter

SFTP Outbound
Channel Adapter

N SFTP Outbound
Gateway

STOMP STOMP Inbound
Channel Adapter

STOMP Outbound
Channel Adapter

N N

Stream Reading from
Streams

Writing to Streams N N

Syslog Syslog Inbound
Channel Adapter

N N N

TCP TCP Adapters TCP Adapters TCP Gateways TCP Gateways

UDP UDP Adapters UDP Adapters N N

WebFlux WebFlux Inbound
Channel Adapter

WebFlux
Outbound Channel
Adapter

Inbound WebFlux
Gateway

Outbound
WebFlux Gateway

Web Services N N Inbound Web
Service Gateways

Outbound Web
Service Gateways

329

./mongodb.pdf#mongodb-inbound-channel-adapter
./mongodb.pdf#mongodb-inbound-channel-adapter
./mongodb.pdf#mongodb-outbound-channel-adapter
./mongodb.pdf#mongodb-outbound-channel-adapter
./mongodb.pdf#mongodb-outbound-channel-adapter
./mqtt.pdf#mqtt-inbound
./mqtt.pdf#mqtt-inbound
./mqtt.pdf#mqtt-inbound
./mqtt.pdf#mqtt-outbound
./mqtt.pdf#mqtt-outbound
./r2dbc.pdf#r2dbc-inbound-channel-adapter
./r2dbc.pdf#r2dbc-inbound-channel-adapter
./r2dbc.pdf#r2dbc-outbound-channel-adapter
./r2dbc.pdf#r2dbc-outbound-channel-adapter
./redis.pdf#redis-inbound-channel-adapter
./redis.pdf#redis-inbound-channel-adapter
./redis.pdf#redis-queue-inbound-channel-adapter
./redis.pdf#redis-queue-inbound-channel-adapter
./redis.pdf#redis-queue-inbound-channel-adapter
./redis.pdf#redis-store-inbound-channel-adapter
./redis.pdf#redis-store-inbound-channel-adapter
./redis.pdf#redis-store-inbound-channel-adapter
./redis.pdf#redis-stream-inbound
./redis.pdf#redis-stream-inbound
./redis.pdf#redis-stream-inbound
./redis.pdf#redis-outbound-channel-adapter
./redis.pdf#redis-outbound-channel-adapter
./redis.pdf#redis-queue-outbound-channel-adapter
./redis.pdf#redis-queue-outbound-channel-adapter
./redis.pdf#redis-queue-outbound-channel-adapter
./redis.pdf#redis-store-outbound-channel-adapter
./redis.pdf#redis-store-outbound-channel-adapter
./redis.pdf#redis-store-outbound-channel-adapter
./redis.pdf#redis-stream-outbound
./redis.pdf#redis-stream-outbound
./redis.pdf#redis-stream-outbound
./redis.pdf#redis-queue-inbound-gateway
./redis.pdf#redis-queue-inbound-gateway
./redis.pdf#redis-outbound-gateway
./redis.pdf#redis-outbound-gateway
./redis.pdf#redis-outbound-gateway
./redis.pdf#redis-queue-outbound-gateway
./redis.pdf#redis-queue-outbound-gateway
./redis.pdf#redis-queue-outbound-gateway
./resource.pdf#resource-inbound-channel-adapter
./resource.pdf#resource-inbound-channel-adapter
./rmi.pdf#rmi-inbound
./rmi.pdf#rmi-outbound
./rsocket.pdf#rsocket-inbound
./rsocket.pdf#rsocket-inbound
./rsocket.pdf#rsocket-outbound
./rsocket.pdf#rsocket-outbound
./sftp.pdf#sftp-inbound
./sftp.pdf#sftp-inbound
./sftp.pdf#sftp-outbound
./sftp.pdf#sftp-outbound
./sftp.pdf#sftp-outbound-gateway
./sftp.pdf#sftp-outbound-gateway
./stomp.pdf#stomp-inbound-adapter
./stomp.pdf#stomp-inbound-adapter
./stomp.pdf#stomp-outbound-adapter
./stomp.pdf#stomp-outbound-adapter
./stream.pdf#stream-reading
./stream.pdf#stream-reading
./stream.pdf#stream-writing
./syslog.pdf#syslog-inbound-adapter
./syslog.pdf#syslog-inbound-adapter
./ip.pdf#tcp-adapters
./ip.pdf#tcp-adapters
./ip.pdf#tcp-gateways
./ip.pdf#tcp-gateways
./ip.pdf#udp-adapters
./ip.pdf#udp-adapters
./webflux.pdf#webflux-inbound
./webflux.pdf#webflux-inbound
./webflux.pdf#webflux-outbound
./webflux.pdf#webflux-outbound
./webflux.pdf#webflux-outbound
./webflux.pdf#webflux-inbound
./webflux.pdf#webflux-inbound
./webflux.pdf#webflux-outbound
./webflux.pdf#webflux-outbound
./ws.pdf#webservices-inbound
./ws.pdf#webservices-inbound
./ws.pdf#webservices-outbound
./ws.pdf#webservices-outbound

Module Inbound Adapter Outbound
Adapter

Inbound Gateway Outbound
Gateway

Web Sockets WebSocket
Inbound Channel
Adapter

WebSocket
Outbound Channel
Adapter

N N

XMPP XMPP Messages
and XMPP
Presence

XMPP Messages
and XMPP
Presence

N N

ZeroMQ ZeroMQ Inbound
Channel Adapter

ZeroMQ outbound
Channel Adapter

N N

In addition, as discussed in Core Messaging, Spring Integration provides endpoints for interfacing
with Plain Old Java Objects (POJOs). As discussed in Channel Adapter, the <int:inbound-channel-
adapter> element lets you poll a Java method for data. The <int:outbound-channel-adapter> element
lets you send data to a void method. As discussed in Messaging Gateways, the <int:gateway> element
lets any Java program invoke a messaging flow. Each of these works without requiring any source-
level dependencies on Spring Integration. The equivalent of an outbound gateway in this context is
using a service activator (see Service Activator) to invoke a method that returns an Object of some
kind.

Starting with version 5.2.2, all the inbound gateways can be configured with an errorOnTimeout
boolean flag to throw a MessageTimeoutException when the downstream flow doesn’t return a reply
during the reply timeout. The timer is not started until the thread returns control to the gateway, so
usually it is only useful when the downstream flow is asynchronous or it stops because of a null
return from some handler, e.g. filter. Such an exception can be handled on the errorChannel flow,
e.g. producing a compensation reply for requesting client.

330

./web-sockets.pdf#web-socket-inbound-adapter
./web-sockets.pdf#web-socket-inbound-adapter
./web-sockets.pdf#web-socket-inbound-adapter
./web-sockets.pdf#web-socket-outbound-adapter
./web-sockets.pdf#web-socket-outbound-adapter
./web-sockets.pdf#web-socket-outbound-adapter
./xmpp.pdf#xmpp-messages
./xmpp.pdf#xmpp-presence
./xmpp.pdf#xmpp-presence
./xmpp.pdf#xmpp-messages
./xmpp.pdf#xmpp-presence
./xmpp.pdf#xmpp-presence
./zeromq.pdf#zeromq-inbound-channel-adapter
./zeromq.pdf#zeromq-inbound-channel-adapter
./zeromq.pdf#zeromq-outbound-channel-adapter
./zeromq.pdf#zeromq-outbound-channel-adapter
./core.pdf#spring-integration-core-messaging
./channel-adapter.pdf#channel-adapter
./gateway.pdf#gateway
./service-activator.pdf#service-activator
./filter.pdf#filter

Chapter 15. AMQP Support
Spring Integration provides channel adapters for receiving and sending messages by using the
Advanced Message Queuing Protocol (AMQP).

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-amqp</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-amqp:5.4.0"

The following adapters are available:

• Inbound Channel Adapter

• Inbound Gateway

• Outbound Channel Adapter

• Outbound Gateway

• Async Outbound Gateway

Spring Integration also provides a point-to-point message channel and a publish-subscribe message
channel backed by AMQP Exchanges and Queues.

To provide AMQP support, Spring Integration relies on (Spring AMQP), which applies core Spring
concepts to the development of AMQP-based messaging solutions. Spring AMQP provides similar
semantics to (Spring JMS).

Whereas the provided AMQP Channel Adapters are intended for unidirectional messaging (send or
receive) only, Spring Integration also provides inbound and outbound AMQP gateways for request-
reply operations.

TIP: You should familiarize yourself with the reference documentation of the Spring AMQP project.
It provides much more in-depth information about Spring’s integration with AMQP in general and
RabbitMQ in particular.

15.1. Inbound Channel Adapter
The following listing shows the possible configuration options for an AMQP Inbound Channel

331

https://projects.spring.io/spring-amqp
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms
https://docs.spring.io/spring-amqp/reference/html/

Adapter:

332

<int-amqp:inbound-channel-adapter
 id="inboundAmqp" ①
 channel="inboundChannel" ②
 queue-names="si.test.queue" ③
 acknowledge-mode="AUTO" ④
 advice-chain="" ⑤
 channel-transacted="" ⑥
 concurrent-consumers="" ⑦
 connection-factory="" ⑧
 error-channel="" ⑨
 expose-listener-channel="" ⑩
 header-mapper="" ⑪
 mapped-request-headers="" ⑫
 listener-container="" ⑬
 message-converter="" ⑭
 message-properties-converter="" ⑮
 phase="" ⑯
 prefetch-count="" ⑰
 receive-timeout="" ⑱
 recovery-interval="" ⑲
 missing-queues-fatal="" ⑳
 shutdown-timeout=""
 task-executor=""
 transaction-attribute=""
 transaction-manager=""
 tx-size=""
 consumers-per-queue
 batch-mode="MESSAGES"/>

① The unique ID for this adapter. Optional.

② Message channel to which converted messages should be sent. Required.

③ Names of the AMQP queues (comma-separated list) from which messages should be
consumed. Required.

④ Acknowledge mode for the MessageListenerContainer. When set to MANUAL, the delivery tag
and channel are provided in message headers amqp_deliveryTag and amqp_channel,
respectively. The user application is responsible for acknowledgement. NONE means no
acknowledgements (autoAck). AUTO means the adapter’s container acknowledges when the
downstream flow completes. Optional (defaults to AUTO). See Inbound Endpoint
Acknowledge Mode.

⑤ Extra AOP Advices to handle cross-cutting behavior associated with this inbound channel
adapter. Optional.

⑥ Flag to indicate that channels created by this component are transactional. If true, it tells
the framework to use a transactional channel and to end all operations (send or receive)
with a commit or rollback, depending on the outcome, with an exception that signals a
rollback. Optional (Defaults to false).

⑦ Specify the number of concurrent consumers to create. The default is 1. We recommend

333

raising the number of concurrent consumers to scale the consumption of messages coming
in from a queue. However, note that any ordering guarantees are lost once multiple
consumers are registered. In general, use one consumer for low-volume queues. Not
allowed when 'consumers-per-queue' is set. Optional.

⑧ Bean reference to the RabbitMQ ConnectionFactory. Optional (defaults to connectionFactory).

⑨ Message channel to which error messages should be sent. Optional.

⑩ Whether the listener channel (com.rabbitmq.client.Channel) is exposed to a registered
ChannelAwareMessageListener. Optional (defaults to true).

⑪ A reference to an AmqpHeaderMapper to use when receiving AMQP Messages. Optional. By
default, only standard AMQP properties (such as contentType) are copied to Spring
Integration MessageHeaders. Any user-defined headers within the AMQP MessageProperties
are NOT copied to the message by the default DefaultAmqpHeaderMapper. Not allowed if
'request-header-names' is provided.

⑫ Comma-separated list of the names of AMQP Headers to be mapped from the AMQP request
into the MessageHeaders. This can only be provided if the 'header-mapper' reference is not
provided. The values in this list can also be simple patterns to be matched against the
header names (such as "*" or "thing1*, thing2" or "*something").

⑬ Reference to the AbstractMessageListenerContainer to use for receiving AMQP Messages. If
this attribute is provided, no other attribute related to the listener container configuration
should be provided. In other words, by setting this reference, you must take full
responsibility for the listener container configuration. The only exception is the
MessageListener itself. Since that is actually the core responsibility of this channel adapter
implementation, the referenced listener container must not already have its own
MessageListener. Optional.

⑭ The MessageConverter to use when receiving AMQP messages. Optional.

⑮ The MessagePropertiesConverter to use when receiving AMQP messages. Optional.

⑯ Specifies the phase in which the underlying AbstractMessageListenerContainer should be
started and stopped. The startup order proceeds from lowest to highest, and the shutdown
order is the reverse of that. By default, this value is Integer.MAX_VALUE, meaning that this
container starts as late as possible and stops as soon as possible. Optional.

⑰ Tells the AMQP broker how many messages to send to each consumer in a single request.
Often, you can set this value high to improve throughput. It should be greater than or equal
to the transaction size (see the tx-size attribute, later in this list). Optional (defaults to 1).

⑱ Receive timeout in milliseconds. Optional (defaults to 1000).

⑲ Specifies the interval between recovery attempts of the underlying
AbstractMessageListenerContainer (in milliseconds). Optional (defaults to 5000).

⑳ If 'true' and none of the queues are available on the broker, the container throws a fatal
exception during startup and stops if the queues are deleted when the container is running
(after making three attempts to passively declare the queues). If false, the container does
not throw an exception and goes into recovery mode, attempting to restart according to the
recovery-interval. Optional (defaults to true).

The time to wait for workers (in milliseconds) after the underlying

334

AbstractMessageListenerContainer is stopped and before the AMQP connection is forced
closed. If any workers are active when the shutdown signal comes, they are allowed to finish
processing as long as they can finish within this timeout. Otherwise, the connection is closed
and messages remain unacknowledged (if the channel is transactional). Optional (defaults to
5000).

By default, the underlying AbstractMessageListenerContainer uses a SimpleAsyncTaskExecutor
implementation, that fires up a new thread for each task, running it asynchronously. By
default, the number of concurrent threads is unlimited. Note that this implementation does
not reuse threads. Consider using a thread-pooling TaskExecutor implementation as an
alternative. Optional (defaults to SimpleAsyncTaskExecutor).

By default, the underlying AbstractMessageListenerContainer creates a new instance of the
DefaultTransactionAttribute (it takes the EJB approach to rolling back on runtime but not
checked exceptions). Optional (defaults to DefaultTransactionAttribute).

Sets a bean reference to an external PlatformTransactionManager on the underlying
AbstractMessageListenerContainer. The transaction manager works in conjunction with the
channel-transacted attribute. If there is already a transaction in progress when the
framework is sending or receiving a message and the channelTransacted flag is true, the
commit or rollback of the messaging transaction is deferred until the end of the current
transaction. If the channelTransacted flag is false, no transaction semantics apply to the
messaging operation (it is auto-acked). For further information, see Transactions with Spring
AMQP. Optional.

Tells the SimpleMessageListenerContainer how many messages to process in a single
transaction (if the channel is transactional). For best results, it should be less than or equal to
the value set in prefetch-count. Not allowed when 'consumers-per-queue' is set. Optional
(defaults to 1).

Indicates that the underlying listener container should be a DirectMessageListenerContainer
instead of the default SimpleMessageListenerContainer. See the Spring AMQP Reference
Manual for more information.

When the container’s consumerBatchEnabled is true, determines how the adapter presents the
batch of messages in the message payload. When set to MESSAGES (default), the payload is a
List<Message<?>> where each message has headers mapped from the incoming AMQP Message
and the payload is the converted body. When set to EXTRACT_PAYLOADS, the payload is a List<?>
where the elements are converted from the AMQP Message body.
EXTRACT_PAYLOADS_WITH_HEADERS is similar to EXTRACT_PAYLOADS but, in addition, the headers
from each message are mapped from the MessageProperties into a List<Map<String, Object> at
the corresponding index; the header name is
AmqpInboundChannelAdapter.CONSOLIDATED_HEADERS.

335

https://docs.spring.io/spring-amqp/reference/html/%255Freference.html#%5Ftransactions
https://docs.spring.io/spring-amqp/reference/html/%255Freference.html#%5Ftransactions
https://docs.spring.io/spring-amqp/reference/html/
https://docs.spring.io/spring-amqp/reference/html/



container

Note that when configuring an external container, you cannot use the Spring
AMQP namespace to define the container. This is because the namespace requires
at least one <listener/> element. In this environment, the listener is internal to the
adapter. For this reason, you must define the container by using a normal Spring
<bean/> definition, as the following example shows:

<bean id="container"
 class="org.springframework.amqp.rabbit.listener.SimpleMessageListenerC
ontainer">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="queueNames" value="aName.queue" />
 <property name="defaultRequeueRejected" value="false"/>
</bean>



Even though the Spring Integration JMS and AMQP support is similar, important
differences exist. The JMS inbound channel adapter is using a
JmsDestinationPollingSource under the covers and expects a configured poller. The
AMQP inbound channel adapter uses an AbstractMessageListenerContainer and is
message driven. In that regard, it is more similar to the JMS message-driven
channel adapter.

15.1.1. Configuring with Java Configuration

The following Spring Boot application shows an example of configuring the inbound adapter with
Java configuration:

336

@SpringBootApplication
public class AmqpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(AmqpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public MessageChannel amqpInputChannel() {
 return new DirectChannel();
 }

 @Bean
 public AmqpInboundChannelAdapter inbound(SimpleMessageListenerContainer
listenerContainer,
 @Qualifier("amqpInputChannel") MessageChannel channel) {
 AmqpInboundChannelAdapter adapter = new AmqpInboundChannelAdapter
(listenerContainer);
 adapter.setOutputChannel(channel);
 return adapter;
 }

 @Bean
 public SimpleMessageListenerContainer container(ConnectionFactory
connectionFactory) {
 SimpleMessageListenerContainer container =
 new SimpleMessageListenerContainer
(connectionFactory);
 container.setQueueNames("aName");
 container.setConcurrentConsumers(2);
 // ...
 return container;
 }

 @Bean
 @ServiceActivator(inputChannel = "amqpInputChannel")
 public MessageHandler handler() {
 return new MessageHandler() {

 @Override
 public void handleMessage(Message<?> message) throws
MessagingException {
 System.out.println(message.getPayload());
 }

 };
 }

337

}

15.1.2. Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the inbound adapter
with the Java DSL:

@SpringBootApplication
public class AmqpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(AmqpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public IntegrationFlow amqpInbound(ConnectionFactory connectionFactory) {
 return IntegrationFlows.from(Amqp.inboundAdapter(connectionFactory, "
aName"))
 .handle(m -> System.out.println(m.getPayload()))
 .get();
 }

}

15.1.3. Batched Messages

See the Spring AMQP Documentation for more information about batched messages.

To produce batched messages with Spring Integration, simply configure the outbound endpoint
with a BatchingRabbitTemplate.

When receiving batched messages, by default, the listener containers extract each fragment
message and the adapter will produce a Message<?> for each fragment. Starting with version 5.2, if
the container’s deBatchingEnabled property is set to false, the de-batching is performed by the
adapter instead, and a single Message<List<?>> is produced with the payload being a list of the
fragment payloads (after conversion if appropriate).

The default BatchingStrategy is the SimpleBatchingStrategy, but this can be overridden on the
adapter.

338

https://docs.spring.io/spring-amqp/docs/current/reference/html/#template-batching

15.2. Polled Inbound Channel Adapter

15.2.1. Overview

Version 5.0.1 introduced a polled channel adapter, letting you fetch individual messages on
demand — for example, with a MessageSourcePollingTemplate or a poller. See Deferred
Acknowledgment Pollable Message Source for more information.

It does not currently support XML configuration.

The following example shows how to configure an AmqpMessageSource with Java configuration:

@Bean
public AmqpMessageSource source(ConnectionFactory connectionFactory) {
 return new AmqpMessageSource(connectionFactory, "someQueue");
}

See the Javadoc for configuration properties.

The following example shows how to configure an inboundPolledAdapter with the Java DSL:

@Bean
public IntegrationFlow flow() {
 return IntegrationFlows.from(Amqp.inboundPolledAdapter(connectionFactory(),
DSL_QUEUE),
 e -> e.poller(Pollers.fixedDelay(1_000)).autoStartup(false))
 .handle(p -> {
 ...
 })
 .get();
}

15.2.2. Batched Messages

See Batched Messages.

For the polled adapter, there is no listener container, batched messages are always debatched (if
the BatchingStrategy supports doing so).

15.3. Inbound Gateway
The inbound gateway supports all the attributes on the inbound channel adapter (except that
'channel' is replaced by 'request-channel'), plus some additional attributes. The following listing
shows the available attributes:

339

./polling-consumer.pdf#deferred-acks-message-source
./polling-consumer.pdf#deferred-acks-message-source
https://docs.spring.io/spring-integration/api/org/springframework/integration/amqp/inbound/AmqpMessageSource.html

<int-amqp:inbound-gateway
 id="inboundGateway" ①
 request-channel="myRequestChannel" ②
 header-mapper="" ③
 mapped-request-headers="" ④
 mapped-reply-headers="" ⑤
 reply-channel="myReplyChannel" ⑥
 reply-timeout="1000" ⑦
 amqp-template="" ⑧
 default-reply-to="" /> ⑨

① The Unique ID for this adapter. Optional.

② Message channel to which converted messages are sent. Required.

③ A reference to an AmqpHeaderMapper to use when receiving AMQP Messages. Optional. By default,
only standard AMQP properties (such as contentType) are copied to and from Spring Integration
MessageHeaders. Any user-defined headers within the AMQP MessageProperties are not copied to
or from an AMQP message by the default DefaultAmqpHeaderMapper. Not allowed if 'request-
header-names' or 'reply-header-names' is provided.

④ Comma-separated list of names of AMQP Headers to be mapped from the AMQP request into the
MessageHeaders. This attribute can be provided only if the 'header-mapper' reference is not
provided. The values in this list can also be simple patterns to be matched against the header
names (e.g. "*" or "thing1*, thing2" or "*thing1").

⑤ Comma-separated list of names of MessageHeaders to be mapped into the AMQP message
properties of the AMQP reply message. All standard Headers (such as contentType) are mapped
to AMQP Message Properties, while user-defined headers are mapped to the 'headers' property.
This attribute can only be provided if the 'header-mapper' reference is not provided. The values
in this list can also be simple patterns to be matched against the header names (for example, "*"
or "foo*, bar" or "*foo").

⑥ Message Channel where reply Messages are expected. Optional.

⑦ Sets the receiveTimeout on the underlying o.s.i.core.MessagingTemplate for receiving messages
from the reply channel. If not specified, this property defaults to 1000 (1 second). Only applies if
the container thread hands off to another thread before the reply is sent.

⑧ The customized AmqpTemplate bean reference (to have more control over the reply messages to
send). You can provide an alternative implementation to the RabbitTemplate.

⑨ The replyTo o.s.amqp.core.Address to be used when the requestMessage does not have a replyTo
property. If this option is not specified, no amqp-template is provided, no replyTo property exists
in the request message, and an IllegalStateException is thrown because the reply cannot be
routed. If this option is not specified and an external amqp-template is provided, no exception is
thrown. You must either specify this option or configure a default exchange and routingKey on
that template, if you anticipate cases when no replyTo property exists in the request message.

See the note in Inbound Channel Adapter about configuring the listener-container attribute.

340

15.3.1. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the inbound gateway
with Java configuration:

341

@SpringBootApplication
public class AmqpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(AmqpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public MessageChannel amqpInputChannel() {
 return new DirectChannel();
 }

 @Bean
 public AmqpInboundGateway inbound(SimpleMessageListenerContainer
listenerContainer,
 @Qualifier("amqpInputChannel") MessageChannel channel) {
 AmqpInboundGateway gateway = new AmqpInboundGateway(listenerContainer);
 gateway.setRequestChannel(channel);
 gateway.setDefaultReplyTo("bar");
 return gateway;
 }

 @Bean
 public SimpleMessageListenerContainer container(ConnectionFactory
connectionFactory) {
 SimpleMessageListenerContainer container =
 new SimpleMessageListenerContainer(connectionFactory);
 container.setQueueNames("foo");
 container.setConcurrentConsumers(2);
 // ...
 return container;
 }

 @Bean
 @ServiceActivator(inputChannel = "amqpInputChannel")
 public MessageHandler handler() {
 return new AbstractReplyProducingMessageHandler() {

 @Override
 protected Object handleRequestMessage(Message<?> requestMessage) {
 return "reply to " + requestMessage.getPayload();
 }

 };
 }

}

342

15.3.2. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the inbound gateway
with the Java DSL:

@SpringBootApplication
public class AmqpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(AmqpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean // return the upper cased payload
 public IntegrationFlow amqpInboundGateway(ConnectionFactory connectionFactory)
{
 return IntegrationFlows.from(Amqp.inboundGateway(connectionFactory, "foo"
))
 .transform(String.class, String::toUpperCase)
 .get();
 }

}

15.3.3. Batched Messages

See Batched Messages.

15.4. Inbound Endpoint Acknowledge Mode
By default, the inbound endpoints use the AUTO acknowledge mode, which means the container
automatically acknowledges the message when the downstream integration flow completes (or a
message is handed off to another thread by using a QueueChannel or ExecutorChannel). Setting the
mode to NONE configures the consumer such that acknowledgments are not used at all (the broker
automatically acknowledges the message as soon as it is sent). Setting the mode to MANUAL lets user
code acknowledge the message at some other point during processing. To support this, with this
mode, the endpoints provide the Channel and deliveryTag in the amqp_channel and amqp_deliveryTag
headers, respectively.

You can perform any valid Rabbit command on the Channel but, generally, only basicAck and
basicNack (or basicReject) are used. In order to not interfere with the operation of the container,
you should not retain a reference to the channel and use it only in the context of the current
message.

343


Since the Channel is a reference to a “live” object, it cannot be serialized and is lost
if a message is persisted.

The following example shows how you might use MANUAL acknowledgement:

@ServiceActivator(inputChannel = "foo", outputChannel = "bar")
public Object handle(@Payload String payload, @Header(AmqpHeaders.CHANNEL) Channel
channel,
 @Header(AmqpHeaders.DELIVERY_TAG) Long deliveryTag) throws Exception {

 // Do some processing

 if (allOK) {
 channel.basicAck(deliveryTag, false);

 // perhaps do some more processing

 }
 else {
 channel.basicNack(deliveryTag, false, true);
 }
 return someResultForDownStreamProcessing;
}

15.5. Outbound Channel Adapter
The following outbound endpoints have many similar configuration options. Starting with version
5.2, the confirm-timeout has been added. Normally, when publisher confirms are enabled, the
broker will quickly return an ack (or nack) which will be sent to the appropriate channel. If a
channel is closed before the confirm is received, the Spring AMQP framework will synthesize a
nack. "Missing" acks should never occur but, if you set this property, the endpoint will periodically
check for them and synthesize a nack if the time elapses without a confirm being received.

15.6. Outbound Channel Adapter
The following example shows the available properties for an AMQP outbound channel adapter:

344

<int-amqp:outbound-channel-adapter id="outboundAmqp" ①
 channel="outboundChannel" ②
 amqp-template="myAmqpTemplate" ③
 exchange-name="" ④
 exchange-name-expression="" ⑤
 order="1" ⑥
 routing-key="" ⑦
 routing-key-expression="" ⑧
 default-delivery-mode"" ⑨
 confirm-correlation-expression="" ⑩
 confirm-ack-channel="" ⑪
 confirm-nack-channel="" ⑫
 confirm-timeout="" ⑬
 wait-for-confirm="" ⑭
 return-channel="" ⑮
 error-message-strategy="" ⑯
 header-mapper="" ⑰
 mapped-request-headers="" ⑱
 lazy-connect="true" ⑲
 multi-send="false"/> ⑳

① The unique ID for this adapter. Optional.

② Message channel to which messages should be sent to have them converted and published
to an AMQP exchange. Required.

③ Bean reference to the configured AMQP template. Optional (defaults to amqpTemplate).

④ The name of the AMQP exchange to which messages are sent. If not provided, messages are
sent to the default, no-name exchange. Mutually exclusive with 'exchange-name-
expression'. Optional.

⑤ A SpEL expression that is evaluated to determine the name of the AMQP exchange to which
messages are sent, with the message as the root object. If not provided, messages are sent to
the default, no-name exchange. Mutually exclusive with 'exchange-name'. Optional.

⑥ The order for this consumer when multiple consumers are registered, thereby enabling
load-balancing and failover. Optional (defaults to Ordered.LOWEST_PRECEDENCE
[=Integer.MAX_VALUE]).

⑦ The fixed routing-key to use when sending messages. By default, this is an empty String.
Mutually exclusive with 'routing-key-expression'. Optional.

⑧ A SpEL expression that is evaluated to determine the routing key to use when sending
messages, with the message as the root object (for example, 'payload.key'). By default, this is
an empty String. Mutually exclusive with 'routing-key'. Optional.

⑨ The default delivery mode for messages: PERSISTENT or NON_PERSISTENT. Overridden if the
header-mapper sets the delivery mode. If the Spring Integration message header
amqp_deliveryMode is present, the DefaultHeaderMapper sets the value. If this attribute is not
supplied and the header mapper does not set it, the default depends on the underlying
Spring AMQP MessagePropertiesConverter used by the RabbitTemplate. If that is not

345

customized at all, the default is PERSISTENT. Optional.

⑩ An expression that defines correlation data. When provided, this configures the underlying
AMQP template to receive publisher confirmations. Requires a dedicated RabbitTemplate
and a CachingConnectionFactory with the publisherConfirms property set to true. When a
publisher confirmation is received and correlation data is supplied, it is written to either
the confirm-ack-channel or the confirm-nack-channel, depending on the confirmation type.
The payload of the confirmation is the correlation data, as defined by this expression. The
message has an 'amqp_publishConfirm' header set to true (ack) or false (nack). Examples:
headers['myCorrelationData'] and payload. Version 4.1 introduced the
amqp_publishConfirmNackCause message header. It contains the cause of a 'nack' for a
publisher confirmation. Starting with version 4.2, if the expression resolves to a Message<?>
instance (such as #this), the message emitted on the ack/nack channel is based on that
message, with the additional header(s) added. Previously, a new message was created with
the correlation data as its payload, regardless of type. Also see Alternative Mechanism for
Publisher Confirms and Returns. Optional.

⑪ The channel to which positive (ack) publisher confirms are sent. The payload is the
correlation data defined by the confirm-correlation-expression. If the expression is #root or
#this, the message is built from the original message, with the amqp_publishConfirm header
set to true. Also see Alternative Mechanism for Publisher Confirms and Returns. Optional
(the default is nullChannel).

⑫ The channel to which negative (nack) publisher confirmations are sent. The payload is the
correlation data defined by the confirm-correlation-expression (if there is no
ErrorMessageStrategy configured). If the expression is #root or #this, the message is built
from the original message, with the amqp_publishConfirm header set to false. When there is
an ErrorMessageStrategy, the message is an ErrorMessage with a NackedAmqpMessageException
payload. Also see Alternative Mechanism for Publisher Confirms and Returns. Optional (the
default is nullChannel).

⑬ When set, the adapter will synthesize a negative acknowledgment (nack) if a publisher
confirm is not received within this time in milliseconds. Pending confirms are checked
every 50% of this value, so the actual time a nack is sent will be between 1x and 1.5x this
value. Also see Alternative Mechanism for Publisher Confirms and Returns. Default none
(nacks will not be generated).

⑭ When set to true, the calling thread will block, waiting for a publisher confirmation. This
requires a RabbitTemplate configured for confirms as well as a confirm-correlation-
expression. The thread will block for up to confirm-timeout (or 5 seconds by default). If a
timeout occurs, a MessageTimeoutException will be thrown. If returns are enabled and a
message is returned, or any other exception occurs while awaiting the confirm, a
MessageHandlingException will be thrown, with an appropriate message.

⑮ The channel to which returned messages are sent. When provided, the underlying AMQP
template is configured to return undeliverable messages to the adapter. When there is no
ErrorMessageStrategy configured, the message is constructed from the data received from
AMQP, with the following additional headers: amqp_returnReplyCode, amqp_returnReplyText,
amqp_returnExchange, amqp_returnRoutingKey. When there is an ErrorMessageStrategy, the
message is an ErrorMessage with a ReturnedAmqpMessageException payload. Also see
Alternative Mechanism for Publisher Confirms and Returns. Optional.

346

⑯ A reference to an ErrorMessageStrategy implementation used to build ErrorMessage
instances when sending returned or negatively acknowledged messages.

⑰ A reference to an AmqpHeaderMapper to use when sending AMQP Messages. By default, only
standard AMQP properties (such as contentType) are copied to the Spring Integration
MessageHeaders. Any user-defined headers is not copied to the message by the
default`DefaultAmqpHeaderMapper`. Not allowed if 'request-header-names' is provided.
Optional.

⑱ Comma-separated list of names of AMQP Headers to be mapped from the MessageHeaders to
the AMQP Message. Not allowed if the 'header-mapper' reference is provided. The values in
this list can also be simple patterns to be matched against the header names (e.g. "*" or
"thing1*, thing2" or "*thing1").

⑲ When set to false, the endpoint attempts to connect to the broker during application
context initialization. This allows “fail fast” detection of bad configuration but also causes
initialization to fail if the broker is down. When true (the default), the connection is
established (if it does not already exist because some other component established it) when
the first message is sent.

⑳ When set to true, payloads of type Iterable<Message<?>> will be sent as discrete messages on
the same channel within the scope of a single RabbitTemplate invocation. Requires a
RabbitTemplate. When wait-for-confirms is true, RabbitTemplate.waitForConfirmsOrDie() is
invoked after the messages have been sent. With a transactional template, the sends will be
performed in either a new transaction or one that has already been started (if present).



return-channel

Using a return-channel requires a RabbitTemplate with the mandatory property set to
true and a CachingConnectionFactory with the publisherReturns property set to true.
When using multiple outbound endpoints with returns, a separate RabbitTemplate
is needed for each endpoint.

15.6.1. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the outbound adapter
with Java configuration:

347

@SpringBootApplication
@IntegrationComponentScan
public class AmqpJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(AmqpJavaApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 gateway.sendToRabbit("foo");
 }

 @Bean
 @ServiceActivator(inputChannel = "amqpOutboundChannel")
 public AmqpOutboundEndpoint amqpOutbound(AmqpTemplate amqpTemplate) {
 AmqpOutboundEndpoint outbound = new AmqpOutboundEndpoint(amqpTemplate);
 outbound.setRoutingKey("foo"); // default exchange - route to queue 'foo'
 return outbound;
 }

 @Bean
 public MessageChannel amqpOutboundChannel() {
 return new DirectChannel();
 }

 @MessagingGateway(defaultRequestChannel = "amqpOutboundChannel")
 public interface MyGateway {

 void sendToRabbit(String data);

 }

}

15.6.2. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound adapter
with the Java DSL:

348

@SpringBootApplication
@IntegrationComponentScan
public class AmqpJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(AmqpJavaApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 gateway.sendToRabbit("foo");
 }

 @Bean
 public IntegrationFlow amqpOutbound(AmqpTemplate amqpTemplate) {
 return IntegrationFlows.from(amqpOutboundChannel())
 .handle(Amqp.outboundAdapter(amqpTemplate)
 .routingKey("foo")) // default exchange - route to
queue 'foo'
 .get();
 }

 @Bean
 public MessageChannel amqpOutboundChannel() {
 return new DirectChannel();
 }

 @MessagingGateway(defaultRequestChannel = "amqpOutboundChannel")
 public interface MyGateway {

 void sendToRabbit(String data);

 }
}

15.7. Outbound Gateway
The following listing shows the possible properties for an AMQP Outbound Gateway:

349

<int-amqp:outbound-gateway id="outboundGateway" ①
 request-channel="myRequestChannel" ②
 amqp-template="" ③
 exchange-name="" ④
 exchange-name-expression="" ⑤
 order="1" ⑥
 reply-channel="" ⑦
 reply-timeout="" ⑧
 requires-reply="" ⑨
 routing-key="" ⑩
 routing-key-expression="" ⑪
 default-delivery-mode"" ⑫
 confirm-correlation-expression="" ⑬
 confirm-ack-channel="" ⑭
 confirm-nack-channel="" ⑮
 confirm-timeout="" ⑯
 return-channel="" ⑰
 error-message-strategy="" ⑱
 lazy-connect="true" /> ⑲

① The unique ID for this adapter. Optional.

② Message channel to which messages are sent to have them converted and published to an
AMQP exchange. Required.

③ Bean reference to the configured AMQP template. Optional (defaults to amqpTemplate).

④ The name of the AMQP exchange to which messages should be sent. If not provided,
messages are sent to the default, no-name cxchange. Mutually exclusive with 'exchange-
name-expression'. Optional.

⑤ A SpEL expression that is evaluated to determine the name of the AMQP exchange to which
messages should be sent, with the message as the root object. If not provided, messages are
sent to the default, no-name exchange. Mutually exclusive with 'exchange-name'. Optional.

⑥ The order for this consumer when multiple consumers are registered, thereby enabling
load-balancing and failover. Optional (defaults to Ordered.LOWEST_PRECEDENCE
[=Integer.MAX_VALUE]).

⑦ Message channel to which replies should be sent after being received from an AMQP queue
and converted. Optional.

⑧ The time the gateway waits when sending the reply message to the reply-channel. This only
applies if the reply-channel can block — such as a QueueChannel with a capacity limit that is
currently full. Defaults to infinity.

⑨ When true, the gateway throws an exception if no reply message is received within the
AmqpTemplate’s `replyTimeout property. Defaults to true.

⑩ The routing-key to use when sending messages. By default, this is an empty String. Mutually
exclusive with 'routing-key-expression'. Optional.

⑪ A SpEL expression that is evaluated to determine the routing-key to use when sending

350

messages, with the message as the root object (for example, 'payload.key'). By default, this is
an empty String. Mutually exclusive with 'routing-key'. Optional.

⑫ The default delivery mode for messages: PERSISTENT or NON_PERSISTENT. Overridden if the
header-mapper sets the delivery mode. If the Spring Integration message header
amqp_deliveryMode is present, the DefaultHeaderMapper sets the value. If this attribute is not
supplied and the header mapper does not set it, the default depends on the underlying
Spring AMQP MessagePropertiesConverter used by the RabbitTemplate. If that is not
customized at all, the default is PERSISTENT. Optional.

⑬ Since version 4.2. An expression defining correlation data. When provided, this configures
the underlying AMQP template to receive publisher confirms. Requires a dedicated
RabbitTemplate and a CachingConnectionFactory with the publisherConfirms property set to
true. When a publisher confirm is received and correlation data is supplied, it is written to
either the confirm-ack-channel or the confirm-nack-channel, depending on the confirmation
type. The payload of the confirm is the correlation data, as defined by this expression. The
message has a header 'amqp_publishConfirm' set to true (ack) or false (nack). For nack
confirmations, Spring Integration provides an additional header
amqp_publishConfirmNackCause. Examples: headers['myCorrelationData'] and payload. If the
expression resolves to a Message<?> instance (such as #this), the message emitted on the ack
/nack channel is based on that message, with the additional headers added. Previously, a
new message was created with the correlation data as its payload, regardless of type. Also
see Alternative Mechanism for Publisher Confirms and Returns. Optional.

⑭ The channel to which positive (ack) publisher confirmations are sent. The payload is the
correlation data defined by confirm-correlation-expression. If the expression is #root or
#this, the message is built from the original message, with the amqp_publishConfirm header
set to true. Also see Alternative Mechanism for Publisher Confirms and Returns. Optional
(the default is nullChannel).

⑮ The channel to which negative (nack) publisher confirmations are sent. The payload is the
correlation data defined by confirm-correlation-expression (if there is no
ErrorMessageStrategy configured). If the expression is #root or #this, the message is built
from the original message, with the amqp_publishConfirm header set to false. When there is
an ErrorMessageStrategy, the message is an ErrorMessage with a NackedAmqpMessageException
payload. Also see Alternative Mechanism for Publisher Confirms and Returns. Optional (the
default is nullChannel).

⑯ When set, the gateway will synthesize a negative acknowledgment (nack) if a publisher
confirm is not received within this time in milliseconds. Pending confirms are checked
every 50% of this value, so the actual time a nack is sent will be between 1x and 1.5x this
value. Default none (nacks will not be generated).

⑰ The channel to which returned messages are sent. When provided, the underlying AMQP
template is configured to return undeliverable messages to the adapter. When there is no
ErrorMessageStrategy configured, the message is constructed from the data received from
AMQP, with the following additional headers: amqp_returnReplyCode, amqp_returnReplyText,
amqp_returnExchange, and amqp_returnRoutingKey. When there is an ErrorMessageStrategy, the
message is an ErrorMessage with a ReturnedAmqpMessageException payload. Also see
Alternative Mechanism for Publisher Confirms and Returns. Optional.

⑱ A reference to an ErrorMessageStrategy implementation used to build ErrorMessage

351

instances when sending returned or negatively acknowledged messages.

⑲ When set to false, the endpoint attempts to connect to the broker during application
context initialization. This allows “fail fast” detection of bad configuration by logging an
error message if the broker is down. When true (the default), the connection is established
(if it does not already exist because some other component established it) when the first
message is sent.



return-channel

Using a return-channel requires a RabbitTemplate with the mandatory property set to
true and a CachingConnectionFactory with the publisherReturns property set to true.
When using multiple outbound endpoints with returns, a separate RabbitTemplate
is needed for each endpoint.


The underlying AmqpTemplate has a default replyTimeout of five seconds. If you
require a longer timeout, you must configure it on the template.

15.7.1. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the outbound gateway
with Java configuration:

352

@SpringBootApplication
@IntegrationComponentScan
public class AmqpJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(AmqpJavaApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 String reply = gateway.sendToRabbit("foo");
 System.out.println(reply);
 }

 @Bean
 @ServiceActivator(inputChannel = "amqpOutboundChannel")
 public AmqpOutboundEndpoint amqpOutbound(AmqpTemplate amqpTemplate) {
 AmqpOutboundEndpoint outbound = new AmqpOutboundEndpoint(amqpTemplate);
 outbound.setExpectReply(true);
 outbound.setRoutingKey("foo"); // default exchange - route to queue 'foo'
 return outbound;
 }

 @Bean
 public MessageChannel amqpOutboundChannel() {
 return new DirectChannel();
 }

 @MessagingGateway(defaultRequestChannel = "amqpOutboundChannel")
 public interface MyGateway {

 String sendToRabbit(String data);

 }

}

Note that the only difference between the outbound adapter and outbound gateway configuration
is the setting of the expectReply property.

15.7.2. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound adapter
with the Java DSL:

353

@SpringBootApplication
@IntegrationComponentScan
public class AmqpJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(AmqpJavaApplication.class)
 .web(false)
 .run(args);
 RabbitTemplate template = context.getBean(RabbitTemplate.class);
 MyGateway gateway = context.getBean(MyGateway.class);
 String reply = gateway.sendToRabbit("foo");
 System.out.println(reply);
 }

 @Bean
 public IntegrationFlow amqpOutbound(AmqpTemplate amqpTemplate) {
 return IntegrationFlows.from(amqpOutboundChannel())
 .handle(Amqp.outboundGateway(amqpTemplate)
 .routingKey("foo")) // default exchange - route to queue
'foo'
 .get();
 }

 @Bean
 public MessageChannel amqpOutboundChannel() {
 return new DirectChannel();
 }

 @MessagingGateway(defaultRequestChannel = "amqpOutboundChannel")
 public interface MyGateway {

 String sendToRabbit(String data);

 }
}

15.8. Asynchronous Outbound Gateway
The gateway discussed in the previous section is synchronous, in that the sending thread is
suspended until a reply is received (or a timeout occurs). Spring Integration version 4.3 added an
asynchronous gateway, which uses the AsyncRabbitTemplate from Spring AMQP. When a message is
sent, the thread returns immediately after the send operation completes, and, when the message is
received, the reply is sent on the template’s listener container thread. This can be useful when the
gateway is invoked on a poller thread. The thread is released and is available for other tasks in the
framework.

354

The following listing shows the possible configuration options for an AMQP asynchronous
outbound gateway:

355

<int-amqp:outbound-async-gateway id="asyncOutboundGateway" ①
 request-channel="myRequestChannel" ②
 async-template="" ③
 exchange-name="" ④
 exchange-name-expression="" ⑤
 order="1" ⑥
 reply-channel="" ⑦
 reply-timeout="" ⑧
 requires-reply="" ⑨
 routing-key="" ⑩
 routing-key-expression="" ⑪
 default-delivery-mode"" ⑫
 confirm-correlation-expression="" ⑬
 confirm-ack-channel="" ⑭
 confirm-nack-channel="" ⑮
 confirm-timeout="" ⑯
 return-channel="" ⑰
 lazy-connect="true" /> ⑱

① The unique ID for this adapter. Optional.

② Message channel to which messages should be sent in order to have them converted and
published to an AMQP exchange. Required.

③ Bean reference to the configured AsyncRabbitTemplate. Optional (it defaults to
asyncRabbitTemplate).

④ The name of the AMQP exchange to which messages should be sent. If not provided,
messages are sent to the default, no-name exchange. Mutually exclusive with 'exchange-
name-expression'. Optional.

⑤ A SpEL expression that is evaluated to determine the name of the AMQP exchange to which
messages are sent, with the message as the root object. If not provided, messages are sent to
the default, no-name exchange. Mutually exclusive with 'exchange-name'. Optional.

⑥ The order for this consumer when multiple consumers are registered, thereby enabling
load-balancing and failover. Optional (it defaults to Ordered.LOWEST_PRECEDENCE
[=Integer.MAX_VALUE]).

⑦ Message channel to which replies should be sent after being received from an AMQP queue
and converted. Optional.

⑧ The time the gateway waits when sending the reply message to the reply-channel. This only
applies if the reply-channel can block — such as a QueueChannel with a capacity limit that is
currently full. The default is infinity.

⑨ When no reply message is received within the AsyncRabbitTemplate’s `receiveTimeout
property and this setting is true, the gateway sends an error message to the inbound
message’s errorChannel header. When no reply message is received within the
AsyncRabbitTemplate’s `receiveTimeout property and this setting is false, the gateway sends
an error message to the default errorChannel (if available). It defaults to true.

⑩ The routing-key to use when sending Messages. By default, this is an empty String. Mutually

356

exclusive with 'routing-key-expression'. Optional.

⑪ A SpEL expression that is evaluated to determine the routing-key to use when sending
messages, with the message as the root object (for example, 'payload.key'). By default, this is
an empty String. Mutually exclusive with 'routing-key'. Optional.

⑫ The default delivery mode for messages: PERSISTENT or NON_PERSISTENT. Overridden if the
header-mapper sets the delivery mode. If the Spring Integration message header
(amqp_deliveryMode) is present, the DefaultHeaderMapper sets the value. If this attribute is not
supplied and the header mapper does not set it, the default depends on the underlying
Spring AMQP MessagePropertiesConverter used by the RabbitTemplate. If that is not
customized, the default is PERSISTENT. Optional.

⑬ An expression that defines correlation data. When provided, this configures the underlying
AMQP template to receive publisher confirmations. Requires a dedicated RabbitTemplate
and a CachingConnectionFactory with its publisherConfirms property set to true. When a
publisher confirmation is received and correlation data is supplied, the confirmation is
written to either the confirm-ack-channel or the confirm-nack-channel, depending on the
confirmation type. The payload of the confirmation is the correlation data as defined by
this expression, and the message has its 'amqp_publishConfirm' header set to true (ack) or
false (nack). For nack instances, an additional header (amqp_publishConfirmNackCause) is
provided. Examples: headers['myCorrelationData'], payload. If the expression resolves to a
Message<?> instance (such as “#this”), the message emitted on the ack/nack channel is based
on that message, with the additional headers added. Also see Alternative Mechanism for
Publisher Confirms and Returns. Optional.

⑭ The channel to which positive (ack) publisher confirmations are sent. The payload is the
correlation data defined by the confirm-correlation-expression. Requires the underlying
AsyncRabbitTemplate to have its enableConfirms property set to true. Also see Alternative
Mechanism for Publisher Confirms and Returns. Optional (the default is nullChannel).

⑮ Since version 4.2. The channel to which negative (nack) publisher confirmations are sent.
The payload is the correlation data defined by the confirm-correlation-expression. Requires
the underlying AsyncRabbitTemplate to have its enableConfirms property set to true. Also see
Alternative Mechanism for Publisher Confirms and Returns. Optional (the default is
nullChannel).

⑯ When set, the gateway will synthesize a negative acknowledgment (nack) if a publisher
confirm is not received within this time in milliseconds. Pending confirms are checked
every 50% of this value, so the actual time a nack is sent will be between 1x and 1.5x this
value. Also see Alternative Mechanism for Publisher Confirms and Returns. Default none
(nacks will not be generated).

⑰ The channel to which returned messages are sent. When provided, the underlying AMQP
template is configured to return undeliverable messages to the gateway. The message is
constructed from the data received from AMQP, with the following additional headers:
amqp_returnReplyCode, amqp_returnReplyText, amqp_returnExchange, and
amqp_returnRoutingKey. Requires the underlying AsyncRabbitTemplate to have its mandatory
property set to true. Also see Alternative Mechanism for Publisher Confirms and Returns.
Optional.

⑱ When set to false, the endpoint tries to connect to the broker during application context
initialization. Doing so allows “fail fast” detection of bad configuration, by logging an error

357

message if the broker is down. When true (the default), the connection is established (if it
does not already exist because some other component established it) when the first
message is sent.

See also Asynchronous Service Activator for more information.



RabbitTemplate

When you use confirmations and returns, we recommend that the RabbitTemplate
wired into the AsyncRabbitTemplate be dedicated. Otherwise, unexpected side-
effects may be encountered.

15.8.1. Configuring with Java Configuration

The following configuration shows an example of how to configure the outbound gateway with
Java configuration:

358

./service-activator.pdf#async-service-activator

@Configuration
public class AmqpAsyncConfig {

 @Bean
 @ServiceActivator(inputChannel = "amqpOutboundChannel")
 public AsyncAmqpOutboundGateway amqpOutbound(AmqpTemplate asyncTemplate) {
 AsyncAmqpOutboundGateway outbound = new AsyncAmqpOutboundGateway
(asyncTemplate);
 outbound.setRoutingKey("foo"); // default exchange - route to queue 'foo'
 return outbound;
 }

 @Bean
 public AsyncRabbitTemplate asyncTemplate(RabbitTemplate rabbitTemplate,
 SimpleMessageListenerContainer replyContainer) {
 return new AsyncRabbitTemplate(rabbitTemplate, replyContainer);
 }

 @Bean
 public SimpleMessageListenerContainer replyContainer() {
 SimpleMessageListenerContainer container = new
SimpleMessageListenerContainer(ccf);
 container.setQueueNames("asyncRQ1");
 return container;
 }

 @Bean
 public MessageChannel amqpOutboundChannel() {
 return new DirectChannel();
 }

}

15.8.2. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound adapter
with the Java DSL:

359

@SpringBootApplication
public class AmqpAsyncApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(AmqpAsyncApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 String reply = gateway.sendToRabbit("foo");
 System.out.println(reply);
 }

 @Bean
 public IntegrationFlow asyncAmqpOutbound(AsyncRabbitTemplate
asyncRabbitTemplate) {
 return f -> f
 .handle(Amqp.asyncOutboundGateway(asyncRabbitTemplate)
 .routingKey("foo")); // default exchange - route to queue
'foo'
 }

 @MessagingGateway(defaultRequestChannel = "asyncAmqpOutbound.input")
 public interface MyGateway {

 String sendToRabbit(String data);

 }

}

15.9. Alternative Mechanism for Publisher Confirms
and Returns
When the connection factory is configured for publisher confirms and returns, the sections above
discuss the configuration of message channels to receive the confirms and returns asynchronously.
Starting with version 5.4, there is an additional mechanism which is generally easier to use.

In this case, do not configure a confirm-correlation-expression or the confirm and return channels.
Instead, add a CorrelationData instance in the AmqpHeaders.PUBLISH_CONFIRM_CORRELATION header; you
can then wait for the result(s) later, by checking the state of the future in the CorrelationData
instances for which you have sent messages. The returnedMessage field will always be populated (if
a message is returned) before the future is completed.

360

CorrelationData corr = new CorrelationData("someId"); // <--- Unique "id" is
required for returns
someFlow.getInputChannel().send(MessageBuilder.withPayload("test")
 .setHeader("rk", "someKeyThatWontRoute")
 .setHeader(AmqpHeaders.PUBLISH_CONFIRM_CORRELATION, corr)
 .build());
...
try {
 Confirm Confirm = corr.getFuture().get(10, TimeUnit.SECONDS);
 Message returned = corr.getReturnedMessage();
 if (returned !- null) {
 // meessage could not be routed
 }
}
catch { ... }

To improve performance, you may wish to send multiple messages and wait for the confirmations
later, rather than one-at-a-time. The returned message is the raw message after conversion; you can
subclass CorrelationData with whatever additional data you need.

15.10. Inbound Message Conversion
Inbound messages, arriving at the channel adapter or gateway, are converted to the spring-
messaging Message<?> payload using a message converter. By default, a SimpleMessageConverter is
used, which handles java serialization and text. Headers are mapped using the
DefaultHeaderMapper.inboundMapper() by default. If a conversion error occurs, and there is no error
channel defined, the exception is thrown to the container and handled by the listener container’s
error handler. The default error handler treats conversion errors as fatal and the message will be
rejected (and routed to a dead-letter exchange, if the queue is so configured). If an error channel is
defined, the ErrorMessage payload is a ListenerExecutionFailedException with properties
failedMessage (the Spring AMQP message that could not be converted) and the cause. If the
container AcknowledgeMode is AUTO (the default) and the error flow consumes the error without
throwing an exception, the original message will be acknowledged. If the error flow throws an
exception, the exception type, in conjunction with the container’s error handler, will determine
whether or not the message is requeued. If the container is configured with AcknowledgeMode.MANUAL,
the payload is a ManualAckListenerExecutionFailedException with additional properties channel and
deliveryTag. This enables the error flow to call basicAck or basicNack (or basicReject) for the
message, to control its disposition.

15.11. Outbound Message Conversion
Spring AMQP 1.4 introduced the ContentTypeDelegatingMessageConverter, where the actual converter
is selected based on the incoming content type message property. This can be used by inbound
endpoints.

As of Spring Integration version 4.3, you can use the ContentTypeDelegatingMessageConverter on

361

outbound endpoints as well, with the contentType header specifying which converter is used.

The following example configures a ContentTypeDelegatingMessageConverter, with the default
converter being the SimpleMessageConverter (which handles Java serialization and plain text),
together with a JSON converter:

<amqp:outbound-channel-adapter id="withContentTypeConverter" channel=
"ctRequestChannel"
 exchange-name="someExchange"
 routing-key="someKey"
 amqp-template="amqpTemplateContentTypeConverter" />

<int:channel id="ctRequestChannel"/>

<rabbit:template id="amqpTemplateContentTypeConverter"
 connection-factory="connectionFactory" message-converter="ctConverter" />

<bean id="ctConverter"
 class="o.s.amqp.support.converter.ContentTypeDelegatingMessageConverter">
 <property name="delegates">
 <map>
 <entry key="application/json">
 <bean class=
"o.s.amqp.support.converter.Jackson2JsonMessageConverter" />
 </entry>
 </map>
 </property>
</bean>

Sending a message to ctRequestChannel with the contentType header set to application/json causes
the JSON converter to be selected.

This applies to both the outbound channel adapter and gateway.

362



Starting with version 5.0, headers that are added to the MessageProperties of the
outbound message are never overwritten by mapped headers (by default).
Previously, this was only the case if the message converter was a
ContentTypeDelegatingMessageConverter (in that case, the header was mapped first
so that the proper converter could be selected). For other converters, such as the
SimpleMessageConverter, mapped headers overwrote any headers added by the
converter. This caused problems when an outbound message had some leftover
contentType headers (perhaps from an inbound channel adapter) and the correct
outbound contentType was incorrectly overwritten. The work-around was to use a
header filter to remove the header before sending the message to the outbound
endpoint.

There are, however, cases where the previous behavior is desired — for example,
when a String payload that contains JSON, the SimpleMessageConverter is not aware
of the content and sets the contentType message property to text/plain but your
application would like to override that to application/json by setting the
contentType header of the message sent to the outbound endpoint. The
ObjectToJsonTransformer does exactly that (by default).

There is now a property called headersMappedLast on the outbound channel adapter
and gateway (as well as on AMQP-backed channels). Setting this to true restores
the behavior of overwriting the property added by the converter.

Starting with version 5.1.9, a similar replyHeadersMappedLast is provided for the
AmqpInboundGateway when we produce a reply and would like to override headers
populated by the converter. See its JavaDocs for more information.

15.12. Outbound User ID
Spring AMQP version 1.6 introduced a mechanism to allow the specification of a default user ID for
outbound messages. It has always been possible to set the AmqpHeaders.USER_ID header, which now
takes precedence over the default. This might be useful to message recipients. For inbound
messages, if the message publisher sets the property, it is made available in the
AmqpHeaders.RECEIVED_USER_ID header. Note that RabbitMQ validates that the user ID is the actual
user ID for the connection or that the connection allows impersonation.

To configure a default user ID for outbound messages, configure it on a RabbitTemplate and
configure the outbound adapter or gateway to use that template. Similarly, to set the user ID
property on replies, inject an appropriately configured template into the inbound gateway. See the
Spring AMQP documentation for more information.

15.13. Delayed Message Exchange
Spring AMQP supports the RabbitMQ Delayed Message Exchange Plugin. For inbound messages, the
x-delay header is mapped to the AmqpHeaders.RECEIVED_DELAY header. Setting the AMQPHeaders.DELAY
header causes the corresponding x-delay header to be set in outbound messages. You can also
specify the delay and delayExpression properties on outbound endpoints (delay-expression when

363

https://www.rabbitmq.com/validated-user-id.html
https://www.rabbitmq.com/validated-user-id.html
https://docs.spring.io/spring-amqp/reference/html/_reference.html#template-user-id
https://docs.spring.io/spring-amqp/reference/html/#delayed-message-exchange

using XML configuration). These properties take precedence over the AmqpHeaders.DELAY header.

15.14. AMQP-backed Message Channels
There are two message channel implementations available. One is point-to-point, and the other is
publish-subscribe. Both of these channels provide a wide range of configuration attributes for the
underlying AmqpTemplate and SimpleMessageListenerContainer (as shown earlier in this chapter for
the channel adapters and gateways). However, the examples we show here have minimal
configuration. Explore the XML schema to view the available attributes.

A point-to-point channel might look like the following example:

<int-amqp:channel id="p2pChannel"/>

Under the covers, the preceding example causes a Queue named si.p2pChannel to be declared, and
this channel sends to that Queue (technically, by sending to the no-name direct exchange with a
routing key that matches the name of this Queue). This channel also registers a consumer on that
Queue. If you want the channel to be “pollable” instead of message-driven, provide the message-
driven flag with a value of false, as the following example shows:

<int-amqp:channel id="p2pPollableChannel" message-driven="false"/>

A publish-subscribe channel might look like the following:

<int-amqp:publish-subscribe-channel id="pubSubChannel"/>

Under the covers, the preceding example causes a fanout exchange named si.fanout.pubSubChannel
to be declared, and this channel sends to that fanout exchange. This channel also declares a server-
named exclusive, auto-delete, non-durable Queue and binds that to the fanout exchange while
registering a consumer on that Queue to receive messages. There is no “pollable” option for a
publish-subscribe-channel. It must be message-driven.

Starting with version 4.1, AMQP-backed message channels (in conjunction with channel-transacted)
support template-channel-transacted to separate transactional configuration for the
AbstractMessageListenerContainer and for the RabbitTemplate. Note that, previously, channel-
transacted was true by default. Now, by default, it is false for the AbstractMessageListenerContainer.

Prior to version 4.3, AMQP-backed channels only supported messages with Serializable payloads
and headers. The entire message was converted (serialized) and sent to RabbitMQ. Now, you can set
the extract-payload attribute (or setExtractPayload() when using Java configuration) to true. When
this flag is true, the message payload is converted and the headers are mapped, in a manner similar

364

to when you use channel adapters. This arrangement lets AMQP-backed channels be used with non-
serializable payloads (perhaps with another message converter, such as the
Jackson2JsonMessageConverter). See AMQP Message Headers for more about the default mapped
headers. You can modify the mapping by providing custom mappers that use the outbound-header-
mapper and inbound-header-mapper attributes. You can now also specify a default-delivery-mode,
which is used to set the delivery mode when there is no amqp_deliveryMode header. By default,
Spring AMQP MessageProperties uses PERSISTENT delivery mode.



As with other persistence-backed channels, AMQP-backed channels are intended
to provide message persistence to avoid message loss. They are not intended to
distribute work to other peer applications. For that purpose, use channel adapters
instead.



Starting with version 5.0, the pollable channel now blocks the poller thread for the
specified receiveTimeout (the default is 1 second). Previously, unlike other
PollableChannel implementations, the thread returned immediately to the
scheduler if no message was available, regardless of the receive timeout. Blocking
is a little more expensive than using a basicGet() to retrieve a message (with no
timeout), because a consumer has to be created to receive each message. To
restore the previous behavior, set the poller’s receiveTimeout to 0.

15.14.1. Configuring with Java Configuration

The following example shows how to configure the channels with Java configuration:

365

@Bean
public AmqpChannelFactoryBean pollable(ConnectionFactory connectionFactory) {
 AmqpChannelFactoryBean factoryBean = new AmqpChannelFactoryBean();
 factoryBean.setConnectionFactory(connectionFactory);
 factoryBean.setQueueName("foo");
 factoryBean.setPubSub(false);
 return factoryBean;
}

@Bean
public AmqpChannelFactoryBean messageDriven(ConnectionFactory connectionFactory) {
 AmqpChannelFactoryBean factoryBean = new AmqpChannelFactoryBean(true);
 factoryBean.setConnectionFactory(connectionFactory);
 factoryBean.setQueueName("bar");
 factoryBean.setPubSub(false);
 return factoryBean;
}

@Bean
public AmqpChannelFactoryBean pubSub(ConnectionFactory connectionFactory) {
 AmqpChannelFactoryBean factoryBean = new AmqpChannelFactoryBean(true);
 factoryBean.setConnectionFactory(connectionFactory);
 factoryBean.setQueueName("baz");
 factoryBean.setPubSub(false);
 return factoryBean;
}

15.14.2. Configuring with the Java DSL

The following example shows how to configure the channels with the Java DSL:

366

@Bean
public IntegrationFlow pollableInFlow(ConnectionFactory connectionFactory) {
 return IntegrationFlows.from(...)
 ...
 .channel(Amqp.pollableChannel(connectionFactory)
 .queueName("foo"))
 ...
 .get();
}

@Bean
public IntegrationFlow messageDrivenInFow(ConnectionFactory connectionFactory) {
 return IntegrationFlows.from(...)
 ...
 .channel(Amqp.channel(connectionFactory)
 .queueName("bar"))
 ...
 .get();
}

@Bean
public IntegrationFlow pubSubInFlow(ConnectionFactory connectionFactory) {
 return IntegrationFlows.from(...)
 ...
 .channel(Amqp.publisSubscribeChannel(connectionFactory)
 .queueName("baz"))
 ...
 .get();
}

15.15. AMQP Message Headers

15.15.1. Overview

The Spring Integration AMQP Adapters automatically map all AMQP properties and headers. (This
is a change from 4.3 - previously, only standard headers were mapped). By default, these properties
are copied to and from Spring Integration MessageHeaders by using the DefaultAmqpHeaderMapper.

You can pass in your own implementation of AMQP-specific header mappers, as the adapters have
properties to support doing so.

Any user-defined headers within the AMQP MessageProperties are copied to or from an AMQP
message, unless explicitly negated by the requestHeaderNames or replyHeaderNames properties of the
DefaultAmqpHeaderMapper. By default, for an outbound mapper, no x-* headers are mapped. See the
caution that appears later in this section for why.

To override the default and revert to the pre-4.3 behavior, use STANDARD_REQUEST_HEADERS and

367

https://docs.spring.io/spring-integration/api/org/springframework/integration/amqp/support/DefaultAmqpHeaderMapper.html
https://docs.spring.io/spring-amqp/api/org/springframework/amqp/core/MessageProperties.html

STANDARD_REPLY_HEADERS in the properties.


When mapping user-defined headers, the values can also contain simple wildcard
patterns (such as thing* or *thing) to be matched. The * matches all headers.

Starting with version 4.1, the AbstractHeaderMapper (a DefaultAmqpHeaderMapper superclass) lets the
NON_STANDARD_HEADERS token be configured for the requestHeaderNames and replyHeaderNames
properties (in addition to the existing STANDARD_REQUEST_HEADERS and STANDARD_REPLY_HEADERS) to map
all user-defined headers.

The org.springframework.amqp.support.AmqpHeaders class identifies the default headers that are used
by the DefaultAmqpHeaderMapper:

• amqp_appId

• amqp_clusterId

• amqp_contentEncoding

• amqp_contentLength

• content-type (see contentType Header)

• amqp_correlationId

• amqp_delay

• amqp_deliveryMode

• amqp_deliveryTag

• amqp_expiration

• amqp_messageCount

• amqp_messageId

• amqp_receivedDelay

• amqp_receivedDeliveryMode

• amqp_receivedExchange

• amqp_receivedRoutingKey

• amqp_redelivered

• amqp_replyTo

• amqp_timestamp

• amqp_type

• amqp_userId

• amqp_publishConfirm

• amqp_publishConfirmNackCause

• amqp_returnReplyCode

• amqp_returnReplyText

• amqp_returnExchange

368

• amqp_returnRoutingKey

• amqp_channel

• amqp_consumerTag

• amqp_consumerQueue



As mentioned earlier in this section, using a header mapping pattern of * is a
common way to copy all headers. However, this can have some unexpected side
effects, because certain RabbitMQ proprietary properties/headers are also copied.
For example, when you use federation, the received message may have a property
named x-received-from, which contains the node that sent the message. If you use
the wildcard character * for the request and reply header mapping on the inbound
gateway, this header is copied, which may cause some issues with federation. This
reply message may be federated back to the sending broker, which may think that
a message is looping and, as a result, silently drop it. If you wish to use the
convenience of wildcard header mapping, you may need to filter out some headers
in the downstream flow. For example, to avoid copying the x-received-from header
back to the reply you can use <int:header-filter … header-names="x-received-
from"> before sending the reply to the AMQP inbound gateway. Alternatively, you
can explicitly list those properties that you actually want mapped, instead of using
wildcards. For these reasons, for inbound messages, the mapper (by default) does
not map any x-* headers. It also does not map the deliveryMode to the
amqp_deliveryMode header, to avoid propagation of that header from an inbound
message to an outbound message. Instead, this header is mapped to
amqp_receivedDeliveryMode, which is not mapped on output.

Starting with version 4.3, patterns in the header mappings can be negated by preceding the pattern
with !. Negated patterns get priority, so a list such as
STANDARD_REQUEST_HEADERS,thing1,ba*,!thing2,!thing3,qux,!thing1 does not map thing1 (nor thing2
nor thing3). The standard headers plus bad and qux are mapped. The negation technique can be
useful for example to not map JSON type headers for incoming messages when a JSON
deserialization logic is done in the receiver downstream different way. For this purpose a !json_*
pattern should be configured for header mapper of the inbound channel adapter/gateway.


If you have a user-defined header that begins with ! that you do wish to map, you
need to escape it with \, as follows: STANDARD_REQUEST_HEADERS,\!myBangHeader. The
header named !myBangHeader is now mapped.



Starting with version 5.1, the DefaultAmqpHeaderMapper will fall back to mapping
MessageHeaders.ID and MessageHeaders.TIMESTAMP to MessageProperties.messageId
and MessageProperties.timestamp respectively, if the corresponding amqp_messageId
or amqp_timestamp headers are not present on outbound messages. Inbound
properties will be mapped to the amqp_* headers as before. It is useful to populate
the messageId property when message consumers are using stateful retry.

369

https://www.rabbitmq.com/federated-exchanges.html

15.15.2. contentType Header

Unlike other headers, the AmqpHeaders.CONTENT_TYPE is not prefixed with amqp_; this allows
transparent passing of the contentType header across different technologies. For example an
inbound HTTP message sent to a RabbitMQ queue.

The contentType header is mapped to Spring AMQP’s MessageProperties.contentType property and
that is subsequently mapped to RabbitMQ’s content_type property.

Prior to version 5.1, this header was also mapped as an entry in the MessageProperties.headers map;
this was incorrect and, furthermore, the value could be wrong since the underlying Spring AMQP
message converter might have changed the content type. Such a change would be reflected in the
first-class content_type property, but not in the RabbitMQ headers map. Inbound mapping ignored
the headers map value. contentType is no longer mapped to an entry in the headers map.

15.16. Strict Message Ordering
This section describes message ordering for inbound and outbound messages.

15.16.1. Inbound

If you require strict ordering of inbound messages, you must configure the inbound listener
container’s prefetchCount property to 1. This is because, if a message fails and is redelivered, it
arrives after existing prefetched messages. Since Spring AMQP version 2.0, the prefetchCount
defaults to 250 for improved performance. Strict ordering requirements come at the cost of
decreased performance.

15.16.2. Outbound

Consider the following integration flow:

@Bean
public IntegrationFlow flow(RabbitTemplate template) {
 return IntegrationFlows.from(Gateway.class)
 .split(s -> s.delimiters(","))
 .<String, String>transform(String::toUpperCase)
 .handle(Amqp.outboundAdapter(template).routingKey("rk"))
 .get();
}

Suppose we send messages A, B and C to the gateway. While it is likely that messages A, B, C are sent
in order, there is no guarantee. This is because the template “borrows” a channel from the cache
for each send operation, and there is no guarantee that the same channel is used for each message.
One solution is to start a transaction before the splitter, but transactions are expensive in RabbitMQ
and can reduce performance several hundred fold.

To solve this problem in a more efficient manner, starting with version 5.1, Spring Integration

370

provides the BoundRabbitChannelAdvice which is a HandleMessageAdvice. See Handling Message
Advice. When applied before the splitter, it ensures that all downstream operations are performed
on the same channel and, optionally, can wait until publisher confirmations for all sent messages
are received (if the connection factory is configured for confirmations). The following example
shows how to use BoundRabbitChannelAdvice:

@Bean
public IntegrationFlow flow(RabbitTemplate template) {
 return IntegrationFlows.from(Gateway.class)
 .split(s -> s.delimiters(",")
 .advice(new BoundRabbitChannelAdvice(template, Duration
.ofSeconds(10))))
 .<String, String>transform(String::toUpperCase)
 .handle(Amqp.outboundAdapter(template).routingKey("rk"))
 .get();
}

Notice that the same RabbitTemplate (which implements RabbitOperations) is used in the advice and
the outbound adapter. The advice runs the downstream flow within the template’s invoke method
so that all operations run on the same channel. If the optional timeout is provided, when the flow
completes, the advice calls the waitForConfirmsOrDie method, which throws an exception if the
confirmations are not received within the specified time.


There must be no thread handoffs in the downstream flow (QueueChannel,
ExecutorChannel, and others).

15.17. AMQP Samples
To experiment with the AMQP adapters, check out the samples available in the Spring Integration
samples git repository at https://github.com/SpringSource/spring-integration-samples

Currently, one sample demonstrates the basic functionality of the Spring Integration AMQP adapter
by using an outbound channel adapter and an inbound channel adapter. As AMQP broker
implementation in the sample uses RabbitMQ.


In order to run the example, you need a running instance of RabbitMQ. A local
installation with just the basic defaults suffices. For detailed RabbitMQ installation
procedures, see https://www.rabbitmq.com/install.html

Once the sample application is started, enter some text on the command prompt and a message
containing that entered text is dispatched to the AMQP queue. In return, that message is retrieved
by Spring Integration and printed to the console.

The following image illustrates the basic set of Spring Integration components used in this sample.

371

./handler-advice.pdf#handle-message-advice
./handler-advice.pdf#handle-message-advice
https://github.com/spring-projects/spring-integration-samples
https://www.rabbitmq.com/
https://www.rabbitmq.com/install.html

Figure 7. The Spring Integration graph of the AMQP sample

372

Chapter 16. Spring ApplicationEvent Support
Spring Integration provides support for inbound and outbound ApplicationEvents, as defined by the
underlying Spring Framework. For more information about Spring’s support for events and
listeners, see the Spring Reference Manual.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-event</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-event:5.4.0"

16.1. Receiving Spring Application Events
To receive events and send them to a channel, you can define an instance of Spring Integration’s
ApplicationEventListeningMessageProducer. This class is an implementation of Spring’s
ApplicationListener interface. By default, it passes all received events as Spring Integration
messages. To limit based on the type of event, you can use the 'eventTypes' property to configure
the list of event types that you want to receive. If a received event has a Message instance as its
'source', that Message is passed as-is. Otherwise, if a SpEL-based payloadExpression has been
provided, that is evaluated against the ApplicationEvent instance. If the event’s source is not a
Message instance and no payloadExpression has been provided, the ApplicationEvent itself is passed
as the payload.

Starting with version 4.2, the ApplicationEventListeningMessageProducer implements
GenericApplicationListener and can be configured to accept not only ApplicationEvent types but any
type for treating payload events (which are also supported since Spring Framework 4.2). When the
accepted event is an instance of PayloadApplicationEvent, its payload is used for the message to send.

For convenience, namespace support is provided to configure an
ApplicationEventListeningMessageProducer with the inbound-channel-adapter element, as the
following example shows:

373

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#context-functionality-events

<int-event:inbound-channel-adapter channel="eventChannel"
 error-channel="eventErrorChannel"
 event-types="example.FooEvent,
example.BarEvent, java.util.Date"/>

<int:publish-subscribe-channel id="eventChannel"/>

In the preceding example, all application context events that match one of the types specified by the
'event-types' (optional) attribute are delivered as Spring Integration messages to the message
channel named 'eventChannel'. If a downstream component throws an exception, a
MessagingException that contains the failed message and exception is sent to the channel named
'eventErrorChannel'. If no error-channel is specified and the downstream channels are
synchronous, the exception is propagated to the caller.

Using Java to configure the same adapter:

@Bean
public ApplicationEventListeningMessageProducer eventsAdapter(
 MessageChannel eventChannel, MessageChannel eventErrorChannel) {

 ApplicationEventListeningMessageProducer producer =
 new ApplicationEventListeningMessageProducer();
 producer.setEventTypes(example.FooEvent.class, example.BarEvent.class, java
.util.Date.class);
 producer.setOutputChannel(eventChannel);
 producer.setErrorChannel(eventErrorChannel);
 return producer;
}

With the Java DSL:

374

@Bean
public ApplicationEventListeningMessageProducer eventsAdapter() {

 ApplicationEventListeningMessageProducer producer =
 new ApplicationEventListeningMessageProducer();
 producer.setEventTypes(example.FooEvent.class, example.BarEvent.class, java
.util.Date.class);
 return producer;
}

@Bean
public IntegrationFlow eventFlow(ApplicationEventListeningMessageProducer
eventsAdapter,
 MessageChannel eventErrorChannel) {

 return IntegrationFlows.from(eventsAdapter, e -> e.errorChannel
(eventErrorChannel))
 .handle(...)
 ...
 .get();
}

16.2. Sending Spring Application Events
To send Spring ApplicationEvents, create an instance of the
ApplicationEventPublishingMessageHandler and register it within an endpoint. This implementation
of the MessageHandler interface also implements Spring’s ApplicationEventPublisherAware interface
and consequently acts as a bridge between Spring Integration messages and ApplicationEvents.

For convenience, namespace support is provided to configure an
ApplicationEventPublishingMessageHandler with the outbound-channel-adapter element, as the
following example shows:

<int:channel id="eventChannel"/>

<int-event:outbound-channel-adapter channel="eventChannel"/>

If you use a PollableChannel (such as a QueueChannel), you can also provide a poller child element of
the outbound-channel-adapter element. You can also optionally provide a task-executor reference for
that poller. The following example demonstrates both:

375

<int:channel id="eventChannel">
 <int:queue/>
</int:channel>

<int-event:outbound-channel-adapter channel="eventChannel">
 <int:poller max-messages-per-poll="1" task-executor="executor" fixed-rate="100
"/>
</int-event:outbound-channel-adapter>

<task:executor id="executor" pool-size="5"/>

In the preceding example, all messages sent to the 'eventChannel' channel are published as
ApplicationEvent instances to any relevant ApplicationListener instances that are registered within
the same Spring ApplicationContext. If the payload of the message is an ApplicationEvent, it is
passed as-is. Otherwise, the message itself is wrapped in a MessagingEvent instance.

Starting with version 4.2, you can configure the ApplicationEventPublishingMessageHandler (<int-
event:outbound-channel-adapter>) with the publish-payload boolean attribute to publish to the
application context payload as is, instead of wrapping it to a MessagingEvent instance.

To configure the adapter using Java configuration:

@Bean
@ServiceActivator(inputChannel = "eventChannel")
public ApplicationEventPublishingMessageHandler eventHandler() {
 ApplicationEventPublishingMessageHandler handler =
 new ApplicationEventPublishingMessageHandler();
 handler.setPublishPayload(true);
 return handler;
}

With the Java DSL:

376

@Bean
public ApplicationEventPublishingMessageHandler eventHandler() {
 ApplicationEventPublishingMessageHandler handler =
 new ApplicationEventPublishingMessageHandler();
 handler.setPublishPayload(true);
 return handler;
}

@Bean
// MessageChannel is "eventsFlow.input"
public IntegrationFlow eventsOutFlow(ApplicationEventPublishingMessageHandler
eventHandler) {
 return f -> f.handle(eventHandler);
}

377

Chapter 17. Feed Adapter
Spring Integration provides support for syndication through feed adapters. The implementation is
based on the ROME Framework.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-feed</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-feed:5.4.0"

Web syndication is a way to publish material such as news stories, press releases, blog posts, and
other items typically available on a website but also made available in a feed format such as RSS or
ATOM.

Spring integration provides support for web syndication through its 'feed' adapter and provides
convenient namespace-based configuration for it. To configure the 'feed' namespace, include the
following elements within the headers of your XML configuration file:

xmlns:int-feed="http://www.springframework.org/schema/integration/feed"
xsi:schemaLocation="http://www.springframework.org/schema/integration/feed
 https://www.springframework.org/schema/integration/feed/spring-integration-
feed.xsd"

17.1. Feed Inbound Channel Adapter
The only adapter you really need to provide support for retrieving feeds is an inbound channel
adapter. It lets you subscribe to a particular URL. The following example shows a possible
configuration:

378

https://rometools.github.io/rome/

<int-feed:inbound-channel-adapter id="feedAdapter"
 channel="feedChannel"
 url="https://feeds.bbci.co.uk/news/rss.xml">
 <int:poller fixed-rate="10000" max-messages-per-poll="100" />
</int-feed:inbound-channel-adapter>

In the preceding configuration, we are subscribing to a URL identified by the url attribute.

As news items are retrieved, they are converted to messages and sent to a channel identified by the
channel attribute. The payload of each message is a com.sun.syndication.feed.synd.SyndEntry
instance. Each one encapsulates various data about a news item (content, dates, authors, and other
details).

The inbound feed channel adapter is a polling consumer. That means that you must provide a
poller configuration. However, one important thing you must understand with regard to a feed is
that its inner workings are slightly different then most other polling consumers. When an inbound
feed adapter is started, it does the first poll and receives a
com.sun.syndication.feed.synd.SyndEntryFeed instance. That object contains multiple SyndEntry
objects. Each entry is stored in the local entry queue and is released based on the value in the max-
messages-per-poll attribute, such that each message contains a single entry. If, during retrieval of
the entries from the entry queue, the queue has become empty, the adapter attempts to update the
feed, thereby populating the queue with more entries (SyndEntry instances), if any are available.
Otherwise the next attempt to poll for a feed is determined by the trigger of the poller (every ten
seconds in the preceding configuration).

17.2. Duplicate Entries
Polling for a feed can result in entries that have already been processed (“I already read that news
item, why are you showing it to me again?”). Spring Integration provides a convenient mechanism
to eliminate the need to worry about duplicate entries. Each feed entry has a “published date” field.
Every time a new Message is generated and sent, Spring Integration stores the value of the latest
published date in an instance of the MetadataStore strategy (see Metadata Store).


The key used to persist the latest published date is the value of the (required) id
attribute of the feed inbound channel adapter component plus the feedUrl (if any)
from the adapter’s configuration.

17.3. Other Options
Starting with version 5.0, the deprecated com.rometools.fetcher.FeedFetcher option has been
removed and an overloaded FeedEntryMessageSource constructor for an
org.springframework.core.io.Resource is provided. This is useful when the feed source is not an
HTTP endpoint but is any other resource (such as local or remote on FTP). In the
FeedEntryMessageSource logic, such a resource (or provided URL) is parsed by the SyndFeedInput to the
SyndFeed object for the processing mentioned earlier. You can also inject a customized SyndFeedInput

379

./meta-data-store.pdf#metadata-store

(for example, with the allowDoctypes option) instance into the FeedEntryMessageSource.

17.4. Java DSL Configuration
The following Spring Boot application shows an example of how to configure the inbound adapter
with the Java DSL:

@SpringBootApplication
public class FeedJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(FeedJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Value("org/springframework/integration/feed/sample.rss")
 private Resource feedResource;

 @Bean
 public MetadataStore metadataStore() {
 PropertiesPersistingMetadataStore metadataStore = new
PropertiesPersistingMetadataStore();
 metadataStore.setBaseDirectory(tempFolder.getRoot().getAbsolutePath());
 return metadataStore;
 }

 @Bean
 public IntegrationFlow feedFlow() {
 return IntegrationFlows
 .from(Feed.inboundAdapter(this.feedResource, "feedTest")
 .metadataStore(metadataStore()),
 e -> e.poller(p -> p.fixedDelay(100)))
 .channel(c -> c.queue("entries"))
 .get();
 }

}

380

Chapter 18. File Support
Spring Integration’s file support extends the Spring Integration core with a dedicated vocabulary to
deal with reading, writing, and transforming files.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-file</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-file:5.4.0"

It provides a namespace that enables elements defining channel adapters dedicated to files and
support for transformers that can read file contents into strings or byte arrays.

This section explains the workings of FileReadingMessageSource and FileWritingMessageHandler and
how to configure them as beans. It also discusses the support for dealing with files through file-
specific implementations of Transformer. Finally, it explains the file-specific namespace.

18.1. Reading Files
A FileReadingMessageSource can be used to consume files from the filesystem. This is an
implementation of MessageSource that creates messages from a file system directory. The following
example shows how to configure a FileReadingMessageSource:

<bean id="pollableFileSource"
 class="org.springframework.integration.file.FileReadingMessageSource"
 p:directory="${input.directory}"/>

To prevent creating messages for certain files, you can supply a FileListFilter. By default, we use
the following filters:

• IgnoreHiddenFileListFilter

• AcceptOnceFileListFilter

The IgnoreHiddenFileListFilter ensures that hidden files are not processed. Note that the exact

381

definition of hidden is system-dependent. For example, on UNIX-based systems, a file beginning
with a period character is considered to be hidden. Microsoft Windows, on the other hand, has a
dedicated file attribute to indicate hidden files.


Version 4.2 introduced the IgnoreHiddenFileListFilter. In prior versions, hidden
files were included. With the default configuration, the IgnoreHiddenFileListFilter
is triggered first, followed by the AcceptOnceFileListFilter.

The AcceptOnceFileListFilter ensures files are picked up only once from the directory.



The AcceptOnceFileListFilter stores its state in memory. If you wish the state to
survive a system restart, you can use the
FileSystemPersistentAcceptOnceFileListFilter. This filter stores the accepted file
names in a MetadataStore implementation (see Metadata Store). This filter matches
on the filename and modified time.

Since version 4.0, this filter requires a ConcurrentMetadataStore. When used with a
shared data store (such as Redis with the RedisMetadataStore), it lets filter keys be
shared across multiple application instances or across a network file share being
used by multiple servers.

Since version 4.1.5, this filter has a new property (flushOnUpdate), which causes it
to flush the metadata store on every update (if the store implements Flushable).

The following example configures a FileReadingMessageSource with a filter:

<bean id="pollableFileSource"
 class="org.springframework.integration.file.FileReadingMessageSource"
 p:inputDirectory="${input.directory}"
 p:filter-ref="customFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready (that is, some
other process may still be writing the file). The default AcceptOnceFileListFilter does not prevent
this. In most cases, this can be prevented if the file-writing process renames each file as soon as it is
ready for reading. A filename-pattern or filename-regex filter that accepts only files that are ready
(perhaps based on a known suffix), composed with the default AcceptOnceFileListFilter, allows for
this situation. The CompositeFileListFilter enables the composition, as the following example
shows:

382

./meta-data-store.pdf#metadata-store

<bean id="pollableFileSource"
 class="org.springframework.integration.file.FileReadingMessageSource"
 p:inputDirectory="${input.directory}"
 p:filter-ref="compositeFilter"/>

<bean id="compositeFilter"
 class="org.springframework.integration.file.filters.CompositeFileListFilter">
 <constructor-arg>
 <list>
 <bean class="o.s.i.file.filters.AcceptOnceFileListFilter"/>
 <bean class="o.s.i.file.filters.RegexPatternFileListFilter">
 <constructor-arg value="^test.*$"/>
 </bean>
 </list>
 </constructor-arg>
</bean>

If it is not possible to create the file with a temporary name and rename to the final name, Spring
Integration provides another alternative. Version 4.2 added the LastModifiedFileListFilter. This
filter can be configured with an age property so that only files older than this value are passed by
the filter. The age defaults to 60 seconds, but you should choose an age that is large enough to avoid
picking up a file early (due to, say, network glitches). The following example shows how to
configure a LastModifiedFileListFilter:

<bean id="filter" class=
"org.springframework.integration.file.filters.LastModifiedFileListFilter">
 <property name="age" value="120" />
</bean>

Starting with version 4.3.7, a ChainFileListFilter (an extension of CompositeFileListFilter) has
been introduced to allow scenarios when subsequent filters should only see the result of the
previous filter. (With the CompositeFileListFilter, all filters see all the files, but it passes only files
that have passed all filters). An example of where the new behavior is required is a combination of
LastModifiedFileListFilter and AcceptOnceFileListFilter, when we do not wish to accept the file
until some amount of time has elapsed. With the CompositeFileListFilter, since the
AcceptOnceFileListFilter sees all the files on the first pass, it does not pass it later when the other
filter does. The CompositeFileListFilter approach is useful when a pattern filter is combined with a
custom filter that looks for a secondary file to indicate that file transfer is complete. The pattern
filter might only pass the primary file (such as something.txt) but the “done” filter needs to see
whether (for example) something.done is present.

Say we have files a.txt, a.done, and b.txt.

The pattern filter passes only a.txt and b.txt, while the “done” filter sees all three files and passes

383

only a.txt. The final result of the composite filter is that only a.txt is released.


With the ChainFileListFilter, if any filter in the chain returns an empty list, the
remaining filters are not invoked.

Version 5.0 introduced an ExpressionFileListFilter to execute SpEL expression against a file as a
context evaluation root object. For this purpose, all the XML components for file handling (local and
remote), along with an existing filter attribute, have been supplied with the filter-expression
option, as the following example shows:

<int-file:inbound-channel-adapter
 directory="${inputdir}"
 filter-expression="name matches '.text'"
 auto-startup="false"/>

Version 5.0.5 introduced the DiscardAwareFileListFilter implementations that have an interest in
rejected files. For this purpose, such a filter implementation should be supplied with a callback
through addDiscardCallback(Consumer<File>). In the framework, this functionality is used from the
FileReadingMessageSource.WatchServiceDirectoryScanner, in combination with
LastModifiedFileListFilter. Unlike the regular DirectoryScanner, the WatchService provides files for
processing according to the events on the target file system. At the moment of polling an internal
queue with those files, the LastModifiedFileListFilter may discard them because they are too
young relative to its configured age. Therefore, we lose the file for future possible considerations.
The discard callback hook lets us retain the file in the internal queue so that it is available to be
checked against the age in subsequent polls. The CompositeFileListFilter also implements a
DiscardAwareFileListFilter and populates a discard callback to all its DiscardAwareFileListFilter
delegates.


Since CompositeFileListFilter matches the files against all delegates, the
discardCallback may be called several times for the same file.

Starting with version 5.1, the FileReadingMessageSource doesn’t check a directory for existence and
doesn’t create it until its start() is called (typically via wrapping SourcePollingChannelAdapter).
Previously, there was no simple way to prevent an operation system permissions error when
referencing the directory, for example from tests, or when permissions are applied later.

18.1.1. Message Headers

Starting with version 5.0, the FileReadingMessageSource (in addition to the payload as a polled File)
populates the following headers to the outbound Message:

• FileHeaders.FILENAME: The File.getName() of the file to send. Can be used for subsequent rename
or copy logic.

• FileHeaders.ORIGINAL_FILE: The File object itself. Typically, this header is populated
automatically by framework components (such as splitters or transformers) when we lose the

384

original File object. However, for consistency and convenience with any other custom use
cases, this header can be useful to get access to the original file.

• FileHeaders.RELATIVE_PATH: A new header introduced to represent the part of file path relative to
the root directory for the scan. This header can be useful when the requirement is to restore a
source directory hierarchy in the other places. For this purpose, the DefaultFileNameGenerator
(see "`Generating File Names) can be configured to use this header.

18.1.2. Directory Scanning and Polling

The FileReadingMessageSource does not produce messages for files from the directory immediately.
It uses an internal queue for 'eligible files' returned by the scanner. The scanEachPoll option is used
to ensure that the internal queue is refreshed with the latest input directory content on each poll.
By default (scanEachPoll = false), the FileReadingMessageSource empties its queue before scanning
the directory again. This default behavior is particularly useful to reduce scans of large numbers of
files in a directory. However, in cases where custom ordering is required, it is important to consider
the effects of setting this flag to true. The order in which files are processed may not be as expected.
By default, files in the queue are processed in their natural (path) order. New files added by a scan,
even when the queue already has files, are inserted in the appropriate position to maintain that
natural order. To customize the order, the FileReadingMessageSource can accept a Comparator<File>
as a constructor argument. It is used by the internal (PriorityBlockingQueue) to reorder its content
according to the business requirements. Therefore, to process files in a specific order, you should
provide a comparator to the FileReadingMessageSource rather than ordering the list produced by a
custom DirectoryScanner.

Version 5.0 introduced RecursiveDirectoryScanner to perform file tree visiting. The implementation
is based on the Files.walk(Path start, int maxDepth, FileVisitOption… options) functionality.
The root directory (DirectoryScanner.listFiles(File)) argument is excluded from the result. All
other sub-directories inclusions and exclusions are based on the target FileListFilter
implementation. For example, the SimplePatternFileListFilter filters out directories by default. See
AbstractDirectoryAwareFileListFilter and its implementations for more information.

18.1.3. Namespace Support

The configuration for file reading can be simplified by using the file-specific namespace. To do so,
use the following template:

385

https://docs.spring.io/spring-integration/api/org/springframework/integration/file/filters/AbstractDirectoryAwareFileListFilter.html

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-file="http://www.springframework.org/schema/integration/file"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/file
 https://www.springframework.org/schema/integration/file/spring-integration-
file.xsd">
</beans>

Within this namespace, you can reduce the FileReadingMessageSource and wrap it in an inbound
Channel Adapter, as follows:

<int-file:inbound-channel-adapter id="filesIn1"
 directory="file:${input.directory}" prevent-duplicates="true" ignore-hidden=
"true"/>

<int-file:inbound-channel-adapter id="filesIn2"
 directory="file:${input.directory}"
 filter="customFilterBean" />

<int-file:inbound-channel-adapter id="filesIn3"
 directory="file:${input.directory}"
 filename-pattern="test*" />

<int-file:inbound-channel-adapter id="filesIn4"
 directory="file:${input.directory}"
 filename-regex="test[0-9]+\.txt" />

The first channel adapter example relies on the default FileListFilter implementations:

• IgnoreHiddenFileListFilter (do not process hidden files)

• AcceptOnceFileListFilter (prevent duplication)

Therefore, you can also leave off the prevent-duplicates and ignore-hidden attributes, as they are
true by default.


Spring Integration 4.2 introduced the ignore-hidden attribute. In prior versions,
hidden files were included.

386

The second channel adapter example uses a custom filter, the third uses the filename-pattern
attribute to add an AntPathMatcher based filter, and the fourth uses the filename-regex attribute to
add a regular expression pattern-based filter to the FileReadingMessageSource. The filename-pattern
and filename-regex attributes are each mutually exclusive with the regular filter reference
attribute. However, you can use the filter attribute to reference an instance of
CompositeFileListFilter that combines any number of filters, including one or more pattern-based
filters to fit your particular needs.

When multiple processes read from the same directory, you may want to lock files to prevent them
from being picked up concurrently. To do so, you can use a FileLocker. There is a java.nio-based
implementation available, but it is also possible to implement your own locking scheme. The nio
locker can be injected as follows:

<int-file:inbound-channel-adapter id="filesIn"
 directory="file:${input.directory}" prevent-duplicates="true">
 <int-file:nio-locker/>
</int-file:inbound-channel-adapter>

You can configure a custom locker as follows:

<int-file:inbound-channel-adapter id="filesIn"
 directory="file:${input.directory}" prevent-duplicates="true">
 <int-file:locker ref="customLocker"/>
</int-file:inbound-channel-adapter>



When a file inbound adapter is configured with a locker, it takes responsibility for
acquiring a lock before the file is allowed to be received. It does not assume the
responsibility to unlock the file. If you have processed the file and keep the locks
hanging around, you have a memory leak. If this is a problem, you should call
FileLocker.unlock(File file) yourself at the appropriate time.

When filtering and locking files is not enough, you might need to control the way files are listed
entirely. To implement this type of requirement, you can use an implementation of
DirectoryScanner. This scanner lets you determine exactly what files are listed in each poll. This is
also the interface that Spring Integration uses internally to wire FileListFilter instances and
FileLocker to the FileReadingMessageSource. You can inject a custom DirectoryScanner into the <int-
file:inbound-channel-adapter/> on the scanner attribute, as the following example shows:

<int-file:inbound-channel-adapter id="filesIn" directory="file:${input.directory}"
 scanner="customDirectoryScanner"/>

387

Doing so gives you full freedom to choose the ordering, listing, and locking strategies.

It is also important to understand that filters (including patterns, regex, prevent-duplicates, and
others) and locker instances are actually used by the scanner. Any of these attributes set on the
adapter are subsequently injected into the internal scanner. For the case of an external scanner, all
filter and locker attributes are prohibited on the FileReadingMessageSource. They must be specified
(if required) on that custom DirectoryScanner. In other words, if you inject a scanner into the
FileReadingMessageSource, you should supply filter and locker on that scanner, not on the
FileReadingMessageSource.


By default, the DefaultDirectoryScanner uses an IgnoreHiddenFileListFilter and an
AcceptOnceFileListFilter. To prevent their use, you can configure your own filter
(such as AcceptAllFileListFilter) or even set it to null.

18.1.4. WatchServiceDirectoryScanner

The FileReadingMessageSource.WatchServiceDirectoryScanner relies on file-system events when new
files are added to the directory. During initialization, the directory is registered to generate events.
The initial file list is also built during initialization. While walking the directory tree, any
subdirectories encountered are also registered to generate events. On the first poll, the initial file
list from walking the directory is returned. On subsequent polls, files from new creation events are
returned. If a new subdirectory is added, its creation event is used to walk the new subtree to find
existing files and register any new subdirectories found.



There is an issue with WatchKey when its internal events queue is not drained by the
program as quickly as the directory modification events occur. If the queue size is
exceeded, a StandardWatchEventKinds.OVERFLOW is emitted to indicate that some file
system events may be lost. In this case, the root directory is re-scanned completely.
To avoid duplicates, consider using an appropriate FileListFilter (such as the
AcceptOnceFileListFilter) or removing files when processing is complete.

The WatchServiceDirectoryScanner can be enabled through the FileReadingMessageSource.use-watch-
service option, which is mutually exclusive with the scanner option. An internal
FileReadingMessageSource.WatchServiceDirectoryScanner instance is populated for the provided
directory.

In addition, now the WatchService polling logic can track the StandardWatchEventKinds.ENTRY_MODIFY
and StandardWatchEventKinds.ENTRY_DELETE.

If you need to track the modification of existing files as well as new files, you should implement the
ENTRY_MODIFY events logic in the FileListFilter. Otherwise, the files from those events are treated
the same way.

The ResettableFileListFilter implementations pick up the ENTRY_DELETE events. Consequently, their
files are provided for the remove() operation. When this event is enabled, filters such as the
AcceptOnceFileListFilter have the file removed As a result, if a file with the same name appears, it
passes the filter and is sent as a message.

For this purpose, the watch-events property

388

(FileReadingMessageSource.setWatchEvents(WatchEventType… watchEvents)) has been introduced.
(WatchEventType is a public inner enumeration in FileReadingMessageSource.) With such an option,
we can use one downstream flow logic for new files and use some other logic for modified files. The
following example shows how to configure different logic for create and modify events in the same
directory:

<int-file:inbound-channel-adapter id="newFiles"
 directory="${input.directory}"
 use-watch-service="true"/>

<int-file:inbound-channel-adapter id="modifiedFiles"
 directory="${input.directory}"
 use-watch-service="true"
 filter="acceptAllFilter"
 watch-events="MODIFY"/> <!-- The default is CREATE. -->

18.1.5. Limiting Memory Consumption

You can use a HeadDirectoryScanner to limit the number of files retained in memory. This can be
useful when scanning large directories. With XML configuration, this is enabled by setting the
queue-size property on the inbound channel adapter.

Prior to version 4.2, this setting was incompatible with the use of any other filters. Any other filters
(including prevent-duplicates="true") overwrote the filter used to limit the size.



The use of a HeadDirectoryScanner is incompatible with an
AcceptOnceFileListFilter. Since all filters are consulted during the poll decision,
the AcceptOnceFileListFilter does not know that other filters might be temporarily
filtering files. Even if files that were previously filtered by the
HeadDirectoryScanner.HeadFilter are now available, the AcceptOnceFileListFilter
filters them.

Generally, instead of using an AcceptOnceFileListFilter in this case, you should
remove the processed files so that the previously filtered files are available on a
future poll.

18.1.6. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the outbound adapter
with Java configuration:

389

@SpringBootApplication
public class FileReadingJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(FileReadingJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public MessageChannel fileInputChannel() {
 return new DirectChannel();
 }

 @Bean
 @InboundChannelAdapter(value = "fileInputChannel", poller = @Poller(fixedDelay
= "1000"))
 public MessageSource<File> fileReadingMessageSource() {
 FileReadingMessageSource source = new FileReadingMessageSource();
 source.setDirectory(new File(INBOUND_PATH));
 source.setFilter(new SimplePatternFileListFilter("*.txt"));
 return source;
 }

 @Bean
 @Transformer(inputChannel = "fileInputChannel", outputChannel =
"processFileChannel")
 public FileToStringTransformer fileToStringTransformer() {
 return new FileToStringTransformer();
 }

}

18.1.7. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound adapter
with the Java DSL:

390

@SpringBootApplication
public class FileReadingJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(FileReadingJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public IntegrationFlow fileReadingFlow() {
 return IntegrationFlows
 .from(Files.inboundAdapter(new File(INBOUND_PATH))
 .patternFilter("*.txt"),
 e -> e.poller(Pollers.fixedDelay(1000)))
 .transform(Files.toStringTransformer())
 .channel("processFileChannel")
 .get();
 }

}

18.1.8. 'tail’ing Files

Another popular use case is to get 'lines' from the end (or tail) of a file, capturing new lines when
they are added. Two implementations are provided. The first,
OSDelegatingFileTailingMessageProducer, uses the native tail command (on operating systems that
have one). This is generally the most efficient implementation on those platforms. For operating
systems that do not have a tail command, the second implementation,
ApacheCommonsFileTailingMessageProducer, uses the Apache commons-io Tailer class.

In both cases, file system events, such as files being unavailable and other events, are published as
ApplicationEvent instances by using the normal Spring event publishing mechanism. Examples of
such events include the following:

391

[message=tail: cannot open '/tmp/somefile' for reading:
 No such file or directory, file=/tmp/somefile]

[message=tail: '/tmp/somefile' has become accessible, file=/tmp/somefile]

[message=tail: '/tmp/somefile' has become inaccessible:
 No such file or directory, file=/tmp/somefile]

[message=tail: '/tmp/somefile' has appeared;
 following end of new file, file=/tmp/somefile]

The sequence of events shown in the preceding example might occur, for example, when a file is
rotated.

Starting with version 5.0, a FileTailingIdleEvent is emitted when there is no data in the file during
idleEventInterval. The following example shows what such an event looks like:

[message=Idle timeout, file=/tmp/somefile] [idle time=5438]

 Not all platforms that support a tail command provide these status messages.

Messages emitted from these endpoints have the following headers:

• FileHeaders.ORIGINAL_FILE: The File object

• FileHeaders.FILENAME: The file name (File.getName())


In versions prior to version 5.0, the FileHeaders.FILENAME header contained a string
representation of the file’s absolute path. You can now obtain that string
representation by calling getAbsolutePath() on the original file header.

The following example creates a native adapter with the default options ('-F -n 0', meaning to follow
the file name from the current end).

<int-file:tail-inbound-channel-adapter id="native"
 channel="input"
 task-executor="exec"
 file="/tmp/foo"/>

The following example creates a native adapter with '-F -n +0' options (meaning follow the file
name, emitting all existing lines).

392

<int-file:tail-inbound-channel-adapter id="native"
 channel="input"
 native-options="-F -n +0"
 task-executor="exec"
 file-delay=10000
 file="/tmp/foo"/>

If the tail command fails (on some platforms, a missing file causes the tail to fail, even with -F
specified), the command is retried every 10 seconds.

By default, native adapters capture from standard output and send the content as messages. They
also capture from standard error to raise events. Starting with version 4.3.6, you can discard the
standard error events by setting the enable-status-reader to false, as the following example shows:

<int-file:tail-inbound-channel-adapter id="native"
 channel="input"
 enable-status-reader="false"
 task-executor="exec"
 file="/tmp/foo"/>

In the following example, IdleEventInterval is set to 5000, meaning that, if no lines are written for
five seconds, FileTailingIdleEvent is triggered every five seconds:

<int-file:tail-inbound-channel-adapter id="native"
 channel="input"
 idle-event-interval="5000"
 task-executor="exec"
 file="/tmp/somefile"/>

This can be useful when you need to stop the adapter.

The following example creates an Apache commons-io Tailer adapter that examines the file for new
lines every two seconds and checks for existence of a missing file every ten seconds:

393

<int-file:tail-inbound-channel-adapter id="apache"
 channel="input"
 task-executor="exec"
 file="/tmp/bar"
 delay="2000"
 end="false" ①
 reopen="true" ②
 file-delay="10000"/>

① The file is tailed from the beginning (end="false") instead of the end (which is the default).

② The file is reopened for each chunk (the default is to keep the file open).


Specifying the delay, end or reopen attributes forces the use of the Apache commons-
io adapter and makes the native-options attribute unavailable.

18.1.9. Dealing With Incomplete Data

A common problem in file-transfer scenarios is how to determine that the transfer is complete so
that you do not start reading an incomplete file. A common technique to solve this problem is to
write the file with a temporary name and then atomically rename it to the final name. This
technique, together with a filter that masks the temporary file from being picked up by the
consumer, provides a robust solution. This technique is used by Spring Integration components that
write files (locally or remotely). By default, they append .writing to the file name and remove it
when the transfer is complete.

Another common technique is to write a second “marker” file to indicate that the file transfer is
complete. In this scenario, you should not consider somefile.txt (for example) to be available for
use until somefile.txt.complete is also present. Spring Integration version 5.0 introduced new
filters to support this mechanism. Implementations are provided for the file system
(FileSystemMarkerFilePresentFileListFilter), FTP and SFTP. They are configurable such that the
marker file can have any name, although it is usually related to the file being transferred. See the
Javadoc for more information.

18.2. Writing files
To write messages to the file system, you can use a FileWritingMessageHandler. This class can deal
with the following payload types:

• File

• String

• byte array

• InputStream (since version 4.2)

For a String payload, you can configure the encoding and the charset.

394

./ftp.pdf#ftp-incomplete
./sftp.pdf#sftp-incomplete
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/filters/FileSystemMarkerFilePresentFileListFilter.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/FileWritingMessageHandler.html

To make things easier, you can configure the FileWritingMessageHandler as part of an outbound
channel adapter or outbound gateway by using the XML namespace.

Starting with version 4.3, you can specify the buffer size to use when writing files.

Starting with version 5.1, you can provide a BiConsumer<File, Message<?>> newFileCallback which is
triggered if you use FileExistsMode.APPEND or FileExistsMode.APPEND_NO_FLUSH and a new file has to
be created. This callback receives a newly created file and the message which triggered it. This
callback could be used to write a CSV header defined in the message header, for an example.

18.2.1. Generating File Names

In its simplest form, the FileWritingMessageHandler requires only a destination directory for writing
the files. The name of the file to be written is determined by the handler’s FileNameGenerator. The
default implementation looks for a message header whose key matches the constant defined as
FileHeaders.FILENAME.

Alternatively, you can specify an expression to be evaluated against the message to generate a file
name — for example, headers['myCustomHeader'] + '.something'. The expression must evaluate to a
String. For convenience, the DefaultFileNameGenerator also provides the setHeaderName method,
letting you explicitly specify the message header whose value is to be used as the filename.

Once set up, the DefaultFileNameGenerator employs the following resolution steps to determine the
filename for a given message payload:

1. Evaluate the expression against the message and, if the result is a non-empty String, use it as
the filename.

2. Otherwise, if the payload is a java.io.File, use the File object’s filename.

3. Otherwise, use the message ID appended with .msg as the filename.

When you use the XML namespace support, both the file outbound channel adapter and the file
outbound gateway support the following mutually exclusive configuration attributes:

• filename-generator (a reference to a FileNameGenerator implementation)

• filename-generator-expression (an expression that evaluates to a String)

While writing files, a temporary file suffix is used (its default is .writing). It is appended to the
filename while the file is being written. To customize the suffix, you can set the temporary-file-
suffix attribute on both the file outbound channel adapter and the file outbound gateway.


When using the APPEND file mode, the temporary-file-suffix attribute is ignored,
since the data is appended to the file directly.

Starting with ,version 4.2.5, the generated file name (as a result of filename-generator or filename-
generator-expression evaluation) can represent a child path together with the target file name. It is
used as a second constructor argument for File(File parent, String child) as before. However, in
the past we did not create (mkdirs()) directories for the child path, assuming only the file name.
This approach is useful for cases when we need to restore the file system tree to match the source

395

https://docs.spring.io/spring-integration/api/org/springframework/integration/file/FileNameGenerator.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/DefaultFileNameGenerator.html
https://docs.spring.io/spring-integration/api/constant-values.html#org.springframework.integration.file.FileHeaders.FILENAME

directory — for example, when unzipping the archive and saving all the files in the target directory
in the original order.

18.2.2. Specifying the Output Directory

Both, the file outbound channel adapter and the file outbound gateway provide two mutually
exclusive configuration attributes for specifying the output directory:

• directory

• directory-expression

 Spring Integration 2.2 introduced the directory-expression attribute.

Using the directory Attribute

When you use the directory attribute, the output directory is set to a fixed value, which is set when
the FileWritingMessageHandler is initialized. If you do not specify this attribute, you must use the
directory-expression attribute.

Using the directory-expression Attribute

If you want to have full SpEL support, you can use the directory-expression attribute. This attribute
accepts a SpEL expression that is evaluated for each message being processed. Thus, you have full
access to a message’s payload and its headers when you dynamically specify the output file
directory.

The SpEL expression must resolve to either a String, java.io.File or
org.springframework.core.io.Resource. (The later is evaluated into a File anyway.) Furthermore, the
resulting String or File must point to a directory. If you do not specify the directory-expression
attribute, then you must set the directory attribute.

Using the auto-create-directory Attribute

By default, if the destination directory does not exist, the respective destination directory and any
non-existing parent directories are automatically created. To prevent that behavior, you can set the
auto-create-directory attribute to false. This attribute applies to both the directory and the
directory-expression attributes.



When using the directory attribute and auto-create-directory is false, the
following change was made starting with Spring Integration 2.2:

Instead of checking for the existence of the destination directory when the adapter
is initialized, this check is now performed for each message being processed.

Furthermore, if auto-create-directory is true and the directory was deleted
between the processing of messages, the directory is re-created for each message
being processed.

396

18.2.3. Dealing with Existing Destination Files

When you write files and the destination file already exists, the default behavior is to overwrite
that target file. You can change this behavior by setting the mode attribute on the relevant file
outbound components. The following options exist:

• REPLACE (Default)

• REPLACE_IF_MODIFIED

• APPEND

• APPEND_NO_FLUSH

• FAIL

• IGNORE


Spring Integration 2.2 introduced the mode attribute and the APPEND, FAIL, and
IGNORE options.

REPLACE

If the target file already exists, it is overwritten. If the mode attribute is not specified, this is the
default behavior when writing files.

REPLACE_IF_MODIFIED

If the target file already exists, it is overwritten only if the last modified timestamp differs from
that of the source file. For File payloads, the payload lastModified time is compared to the
existing file. For other payloads, the FileHeaders.SET_MODIFIED (file_setModified) header is
compared to the existing file. If the header is missing or has a value that is not a Number, the file is
always replaced.

APPEND

This mode lets you append message content to the existing file instead of creating a new file
each time. Note that this attribute is mutually exclusive with the temporary-file-suffix attribute
because, when it appends content to the existing file, the adapter no longer uses a temporary
file. The file is closed after each message.

APPEND_NO_FLUSH

This option has the same semantics as APPEND, but the data is not flushed and the file is not closed
after each message. This can provide a significant performance at the risk of data loss in the
event of a failure. See Flushing Files When Using APPEND_NO_FLUSH for more information.

FAIL

If the target file exists, a MessageHandlingException is thrown.

IGNORE

If the target file exists, the message payload is silently ignored.


When using a temporary file suffix (the default is .writing), the IGNORE option
applies if either the final file name or the temporary file name exists.

397

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/MessageHandlingException.html

18.2.4. Flushing Files When Using APPEND_NO_FLUSH

The APPEND_NO_FLUSH mode was added in version 4.3. Using it can improve performance because the
file is not closed after each message. However, this can cause data loss in the event of a failure.

Spring Integration provides several flushing strategies to mitigate this data loss:

• Use flushInterval. If a file is not written to for this period of time, it is automatically flushed.
This is approximate and may be up to 1.33x this time (with an average of 1.167x).

• Send a message containing a regular expression to the message handler’s trigger method. Files
with absolute path names matching the pattern are flushed.

• Provide the handler with a custom MessageFlushPredicate implementation to modify the action
taken when a message is sent to the trigger method.

• Invoke one of the handler’s flushIfNeeded methods by passing in a custom
FileWritingMessageHandler.FlushPredicate or FileWritingMessageHandler.MessageFlushPredicate
implementation.

The predicates are called for each open file. See the Javadoc for these interfaces for more
information. Note that, since version 5.0, the predicate methods provide another parameter: the
time that the current file was first written to if new or previously closed.

When using flushInterval, the interval starts at the last write. The file is flushed only if it is idle for
the interval. Starting with version 4.3.7, an additional property (flushWhenIdle) can be set to false,
meaning that the interval starts with the first write to a previously flushed (or new) file.

18.2.5. File Timestamps

By default, the destination file’s lastModified timestamp is the time when the file was created
(except that an in-place rename retains the current timestamp). Starting with version 4.3, you can
now configure preserve-timestamp (or setPreserveTimestamp(true) when using Java configuration).
For File payloads, this transfers the timestamp from the inbound file to the outbound (regardless of
whether a copy was required). For other payloads, if the FileHeaders.SET_MODIFIED header
(file_setModified) is present, it is used to set the destination file’s lastModified timestamp, as long
as the header is a Number.

18.2.6. File Permissions

Starting with version 5.0, when writing files to a file system that supports Posix permissions, you
can specify those permissions on the outbound channel adapter or gateway. The property is an
integer and is usually supplied in the familiar octal format — for example, 0640, meaning that the
owner has read/write permissions, the group has read-only permission, and others have no access.

18.2.7. File Outbound Channel Adapter

The following example configures a file outbound channel adapter:

398

https://docs.spring.io/spring-integration/api/index.html

<int-file:outbound-channel-adapter id="filesOut" directory=
"${input.directory.property}"/>

The namespace-based configuration also supports a delete-source-files attribute. If set to true, it
triggers the deletion of the original source files after writing to a destination. The default value for
that flag is false. The following example shows how to set it to true:

<int-file:outbound-channel-adapter id="filesOut"
 directory="${output.directory}"
 delete-source-files="true"/>


The delete-source-files attribute has an effect only if the inbound message has a
File payload or if the FileHeaders.ORIGINAL_FILE header value contains either the
source File instance or a String representing the original file path.

Starting with version 4.2, the FileWritingMessageHandler supports an append-new-line option. If set to
true, a new line is appended to the file after a message is written. The default attribute value is
false. The following example shows how to use the append-new-line option:

<int-file:outbound-channel-adapter id="newlineAdapter"
 append-new-line="true"
 directory="${output.directory}"/>

18.2.8. Outbound Gateway

In cases where you want to continue processing messages based on the written file, you can use the
outbound-gateway instead. It plays a role similar to that of the outbound-channel-adapter. However,
after writing the file, it also sends it to the reply channel as the payload of a message.

The following example configures an outbound gateway:

<int-file:outbound-gateway id="mover" request-channel="moveInput"
 reply-channel="output"
 directory="${output.directory}"
 mode="REPLACE" delete-source-files="true"/>

As mentioned earlier, you can also specify the mode attribute, which defines the behavior of how to
deal with situations where the destination file already exists. See Dealing with Existing Destination

399

Files for further details. Generally, when using the file outbound gateway, the result file is returned
as the message payload on the reply channel.

This also applies when specifying the IGNORE mode. In that case the pre-existing destination file is
returned. If the payload of the request message was a file, you still have access to that original file
through the message header. See FileHeaders.ORIGINAL_FILE.



The 'outbound-gateway' works well in cases where you want to first move a file
and then send it through a processing pipeline. In such cases, you may connect the
file namespace’s inbound-channel-adapter element to the outbound-gateway and then
connect that gateway’s reply-channel to the beginning of the pipeline.

If you have more elaborate requirements or need to support additional payload types as input to be
converted to file content, you can extend the FileWritingMessageHandler, but a much better option is
to rely on a Transformer.

18.2.9. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the inbound adapter
with Java configuration:

400

https://docs.spring.io/spring-integration/api/org/springframework/integration/file/FileHeaders.html

@SpringBootApplication
@IntegrationComponentScan
public class FileWritingJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(FileWritingJavaApplication
.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 gateway.writeToFile("foo.txt", new File(tmpDir.getRoot(),
"fileWritingFlow"), "foo");
 }

 @Bean
 @ServiceActivator(inputChannel = "writeToFileChannel")
 public MessageHandler fileWritingMessageHandler() {
 Expression directoryExpression = new SpelExpressionParser()
.parseExpression("headers.directory");
 FileWritingMessageHandler handler = new FileWritingMessageHandler
(directoryExpression);
 handler.setFileExistsMode(FileExistsMode.APPEND);
 return handler;
 }

 @MessagingGateway(defaultRequestChannel = "writeToFileChannel")
 public interface MyGateway {

 void writeToFile(@Header(FileHeaders.FILENAME) String fileName,
 @Header(FileHeaders.FILENAME) File directory, String data);

 }
}

18.2.10. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the inbound adapter
with the Java DSL:

401

@SpringBootApplication
public class FileWritingJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(FileWritingJavaApplication.class)
 .web(false)
 .run(args);
 MessageChannel fileWritingInput = context.getBean("fileWritingInput",
MessageChannel.class);
 fileWritingInput.send(new GenericMessage<>("foo"));
 }

 @Bean
 public IntegrationFlow fileWritingFlow() {
 return IntegrationFlows.from("fileWritingInput")
 .enrichHeaders(h -> h.header(FileHeaders.FILENAME, "foo.txt")
 .header("directory", new File(tmpDir.getRoot(),
"fileWritingFlow")))
 .handle(Files.outboundGateway(m -> m.getHeaders().get("directory"
)))
 .channel(MessageChannels.queue("fileWritingResultChannel"))
 .get();
 }

}

18.3. File Transformers
To transform data read from the file system to objects and the other way around, you need to do
some work. Unlike FileReadingMessageSource and to a lesser extent FileWritingMessageHandler, you
probably need your own mechanism to get the job done. For this, you can implement the
Transformer interface. Alternatively, you can extend the AbstractFilePayloadTransformer for inbound
messages. Spring Integration provides some obvious implementations.

See the Javadoc for the Transformer interface to see which Spring Integration classes implement it.
Similarly, you can check the Javadoc for the AbstractFilePayloadTransformer class to see which
Spring Integration classes extend it.

FileToByteArrayTransformer extends AbstractFilePayloadTransformer and transforms a File object
into a byte[] by using Spring’s FileCopyUtils. It is often better to use a sequence of transformers
than to put all transformations in a single class. In that case the File to byte[] conversion might be
a logical first step.

FileToStringTransformer extends AbstractFilePayloadTransformer convert a File object to a String. If
nothing else, this can be useful for debugging (consider using it with a wire tap).

402

https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/Transformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/Transformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/Transformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/transformer/AbstractFilePayloadTransformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/transformer/AbstractFilePayloadTransformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/transformer/AbstractFilePayloadTransformer.html
./channel.pdf#channel-wiretap

To configure file-specific transformers, you can use the appropriate elements from the file
namespace, as the following example shows:

<int-file:file-to-bytes-transformer input-channel="input" output-channel="output"
 delete-files="true"/>

<int-file:file-to-string-transformer input-channel="input" output-channel="output"
 delete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound file after the
transformation is complete. This is in no way a replacement for using an AcceptOnceFileListFilter
when the FileReadingMessageSource is being used in a multi-threaded environment (such as when
you use Spring Integration in general).

18.4. File Splitter
The FileSplitter was added in version 4.1.2, and its namespace support was added in version 4.2.
The FileSplitter splits text files into individual lines, based on BufferedReader.readLine(). By
default, the splitter uses an Iterator to emit lines one at a time as they are read from the file.
Setting the iterator property to false causes it to read all the lines into memory before emitting
them as messages. One use case for this might be if you want to detect I/O errors on the file before
sending any messages containing lines. However, it is only practical for relatively short files.

Inbound payloads can be File, String (a File path), InputStream, or Reader. Other payload types are
emitted unchanged.

The following listing shows all the possible attributes for <int-file:splitter>:

403

<int-file:splitter id="splitter" ①
 iterator="" ②
 markers="" ③
 markers-json="" ④
 apply-sequence="" ⑤
 requires-reply="" ⑥
 charset="" ⑦
 first-line-as-header="" ⑧
 input-channel="" ⑨
 output-channel="" ⑩
 send-timeout="" ⑪
 auto-startup="" ⑫
 order="" ⑬
 phase="" /> ⑭

① The bean name of the splitter.

② Set to true (the default) to use an iterator or false to load the file into memory before
sending lines.

③ Set to true to emit start-of-file and end-of-file marker messages before and after the file
data. Markers are messages with FileSplitter.FileMarker payloads (with START and END
values in the mark property). You might use markers when sequentially processing files in a
downstream flow where some lines are filtered. They enable the downstream processing to
know when a file has been completely processed. In addition, a file_marker header that
contains START or END is added to these messages. The END marker includes a line count. If
the file is empty, only START and END markers are emitted with 0 as the lineCount. The default
is false. When true, apply-sequence is false by default. See also markers-json (the next
attribute).

④ When markers is true, set this to true to have the FileMarker objects be converted to a JSON
string. (Uses a SimpleJsonSerializer underneath).

⑤ Set to false to disable the inclusion of sequenceSize and sequenceNumber headers in messages.
The default is true, unless markers is true. When true and markers is true, the markers are
included in the sequencing. When true and iterator is true, the sequenceSize header is set
to 0, because the size is unknown.

⑥ Set to true to cause a RequiresReplyException to be thrown if there are no lines in the file.
The default is false.

⑦ Set the charset name to be used when reading text data into String payloads. The default is
the platform charset.

⑧ The header name for the first line to be carried as a header in the messages emitted for the
remaining lines. Since version 5.0.

⑨ Set the input channel used to send messages to the splitter.

⑩ Set the output channel to which messages are sent.

⑪ Set the send timeout. Only applies if the output-channel can block — such as a full
QueueChannel.

404

⑫ Set to false to disable automatically starting the splitter when the context is refreshed. The
default is true.

⑬ Set the order of this endpoint if the input-channel is a <publish-subscribe-channel/>.

⑭ Set the startup phase for the splitter (used when auto-startup is true).

The FileSplitter also splits any text-based InputStream into lines. Starting with version 4.3, when
used in conjunction with an FTP or SFTP streaming inbound channel adapter or an FTP or SFTP
outbound gateway that uses the stream option to retrieve a file, the splitter automatically closes the
session that supports the stream when the file is completely consumed See FTP Streaming Inbound
Channel Adapter and SFTP Streaming Inbound Channel Adapter as well as FTP Outbound Gateway
and SFTP Outbound Gateway for more information about these facilities.

When using Java configuration, an additional constructor is available, as the following example
shows:

public FileSplitter(boolean iterator, boolean markers, boolean markersJson)

When markersJson is true, the markers are represented as a JSON string (using a
SimpleJsonSerializer).

Version 5.0 introduced the firstLineAsHeader option to specify that the first line of content is a
header (such as column names in a CSV file). The argument passed to this property is the header
name under which the first line is carried as a header in the messages emitted for the remaining
lines. This line is not included in the sequence header (if applySequence is true) nor in the lineCount
associated with FileMarker.END . If a file contains only the header line, the file is treated as empty
and, therefore, only FileMarker instances are emitted during splitting (if markers are
enabled — otherwise, no messages are emitted). By default (if no header name is set), the first line is
considered to be data and becomes the payload of the first emitted message.

If you need more complex logic about header extraction from the file content (not first line, not the
whole content of the line, not one particular header, and so on), consider using header enricher
ahead of the FileSplitter. Note that the lines that have been moved to the headers might be filtered
downstream from the normal content process.

18.4.1. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure a file splitter with
Java configuration:

405

./ftp.pdf#ftp-streaming
./ftp.pdf#ftp-streaming
./sftp.pdf#sftp-streaming
./ftp.pdf#ftp-outbound-gateway
./sftp.pdf#sftp-outbound-gateway
./content-enrichment.pdf#header-enricher

@Splitter(inputChannel="toSplitter")
@Bean
public MessageHandler fileSplitter() {
 FileSplitter splitter = new FileSplitter(true, true);
 splitter.setApplySequence(true);
 splitter.setOutputChannel(outputChannel);
 return splitter;
}

18.4.2. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure a file splitter with the
Java DSL:

@SpringBootApplication
public class FileSplitterApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(FileSplitterApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public IntegrationFlow fileSplitterFlow() {
 return IntegrationFlows
 .from(Files.inboundAdapter(tmpDir.getRoot())
 .filter(new ChainFileListFilter<File>()
 .addFilter(new AcceptOnceFileListFilter<>())
 .addFilter(new ExpressionFileListFilter<>(
 new FunctionExpression<File>(f -> "foo.tmp".equals(f
.getName()))))))
 .split(Files.splitter()
 .markers()
 .charset(StandardCharsets.US_ASCII)
 .firstLineAsHeader("fileHeader")
 .applySequence(true))
 .channel(c -> c.queue("fileSplittingResultChannel"))
 .get();
 }

}

406

18.4.3. Idempotent Downstream Processing a Split File

When apply-sequence is true, the splitter adds the line number in the SEQUENCE_NUMBER header (when
markers is true, the markers are counted as lines). The line number can be used with an Idempotent
Receiver to avoid reprocessing lines after a restart.

For example:

@Bean
public ConcurrentMetadataStore store() {
 return new ZookeeperMetadataStore();
}

@Bean
public MetadataStoreSelector selector() {
 return new MetadataStoreSelector(
 message -> message.getHeaders().get(FileHeaders.ORIGINAL_FILE, File
.class)
 .getAbsolutePath(),
 message -> message.getHeaders().get(IntegrationMessageHeaderAccessor
.SEQUENCE_NUMBER)
 .toString(),
 store())
 .compareValues(
 (oldVal, newVal) -> Integer.parseInt(oldVal) <
Integer.parseInt(newVal));
}

@Bean
public IdempotentReceiverInterceptor idempotentReceiverInterceptor() {
 return new IdempotentReceiverInterceptor(selector());
}

@Bean
public IntegrationFlow flow() {
 ...
 .split(new FileSplitter())
 ...
 .handle("lineHandler", e -> e.advice(idempotentReceiverInterceptor()))
 ...
}

18.5. Remote Persistent File List Filters
Inbound and streaming inbound remote file channel adapters (FTP, SFTP, and other technologies)
are configured with corresponding implementations of AbstractPersistentFileListFilter by
default, configured with an in-memory MetadataStore. To run in a cluster, these can be replaced

407

./handler-advice.pdf#idempotent-receiver
./handler-advice.pdf#idempotent-receiver

with filters using a shared MetadataStore (see Metadata Store for more information). These filters
are used to prevent fetching the same file multiple times (unless it’s modified time changes).
Starting with version 5.2, a file is added to the filter immediately before the file is fetched (and
reversed if the fetch fails).



In the event of a catastrophic failure (such as power loss), it is possible that the file
currently being fetched will remain in the filter and won’t be re-fetched when
restarting the application. In this case you would need to manually remove this file
from the MetadataStore.

In previous versions, the files were filtered before any were fetched, meaning that several files
could be in this state after a catastrophic failure.

In order to facilitate this new behavior, two new methods have been added to FileListFilter.

boolean accept(F file);

boolean supportsSingleFileFiltering();

If a filter returns true in supportsSingleFileFiltering, it must implement accept().

If a remote filter does not support single file filtering (such as the
AbstractMarkerFilePresentFileListFilter), the adapters revert to the previous behavior.

If multiple filters are in used (using a CompositeFileListFilter or ChainFileListFilter), then all of
the delegate filters must support single file filtering in order for the composite filter to support it.

408

./meta-data-store.pdf#metadata-store

Chapter 19. FTP/FTPS Adapters
Spring Integration provides support for file transfer operations with FTP and FTPS.

The File Transfer Protocol (FTP) is a simple network protocol that lets you transfer files between
two computers on the Internet. FTPS stands for “FTP over SSL”.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-ftp</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-ftp:5.4.0"

There are two actors when it comes to FTP communication: client and server. To transfer files with
FTP or FTPS, you use a client that initiates a connection to a remote computer that is running an
FTP server. After the connection is established, the client can choose to send or receive copies of
files.

Spring Integration supports sending and receiving files over FTP or FTPS by providing three client-
side endpoints: inbound channel adapter, outbound channel adapter, and outbound gateway. It
also provides convenient namespace-based configuration options for defining these client
components.

To use the FTP namespace, add the following to the header of your XML file:

xmlns:int-ftp="http://www.springframework.org/schema/integration/ftp"
xsi:schemaLocation="http://www.springframework.org/schema/integration/ftp
 https://www.springframework.org/schema/integration/ftp/spring-integration-
ftp.xsd"

19.1. FTP Session Factory
Spring Integration provides factories you can use to create FTP (or FTPS) sessions.

409

19.1.1. Default Factories


Starting with version 3.0, sessions are no longer cached by default. See FTP Session
Caching.

Before configuring FTP adapters, you must configure an FTP session factory. You can configure the
FTP Session Factory with a regular bean definition where the implementation class is
o.s.i.ftp.session.DefaultFtpSessionFactory. The following example shows a basic configuration:

<bean id="ftpClientFactory"
 class="org.springframework.integration.ftp.session.DefaultFtpSessionFactory">
 <property name="host" value="localhost"/>
 <property name="port" value="22"/>
 <property name="username" value="kermit"/>
 <property name="password" value="frog"/>
 <property name="clientMode" value="0"/>
 <property name="fileType" value="2"/>
 <property name="bufferSize" value="100000"/>
</bean>

For FTPS connections, you can use o.s.i.ftp.session.DefaultFtpsSessionFactory instead.

The following example shows a complete configuration:

<bean id="ftpClientFactory"
 class="org.springframework.integration.ftp.session.DefaultFtpsSessionFactory">
 <property name="host" value="localhost"/>
 <property name="port" value="22"/>
 <property name="username" value="oleg"/>
 <property name="password" value="password"/>
 <property name="clientMode" value="1"/>
 <property name="fileType" value="2"/>
 <property name="useClientMode" value="true"/>
 <property name="cipherSuites" value="a,b.c"/>
 <property name="keyManager" ref="keyManager"/>
 <property name="protocol" value="SSL"/>
 <property name="trustManager" ref="trustManager"/>
 <property name="prot" value="P"/>
 <property name="needClientAuth" value="true"/>
 <property name="authValue" value="oleg"/>
 <property name="sessionCreation" value="true"/>
 <property name="protocols" value="SSL, TLS"/>
 <property name="implicit" value="true"/>
</bean>

410



If you experience connectivity problems and would like to trace session creation
as well as see which sessions are polled, you can enable session tracing by setting
the logger to the TRACE level (for example,
log4j.category.org.springframework.integration.file=TRACE).

Now you need only inject these session factories into your adapters. The protocol (FTP or FTPS) that
an adapter uses depends on the type of session factory that has been injected into the adapter.


A more practical way to provide values for FTP or FTPS session factories is to use
Spring’s property placeholder support (See docs.spring.io/spring/docs/current/
spring-framework-reference/core.html#beans-factory-placeholderconfigurer).

19.2. Advanced Configuration
DefaultFtpSessionFactory provides an abstraction over the underlying client API, which (since
Spring Integration 2.0) is Apache Commons Net. This spares you from the low-level configuration
details of the org.apache.commons.net.ftp.FTPClient. Several common properties are exposed on the
session factory (since version 4.0, this now includes connectTimeout, defaultTimeout, and
dataTimeout). However, you sometimes need access to lower level FTPClient configuration to
achieve more advanced configuration (such as setting the port range for active mode). For that
purpose, AbstractFtpSessionFactory (the base class for all FTP Session Factories) exposes hooks, in
the form of the two post-processing methods shown in the following listing:

/**
 * Will handle additional initialization after client.connect() method was
invoked,
 * but before any action on the client has been taken
 */
protected void postProcessClientAfterConnect(T t) throws IOException {
 // NOOP
}
/**
 * Will handle additional initialization before client.connect() method was
invoked.
 */
protected void postProcessClientBeforeConnect(T client) throws IOException {
 // NOOP
}

As you can see, there is no default implementation for these two methods. However, by extending
DefaultFtpSessionFactory, you can override these methods to provide more advanced configuration
of the FTPClient, as the following example shows:

411

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-factory-placeholderconfigurer
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-factory-placeholderconfigurer
https://commons.apache.org/net/

public class AdvancedFtpSessionFactory extends DefaultFtpSessionFactory {

 protected void postProcessClientBeforeConnect(FTPClient ftpClient) throws
IOException {
 ftpClient.setActivePortRange(4000, 5000);
 }
}

19.2.1. FTPS and Shared SSLSession

When using FTP over SSL or TLS, some servers require the same SSLSession to be used on the
control and data connections. This is to prevent “stealing” data connections. See
scarybeastsecurity.blogspot.cz/2009/02/vsftpd-210-released.html for more information.

Currently, the Apache FTPSClient does not support this feature. See NET-408.

The following solution, courtesy of Stack Overflow, uses reflection on the
sun.security.ssl.SSLSessionContextImpl, so it may not work on other JVMs. The stack overflow
answer was submitted in 2015, and the solution has been tested by the Spring Integration team
recently on JDK 1.8.0_112.

The following example shows how to create an FTPS session:

@Bean
public DefaultFtpsSessionFactory sf() {
 DefaultFtpsSessionFactory sf = new DefaultFtpsSessionFactory() {

 @Override
 protected FTPSClient createClientInstance() {
 return new SharedSSLFTPSClient();
 }

 };
 sf.setHost("...");
 sf.setPort(21);
 sf.setUsername("...");
 sf.setPassword("...");
 sf.setNeedClientAuth(true);
 return sf;
}

private static final class SharedSSLFTPSClient extends FTPSClient {

 @Override
 protected void _prepareDataSocket_(final Socket socket) throws IOException {
 if (socket instanceof SSLSocket) {
 // Control socket is SSL

412

https://scarybeastsecurity.blogspot.cz/2009/02/vsftpd-210-released.html
https://issues.apache.org/jira/browse/NET-408
https://stackoverflow.com/questions/32398754/how-to-connect-to-ftps-server-with-data-connection-using-same-tls-session

 final SSLSession session = ((SSLSocket) _socket_).getSession();
 final SSLSessionContext context = session.getSessionContext();
 context.setSessionCacheSize(0); // you might want to limit the cache
 try {
 final Field sessionHostPortCache = context.getClass()
 .getDeclaredField("sessionHostPortCache");
 sessionHostPortCache.setAccessible(true);
 final Object cache = sessionHostPortCache.get(context);
 final Method method = cache.getClass().getDeclaredMethod("put",
Object.class,
 Object.class);
 method.setAccessible(true);
 String key = String.format("%s:%s", socket.getInetAddress()
.getHostName(),
 String.valueOf(socket.getPort())).toLowerCase(Locale.ROOT);
 method.invoke(cache, key, session);
 key = String.format("%s:%s", socket.getInetAddress().getHostAddress(),
 String.valueOf(socket.getPort())).toLowerCase(Locale.ROOT);
 method.invoke(cache, key, session);
 }
 catch (NoSuchFieldException e) {
 // Not running in expected JRE
 logger.warn("No field sessionHostPortCache in SSLSessionContext", e);
 }
 catch (Exception e) {
 // Not running in expected JRE
 logger.warn(e.getMessage());
 }
 }

 }

}

19.3. Delegating Session Factory
Version 4.2 introduced the DelegatingSessionFactory, which allows the selection of the actual
session factory at runtime. Prior to invoking the FTP endpoint, call setThreadKey() on the factory to
associate a key with the current thread. That key is then used to lookup the actual session factory to
be used. You can clear the key by calling clearThreadKey() after use.

We added convenience methods so that you can easily do use a delegating session factory from a
message flow.

The following example shows how to declare a delegating session factory:

413

<bean id="dsf" class=
"org.springframework.integration.file.remote.session.DelegatingSessionFactory">
 <constructor-arg>
 <bean class="o.s.i.file.remote.session.DefaultSessionFactoryLocator">
 <!-- delegate factories here -->
 </bean>
 </constructor-arg>
</bean>

<int:service-activator input-channel="in" output-channel="c1"
 expression="@dsf.setThreadKey(#root, headers['factoryToUse'])" />

<int-ftp:outbound-gateway request-channel="c1" reply-channel="c2" ... />

<int:service-activator input-channel="c2" output-channel="out"
 expression="@dsf.clearThreadKey(#root)" />


When you use session caching (see FTP Session Caching), each of the delegates
should be cached. You cannot cache the DelegatingSessionFactory itself.

Starting with version 5.0.7, the DelegatingSessionFactory can be used in conjunction with a
RotatingServerAdvice to poll multiple servers; see Inbound Channel Adapters: Polling Multiple
Servers and Directories.

19.4. FTP Inbound Channel Adapter
The FTP inbound channel adapter is a special listener that connects to the FTP server and listens for
the remote directory events (for example, new file created) at which point it initiates a file transfer.
The following example shows how to configure an inbound-channel-adapter:

414

<int-ftp:inbound-channel-adapter id="ftpInbound"
 channel="ftpChannel"
 session-factory="ftpSessionFactory"
 auto-create-local-directory="true"
 delete-remote-files="true"
 filename-pattern="*.txt"
 remote-directory="some/remote/path"
 remote-file-separator="/"
 preserve-timestamp="true"
 local-filename-generator-expression="#this.toUpperCase() + '.a'"
 scanner="myDirScanner"
 local-filter="myFilter"
 temporary-file-suffix=".writing"
 max-fetch-size="-1"
 local-directory=".">
 <int:poller fixed-rate="1000"/>
</int-ftp:inbound-channel-adapter>

As the preceding configuration shows, you can configure an FTP inbound channel adapter by using
the inbound-channel-adapter element while also providing values for various attributes, such as
local-directory, filename-pattern (which is based on simple pattern matching, not regular
expressions), and the reference to a session-factory.

By default, the transferred file carries the same name as the original file. If you want to override
this behavior, you can set the local-filename-generator-expression attribute, which lets you provide
a SpEL expression to generate the name of the local file. Unlike outbound gateways and adapters,
where the root object of the SpEL evaluation context is a Message, this inbound adapter does not yet
have the message at the time of evaluation, since that’s what it ultimately generates with the
transferred file as its payload. Consequently, the root object of the SpEL evaluation context is the
original name of the remote file (a String).

The inbound channel adapter first retrieves the File object for a local directory and then emits
each file according to the poller configuration. Starting with version 5.0, you can now limit the
number of files fetched from the FTP server when new file retrievals are needed. This can be
beneficial when the target files are very large or when you run in a clustered system with a
persistent file list filter, discussed later. Use max-fetch-size for this purpose. A negative value (the
default) means no limit and all matching files are retrieved. See Inbound Channel Adapters:
Controlling Remote File Fetching for more information. Since version 5.0, you can also provide a
custom DirectoryScanner implementation to the inbound-channel-adapter by setting the scanner
attribute.

Starting with Spring Integration 3.0, you can specify the preserve-timestamp attribute (its default is
false). When true, the local file’s modified timestamp is set to the value retrieved from the server.
Otherwise, it is set to the current time.

Starting with version 4.2, you can specify remote-directory-expression instead of remote-directory,
letting you dynamically determine the directory on each poll — for example, remote-directory-

415

expression="@myBean.determineRemoteDir()".

Starting with version 4.3, you can omit the remote-directory and remote-directory-expression
attributes. They default to null. In this case, according to the FTP protocol, the client working
directory is used as the default remote directory.

Sometimes, file filtering based on the simple pattern specified with the filename-pattern attribute
might not suffice. If this is the case, you can use the filename-regex attribute to specify a regular
expression (such as filename-regex=".*\.test$"). Also, if you need complete control, you can use the
filter attribute and provide a reference to any custom implementation of the
o.s.i.file.filters.FileListFilter, a strategy interface for filtering a list of files. This filter
determines which remote files are retrieved. You can also combine a pattern-based filter with other
filters (such as an AcceptOnceFileListFilter to avoid synchronizing files that have previously been
fetched) by using a CompositeFileListFilter.

The AcceptOnceFileListFilter stores its state in memory. If you wish the state to survive a system
restart, consider using the FtpPersistentAcceptOnceFileListFilter instead. This filter stores the
accepted file names in an instance of the MetadataStore strategy (see Metadata Store). This filter
matches on the filename and the remote modified time.

Since version 4.0, this filter requires a ConcurrentMetadataStore. When used with a shared data store
(such as Redis with the RedisMetadataStore), it lets filter keys be shared across multiple application
or server instances.

Starting with version 5.0, the FtpPersistentAcceptOnceFileListFilter with in-memory
SimpleMetadataStore is applied by default for the FtpInboundFileSynchronizer. This filter is also
applied with the regex or pattern option in the XML configuration as well as with
FtpInboundChannelAdapterSpec in the Java DSL. Any other use cases can be managed with
CompositeFileListFilter (or ChainFileListFilter).

The preceding discussion refers to filtering the files before retrieving them. Once the files have
been retrieved, an additional filter is applied to the files on the file system. By default, this is an
AcceptOnceFileListFilter which, as discussed earlier, retains state in memory and does not
consider the file’s modified time. Unless your application removes files after processing, the
adapter will re-process the files on disk by default after an application restart.

Also, if you configure the filter to use a FtpPersistentAcceptOnceFileListFilter and the remote file
timestamp changes (causing it to be re-fetched), the default local filter does not let this new file be
processed.

For more information about this filter, and how it is used, see Remote Persistent File List Filters.

You can use the local-filter attribute to configure the behavior of the local file system filter.
Starting with version 4.3.8, a FileSystemPersistentAcceptOnceFileListFilter is configured by
default. This filter stores the accepted file names and modified timestamp in an instance of the
MetadataStore strategy (see Metadata Store) and detects changes to the local file modified time. The
default MetadataStore is a SimpleMetadataStore, which stores state in memory.

Since version 4.1.5, these filters have a new property (flushOnUpdate) that causes them to flush the
metadata store on every update (if the store implements Flushable).

416

./meta-data-store.pdf#metadata-store
./file.pdf#remote-persistent-flf
./meta-data-store.pdf#metadata-store


Further, if you use a distributed MetadataStore (such as Redis or GemFire), you can
have multiple instances of the same adapter or application and be sure that each
file is processed only once.

The actual local filter is a CompositeFileListFilter that contains the supplied filter and a pattern
filter that prevents processing files that are in the process of being downloaded (based on the
temporary-file-suffix). Files are downloaded with this suffix (the default is .writing), and the file is
renamed to its final name when the transfer is complete, making it 'visible' to the filter.

The remote-file-separator attribute lets you configure a file separator character to use if the default
'/' is not applicable for your particular environment.

See the schema for more details on these attributes.

You should also understand that the FTP inbound channel adapter is a polling consumer. Therefore,
you must configure a poller (by using either a global default or a local sub-element). Once a file has
been transferred, a message with a java.io.File as its payload is generated and sent to the channel
identified by the channel attribute.

19.4.1. More on File Filtering and Incomplete Files

Sometimes the file that just appeared in the monitored (remote) directory is not complete. Typically,
such a file is written with a temporary extension (such as somefile.txt.writing) and is then
renamed once the writing process finishes. In most cases, you are only interested in files that are
complete and would like to filter for only files that are complete. To handle these scenarios, you can
use the filtering support provided by the filename-pattern, filename-regex, and filter attributes.
The following example uses a custom filter implementation:

<int-ftp:inbound-channel-adapter
 channel="ftpChannel"
 session-factory="ftpSessionFactory"
 filter="customFilter"
 local-directory="file:/my_transfers">
 remote-directory="some/remote/path"
 <int:poller fixed-rate="1000"/>
</int-ftp:inbound-channel-adapter>

<bean id="customFilter" class="org.example.CustomFilter"/>

19.4.2. Poller Configuration Notes for the Inbound FTP Adapter

The job of the inbound FTP adapter consists of two tasks:

1. Communicate with a remote server in order to transfer files from a remote directory to a local
directory.

2. For each transferred file, generate a message with that file as a payload and send it to the

417

./redis.pdf#redis-metadata-store
./gemfire.pdf#gemfire-metadata-store
https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

channel identified by the 'channel' attribute. That is why they are called "'channel adapters'"
rather than just "'adapters'". The main job of such an adapter is to generate a message to send to
a message channel. Essentially, the second task takes precedence in such a way that, if your
local directory already has one or more files, it first generates messages from those. Only when
all local files have been processed does it initiate the remote communication to retrieve more
files.

Also, when configuring a trigger on the poller, you should pay close attention to the max-messages-
per-poll attribute. Its default value is 1 for all SourcePollingChannelAdapter instances (including
FTP). This means that, as soon as one file is processed, it waits for the next execution time as
determined by your trigger configuration. If you happened to have one or more files sitting in the
local-directory, it would process those files before it would initiate communication with the
remote FTP server. Also, if the max-messages-per-poll is set to 1 (the default), it processes only one
file at a time with intervals as defined by your trigger, essentially working as “one-poll === one-
file”.

For typical file-transfer use cases, you most likely want the opposite behavior: to process all the files
you can for each poll and only then wait for the next poll. If that is the case, set max-messages-per-
poll to -1. Then, on each poll, the adapter tries to generate as many messages as it possibly can. In
other words, it processes everything in the local directory, and then it connects to the remote
directory to transfer everything that is available there to be processed locally. Only then is the poll
operation considered complete, and the poller waits for the next execution time.

You can alternatively set the 'max-messages-per-poll' value to a positive value that indicates the
upward limit of messages to be created from files with each poll. For example, a value of 10 means
that, on each poll, it tries to process no more than ten files.

19.4.3. Recovering from Failures

It is important to understand the architecture of the adapter. There is a file synchronizer that
fetches the files and a FileReadingMessageSource that emits a message for each synchronized file. As
discussed earlier, two filters are involved. The filter attribute (and patterns) refers to the remote
(FTP) file list, to avoid fetching files that have already been fetched. The local-filter is used by the
FileReadingMessageSource to determine which files are to be sent as messages.

The synchronizer lists the remote files and consults its filter. The files are then transferred. If an IO
error occurs during file transfer, any files that have already been added to the filter are removed so
that they are eligible to be re-fetched on the next poll. This only applies if the filter implements
ReversibleFileListFilter (such as the AcceptOnceFileListFilter).

If, after synchronizing the files, an error occurs on the downstream flow processing a file, no
automatic rollback of the filter occurs, so the failed file is not reprocessed by default.

If you wish to reprocess such files after a failure, you can use configuration similar to the following
to facilitate the removal of the failed file from the filter:

418

<int-ftp:inbound-channel-adapter id="ftpAdapter"
 session-factory="ftpSessionFactory"
 channel="requestChannel"
 remote-directory-expression="'/ftpSource'"
 local-directory="file:myLocalDir"
 auto-create-local-directory="true"
 filename-pattern="*.txt">
 <int:poller fixed-rate="1000">
 <int:transactional synchronization-factory="syncFactory" />
 </int:poller>
</int-ftp:inbound-channel-adapter>

<bean id="acceptOnceFilter"
 class="org.springframework.integration.file.filters.AcceptOnceFileListFilter"
/>

<int:transaction-synchronization-factory id="syncFactory">
 <int:after-rollback expression="payload.delete()" />
</int:transaction-synchronization-factory>

<bean id="transactionManager"
 class="org.springframework.integration.transaction.PseudoTransactionManager"
/>

The preceding configuration works for any ResettableFileListFilter.

Starting with version 5.0, the inbound channel adapter can build sub-directories locally that
correspond to the generated local file name. That can be a remote sub-path as well. To be able to
read a local directory recursively for modification according to the hierarchy support, you can now
supply an internal FileReadingMessageSource with a new RecursiveDirectoryScanner based on the
Files.walk() algorithm. See AbstractInboundFileSynchronizingMessageSource.setScanner() for more
information. Also, you can now switch the AbstractInboundFileSynchronizingMessageSource to the
WatchService-based DirectoryScanner by using setUseWatchService() option. It is also configured for
all the WatchEventType instances to react to any modifications in local directory. The reprocessing
sample shown earlier is based on the built-in functionality of the
FileReadingMessageSource.WatchServiceDirectoryScanner to perform
ResettableFileListFilter.remove() when the file is deleted (StandardWatchEventKinds.ENTRY_DELETE)
from the local directory. See WatchServiceDirectoryScanner for more information.

19.4.4. Configuring with Java Configuration

The following Spring Boot application show an example of how to configure the inbound adapter
with Java configuration:

419

https://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/synchronizer/AbstractInboundFileSynchronizingMessageSource.html#setScanner
./file.pdf#watch-service-directory-scanner

@SpringBootApplication
public class FtpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(FtpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public SessionFactory<FTPFile> ftpSessionFactory() {
 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();
 sf.setHost("localhost");
 sf.setPort(port);
 sf.setUsername("foo");
 sf.setPassword("foo");
 sf.setTestSession(true);
 return new CachingSessionFactory<FTPFile>(sf);
 }

 @Bean
 public FtpInboundFileSynchronizer ftpInboundFileSynchronizer() {
 FtpInboundFileSynchronizer fileSynchronizer = new
FtpInboundFileSynchronizer(ftpSessionFactory());
 fileSynchronizer.setDeleteRemoteFiles(false);
 fileSynchronizer.setRemoteDirectory("foo");
 fileSynchronizer.setFilter(new FtpSimplePatternFileListFilter("*.xml"));
 return fileSynchronizer;
 }

 @Bean
 @InboundChannelAdapter(channel = "ftpChannel", poller = @Poller(fixedDelay =
"5000"))
 public MessageSource<File> ftpMessageSource() {
 FtpInboundFileSynchronizingMessageSource source =
 new FtpInboundFileSynchronizingMessageSource
(ftpInboundFileSynchronizer());
 source.setLocalDirectory(new File("ftp-inbound"));
 source.setAutoCreateLocalDirectory(true);
 source.setLocalFilter(new AcceptOnceFileListFilter<File>());
 source.setMaxFetchSize(1);
 return source;
 }

 @Bean
 @ServiceActivator(inputChannel = "ftpChannel")
 public MessageHandler handler() {
 return new MessageHandler() {

420

 @Override
 public void handleMessage(Message<?> message) throws
MessagingException {
 System.out.println(message.getPayload());
 }

 };
 }

}

19.4.5. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the inbound adapter
with the Java DSL:

@SpringBootApplication
public class FtpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(FtpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public IntegrationFlow ftpInboundFlow() {
 return IntegrationFlows
 .from(Ftp.inboundAdapter(this.ftpSessionFactory)
 .preserveTimestamp(true)
 .remoteDirectory("foo")
 .regexFilter(".*\\.txt$")
 .localFilename(f -> f.toUpperCase() + ".a")
 .localDirectory(new File("d:\\ftp_files")),
 e -> e.id("ftpInboundAdapter")
 .autoStartup(true)
 .poller(Pollers.fixedDelay(5000)))
 .handle(m -> System.out.println(m.getPayload()))
 .get();
 }
}

19.4.6. Dealing With Incomplete Data

See Dealing With Incomplete Data.

421

./file.pdf#file-incomplete

The FtpSystemMarkerFilePresentFileListFilter is provided to filter remote files that do not have a
corresponding marker file on the remote system. See the Javadoc (and browse to the parent classes)
for configuration information.

19.5. FTP Streaming Inbound Channel Adapter
Version 4.3 introduced the streaming inbound channel adapter. This adapter produces message
with payloads of type InputStream, letting files be fetched without writing to the local file system.
Since the session remains open, the consuming application is responsible for closing the session
when the file has been consumed. The session is provided in the closeableResource header
(IntegrationMessageHeaderAccessor.CLOSEABLE_RESOURCE). Standard framework components, such as
the FileSplitter and StreamTransformer, automatically close the session. See File Splitter and Stream
Transformer for more information about these components. The following example shows how to
configure an inbound-streaming-channel-adapter:

<int-ftp:inbound-streaming-channel-adapter id="ftpInbound"
 channel="ftpChannel"
 session-factory="sessionFactory"
 filename-pattern="*.txt"
 filename-regex=".*\.txt"
 filter="filter"
 filter-expression="@myFilterBean.check(#root)"
 remote-file-separator="/"
 comparator="comparator"
 max-fetch-size="1"
 remote-directory-expression="'foo/bar'">
 <int:poller fixed-rate="1000" />
</int-ftp:inbound-streaming-channel-adapter>

Only one of filename-pattern, filename-regex, filter, or filter-expression is allowed.



Starting with version 5.0, by default, the FtpStreamingMessageSource adapter
prevents duplicates for remote files with FtpPersistentAcceptOnceFileListFilter
based on the in-memory SimpleMetadataStore. By default, this filter is also applied
with the filename pattern (or regex). If you need to allow duplicates, you can use
AcceptAllFileListFilter. Any other use cases can be handled by
CompositeFileListFilter (or ChainFileListFilter). The Java configuration (later in
the document) shows one technique to remove the remote file after processing to
avoid duplicates.

For more information about the FtpPersistentAcceptOnceFileListFilter, and how it is used, see
Remote Persistent File List Filters.

Use the max-fetch-size attribute to limit the number of files fetched on each poll when a fetch is
necessary. Set it to 1 and use a persistent filter when running in a clustered environment. See
Inbound Channel Adapters: Controlling Remote File Fetching for more information.

422

https://docs.spring.io/spring-integration/api/org/springframework/integration/ftp/filters/FtpSystemMarkerFilePresentFileListFilter.html
./file.pdf#file-splitter
./transformer.pdf#stream-transformer
./transformer.pdf#stream-transformer
./file.pdf#remote-persistent-flf

The adapter puts the remote directory and file name in the FileHeaders.REMOTE_DIRECTORY and
FileHeaders.REMOTE_FILE headers, respectively. Starting with version 5.0, the
FileHeaders.REMOTE_FILE_INFO header provides additional remote file information (represented in
JSON by default). If you set the fileInfoJson property on the FtpStreamingMessageSource to false, the
header contains an FtpFileInfo object. The FTPFile object provided by the underlying Apache Net
library can be accessed by using the FtpFileInfo.getFileInfo() method. The fileInfoJson property
is not available when you use XML configuration, but you can set it by injecting the
FtpStreamingMessageSource into one of your configuration classes. See also Remote File Information.

Starting with version 5.1, the generic type of the comparator is FTPFile. Previously, it was
AbstractFileInfo<FTPFile>. This is because the sort is now performed earlier in the processing,
before filtering and applying maxFetch.

19.5.1. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the inbound adapter
with Java configuration:

423

@SpringBootApplication
public class FtpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(FtpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 @InboundChannelAdapter(channel = "stream")
 public MessageSource<InputStream> ftpMessageSource() {
 FtpStreamingMessageSource messageSource = new FtpStreamingMessageSource
(template());
 messageSource.setRemoteDirectory("ftpSource/");
 messageSource.setFilter(new AcceptAllFileListFilter<>());
 messageSource.setMaxFetchSize(1);
 return messageSource;
 }

 @Bean
 @Transformer(inputChannel = "stream", outputChannel = "data")
 public org.springframework.integration.transformer.Transformer transformer() {
 return new StreamTransformer("UTF-8");
 }

 @Bean
 public FtpRemoteFileTemplate template() {
 return new FtpRemoteFileTemplate(ftpSessionFactory());
 }

 @ServiceActivator(inputChannel = "data", adviceChain = "after")
 @Bean
 public MessageHandler handle() {
 return System.out::println;
 }

 @Bean
 public ExpressionEvaluatingRequestHandlerAdvice after() {
 ExpressionEvaluatingRequestHandlerAdvice advice = new
ExpressionEvaluatingRequestHandlerAdvice();
 advice.setOnSuccessExpression(
 "@template.remove(headers['file_remoteDirectory'] +
headers['file_remoteFile'])");
 advice.setPropagateEvaluationFailures(true);
 return advice;
 }

}

424

Notice that, in this example, the message handler downstream of the transformer has an advice
that removes the remote file after processing.

19.6. Inbound Channel Adapters: Polling Multiple
Servers and Directories
Starting with version 5.0.7, the RotatingServerAdvice is available; when configured as a poller
advice, the inbound adapters can poll multiple servers and directories. Configure the advice and
add it to the poller’s advice chain as normal. A DelegatingSessionFactory is used to select the server
see Delegating Session Factory for more information. The advice configuration consists of a list of
RotationPolicy.KeyDirectory objects.

Example

@Bean
public RotatingServerAdvice advice() {
 List<RotationPolicy.KeyDirectory> keyDirectories = new ArrayList<>();
 keyDirectories.add(new RotationPolicy.KeyDirectory("one", "foo"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("one", "bar"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("two", "baz"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("two", "qux"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("three", "fiz"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("three", "buz"));
 return new RotatingServerAdvice(delegatingSf(), keyDirectories);
}

This advice will poll directory foo on server one until no new files exist then move to directory bar
and then directory baz on server two, etc.

This default behavior can be modified with the fair constructor arg:

fair

@Bean
public RotatingServerAdvice advice() {
 ...
 return new RotatingServerAdvice(delegatingSf(), keyDirectories, true);
}

In this case, the advice will move to the next server/directory regardless of whether the previous
poll returned a file.

Alternatively, you can provide your own RotationPolicy to reconfigure the message source as
needed:

425

policy

public interface RotationPolicy {

 void beforeReceive(MessageSource<?> source);

 void afterReceive(boolean messageReceived, MessageSource<?> source);

}

and

custom

@Bean
public RotatingServerAdvice advice() {
 return new RotatingServerAdvice(myRotationPolicy());
}

The local-filename-generator-expression attribute (localFilenameGeneratorExpression on the
synchronizer) can now contain the #remoteDirectory variable. This allows files retrieved from
different directories to be downloaded to similar directories locally:

@Bean
public IntegrationFlow flow() {
 return IntegrationFlows.from(Ftp.inboundAdapter(sf())
 .filter(new FtpPersistentAcceptOnceFileListFilter(new
SimpleMetadataStore(), "rotate"))
 .localDirectory(new File(tmpDir))
 .localFilenameExpression("#remoteDirectory +
T(java.io.File).separator + #root")
 .remoteDirectory("."),
 e -> e.poller(Pollers.fixedDelay(1).advice(advice())))
 .channel(MessageChannels.queue("files"))
 .get();
}


Do not configure a TaskExecutor on the poller when using this advice; see
Conditional Pollers for Message Sources for more information.

19.7. Inbound Channel Adapters: Controlling Remote
File Fetching
There are two properties that you should consider when you configure inbound channel adapters.
max-messages-per-poll, as with all pollers, can be used to limit the number of messages emitted on
each poll (if more than the configured value are ready). max-fetch-size (since version 5.0) can limit

426

./polling-consumer.pdf#conditional-pollers

the number of files retrieved from the remote server at one time.

The following scenarios assume the starting state is an empty local directory:

• max-messages-per-poll=2 and max-fetch-size=1: The adapter fetches one file, emits it, fetches the
next file, emits it, and then sleeps until the next poll.

• max-messages-per-poll=2 and max-fetch-size=2): The adapter fetches both files and then emits
each one.

• max-messages-per-poll=2 and max-fetch-size=4: The adapter fetches up to four files (if available)
and emits the first two (if there are at least two). The next two files are emitted on the next poll.

• max-messages-per-poll=2 and max-fetch-size not specified: The adapter fetches all remote files
and emits the first two (if there are at least two). The subsequent files are emitted on
subsequent polls (two at a time). When all files are consumed, the remote fetch is attempted
again, to pick up any new files.


When you deploy multiple instances of an application, we recommend a small max-
fetch-size, to avoid one instance “grabbing” all the files and starving other
instances.

Another use for max-fetch-size is if you want to stop fetching remote files but continue to process
files that have already been fetched. Setting the maxFetchSize property on the MessageSource
(programmatically, with JMX, or with a control bus) effectively stops the adapter from fetching
more files but lets the poller continue to emit messages for files that have previously been fetched.
If the poller is active when the property is changed, the change takes effect on the next poll.

Starting with version 5.1, the synchronizer can be provided with a Comparator<FTPFile>. This is
useful when restricting the number of files fetched with maxFetchSize.

19.8. FTP Outbound Channel Adapter
The FTP outbound channel adapter relies on a MessageHandler implementation that connects to the
FTP server and initiates an FTP transfer for every file it receives in the payload of incoming
messages. It also supports several representations of a file, so you are not limited only to
java.io.File-typed payloads. The FTP outbound channel adapter supports the following payloads:

• java.io.File: The actual file object

• byte[]: A byte array that represents the file contents

• java.lang.String: Text that represents the file contents

• java.io.InputStream: a stream of data to transfer to remote file

• org.springframework.core.io.Resource: a resource for data to transfer to remote file

The following example shows how to configure an outbound-channel-adapter:

427

./control-bus.pdf#control-bus

<int-ftp:outbound-channel-adapter id="ftpOutbound"
 channel="ftpChannel"
 session-factory="ftpSessionFactory"
 charset="UTF-8"
 remote-file-separator="/"
 auto-create-directory="true"
 remote-directory-expression="headers['remote_dir']"
 temporary-remote-directory-expression="headers['temp_remote_dir']"
 filename-generator="fileNameGenerator"
 use-temporary-filename="true"
 chmod="600"
 mode="REPLACE"/>

The preceding configuration shows how you can configure an FTP outbound channel adapter by
using the outbound-channel-adapter element while also providing values for various attributes, such
as filename-generator (an implementation of the o.s.i.file.FileNameGenerator strategy interface), a
reference to a session-factory, and other attributes. You can also see some examples of *expression
attributes that let you use SpEL to configure settings such as remote-directory-expression,
temporary-remote-directory-expression, and remote-filename-generator-expression (a SpEL
alternative to filename-generator, shown in the preceding example). As with any component that
allows the usage of SpEL, access to the payload and the message Headers is available through the
'payload' and 'headers' variables. See the schema for more details on the available attributes.



By default, if no file name generator is specified, Spring Integration uses
o.s.i.file.DefaultFileNameGenerator. DefaultFileNameGenerator determines the file
name based on the value of the file_name header (if it exists) in the MessageHeaders,
or, if the payload of the Message is already a java.io.File, it uses the original
name of that file.



Defining certain values (such as remote-directory) might be platform- or FTP
server-dependent. For example, as was reported on forum.spring.io/
showthread.php?p=333478&posted=1#post333478, on some platforms, you must
add a slash to the end of the directory definition (for example, remote-
directory="/thing1/thing2/" instead of remote-directory="/thing1/thing2").

Starting with version 4.1, you can specify the mode when transferring the file. By default, an existing
file is overwritten. The modes are defined by the FileExistsMode enumeration, which includes the
following values:

• REPLACE (default)

• REPLACE_IF_MODIFIED

• APPEND

• APPEND_NO_FLUSH

• IGNORE

428

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config
https://forum.spring.io/showthread.php?p=333478&posted=1#post333478
https://forum.spring.io/showthread.php?p=333478&posted=1#post333478

• FAIL

IGNORE and FAIL do not transfer the file. FAIL causes an exception to be thrown, while IGNORE silently
ignores the transfer (although a DEBUG log entry is produced).

Version 5.2 introduced the chmod attribute, which you can use to change the remote file permissions
after upload. You can use the conventional Unix octal format (for example, 600 allows read-write
for the file owner only). When configuring the adapter using java, you can use setChmodOctal("600")
or setChmod(0600). Only applies if your FTP server supports the SITE CHMOD subcommand.

19.8.1. Avoiding Partially Written Files

One of the common problems that arises when dealing with file transfers is the possibility of
processing a partial file. That is, a file might appear in the file system before its transfer is actually
complete.

To deal with this issue, Spring Integration FTP adapters use a common algorithm: Files are
transferred under a temporary name and then renamed once they are fully transferred.

By default, every file that is in the process of being transferred appears in the file system with an
additional suffix, which, by default, is .writing. You can change this suffix by setting the temporary-
file-suffix attribute.

However, there may be situations where you do not want to use this technique (for example, if the
server does not permit renaming files). For situations like this, you can disable this feature by
setting use-temporary-file-name to false (the default is true). When this attribute is false, the file is
written with its final name and the consuming application needs some other mechanism to detect
that the file is completely uploaded before accessing it.

19.8.2. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the outbound adapter
with Java configuration:

429

@SpringBootApplication
@IntegrationComponentScan
public class FtpJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(FtpJavaApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 gateway.sendToFtp(new File("/foo/bar.txt"));
 }

 @Bean
 public SessionFactory<FTPFile> ftpSessionFactory() {
 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();
 sf.setHost("localhost");
 sf.setPort(port);
 sf.setUsername("foo");
 sf.setPassword("foo");
 sf.setTestSession(true);
 return new CachingSessionFactory<FTPFile>(sf);
 }

 @Bean
 @ServiceActivator(inputChannel = "ftpChannel")
 public MessageHandler handler() {
 FtpMessageHandler handler = new FtpMessageHandler(ftpSessionFactory());
 handler.setRemoteDirectoryExpressionString("headers['remote-target-dir']"
);
 handler.setFileNameGenerator(new FileNameGenerator() {

 @Override
 public String generateFileName(Message<?> message) {
 return "handlerContent.test";
 }

 });
 return handler;
 }

 @MessagingGateway
 public interface MyGateway {

 @Gateway(requestChannel = "toFtpChannel")
 void sendToFtp(File file);

 }
}

430

19.8.3. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound adapter
using the Java DSL:

431

@SpringBootApplication
@IntegrationComponentScan
public class FtpJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(FtpJavaApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 gateway.sendToFtp(new File("/foo/bar.txt"));
 }

 @Bean
 public SessionFactory<FTPFile> ftpSessionFactory() {
 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();
 sf.setHost("localhost");
 sf.setPort(port);
 sf.setUsername("foo");
 sf.setPassword("foo");
 sf.setTestSession(true);
 return new CachingSessionFactory<FTPFile>(sf);
 }

 @Bean
 public IntegrationFlow ftpOutboundFlow() {
 return IntegrationFlows.from("toFtpChannel")
 .handle(Ftp.outboundAdapter(ftpSessionFactory(), FileExistsMode
.FAIL)
 .useTemporaryFileName(false)
 .fileNameExpression("headers['" + FileHeaders.FILENAME +
"']")
 .remoteDirectory(this.ftpServer.getTargetFtpDirectory()
.getName())
).get();
 }

 @MessagingGateway
 public interface MyGateway {

 @Gateway(requestChannel = "toFtpChannel")
 void sendToFtp(File file);

 }

}

432

19.9. FTP Outbound Gateway
The FTP outbound gateway provides a limited set of commands to interact with a remote FTP or
FTPS server. The supported commands are:

• ls (list files)

• nlst (list file names)

• get (retrieve file)

• mget (retrieve file(s))

• rm (remove file(s))

• mv (move/rename file)

• put (send file)

• mput (send multiple files)

19.9.1. Using the ls Command

ls lists remote files and supports the following options:

• -1: Retrieve a list of file names. The default is to retrieve a list of FileInfo objects.

• -a: Include all files (including those starting with '.')

• -f: Do not sort the list

• -dirs: Include directories (they are excluded by default)

• -links: Include symbolic links (they are excluded by default)

• -R: List the remote directory recursively

In addition, filename filtering is provided, in the same manner as the inbound-channel-adapter. See
FTP Inbound Channel Adapter.

The message payload resulting from an ls operation is a list of file names or a list of FileInfo
objects. These objects provide information such as modified time, permissions, and other details.

The remote directory that the ls command acted on is provided in the file_remoteDirectory header.

When using the recursive option (-R), the fileName includes any subdirectory elements,
representing a relative path to the file (relative to the remote directory). If the -dirs option is
included, each recursive directory is also returned as an element in the list. In this case, it is
recommended that you not use the -1 option, because you would not be able to distinguish files
from directories, which you can do with the FileInfo objects.

Starting with version 4.3, the FtpSession supports null for the list() and listNames() methods.
Therefore, you can omit the expression attribute. For convenience, Java configuration has two
constructors that do not have an expression argument. or LS, NLST, PUT and MPUT commands, null is
treated as the client working directory, according to the FTP protocol. All other commands must be
supplied with the expression to evaluate the remote path against the request message. You can set
the working directory with the FTPClient.changeWorkingDirectory() function when you extend the

433

DefaultFtpSessionFactory and implement the postProcessClientAfterConnect() callback.

19.9.2. Using the nlst Command

Version 5 introduced support for the nlst command.

nlst lists remote file names and supports only one option:

• -f: Do not sort the list

The message payload resulting from an nlst operation is a list of file names.

The remote directory that the nlst command acted on is provided in the file_remoteDirectory
header.

Unlike the -1 option for the ls command, which uses the LIST command, the nlst command sends
an NLST command to the target FTP server. This command is useful when the server does not
support LIST (due to security restrictions, for example). The result of the nlst operation is the
names without other detail. Therefore, the framework cannot determine if an entity is a directory,
to perform filtering or recursive listing, for example.

19.9.3. Using the get Command

get retrieves a remote file. It supports the following option:

• -P: Preserve the timestamp of the remote file.

• -stream: Retrieve the remote file as a stream.

• -D: Delete the remote file after successful transfer. The remote file is not deleted if the transfer is
ignored, because the FileExistsMode is IGNORE and the local file already exists.

The file_remoteDirectory header provides the remote directory name, and the file_remoteFile
header provides the file name.

The message payload resulting from a get operation is a File object that represents the retrieved
file or an InputStream when you use the -stream option. The -stream option allows retrieving the file
as a stream. For text files, a common use case is to combine this operation with a file splitter or a
stream transformer. When consuming remote files as streams, you are responsible for closing the
Session after the stream is consumed. For convenience, the Session is provided in the
closeableResource header, which you can access with a convenience method on
IntegrationMessageHeaderAccessor The following example shows how to use the convenience
method:

Closeable closeable = new IntegrationMessageHeaderAccessor(message)
.getCloseableResource();
if (closeable != null) {
 closeable.close();
}

434

./file.pdf#file-splitter
./transformer.pdf#stream-transformer

Framework components such as the file splitter and the stream transformer automatically close the
session after the data is transferred.

The following example shows how to consume a file as a stream:

<int-ftp:outbound-gateway session-factory="ftpSessionFactory"
 request-channel="inboundGetStream"
 command="get"
 command-options="-stream"
 expression="payload"
 remote-directory="ftpTarget"
 reply-channel="stream" />

<int-file:splitter input-channel="stream" output-channel="lines" />


If you consume the input stream in a custom component, you must close the
Session. You can do so either in your custom code or by routing a copy of the
message to a service-activator and using SpEL, as the following example shows:

<int:service-activator input-channel="closeSession"
 expression="headers['closeableResource'].close()" />

19.9.4. Using the mget Command

mget retrieves multiple remote files based on a pattern and supports the following options:

• -P: Preserve the timestamps of the remote files.

• -R: Retrieve the entire directory tree recursively.

• -x: Throw an exception if no files match the pattern (otherwise an empty list is returned).

• -D: Delete each remote file after successful transfer. The remote file is not deleted if the transfer
is ignored, because the FileExistsMode is IGNORE and the local file already exists.

The message payload resulting from an mget operation is a List<File> object (that is, a List of File
objects, each representing a retrieved file).


Starting with version 5.0, if the FileExistsMode is IGNORE, the payload of the output
message no longer contains files that were not fetched due to the file already
existing. Previously, the list contained all files, including those that already existed.

The expression used to determine the remote path should produce a result that ends with - e.g.
somedir/ will fetch the complete tree under somedir.

Starting with version 5.0, a recursive mget, combined with the new

435

./file.pdf#file-splitter
./transformer.pdf#stream-transformer

FileExistsMode.REPLACE_IF_MODIFIED mode, can be used to periodically synchronize an entire
remote directory tree locally. This mode replaces the local file’s last modified timestamp with the
remote timestamp, regardless of the -P (preserve timestamp) option.



Using recursion (-R)

The pattern is ignored, and * is assumed. By default, the entire remote tree is
retrieved. However, files in the tree can be filtered, by providing a FileListFilter.
Directories in the tree can also be filtered this way. A FileListFilter can be
provided by reference, by filename-pattern, or by filename-regex attributes. For
example, filename-regex="(subDir|.*1.txt)" retrieves all files ending with 1.txt in
the remote directory and the subDir child directory. However, the next example
shows an alternative, which version 5.0 made available.

If a subdirectory is filtered, no additional traversal of that subdirectory is
performed.

The -dirs option is not allowed (the recursive mget uses the recursive ls to obtain
the directory tree, so the directories themselves cannot be included in the list).

Typically, you would use the #remoteDirectory variable in the local-directory-
expression so that the remote directory structure is retained locally.

Starting with version 5.0, the FtpSimplePatternFileListFilter and FtpRegexPatternFileListFilter
can be configured to always pass directories by setting the alwaysAcceptDirectories property to
true. Doing so allows recursion for a simple pattern, as the following examples show:

<bean id="starDotTxtFilter"
 class=
"org.springframework.integration.ftp.filters.FtpSimplePatternFileListFilter">
 <constructor-arg value="*.txt" />
 <property name="alwaysAcceptDirectories" value="true" />
</bean>

<bean id="dotStarDotTxtFilter"
 class=
"org.springframework.integration.ftp.filters.FtpRegexPatternFileListFilter">
 <constructor-arg value="^.*\.txt$" />
 <property name="alwaysAcceptDirectories" value="true" />
</bean>

Once you have defined filters such as those in the preceding example, you can use one by setting
the filter property on the gateway.

See also Outbound Gateway Partial Success (mget and mput).

436

19.9.5. Using the put Command

The put commad sends a file to the remote server. The payload of the message can be a
java.io.File, a byte[], or a String. A remote-filename-generator (or expression) is used to name the
remote file. Other available attributes include remote-directory, temporary-remote-directory, and
their *-expression equivalents: use-temporary-file-name and auto-create-directory. See the schema
documentation for more information.

The message payload resulting from a put operation is a String that represents the full path of the
file on the server after transfer.

Version 5.2 introduced the chmod attribute, which changes the remote file permissions after upload.
You can use the conventional Unix octal format (for example, 600 allows read-write for the file
owner only). When configuring the adapter using java, you can use setChmod(0600). Only applies if
your FTP server supports the SITE CHMOD subcommand.

Using the mput Command

The mput sends multiple files to the server and supports only one option:

• -R: Recursive. Send all files (possibly filtered) in the directory and its subdirectories.

The message payload must be a java.io.File (or String) that represents a local directory. Since
version 5.1, a collection of File or String is also supported.

This command supports the same attributes as the put command. In addition, files in the local
directory can be filtered with one of mput-pattern, mput-regex, mput-filter, or mput-filter-
expression. The filter works with recursion, as long as the subdirectories themselves pass the filter.
Subdirectories that do not pass the filter are not recursed.

The message payload resulting from an mget operation is a List<String> object (that is, a List of
remote file paths that result from the transfer).

See also Outbound Gateway Partial Success (mget and mput).

Version 5.2 introduced the chmod attribute, which lets you change the remote file permissions after
upload. You can use the conventional Unix octal format (for example, 600 allows read-write for the
file owner only). When configuring the adapter with Java, you can use setChmodOctal("600") or
setChmod(0600). Only applies if your FTP server supports the SITE CHMOD subcommand.

19.9.6. Using the rm Command

The rm command removes files.

The rm command has no options.

The message payload resulting from an rm operation is Boolean.TRUE if the remove was successful or
Boolean.FALSE otherwise. The file_remoteDirectory header provides the remote directory, and the
file_remoteFile header provides the file name.

437

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

19.9.7. Using the mv Command

The mv command moves files

The mv command has no options.

The expression attribute defines the “from” path and the rename-expression attribute defines the
“to” path. By default, the rename-expression is headers['file_renameTo']. This expression must not
evaluate to null or an empty String. If necessary, any necessary remote directories are created. The
payload of the result message is Boolean.TRUE. The file_remoteDirectory header provides the
original remote directory, and file_remoteFile header provides the file name. The new path is in
the file_renameTo header.

19.9.8. Additional Information about FTP Outbound Gateway Commands

The get and mget commands support the local-filename-generator-expression attribute. It defines a
SpEL expression to generate the name of local files during the transfer. The root object of the
evaluation context is the request message. The remoteFileName variable, which is particularly useful
for mget, is also available — for example, local-filename-generator-
expression="#remoteFileName.toUpperCase() + headers.something".

The get and mget commands support the local-directory-expression attribute. It defines a SpEL
expression to generate the name of local directories during the transfer. The root object of the
evaluation context is the request message but. The remoteDirectory variable, which is particularly
useful for mget, is also available — for example: local-directory-expression="'/tmp/local/' +
#remoteDirectory.toUpperCase() + headers.something". This attribute is mutually exclusive with the
local-directory attribute.

For all commands, the 'expression' property of the gateway provides the path on which the
command acts. For the mget command, the expression might evaluate to '', meaning to retrieve all
files, or 'somedirectory/', and so on.

The following example shows a gateway configured for an ls command:

<int-ftp:outbound-gateway id="gateway1"
 session-factory="ftpSessionFactory"
 request-channel="inbound1"
 command="ls"
 command-options="-1"
 expression="payload"
 reply-channel="toSplitter"/>

The payload of the message sent to the toSplitter channel is a list of String objects that each
contain the name of a file. If the command-options attribute was omitted, it holds FileInfo objects. It
uses space-delimited options — for example, command-options="-1 -dirs -links".

Starting with version 4.2, the GET, MGET, PUT and MPUT commands support a FileExistsMode property

438

(mode when using the namespace support). This affects the behavior when the local file exists (GET
and MGET) or the remote file exists (PUT and MPUT). Supported modes are REPLACE, APPEND, FAIL, and
IGNORE. For backwards compatibility, the default mode for PUT and MPUT operations is REPLACE. For GET
and MGET operations, the default is FAIL.

Starting with version 5.0, the setWorkingDirExpression() (working-dir-expression in XML) option is
provided on the FtpOutboundGateway (<int-ftp:outbound-gateway> in XML). It lets you change the
client working directory at runtime. The expression is evaluated against the request message. The
previous working directory is restored after each gateway operation.

19.9.9. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the outbound gateway
with Java configuration:

@SpringBootApplication
public class FtpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(FtpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public SessionFactory<FTPFile> ftpSessionFactory() {
 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();
 sf.setHost("localhost");
 sf.setPort(port);
 sf.setUsername("foo");
 sf.setPassword("foo");
 sf.setTestSession(true);
 return new CachingSessionFactory<FTPFile>(sf);
 }

 @Bean
 @ServiceActivator(inputChannel = "ftpChannel")
 public MessageHandler handler() {
 FtpOutboundGateway ftpOutboundGateway =
 new FtpOutboundGateway(ftpSessionFactory(), "ls",
"'my_remote_dir/'");
 ftpOutboundGateway.setOutputChannelName("lsReplyChannel");
 return ftpOutboundGateway;
 }

}

439

19.9.10. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound gateway
with the Java DSL:

@SpringBootApplication
public class FtpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(FtpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public SessionFactory<FTPFile> ftpSessionFactory() {
 DefaultFtpSessionFactory sf = new DefaultFtpSessionFactory();
 sf.setHost("localhost");
 sf.setPort(port);
 sf.setUsername("foo");
 sf.setPassword("foo");
 sf.setTestSession(true);
 return new CachingSessionFactory<FTPFile>(sf);
 }

 @Bean
 public FtpOutboundGatewaySpec ftpOutboundGateway() {
 return Ftp.outboundGateway(ftpSessionFactory(),
 AbstractRemoteFileOutboundGateway.Command.MGET, "payload")
 .options(AbstractRemoteFileOutboundGateway.Option.RECURSIVE)
 .regexFileNameFilter("(subFtpSource|.*1.txt)")
 .localDirectoryExpression("'localDirectory/' + #remoteDirectory")
 .localFilenameExpression("#remoteFileName.replaceFirst('ftpSource',
'localTarget')");
 }

 @Bean
 public IntegrationFlow ftpMGetFlow(AbstractRemoteFileOutboundGateway<FTPFile>
ftpOutboundGateway) {
 return f -> f
 .handle(ftpOutboundGateway)
 .channel(c -> c.queue("remoteFileOutputChannel"));
 }

}

440

19.9.11. Outbound Gateway Partial Success (mget and mput)

When you perform operations on multiple files (by using mget and mput), an exception can occur
some time after one or more files have been transferred. In this case (starting with version 4.2), a
PartialSuccessException is thrown. As well as the usual MessagingException properties
(failedMessage and cause), this exception has two additional properties:

• partialResults: The successful transfer results.

• derivedInput: The list of files generated from the request message (for example, local files to
transfer for an mput).

These attributes let you determine which files were successfully transferred and which were not.

In the case of a recursive mput, the PartialSuccessException may have nested
PartialSuccessException occurrences.

Consider the following directory structure:

root/
|- file1.txt
|- subdir/
 | - file2.txt
 | - file3.txt
|- zoo.txt

If the exception occurs on file3.txt, the PartialSuccessException thrown by the gateway has
derivedInput of file1.txt, subdir, and zoo.txt and partialResults of file1.txt. Its cause is another
PartialSuccessException with derivedInput of file2.txt and file3.txt and partialResults of
file2.txt.

19.10. FTP Session Caching


Starting with Spring Integration 3.0, sessions are no longer cached by default. The
cache-sessions attribute is no longer supported on endpoints. You must use a
CachingSessionFactory (shown in the next example) if you wish to cache sessions.

In versions prior to 3.0, the sessions were automatically cached by default. A cache-sessions
attribute was available for disabling the auto caching, but that solution did not provide a way to
configure other session caching attributes. For example, you could not limit the number of sessions
created. To support that requirement and other configuration options, a CachingSessionFactory was
added. It provides sessionCacheSize and sessionWaitTimeout properties. The sessionCacheSize
property controls how many active sessions the factory maintains in its cache (the default is
unbounded). If the sessionCacheSize threshold has been reached, any attempt to acquire another
session blocks until either one of the cached sessions becomes available or until the wait time for a
session expires (the default wait time is Integer.MAX_VALUE). The sessionWaitTimeout property
configures that value.

441

If you want your sessions to be cached, configure your default session factory as described earlier
and then wrap it in an instance of CachingSessionFactory, where you can provide those additional
properties. The following example shows how to do so:

<bean id="ftpSessionFactory" class="o.s.i.ftp.session.DefaultFtpSessionFactory">
 <property name="host" value="localhost"/>
</bean>

<bean id="cachingSessionFactory" class=
"o.s.i.file.remote.session.CachingSessionFactory">
 <constructor-arg ref="ftpSessionFactory"/>
 <constructor-arg value="10"/>
 <property name="sessionWaitTimeout" value="1000"/>
</bean>

The preceding example shows a CachingSessionFactory created with the sessionCacheSize set to 10
and the sessionWaitTimeout set to one second (its value is in milliseconds).

Starting with Spring Integration 3.0, the CachingConnectionFactory provides a resetCache() method.
When invoked, all idle sessions are immediately closed and in-use sessions are closed when they
are returned to the cache. New requests for sessions establish new sessions as necessary.

Starting with version 5.1, the CachingSessionFactory has a new property testSession. When true, the
session will be tested by sending a NOOP command to ensure it is still active; if not, it will be
removed from the cache; a new session is created if no active sessions are in the cache.

19.11. Using RemoteFileTemplate
Starting with Spring Integration 3.0, a new abstraction is provided over the FtpSession object. The
template provides methods to send, retrieve (as an InputStream), remove, and rename files. In
addition an execute method is provided allowing the caller to execute multiple operations on the
session. In all cases, the template takes care of reliably closing the session. For more information,
see the Javadoc for RemoteFileTemplate. There is a subclass for FTP: FtpRemoteFileTemplate.

Version 4.1 added added additional methods, including getClientInstance(), which provides access
to the underlying FTPClient and thus gives you access to low-level APIs.

Not all FTP servers properly implement the STAT <path> command. Some return a positive result for
a non-existent path. The NLST command reliably returns the name when the path is a file and it
exists. However, this does not support checking that an empty directory exists since NLST always
returns an empty list when the path is a directory. Since the template does not know whether the
path represents a directory, it has to perform additional checks when the path does not appear to
exist (when using NLST). This adds overhead, requiring several requests to the server. Starting with
version 4.1.9, the FtpRemoteFileTemplate provides the FtpRemoteFileTemplate.ExistsMode property,
which has the following options:

• STAT: Perform the STAT FTP command (FTPClient.getStatus(path)) to check the path existence.

442

https://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/RemoteFileTemplate.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/RemoteFileTemplate.html

This is the default and requires that your FTP server properly support the STAT command (with
a path).

• NLST: Perform the NLST FTP command — FTPClient.listName(path). Use this if you are testing for
a path that is a full path to a file. It does not work for empty directories.

• NLST_AND_DIRS: Perform the NLST command first and, if it returns no files, fall back to a technique
that temporarily switches the working directory by using
FTPClient.changeWorkingDirectory(path). See FtpSession.exists() for more information.

Since we know that the FileExistsMode.FAIL case is always only looking for a file (and not a
directory), we safely use NLST mode for the FtpMessageHandler and FtpOutboundGateway components.

For any other cases, the FtpRemoteFileTemplate can be extended to implement custom logic in the
overridden exist() method.

Starting with version 5.0, the new RemoteFileOperations.invoke(OperationsCallback<F, T> action)
method is available. This method lets several RemoteFileOperations calls be called in the scope of the
same, thread-bounded, Session. This is useful when you need to perform several high-level
operations of the RemoteFileTemplate as one unit of work. For example,
AbstractRemoteFileOutboundGateway uses it with the mput command implementation, where we
perform a put operation for each file in the provided directory and recursively for its sub-
directories. See the Javadoc for more information.

19.12. Using MessageSessionCallback
Starting with Spring Integration 4.2, you can use a MessageSessionCallback<F, T> implementation
with the <int-ftp:outbound-gateway/> (FtpOutboundGateway in Java) to perform any operations on the
Session<FTPFile> with the requestMessage context. It can be used for any non-standard or low-level
FTP operations and allows access from an integration flow definition and functional interface
(Lambda) implementation injection, as the following example shows:

@Bean
@ServiceActivator(inputChannel = "ftpChannel")
public MessageHandler ftpOutboundGateway(SessionFactory<FTPFile> sessionFactory) {
 return new FtpOutboundGateway(sessionFactory,
 (session, requestMessage) -> session.list(requestMessage.getPayload()));
}

Another example might be to pre- or post-process the file data being sent or retrieved.

When using XML configuration, the <int-ftp:outbound-gateway/> provides a session-callback
attribute to let you specify the MessageSessionCallback bean name.


The session-callback is mutually exclusive with the command and expression
attributes. When configuring with Java, different constructors are available in the
FtpOutboundGateway class.

443

https://docs.spring.io/spring-integration/api/org/springframework/integration/ftp/session/FtpSession.html#exists
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/RemoteFileOperations.html#invoke
https://docs.spring.io/spring-integration/api/org/springframework/integration/ftp/gateway/FtpOutboundGateway.html

19.13. Apache Mina FTP Server Events
The ApacheMinaFtplet, added in version 5.2, listens for certain Apache Mina FTP server events and
publishes them as ApplicationEvent s which can be received by any ApplicationListener bean,
@EventListener bean method, or Event Inbound Channel Adapter.

Currently supported events are:

• SessionOpenedEvent - a client session was opened

• DirectoryCreatedEvent - a directory was created

• FileWrittenEvent - a file was written to

• PathMovedEvent - a file or directory was renamed

• PathRemovedEvent - a file or directory was removed

• SessionClosedEvent - the client has disconnected

Each of these is a subclass of ApacheMinaFtpEvent; you can configure a single listener to receive all of
the event types. The source property of each event is a FtpSession, from which you can obtain
information such as the client address; a convenient getSession() method is provided on the
abstract event.

Events other than session open/close have another property FtpRequest which has properties such
as the command and arguments.

To configure the server with the listener (which must be a Spring bean), add it to the server factory:

FtpServerFactory serverFactory = new FtpServerFactory();
...
ListenerFactory factory = new ListenerFactory();
...
serverFactory.addListener("default", factory.createListener());
serverFactory.setFtplets(new HashMap<>(Collections.singletonMap("springFtplet",
apacheMinaFtpletBean)));
server = serverFactory.createServer();
server.start();

To consume these events using a Spring Integration event adapter:

444

./event.pdf#appevent-inbound

@Bean
public ApplicationEventListeningMessageProducer eventsAdapter() {
 ApplicationEventListeningMessageProducer producer =
 new ApplicationEventListeningMessageProducer();
 producer.setEventTypes(ApacheMinaFtpEvent.class);
 producer.setOutputChannel(eventChannel());
 return producer;
}

19.14. Remote File Information
Starting with version 5.2, the FtpStreamingMessageSource (FTP Streaming Inbound Channel Adapter),
FtpInboundFileSynchronizingMessageSource (FTP Inbound Channel Adapter) and "read"-commands of
the FtpOutboundGateway (FTP Outbound Gateway) provide additional headers in the message to
produce with an information about the remote file:

• FileHeaders.REMOTE_HOST_PORT - the host:port pair the remote session has been connected to
during file transfer operation;

• FileHeaders.REMOTE_DIRECTORY - the remote directory the operation has been performed;

• FileHeaders.REMOTE_FILE - the remote file name; applicable only for single file operations.

Since the FtpInboundFileSynchronizingMessageSource doesn’t produce messages against remote files,
but using a local copy, the AbstractInboundFileSynchronizer stores an information about remote file
in the MetadataStore (which can be configured externally) in the URI style
(protocol://host:port/remoteDirectory#remoteFileName) during synchronization operation. This
metadata is retrieved by the FtpInboundFileSynchronizingMessageSource when local file is polled.
When local file is deleted, it is recommended to remove its metadata entry. The
AbstractInboundFileSynchronizer provides a removeRemoteFileMetadata() callback for this purpose.
In addition there is a setMetadataStorePrefix() to be used in the metadata keys. It is recommended
to have this prefix be different from the one used in the MetadataStore-based FileListFilter
implementations, when the same MetadataStore instance is shared between these components, to
avoid entry overriding because both filter and AbstractInboundFileSynchronizer use the same local
file name for the metadata entry key.

445

Chapter 20. Pivotal GemFire and Apache
Geode Support
Spring Integration provides support for Pivotal GemFire and Apache Geode.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-gemfire</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-gemfire:5.4.0"

GemFire is a distributed data management platform that provides a key-value data grid along with
advanced distributed system features, such as event processing, continuous querying, and remote
function execution. This guide assumes some familiarity with the commercial Pivotal GemFire or
Open Source Apache Geode.

Spring integration provides support for GemFire by implementing inbound adapters for entry and
continuous query events, an outbound adapter to write entries to the cache, and message and
metadata stores and GemfireLockRegistry implementations. Spring integration leverages the Spring
Data for Pivotal GemFire project, providing a thin wrapper over its components.

Starting with version 5.1, the Spring Integration GemFire module uses the Spring Data for Apache
Geode transitive dependency by default. To switch to the commercial Pivotal GemFire-based Spring
Data for Pivotal GemFire, exclude spring-data-geode from dependencies and add spring-data-
gemfire, as the following Maven snippet shows:

446

https://pivotal.io/pivotal-gemfire
https://geode.apache.org
https://projects.spring.io/spring-data-gemfire
https://projects.spring.io/spring-data-gemfire
https://github.com/spring-projects/spring-data-geode
https://github.com/spring-projects/spring-data-geode

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-gemfire</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-geode</artifactId>
 </exclusion>
 </exclusions>
</dependency>

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-gemfire</artifactId>
</dependency>

To configure the 'int-gfe' namespace, include the following elements within the headers of your
XML configuration file:

xmlns:int-gfe="http://www.springframework.org/schema/integration/gemfire"
xsi:schemaLocation="http://www.springframework.org/schema/integration/gemfire
 https://www.springframework.org/schema/integration/gemfire/spring-integration-
gemfire.xsd"

20.1. Inbound Channel Adapter
The inbound channel adapter produces messages on a channel when triggered by a GemFire
EntryEvent. GemFire generates events whenever an entry is CREATED, UPDATED, DESTROYED, or
INVALIDATED in the associated region. The inbound channel adapter lets you filter on a subset of
these events. For example, you may want to produce messages only in response to an entry being
created. In addition, the inbound channel adapter can evaluate a SpEL expression if, for example,
you want your message payload to contain an event property such as the new entry value. The
following example shows how to configure an inbound channel adapter with a SpEL language (in
the expression attribute):

<gfe:cache/>
<gfe:replicated-region id="region"/>
<int-gfe:inbound-channel-adapter id="inputChannel" region="region"
 cache-events="CREATED" expression="newValue"/>

The preceding configuration creates a GemFire Cache and Region by using Spring GemFire’s 'gfe'

447

namespace. The inbound-channel-adapter element requires a reference to the GemFire region on
which the adapter listens for events. Optional attributes include cache-events, which can contain a
comma-separated list of event types for which a message is produced on the input channel. By
default, CREATED and UPDATED are enabled. If no channel attribute is provided, the channel is created
from the id attribute. This adapter also supports an error-channel. The GemFire EntryEvent is the
#root object of the expression evaluation. The following example shows an expression that replaces
a value for a key:

expression="new something.MyEvent(key, oldValue, newValue)"

If the expression attribute is not provided, the message payload is the GemFire EntryEvent itself.

 This adapter conforms to Spring Integration conventions.

20.2. Continuous Query Inbound Channel Adapter
The continuous query inbound channel adapter produces messages on a channel when triggered
by a GemFire continuous query or CqEvent event. In release 1.1, Spring Data introduced continuous
query support, including ContinuousQueryListenerContainer, which provides a nice abstraction over
the GemFire native API. This adapter requires a reference to a ContinuousQueryListenerContainer
instance, creates a listener for a given query, and executes the query. The continuous query acts as
an event source that fires whenever its result set changes state.



GemFire queries are written in OQL and are scoped to the entire cache (not just
one region). Additionally, continuous queries require a remote (that is, running in
a separate process or remote host) cache server. See the GemFire documentation
for more information on implementing continuous queries.

The following configuration creates a GemFire client cache (recall that a remote cache server is
required for this implementation and its address is configured as a child element of the pool), a
client region, and a ContinuousQueryListenerContainer that uses Spring Data:

448

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/EntryEvent.html
https://gemfire82.docs.pivotal.io/docs-gemfire/gemfire_nativeclient/continuous-querying/continuous-querying.html

<gfe:client-cache id="client-cache" pool-name="client-pool"/>

<gfe:pool id="client-pool" subscription-enabled="true" >
 <!--configure server or locator here required to address the cache server -->
</gfe:pool>

<gfe:client-region id="test" cache-ref="client-cache" pool-name="client-pool"/>

<gfe:cq-listener-container id="queryListenerContainer" cache="client-cache"
 pool-name="client-pool"/>

<int-gfe:cq-inbound-channel-adapter id="inputChannel"
 cq-listener-container="queryListenerContainer"
 query="select * from /test"/>

The continuous query inbound channel adapter requires a cq-listener-container attribute, which
must contain a reference to the ContinuousQueryListenerContainer. Optionally, it accepts an
expression attribute that uses SpEL to transform the CqEvent or extract an individual property as
needed. The cq-inbound-channel-adapter provides a query-events attribute that contains a comma-
separated list of event types for which a message is produced on the input channel. The available
event types are CREATED, UPDATED, DESTROYED, REGION_DESTROYED, and REGION_INVALIDATED. By default,
CREATED and UPDATED are enabled. Additional optional attributes include query-name (which provides
an optional query name), expression (which works as described in the preceding section), and
durable (a boolean value indicating if the query is durable — it is false by default). If you do not
provide a channel, the channel is created from the id attribute. This adapter also supports an error-
channel.

 This adapter conforms to Spring Integration conventions.

20.3. Outbound Channel Adapter
The outbound channel adapter writes cache entries that are mapped from the message payload. In
its simplest form, it expects a payload of type java.util.Map and puts the map entries into its
configured region. The following example shows how to configure an outbound channel adapter:

<int-gfe:outbound-channel-adapter id="cacheChannel" region="region"/>

Given the preceding configuration, an exception is thrown if the payload is not a Map. Additionally,
you can configure the outbound channel adapter to create a map of cache entries by using SpEL.
The following example shows how to do so:

449

<int-gfe:outbound-channel-adapter id="cacheChannel" region="region">
 <int-gfe:cache-entries>
 <entry key="payload.toUpperCase()" value="payload.toLowerCase()"/>
 <entry key="'thing1'" value="'thing2'"/>
 </int-gfe:cache-entries>
</int-gfe:outbound-channel-adapter>

In the preceding configuration, the inner element (cache-entries) is semantically equivalent to a
Spring 'map' element. The adapter interprets the key and value attributes as SpEL expressions with
the message as the evaluation context. Note that this can contain arbitrary cache entries (not only
those derived from the message) and that literal values must be enclosed in single quotes. In the
preceding example, if the message sent to cacheChannel has a String payload with a value Hello, two
entries ([HELLO:hello, thing1:thing2]) are written (either created or updated) in the cache region.
This adapter also supports the order attribute, which may be useful if it is bound to a
PublishSubscribeChannel.

20.4. Gemfire Message Store
As described in EIP, a message store lets you persist messages. This can be useful when dealing with
components that have a capability to buffer messages (QueueChannel, Aggregator, Resequencer, and
others) if reliability is a concern. In Spring Integration, the MessageStore strategy interface also
provides the foundation for the claim check pattern, which is described in EIP as well.

Spring Integration’s Gemfire module provides GemfireMessageStore, which is an implementation of
both the the MessageStore strategy (mainly used by the QueueChannel and ClaimCheck patterns) and
the MessageGroupStore strategy (mainly used by the Aggregator and Resequencer patterns).

The following example configures the cache and region by using the spring-gemfire namespace (not
to be confused with the spring-integration-gemfire namespace):

450

https://www.enterpriseintegrationpatterns.com/MessageStore.html
https://www.enterpriseintegrationpatterns.com/StoreInLibrary.html

<bean id="gemfireMessageStore" class="o.s.i.gemfire.store.GemfireMessageStore">
 <constructor-arg ref="myRegion"/>
</bean>

<gfe:cache/>

<gfe:replicated-region id="myRegion"/>

<int:channel id="somePersistentQueueChannel">
 <int:queue message-store="gemfireMessageStore"/>
<int:channel>

<int:aggregator input-channel="inputChannel" output-channel="outputChannel"
 message-store="gemfireMessageStore"/>

Often, it is desirable for the message store to be maintained in one or more remote cache servers in
a client-server configuration. In this case, you should configure a client cache, a client region, and a
client pool and inject the region into the MessageStore. The following example shows how to do so:

<bean id="gemfireMessageStore"
 class="org.springframework.integration.gemfire.store.GemfireMessageStore">
 <constructor-arg ref="myRegion"/>
</bean>

<gfe:client-cache/>

<gfe:client-region id="myRegion" shortcut="PROXY" pool-name="messageStorePool"/>

<gfe:pool id="messageStorePool">
 <gfe:server host="localhost" port="40404" />
</gfe:pool>

Note that the pool element is configured with the address of a cache server (you can substitute a
locator here). The region is configured as a 'PROXY' so that no data is stored locally. The region’s id
corresponds to a region with the same name in the cache server.

Starting with version 4.3.12, the GemfireMessageStore supports the key prefix option to allow
distinguishing between instances of the store on the same GemFire region.

20.5. Gemfire Lock Registry
Starting with version 4.0, the GemfireLockRegistry is available. Certain components (for example,
the aggregator and the resequencer) use a lock obtained from a LockRegistry instance to ensure

451

that only one thread is manipulating a group at any given time. The DefaultLockRegistry performs
this function within a single component. You can now configure an external lock registry on these
components. When you use a shared MessageGroupStore with the GemfireLockRegistry, it can provide
this functionality across multiple application instances, such that only one instance can manipulate
the group at a time.



One of the GemfireLockRegistry constructors requires a Region as an argument. It is
used to obtain a Lock from the getDistributedLock() method. This operation
requires GLOBAL scope for the Region. Another constructor requires a Cache, and the
Region is created with GLOBAL scope and with the name, LockRegistry.

20.6. Gemfire Metadata Store
Version 4.0 introduced a new Gemfire-based MetadataStore (Metadata Store) implementation. You
can use the GemfireMetadataStore to maintain metadata state across application restarts. This new
MetadataStore implementation can be used with adapters such as:

• Feed Inbound Channel Adapter

• Reading Files

• FTP Inbound Channel Adapter

• SFTP Inbound Channel Adapter

To get these adapters to use the new GemfireMetadataStore, declare a Spring bean with a bean name
of metadataStore. The feed inbound channel adapter automatically picks up and use the declared
GemfireMetadataStore.



The GemfireMetadataStore also implements ConcurrentMetadataStore, letting it be
reliably shared across multiple application instances, where only one instance can
store or modify a key’s value. These methods give various levels of concurrency
guarantees based on the scope and data policy of the region. They are
implemented in the peer cache and client-server cache but are disallowed in peer
regions that have NORMAL or EMPTY data policies.


Since version 5.0, the GemfireMetadataStore also implements
ListenableMetadataStore, which lets you listen to cache events by providing
MetadataStoreListener instances to the store, as the following example shows:

452

./meta-data-store.pdf#metadata-store
./feed.pdf#feed-inbound-channel-adapter
./file.pdf#file-reading
./ftp.pdf#ftp-inbound
./sftp.pdf#sftp-inbound

GemfireMetadataStore metadataStore = new GemfireMetadataStore(cache);
metadataStore.addListener(new MetadataStoreListenerAdapter() {

 @Override
 public void onAdd(String key, String value) {
 ...
 }

});

453

Chapter 21. HTTP Support
Spring Integration’s HTTP support allows for the running of HTTP requests and the processing of
inbound HTTP requests. The HTTP support consists of the following gateway implementations:
HttpInboundEndpoint and HttpRequestExecutingMessageHandler. See also WebFlux Support.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-http</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-http:5.4.0"

The javax.servlet:javax.servlet-api dependency must be provided on the target Servlet container.

21.1. Http Inbound Components
To receive messages over HTTP, you need to use an HTTP inbound channel adapter or an HTTP
inbound gateway. To support the HTTP inbound adapters, they need to be deployed within a servlet
container such as Apache Tomcat or Jetty. The easiest way to do this is to use Spring’s
HttpRequestHandlerServlet, by providing the following servlet definition in the web.xml file:

<servlet>
 <servlet-name>inboundGateway</servlet-name>
 <servlet-class>o.s.web.context.support.HttpRequestHandlerServlet</servlet-
class>
</servlet>

Notice that the servlet name matches the bean name. For more information on using the
HttpRequestHandlerServlet, see Remoting and web services using Spring, which is part of the Spring
Framework Reference documentation.

If you are running within a Spring MVC application, then the aforementioned explicit servlet
definition is not necessary. In that case, the bean name for your gateway can be matched against
the URL path as you would for a Spring MVC Controller bean. For more information, see Web MVC
framework, which is part of the Spring Framework Reference documentation.

454

./webflux.pdf#webflux
https://tomcat.apache.org/
https://www.eclipse.org/jetty/
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/context/support/HttpRequestHandlerServlet.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/remoting.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc


For a sample application and the corresponding configuration, see the Spring
Integration Samples repository. It contains the HTTP sample application, which
demonstrates Spring Integration’s HTTP support.

The following example bean defines an HTTP inbound endpoint:

<bean id="httpInbound"
 class=
"org.springframework.integration.http.inbound.HttpRequestHandlingMessagingGateway"
>
 <property name="requestChannel" ref="httpRequestChannel" />
 <property name="replyChannel" ref="httpReplyChannel" />
</bean>

The HttpRequestHandlingMessagingGateway accepts a list of HttpMessageConverter instances or else
relies on a default list. The converters allow customization of the mapping from HttpServletRequest
to Message. The default converters encapsulate simple strategies, which (for example) create a
String message for a POST request where the content type starts with text. See the Javadoc for full
details. An additional flag (mergeWithDefaultConverters) can be set along with the list of custom
HttpMessageConverter to add the default converters after the custom converters. By default, this flag
is set to false, meaning that the custom converters replace the default list.

The message conversion process uses the (optional) requestPayloadType property and the incoming
Content-Type header. Starting with version 4.3, if a request has no content type header,
application/octet-stream is assumed, as recommended by RFC 2616. Previously, the body of such
messages was ignored.

Spring Integration 2.0 implemented multipart file support. If the request has been wrapped as a
MultipartHttpServletRequest, when you use the default converters, that request is converted to a
Message payload that is a MultiValueMap containing values that may be byte arrays, strings, or
instances of Spring’s MultipartFile, depending on the content type of the individual parts.



The HTTP inbound endpoint locates a MultipartResolver in the context if one has a
bean name of multipartResolver (the same name expected by Spring’s
DispatcherServlet). If it does locate that bean, the support for multipart files is
enabled on the inbound request mapper. Otherwise, it fails when it tries to map a
multipart file request to a Spring Integration Message. For more on Spring’s support
for MultipartResolver, see the Spring Reference Manual.

455

https://github.com/spring-projects/spring-integration-samples
https://github.com/spring-projects/spring-integration-samples
https://github.com/spring-projects/spring-integration-samples/tree/master/basic/http
https://docs.spring.io/spring-integration/api/index.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-multipart



If you wish to proxy a multipart/form-data to another server, it may be better to
keep it in raw form. To handle this situation, do not add the multipartResolver
bean to the context. Configure the endpoint to expect a byte[] request, customize
the message converters to include a ByteArrayHttpMessageConverter, and disable
the default multipart converter. You may need some other converters for the
replies. The following example shows such an arrangement:

<int-http:inbound-gateway
 channel="receiveChannel"
 path="/inboundAdapter.htm"
 request-payload-type="byte[]"
 message-converters="converters"
 merge-with-default-converters="false"
 supported-methods="POST" />

<util:list id="converters">
 <beans:bean class=
"org.springframework.http.converter.ByteArrayHttpMessageConverter" />
 <beans:bean class=
"org.springframework.http.converter.StringHttpMessageConverter" />
 <beans:bean class=
"org.springframework.http.converter.json.MappingJackson2HttpMessageConv
erter" />
</util:list>

When you send a response to the client, you have a number of ways to customize the behavior of
the gateway. By default, the gateway acknowledges that the request was received by sending a 200
status code back. It is possible to customize this response by providing a 'viewName' to be resolved
by the Spring MVC ViewResolver. If the gateway should expect a reply to the Message, you can set the
expectReply flag (constructor argument) to cause the gateway to wait for a reply Message before
creating an HTTP response. The following example configures a gateway to serve as a Spring MVC
Controller with a view name:

<bean id="httpInbound"
 class="org.springframework.integration.http.inbound.HttpRequestHandlingController">
 <constructor-arg value="true" /> <!-- indicates that a reply is expected -->
 <property name="requestChannel" ref="httpRequestChannel" />
 <property name="replyChannel" ref="httpReplyChannel" />
 <property name="viewName" value="jsonView" />
 <property name="supportedMethodNames" >
 <list>
 <value>GET</value>
 <value>DELETE</value>
 </list>
 </property>
</bean>

456

Because of the constructor-arg value of true, it waits for a reply. The preceding example also shows
how to customize the HTTP methods accepted by the gateway, which are POST and GET by default.

The reply message is available in the model map. By default, the key for that map entry is 'reply',
but you can override this default by setting the 'replyKey' property on the endpoint’s configuration.

21.1.1. Payload Validation

Starting with version 5.2, the HTTP inbound endpoints can be supplied with a Validator to check a
payload before sending into the channel. This payload is already a result of conversion and
extraction after payloadExpression to narrow a validation scope in regards to the valuable data. The
validation failure handling is fully the same what we have in Spring MVC Error Handling.

21.2. HTTP Outbound Components
This section describes Spring Integration’s HTTP outbound components.

21.2.1. Using HttpRequestExecutingMessageHandler

To configure the HttpRequestExecutingMessageHandler, write a bean definition similar to the
following:

<bean id="httpOutbound"
 class=
"org.springframework.integration.http.outbound.HttpRequestExecutingMessageHandler"
>
 <constructor-arg value="http://localhost:8080/example" />
 <property name="outputChannel" ref="responseChannel" />
</bean>

This bean definition runs HTTP requests by delegating to a RestTemplate. That template, in turn,
delegates to a list of HttpMessageConverter instances to generate the HTTP request body from the
Message payload. You can configure those converters as well as the ClientHttpRequestFactory
instance to use, as the following example shows:

<bean id="httpOutbound"
 class=
"org.springframework.integration.http.outbound.HttpRequestExecutingMessageHandler"
>
 <constructor-arg value="http://localhost:8080/example" />
 <property name="outputChannel" ref="responseChannel" />
 <property name="messageConverters" ref="messageConverterList" />
 <property name="requestFactory" ref="customRequestFactory" />
</bean>

457

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-exceptionhandlers

By default, the HTTP request is generated by using an instance of SimpleClientHttpRequestFactory,
which uses the JDK HttpURLConnection. Use of the Apache Commons HTTP Client is also supported
through CommonsClientHttpRequestFactory, which you can inject (as shown earlier).


For the outbound gateway, the reply message produced by the gateway contains all
the message headers that are present in the request message.

21.2.2. Using Cookies

Basic cookie support is provided by the transfer-cookies attribute on the outbound gateway. When
set to true (the default is false), a Set-Cookie header received from the server in a response is
converted to Cookie in the reply message. This header is then used on subsequent sends. This
enables simple stateful interactions, such as the following:

…→logonGateway→…→doWorkGateway→…→logoffGateway→…

If transfer-cookies is false, any Set-Cookie header received remains as Set-Cookie in the reply
message and is dropped on subsequent sends.



Empty Response Bodies

HTTP is a request-response protocol. However, the response may not have a body,
only headers. In this case, the HttpRequestExecutingMessageHandler produces a reply
Message with the payload being an org.springframework.http.ResponseEntity,
regardless of any provided expected-response-type. According to the HTTP RFC
Status Code Definitions, there are many statuses that mandate that a response
must not contain a message-body (for example, 204 No Content). There are also
cases where calls to the same URL might or might not return a response body. For
example, the first request to an HTTP resource returns content, but the second
does not (returning a 304 Not Modified). In all cases, however, the http_statusCode
message header is populated. This can be used in some routing logic after the
HTTP outbound gateway. You could also use a`<payload-type-router/>` to route
messages with a ResponseEntity to a different flow than that used for responses
with a body.



expected-response-type

Further to the preceding note about empty response bodies, if a response does
contain a body, you must provide an appropriate expected-response-type attribute
or, again, you receive a ResponseEntity with no body. The expected-response-type
must be compatible with the (configured or default) HttpMessageConverter
instances and the Content-Type header in the response. This can be an abstract
class or even an interface (such as java.io.Serializable when you use Java
serialization and Content-Type: application/x-java-serialized-object).

21.3. HTTP Namespace Support
Spring Integration provides an http namespace and the corresponding schema definition. To
include it in your configuration, provide the following namespace declaration in your application

458

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

context configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-http="http://www.springframework.org/schema/integration/http"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/http
 https://www.springframework.org/schema/integration/http/spring-integration-
http.xsd">
 ...
</beans>

21.3.1. Inbound

The XML namespace provides two components for handling HTTP inbound requests: inbound-
channel-adapter and inbound-gateway. In order to process requests without returning a dedicated
response, use the inbound-channel-adapter. The following example shows how to configure one:

<int-http:inbound-channel-adapter id="httpChannelAdapter" channel="requests"
 supported-methods="PUT, DELETE"/>

To process requests that do expect a response, use an inbound-gateway. The following example
shows how to configure one:

<int-http:inbound-gateway id="inboundGateway"
 request-channel="requests"
 reply-channel="responses"/>

21.3.2. Request Mapping Support


Spring Integration 3.0 improved the REST support by introducing the
IntegrationRequestMappingHandlerMapping. The implementation relies on the
enhanced REST support provided by Spring Framework 3.1 or higher.

The parsing of the HTTP inbound gateway or the HTTP inbound channel adapter registers an

459

https://docs.spring.io/spring-integration/api/org/springframework/integration/http/inbound/IntegrationRequestMappingHandlerMapping.html

integrationRequestMappingHandlerMapping bean of type IntegrationRequestMappingHandlerMapping, in
case one is not yet registered. This particular implementation of the HandlerMapping delegates its
logic to RequestMappingInfoHandlerMapping. The implementation provides functionality similar to the
org.springframework.web.bind.annotation.RequestMapping annotation in Spring MVC.

 For more information, see Mapping Requests With @RequestMapping.

For this purpose, Spring Integration 3.0 introduces the <request-mapping> element. You can add this
optional element to <http:inbound-channel-adapter> and <http:inbound-gateway>. It works in
conjunction with the path and supported-methods attributes. The following example shows how to
configure it on an inbound gateway:

<inbound-gateway id="inboundController"
 request-channel="requests"
 reply-channel="responses"
 path="/foo/{fooId}"
 supported-methods="GET"
 view-name="foo"
 error-code="oops">
 <request-mapping headers="User-Agent"
 params="myParam=myValue"
 consumes="application/json"
 produces="!text/plain"/>
</inbound-gateway>

Based on the preceding configuration, the namespace parser creates an instance of the
IntegrationRequestMappingHandlerMapping (if none exists) and an HttpRequestHandlingController
bean and associates with it an instance of RequestMapping. This RequestMapping instance is, in turn,
converted to the Spring MVC RequestMappingInfo.

The <request-mapping> element provides the following attributes:

• headers

• params

• consumes

• produces

With the path and supported-methods attributes of the <http:inbound-channel-adapter> or the
<http:inbound-gateway>, <request-mapping> attributes translate directly into the respective options
provided by the org.springframework.web.bind.annotation.RequestMapping annotation in Spring
MVC.

The <request-mapping> element lets you configure several Spring Integration HTTP inbound
endpoints to the same path (or even the same supported-methods) and lets you provide different
downstream message flows based on incoming HTTP requests.

460

https://docs.spring.io/spring-integration/api/org/springframework/integration/http/inbound/IntegrationRequestMappingHandlerMapping.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/servlet/HandlerMapping.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/RequestMappingInfoHandlerMapping.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-ann-requestmapping
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-ann-requestmapping
https://docs.spring.io/spring-integration/api/org/springframework/integration/http/inbound/RequestMapping.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/RequestMappingInfo.html

Alternatively, you can also declare only one HTTP inbound endpoint and apply routing and filtering
logic within the Spring Integration flow to achieve the same result. This lets you get the Message into
the flow as early as possibly. The following example shows how to do so:

<int-http:inbound-gateway request-channel="httpMethodRouter"
 supported-methods="GET,DELETE"
 path="/process/{entId}"
 payload-expression="#pathVariables.entId"/>

<int:router input-channel="httpMethodRouter" expression=
"headers.http_requestMethod">
 <int:mapping value="GET" channel="in1"/>
 <int:mapping value="DELETE" channel="in2"/>
</int:router>

<int:service-activator input-channel="in1" ref="service" method="getEntity"/>

<int:service-activator input-channel="in2" ref="service" method="delete"/>

For more information regarding handler mappings, see the Spring Framework Web Servlet
documentation or the Spring Framework Web Reactive documentation.



The IntegrationRequestMappingHandlerMapping extends the Spring MVC
RequestMappingHandlerMapping class, inheriting most of its logic, especially
handleNoMatch(Set, String, HttpServletRequest), which throws a specific 4xx error
for the HTTP response, when mapping doesn’t match for some reason, preventing
calls to any remaining mapping handlers in the application context. For this
reason, configuring the same path for both Spring Integration and Spring MVC
request mappings (e.g. POST in one and GET in the other) is not supported; the MVC
mapping will not be found..

21.3.3. Cross-origin Resource Sharing (CORS) Support

Starting with version 4.2, you can configure the <http:inbound-channel-adapter> and <http:inbound-
gateway> with a <cross-origin> element. It represents the same options as Spring MVC’s
@CrossOrigin for @Controller annotations and allows the configuration of cross-origin resource
sharing (CORS) for Spring Integration HTTP endpoints:

• origin: List of allowed origins. The * means that all origins are allowed. These values are placed
in the Access-Control-Allow-Origin header of both the pre-flight and actual responses. The
default value is *.

• allowed-headers: Indicates which request headers can be used during the actual request. The *
means that all headers requested by the client are allowed. This property controls the value of
the pre-flight response’s Access-Control-Allow-Headers header. The default value is *.

• exposed-headers: List of response headers that the user-agent lets the client access. This property

461

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html

controls the value of the actual response’s Access-Control-Expose-Headers header.

• method: The HTTP request methods to allow: GET, POST, HEAD, OPTIONS, PUT, PATCH, DELETE, TRACE.
Methods specified here overrides those in supported-methods.

• allow-credentials: Set to true if the the browser should include any cookies associated to the
domain of the request or false if it should not. An empty string ("") means undefined. If true, the
pre-flight response includes the Access-Control-Allow-Credentials=true header. The default
value is true.

• max-age: Controls the cache duration for pre-flight responses. Setting this to a reasonable value
can reduce the number of pre-flight request-response interactions required by the browser.
This property controls the value of the Access-Control-Max-Age header in the pre-flight response.
A value of -1 means undefined. The default value is 1800 seconds (30 minutes).

The CORS Java Configuration is represented by the
org.springframework.integration.http.inbound.CrossOrigin class, instances of which can be injected
into the HttpRequestHandlingEndpointSupport beans.

21.3.4. Response Status Code

Starting with version 4.1, you can configure the <http:inbound-channel-adapter> with a status-code-
expression to override the default 200 OK status. The expression must return an object that can be
converted to an org.springframework.http.HttpStatus enum value. The evaluationContext has a
BeanResolver and, starting with version 5.1, is supplied with the RequestEntity<?> as root object. An
example might be to resolve, at runtime, some scoped bean that returns a status code value.
However, most likely, it is set to a fixed value such as status-code=expression="204" (No Content), or
status-code-expression="T(org.springframework.http.HttpStatus).NO_CONTENT". By default, status-
code-expression is null, meaning that the normal '200 OK' response status is returned. Using the
RequestEntity<?> as root object, the status code can be conditional e.g. on the request method, some
header, URI content or even request body. The following example shows how to set the status code
to ACCEPTED:

<http:inbound-channel-adapter id="inboundController"
 channel="requests" view-name="foo" error-code="oops"
 status-code-expression="T(org.springframework.http.HttpStatus).ACCEPTED">
 <request-mapping headers="BAR"/>
</http:inbound-channel-adapter>

The <http:inbound-gateway> resolves the 'status code' from the http_statusCode header of the reply
Message. Starting with version 4.2, the default response status code when no reply is received within
the reply-timeout is 500 Internal Server Error. There are two ways to modify this behavior:

• Add a reply-timeout-status-code-expression. This has the same semantics as the status-code-
expression on the inbound adapter.

• Add an error-channel and return an appropriate message with an HTTP status code header, as
the following example shows:

462

<int:chain input-channel="errors">
 <int:header-enricher>
 <int:header name="http_statusCode" value="504" />
 </int:header-enricher>
 <int:transformer expression="payload.failedMessage" />
</int:chain>

The payload of the ErrorMessage is a MessageTimeoutException. It must be transformed to something
that can be converted by the gateway, such as a String. A good candidate is the exception’s message
property, which is the value used when you use the expression technique.

If the error flow times out after a main flow timeout, 500 Internal Server Error is returned, or, if
the reply-timeout-status-code-expression is present, it is evaluated.


Previously, the default status code for a timeout was 200 OK. To restore that
behavior, set reply-timeout-status-code-expression="200".

Also starting with version 5.4, an error that is encountered while preparing the request message is
sent to the error channel (if provided). A decision about throwing an appropriate exception should
be done in the error flow by examining the exception. Previously, any exceptions were simply
thrown, causing an HTTP 500 server error response status, but in some cases the problem can be
caused by incorrect request params, so a ResponseStatusException with a 4xx client error status
should be thrown instead. See ResponseStatusException for more information. The ErrorMessage sent
to this error channel contains the original exception as the payload for analysis. ==== URI Template
Variables and Expressions

By using the path attribute in conjunction with the payload-expression attribute and the header
element, you have a high degree of flexibility for mapping inbound request data.

In the following example configuration, an inbound channel adapter is configured to accept
requests using the following URI:

/first-name/{firstName}/last-name/{lastName}

When you use the payload-expression attribute, the Mark URI template variable maps to be the
Message payload, while the Fisher URI template variable maps to the lname message header, as
defined in the following example:

463

<int-http:inbound-channel-adapter id="inboundAdapterWithExpressions"
 path="/first-name/{firstName}/last-name/{lastName}"
 channel="requests"
 payload-expression="#pathVariables.firstName">
 <int-http:header name="lname" expression="#pathVariables.lastName"/>
</int-http:inbound-channel-adapter>

For more information about URI template variables, see uri template patterns in the Spring
Reference Manual.

Since Spring Integration 3.0, in addition to the existing #pathVariables and #requestParams variables
being available in payload and header expressions, we added other useful expression variables:

• #requestParams: The MultiValueMap from the ServletRequest parameterMap.

• #pathVariables: The Map from URI Template placeholders and their values.

• #matrixVariables: The Map of MultiValueMap according to the Spring MVC Specification. Note that
#matrixVariables requires Spring MVC 3.2 or higher.

• #requestAttributes: The org.springframework.web.context.request.RequestAttributes associated
with the current request.

• #requestHeaders: The org.springframework.http.HttpHeaders object from the current request.

• #cookies: The Map<String, Cookie> of javax.servlet.http.Cookie instances from the current
request.

Note that all these values (and others) can be accessed within expressions in the downstream
message flow through the ThreadLocal org.springframework.web.context.request.RequestAttributes
variable, if that message flow is single-threaded and lives within the request thread. The following
example configures a transformer that uses an expression attribute:

<int-:transformer
 expression="T(org.springframework.web.context.request.RequestContextHolder).
 requestAttributes.request.queryString"/>

21.3.5. Outbound

To configure the outbound gateway, you can use the namespace support. The following code
snippet shows the available configuration options for an outbound HTTP gateway:

464

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-ann-requestmapping-uri-templates
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-ann-matrix-variables

<int-http:outbound-gateway id="example"
 request-channel="requests"
 url="http://localhost/test"
 http-method="POST"
 extract-request-payload="false"
 expected-response-type="java.lang.String"
 charset="UTF-8"
 request-factory="requestFactory"
 reply-timeout="1234"
 reply-channel="replies"/>

Most importantly, notice that the 'http-method' and 'expected-response-type' attributes are
provided. Those are two of the most commonly configured values. The default http-method is POST,
and the default response type is null. With a null response type, the payload of the reply Message
contains the ResponseEntity, as long as its HTTP status is a success (non-successful status codes
throw exceptions). If you expect a different type, such as a String, provide that as a fully-qualified
class name (java.lang.String in the preceding example). See also the note about empty response
bodies in HTTP Outbound Components.


Beginning with Spring Integration 2.1, the request-timeout attribute of the HTTP
outbound gateway was renamed to reply-timeout to better reflect its intent.



Since Spring Integration 2.2, Java serialization over HTTP is no longer enabled by
default. Previously, when setting the expected-response-type attribute to a
Serializable object, the Accept header was not properly set up. Since Spring
Integration 2.2, the SerializingHttpMessageConverter has now been updated to set
the Accept header to application/x-java-serialized-object.

However, because this could cause incompatibility with existing applications, it
was decided to no longer automatically add this converter to the HTTP endpoints.
If you wish to use Java serialization, you can add the
SerializingHttpMessageConverter to the appropriate endpoints, by using the
message-converters attribute (when you use XML configuration) or by using the
setMessageConverters() method (in Java configuration). Alternatively, you may
wish to consider using JSON instead, which is enabled by having the Jackson
library on the classpath.

Beginning with Spring Integration 2.2, you can also determine the HTTP method dynamically by
using SpEL and the http-method-expression attribute. Note that this attribute is mutually exclusive
with http-method. You can also use the expected-response-type-expression attribute instead of
expected-response-type and provide any valid SpEL expression that determines the type of the
response. The following configuration example uses expected-response-type-expression:

465

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson

<int-http:outbound-gateway id="example"
 request-channel="requests"
 url="http://localhost/test"
 http-method-expression="headers.httpMethod"
 extract-request-payload="false"
 expected-response-type-expression="payload"
 charset="UTF-8"
 request-factory="requestFactory"
 reply-timeout="1234"
 reply-channel="replies"/>

If your outbound adapter is to be used in a unidirectional way, you can use an outbound-channel-
adapter instead. This means that a successful response executes without sending any messages to a
reply channel. In the case of any non-successful response status code, it throws an exception. The
configuration looks very similar to the gateway, as the following example shows:

<int-http:outbound-channel-adapter id="example"
 url="http://localhost/example"
 http-method="GET"
 channel="requests"
 charset="UTF-8"
 extract-payload="false"
 expected-response-type="java.lang.String"
 request-factory="someRequestFactory"
 order="3"
 auto-startup="false"/>



To specify the URL, you can use either the 'url' attribute or the 'url-expression'
attribute. The 'url' attribute takes a simple string (with placeholders for URI
variables, as described below). The 'url-expression' is a SpEL expression, with the
Message as the root object, which enables dynamic urls. The URL that results from
the expression evaluation can still have placeholders for URI variables.

In previous releases, some users used the place holders to replace the entire URL
with a URI variable. Changes in Spring 3.1 can cause some issues with escaped
characters, such as '?'. For this reason, we recommend that, if you wish to generate
the URL entirely at runtime, you use the 'url-expression' attribute.

21.3.6. Mapping URI Variables

If your URL contains URI variables, you can map them by using the uri-variable element. This
element is available for the HTTP outbound gateway and the HTTP outbound channel adapter. The
following example maps the zipCode URI variable to an expression:

466

<int-http:outbound-gateway id="trafficGateway"
 url="https://local.yahooapis.com/trafficData?appid=YdnDemo&zip={zipCode}"
 request-channel="trafficChannel"
 http-method="GET"
 expected-response-type="java.lang.String">
 <int-http:uri-variable name="zipCode" expression="payload.getZip()"/>
</int-http:outbound-gateway>

The uri-variable element defines two attributes: name and expression. The name attribute identifies
the name of the URI variable, while the expression attribute is used to set the actual value. By using
the expression attribute, you can leverage the full power of the Spring Expression Language (SpEL),
which gives you full dynamic access to the message payload and the message headers. For example,
in the preceding configuration, the getZip() method is invoked on the payload object of the Message
and the result of that method is used as the value of the URI variable named 'zipCode'.

Since Spring Integration 3.0, HTTP outbound endpoints support the uri-variables-expression
attribute to specify an expression that should be evaluated, resulting in a Map of all URI variable
placeholders within the URL template. It provides a mechanism whereby you can use different
variable expressions, based on the outbound message. This attribute is mutually exclusive with the
<uri-variable/> element. The following example shows how to use the uri-variables-expression
attribute:

<int-http:outbound-gateway
 url="https://foo.host/{foo}/bars/{bar}"
 request-channel="trafficChannel"
 http-method="GET"
 uri-variables-expression="@uriVariablesBean.populate(payload)"
 expected-response-type="java.lang.String"/>

uriVariablesBean might be defined as follows:

467

public class UriVariablesBean {
 private static final ExpressionParser EXPRESSION_PARSER = new
SpelExpressionParser();

 public Map<String, ?> populate(Object payload) {
 Map<String, Object> variables = new HashMap<String, Object>();
 if (payload instanceOf String.class)) {
 variables.put("foo", "foo"));
 }
 else {
 variables.put("foo", EXPRESSION_PARSER.parseExpression("headers.bar")
);
 }
 return variables;
 }

}



The uri-variables-expression must evaluate to a Map. The values of the Map must be
instances of String or Expression. This Map is provided to an ExpressionEvalMap for
further resolution of URI variable placeholders by using those expressions in the
context of the outbound Message.

IMPORTANT

The uriVariablesExpression property provides a very powerful mechanism for evaluating URI
variables. We anticipate that people mostly use simple expressions, such as the preceding
example. However, you can also configure something such as
"@uriVariablesBean.populate(#root)" with an expression in the returned map being
variables.put("thing1",
EXPRESSION_PARSER.parseExpression(message.getHeaders().get("thing2", String.class)));,
where the expression is dynamically provided in the message header named thing2. Since the
header may come from an untrusted source, the HTTP outbound endpoints use
SimpleEvaluationContext when evaluating these expressions. The SimpleEvaluationContext uses
only a subset of SpEL features. If you trust your message sources and wish to use the restricted
SpEL constructs, set the trustedSpel property of the outbound endpoint to true.

You can achieve scenarios that need to supply a dynamic set of URI variables on a per-message
basis by using a custom url-expression and some utilities for building and encoding URL
parameters. The following example shows how to do so:

468

url-expression="T(org.springframework.web.util.UriComponentsBuilder)
 .fromHttpUrl('https://HOST:PORT/PATH')
 .queryParams(payload)
 .build()
 .toUri()"

The queryParams() method expects a MultiValueMap<String, String> as an argument, so you can
build a real set of URL query parameters in advance, before performing the request.

The whole queryString can also be presented as a uri-variable, as the following example shows:

<int-http:outbound-gateway id="proxyGateway" request-channel="testChannel"
 url="http://testServer/test?{queryString}">
 <int-http:uri-variable name="queryString" expression="'a=A&b=B'"/>
</int-http:outbound-gateway>

In this case, you must manually provide the URL encoding. For example, you can use the
org.apache.http.client.utils.URLEncodedUtils#format() for this purpose. As mentioned earlier, a
manually built MultiValueMap<String, String> can be converted to the the List<NameValuePair>
format() method argument by using the following Java Streams snippet:

List<NameValuePair> nameValuePairs =
 params.entrySet()
 .stream()
 .flatMap(e -> e
 .getValue()
 .stream()
 .map(v -> new BasicNameValuePair(e.getKey(), v)))
 .collect(Collectors.toList());

21.3.7. Controlling URI Encoding

By default, the URL string is encoded (see UriComponentsBuilder) to the URI object before sending the
request. In some scenarios with a non-standard URI (such as the RabbitMQ REST API), it is
undesirable to perform the encoding. The <http:outbound-gateway/> and <http:outbound-channel-
adapter/> provide an encoding-mode attribute. To disable encoding the URL, set this attribute to NONE
(by default, it is TEMPLATE_AND_VALUES). If you wish to partially encode some of the URL, use an
expression within a <uri-variable/>, as the following example shows:

469

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html

<http:outbound-gateway url="https://somehost/%2f/fooApps?bar={param}" encoding-
mode="NONE">
 <http:uri-variable name="param"
 expression="T(org.apache.commons.httpclient.util.URIUtil)
 .encodeWithinQuery('Hello World!')"/>
</http:outbound-gateway>

With Java DSL this option can be controlled by the BaseHttpMessageHandlerSpec.encodingMode()
option. The same configuration applies for similar outbound components in the WebFlux module
and Web Services module. For much sophisticated scenarios it is recommended to configure an
UriTemplateHandler on the externally provided RestTemplate; or in case of WebFlux - WebClient with
it UriBuilderFactory.

21.4. Configuring HTTP Endpoints with Java
The following example shows how to configure an inbound gateway with Java:

Example 6. Inbound Gateway Using Java Configuration

@Bean
public HttpRequestHandlingMessagingGateway inbound() {
 HttpRequestHandlingMessagingGateway gateway =
 new HttpRequestHandlingMessagingGateway(true);
 gateway.setRequestMapping(mapping());
 gateway.setRequestPayloadType(String.class);
 gateway.setRequestChannelName("httpRequest");
 return gateway;
}

@Bean
public RequestMapping mapping() {
 RequestMapping requestMapping = new RequestMapping();
 requestMapping.setPathPatterns("/foo");
 requestMapping.setMethods(HttpMethod.POST);
 return requestMapping;
}

The following example shows how to configure an inbound gateway with the Java DSL:

470

./webflux.pdf#webflux
./ws.pdf#ws

Example 7. Inbound Gateway Using the Java DSL

@Bean
public IntegrationFlow inbound() {
 return IntegrationFlows.from(Http.inboundGateway("/foo")
 .requestMapping(m -> m.methods(HttpMethod.POST))
 .requestPayloadType(String.class))
 .channel("httpRequest")
 .get();
}

The following example shows how to configure an outbound gateway with Java:

Example 8. Outbound Gateway Using Java Configuration

@ServiceActivator(inputChannel = "httpOutRequest")
@Bean
public HttpRequestExecutingMessageHandler outbound() {
 HttpRequestExecutingMessageHandler handler =
 new HttpRequestExecutingMessageHandler("http://localhost:8080/foo");
 handler.setHttpMethod(HttpMethod.POST);
 handler.setExpectedResponseType(String.class);
 return handler;
}

The following example shows how to configure an outbound gateway with the Java DSL:

Example 9. Outbound Gateway Using the Java DSL

@Bean
public IntegrationFlow outbound() {
 return IntegrationFlows.from("httpOutRequest")
 .handle(Http.outboundGateway("http://localhost:8080/foo")
 .httpMethod(HttpMethod.POST)
 .expectedResponseType(String.class))
 .get();
}

21.5. Timeout Handling
In the context of HTTP components, there are two timing areas that have to be considered:

• Timeouts when interacting with Spring Integration Channels

471

• Timeouts when interacting with a remote HTTP server

The components interact with message channels, for which timeouts can be specified. For example,
an HTTP Inbound Gateway forwards messages received from connected HTTP Clients to a message
channel (which uses a request timeout) and consequently the HTTP Inbound Gateway receives a
reply message from the reply channel (which uses a reply timeout) that is used to generate the
HTTP Response. The following illustration offers a visual explanation:

Figure 8. How timeout settings apply to an HTTP Inbound Gateway

For outbound endpoints, we need to consider how timing works while interacting with the remote
server. The following image shows this scenario:

Figure 9. How timeout settings apply to an HTTP Outbound Gateway

You may want to configure the HTTP related timeout behavior, when making active HTTP requests
by using the HTTP outbound gateway or the HTTP outbound channel adapter. In those instances,
these two components use Spring’s RestTemplate support to execute HTTP requests.

To configure timeouts for the HTTP outbound gateway and the HTTP outbound channel adapter,
you can either reference a RestTemplate bean directly (by using the rest-template attribute) or you
can provide a reference to a ClientHttpRequestFactory bean (by using the request-factory attribute).
Spring provides the following implementations of the ClientHttpRequestFactory interface:

• SimpleClientHttpRequestFactory: Uses standard J2SE facilities for making HTTP Requests

• HttpComponentsClientHttpRequestFactory: Uses Apache HttpComponents HttpClient (since Spring
3.1)

If you do not explicitly configure the request-factory or rest-template attribute, a default
RestTemplate (which uses a SimpleClientHttpRequestFactory) is instantiated.

472

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/client/ClientHttpRequestFactory.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/client/SimpleClientHttpRequestFactory.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/client/HttpComponentsClientHttpRequestFactory.html
https://hc.apache.org/httpcomponents-client-ga/



With some JVM implementations, the handling of timeouts by the URLConnection
class may not be consistent.

For example, from the Java™ Platform, Standard Edition 6 API Specification on
setConnectTimeout:

Some non-standard implementation of this method may
ignore the specified timeout. To see the connect timeout set,
please call getConnectTimeout().

If you have specific needs, you should test your timeouts. Consider using the
HttpComponentsClientHttpRequestFactory, which, in turn, uses Apache
HttpComponents HttpClient rather than relying on implementations provided by a
JVM.



When you use the Apache HttpComponents HttpClient with a pooling connection
manager, you should be aware that, by default, the connection manager creates no
more than two concurrent connections per given route and no more than 20
connections in total. For many real-world applications, these limits may prove to
be too constraining. See the Apache documentation for information about
configuring this important component.

The following example configures an HTTP outbound gateway by using a
SimpleClientHttpRequestFactory that is configured with connect and read timeouts of 5 seconds,
respectively:

<int-http:outbound-gateway url=
"https://samples.openweathermap.org/data/2.5/weather?q={city}"
 http-method="GET"
 expected-response-type="java.lang.String"
 request-factory="requestFactory"
 request-channel="requestChannel"
 reply-channel="replyChannel">
 <int-http:uri-variable name="city" expression="payload"/>
</int-http:outbound-gateway>

<bean id="requestFactory"
 class="org.springframework.http.client.SimpleClientHttpRequestFactory">
 <property name="connectTimeout" value="5000"/>
 <property name="readTimeout" value="5000"/>
</bean>

HTTP Outbound Gateway

For the HTTP Outbound Gateway, the XML Schema defines only the reply-timeout. The reply-timeout
maps to the sendTimeout property of the

473

https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/

org.springframework.integration.http.outbound.HttpRequestExecutingMessageHandler class. More
precisely, the property is set on the extended AbstractReplyProducingMessageHandler class, which
ultimately sets the property on the MessagingTemplate.

The value of the sendTimeout property defaults to "-1" and will be applied to the connected
MessageChannel. This means, that depending on the implementation, the Message Channel’s send
method may block indefinitely. Furthermore, the sendTimeout property is only used, when the
actual MessageChannel implementation has a blocking send (such as 'full' bounded QueueChannel).

21.5.1. HTTP Inbound Gateway

For the HTTP inbound gateway, the XML Schema defines the request-timeout attribute, which is
used to set the requestTimeout property on the HttpRequestHandlingMessagingGateway class (on the
extended MessagingGatewaySupport class). You can also use the reply-timeout attribute to map to the
replyTimeout property on the same class.

The default for both timeout properties is 1000ms (one thousand milliseconds or one second).
Ultimately, the request-timeout property is used to set the sendTimeout on the MessagingTemplate
instance. The replyTimeout property, on the other hand, is used to set the receiveTimeout property on
the MessagingTemplate instance.


To simulate connection timeouts, you can connect to a non-routable IP address,
such as 10.255.255.10.

21.6. HTTP Proxy configuration
If you are behind a proxy and need to configure proxy settings for HTTP outbound adapters or
gateways, you can apply one of two approaches. In most cases, you can rely on the standard Java
system properties that control the proxy settings. Otherwise, you can explicitly configure a Spring
bean for the HTTP client request factory instance.

21.6.1. Standard Java Proxy configuration

You can set three system properties to configure the proxy settings that are used by the HTTP
protocol handler:

• http.proxyHost: The host name of the proxy server.

• http.proxyPort: The port number (the default is 80).

• http.nonProxyHosts: A list of hosts that should be reached directly, bypassing the proxy. This is a
list of patterns separated by |. The patterns may start or end with a * for wildcards. Any host
that matches one of these patterns is reached through a direct connection instead of through a
proxy.

For HTTPS, the following properties are available:

• https.proxyHost: The host name of the proxy server.

• https.proxyPort: The port number, the default value being 80.

474

For more information, see docs.oracle.com/javase/8/docs/technotes/guides/net/proxies.html

21.6.2. Spring’s SimpleClientHttpRequestFactory

If you need more explicit control over the proxy configuration, you can use Spring’s
SimpleClientHttpRequestFactory and configure its 'proxy' property, as the following example shows:

<bean id="requestFactory"
 class="org.springframework.http.client.SimpleClientHttpRequestFactory">
 <property name="proxy">
 <bean id="proxy" class="java.net.Proxy">
 <constructor-arg>
 <util:constant static-field="java.net.Proxy.Type.HTTP"/>
 </constructor-arg>
 <constructor-arg>
 <bean class="java.net.InetSocketAddress">
 <constructor-arg value="123.0.0.1"/>
 <constructor-arg value="8080"/>
 </bean>
 </constructor-arg>
 </bean>
 </property>
</bean>

21.7. HTTP Header Mappings
Spring Integration provides support for HTTP header mapping for both HTTP Request and HTTP
Responses.

By default, all standard HTTP headers are mapped from the message to HTTP request or response
headers without further configuration. However, if you do need further customization, you can
provide additional configuration by taking advantage of the namespace support. You can provide a
comma-separated list of header names, and you can include simple patterns with the '*' character
acting as a wildcard. Provide such values overrides the default behavior. Basically, it assumes you
are in complete control at that point. However, if you do want to include all of the standard HTTP
headers, you can use the shortcut patterns: HTTP_REQUEST_HEADERS and HTTP_RESPONSE_HEADERS. The
following listing shows two examples (the first of which uses a wildcard):

475

https://docs.oracle.com/javase/8/docs/technotes/guides/net/proxies.html
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

<int-http:outbound-gateway id="httpGateway"
 url="http://localhost/test2"
 mapped-request-headers="thing1, thing2"
 mapped-response-headers="X-*, HTTP_RESPONSE_HEADERS"
 channel="someChannel"/>

<int-http:outbound-channel-adapter id="httpAdapter"
 url="http://localhost/test2"
 mapped-request-headers="thing1, thing2, HTTP_REQUEST_HEADERS"
 channel="someChannel"/>

The adapters and gateways use the DefaultHttpHeaderMapper, which now provides two static factory
methods for inbound and outbound adapters so that the proper direction can be applied (mapping
HTTP requests and responses either in or out, as appropriate).

If you need further customization, you can also configure a DefaultHttpHeaderMapper independently
and inject it into the adapter through the header-mapper attribute.

Before version 5.0, the DefaultHttpHeaderMapper the default prefix for user-defined, non-standard
HTTP headers was X-. Version 5.0 changed the default prefix to an empty string. According to RFC-
6648, the use of such prefixes is now discouraged. You can still customize this option by setting the
DefaultHttpHeaderMapper.setUserDefinedHeaderPrefix() property. The following example configures
a header mapper for an HTTP gateway:

<int-http:outbound-gateway id="httpGateway"
 url="http://localhost/test2"
 header-mapper="headerMapper"
 channel="someChannel"/>

<bean id="headerMapper" class="o.s.i.http.support.DefaultHttpHeaderMapper">
 <property name="inboundHeaderNames" value="thing1*, *thing2, thing3"/>
 <property name="outboundHeaderNames" value="a*b, d"/>
</bean>

If you need to do something other than what the DefaultHttpHeaderMapper supports, you can
implement the HeaderMapper strategy interface directly and provide a reference to your
implementation.

21.8. Integration Graph Controller
Starting with version 4.3, the HTTP module provides an @EnableIntegrationGraphController
configuration class annotation and an <int-http:graph-controller/> XML element to expose the
IntegrationGraphServer as a REST service. See Integration Graph for more information.

476

https://tools.ietf.org/html/rfc6648
https://tools.ietf.org/html/rfc6648
./graph.pdf#integration-graph

21.9. HTTP Samples
This section wraps up our coverage of Spring Integration’s HTTP support with a few examples.

21.9.1. Multipart HTTP Request — RestTemplate (Client) and Http Inbound
Gateway (Server)

This example shows how simple it is to send a multipart HTTP request with Spring’s RestTemplate
and receive it with a Spring Integration HTTP inbound adapter. We create a MultiValueMap and
populate it with multipart data. The RestTemplate takes care of the rest (no pun intended) by
converting it to a MultipartHttpServletRequest. This particular client sends a multipart HTTP
Request that contains the name of the company and an image file (the company logo). The following
listing shows the example:

RestTemplate template = new RestTemplate();
String uri = "http://localhost:8080/multipart-http/inboundAdapter.htm";
Resource s2logo =
 new ClassPathResource("org/springframework/samples/multipart/spring09_logo.png
");
MultiValueMap map = new LinkedMultiValueMap();
map.add("company", "SpringSource");
map.add("company-logo", s2logo);
HttpHeaders headers = new HttpHeaders();
headers.setContentType(new MediaType("multipart", "form-data"));
HttpEntity request = new HttpEntity(map, headers);
ResponseEntity<?> httpResponse = template.exchange(uri, HttpMethod.POST, request,
 null);

That is all we need for the client.

On the server side, we have the following configuration:

477

<int-http:inbound-channel-adapter id="httpInboundAdapter"
 channel="receiveChannel"
 path="/inboundAdapter.htm"
 supported-methods="GET, POST"/>

<int:channel id="receiveChannel"/>

<int:service-activator input-channel="receiveChannel">
 <bean class=
"org.springframework.integration.samples.multipart.MultipartReceiver"/>
</int:service-activator>

<bean id="multipartResolver"
 class="org.springframework.web.multipart.commons.CommonsMultipartResolver"/>

The 'httpInboundAdapter' receives the request and converts it to a Message with a payload that is
a LinkedMultiValueMap. We then parse that in the 'multipartReceiver' service-activator, as the
following example shows:

public void receive(LinkedMultiValueMap<String, Object> multipartRequest){
 System.out.println("### Successfully received multipart request ###");
 for (String elementName : multipartRequest.keySet()) {
 if (elementName.equals("company")){
 System.out.println("\t" + elementName + " - " +
 ((String[]) multipartRequest.getFirst("company"))[0]);
 }
 else if (elementName.equals("company-logo")){
 System.out.println("\t" + elementName + " - as UploadedMultipartFile:
" +
 ((UploadedMultipartFile) multipartRequest
 .getFirst("company-logo")).getOriginalFilename());
 }
 }
}

You should see the following output:

Successfully received multipart request
 company - SpringSource
 company-logo - as UploadedMultipartFile: spring09_logo.png

478

Chapter 22. JDBC Support
Spring Integration provides channel adapters for receiving and sending messages by using
database queries. Through those adapters, Spring Integration supports not only plain JDBC SQL
queries but also stored procedure and stored function calls.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-jdbc</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-jdbc:5.4.0"

By default, the following JDBC components are available:

• Inbound Channel Adapter

• Outbound Channel Adapter

• Outbound Gateway

• Stored Procedure Inbound Channel Adapter

• Stored Procedure Outbound Channel Adapter

• Stored Procedure Outbound Gateway

The Spring Integration JDBC Module also provides a JDBC Message Store.

22.1. Inbound Channel Adapter
The main function of an inbound channel adapter is to execute a SQL SELECT query and turn the
result set into a message. The message payload is the whole result set (expressed as a List), and the
types of the items in the list depend on the row-mapping strategy. The default strategy is a generic
mapper that returns a Map for each row in the query result. Optionally, you can change this by
adding a reference to a RowMapper instance (see the Spring JDBC documentation for more detailed
information about row mapping).


If you want to convert rows in the SELECT query result to individual messages, you
can use a downstream splitter.

The inbound adapter also requires a reference to either a JdbcTemplate instance or a DataSource.

479

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html

As well as the SELECT statement to generate the messages, the adapter also has an UPDATE statement
that marks the records as processed so that they do not show up in the next poll. The update can be
parameterized by the list of IDs from the original select. By default, this is done through a naming
convention (a column in the input result set called id is translated into a list in the parameter map
for the update called id). The following example defines an inbound channel adapter with an
update query and a DataSource reference.

<int-jdbc:inbound-channel-adapter query="select * from item where status=2"
 channel="target" data-source="dataSource"
 update="update item set status=10 where id in (:id)" />



The parameters in the update query are specified with a colon (:) prefix to the
name of a parameter (which, in the preceding example, is an expression to be
applied to each of the rows in the polled result set). This is a standard feature of
the named parameter JDBC support in Spring JDBC, combined with a convention
(projection onto the polled result list) adopted in Spring Integration. The
underlying Spring JDBC features limit the available expressions (for example, most
special characters other than a period are disallowed), but since the target is
usually a list of objects (possibly a list of one) that are addressable by bean paths
this is not unduly restrictive.

To change the parameter generation strategy, you can inject a SqlParameterSourceFactory into the
adapter to override the default behavior (the adapter has a sql-parameter-source-factory attribute).
Spring Integration provides ExpressionEvaluatingSqlParameterSourceFactory, which creates a SpEL-
based parameter source, with the results of the query as the #root object. (If update-per-row is true,
the root object is the row). If the same parameter name appears multiple times in the update query,
it is evaluated only once, and its result is cached.

You can also use a parameter source for the select query. In this case, since there is no “result”
object to evaluate against, a single parameter source is used each time (rather than using a
parameter source factory). Starting with version 4.0, you can use Spring to create a SpEL based
parameter source, as the following example shows:

480

<int-jdbc:inbound-channel-adapter query="select * from item where status=:status"
 channel="target" data-source="dataSource"
 select-sql-parameter-source="parameterSource" />

<bean id="parameterSource" factory-bean="parameterSourceFactory"
 factory-method="createParameterSourceNoCache">
 <constructor-arg value="" />
</bean>

<bean id="parameterSourceFactory"
 class="o.s.integration.jdbc.ExpressionEvaluatingSqlParameterSourceFactory
">
 <property name="parameterExpressions">
 <map>
 <entry key="status" value="@statusBean.which()" />
 </map>
 </property>
</bean>

<bean id="statusBean" class="foo.StatusDetermination" />

The value in each parameter expression can be any valid SpEL expression. The #root object for the
expression evaluation is the constructor argument defined on the parameterSource bean. It is static
for all evaluations (in the preceding example, an empty String).

Starting with version 5.0, you ca supply ExpressionEvaluatingSqlParameterSourceFactory with
sqlParameterTypes to specify the target SQL type for the particular parameter.

The following example provides SQL types for the parameters being used in the query:

481

<int-jdbc:inbound-channel-adapter query="select * from item where status=:status"
 channel="target" data-source="dataSource"
 select-sql-parameter-source="parameterSource" />

<bean id="parameterSource" factory-bean="parameterSourceFactory"
 factory-method="createParameterSourceNoCache">
 <constructor-arg value="" />
</bean>

<bean id="parameterSourceFactory"
 class="o.s.integration.jdbc.ExpressionEvaluatingSqlParameterSourceFactory
">
 <property name="sqlParameterTypes">
 <map>
 <entry key="status" value="#{ T(java.sql.Types).BINARY}" />
 </map>
 </property>
</bean>



Use the createParameterSourceNoCache factory method. Otherwise, the parameter
source caches the result of the evaluation. Also note that, because caching is
disabled, if the same parameter name appears in the select query multiple times, it
is re-evaluated for each occurrence.

22.1.1. Polling and Transactions

The inbound adapter accepts a regular Spring Integration poller as a child element. Consequently,
the frequency of the polling can be controlled (among other uses). An important feature of the
poller for JDBC usage is the option to wrap the poll operation in a transaction, as the following
example shows:

<int-jdbc:inbound-channel-adapter query="..."
 channel="target" data-source="dataSource" update="...">
 <int:poller fixed-rate="1000">
 <int:transactional/>
 </int:poller>
</int-jdbc:inbound-channel-adapter>


If you do not explicitly specify a poller, a default value is used. As is normal with
Spring Integration, it can be defined as a top-level bean).

In the preceding example, the database is polled every 1000 milliseconds (or once a second), and
the update and select queries are both executed in the same transaction. The transaction manager

482

configuration is not shown. However, as long as it is aware of the data source, the poll is
transactional. A common use case is for the downstream channels to be direct channels (the
default), so that the endpoints are invoked in the same thread and, hence, the same transaction.
That way, if any of them fail, the transaction rolls back and the input data is reverted to its original
state.

22.1.2. max-rows Versus max-messages-per-poll

The JDBC inbound channel adapter defines an attribute called max-rows. When you specify the
adapter’s poller, you can also define a property called max-messages-per-poll. While these two
attributes look similar, their meaning is quite different.

max-messages-per-poll specifies the number of times the query is executed per polling interval,
whereas max-rows specifies the number of rows returned for each execution.

Under normal circumstances, you would likely not want to set the poller’s max-messages-per-poll
property when you use the JDBC inbound channel adapter. Its default value is 1, which means that
the JDBC inbound channel adapter’s receive() method is executed exactly once for each poll
interval.

Setting the max-messages-per-poll attribute to a larger value means that the query is executed that
many times back to back. For more information regarding the max-messages-per-poll attribute, see
Configuring An Inbound Channel Adapter.

In contrast, the max-rows attribute, if greater than 0, specifies the maximum number of rows to be
used from the query result set created by the receive() method. If the attribute is set to 0, all rows
are included in the resulting message. The attribute defaults to 0.


It is recommended to use result set limiting via vendor-specific query options, for
example MySQL LIMIT or SQL Server TOP or Oracle’s ROWNUM. See the particular
vendor documentation for more information.

22.2. Outbound Channel Adapter
The outbound channel adapter is the inverse of the inbound: its role is to handle a message and use
it to execute a SQL query. By default, the message payload and headers are available as input
parameters to the query, as the following example shows:

<int-jdbc:outbound-channel-adapter
 query="insert into foos (id, status, name) values (:headers[id], 0,
:payload[something])"
 data-source="dataSource"
 channel="input"/>

In the preceding example, messages arriving on the channel labelled input have a payload of a map
with a key of something, so the [] operator dereferences that value from the map. The headers are

483

https://docs.spring.io/spring-integration/api/org/springframework/integration/jdbc/JdbcPollingChannelAdapter.html#receive()
./channel-adapter.pdf#channel-adapter-namespace-inbound

also accessed as a map.



The parameters in the preceding query are bean property expressions on the
incoming message (not SpEL expressions). This behavior is part of the
SqlParameterSource, which is the default source created by the outbound adapter.
You can inject a different SqlParameterSourceFactory to get different behavior.

The outbound adapter requires a reference to either a DataSource or a JdbcTemplate. You can also
inject a SqlParameterSourceFactory to control the binding of each incoming message to a query.

If the input channel is a direct channel, the outbound adapter runs its query in the same thread
and, therefore, the same transaction (if there is one) as the sender of the message.

22.2.1. Passing Parameters by Using SpEL Expressions

A common requirement for most JDBC channel adapters is to pass parameters as part of SQL
queries or stored procedures or functions. As mentioned earlier, these parameters are by default
bean property expressions, not SpEL expressions. However, if you need to pass SpEL expression as
parameters, you must explicitly inject a SqlParameterSourceFactory.

The following example uses a ExpressionEvaluatingSqlParameterSourceFactory to achieve that
requirement:

<jdbc:outbound-channel-adapter data-source="dataSource" channel="input"
 query="insert into MESSAGES (MESSAGE_ID,PAYLOAD,CREATED_DATE) \
 values (:id, :payload, :createdDate)"
 sql-parameter-source-factory="spelSource"/>

<bean id="spelSource"
 class="o.s.integration.jdbc.ExpressionEvaluatingSqlParameterSourceFactory">
 <property name="parameterExpressions">
 <map>
 <entry key="id" value="headers['id'].toString()"/>
 <entry key="createdDate" value="new java.util.Date()"/>
 <entry key="payload" value="payload"/>
 </map>
 </property>
</bean>

For further information, see Defining Parameter Sources.

22.2.2. Using the PreparedStatement Callback

Sometimes, the flexibility and loose-coupling of SqlParameterSourceFactory does not do what we
need for the target PreparedStatement or we need to do some low-level JDBC work. The Spring JDBC
module provides APIs to configure the execution environment (such as ConnectionCallback or
PreparedStatementCreator) and manipulate parameter values (such as SqlParameterSource). It can

484

even access APIs for low-level operations, such as StatementCallback.

Starting with Spring Integration 4.2, MessagePreparedStatementSetter allows the specification of
parameters on the PreparedStatement manually, in the requestMessage context. This class plays
exactly the same role as PreparedStatementSetter in the standard Spring JDBC API. Actually, it is
invoked directly from an inline PreparedStatementSetter implementation when the
JdbcMessageHandler invokes execute on the JdbcTemplate.

This functional interface option is mutually exclusive with sqlParameterSourceFactory and can be
used as a more powerful alternative to populate parameters of the PreparedStatement from the
requestMessage. For example, it is useful when we need to store File data to the DataBase BLOB
column in a streaming manner. The following example shows how to do so:

@Bean
@ServiceActivator(inputChannel = "storeFileChannel")
public MessageHandler jdbcMessageHandler(DataSource dataSource) {
 JdbcMessageHandler jdbcMessageHandler = new JdbcMessageHandler(dataSource,
 "INSERT INTO imagedb (image_name, content, description) VALUES (?, ?,
?)");
 jdbcMessageHandler.setPreparedStatementSetter((ps, m) -> {
 ps.setString(1, m.getHeaders().get(FileHeaders.FILENAME));
 try (FileInputStream inputStream = new FileInputStream((File) m.
getPayload());) {
 ps.setBlob(2, inputStream);
 }
 catch (Exception e) {
 throw new MessageHandlingException(m, e);
 }
 ps.setClob(3, new StringReader(m.getHeaders().get("description", String
.class)));
 });
 return jdbcMessageHandler;
}

From the XML configuration perspective, the prepared-statement-setter attribute is available on the
<int-jdbc:outbound-channel-adapter> component. It lets you specify a
MessagePreparedStatementSetter bean reference.

22.2.3. Batch Update

Starting with version 5.1, the JdbcMessageHandler performs a JdbcOperations.batchUpdate() if the
payload of the request message is an Iterable instance. Each element of the Iterable is wrapped to
a Message with the headers from the request message. In the case of regular
SqlParameterSourceFactory-based configuration these messages are used to build an
SqlParameterSource[] for an argument used in the mentioned JdbcOperations.batchUpdate()
function. When a MessagePreparedStatementSetter configuration is applied, a
BatchPreparedStatementSetter variant is used to iterate over those messages for each item and the

485

provided MessagePreparedStatementSetter is called against them. The batch update is not supported
when keysGenerated mode is selected.

22.3. Outbound Gateway
The outbound gateway is like a combination of the outbound and inbound adapters: Its role is to
handle a message and use it to execute a SQL query and then respond with the result by sending it
to a reply channel. By default, the message payload and headers are available as input parameters
to the query, as the following example shows:

<int-jdbc:outbound-gateway
 update="insert into mythings (id, status, name) values (:headers[id], 0,
:payload[thing])"
 request-channel="input" reply-channel="output" data-source="dataSource" />

The result of the preceding example is to insert a record into the mythings table and return a
message that indicates the number of rows affected (the payload is a map: {UPDATED=1}) to the
output channel .

If the update query is an insert with auto-generated keys, you can populate the reply message with
the generated keys by adding keys-generated="true" to the preceding example (this is not the
default because it is not supported by some database platforms). The following example shows the
changed configuration:

<int-jdbc:outbound-gateway
 update="insert into mythings (status, name) values (0, :payload[thing])"
 request-channel="input" reply-channel="output" data-source="dataSource"
 keys-generated="true"/>

Instead of the update count or the generated keys, you can also provide a select query to execute
and generate a reply message from the result (such as the inbound adapter), as the following
example shows:

<int-jdbc:outbound-gateway
 update="insert into foos (id, status, name) values (:headers[id], 0,
:payload[foo])"
 query="select * from foos where id=:headers[$id]"
 request-channel="input" reply-channel="output" data-source="dataSource"/>

Since Spring Integration 2.2, the update SQL query is no longer mandatory. You can now provide
only a select query, by using either the query attribute or the query element. This is extremely useful

486

if you need to actively retrieve data by using, for example, a generic gateway or a payload enricher.
The reply message is then generated from the result (similar to how the inbound adapter works)
and passed to the reply channel. The following example show to use the query attribute:

<int-jdbc:outbound-gateway
 query="select * from foos where id=:headers[id]"
 request-channel="input"
 reply-channel="output"
 data-source="dataSource"/>


By default, the component for the SELECT query returns only one (the first) row
from the cursor. You can adjust this behavior with the max-rows option. If you need
to return all the rows from the SELECT, consider specifying max-rows="0".

As with the channel adapters, you can also provide SqlParameterSourceFactory instances for request
and reply. The default is the same as for the outbound adapter, so the request message is available
as the root of an expression. If keys-generated="true", the root of the expression is the generated
keys (a map if there is only one or a list of maps if multi-valued).

The outbound gateway requires a reference to either a DataSource or a JdbcTemplate. It can also
have a SqlParameterSourceFactory injected to control the binding of the incoming message to the
query.

Starting with the version 4.2, the request-prepared-statement-setter attribute is available on the
<int-jdbc:outbound-gateway> as an alternative to request-sql-parameter-source-factory. It lets you
specify a MessagePreparedStatementSetter bean reference, which implements more sophisticated
PreparedStatement preparation before its execution.

See Outbound Channel Adapter for more information about MessagePreparedStatementSetter.

22.4. JDBC Message Store
Spring Integration provides two JDBC specific message store implementations. The JdbcMessageStore
is suitable for use with aggregators and the claim check pattern. The JdbcChannelMessageStore
implementation provides a more targeted and scalable implementation specifically for message
channel.

Note that you can use a JdbcMessageStore to back a message channel, JdbcChannelMessageStore is
optimized for that purpose.



Starting with versions 5.0.11, 5.1.2, the indexes for the JdbcChannelMessageStore
have been optimized. If you have large message groups in such a store, you may
wish to alter the indexes. Furthermore, the index for PriorityChannel is
commented out because it is not needed unless you are using such channels
backed by JDBC.

487


When using the OracleChannelMessageStoreQueryProvider, the priority channel
index must be added because it is included in a hint in the query.

22.4.1. Initializing the Database

Before starting to use JDBC message store components, you should provision a target database with
the appropriate objects.

Spring Integration ships with some sample scripts that can be used to initialize a database. In the
spring-integration-jdbc JAR file, you can find scripts in the org.springframework.integration.jdbc
package. It provides an example create and an example drop script for a range of common
database platforms. A common way to use these scripts is to reference them in a Spring JDBC data
source initializer. Note that the scripts are provided as samples and as specifications of the the
required table and column names. You may find that you need to enhance them for production use
(for, example, by adding index declarations).

22.4.2. The Generic JDBC Message Store

The JDBC module provides an implementation of the Spring Integration MessageStore (important in
the claim check pattern) and MessageGroupStore (important in stateful patterns such as an
aggregator) backed by a database. Both interfaces are implemented by the JdbcMessageStore, and
there is support for configuring store instances in XML, as the following example shows:

<int-jdbc:message-store id="messageStore" data-source="dataSource"/>

You can specify a JdbcTemplate instead of a DataSource.

The following example shows some other optional attributes:

<int-jdbc:message-store id="messageStore" data-source="dataSource"
 lob-handler="lobHandler" table-prefix="MY_INT_"/>

In the preceding example, we have specified a LobHandler for dealing with messages as large objects
(which is often necessary for Oracle) and a prefix for the table names in the queries generated by
the store. The table name prefix defaults to INT_.

22.4.3. Backing Message Channels

If you intend to backing message channels with JDBC, we recommend using the
JdbcChannelMessageStore implementation. It works only in conjunction with Message Channels.

488

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html#jdbc-intializing-datasource
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html#jdbc-intializing-datasource

Supported Databases

The JdbcChannelMessageStore uses database-specific SQL queries to retrieve messages from the
database. Therefore, you must set the ChannelMessageStoreQueryProvider property on the
JdbcChannelMessageStore. This channelMessageStoreQueryProvider provides the SQL queries for the
particular database you specify. Spring Integration provides support for the following relational
databases:

• PostgreSQL

• HSQLDB

• MySQL

• Oracle

• Derby

• H2

• SqlServer

• Sybase

• DB2

If your database is not listed, you can extend the AbstractChannelMessageStoreQueryProvider class
and provide your own custom queries.

Version 4.0 added the MESSAGE_SEQUENCE column to the table to ensure first-in-first-out (FIFO)
queueing even when messages are stored in the same millisecond.

Custom Message Insertion

Since version 5.0, by overloading the ChannelMessageStorePreparedStatementSetter class, you can
provide a custom implementation for message insertion in the JdbcChannelMessageStore. You can
use it to set different columns or change the table structure or serialization strategy. For example,
instead of default serialization to byte[], you can store its structure as a JSON string.

The following example uses the default implementation of setValues to store common columns and
overrides the behavior to store the message payload as a varchar:

489

public class JsonPreparedStatementSetter extends
ChannelMessageStorePreparedStatementSetter {

 @Override
 public void setValues(PreparedStatement preparedStatement, Message<?>
requestMessage,
 Object groupId, String region, boolean priorityEnabled) throws
SQLException {
 // Populate common columns
 super.setValues(preparedStatement, requestMessage, groupId, region,
priorityEnabled);
 // Store message payload as varchar
 preparedStatement.setString(6, requestMessage.getPayload().toString());
 }
}



Generally, we do not recommend using a relational database for queuing. Instead,
if possible, consider using either JMS- or AMQP-backed channels instead. For
further reference, see the following resources:

• 5 subtle ways you’re using MySQL as a queue, and why it’ll bite you.

• The Database As Queue Anti-Pattern.

Concurrent Polling

When polling a message channel, you have the option to configure the associated Poller with a
TaskExecutor reference.



Keep in mind, though, that if you use a JDBC backed message channel and you plan
to poll the channel and consequently the message store transactionally with
multiple threads, you should ensure that you use a relational database that
supports Multiversion Concurrency Control (MVCC). Otherwise, locking may be an
issue and the performance, when using multiple threads, may not materialize as
expected. For example, Apache Derby is problematic in that regard.

To achieve better JDBC queue throughput and avoid issues when different threads
may poll the same Message from the queue, it is important to set the usingIdCache
property of JdbcChannelMessageStore to true when using databases that do not
support MVCC. The following example shows how to do so:

490

https://www.engineyard.com/blog/2011/5-subtle-ways-youre-using-mysql-as-a-queue-and-why-itll-bite-you/
https://mikehadlow.blogspot.com/2012/04/database-as-queue-anti-pattern.html
https://en.wikipedia.org/wiki/Multiversion_concurrency_control

<bean id="queryProvider"
 class=
"o.s.i.jdbc.store.channel.PostgresChannelMessageStoreQueryProvider"/>

<int:transaction-synchronization-factory id="syncFactory">
 <int:after-commit expression=
"@store.removeFromIdCache(headers.id.toString())" />
 <int:after-rollback expression=
"@store.removeFromIdCache(headers.id.toString())"/>
</int:transaction-synchronization-factory>

<task:executor id="pool" pool-size="10"
 queue-capacity="10" rejection-policy="CALLER_RUNS" />

<bean id="store" class="o.s.i.jdbc.store.JdbcChannelMessageStore">
 <property name="dataSource" ref="dataSource"/>
 <property name="channelMessageStoreQueryProvider" ref=
"queryProvider"/>
 <property name="region" value="TX_TIMEOUT"/>
 <property name="usingIdCache" value="true"/>
</bean>

<int:channel id="inputChannel">
 <int:queue message-store="store"/>
</int:channel>

<int:bridge input-channel="inputChannel" output-channel="outputChannel
">
 <int:poller fixed-delay="500" receive-timeout="500"
 max-messages-per-poll="1" task-executor="pool">
 <int:transactional propagation="REQUIRED" synchronization-
factory="syncFactory"
 isolation="READ_COMMITTED" transaction-manager=
"transactionManager" />
 </int:poller>
</int:bridge>

<int:channel id="outputChannel" />

Priority Channel

Starting with version 4.0, JdbcChannelMessageStore implements PriorityCapableChannelMessageStore
and provides the priorityEnabled option, letting it be used as a message-store reference for
priority-queue instances. For this purpose, the INT_CHANNEL_MESSAGE table has a MESSAGE_PRIORITY
column to store the value of PRIORITY message headers. In addition, a new MESSAGE_SEQUENCE column
lets us achieve a robust first-in-first-out (FIFO) polling mechanism, even when multiple messages
are stored with the same priority in the same millisecond. Messages are polled (selected) from the
database with order by MESSAGE_PRIORITY DESC NULLS LAST, CREATED_DATE, MESSAGE_SEQUENCE.

491



We do not recommend using the same JdbcChannelMessageStore bean for priority
and non-priority queue channels, because the priorityEnabled option applies to
the entire store and proper FIFO queue semantics are not retained for the queue
channel. However, the same INT_CHANNEL_MESSAGE table (and even region) can be
used for both JdbcChannelMessageStore types. To configure that scenario, you can
extend one message store bean from the other, as the following example shows:

<bean id="channelStore" class="o.s.i.jdbc.store.JdbcChannelMessageStore">
 <property name="dataSource" ref="dataSource"/>
 <property name="channelMessageStoreQueryProvider" ref="queryProvider"/>
</bean>

<int:channel id="queueChannel">
 <int:queue message-store="channelStore"/>
</int:channel>

<bean id="priorityStore" parent="channelStore">
 <property name="priorityEnabled" value="true"/>
</bean>

<int:channel id="priorityChannel">
 <int:priority-queue message-store="priorityStore"/>
</int:channel>

22.4.4. Partitioning a Message Store

It is common to use a JdbcMessageStore as a global store for a group of applications or nodes in the
same application. To provide some protection against name clashes and to give control over the
database meta-data configuration, the message store lets the tables be partitioned in two ways. One
way is to use separate table names, by changing the prefix (as described earlier). The other way is
to specify a region name for partitioning data within a single table. An important use case for the
second approach is when the MessageStore is managing persistent queues that back a Spring
Integration Message Channel. The message data for a persistent channel is keyed in the store on the
channel name. Consequently, if the channel names are not globally unique, the channels can pick
up data that is not intended for them. To avoid this danger, you can use the message store region to
keep data separate for different physical channels that have the same logical name.

22.5. Stored Procedures
In certain situations, plain JDBC support is not sufficient. Maybe you deal with legacy relational
database schemas or you have complex data processing needs, but, ultimately, you have to use
stored procedures or stored functions. Since Spring Integration 2.1, we provide three components
to execute stored procedures or stored functions:

• Stored Procedures Inbound Channel Adapter

492

https://en.wikipedia.org/wiki/Stored_procedure

• Stored Procedures Outbound Channel Adapter

• Stored Procedures Outbound Gateway

22.5.1. Supported Databases

In order to enable calls to stored procedures and stored functions, the stored procedure
components use the org.springframework.jdbc.core.simple.SimpleJdbcCall class. Consequently, the
following databases are fully supported for executing stored procedures:

• Apache Derby

• DB2

• MySQL

• Microsoft SQL Server

• Oracle

• PostgreSQL

• Sybase

If you want to execute stored functions instead, the following databases are fully supported:

• MySQL

• Microsoft SQL Server

• Oracle

• PostgreSQL



Even though your particular database may not be fully supported, chances are that
you can use the stored procedure Spring Integration components quite
successfully anyway, provided your RDBMS supports stored procedures or stored
functions.

As a matter of fact, some of the provided integration tests use the H2 database.
Nevertheless, it is very important to thoroughly test those usage scenarios.

22.5.2. Configuration

The stored procedure components provide full XML Namespace support, and configuring the
components is similar as for the general purpose JDBC components discussed earlier.

22.5.3. Common Configuration Attributes

All stored procedure components share certain configuration parameters:

• auto-startup: Lifecycle attribute signaling whether this component should be started during
application context startup. It defaults to true. Optional.

• data-source: Reference to a javax.sql.DataSource, which is used to access the database.
Required.

493

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCall.html
https://www.h2database.com/

• id: Identifies the underlying Spring bean definition, which is an instance of either
EventDrivenConsumer or PollingConsumer, depending on whether the outbound channel adapter’s
channel attribute references a SubscribableChannel or a PollableChannel. Optional.

• ignore-column-meta-data: For fully supported databases, the underlying SimpleJdbcCall class can
automatically retrieve the parameter information for the stored procedure or stored function
from the JDBC metadata.

However, if the database does not support metadata lookups or if you need to provide
customized parameter definitions, this flag can be set to true. It defaults to false. Optional.

• is-function: If true, a SQL Function is called. In that case, the stored-procedure-name or stored-
procedure-name-expression attributes define the name of the called function. It defaults to false.
Optional.

• stored-procedure-name: This attribute specifies the name of the stored procedure. If the is-
function attribute is set to true, this attribute specifies the function name instead. Either this
property or stored-procedure-name-expression must be specified.

• stored-procedure-name-expression: This attribute specifies the name of the stored procedure by
using a SpEL expression. By using SpEL, you have access to the full message (if available),
including its headers and payload. You can use this attribute to invoke different stored
procedures at runtime. For example, you can provide stored procedure names that you would
like to execute as a message header. The expression must resolve to a String.

If the is-function attribute is set to true, this attribute specifies a stored function. Either this
property or stored-procedure-name must be specified.

• jdbc-call-operations-cache-size: Defines the maximum number of cached
SimpleJdbcCallOperations instances. Basically, for each stored procedure name, a new
SimpleJdbcCallOperations instance is created that, in return, is cached.


Spring Integration 2.2 added the stored-procedure-name-expression attribute
and the jdbc-call-operations-cache-size attribute.

The default cache size is 10. A value of 0 disables caching. Negative values are not permitted.

If you enable JMX, statistical information about the jdbc-call-operations-cache is exposed as an
MBean. See MBean Exporter for more information.

• sql-parameter-source-factory: (Not available for the stored procedure inbound channel
adapter.) Reference to a SqlParameterSourceFactory. By default, bean properties of the passed in
Message payload are used as a source for the stored procedure’s input parameters by using a
BeanPropertySqlParameterSourceFactory.

This may suffice for basic use cases. For more sophisticated options, consider passing in one or
more ProcedureParameter values. See Defining Parameter Sources. Optional.

• use-payload-as-parameter-source: (Not available for the stored procedure inbound channel
adapter.) If set to true, the payload of the Message is used as a source for providing parameters. If
set to false, however, the entire Message is available as a source for parameters.

494

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCall.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCallOperations.html
./jmx.pdf#jmx-mbean-exporter

If no procedure parameters are passed in, this property defaults to true. This means that, by
using a default BeanPropertySqlParameterSourceFactory, the bean properties of the payload are
used as a source for parameter values for the stored procedure or stored function.

However, if procedure parameters are passed in, this property (by default) evaluates to false.
ProcedureParameter lets SpEL Expressions be provided. Therefore, it is highly beneficial to have
access to the entire Message. The property is set on the underlying StoredProcExecutor. Optional.

22.5.4. Common Configuration Sub-Elements

The stored procedure components share a common set of child elements that you can use to define
and pass parameters to stored procedures or stored functions. The following elements are
available:

• parameter

• returning-resultset

• sql-parameter-definition

• poller

• parameter: Provides a mechanism to provide stored procedure parameters. Parameters can be
either static or provided by using a SpEL Expressions.

<int-jdbc:parameter name="" ①
 type="" ②
 value=""/> ③

<int-jdbc:parameter name=""
 expression=""/> ④

+ <1> The name of the parameter to be passed into the Stored Procedure or Stored
Function. Required. <2> This attribute specifies the type of the value. If nothing is provided,
this attribute defaults to java.lang.String. This attribute is used only when the value
attribute is used. Optional. <3> The value of the parameter. You must provide either this
attribute or the expression attribute. Optional. <4> Instead of the value attribute, you can
specify a SpEL expression for passing the value of the parameter. If you specify the
expression, the value attribute is not allowed. Optional.

Optional.

• returning-resultset: Stored procedures may return multiple result sets. By setting one or more
returning-resultset elements, you can specify RowMappers to convert each returned ResultSet to
meaningful objects. Optional.

495

<int-jdbc:returning-resultset name="" row-mapper="" />

• sql-parameter-definition: If you use a database that is fully supported, you typically do not have
to specify the stored procedure parameter definitions. Instead, those parameters can be
automatically derived from the JDBC metadata. However, if you use databases that are not fully
supported, you must set those parameters explicitly by using the sql-parameter-definition
element.

You can also choose to turn off any processing of parameter metadata information obtained
through JDBC by using the ignore-column-meta-data attribute.

<int-jdbc:sql-parameter-definition
 name="" ①
 direction="IN" ②
 type="STRING" ③
 scale="5" ④
 type-name="FOO_STRUCT" ⑤
 return-type="fooSqlReturnType"/> ⑥

① Specifies the name of the SQL parameter. Required.

② Specifies the direction of the SQL parameter definition. Defaults to IN. Valid values are:
IN, OUT, and INOUT. If your procedure is returning result sets, use the returning-resultset
element. Optional.

③ The SQL type used for this SQL parameter definition. Translates into an integer value, as
defined by java.sql.Types. Alternatively, you can provide the integer value as well. If
this attribute is not explicitly set, it defaults to 'VARCHAR'. Optional.

④ The scale of the SQL parameter. Only used for numeric and decimal parameters.
Optional.

⑤ The typeName for types that are user-named, such as: STRUCT, DISTINCT, JAVA_OBJECT, and
named array types. This attribute is mutually exclusive with the scale attribute.
Optional.

⑥ The reference to a custom value handler for complex types. An implementation of
SqlReturnType. This attribute is mutually exclusive with the scale attribute and is only
applicable for OUT and INOUT parameters. Optional.

• poller: Lets you configure a message poller if this endpoint is a PollingConsumer. Optional.

22.5.5. Defining Parameter Sources

Parameter sources govern the techniques of retrieving and mapping the Spring Integration
message properties to the relevant stored procedure input parameters.

496

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/SqlReturnType.html

The stored procedure components follow certain rules. By default, the bean properties of the
Message payload are used as a source for the stored procedure’s input parameters. In that case, a
BeanPropertySqlParameterSourceFactory is used. This may suffice for basic use cases. The next
example illustrates that default behavior.



For the “automatic” lookup of bean properties by using the
BeanPropertySqlParameterSourceFactory to work, your bean properties must be
defined in lower case. This is due to the fact that in
org.springframework.jdbc.core.metadata.CallMetaDataContext (the Java method is
matchInParameterValuesWithCallParameters()), the retrieved stored procedure
parameter declarations are converted to lower case. As a result, if you have camel-
case bean properties (such as lastName), the lookup fails. In that case, provide an
explicit ProcedureParameter.

Suppose we have a payload that consists of a simple bean with the following three properties: id,
name, and description. Furthermore, we have a simplistic Stored Procedure called INSERT_COFFEE that
accepts three input parameters: id, name, and description. We also use a fully supported database. In
that case, the following configuration for a stored procedure outbound adapter suffices:

<int-jdbc:stored-proc-outbound-channel-adapter data-source="dataSource"
 channel="insertCoffeeProcedureRequestChannel"
 stored-procedure-name="INSERT_COFFEE"/>

For more sophisticated options, consider passing in one or more ProcedureParameter values.

If you do provide ProcedureParameter values explicitly, by default, an
ExpressionEvaluatingSqlParameterSourceFactory is used for parameter processing, to enable the full
power of SpEL expressions.

If you need even more control over how parameters are retrieved, consider passing in a custom
implementation of SqlParameterSourceFactory by using the sql-parameter-source-factory attribute.

22.5.6. Stored Procedure Inbound Channel Adapter

The following listing calls out the attributes that matter for a stored procedure inbound channel
adapter:

497

<int-jdbc:stored-proc-inbound-channel-adapter
 channel=""
①
 stored-procedure-name=""
 data-source=""
 auto-startup="true"
 id=""
 ignore-column-meta-data="false"
 is-function="false"
 skip-undeclared-results=""
②
 return-value-required="false"
③
 <int:poller/>
 <int-jdbc:sql-parameter-definition name="" direction="IN"
 type="STRING"
 scale=""/>
 <int-jdbc:parameter name="" type="" value=""/>
 <int-jdbc:parameter name="" expression=""/>
 <int-jdbc:returning-resultset name="" row-mapper="" />
</int-jdbc:stored-proc-inbound-channel-adapter>

① Channel to which polled messages are sent. If the stored procedure or function does not
return any data, the payload of the Message is null. Required.

② If this attribute is set to true, all results from a stored procedure call that do not have a
corresponding SqlOutParameter declaration are bypassed. For example, stored procedures
can return an update count value, even though your stored procedure declared only a
single result parameter. The exact behavior depends on the database implementation. The
value is set on the underlying JdbcTemplate. The value defaults to true. Optional.

③ Indicates whether this procedure’s return value should be included. Since Spring
Integration 3.0. Optional.

22.5.7. Stored Procedure Outbound Channel Adapter

The following listing calls out the attributes that matter for a stored procedure outbound channel
adapter:

498

<int-jdbc:stored-proc-outbound-channel-adapter channel=""
①
 stored-procedure-name=""
 data-source=""
 auto-startup="true"
 id=""
 ignore-column-meta-data="false"
 order=""
②
 sql-parameter-source-factory=""
 use-payload-as-parameter-source="">
 <int:poller fixed-rate=""/>
 <int-jdbc:sql-parameter-definition name=""/>
 <int-jdbc:parameter name=""/>

</int-jdbc:stored-proc-outbound-channel-adapter>

① The receiving message channel of this endpoint. Required.

② Specifies the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel is using a failover dispatching
strategy. It has no effect when this endpoint is itself a polling consumer for a channel with a
queue. Optional.

22.5.8. Stored Procedure Outbound Gateway

The following listing calls out the attributes that matter for a stored procedure outbound channel
adapter:

499

<int-jdbc:stored-proc-outbound-gateway request-channel=""
①
 stored-procedure-name=""
 data-source=""
 auto-startup="true"
 id=""
 ignore-column-meta-data="false"
 is-function="false"
 order=""
 reply-channel=""
②
 reply-timeout=""
③
 return-value-required="false"
④
 skip-undeclared-results=""
⑤
 sql-parameter-source-factory=""
 use-payload-as-parameter-source="">
<int-jdbc:sql-parameter-definition name="" direction="IN"
 type=""
 scale="10"/>
<int-jdbc:sql-parameter-definition name=""/>
<int-jdbc:parameter name="" type="" value=""/>
<int-jdbc:parameter name="" expression=""/>
<int-jdbc:returning-resultset name="" row-mapper="" />

① The receiving message channel of this endpoint. Required.

② Message channel to which replies should be sent after receiving the database response.
Optional.

③ Lets you specify how long this gateway waits for the reply message to be sent successfully
before throwing an exception. Keep in mind that, when sending to a DirectChannel, the
invocation occurs in the sender’s thread. Consequently, the failing of the send operation
may be caused by other components further downstream. By default, the gateway waits
indefinitely. The value is specified in milliseconds. Optional.

④ Indicates whether this procedure’s return value should be included. Optional.

⑤ If the skip-undeclared-results attribute is set to true, all results from a stored procedure
call that do not have a corresponding SqlOutParameter declaration are bypassed. For
example, stored procedures may return an update count value, even though your stored
procedure only declared a single result parameter. The exact behavior depends on the
database. The value is set on the underlying JdbcTemplate. The value defaults to true.
Optional.

500

22.5.9. Examples

This section contains two examples that call Apache Derby stored procedures. The first procedure
calls a stored procedure that returns a ResultSet. By using a RowMapper, the data is converted into a
domain object, which then becomes the Spring Integration message payload.

In the second sample, we call a stored procedure that uses output parameters to return data
instead.



Have a look at the Spring Integration Samples project.

The project contains the Apache Derby example referenced here, as well as
instructions on how to run it. The Spring Integration Samples project also provides
an example of using Oracle stored procedures.

In the first example, we call a stored procedure named FIND_ALL_COFFEE_BEVERAGES that does not
define any input parameters but that returns a ResultSet.

In Apache Derby, stored procedures are implemented in Java. The following listing shows the
method signature:

public static void findAllCoffeeBeverages(ResultSet[] coffeeBeverages)
 throws SQLException {
 ...
}

The following listing shows the corresponding SQL:

CREATE PROCEDURE FIND_ALL_COFFEE_BEVERAGES() \
PARAMETER STYLE JAVA LANGUAGE JAVA MODIFIES SQL DATA DYNAMIC RESULT SETS 1 \
EXTERNAL NAME
'o.s.i.jdbc.storedproc.derby.DerbyStoredProcedures.findAllCoffeeBeverages';

In Spring Integration, you can now call this stored procedure by using, for example, a stored-proc-
outbound-gateway, as the following example shows:

501

https://db.apache.org/derby/
https://github.com/spring-projects/spring-integration-samples
https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/stored-procedures-oracle

<int-jdbc:stored-proc-outbound-gateway id="outbound-gateway-storedproc-find-all"
 data-source="dataSource"
 request-channel=
"findAllProcedureRequestChannel"
 expect-single-result="true"
 stored-procedure-name=
"FIND_ALL_COFFEE_BEVERAGES">
<int-jdbc:returning-resultset name="coffeeBeverages"
 row-mapper="org.springframework.integration.support.CoffeBeverageMapper"/>
</int-jdbc:stored-proc-outbound-gateway>

In the second example, we call a stored procedure named FIND_COFFEE that has one input
parameter. Instead of returning a ResultSet, it uses an output parameter. The following example
shows the method signature:

public static void findCoffee(int coffeeId, String[] coffeeDescription)
 throws SQLException {
 ...
}

The following listing shows the corresponding SQL:

CREATE PROCEDURE FIND_COFFEE(IN ID INTEGER, OUT COFFEE_DESCRIPTION VARCHAR(200)) \
PARAMETER STYLE JAVA LANGUAGE JAVA EXTERNAL NAME \
'org.springframework.integration.jdbc.storedproc.derby.DerbyStoredProcedures.findC
offee';

In Spring Integration, you can now call this Stored Procedure by using, for example, a stored-proc-
outbound-gateway, as the following example shows:

502

<int-jdbc:stored-proc-outbound-gateway id="outbound-gateway-storedproc-find-
coffee"
 data-source="dataSource"
 request-channel=
"findCoffeeProcedureRequestChannel"
 skip-undeclared-results="true"
 stored-procedure-name="FIND_COFFEE"
 expect-single-result="true">
 <int-jdbc:parameter name="ID" expression="payload" />
</int-jdbc:stored-proc-outbound-gateway>

22.6. JDBC Lock Registry
Version 4.3 introduced the JdbcLockRegistry. Certain components (for example, aggregator and
resequencer) use a lock obtained from a LockRegistry instance to ensure that only one thread
manipulates a group at a time. The DefaultLockRegistry performs this function within a single
component. You can now configure an external lock registry on these components. When used with
a shared MessageGroupStore, you can use the JdbcLockRegistry to provide this functionality across
multiple application instances, such that only one instance can manipulate the group at a time.

When a lock is released by a local thread, another local thread can generally acquire the lock
immediately. If a lock is released by a thread that uses a different registry instance, it can take up to
100ms to acquire the lock.

The JdbcLockRegistry is based on the LockRepository abstraction, which has a DefaultLockRepository
implementation. The database schema scripts are located in the
org.springframework.integration.jdbc package, which is divided for the particular RDBMS vendors.
For example, the following listing shows the H2 DDL for the lock table:

CREATE TABLE INT_LOCK (
 LOCK_KEY CHAR(36),
 REGION VARCHAR(100),
 CLIENT_ID CHAR(36),
 CREATED_DATE TIMESTAMP NOT NULL,
 constraint INT_LOCK_PK primary key (LOCK_KEY, REGION)
);

The INT_ can be changed according to the target database design requirements. Therefore, you must
use prefix property on the DefaultLockRepository bean definition.

Sometimes, one application has moved to such a state that it cannot release the distributed lock and
remove the particular record in the database. For this purpose, such dead locks can be expired by
the other application on the next locking invocation. The timeToLive (TTL) option on the
DefaultLockRepository is provided for this purpose. You may also want to specify CLIENT_ID for the

503

locks stored for a given DefaultLockRepository instance. If so, you can specify the id to be associated
with the DefaultLockRepository as a constructor parameter.

Starting with version 5.1.8, the JdbcLockRegistry can be configured with the idleBetweenTries - a
Duration to sleep between lock record insert/update executions. By default it is 100 milliseconds and
in some environments non-leaders pollute connections with data source too often.

Starting with version 5.4, the RenewableLockRegistry interface has been introduced and added to
JdbcLockRegistry. The renewLock() method must be called during locked process in case of the
locked process would be longer than time to live of the lock. So the time to live can be highly reduce
and deployments can retake a lost lock quickly.

 The lock renewal can be done only if the lock is held by the current thread.

22.7. JDBC Metadata Store
Version 5.0 introduced the JDBC MetadataStore (see Metadata Store) implementation. You can use
the JdbcMetadataStore to maintain the metadata state across application restarts. This MetadataStore
implementation can be used with adapters such as the following:

• Feed inbound channel adapters

• File inbound channel adapters

• FTP inbound channel adapters

• SFTP inbound channel adapters

To configure these adapters to use the JdbcMetadataStore, declare a Spring bean by using a bean
name of metadataStore. The Feed inbound channel adapter and the feed inbound channel adapter
both automatically pick up and use the declared JdbcMetadataStore, as the following example
shows:

@Bean
public MetadataStore metadataStore(DataSource dataSource) {
 return new JdbcMetadataStore(dataSource);
}

The org.springframework.integration.jdbc package has Database schema scripts for several RDMBS
vendors. For example, the following listing shows the H2 DDL for the metadata table:

504

./meta-data-store.pdf#metadata-store
./feed.pdf#feed-inbound-channel-adapter
./file.pdf#file-reading
./ftp.pdf#ftp-inbound
./sftp.pdf#sftp-inbound

CREATE TABLE INT_METADATA_STORE (
 METADATA_KEY VARCHAR(255) NOT NULL,
 METADATA_VALUE VARCHAR(4000),
 REGION VARCHAR(100) NOT NULL,
 constraint INT_METADATA_STORE_PK primary key (METADATA_KEY, REGION)
);

You can change the INT_ prefix to match the target database design requirements. You can also
configure JdbcMetadataStore to use the custom prefix.

The JdbcMetadataStore implements ConcurrentMetadataStore, letting it be reliably shared across
multiple application instances, where only one instance can store or modify a key’s value. All of
these operations are atomic, thanks to transaction guarantees.

Transaction management must use JdbcMetadataStore. Inbound channel adapters can be supplied
with a reference to the TransactionManager in the poller configuration. Unlike non-transactional
MetadataStore implementations, with JdbcMetadataStore, the entry appears in the target table only
after the transaction commits. When a rollback occurs, no entries are added to the
INT_METADATA_STORE table.

Since version 5.0.7, you can configure the JdbcMetadataStore with the RDBMS vendor-specific
lockHint option for lock-based queries on metadata store entries. By default, it is FOR UPDATE and can
be configured with an empty string if the target database does not support row locking
functionality. Consult with your vendor for particular and possible hints in the SELECT expression
for locking rows before updates.

505

Chapter 23. JPA Support
Spring Integration’s JPA (Java Persistence API) module provides components for performing
various database operations using JPA.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-jpa</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-jpa:5.4.0"

The JPA API must be included via some vendor-specific implementation, e.g. Hibernate ORM
Framework.

The following components are provided:

• Inbound channel adapter

• Outbound channel adapter

• Updating outbound gateway

• Retrieving outbound gateway

These components can be used to perform select, create, update, and delete operations on the
target databases by sending and receiving messages to them.

The JPA inbound channel adapter lets you poll and retrieve (select) data from the database by
using JPA, whereas the JPA outbound channel adapter lets you create, update, and delete entities.

You can use outbound gateways for JPA to persist entities to the database, letting you continue the
flow and execute further components downstream. Similarly, you can use an outbound gateway to
retrieve entities from the database.

For example, you may use the outbound gateway, which receives a Message with a userId as payload
on its request channel, to query the database, retrieve the user entity, and pass it downstream for
further processing.

Recognizing these semantic differences, Spring Integration provides two separate JPA outbound
gateways:

506

• Retrieving outbound gateway

• Updating outbound gateway

23.1. Functionality
All JPA components perform their respective JPA operations by using one of the following:

• Entity classes

• Java Persistence Query Language (JPQL) for update, select and delete (JPQL does not support
inserts)

• Native Query

• Named Query

The following sections describe each of these components in more detail.

23.2. Supported Persistence Providers
The Spring Integration JPA support has been tested against the following persistence providers:

• Hibernate

• EclipseLink

When using a persistence provider, you should ensure that the provider is compatible with JPA 2.1.

23.3. Java Implementation
Each of the provided components uses the o.s.i.jpa.core.JpaExecutor class, which, in turn, uses an
implementation of the o.s.i.jpa.core.JpaOperations interface. JpaOperations operates like a typical
Data Access Object (DAO) and provides methods such as find, persist, executeUpdate, and so on. For
most use cases, the default implementation (o.s.i.jpa.core.DefaultJpaOperations) should be
sufficient. However, you can specify your own implementation if you require custom behavior.

To initialize a JpaExecutor, you must use one of the constructors that accept one of:

• EntityManagerFactory

• EntityManager

• JpaOperations

The following example shows how to initialize a JpaExecutor with an entityManagerFactory and use
it in an outbound gateway:

507

@Bean
public JpaExecutor jpaExecutor() {
 JpaExecutor executor = new JpaExecutor(this.entityManagerFactory);
 executor.setJpaParameters(Collections.singletonList(new JpaParameter("firstName",
null, "#this")));
 executor.setUsePayloadAsParameterSource(true);
 executor.setExpectSingleResult(true);
 return executor;
}

@ServiceActivator(inputChannel = "getEntityChannel")
@Bean
public MessageHandler retrievingJpaGateway() {
 JpaOutboundGateway gateway = new JpaOutboundGateway(jpaExecutor());
 gateway.setGatewayType(OutboundGatewayType.RETRIEVING);
 gateway.setOutputChannelName("resultsChannel");
 return gateway;
}

23.4. Namespace Support
When using XML namespace support, the underlying parser classes instantiate the relevant Java
classes for you. Thus, you typically need not deal with the inner workings of the JPA adapter. This
section documents the XML namespace support provided by Spring Integration and shows you how
to use the XML Namespace support to configure the JPA components.

23.4.1. Common XML Namespace Configuration Attributes

Certain configuration parameters are shared by all JPA components:

auto-startup

Lifecycle attribute that signals whether this component should be started during application
context startup. Defaults to true. Optional.

id

Identifies the underlying Spring bean definition, which is an instance of either
EventDrivenConsumer or PollingConsumer. Optional.

entity-manager-factory

The reference to the JPA entity manager factory that the adapter uses to create the
EntityManager. You must provide this attribute, the entity-manager attribute, or the jpa-
operations attribute.

entity-manager

The reference to the JPA Entity Manager that the component uses. You must provide this
attribute, the entity-manager-factory attribute, or the jpa-operations attribute.

508



Usually, your Spring application context defines only a JPA entity manager
factory, and the EntityManager is injected by using the @PersistenceContext
annotation. This approach does not apply for the Spring Integration JPA
components. Usually, injecting the JPA entity manager factory is best, but, when
you want to inject an EntityManager explicitly, you have to define a
SharedEntityManagerBean. For more information, see the relevant Javadoc.

The following example shows how to explicitly include an entity manager factory:

<bean id="entityManager"
 class="org.springframework.orm.jpa.support.SharedEntityManagerBean">
 <property name="entityManagerFactory" ref="entityManagerFactoryBean" />
</bean>

jpa-operations

A reference to a bean that implements the JpaOperations interface. In rare cases, it might be
advisable to provide your own implementation of the JpaOperations interface instead of relying
on the default implementation (
org.springframework.integration.jpa.core.DefaultJpaOperations). If you use the jpa-operations
attribute, you must not provide the JPA entity manager or JPA entity manager factory, because
JpaOperations wraps the necessary datasource.

entity-class

The fully qualified name of the entity class. The exact semantics of this attribute vary, depending
on whether we are performing a persist or update operation or whether we are retrieving
objects from the database.

When retrieving data, you can specify the entity-class attribute to indicate that you would like
to retrieve objects of this type from the database. In that case, you must not define any of the
query attributes (jpa-query, native-query, or named-query).

When persisting data, the entity-class attribute indicates the type of object to persist. If not
specified (for persist operations) the entity class is automatically retrieved from the message’s
payload.

jpa-query

Defines the JPA query (Java Persistence Query Language) to be used.

native-query

Defines the native SQL query to be used.

named-query

Refers to a named query. A named query can be defined in either Native SQL or JPAQL, but the
underlying JPA persistence provider handles that distinction internally.

509

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/support/SharedEntityManagerBean.html

23.4.2. Providing JPA Query Parameters

To provide parameters, you can use the parameter XML element. It has a mechanism that lets you
provide parameters for queries that are based on either the Java Persistence Query Language
(JPQL) or native SQL queries. You can also provide parameters for named queries.

Expression-based Parameters

The following example shows how to set an expression-based parameter:

<int-jpa:parameter expression="payload.name" name="firstName"/>

Value-based Parameters

The following example shows how to set an value-based parameter:

<int-jpa:parameter name="name" type="java.lang.String" value="myName"/>

Positional Parameters

The following example shows how to set an expression-based parameter:

<int-jpa:parameter expression="payload.name"/>
<int-jpa:parameter type="java.lang.Integer" value="21"/>

23.4.3. Transaction Handling

All JPA operations (such as INSERT, UPDATE, and DELETE) require a transaction to be active whenever
they are performed. For inbound channel adapters, you need do nothing special. It works similarly
to the way we configure transaction managers with pollers that are used with other inbound
channel adapters. The following XML example configures a transaction manager that uses a poller
with an inbound channel adapter:

510

<int-jpa:inbound-channel-adapter
 channel="inboundChannelAdapterOne"
 entity-manager="em"
 auto-startup="true"
 jpa-query="select s from Student s"
 expect-single-result="true"
 delete-after-poll="true">
 <int:poller fixed-rate="2000" >
 <int:transactional propagation="REQUIRED"
 transaction-manager="transactionManager"/>
 </int:poller>
</int-jpa:inbound-channel-adapter>

However, you may need to specifically start a transaction when using an outbound channel adapter
or gateway. If a DirectChannel is an input channel for the outbound adapter or gateway and if the
transaction is active in the current thread of execution, the JPA operation is performed in the same
transaction context. You can also configure this JPA operation to run as a new transaction, as the
following example shows:

<int-jpa:outbound-gateway
 request-channel="namedQueryRequestChannel"
 reply-channel="namedQueryResponseChannel"
 named-query="updateStudentByRollNumber"
 entity-manager="em"
 gateway-type="UPDATING">
 <int-jpa:parameter name="lastName" expression="payload"/>
 <int-jpa:parameter name="rollNumber" expression="headers['rollNumber']"/>
 <int-jpa:transactional propagation="REQUIRES_NEW"
 transaction-manager="transactionManager"/>
</int-jpa:outbound-gateway>

In the preceding example, the transactional element of the outbound gateway or adapter specifies
the transaction attributes. It is optional to define this child element if you have DirectChannel as an
input channel to the adapter and you want the adapter to execute the operations in the same
transaction context as the caller. If, however, you use an ExecutorChannel, you must have the
transactional element, because the invoking client’s transaction context is not propagated.


Unlike the transactional element of the poller, which is defined in Spring
Integration’s namespace, the transactional element for the outbound gateway or
adapter is defined in the JPA namespace.

511

23.5. Inbound Channel Adapter
An inbound channel adapter is used to execute a select query over the database using JPA QL and
return the result. The message payload is either a single entity or a List of entities. The following
XML configures an inbound-channel-adapter:

512

<int-jpa:inbound-channel-adapter channel="inboundChannelAdapterOne" ①
 entity-manager="em" ②
 auto-startup="true" ③
 query="select s from Student s" ④
 expect-single-result="true" ⑤
 max-results="" ⑥
 max-results-expression="" ⑦
 delete-after-poll="true" ⑧
 flush-after-delete="true"> ⑨
 <int:poller fixed-rate="2000" >
 <int:transactional propagation="REQUIRED" transaction-manager=
"transactionManager"/>
 </int:poller>
</int-jpa:inbound-channel-adapter>

① The channel over which the inbound-channel-adapter puts the messages (with the payload)
after executing the JPA QL in the query attribute.

② The EntityManager instance used to perform the required JPA operations.

③ Attribute signaling whether the component should automatically start when the application
context starts. The value defaults to true.

④ The JPA QL whose result are sent out as the payload of the message

⑤ This attribute tells whether the JPQL query gives a single entity in the result or a List of
entities. If the value is set to true, the single entity is sent as the payload of the message. If,
however, multiple results are returned after setting this to true, a MessagingException is
thrown. The value defaults to false.

⑥ This non-zero, non-negative integer value tells the adapter not to select more than the given
number of rows on execution of the select operation. By default, if this attribute is not set,
all possible records are selected by the query. This attribute is mutually exclusive with max-
results-expression. Optional.

⑦ An expression that is evaluated to find the maximum number of results in a result set.
Mutually exclusive with max-results. Optional.

⑧ Set this value to true if you want to delete the rows received after execution of the query.
You must ensure that the component operates as part of a transaction. Otherwise, you may
encounter an exception such as: java.lang.IllegalArgumentException: Removing a detached
instance …

⑨ Set this value to true if you want to flush the persistence context immediately after deleting
received entities and if you do not want to rely on the flushMode of the EntityManager. The
value defaults to false.

23.5.1. Configuration Parameter Reference

The following listing shows all the values that can be set for an inbound-channel-adapter:

513

<int-jpa:inbound-channel-adapter
 auto-startup="true" ①
 channel="" ②
 delete-after-poll="false" ③
 delete-per-row="false" ④
 entity-class="" ⑤
 entity-manager="" ⑥
 entity-manager-factory="" ⑦
 expect-single-result="false" ⑧
 id=""
 jpa-operations="" ⑨
 jpa-query="" ⑩
 named-query="" ⑪
 native-query="" ⑫
 parameter-source="" ⑬
 send-timeout=""> ⑭
 <int:poller ref="myPoller"/>
 </int-jpa:inbound-channel-adapter>

① This lifecycle attribute signals whether this component should automatically start when the
application context starts. This attribute defaults to true. Optional.

② The channel to which the adapter sends a message with the payload from performing the
desired JPA operation.

③ A boolean flag that indicates whether to delete the selected records after they have been
polled by the adapter. By default, the value is false (that is, the records are not deleted). You
must ensure that the component operates as part of a transaction. Otherwise, you may
encounter an exception, such as: java.lang.IllegalArgumentException: Removing a detached
instance …. Optional.

④ A boolean flag that indicates whether the records can be deleted in bulk or must be deleted
one record at a time. By default the value is false (that is, the records can be bulk-deleted).
Optional.

⑤ The fully qualified name of the entity class to be queried from the database. The adapter
automatically builds a JPA Query based on the entity class name. Optional.

⑥ An instance of javax.persistence.EntityManager used to perform the JPA operations.
Optional.

⑦ An instance of javax.persistence.EntityManagerFactory used to obtain an instance of
javax.persistence.EntityManager that performs the JPA operations. Optional.

⑧ A boolean flag indicating whether the select operation is expected to return a single result
or a List of results. If this flag is set to true, the single entity selected is sent as the payload
of the message. If multiple entities are returned, an exception is thrown. If false, the List of
entities is sent as the payload of the message. The value defaults to false. Optional.

⑨ An implementation of org.springframework.integration.jpa.core.JpaOperations used to
perform the JPA operations. We recommend not providing an implementation of your own
but using the default org.springframework.integration.jpa.core.DefaultJpaOperations

514

implementation. You can use any of the entity-manager, entity-manager-factory, or jpa-
operations attributes. Optional.

⑩ The JPA QL to be executed by this adapter. Optional.

⑪ The named query that needs to be executed by this adapter. Optional.

⑫ The native query executed by this adapter. You can use any of the jpa-query, named-query,
entity-class, or native-query attributes. Optional.

⑬ An implementation of o.s.i.jpa.support.parametersource.ParameterSource used to resolve
the values of the parameters in the query. Ignored if the entity-class attribute has a value.
Optional.

⑭ Maximum amount of time (in milliseconds) to wait when sending a message to the channel.
Optional.

23.5.2. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the inbound adapter
with Java:

515

@SpringBootApplication
@EntityScan(basePackageClasses = StudentDomain.class)
public class JpaJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(JpaJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @Bean
 public JpaExecutor jpaExecutor() {
 JpaExecutor executor = new JpaExecutor(this.entityManagerFactory);
 jpaExecutor.setJpaQuery("from Student");
 return executor;
 }

 @Bean
 @InboundChannelAdapter(channel = "jpaInputChannel",
 poller = @Poller(fixedDelay = "${poller.interval}"))
 public MessageSource<?> jpaInbound() {
 return new JpaPollingChannelAdapter(jpaExecutor());
 }

 @Bean
 @ServiceActivator(inputChannel = "jpaInputChannel")
 public MessageHandler handler() {
 return message -> System.out.println(message.getPayload());
 }

}

23.5.3. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the inbound adapter
with the Java DSL:

516

@SpringBootApplication
@EntityScan(basePackageClasses = StudentDomain.class)
public class JpaJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(JpaJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @Bean
 public IntegrationFlow pollingAdapterFlow() {
 return IntegrationFlows
 .from(Jpa.inboundAdapter(this.entityManagerFactory)
 .entityClass(StudentDomain.class)
 .maxResults(1)
 .expectSingleResult(true),
 e -> e.poller(p -> p.trigger(new OnlyOnceTrigger())))
 .channel(c -> c.queue("pollingResults"))
 .get();
 }

}

23.6. Outbound Channel Adapter
The JPA outbound channel adapter lets you accept messages over a request channel. The payload
can either be used as the entity to be persisted or used with the headers in the parameter
expressions for a JPQL query. The following sections cover the possible ways of performing these
operations.

23.6.1. Using an Entity Class

The following XML configures the outbound channel adapter to persist an entity to the database:

517

<int-jpa:outbound-channel-adapter channel="entityTypeChannel" ①
 entity-class="org.springframework.integration.jpa.test.entity.Student" ②
 persist-mode="PERSIST" ③
 entity-manager="em"/ > ④

① The channel over which a valid JPA entity is sent to the JPA outbound channel adapter.

② The fully qualified name of the entity class accepted by the adapter to be persisted in the
database. You can actually leave off this attribute in most cases as the adapter can
determine the entity class automatically from the Spring Integration message payload.

③ The operation to be done by the adapter. The valid values are PERSIST, MERGE, and DELETE.
The default value is MERGE.

④ The JPA entity manager to be used.

These four attributes of the outbound-channel-adapter configure it to accept entities over the input
channel and process them to PERSIST, MERGE, or DELETE the entities from the underlying data source.



As of Spring Integration 3.0, payloads to PERSIST or MERGE can also be of type
java.lang.Iterable. In that case, each object returned by the Iterable is treated as
an entity and persisted or merged using the underlying EntityManager. Null values
returned by the iterator are ignored.

23.6.2. Using JPA Query Language (JPA QL)

The previous section showed how to perform a PERSIST action by using an entity. This section shows
how to use an outbound channel adapter with JPA QL.

The following XML configures the outbound channel adapter to persist an entity to the database:

518

https://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html

<int-jpa:outbound-channel-adapter channel="jpaQlChannel"
①
 jpa-query="update Student s set s.firstName = :firstName where s.rollNumber =
:rollNumber" ②
 entity-manager="em">
③
 <int-jpa:parameter name="firstName" expression="payload['firstName']"/>
④
 <int-jpa:parameter name="rollNumber" expression="payload['rollNumber']"/>
</int-jpa:outbound-channel-adapter>

① The input channel over which the message is sent to the outbound channel adapter.

② The JPA QL to execute. This query may contain parameters that are evaluated by using the
parameter element.

③ The entity manager used by the adapter to perform the JPA operations.

④ The elements (one for each parameter) used to define the value of the parameter names for
the JPA QL specified in the query attribute.

The parameter element accepts an attribute whose name corresponds to the named parameter
specified in the provided JPA QL (point 2 in the preceding example). The value of the parameter can
either be static or be derived by using an expression. The static value and the expression to derive
the value are specified using the value and expression attributes, respectively. These attributes are
mutually exclusive.

If the value attribute is specified, you can provide an optional type attribute. The value of this
attribute is the fully qualified name of the class whose value is represented by the value attribute.
By default, the type is assumed to be a java.lang.String. The following example shows how to
define a JPA parameter:

<int-jpa:outbound-channel-adapter ...
>
 <int-jpa:parameter name="level" value="2" type="java.lang.Integer"/>
 <int-jpa:parameter name="name" expression="payload['name']"/>
</int-jpa:outbound-channel-adapter>

As the preceding example shows, you can use multiple parameter elements within an outbound
channel adapter element and define some parameters by using expressions and others with static
values. However, take care not to specify the same parameter name multiple times. You should
provide one parameter element for each named parameter specified in the JPA query. For example,
we specify two parameters: level and name. The level attribute is a static value of type
java.lang.Integer, while the name attribute is derived from the payload of the message.

519


Though specifying select is valid for JPA QL, it makes no sense to do so. Outbound
channel adapters do not return any result. If you want to select some values,
consider using the outbound gateway instead.

23.6.3. Using Native Queries

This section describes how to use native queries to perform operations with the JPA outbound
channel adapter. Using native queries is similar to using JPA QL, except that the queries are native
database queries. By using native queries, we lose database vendor independence, which we get
using JPA QL.

One of the things we can achieve by using native queries is to perform database inserts, which is
not possible with JPA QL. (To perform inserts, we send JPA entities to the channel adapter, as
described earlier). Below is a small xml fragment that demonstrates the use of native query to
insert values in a table.



Named parameters may not be supported by your JPA provider in conjunction
with native SQL queries. While they work fine with Hibernate, OpenJPA and
EclipseLink do not support them. See issues.apache.org/jira/browse/OPENJPA-111.
Section 3.8.12 of the JPA 2.0 spec states: “Only positional parameter binding and
positional access to result items may be portably used for native queries.”

The following example configures an outbound-channel-adapter with a native query:

<int-jpa:outbound-channel-adapter channel="nativeQlChannel"
 native-query="insert into STUDENT_TABLE(FIRST_NAME,LAST_UPDATED) values
(:lastName,:lastUpdated)" ①
 entity-manager="em">
 <int-jpa:parameter name="lastName" expression="payload['updatedLastName']"/>
 <int-jpa:parameter name="lastUpdated" expression="new java.util.Date()"/>
</int-jpa:outbound-channel-adapter>

① The native query executed by this outbound channel adapter.

Note that the other attributes (such as channel and entity-manager) and the parameter element have
the same semantics as they do for JPA QL.

23.6.4. Using Named Queries

Using named queries is similar to using JPA QL or a native query, except that we specify a named
query instead of a query. First, we cover how to define a JPA named query. Then we cover how to
declare an outbound channel adapter to work with a named query. If we have an entity called
Student, we can use annotations on the Student class to define two named queries: selectStudent
and updateStudent. The following example shows how to do so:

520

https://issues.apache.org/jira/browse/OPENJPA-111

@Entity
@Table(name="Student")
@NamedQueries({
 @NamedQuery(name="selectStudent",
 query="select s from Student s where s.lastName = 'Last One'"),
 @NamedQuery(name="updateStudent",
 query="update Student s set s.lastName = :lastName,
 lastUpdated = :lastUpdated where s.id in (select max(a.id) from
Student a)")
})
public class Student {

...
}

Alternatively, you can use orm.xml to define named queries as the following example shows:

<entity-mappings ...>
 ...
 <named-query name="selectStudent">
 <query>select s from Student s where s.lastName = 'Last One'</query>
 </named-query>
</entity-mappings>

Now that we have shown how to define named queries by using annotations or by using orm.xml,
we now show a small XML fragment that defines an outbound-channel-adapter by using a named
query, as the following example shows:

<int-jpa:outbound-channel-adapter channel="namedQueryChannel"
 named-query="updateStudent" ①
 entity-manager="em">
 <int-jpa:parameter name="lastName" expression="payload['updatedLastName']
"/>
 <int-jpa:parameter name="lastUpdated" expression="new java.util.Date()"/>
</int-jpa:outbound-channel-adapter>

① The named query that we want the adapter to execute when it receives a message over the
channel.

23.6.5. Configuration Parameter Reference

The following listing shows all the attributes that you can set on an outbound channel adapter:

521

<int-jpa:outbound-channel-adapter
 auto-startup="true" ①
 channel="" ②
 entity-class="" ③
 entity-manager="" ④
 entity-manager-factory="" ⑤
 id=""
 jpa-operations="" ⑥
 jpa-query="" ⑦
 named-query="" ⑧
 native-query="" ⑨
 order="" ⑩
 parameter-source-factory="" ⑪
 persist-mode="MERGE" ⑫
 flush="true" ⑬
 flush-size="10" ⑭
 clear-on-flush="true" ⑮
 use-payload-as-parameter-source="true" ⑯
 <int:poller/>
 <int-jpa:transactional/> ⑰
 <int-jpa:parameter/> ⑱
</int-jpa:outbound-channel-adapter>

① Lifecycle attribute signaling whether this component should start during application
context startup. It defaults to true. Optional.

② The channel from which the outbound adapter receives messages for performing the
desired operation.

③ The fully qualified name of the entity class for the JPA Operation. The entity-class, query,
and named-query attributes are mutually exclusive. Optional.

④ An instance of javax.persistence.EntityManager used to perform the JPA operations.
Optional.

⑤ An instance of javax.persistence.EntityManagerFactory used to obtain an instance of
javax.persistence.EntityManager, which performs the JPA operations. Optional.

⑥ An implementation of org.springframework.integration.jpa.core.JpaOperations used to
perform the JPA operations. We recommend not providing an implementation of your own
but using the default org.springframework.integration.jpa.core.DefaultJpaOperations
implementation. You can use any one of the entity-manager, entity-manager-factory, or jpa-
operations attributes. Optional.

⑦ The JPA QL to be executed by this adapter. Optional.

⑧ The named query that needs to be executed by this adapter. Optional.

⑨ The native query to be executed by this adapter. You can use any one of the jpa-query,
named-query, or native-query attributes. Optional.

⑩ The order for this consumer when multiple consumers are registered, thereby managing
load-balancing and failover. It defaults to Ordered.LOWEST_PRECEDENCE. Optional.

522

⑪ An instance of o.s.i.jpa.support.parametersource.ParameterSourceFactory used to get an
instance of o.s.i.jpa.support.parametersource.ParameterSource, which is used to resolve the
values of the parameters in the query. Ignored if you perform operations by using a JPA
entity. The parameter sub-elements are mutually exclusive with the parameter-source-
factory attribute and must be configured on the provided ParameterSourceFactory. Optional.

⑫ Accepts one of the following: PERSIST, MERGE, or DELETE. Indicates the operation that the
adapter needs to perform. Relevant only if you use an entity for JPA operations. Ignored if
you provide JPA QL, a named query, or a native query. It defaults to MERGE. Optional. As of
Spring Integration 3.0, payloads to persist or merge can also be of type java.lang.Iterable.
In that case, each object returned by the Iterable is treated as an entity and persisted or
merged by using the underlying EntityManager. Null values returned by the iterator are
ignored.

⑬ Set this value to true if you want to flush the persistence context immediately after persist,
merge, or delete operations and do not want to rely on the flushMode of the EntityManager. It
defaults to false. Applies only if you did not specify the flush-size attribute. If this attribute
is set to true, flush-size is implicitly set to 1, if no other value configured it.

⑭ Set this attribute to a value greater than '0' if you want to flush the persistence context
immediately after persist, merge or delete operations and do not want to rely on the the
flushMode of the EntityManager. The default value is set to 0, which means "'no flush'". This
attribute is geared towards messages with Iterable payloads. For instance, if flush-size is
set to 3, then entityManager.flush() is called after every third entity. Furthermore,
entityManager.flush() is called once more after the entire loop. If the 'flush-size' attribute is
specified with a value greater than '0', you need not configure the flush attribute.

⑮ Set this value to 'true' if you want to clear the persistence context immediately after each
flush operation. The attribute’s value is applied only if the flush attribute is set to true or if
the flush-size attribute is set to a value greater than 0.

⑯ If set to true, the payload of the message is used as a source for parameters. If set to false,
however, the entire Message is available as a source for parameters. Optional.

⑰ Defines the transaction management attributes and the reference to the transaction
manager to be used by the JPA adapter. Optional.

⑱ One or more parameter attributes — one for each parameter used in the query. The value or
expression is evaluated to compute the value of the parameter. Optional.

23.6.6. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the outbound adapter
with Java:

523

https://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html

@SpringBootApplication
@EntityScan(basePackageClasses = StudentDomain.class)
@IntegrationComponentScan
public class JpaJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(JpaJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @MessagingGateway
 interface JpaGateway {

 @Gateway(requestChannel = "jpaPersistChannel")
 @Transactional
 void persistStudent(StudentDomain payload);

 }

 @Bean
 public JpaExecutor jpaExecutor() {
 JpaExecutor executor = new JpaExecutor(this.entityManagerFactory);
 jpaExecutor.setEntityClass(StudentDomain.class);
 jpaExecutor.setPersistMode(PersistMode.PERSIST);
 return executor;
 }

 @Bean
 @ServiceActivator(channel = "jpaPersistChannel")
 public MessageHandler jpaOutbound() {
 JpaOutboundGateway adapter = new JpaOutboundGateway(jpaExecutor());
 adapter.setProducesReply(false);
 return adapter;
 }

}

23.6.7. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound adapter
with the Java DSL:

524

@SpringBootApplication
@EntityScan(basePackageClasses = StudentDomain.class)
public class JpaJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(JpaJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @Bean
 public IntegrationFlow outboundAdapterFlow() {
 return f -> f
 .handle(Jpa.outboundAdapter(this.entityManagerFactory)
 .entityClass(StudentDomain.class)
 .persistMode(PersistMode.PERSIST),
 e -> e.transactional());
 }

}

23.7. Outbound Gateways
The JPA inbound channel adapter lets you poll a database to retrieve one or more JPA entities. The
retrieved data is consequently used to start a Spring Integration flow that uses the retrieved data as
message payload.

Additionally, you can use JPA outbound channel adapters at the end of your flow in order to persist
data, essentially stopping the flow at the end of the persistence operation.

However, how can you execute JPA persistence operations in the middle of a flow? For example,
you may have business data that you are processing in your Spring Integration message flow and
that you would like to persist, yet you still need to use other components further downstream.
Alternatively, instead of polling the database using a poller, you need to execute JPQL queries and
actively retrieve data, which is then processed in subsequent components within your flow.

This is where JPA Outbound Gateways come into play. They give you the ability to persist data as
well as retrieving data. To facilitate these uses, Spring Integration provides two types of JPA
outbound gateways:

• Updating outbound gateway

• Retrieving outbound gateway

Whenever the outbound gateway is used to perform an action that saves, updates, or solely deletes

525

some records in the database, you need to use an updating outbound gateway. If, for example, you
use an entity to persist it, a merged and persisted entity is returned as a result. In other cases, the
number of records affected (updated or deleted) is returned instead.

When retrieving (selecting) data from the database, we use a retrieving outbound gateway. With a
retrieving outbound gateway, we can use JPQL, Named Queries (native or JPQL-based), or Native
Queries (SQL) for selecting the data and retrieving the results.

An updating outbound gateway is functionally similar to an outbound channel adapter, except that
an updating outbound gateway sends a result to the gateway’s reply channel after performing the
JPA operation.

A retrieving outbound gateway is similar to an inbound channel adapter.


We recommend you first read the Outbound Channel Adapter section and the
Inbound Channel Adapter sections earlier in this chapter, as most of the common
concepts are explained there.

This similarity was the main factor to use the central JpaExecutor class to unify common
functionality as much as possible.

Common for all JPA outbound gateways and similar to the outbound-channel-adapter, we can use for
performing various JPA operations:

• Entity classes

• JPA Query Language (JPQL)

• Native query

• Named query

For configuration examples see JPA Outbound Gateway Samples.

23.7.1. Common Configuration Parameters

JPA Outbound Gateways always have access to the Spring Integration Message as input.
Consequently, the following parameters is available:

parameter-source-factory

An instance of o.s.i.jpa.support.parametersource.ParameterSourceFactory used to get an
instance of o.s.i.jpa.support.parametersource.ParameterSource. The ParameterSource is used to
resolve the values of the parameters provided in the query. If you perform operations by using a
JPA entity, the parameter-source-factory attribute is ignored. The parameter sub-elements are
mutually exclusive with the parameter-source-factory and they have to be configured on the
provided ParameterSourceFactory. Optional.

use-payload-as-parameter-source

If set to true, the payload of the Message is used as a source for parameters. If set to false, the
entire Message is available as a source for parameters. If no JPA Parameters are passed in, this
property defaults to true. This means that, if you use a default

526

BeanPropertyParameterSourceFactory, the bean properties of the payload are used as a source for
parameter values for the JPA query. However, if JPA Parameters are passed in, this property, by
default, evaluates to false. The reason is that JPA Parameters let you provide SpEL Expressions.
Therefore, it is highly beneficial to have access to the entire Message, including the headers.
Optional.

23.7.2. Updating Outbound Gateway

The following listing shows all the attributes that you can set on an updating-outbound-gateway
and describes the key attributes:

<int-jpa:updating-outbound-gateway request-channel="" ①
 auto-startup="true"
 entity-class=""
 entity-manager=""
 entity-manager-factory=""
 id=""
 jpa-operations=""
 jpa-query=""
 named-query=""
 native-query=""
 order=""
 parameter-source-factory=""
 persist-mode="MERGE"
 reply-channel="" ②
 reply-timeout="" ③
 use-payload-as-parameter-source="true">

 <int:poller/>
 <int-jpa:transactional/>

 <int-jpa:parameter name="" type="" value=""/>
 <int-jpa:parameter name="" expression=""/>
</int-jpa:updating-outbound-gateway>

① The channel from which the outbound gateway receives messages for performing the
desired operation. This attribute is similar to the channel attribute of the outbound-channel-
adapter. Optional.

② The channel to which the gateway send the response after performing the required JPA
operation. If this attribute is not defined, the request message must have a replyChannel
header. Optional.

③ Specifies the time the gateway waits to send the result to the reply channel. Only applies
when the reply channel itself might block the send operation (for example, a bounded
QueueChannel that is currently full). By default, the gateway waits indefinitely. The value is
specified in milliseconds. Optional.

The remaining attributes are described earlier in this chapter. See Configuration Parameter

527

Reference and Configuration Parameter Reference.

23.7.3. Configuring with Java Configuration

The following Spring Boot application shows an example of how configure the outbound adapter
with Java:

@SpringBootApplication
@EntityScan(basePackageClasses = StudentDomain.class)
@IntegrationComponentScan
public class JpaJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(JpaJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @MessagingGateway
 interface JpaGateway {

 @Gateway(requestChannel = "jpaUpdateChannel")
 @Transactional
 void updateStudent(StudentDomain payload);

 }

 @Bean
 @ServiceActivator(channel = "jpaUpdateChannel")
 public MessageHandler jpaOutbound() {
 JpaOutboundGateway adapter =
 new JpaOutboundGateway(new JpaExecutor(this.entityManagerFactory));
 adapter.setOutputChannelName("updateResults");
 return adapter;
 }

}

23.7.4. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound adapter
using the Java DSL:

528

@SpringBootApplication
@EntityScan(basePackageClasses = StudentDomain.class)
public class JpaJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(JpaJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @Bean
 public IntegrationFlow updatingGatewayFlow() {
 return f -> f
 .handle(Jpa.updatingGateway(this.entityManagerFactory),
 e -> e.transactional(true))
 .channel(c -> c.queue("updateResults"));
 }

}

23.7.5. Retrieving Outbound Gateway

The following example shows all the attributes that you can set on a retrieving outbound gateway
and describes the key attributes:

529

<int-jpa:retrieving-outbound-gateway request-channel=""
 auto-startup="true"
 delete-after-poll="false"
 delete-in-batch="false"
 entity-class=""
 id-expression="" ①
 entity-manager=""
 entity-manager-factory=""
 expect-single-result="false" ②
 id=""
 jpa-operations=""
 jpa-query=""
 max-results="" ③
 max-results-expression="" ④
 first-result="" ⑤
 first-result-expression="" ⑥
 named-query=""
 native-query=""
 order=""
 parameter-source-factory=""
 reply-channel=""
 reply-timeout=""
 use-payload-as-parameter-source="true">
 <int:poller></int:poller>
 <int-jpa:transactional/>

 <int-jpa:parameter name="" type="" value=""/>
 <int-jpa:parameter name="" expression=""/>
</int-jpa:retrieving-outbound-gateway>

① (Since Spring Integration 4.0) The SpEL expression that determines the primaryKey value for
EntityManager.find(Class entityClass, Object primaryKey) method against the
requestMessage as the root object of evaluation context. The entityClass argument is
determined from the entity-class attribute, if present. Otherwise, it is determined from the
payload class. All other attributes are disallowed if you use id-expression. Optional.

② A boolean flag indicating whether the select operation is expected to return a single result
or a List of results. If this flag is set to true, a single entity is sent as the payload of the
message. If multiple entities are returned, an exception is thrown. If false, the List of
entities is sent as the payload of the message. It defaults to false. Optional.

③ This non-zero, non-negative integer value tells the adapter not to select more than the
specified number of rows on execution of the select operation. By default, if this attribute is
not set, all the possible records are selected by given query. This attribute is mutually
exclusive with max-results-expression. Optional.

④ An expression that can be used to find the maximum number of results in a result set. It is
mutually exclusive with max-results. Optional.

⑤ This non-zero, non-negative integer value tells the adapter the first record from which

530

results are to be retrieved. This attribute is mutually exclusive with first-result-
expression. Version 3.0 introduced this attribute. Optional.

⑥ This expression is evaluated against the message, to find the position of the first record in
the result set. This attribute is mutually exclusive to first-result. Version 3.0 introduced
this attribute. Optional.

The remaining attributes are described earlier in this chapter. See Configuration Parameter
Reference and Configuration Parameter Reference.

23.7.6. Configuring with Java Configuration

The following Spring Boot application shows an example of how configure the outbound adapter
with Java:

531

@SpringBootApplication
@EntityScan(basePackageClasses = StudentDomain.class)
public class JpaJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(JpaJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @Bean
 public JpaExecutor jpaExecutor() {
 JpaExecutor executor = new JpaExecutor(this.entityManagerFactory);
 jpaExecutor.setJpaQuery("from Student s where s.id = :id");
 executor.setJpaParameters(Collections.singletonList(new JpaParameter("id",
null, "payload")));
 jpaExecutor.setExpectSingleResult(true);
 return executor;
 }

 @Bean
 @ServiceActivator(channel = "jpaRetrievingChannel")
 public MessageHandler jpaOutbound() {
 JpaOutboundGateway adapter = new JpaOutboundGateway(jpaExecutor());
 adapter.setOutputChannelName("retrieveResults");
 adapter.setGatewayType(OutboundGatewayType.RETRIEVING);
 return adapter;
 }

}

23.7.7. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound adapter
with the Java DSL:

532

@SpringBootApplication
@EntityScan(basePackageClasses = StudentDomain.class)
public class JpaJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(JpaJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @Bean
 public IntegrationFlow retrievingGatewayFlow() {
 return f -> f
 .handle(Jpa.retrievingGateway(this.entityManagerFactory)
 .jpaQuery("from Student s where s.id = :id")
 .expectSingleResult(true)
 .parameterExpression("id", "payload"))
 .channel(c -> c.queue("retrieveResults"));
 }

}



When you choose to delete entities upon retrieval and you have retrieved a
collection of entities, by default, entities are deleted on a per-entity basis. This may
cause performance issues.

Alternatively, you can set attribute deleteInBatch to true, which performs a batch
delete. However, the limitation of doing so is that cascading deletes are not
supported.

JSR 317: Java™ Persistence 2.0 states in chapter 4.10, “Bulk Update and Delete
Operations” that:

“A delete operation only applies to entities of the specified class and its subclasses.
It does not cascade to related entities.”

For more information, see JSR 317: Java™ Persistence 2.0

23.7.8. JPA Outbound Gateway Samples

This section contains various examples of using the updating outbound gateway and the retrieving
outbound gateway:

533

https://jcp.org/en/jsr/detail?id=317

Update by Using an Entity Class

In the following example, an updating outbound gateway is persisted by using the
org.springframework.integration.jpa.test.entity.Student entity class as a JPA defining parameter:

<int-jpa:updating-outbound-gateway request-channel="entityRequestChannel" ①
 reply-channel="entityResponseChannel" ②
 entity-class="org.springframework.integration.jpa.test.entity.Student"
 entity-manager="em"/>

① This is the request channel for the outbound gateway. It is similar to the channel attribute of
the outbound-channel-adapter.

② This is where a gateway differs from an outbound adapter. This is the channel over which
the reply from the JPA operation is received. If, however, you are not interested in the reply
received and want only to perform the operation, using a JPA outbound-channel-adapter is
the appropriate choice. In this example, where we use an entity class, the reply is the entity
object that was created or merged as a result of the JPA operation.

Update using JPQL

The following example updates an entity by using the Java Persistence Query Language (JPQL),
which mandates using an updating outbound gateway:

<int-jpa:updating-outbound-gateway request-channel="jpaqlRequestChannel"
 reply-channel="jpaqlResponseChannel"
 jpa-query="update Student s set s.lastName = :lastName where s.rollNumber =
:rollNumber" ①
 entity-manager="em">
 <int-jpa:parameter name="lastName" expression="payload"/>
 <int-jpa:parameter name="rollNumber" expression="headers['rollNumber']"/>
</int-jpa:updating-outbound-gateway>

① The JPQL query that the gateway executes. Since we used updating outbound gateway, only
update and delete JPQL queries would be sensible choices.

When you send a message with a String payload that also contains a header called rollNumber with
a long value, the last name of the student with the specified roll number is updated to the value in
the message payload. When using an updating gateway, the return value is always an integer value,
which denotes the number of records affected by execution of the JPA QL.

Retrieving an Entity using JPQL

The following example uses a retrieving outbound gateway and JPQL to retrieve (select) one or
more entities from the database:

534

<int-jpa:retrieving-outbound-gateway request-channel="retrievingGatewayReqChannel"
 reply-channel="retrievingGatewayReplyChannel"
 jpa-query="select s from Student s where s.firstName = :firstName and
s.lastName = :lastName"
 entity-manager="em">
 <int-jpa:parameter name="firstName" expression="payload"/>
 <int-jpa:parameter name="lastName" expression="headers['lastName']"/>
</int-jpa:outbound-gateway>

Retrieving an Entity by Using id-expression

The following example uses a retrieving outbound gateway with id-expression to retrieve (find)
one and only one entity from the database: The primaryKey is the result of id-expression evaluation.
The entityClass is a class of Message payload.

<int-jpa:retrieving-outbound-gateway
 request-channel="retrievingGatewayReqChannel"
 reply-channel="retrievingGatewayReplyChannel"
 id-expression="payload.id"
 entity-manager="em"/>

Update using a Named Query

Using a named query is basically the same as using a JPQL query directly. The difference is that the
named-query attribute is used instead, as the following example shows:

<int-jpa:updating-outbound-gateway request-channel="namedQueryRequestChannel"
 reply-channel="namedQueryResponseChannel"
 named-query="updateStudentByRollNumber"
 entity-manager="em">
 <int-jpa:parameter name="lastName" expression="payload"/>
 <int-jpa:parameter name="rollNumber" expression="headers['rollNumber']"/>
</int-jpa:outbound-gateway>


You can find a complete sample application that uses Spring Integration’s JPA
adapter here.

535

https://github.com/spring-projects/spring-integration-samples/tree/master/basic/jpa

Chapter 24. JMS Support
Spring Integration provides channel adapters for receiving and sending JMS messages.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-jms</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-jms:5.4.0"

The javax.jms:javax.jms-api must be added explicitly via some JMS vendor-specific
implementation, e.g. Apache ActiveMQ.

There are actually two JMS-based inbound Channel Adapters. The first uses Spring’s JmsTemplate to
receive based on a polling period. The second is “message-driven” and relies on a Spring
MessageListener container. The outbound channel adapter uses the JmsTemplate to convert and send
a JMS message on demand.

By using JmsTemplate and the MessageListener container, Spring Integration relies on Spring’s JMS
support. This is important to understand, since most of the attributes exposed on these adapters
configure the underlying JmsTemplate and MessageListener container. For more details about
JmsTemplate and the MessageListener container, see the Spring JMS documentation.

Whereas the JMS channel adapters are intended for unidirectional messaging (send-only or
receive-only), Spring Integration also provides inbound and outbound JMS Gateways for request
and reply operations. The inbound gateway relies on one of Spring’s MessageListener container
implementations for message-driven reception. It is also capable of sending a return value to the
reply-to destination, as provided by the received message. The outbound gateway sends a JMS
message to a request-destination (or request-destination-name or request-destination-expression)
and then receives a reply message. You can explicitly configure the reply-destination reference (or
reply-destination-name or reply-destination-expression). Otherwise, the outbound gateway uses a
JMS TemporaryQueue.

Prior to Spring Integration 2.2, if necessary, a TemporaryQueue was created (and removed) for each
request or reply. Beginning with Spring Integration 2.2, you can configure the outbound gateway to
use a MessageListener container to receive replies instead of directly using a new (or cached)
Consumer to receive the reply for each request. When so configured, and no explicit reply
destination is provided, a single TemporaryQueue is used for each gateway instead of one for each
request.

536

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jms.html
https://docs.oracle.com/javaee/6/api/javax/jms/TemporaryQueue.html

24.1. Inbound Channel Adapter
The inbound channel adapter requires a reference to either a single JmsTemplate instance or both a
ConnectionFactory and a Destination (you can provide a 'destinationName' in place of the
'destination' reference). The following example defines an inbound channel adapter with a
Destination reference:

<int-jms:inbound-channel-adapter id="jmsIn" destination="inQueue" channel=
"exampleChannel">
 <int:poller fixed-rate="30000"/>
</int-jms:inbound-channel-adapter>



Notice from the preceding configuration that the inbound-channel-adapter is a
polling consumer. That means that it invokes receive() when triggered. You should
use this should only in situations where polling is done relatively infrequently and
timeliness is not important. For all other situations (a vast majority of JMS-based
use-cases), the message-driven-channel-adapter (described later) is a better option.



By default, all of the JMS adapters that require a reference to the ConnectionFactory
automatically look for a bean named jmsConnectionFactory. That is why you do not
see a connection-factory attribute in many of the examples. However, if your JMS
ConnectionFactory has a different bean name, you need to provide that attribute.

If extract-payload is set to true (the default), the received JMS Message is passed through the
MessageConverter. When relying on the default SimpleMessageConverter, this means that the resulting
Spring Integration Message has the JMS message’s body as its payload. A JMS TextMessage produces
a string-based payload, a JMS BytesMessage produces a byte array payload, and the serializable
instance of a JMS ObjectMessage becomes the Spring Integration message’s payload. If you prefer to
have the raw JMS message as the Spring Integration message’s payload, set extract-payload to false,
as the following example shows:

<int-jms:inbound-channel-adapter id="jmsIn"
 destination="inQueue"
 channel="exampleChannel"
 extract-payload="false"/>
 <int:poller fixed-rate="30000"/>
</int-jms:inbound-channel-adapter>

Starting with version 5.0.8, a default value of the receive-timeout is -1 (no wait) for the
org.springframework.jms.connection.CachingConnectionFactory and cacheConsumers, otherwise it is 1
second. The JMS Inbound Channel Adapter crates a DynamicJmsTemplate based on the provided
ConnectionFactory and options. If an external JmsTemplate is required (e.g. in Spring Boot
environment), or ConnectionFactory is not caching, or no cacheConsumers, it is recommended to set

537

jmsTemplate.receiveTimeout(-1) if a non-blocking consumption is expected:

Jms.inboundAdapter(connectionFactory)
 .destination(queueName)
 .configureJmsTemplate(template -> template.receiveTimeout(-1))

24.1.1. Transactions

Starting with version 4.0, the inbound channel adapter supports the session-transacted attribute. In
earlier versions, you had to inject a JmsTemplate with sessionTransacted set to true. (The adapter did
let you set the acknowledge attribute to transacted, but this was incorrect and did not work).

Note, however, that setting session-transacted to true has little value, because the transaction is
committed immediately after the receive() operation and before the message is sent to the channel.

If you want the entire flow to be transactional (for example, if there is a downstream outbound
channel adapter), you must use a transactional poller with a JmsTransactionManager. Alternatively,
consider using a jms-message-driven-channel-adapter with acknowledge set to transacted (the
default).

24.2. Message-driven Channel Adapter
The message-driven-channel-adapter requires a reference to either an instance of a Spring
MessageListener container (any subclass of AbstractMessageListenerContainer) or both
ConnectionFactory and Destination (a 'destinationName' can be provided in place of the 'destination'
reference). The following example defines a message-driven channel adapter with a Destination
reference:

<int-jms:message-driven-channel-adapter id="jmsIn" destination="inQueue" channel=
"exampleChannel"/>

538



The message-driven adapter also accepts several properties that pertain to the
MessageListener container. These values are considered only if you do not provide
a container reference. In that case, an instance of DefaultMessageListenerContainer
is created and configured based on these properties. For example, you can specify
the transaction-manager reference, the concurrent-consumers value, and several
other property references and values. See the Javadoc and Spring Integration’s JMS
schema (spring-integration-jms.xsd) for more details.

If you have a custom listener container implementation (usually a subclass of
DefaultMessageListenerContainer), you can either provide a reference to an
instance of it by using the container attribute or provide its fully qualified class
name by using the container-class attribute. In that case, the attributes on the
adapter are transferred to an instance of your custom container.



You can’t use the Spring JMS namespace element <jms:listener-container/> to
configure a container reference for the <int-jms:message-driven-channel-adapter>
since that element doesn’t actually reference a container. Each <jms:listener/>
sub-element gets its own DefaultMessageListenerContainer (with shared attributes
defined on the parent <jms:listener-container/> element). You can give each
listener sub-element an id, and use that to inject into the channel adapter,
however, the <jms:/> namespace requires a real listener. Since, for Spring
Integration, the adapter itself needs to configure the listener, the configured
listener will be overwritten. If you go this route, you will see a warning for each
adapter.

It is recommended to configure a regular <bean> for the
DefaultMessageListenerContainer and use it as a reference in the channel adapter.



Starting with version 4.2, the default acknowledge mode is transacted, unless you
provide an external container. In that case, you should configure the container as
needed. We recommend using transacted with the
DefaultMessageListenerContainer to avoid message loss.

The 'extract-payload' property has the same effect, and its default value is 'true'. The poller element
is not applicable for a message-driven channel adapter, as it is actively invoked. For most scenarios,
the message-driven approach is better, since the messages are passed along to the MessageChannel as
soon as they are received from the underlying JMS consumer.

Finally, the <message-driven-channel-adapter> element also accepts the 'error-channel' attribute.
This provides the same basic functionality, as described in Enter the GatewayProxyFactoryBean. The
following example shows how to set an error channel on a message-driven channel adapter:

<int-jms:message-driven-channel-adapter id="jmsIn" destination="inQueue"
 channel="exampleChannel"
 error-channel="exampleErrorChannel"/>

539

https://docs.spring.io/spring-integration/api/index.html
./gateway.pdf#gateway-proxy
./gateway.pdf#gateway-proxy

When comparing the preceding example to the generic gateway configuration or the JMS 'inbound-
gateway' that we discuss later, the key difference is that we are in a one-way flow, since this is a
'channel-adapter', not a gateway. Therefore, the flow downstream from the 'error-channel' should
also be one-way. For example, it could send to a logging handler or it could connect to a different
JMS <outbound-channel-adapter> element.

When consuming from topics, set the pub-sub-domain attribute to true. Set subscription-durable to
true for a durable subscription or subscription-shared for a shared subscription (which requires a
JMS 2.0 broker and has been available since version 4.2). Use subscription-name to name the
subscription.

Starting with version 5.1, when the endpoint is stopped while the application remains running, the
underlying listener container is shut down, closing its shared connection and consumers.
Previously, the connection and consumers remained open. To revert to the previous behavior, set
the shutdownContainerOnStop on the JmsMessageDrivenEndpoint to false.

24.2.1. Inbound Conversion Errors

Starting with version 4.2, the 'error-channel' is used for the conversion errors, too. Previously, if a
JMS <message-driven-channel-adapter/> or <inbound-gateway/> could not deliver a message due to a
conversion error, an exception would be thrown back to the container. If the container is
configured to use transactions, the message is rolled back and redelivered repeatedly. The
conversion process occurs before and during message construction so that such errors are not sent
to the 'error-channel'. Now such conversion exceptions result in an ErrorMessage being sent to the
'error-channel', with the exception as the payload. If you wish the transaction to roll back and you
have an 'error-channel' defined, the integration flow on the 'error-channel' must re-throw the
exception (or another exception). If the error flow does not throw an exception, the transaction is
committed and the message is removed. If no 'error-channel' is defined, the exception is thrown
back to the container, as before.

24.3. Outbound Channel Adapter
The JmsSendingMessageHandler implements the MessageHandler interface and is capable of converting
Spring Integration Messages to JMS messages and then sending to a JMS destination. It requires
either a jmsTemplate reference or both jmsConnectionFactory and destination references
(destinationName may be provided in place of destination). As with the inbound channel adapter,
the easiest way to configure this adapter is with the namespace support. The following
configuration produces an adapter that receives Spring Integration messages from the
exampleChannel, converts those into JMS messages, and sends them to the JMS destination reference
whose bean name is outQueue:

<int-jms:outbound-channel-adapter id="jmsOut" destination="outQueue" channel=
"exampleChannel"/>

As with the inbound channel adapters, there is an 'extract-payload' property. However, the
meaning is reversed for the outbound adapter. Rather than applying to the JMS message, the

540

boolean property applies to the Spring Integration message payload. In other words, the decision is
whether to pass the Spring Integration message itself as the JMS message body or to pass the Spring
Integration message payload as the JMS message body. The default value is 'true'. Therefore, if you
pass a Spring Integration message whose payload is a String, a JMS TextMessage is created. If, on the
other hand, you want to send the actual Spring Integration message to another system over JMS, set
it to 'false'.



Regardless of the boolean value for payload extraction, the Spring Integration
MessageHeaders map to JMS properties, as long as you rely on the default converter
or provide a reference to another instance of MessageConverter. (The same holds
true for 'inbound' adapters, except that, in those cases, the JMS properties map to
Spring Integration MessageHeaders).

Starting with version 5.1, the <int-jms:outbound-channel-adapter> (JmsSendingMessageHandler) can be
configured with the deliveryModeExpression and timeToLiveExpression properties to evaluate an
appropriate QoS values for JMS message to send at runtime against request Spring Message. The new
setMapInboundDeliveryMode(true) and setMapInboundExpiration(true) options of the
DefaultJmsHeaderMapper may facilitate as a source of the information for the dynamic deliveryMode
and timeToLive from message headers:

<int-jms:outbound-channel-adapter delivery-mode-expression=
"headers.jms_deliveryMode"
 time-to-live-expression="headers.jms_expiration -
T(System).currentTimeMillis()"/>

24.3.1. Transactions

Starting with version 4.0, the outbound channel adapter supports the session-transacted attribute.
In earlier versions, you had to inject a JmsTemplate with sessionTransacted set to true. The attribute
now sets the property on the built-in default JmsTemplate. If a transaction exists (perhaps from an
upstream message-driven-channel-adapter), the send operation is performed within the same
transaction. Otherwise, a new transaction is started.

24.4. Inbound Gateway
Spring Integration’s message-driven JMS inbound-gateway delegates to a MessageListener container,
supports dynamically adjusting concurrent consumers, and can also handle replies. The inbound
gateway requires references to a ConnectionFactory and a request Destination (or
'requestDestinationName'). The following example defines a JMS inbound-gateway that receives from
the JMS queue referenced by the bean id, inQueue, and sends to the Spring Integration channel
named exampleChannel:

541

<int-jms:inbound-gateway id="jmsInGateway"
 request-destination="inQueue"
 request-channel="exampleChannel"/>

Since the gateways provide request-reply behavior instead of unidirectional send or receive
behavior, they also have two distinct properties for “payload extraction” (as discussed earlier for
the channel adapters' 'extract-payload' setting). For an inbound gateway, the 'extract-request-
payload' property determines whether the received JMS Message body is extracted. If 'false', the
JMS message itself becomes the Spring Integration message payload. The default is 'true'.

Similarly, for an inbound-gateway, the 'extract-reply-payload' property applies to the Spring
Integration message that is to be converted into a reply JMS Message. If you want to pass the whole
Spring Integration message (as the body of a JMS ObjectMessage), set value this to 'false'. By default,
it is also 'true' that the Spring Integration message payload is converted into a JMS Message (for
example, a String payload becomes a JMS TextMessage).

As with anything else, gateway invocation might result in error. By default, a producer is not
notified of the errors that might have occurred on the consumer side and times out waiting for the
reply. However, there might be times when you want to communicate an error condition back to
the consumer (in other words, you might want to treat the exception as a valid reply by mapping it
to a message). To accomplish this, JMS inbound gateway provides support for a message channel to
which errors can be sent for processing, potentially resulting in a reply message payload that
conforms to some contract that defines what a caller may expect as an “error” reply. You can use
the error-channel attribute to configure such a channel, as the following example shows:

<int-jms:inbound-gateway request-destination="requestQueue"
 request-channel="jmsInputChannel"
 error-channel="errorTransformationChannel"/>

<int:transformer input-channel="exceptionTransformationChannel"
 ref="exceptionTransformer" method="createErrorResponse"/>

You might notice that this example looks very similar to that included within Enter the
GatewayProxyFactoryBean. The same idea applies here: The exceptionTransformer could be a POJO that
creates error-response objects, you could reference the nullChannel to suppress the errors, or you
could leave 'error-channel' out to let the exception propagate.

See Inbound Conversion Errors.

When consuming from topics, set the pub-sub-domain attribute to true. Set subscription-durable to
true for a durable subscription or subscription-shared for a shared subscription (requires a JMS 2.0
broker and has been available since version 4.2). Use subscription-name to name the subscription.

542

./gateway.pdf#gateway-proxy
./gateway.pdf#gateway-proxy



Starting with version 4.2, the default acknowledge mode is transacted, unless an
external container is provided. In that case, you should configure the container as
needed. We recommend that you use transacted with the
DefaultMessageListenerContainer to avoid message loss.

Starting with version 5.1, when the endpoint is stopped while the application remains running, the
underlying listener container is shut down, closing its shared connection and consumers.
Previously, the connection and consumers remained open. To revert to the previous behavior, set
the shutdownContainerOnStop on the JmsInboundGateway to false.

24.5. Outbound Gateway
The outbound gateway creates JMS messages from Spring Integration messages and sends them to a
'request-destination'. It thens handle the JMS reply message either by using a selector to receive
from the 'reply-destination' that you configure or, if no 'reply-destination' is provided, by creating
JMS TemporaryQueue instances.



Using a reply-destination (or reply-destination-name) together with a
CachingConnectionFactory that has cacheConsumers set to true can cause out-of-
memory conditions. This is because each request gets a new consumer with a new
selector (selecting on the correlation-key value or, when there is no correlation-
key, on the sent JMSMessageID). Given that these selectors are unique, they remain
in the cache (unused) after the current request completes.

If you specify a reply destination, you are advised to not use cached consumers.
Alternatively, consider using a <reply-listener/> as described below.

The following example shows how to configure an outbound gateway:

<int-jms:outbound-gateway id="jmsOutGateway"
 request-destination="outQueue"
 request-channel="outboundJmsRequests"
 reply-channel="jmsReplies"/>

The 'outbound-gateway' payload extraction properties are inversely related to those of the
'inbound-gateway' (see the earlier discussion). That means that the 'extract-request-payload'
property value applies to the Spring Integration message being converted into a JMS message to be
sent as a request. The 'extract-reply-payload' property value applies to the JMS message received as
a reply and is then converted into a Spring Integration message to be subsequently sent to the
'reply-channel', as shown in the preceding configuration example.

24.5.1. Using a <reply-listener/>

Spring Integration 2.2 introduced an alternative technique for handling replies. If you add a <reply-
listener/> child element to the gateway instead of creating a consumer for each reply, a

543

MessageListener container is used to receive the replies and hand them over to the requesting
thread. This provides a number of performance benefits as well as alleviating the cached consumer
memory utilization problem described in the earlier caution.

When using a <reply-listener/> with an outbound gateway that has no reply-destination, instead
of creating a TemporaryQueue for each request, a single TemporaryQueue is used. (The gateway creates
an additional TemporaryQueue, as necessary, if the connection to the broker is lost and recovered).

When using a correlation-key, multiple gateways can share the same reply destination, because the
listener container uses a selector that is unique to each gateway.



If you specify a reply listener and specify a reply destination (or reply destination
name) but provide no correlation key, the gateway logs a warning and falls back to
pre-version 2.2 behavior. This is because there is no way to configure a selector in
this case. Thus, there is no way to avoid a reply going to a different gateway that
might be configured with the same reply destination.

Note that, in this situation, a new consumer is used for each request, and
consumers can build up in memory as described in the caution above; therefore
cached consumers should not be used in this case.

The following example shows a reply listener with default attributes:

<int-jms:outbound-gateway id="jmsOutGateway"
 request-destination="outQueue"
 request-channel="outboundJmsRequests"
 reply-channel="jmsReplies">
 <int-jms:reply-listener />
</int-jms-outbound-gateway>

The listener is very lightweight, and we anticipate that, in most cases, you need only a single
consumer. However, you can add attributes such as concurrent-consumers, max-concurrent-
consumers, and others. See the schema for a complete list of supported attributes, together with the
Spring JMS documentation for their meanings.

24.5.2. Idle Reply Listeners

Starting with version 4.2, you can start the reply listener as needed (and stop it after an idle time)
instead of running for the duration of the gateway’s lifecycle. This can be useful if you have many
gateways in the application context where they are mostly idle. One such situation is a context with
many (inactive) partitioned Spring Batch jobs using Spring Integration and JMS for partition
distribution. If all the reply listeners are active, the JMS broker has an active consumer for each
gateway. By enabling the idle timeout, each consumer exists only while the corresponding batch job
is running (and for a short time after it finishes).

See idle-reply-listener-timeout in Attribute Reference.

544

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jms.html
https://spring.io/projects/spring-batch

24.5.3. Gateway Reply Correlation

This section describes the mechanisms used for reply correlation (ensuring the originating gateway
receives replies to only its requests), depending on how the gateway is configured. See Attribute
Reference for complete description of the attributes discussed here.

The following list describes the various scenarios (the numbers are for identification — order does
not matter):

1. No reply-destination* properties and no <reply-listener>

A TemporaryQueue is created for each request and deleted when the request is complete
(successfully or otherwise). correlation-key is irrelevant.

2. A reply-destination* property is provided and neither a <reply-listener/> nor a correlation-
key is provided

The JMSCorrelationID equal to the outgoing message IS is used as a message selector for the
consumer:

messageSelector = "JMSCorrelationID = '" + messageId + "'"

The responding system is expected to return the inbound JMSMessageID in the reply
JMSCorrelationID. This is a common pattern and is implemented by the Spring Integration
inbound gateway as well as Spring’s MessageListenerAdapter for message-driven POJOs.


When you use this configuration, you should not use a topic for replies. The
reply may be lost.

3. A reply-destination* property is provided, no <reply-listener/> is provided, and correlation-
key="JMSCorrelationID"

The gateway generates a unique correlation IS and inserts it in the JMSCorrelationID header. The
message selector is:

messageSelector = "JMSCorrelationID = '" + uniqueId + "'"

The responding system is expected to return the inbound JMSCorrelationID in the reply
JMSCorrelationID. This is a common pattern and is implemented by the Spring Integration
inbound gateway as well as Spring’s MessageListenerAdapter for message-driven POJOs.

4. A reply-destination* property is provided, no <reply-listener/> is provided, and correlation-
key="myCorrelationHeader"

The gateway generates a unique correlation ID and inserts it in the myCorrelationHeader message
property. The correlation-key can be any user-defined value. The message selector is:

messageSelector = "myCorrelationHeader = '" + uniqueId + "'"

The responding system is expected to return the inbound myCorrelationHeader in the reply
myCorrelationHeader.

5. A reply-destination* property is provided, no <reply-listener/> is provided, and correlation-

545

key="JMSCorrelationID*" (Note the * in the correlation key.)

The gateway uses the value in the jms_correlationId header (if present) from the request
message and inserts it in the JMSCorrelationID header. The message selector is:

messageSelector = "JMSCorrelationID = '" + headers['jms_correlationId'] + "'"

The user must ensure this value is unique.

If the header does not exist, the gateway behaves as in 3.

The responding system is expected to return the inbound JMSCorrelationID in the reply
JMSCorrelationID. This is a common pattern and is implemented by the Spring Integration
inbound gateway as well as Spring’s MessageListenerAdapter for message-driven POJOs.

6. No reply-destination* properties is provided, and a <reply-listener> is provided

A temporary queue is created and used for all replies from this gateway instance. No
correlation data is needed in the message, but the outgoing JMSMessageID is used internally in the
gateway to direct the reply to the correct requesting thread.

7. A reply-destination* property is provided, a <reply-listener> is provided, and no correlation-
key is provided

Not allowed.

The <reply-listener/> configuration is ignored, and the gateway behaves as in 2. A warning log
message is written to indicate this situation.

8. A reply-destination* property is provided, a <reply-listener> is provided, and correlation-
key="JMSCorrelationID"

The gateway has a unique correlation ID and inserts it, together with an incrementing value in
the JMSCorrelationID header (gatewayId + "_" + ++seq). The message selector is:

messageSelector = "JMSCorrelationID LIKE '" + gatewayId%'"

The responding system is expected to return the inbound JMSCorrelationID in the reply
JMSCorrelationID. This is a common pattern and is implemented by the Spring Integration
inbound gateway as well as Spring’s MessageListenerAdapter for message-driven POJOs. Since
each gateway has a unique ID, each instance gets only its own replies. The complete correlation
data is used to route the reply to the correct requesting thread.

9. A reply-destination* property is provided a <reply-listener/> is provided, and correlation-
key="myCorrelationHeader"

The gateway has a unique correlation ID and inserts it, together with an incrementing value in
the myCorrelationHeader property (gatewayId + "_" + ++seq). The correlation-key can be any
user-defined value. The message selector is:

messageSelector = "myCorrelationHeader LIKE '" + gatewayId%'"

The responding system is expected to return the inbound myCorrelationHeader in the reply

546

myCorrelationHeader. Since each gateway has a unique ID, each instance only gets its own
replies. The complete correlation data is used to route the reply to the correct requesting thread.

10. A reply-destination* property is provided, a <reply-listener/> is provided, and correlation-
key="JMSCorrelationID*"

(Note the * in the correlation key)

Not allowed.

User-supplied correlation IDs are not permitted with a reply listener. The gateway does not
initialize with this configuration.

24.5.4. Async Gateway

Starting with version 4.3, you can now specify async="true" (or setAsync(true) in Java) when
configuring the outbound gateway.

By default, when a request is sent to the gateway, the requesting thread is suspended until the reply
is received. The flow then continues on that thread. If async is true, the requesting thread is
released immediately after the send completes, and the reply is returned (and the flow continues)
on the listener container thread. This can be useful when the gateway is invoked on a poller thread.
The thread is released and is available for other tasks within the framework.

async requires a <reply-listener/> (or setUseReplyContainer(true) when using Java configuration).
It also requires a correlationKey (usually JMSCorrelationID) to be specified. If either of these
conditions are not met, async is ignored.

24.5.5. Attribute Reference

The following listing shows all the available attributes for an outbound-gateway:

547

<int-jms:outbound-gateway
 connection-factory="connectionFactory" ①
 correlation-key="" ②
 delivery-persistent="" ③
 destination-resolver="" ④
 explicit-qos-enabled="" ⑤
 extract-reply-payload="true" ⑥
 extract-request-payload="true" ⑦
 header-mapper="" ⑧
 message-converter="" ⑨
 priority="" ⑩
 receive-timeout="" ⑪
 reply-channel="" ⑫
 reply-destination="" ⑬
 reply-destination-expression="" ⑭
 reply-destination-name="" ⑮
 reply-pub-sub-domain="" ⑯
 reply-timeout="" ⑰
 request-channel="" ⑱
 request-destination="" ⑲
 request-destination-expression="" ⑳
 request-destination-name=""
 request-pub-sub-domain=""
 time-to-live=""
 requires-reply=""
 idle-reply-listener-timeout=""
 async="">
 <int-jms:reply-listener />
</int-jms:outbound-gateway>

① Reference to a javax.jms.ConnectionFactory. The default jmsConnectionFactory.

② The name of a property that contains correlation data to correlate responses with replies. If
omitted, the gateway expects the responding system to return the value of the outbound
JMSMessageID header in the JMSCorrelationID header. If specified, the gateway generates a
correlation ID and populates the specified property with it. The responding system must
echo back that value in the same property. It can be set to JMSCorrelationID, in which case
the standard header is used instead of a String property to hold the correlation data. When
you use a <reply-container/>, you must specify the correlation-key if you provide an
explicit reply-destination. Starting with version 4.0.1, this attribute also supports the value
JMSCorrelationID*, which means that if the outbound message already has a
JMSCorrelationID (mapped from the jms_correlationId) header, it is used instead of
generating a new one. Note, the JMSCorrelationID* key is not allowed when you use a
<reply-container/>, because the container needs to set up a message selector during
initialization.


You should understand that the gateway has no way to ensure uniqueness,
and unexpected side effects can occur if the provided correlation ID is not
unique.

548

③ A boolean value indicating whether the delivery mode should be DeliveryMode.PERSISTENT
(true) or DeliveryMode.NON_PERSISTENT (false). This setting takes effect only if explicit-qos-
enabled is true.

④ A DestinationResolver. The default is a DynamicDestinationResolver, which maps the
destination name to a queue or topic of that name.

⑤ When set to true, it enables the use of quality of service attributes: priority, delivery-mode,
and time-to-live.

⑥ When set to true (the default), the payload of the Spring Integration reply message is
created from the JMS Reply message’s body (by using the MessageConverter). When set to
false, the entire JMS message becomes the payload of the Spring Integration message.

⑦ When set to true (the default), the payload of the Spring Integration message is converted to
a JMSMessage (by using the MessageConverter). When set to false, the entire Spring
Integration Message is converted to the JMSMessage. In both cases, the Spring Integration
message headers are mapped to JMS headers and properties by using the HeaderMapper.

⑧ A HeaderMapper used to map Spring Integration message headers to and from JMS message
headers and properties.

⑨ A reference to a MessageConverter for converting between JMS messages and the Spring
Integration message payloads (or messages if extract-request-payload is false). The default
is a SimpleMessageConverter.

⑩ The default priority of request messages. Overridden by the message priority header, if
present. Its range is 0 to 9. This setting takes effect only if explicit-qos-enabled is true.

⑪ The time (in milliseconds) to wait for a reply. The default is 5000 (five seconds).

⑫ The channel to which the reply message is sent.

⑬ A reference to a Destination, which is set as the JMSReplyTo header. At most, only one of
reply-destination, reply-destination-expression, or reply-destination-name is allowed. If
none is provided, a TemporaryQueue is used for replies to this gateway.

⑭ A SpEL expression evaluating to a Destination, which will be set as the JMSReplyTo header.
The expression can result in a Destination object or a String. It is used by the
DestinationResolver to resolve the actual Destination. At most, only one of reply-
destination, reply-destination-expression, or reply-destination-name is allowed. If none is
provided, a TemporaryQueue is used for replies to this gateway.

⑮ The name of the destination that is set as the JMSReplyTo header. It is used by the
DestinationResolver to resolve the actual Destination. At most, only one of reply-
destination, reply-destination-expression, or reply-destination-name is allowed. If none is
provided, a TemporaryQueue is used for replies to this gateway.

⑯ When set to true, it indicates that any reply Destination resolved by the DestinationResolver
should be a Topic rather then a Queue.

⑰ The time the gateway waits when sending the reply message to the reply-channel. This only
has an effect if the reply-channel can block — such as a QueueChannel with a capacity limit
that is currently full. The default is infinity.

⑱ The channel on which this gateway receives request messages.

549

⑲ A reference to a Destination to which request messages are sent. One of reply-destination,
reply-destination-expression, or reply-destination-name is required. You can use only one
of those three attributes.

⑳ A SpEL expression evaluating to a Destination to which request messages are sent. The
expression can result in a Destination object or a String. It is used by the
DestinationResolver to resolve the actual Destination. Oneof reply-destination, reply-
destination-expression, or reply-destination-name is required. You can use only one of
those three attributes.

The name of the destination to which request messages are sent. It is used by the
DestinationResolver to resolve the actual Destination. One of reply-destination, reply-
destination-expression, or reply-destination-name is required. You can use only one of those
three attributes.

When set to true, it indicates that any request Destination resolved by the DestinationResolver
should be a Topic rather then a Queue.

Specifies the message time to live. This setting takes effect only if explicit-qos-enabled is true.

Specifies whether this outbound gateway must return a non-null value. By default, this value
is true, and a MessageTimeoutException is thrown when the underlying service does not return
a value after the receive-timeout. Note that, if the service is never expected to return a reply,
it would be better to use a <int-jms:outbound-channel-adapter/> instead of a <int-
jms:outbound-gateway/> with requires-reply="false". With the latter, the sending thread is
blocked, waiting for a reply for the receive-timeout period.

When you use a <reply-listener />, its lifecycle (start and stop) matches that of the gateway
by default. When this value is greater than 0, the container is started on demand (when a
request is sent). The container continues to run until at least this time elapses with no
requests being received (and until no replies are outstanding). The container is started again
on the next request. The stop time is a minimum and may actually be up to 1.5x this value.

See Async Gateway.

When this element is included, replies are received by an asynchronous
MessageListenerContainer rather than creating a consumer for each reply. This can be more
efficient in many cases.

24.6. Mapping Message Headers to and from JMS
Message
JMS messages can contain meta-information such as JMS API headers and simple properties. You
can map those to and from Spring Integration message headers by using JmsHeaderMapper. The JMS
API headers are passed to the appropriate setter methods (such as setJMSReplyTo), whereas other
headers are copied to the general properties of the JMS Message. JMS outbound gateway is
bootstrapped with the default implementation of JmsHeaderMapper, which will map standard JMS API
Headers as well as primitive or String message headers. You could also provide a custom header
mapper by using the header-mapper attribute of inbound and outbound gateways.

550



Many JMS vendor-specific clients don’t allow setting the deliveryMode, priority and
timeToLive properties directly on an already created JMS message. They are
considered to be QoS properties and therefore have to be propagated to the target
MessageProducer.send(message, deliveryMode, priority, timeToLive) API. For this
reason the DefaultJmsHeaderMapper doesn’t map appropriate Spring Integration
headers (or expression results) into the mentioned JMS message properties.
Instead, a DynamicJmsTemplate is used by the JmsSendingMessageHandler to propagate
header values from the request message into the MessageProducer.send() API. To
enable this feature, you must configure the outbound endpoint with a
DynamicJmsTemplate with its explicitQosEnabled property set to true. The Spring
Integration Java DSL configures a DynamicJmsTemplate by default but you must still
set the explicitQosEnabled property.



Since version 4.0, the JMSPriority header is mapped to the standard priority
header for inbound messages. Previously, the priority header was only used for
outbound messages. To revert to the previous behavior (that is, to not map the
inbound priority), set the mapInboundPriority property of DefaultJmsHeaderMapper to
false.



Since version 4.3, the DefaultJmsHeaderMapper maps the standard correlationId
header as a message property by invoking its toString() method (correlationId is
often a UUID, which is not supported by JMS). On the inbound side, it is mapped as a
String. This is independent of the jms_correlationId header, which is mapped to
and from the JMSCorrelationID header. The JMSCorrelationID is generally used to
correlate requests and replies, whereas the correlationId is often used to combine
related messages into a group (such as with an aggregator or a resequencer).

Starting with version 5.1, the DefaultJmsHeaderMapper can be configured for mapping inbound
JMSDeliveryMode and JMSExpiration properties:

@Bean
public DefaultJmsHeaderMapper jmsHeaderMapper() {
 DefaultJmsHeaderMapper mapper = new DefaultJmsHeaderMapper();
 mapper.setMapInboundDeliveryMode(true)
 mapper.setMapInboundExpiration(true)
 return mapper;
}

These JMS properties are mapped to the JmsHeaders.DELIVERY_MODE and JmsHeaders.EXPIRATION Spring
Message headers respectively.

551

24.7. Message Conversion, Marshalling, and
Unmarshalling
If you need to convert the message, all JMS adapters and gateways let you provide a
MessageConverter by setting the message-converter attribute. To do so, provide the bean name of an
instance of MessageConverter that is available within the same ApplicationContext. Also, to provide
some consistency with marshaller and unmarshaller interfaces, Spring provides
MarshallingMessageConverter, which you can configure with your own custom marshallers and
unmarshallers. The following example shows how to do so

<int-jms:inbound-gateway request-destination="requestQueue"
 request-channel="inbound-gateway-channel"
 message-converter="marshallingMessageConverter"/>

<bean id="marshallingMessageConverter"
 class="org.springframework.jms.support.converter.MarshallingMessageConverter">
 <constructor-arg>
 <bean class="org.bar.SampleMarshaller"/>
 </constructor-arg>
 <constructor-arg>
 <bean class="org.bar.SampleUnmarshaller"/>
 </constructor-arg>
</bean>



When you provide your own MessageConverter instance, it is still wrapped within
the HeaderMappingMessageConverter. This means that the 'extract-request-payload'
and 'extract-reply-payload' properties can affect the actual objects passed to your
converter. The HeaderMappingMessageConverter itself delegates to a target
MessageConverter while also mapping the Spring Integration MessageHeaders to JMS
message properties and back again.

24.8. JMS-backed Message Channels
The channel adapters and gateways featured earlier are all intended for applications that integrate
with other external systems. The inbound options assume that some other system is sending JMS
messages to the JMS destination, and the outbound options assume that some other system is
receiving from the destination. The other system may or may not be a Spring Integration
application. Of course, when sending a Spring Integration message instance as the body of the JMS
message itself (with 'extract-payload' value set to false), it is assumed that the other system is based
on Spring Integration. However, that is by no means a requirement. That flexibility is one of the
benefits of using a message-based integration option with the abstraction of “channels”(or
destinations in the case of JMS).

Sometimes, both the producer and consumer for a given JMS Destination are intended to be part of
the same application, running within the same process. You can accomplish this by using a pair of

552

inbound and outbound channel adapters. The problem with that approach is that you need two
adapters, even though, conceptually, the goal is to have a single message channel. A better option is
supported as of Spring Integration version 2.0. Now it is possible to define a single “channel” when
using the JMS namespace, as the following example shows:

<int-jms:channel id="jmsChannel" queue="exampleQueue"/>

The channel in the preceding example behaves much like a normal <channel/> element from the
main Spring Integration namespace. It can be referenced by both the input-channel and output-
channel attributes of any endpoint. The difference is that this channel is backed by a JMS Queue
instance named exampleQueue. This means that asynchronous messaging is possible between the
producing and consuming endpoints. However, unlike the simpler asynchronous message channels
created by adding a <queue/> element within a non-JMS <channel/> element, the messages are not
stored in an in-memory queue. Instead, those messages are passed within a JMS message body, and
the full power of the underlying JMS provider is then available for that channel. Probably the most
common rationale for using this alternative is to take advantage of the persistence made available
by the store-and-forward approach of JMS messaging.

If configured properly, the JMS-backed message channel also supports transactions. In other words,
a producer would not actually write to a transactional JMS-backed channel if its send operation is
part of a transaction that rolls back. Likewise, a consumer would not physically remove a JMS
message from the channel if the reception of that message is part of a transaction that rolls back.
Note that the producer and consumer transactions are separate in such a scenario. This is
significantly different than the propagation of a transactional context across a simple, synchronous
<channel/> element that has no <queue/> child element.

Since the preceding example above references a JMS Queue instance, it acts as a point-to-point
channel. If, on the other hand, you need publish-subscribe behavior, you can use a separate
element and reference a JMS Topic instead. The following example shows how to do so:

<int-jms:publish-subscribe-channel id="jmsChannel" topic="exampleTopic"/>

For either type of JMS-backed channel, the name of the destination may be provided instead of a
reference, as the following example shows:

<int-jms:channel id="jmsQueueChannel" queue-name="exampleQueueName"/>

<jms:publish-subscribe-channel id="jmsTopicChannel" topic-name="exampleTopicName
"/>

In the preceding examples, the destination names are resolved by Spring’s default

553

DynamicDestinationResolver implementation, but you could provide any implementation of the
DestinationResolver interface. Also, the JMS ConnectionFactory is a required property of the
channel, but, by default, the expected bean name would be jmsConnectionFactory. The following
example provides both a custom instance for resolution of the JMS destination names and a
different name for the ConnectionFactory:

<int-jms:channel id="jmsChannel" queue-name="exampleQueueName"
 destination-resolver="customDestinationResolver"
 connection-factory="customConnectionFactory"/>

For the <publish-subscribe-channel />, set the durable attribute to true for a durable subscription or
subscription-shared for a shared subscription (requires a JMS 2.0 broker and has been available
since version 4.2). Use subscription to name the subscription.

24.9. Using JMS Message Selectors
With JMS message selectors, you can filter JMS Messages based on JMS headers as well as JMS
properties. For example, if you want to listen to messages whose custom JMS header property,
myHeaderProperty, equals something, you can specify the following expression:

myHeaderProperty = 'something'

Message selector expressions are a subset of the SQL-92 conditional expression syntax and are
defined as part of the Java Message Service specification (Version 1.1, April 12, 2002). Specifically,
see chapter "3.8, Message Selection". It contains a detailed explanation of the expressions syntax.

You can specify the JMS message selector attribute by using XML namespace configuration for the
following Spring Integration JMS components:

• JMS Channel

• JMS Publish Subscribe Channel

• JMS Inbound Channel Adapter

• JMS Inbound Gateway

• JMS Message-driven Channel Adapter

 You cannot reference message body values by using JMS Message selectors.

24.10. JMS Samples
To experiment with these JMS adapters, check out the JMS samples available in the Spring
Integration Samples Git repository at https://github.com/SpringSource/spring-integration-

554

https://docs.oracle.com/javaee/6/api/javax/jms/Message.html
https://en.wikipedia.org/wiki/SQL-92
https://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf
https://github.com/SpringSource/spring-integration-samples/tree/master/basic/jms

samples/tree/master/basic/jms.

That repository includes two samples. One provides inbound and outbound channel adapters, and
the other provides inbound and outbound gateways. They are configured to run with an embedded
ActiveMQ process, but you can modify the common.xml Spring application context file of each
sample to support either a different JMS provider or a standalone ActiveMQ process.

In other words, you can split the configuration so that the inbound and outbound adapters run in
separate JVMs. If you have ActiveMQ installed, modify the brokerURL property within the
common.xml file to use tcp://localhost:61616 (instead of vm://localhost). Both of the samples
accept input from stdin and echo back to stdout. Look at the configuration to see how these
messages are routed over JMS.

24.11. JMX Support
Spring Integration provides channel Adapters for receiving and publishing JMX Notifications.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-jmx</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-jmx:5.4.0"

An inbound channel adapter allows for polling JMX MBean attribute values, and an outbound
channel adapter allows for invoking JMX MBean operations.

24.11.1. Notification-listening Channel Adapter

The notification-listening channel adapter requires a JMX ObjectName for the MBean that publishes
notifications to which this listener should be registered. A very simple configuration might
resemble the following:

<int-jmx:notification-listening-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=publisher"/>

555

https://github.com/SpringSource/spring-integration-samples/tree/master/basic/jms
https://activemq.apache.org/
https://github.com/SpringSource/spring-integration-samples/blob/master/basic/jms/src/main/resources/META-INF/spring/integration/common.xml



The notification-listening-channel-adapter registers with an MBeanServer at
startup, and the default bean name is mbeanServer, which happens to be the same
bean name generated when using Spring’s <context:mbean-server/> element. If you
need to use a different name, be sure to include the mbean-server attribute.

The adapter can also accept a reference to a NotificationFilter and a “handback” object to provide
some context that is passed back with each notification. Both of those attributes are optional.
Extending the preceding example to include those attributes as well as an explicit MBeanServer bean
name produces the following example:

<int-jmx:notification-listening-channel-adapter id="adapter"
 channel="channel"
 mbean-server="someServer"
 object-name="example.domain:name=somePublisher"
 notification-filter="notificationFilter"
 handback="myHandback"/>

The _Notification-listening channel adapter is event-driven and registered with the MBeanServer
directly. It does not require any poller configuration.



For this component only, the object-name attribute can contain an object name
pattern (for example, "org.something:type=MyType,name=*"). In that case, the
adapter receives notifications from all MBeans with object names that match the
pattern. In addition, the object-name attribute can contain a SpEL reference to a
<util:list> of object name patterns, as the following example shows:

<jmx:notification-listening-channel-adapter id=
"manyNotificationsAdapter"
 channel="manyNotificationsChannel"
 object-name="#{patterns}"/>

<util:list id="patterns">
 <value>org.foo:type=Foo,name=*</value>
 <value>org.foo:type=Bar,name=*</value>
</util:list>

The names of the located MBean(s) are logged when DEBUG level logging is
enabled.

24.11.2. Notification-publishing Channel Adapter

The notification-publishing channel adapter is relatively simple. It requires only a JMX object name
in its configuration, as the following example shows:

556

<context:mbean-export/>

<int-jmx:notification-publishing-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=publisher"/>

It also requires that an MBeanExporter be present in the context. That is why the <context:mbean-
export/> element is also shown in the preceding example.

When messages are sent to the channel for this adapter, the notification is created from the
message content. If the payload is a String, it is passed as the message text for the notification. Any
other payload type is passed as the userData of the notification.

JMX notifications also have a type, and it should be a dot-delimited String. There are two ways to
provide the type. Precedence is always given to a message header value associated with the
JmxHeaders.NOTIFICATION_TYPE key. Alternatively, you can provide a fallback default-notification-
type attribute in the configuration, as the following example shows:

<context:mbean-export/>

<int-jmx:notification-publishing-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=publisher"
 default-notification-type="some.default.type"/>

24.11.3. Attribute-polling Channel Adapter

The attribute-polling channel adapter is useful when you need to periodically check on some value
that is available through an MBean as a managed attribute. You can configured the poller in the
same way as any other polling adapter in Spring Integration (or you can rely on the default poller).
The object-name and the attribute-name are required. An MBeanServer reference is also required.
However, by default, it automatically checks for a bean named mbeanServer, same as the
notification-listening channel adapter described earlier. The following example shows how to
configure an attribute-polling channel adapter with XML:

<int-jmx:attribute-polling-channel-adapter id="adapter"
 channel="channel"
 object-name="example.domain:name=someService"
 attribute-name="InvocationCount">
 <int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-jmx:attribute-polling-channel-adapter>

557

24.11.4. Tree-polling Channel Adapter

The tree-polling channel adapter queries the JMX MBean tree and sends a message with a payload
that is the graph of objects that matches the query. By default, the MBeans are mapped to primitives
and simple objects, such as Map, List, and arrays. Doing so permits simple transformation to (for
example) JSON. An MBeanServer reference is also required. However, by default, it automatically
checks for a bean named mbeanServer, same as the notification-listening channel adapter described
earlier. The following example shows how to configure an tree-polling channel adapter with XML:

<int-jmx:tree-polling-channel-adapter id="adapter"
 channel="channel"
 query-name="example.domain:type=*">
 <int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-jmx:tree-polling-channel-adapter>

The preceding example includes all of the attributes on the selected MBeans. You can filter the
attributes by providing an MBeanObjectConverter that has an appropriate filter configured. You can
provide the converter as a reference to a bean definition by using the converter attribute, or you
can use an inner <bean/> definition. Spring Integration provides a DefaultMBeanObjectConverter that
can take a MBeanAttributeFilter in its constructor argument.

Spring Integration provides two standard filters. The NamedFieldsMBeanAttributeFilter lets you
specify a list of attributes to include. The NotNamedFieldsMBeanAttributeFilter lets you specify a list
of attributes to exclude. You can also implement your own filter.

24.11.5. Operation-invoking Channel Adapter

The operation-invoking channel adapter enables message-driven invocation of any managed
operation exposed by an MBean. Each invocation requires the operation name to be invoked and
the object name of the target MBean. Both of these must be explicitly provided by adapter
configuration or via JmxHeaders.OBJECT_NAME and JmxHeaders.OPERATION_NAME message headers,
respectively:

<int-jmx:operation-invoking-channel-adapter id="adapter"
 object-name="example.domain:name=TestBean"
 operation-name="ping"/>

Then the adapter only needs to be able to discover the mbeanServer bean. If a different bean name is
required, then provide the mbean-server attribute with a reference.

The payload of the message is mapped to the parameters of the operation, if any. A Map-typed
payload with String keys is treated as name/value pairs, whereas a List or array is passed as a
simple argument list (with no explicit parameter names). If the operation requires a single
parameter value, the payload can represent that single value. Also, if the operation requires no

558

parameters, the payload would be ignored.

If you want to expose a channel for a single common operation to be invoked by messages that
need not contain headers, that last option works well.

24.11.6. Operation-invoking Outbound Gateway

Similarly to the operation-invoking channel adapter, Spring Integration also provides an operation-
invoking outbound gateway, which you can use when dealing with non-void operations when a
return value is required. The return value is sent as the message payload to the reply-channel
specified by the gateway. The following example shows how to configure an operation-invoking
outbound gateway with XML:

<int-jmx:operation-invoking-outbound-gateway request-channel="requestChannel"
 reply-channel="replyChannel"
 object-name="o.s.i.jmx.config:type=TestBean,name=testBeanGateway"
 operation-name="testWithReturn"/>

If you do not provide the reply-channel attribute, the reply message is sent to the channel identified
by the IntegrationMessageHeaderAccessor.REPLY_CHANNEL header. That header is typically auto-
created by the entry point into a message flow, such as any gateway component. However, if the
message flow was started by manually creating a Spring Integration message and sending it
directly to a channel, you must specify the message header explicitly or use the reply-channel
attribute.

24.11.7. MBean Exporter

Spring Integration components may themselves be exposed as MBeans when the
IntegrationMBeanExporter is configured. To create an instance of the IntegrationMBeanExporter,
define a bean and provide a reference to an MBeanServer and a domain name (if desired). You can
leave out the domain, in which case the default domain is org.springframework.integration. The
following example shows how to declare an instance of an IntegrationMBeanExporter and an
associated MBeanServer instance:

<int-jmx:mbean-export id="integrationMBeanExporter"
 default-domain="my.company.domain" server="mbeanServer"/>

<bean id="mbeanServer" class=
"org.springframework.jmx.support.MBeanServerFactoryBean">
 <property name="locateExistingServerIfPossible" value="true"/>
</bean>

559



The MBean exporter is orthogonal to the one provided in Spring core. It registers
message channels and message handlers but does not register itself. You can
expose the exporter itself (and certain other components in Spring Integration) by
using the standard <context:mbean-export/> tag. The exporter has some metrics
attached to it — for instance, a count of the number of handlers and the number of
queued messages.

It also has a useful operation, as discussed in Orderly Shutdown Managed
Operation.

Spring Integration 4.0 introduced the @EnableIntegrationMBeanExport annotation to allow for
convenient configuration of a default integrationMbeanExporter bean of type
IntegrationMBeanExporter with several useful options at the @Configuration class level. The following
example shows how to configure this bean:

@Configuration
@EnableIntegration
@EnableIntegrationMBeanExport(server = "mbeanServer", managedComponents = "input")
public class ContextConfiguration {

 @Bean
 public MBeanServerFactoryBean mbeanServer() {
 return new MBeanServerFactoryBean();
 }
}

If you need to provide more options or have several IntegrationMBeanExporter beans (such as for
different MBean Servers or to avoid conflicts with the standard Spring MBeanExporter — such as
through @EnableMBeanExport), you can configure an IntegrationMBeanExporter as a generic bean.

MBean Object Names

All the MessageChannel, MessageHandler, and MessageSource instances in the application are wrapped
by the MBean exporter to provide management and monitoring features. The generated JMX object
names for each component type are listed in the following table:

Table 9. MBean Object Names

Component Type Object Name

MessageChannel `o.s.i:type=MessageChannel,name=<channelName>`

MessageSource `o.s.i:type=MessageSource,name=<channelName>,bean=<source>`

MessageHandler `o.s.i:type=MessageSource,name=<channelName>,bean=<source>`

The bean attribute in the object names for sources and handlers takes one of the values in the
following table:

560

Table 10. bean ObjectName Part

Bean Value Description

endpoint The bean name of the enclosing endpoint (for example <service-
activator>), if there is one

anonymous An indication that the enclosing endpoint did not have a user-specified
bean name, so the JMX name is the input channel name.

internal For well known Spring Integration default components

handler/source None of the above. Fall back to the toString() method of the object being
monitored (handler or source)

You can append custom elements to the object name by providing a reference to a Properties object
in the object-name-static-properties attribute.

Also, since Spring Integration 3.0, you can use a custom ObjectNamingStrategy by setting the object-
naming-strategy attribute. Doing so permits greater control over the naming of the MBeans, such as
grouping all integration MBeans under an 'Integration' type. The following example shows one
possible custom naming strategy implementation:

public class Namer implements ObjectNamingStrategy {

 private final ObjectNamingStrategy realNamer = new KeyNamingStrategy();
 @Override
 public ObjectName getObjectName(Object managedBean, String beanKey) throws
MalformedObjectNameException {
 String actualBeanKey = beanKey.replace("type=",
"type=Integration,componentType=");
 return realNamer.getObjectName(managedBean, actualBeanKey);
 }

}

The beanKey argument is a String that contain the standard object name, beginning with the
default-domain and including any additional static properties. The preceding example moves the
standard type part to componentType and sets the type to 'Integration', enabling selection of all
Integration MBeans in one query:`my.domain:type=Integration,*`. Doing so also groups the beans
under one tree entry under the domain in such tools as VisualVM.



The default naming strategy is a MetadataNamingStrategy. The exporter propagates
the default-domain to that object to let it generate a fallback object name if parsing
of the bean key fails. If your custom naming strategy is a MetadataNamingStrategy
(or a subclass of it), the exporter does not propagate the default-domain. You must
configure it on your strategy bean.

Starting with version 5.1; any bean names (represented by the name key in the object name) will be

561

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/ObjectNamingStrategy.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/MetadataNamingStrategy.html

quoted if they contain any characters that are not allowed in a Java identifier (or period .).

JMX Improvements

Version 4.2 introduced some important improvements, representing a fairly major overhaul to the
JMX support in the framework. These resulted in a significant performance improvement of the
JMX statistics collection and much more control thereof. However, it has some implications for user
code in a few specific (uncommon) situations. These changes are detailed below, with a caution
where necessary.

@IntegrationManagedResource

Similar to the @ManagedResource annotation, the @IntegrationManagedResource marks a class as
being eligible to be exported as an MBean. However, it is exported only if the application context
has an IntegrationMBeanExporter.

Certain Spring Integration classes (in the org.springframework.integration) package) that were
previously annotated with @ManagedResource are now annotated with both @ManagedResource and
@IntegrationManagedResource. This is for backwards compatibility (see the next item). Such
MBeans are exported by any context MBeanServer or by an IntegrationMBeanExporter (but not
both — if both exporters are present, the bean is exported by the integration exporter if the bean
matches a managed-components pattern).

MBean Exporter Bean Name Patterns

Previously, the managed-components patterns were inclusive only. If a bean name matched one of
the patterns, it would be included. Now, the pattern can be negated by prefixing it with !. For
example, !thing*, things matches all bean names that do not start with thing except things.
Patterns are evaluated left to right. The first match (positive or negative) wins, and then no
further patterns are applied.



The addition of this syntax to the pattern causes one possible (although perhaps
unlikely) problem. If you have a bean named "!thing" and you included a
pattern of !thing in your MBean exporter’s managed-components patterns, it no
longer matches; the pattern now matches all beans not named thing. In this
case, you can escape the ! in the pattern with \. The \!thing pattern matches a
bean named !thing.

IntegrationMBeanExporter changes

The IntegrationMBeanExporter no longer implements SmartLifecycle. This means that start() and
stop() operations are no longer available to register and unregister MBeans. The MBeans are
now registered during context initialization and unregistered when the context is destroyed.

Orderly Shutdown Managed Operation

The MBean exporter lets a JMX operation shut down the application in an orderly manner. It is
intended for use before stopping the JVM. The following example shows how to use it:

562

public void stopActiveComponents(long howLong)

Its use and operation are described in Orderly Shutdown.

563

./shutdown.pdf#jmx-shutdown

Chapter 25. Spring for Apache Kafka
Support

25.1. Overview
Spring Integration for Apache Kafka is based on the Spring for Apache Kafka project. It provides the
following components:

• Outbound Channel Adapter

• Message-driven Channel Adapter

• Inbound Channel Adapter

• Outbound Gateway

• Inbound Gateway

• Channels Backed by Kafka Topics

25.2. Outbound Channel Adapter
The Outbound channel adapter is used to publish messages from a Spring Integration channel to
Kafka topics. The channel is defined in the application context and then wired into the application
that sends messages to Kafka. Sender applications can publish to Kafka by using Spring Integration
messages, which are internally converted to Kafka messages by the outbound channel adapter, as
follows:

• The payload of the Spring Integration message is used to populate the payload of the Kafka
message.

• By default, the kafka_messageKey header of the Spring Integration message is used to populate
the key of the Kafka message.

You can customize the target topic and partition for publishing the message through the
kafka_topic and kafka_partitionId headers, respectively.

In addition, the <int-kafka:outbound-channel-adapter> provides the ability to extract the key, target
topic, and target partition by applying SpEL expressions on the outbound message. To that end, it
supports three mutually exclusive pairs of attributes:

• topic and topic-expression

• message-key and message-key-expression

• partition-id and partition-id-expression

These let you specify topic, message-key, and partition-id, respectively, as static values on the
adapter or to dynamically evaluate their values at runtime against the request message.

564

https://projects.spring.io/spring-kafka/



The KafkaHeaders interface (provided by spring-kafka) contains constants used for
interacting with headers. The messageKey and topic default headers now require a
kafka_ prefix. When migrating from an earlier version that used the old headers,
you need to specify message-key-expression="headers['messageKey']" and topic-
expression="headers['topic']" on the <int-kafka:outbound-channel-adapter>.
Alternatively, you can change the headers upstream to the new headers from
KafkaHeaders by using a <header-enricher> or a MessageBuilder. If you use constant
values, you can also configure them on the adapter by using topic and message-key.

NOTE : If the adapter is configured with a topic or message key (either with a constant or
expression), those are used and the corresponding header is ignored. If you wish the header to
override the configuration, you need to configure it in an expression, such as the following:

topic-expression="headers['topic'] != null ? headers['topic'] : 'myTopic'"

The adapter requires a KafkaTemplate, which, in turn, requires a suitably configured
KafkaProducerFactory.

If a send-failure-channel (sendFailureChannel) is provided and a send failure (sync or async) is
received, an ErrorMessage is sent to the channel. The payload is a KafkaSendFailureException with
failedMessage, record (the ProducerRecord) and cause properties. You can override the
DefaultErrorMessageStrategy by setting the error-message-strategy property.

If a send-success-channel (sendSuccessChannel) is provided, a message with a payload of type
org.apache.kafka.clients.producer.RecordMetadata is sent after a successful send.



If your application uses transactions and the same channel adapter is used to
publish messages where the transaction is started by a listener container, as well
as publishing where there is no existing transaction, you must configure a
transactionIdPrefix on the KafkaTemplate to override the prefix used by the
container or transaction manager. The prefix used by container-initiated
transactions (the producer factory or transaction manager property) must be the
same on all application instances. The prefix used for producer-only transactions
must be unique on all application instances.

Starting with version 3.3, you can configure a flushExpression which must resolve to a boolean
value. Flushing after sending several messages might be useful if you are using the linger.ms and
batch.size Kafka producer properties; the expression should evaluate to Boolean.TRUE on the last
message and an incomplete batch will be sent immediately. By default, the expression looks for a
Boolean value in the KafkaIntegrationHeaders.FLUSH header (kafka_flush). The flush will occur if the
value is true and not if it’s false or the header is absent.

Starting with version 5.4, the KafkaProducerMessageHandler sendTimeoutExpression default has
changed from 10 seconds to the delivery.timeout.ms Kafka producer property + 5000 so that the
actual Kafka error after a timeout is propagated to the application, instead of a timeout generated
by this framework. This has been changed for consistency because you may get unexpected

565

behavior (Spring may timeout the send, while it is actually, eventually, successful). IMPORTANT:
That timeout is 120 seconds by default so you may wish to reduce it to get more timely failures.

25.2.1. Java Configuration

The following example shows how to configure the Kafka outbound channel adapter with Java:

@Bean
@ServiceActivator(inputChannel = "toKafka")
public MessageHandler handler() throws Exception {
 KafkaProducerMessageHandler<String, String> handler =
 new KafkaProducerMessageHandler<>(kafkaTemplate());
 handler.setTopicExpression(new LiteralExpression("someTopic"));
 handler.setMessageKeyExpression(new LiteralExpression("someKey"));
 handler.setSuccessChannel(successes());
 handler.setFailureChannel(failures());
 return handler;
}

@Bean
public KafkaTemplate<String, String> kafkaTemplate() {
 return new KafkaTemplate<>(producerFactory());
}

@Bean
public ProducerFactory<String, String> producerFactory() {
 Map<String, Object> props = new HashMap<>();
 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
 // set more properties
 return new DefaultKafkaProducerFactory<>(props);
}

25.2.2. Java DSL Configuration

The following example shows how to configure the Kafka outbound channel adapter Spring
Integration Java DSL:

566

@Bean
public ProducerFactory<Integer, String> producerFactory() {
 return new DefaultKafkaProducerFactory<>(KafkaTestUtils.producerProps
(embeddedKafka));
}

@Bean
public IntegrationFlow sendToKafkaFlow() {
 return f -> f
 .<String>split(p -> Stream.generate(() -> p).limit(101).iterator(),
null)
 .publishSubscribeChannel(c -> c
 .subscribe(sf -> sf.handle(
 kafkaMessageHandler(producerFactory(), TEST_TOPIC1)
 .timestampExpression(
"T(Long).valueOf('1487694048633')"),
 e -> e.id("kafkaProducer1")))
 .subscribe(sf -> sf.handle(
 kafkaMessageHandler(producerFactory(), TEST_TOPIC2)
 .timestamp(m -> 1487694048644L),
 e -> e.id("kafkaProducer2")))
);
}

@Bean
public DefaultKafkaHeaderMapper mapper() {
 return new DefaultKafkaHeaderMapper();
}

private KafkaProducerMessageHandlerSpec<Integer, String, ?> kafkaMessageHandler(
 ProducerFactory<Integer, String> producerFactory, String topic) {
 return Kafka
 .outboundChannelAdapter(producerFactory)
 .messageKey(m -> m
 .getHeaders()
 .get(IntegrationMessageHeaderAccessor.SEQUENCE_NUMBER))
 .headerMapper(mapper())
 .partitionId(m -> 10)
 .topicExpression("headers[kafka_topic] ?: '" + topic + "'")
 .configureKafkaTemplate(t -> t.id("kafkaTemplate:" + topic));
}

25.2.3. XML Configuration

The following example shows how to configure the Kafka outbound channel adapter with XML:

567

<int-kafka:outbound-channel-adapter id="kafkaOutboundChannelAdapter"
 kafka-template="template"
 auto-startup="false"
 channel="inputToKafka"
 topic="foo"
 sync="false"
 message-key-expression="'bar'"
 send-failure-channel="failures"
 send-success-channel="successes"
 error-message-strategy="ems"
 partition-id-expression="2">
</int-kafka:outbound-channel-adapter>

<bean id="template" class="org.springframework.kafka.core.KafkaTemplate">
 <constructor-arg>
 <bean class="org.springframework.kafka.core.DefaultKafkaProducerFactory">
 <constructor-arg>
 <map>
 <entry key="bootstrap.servers" value="localhost:9092" />
 ... <!-- more producer properties -->
 </map>
 </constructor-arg>
 </bean>
 </constructor-arg>
</bean>

25.3. Message-driven Channel Adapter
The KafkaMessageDrivenChannelAdapter (<int-kafka:message-driven-channel-adapter>) uses a spring-
kafka KafkaMessageListenerContainer or ConcurrentListenerContainer.

Starting with spring-integration-kafka version 2.1, the mode attribute is available. It can accept
values of record or batch (default: record). For record mode, each message payload is converted
from a single ConsumerRecord. For batch mode, the payload is a list of objects that are converted from
all the ConsumerRecord instances returned by the consumer poll. As with the batched @KafkaListener,
the KafkaHeaders.RECEIVED_MESSAGE_KEY, KafkaHeaders.RECEIVED_PARTITION_ID,
KafkaHeaders.RECEIVED_TOPIC, and KafkaHeaders.OFFSET headers are also lists, with positions
corresponding to the position in the payload.

Received messages have certain headers populated. See the KafkaHeaders class for more
information.


The Consumer object (in the kafka_consumer header) is not thread-safe. You must
invoke its methods only on the thread that calls the listener within the adapter. If
you hand off the message to another thread, you must not call its methods.

568

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/KafkaHeaders.html
https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/KafkaHeaders.html

When a retry-template is provided, delivery failures are retried according to its retry policy. An
error-channel is not allowed in this case. You can use the recovery-callback to handle the error
when retries are exhausted. In most cases, this is an ErrorMessageSendingRecoverer that sends the
ErrorMessage to a channel.

When building an ErrorMessage (for use in the error-channel or recovery-callback), you can
customize the error message by setting the error-message-strategy property. By default, a
RawRecordHeaderErrorMessageStrategy is used, to provide access to the converted message as well as
the raw ConsumerRecord.

25.3.1. Java Configuration

The following example shows how to configure a message-driven channel adapter with Java:

@Bean
public KafkaMessageDrivenChannelAdapter<String, String>
 adapter(KafkaMessageListenerContainer<String, String> container) {
 KafkaMessageDrivenChannelAdapter<String, String>
kafkaMessageDrivenChannelAdapter =
 new KafkaMessageDrivenChannelAdapter<>(container, ListenerMode.record
);
 kafkaMessageDrivenChannelAdapter.setOutputChannel(received());
 return kafkaMessageDrivenChannelAdapter;
}

@Bean
public KafkaMessageListenerContainer<String, String> container() throws Exception
{
 ContainerProperties properties = new ContainerProperties(this.topic);
 // set more properties
 return new KafkaMessageListenerContainer<>(consumerFactory(), properties);
}

@Bean
public ConsumerFactory<String, String> consumerFactory() {
 Map<String, Object> props = new HashMap<>();
 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
 // set more properties
 return new DefaultKafkaConsumerFactory<>(props);
}

25.3.2. Java DSL Configuration

The following example shows how to configure a message-driven channel adapter with the Spring
Integration Java DSL:

569

@Bean
public IntegrationFlow topic1ListenerFromKafkaFlow() {
 return IntegrationFlows
 .from(Kafka.messageDrivenChannelAdapter(consumerFactory(),
 KafkaMessageDrivenChannelAdapter.ListenerMode.record,
TEST_TOPIC1)
 .configureListenerContainer(c ->
 c.ackMode(AbstractMessageListenerContainer.AckMode
.MANUAL)
 .id("topic1ListenerContainer"))
 .recoveryCallback(new ErrorMessageSendingRecoverer
(errorChannel(),
 new RawRecordHeaderErrorMessageStrategy()))
 .retryTemplate(new RetryTemplate())
 .filterInRetry(true))
 .filter(Message.class, m ->
 m.getHeaders().get(KafkaHeaders.RECEIVED_MESSAGE_KEY,
Integer.class) < 101,
 f -> f.throwExceptionOnRejection(true))
 .<String, String>transform(String::toUpperCase)
 .channel(c -> c.queue("listeningFromKafkaResults1"))
 .get();
}

Starting with Spring for Apache Kafka version 2.2 (Spring Integration Kafka 3.1), you can also use
the container factory that is used for @KafkaListener annotations to create
ConcurrentMessageListenerContainer instances for other purposes. See the Spring for Apache Kafka
documentation for an example.

With the Java DSL, the container does not have to be configured as a @Bean, because the DSL
registers the container as a bean. The following example shows how to do so:

@Bean
public IntegrationFlow topic2ListenerFromKafkaFlow() {
 return IntegrationFlows
 .from(Kafka.messageDrivenChannelAdapter(kafkaListenerContainerFactory
().createContainer(TEST_TOPIC2),
 KafkaMessageDrivenChannelAdapter.ListenerMode.record)
 .id("topic2Adapter"))
 ...
 get();
}

Notice that, in this case, the adapter is given an id (topic2Adapter). The container is registered in the
application context with a name of topic2Adapter.container. If the adapter does not have an id

570

https://docs.spring.io/spring-kafka/docs/current/reference/html/
https://docs.spring.io/spring-kafka/docs/current/reference/html/

property, the container’s bean name is the container’s fully qualified class name plus #n, where n is
incremented for each container.

25.3.3. XML Configuration

The following example shows how to configure a message-driven channel adapter with XML:

<int-kafka:message-driven-channel-adapter
 id="kafkaListener"
 listener-container="container1"
 auto-startup="false"
 phase="100"
 send-timeout="5000"
 mode="record"
 retry-template="template"
 recovery-callback="callback"
 error-message-strategy="ems"
 channel="someChannel"
 error-channel="errorChannel" />

<bean id="container1" class=
"org.springframework.kafka.listener.KafkaMessageListenerContainer">
 <constructor-arg>
 <bean class="org.springframework.kafka.core.DefaultKafkaConsumerFactory">
 <constructor-arg>
 <map>
 <entry key="bootstrap.servers" value="localhost:9092" />
 ...
 </map>
 </constructor-arg>
 </bean>
 </constructor-arg>
 <constructor-arg>
 <bean class="
org.springframework.kafka.listener.config.ContainerProperties">
 <constructor-arg name="topics" value="foo" />
 </bean>
 </constructor-arg>

</bean>

25.4. Inbound Channel Adapter
Introduced in version 3.0.1, the KafkaMessageSource provides a pollable channel adapter
implementation.

571

25.4.1. Java Configuration

@InboundChannelAdapter(channel = "fromKafka", poller = @Poller(fixedDelay = "5000
"))
@Bean
public KafkaMessageSource<String, String> source(ConsumerFactory<String, String>
cf) {
 KafkaMessageSource<String, String> source = new KafkaMessageSource<>(cf,
"myTopic");
 source.setGroupId("myGroupId");
 source.setClientId("myClientId");
 return source;
}

Refer to the javadocs for available properties.

By default, max.poll.records must be either explicitly set in the consumer factory, or it will be
forced to 1 if the consumer factory is a DefaultKafkaConsumerFactory. Starting with version 3.2, you
can set the property allowMultiFetch to true to override this behavior.


You must poll the consumer within max.poll.interval.ms to avoid a rebalance. If
you set allowMultiFetch to true you must process all the retrieved records, and poll
again, within max.poll.interval.ms.

Messages emitted by this adapter contain a header kafka_remainingRecords with a count of records
remaining from the previous poll.

25.4.2. Java DSL Configuration

@Bean
public IntegrationFlow flow(ConsumerFactory<String, String> cf) {
 return IntegrationFlows.from(Kafka.inboundChannelAdapter(cf, "myTopic")
 .groupId("myDslGroupId"), e -> e.poller(Pollers.fixedDelay(5000)))
 .handle(System.out::println)
 .get();
}

25.4.3. XML Configuration

572

<int-kafka:inbound-channel-adapter
 id="adapter1"
 consumer-factory="consumerFactory"
 ack-factory="ackFactory"
 topics="topic1"
 channel="inbound"
 client-id="client"
 group-id="group"
 message-converter="converter"
 payload-type="java.lang.String"
 raw-header="true"
 auto-startup="false"
 rebalance-listener="rebal">
 <int:poller fixed-delay="5000"/>
</int-kafka:inbound-channel-adapter>

25.5. Outbound Gateway
The outbound gateway is for request/reply operations. It differs from most Spring Integration
gateways in that the sending thread does not block in the gateway and the reply is processed on the
reply listener container thread. If your code invokes the gateway behind a synchronous Messaging
Gateway, the user thread blocks there until the reply is received (or a timeout occurs).



The gateway does not accept requests until the reply container has been assigned
its topics and partitions. It is suggested that you add a ConsumerRebalanceListener to
the template’s reply container properties and wait for the onPartitionsAssigned
call before sending messages to the gateway.

Starting with version 5.4, the KafkaProducerMessageHandler sendTimeoutExpression default has
changed from 10 seconds to the delivery.timeout.ms Kafka producer property + 5000 so that the
actual Kafka error after a timeout is propagated to the application, instead of a timeout generated
by this framework. This has been changed for consistency because you may get unexpected
behavior (Spring may timeout the send, while it is actually, eventually, successful). IMPORTANT:
That timeout is 120 seconds by default so you may wish to reduce it to get more timely failures.

25.5.1. Java Configuration

The following example shows how to configure a gateway with Java:

573

https://docs.spring.io/spring-integration/reference/html/messaging-endpoints-chapter.html#gateway
https://docs.spring.io/spring-integration/reference/html/messaging-endpoints-chapter.html#gateway

@Bean
@ServiceActivator(inputChannel = "kafkaRequests", outputChannel = "kafkaReplies")
public KafkaProducerMessageHandler<String, String> outGateway(
 ReplyingKafkaTemplate<String, String, String> kafkaTemplate) {
 return new KafkaProducerMessageHandler<>(kafkaTemplate);
}

Refer to the javadocs for available properties.

Notice that the same class as the outbound channel adapter is used, the only difference being that
the Kafka template passed into the constructor is a ReplyingKafkaTemplate. See the Spring for
Apache Kafka documentation for more information.

The outbound topic, partition, key, and so on are determined in the same way as the outbound
adapter. The reply topic is determined as follows:

1. A message header named KafkaHeaders.REPLY_TOPIC (if present, it must have a String or byte[]
value) is validated against the template’s reply container’s subscribed topics.

2. If the template’s replyContainer is subscribed to only one topic, it is used.

You can also specify a KafkaHeaders.REPLY_PARTITION header to determine a specific partition to be
used for replies. Again, this is validated against the template’s reply container’s subscriptions.

25.5.2. Java DSL Configuration

The following example shows how to configure an outbound gateway with the Java DSL:

@Bean
public IntegrationFlow outboundGateFlow(
 ReplyingKafkaTemplate<String, String, String> kafkaTemplate) {

 return IntegrationFlows.from("kafkaRequests")
 .handle(Kafka.outboundGateway(kafkaTemplate))
 .channel("kafkaReplies")
 .get();
}

Alternatively, you can also use a configuration similar to the following bean:

574

https://docs.spring.io/spring-kafka/docs/current/reference/html/
https://docs.spring.io/spring-kafka/docs/current/reference/html/

@Bean
public IntegrationFlow outboundGateFlow() {
 return IntegrationFlows.from("kafkaRequests")
 .handle(Kafka.outboundGateway(producerFactory(), replyContainer())
 .configureKafkaTemplate(t -> t.replyTimeout(30_000)))
 .channel("kafkaReplies")
 .get();
}

25.5.3. XML Configuration

<int-kafka:outbound-gateway
 id="allProps"
 error-message-strategy="ems"
 kafka-template="template"
 message-key-expression="'key'"
 order="23"
 partition-id-expression="2"
 reply-channel="replies"
 reply-timeout="43"
 request-channel="requests"
 requires-reply="false"
 send-success-channel="successes"
 send-failure-channel="failures"
 send-timeout-expression="44"
 sync="true"
 timestamp-expression="T(System).currentTimeMillis()"
 topic-expression="'topic'"/>

25.6. Inbound Gateway
The inbound gateway is for request/reply operations.

The following example shows how to configure an inbound gateway with Java:

575

@Bean
public KafkaInboundGateway<Integer, String, String> inboundGateway(
 AbstractMessageListenerContainer<Integer, String>container,
 KafkaTemplate<Integer, String> replyTemplate) {

 KafkaInboundGateway<Integer, String, String> gateway =
 new KafkaInboundGateway<>(container, replyTemplate);
 gateway.setRequestChannel(requests);
 gateway.setReplyChannel(replies);
 gateway.setReplyTimeout(30_000);
 return gateway;
}

Refer to the javadocs for available properties.

The following example shows how to configure a simple upper case converter with the Java DSL:

@Bean
public IntegrationFlow serverGateway(
 ConcurrentMessageListenerContainer<Integer, String> container,
 KafkaTemplate<Integer, String> replyTemplate) {
 return IntegrationFlows
 .from(Kafka.inboundGateway(container, replyTemplate)
 .replyTimeout(30_000))
 .<String, String>transform(String::toUpperCase)
 .get();
}

Alternatively, you could configure an upper-case converter by using code similar to the following:

@Bean
public IntegrationFlow serverGateway() {
 return IntegrationFlows
 .from(Kafka.inboundGateway(consumerFactory(), containerProperties(),
 producerFactory())
 .replyTimeout(30_000))
 .<String, String>transform(String::toUpperCase)
 .get();
}

Starting with Spring for Apache Kafka version 2.2 (Spring Integration Kafka 3.1), you can also use
the container factory that is used for @KafkaListener annotations to create

576

ConcurrentMessageListenerContainer instances for other purposes. See the Spring for Apache Kafka
documentation and Message-driven Channel Adapter for examples.

25.6.1. XML Configuration

<int-kafka:inbound-gateway
 id="gateway1"
 listener-container="container1"
 kafka-template="template"
 auto-startup="false"
 phase="100"
 request-timeout="5000"
 request-channel="nullChannel"
 reply-channel="errorChannel"
 reply-timeout="43"
 message-converter="messageConverter"
 payload-type="java.lang.String"
 error-message-strategy="ems"
 retry-template="retryTemplate"
 recovery-callback="recoveryCallback"/>

See the XML schema for a description of each property.

25.7. Channels Backed by Kafka Topics
Spring Integration for Apache Kafka version 3.3 (still under development) introduces channels
backed by a Kafka topic for persistence.

Each channel requires a KafkaTemplate for the sending side and either a listener container factory
(for subscribable channels) or a KafkaMessageSource for a pollable channel.

25.7.1. Java DSL Configuration

577

https://docs.spring.io/spring-kafka/docs/current/reference/html/
https://docs.spring.io/spring-kafka/docs/current/reference/html/

578

@Bean
public IntegrationFlow flowWithSubscribable(KafkaTemplate<Integer, String>
template,
 ConcurrentKafkaListenerContainerFactory<Integer, String> containerFactory)
{

 return IntegrationFlows.from(...)
 ...
 .channel(Kafka.channel(template, containerFactory, "someTopic1")
.groupId("group1"))
 ...
 .get();
}

@Bean
public IntegrationFlow flowWithPubSub(KafkaTemplate<Integer, String> template,
 ConcurrentKafkaListenerContainerFactory<Integer, String> containerFactory)
{

 return IntegrationFlows.from(...)
 ...
 .publishSubscribeChannel(pubSub(template, containerFactory),
 pubsub -> pubsub
 .subscribe(subflow -> ...)
 .subscribe(subflow -> ...))
 .get();
}

@Bean
public BroadcastCapableChannel pubSub(KafkaTemplate<Integer, String> template,
 ConcurrentKafkaListenerContainerFactory<Integer, String> containerFactory)
{

 return Kafka.publishSubscribeChannel(template, containerFactory, "someTopic2")
 .groupId("group2")
 .get();
}

@Bean
public IntegrationFlow flowWithPollable(KafkaTemplate<Integer, String> template,
 KafkaMessageSource<Integer, String> source) {

 return IntegrationFlows.from(...)
 ...
 .channel(Kafka.pollableChannel(template, source, "someTopic3")
.greoupId("group3"))
 .handle(..., e -> e.poller(...))
 ...
 .get();
}

579

25.7.2. Java Configuration

/**
 * Channel for a single subscriber.
 **/
@Bean
SubscribableKafkaChannel pointToPoint(KafkaTemplate<String, String> template,
 KafkaListenerContainerFactory<String, String> factory)

 SubscribableKafkaChannel channel =
 new SubscribableKafkaChannel(template, factory, "topicA");
 channel.setGroupId("group1");
 return channel;
}

/**
 * Channel for multiple subscribers.
 **/
@Bean
SubscribableKafkaChannel pubsub(KafkaTemplate<String, String> template,
 KafkaListenerContainerFactory<String, String> factory)

 SubscribableKafkaChannel channel =
 new SubscribableKafkaChannel(template, factory, "topicB", true);
 channel.setGroupId("group2");
 return channel;
}

/**
 * Pollable channel (topic is configured on the source)
 **/
@Bean
PollableKafkaChannel pollable(KafkaTemplate<String, String> template,
 KafkaMessageSource<String, String> source)

 PollableKafkaChannel channel =
 new PollableKafkaChannel(template, source);
 channel.setGroupId("group3");
 return channel;
}

25.7.3. XML Configuration

580

<int-kafka:channel kafka-template="template" id="ptp" topic="ptpTopic" group-id=
"ptpGroup"
 container-factory="containerFactory" />

<int-kafka:pollable-channel kafka-template="template" id="pollable" message-
source="source"
 group-id = "pollableGroup"/>

<int-kafka:publish-subscribe-channel kafka-template="template" id="pubSub" topic=
"pubSubTopic"
 group-id="pubSubGroup" container-factory="containerFactory" />

25.8. Message Conversion
A StringJsonMessageConverter is provided. See the Spring for Apache Kafka documentation for more
information.

When using this converter with a message-driven channel adapter, you can specify the type to
which you want the incoming payload to be converted. This is achieved by setting the payload-type
attribute (payloadType property) on the adapter. The following example shows how to do so in XML
configuration:

<int-kafka:message-driven-channel-adapter
 id="kafkaListener"
 listener-container="container1"
 auto-startup="false"
 phase="100"
 send-timeout="5000"
 channel="nullChannel"
 message-converter="messageConverter"
 payload-type="com.example.Foo"
 error-channel="errorChannel" />

<bean id="messageConverter"
 class="org.springframework.kafka.support.converter.MessagingMessageConverter
"/>

The following example shows how to set the payload-type attribute (payloadType property) on the
adapter in Java configuration:

581

https://docs.spring.io/spring-kafka/docs/current/reference/html/

@Bean
public KafkaMessageDrivenChannelAdapter<String, String>
 adapter(KafkaMessageListenerContainer<String, String> container) {
 KafkaMessageDrivenChannelAdapter<String, String>
kafkaMessageDrivenChannelAdapter =
 new KafkaMessageDrivenChannelAdapter<>(container, ListenerMode.record
);
 kafkaMessageDrivenChannelAdapter.setOutputChannel(received());
 kafkaMessageDrivenChannelAdapter.setMessageConverter(converter());
 kafkaMessageDrivenChannelAdapter.setPayloadType(Foo.class);
 return kafkaMessageDrivenChannelAdapter;
}

25.9. Null Payloads and Log Compaction 'Tombstone'
Records
Spring Messaging Message<?> objects cannot have null payloads. When you use the Kafka endpoints,
null payloads (also known as tombstone records) are represented by a payload of type KafkaNull.
See See the Spring for Apache Kafka documentation for more information.

Starting with version 3.1 of Spring Integration Kafka, such records can now be received by Spring
Integration POJO methods with a true null value instead. To do so, mark the parameter with
@Payload(required = false). The following example shows how to do so:

@ServiceActivator(inputChannel = "fromSomeKafkaInboundEndpoint")
public void in(@Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) String key,
 @Payload(required = false) Customer customer) {
 // customer is null if a tombstone record
 ...
}

25.10. Calling a Spring Integration flow from a KStream
You can use a MessagingTransformer to invoke an integration flow from a KStream:

582

https://docs.spring.io/spring-kafka/docs/current/reference/html/

@Bean
public KStream<byte[], byte[]> kStream(StreamsBuilder kStreamBuilder,
 MessagingTransformer<byte[], byte[], byte[]> transformer) transformer) {
 KStream<byte[], byte[]> stream = kStreamBuilder.stream(STREAMING_TOPIC1);
 stream.mapValues((ValueMapper<byte[], byte[]>) String::toUpperCase)
 ...
 .transform(() -> transformer)
 .to(streamingTopic2);

 stream.print(Printed.toSysOut());

 return stream;
}

@Bean
@DependsOn("flow")
public MessagingTransformer<byte[], byte[], String> transformer(
 MessagingFunction function) {

 MessagingMessageConverter converter = new MessagingMessageConverter();
 converter.setHeaderMapper(new SimpleKafkaHeaderMapper("*"));
 return new MessagingTransformer<>(function, converter);
}

@Bean
public IntegrationFlow flow() {
 return IntegrationFlows.from(MessagingFunction.class)
 ...
 .get();
}

When an integration flow starts with an interface, the proxy that is created has the name of the
flow bean, appended with ".gateway" so this bean name can be used a a @Qualifier if needed.

25.11. Performance Considerations for
read/process/write Scenarios
Many applications consume from a topic, perform some processing and write to another topic. In
most, cases, if the write fails, the application would want to throw an exception so the incoming
request can be retried and/or sent to a dead letter topic. This functionality is supported by the
underlying message listener container, together with a suitably configured error handler. However,
in order to support this, we need to block the listener thread until the success (or failure) of the
write operation so that any exceptions can be thrown to the container. When consuming single
records, this is achieved by setting the sync property on the outbound adapter. However, when
consuming batches, using sync causes a significant performance degradation because the
application would wait for the result of each send before sending the next message. Starting with

583

version 5.4, you can now perform multiple sends and then wait for the results of those sends
afterwards. This is achieved by adding a futuresChannel to the message handler. To enable the
feature add KafkaIntegrationHeaders.FUTURE_TOKEN to the outbound messages; this can then be used
to correlate a Future to a particular sent message. Here is an example of how you might use this
feature:

584

@SpringBootApplication
public class FuturesChannelApplication {

 public static void main(String[] args) {
 SpringApplication.run(FuturesChannelApplication.class, args);
 }

 @Bean
 IntegrationFlow inbound(ConsumerFactory<String, String> consumerFactory,
Handler handler) {
 return IntegrationFlows.from(Kafka.messageDrivenChannelAdapter
(consumerFactory,
 ListenerMode.batch, "inTopic"))
 .handle(handler)
 .get();
 }

 @Bean
 IntegrationFlow outbound(KafkaTemplate<String, String> kafkaTemplate) {
 return IntegrationFlows.from(Gate.class)
 .enrichHeaders(h -> h
 .header(KafkaHeaders.TOPIC, "outTopic")
 .headerExpression(KafkaIntegrationHeaders.FUTURE_TOKEN,
"headers[id]"))
 .handle(Kafka.outboundChannelAdapter(kafkaTemplate)
 .futuresChannel("futures"))
 .get();
 }

 @Bean
 PollableChannel futures() {
 return new QueueChannel();
 }

}

@Component
@DependsOn("outbound")
class Handler {

 @Autowired
 Gate gate;

 @Autowired
 PollableChannel futures;

 public void handle(List<String> input) throws Exception {
 System.out.println(input);
 input.forEach(str -> this.gate.send(str.toUpperCase()));

585

 for (int i = 0; i < input.size(); i++) {
 Message<?> future = this.futures.receive(10000);
 ((Future<?>) future.getPayload()).get(10, TimeUnit.SECONDS);
 }
 }

}

interface Gate {

 void send(String out);

}

586

Chapter 26. Mail Support
This section describes how to work with mail messages in Spring Integration.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-mail</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-mail:5.4.0"

The javax.mail:javax.mail-api must be included via vendor-specific implementation.

26.1. Mail-sending Channel Adapter
Spring Integration provides support for outbound email with the MailSendingMessageHandler. It
delegates to a configured instance of Spring’s JavaMailSender, as the following example shows:

 JavaMailSender mailSender = context.getBean("mailSender", JavaMailSender.class);

 MailSendingMessageHandler mailSendingHandler = new MailSendingMessageHandler
(mailSender);

MailSendingMessageHandler has various mapping strategies that use Spring’s MailMessage abstraction.
If the received message’s payload is already a MailMessage instance, it is sent directly. Therefore, we
generally recommend that you precede this consumer with a transformer for non-trivial
MailMessage construction requirements. However, Spring Integration supports a few simple
message mapping strategies. For example, if the message payload is a byte array, that is mapped to
an attachment. For simple text-based emails, you can provide a string-based message payload. In
that case, a MailMessage is created with that String as the text content. If you work with a message
payload type whose toString() method returns appropriate mail text content, consider adding
Spring Integration’s ObjectToStringTransformer prior to the outbound mail adapter (see the example
in Configuring a Transformer with XML for more detail).

You can also configure the outbound MailMessage with certain values from MessageHeaders. If
available, values are mapped to the outbound mail’s properties, such as the recipients (To, Cc, and

587

./transformer.pdf#transformer-namespace

BCc), the from, the reply-to, and the subject. The header names are defined by the following
constants:

 MailHeaders.SUBJECT
 MailHeaders.TO
 MailHeaders.CC
 MailHeaders.BCC
 MailHeaders.FROM
 MailHeaders.REPLY_TO



MailHeaders also lets you override corresponding MailMessage values. For example,
if MailMessage.to is set to 'thing1@things.com' and the MailHeaders.TO message
header is provided, it takes precedence and overrides the corresponding value in
MailMessage.

26.2. Mail-receiving Channel Adapter
Spring Integration also provides support for inbound email with the MailReceivingMessageSource. It
delegates to a configured instance of Spring Integration’s own MailReceiver interface. There are two
implementations: Pop3MailReceiver and ImapMailReceiver. The easiest way to instantiate either of
these is by passing the 'uri' for a mail store to the receiver’s constructor, as the following example
shows:

MailReceiver receiver = new Pop3MailReceiver("pop3://usr:pwd@localhost/INBOX");

Another option for receiving mail is the IMAP idle command (if supported by your mail server).
Spring Integration provides the ImapIdleChannelAdapter, which is itself a message-producing
endpoint. It delegates to an instance of the ImapMailReceiver but enables asynchronous reception of
mail messages. The next section has examples of configuring both types of inbound channel
adapter with Spring Integration’s namespace support in the 'mail' schema.


Normally, when the IMAPMessage.getContent() method is called, certain headers as
well as the body are rendered (for a simple text email), as the following example
shows:

To: thing1@things.com
From: thing2@morethings.com
Subject: Test Email

something

588

mailto:thing1@things.com

With a simple MimeMessage, getContent() returns the mail body (something in the preceding
example).

Starting with version 2.2, the framework eagerly fetches IMAP messages and exposes them as an
internal subclass of MimeMessage. This had the undesired side effect of changing the getContent()
behavior. This inconsistency was further exacerbated by the Mail Mapping enhancement
introduced in version 4.3, because, when a header mapper was provided, the payload was rendered
by the IMAPMessage.getContent() method. This meant that the IMAP content differed, depending on
whether or not a header mapper was provided.

Starting with version 5.0, messages originating from an IMAP source render the content in
accordance with IMAPMessage.getContent() behavior, regardless of whether a header mapper is
provided. If you do not use a header mapper and you wish to revert to the previous behavior of
rendering only the body, set the simpleContent boolean property on the mail receiver to true. This
property now controls the rendering regardless of whether a header mapper is used. It now allows
body-only rendering when a header mapper is provided.

Starting with version 5.2, the autoCloseFolder option is provided on the mail receiver. Setting it to
false doesn’t close the folder automatically after a fetch, but instead an
IntegrationMessageHeaderAccessor.CLOSEABLE_RESOURCE header (see MessageHeaderAccessor API for
more information) is populated into every message to producer from the channel adapter. It is the
target application’s responsibility to call the close() on this header whenever it is necessary in the
downstream flow:

Closeable closeableResource = StaticMessageHeaderAccessor.getCloseableResource
(mailMessage);
if (closeableResource != null) {
 closeableResource.close();
}

Keeping the folder open is useful in cases where communication with the server is needed during
parsing multipart content of the email with attachments. The close() on the
IntegrationMessageHeaderAccessor.CLOSEABLE_RESOURCE header delegates to the AbstractMailReceiver
to close the folder with expunge option if shouldDeleteMessages is configured respectively on the
AbstractMailReceiver.

Starting with version 5.4, it is possible now to return a MimeMessage as is without any conversion or
eager content loading. This functionality is enabled with this combination of options: no
headerMapper provided, the simpleContent property is false and the autoCloseFolder property is
false. The MimeMessage is present as the payload of the Spring message produced. In this case, the
only header populated is the above mentioned
IntegrationMessageHeaderAccessor.CLOSEABLE_RESOURCE for the folder which must be closed when
processing of the the MimeMessage is complete.

589

./message.pdf#message-header-accessor
./message.pdf#message-header-accessor

26.3. Inbound Mail Message Mapping
By default, the payload of messages produced by the inbound adapters is the raw MimeMessage. You
can use that object to interrogate the headers and content. Starting with version 4.3, you can
provide a HeaderMapper<MimeMessage> to map the headers to MessageHeaders. For convenience, Spring
Integration provides a DefaultMailHeaderMapper for this purpose. It maps the following headers:

• mail_from: A String representation of the from address.

• mail_bcc: A String array containing the bcc addresses.

• mail_cc: A String array containing the cc addresses.

• mail_to: A String array containing the to addresses.

• mail_replyTo: A String representation of the replyTo address.

• mail_subject: The mail subject.

• mail_lineCount: A line count (if available).

• mail_receivedDate: The received date (if available).

• mail_size: The mail size (if available).

• mail_expunged: A boolean indicating if the message is expunged.

• mail_raw: A MultiValueMap containing all the mail headers and their values.

• mail_contentType: The content type of the original mail message.

• contentType: The payload content type (see below).

When message mapping is enabled, the payload depends on the mail message and its
implementation. Email contents are usually rendered by a DataHandler within the MimeMessage.

For a text/* email, the payload is a String and the contentType header is the same as
mail_contentType.

For a messages with embedded javax.mail.Part instances, the DataHandler usually renders a Part
object. These objects are not Serializable and are not suitable for serialization with alternative
technologies such as Kryo. For this reason, by default, when mapping is enabled, such payloads are
rendered as a raw byte[] containing the Part data. Examples of Part are Message and Multipart. The
contentType header is application/octet-stream in this case. To change this behavior and receive a
Multipart object payload, set embeddedPartsAsBytes to false on MailReceiver. For content types that
are unknown to the DataHandler, the contents are rendered as a byte[] with a contentType header of
application/octet-stream.

When you do not provide a header mapper, the message payload is the MimeMessage presented by
javax.mail. The framework provides a MailToStringTransformer that you can use to convert the
message by using a strategy to convert the mail contents to a String. This is also available by using
the XML namespace, as the following example shows:

590

<int-mail:mail-to-string-transformer ... >

The following example does the same thing with Java configuration:

@Bean
@Transformer(inputChannel="...", outputChannel="...")
public Transformer transformer() {
 return new MailToStringTransformer();
}

The following example does the same thing with the Java DSL:

 ...
 .transform(Mail.toStringTransformer())
 ...

Starting with version 4.3, the transformer handles embedded Part instances (as well as Multipart
instances, which were handled previously). The transformer is a subclass of
AbstractMailTransformer that maps the address and subject headers from the preceding list. If you
wish to perform some other transformation on the message, consider subclassing
AbstractMailTransformer.

Starting with version 5.4, when no headerMapper is provided, autoCloseFolder is false and
simpleContent is false, the MimeMessage is returned as-is in the payload of the Spring message
produced. This way, the content of the MimeMessage is loaded on demand when referenced, later in
the flow. All of the mentioned above transformations are still valid.

26.4. Mail Namespace Support
Spring Integration provides a namespace for mail-related configuration. To use it, configure the
following schema locations:

591

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int-mail="http://www.springframework.org/schema/integration/mail"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration/mail
 https://www.springframework.org/schema/integration/mail/spring-integration-
mail.xsd">

To configure an outbound channel adapter, provide the channel from which to receive and the
MailSender, as the following example shows:

<int-mail:outbound-channel-adapter channel="outboundMail"
 mail-sender="mailSender"/>

Alternatively, you can provide the host, username, and password, as the following example shows:

<int-mail:outbound-channel-adapter channel="outboundMail"
 host="somehost" username="someuser" password="somepassword"/>

Starting with version 5.1.3, the host, username ane mail-sender can be omitted, if java-mail-
properties is provided. However the host and username has to be configured with appropriate Java
mail properties, e.g. for SMTP:

mail.user=someuser@gmail.com
mail.smtp.host=smtp.gmail.com
mail.smtp.port=587


As with any outbound Channel Adapter, if the referenced channel is a
PollableChannel, you should provide a <poller> element (see Endpoint Namespace
Support).

When you use the namespace support, you can also use a header-enricher message transformer.
Doing so simplifies the application of the headers mentioned earlier to any message prior to
sending to the mail outbound channel adapter.

The following example assumes the payload is a Java bean with appropriate getters for the
specified properties, but you can use any SpEL expression:

592

./endpoint.pdf#endpoint-namespace
./endpoint.pdf#endpoint-namespace

<int-mail:header-enricher input-channel="expressionsInput" default-overwrite=
"false">
 <int-mail:to expression="payload.to"/>
 <int-mail:cc expression="payload.cc"/>
 <int-mail:bcc expression="payload.bcc"/>
 <int-mail:from expression="payload.from"/>
 <int-mail:reply-to expression="payload.replyTo"/>
 <int-mail:subject expression="payload.subject" overwrite="true"/>
</int-mail:header-enricher>

Alternatively, you can use the value attribute to specify a literal. You also can specify default-
overwrite and individual overwrite attributes to control the behavior with existing headers.

To configure an inbound channel adapter, you have the choice between polling or event-driven
(assuming your mail server supports IMAP idle — if not, then polling is the only option). A polling
channel adapter requires the store URI and the channel to which to send inbound messages. The
URI may begin with pop3 or imap. The following example uses an imap URI:

<int-mail:inbound-channel-adapter id="imapAdapter"
 store-uri="imaps://[username]:[password]@imap.gmail.com/INBOX"
 java-mail-properties="javaMailProperties"
 channel="receiveChannel"
 should-delete-messages="true"
 should-mark-messages-as-read="true"
 auto-startup="true">
 <int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-mail:inbound-channel-adapter>

If you do have IMAP idle support, you may want to configure the imap-idle-channel-adapter
element instead. Since the idle command enables event-driven notifications, no poller is necessary
for this adapter. It sends a message to the specified channel as soon as it receives the notification
that new mail is available. The following example configures an IMAP idle mail channel:

<int-mail:imap-idle-channel-adapter id="customAdapter"
 store-uri="imaps://[username]:[password]@imap.gmail.com/INBOX"
 channel="receiveChannel"
 auto-startup="true"
 should-delete-messages="false"
 should-mark-messages-as-read="true"
 java-mail-properties="javaMailProperties"/>

You can provide javaMailProperties by creating and populating a regular java.utils.Properties

593

object — for example, by using the util namespace provided by Spring.


If your username contains the '@' character, use '%40' instead of '@' to avoid
parsing errors from the underlying JavaMail API.

The following example shows how to configure a java.util.Properties object:

<util:properties id="javaMailProperties">
 <prop key="mail.imap.socketFactory.class">javax.net.ssl.SSLSocketFactory</prop>
 <prop key="mail.imap.socketFactory.fallback">false</prop>
 <prop key="mail.store.protocol">imaps</prop>
 <prop key="mail.debug">false</prop>
</util:properties>

By default, the ImapMailReceiver searches for messages based on the default SearchTerm, which is all
mail messages that:

• Are RECENT (if supported)

• Are NOT ANSWERED

• Are NOT DELETED

• Are NOT SEEN

• hHave not been processed by this mail receiver (enabled by the use of the custom USER flag or
simply NOT FLAGGED if not supported)

The custom user flag is spring-integration-mail-adapter, but you can configure it. Since version 2.2,
the SearchTerm used by the ImapMailReceiver is fully configurable with SearchTermStrategy, which
you can inject by using the search-term-strategy attribute. A SearchTermStrategy is a strategy
interface with a single method that lets you create an instance of the SearchTerm used by the
ImapMailReceiver. The following listing shows the SearchTermStrategy interface:

public interface SearchTermStrategy {

 SearchTerm generateSearchTerm(Flags supportedFlags, Folder folder);

}

The following example relies TestSearchTermStrategy rather than the default SearchTermStrategy:

594

<mail:imap-idle-channel-adapter id="customAdapter"
 store-uri="imap:something"
 …
 search-term-strategy="searchTermStrategy"/>

<bean id="searchTermStrategy"
 class=
"o.s.i.mail.config.ImapIdleChannelAdapterParserTests.TestSearchTermStrategy"/>

See Marking IMAP Messages When \Recent Is Not Supported for information about message
flagging.



Important: IMAP PEEK

Starting with version 4.1.1, the IMAP mail receiver uses the mail.imap.peek or
mail.imaps.peek JavaMail property, if specified. Previously, the receiver ignored the
property and always set the PEEK flag. Now, if you explicitly set this property to
false, the message ise marked as \Seen regardless of the setting of
shouldMarkMessagesRead. If not specified, the previous behavior is retained (peek is
true).

26.4.1. IMAP idle and Lost Connections

When using an IMAP idle channel adapter, connections to the server may be lost (for example,
through network failure) and, since the JavaMail documentation explicitly states that the actual
IMAP API is experimental, it is important to understand the differences in the API and how to deal
with them when configuring IMAP idle adapters. Currently, Spring Integration mail adapters were
tested with JavaMail 1.4.1 and JavaMail 1.4.3. Depending on which one is used, you must pay special
attention to some of the JavaMail properties that need to be set with regard to auto-reconnect.


The following behavior was observed with Gmail but should provide you with
some tips on how to solve re-connect issue with other providers. However
feedback is always welcome. Again, the following notes are based on Gmail.

With JavaMail 1.4.1, if you set the mail.imaps.timeout property to a relatively short period of time
(approximately 5 min in our testing), IMAPFolder.idle() throws FolderClosedException after this
timeout. However, if this property is not set (it should be indefinite) the IMAPFolder.idle() method
never returns and never throws an exception. It does, however, reconnect automatically if the
connection was lost for a short period of time (under 10 min in our testing). However, if the
connection was lost for a long period of time (over 10 min), IMAPFolder.idle(), does not throw
FolderClosedException and does not re-establish the connection, and remains in the blocked state
indefinitely, thus leaving you no possibility to reconnect without restarting the adapter.
Consequently, the only way to make re-connecting work with JavaMail 1.4.1 is to set the
mail.imaps.timeout property explicitly to some value, but it also means that such value should be
relatively short (under 10 min) and the connection should be re-established relatively quickly.
Again, it may be different with providers other than Gmail. With JavaMail 1.4.3 introduced

595

significant improvements to the API, ensuring that there is always a condition that forces the
IMAPFolder.idle() method to return StoreClosedException or FolderClosedException or to simply
return, thus letting you proceed with auto-reconnecting. Currently auto-reconnecting runs
infinitely making attempts to reconnect every ten seconds.



In both configurations, channel and should-delete-messages are required attributes.
You should understand why should-delete-messages is required. The issue is with
the POP3 protocol, which does not have any knowledge of messages that were
read. It can only know what has been read within a single session. This means
that, when your POP3 mail adapter runs, emails are successfully consumed as as
they become available during each poll and no single email message is delivered
more then once. However, as soon as you restart your adapter and begin a new
session, all the email messages that might have been retrieved in the previous
session are retrieved again. That is the nature of POP3. Some might argue that
should-delete-messages should be true by default. In other words, there are two
valid and mutually exclusive use that make it very hard to pick a single best
default. You may want to configure your adapter as the only email receiver, in
which case you want to be able to restart your adapter without fear that
previously delivered messages are not delivered again. In this case, setting should-
delete-messages to true would make the most sense. However, you may have
another use case where you may want to have multiple adapters monitor email
servers and their content. In other words, you want to 'peek but not touch'. Then
setting should-delete-messages to false is much more appropriate. So since it is
hard to choose what should be the right default value for the should-delete-
messages attribute, we made it a required attribute to be set by you. Leaving it up to
you also means that you are less likely to end up with unintended behavior.



When configuring a polling email adapter’s should-mark-messages-as-read
attribute, you should be aware of the protocol you are configuring to retrieve
messages. For example, POP3 does not support this flag, which means setting it to
either value has no effect, as messages are not marked as read.

In the case of a silently dropped connection, an idle cancel task is run in the background
periodically (a new IDLE will usually immediately be processed). To control this interval, a
cancelIdleInterval option is provided; default 120 (2 minutes). RFC 2177 recommends an interval
no larger than 29 minutes.



You should understand that that these actions (marking messages read and
deleting messages) are performed after the messages are received but before they
are processed. This can cause messages to be lost.

You may wish to consider using transaction synchronization instead. See
Transaction Synchronization.

The <imap-idle-channel-adapter/> also accepts the 'error-channel' attribute. If a downstream
exception is thrown and an 'error-channel' is specified, a MessagingException message containing
the failed message and the original exception is sent to this channel. Otherwise, if the downstream
channels are synchronous, any such exception is logged as a warning by the channel adapter.

596



Beginning with the 3.0 release, the IMAP idle adapter emits application events
(specifically ImapIdleExceptionEvent instances) when exceptions occur. This allows
applications to detect and act on those exceptions. You can obtain the events by
using an <int-event:inbound-channel-adapter> or any ApplicationListener
configured to receive an ImapIdleExceptionEvent or one of its super classes.

26.5. Marking IMAP Messages When \Recent Is Not
Supported
If shouldMarkMessagesAsRead is true, the IMAP adapters set the \Seen flag.

In addition, when an email server does not support the \Recent flag, the IMAP adapters mark
messages with a user flag (by default, spring-integration-mail-adapter), as long as the server
supports user flags. If not, Flag.FLAGGED is set to true. These flags are applied regardless of the
shouldMarkMessagesRead setting.

As discussed in [search-term], the default SearchTermStrategy ignore messages that are so flagged.

Starting with version 4.2.2, you can set the name of the user flag by using setUserFlag on the
MailReceiver. Doing so lets multiple receivers use a different flag (as long as the mail server
supports user flags). The user-flag attribute is available when configuring the adapter with the
namespace.

26.6. Email Message Filtering
Very often, you may encounter a requirement to filter incoming messages (for example, you want
to read only emails that have 'Spring Integration' in the Subject line). You can accomplish this by
connecting an inbound mail adapter with an expression-based Filter. Although it would work,
there is a downside to this approach. Since messages would be filtered after going through the
inbound mail adapter, all such messages would be marked as read (SEEN) or unread (depending on
the value of should-mark-messages-as-read attribute). However, in reality, it be more useful to mark
messages as SEEN only if they pass the filtering criteria. This is similar to looking at your email client
while scrolling through all the messages in the preview pane, but only flagging messages that were
actually opened and read as SEEN.

Spring Integration 2.0.4 introduced the mail-filter-expression attribute on inbound-channel-adapter
and imap-idle-channel-adapter. This attribute lets you provide an expression that is a combination
of SpEL and a regular expression. For example if you would like to read only emails that contain
'Spring Integration' in the subject line, you would configure the mail-filter-expression attribute
like as follows: mail-filter-expression="subject matches '(?i).Spring Integration.".

Since javax.mail.internet.MimeMessage is the root context of the SpEL evaluation context, you can
filter on any value available through MimeMessage, including the actual body of the message. This
one is particularly important, since reading the body of the message typically results in such
messages being marked as SEEN by default. However, since we now set the PEEK flag of every
incoming message to 'true', only messages that were explicitly marked as SEEN are marked as read.

597

So, in the following example, only messages that match the filter expression are output by this
adapter and only those messages are marked as read:

<int-mail:imap-idle-channel-adapter id="customAdapter"
 store-uri="imaps://some_google_address:${password}@imap.gmail.com/INBOX"
 channel="receiveChannel"
 should-mark-messages-as-read="true"
 java-mail-properties="javaMailProperties"
 mail-filter-expression="subject matches '(?i).*Spring Integration.*'"/>

In the preceding example, thanks to the mail-filter-expression attribute, only messages that
contain 'Spring Integration' in the subject line are produced by this adapter.

Another reasonable question is what happens on the next poll or idle event or what happens when
such an adapter is restarted. Can there be duplication of massages to be filtered? In other words, if,
on the last retrieval where you had five new messages and only one passed the filter, what would
happen with the other four? Would they go through the filtering logic again on the next poll or idle?
After all, they were not marked as SEEN. The answer is no. They would not be subject to duplicate
processing due to another flag (RECENT) that is set by the email server and is used by the Spring
Integration mail search filter. Folder implementations set this flag to indicate that this message is
new to this folder. That is, it has arrived since the last time this folder was opened. In other words,
while our adapter may peek at the email, it also lets the email server know that such email was
touched and should therefore be marked as RECENT by the email server.

26.7. Transaction Synchronization
Transaction synchronization for inbound adapters lets you take different actions after a transaction
commits or rolls back. You can enable transaction synchronization by adding a <transactional/>
element to the poller for the polled <inbound-adapter/> or to the <imap-idle-inbound-adapter/>. Even
if there is no 'real' transaction involved, you can still enable this feature by using a
PseudoTransactionManager with the <transactional/> element. For more information, see Transaction
Synchronization.

Because of the many different mail servers and specifically the limitations that some have, at this
time we provide only a strategy for these transaction synchronizations. You can send the messages
to some other Spring Integration components or invoke a custom bean to perform some action. For
example, to move an IMAP message to a different folder after the transaction commits, you might
use something similar to the following:

598

./transactions.pdf#transaction-synchronization
./transactions.pdf#transaction-synchronization

<int-mail:imap-idle-channel-adapter id="customAdapter"
 store-uri="imaps://something.com:password@imap.something.com/INBOX"
 channel="receiveChannel"
 auto-startup="true"
 should-delete-messages="false"
 java-mail-properties="javaMailProperties">
 <int:transactional synchronization-factory="syncFactory"/>
</int-mail:imap-idle-channel-adapter>

<int:transaction-synchronization-factory id="syncFactory">
 <int:after-commit expression="@syncProcessor.process(payload)"/>
</int:transaction-synchronization-factory>

<bean id="syncProcessor" class="thing1.thing2.Mover"/>

The following example shows what the Mover class might look like:

public class Mover {

 public void process(MimeMessage message) throws Exception{
 Folder folder = message.getFolder();
 folder.open(Folder.READ_WRITE);
 String messageId = message.getMessageID();
 Message[] messages = folder.getMessages();
 FetchProfile contentsProfile = new FetchProfile();
 contentsProfile.add(FetchProfile.Item.ENVELOPE);
 contentsProfile.add(FetchProfile.Item.CONTENT_INFO);
 contentsProfile.add(FetchProfile.Item.FLAGS);
 folder.fetch(messages, contentsProfile);
 // find this message and mark for deletion
 for (int i = 0; i < messages.length; i++) {
 if (((MimeMessage) messages[i]).getMessageID().equals(messageId)) {
 messages[i].setFlag(Flags.Flag.DELETED, true);
 break;
 }
 }

 Folder somethingFolder = store.getFolder("SOMETHING"));
 somethingFolder.appendMessages(new MimeMessage[]{message});
 folder.expunge();
 folder.close(true);
 somethingFolder.close(false);
 }
}

599


For the message to be still available for manipulation after the transaction, should-
delete-messages must be set to 'false'.

26.8. Configuring channel adapters with the Java DSL
To configure mail mail component in Java DSL, the framework provides a o.s.i.mail.dsl.Mail
factory, which can be used like this:

@SpringBootApplication
public class MailApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(MailApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public IntegrationFlow imapMailFlow() {
 return IntegrationFlows
 .from(Mail.imapInboundAdapter("imap://user:pw@host:port/INBOX")
 .searchTermStrategy(this::fromAndNotSeenTerm)
 .userFlag("testSIUserFlag")
 .simpleContent(true)
 .javaMailProperties(p -> p.put("mail.debug", "false")
),
 e -> e.autoStartup(true)
 .poller(p -> p.fixedDelay(1000)))
 .channel(MessageChannels.queue("imapChannel"))
 .get();
 }

 @Bean
 public IntegrationFlow sendMailFlow() {
 return IntegrationFlows.from("sendMailChannel")
 .enrichHeaders(Mail.headers()
 .subjectFunction(m -> "foo")
 .from("foo@bar")
 .toFunction(m -> new String[] { "bar@baz" }))
 .handle(Mail.outboundAdapter("gmail")
 .port(smtpServer.getPort())
 .credentials("user", "pw")
 .protocol("smtp")),
 e -> e.id("sendMailEndpoint"))
 .get();
 }
}

600

Chapter 27. MongoDb Support
Version 2.1 introduced support for MongoDB: a “high-performance, open source, document-
oriented database”.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-mongodb</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-mongodb:5.4.0"

To download, install, and run MongoDB, see the MongoDB documentation.

27.1. Connecting to MongoDb

27.1.1. Blocking or Reactive?

Beginning with version 5.3, Spring Integration provides support for reactive MongoDB drivers to
enable non-blocking I/O when accessing MongoDB. To enable reactive support, add the MongoDB
reactive streams driver to your dependencies:

Maven

<dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>mongodb-driver-reactivestreams</artifactId>
 </dependency>

Gradle

compile "org.mongodb:mongodb-driver-reactivestreams"

For regular synchronous client you need to add its respective driver into dependencies:

601

https://www.mongodb.org/
https://www.mongodb.org/downloads

Maven

<dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>mongodb-driver-sync</artifactId>
 </dependency>

Gradle

compile "org.mongodb:mongodb-driver-sync"

Both of them are optional in the framework for better end-user choice support.

To begin interacting with MongoDB, you first need to connect to it. Spring Integration builds on the
support provided by another Spring project, Spring Data MongoDB. It provides factory classes
called MongoDatabaseFactory and ReactiveMongoDatabaseFactory, which simplify integration with the
MongoDB Client API.


Spring Data provides provides the blocking MongoDB driver by default but you
may opt-in for reactive usage by including the above dependency.

27.1.2. Using MongoDatabaseFactory

To connect to MongoDB you can use an implementation of the MongoDatabaseFactory interface.

The following example shows how to use SimpleMongoClientDatabaseFactory, the out-of-the-box
implementation, in Java:

MongoDatabaseFactory mongoDbFactory =
 new SimpleMongoClientDatabaseFactory(com.mongodb.client.MongoClients
.create(), "test");

The following example shows how to use SimpleMongoClientDatabaseFactory in XML configuration:

<bean id="mongoDbFactory" class=
"o.s.data.mongodb.core.SimpleMongoClientDatabaseFactory">
 <constructor-arg>
 <bean class="com.mongodb.client.MongoClients" factory-method="create"/>
 </constructor-arg>
 <constructor-arg value="test"/>
</bean>

SimpleMongoClientDatabaseFactory takes two arguments: a MongoClient instance and a String that

602

https://projects.spring.io/spring-data-mongodb/

specifies the name of the database. If you need to configure properties such as host, port, and
others, you can pass those by using one of the constructors provided by the underlying MongoClients
class. For more information on how to configure MongoDB, see the Spring-Data-MongoDB
reference.

27.1.3. Using ReactiveMongoDatabaseFactory

To connect to MongoDB with the reactive driver, you can use an implementation of the
ReactiveMongoDatabaseFactory interface.

The following example shows how to use SimpleReactiveMongoDatabaseFactory, the out-of-the-box
implementation, in Java:

new SimpleReactiveMongoDatabaseFactory(com.mongodb.reactivestreams.client
.MongoClients.create(), "test");

The following example shows how to use SimpleReactiveMongoDatabaseFactory in XML configuration:

<bean id="mongoDbFactory" class=
"o.s.data.mongodb.core.SimpleReactiveMongoDatabaseFactory">
 <constructor-arg>
 <bean class="com.mongodb.reactivestreams.client.MongoClients" factory-
method="create"/>
 </constructor-arg>
 <constructor-arg value="test"/>
</bean>

27.2. MongoDB Message Store
As described in the Enterprise Integration Patterns (EIP) book, a Message Store lets you persist
messages. Doing so can be useful when dealing with components that have the ability to buffer
messages (QueueChannel, aggregator, resequencer, and others.) if reliability is a concern. In Spring
Integration, the MessageStore strategy also provides the foundation for the claim check pattern,
which is described in EIP as well.

Spring Integration’s MongoDB module provides the MongoDbMessageStore, which is an
implementation of both the MessageStore strategy (mainly used by the claim check pattern) and the
MessageGroupStore strategy (mainly used by the aggregator and resequencer patterns).

The following example configures a MongoDbMessageStore to use a QueueChannel and an aggregator:

603

https://docs.spring.io/spring-data/data-mongo/docs/current/reference/html/
https://www.enterpriseintegrationpatterns.com/MessageStore.html
https://www.enterpriseintegrationpatterns.com/StoreInLibrary.html

<bean id="mongoDbMessageStore" class="o.s.i.mongodb.store.MongoDbMessageStore">
 <constructor-arg ref="mongoDbFactory"/>
</bean>

<int:channel id="somePersistentQueueChannel">
 <int:queue message-store="mongoDbMessageStore"/>
<int:channel>

<int:aggregator input-channel="inputChannel" output-channel="outputChannel"
 message-store="mongoDbMessageStore"/>

The preceding example is a simple bean configuration, and it expects a MongoDbFactory as a
constructor argument.

The MongoDbMessageStore expands the Message as a Mongo document with all nested properties by
using the Spring Data Mongo mapping mechanism. It is useful when you need to have access to the
payload or headers for auditing or analytics — for example, against stored messages.


The MongoDbMessageStore uses a custom MappingMongoConverter implementation to
store Message instances as MongoDB documents, and there are some limitations for
the properties (payload and header values) of the Message.

Starting with version 5.1.6, the MongoDbMessageStore can be configured with custom converters
which are propagated into an internal MappingMongoConverter implementation. See
MongoDbMessageStore.setCustomConverters(Object… customConverters) JavaDocs for more
information.

Spring Integration 3.0 introduced the ConfigurableMongoDbMessageStore. It implements both the
MessageStore and MessageGroupStore interfaces. This class can receive, as a constructor argument, a
MongoTemplate, with which you can, for example, configure a custom WriteConcern. Another
constructor requires a MappingMongoConverter and a MongoDbFactory, which lets you provide some
custom conversions for Message instances and their properties. Note that, by default, the
ConfigurableMongoDbMessageStore uses standard Java serialization to write and read Message
instances to and from MongoDB (see MongoDbMessageBytesConverter) and relies on default values for
other properties from MongoTemplate. It builds a MongoTemplate from the provided MongoDbFactory and
MappingMongoConverter. The default name for the collection stored by the
ConfigurableMongoDbMessageStore is configurableStoreMessages. We recommend using this
implementation to create robust and flexible solutions when messages contain complex data types.

27.2.1. MongoDB Channel Message Store

Version 4.0 introduced the new MongoDbChannelMessageStore. It is an optimized MessageGroupStore for
use in QueueChannel instances. With priorityEnabled = true, you can use it in <int:priority-queue>
instances to achieve priority-order polling for persisted messages. The priority MongoDB document
field is populated from the IntegrationMessageHeaderAccessor.PRIORITY (priority) message header.

604

In addition, all MongoDB MessageStore instances now have a sequence field for MessageGroup
documents. The sequence value is the result of an $inc operation for a simple sequence document
from the same collection, which is created on demand. The sequence field is used in poll operations
to provide first-in-first-out (FIFO) message order (within priority, if configured) when messages are
stored within the same millisecond.



We do not recommend using the same MongoDbChannelMessageStore bean for
priority and non-priority, because the priorityEnabled option applies to the entire
store. However, the same collection can be used for both
MongoDbChannelMessageStore types, because message polling from the store is sorted
and uses indexes. To configure that scenario, you can extend one message store
bean from the other, as the following example shows:

<bean id="channelStore" class="o.s.i.mongodb.store.MongoDbChannelMessageStore">
 <constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
</bean>

<int:channel id="queueChannel">
 <int:queue message-store="store"/>
</int:channel>

<bean id="priorityStore" parent="channelStore">
 <property name="priorityEnabled" value="true"/>
</bean>

<int:channel id="priorityChannel">
 <int:priority-queue message-store="priorityStore"/>
</int:channel>

27.2.2. MongoDB Metadata Store

Spring Integration 4.2 introduced a new MongoDB-based MetadataStore (see Metadata Store)
implementation. You can use the MongoDbMetadataStore to maintain metadata state across
application restarts. You can use this new MetadataStore implementation with adapters such as:

• Feed

• File

• FTP

• SFTP

To instruct these adapters to use the new MongoDbMetadataStore, declare a Spring bean with a bean
name of metadataStore. The feed inbound channel adapter automatically picks up and use the
declared MongoDbMetadataStore. The following example shows how to declare a bean with a name of
metadataStore:

605

./meta-data-store.pdf#metadata-store
./feed.pdf#feed-inbound-channel-adapter
./file.pdf#file-reading
./ftp.pdf#ftp-inbound
./sftp.pdf#sftp-inbound

@Bean
public MetadataStore metadataStore(MongoDbFactory factory) {
 return new MongoDbMetadataStore(factory, "integrationMetadataStore");
}

The MongoDbMetadataStore also implements ConcurrentMetadataStore, letting it be reliably shared
across multiple application instances, where only one instance is allowed to store or modify a key’s
value. All these operations are atomic, thanks to MongoDB guarantees.

27.3. MongoDB Inbound Channel Adapter
The MongoDB inbound channel adapter is a polling consumer that reads data from MongoDB and
sends it as a Message payload. The following example shows how to configure a MongoDB inbound
channel adapter:

<int-mongodb:inbound-channel-adapter id="mongoInboundAdapter"
 channel="replyChannel"
 query="{'name' : 'Bob'}"
 entity-class="java.lang.Object"
 auto-startup="false">
 <int:poller fixed-rate="100"/>
</int-mongodb:inbound-channel-adapter>

As the preceding configuration shows, you configure a MongoDb inbound channel adapter by using
the inbound-channel-adapter element and providing values for various attributes, such as:

• query: A JSON query (see MongoDB Querying)

• query-expression: A SpEL expression that is evaluated to a JSON query string (as the query
attribute above) or to an instance of o.s.data.mongodb.core.query.Query. Mutually exclusive with
the query attribute.

• entity-class: The type of the payload object. If not supplied, a com.mongodb.DBObject is returned.

• collection-name or collection-name-expression: Identifies the name of the MongoDB collection
to use.

• mongodb-factory: Reference to an instance of o.s.data.mongodb.MongoDbFactory

• mongo-template: Reference to an instance of o.s.data.mongodb.core.MongoTemplate

• Other attributes that are common across all other inbound adapters (such as 'channel').

 You cannot set both mongo-template and mongodb-factory.

The preceding example is relatively simple and static, since it has a literal value for the query and
uses the default name for a collection. Sometimes, you may need to change those values at

606

https://www.mongodb.org/display/DOCS/Querying

runtime, based on some condition. To do so, use their -expression equivalents (query-expression
and collection-name-expression), where the provided expression can be any valid SpEL expression.

Also, you may wish to do some post-processing to the successfully processed data that was read
from the MongoDB. For example; you may want to move or remove a document after it has been
processed. You can do so by using that transaction synchronization feature Spring Integration 2.2
added, as the following example shows:

<int-mongodb:inbound-channel-adapter id="mongoInboundAdapter"
 channel="replyChannel"
 query-expression="new BasicQuery('{''name'' : ''Bob''}').limit(100)"
 entity-class="java.lang.Object"
 auto-startup="false">
 <int:poller fixed-rate="200" max-messages-per-poll="1">
 <int:transactional synchronization-factory="syncFactory"/>
 </int:poller>
</int-mongodb:inbound-channel-adapter>

<int:transaction-synchronization-factory id="syncFactory">
 <int:after-commit
 expression="@documentCleaner.remove(#mongoTemplate, payload,
headers.mongo_collectionName)"
 channe="someChannel"/>
</int:transaction-synchronization-factory>

<bean id="documentCleaner" class="thing1.thing2.DocumentCleaner"/>

<bean id="transactionManager" class="o.s.i.transaction.PseudoTransactionManager"/>

The following example shows the DocumentCleaner referenced in the preceding example:

public class DocumentCleaner {
 public void remove(MongoOperations mongoOperations, Object target, String
collectionName) {
 if (target instanceof List<?>){
 List<?> documents = (List<?>) target;
 for (Object document : documents) {
 mongoOperations.remove(new BasicQuery(JSON.serialize(document)),
collectionName);
 }
 }
 }
}

You can declare your poller to be transactional by using the transactional element. This element

607

can reference a real transaction manager (for example, if some other part of your flow invokes
JDBC). If you do not have a “real” transaction, you can use an instance of
o.s.i.transaction.PseudoTransactionManager, which is an implementation of Spring’s
PlatformTransactionManager and enables the use of the transaction synchronization features of the
Mongo adapter when there is no actual transaction.


Doing so does not make MongoDB itself transactional. It lets the synchronization of
actions be taken before or after success (commit) or after failure (rollback).

Once your poller is transactional, you can set an instance of the
o.s.i.transaction.TransactionSynchronizationFactory on the transactional element. A
TransactionSynchronizationFactory creates an instance of the TransactionSynchronization. For your
convenience, we have exposed a default SpEL-based TransactionSynchronizationFactory that lets
you configure SpEL expressions, with their execution being coordinated (synchronized) with a
transaction. Expressions for before-commit, after-commit, and after-rollback events are supported,
together with a channel for each event where the evaluation result (if any) is sent. For each child
element, you can specify expression and channel attributes. If only the channel attribute is present,
the received message is sent there as part of the particular synchronization scenario. If only the
expression attribute is present and the result of an expression is a non-null value, a message with
the result as the payload is generated and sent to a default channel (NullChannel) and appears in the
logs (on the DEBUG level). If you want the evaluation result to go to a specific channel, add a channel
attribute. If the result of an expression is null or void, no message is generated.

For more information about transaction synchronization, see Transaction Synchronization.

27.4. MongoDB Change Stream Inbound Channel
Adapter
Starting with version 5.3, the spring-integration-mongodb module introduces the
MongoDbChangeStreamMessageProducer - a reactive MessageProducerSupport implementation for the
Spring Data ReactiveMongoOperations.changeStream(String, ChangeStreamOptions, Class) API. This
component produces a Flux of messages with a body of ChangeStreamEvent as the payload by default
and some change stream related headers (see MongoHeaders). It is recommended that this
MongoDbChangeStreamMessageProducer is combined with a FluxMessageChannel as the outputChannel for
on-demand subscription and event consumption downstream.

The Java DSL configuration for this channel adapter may look like this:

608

./transactions.pdf#transaction-synchronization

@Bean
IntegrationFlow changeStreamFlow(ReactiveMongoOperations mongoTemplate) {
 return IntegrationFlows.from(
 MongoDb.changeStreamInboundChannelAdapter(mongoTemplate)
 .domainType(Person.class)
 .collection("person")
 .extractBody(false))
 .channel(MessageChannels.flux())
 .get();
}

When the MongoDbChangeStreamMessageProducer is stopped, or the subscription is cancelled
downstream, or the MongoDb change stream produces an OperationType.INVALIDATE, the Publisher
is completed. The channel adapter can be started again and a new Publisher of source data is
created and it is automatically subscribed in the
MessageProducerSupport.subscribeToPublisher(Publisher<? extends Message<?>>). This channel
adapter can be reconfigured for new options between starts, if there is a requirement to consume
change stream events from other places.

See more information about change stream support in Spring Data MongoDb documentation.

27.5. MongoDB Outbound Channel Adapter
The MongoDB outbound channel adapter lets you write the message payload to a MongoDB
document store, as the following example shows:

<int-mongodb:outbound-channel-adapter id="fullConfigWithCollectionExpression"
 collection-name="myCollection"
 mongo-converter="mongoConverter"
 mongodb-factory="mongoDbFactory" />

As the preceding configuration shows, you can configure a MongoDB outbound channel adapter by
using the outbound-channel-adapter element, providing values for various attributes, such as:

• collection-name or collection-name-expression: Identifies the name of the MongoDb collection to
use.

• mongo-converter: Reference to an instance of o.s.data.mongodb.core.convert.MongoConverter that
assists with converting a raw Java object to a JSON document representation.

• mongodb-factory: Reference to an instance of o.s.data.mongodb.MongoDbFactory.

• mongo-template: Reference to an instance of o.s.data.mongodb.core.MongoTemplate. NOTE: you can
not have both mongo-template and mongodb-factory set.

• Other attributes that are common across all other inbound adapters (such as 'channel').

609

https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#change-streams

The preceding example is relatively simple and static, since it has a literal value for the collection-
name. Sometimes, you may need to change this value at runtime, based on some condition. To do
that, use collection-name-expression, where the provided expression is any valid SpEL expression.

27.6. MongoDB Outbound Gateway
Version 5.0 introduced the MongoDB outbound gateway. It allows you query a database by sending
a message to its request channel. The gateway then send the response to the reply channel. You can
use the message payload and headers to specify the query and the collection name, as the following
example shows:

<int-mongodb:outbound-gateway id="gatewayQuery"
 mongodb-factory="mongoDbFactory"
 mongo-converter="mongoConverter"
 query="{firstName: 'Bob'}"
 collection-name="myCollection"
 request-channel="in"
 reply-channel="out"
 entity-class="org.springframework.integration.mongodb.test.entity$Person"/>

You can use the following attributes with a MongoDB outbound Gateway:

• collection-name or collection-name-expression: Identifies the name of the MongoDB collection
to use.

• mongo-converter: Reference to an instance of o.s.data.mongodb.core.convert.MongoConverter that
assists with converting a raw Java object to a JSON document representation.

• mongodb-factory: Reference to an instance of o.s.data.mongodb.MongoDbFactory.

• mongo-template: Reference to an instance of o.s.data.mongodb.core.MongoTemplate. NOTE: you can
not set both mongo-template and mongodb-factory.

• entity-class: The fully qualified name of the entity class to be passed to the find(..) and
findOne(..) methods in MongoTemplate. If this attribute is not provided, the default value is
org.bson.Document.

• query or query-expression: Specifies the MongoDB query. See the MongoDB documentation for
more query samples.

• collection-callback: Reference to an instance of
org.springframework.data.mongodb.core.CollectionCallback. Preferable an instance of
o.s.i.mongodb.outbound.MessageCollectionCallback since 5.0.11 with the request message
context. See its Javadocs for more information. NOTE: You can not have both collection-
callback and any of the query attributes.

27.6.1. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the outbound gateway

610

https://www.mongodb.org/display/DOCS/Querying

with Java configuration:

@SpringBootApplication
public class MongoDbJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(MongoDbJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private MongoDbFactory mongoDbFactory;

 @Bean
 @ServiceActivator(inputChannel = "requestChannel")
 public MessageHandler mongoDbOutboundGateway() {
 MongoDbOutboundGateway gateway = new MongoDbOutboundGateway(this
.mongoDbFactory);
 gateway.setCollectionNameExpressionString("'myCollection'");
 gateway.setQueryExpressionString("'{''name'' : ''Bob''}'");
 gateway.setExpectSingleResult(true);
 gateway.setEntityClass(Person.class);
 gateway.setOutputChannelName("replyChannel");
 return gateway;
 }

 @Bean
 @ServiceActivator(inputChannel = "replyChannel")
 public MessageHandler handler() {
 return message -> System.out.println(message.getPayload());
 }
}

27.6.2. Configuring with the Java DSL

The following Spring Boot application show an example of how to configure the outbound gateway
with the Java DSL:

611

@SpringBootApplication
public class MongoDbJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(MongoDbJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Autowired
 private MongoDbFactory;

 @Autowired
 private MongoConverter;

 @Bean
 public IntegrationFlow gatewaySingleQueryFlow() {
 return f -> f
 .handle(queryOutboundGateway())
 .channel(c -> c.queue("retrieveResults"));
 }

 private MongoDbOutboundGatewaySpec queryOutboundGateway() {
 return MongoDb.outboundGateway(this.mongoDbFactory, this.mongoConverter)
 .query("{name : 'Bob'}")
 .collectionNameFunction(m -> m.getHeaders().get("collection"))
 .expectSingleResult(true)
 .entityClass(Person.class);
 }

}

As an alternate to the query and query-expression properties, you can specify other database
operations by using the collectionCallback property as a reference to the
MessageCollectionCallback functional interface implementation. The following example specifies a
count operation:

private MongoDbOutboundGatewaySpec collectionCallbackOutboundGateway() {
 return MongoDb.outboundGateway(this.mongoDbFactory, this.mongoConverter)
 .collectionCallback((collection, requestMessage) -> collection.count(
))
 .collectionName("myCollection");
 }

612

27.7. MongoDB Reactive Channel Adapters
Starting with version 5.3, the ReactiveMongoDbStoringMessageHandler and
ReactiveMongoDbMessageSource implementations are provided. They are based on the
ReactiveMongoOperations from Spring Data and requires a org.mongodb:mongodb-driver-
reactivestreams dependency.

The ReactiveMongoDbStoringMessageHandler is an implementation of the ReactiveMessageHandler
which is supported natively in the framework when reactive streams composition is involved in the
integration flow definition. See more information in the ReactiveMessageHandler.

From configuration perspective there is no difference with many other standard channel adapters.
For example with Java DSL such a channel adapter could be used like:

@Bean
public IntegrationFlow reactiveMongoDbFlow(ReactiveMongoDatabaseFactory
mongoDbFactory) {
 return f -> f
 .channel(MessageChannels.flux())
 .handle(MongoDb.reactiveOutboundChannelAdapter(mongoDbFactory));
}

In this sample we are going to connect to the MongoDb via provided ReactiveMongoDatabaseFactory
and store a data from request message into a default collection with the data name. The real
operation is going to be performed on-demand from the reactive stream composition in the
internally created ReactiveStreamsConsumer.

The ReactiveMongoDbMessageSource is an AbstractMessageSource implementation based on the
provided ReactiveMongoDatabaseFactory or ReactiveMongoOperations and MongoDb query (or
expression), calls find() or findOne() operation according an expectSingleResult option with an
expected entityClass type to convert a query result. A query execution and result evaluation is
performed on demand when Publisher (Flux or Mono according expectSingleResult option) in the
payload of produced message is subscribed. The framework can subscribe to such a payload
automatically (essentially flatMap) when splitter and FluxMessageChannel are used downstream.
Otherwise it is target application responsibility to subscribe into a polled publishers in downstream
endpoints.

With Java DSL such a channel adapter could be configured like:

613

./reactive-streams.pdf#reactive-message-handler

@Bean
public IntegrationFlow reactiveMongoDbFlow(ReactiveMongoDatabaseFactory
mongoDbFactory) {
 return IntegrationFlows
 .from(MongoDb.reactiveInboundChannelAdapter(mongoDbFactory, "{'name' :
'Name'}")
 .entityClass(Person.class),
 c -> c.poller(Pollers.fixedDelay(1000)))
 .split()
 .channel(c -> c.flux("output"))
 .get();
}

614

Chapter 28. MQTT Support
Spring Integration provides inbound and outbound channel adapters to support the Message
Queueing Telemetry Transport (MQTT) protocol.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-mqtt</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-mqtt:5.4.0"

The current implementation uses the Eclipse Paho MQTT Client library.

Configuration of both adapters is achieved using the DefaultMqttPahoClientFactory. Refer to the
Paho documentation for more information about configuration options.


We recommend configuring an MqttConnectOptions object and injecting it into the
factory, instead of setting the (deprecated) options on the factory itself.

28.1. Inbound (Message-driven) Channel Adapter
The inbound channel adapter is implemented by the MqttPahoMessageDrivenChannelAdapter. For
convenience, you can configure it by using the namespace. A minimal configuration might be as
follows:

615

https://www.eclipse.org/paho/

<bean id="clientFactory"
 class=
"org.springframework.integration.mqtt.core.DefaultMqttPahoClientFactory">
 <property name="connectionOptions">
 <bean class="org.eclipse.paho.client.mqttv3.MqttConnectOptions">
 <property name="userName" value="${mqtt.username}"/>
 <property name="password" value="${mqtt.password}"/>
 </bean>
 </property>
</bean>

<int-mqtt:message-driven-channel-adapter id="mqttInbound"
 client-id="${mqtt.default.client.id}.src"
 url="${mqtt.url}"
 topics="sometopic"
 client-factory="clientFactory"
 channel="output"/>

The following listing shows the available attributes:

616

<int-mqtt:message-driven-channel-adapter id="oneTopicAdapter"
 client-id="foo" ①
 url="tcp://localhost:1883" ②
 topics="bar,baz" ③
 qos="1,2" ④
 converter="myConverter" ⑤
 client-factory="clientFactory" ⑥
 send-timeout="123" ⑦
 error-channel="errors" ⑧
 recovery-interval="10000" ⑨
 manual-acks="false" ⑩
 channel="out" />

① The client ID.

② The broker URL.

③ A comma-separated list of topics from which this adapter receives messages.

④ A comma-separated list of QoS values. It can be a single value that is applied to all topics or
a value for each topic (in which case, the lists must be the same length).

⑤ An MqttMessageConverter (optional). By default, the default DefaultPahoMessageConverter
produces a message with a String payload with the following headers:

• mqtt_topic: The topic from which the message was received

• mqtt_duplicate: true if the message is a duplicate

• mqtt_qos: The quality of service You can configure the DefaultPahoMessageConverter to
return the raw byte[] in the payload by declaring it as a <bean/> and setting the
payloadAsBytes property to true.

⑥ The client factory.

⑦ The send timeout. It applies only if the channel might block (such as a bounded
QueueChannel that is currently full).

⑧ The error channel. Downstream exceptions are sent to this channel, if supplied, in an
ErrorMessage. The payload is a MessagingException that contains the failed message and
cause.

⑨ The recovery interval. It controls the interval at which the adapter attempts to reconnect
after a failure. It defaults to 10000ms (ten seconds).

⑩ The acknowledgment mode; set to true for manual acknowledgment.


Starting with version 4.1, you can omit the URL. Instead, you can provide the
server URIs in the serverURIs property of the DefaultMqttPahoClientFactory. Doing
so enables, for example, connection to a highly available (HA) cluster.

Starting with version 4.2.2, an MqttSubscribedEvent is published when the adapter successfully
subscribes to the topics. MqttConnectionFailedEvent events are published when the connection or

617

subscription fails. These events can be received by a bean that implements ApplicationListener.

Also, a new property called recoveryInterval controls the interval at which the adapter attempts to
reconnect after a failure. It defaults to 10000ms (ten seconds).



Prior to version 4.2.3, the client always unsubscribed when the adapter was
stopped. This was incorrect because, if the client QOS is greater than 0, we need to
keep the subscription active so that messages arriving while the adapter is stopped
are delivered on the next start. This also requires setting the cleanSession property
on the client factory to false. It defaults to true.

Starting with version 4.2.3, the adapter does not unsubscribe (by default) if the
cleanSession property is false.

This behavior can be overridden by setting the consumerCloseAction property on
the factory. It can have values: UNSUBSCRIBE_ALWAYS, UNSUBSCRIBE_NEVER, and
UNSUBSCRIBE_CLEAN. The latter (the default) unsubscribes only if the cleanSession
property is true.

To revert to the pre-4.2.3 behavior, use UNSUBSCRIBE_ALWAYS.



Starting with version 5.0, the topic, qos, and retained properties are mapped to
.RECEIVED_… headers (MqttHeaders.RECEIVED_TOPIC, MqttHeaders.RECEIVED_QOS, and
MqttHeaders.RECEIVED_RETAINED), to avoid inadvertent propagation to an outbound
message that (by default) uses the MqttHeaders.TOPIC, MqttHeaders.QOS, and
MqttHeaders.RETAINED headers.

28.1.1. Adding and Removing Topics at Runtime

Starting with version 4.1, you can programmatically change the topics to which the adapter is
subscribed. Spring Integration provides the addTopic() and removeTopic() methods. When adding
topics, you can optionally specify the QoS (default: 1). You can also modify the topics by sending an
appropriate message to a <control-bus/> with an appropriate payload — for example:
"myMqttAdapter.addTopic('foo', 1)".

Stopping and starting the adapter has no effect on the topic list (it does not revert to the original
settings in the configuration). The changes are not retained beyond the life cycle of the application
context. A new application context reverts to the configured settings.

Changing the topics while the adapter is stopped (or disconnected from the broker) takes effect the
next time a connection is established.

28.1.2. Manual Acks

Starting with version 5.3, you can set the manualAcks property to true. Often used to asynchronously
acknowledge delivery. When set to true, header
(IntegrationMessageHeaderAccessor.ACKNOWLEDGMENT_CALLBACK) is added to the message with the value
being a SimpleAcknowledgment. You must invoke the acknowledge() method to complete the delivery.
See the Javadocs for IMqppClient setManualAcks() and messageArrivedComplete() for more

618

information. For convenience a header accessor is provided:

StaticMessageHeaderAccessor.acknowledgment(someMessage).acknowledge();

28.1.3. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the inbound adapter
with Java configuration:

619

@SpringBootApplication
public class MqttJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(MqttJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public MessageChannel mqttInputChannel() {
 return new DirectChannel();
 }

 @Bean
 public MessageProducer inbound() {
 MqttPahoMessageDrivenChannelAdapter adapter =
 new MqttPahoMessageDrivenChannelAdapter("tcp://localhost:1883",
"testClient",
 "topic1", "topic2");
 adapter.setCompletionTimeout(5000);
 adapter.setConverter(new DefaultPahoMessageConverter());
 adapter.setQos(1);
 adapter.setOutputChannel(mqttInputChannel());
 return adapter;
 }

 @Bean
 @ServiceActivator(inputChannel = "mqttInputChannel")
 public MessageHandler handler() {
 return new MessageHandler() {

 @Override
 public void handleMessage(Message<?> message) throws
MessagingException {
 System.out.println(message.getPayload());
 }

 };
 }

}

28.1.4. Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the inbound adapter
with the Java DSL:

620

@SpringBootApplication
public class MqttJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(MqttJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public IntegrationFlow mqttInbound() {
 return IntegrationFlows.from(
 new MqttPahoMessageDrivenChannelAdapter(
"tcp://localhost:1883",
 "testClient", "topic1", "topic2");)
 .handle(m -> System.out.println(m.getPayload()))
 .get();
 }

}

28.2. Outbound Channel Adapter
The outbound channel adapter is implemented by the MqttPahoMessageHandler, which is wrapped in
a ConsumerEndpoint. For convenience, you can configure it by using the namespace.

Starting with version 4.1, the adapter supports asynchronous send operations, avoiding blocking
until the delivery is confirmed. You can emit application events to enable applications to confirm
delivery if desired.

The following listing shows the attributes available for an outbound channel adapter:

621

<int-mqtt:outbound-channel-adapter id="withConverter"
 client-id="foo" ①
 url="tcp://localhost:1883" ②
 converter="myConverter" ③
 client-factory="clientFactory" ④
 default-qos="1" ⑤
 qos-expression="" ⑥
 default-retained="true" ⑦
 retained-expression="" ⑧
 default-topic="bar" ⑨
 topic-expression="" ⑩
 async="false" ⑪
 async-events="false" ⑫
 channel="target" />

① The client ID.

② The broker URL.

③ An MqttMessageConverter (optional). The default DefaultPahoMessageConverter recognizes the
following headers:

• mqtt_topic: The topic to which the message will be sent

• mqtt_retained: true if the message is to be retained

• mqtt_qos: The quality of service

④ The client factory.

⑤ The default quality of service. It is used if no mqtt_qos header is found or the qos-expression
returns null. It is not used if you supply a custom converter.

⑥ An expression to evaluate to determine the qos. The default is headers[mqtt_qos].

⑦ The default value of the retained flag. It is used if no mqtt_retained header is found. It is not
used if a custom converter is supplied.

⑧ An expression to evaluate to determine the retained boolean. The default is
headers[mqtt_retained].

⑨ The default topic to which the message is sent (used if no mqtt_topic header is found).

⑩ An expression to evaluate to determine the destination topic. The default is
headers['mqtt_topic'].

⑪ When true, the caller does not block. Rather, it waits for delivery confirmation when a
message is sent. The default is false (the send blocks until delivery is confirmed).

⑫ When async and async-events are both true, an MqttMessageSentEvent is emitted (See Events).
It contains the message, the topic, the messageId generated by the client library, the clientId,
and the clientInstance (incremented each time the client is connected). When the delivery
is confirmed by the client library, an MqttMessageDeliveredEvent is emitted. It contains the
the messageId, the clientId, and the clientInstance, enabling delivery to be correlated with
the send. Any ApplicationListener or an event inbound channel adapter can received these

622

events. Note that it is possible for the MqttMessageDeliveredEvent to be received before the
MqttMessageSentEvent. The default is false.


Starting with version 4.1, the URL can be omitted. Instead, the server URIs can be
provided in the serverURIs property of the DefaultMqttPahoClientFactory. This
enables, for example, connection to a highly available (HA) cluster.

28.2.1. Configuring with Java Configuration

The following Spring Boot application show an example of how to configure the outbound adapter
with Java configuration:

623

@SpringBootApplication
@IntegrationComponentScan
public class MqttJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(MqttJavaApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 gateway.sendToMqtt("foo");
 }

 @Bean
 public MqttPahoClientFactory mqttClientFactory() {
 DefaultMqttPahoClientFactory factory = new DefaultMqttPahoClientFactory();
 MqttConnectOptions options = new MqttConnectOptions();
 options.setServerURIs(new String[] { "tcp://host1:1883", "
tcp://host2:1883" });
 options.setUserName("username");
 options.setPassword("password".toCharArray());
 factory.setConnectionOptions(options);
 return factory;
 }

 @Bean
 @ServiceActivator(inputChannel = "mqttOutboundChannel")
 public MessageHandler mqttOutbound() {
 MqttPahoMessageHandler messageHandler =
 new MqttPahoMessageHandler("testClient", mqttClientFactory
());
 messageHandler.setAsync(true);
 messageHandler.setDefaultTopic("testTopic");
 return messageHandler;
 }

 @Bean
 public MessageChannel mqttOutboundChannel() {
 return new DirectChannel();
 }

 @MessagingGateway(defaultRequestChannel = "mqttOutboundChannel")
 public interface MyGateway {

 void sendToMqtt(String data);

 }

}

624

28.2.2. Configuring with the Java DSL

The following Spring Boot application provides an example of configuring the outbound adapter
with the Java DSL:

@SpringBootApplication
public class MqttJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(MqttJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public IntegrationFlow mqttOutboundFlow() {
 return f -> f.handle(new MqttPahoMessageHandler("tcp://host1:1883",
"someMqttClient"));
 }

}

28.3. Events
Certain application events are published by the adapters.

• MqttConnectionFailedEvent - published by both adapters if we fail to connect or a connection is
subsequently lost.

• MqttMessageSentEvent - published by the outbound adapter when a message has been sent, if
running in asynchronous mode.

• MqttMessageDeliveredEvent - published by the outbound adapter when the client indicates that a
message has been delivered, if running in asynchronous mode.

• MqttSubscribedEvent - published by the inbound adapter after subscribing to the topics.

These events can be received by an ApplicationListener<MqttIntegrationEvent> or with an
@EventListener method.

To determine the source of an event, use the following; you can check the bean name and/or the
connect options (to access the server URIs etc).

MqttPahoComponent source = event.getSourceAsType();
String beanName = source.getBeanName();
MqttConnectOptions options = source.getConnectionInfo();

625

Chapter 29. R2DBC Support
Spring Integration provides channel adapters for receiving and sending messages by using reactive
access to databases via R2DBC drivers.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-r2dbc</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-r2dbc:5.4.0"

29.1. R2DBC Inbound Channel Adapter
The R2dbcMessageSource is a pollable MessageSource implementation based on the
R2dbcEntityOperations and produces messages with a Flux or Mono as a payload for data fetched
from database according an expectSingleResult option. The query to SELECT can be statically
provided or based on a SpEL expression which is evaluated on every receive() call. The
R2dbcMessageSource.SelectCreator is present as a root object for evaluation context to allow to use a
StatementMapper.SelectSpec fluent API. By default this channel adapter maps records from the select
into a LinkedCaseInsensitiveMap instances. It can be customized providing a payloadType options
which is used underneath by the EntityRowMapper based on the
this.r2dbcEntityOperations.getConverter(). The updateSql is optional and used to mark read
records in the databased for skipping from the subsequent polls. The UPDATE operation can be
supplied with a BiFunction<DatabaseClient.GenericExecuteSpec, ?,
DatabaseClient.GenericExecuteSpec> to bind values into an UPDATE based on records in the SELECT
result.

A typical configuration for this channel adapter might look like this:

626

https://r2dbc.io/

@Bean
@InboundChannelAdapter("fromR2dbcChannel")
public R2dbcMessageSource r2dbcMessageSourceSelectMany() {
 R2dbcMessageSource r2dbcMessageSource = new R2dbcMessageSource(this
.r2dbcEntityTemplate,
 "SELECT * FROM person WHERE name='Name'");
 r2dbcMessageSource.setPayloadType(Person.class);
 r2dbcMessageSource.setUpdateSql("UPDATE Person SET name='SomeOtherName' WHERE
id = :id");
 r2dbcMessageSource.setBindFunction(
 (DatabaseClient.GenericExecuteSpec bindSpec, Person o) ->
bindSpec.bind("id", o.getId()));}
 return r2dbcMessageSource;
}

With Java DSL a configuration for this channel adapter is like this:

@Bean
IntegrationFlow r2dbcDslFlow(R2dbcEntityTemplate r2dbcEntityTemplate) {
 return IntegrationFlows
 .from(R2dbc.inboundChannelAdapter(r2dbcEntityTemplate,
 (selectCreator) ->
 selectCreator.createSelect("person")
 .withProjection("*")
 .withCriteria(Criteria.where("id").is(1)))
 .expectSingleResult(true)
 .payloadType(Person.class)
 .updateSql("UPDATE Person SET id='2' where id = :id")
 .bindFunction((DatabaseClient.GenericExecuteSpec bindSpec,
Person o) ->
 bindSpec.bind("id", o.getId())),
 e -> e.poller(p -> p.fixedDelay(100)))
 .<Mono<?>>handle((p, h) -> p, e -> e.async(true))
 .channel(MessageChannels.flux())
 .get();
}

29.2. R2DBC Outbound Channel Adapter
The R2dbcMessageHandler is a ReactiveMessageHandler implementation to perform an INSERT (default),
UPDATE or DELETE query in database using a provided R2dbcEntityOperations. The
R2dbcMessageHandler.Type can be configured statically or via a SpEL expression against request
message. The query to execute can be based on the tableName, values and criteria expression
options or (if tableName is not provided) the whole message payload is treated as an

627

org.springframework.data.relational.core.mapping.Table entity to perform SQL against. The
package org.springframework.data.relational.core.query is registered as an import into a SpEL
evaluation context for direct access to the Criteria fluent API which is used for UPDATE and DELETE
queries. The valuesExpression is used in the INSERT and UPDATE and must be evaluated to the Map for
column-value pairs to perform a change in the target table against request message.

A typical configuration for this channel adapter might look like this:

@Bean
@ServiceActivator(inputChannel = "toR2dbcChannel")
public R2dbcMessageHandler r2dbcMessageHandler(R2dbcEntityTemplate
r2dbcEntityTemplate) {
 R2dbcMessageHandler messageHandler = new R2dbcMessageHandler
(r2dbcEntityTemplate)
 messageHandler.setValuesExpression(new FunctionExpression<Message<?>>(Message
::getPayload));
 messageHandler.setQueryType(R2dbcMessageHandler.Type.UPDATE);
 messageHandler.setCriteriaExpression(
 EXPRESSION_PARSER.parseExpression(
"T(Criteria).where('id).is(headers.personId)));
 return messageHandler;
}

With Java DSL a configuration for this channel adapter is like this:

.handle(R2dbc.outboundChannelAdapter(r2dbcEntityTemplate)
 .queryType(R2dbcMessageHandler.Type.UPDATE)
 .tableNameExpression("payload.class.simpleName")
 .criteria((message) -> Criteria.where("id").is(message.getHeaders().get(
"personId")))
 .values("{age:36}"))

628

Chapter 30. Redis Support
Spring Integration 2.1 introduced support for Redis: “an open source advanced key-value store”.
This support comes in the form of a Redis-based MessageStore as well as publish-subscribe
messaging adapters that are supported by Redis through its PUBLISH, SUBSCRIBE, and UNSUBSCRIBE
commands.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-redis</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-redis:5.4.0"

You also need to include Redis client dependency, e.g. Lettuce.

To download, install, and run Redis, see the Redis documentation.

30.1. Connecting to Redis
To begin interacting with Redis, you first need to connect to it. Spring Integration uses support
provided by another Spring project, Spring Data Redis, which provides typical Spring constructs:
ConnectionFactory and Template. Those abstractions simplify integration with several Redis client
Java APIs. Currently Spring Data Redis supports Jedis and Lettuce.

30.1.1. Using RedisConnectionFactory

To connect to Redis, you can use one of the implementations of the RedisConnectionFactory
interface. The following listing shows the interface definition:

629

https://redis.io/
https://redis.io/topics/pubsub
https://redis.io/topics/pubsub
https://redis.io/topics/pubsub
https://redis.io/topics/pubsub
https://redis.io/topics/pubsub
https://redis.io/download
https://github.com/SpringSource/spring-data-redis
https://github.com/xetorthio/jedis
https://lettuce.io/

public interface RedisConnectionFactory extends PersistenceExceptionTranslator {

 /**
 * Provides a suitable connection for interacting with Redis.
 * @return connection for interacting with Redis.
 */
 RedisConnection getConnection();
}

The following example shows how to create a LettuceConnectionFactory in Java:

LettuceConnectionFactory cf = new LettuceConnectionFactory();
cf.afterPropertiesSet();

The following example shows how to create a LettuceConnectionFactory in Spring’s XML
configuration:

<bean id="redisConnectionFactory"
 class="o.s.data.redis.connection.lettuce.LettuceConnectionFactory">
 <property name="port" value="7379" />
</bean>

The implementations of RedisConnectionFactory provide a set of properties, such as port and host,
that you can set if needed. Once you have an instance of RedisConnectionFactory, you can create an
instance of RedisTemplate and inject it with the RedisConnectionFactory.

30.1.2. Using RedisTemplate

As with other template classes in Spring (such as JdbcTemplate and JmsTemplate) RedisTemplate is a
helper class that simplifies Redis data access code. For more information about RedisTemplate and
its variations (such as StringRedisTemplate) see the Spring Data Redis documentation.

The following example shows how to create an instance of RedisTemplate in Java:

RedisTemplate rt = new RedisTemplate<String, Object>();
rt.setConnectionFactory(redisConnectionFactory);

The following example shows how to create an instance of RedisTemplate in Spring’s XML
configuration:

630

https://docs.spring.io/spring-data/data-redis/docs/current/reference/html/

<bean id="redisTemplate"
 class="org.springframework.data.redis.core.RedisTemplate">
 <property name="connectionFactory" ref="redisConnectionFactory"/>
</bean>

30.2. Messaging with Redis
As mentioned in the introduction, Redis provides support for publish-subscribe messaging through
its PUBLISH, SUBSCRIBE, and UNSUBSCRIBE commands. As with JMS and AMQP, Spring Integration
provides message channels and adapters for sending and receiving messages through Redis.

30.2.1. Redis Publish/Subscribe channel

Similarly to JMS, there are cases where both the producer and consumer are intended to be part of
the same application, running within the same process. You can accomplished this by using a pair
of inbound and outbound channel adapters. However, as with Spring Integration’s JMS support,
there is a simpler way to address this use case. You can create a publish-subscribe channel, as the
following example shows:

<int-redis:publish-subscribe-channel id="redisChannel" topic-name="si.test.topic
"/>

A publish-subscribe-channel behaves much like a normal <publish-subscribe-channel/> element
from the main Spring Integration namespace. It can be referenced by both the input-channel and
the output-channel attributes of any endpoint. The difference is that this channel is backed by a
Redis topic name: a String value specified by the topic-name attribute. However, unlike JMS, this
topic does not have to be created in advance or even auto-created by Redis. In Redis, topics are
simple String values that play the role of an address. The producer and consumer can
communicate by using the same String value as their topic name. A simple subscription to this
channel means that asynchronous publish-subscribe messaging is possible between the producing
and consuming endpoints. However, unlike the asynchronous message channels created by adding
a <queue/> element within a simple Spring Integration <channel/> element, the messages are not
stored in an in-memory queue. Instead, those messages are passed through Redis, which lets you
rely on its support for persistence and clustering as well as its interoperability with other non-Java
platforms.

30.2.2. Redis Inbound Channel Adapter

The Redis inbound channel adapter (RedisInboundChannelAdapter) adapts incoming Redis messages
into Spring messages in the same way as other inbound adapters. It receives platform-specific
messages (Redis in this case) and converts them to Spring messages by using a MessageConverter
strategy. The following example shows how to configure a Redis inbound channel adapter:

631

<int-redis:inbound-channel-adapter id="redisAdapter"
 topics="thing1, thing2"
 channel="receiveChannel"
 error-channel="testErrorChannel"
 message-converter="testConverter" />

<bean id="redisConnectionFactory"
 class="o.s.data.redis.connection.lettuce.LettuceConnectionFactory">
 <property name="port" value="7379" />
</bean>

<bean id="testConverter" class="things.something.SampleMessageConverter" />

The preceding example shows a simple but complete configuration of a Redis inbound channel
adapter. Note that the preceding configuration relies on the familiar Spring paradigm of auto-
discovering certain beans. In this case, the redisConnectionFactory is implicitly injected into the
adapter. You can specify it explicitly by using the connection-factory attribute instead.

Also, note that the preceding configuration injects the adapter with a custom MessageConverter. The
approach is similar to JMS, where MessageConverter instances are used to convert between Redis
messages and the Spring Integration message payloads. The default is a SimpleMessageConverter.

Inbound adapters can subscribe to multiple topic names, hence the comma-separated set of values
in the topics attribute.

Since version 3.0, the inbound adapter, in addition to the existing topics attribute, now has the
topic-patterns attribute. This attribute contains a comma-separated set of Redis topic patterns. For
more information regarding Redis publish-subscribe, see Redis Pub/Sub.

Inbound adapters can use a RedisSerializer to deserialize the body of Redis messages. The
serializer attribute of the <int-redis:inbound-channel-adapter> can be set to an empty string,
which results in a null value for the RedisSerializer property. In this case, the raw byte[] bodies of
Redis messages are provided as the message payloads.

Since version 5.0, you can provide an Executor instance to the inbound adapter by using the task-
executor attribute of the <int-redis:inbound-channel-adapter>. Also, the received Spring Integration
messages now have the RedisHeaders.MESSAGE_SOURCE header to indicate the source of the published
message: topic or pattern. You can use this downstream for routing logic.

30.2.3. Redis Outbound Channel Adapter

The Redis outbound channel adapter adapts outgoing Spring Integration messages into Redis
messages in the same way as other outbound adapters. It receives Spring Integration messages and
converts them to platform-specific messages (Redis in this case) by using a MessageConverter
strategy. The following example shows how to configure a Redis outbound channel adapter:

632

https://redis.io/topics/pubsub

<int-redis:outbound-channel-adapter id="outboundAdapter"
 channel="sendChannel"
 topic="thing1"
 message-converter="testConverter"/>

<bean id="redisConnectionFactory"
 class="o.s.data.redis.connection.lettuce.LettuceConnectionFactory">
 <property name="port" value="7379"/>
</bean>

<bean id="testConverter" class="things.something.SampleMessageConverter" />

The configuration parallels the Redis inbound channel adapter. The adapter is implicitly injected
with a RedisConnectionFactory, which is defined with redisConnectionFactory as its bean name. This
example also includes the optional (and custom) MessageConverter (the testConverter bean).

Since Spring Integration 3.0, the <int-redis:outbound-channel-adapter> offers an alternative to the
topic attribute: You can use the topic-expression attribute to determine the Redis topic for the
message at runtime. These attributes are mutually exclusive.

30.2.4. Redis Queue Inbound Channel Adapter

Spring Integration 3.0 introduced a queue inbound channel adapter to “pop” messages from a Redis
list. By default, it uses “right pop”, but you can configure it to use “left pop” instead. The adapter is
message-driven. It uses an internal listener thread and does not use a poller.

The following listing shows all the available attributes for queue-inbound-channel-adapter:

633

<int-redis:queue-inbound-channel-adapter id="" ①
 channel="" ②
 auto-startup="" ③
 phase="" ④
 connection-factory="" ⑤
 queue="" ⑥
 error-channel="" ⑦
 serializer="" ⑧
 receive-timeout="" ⑨
 recovery-interval="" ⑩
 expect-message="" ⑪
 task-executor="" ⑫
 right-pop=""/> ⑬

① The component bean name. If you do not provide the channel attribute, a DirectChannel is
created and registered in the application context with this id attribute as the bean name. In
this case, the endpoint itself is registered with the bean name id plus .adapter. (If the bean
name were thing1, the endpoint is registered as thing1.adapter.)

② The MessageChannel to which to send Message instances from this Endpoint.

③ A SmartLifecycle attribute to specify whether this endpoint should start automatically after
the application context start or not. It defaults to true.

④ A SmartLifecycle attribute to specify the phase in which this endpoint is started. It defaults
to 0.

⑤ A reference to a RedisConnectionFactory bean. It defaults to redisConnectionFactory.

⑥ The name of the Redis list on which the queue-based 'pop' operation is performed to get
Redis messages.

⑦ The MessageChannel to which to send ErrorMessage instances when exceptions are received
from the listening task of the endpoint. By default, the underlying
MessagePublishingErrorHandler uses the default errorChannel from the application context.

⑧ The RedisSerializer bean reference. It can be an empty string, which means 'no serializer'.
In this case, the raw byte[] from the inbound Redis message is sent to the channel as the
Message payload. By default it is a JdkSerializationRedisSerializer.

⑨ The timeout in milliseconds for 'pop' operation to wait for a Redis message from the queue.
The default is 1 second.

⑩ The time in milliseconds for which the listener task should sleep after exceptions on the
'pop' operation, before restarting the listener task.

⑪ Specifies whether this endpoint expects data from the Redis queue to contain entire Message
instances. If this attribute is set to true, the serializer cannot be an empty string, because
messages require some form of deserialization (JDK serialization by default). Its default is
false.

⑫ A reference to a Spring TaskExecutor (or standard JDK 1.5+ Executor) bean. It is used for the
underlying listening task. It defaults to a SimpleAsyncTaskExecutor.

634

⑬ Specifies whether this endpoint should use “right pop” (when true) or “left pop” (when
false) to read messages from the Redis list. If true, the Redis List acts as a FIFO queue when
used with a default Redis queue outbound channel adapter. Set it to false to use with
software that writes to the list with “right push” or to achieve a stack-like message order. Its
default is true. Since version 4.3.



The task-executor has to be configured with more than one thread for processing;
otherwise there is a possible deadlock when the RedisQueueMessageDrivenEndpoint
tries to restart the listener task after an error. The errorChannel can be used to
process those errors, to avoid restarts, but it preferable to not expose your
application to the possible deadlock situation. See Spring Framework Reference
Manual for possible TaskExecutor implementations.

30.2.5. Redis Queue Outbound Channel Adapter

Spring Integration 3.0 introduced a queue outbound channel adapter to “push” to a Redis list from
Spring Integration messages. By default, it uses “left push”, but you can configure it to use “right
push” instead. The following listing shows all the available attributes for a Redis queue-outbound-
channel-adapter:

635

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling-task-executor-types
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling-task-executor-types

<int-redis:queue-outbound-channel-adapter id="" ①
 channel="" ②
 connection-factory="" ③
 queue="" ④
 queue-expression="" ⑤
 serializer="" ⑥
 extract-payload="" ⑦
 left-push=""/> ⑧

① The component bean name. If you do not provide the channel attribute, a DirectChannel is
created and registered in the application context with this id attribute as the bean name. In
this case, the endpoint is registered with a bean name of id plus .adapter. (If the bean name
were thing1, the endpoint is registered as thing1.adapter.)

② The MessageChannel from which this endpoint receives Message instances.

③ A reference to a RedisConnectionFactory bean. It defaults to redisConnectionFactory.

④ The name of the Redis list on which the queue-based 'push' operation is performed to send
Redis messages. This attribute is mutually exclusive with queue-expression.

⑤ A SpEL Expression to determine the name of the Redis list. It uses the incoming Message at
runtime as the #root variable. This attribute is mutually exclusive with queue.

⑥ A RedisSerializer bean reference. It defaults to a JdkSerializationRedisSerializer.
However, for String payloads, a StringRedisSerializer is used, if a serializer reference is
not provided.

⑦ Specifies whether this endpoint should send only the payload or the entire Message to the
Redis queue. It defaults to true.

⑧ Specifies whether this endpoint should use “left push” (when true) or “right push” (when
false) to write messages to the Redis list. If true, the Redis list acts as a FIFO queue when
used with a default Redis queue inbound channel adapter. Set it to false to use with
software that reads from the list with “left pop” or to achieve a stack-like message order. It
defaults to true. Since version 4.3.

30.2.6. Redis Application Events

Since Spring Integration 3.0, the Redis module provides an implementation of IntegrationEvent,
which, in turn, is a org.springframework.context.ApplicationEvent. The RedisExceptionEvent
encapsulates exceptions from Redis operations (with the endpoint being the “source” of the event).
For example, the <int-redis:queue-inbound-channel-adapter/> emits those events after catching
exceptions from the BoundListOperations.rightPop operation. The exception may be any generic
org.springframework.data.redis.RedisSystemException or a
org.springframework.data.redis.RedisConnectionFailureException. Handling these events with an
<int-event:inbound-channel-adapter/> can be useful to determine problems with background Redis
tasks and to take administrative actions.

636

30.3. Redis Message Store
As described in the Enterprise Integration Patterns (EIP) book, a message store lets you persist
messages. This can be useful when dealing with components that have a capability to buffer
messages (aggregator, resequencer, and others) when reliability is a concern. In Spring Integration,
the MessageStore strategy also provides the foundation for the claim check pattern, which is
described in EIP as well.

Spring Integration’s Redis module provides the RedisMessageStore. The following example shows
how to use it with a aggregator:

<bean id="redisMessageStore" class="o.s.i.redis.store.RedisMessageStore">
 <constructor-arg ref="redisConnectionFactory"/>
</bean>

<int:aggregator input-channel="inputChannel" output-channel="outputChannel"
 message-store="redisMessageStore"/>

The preceding example is a bean configuration, and it expects a RedisConnectionFactory as a
constructor argument.

By default, the RedisMessageStore uses Java serialization to serialize the message. However, if you
want to use a different serialization technique (such as JSON), you can provide your own serializer
by setting the valueSerializer property of the RedisMessageStore.

Starting with version 4.3.10, the Framework provides Jackson serializer and deserializer
implementations for Message instances and MessageHeaders instances — MessageJacksonDeserializer
and MessageHeadersJacksonSerializer, respectively. They have to be configured with the
SimpleModule options for the ObjectMapper. In addition, you should set enableDefaultTyping on the
ObjectMapper to add type information for each serialized complex object (if you trust the source).
That type information is then used during deserialization. The framework provides a utility method
called JacksonJsonUtils.messagingAwareMapper(), which is already supplied with all the previously
mentioned properties and serializers. This utility method comes with the trustedPackages argument
to limit Java packages for deserialization to avoid security vulnerabilities. The default trusted
packages: java.util, java.lang, org.springframework.messaging.support,
org.springframework.integration.support, org.springframework.integration.message,
org.springframework.integration.store. To manage JSON serialization in the RedisMessageStore, you
must configure it in a fashion similar to the following example:

RedisMessageStore store = new RedisMessageStore(redisConnectionFactory);
ObjectMapper mapper = JacksonJsonUtils.messagingAwareMapper();
RedisSerializer<Object> serializer = new GenericJackson2JsonRedisSerializer(
mapper);
store.setValueSerializer(serializer);

637

https://www.enterpriseintegrationpatterns.com/MessageStore.html
https://www.enterpriseintegrationpatterns.com/StoreInLibrary.html

Starting with version 4.3.12, RedisMessageStore supports the prefix option to allow distinguishing
between instances of the store on the same Redis server.

30.3.1. Redis Channel Message Stores

The RedisMessageStore shown earlier maintains each group as a value under a single key (the group
ID). While you can use this to back a QueueChannel for persistence, a specialized
RedisChannelMessageStore is provided for that purpose (since version 4.0). This store uses a LIST for
each channel, LPUSH when sending messages, and RPOP when receiving messages. By default, this
store also uses JDK serialization, but you can modify the value serializer, as described earlier.

We recommend using this store backing channels, instead of using the general RedisMessageStore.
The following example defines a Redis message store and uses it in a channel with a queue:

<bean id="redisMessageStore" class="o.s.i.redis.store.RedisChannelMessageStore">
 <constructor-arg ref="redisConnectionFactory"/>
</bean>

<int:channel id="somePersistentQueueChannel">
 <int:queue message-store="redisMessageStore"/>
<int:channel>

The keys used to store the data have the form: <storeBeanName>:<channelId> (in the preceding
example, redisMessageStore:somePersistentQueueChannel).

In addition, a subclass RedisChannelPriorityMessageStore is also provided. When you use this with a
QueueChannel, the messages are received in (FIFO) priority order. It uses the standard
IntegrationMessageHeaderAccessor.PRIORITY header and supports priority values (0 - 9). Messages
with other priorities (and messages with no priority) are retrieved in FIFO order after any messages
with priority.


These stores implement only BasicMessageGroupStore and do not implement
MessageGroupStore. They can be used only for situations such as backing a
QueueChannel.

30.4. Redis Metadata Store
Spring Integration 3.0 introduced a new Redis-based MetadataStore (see Metadata Store)
implementation. You can use the RedisMetadataStore to maintain the state of a MetadataStore across
application restarts. You can use this new MetadataStore implementation with adapters such as:

• Feed

• File

• FTP

• SFTP

638

https://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/metadata/MetadataStore.html
./meta-data-store.pdf#metadata-store
./feed.pdf#feed-inbound-channel-adapter
./file.pdf#file-reading
./ftp.pdf#ftp-inbound
./sftp.pdf#sftp-inbound

To instruct these adapters to use the new RedisMetadataStore, declare a Spring bean named
metadataStore. The Feed inbound channel adapter and the feed inbound channel adapter both
automatically pick up and use the declared RedisMetadataStore. The following example shows how
to declare such a bean:

<bean name="metadataStore" class="o.s.i.redis.store.metadata.RedisMetadataStore">
 <constructor-arg name="connectionFactory" ref="redisConnectionFactory"/>
</bean>

The RedisMetadataStore is backed by RedisProperties. Interaction with it uses BoundHashOperations,
which, in turn, requires a key for the entire Properties store. In the case of the MetadataStore, this
key plays the role of a region, which is useful in a distributed environment, when several
applications use the same Redis server. By default, this key has a value of MetaData.

Starting with version 4.0, this store implements ConcurrentMetadataStore, letting it be reliably
shared across multiple application instances where only one instance is allowed to store or modify
a key’s value.


You cannot use the RedisMetadataStore.replace() (for example, in the
AbstractPersistentAcceptOnceFileListFilter) with a Redis cluster, since the WATCH
command for atomicity is not currently supported.

30.5. Redis Store Inbound Channel Adapter
The Redis store inbound channel adapter is a polling consumer that reads data from a Redis
collection and sends it as a Message payload. The following example shows how to configure a Redis
store inbound channel adapter:

<int-redis:store-inbound-channel-adapter id="listAdapter"
 connection-factory="redisConnectionFactory"
 key="myCollection"
 channel="redisChannel"
 collection-type="LIST" >
 <int:poller fixed-rate="2000" max-messages-per-poll="10"/>
</int-redis:store-inbound-channel-adapter>

The preceding example shows how to configure a Redis store inbound channel adapter by using the
store-inbound-channel-adapter element, providing values for various attributes, such as:

• key or key-expression: The name of the key for the collection being used.

• collection-type: An enumeration of the collection types supported by this adapter. The
supported Collections are LIST, SET, ZSET, PROPERTIES, and MAP.

639

https://docs.spring.io/spring-data/data-redis/docs/current/api/org/springframework/data/redis/support/collections/RedisProperties.html
https://docs.spring.io/spring-data/data-redis/docs/current/api/org/springframework/data/redis/core/BoundHashOperations.html

• connection-factory: Reference to an instance of
o.s.data.redis.connection.RedisConnectionFactory.

• redis-template: Reference to an instance of o.s.data.redis.core.RedisTemplate.

• Other attributes that are common across all other inbound adapters (such as 'channel').

 You cannot set both redis-template and connection-factory.



By default, the adapter uses a StringRedisTemplate. This uses StringRedisSerializer
instances for keys, values, hash keys, and hash values. If your Redis store contains
objects that are serialized with other techniques, you must supply a RedisTemplate
configured with appropriate serializers. For example, if the store is written to
using a Redis store outbound adapter that has its extract-payload-elements set to
false, you must provide a RedisTemplate configured as follows:

<bean id="redisTemplate" class=
"org.springframework.data.redis.core.RedisTemplate">
 <property name="connectionFactory" ref="redisConnectionFactory
"/>
 <property name="keySerializer">
 <bean class=
"org.springframework.data.redis.serializer.StringRedisSerializer"/>
 </property>
 <property name="hashKeySerializer">
 <bean class=
"org.springframework.data.redis.serializer.StringRedisSerializer"/>
 </property>
</bean>

The RedisTemplate uses String serializers for keys and hash keys and the default
JDK Serialization serializers for values and hash values.

Because it has a literal value for the key, the preceding example is relatively simple and static.
Sometimes, you may need to change the value of the key at runtime based on some condition. To do
so, use key-expression instead, where the provided expression can be any valid SpEL expression.

Also, you may wish to perform some post-processing on the successfully processed data that was
read from the Redis collection. For example, you may want to move or remove the value after its
been processed. You can do so by using the transaction synchronization feature that was added
with Spring Integration 2.2. The following example uses key-expression and transaction
synchronization:

640

<int-redis:store-inbound-channel-adapter id=
"zsetAdapterWithSingleScoreAndSynchronization"
 connection-factory="redisConnectionFactory"
 key-expression="'presidents'"
 channel="otherRedisChannel"
 auto-startup="false"
 collection-type="ZSET">
 <int:poller fixed-rate="1000" max-messages-per-poll="2">
 <int:transactional synchronization-factory="syncFactory"/>
 </int:poller>
</int-redis:store-inbound-channel-adapter>

<int:transaction-synchronization-factory id="syncFactory">
 <int:after-commit expression="payload.removeByScore(18, 18)"/>
</int:transaction-synchronization-factory>

<bean id="transactionManager" class="o.s.i.transaction.PseudoTransactionManager"/>

You can declare your poller to be transactional by using a transactional element. This element can
reference a real transaction manager (for example, if some other part of your flow invokes JDBC). If
you do not have a “real” transaction, you can use an o.s.i.transaction.PseudoTransactionManager,
which is an implementation of Spring’s PlatformTransactionManager and enables the use of the
transaction synchronization features of the Redis adapter when there is no actual transaction.


This does not make the Redis activities themselves transactional. It lets the
synchronization of actions be taken before or after success (commit) or after
failure (rollback).

Once your poller is transactional, you can set an instance of the
o.s.i.transaction.TransactionSynchronizationFactory on the transactional element.
TransactionSynchronizationFactory creates an instance of the TransactionSynchronization. For your
convenience, we have exposed a default SpEL-based TransactionSynchronizationFactory, which lets
you configure SpEL expressions, with their execution being coordinated (synchronized) with a
transaction. Expressions for before-commit, after-commit, and after-rollback are supported,
together with channels (one for each kind of event) where the evaluation result (if any) is sent. For
each child element, you can specify expression and channel attributes. If only the channel attribute is
present, the received message is sent there as part of the particular synchronization scenario. If
only the expression attribute is present and the result of an expression is a non-null value, a
message with the result as the payload is generated and sent to a default channel (NullChannel) and
appears in the logs (at the DEBUG level). If you want the evaluation result to go to a specific channel,
add a channel attribute. If the result of an expression is null or void, no message is generated.

For more information about transaction synchronization, see Transaction Synchronization.

641

./transactions.pdf#transaction-synchronization

30.6. RedisStore Outbound Channel Adapter
The RedisStore outbound channel adapter lets you write a message payload to a Redis collection, as
the following example shows:

<int-redis:store-outbound-channel-adapter id="redisListAdapter"
 collection-type="LIST"
 channel="requestChannel"
 key="myCollection" />

The preceding configuration a Redis store outbound channel adapter by using the store-inbound-
channel-adapter element. It provides values for various attributes, such as:

• key or key-expression: The name of the key for the collection being used.

• extract-payload-elements: If set to true (the default) and the payload is an instance of a “multi-
value” object (that is, a Collection or a Map), it is stored by using “addAll” and “putAll” semantics.
Otherwise, if set to false, the payload is stored as a single entry regardless of its type. If the
payload is not an instance of a “multi-value” object, the value of this attribute is ignored and the
payload is always stored as a single entry.

• collection-type: An enumeration of the Collection types supported by this adapter. The
supported Collections are LIST, SET, ZSET, PROPERTIES, and MAP.

• map-key-expression: SpEL expression that returns the name of the key for the entry being stored.
It applies only if the collection-type is MAP or PROPERTIES and 'extract-payload-elements' is false.

• connection-factory: Reference to an instance of
o.s.data.redis.connection.RedisConnectionFactory.

• redis-template: Reference to an instance of o.s.data.redis.core.RedisTemplate.

• Other attributes that are common across all other inbound adapters (such as 'channel').

 You cannot set both redis-template and connection-factory.



By default, the adapter uses a StringRedisTemplate. This uses StringRedisSerializer
instances for keys, values, hash keys, and hash values. However, if extract-
payload-elements is set to false, a RedisTemplate that has StringRedisSerializer
instances for keys and hash keys and JdkSerializationRedisSerializer instances s
for values and hash values will be used. With the JDK serializer, it is important to
understand that Java serialization is used for all values, regardless of whether the
value is actually a collection or not. If you need more control over the serialization
of values, consider providing your own RedisTemplate rather than relying upon
these defaults.

Because it has literal values for the key and other attributes, the preceding example is relatively
simple and static. Sometimes, you may need to change the values dynamically at runtime based on
some condition. To do so, use their -expression equivalents (key-expression, map-key-expression, and

642

so on), where the provided expression can be any valid SpEL expression.

30.7. Redis Outbound Command Gateway
Spring Integration 4.0 introduced the Redis command gateway to let you perform any standard
Redis command by using the generic RedisConnection#execute method. The following listing shows
the available attributes for the Redis outbound gateway:

643

<int-redis:outbound-gateway
 request-channel="" ①
 reply-channel="" ②
 requires-reply="" ③
 reply-timeout="" ④
 connection-factory="" ⑤
 redis-template="" ⑥
 arguments-serializer="" ⑦
 command-expression="" ⑧
 argument-expressions="" ⑨
 use-command-variable="" ⑩
 arguments-strategy="" /> ⑪

① The MessageChannel from which this endpoint receives Message instances.

② The MessageChannel where this endpoint sends reply Message instances.

③ Specifies whether this outbound gateway must return a non-null value. It defaults to true. A
ReplyRequiredException is thrown when Redis returns a null value.

④ The timeout (in milliseconds) to wait until the reply message is sent. It is typically applied
for queue-based limited reply-channels.

⑤ A reference to a RedisConnectionFactory bean. It defaults to redisConnectionFactory. It is
mutually exclusive with 'redis-template' attribute.

⑥ A reference to a RedisTemplate bean. It is mutually exclusive with 'connection-factory'
attribute.

⑦ A reference to an instance of org.springframework.data.redis.serializer.RedisSerializer. It
is used to serialize each command argument to byte[], if necessary.

⑧ The SpEL expression that returns the command key. It defaults to the redis_command
message header. It must not evaluate to null.

⑨ Comma-separated SpEL expressions that are evaluated as command arguments. Mutually
exclusive with the arguments-strategy attribute. If you provide neither attribute, the payload
is used as the command arguments. The argument expressions can evaluate to 'null' to
support a variable number of arguments.

⑩ A boolean flag to specify whether the evaluated Redis command string is made available as
the #cmd variable in the expression evaluation context in the
o.s.i.redis.outbound.ExpressionArgumentsStrategy when argument-expressions is
configured. Otherwise this attribute is ignored.

⑪ Reference to an instance of o.s.i.redis.outbound.ArgumentsStrategy. It is mutually exclusive
with argument-expressions attribute. If you provide neither attribute, the payload is used as
the command arguments.

You can use the <int-redis:outbound-gateway> as a common component to perform any desired
Redis operation. The following example shows how to get incremented values from Redis atomic
number:

644

<int-redis:outbound-gateway request-channel="requestChannel"
 reply-channel="replyChannel"
 command-expression="'INCR'"/>

The Message payload should have a name of redisCounter, which may be provided by
org.springframework.data.redis.support.atomic.RedisAtomicInteger bean definition.

The RedisConnection#execute method has a generic Object as its return type. Real result depends on
command type. For example, MGET returns a List<byte[]>. For more information about commands,
their arguments and result type, see Redis Specification.

30.8. Redis Queue Outbound Gateway
Spring Integration introduced the Redis queue outbound gateway to perform request and reply
scenarios. It pushes a conversation UUID to the provided queue, pushes the value with that UUID as its
key to a Redis list, and waits for the reply from a Redis list with a key of UUID' plus '.reply. A
different UUID is used for each interaction. The following listing shows the available attributes for a
Redis outbound gateway:

645

https://redis.io/commands

<int-redis:queue-outbound-gateway
 request-channel="" ①
 reply-channel="" ②
 requires-reply="" ③
 reply-timeout="" ④
 connection-factory="" ⑤
 queue="" ⑥
 order="" ⑦
 serializer="" ⑧
 extract-payload=""/> ⑨

① The MessageChannel from which this endpoint receives Message instances.

② The MessageChannel where this endpoint sends reply Message instances.

③ Specifies whether this outbound gateway must return a non-null value. This value is false
by default. Otherwise, a ReplyRequiredException is thrown when Redis returns a null value.

④ The timeout (in milliseconds) to wait until the reply message is sent. It is typically applied
for queue-based limited reply-channels.

⑤ A reference to a RedisConnectionFactory bean. It defaults to redisConnectionFactory. It is
mutually exclusive with the 'redis-template' attribute.

⑥ The name of the Redis list to which the outbound gateway sends a conversation UUID.

⑦ The order of this outbound gateway when multiple gateways are registered.

⑧ The RedisSerializer bean reference. It can be an empty string, which means “no serializer”.
In this case, the raw byte[] from the inbound Redis message is sent to the channel as the
Message payload. By default, it is a JdkSerializationRedisSerializer.

⑨ Specifies whether this endpoint expects data from the Redis queue to contain entire Message
instances. If this attribute is set to true, the serializer cannot be an empty string, because
messages require some form of deserialization (JDK serialization by default).

30.9. Redis Queue Inbound Gateway
Spring Integration 4.1 introduced the Redis queue inbound gateway to perform request and reply
scenarios. It pops a conversation UUID from the provided queue, pops the value with that UUID as its
key from the Redis list, and pushes the reply to the Redis list with a key of UUID plus .reply. The
following listing shows the available attributes for a Redis queue inbound gateway:

646

<int-redis:queue-inbound-gateway
 request-channel="" ①
 reply-channel="" ②
 executor="" ③
 reply-timeout="" ④
 connection-factory="" ⑤
 queue="" ⑥
 order="" ⑦
 serializer="" ⑧
 receive-timeout="" ⑨
 expect-message="" ⑩
 recovery-interval=""/> ⑪

① The MessageChannel where this endpoint sends Message instances created from the Redis
data.

② The MessageChannel from where this endpoint waits for reply Message instances. Optional -
the replyChannel header is still in use.

③ A reference to a Spring TaskExecutor (or a standard JDK Executor) bean. It is used for the
underlying listening task. It defaults to a SimpleAsyncTaskExecutor.

④ The timeout (in milliseconds) to wait until the reply message is sent. It is typically applied
for queue-based limited reply-channels.

⑤ A reference to a RedisConnectionFactory bean. It defaults to redisConnectionFactory. It is
mutually exclusive with 'redis-template' attribute.

⑥ The name of the Redis list for the conversation UUID.

⑦ The order of this inbound gateway when multiple gateways are registered.

⑧ The RedisSerializer bean reference. It can be an empty string, which means “no serializer”.
In this case, the raw byte[] from the inbound Redis message is sent to the channel as the
Message payload. It default to a JdkSerializationRedisSerializer. (Note that, in releases
before version 4.3, it was a StringRedisSerializer by default. To restore that behavior,
provide a reference to a StringRedisSerializer).

⑨ The timeout (in milliseconds) to wait until the receive message is fetched. It is typically
applied for queue-based limited request-channels.

⑩ Specifies whether this endpoint expects data from the Redis queue to contain entire Message
instances. If this attribute is set to true, the serializer cannot be an empty string, because
messages require some form of deserialization (JDK serialization by default).

⑪ The time (in milliseconds) the listener task should sleep after exceptions on the “right pop”
operation before restarting the listener task.

647



The task-executor has to be configured with more than one thread for processing;
otherwise there is a possible deadlock when the RedisQueueMessageDrivenEndpoint
tries to restart the listener task after an error. The errorChannel can be used to
process those errors, to avoid restarts, but it preferable to not expose your
application to the possible deadlock situation. See Spring Framework Reference
Manual for possible TaskExecutor implementations.

30.10. Redis Stream Outbound Channel Adapter
Spring Integration 5.4 introduced Reactive Redis Stream outbound channel adapter to write
Message payload into Redis stream. Outbound Channel adapter uses
ReactiveStreamOperations.add(…) to add a Record to the stream. The following example shows how
to use Java configuration and Service class for Redis Stream Outbound Channel Adapter.

@Bean
@ServiceActivator(inputChannel = "messageChannel")
public ReactiveRedisStreamMessageHandler reactiveValidatorMessageHandler(
 ReactiveRedisConnectionFactory reactiveRedisConnectionFactory) {
 ReactiveRedisStreamMessageHandler reactiveStreamMessageHandler =
 new ReactiveRedisStreamMessageHandler(reactiveRedisConnectionFactory,
"myStreamKey"); ①
 reactiveRedisStreamMessageHandler.setSerializationContext(
serializationContext); ②
 reactiveRedisStreamMessageHandler.setHashMapper(hashMapper); ③
 reactiveRedisStreamMessageHandler.setExtractPayload(true); ④
}

① Construct an instance of ReactiveRedisStreamMessageHandler using
ReactiveRedisConnectionFactory and stream name to add records. Another constructor
variant is based on a SpEL expression to evaluate a stream key against a request message.

② Set a RedisSerializationContext used to serialize a record key and value before adding to
the stream.

③ Set HashMapper which provides contract between Java types and Redis hashes/maps.

④ If 'true', channel adapter will extract payload from a request message for a stream record to
add. Or use the whole message as a value. It defaults to true.

30.11. Redis Stream Inbound Channel Adapter
Spring Integration 5.4 introduced the Reactive Stream inbound channel adapter for reading
messages from a Redis Stream. Inbound channel adapter uses StreamReceiver.receive(…) or
StreamReceiver.receiveAutoAck() based on auto acknowledgement flag to read record from Redis
stream. The following example shows how to use Java configuration for Redis Stream Inbound
Channel Adapter.

648

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling-task-executor-types
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling-task-executor-types

@Bean
public ReactiveRedisStreamMessageProducer reactiveRedisStreamProducer(
 ReactiveRedisConnectionFactory reactiveRedisConnectionFactory) {
ReactiveRedisStreamMessageProducer messageProducer =
 new ReactiveRedisStreamMessageProducer(reactiveRedisConnectionFactory,
"myStreamKey"); ①
 messageProducer.setStreamReceiverOptions(②
 StreamReceiver.StreamReceiverOptions.builder()
 .pollTimeout(Duration.ofMillis(100))
 .build());
 messageProducer.setAutoStartup(true); ③
 messageProducer.setAutoAck(false); ④
 messageProducer.setCreateConsumerGroup(true); ⑤
 messageProducer.setConsumerGroup("my-group"); ⑥
 messageProducer.setConsumerName("my-consumer"); ⑦
 messageProducer.setOutputChannel(fromRedisStreamChannel); ⑧
 messageProducer.setReadOffset(ReadOffset.latest()); ⑨
 messageProducer.extractPayload(true); ⑩
 return messageProducer;
}

① Construct an instance of ReactiveRedisStreamMessageProducer using
ReactiveRedisConnectionFactory and stream key to read records.

② A StreamReceiver.StreamReceiverOptions to consume redis stream using reactive
infrastructure.

③ A SmartLifecycle attribute to specify whether this endpoint should start automatically after
the application context start or not. It defaults to true. If false, RedisStreamMessageProducer
should be started manually messageProducer.start().

④ If false, received messages are not auto acknowledged. The acknowledgement of the
message will be deferred to the client consuming message. It defaults to true.

⑤ If true, a consumer group will be created. During creation of consumer group stream will
be created (if not exists yet), too. Consumer group track message delivery and distinguish
between consumers. It defaults to false.

⑥ Set Consumer Group name. It defaults to the defined bean name.

⑦ Set Consumer name. Reads message as my-consumer from group my-group.

⑧ The message channel to which to send messages from this endpoint.

⑨ Define the offset to read message. It defaults to ReadOffset.latest().

⑩ If 'true', channel adapter will extract payload value from the Record. Otherwise the whole
Record is used as a payload. It defaults to true.

If the autoAck is set to false, the Record in Redis Stream is not acknowledge automatically by the
Redis driver, instead an IntegrationMessageHeaderAccessor.ACKNOWLEDGMENT_CALLBACK header is added
into a message to produce with a SimpleAcknowledgment instance as a value. It is a target integration

649

flow responsibility to call its acknowledge() callback whenever the business logic is done for the
message based on such a record. Similar logic is required even when an exception happens during
deserialization and errorChannel is configured. So, target error handler must decided to ack or nack
such a failed message. Alongside with IntegrationMessageHeaderAccessor.ACKNOWLEDGMENT_CALLBACK,
the ReactiveRedisStreamMessageProducer also populates these headers into the message to produce:
RedisHeaders.STREAM_KEY, RedisHeaders.STREAM_MESSAGE_ID, RedisHeaders.CONSUMER_GROUP and
RedisHeaders.CONSUMER.

30.12. Redis Lock Registry
Spring Integration 4.0 introduced the RedisLockRegistry. Certain components (for example,
aggregator and resequencer) use a lock obtained from a LockRegistry instance to ensure that only
one thread manipulates a group at a time. The DefaultLockRegistry performs this function within a
single component. You can now configure an external lock registry on these components. When you
use it with a shared MessageGroupStore, you can use the RedisLockRegistry to provide this
functionality across multiple application instances, such that only one instance can manipulate the
group at a time.

When a lock is released by a local thread, another local thread can generally acquire the lock
immediately. If a lock is released by a thread using a different registry instance, it can take up to
100ms to acquire the lock.

To avoid “hung” locks (when a server fails), the locks in this registry are expired after a default 60
seconds, but you can configure this value on the registry. Locks are normally held for a much
smaller time.



Because the keys can expire, an attempt to unlock an expired lock results in an
exception being thrown. However, the resources protected by such a lock may
have been compromised, so such exceptions should be considered to be severe.
You should set the expiry at a large enough value to prevent this condition, but set
it low enough that the lock can be recovered after a server failure in a reasonable
amount of time.

Starting with version 5.0, the RedisLockRegistry implements ExpirableLockRegistry, which removes
locks last acquired more than age ago and that are not currently locked.

650

Chapter 31. Resource Support
The resource inbound channel adapter builds upon Spring’s Resource abstraction to support greater
flexibility across a variety of actual types of underlying resources, such as a file, a URL, or a class
path resource. Therefore, it is similar to but more generic than the file inbound channel adapter.

31.1. Resource Inbound Channel Adapter
The resource inbound channel adapter is a polling adapter that creates a Message whose payload is
a collection of Resource objects.

Resource objects are resolved based on the pattern specified by the pattern attribute. The collection
of resolved Resource objects is then sent as a payload within a Message to the adapter’s channel. That
is one major difference between resource inbound channel adapter and file inbound channel
adapter: The latter buffers File objects and sends a single File object per Message.

The following example shows a simple configuration that finds all files that end with the
'properties' extension in the things.thing1 package available on the classpath and sends them as
the payload of a Message to the channel named ‘resultChannel’:

<int:resource-inbound-channel-adapter id="resourceAdapter"
 channel="resultChannel"
 pattern="classpath:things/thing1/*.properties">
 <int:poller fixed-rate="1000"/>
</int:resource-inbound-channel-adapter>

The resource inbound channel adapter relies on the
org.springframework.core.io.support.ResourcePatternResolver strategy interface to resolve the
provided pattern. It defaults to an instance of the current ApplicationContext. However, you can
provide a reference to an instance of your own implementation of ResourcePatternResolver by
setting the pattern-resolver attribute, as the following example shows:

<int:resource-inbound-channel-adapter id="resourceAdapter"
 channel="resultChannel"
 pattern="classpath:things/thing1/*.properties"
 pattern-resolver="myPatternResolver">
 <int:poller fixed-rate="1000"/>
</int:resource-inbound-channel-adapter>

<bean id="myPatternResolver" class="org.example.MyPatternResolver"/>

You may have a use case where you need to further filter the collection of resources resolved by the
ResourcePatternResolver. For example, you may want to prevent resources that were already

651

resolved from appearing in a collection of resolved resources ever again. On the other hand, your
resources might be updated rather often and you do want them to be picked up again. In other
words, both defining an additional filter and disabling filtering altogether are valid use cases. You
can provide your own implementation of the
org.springframework.integration.util.CollectionFilter strategy interface, as the following
example shows:

public interface CollectionFilter<T> {

 Collection<T> filter(Collection<T> unfilteredElements);

}

The CollectionFilter receives a collection of un-filtered elements (which are Resource objects in the
preceding example), and it returns a collection of filtered elements of that same type.

If you define the adapter with XML but you do not specify a filter reference, the resource inbound
channel adapter uses a default implementation of CollectionFilter. The implementation class of
that default filter is org.springframework.integration.util.AcceptOnceCollectionFilter. It
remembers the elements passed in the previous invocation in order to avoid returning those
elements more than once.

To inject your own implementation of CollectionFilter instead, use the filter attribute, as the
following example shows:

<int:resource-inbound-channel-adapter id="resourceAdapter"
 channel="resultChannel"
 pattern="classpath:things/thing1/*.properties"
 filter="myFilter">
 <int:poller fixed-rate="1000"/>
</int:resource-inbound-channel-adapter>

<bean id="myFilter" class="org.example.MyFilter"/>

If you do not need any filtering and want to disable even the default CollectionFilter strategy,
provide an empty value for the filter attribute (for example, filter="")

652

Chapter 32. RMI Support


this module is deprecated since 5.4 with no replacement and will be removed in
6.0.

This chapter explains how to use channel adapters that are specific to RMI (Remote Method
Invocation) to distribute a system over multiple JVMs. The first section deals with sending messages
over RMI. The second section shows how to receive messages over RMI. The last section shows how
to define RMI channel adapters by using the namespace support.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-rmi</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-rmi:5.4.0"

32.1. Outbound RMI
To send messages from a channel over RMI, you can define an RmiOutboundGateway. This gateway
uses Spring’s RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that, to
invoke a remote interface that does not use Spring Integration, you should use a service activator in
combination with Spring’s RmiProxyFactoryBean.

To configure the outbound gateway, you can write a bean definition similar the following:

<bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiOutboundGateway>
 <constructor-arg value="rmi://host"/>
 <property name="replyChannel" value="replies"/>
</bean>

32.2. Inbound RMI
To receive messages over RMI, you need to use an RmiInboundGateway. You can configure the gateway
as shown in the following example:

653

<bean id="rmiInGateway" class=org.spf.integration.rmi.RmiInboundGateway>
 <property name="requestChannel" value="requests"/>
</bean>



If you use an errorChannel on an inbound gateway, it the error flow normally
returns a result or throws an exception. This is because it is likely that there is a
corresponding outbound gateway waiting for a response of some kind. Consuming
a message on the error flow and not replying results in no reply for the inbound
gateway. Exceptions (on the main flow when there is no errorChannel or on the
error flow) propagate to the corresponding inbound gateway.

32.3. RMI namespace support
To configure the inbound gateway, you can use the namespace support for it. The following code
snippet shows the different configuration options that are supported:

<int-rmi:inbound-gateway id="gatewayWithDefaults" request-channel="testChannel"/>

<int-rmi:inbound-gateway id="gatewayWithCustomProperties" request-channel=
"testChannel"
 expect-reply="false" request-timeout="123" reply-timeout="456"/>

<int-rmi:inbound-gateway id="gatewayWithHost" request-channel="testChannel"
 registry-host="localhost"/>

<int-rmi:inbound-gateway id="gatewayWithPort" request-channel="testChannel"
 registry-port="1234" error-channel="rmiErrorChannel"/>

<int-rmi:inbound-gateway id="gatewayWithExecutorRef" request-channel="testChannel"
 remote-invocation-executor="invocationExecutor"/>

You can also use the namespace support to configure the outbound gateway. The following code
snippet shows the different configuration for an outbound RMI gateway:

<int-rmi:outbound-gateway id="gateway"
 request-channel="localChannel"
 remote-channel="testChannel"
 host="localhost"/>

654

32.4. Configuring with Java Configuration
The following example shows how to configure an inbound gateway and an outbound gateway
with Java:

@Bean
public RmiInboundGateway inbound() {
 RmiInboundGateway gateway = new RmiInboundGateway();
 gateway.setRequestChannel(requestChannel());
 gateway.setRegistryHost("host");
 gateway.setRegistryPort(port);
 return gateway;
}

@Bean
@ServiceActivator(inputChannel="inChannel")
public RmiOutboundGateway outbound() {
 RmiOutboundGateway gateway = new RmiOutboundGateway("rmi://host:port/"
 + RmiInboundGateway.SERVICE_NAME_PREFIX + "remoteChannelName");
 return gateway;
}

As of version 4.3, the outbound gateway has a second constructor that takes an
RmiProxyFactoryBeanConfigurer instance, along with the service url argument. It allows further
configuration before the proxy is created — for example, to inject a Spring Security
ContextPropagatingRemoteInvocationFactory, as the following example shows:

@Bean
@ServiceActivator(inputChannel="inChannel")
public RmiOutboundGateway outbound() {
 RmiOutboundGateway gateway = new RmiOutboundGateway("rmi://host:port/"
 + RmiInboundGateway.SERVICE_NAME_PREFIX + "remoteChannelName",
 pfb -> {
 pfb.setRemoteInvocationFactory(new
ContextPropagatingRemoteInvocationFactory());
 });
 return gateway;
}

Starting with version 5.0, you can set this with the XML namespace by using the configurer
attribute.

655

Chapter 33. RSocket Support
The RSocket Spring Integration module (spring-integration-rsocket) allows for executions of
RSocket application protocol.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-rsocket</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-rsocket:5.4.0"

This module is available starting with version 5.2 and is based on the Spring Messaging foundation
with its RSocket component implementations, such as RSocketRequester, RSocketMessageHandler and
RSocketStrategies. See Spring Framework RSocket Support for more information about the RSocket
protocol, terminology and components.

Before starting an integration flow processing via channel adapters, we need to establish an
RSocket connection between server and client. For this purpose, Spring Integration RSocket support
provides the ServerRSocketConnector and ClientRSocketConnector implementations of the
AbstractRSocketConnector.

The ServerRSocketConnector exposes a listener on the host and port according to provided
io.rsocket.transport.ServerTransport for accepting connections from clients. An internal
RSocketServer instance can be customized with the setServerConfigurer(), as well as other options
that can be configured, e.g. RSocketStrategies and MimeType for payload data and headers metadata.
When a setupRoute is provided from the client requester (see ClientRSocketConnector below), a
connected client is stored as a RSocketRequester under the key determined by the
clientRSocketKeyStrategy BiFunction<Map<String, Object>, DataBuffer, Object>. By default a
connect data is used for the key as a converted value to string with UTF-8 charset. Such an
RSocketRequester registry can be used in the application logic to determine a particular client
connection for interaction with it, or for publishing the same message to all connected clients.
When a connection is established from the client, an RSocketConnectedEvent is emitted from the
ServerRSocketConnector. This is similar to what is provided by the @ConnectMapping annotation in
Spring Messaging module. The mapping pattern * means accept all the client routes. The
RSocketConnectedEvent can be used to distinguish different routes via
DestinationPatternsMessageCondition.LOOKUP_DESTINATION_HEADER header.

A typical server configuration might look like this:

656

https://rsocket.io/
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#rsocket

@Bean
public RSocketStrategies rsocketStrategies() {
 return RSocketStrategies.builder()
 .decoder(StringDecoder.textPlainOnly())
 .encoder(CharSequenceEncoder.allMimeTypes())
 .dataBufferFactory(new DefaultDataBufferFactory(true))
 .build();
}

@Bean
public ServerRSocketConnector serverRSocketConnector() {
 ServerRSocketConnector serverRSocketConnector = new ServerRSocketConnector(
"localhost", 0);
 serverRSocketConnector.setRSocketStrategies(rsocketStrategies());
 serverRSocketConnector.setMetadataMimeType(new MimeType("message",
"x.rsocket.routing.v0"));
 serverRSocketConnector.setServerConfigurer((server) -> server.payloadDecoder
(PayloadDecoder.ZERO_COPY));
 serverRSocketConnector.setClientRSocketKeyStrategy((headers, data) -> ""
 + headers.get
(DestinationPatternsMessageCondition.LOOKUP_DESTINATION_HEADER));
 return serverRSocketConnector;
}

@EventListener
public void onApplicationEvent(RSocketConnectedEvent event) {
 ...
}

All the options, including RSocketStrategies bean and @EventListener for RSocketConnectedEvent, are
optional. See ServerRSocketConnector JavaDocs for more information.

Starting with version 5.2.1, the ServerRSocketMessageHandler is extracted to a public, top-level class
for possible connection with an existing RSocket server. When a ServerRSocketConnector is supplied
with an external instance of ServerRSocketMessageHandler, it doesn’t create an RSocket server
internally and just delegates all the handling logic to the provided instance. In addition the
ServerRSocketMessageHandler can be configured with a messageMappingCompatible flag to handle also
@MessageMapping for an RSocket controller, fully replacing the functionality provided by the
standard RSocketMessageHandler. This can be useful in mixed configurations, when classic
@MessageMapping methods are present in the same application along with RSocket channel adapters
and an externally configured RSocket server is present in the application.

The ClientRSocketConnector serves as a holder for RSocketRequester based on the RSocket connected
via the provided ClientTransport. The RSocketConnector can be customized with the provided
RSocketConnectorConfigurer. The setupRoute (with optional templates variables) and setupData with
metadata can be also configured on this component.

657

A typical client configuration might look like this:

@Bean
public RSocketStrategies rsocketStrategies() {
 return RSocketStrategies.builder()
 .decoder(StringDecoder.textPlainOnly())
 .encoder(CharSequenceEncoder.allMimeTypes())
 .dataBufferFactory(new DefaultDataBufferFactory(true))
 .build();
}

@Bean
public ClientRSocketConnector clientRSocketConnector() {
 ClientRSocketConnector clientRSocketConnector =
 new ClientRSocketConnector("localhost", serverRSocketConnector()
.getBoundPort().block());
 clientRSocketConnector.setRSocketStrategies(rsocketStrategies());
 clientRSocketConnector.setSetupRoute("clientConnect/{user}");
 clientRSocketConnector.setSetupRouteVariables("myUser");
 return clientRSocketConnector;
}

Most of these options (including RSocketStrategies bean) are optional. Note how we connect to the
locally started RSocket server on the arbitrary port. See
ServerRSocketConnector.clientRSocketKeyStrategy for setupData use cases. Also see
ClientRSocketConnector and its AbstractRSocketConnector superclass JavaDocs for more information.

Both ClientRSocketConnector and ServerRSocketConnector are responsible for mapping inbound
channel adapters to their path configuration for routing incoming RSocket requests. See the next
section for more information.

33.1. RSocket Inbound Gateway
The RSocketInboundGateway is responsible for receiving RSocket requests and producing responses
(if any). It requires an array of path mapping which could be as patterns similar to MVC request
mapping or @MessageMapping semantics. In addition (since version 5.2.2), a set of interaction models
(see RSocketInteractionModel) can be configured on the RSocketInboundGateway to restrict RSocket
requests to this endpoint by the particular frame type. By default all the interaction models are
supported. Such a bean, according its IntegrationRSocketEndpoint implementation (extension of a
ReactiveMessageHandler), is auto detected either by the ServerRSocketConnector or
ClientRSocketConnector for a routing logic in the internal IntegrationRSocketMessageHandler for
incoming requests. An AbstractRSocketConnector can be provided to the RSocketInboundGateway for
explicit endpoint registration. This way, the auto-detection option is disabled on that
AbstractRSocketConnector. The RSocketStrategies can also be injected into the RSocketInboundGateway
or they are obtained from the provided AbstractRSocketConnector overriding any explicit injection.
Decoders are used from those RSocketStrategies to decode a request payload according to the

658

provided requestElementType. If an RSocketPayloadReturnValueHandler.RESPONSE_HEADER header is not
provided in incoming the Message, the RSocketInboundGateway treats a request as a fireAndForget
RSocket interaction model. In this case, an RSocketInboundGateway performs a plain send operation
into the outputChannel. Otherwise a MonoProcessor value from the
RSocketPayloadReturnValueHandler.RESPONSE_HEADER header is used for sending a reply to the
RSocket. For this purpose, an RSocketInboundGateway performs a sendAndReceiveMessageReactive
operation on the outputChannel. The payload of the message to send downstream is always a Flux
according to MessagingRSocket logic. When in a fireAndForget RSocket interaction model, the
message has a plain converted payload. The reply payload could be a plain object or a Publisher - the
RSocketInboundGateway converts both of them properly into an RSocket response according to the
encoders provided in the RSocketStrategies.

Starting with version 5.3, a decodeFluxAsUnit option (default false) is added to the
RSocketInboundGateway. By default incoming Flux is transformed the way that each its event is
decoded separately. This is an exact behavior present currently with @MessageMapping semantics. To
restore a previous behavior or decode the whole Flux as single unit according application
requirements, the decodeFluxAsUnit has to be set to true. However the target decoding logic depends
on the Decoder selected, e.g. a StringDecoder requires a new line separator (by default) to be present
in the stream to indicate a byte buffer end.

See Configuring RSocket Endpoints with Java for samples how to configure an
RSocketInboundGateway endpoint and deal with payloads downstream.

33.2. RSocket Outbound Gateway
The RSocketOutboundGateway is an AbstractReplyProducingMessageHandler to perform requests into
RSocket and produce replies based on the RSocket replies (if any). A low level RSocket protocol
interaction is delegated into an RSocketRequester resolved from the provided
ClientRSocketConnector or from the
RSocketRequesterMethodArgumentResolver.RSOCKET_REQUESTER_HEADER header in the request message
on the server side. A target RSocketRequester on the server side can be resolved from an
RSocketConnectedEvent or using ServerRSocketConnector.getClientRSocketRequester() API according
some business key selected for connect request mappings via
ServerRSocketConnector.setClientRSocketKeyStrategy(). See ServerRSocketConnector JavaDocs for
more information.

The route to send request has to be configured explicitly (together with path variables) or via a
SpEL expression which is evaluated against request message.

The RSocket interaction model can be provided via RSocketInteractionModel option or respective
expression setting. By default a requestResponse is used for common gateway use-cases.

When request message payload is a Publisher, a publisherElementType option can be provided to
encode its elements according an RSocketStrategies supplied in the target RSocketRequester. An
expression for this option can evaluate to a ParameterizedTypeReference. See the
RSocketRequester.RequestSpec.data() JavaDocs for more information about data and its type.

An RSocket request can also be enhanced with a metadata. For this purpose a metadataExpression
against request message can be configured on the RSocketOutboundGateway. Such an expression must

659

evaluate to a Map<Object, MimeType>.

When interactionModel is not fireAndForget, an expectedResponseType must be supplied. It is a
String.class by default. An expression for this option can evaluate to a ParameterizedTypeReference.
See the RSocketRequester.RetrieveSpec.retrieveMono() and
RSocketRequester.RetrieveSpec.retrieveFlux() JavaDocs for more information about reply data and
its type.

A reply payload from the RSocketOutboundGateway is a Mono (even for a fireAndForget interaction
model it is Mono<Void>) always making this component as async. Such a Mono is subscribed before
producing into the outputChannel for regular channels or processed on demand by the
FluxMessageChannel. A Flux response for the requestStream or requestChannel interaction model is
also wrapped into a reply Mono. It can be flattened downstream by the FluxMessageChannel with a
passthrough service activator:

@ServiceActivator(inputChannel = "rsocketReplyChannel", outputChannel =
"fluxMessageChannel")
public Flux<?> flattenRSocketResponse(Flux<?> payload) {
 return payload;
}

Or subscribed explicitly in the target application logic.

See Configuring RSocket Endpoints with Java for samples how to configure an
RSocketOutboundGateway endpoint a deal with payloads downstream.

33.3. RSocket Namespace Support
Spring Integration provides an rsocket namespace and the corresponding schema definition. To
include it in your configuration, add the following namespace declaration in your application
context configuration file:

660

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-rsocket="http://www.springframework.org/schema/integration/rsocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/rsocket
 https://www.springframework.org/schema/integration/rsocket/spring-integration-
rsocket.xsd">
 ...
</beans>

33.3.1. Inbound

To configure Spring Integration RSocket inbound channel adapters with XML, you need to use an
appropriate inbound-gateway components from the int-rsocket namespace. The following example
shows how to configure it:

<int-rsocket:inbound-gateway id="inboundGateway"
 path="testPath"
 interaction-models="requestStream,requestChannel"
 rsocket-connector="clientRSocketConnector"
 request-channel="requestChannel"
 rsocket-strategies="rsocketStrategies"
 request-element-type="byte[]"/>

A ClientRSocketConnector and ServerRSocketConnector should be configured as generic <bean>
definitions.

33.3.2. Outbound

661

<int-rsocket:outbound-gateway id="outboundGateway"
 client-rsocket-connector="clientRSocketConnector"
 auto-startup="false"
 interaction-model="fireAndForget"
 route-expression="'testRoute'"
 request-channel="requestChannel"
 publisher-element-type="byte[]"
 expected-response-type="java.util.Date"
 metadata-expression="{'metadata': new
org.springframework.util.MimeType('*')}"/>

See spring-integration-rsocket.xsd for description for all those XML attributes.

33.4. Configuring RSocket Endpoints with Java
The following example shows how to configure an RSocket inbound endpoint with Java:

@Bean
public RSocketInboundGateway rsocketInboundGatewayRequestReply() {
 RSocketInboundGateway rsocketInboundGateway = new RSocketInboundGateway("echo
");
 rsocketInboundGateway.setRequestChannelName("requestReplyChannel");
 return rsocketInboundGateway;
}

@Transformer(inputChannel = "requestReplyChannel")
public Mono<String> echoTransformation(Flux<String> payload) {
 return payload.next().map(String::toUpperCase);
}

A ClientRSocketConnector or ServerRSocketConnector is assumed in this configuration with meaning
for auto-detection of such an endpoint on the “echo” path. Pay attention to the @Transformer
signature with its fully reactive processing of the RSocket requests and producing reactive replies.

The following example shows how to configure a RSocket inbound gateway with the Java DSL:

662

@Bean
public IntegrationFlow rsocketUpperCaseFlow() {
 return IntegrationFlows
 .from(RSockets.inboundGateway("/uppercase")
 .interactionModels(RSocketInteractionModel.requestChannel))
 .<Flux<String>, Mono<String>>transform((flux) -> flux.next().map(String:
:toUpperCase))
 .get();
}

A ClientRSocketConnector or ServerRSocketConnector is assumed in this configuration with meaning
for auto-detection of such an endpoint on the “/uppercase” path and expected interaction model as
“request channel”.

The following example shows how to configure a RSocket outbound gateway with Java:

@Bean
@ServiceActivator(inputChannel = "requestChannel", outputChannel = "replyChannel")
public RSocketOutboundGateway rsocketOutboundGateway() {
 RSocketOutboundGateway rsocketOutboundGateway =
 new RSocketOutboundGateway(
 new FunctionExpression<Message<?>>((m) ->
 m.getHeaders().get("route_header")));
 rsocketOutboundGateway.setInteractionModelExpression(
 new FunctionExpression<Message<?>>((m) -> m.getHeaders().get(
"rsocket_interaction_model")));
 rsocketOutboundGateway.setClientRSocketConnector(clientRSocketConnector());
 return rsocketOutboundGateway;
}

The setClientRSocketConnector() is required only for the client side. On the server side, the
RSocketRequesterMethodArgumentResolver.RSOCKET_REQUESTER_HEADER header with an RSocketRequester
value must be supplied in the request message.

The following example shows how to configure a RSocket outbound gateway with the Java DSL:

663

@Bean
public IntegrationFlow rsocketUpperCaseRequestFlow(ClientRSocketConnector
clientRSocketConnector) {
 return IntegrationFlows
 .from(Function.class)
 .handle(RSockets.outboundGateway("/uppercase")
 .interactionModel(RSocketInteractionModel.requestResponse)
 .expectedResponseType(String.class)
 .clientRSocketConnector(clientRSocketConnector))
 .get();
}

See IntegrationFlow as a Gateway for more information how to use a mentioned Function interface
in the beginning of the flow above.

664

./dsl.pdf#java-dsl-gateway
./dsl.pdf#java-dsl-gateway

Chapter 34. SFTP Adapters
Spring Integration provides support for file transfer operations over SFTP.

The Secure File Transfer Protocol (SFTP) is a network protocol that lets you transfer files between
two computers on the Internet over any reliable stream.

The SFTP protocol requires a secure channel, such as SSH, and visibility to a client’s identity
throughout the SFTP session.

Spring Integration supports sending and receiving files over SFTP by providing three client side
endpoints: inbound channel adapter, outbound channel adapter, and outbound gateway. It also
provides convenient namespace configuration to define these client components.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-sftp</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-sftp:5.4.0"

To include the SFTP namespace in your xml configuration, include the following attributes on the
root element:

xmlns:int-sftp="http://www.springframework.org/schema/integration/sftp"
xsi:schemaLocation="http://www.springframework.org/schema/integration/sftp
 https://www.springframework.org/schema/integration/sftp/spring-integration-
sftp.xsd"

34.1. SFTP Session Factory


As of version 3.0, sessions are no longer cached by default. See SFTP Session
Caching.

Before configuring SFTP adapters, you must configure an SFTP session factory. You can configure
the SFTP session factory with a regular bean definition, as the following example shows:

665

<beans:bean id="sftpSessionFactory"
 class="org.springframework.integration.sftp.session.DefaultSftpSessionFactory
">
 <beans:property name="host" value="localhost"/>
 <beans:property name="privateKey" value="classpath:META-INF/keys/sftpTest"/>
 <beans:property name="privateKeyPassphrase" value="springIntegration"/>
 <beans:property name="port" value="22"/>
 <beans:property name="user" value="kermit"/>
</beans:bean>

Every time an adapter requests a session object from its SessionFactory, a new SFTP session is
created. Under the covers, the SFTP Session Factory relies on the JSch library to provide the SFTP
capabilities.

However, Spring Integration also supports the caching of SFTP sessions. See SFTP Session Caching
for more information.



JSch supports multiple channels (operations) over a connection to the server. By
default, the Spring Integration session factory uses a separate physical connection
for each channel. Since Spring Integration 3.0, you can configure the session
factory (using a boolean constructor arg - default false) to use a single connection
to the server and create multiple JSch channels on that single connection.

When using this feature, you must wrap the session factory in a caching session
factory, as described later, so that the connection is not physically closed when an
operation completes.

If the cache is reset, the session is disconnected only when the last channel is
closed.

The connection is refreshed if it is found to be disconnected when a new operation
obtains a session.



If you experience connectivity problems and would like to trace session creation
and see which sessions are polled, you may enable tracing by setting the logger to
TRACE level (for example,
log4j.category.org.springframework.integration.sftp=TRACE). See SFTP/JSCH
Logging.

Now all you need to do is inject this SFTP session factory into your adapters.


A more practical way to provide values for the SFTP session factory is to use
Spring’s property placeholder support.

666

http://www.jcraft.com/jsch
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-factory-placeholderconfigurer

34.1.1. Configuration Properties

The following list describes all the properties that are exposed by the DefaultSftpSessionFactory.

isSharedSession (constructor argument)::When true, a single connection is used, and JSch Channels
are multiplexed. It defaults to false.

clientVersion::Lets you set the client version property. It’s default depends on the underlying JSch
version but it will look like: SSH-2.0-JSCH-0.1.45

enableDaemonThread::If true, all threads are daemon threads. If set to false, normal non-daemon
threads are used instead. This property is set on the underlying session. There, this property
defaults to false.

host::The URL of the host to which you want to connect. Required.

hostKeyAlias::Sets the host key alias, which is used when comparing the host key to the known hosts
list.

knownHostsResource::Specifies the file resource that used for a host key repository. The file has the
same format as OpenSSH’s known_hosts file and is required and must be pre-populated if
allowUnknownKeys is false.

password::The password to authenticate against the remote host. If a password is not provided, then
the privateKey property is required. It is not allowed if you set userInfo. The password is obtained
from that object.

port::The port over which the SFTP connection shall be established. If not specified, this value
defaults to 22. If specified, this properties must be a positive number.

privateKey::Lets you set a resource that represents the location of the private key used for
authenticating against the remote host. If the privateKey is not provided, then the password property
is required.

privateKeyPassphrase::The password for the private key. If you set userInfo, privateKeyPassphrase is
not allowed . The passphrase is obtained from that object. Optional.

proxy::Allows for specifying a JSch-based proxy. If set, the proxy object is used to create the
connection to the remote host through the proxy. See Proxy Factory Bean for a convenient way to
configure the proxy.

serverAliveCountMax::Specifies the number of server-alive messages, which are sent without any
reply from the server before disconnecting. If not set, this property defaults to 1.

serverAliveInterval::Sets the timeout interval (in milliseconds) before a server-alive message is
sent, in case no message is received from the server.

sessionConfig::By using Properties, you can set additional configuration setting on the underlying
JSch Session.

socketFactory::Lets you pass in a SocketFactory. The socket factory is used to create a socket to the

667

https://docs.spring.io/spring-integration/api/org/springframework/integration/sftp/session/DefaultSftpSessionFactory.html
https://epaul.github.io/jsch-documentation/javadoc/com/jcraft/jsch/Session.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
https://epaul.github.com/jsch-documentation/javadoc/com/jcraft/jsch/Proxy.html
https://epaul.github.com/jsch-documentation/javadoc/com/jcraft/jsch/SocketFactory.html

target host. When a proxy is used, the socket factory is passed to the proxy. By default, plain TCP
sockets are used.

timeout::The timeout property is used as the socket timeout parameter, as well as the default
connection timeout. Defaults to 0, which means, that no timeout will occur.

user::The remote user to use. Required.

allowUnknownKeys::Set to true to allow connections to hosts with unknown (or changed) keys. Its
default is 'false'. It is applied only if no userInfo is provided. If false, a pre-populated knownHosts file
is required.

userInfo::Set a custom UserInfo to be used during authentication. In particular, promptYesNo() is
invoked when an unknown (or changed) host key is received. See also allowUnknownKeys. When you
provide a UserInfo, the password and private key passphrase are obtained from it, and you cannot set
discrete password and privateKeyPassphrase properties.

34.2. Proxy Factory Bean
Jsch provides a mechanism to connect to the server over an HTTP or SOCKS proxy. To use this
feature, configure the Proxy and provide a reference to the DefaultSftpSessionFactory, as discussed
earlier. Three implementations are provided by Jsch: HTTP, SOCKS4, and SOCKS5. Spring Integration 4.3
introduced a FactoryBean, easing configuration of these proxies by allowing property injection, as
the following example shows:

<bean id="proxySocks5" class=
"org.springframework.integration.sftp.session.JschProxyFactoryBean">
 <constructor-arg value="SOCKS5" />
 <constructor-arg value="${sftp.proxy.address}" />
 <constructor-arg value="${sftp.proxy.port}" />
 <constructor-arg value="${sftp.proxy.user}" />
 <constructor-arg value="${sftp.proxy.pw}" />
</bean>

<bean id="sessionFactory"
 class=
"org.springframework.integration.sftp.session.DefaultSftpSessionFactory" >
 ...
 <property name="proxy" ref="proxySocks5" />
 ...
</bean>

34.3. Delegating Session Factory
Version 4.2 introduced the DelegatingSessionFactory, which allows the selection of the actual
session factory at runtime. Prior to invoking the SFTP endpoint, you can call setThreadKey() on the

668

factory to associate a key with the current thread. That key is then used to look up the actual
session factory to be used. You can clear the key by calling clearThreadKey() after use.

We added convenience methods so that you can more easily do so from a message flow, as the
following example shows:

<bean id="dsf" class=
"org.springframework.integration.file.remote.session.DelegatingSessionFactory">
 <constructor-arg>
 <bean class="o.s.i.file.remote.session.DefaultSessionFactoryLocator">
 <!-- delegate factories here -->
 </bean>
 </constructor-arg>
</bean>

<int:service-activator input-channel="in" output-channel="c1"
 expression="@dsf.setThreadKey(#root, headers['factoryToUse'])" />

<int-sftp:outbound-gateway request-channel="c1" reply-channel="c2" ... />

<int:service-activator input-channel="c2" output-channel="out"
 expression="@dsf.clearThreadKey(#root)" />


When using session caching (see SFTP Session Caching), each of the delegates
should be cached. You cannot cache the DelegatingSessionFactory itself.

Starting with version 5.0.7, the DelegatingSessionFactory can be used in conjunction with a
RotatingServerAdvice to poll multiple servers; see Inbound Channel Adapters: Polling Multiple
Servers and Directories.

34.4. SFTP Session Caching



Starting with Spring Integration version 3.0, sessions are no longer cached by
default. The cache-sessions attribute is no longer supported on endpoints. If you
wish to cache sessions, you must use a CachingSessionFactory (see the next
example).

In versions prior to 3.0, the sessions were automatically cached by default. A cache-sessions
attribute was available for disabling the auto caching, but that solution did not provide a way to
configure other session-caching attributes. For example, you could not limit on the number of
sessions created. To support that requirement and other configuration options, we added a
CachingSessionFactory. It provides sessionCacheSize and sessionWaitTimeout properties. As its name
suggests, the sessionCacheSize property controls how many active sessions the factory maintains in
its cache (the default is unbounded). If the sessionCacheSize threshold has been reached, any
attempt to acquire another session blocks until either one of the cached sessions becomes available
or until the wait time for a session expires (the default wait time is Integer.MAX_VALUE). The

669

sessionWaitTimeout property enables configuration of the wait time.

If you want your sessions to be cached, configure your default session factory (as described earlier)
and then wrap it in an instance of CachingSessionFactory where you may provide those additional
properties. The following example shows how to do so:

<bean id="sftpSessionFactory"
 class="org.springframework.integration.sftp.session.DefaultSftpSessionFactory">
 <property name="host" value="localhost"/>
</bean>

<bean id="cachingSessionFactory"
 class="org.springframework.integration.file.remote.session.CachingSessionFactory">
 <constructor-arg ref="sftpSessionFactory"/>
 <constructor-arg value="10"/>
 <property name="sessionWaitTimeout" value="1000"/>
</bean>

The preceding example creates a CachingSessionFactory with its sessionCacheSize set to 10 and its
sessionWaitTimeout set to one second (1000 milliseconds).

Starting with Spring Integration version 3.0, the CachingConnectionFactory provides a resetCache()
method. When invoked, all idle sessions are immediately closed and in-use sessions are closed
when they are returned to the cache. When using isSharedSession=true, the channel is closed and
the shared session is closed only when the last channel is closed. New requests for sessions
establish new sessions as necessary.

Starting with version 5.1, the CachingSessionFactory has a new property testSession. When true, the
session will be tested by performing a stat(getHome()) command to ensure it is still active; if not, it
will be removed from the cache; a new session is created if no active sessions are in the cache.

34.5. Using RemoteFileTemplate
Spring Integration version 3.0 provides a new abstraction over the SftpSession object. The template
provides methods to send, retrieve (as an InputStream), remove, and rename files. In addition, we
provide an execute method to let the caller run multiple operations on the session. In all cases, the
template takes care of reliably closing the session. For more information, see the Javadoc for
RemoteFileTemplate There is a subclass for SFTP: SftpRemoteFileTemplate.

We added additional methods in version 4.1, including getClientInstance(). It provides access to
the underlying ChannelSftp, which enables access to low-level APIs.

Version 5.0 introduced the RemoteFileOperations.invoke(OperationsCallback<F, T> action) method.
This method lets several RemoteFileOperations calls be called in the scope of the same thread-
bounded Session. This is useful when you need to perform several high-level operations of the
RemoteFileTemplate as one unit of work. For example, AbstractRemoteFileOutboundGateway uses it
with the mput command implementation, where we perform a put operation for each file in the
provided directory and recursively for its sub-directories. See the Javadoc for more information.

670

https://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/RemoteFileTemplate.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/RemoteFileTemplate.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/sftp/session/SftpRemoteFileTemplate.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/RemoteFileTemplate.html#invoke-org.springframework.integration.file.remote.OperationsCallback-

34.6. SFTP Inbound Channel Adapter
The SFTP inbound channel adapter is a special listener that connects to the server and listens for
the remote directory events (such as a new file being created), at which point it initiates a file
transfer. The following example shows how to configure an SFTP inbound channel adapter:

<int-sftp:inbound-channel-adapter id="sftpAdapterAutoCreate"
 session-factory="sftpSessionFactory"
 channel="requestChannel"
 filename-pattern="*.txt"
 remote-directory="/foo/bar"
 preserve-timestamp="true"
 local-directory="file:target/foo"
 auto-create-local-directory="true"
 local-filename-generator-expression="#this.toUpperCase() + '.a'"
 scanner="myDirScanner"
 local-filter="myFilter"
 temporary-file-suffix=".writing"
 max-fetch-size="-1"
 delete-remote-files="false">
 <int:poller fixed-rate="1000"/>
</int-sftp:inbound-channel-adapter>

The preceding configuration example shows how to provide values for various attributes, including
the following:

• local-directory: The location to which files are going to be transferred

• remote-directory: The remote source directory from which files are going to be transferred

• session-factory: A reference to the bean we configured earlier

By default, the transferred file carries the same name as the original file. If you want to override
this behavior, you can set the local-filename-generator-expression attribute, which lets you provide
a SpEL expression to generate the name of the local file. Unlike outbound gateways and adapters,
where the root object of the SpEL evaluation context is a Message, this inbound adapter does not yet
have the message at the time of evaluation, since that is what it ultimately generates with the
transferred file as its payload. Consequently, the root object of the SpEL evaluation context is the
original name of the remote file (a String).

The inbound channel adapter first retrieves the file to a local directory and then emits each file
according to the poller configuration. Starting with version 5.0, you can limit the number of files
fetched from the SFTP server when new file retrievals are needed. This can be beneficial when the
target files are large or when running in a clustered system with a persistent file list filter,
discussed later in this section. Use max-fetch-size for this purpose. A negative value (the default)
means no limit and all matching files are retrieved. See Inbound Channel Adapters: Controlling
Remote File Fetching for more information. Since version 5.0, you can also provide a custom
DirectoryScanner implementation to the inbound-channel-adapter by setting the scanner attribute.

671

Starting with Spring Integration 3.0, you can specify the preserve-timestamp attribute (the default is
false). When true, the local file’s modified timestamp is set to the value retrieved from the server.
Otherwise, it is set to the current time.

Starting with version 4.2, you can specify remote-directory-expression instead of remote-directory,
which lets you dynamically determine the directory on each poll — for example, remote-directory-
expression="@myBean.determineRemoteDir()".

Sometimes, file filtering based on the simple pattern specified via filename-pattern attribute might
not suffice. If this is the case, you can use the filename-regex attribute to specify a regular
expression (for example, filename-regex=".*\.test$"). If you need complete control, you can use the
filter attribute to provide a reference to a custom implementation of the
org.springframework.integration.file.filters.FileListFilter, which is a strategy interface for
filtering a list of files. This filter determines which remote files are retrieved. You can also combine
a pattern-based filter with other filters (such as an AcceptOnceFileListFilter, to avoid
synchronizing files that have previously been fetched) by using a CompositeFileListFilter.

The AcceptOnceFileListFilter stores its state in memory. If you wish the state to survive a system
restart, consider using the SftpPersistentAcceptOnceFileListFilter instead. This filter stores the
accepted file names in an instance of the MetadataStore strategy (see Metadata Store). This filter
matches on the filename and the remote modified time.

Since version 4.0, this filter requires a ConcurrentMetadataStore. When used with a shared data store
(such as Redis with the RedisMetadataStore), this lets filter keys be shared across multiple
application or server instances.

Starting with version 5.0, the SftpPersistentAcceptOnceFileListFilter with an in-memory
SimpleMetadataStore is applied by default for the SftpInboundFileSynchronizer. This filter is also
applied, together with the regex or pattern option in the XML configuration, as well as through
SftpInboundChannelAdapterSpec in Java DSL. You can handle any other use-cases by using
CompositeFileListFilter (or ChainFileListFilter).

The above discussion refers to filtering the files before retrieving them. Once the files have been
retrieved, an additional filter is applied to the files on the file system. By default, this is
an`AcceptOnceFileListFilter`, which, as discussed in this section, retains state in memory and does
not consider the file’s modified time. Unless your application removes files after processing, the
adapter re-processes the files on disk by default after an application restart.

Also, if you configure the filter to use a SftpPersistentAcceptOnceFileListFilter and the remote
file timestamp changes (causing it to be re-fetched), the default local filter does not allow this new
file to be processed.

For more information about this filter, and how it is used, see Remote Persistent File List Filters.

You can use the local-filter attribute to configure the behavior of the local file system filter.
Starting with version 4.3.8, a FileSystemPersistentAcceptOnceFileListFilter is configured by
default. This filter stores the accepted file names and modified timestamp in an instance of the
MetadataStore strategy (see Metadata Store) and detects changes to the local file modified time. The
default MetadataStore is a SimpleMetadataStore that stores state in memory.

672

./meta-data-store.pdf#metadata-store
./file.pdf#remote-persistent-flf
./meta-data-store.pdf#metadata-store

Since version 4.1.5, these filters have a new property called flushOnUpdate, which causes them to
flush the metadata store on every update (if the store implements Flushable).


Further, if you use a distributed MetadataStore (such as Redis Metadata Store or
Gemfire Metadata Store), you can have multiple instances of the same adapter or
application and be sure that one and only one instance processes a file.

The actual local filter is a CompositeFileListFilter that contains the supplied filter and a pattern
filter that prevents processing files that are in the process of being downloaded (based on the
temporary-file-suffix). Files are downloaded with this suffix (the default is .writing), and the files
are renamed to their final names when the transfer is complete, making them 'visible' to the filter.

See the schema for more detail on these attributes.

SFTP inbound channel adapter is a polling consumer. Therefore, you must configure a poller (either
a global default or a local element). Once the file has been transferred to a local directory, a
message with java.io.File as its payload type is generated and sent to the channel identified by the
channel attribute.

34.6.1. More on File Filtering and Large Files

Sometimes, a file that just appeared in the monitored (remote) directory is not complete. Typically
such a file is written with some temporary extension (such as .writing on a file named
something.txt.writing) and then renamed after the writing process completes. In most cases,
developers are interested only in files that are complete and would like to filter only those files. To
handle these scenarios, you can use the filtering support provided by the filename-pattern,
filename-regex, and filter attributes. If you need a custom filter implementation, you can include a
reference in your adapter by setting the filter attribute. The following example shows how to do
so:

<int-sftp:inbound-channel-adapter id="sftpInbondAdapter"
 channel="receiveChannel"
 session-factory="sftpSessionFactory"
 filter="customFilter"
 local-directory="file:/local-test-dir"
 remote-directory="/remote-test-dir">
 <int:poller fixed-rate="1000" max-messages-per-poll="10" task-executor=
"executor"/>
</int-sftp:inbound-channel-adapter>

<bean id="customFilter" class="org.foo.CustomFilter"/>

34.6.2. Recovering from Failures

You should understand the architecture of the adapter. A file synchronizer fetches the files, and a
FileReadingMessageSource emits a message for each synchronized file. As discussed earlier, two

673

./redis.pdf#redis-metadata-store
./gemfire.pdf#gemfire-metadata-store
https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

filters are involved. The filter attribute (and patterns) refers to the remote (SFTP) file list, to avoid
fetching files that have already been fetched. the FileReadingMessageSource uses the local-filter to
determine which files are to be sent as messages.

The synchronizer lists the remote files and consults its filter. The files are then transferred. If an IO
error occurs during file transfer, any files that have already been added to the filter are removed so
that they are eligible to be re-fetched on the next poll. This applies only if the filter implements
ReversibleFileListFilter (such as the AcceptOnceFileListFilter).

If, after synchronizing the files, an error occurs on the downstream flow processing a file, no
automatic rollback of the filter occurs, so the failed file is not reprocessed by default.

If you wish to reprocess such files after a failure, you can use a configuration similar to the
following to facilitate the removal of the failed file from the filter:

<int-sftp:inbound-channel-adapter id="sftpAdapter"
 session-factory="sftpSessionFactory"
 channel="requestChannel"
 remote-directory-expression="'/sftpSource'"
 local-directory="file:myLocalDir"
 auto-create-local-directory="true"
 filename-pattern="*.txt">
 <int:poller fixed-rate="1000">
 <int:transactional synchronization-factory="syncFactory" />
 </int:poller>
</int-sftp:inbound-channel-adapter>

<bean id="acceptOnceFilter"
 class="org.springframework.integration.file.filters.AcceptOnceFileListFilter"
/>

<int:transaction-synchronization-factory id="syncFactory">
 <int:after-rollback expression="payload.delete()" />
</int:transaction-synchronization-factory>

<bean id="transactionManager"
 class="org.springframework.integration.transaction.PseudoTransactionManager"
/>

The preceding configuration works for any ResettableFileListFilter.

Starting with version 5.0, the inbound channel adapter can build sub-directories locally, according
to the generated local file name. That can be a remote sub-path as well. To be able to read a local
directory recursively for modification according to the hierarchy support, you can now supply an
internal FileReadingMessageSource with a new RecursiveDirectoryScanner based on the Files.walk()
algorithm. See AbstractInboundFileSynchronizingMessageSource.setScanner() for more information.
Also, you can now switch the AbstractInboundFileSynchronizingMessageSource to the WatchService
-based DirectoryScanner by using setUseWatchService() option. It is also configured for all the

674

https://docs.spring.io/spring-integration/api/org/springframework/integration/file/remote/synchronizer/AbstractInboundFileSynchronizingMessageSource.html#setScanner-org.springframework.integration.file.DirectoryScanner

WatchEventType instances to react for any modifications in local directory. The reprocessing sample
shown earlier is based on the built-in functionality of the
FileReadingMessageSource.WatchServiceDirectoryScanner, which uses
ResettableFileListFilter.remove() when the file is deleted (StandardWatchEventKinds.ENTRY_DELETE)
from the local directory. See WatchServiceDirectoryScanner for more information.

34.6.3. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the inbound adapter
with Java:

675

./file.pdf#watch-service-directory-scanner

@SpringBootApplication
public class SftpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SftpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public SessionFactory<LsEntry> sftpSessionFactory() {
 DefaultSftpSessionFactory factory = new DefaultSftpSessionFactory(true);
 factory.setHost("localhost");
 factory.setPort(port);
 factory.setUser("foo");
 factory.setPassword("foo");
 factory.setAllowUnknownKeys(true);
 factory.setTestSession(true);
 return new CachingSessionFactory<LsEntry>(factory);
 }

 @Bean
 public SftpInboundFileSynchronizer sftpInboundFileSynchronizer() {
 SftpInboundFileSynchronizer fileSynchronizer = new
SftpInboundFileSynchronizer(sftpSessionFactory());
 fileSynchronizer.setDeleteRemoteFiles(false);
 fileSynchronizer.setRemoteDirectory("foo");
 fileSynchronizer.setFilter(new SftpSimplePatternFileListFilter("*.xml"));
 return fileSynchronizer;
 }

 @Bean
 @InboundChannelAdapter(channel = "sftpChannel", poller = @Poller(fixedDelay =
"5000"))
 public MessageSource<File> sftpMessageSource() {
 SftpInboundFileSynchronizingMessageSource source =
 new SftpInboundFileSynchronizingMessageSource
(sftpInboundFileSynchronizer());
 source.setLocalDirectory(new File("sftp-inbound"));
 source.setAutoCreateLocalDirectory(true);
 source.setLocalFilter(new AcceptOnceFileListFilter<File>());
 source.setMaxFetchSize(1);
 return source;
 }

 @Bean
 @ServiceActivator(inputChannel = "sftpChannel")
 public MessageHandler handler() {
 return new MessageHandler() {

676

 @Override
 public void handleMessage(Message<?> message) throws
MessagingException {
 System.out.println(message.getPayload());
 }

 };
 }

}

34.6.4. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the inbound adapter
with the Java DSL:

@SpringBootApplication
public class SftpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SftpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public IntegrationFlow sftpInboundFlow() {
 return IntegrationFlows
 .from(Sftp.inboundAdapter(this.sftpSessionFactory)
 .preserveTimestamp(true)
 .remoteDirectory("foo")
 .regexFilter(".*\\.txt$")
 .localFilenameExpression("#this.toUpperCase() + '.a'")
 .localDirectory(new File("sftp-inbound")),
 e -> e.id("sftpInboundAdapter")
 .autoStartup(true)
 .poller(Pollers.fixedDelay(5000)))
 .handle(m -> System.out.println(m.getPayload()))
 .get();
 }
}

34.6.5. Dealing With Incomplete Data

See Dealing With Incomplete Data.

677

./file.pdf#file-incomplete

The SftpSystemMarkerFilePresentFileListFilter is provided to filter remote files that don’t have the
corresponding marker file on the remote system. See the Javadoc for configuration information.

34.7. SFTP Streaming Inbound Channel Adapter
Version 4.3 introduced the streaming inbound channel adapter. This adapter produces message
with payloads of type InputStream, letting you fetch files without writing to the local file system.
Since the session remains open, the consuming application is responsible for closing the session
when the file has been consumed. The session is provided in the closeableResource header
(IntegrationMessageHeaderAccessor.CLOSEABLE_RESOURCE). Standard framework components, such as
the FileSplitter and StreamTransformer, automatically close the session. See File Splitter and Stream
Transformer for more information about these components. The following example shows how to
configure an SFTP streaming inbound channel adapter:

<int-sftp:inbound-streaming-channel-adapter id="ftpInbound"
 channel="ftpChannel"
 session-factory="sessionFactory"
 filename-pattern="*.txt"
 filename-regex=".*\.txt"
 filter="filter"
 filter-expression="@myFilterBean.check(#root)"
 remote-file-separator="/"
 comparator="comparator"
 max-fetch-size="1"
 remote-directory-expression="'foo/bar'">
 <int:poller fixed-rate="1000" />
</int-sftp:inbound-streaming-channel-adapter>

You can use only one of filename-pattern, filename-regex, filter, or filter-expression.



Starting with version 5.0, by default, the SftpStreamingMessageSource adapter
prevents duplicates for remote files by using
SftpPersistentAcceptOnceFileListFilter based on the in-memory
SimpleMetadataStore. By default, this filter is also applied together with the
filename pattern (or regex) as well. If you need to allow duplicates, you can use the
AcceptAllFileListFilter. You can handle any other use cases by using
CompositeFileListFilter (or ChainFileListFilter). The Java configuration shown
later shows one technique to remove the remote file after processing, avoiding
duplicates.

For more information about the SftpPersistentAcceptOnceFileListFilter, and how it is used, see
Remote Persistent File List Filters.

You can use the max-fetch-size attribute to limit the number of files fetched on each poll when a
fetch is necessary. Set it to 1 and use a persistent filter when running in a clustered environment.
See Inbound Channel Adapters: Controlling Remote File Fetching for more information.

678

https://docs.spring.io/spring-integration/api/org/springframework/integration/sftp/filters/SftpSystemMarkerFilePresentFileListFilter.html
./file.pdf#file-splitter
./transformer.pdf#stream-transformer
./transformer.pdf#stream-transformer
./file.pdf#remote-persistent-flf

The adapter puts the remote directory and the file name in headers (FileHeaders.REMOTE_DIRECTORY
and FileHeaders.REMOTE_FILE, respectively). Starting with version 5.0, the
FileHeaders.REMOTE_FILE_INFO header provides additional remote file information (in JSON). If you
set the fileInfoJson property on the SftpStreamingMessageSource to false, the header contains an
SftpFileInfo object. You can access the LsEntry object provided by the underlying Jsch library by
using the SftpFileInfo.getFileInfo() method. The fileInfoJson property is not available when you
use XML configuration, but you can set it by injecting the SftpStreamingMessageSource into one of
your configuration classes. See also Remote File Information.

Starting with version 5.1, the generic type of the comparator is LsEntry. Previously, it was
AbstractFileInfo<LsEntry>. This is because the sort is now performed earlier in the processing,
before filtering and applying maxFetch.

34.7.1. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the inbound adapter
with Java:

679

@SpringBootApplication
public class SftpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SftpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 @InboundChannelAdapter(channel = "stream")
 public MessageSource<InputStream> ftpMessageSource() {
 SftpStreamingMessageSource messageSource = new SftpStreamingMessageSource
(template());
 messageSource.setRemoteDirectory("sftpSource/");
 messageSource.setFilter(new AcceptAllFileListFilter<>());
 messageSource.setMaxFetchSize(1);
 return messageSource;
 }

 @Bean
 @Transformer(inputChannel = "stream", outputChannel = "data")
 public org.springframework.integration.transformer.Transformer transformer() {
 return new StreamTransformer("UTF-8");
 }

 @Bean
 public SftpRemoteFileTemplate template() {
 return new SftpRemoteFileTemplate(sftpSessionFactory());
 }

 @ServiceActivator(inputChannel = "data", adviceChain = "after")
 @Bean
 public MessageHandler handle() {
 return System.out::println;
 }

 @Bean
 public ExpressionEvaluatingRequestHandlerAdvice after() {
 ExpressionEvaluatingRequestHandlerAdvice advice = new
ExpressionEvaluatingRequestHandlerAdvice();
 advice.setOnSuccessExpression(
 "@template.remove(headers['file_remoteDirectory'] +
headers['file_remoteFile'])");
 advice.setPropagateEvaluationFailures(true);
 return advice;
 }

}

680

Notice that, in this example, the message handler downstream of the transformer has an advice
that removes the remote file after processing.

34.8. Inbound Channel Adapters: Polling Multiple
Servers and Directories
Starting with version 5.0.7, the RotatingServerAdvice is available; when configured as a poller
advice, the inbound adapters can poll multiple servers and directories. Configure the advice and
add it to the poller’s advice chain as normal. A DelegatingSessionFactory is used to select the server
see Delegating Session Factory for more information. The advice configuration consists of a list of
RotationPolicy.KeyDirectory objects.

Example

@Bean
public RotatingServerAdvice advice() {
 List<RotationPolicy.KeyDirectory> keyDirectories = new ArrayList<>();
 keyDirectories.add(new RotationPolicy.KeyDirectory("one", "foo"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("one", "bar"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("two", "baz"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("two", "qux"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("three", "fiz"));
 keyDirectories.add(new RotationPolicy.KeyDirectory("three", "buz"));
 return new RotatingServerAdvice(delegatingSf(), keyDirectories);
}

This advice will poll directory foo on server one until no new files exist then move to directory bar
and then directory baz on server two, etc.

This default behavior can be modified with the fair constructor arg:

fair

@Bean
public RotatingServerAdvice advice() {
 ...
 return new RotatingServerAdvice(delegatingSf(), keyDirectories, true);
}

In this case, the advice will move to the next server/directory regardless of whether the previous
poll returned a file.

Alternatively, you can provide your own RotationPolicy to reconfigure the message source as
needed:

681

./ftp.pdf#ftp-dsf

policy

public interface RotationPolicy {

 void beforeReceive(MessageSource<?> source);

 void afterReceive(boolean messageReceived, MessageSource<?> source);

}

and

custom

@Bean
public RotatingServerAdvice advice() {
 return new RotatingServerAdvice(myRotationPolicy());
}

The local-filename-generator-expression attribute (localFilenameGeneratorExpression on the
synchronizer) can now contain the #remoteDirectory variable. This allows files retrieved from
different directories to be downloaded to similar directories locally:

@Bean
public IntegrationFlow flow() {
 return IntegrationFlows.from(Sftp.inboundAdapter(sf())
 .filter(new SftpPersistentAcceptOnceFileListFilter(new
SimpleMetadataStore(), "rotate"))
 .localDirectory(new File(tmpDir))
 .localFilenameExpression("#remoteDirectory +
T(java.io.File).separator + #root")
 .remoteDirectory("."),
 e -> e.poller(Pollers.fixedDelay(1).advice(advice())))
 .channel(MessageChannels.queue("files"))
 .get();
}


Do not configure a TaskExecutor on the poller when using this advice; see
Conditional Pollers for Message Sources for more information.

34.9. Inbound Channel Adapters: Controlling Remote
File Fetching
You should consider two properties when configuring inbound channel adapters. max-messages-per-
poll, as with all pollers, can be used to limit the number of messages emitted on each poll (if more
than the configured value are ready). max-fetch-size (since version 5.0) can limit the number of

682

./polling-consumer.pdf#conditional-pollers

files retrieved from the remote server at a time.

The following scenarios assume the starting state is an empty local directory:

• max-messages-per-poll=2 and max-fetch-size=1: The adapter fetches one file, emits it, fetches the
next file, and emit it. Then it sleeps until the next poll.

• max-messages-per-poll=2 and max-fetch-size=2): The adapter fetch both files and then emits each
one.

• max-messages-per-poll=2 and max-fetch-size=4: The adapter fetches up to 4 files (if available)
and emits the first two (if there are at least two). The next two files will be emitted on the next
poll.

• max-messages-per-poll=2 and max-fetch-size not specified: The adapter fetches all remote files
and emits the first two (if there are at least two). The subsequent files are emitted on
subsequent polls (two at a time). When all are consumed, the remote fetch is attempted again, to
pick up any new files.


When you deploy multiple instances of an application, we recommend setting a
small max-fetch-size, to avoid one instance “grabbing” all the files and starving
other instances.

Another use for max-fetch-size is when you want to stop fetching remote files but continue to
process files that have already been fetched. Setting the maxFetchSize property on the MessageSource
(programmatically, via JMX, or via a control bus) effectively stops the adapter from fetching more
files but lets the poller continue to emit messages for files that have previously been fetched. If the
poller is active when the property is changed, the change takes effect on the next poll.

Starting with version 5.1, the synchronizer can be provided with a Comparator<LsEntry>. This is
useful when restricting the number of files fetched with maxFetchSize.

34.10. SFTP Outbound Channel Adapter
The SFTP outbound channel adapter is a special MessageHandler that connects to the remote
directory and initiates a file transfer for every file it receives as the payload of an incoming Message.
It also supports several representations of the file so that you are not limited to the File object.
Similar to the FTP outbound adapter, the SFTP outbound channel adapter supports the following
payloads:

• java.io.File: The actual file object

• byte[]: A byte array that represents the file contents

• java.lang.String: Text that represents the file contents

• java.io.InputStream: a stream of data to transfer to remote file

• org.springframework.core.io.Resource: a resource for data to transfer to remote file

The following example shows how to configure an SFTP outbound channel adapter:

683

./control-bus.pdf#control-bus

<int-sftp:outbound-channel-adapter id="sftpOutboundAdapter"
 session-factory="sftpSessionFactory"
 channel="inputChannel"
 charset="UTF-8"
 remote-file-separator="/"
 remote-directory="foo/bar"
 remote-filename-generator-expression="payload.getName() + '-mysuffix'"
 filename-generator="fileNameGenerator"
 use-temporary-filename="true"
 chmod="600"
 mode="REPLACE"/>

See the schema for more detail on these attributes.

34.10.1. SpEL and the SFTP Outbound Adapter

As with many other components in Spring Integration, you can use the Spring Expression Language
(SpEL) when you configure an SFTP outbound channel adapter by specifying two attributes: remote-
directory-expression and remote-filename-generator-expression (described earlier). The expression
evaluation context has the message as its root object, which lets you use expressions that can
dynamically compute the file name or the existing directory path based on the data in the message
(from either the 'payload' or the 'headers'). In the preceding example, we define the remote-
filename-generator-expression attribute with an expression value that computes the file name
based on its original name while also appending a suffix: '-mysuffix'.

Starting with version 4.1, you can specify the mode when you transferring the file. By default, an
existing file is overwritten. The modes are defined by the FileExistsMode enumeration, which
includes the following values:

• REPLACE (default)

• REPLACE_IF_MODIFIED

• APPEND

• APPEND_NO_FLUSH

• IGNORE

• FAIL

With IGNORE and FAIL, the file is not transferred. FAIL causes an exception to be thrown, while IGNORE
silently ignores the transfer (although a DEBUG log entry is produced).

Version 4.3 introduced the chmod attribute, which you can use to change the remote file permissions
after upload. You can use the conventional Unix octal format (for example, 600 allows read-write
for the file owner only). When configuring the adapter using java, you can use setChmodOctal("600")
or setChmod(0600).

684

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

34.10.2. Avoiding Partially Written Files

One of the common problems when dealing with file transfers is the possibility of processing a
partial file. A file might appear in the file system before its transfer is actually complete.

To deal with this issue, Spring Integration SFTP adapters use a common algorithm in which files are
transferred under a temporary name and than renamed once they are fully transferred.

By default, every file that is in the process of being transferred appear in the file system with an
additional suffix, which, by default, is .writing. You can change by setting the temporary-file-suffix
attribute.

However, there may be situations where you do not want to use this technique (for example, if the
server does not permit renaming files). For situations like this, you can disable this feature by
setting use-temporary-file-name to false (the default is true). When this attribute is false, the file is
written with its final name, and the consuming application needs some other mechanism to detect
that the file is completely uploaded before accessing it.

34.10.3. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the outbound adapter
with Java:

685

686

@SpringBootApplication
@IntegrationComponentScan
public class SftpJavaApplication {

 public static void main(String[] args) {
 ConfigurableApplicationContext context =
 new SpringApplicationBuilder(SftpJavaApplication.class)
 .web(false)
 .run(args);
 MyGateway gateway = context.getBean(MyGateway.class);
 gateway.sendToSftp(new File("/foo/bar.txt"));
 }

 @Bean
 public SessionFactory<LsEntry> sftpSessionFactory() {
 DefaultSftpSessionFactory factory = new DefaultSftpSessionFactory(true);
 factory.setHost("localhost");
 factory.setPort(port);
 factory.setUser("foo");
 factory.setPassword("foo");
 factory.setAllowUnknownKeys(true);
 factory.setTestSession(true);
 return new CachingSessionFactory<LsEntry>(factory);
 }

 @Bean
 @ServiceActivator(inputChannel = "toSftpChannel")
 public MessageHandler handler() {
 SftpMessageHandler handler = new SftpMessageHandler(sftpSessionFactory());
 handler.setRemoteDirectoryExpressionString("headers['remote-target-dir']"
);
 handler.setFileNameGenerator(new FileNameGenerator() {

 @Override
 public String generateFileName(Message<?> message) {
 return "handlerContent.test";
 }

 });
 return handler;
 }

 @MessagingGateway
 public interface MyGateway {

 @Gateway(requestChannel = "toSftpChannel")
 void sendToSftp(File file);

 }
}

687

34.10.4. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound adapter
with the Java DSL:

@SpringBootApplication
public class SftpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SftpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public IntegrationFlow sftpOutboundFlow() {
 return IntegrationFlows.from("toSftpChannel")
 .handle(Sftp.outboundAdapter(this.sftpSessionFactory, FileExistsMode
.FAIL)
 .useTemporaryFileName(false)
 .remoteDirectory("/foo")
).get();
 }

}

34.11. SFTP Outbound Gateway
The SFTP outbound gateway provides a limited set of commands that let you interact with a remote
SFTP server:

• ls (list files)

• nlst (list file names)

• get (retrieve a file)

• mget (retrieve multiple files)

• rm (remove file(s))

• mv (move and rename file)

• put (send a file)

• mput (send multiple files)

34.11.1. Using the ls Command

ls lists remote files and supports the following options:

688

• -1: Retrieve a list of filenames. The default is to retrieve a list of FileInfo objects

• -a: Include all files (including those starting with '.')

• -f: Do not sort the list

• -dirs: Include directories (excluded by default)

• -links: Include symbolic links (excluded by default)

• -R: List the remote directory recursively

In addition, filename filtering is provided in the same manner as the inbound-channel-adapter.

The message payload resulting from an ls operation is a list of file names or a list of FileInfo
objects (depending on whether you usr the -1 switch). These objects provide information such as
modified time, permissions, and others.

The remote directory that the ls command acted on is provided in the file_remoteDirectory header.

When using the recursive option (-R), the fileName includes any subdirectory elements and
represents the relative path to the file (relative to the remote directory). If you use the -dirs option,
each recursive directory is also returned as an element in the list. In this case, we recommend that
you not use the -1 option, because you would not be able to distinguish files from directories, which
you can do when you use FileInfo objects.

Using nlst Command

Version 5 introduced support for the nlst command.

nlst lists remote file names and supports only one option:

• -f: Do not sort the list

The message payload resulting from an nlst operation is a list of file names.

The file_remoteDirectory header holds the remote directory on which the nlst command acted.

The SFTP protocol does not provide the ability to list names. This command is the equivalent of the
ls command with the -1 option and is added here for convenience.

34.11.2. Using the get Command

get retrieves a remote file and supports the following options:

• -P: Preserve the timestamp of the remote file.

• -stream: Retrieve the remote file as a stream.

• -D: Delete the remote file after successful transfer. The remote file is not deleted if the transfer is
ignored, because the FileExistsMode is IGNORE and the local file already exists.

The file_remoteDirectory header holds the remote directory, and the file_remoteFile header holds
the filename.

689

The message payload resulting from a get operation is a File object representing the retrieved file.
If you use the -stream option, the payload is an InputStream rather than a File. For text files, a
common use case is to combine this operation with a file splitter or a stream transformer. When
consuming remote files as streams, you are responsible for closing the Session after the stream is
consumed. For convenience, the Session is provided in the closeableResource header, and
IntegrationMessageHeaderAccessor offers convenience method:

Closeable closeable = new IntegrationMessageHeaderAccessor(message)
.getCloseableResource();
if (closeable != null) {
 closeable.close();
}

Framework components, such as the File Splitter and Stream Transformer, automatically close the
session after the data is transferred.

The following example shows how to consume a file as a stream:

<int-sftp:outbound-gateway session-factory="ftpSessionFactory"
 request-channel="inboundGetStream"
 command="get"
 command-options="-stream"
 expression="payload"
 remote-directory="ftpTarget"
 reply-channel="stream" />

<int-file:splitter input-channel="stream" output-channel="lines" />


If you consume the input stream in a custom component, you must close the
Session. You can either do that in your custom code or route a copy of the message
to a service-activator and use SpEL, as the following example shows:

<int:service-activator input-channel="closeSession"
 expression="headers['closeableResource'].close()" />

34.11.3. Using the mget Command

mget retrieves multiple remote files based on a pattern and supports the following options:

• -P: Preserve the timestamps of the remote files.

• -R: Retrieve the entire directory tree recursively.

690

./file.pdf#file-splitter
./transformer.pdf#stream-transformer
./file.pdf#file-splitter
./transformer.pdf#stream-transformer

• -x: Throw an exception if no files match the pattern (otherwise, an empty list is returned).

• -D: Delete each remote file after successful transfer. If the transfer is ignored, the remote file is
not deleted, because the FileExistsMode is IGNORE and the local file already exists.

The message payload resulting from an mget operation is a List<File> object (that is, a List of File
objects, each representing a retrieved file).



Starting with version 5.0, if the FileExistsMode is IGNORE, the payload of the output
message no longer contain files that were not fetched due to the file already
existing. Previously, the array contained all files, including those that already
existed.

The expression you use determine the remote path should produce a result that ends with for
example myfiles/ fetches the complete tree under myfiles.

Starting with version 5.0, you can use a recursive MGET, combined with the
FileExistsMode.REPLACE_IF_MODIFIED mode, to periodically synchronize an entire remote directory
tree locally. This mode sets the local file’s last modified timestamp to the remote file’s timestamp,
regardless of the -P (preserve timestamp) option.



Notes for when using recursion (-R)

The pattern is ignored and * is assumed. By default, the entire remote tree is
retrieved. However, you can filter files in the tree by providing a FileListFilter.
You can also filter directories in the tree this way. A FileListFilter can be
provided by reference or by filename-pattern or filename-regex attributes. For
example, filename-regex="(subDir|.*1.txt)" retrieves all files ending with 1.txt in
the remote directory and the subdirectory subDir. However, we describe an
alternative available after this note.

If you filter a subdirectory, no additional traversal of that subdirectory is
performed.

The -dirs option is not allowed (the recursive mget uses the recursive ls to obtain
the directory tree and the directories themselves cannot be included in the list).

Typically, you would use the #remoteDirectory variable in the local-directory-
expression so that the remote directory structure is retained locally.

Starting with version 5.0, you can configure the SftpSimplePatternFileListFilter and
SftpRegexPatternFileListFilter to always pass directories by setting the alwaysAcceptDirectorties
to true. Doing so allows recursion for a simple pattern, as the following examples show:

691

<bean id="starDotTxtFilter"
 class=
"org.springframework.integration.sftp.filters.SftpSimplePatternFileListFilter">
 <constructor-arg value="*.txt" />
 <property name="alwaysAcceptDirectories" value="true" />
</bean>

<bean id="dotStarDotTxtFilter"
 class=
"org.springframework.integration.sftp.filters.SftpRegexPatternFileListFilter">
 <constructor-arg value="^.*\.txt$" />
 <property name="alwaysAcceptDirectories" value="true" />
</bean>

You can provide one of these filters by using the filter property on the gateway.

See also Outbound Gateway Partial Success (mget and mput).

34.11.4. Using the put Command

put sends a file to the remote server. The payload of the message can be a java.io.File, a byte[], or
a String. A remote-filename-generator (or expression) is used to name the remote file. Other
available attributes include remote-directory, temporary-remote-directory and their *-expression
equivalents: use-temporary-file-name and auto-create-directory. See the schema documentation for
more information.

The message payload resulting from a put operation is a String that contains the full path of the file
on the server after transfer.

Version 4.3 introduced the chmod attribute, which changes the remote file permissions after upload.
You can use the conventional Unix octal format (for example, 600 allows read-write for the file
owner only). When configuring the adapter using java, you can use setChmod(0600).

34.11.5. Using the mput Command

mput sends multiple files to the server and supports the following option:

• -R: Recursive — send all files (possibly filtered) in the directory and subdirectories

The message payload must be a java.io.File (or String) that represents a local directory. Since
version 5.1, a collection of File or String is also supported.

The same attributes as the put command are supported. In addition, you can filter files in the local
directory with one of mput-pattern, mput-regex, mput-filter, or mput-filter-expression. The filter
works with recursion, as long as the subdirectories themselves pass the filter. Subdirectories that
do not pass the filter are not recursed.

The message payload resulting from an mget operation is a List<String> object (that is, a List of

692

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

remote file paths resulting from the transfer).

See also Outbound Gateway Partial Success (mget and mput).

Version 4.3 introduced the chmod attribute, which lets you change the remote file permissions after
upload. You can use the conventional Unix octal format (for example, 600 allows read-write for the
file owner only). When configuring the adapter with Java, you can use setChmodOctal("600") or
setChmod(0600).

Using the rm Command

The rm command has no options.

If the remove operation was successful, the resulting message payload is Boolean.TRUE. Otherwise,
the message payload is Boolean.FALSE. The file_remoteDirectory header holds the remote directory,
and the file_remoteFile header holds the file name.

34.11.6. Using the mv Command

The mv command has no options.

The expression attribute defines the “from” path, and the rename-expression attribute defines the
“to” path. By default, the rename-expression is headers['file_renameTo']. This expression must not
evaluate to null or an empty String. If necessary, any remote directories needed are created. The
payload of the result message is Boolean.TRUE. The the file_remoteDirectory header holds the
original remote directory, and the file_remoteFile header holds the filename. The file_renameTo
header holds the new path.

34.11.7. Additional Command Information

The get and mget commands support the local-filename-generator-expression attribute. It defines a
SpEL expression to generate the names of local files during the transfer. The root object of the
evaluation context is the request message. The remoteFileName variable is also available. It is
particularly useful for mget (for example: local-filename-generator-
expression="#remoteFileName.toUpperCase() + headers.foo").

The get and mget commands support the local-directory-expression attribute. It defines a SpEL
expression to generate the names of local directories during the transfer. The root object of the
evaluation context is the request message. The remoteDirectory variable is also available. It is
particularly useful for mget (for example: local-directory-expression="'/tmp/local/' +
#remoteDirectory.toUpperCase() + headers.myheader"). This attribute is mutually exclusive with the
local-directory attribute.

For all commands, the 'expression' property of the gateway holds the path on which the command
acts. For the mget command, the expression might evaluate to , meaning to retrieve all files,
somedirectory/, and other values that end with *.

The following example shows a gateway configured for an ls command:

693

<int-ftp:outbound-gateway id="gateway1"
 session-factory="ftpSessionFactory"
 request-channel="inbound1"
 command="ls"
 command-options="-1"
 expression="payload"
 reply-channel="toSplitter"/>

The payload of the message sent to the toSplitter channel is a list of String objects, each of which
contains the name of a file. If you omitted command-options="-1", the payload would be a list of
FileInfo objects. You can provide options as a space-delimited list (for example, command-options="-1
-dirs -links").

Starting with version 4.2, the GET, MGET, PUT, and MPUT commands support a FileExistsMode property
(mode when using the namespace support). This affects the behavior when the local file exists (GET
and MGET) or the remote file exists (PUT and MPUT). The supported modes are REPLACE, APPEND, FAIL, and
IGNORE. For backwards compatibility, the default mode for PUT and MPUT operations is REPLACE. For GET
and MGET operations, the default is FAIL.

34.11.8. Configuring with Java Configuration

The following Spring Boot application shows an example of how to configure the outbound gateway
with Java:

@SpringBootApplication
public class SftpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SftpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 @ServiceActivator(inputChannel = "sftpChannel")
 public MessageHandler handler() {
 return new SftpOutboundGateway(ftpSessionFactory(), "ls",
"'my_remote_dir/'");
 }

}

694

34.11.9. Configuring with the Java DSL

The following Spring Boot application shows an example of how to configure the outbound gateway
with the Java DSL:

@SpringBootApplication
public class SftpJavaApplication {

 public static void main(String[] args) {
 new SpringApplicationBuilder(SftpJavaApplication.class)
 .web(false)
 .run(args);
 }

 @Bean
 public SessionFactory<LsEntry> sftpSessionFactory() {
 DefaultSftpSessionFactory sf = new DefaultSftpSessionFactory();
 sf.setHost("localhost");
 sf.setPort(port);
 sf.setUsername("foo");
 sf.setPassword("foo");
 factory.setTestSession(true);
 return new CachingSessionFactory<LsEntry>(sf);
 }

 @Bean
 public QueueChannelSpec remoteFileOutputChannel() {
 return MessageChannels.queue();
 }

 @Bean
 public IntegrationFlow sftpMGetFlow() {
 return IntegrationFlows.from("sftpMgetInputChannel")
 .handle(Sftp.outboundGateway(sftpSessionFactory(),
 AbstractRemoteFileOutboundGateway.Command.MGET,
"payload")
 .options(AbstractRemoteFileOutboundGateway.Option.RECURSIVE)
 .regexFileNameFilter("(subSftpSource|.*1.txt)")
 .localDirectoryExpression("'myDir/' + #remoteDirectory")
 .localFilenameExpression(
"#remoteFileName.replaceFirst('sftpSource', 'localTarget')"))
 .channel("remoteFileOutputChannel")
 .get();
 }

}

695

34.11.10. Outbound Gateway Partial Success (mget and mput)

When performing operations on multiple files (by using mget and mput) an exception can occur
some time after one or more files have been transferred. In this case (starting with version 4.2), a
PartialSuccessException is thrown. As well as the usual MessagingException properties
(failedMessage and cause), this exception has two additional properties:

• partialResults: The successful transfer results.

• derivedInput: The list of files generated from the request message (such as local files to transfer
for an mput).

These attributes let you determine which files were successfully transferred and which were not.

In the case of a recursive mput, the PartialSuccessException may have nested
PartialSuccessException instances.

Consider the following directory structure:

root/
|- file1.txt
|- subdir/
 | - file2.txt
 | - file3.txt
|- zoo.txt

If the exception occurs on file3.txt, the PartialSuccessException thrown by the gateway has
derivedInput of file1.txt, subdir, and zoo.txt and partialResults of file1.txt. Its cause is another
PartialSuccessException with derivedInput of file2.txt and file3.txt and partialResults of
file2.txt.

34.12. SFTP/JSCH Logging
Since we use JSch libraries to provide SFTP support, you may at times require more information
from the JSch API itself, especially if something is not working properly (such as authentication
exceptions). Unfortunately JSch does not use commons-logging but instead relies on custom
implementations of their com.jcraft.jsch.Logger interface. As of Spring Integration 2.0.1, we have
implemented this interface. So now, to enable JSch logging, you can configure your logger the way
you usually do. For example, the following example is valid configuration of a logger that uses
Log4J:

log4j.category.com.jcraft.jsch=DEBUG

696

34.13. MessageSessionCallback
Starting with Spring Integration version 4.2, you can use a MessageSessionCallback<F, T>
implementation with the <int-sftp:outbound-gateway/> (SftpOutboundGateway) to perform any
operation on the Session<LsEntry> with the requestMessage context. You can use it for any non-
standard or low-level SFTP operation (or several), such as allowing access from an integration flow
definition, or functional interface (lambda) implementation injection. The following example uses a
lambda:

@Bean
@ServiceActivator(inputChannel = "sftpChannel")
public MessageHandler sftpOutboundGateway(SessionFactory<ChannelSftp.LsEntry>
sessionFactory) {
 return new SftpOutboundGateway(sessionFactory,
 (session, requestMessage) -> session.list(requestMessage.getPayload()));
}

Another example might be to pre- or post-process the file data being sent or retrieved.

When using XML configuration, the <int-sftp:outbound-gateway/> provides a session-callback
attribute that lets you specify the MessageSessionCallback bean name.


The session-callback is mutually exclusive with the command and expression
attributes. When configuring with Java, the SftpOutboundGateway class offers
different constructors.

34.14. Apache Mina SFTP Server Events
The ApacheMinaSftpEventListener, added in version 5.2, listens for certain Apache Mina SFTP server
events and publishes them as ApplicationEvent s which can be received by any ApplicationListener
bean, @EventListener bean method, or Event Inbound Channel Adapter.

Currently supported events are:

• SessionOpenedEvent - a client session was opened

• DirectoryCreatedEvent - a directory was created

• FileWrittenEvent - a file was written to

• PathMovedEvent - a file or directory was renamed

• PathRemovedEvent - a file or directory was removed

• SessionClosedEvent - the client has disconnected

Each of these is a subclass of ApacheMinaSftpEvent; you can configure a single listener to receive all
of the event types. The source property of each event is a ServerSession, from which you can obtain
information such as the client address; a convenient getSession() method is provided on the

697

./event.pdf#appevent-inbound

abstract event.

To configure the server with the listener (which must be a Spring bean), simply add it to the
SftpSubsystemFactory:

server = SshServer.setUpDefaultServer();
...
SftpSubsystemFactory sftpFactory = new SftpSubsystemFactory();
sftpFactory.addSftpEventListener(apacheMinaSftpEventListenerBean);
...

To consume these events using a Spring Integration event adapter:

@Bean
public ApplicationEventListeningMessageProducer eventsAdapter() {
 ApplicationEventListeningMessageProducer producer =
 new ApplicationEventListeningMessageProducer();
 producer.setEventTypes(ApacheMinaSftpEvent.class);
 producer.setOutputChannel(eventChannel());
 return producer;
}

34.15. Remote File Information
Starting with version 5.2, the SftpStreamingMessageSource (SFTP Streaming Inbound Channel
Adapter), SftpInboundFileSynchronizingMessageSource (SFTP Inbound Channel Adapter) and "read"-
commands of the SftpOutboundGateway (SFTP Outbound Gateway) provide additional headers in the
message to produce with an information about the remote file:

• FileHeaders.REMOTE_HOST_PORT - the host:port pair the remote session has been connected to
during file transfer operation;

• FileHeaders.REMOTE_DIRECTORY - the remote directory the operation has been performed;

• FileHeaders.REMOTE_FILE - the remote file name; applicable only for single file operations.

Since the SftpInboundFileSynchronizingMessageSource doesn’t produce messages against remote
files, but using a local copy, the AbstractInboundFileSynchronizer stores an information about
remote file in the MetadataStore (which can be configured externally) in the URI style
(protocol://host:port/remoteDirectory#remoteFileName) during synchronization operation. This
metadata is retrieved by the SftpInboundFileSynchronizingMessageSource when local file is polled.
When local file is deleted, it is recommended to remove its metadata entry. The
AbstractInboundFileSynchronizer provides a removeRemoteFileMetadata() callback for this purpose.
In addition there is a setMetadataStorePrefix() to be used in the metadata keys. It is recommended
to have this prefix be different from the one used in the MetadataStore-based FileListFilter

698

implementations, when the same MetadataStore instance is shared between these components, to
avoid entry overriding because both filter and AbstractInboundFileSynchronizer use the same local
file name for the metadata entry key.

699

Chapter 35. STOMP Support
Spring Integration version 4.2 introduced STOMP (Simple Text Orientated Messaging Protocol)
client support. It is based on the architecture, infrastructure, and API from the Spring Framework’s
messaging module, stomp package. Spring Integration uses many of Spring STOMP components
(such as StompSession and StompClientSupport). For more information, see the Spring Framework
STOMP Support chapter in the Spring Framework reference manual.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-stomp</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-stomp:5.4.0"

For server side components you need to add a org.springframework:spring-websocket and/or
io.projectreactor.netty:reactor-netty dependencies.

35.1. Overview
To configure STOMP, you should start with the STOMP client object. The Spring Framework
provides the following implementations:

• WebSocketStompClient: Built on the Spring WebSocket API with support for standard JSR-356
WebSocket, Jetty 9, and SockJS for HTTP-based WebSocket emulation with SockJS Client.

• ReactorNettyTcpStompClient: Built on ReactorNettyTcpClient from the reactor-netty project.

You can provide any other StompClientSupport implementation. See the Javadoc of those classes.

The StompClientSupport class is designed as a factory to produce a StompSession for the provided
StompSessionHandler and all the remaining work is done through the callbacks to that
StompSessionHandler and StompSession abstraction. With the Spring Integration adapter abstraction,
we need to provide some managed shared object to represent our application as a STOMP client
with its unique session. For this purpose, Spring Integration provides the StompSessionManager
abstraction to manage the single StompSession between any provided StompSessionHandler. This
allows the use of inbound or outbound channel adapters (or both) for the particular STOMP Broker.
See StompSessionManager (and its implementations) JavaDocs for more information.

700

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#websocket-stomp-client
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#websocket-stomp-client
https://docs.spring.io/spring-integration/api/

35.2. STOMP Inbound Channel Adapter
The StompInboundChannelAdapter is a one-stop MessageProducer component that subscribes your
Spring Integration application to the provided STOMP destinations and receives messages from
them (converted from the STOMP frames by using the provided MessageConverter on the connected
StompSession). You can change the destinations (and therefore STOMP subscriptions) at runtime by
using appropriate @ManagedOperation annotations on the StompInboundChannelAdapter.

For more configuration options, see STOMP Namespace Support and the StompInboundChannelAdapter
Javadoc.

35.3. STOMP Outbound Channel Adapter
The StompMessageHandler is the MessageHandler for the <int-stomp:outbound-channel-adapter> and is
used to send the outgoing Message<?> instances to the STOMP destination (pre-configured or
determined at runtime with a SpEL expression) through the StompSession (which is provided by the
shared StompSessionManager).

For more configuration options see STOMP Namespace Support and the StompMessageHandler
Javadoc.

35.4. STOMP Headers Mapping
The STOMP protocol provides headers as part of its frame. The entire structure of the STOMP frame
has the following format:

....
COMMAND
header1:value1
header2:value2

Body^@
....

Spring Framework provides StompHeaders to represent these headers. See the Javadoc for more
details. STOMP frames are converted to and from Message<?> instances and these headers are
mapped to and from MessageHeaders instances. Spring Integration provides a default HeaderMapper
implementation for the STOMP adapters. The implementation is StompHeaderMapper. It provides
fromHeaders() and toHeaders() operations for the inbound and outbound adapters, respectively.

As with many other Spring Integration modules, the IntegrationStompHeaders class has been
introduced to map standard STOMP headers to MessageHeaders, with stomp_ as the header name
prefix. In addition, all MessageHeaders instances with that prefix are mapped to the StompHeaders
when sending to a destination.

For more information, see the Javadoc for those classes and the mapped-headers attribute description

701

https://docs.spring.io/spring-integration/api/org/springframework/integration/stomp/inbound/StompInboundChannelAdapter.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/stomp/outbound/StompMessageHandler.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/simp/stomp/StompHeaders.html
https://docs.spring.io/spring-integration/api/

in the STOMP Namespace Support.

35.5. STOMP Integration Events
Many STOMP operations are asynchronous, including error handling. For example, STOMP has a
RECEIPT server frame that it returns when a client frame has requested one by adding the RECEIPT
header. To provide access to these asynchronous events, Spring Integration emits
StompIntegrationEvent instances, which you can obtain by implementing an ApplicationListener or
by using an <int-event:inbound-channel-adapter> (see Receiving Spring Application Events).

Specifically, a StompExceptionEvent is emitted from the AbstractStompSessionManager when a
stompSessionListenableFuture receives onFailure() due to failure to connect to STOMP broker.
Another example is the StompMessageHandler. It processes ERROR STOMP frames, which are server
responses to improper (unaccepted) messages sent by this StompMessageHandler.

The StompMessageHandler emits StompReceiptEvent as a part of StompSession.Receiptable callbacks in
the asynchronous answers for the messages sent to the StompSession. The StompReceiptEvent can be
positive or negative, depending on whether or not the RECEIPT frame was received from the server
within the receiptTimeLimit period, which you can configure on the StompClientSupport instance. It
defaults to 15 * 1000 (in milliseconds, so 15 seconds).



The StompSession.Receiptable callbacks are added only if the RECEIPT STOMP
header of the message to send is not null. You can enable automatic RECEIPT
header generation on the StompSession through its autoReceipt option and on the
StompSessionManager respectively.

See STOMP Adapters Java Configuration for more information how to configure Spring Integration
to accept those ApplicationEvent instances.

35.6. STOMP Adapters Java Configuration
The following example shows a comprehensive Java configuration for STOMP adapters:

702

./event.pdf#appevent-inbound

@Configuration
@EnableIntegration
public class StompConfiguration {

 @Bean
 public ReactorNettyTcpStompClient stompClient() {
 ReactorNettyTcpStompClient stompClient = new ReactorNettyTcpStompClient(
"127.0.0.1", 61613);
 stompClient.setMessageConverter(new PassThruMessageConverter());
 ThreadPoolTaskScheduler taskScheduler = new ThreadPoolTaskScheduler();
 taskScheduler.afterPropertiesSet();
 stompClient.setTaskScheduler(taskScheduler);
 stompClient.setReceiptTimeLimit(5000);
 return stompClient;
 }

 @Bean
 public StompSessionManager stompSessionManager() {
 ReactorNettyTcpStompSessionManager stompSessionManager = new
ReactorNettyTcpStompSessionManager(stompClient());
 stompSessionManager.setAutoReceipt(true);
 return stompSessionManager;
 }

 @Bean
 public PollableChannel stompInputChannel() {
 return new QueueChannel();
 }

 @Bean
 public StompInboundChannelAdapter stompInboundChannelAdapter() {
 StompInboundChannelAdapter adapter =
 new StompInboundChannelAdapter(stompSessionManager(),
"/topic/myTopic");
 adapter.setOutputChannel(stompInputChannel());
 return adapter;
 }

 @Bean
 @ServiceActivator(inputChannel = "stompOutputChannel")
 public MessageHandler stompMessageHandler() {
 StompMessageHandler handler = new StompMessageHandler(stompSessionManager
());
 handler.setDestination("/topic/myTopic");
 return handler;
 }

 @Bean
 public PollableChannel stompEvents() {

703

 return new QueueChannel();
 }

 @Bean
 public ApplicationListener<ApplicationEvent> stompEventListener() {
 ApplicationEventListeningMessageProducer producer = new
ApplicationEventListeningMessageProducer();
 producer.setEventTypes(StompIntegrationEvent.class);
 producer.setOutputChannel(stompEvents());
 return producer;
 }

}

35.7. STOMP Namespace Support
The Spring Integration STOMP namespace implements the inbound and outbound channel adapter
components. To include it in your configuration, provide the following namespace declaration in
your application context configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-stomp="http://www.springframework.org/schema/integration/stomp"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/stomp
 https://www.springframework.org/schema/integration/stomp/spring-integration-
stomp.xsd">
 ...
</beans>

35.7.1. Understanding the <int-stomp:outbound-channel-adapter> Element

The following listing shows the available attributes for the STOMP outbound channel adapter:

704

<int-stomp:outbound-channel-adapter
 id="" ①
 channel="" ②
 stomp-session-manager="" ③
 header-mapper="" ④
 mapped-headers="" ⑤
 destination="" ⑥
 destination-expression="" ⑦
 auto-startup="" ⑧
 phase=""/> ⑨

① The component bean name. The MessageHandler is registered with a bean alias of id plus
.handler. If you do not set the channel attribute, a DirectChannel is created and registered in
the application context with the value of this id attribute as the bean name. In this case, the
endpoint is registered with a bean name id plus .adapter.

② Identifies the channel attached to this adapter if id is present. See id. Optional.

③ Reference to a StompSessionManager bean, which encapsulates the low-level connection and
StompSession handling operations. Required.

④ Reference to a bean that implements HeaderMapper<StompHeaders>, which maps Spring
Integration MessageHeaders to and from STOMP frame headers. It is mutually exclusive with
mapped-headers. It defaults to StompHeaderMapper.

⑤ Comma-separated list of names of STOMP Headers to be mapped to the STOMP frame
headers. It can be provided only if the header-mapper reference is not set. The values in this
list can also be simple patterns to be matched against the header names (such as myheader*
or *myheader). A special token (STOMP_OUTBOUND_HEADERS) represents all the standard STOMP
headers (content-length, receipt, heart-beat, and so on). They are included by default. If you
want to add your own headers and want the standard headers to also be mapped, you must
include this token or provide your own HeaderMapper implementation by using header-
mapper.

⑥ Name of the destination to which STOMP Messages are sent. It is mutually exclusive with
the destination-expression.

⑦ A SpEL expression to be evaluated at runtime against each Spring Integration Message as the
root object. It is mutually exclusive with the destination.

⑧ Boolean value indicating whether this endpoint should start automatically. It defaults to
true.

⑨ The lifecycle phase within which this endpoint should start and stop. The lower the value,
the earlier this endpoint starts and the later it stops. The default is Integer.MIN_VALUE.
Values can be negative. See SmartLifeCycle.

35.7.2. Understanding the <int-stomp:inbound-channel-adapter> Element

The following listing shows the available attributes for the STOMP inbound channel adapter:

705

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/SmartLifecycle.html

<int-stomp:inbound-channel-adapter
 id="" ①
 channel="" ②
 error-channel="" ③
 stomp-session-manager="" ④
 header-mapper="" ⑤
 mapped-headers="" ⑥
 destinations="" ⑦
 send-timeout="" ⑧
 payload-type="" ⑨
 auto-startup="" ⑩
 phase=""/> ⑪

① The component bean name. If you do not set the channel attribute, a DirectChannel is
created and registered in the application context with the value of this id attribute as the
bean name. In this case, the endpoint is registered with the bean name id plus .adapter.

② Identifies the channel attached to this adapter.

③ The MessageChannel bean reference to which ErrorMessage instances should be sent.

④ See the same option on the <int-stomp:outbound-channel-adapter>.

⑤ Comma-separated list of names of STOMP Headers to be mapped from the STOMP frame
headers. You can only provide this if the header-mapper reference is not set. The values in
this list can also be simple patterns to be matched against the header names (for example,
myheader* or *myheader). A special token (STOMP_INBOUND_HEADERS) represents all the standard
STOMP headers (content-length, receipt, heart-beat, and so on). They are included by
default. If you want to add your own headers and want the standard headers to also be
mapped, you must also include this token or provide your own HeaderMapper
implementation using header-mapper.

⑥ See the same option on the <int-stomp:outbound-channel-adapter>.

⑦ Comma-separated list of STOMP destination names to subscribe. The list of destinations
(and therefore subscriptions) can be modified at runtime through the addDestination() and
removeDestination() @ManagedOperation annotations.

⑧ Maximum amount of time (in milliseconds) to wait when sending a message to the channel
if the channel can block. For example, a QueueChannel can block until space is available if its
maximum capacity has been reached.

⑨ Fully qualified name of the Java type for the target payload to convert from the incoming
STOMP frame. It defaults to String.class.

⑩ See the same option on the <int-stomp:outbound-channel-adapter>.

⑪ See the same option on the <int-stomp:outbound-channel-adapter>.

706

Chapter 36. Stream Support
In many cases, application data is obtained from a stream. It is not recommended to send a
reference to a stream as a message payload to a consumer. Instead, messages are created from data
that is read from an input stream, and message payloads are written to an output stream one by
one.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-stream</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-stream:5.4.0"

36.1. Reading from Streams
Spring Integration provides two adapters for streams. Both ByteStreamReadingMessageSource and
CharacterStreamReadingMessageSource implement MessageSource. By configuring one of these within a
channel-adapter element, the polling period can be configured and the message bus can
automatically detect and schedule them. The byte stream version requires an InputStream, and the
character stream version requires a Reader as the single constructor argument. The
ByteStreamReadingMessageSource also accepts the 'bytesPerMessage' property to determine how
many bytes it tries to read into each Message. The default value is 1024. The following example
creates an input stream that creates messages that each contain 2048 bytes:

<bean class="
org.springframework.integration.stream.ByteStreamReadingMessageSource">
 <constructor-arg ref="someInputStream"/>
 <property name="bytesPerMessage" value="2048"/>
</bean>

<bean class=
"org.springframework.integration.stream.CharacterStreamReadingMessageSource">
 <constructor-arg ref="someReader"/>
</bean>

707

The CharacterStreamReadingMessageSource wraps the reader in a BufferedReader (if it is not one
already). You can set the buffer size used by the buffered reader in the second constructor
argument. Starting with version 5.0, a third constructor argument (blockToDetectEOF) controls the
behavior of the CharacterStreamReadingMessageSource. When false (the default), the receive()
method checks whether the reader is ready() and returns null if not. EOF (end of file) is not
detected in this case. When true, the receive() method blocks until data is available or EOF is
detected on the underlying stream. When EOF is detected, a StreamClosedEvent (application event) is
published. You can consume this event with a bean that implements
ApplicationListener<StreamClosedEvent>.


To facilitate EOF detection, the poller thread blocks in the receive() method until
either data arrives or EOF is detected.



The poller continues to publish an event on each poll once EOF has been detected.
The application listener can stop the adapter to prevent this. The event is
published on the poller thread. Stopping the adapter causes the thread to be
interrupted. If you intend to perform some interruptible task after stopping the
adapter, you must either perform the stop() on a different thread or use a
different thread for those downstream activities. Note that sending to a
QueueChannel is interruptible, so, if you wish to send a message from the listener,
do it before stopping the adapter.

This facilitates “piping” or redirecting data to stdin, as the following two examples shows:

cat myfile.txt | java -jar my.jar

java -jar my.jar < foo.txt

This approach lets the application stop when the pipe is closed.

Four convenient factory methods are available:

public static final CharacterStreamReadingMessageSource stdin() { ... }

public static final CharacterStreamReadingMessageSource stdin(String charsetName)
{ ... }

public static final CharacterStreamReadingMessageSource stdinPipe() { ... }

public static final CharacterStreamReadingMessageSource stdinPipe(String
charsetName) { ... }

708

36.2. Writing to Streams
For target streams, you can use either of two implementations: ByteStreamWritingMessageHandler or
CharacterStreamWritingMessageHandler. Each requires a single constructor argument (OutputStream
for byte streams or Writer for character streams), and each provides a second constructor that adds
the optional 'bufferSize'. Since both of these ultimately implement the MessageHandler interface, you
can reference them from a channel-adapter configuration, as described in Channel Adapter.

<bean class=
"org.springframework.integration.stream.ByteStreamWritingMessageHandler">
 <constructor-arg ref="someOutputStream"/>
 <constructor-arg value="1024"/>
</bean>

<bean class=
"org.springframework.integration.stream.CharacterStreamWritingMessageHandler">
 <constructor-arg ref="someWriter"/>
</bean>

36.3. Stream Namespace Support
Spring Integration defines a namespace to reduce the configuration needed for stream-related
channel adapters. The following schema locations are needed to use it:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:int-stream=
"http://www.springframework.org/schema/integration/stream"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration/stream
 https://www.springframework.org/schema/integration/stream/spring-
integration-stream.xsd">

The following code snippet shows the different configuration options that are supported to
configure the inbound channel adapter:

709

./channel-adapter.pdf#channel-adapter

<int-stream:stdin-channel-adapter id="adapterWithDefaultCharset"/>

<int-stream:stdin-channel-adapter id="adapterWithProvidedCharset" charset="UTF-8
"/>

Starting with version 5.0, you can set the detect-eof attribute, which sets the blockToDetectEOF
property. See Reading from Streams for more information.

To configure the outbound channel adapter, you can use the namespace support as well. The
following example shows the different configuration for an outbound channel adapters:

<int-stream:stdout-channel-adapter id="stdoutAdapterWithDefaultCharset"
 channel="testChannel"/>

<int-stream:stdout-channel-adapter id="stdoutAdapterWithProvidedCharset" charset=
"UTF-8"
 channel="testChannel"/>

<int-stream:stderr-channel-adapter id="stderrAdapter" channel="testChannel"/>

<int-stream:stdout-channel-adapter id="newlineAdapter" append-newline="true"
 channel="testChannel"/>

710

Chapter 37. Syslog Support
Spring Integration 2.2 introduced the syslog transformer: SyslogToMapTransformer.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-syslog</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-syslog:5.4.0"

This transformer, together with a UDP or TCP inbound adapter, could be used to receive and analyze
syslog records from other hosts. The transformer creates a message payload that contains a map of
the elements from the syslog message.

Spring Integration 3.0 introduced convenient namespace support for configuring a syslog inbound
adapter in a single element.

Starting with version 4.1.1, the framework now supports the extended syslog format, as specified in
RFC 5424>. In addition, when using TCP and RFC5424, both octet counting and non-transparent
framing described in RFC 6587 are supported.

37.1. Syslog Inbound Channel Adapter
This element encompasses a UDP or TCP inbound channel adapter and a MessageConverter to convert
the syslog message to a Spring Integration message. The DefaultMessageConverter delegates to the
SyslogToMapTransformer, creating a message with its payload being the Map of syslog fields. In
addition, all fields except the message are also made available as headers in the message and are
prefixed with syslog_. In this mode, only RFC 3164 (BSD) syslogs are supported.

Since version 4.1, the DefaultMessageConverter has a property called asMap (the default is true).
When it is false, the converter leaves the message payload as the original complete syslog message
(in a byte[]) while still setting the headers.

Since version 4.1.1, RFC 5424 is also supported, by using the RFC5424MessageConverter. In this case,
the fields are not copied as headers, unless asMap is set to false, in which case the original message
is the payload and the decoded fields are headers.

711

https://tools.ietf.org/html/rfc5424
https://tools.ietf.org/html/rfc6587
https://tools.ietf.org/html/rfc3164



To use RFC 5424 with a TCP transport, you must provide additional configuration
to enable the different framing techniques described in RFC 6587. The adapter
needs a TCP connection factory that is configured with a
RFC6587SyslogDeserializer. By default, this deserializer handles octet counting and
non-transparent framing by using a linefeed (LF) to delimit syslog messages. It uses
a ByteArrayLfSerializer when octet counting is not detected. To use different non-
transparent framing, you can provide it with some other deserializer. While the
deserializer can support both octet counting and non-transparent framing, only
one form of the latter is supported. If asMap is false on the converter, you must set
the retainOriginal constructor argument in the RFC6587SyslogDeserializer.

37.1.1. Example Configuration

The following example defines a UDP adapter that sends messages to the syslogIn channel (the
adapter bean name is syslogIn.adapter):

<int-syslog:inbound-channel-adapter id="syslogIn" port="1514" />

The adapter listens on port 1514.

The following example defines a UDP adapter that sends messages to the fromSyslog channel (the
adapter bean name is syslogIn):

<int-syslog:inbound-channel-adapter id="syslogIn"
 channel="fromSyslog" port="1514" />

The adapter listens on port 1514.

The following example defines a TCP adapter that sends messages to channel syslogIn (the adapter
bean name is syslogIn.adapter):

<int-syslog:inbound-channel-adapter id="bar" protocol="tcp" port="1514" />

The adapter listens on port 1514.

Note the addition of the protocol attribute. This attribute can contain udp or tcp. It defaults to udp.

The following example shows a UDP adapter that sends messages to channel fromSyslog:

712

<int-syslog:inbound-channel-adapter id="udpSyslog"
 channel="fromSyslog"
 auto-startup="false"
 phase="10000"
 converter="converter"
 send-timeout="1000"
 error-channel="errors">
 <int-syslog:udp-attributes port="1514" lookup-host="false" />
</int-syslog:inbound-channel-adapter>

The preceding example also shows two SmartLifecycle attributes: auto-startup and phase. It has a
reference to a custom org.springframework.integration.syslog.MessageConverter with an ID of
converter and an error-channel. Also notice the udp-attributes child element. You can set various
UDP attributes here, as defined in .UDP Inbound Channel Adapter Attributes.


When you use the udp-attributes element, you must provide the port attribute
there rather than on the inbound-channel-adapter element itself.

The following example shows a TCP adapter that sends messages to channel fromSyslog:

<int-syslog:inbound-channel-adapter id="TcpSyslog"
 protocol="tcp"
 channel="fromSyslog"
 connection-factory="cf" />

<int-ip:tcp-connection-factory id="cf" type="server" port="1514" />

It also shows how to reference an externally defined connection factory, which can be used for
advanced configuration (socket keep-alive and other uses). For more information, see TCP
Connection Factories.


The externally configured connection-factory must be of type server, and the port
is defined there rather than on the inbound-channel-adapter element itself.

The following example shows a TCP adapter that sends messages to channel fromSyslog:

713

./ip.pdf#ip-udp-ib-atts
./ip.pdf#tcp-connection-factories
./ip.pdf#tcp-connection-factories

<int-syslog:inbound-channel-adapter id="rfc5424Tcp"
 protocol="tcp"
 channel="fromSyslog"
 connection-factory="cf"
 converter="rfc5424" />

<int-ip:tcp-connection-factory id="cf"
 using-nio="true"
 type="server"
 port="1514"
 deserializer="rfc6587" />

<bean id="rfc5424" class=
"org.springframework.integration.syslog.RFC5424MessageConverter" />

<bean id="rfc6587" class=
"org.springframework.integration.syslog.inbound.RFC6587SyslogDeserializer" />

The preceding example is configured to use the RFC 5424 converter and is configured with a
reference to an externally defined connection factory with the RFC 6587 deserializer (required for
RFC 5424).

714

Chapter 38. TCP and UDP Support
Spring Integration provides channel adapters for receiving and sending messages over internet
protocols. Both UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters
are provided. Each adapter provides for one-way communication over the underlying protocol. In
addition, Spring Integration provides simple inbound and outbound TCP gateways. These are used
when two-way communication is needed.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-ip</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-ip:5.4.0"

38.1. Introduction
Two flavors each of UDP inbound and outbound channel adapters are provided:

• UnicastSendingMessageHandler sends a datagram packet to a single destination.

• UnicastReceivingChannelAdapter receives incoming datagram packets.

• MulticastSendingMessageHandler sends (broadcasts) datagram packets to a multicast address.

• MulticastReceivingChannelAdapter receives incoming datagram packets by joining to a multicast
address.

TCP inbound and outbound channel adapters are provided:

• TcpSendingMessageHandler sends messages over TCP.

• TcpReceivingChannelAdapter receives messages over TCP.

An inbound TCP gateway is provided. It allows for simple request-response processing. While the
gateway can support any number of connections, each connection can only be processed serially.
The thread that reads from the socket waits for, and sends, the response before reading again. If the
connection factory is configured for single use connections, the connection is closed after the socket
times out.

An outbound TCP gateway is provided. It allows for simple request-response processing. If the
associated connection factory is configured for single-use connections, a new connection is

715

immediately created for each new request. Otherwise, if the connection is in use, the calling thread
blocks on the connection until either a response is received or a timeout or I/O error occurs.

The TCP and UDP inbound channel adapters and the TCP inbound gateway support the error-
channel attribute. This provides the same basic functionality as described in Enter the
GatewayProxyFactoryBean.

38.2. UDP Adapters
This section describes how to configure and use the UDP adapters.

38.2.1. Outbound UDP Adapters (XML Configuration)

The following example configures a UDP outbound channel adapter:

<int-ip:udp-outbound-channel-adapter id="udpOut"
 host="somehost"
 port="11111"
 multicast="false"
 socket-customizer="udpCustomizer"
 channel="exampleChannel"/>


When setting multicast to true, you should also provide the multicast address in
the host attribute.

UDP is an efficient but unreliable protocol. Spring Integration adds two attributes to improve
reliability: check-length and acknowledge. When check-length is set to true, the adapter precedes the
message data with a length field (four bytes in network byte order). This enables the receiving side
to verify the length of the packet received. If a receiving system uses a buffer that is too short to
contain the packet, the packet can be truncated. The length header provides a mechanism to detect
this.

Starting with version 4.3, you can set the port to 0, in which case the operating system chooses the
port. The chosen port can be discovered by invoking getPort() after the adapter is started and
isListening() returns true.

Starting with version 5.3.3, you can add a SocketCustomizer bean to modify the DatagramSocket after
it is created (for example, call setTrafficClass(0x10)).

The following example shows an outbound channel adapter that adds length checking to the
datagram packets:

716

./gateway.pdf#gateway-proxy
./gateway.pdf#gateway-proxy

<int-ip:udp-outbound-channel-adapter id="udpOut"
 host="somehost"
 port="11111"
 multicast="false"
 check-length="true"
 channel="exampleChannel"/>


The recipient of the packet must also be configured to expect a length to precede
the actual data. For a Spring Integration UDP inbound channel adapter, set its
check-length attribute.

The second reliability improvement allows an application-level acknowledgment protocol to be
used. The receiver must send an acknowledgment to the sender within a specified time.

The following example shows an outbound channel adapter that adds length checking to the
datagram packets and waits for an acknowledgment:

<int-ip:udp-outbound-channel-adapter id="udpOut"
 host="somehost"
 port="11111"
 multicast="false"
 check-length="true"
 acknowledge="true"
 ack-host="thishost"
 ack-port="22222"
 ack-timeout="10000"
 channel="exampleChannel"/>


Setting acknowledge to true implies that the recipient of the packet can interpret the
header added to the packet containing acknowledgment data (host and port). Most
likely, the recipient is a Spring Integration inbound channel adapter.


When multicast is true, an additional attribute (min-acks-for-success) specifies
how many acknowledgments must be received within the ack-timeout.

Starting with version 4.3, you can set the ackPort to 0, in which case the operating system chooses
the port.

38.2.2. Outbound UDP Adapters (Java Configuration)

The following example shows how to configure an outbound UDP adapter with Java:

717

@Bean
@ServiceActivator(inputChannel = "udpOut")
public UnicastSendingMessageHandler handler() {
 return new UnicastSendingMessageHandler("localhost", 11111);
}

(or MulticastSendingChannelAdapter for multicast).

38.2.3. Outbound UDP Adapters (Java DSL Configuration)

The following example shows how to configure an outbound UDP adapter with the Java DSL:

@Bean
public IntegrationFlow udpOutFlow() {
 return f -> f.handle(Udp.outboundAdapter("localhost", 1234)
 .configureSocket(socket -> socket.setTrafficClass(0x10)))
 .get();
}

38.2.4. Inbound UDP Adapters (XML Configuration)

The following example shows how to configure a basic unicast inbound udp channel adapter.

<int-ip:udp-inbound-channel-adapter id="udpReceiver"
 channel="udpOutChannel"
 port="11111"
 receive-buffer-size="500"
 multicast="false"
 socket-customizer="udpCustomizer"
 check-length="true"/>

The following example shows how to configure a basic multicast inbound udp channel adapter:

718

<int-ip:udp-inbound-channel-adapter id="udpReceiver"
 channel="udpOutChannel"
 port="11111"
 receive-buffer-size="500"
 multicast="true"
 multicast-address="225.6.7.8"
 check-length="true"/>

By default, reverse DNS lookups are done on inbound packets to convert IP addresses to host names
for use in message headers. In environments where DNS is not configured, this can cause delays.
You can override this default behavior by setting the lookup-host attribute to false.

Starting with version 5.3.3, you can add a SocketCustomizer bean to modify the DatagramSocket after
it is created. It is called for the receiving socket and any sockets created for sending acks.

38.2.5. Inbound UDP Adapters (Java Configuration)

The following example shows how to configure an inbound UDP adapter with Java:

@Bean
public UnicastReceivingChannelAdapter udpIn() {
 UnicastReceivingChannelAdapter adapter = new UnicastReceivingChannelAdapter(11111
);
 adapter.setOutputChannelName("udpChannel");
 return adapter;
}

The following example shows how to configure an inbound UDP adapter with the Java DSL:

38.2.6. Inbound UDP Adapters (Java DSL Configuration)

@Bean
public IntegrationFlow udpIn() {
 return IntegrationFlows.from(Udp.inboundAdapter(11111))
 .channel("udpChannel")
 .get();
}

38.2.7. Server Listening Events

Starting with version 5.0.2, a UdpServerListeningEvent is emitted when an inbound adapter is
started and has begun listening. This is useful when the adapter is configured to listen on port 0,
meaning that the operating system chooses the port. It can also be used instead of polling
isListening(), if you need to wait before starting some other process that will connect to the socket.

719

38.2.8. Advanced Outbound Configuration

The <int-ip:udp-outbound-channel-adapter> (UnicastSendingMessageHandler) has destination-
expression and socket-expression options.

You can use the destination-expression as a runtime alternative to the hardcoded host-port pair to
determine the destination address for the outgoing datagram packet against a requestMessage (with
the root object for the evaluation context). The expression must evaluate to an URI, a String in the
URI style (see RFC-2396), or a SocketAddress. You can also use the inbound IpHeaders.PACKET_ADDRESS
header for this expression. In the framework, the DatagramPacketMessageMapper populates this
header when we receive datagrams in the UnicastReceivingChannelAdapter and convert them to
messages. The header value is exactly the result of DatagramPacket.getSocketAddress() of the
incoming datagram.

With the socket-expression, the outbound channel adapter can use (for example) an inbound
channel adapter socket to send datagrams through the same port which they were received. It is
useful in a scenario where our application works as a UDP server and clients operate behind
network address translation (NAT). This expression must evaluate to a DatagramSocket. The
requestMessage is used as the root object for the evaluation context. You cannot use the socket-
expression parameter with the multicast and acknowledge parameters. The following example shows
how to configure a UDP inbound channel adapter with a transformer that converts to upper case
and uses a socket:

<int-ip:udp-inbound-channel-adapter id="inbound" port="0" channel="in" />

<int:channel id="in" />

<int:transformer expression="new String(payload).toUpperCase()"
 input-channel="in" output-channel="out"/>

<int:channel id="out" />

<int-ip:udp-outbound-channel-adapter id="outbound"
 socket-expression="@inbound.socket"
 destination-expression="headers['ip_packetAddress']"
 channel="out" />

The following example shows the equivalent configuration with the Java DSL:

720

https://www.ietf.org/rfc/rfc2396.txt

@Bean
public IntegrationFlow udpEchoUpcaseServer() {
 return IntegrationFlows.from(Udp.inboundAdapter(11111).id("udpIn"))
 .<byte[], String>transform(p -> new String(p).toUpperCase())
 .handle(Udp.outboundAdapter("headers['ip_packetAddress']")
 .socketExpression("@udpIn.socket"))
 .get();
}

38.3. TCP Connection Factories

38.3.1. Overview

For TCP, the configuration of the underlying connection is provided by using a connection factory.
Two types of connection factory are provided: a client connection factory and a server connection
factory. Client connection factories establish outgoing connections. Server connection factories
listen for incoming connections.

An outbound channel adapter uses a client connection factory, but you can also provide a reference
to a client connection factory to an inbound channel adapter. That adapter receives any incoming
messages that are received on connections created by the outbound adapter.

An inbound channel adapter or gateway uses a server connection factory. (In fact, the connection
factory cannot function without one). You can also provide a reference to a server connection
factory to an outbound adapter. You can then use that adapter to send replies to incoming messages
on the same connection.


Reply messages are routed to the connection only if the reply contains the
ip_connectionId header that was inserted into the original message by the
connection factory.



This is the extent of message correlation performed when sharing connection
factories between inbound and outbound adapters. Such sharing allows for
asynchronous two-way communication over TCP. By default, only payload
information is transferred using TCP. Therefore, any message correlation must be
performed by downstream components such as aggregators or other endpoints.
Support for transferring selected headers was introduced in version 3.0. For more
information, see TCP Message Correlation.

You may give a reference to a connection factory to a maximum of one adapter of each type.

Spring Integration provides connection factories that use java.net.Socket and
java.nio.channel.SocketChannel.

The following example shows a simple server connection factory that uses java.net.Socket

721

connections:

<int-ip:tcp-connection-factory id="server"
 type="server"
 port="1234"/>

The following example shows a simple server connection factory that uses
java.nio.channel.SocketChannel connections:

<int-ip:tcp-connection-factory id="server"
 type="server"
 port="1234"
 using-nio="true"/>



Starting with Spring Integration version 4.2, if the server is configured to listen on
a random port (by setting the port to 0), you can get the actual port chosen by the
OS by using getPort(). Also, getServerSocketAddress() lets you get the complete
SocketAddress. See the Javadoc for the TcpServerConnectionFactory interface for
more information.

<int-ip:tcp-connection-factory id="client"
 type="client"
 host="localhost"
 port="1234"
 single-use="true"
 so-timeout="10000"/>

The following example shows a client connection factory that uses java.net.Socket connections and
creates a new connection for each message:

<int-ip:tcp-connection-factory id="client"
 type="client"
 host="localhost"
 port="1234"
 single-use="true"
 so-timeout="10000"
 using-nio=true/>

Starting with version 5.2, the client connection factories support the property connectTimeout,

722

https://docs.spring.io/spring-integration/api/org/springframework/integration/ip/tcp/connection/TcpServerConnectionFactory.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/ip/tcp/connection/TcpServerConnectionFactory.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/ip/tcp/connection/TcpServerConnectionFactory.html

specified in seconds, which defaults to 60.

38.3.2. Message Demarcation (Serializers and Deserializers)

TCP is a streaming protocol. This means that some structure has to be provided to data transported
over TCP so that the receiver can demarcate the data into discrete messages. Connection factories
are configured to use serializers and deserializers to convert between the message payload and the
bits that are sent over TCP. This is accomplished by providing a deserializer and a serializer for
inbound and outbound messages, respectively. Spring Integration provides a number of standard
serializers and deserializers.

ByteArrayCrlfSerializer* converts a byte array to a stream of bytes followed by carriage return and
linefeed characters (\r\n). This is the default serializer (and deserializer) and can be used (for
example) with telnet as a client.

The ByteArraySingleTerminatorSerializer* converts a byte array to a stream of bytes followed by a
single termination character (the default is 0x00).

The ByteArrayLfSerializer* converts a byte array to a stream of bytes followed by a single linefeed
character (0x0a).

The ByteArrayStxEtxSerializer* converts a byte array to a stream of bytes preceded by an STX (0x02)
and followed by an ETX (0x03).

The ByteArrayLengthHeaderSerializer converts a byte array to a stream of bytes preceded by a
binary length in network byte order (big endian). This an efficient deserializer because it does not
have to parse every byte to look for a termination character sequence. It can also be used for
payloads that contain binary data. The preceding serializers support only text in the payload. The
default size of the length header is four bytes (an Integer), allowing for messages up to (2^31 - 1)
bytes. However, the length header can be a single byte (unsigned) for messages up to 255 bytes, or
an unsigned short (2 bytes) for messages up to (2^16 - 1) bytes. If you need any other format for the
header, you can subclass ByteArrayLengthHeaderSerializer and provide implementations for the
readHeader and writeHeader methods. The absolute maximum data size is (2^31 - 1) bytes. Starting
with version 5.2, the header value can include the length of the header in addition to the payload.
Set the inclusive property to enable that mechanism (it must be set to the same for producers and
consumers).

The ByteArrayRawSerializer*, converts a byte array to a stream of bytes and adds no additional
message demarcation data. With this serializer (and deserializer), the end of a message is indicated
by the client closing the socket in an orderly fashion. When using this serializer, message reception
hangs until the client closes the socket or a timeout occurs. A timeout does not result in a message.
When this serializer is being used and the client is a Spring Integration application, the client must
use a connection factory that is configured with single-use="true". Doing so causes the adapter to
close the socket after sending the message. The serializer does not, by itself, close the connection.
You should use this serializer only with the connection factories used by channel adapters (not
gateways), and the connection factories should be used by either an inbound or outbound adapter
but not both. See also ByteArrayElasticRawDeserializer, later in this section. However, since version
5.2, the outbound gateway has a new property closeStreamAfterSend; this allows the use of raw
serializers/deserializers because the EOF is signaled to the server, while leaving the connection

723

open to receive the reply.



Before version 4.2.2, when using non-blocking I/O (NIO), this serializer treated a
timeout (during read) as an end of file, and the data read so far was emitted as a
message. This is unreliable and should not be used to delimit messages. It now
treats such conditions as an exception. In the unlikely event that you use it this
way, you can restore the previous behavior by setting the
treatTimeoutAsEndOfMessage constructor argument to true.

Each of these is a subclass of AbstractByteArraySerializer, which implements both
org.springframework.core.serializer.Serializer and
org.springframework.core.serializer.Deserializer. For backwards compatibility, connections that
use any subclass of AbstractByteArraySerializer for serialization also accept a String that is first
converted to a byte array. Each of these serializers and deserializers converts an input stream that
contains the corresponding format to a byte array payload.

To avoid memory exhaustion due to a badly behaved client (one that does not adhere to the
protocol of the configured serializer), these serializers impose a maximum message size. If an
incoming message exceeds this size, an exception is thrown. The default maximum message size is
2048 bytes. You can increase it by setting the maxMessageSize property. If you use the default
serializer or deserializer and wish to increase the maximum message size, you must declare the
maximum message size as an explicit bean with the maxMessageSize property set and configure the
connection factory to use that bean.

The classes marked with * earlier in this section use an intermediate buffer and copy the decoded
data to a final buffer of the correct size. Starting with version 4.3, you can configure these buffers
by setting a poolSize property to let these raw buffers be reused instead of being allocated and
discarded for each message, which is the default behavior. Setting the property to a negative value
creates a pool that has no bounds. If the pool is bounded, you can also set the poolWaitTimeout
property (in milliseconds), after which an exception is thrown if no buffer becomes available. It
defaults to infinity. Such an exception causes the socket to be closed.

If you wish to use the same mechanism in custom deserializers, you can extend
AbstractPooledBufferByteArraySerializer (instead of its super class, AbstractByteArraySerializer)
and implement doDeserialize() instead of deserialize(). The buffer is automatically returned to
the pool. AbstractPooledBufferByteArraySerializer also provides a convenient utility method:
copyToSizedArray().

Version 5.0 added the ByteArrayElasticRawDeserializer. This is similar to the deserializer side of
ByteArrayRawSerializer above, except that it is not necessary to set a maxMessageSize. Internally, it
uses a ByteArrayOutputStream that lets the buffer grow as needed. The client must close the socket in
an orderly manner to signal end of message.


This deserializer should only be used when the peer is trusted; it is susceptible to a
DoS attach due to out of memory conditions.

The MapJsonSerializer uses a Jackson ObjectMapper to convert between a Map and JSON. You can use
this serializer in conjunction with a MessageConvertingTcpMessageMapper and a MapMessageConverter
to transfer selected headers and the payload in JSON.

724



The Jackson ObjectMapper cannot demarcate messages in the stream. Therefore, the
MapJsonSerializer needs to delegate to another serializer or deserializer to handle
message demarcation. By default, a ByteArrayLfSerializer is used, resulting in
messages with a format of <json><LF> on the wire, but you can configure it to use
others instead. (The next example shows how to do so.)

The final standard serializer is org.springframework.core.serializer.DefaultSerializer, which you
can use to convert serializable objects with Java serialization.
org.springframework.core.serializer.DefaultDeserializer is provided for inbound deserialization
of streams that contain serializable objects.

If you do not wish to use the default serializer and deserializer (ByteArrayCrLfSerializer), you must
set the serializer and deserializer attributes on the connection factory. The following example
shows how to do so:

<bean id="javaSerializer"
 class="org.springframework.core.serializer.DefaultSerializer" />
<bean id="javaDeserializer"
 class="org.springframework.core.serializer.DefaultDeserializer" />

<int-ip:tcp-connection-factory id="server"
 type="server"
 port="1234"
 deserializer="javaDeserializer"
 serializer="javaSerializer"/>

A server connection factory that uses java.net.Socket connections and uses Java serialization on
the wire.

For full details of the attributes available on connection factories, see the reference at the end of
this section.

By default, reverse DNS lookups are done on inbound packets to convert IP addresses to host names
for use in message headers. In environments where DNS is not configured, this can cause
connection delays. You can override this default behavior by setting the lookup-host attribute to
false.


You can also modify the attributes of sockets and socket factories. See SSL/TLS
Support for more information. As noted there, such modifications are possible
whether or not SSL is being used.

38.3.3. Custom Serializers and Deserializers

If your data is not in a format supported by one of the standard deserializers, you can implement
your own; you can also implement a custom serializer.

725

To implement a custom serializer and deserializer pair, implement the
org.springframework.core.serializer.Deserializer and
org.springframework.core.serializer.Serializer interfaces.

When the deserializer detects a closed input stream between messages, it must throw a
SoftEndOfStreamException; this is a signal to the framework to indicate that the close was "normal".
If the stream is closed while decoding a message, some other exception should be thrown instead.

Starting with version 5.2, SoftEndOfStreamException is now a RuntimeException instead of extending
IOException.

38.3.4. TCP Caching Client Connection Factory

As noted earlier, TCP sockets can be 'single-use' (one request or response) or shared. Shared sockets
do not perform well with outbound gateways in high-volume environments, because the socket can
only process one request or response at a time.

To improve performance, you can use collaborating channel adapters instead of gateways, but that
requires application-level message correlation. See TCP Message Correlation for more information.

Spring Integration 2.2 introduced a caching client connection factory, which uses a pool of shared
sockets, letting a gateway process multiple concurrent requests with a pool of shared connections.

38.3.5. TCP Failover Client Connection Factory

You can configure a TCP connection factory that supports failover to one or more other servers.
When sending a message, the factory iterates over all its configured factories until either the
message can be sent or no connection can be found. Initially, the first factory in the configured list
is used. If a connection subsequently fails, the next factory becomes the current factory. The
following example shows how to configure a failover client connection factory:

<bean id="failCF" class="o.s.i.ip.tcp.connection.FailoverClientConnectionFactory">
 <constructor-arg>
 <list>
 <ref bean="clientFactory1"/>
 <ref bean="clientFactory2"/>
 </list>
 </constructor-arg>
</bean>


When using the failover connection factory, the singleUse property must be
consistent between the factory itself and the list of factories it is configured to use.

The connection factory has two properties related to failing back, when used with a shared
connection (singleUse=false):

• refreshSharedInterval

726

• closeOnRefresh

Consider the following scenario based on the above configuration: Let’s say clientFactory1 cannot
establish a connection but clientFactory2 can. When the failCF getConnection() method is called
after the refreshSharedInterval has passed, we will again attempt to connect using clientFactory1;
if successful, the connection to clientFactory2 will be closed. If closeOnRefresh is false, the "old"
connection will remain open and may be reused in future if the first factory fails once more.

Set refreshSharedInterval to only attempt to reconnect with the first factory after that time has
expired; setting it to Long.MAX_VALUE (default) if you only want to fail back to the first factory when
the current connection fails.

Set closeOnRefresh to close the "old" connection after a refresh actually creates a new connection.



These properties do not apply if any of the delegate factories is a
CachingClientConnectionFactory because the connection caching is handled there;
in that case the list of connection factories will always be consulted to get a
connection.

Starting with version 5.3, these default to Long.MAX_VALUE and true so the factory only attempts to
fail back when the current connection fails. To revert to the default behavior of previous versions,
set them to 0 and false.

Also see Testing Connections.

38.3.6. TCP Thread Affinity Connection Factory

Spring Integration version 5.0 introduced this connection factory. It binds a connection to the
calling thread, and the same connection is reused each time that thread sends a message. This
continues until the connection is closed (by the server or the network) or until the thread calls the
releaseConnection() method. The connections themselves are provided by another client factory
implementation, which must be configured to provide non-shared (single-use) connections so that
each thread gets a connection.

The following example shows how to configure a TCP thread affinity connection factory:

727

@Bean
public TcpNetClientConnectionFactory cf() {
 TcpNetClientConnectionFactory cf = new TcpNetClientConnectionFactory(
"localhost",
 Integer.parseInt(System.getProperty(PORT)));
 cf.setSingleUse(true);
 return cf;
}

@Bean
public ThreadAffinityClientConnectionFactory tacf() {
 return new ThreadAffinityClientConnectionFactory(cf());
}

@Bean
@ServiceActivator(inputChannel = "out")
public TcpOutboundGateway outGate() {
 TcpOutboundGateway outGate = new TcpOutboundGateway();
 outGate.setConnectionFactory(tacf());
 outGate.setReplyChannelName("toString");
 return outGate;
}

38.4. Testing Connections
In some scenarios, it can be useful to send some kind of health-check request when a connection is
first opened. One such scenario might be when using a TCP Failover Client Connection Factory so
that we can fail over if the selected server allowed a connection to be opened but reports that it is
not healthy.

In order to support this feature, add a connectionTest to the client connection factory.

/**
 * Set a {@link Predicate} that will be invoked to test a new connection; return
true
 * to accept the connection, false the reject.
 * @param connectionTest the predicate.
 * @since 5.3
 */
public void setConnectionTest(@Nullable Predicate<TcpConnectionSupport>
connectionTest) {
 this.connectionTest = connectionTest;
}

728

To test the connection, attach a temporary listener to the connection within the test. If the test fails,
the connection is closed and an exception thrown. When used with the TCP Failover Client
Connection Factory this triggers trying the next server.

 Only the first reply from the server will go to the test listener.

In the following example, the server is considered healthy if the server replies PONG when we send
PING.

Message<String> ping = new GenericMessage<>("PING");
byte[] pong = "PONG".getBytes();
clientFactory.setConnectionTest(conn -> {
 CountDownLatch latch = new CountDownLatch(1);
 AtomicBoolean result = new AtomicBoolean();
 conn.registerTestListener(msg -> {
 if (Arrays.equals(pong, (byte[]) msg.getPayload())) {
 result.set(true);
 }
 latch.countDown();
 return false;
 });
 conn.send(ping);
 try {
 latch.await(10, TimeUnit.SECONDS);
 }
 catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 return result.get();
});

38.5. TCP Connection Interceptors
You can configure connection factories with a reference to a TcpConnectionInterceptorFactoryChain.
You can use interceptors to add behavior to connections, such as negotiation, security, and other
options. No interceptors are currently provided by the framework, but see
InterceptedSharedConnectionTests in the source repository for an example.

The HelloWorldInterceptor used in the test case works as follows:

The interceptor is first configured with a client connection factory. When the first message is sent
over an intercepted connection, the interceptor sends 'Hello' over the connection and expects to
receive 'world!'. When that occurs, the negotiation is complete and the original message is sent.
Further messages that use the same connection are sent without any additional negotiation.

When configured with a server connection factory, the interceptor requires the first message to be
'Hello' and, if it is, returns 'world!'. Otherwise it throws an exception that causes the connection to

729

https://github.com/spring-projects/spring-integration/blob/master/spring-integration-ip/src/test/java/org/springframework/integration/ip/tcp/InterceptedSharedConnectionTests.java
https://github.com/spring-projects/spring-integration/blob/master/spring-integration-ip/src/test/java/org/springframework/integration/ip/tcp/InterceptedSharedConnectionTests.java

be closed.

All TcpConnection methods are intercepted. Interceptor instances are created for each connection by
an interceptor factory. If an interceptor is stateful, the factory should create a new instance for each
connection. If there is no state, the same interceptor can wrap each connection. Interceptor
factories are added to the configuration of an interceptor factory chain, which you can provide to a
connection factory by setting the interceptor-factory attribute. Interceptors must extend
TcpConnectionInterceptorSupport. Factories must implement the TcpConnectionInterceptorFactory
interface. TcpConnectionInterceptorSupport has passthrough methods. By extending this class, you
only need to implement those methods you wish to intercept.

The following example shows how to configure a connection interceptor factory chain:

<bean id="helloWorldInterceptorFactory"
 class="o.s.i.ip.tcp.connection.TcpConnectionInterceptorFactoryChain">
 <property name="interceptors">
 <array>
 <bean class="o.s.i.ip.tcp.connection.HelloWorldInterceptorFactory"/>
 </array>
 </property>
</bean>

<int-ip:tcp-connection-factory id="server"
 type="server"
 port="12345"
 using-nio="true"
 single-use="true"
 interceptor-factory-chain="helloWorldInterceptorFactory"/>

<int-ip:tcp-connection-factory id="client"
 type="client"
 host="localhost"
 port="12345"
 single-use="true"
 so-timeout="100000"
 using-nio="true"
 interceptor-factory-chain="helloWorldInterceptorFactory"/>

38.6. TCP Connection Events
Beginning with version 3.0, changes to TcpConnection instances are reported by TcpConnectionEvent
instances. TcpConnectionEvent is a subclass of ApplicationEvent and can thus be received by any
ApplicationListener defined in the ApplicationContext — for example an event inbound channel
adapter.

TcpConnectionEvents have the following properties:

730

./event.pdf#appevent-inbound
./event.pdf#appevent-inbound

• connectionId: The connection identifier, which you can use in a message header to send data to
the connection.

• connectionFactoryName: The bean name of the connection factory to which the connection
belongs.

• throwable: The Throwable (for TcpConnectionExceptionEvent events only).

• source: The TcpConnection. You can use this, for example, to determine the remote IP Address
with getHostAddress() (cast required).

In addition, since version 4.0, the standard deserializers discussed in TCP Connection Factories now
emit TcpDeserializationExceptionEvent instances when they encounter problems while decoding
the data stream. These events contain the exception, the buffer that was in the process of being
built, and an offset into the buffer (if available) at the point where the exception occurred.
Applications can use a normal ApplicationListener or an ApplicationEventListeningMessageProducer
(see Receiving Spring Application Events) to capture these events, allowing analysis of the problem.

Starting with versions 4.0.7 and 4.1.3, TcpConnectionServerExceptionEvent instances are published
whenever an unexpected exception occurs on a server socket (such as a BindException when the
server socket is in use). These events have a reference to the connection factory and the cause.

Starting with version 4.2, TcpConnectionFailedCorrelationEvent instances are published whenever
an endpoint (inbound gateway or collaborating outbound channel adapter) receives a message that
cannot be routed to a connection because the ip_connectionId header is invalid. Outbound
gateways also publish this event when a late reply is received (the sender thread has timed out).
The event contains the connection ID as well as an exception in the cause property, which contains
the failed message.

Starting with version 4.3, a TcpConnectionServerListeningEvent is emitted when a server connection
factory is started. This is useful when the factory is configured to listen on port 0, meaning that the
operating system chooses the port. It can also be used instead of polling isListening(), if you need
to wait before starting some other process that connects to the socket.


To avoid delaying the listening thread from accepting connections, the event is
published on a separate thread.

Starting with version 4.3.2, a TcpConnectionFailedEvent is emitted whenever a client connection
cannot be created. The source of the event is the connection factory, which you can use to
determine the host and port to which the connection could not be established.

38.7. TCP Adapters
TCP inbound and outbound channel adapters that use connection factories mentioned earlier are
provided. These adapters have two relevant attributes: connection-factory and channel. The
connection-factory attribute indicates which connection factory is to be used to manage
connections for the adapter. The channel attribute specifies the channel on which messages arrive
at an outbound adapter and on which messages are placed by an inbound adapter. While both
inbound and outbound adapters can share a connection factory, server connection factories are
always “owned” by an inbound adapter. Client connection factories are always “owned” by an

731

./event.pdf#appevent-inbound

outbound adapter. Only one adapter of each type may get a reference to a connection factory. The
following example shows how to define client and server TCP connection factories:

<bean id="javaSerializer"
 class="org.springframework.core.serializer.DefaultSerializer"/>
<bean id="javaDeserializer"
 class="org.springframework.core.serializer.DefaultDeserializer"/>

<int-ip:tcp-connection-factory id="server"
 type="server"
 port="1234"
 deserializer="javaDeserializer"
 serializer="javaSerializer"
 using-nio="true"
 single-use="true"/>

<int-ip:tcp-connection-factory id="client"
 type="client"
 host="localhost"
 port="#{server.port}"
 single-use="true"
 so-timeout="10000"
 deserializer="javaDeserializer"
 serializer="javaSerializer"/>

<int:channel id="input" />

<int:channel id="replies">
 <int:queue/>
</int:channel>

<int-ip:tcp-outbound-channel-adapter id="outboundClient"
 channel="input"
 connection-factory="client"/>

<int-ip:tcp-inbound-channel-adapter id="inboundClient"
 channel="replies"
 connection-factory="client"/>

<int-ip:tcp-inbound-channel-adapter id="inboundServer"
 channel="loop"
 connection-factory="server"/>

<int-ip:tcp-outbound-channel-adapter id="outboundServer"
 channel="loop"
 connection-factory="server"/>

<int:channel id="loop"/>

732

In the preceding configuration, messages arriving in the input channel are serialized over
connections created by client connection factory, received at the server, and placed on the loop
channel. Since loop is the input channel for outboundServer, the message is looped back over the
same connection, received by inboundClient, and deposited in the replies channel. Java
serialization is used on the wire.

Normally, inbound adapters use a type="server" connection factory, which listens for incoming
connection requests. In some cases, you may want to establish the connection in reverse, such that
the inbound adapter connects to an external server and then waits for inbound messages on that
connection.

This topology is supported by setting client-mode="true" on the inbound adapter. In this case, the
connection factory must be of type client and must have single-use set to false.

Two additional attributes support this mechanism. The retry-interval specifies (in milliseconds)
how often the framework attempts to reconnect after a connection failure. The scheduler supplies a
TaskScheduler to schedule the connection attempts and to test that the connection is still active.

If you don’t provide a scheduler, the framework’s default taskScheduler bean is used.

For an outbound adapter, the connection is normally established when the first message is sent.
The client-mode="true" on an outbound adapter causes the connection to be established when the
adapter is started. By default, adapters are automatically started. Again, the connection factory
must be of type client and have single-use="false". A retry-interval and scheduler are also
supported. If a connection fails, it is re-established either by the scheduler or when the next
message is sent.

For both inbound and outbound, if the adapter is started, you can force the adapter to establish a
connection by sending a <control-bus /> command: @adapter_id.retryConnection(). Then you can
examine the current state with @adapter_id.isClientModeConnected().

38.8. TCP Gateways
The inbound TCP gateway TcpInboundGateway and outbound TCP gateway TcpOutboundGateway use a
server and client connection factory, respectively. Each connection can process a single request or
response at a time.

The inbound gateway, after constructing a message with the incoming payload and sending it to the
requestChannel, waits for a response and sends the payload from the response message by writing it
to the connection.



For the inbound gateway, you must retain or populate, the ip_connectionId header,
because it is used to correlate the message to a connection. Messages that originate
at the gateway automatically have the header set. If the reply is constructed as a
new message, you need to set the header. The header value can be captured from
the incoming message.

As with inbound adapters, inbound gateways normally use a type="server" connection factory,
which listens for incoming connection requests. In some cases, you may want to establish the

733

./configuration.pdf#namespace-taskscheduler

connection in reverse, such that the inbound gateway connects to an external server and then waits
for and replies to inbound messages on that connection.

This topology is supported by using client-mode="true" on the inbound gateway. In this case, the
connection factory must be of type client and must have single-use set to false.

Two additional attributes support this mechanism. retry-interval specifies (in milliseconds) how
often the framework tries to reconnect after a connection failure. scheduler supplies a
TaskScheduler to schedule the connection attempts and to test that the connection is still active.

If the gateway is started, you may force the gateway to establish a connection by sending a
<control-bus/> command: @adapter_id.retryConnection() and examine the current state with
@adapter_id.isClientModeConnected().

The outbound gateway, after sending a message over the connection, waits for a response,
constructs a response message, and puts it on the reply channel. Communications over the
connections are single-threaded. Only one message can be handled at a time. If another thread
attempts to send a message before the current response has been received, it blocks until any
previous requests are complete (or time out). If, however, the client connection factory is
configured for single-use connections, each new request gets its own connection and is processed
immediately. The following example configures an inbound TCP gateway:

<int-ip:tcp-inbound-gateway id="inGateway"
 request-channel="tcpChannel"
 reply-channel="replyChannel"
 connection-factory="cfServer"
 reply-timeout="10000"/>

If a connection factory configured with the default serializer or deserializer is used, messages is
\r\n delimited data and the gateway can be used by a simple client such as telnet.

The following example shows an outbound TCP gateway:

<int-ip:tcp-outbound-gateway id="outGateway"
 request-channel="tcpChannel"
 reply-channel="replyChannel"
 connection-factory="cfClient"
 request-timeout="10000"
 remote-timeout="10000"/> <!-- or e.g.
remote-timeout-expression="headers['timeout']" -->

client-mode is not currently available with the outbound gateway.

Starting with version 5.2, the outbound gateway can be configured with the property
closeStreamAfterSend. If the connection factory is configured for single-use (a new connection for

734

each request/reply) the gateway will close the output stream; this signals EOF to the server. This is
useful if the server uses the EOF to determine the end of message, rather than some delimiter in the
stream, but leaves the connection open in order to receive the reply.

Normally, the calling thread will block in the gateway, waiting for the reply (or a timeout). Starting
with version 5.3, you can set the async property on the gateway and the sending thread is released
to do other work. The reply (or error) will be sent on the receiving thread. This only applies when
using the TcpNetClientConnectionFactory, it is ignored when using NIO because there is a race
condition whereby a socket error that occurs after the reply is received can be passed to the
gateway before the reply.



When using a shared connection (singleUse=false), a new request, while another is
in process, will be blocked until the current reply is received. Consider using the
CachingClientConnectionFactory if you wish to support concurrent requests on a
pool of long-lived connections.

Starting with version 5.4, the inbound can be configured with an unsolicitedMessageChannel.
Unsolicited inbound messages will be sent to this channel, as well as late replies (where the client
timed out). To support this on the server side, you can now register multiple TcpSender s with the
connection factory. Gateways and Channel Adapters automatically register themselves. When
sending unsolicited messages from the server, you must add the appropriate
IpHeaders.CONNECTION_ID to the messages sent.

38.9. TCP Message Correlation
One goal of the IP endpoints is to provide communication with systems other than Spring
Integration applications. For this reason, only message payloads are sent and received by default.
Since 3.0, you can transfer headers by using JSON, Java serialization, or custom serializers and
deserializers. See Transferring Headers for more information. No message correlation is provided
by the framework (except when using the gateways) or collaborating channel adapters on the
server side. Later in this document, we discuss the various correlation techniques available to
applications. In most cases, this requires specific application-level correlation of messages, even
when message payloads contain some natural correlation data (such as an order number).

38.9.1. Gateways

Gateways automatically correlate messages. However, you should use an outbound gateway for
relatively low-volume applications. When you configure the connection factory to use a single
shared connection for all message pairs ('single-use="false"'), only one message can be processed at
a time. A new message has to wait until the reply to the previous message has been received. When
a connection factory is configured for each new message to use a new connection ('single-
use="true"'), this restriction does not apply. While this setting can give higher throughput than a
shared connection environment, it comes with the overhead of opening and closing a new
connection for each message pair.

Therefore, for high-volume messages, consider using a collaborating pair of channel adapters.
However, to do so, you need to provide collaboration logic.

735

Another solution, introduced in Spring Integration 2.2, is to use a CachingClientConnectionFactory,
which allows the use of a pool of shared connections.

38.9.2. Collaborating Outbound and Inbound Channel Adapters

To achieve high-volume throughput (avoiding the pitfalls of using gateways, as mentioned earlier)
you can configure a pair of collaborating outbound and inbound channel adapters. You can also use
collaborating adapters (server-side or client-side) for totally asynchronous communication (rather
than with request-reply semantics). On the server side, message correlation is automatically
handled by the adapters, because the inbound adapter adds a header that allows the outbound
adapter to determine which connection to use when sending the reply message.



On the server side, you must populate the ip_connectionId header, because it is
used to correlate the message to a connection. Messages that originate at the
inbound adapter automatically have the header set. If you wish to construct other
messages to send, you need to set the header. You can get the header value from an
incoming message.

On the client side, the application must provide its own correlation logic, if needed. You can do so in
a number of ways.

If the message payload has some natural correlation data (such as a transaction ID or an order
number) and you have no need to retain any information (such as a reply channel header) from the
original outbound message, the correlation is simple and would be done at the application level in
any case.

If the message payload has some natural correlation data (such as a transaction ID or an order
number), but you need to retain some information (such as a reply channel header) from the
original outbound message, you can retain a copy of the original outbound message (perhaps by
using a publish-subscribe channel) and use an aggregator to recombine the necessary data.

For either of the previous two scenarios, if the payload has no natural correlation data, you can
provide a transformer upstream of the outbound channel adapter to enhance the payload with
such data. Such a transformer may transform the original payload to a new object that contains
both the original payload and some subset of the message headers. Of course, live objects (such as
reply channels) from the headers cannot be included in the transformed payload.

If you choose such a strategy, you need to ensure the connection factory has an appropriate
serializer-deserializer pair to handle such a payload (such as DefaultSerializer and
DefaultDeserializer, which use java serialization, or a custom serializer and deserializer). The
ByteArray*Serializer options mentioned in TCP Connection Factories, including the default
ByteArrayCrLfSerializer, do not support such payloads unless the transformed payload is a String
or byte[].

736



Before the 2.2 release, when collaborating channel adapters used a client
connection factory, the so-timeout attribute defaulted to the default reply timeout
(10 seconds). This meant that, if no data were received by the inbound adapter for
this period of time, the socket was closed.

This default behavior was not appropriate in a truly asynchronous environment,
so it now defaults to an infinite timeout. You can reinstate the previous default
behavior by setting the so-timeout attribute on the client connection factory to
10000 milliseconds.

Starting with version 5.4, multiple outbound channel adapters and one TcpInboundChannelAdapter
can share the same connection factory. This allows an application to support both request/reply and
arbitrary server → client messaging. See TCP Gateways for more information.

38.9.3. Transferring Headers

TCP is a streaming protocol. Serializers and Deserializers demarcate messages within the stream.
Prior to 3.0, only message payloads (String or byte[]) could be transferred over TCP. Beginning with
3.0, you can transfer selected headers as well as the payload. However, “live” objects, such as the
replyChannel header, cannot be serialized.

Sending header information over TCP requires some additional configuration.

The first step is to provide the ConnectionFactory with a MessageConvertingTcpMessageMapper that uses
the mapper attribute. This mapper delegates to any MessageConverter implementation to convert the
message to and from some object that can be serialized and deserialized by the configured
serializer and deserializer.

Spring Integration provides a MapMessageConverter, which allows the specification of a list of
headers that are added to a Map object, along with the payload. The generated Map has two entries:
payload and headers. The headers entry is itself a Map and contains the selected headers.

The second step is to provide a serializer and a deserializer that can convert between a Map and
some wire format. This can be a custom Serializer or Deserializer, which you typically need if the
peer system is not a Spring Integration application.

Spring Integration provides a MapJsonSerializer to convert a Map to and from JSON. It uses a Spring
Integration JsonObjectMapper. You can provide a custom JsonObjectMapper if needed. By default, the
serializer inserts a linefeed (0x0a) character between objects. See the Javadoc for more information.

 The JsonObjectMapper uses whichever version of Jackson is on the classpath.

You can also use standard Java serialization of the Map, by using the DefaultSerializer and
DefaultDeserializer.

The following example shows the configuration of a connection factory that transfers the
correlationId, sequenceNumber, and sequenceSize headers by using JSON:

737

https://docs.spring.io/spring-integration/api/org/springframework/integration/ip/tcp/serializer/MapJsonSerializer.html

<int-ip:tcp-connection-factory id="client"
 type="client"
 host="localhost"
 port="12345"
 mapper="mapper"
 serializer="jsonSerializer"
 deserializer="jsonSerializer"/>

<bean id="mapper"
 class="o.sf.integration.ip.tcp.connection.MessageConvertingTcpMessageMapper
">
 <constructor-arg name="messageConverter">
 <bean class="o.sf.integration.support.converter.MapMessageConverter">
 <property name="headerNames">
 <list>
 <value>correlationId</value>
 <value>sequenceNumber</value>
 <value>sequenceSize</value>
 </list>
 </property>
 </bean>
 </constructor-arg>
</bean>

<bean id="jsonSerializer" class=
"o.sf.integration.ip.tcp.serializer.MapJsonSerializer" />

A message sent with the preceding configuration, with a payload of 'something' would appear on
the wire as follows:

{"headers":{"correlationId":"things","sequenceSize":5,"sequenceNumber":1},"payload
":"something"}

38.10. About Non-blocking I/O (NIO)
Using NIO (see using-nio in IP Configuration Attributes) avoids dedicating a thread to read from
each socket. For a small number of sockets, you are likely to find that not using NIO, together with
an asynchronous hand-off (such as to a QueueChannel), performs as well as or better than using NIO.

You should consider using NIO when handling a large number of connections. However, the use of
NIO has some other ramifications. A pool of threads (in the task executor) is shared across all the
sockets. Each incoming message is assembled and sent to the configured channel as a separate unit
of work on a thread selected from that pool. Two sequential messages arriving on the same socket
might be processed by different threads. This means that the order in which the messages are sent

738

to the channel is indeterminate. Strict ordering of the messages arriving on the socket is not
maintained.

For some applications, this is not an issue. For others, it is a problem. If you require strict ordering,
consider setting using-nio to false and using an asynchronous hand-off.

Alternatively, you can insert a resequencer downstream of the inbound endpoint to return the
messages to their proper sequence. If you set apply-sequence to true on the connection factory,
messages arriving on a TCP connection have sequenceNumber and correlationId headers set. The
resequencer uses these headers to return the messages to their proper sequence.



Starting with version 5.1.4, priority is given to accepting new connections over
reading from existing connections. This should, generally, have little impact unless
you have a very high rate of new incoming connections. If you wish to revert to
the previous behavior of giving reads priority, set the multiAccept property on the
TcpNioServerConnectionFactory to false.

38.10.1. Pool Size

The pool size attribute is no longer used. Previously, it specified the size of the default thread pool
when a task-executor was not specified. It was also used to set the connection backlog on server
sockets. The first function is no longer needed (see the next paragraph). The second function is
replaced by the backlog attribute.

Previously, when using a fixed thread pool task executor (which was the default) with NIO, it was
possible to get a deadlock and processing would stop. The problem occurred when a buffer was full,
a thread reading from the socket was trying to add more data to the buffer, and no threads were
available to make space in the buffer. This only occurred with a very small pool size, but it could be
possible under extreme conditions. Since 2.2, two changes have eliminated this problem. First, the
default task executor is a cached thread pool executor. Second, deadlock detection logic has been
added such that, if thread starvation occurs, instead of deadlocking, an exception is thrown, thus
releasing the deadlocked resources.



Now that the default task executor is unbounded, it is possible that an out-of-
memory condition might occur with high rates of incoming messages, if message
processing takes extended time. If your application exhibits this type of behavior,
you should use a pooled task executor with an appropriate pool size, but see the
next section.

38.10.2. Thread Pool Task Executor with CALLER_RUNS Policy

You should keep in mind some important considerations when you use a fixed thread pool with the
CallerRunsPolicy (CALLER_RUNS when using the <task/> namespace) and the queue capacity is small.

The following does not apply if you do not use a fixed thread pool.

With NIO connections, there are three distinct task types. The I/O selector processing is performed
on one dedicated thread (detecting events, accepting new connections, and dispatching the I/O read
operations to other threads by using the task executor). When an I/O reader thread (to which the

739

read operation is dispatched) reads data, it hands off to another thread to assemble the incoming
message. Large messages can take several reads to complete. These “assembler” threads can block
while waiting for data. When a new read event occurs, the reader determines if this socket already
has an assembler and, if not, runs a new one. When the assembly process is complete, the
assembler thread is returned to the pool.

This can cause a deadlock when the pool is exhausted, the CALLER_RUNS rejection policy is in use, and
the task queue is full. When the pool is empty and there is no room in the queue, the IO selector
thread receives an OP_READ event and dispatches the read by using the executor. The queue is full, so
the selector thread itself starts the read process. Now it detects that there is no assembler for this
socket and, before it does the read, fires off an assembler. Again, the queue is full, and the selector
thread becomes the assembler. The assembler is now blocked, waiting for the data to be read,
which never happens. The connection factory is now deadlocked because the selector thread
cannot handle new events.

To avoid this deadlock, we must avoid the selector (or reader) threads performing the assembly
task. We want to use separate pools for the IO and assembly operations.

The framework provides a CompositeExecutor, which allows the configuration of two distinct
executors: one for performing IO operations and one for message assembly. In this environment, an
IO thread can never become an assembler thread, and the deadlock cannot occur.

In addition, the task executors should be configured to use an AbortPolicy (ABORT when using
<task>). When an I/O task cannot be completed, it is deferred for a short time and continually
retried until it can be completed and have an assembler allocated. By default, the delay is 100ms,
but you can change it by setting the readDelay property on the connection factory (read-delay when
configuring with the XML namespace).

The following three examples shows how to configure the composite executor:

740

@Bean
private CompositeExecutor compositeExecutor() {
 ThreadPoolTaskExecutor ioExec = new ThreadPoolTaskExecutor();
 ioExec.setCorePoolSize(4);
 ioExec.setMaxPoolSize(10);
 ioExec.setQueueCapacity(0);
 ioExec.setThreadNamePrefix("io-");
 ioExec.setRejectedExecutionHandler(new AbortPolicy());
 ioExec.initialize();
 ThreadPoolTaskExecutor assemblerExec = new ThreadPoolTaskExecutor();
 assemblerExec.setCorePoolSize(4);
 assemblerExec.setMaxPoolSize(10);
 assemblerExec.setQueueCapacity(0);
 assemblerExec.setThreadNamePrefix("assembler-");
 assemblerExec.setRejectedExecutionHandler(new AbortPolicy());
 assemblerExec.initialize();
 return new CompositeExecutor(ioExec, assemblerExec);
}

<bean id="myTaskExecutor" class=
"org.springframework.integration.util.CompositeExecutor">
 <constructor-arg ref="io"/>
 <constructor-arg ref="assembler"/>
</bean>

<task:executor id="io" pool-size="4-10" queue-capacity="0" rejection-policy="
ABORT" />
<task:executor id="assembler" pool-size="4-10" queue-capacity="0" rejection-
policy="ABORT" />

741

<bean id="myTaskExecutor" class=
"org.springframework.integration.util.CompositeExecutor">
 <constructor-arg>
 <bean class=
"org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 <property name="threadNamePrefix" value="io-" />
 <property name="corePoolSize" value="4" />
 <property name="maxPoolSize" value="8" />
 <property name="queueCapacity" value="0" />
 <property name="rejectedExecutionHandler">
 <bean class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy"
/>
 </property>
 </bean>
 </constructor-arg>
 <constructor-arg>
 <bean class=
"org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 <property name="threadNamePrefix" value="assembler-" />
 <property name="corePoolSize" value="4" />
 <property name="maxPoolSize" value="10" />
 <property name="queueCapacity" value="0" />
 <property name="rejectedExecutionHandler">
 <bean class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy"
/>
 </property>
 </bean>
 </constructor-arg>
</bean>

38.11. SSL/TLS Support
Secure Sockets Layer/Transport Layer Security is supported. When using NIO, the JDK 5+ SSLEngine
feature is used to handle handshaking after the connection is established. When not using NIO,
standard SSLSocketFactory and SSLServerSocketFactory objects are used to create connections. A
number of strategy interfaces are provided to allow significant customization. The default
implementations of these interfaces provide for the simplest way to get started with secure
communications.

38.11.1. Getting Started

Regardless of whether you use NIO, you need to configure the ssl-context-support attribute on the
connection factory. This attribute references a <bean/> definition that describes the location and
passwords for the required key stores.

SSL/TLS peers require two key stores each:

742

• A keystore that contains private and public key pairs to identify the peer

• A truststore that contains the public keys for peers that are trusted. See the documentation for
the keytool utility provided with the JDK. The essential steps are

1. Create a new key pair and store it in a keystore.

2. Export the public key.

3. Import the public key into the peer’s truststore.

4. Repeat for the other peer.


It is common in test cases to use the same key stores on both peers, but this should
be avoided for production.

After establishing the key stores, the next step is to indicate their locations to the
TcpSSLContextSupport bean and provide a reference to that bean to the connection factory.

The following example configures an SSL connection:

<bean id="sslContextSupport"
 class="o.sf.integration.ip.tcp.connection.support.DefaultTcpSSLContextSupport
">
 <constructor-arg value="client.ks"/>
 <constructor-arg value="client.truststore.ks"/>
 <constructor-arg value="secret"/>
 <constructor-arg value="secret"/>
</bean>

<ip:tcp-connection-factory id="clientFactory"
 type="client"
 host="localhost"
 port="1234"
 ssl-context-support="sslContextSupport" />

The DefaultTcpSSLContextSupport class also has an optional protocol property, which can be SSL or
TLS (the default).

The keystore file names (the first two constructor arguments) use the Spring Resource abstraction.
By default, the files are located on the classpath, but you can override this by using the file: prefix
(to find the files on the filesystem instead).

Starting with version 4.3.6, when you use NIO, you can specify an ssl-handshake-timeout (in
seconds) on the connection factory. This timeout (the default is 30 seconds) is used during SSL
handshake when waiting for data. If the timeout is exceeded, the process is stopped and the socket
is closed.

743

38.11.2. Host Verification

Starting with version 5.0.8, you can configure whether or not to enable host verification. Starting
with version 5.1, it is enabled by default; the mechanism to disable it depends on whether or not
you are using NIO.

Host verification is used to ensure the server you are connected to matches information in the
certificate, even if the certificate is trusted.

When using NIO, configure the DefaultTcpNioSSLConnectionSupport, for example.

@Bean
public DefaultTcpNioSSLConnectionSupport connectionSupport() {
 DefaultTcpSSLContextSupport sslContextSupport = new
DefaultTcpSSLContextSupport("test.ks",
 "test.truststore.ks", "secret", "secret");
 sslContextSupport.setProtocol("SSL");
 DefaultTcpNioSSLConnectionSupport tcpNioConnectionSupport =
 new DefaultTcpNioSSLConnectionSupport(sslContextSupport, false);
 return tcpNioConnectionSupport;
}

The second constructor argument disables host verification. The connectionSupport bean is then
injected into the NIO connection factory.

When not using NIO, the configuration is in the TcpSocketSupport:

connectionFactory.setTcpSocketSupport(new DefaultTcpSocketSupport(false));

Again, the constructor argument disables host verification.

38.12. Advanced Techniques
This section covers advanced techniques that you may find to be helpful in certain situations.

38.12.1. Strategy Interfaces

In many cases, the configuration described earlier is all that is needed to enable secure
communication over TCP/IP. However, Spring Integration provides a number of strategy interfaces
to allow customization and modification of socket factories and sockets:

• TcpSSLContextSupport

• TcpSocketFactorySupport

• TcpSocketSupport

744

• TcpNetConnectionSupport

• TcpNioConnectionSupport

The TcpSSLContextSupport Strategy Interface

The following listing shows the TcpSSLContextSupport strategy interface:

public interface TcpSSLContextSupport {

 SSLContext getSSLContext() throws Exception;

}

Implementations of the TcpSSLContextSupport interface are responsible for creating an SSLContext
object. The implementation provided by the framework is the DefaultTcpSSLContextSupport,
described earlier. If you require different behavior, implement this interface and provide the
connection factory with a reference to a bean of your class' implementation.

The TcpSocketFactorySupport Strategy Interface

The following listing shows the definition of the TcpSocketFactorySupport strategy interface:

public interface TcpSocketFactorySupport {

 ServerSocketFactory getServerSocketFactory();

 SocketFactory getSocketFactory();

}

Implementations of this interface are responsible for obtaining references to ServerSocketFactory
and SocketFactory. Two implementations are provided. The first is
DefaultTcpNetSocketFactorySupport for non-SSL sockets (when no ssl-context-support attribute is
defined). This uses the JDK’s default factories. The second implementation is
DefaultTcpNetSSLSocketFactorySupport. By default, this is used when an ssl-context-support
attribute is defined. It uses the SSLContext created by that bean to create the socket factories.

 This interface applies only if using-nio is false. NIO does not use socket factories.

The TcpSocketSupport Strategy Interface

The following listing shows the definition of the TcpSocketSupport strategy interface:

745

public interface TcpSocketSupport {

 void postProcessServerSocket(ServerSocket serverSocket);

 void postProcessSocket(Socket socket);

}

Implementations of this interface can modify sockets after they are created and after all configured
attributes have been applied but before the sockets are used. This applies whether you use NIO or
not. For example, you could use an implementation of this interface to modify the supported cipher
suites on an SSL socket, or you could add a listener that gets notified after SSL handshaking is
complete. The sole implementation provided by the framework is the DefaultTcpSocketSupport,
which does not modify the sockets in any way.

To supply your own implementation of TcpSocketFactorySupport or TcpSocketSupport, provide the
connection factory with references to beans of your custom type by setting the socket-factory-
support and socket-support attributes, respectively.

The TcpNetConnectionSupport Strategy Interface

The following listing shows the definition of the TcpNetConnectionSupport strategy interface:

public interface TcpNetConnectionSupport {

 TcpNetConnection createNewConnection(Socket socket,
 boolean server, boolean lookupHost,
 ApplicationEventPublisher applicationEventPublisher,
 String connectionFactoryName) throws Exception;

}

This interface is invoked to create objects of type TcpNetConnection (or its subclasses). The
framework provides a single implementation (DefaultTcpNetConnectionSupport), which, by default,
creates simple TcpNetConnection objects. It has two properties: pushbackCapable and
pushbackBufferSize. When push back is enabled, the implementation returns a subclass that wraps
the connection’s InputStream in a PushbackInputStream. Aligned with the PushbackInputStream default,
the buffer size defaults to 1. This lets deserializers “unread” (push back) bytes into the stream. The
following trivial example shows how it might be used in a delegating deserializer that “peeks” at
the first byte to determine which deserializer to invoke:

746

public class CompositeDeserializer implements Deserializer<byte[]> {

 private final ByteArrayStxEtxSerializer stxEtx = new
ByteArrayStxEtxSerializer();

 private final ByteArrayCrLfSerializer crlf = new ByteArrayCrLfSerializer();

 @Override
 public byte[] deserialize(InputStream inputStream) throws IOException {
 PushbackInputStream pbis = (PushbackInputStream) inputStream;
 int first = pbis.read();
 if (first < 0) {
 throw new SoftEndOfStreamException();
 }
 pbis.unread(first);
 if (first == ByteArrayStxEtxSerializer.STX) {
 this.receivedStxEtx = true;
 return this.stxEtx.deserialize(pbis);
 }
 else {
 this.receivedCrLf = true;
 return this.crlf.deserialize(pbis);
 }
 }

}

The TcpNioConnectionSupport Strategy Interface

The following listing shows the definition of the TcpNioConnectionSupport strategy interface:

public interface TcpNioConnectionSupport {

 TcpNioConnection createNewConnection(SocketChannel socketChannel,
 boolean server, boolean lookupHost,
 ApplicationEventPublisher applicationEventPublisher,
 String connectionFactoryName) throws Exception;

}

This interface is invoked to create TcpNioConnection objects (or objects from subclasses). Spring
Integration provides two implementations: DefaultTcpNioSSLConnectionSupport and
DefaultTcpNioConnectionSupport. Which one is used depends on whether SSL is in use. A common
use case is to subclass DefaultTcpNioSSLConnectionSupport and override postProcessSSLEngine. See
the SSL client authentication example. As with the DefaultTcpNetConnectionSupport, these

747

implementations also support push back.

38.12.2. Example: Enabling SSL Client Authentication

To enable client certificate authentication when you use SSL, the technique depends on whether
you use NIO. When you do not NIO , provide a custom TcpSocketSupport implementation to post-
process the server socket:

serverFactory.setTcpSocketSupport(new DefaultTcpSocketSupport() {

 @Override
 public void postProcessServerSocket(ServerSocket serverSocket) {
 ((SSLServerSocket) serverSocket).setNeedClientAuth(true);
 }

});

(When you use XML configuration, provide a reference to your bean by setting the socket-support
attribute).

When you use NIO, provide a custom TcpNioSslConnectionSupport implementation to post-process
the SSLEngine, as the following example shows:

@Bean
public DefaultTcpNioSSLConnectionSupport tcpNioConnectionSupport() {
 return new DefaultTcpNioSSLConnectionSupport(serverSslContextSupport) {

 @Override
 protected void postProcessSSLEngine(SSLEngine sslEngine) {
 sslEngine.setNeedClientAuth(true);
 }

 }
}

@Bean
public TcpNioServerConnectionFactory server() {
 ...
 serverFactory.setTcpNioConnectionSupport(tcpNioConnectionSupport());
 ...
}

(When you use XML configuration, since version 4.3.7, provide a reference to your bean by setting
the nio-connection-support attribute).

748

38.13. IP Configuration Attributes
The following table describes attributes that you can set to configure IP connections:

Table 11. Connection Factory Attributes

Attribute Name Client? Server? Allowed
Values

Attribute Description

type Y Y client,
server

Determines whether the connection
factory is a client or a server.

host Y N The host name or IP address of the
destination.

port Y Y The port.

serializer Y Y An implementation of Serializer used to
serialize the payload. Defaults to
ByteArrayCrLfSerializer

deserializer Y Y An implementation of Deserializer used to
deserialize the payload. Defaults to
ByteArrayCrLfSerializer

using-nio Y Y true,
false

Whether or not connection uses NIO. Refer
to the java.nio package for more
information. See About Non-blocking I/O
(NIO). Default: false.

using-direct-buffers Y N true,
false

When using NIO, whether or not the
connection uses direct buffers. Refer to the
java.nio.ByteBuffer documentation for
more information. Must be false if using-
nio is false.

apply-sequence Y Y true,
false

When you use NIO, it may be necessary to
resequence messages. When this attribute
is set to true, correlationId and
sequenceNumber headers are added to
received messages. See About Non-
blocking I/O (NIO). Default: false.

so-timeout Y Y Defaults to 0 (infinity), except for server
connection factories with single-
use="true". In that case, it defaults to the
default reply timeout (10 seconds).

so-send-buffer-size Y Y See java.net.Socket. setSendBufferSize().

so-receive-buffer-
size

Y Y See java.net.Socket.
setReceiveBufferSize().

so-keep-alive Y Y true,
false

See java.net.Socket.setKeepAlive().

749

Attribute Name Client? Server? Allowed
Values

Attribute Description

so-linger Y Y Sets linger to true with the supplied value.
See java.net.Socket.setSoLinger().

so-tcp-no-delay Y Y true,
false

See java.net.Socket.setTcpNoDelay().

so-traffic-class Y Y See java.net.Socket. setTrafficClass().

local-address N Y On a multi-homed system, specifies an IP
address for the interface to which the
socket is bound.

task-executor Y Y Specifies a specific executor to be used for
socket handling. If not supplied, an
internal cached thread executor is used.
Needed on some platforms that require the
use of specific task executors, such as a
WorkManagerTaskExecutor.

single-use Y Y true,
false

Specifies whether a connection can be
used for multiple messages. If true, a new
connection is used for each message.

pool-size N N This attribute is no longer used. For
backward compatibility, it sets the backlog,
but you should use backlog to specify the
connection backlog in server factories.

backlog N Y Sets the connection backlog for server
factories.

lookup-host Y Y true,
false

Specifies whether reverse lookups are
done on IP addresses to convert to host
names for use in message headers. If false,
the IP address is used instead. Default:
true.

interceptor-factory-
chain

Y Y See TCP Connection Interceptors.

ssl-context-support Y Y See SSL/TLS Support.

socket-factory-
support

Y Y See SSL/TLS Support.

socket-support Y Y See SSL/TLS Support.

nio-connection-
support

Y Y See Advanced Techniques.

read-delay Y Y long > 0 The delay (in milliseconds) before retrying
a read after the previous attempt failed
due to insufficient threads. Default: 100.
Only applies if using-nio is true.

750

The following table describes attributes that you can set to configure UDP inbound channel
adapters:

Table 12. UDP Inbound Channel Adapter Attributes

Attribute
Name

Allowed
Values

Attribute Description

port The port on which the adapter listens.

multicast true, false Whether or not the UDP adapter uses multicast.

multicast-
address

When multicast is true, the multicast address to which the
adapter joins.

pool-size Specifies how many packets can be handled concurrently. It only
applies if task-executor is not configured. Default: 5.

task-executor Specifies a specific executor to be used for socket handling. If not
supplied, an internal pooled executor is used. Needed on some
platforms that require the use of specific task executors such as a
WorkManagerTaskExecutor. See pool-size for thread requirements.

receive-
buffer-size

The size of the buffer used to receive DatagramPackets. Usually set
to the maximum transmission unit (MTU) size. If a smaller buffer
is used than the size of the sent packet, truncation can occur. You
can detect this by using the check-length attribute..

check-length true, false Whether or not a UDP adapter expects a data length field in the
packet received. Used to detect packet truncation.

so-timeout See the setSoTimeout() methods in java.net.DatagramSocket for
more information.

so-send-
buffer-size

Used for UDP acknowledgment packets. See the
setSendBufferSize() methods in java.net.DatagramSocket for more
information.

so-receive-
buffer-size

See java.net.DatagramSocket.setReceiveBufferSize() for more
information.

local-address On a multi-homed system, specifies an IP address for the
interface to which the socket is bound.

error-channel If a downstream component throws an exception, the
MessagingException message that contains the exception and
failed message is sent to this channel.

lookup-host true, false Specifies whether reverse lookups are done on IP addresses to
convert to host names for use in message headers. If false, the IP
address is used instead. Default: true.

The following table describes attributes that you can set to configure UDP outbound channel
adapters:

Table 13. UDP Outbound Channel Adapter Attributes

751

Attribute Name Allowed
Values

Attribute Description

host The host name or ip address of the destination. For
multicast udp adapters, the multicast address.

port The port on the destination.

multicast true, false Whether or not the udp adapter uses multicast.

acknowledge true, false Whether or not a UDP adapter requires an
acknowledgment from the destination. When enabled,
it requires setting the following four attributes: ack-
host, ack-port, ack-timeout, and min-acks-for- success.

ack-host When acknowledge is true, indicates the host or IP
address to which the acknowledgment should be sent.
Usually the current host, but may be different — for
example, when Network Address Translation (NAT) is
being used.

ack-port When acknowledge is true, indicates the port to which
the acknowledgment should be sent. The adapter
listens on this port for acknowledgments.

ack-timeout When acknowledge is true, indicates the time in
milliseconds that the adapter waits for an
acknowledgment. If an acknowledgment is not received
in time, the adapter throws an exception.

min-acks-for- success Defaults to 1. For multicast adapters, you can set this to
a larger value, which requires acknowledgments from
multiple destinations.

check-length true, false Whether or not a UDP adapter includes a data length
field in the packet sent to the destination.

time-to-live For multicast adapters, specifies the time-to-live
attribute for the MulticastSocket. Controls the scope of
the multicasts. Refer to the Java API documentation for
more information.

so-timeout See java.net.DatagramSocket setSoTimeout() methods
for more information.

so-send-buffer-size See the setSendBufferSize() methods in
java.net.DatagramSocket for more information.

so-receive-buffer-size Used for UDP acknowledgment packets. See the
setReceiveBufferSize() methods in
java.net.DatagramSocket for more information.

752

Attribute Name Allowed
Values

Attribute Description

local-address On a multi-homed system, for the UDP adapter,
specifies an IP address for the interface to which the
socket is bound for reply messages. For a multicast
adapter, it also determines which interface the
multicast packets are sent over.

task-executor Specifies a specific executor to be used for
acknowledgment handling. If not supplied, an internal
single threaded executor is used. Needed on some
platforms that require the use of specific task
executors, such as a WorkManagerTaskExecutor. One
thread is dedicated to handling acknowledgments (if
the acknowledge option is true).

destination-expression SpEL
expression

A SpEL expression to be evaluated to determine which
SocketAddress to use as a destination address for the
outgoing UDP packets.

socket-expression SpEL
expression

A SpEL expression to be evaluated to determine which
datagram socket use for sending outgoing UDP packets.

The following table describes attributes that you can set to configure TCP inbound channel
adapters:

Table 14. TCP Inbound Channel Adapter Attributes

Attribute Name Allowed
Values

Attribute Description

channel The channel to which inbound messages is sent.

connection-factory If the connection factory has a type of server, the
factory is “owned” by this adapter. If it has a type of
client, it is “owned” by an outbound channel adapter,
and this adapter receives any incoming messages on
the connection created by the outbound adapter.

error-channel If an exception is thrown by a downstream component,
the MessagingException message containing the
exception and the failed message is sent to this channel.

client-mode true, false When true, the inbound adapter acts as a client with
respect to establishing the connection and then
receiving incoming messages on that connection.
Default: false. See also retry-interval and scheduler.
The connection factory must be of type client and have
single-use set to false.

retry-interval When in client-mode, specifies the number of
milliseconds to wait between connection attempts or
after a connection failure. Default: 60000 (60 seconds).

753

Attribute Name Allowed
Values

Attribute Description

scheduler true, false Specifies a TaskScheduler to use for managing the
client-mode connection. If not specified, it defaults to
the global Spring Integration taskScheduler bean, which
has a default pool size of 10. See Configuring the Task
Scheduler.

The following table describes attributes that you can set to configure TCP outbound channel
adapters:

Table 15. TCP Outbound Channel Adapter Attributes

Attribute Name Allowed
Values

Attribute Description

channel The channel on which outbound messages arrive.

connection-factory If the connection factory has a type of client, the
factory is “owned” by this adapter. If it has a type of
server, it is “owned” by an inbound channel adapter,
and this adapter tries to correlate messages to the
connection on which an original inbound message was
received.

client-mode true, false When true, the outbound adapter tries to establish the
connection as soon as it is started. When false, the
connection is established when the first message is
sent. Default: false. See also retry-interval and
scheduler. The connection factory must be of type
client and have single-use set to false.

retry-interval When in client-mode, specifies the number of
milliseconds to wait between connection attempts or
after a connection failure. Default: 60000 (60 seconds).

scheduler true, false Specifies a TaskScheduler to use for managing the
client-mode connection. If not specified, it defaults to
the global Spring Integration taskScheduler bean, which
has a default pool size of 10. See Configuring the Task
Scheduler.

The following table describes attributes that you can set to configure TCP inbound gateways:

Table 16. TCP Inbound Gateway Attributes

Attribute Name Allowed
Values

Attribute Description

connection-factory The connection factory must be of type server.

request-channel The channel to which incoming messages are sent.

754

./configuration.pdf#namespace-taskscheduler
./configuration.pdf#namespace-taskscheduler
./configuration.pdf#namespace-taskscheduler
./configuration.pdf#namespace-taskscheduler

Attribute Name Allowed
Values

Attribute Description

reply-channel The channel on which reply messages may arrive.
Usually, replies arrive on a temporary reply channel
added to the inbound message header.

reply-timeout The time in milliseconds for which the gateway waits
for a reply. Default: 1000 (1 second).

error-channel If an exception is thrown by a downstream component,
the MessagingException message containing the
exception and the failed message is sent to this channel.
Any reply from that flow is then returned as a response
by the gateway.

client-mode true, false When true, the inbound gateway acts as a client with
respect to establishing the connection and then
receiving (and replying to) incoming messages on that
connection. Default: false. See also retry-interval and
scheduler. The connection factory must be of type
client and have single-use set to false.

retry-interval When in client-mode, specifies the number of
milliseconds to wait between connection attempts or
after a connection failure. Default: 60000 (60 seconds).

scheduler true, false Specifies a TaskScheduler to use for managing the
client-mode connection. If not specified, it defaults to
the global Spring Integration taskScheduler bean, which
has a default pool size of 10. See Configuring the Task
Scheduler.

The following table describes attributes that you can set to configure TCP outbound gateways:

Table 17. TCP Outbound Gateway Attributes

Attribute Name Allowed
Values

Attribute Description

connection-factory The connection factory must be of type client.

request-channel The channel on which outgoing messages arrive.

reply-channel Optional. The channel to which reply messages are
sent.

remote-timeout The time in milliseconds for which the gateway waits
for a reply from the remote system. Mutually exclusive
with remote-timeout-expression. Default: 10000 (10
seconds). Note: In versions prior to 4.2 this value
defaulted to reply-timeout (if set).

755

./configuration.pdf#namespace-taskscheduler
./configuration.pdf#namespace-taskscheduler

Attribute Name Allowed
Values

Attribute Description

remote-timeout-expression A SpEL expression that is evaluated against the
message to determine the time in milliseconds for
which the gateway waits for a reply from the remote
system. Mutually exclusive with remote-timeout.

request-timeout If a single-use connection factory is not being used, the
time in milliseconds for which the gateway waits to get
access to the shared connection.

reply-timeout The time in milliseconds for which the gateway waits
when sending the reply to the reply-channel. Only
applies if the reply-channel might block (such as a
bounded QueueChannel that is currently full).

async Release the sending thread after the send; the reply (or
error) will be sent on the receiving thread.

unsolicited MessageChannel A channel to which to send unsolicited messages and
late replies.

38.14. IP Message Headers
IP Message Headers

This module uses the following MessageHeader instances:

Header Name IpHeaders Constant Description

ip_hostname HOSTNAME The host name from which a TCP
message or UDP packet was received.
If lookupHost is false, this contains the
IP address.

ip_address IP_ADDRESS The IP address from which a TCP
message or UDP packet was received.

ip_port PORT The remote port for a UDP packet.

ip_localInetAddress IP_LOCAL_ADDRESS The local InetAddress to which the
socket is connected (since version
4.2.5).

ip_ackTo ACKADDRESS The remote IP address to which UDP
application-level acknowledgments
are sent. The framework includes
acknowledgment information in the
data packet.

756

Header Name IpHeaders Constant Description

ip_ackId ACK_ID A correlation ID for UDP application-
level acknowledgments. The
framework includes acknowledgment
information in the data packet.

ip_tcp_remotePort REMOTE_PORT The remote port for a TCP connection.

ip_connectionId CONNECTION_ID A unique identifier for a TCP
connection. Set by the framework for
inbound messages. When sending to a
server-side inbound channel adapter
or replying to an inbound gateway,
this header is required so that the
endpoint can determine the
connection to which to send the
message.

ip_actualConnectionId ACTUAL_CONNECTION_ID For information only. When using a
cached or failover client connection
factory, it contains the actual
underlying connection ID.

contentType MessageHeaders. CONTENT_TYPE An optional content type for inbound
messages Described after this table.
Note that, unlike the other header
constants, this constant is in the
MessageHeaders class, not the IpHeaders
class.

For inbound messages, ip_hostname, ip_address, ip_tcp_remotePort, and ip_connectionId are mapped
by the default TcpHeaderMapper. If you set the mapper’s addContentTypeHeader property to true, the
mapper sets the contentType header (application/octet-stream;charset="UTF-8", by default). You can
change the default by setting the contentType property. You can add additional headers by
subclassing TcpHeaderMapper and overriding the supplyCustomHeaders method. For example, when
you use SSL, you can add properties of the SSLSession by obtaining the session object from the
TcpConnection object, which is provided as an argument to the supplyCustomHeaders method.

For outbound messages, String payloads are converted to byte[] with the default (UTF-8) charset.
Set the charset property to change the default.

When customizing the mapper properties or subclassing, declare the mapper as a bean and provide
an instance to the connection factory by using the mapper property.

38.15. Annotation-Based Configuration
The following example from the samples repository shows some of the configuration options
available when you use annotations instead of XML:

757

@EnableIntegration ①
@IntegrationComponentScan ②
@Configuration
public static class Config {

 @Value(${some.port})
 private int port;

 @MessagingGateway(defaultRequestChannel="toTcp") ③
 public interface Gateway {

 String viaTcp(String in);

 }

 @Bean
 @ServiceActivator(inputChannel="toTcp") ④
 public MessageHandler tcpOutGate(AbstractClientConnectionFactory
connectionFactory) {
 TcpOutboundGateway gate = new TcpOutboundGateway();
 gate.setConnectionFactory(connectionFactory);
 gate.setOutputChannelName("resultToString");
 return gate;
 }

 @Bean ⑤
 public TcpInboundGateway tcpInGate(AbstractServerConnectionFactory
connectionFactory) {
 TcpInboundGateway inGate = new TcpInboundGateway();
 inGate.setConnectionFactory(connectionFactory);
 inGate.setRequestChannel(fromTcp());
 return inGate;
 }

 @Bean
 public MessageChannel fromTcp() {
 return new DirectChannel();
 }

 @MessageEndpoint
 public static class Echo { ⑥

 @Transformer(inputChannel="fromTcp", outputChannel="toEcho")
 public String convert(byte[] bytes) {
 return new String(bytes);
 }

 @ServiceActivator(inputChannel="toEcho")
 public String upCase(String in) {

758

 return in.toUpperCase();
 }

 @Transformer(inputChannel="resultToString")
 public String convertResult(byte[] bytes) {
 return new String(bytes);
 }

 }

 @Bean
 public AbstractClientConnectionFactory clientCF() { ⑦
 return new TcpNetClientConnectionFactory("localhost", this.port);
 }

 @Bean
 public AbstractServerConnectionFactory serverCF() { ⑧
 return new TcpNetServerConnectionFactory(this.port);
 }

}

① Standard Spring Integration annotation enabling the infrastructure for an integration
application.

② Searches for @MessagingGateway interfaces.

③ The entry point to the client-side of the flow. The calling application can use @Autowired for
this Gateway bean and invoke its method.

④ Outbound endpoints consist of a MessageHandler and a consumer that wraps it. In this
scenario, the @ServiceActivator configures the endpoint, according to the channel type.

⑤ Inbound endpoints (in the TCP/UDP module) are all message-driven and so only need to be
declared as simple @Bean instances.

⑥ This class provides a number of POJO methods for use in this sample flow (a @Transformer
and @ServiceActivator on the server side and a @Transformer on the client side).

⑦ The client-side connection factory.

⑧ The server-side connection factory.

759

Chapter 39. WebFlux Support
The WebFlux Spring Integration module (spring-integration-webflux) allows for the execution of
HTTP requests and the processing of inbound HTTP requests in a reactive manner.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-webflux</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-webflux:5.4.0"

The io.projectreactor.netty:reactor-netty dependency must be included in case of non-Servlet-
based server configuration.

The WebFlux support consists of the following gateway implementations: WebFluxInboundEndpoint
and WebFluxRequestExecutingMessageHandler. The support is fully based on the Spring WebFlux and
Project Reactor foundations. See HTTP Support for more information, since many options are
shared between reactive and regular HTTP components.

39.1. WebFlux Inbound Components
Starting with version 5.0, the WebFluxInboundEndpoint implementation of WebHandler is provided. This
component is similar to the MVC-based HttpRequestHandlingEndpointSupport, with which it shares
some common options through the newly extracted BaseHttpInboundEndpoint. It is used in the Spring
WebFlux reactive environment (instead of MVC). The following example shows a simple
implementation of a WebFlux endpoint:

760

https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#spring-webflux
https://projectreactor.io/
./http.pdf#http

@Configuration
@EnableWebFlux
@EnableIntegration
public class ReactiveHttpConfiguration {

 @Bean
 public WebFluxInboundEndpoint simpleInboundEndpoint() {
 WebFluxInboundEndpoint endpoint = new WebFluxInboundEndpoint();
 RequestMapping requestMapping = new RequestMapping();
 requestMapping.setPathPatterns("/test");
 endpoint.setRequestMapping(requestMapping);
 endpoint.setRequestChannelName("serviceChannel");
 return endpoint;
 }

 @ServiceActivator(inputChannel = "serviceChannel")
 String service() {
 return "It works!";
 }

}

The configuration is similar to the HttpRequestHandlingEndpointSupport (mentioned prior to the
example), except that we use @EnableWebFlux to add the WebFlux infrastructure to our integration
application. Also, the WebFluxInboundEndpoint performs sendAndReceive operations to the
downstream flow by using back-pressure, on-demand based capabilities, provided by the reactive
HTTP server implementation.


The reply part is non-blocking as well and is based on the internal
FutureReplyChannel, which is flat-mapped to a reply Mono for on-demand resolution.

You can configure the WebFluxInboundEndpoint with a custom ServerCodecConfigurer, a
RequestedContentTypeResolver, and even a ReactiveAdapterRegistry. The latter provides a
mechanism you can use to return a reply as any reactive type: Reactor Flux, RxJava Observable,
Flowable, and others. This way, we can implement Server Sent Events scenarios with Spring
Integration components, as the following example shows:

761

https://en.wikipedia.org/wiki/Server-sent_events

@Bean
public IntegrationFlow sseFlow() {
 return IntegrationFlows
 .from(WebFlux.inboundGateway("/sse")
 .requestMapping(m -> m.produces(MediaType
.TEXT_EVENT_STREAM_VALUE)))
 .handle((p, h) -> Flux.just("foo", "bar", "baz"))
 .get();
}

See Request Mapping Support and Cross-origin Resource Sharing (CORS) Support for more possible
configuration options.

When the request body is empty or payloadExpression returns null, the request params
(MultiValueMap<String, String>) is used for a payload of the target message to process.

39.1.1. Payload Validation

Starting with version 5.2, the WebFluxInboundEndpoint can be configured with a Validator. Unlike the
MVC validation in the HTTP Support, it is used to validate elements in the Publisher to which a
request has been converted by the HttpMessageReader, before performing a fallback and
payloadExpression functions. The Framework can’t assume how complex the Publisher object can be
after building the final payload. If there is a requirements to restrict validation visibility for exactly
final payload (or its Publisher elements), the validation should go downstream instead of WebFlux
endpoint. See more information in the Spring WebFlux documentation. An invalid payload is
rejected with an IntegrationWebExchangeBindException (a WebExchangeBindException extension),
containing all the validation Errors. See more in Spring Framework Reference Manual about
validation.

39.2. WebFlux Outbound Components
The WebFluxRequestExecutingMessageHandler (starting with version 5.0) implementation is similar to
HttpRequestExecutingMessageHandler. It uses a WebClient from the Spring Framework WebFlux
module. To configure it, define a bean similar to the following:

<bean id="httpReactiveOutbound"
 class=
"org.springframework.integration.webflux.outbound.WebFluxRequestExecutingMessageHa
ndler">
 <constructor-arg value="http://localhost:8080/example" />
 <property name="outputChannel" ref="responseChannel" />
</bean>

You can configure a WebClient instance to use, as the following example shows:

762

./http.pdf#http-request-mapping
./http.pdf#http-cors
./http.pdf#http-validation
https://docs.spring.io/spring/docs/5.1.8.RELEASE/spring-framework-reference/web-reactive.html#webflux-fn-handler-validation
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#validation

<beans:bean id="webClient" class=
"org.springframework.web.reactive.function.client.WebClient"
 factory-method="create"/>

<bean id="httpReactiveOutbound"
 class=
"org.springframework.integration.webflux.outbound.WebFluxRequestExecutingMessageHa
ndler">
 <constructor-arg value="http://localhost:8080/example" />
 <constructor-arg re="webClient" />
 <property name="outputChannel" ref="responseChannel" />
</bean>

The WebClient exchange() operation returns a Mono<ClientResponse>, which is mapped (by using
several Mono.map() steps) to an AbstractIntegrationMessageBuilder as the output from the
WebFluxRequestExecutingMessageHandler. Together with the ReactiveChannel as an outputChannel, the
Mono<ClientResponse> evaluation is deferred until a downstream subscription is made. Otherwise, it
is treated as an async mode, and the Mono response is adapted to a SettableListenableFuture for an
asynchronous reply from the WebFluxRequestExecutingMessageHandler. The target payload of the
output message depends on the WebFluxRequestExecutingMessageHandler configuration. The
setExpectedResponseType(Class<?>) or setExpectedResponseTypeExpression(Expression) identifies the
target type of the response body element conversion. If replyPayloadToFlux is set to true, the
response body is converted to a Flux with the provided expectedResponseType for each element, and
this Flux is sent as the payload downstream. Afterwards, you can use a splitter to iterate over this
Flux in a reactive manner.

In addition a BodyExtractor<?, ClientHttpResponse> can be injected into the
WebFluxRequestExecutingMessageHandler instead of the expectedResponseType and replyPayloadToFlux
properties. It can be used for low-level access to the ClientHttpResponse and more control over body
and HTTP headers conversion. Spring Integration provides ClientHttpResponseBodyExtractor as a
identity function to produce (downstream) the whole ClientHttpResponse and any other possible
custom logic.

Starting with version 5.2, the WebFluxRequestExecutingMessageHandler supports reactive Publisher,
Resource, and MultiValueMap types as the request message payload. A respective BodyInserter is used
internally to be populated into the WebClient.RequestBodySpec. When the payload is a reactive
Publisher, a configured publisherElementType or publisherElementTypeExpression can be used to
determine a type for the publisher’s element type. The expression must be resolved to a Class<?>,
String which is resolved to the target Class<?> or ParameterizedTypeReference.

See HTTP Outbound Components for more possible configuration options.

39.3. WebFlux Namespace Support
Spring Integration provides a webflux namespace and the corresponding schema definition. To
include it in your configuration, add the following namespace declaration in your application

763

./splitter.pdf#splitter
./http.pdf#http-outbound

context configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-webflux="http://www.springframework.org/schema/integration/webflux"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/webflux
 https://www.springframework.org/schema/integration/webflux/spring-integration-
webflux.xsd">
 ...
</beans>

39.3.1. Inbound

To configure Spring Integration WebFlux with XML, you need to use appropriate components from
the int-webflux namespace: inbound-channel-adapter or inbound-gateway, corresponding to request
and response requirements, respectively. The following example shows how to configure both an
inbound channel adapter and an inbound gateway:

764

<inbound-channel-adapter id="reactiveFullConfig" channel="requests"
 path="test1"
 auto-startup="false"
 phase="101"
 request-payload-type="byte[]"
 error-channel="errorChannel"
 payload-expression="payload"
 supported-methods="PUT"
 status-code-expression="'202'"
 header-mapper="headerMapper"
 codec-configurer="codecConfigurer"
 reactive-adapter-registry="reactiveAdapterRegistry"
 requested-content-type-resolver=
"requestedContentTypeResolver">
 <request-mapping headers="foo"/>
 <cross-origin origin="foo"
 method="PUT"/>
 <header name="foo" expression="'foo'"/>
</inbound-channel-adapter>

<inbound-gateway id="reactiveFullConfig" request-channel="requests"
 path="test1"
 auto-startup="false"
 phase="101"
 request-payload-type="byte[]"
 error-channel="errorChannel"
 payload-expression="payload"
 supported-methods="PUT"
 reply-timeout-status-code-expression="'504'"
 header-mapper="headerMapper"
 codec-configurer="codecConfigurer"
 reactive-adapter-registry="reactiveAdapterRegistry"
 requested-content-type-resolver="requestedContentTypeResolver">
 <request-mapping headers="foo"/>
 <cross-origin origin="foo"
 method="PUT"/>
 <header name="foo" expression="'foo'"/>
</inbound-gateway>

39.3.2. Outbound

If you want to execute the HTTP request in a reactive, non-blocking way, you can use the outbound-
gateway or outbound-channel-adapter. The following example shows how to configure both an
outbound gateway and an outbound channel adapter:

765

<int-webflux:outbound-gateway id="reactiveExample1"
 request-channel="requests"
 url="http://localhost/test"
 http-method-expression="headers.httpMethod"
 extract-request-payload="false"
 expected-response-type-expression="payload"
 charset="UTF-8"
 reply-timeout="1234"
 reply-channel="replies"/>

<int-webflux:outbound-channel-adapter id="reactiveExample2"
 url="http://localhost/example"
 http-method="GET"
 channel="requests"
 charset="UTF-8"
 extract-payload="false"
 expected-response-type="java.lang.String"
 order="3"
 auto-startup="false"/>

39.4. Configuring WebFlux Endpoints with Java
The following example shows how to configure a WebFlux inbound endpoint with Java:

@Bean
public WebFluxInboundEndpoint jsonInboundEndpoint() {
 WebFluxInboundEndpoint endpoint = new WebFluxInboundEndpoint();
 RequestMapping requestMapping = new RequestMapping();
 requestMapping.setPathPatterns("/persons");
 endpoint.setRequestMapping(requestMapping);
 endpoint.setRequestChannel(fluxResultChannel());
 return endpoint;
}

@Bean
public MessageChannel fluxResultChannel() {
 return new FluxMessageChannel();
}

@ServiceActivator(inputChannel = "fluxResultChannel")
Flux<Person> getPersons() {
 return Flux.just(new Person("Jane"), new Person("Jason"), new Person("John"));
}

766

The following example shows how to configure a WebFlux inbound gateway with the Java DSL:

@Bean
public IntegrationFlow inboundChannelAdapterFlow() {
 return IntegrationFlows
 .from(WebFlux.inboundChannelAdapter("/reactivePost")
 .requestMapping(m -> m.methods(HttpMethod.POST))
 .requestPayloadType(ResolvableType.forClassWithGenerics(Flux.class,
String.class))
 .statusCodeFunction(m -> HttpStatus.ACCEPTED))
 .channel(c -> c.queue("storeChannel"))
 .get();
}

The following example shows how to configure a WebFlux outbound gateway with Java:

@ServiceActivator(inputChannel = "reactiveHttpOutRequest")
@Bean
public WebFluxRequestExecutingMessageHandler reactiveOutbound(WebClient client) {
 WebFluxRequestExecutingMessageHandler handler =
 new WebFluxRequestExecutingMessageHandler("http://localhost:8080/foo",
client);
 handler.setHttpMethod(HttpMethod.POST);
 handler.setExpectedResponseType(String.class);
 return handler;
}

The following example shows how to configure a WebFlux outbound gateway with the Java DSL:

@Bean
public IntegrationFlow outboundReactive() {
 return f -> f
 .handle(WebFlux.<MultiValueMap<String, String>>outboundGateway(m ->
 UriComponentsBuilder.fromUriString("http://localhost:8080/foo")
 .queryParams(m.getPayload())
 .build()
 .toUri())
 .httpMethod(HttpMethod.GET)
 .expectedResponseType(String.class));
}

767

39.5. WebFlux Header Mappings
Since WebFlux components are fully based on the HTTP protocol, there is no difference in the HTTP
headers mapping. See HTTP Header Mappings for more possible options and components to use for
mapping headers.

768

./http.pdf#http-header-mapping

Chapter 40. WebSockets Support
Starting with version 4.1, Spring Integration has WebSocket support. It is based on the architecture,
infrastructure, and API from the Spring Framework’s web-socket module. Therefore, many of Spring
WebSocket’s components (such as SubProtocolHandler or WebSocketClient) and configuration options
(such as @EnableWebSocketMessageBroker) can be reused within Spring Integration. For more
information, see the Spring Framework WebSocket Support chapter in the Spring Framework
reference manual.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-websocket</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-websocket:5.4.0"

For server side, the org.springframework:spring-webmvc dependency must be included explicitly.

The Spring Framework WebSocket infrastructure is based on the Spring messaging foundation and
provides a basic messaging framework based on the same MessageChannel implementations and
MessageHandler implementations that Spring Integration uses (and some POJO-method annotation
mappings). Consequently, Spring Integration can be directly involved in a WebSocket flow, even
without WebSocket adapters. For this purpose, you can configure a Spring Integration
@MessagingGateway with appropriate annotations, as the following example shows:

@MessagingGateway
@Controller
public interface WebSocketGateway {

 @MessageMapping("/greeting")
 @SendToUser("/queue/answer")
 @Gateway(requestChannel = "greetingChannel")
 String greeting(String payload);

}

769

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#websocket

40.1. Overview
Since the WebSocket protocol is streaming by definition and we can send and receive messages to
and from a WebSocket at the same time, we can deal with an appropriate WebSocketSession,
regardless of being on the client or server side. To encapsulate the connection management and
WebSocketSession registry, the IntegrationWebSocketContainer is provided with
ClientWebSocketContainer and ServerWebSocketContainer implementations. Thanks to the WebSocket
API and its implementation in the Spring Framework (with many extensions), the same classes are
used on the server side as well as the client side (from a Java perspective, of course). Consequently,
most connection and WebSocketSession registry options are the same on both sides. That lets us
reuse many configuration items and infrastructure hooks to build WebSocket applications on the
server side as well as on the client side. The following example shows how components can serve
both purposes:

//Client side
@Bean
public WebSocketClient webSocketClient() {
 return new SockJsClient(Collections.singletonList(new WebSocketTransport(new
JettyWebSocketClient())));
}

@Bean
public IntegrationWebSocketContainer clientWebSocketContainer() {
 return new ClientWebSocketContainer(webSocketClient(),
"ws://my.server.com/endpoint");
}

//Server side
@Bean
public IntegrationWebSocketContainer serverWebSocketContainer() {
 return new ServerWebSocketContainer("/endpoint").withSockJs();
}

The IntegrationWebSocketContainer is designed to achieve bidirectional messaging and can be
shared between inbound and outbound channel adapters (see below), can be referenced from only
one of them when using one-way (sending or receiving) WebSocket messaging. It can be used
without any channel adapter, but, in this case, IntegrationWebSocketContainer only plays a role as
the WebSocketSession registry.

770

https://www.jcp.org/en/jsr/detail?id=356
https://www.jcp.org/en/jsr/detail?id=356



The ServerWebSocketContainer implements WebSocketConfigurer to register an
internal IntegrationWebSocketContainer.IntegrationWebSocketHandler as an
Endpoint. It does so under the provided paths and other server WebSocket options
(such as HandshakeHandler or SockJS fallback) within the
ServletWebSocketHandlerRegistry for the target vendor WebSocket Container. This
registration is achieved with an infrastructural
WebSocketIntegrationConfigurationInitializer component, which does the same as
the @EnableWebSocket annotation. This means that, by using @EnableIntegration (or
any Spring Integration namespace in the application context), you can omit the
@EnableWebSocket declaration, because the Spring Integration infrastructure detects
all WebSocket endpoints.

40.2. WebSocket Inbound Channel Adapter
The WebSocketInboundChannelAdapter implements the receiving part of WebSocketSession interaction.
You must supply it with a IntegrationWebSocketContainer, and the adapter registers itself as a
WebSocketListener to handle incoming messages and WebSocketSession events.

 Only one WebSocketListener can be registered in the IntegrationWebSocketContainer.

For WebSocket subprotocols, the WebSocketInboundChannelAdapter can be configured with
SubProtocolHandlerRegistry as the second constructor argument. The adapter delegates to the
SubProtocolHandlerRegistry to determine the appropriate SubProtocolHandler for the accepted
WebSocketSession and to convert a WebSocketMessage to a Message according to the sub-protocol
implementation.


By default, the WebSocketInboundChannelAdapter relies only on the raw
PassThruSubProtocolHandler implementation, which converts the WebSocketMessage
to a Message.

The WebSocketInboundChannelAdapter accepts and sends to the underlying integration flow only
Message instances that have SimpMessageType.MESSAGE or an empty simpMessageType header. All other
Message types are handled through the ApplicationEvent instances emitted from a
SubProtocolHandler implementation (such as StompSubProtocolHandler).

On the server side, if the @EnableWebSocketMessageBroker configuration is present, you can configure
WebSocketInboundChannelAdapter with the useBroker = true option. In this case, all non-MESSAGE
Message types are delegated to the provided AbstractBrokerMessageHandler. In addition, if the broker
relay is configured with destination prefixes, those messages that match the Broker destinations are
routed to the AbstractBrokerMessageHandler instead of to the outputChannel of the
WebSocketInboundChannelAdapter.

If useBroker = false and the received message is of the SimpMessageType.CONNECT type, the
WebSocketInboundChannelAdapter immediately sends a SimpMessageType.CONNECT_ACK message to the
WebSocketSession without sending it to the channel.

771


Spring’s WebSocket Support allows the configuration of only one broker relay.
Consequently, we do not require an AbstractBrokerMessageHandler reference. It is
detected in the Application Context.

For more configuration options, see WebSockets Namespace Support.

40.3. WebSocket Outbound Channel Adapter
The WebSocketOutboundChannelAdapter:

1. Accepts Spring Integration messages from its MessageChannel

2. Determines the WebSocketSession id from the MessageHeaders

3. Retrieves the WebSocketSession from the provided IntegrationWebSocketContainer

4. Delegates the conversion and sending of WebSocketMessage work to the appropriate
SubProtocolHandler from the provided SubProtocolHandlerRegistry.

On the client side, the WebSocketSession id message header is not required, because
ClientWebSocketContainer deals only with a single connection and its WebSocketSession respectively.

To use the STOMP sub-protocol, you should configure this adapter with a StompSubProtocolHandler.
Then you can send any STOMP message type to this adapter, using
StompHeaderAccessor.create(StompCommand…) and a MessageBuilder, or just using a HeaderEnricher
(see Header Enricher).

The rest of this chapter covers largely additional configuration options.

40.4. WebSockets Namespace Support
The Spring Integration WebSocket namespace includes several components described in the
remainder of this chapter. To include it in your configuration, use the following namespace
declaration in your application context configuration file:

772

./content-enrichment.pdf#header-enricher

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-websocket="
http://www.springframework.org/schema/integration/websocket"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/websocket
 https://www.springframework.org/schema/integration/websocket/spring-
integration-websocket.xsd">
 ...
</beans>

40.4.1. <int-websocket:client-container> Attributes

The following listing shows the attributes available for the <int-websocket:client-container>
element:

773

<int-websocket:client-container
 id="" ①
 client="" ②
 uri="" ③
 uri-variables="" ④
 origin="" ⑤
 send-time-limit="" ⑥
 send-buffer-size-limit="" ⑦
 auto-startup="" ⑧
 phase=""> ⑨
 <int-websocket:http-headers>
 <entry key="" value=""/>
 </int-websocket:http-headers> ⑩
</int-websocket:client-container>

① The component bean name.

② The WebSocketClient bean reference.

③ The uri or uriTemplate to the target WebSocket service. If you use it as a uriTemplate with
URI variable placeholders, the uri-variables attribute is required.

④ Comma-separated values for the URI variable placeholders within the uri attribute value.
The values are replaced into the placeholders according to their order in the uri. See
UriComponents.expand(Object…uriVariableValues).

⑤ The Origin Handshake HTTP header value.

⑥ The WebSocket session 'send' timeout limit. Defaults to 10000.

⑦ The WebSocket session 'send' message size limit. Defaults to 524288.

⑧ Boolean value indicating whether this endpoint should start automatically. Defaults to
false, assuming that this container is started from the WebSocket inbound adapter.

⑨ The lifecycle phase within which this endpoint should start and stop. The lower the value,
the earlier this endpoint starts and the later it stops. The default is Integer.MAX_VALUE.
Values can be negative. See SmartLifeCycle.

⑩ A Map of HttpHeaders to be used with the Handshake request.

40.4.2. <int-websocket:server-container> Attributes

The following listing shows the attributes available for the <int-websocket:server-container>
element:

774

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/util/UriComponents.html#expand-java.lang.Object
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/SmartLifecycle.html

<int-websocket:server-container
 id="" ①
 path="" ②
 handshake-handler="" ③
 handshake-interceptors="" ④
 decorator-factories="" ⑤
 send-time-limit="" ⑥
 send-buffer-size-limit="" ⑦
 allowed-origins=""> ⑧
 <int-websocket:sockjs
 client-library-url="" ⑨
 stream-bytes-limit="" ⑩
 session-cookie-needed="" ⑪
 heartbeat-time="" ⑫
 disconnect-delay="" ⑬
 message-cache-size="" ⑭
 websocket-enabled="" ⑮
 scheduler="" ⑯
 message-codec="" ⑰
 transport-handlers="" ⑱
 suppress-cors="true"="" /> ⑲
</int-websocket:server-container>

① The component bean name.

② A path (or comma-separated paths) that maps a particular request to a WebSocketHandler.
Supports exact path mapping URIs (such as /myPath) and ant-style path patterns (such as
/myPath/**).

③ The HandshakeHandler bean reference. Defaults to DefaultHandshakeHandler.

④ List of HandshakeInterceptor bean references.

⑤ List of one or more factories (WebSocketHandlerDecoratorFactory) that decorate the handler
used to process WebSocket messages. This may be useful for some advanced use cases (for
example, to allow Spring Security to forcibly close the WebSocket session when the
corresponding HTTP session expires). See the Spring Session Project for more information.

⑥ See the same option on the <int-websocket:client-container>.

⑦ See the same option on the <int-websocket:client-container>.

⑧ The allowed origin header values. You can specify multiple origins as a comma-separated
list. This check is mostly designed for browser clients. There is nothing preventing other
types of client from modifying the origin header value. When SockJS is enabled and
allowed origins are restricted, transport types that do not use origin headers for cross-
origin requests (jsonp-polling, iframe-xhr-polling, iframe-eventsource, and iframe-
htmlfile) are disabled. As a consequence, IE6 and IE7 are not supported, and IE8 and IE9
are supported only without cookies. By default, all origins are allowed.

⑨ Transports with no native cross-domain communication (such as eventsource and htmlfile)
must get a simple page from the “foreign” domain in an invisible iframe so that code in the

775

https://docs.spring.io/spring-session/docs/current/reference/html5/#websocket

iframe can run from a domain local to the SockJS server. Since the iframe needs to load the
SockJS javascript client library, this property lets you specify the location from which to
load it. By default, it points to d1fxtkz8shb9d2.cloudfront.net/sockjs-0.3.4.min.js.
However, you can also set it to point to a URL served by the application. Note that it is
possible to specify a relative URL, in which case the URL must be relative to the iframe URL.
For example, assuming a SockJS endpoint mapped to /sockjs and the resulting iframe URL
is /sockjs/iframe.html, the relative URL must start with "../../" to traverse up to the location
above the SockJS mapping. For prefix-based servlet mapping, you may need one more
traversal.

⑩ Minimum number of bytes that can be sent over a single HTTP streaming request before it
is closed. Defaults to 128K (that is, 128*1024 or 131072 bytes).

⑪ The cookie_needed value in the response from the SockJs /info endpoint. This property
indicates whether a JSESSIONID cookie is required for the application to function correctly
(for example, for load balancing or in Java Servlet containers for the use of an HTTP
session).

⑫ The amount of time (in milliseconds) when the server has not sent any messages and after
which the server should send a heartbeat frame to the client in order to keep the
connection from breaking. The default value is 25,000 (25 seconds).

⑬ The amount of time (in milliseconds) before a client is considered disconnected after not
having a receiving connection (that is, an active connection over which the server can send
data to the client). The default value is 5000.

⑭ The number of server-to-client messages that a session can cache while waiting for the next
HTTP polling request from the client. The default size is 100.

⑮ Some load balancers do not support WebSockets. Set this option to false to disable the
WebSocket transport on the server side. The default value is true.

⑯ The TaskScheduler bean reference. A new ThreadPoolTaskScheduler instance is created if no
value is provided. This scheduler instance is used for scheduling heart-beat messages.

⑰ The SockJsMessageCodec bean reference to use for encoding and decoding SockJS messages.
By default, Jackson2SockJsMessageCodec is used, which requires the Jackson library to be
present on the classpath.

⑱ List of TransportHandler bean references.

⑲ Whether to disable automatic addition of CORS headers for SockJS requests. The default
value is false.

40.4.3. <int-websocket:outbound-channel-adapter> Attributes

The following listing shows the attributes available for the <int-websocket:outbound-channel-
adapter> element:

776

https://d1fxtkz8shb9d2.cloudfront.net/sockjs-0.3.4.min.js

<int-websocket:outbound-channel-adapter
 id="" ①
 channel="" ②
 container="" ③
 default-protocol-handler="" ④
 protocol-handlers="" ⑤
 message-converters="" ⑥
 merge-with-default-converters="" ⑦
 auto-startup="" ⑧
 phase=""/> ⑨

① The component bean name. If you do not provide the channel attribute, a DirectChannel is
created and registered in the application context with this id attribute as the bean name. In
this case, the endpoint is registered with the bean name id plus .adapter. And the
MessageHandler is registered with the bean alias id plus .handler.

② Identifies the channel attached to this adapter.

③ The reference to the IntegrationWebSocketContainer bean, which encapsulates the low-level
connection and WebSocketSession handling operations. Required.

④ Optional reference to a SubProtocolHandler instance. It is used when the client did not
request a sub-protocol or it is a single protocol-handler. If this reference or a protocol-
handlers list is not provided, the PassThruSubProtocolHandler is used by default.

⑤ List of SubProtocolHandler bean references for this channel adapter. If you provide only a
single bean reference and do not provide a default-protocol-handler, that single
SubProtocolHandler is used as the default-protocol-handler. If you do not set this attribute
or default-protocol-handler, the PassThruSubProtocolHandler is used by default.

⑥ List of MessageConverter bean references for this channel adapter.

⑦ Boolean value indicating whether the default converters should be registered after any
custom converters. This flag is used only if message-converters is provided. Otherwise, all
default converters are registered. Defaults to false. The default converters are (in order):
StringMessageConverter, ByteArrayMessageConverter, and MappingJackson2MessageConverter (if
the Jackson library is present on the classpath).

⑧ Boolean value indicating whether this endpoint should start automatically. Defaults to true.

⑨ The lifecycle phase within which this endpoint should start and stop. The lower the value,
the earlier this endpoint starts and the later it stops. The default is Integer.MIN_VALUE.
Values can be negative. See SmartLifeCycle.

40.4.4. <int-websocket:inbound-channel-adapter> Attributes

The following listing shows the attributes available for the <int-websocket:outbound-channel-
adapter> element:

777

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/SmartLifecycle.html

<int-websocket:inbound-channel-adapter
 id="" ①
 channel="" ②
 error-channel="" ③
 container="" ④
 default-protocol-handler="" ⑤
 protocol-handlers="" ⑥
 message-converters="" ⑦
 merge-with-default-converters="" ⑧
 send-timeout="" ⑨
 payload-type="" ⑩
 use-broker="" ⑪
 auto-startup="" ⑫
 phase=""/> ⑬

① The component bean name. If you do not set the channel attribute, a DirectChannel is
created and registered in the application context with this id attribute as the bean name. In
this case, the endpoint is registered with the bean name id plus .adapter.

② Identifies the channel attached to this adapter.

③ The MessageChannel bean reference to which the ErrorMessage instances should be sent.

④ See the same option on the <int-websocket:outbound-channel-adapter>.

⑤ See the same option on the <int-websocket:outbound-channel-adapter>.

⑥ See the same option on the <int-websocket:outbound-channel-adapter>.

⑦ See the same option on the <int-websocket:outbound-channel-adapter>.

⑧ See the same option on the <int-websocket:outbound-channel-adapter>.

⑨ Maximum amount of time (in milliseconds) to wait when sending a message to the channel
if the channel can block. For example, a QueueChannel can block until space is available if its
maximum capacity has been reached.

⑩ Fully qualified name of the Java type for the target payload to convert from the incoming
WebSocketMessage. Defaults to java.lang.String.

⑪ Indicates whether this adapter sends non-MESSAGE WebSocketMessage instances and messages
with broker destinations to the AbstractBrokerMessageHandler from the application context.
When this attribute is true, the Broker Relay configuration is required. This attribute is used
only on the server side. On the client side, it is ignored. Defaults to false.

⑫ See the same option on the <int-websocket:outbound-channel-adapter>.

⑬ See the same option on the <int-websocket:outbound-channel-adapter>.

40.5. Using ClientStompEncoder
Starting with version 4.3.13, Spring Integration provides ClientStompEncoder (as an extension of the
standard StompEncoder) for use on the client side of WebSocket channel adapters. For proper client

778

side message preparation, you must inject an instance of the ClientStompEncoder into the
StompSubProtocolHandler. One problem with the default StompSubProtocolHandler is that it was
designed for the server side, so it updates the SEND stompCommand header into MESSAGE (as required by
the STOMP protocol for the server side). If the client does not send its messages in the proper SEND
web socket frame, some STOMP brokers do not accept them. The purpose of the ClientStompEncoder,
in this case, is to override the stompCommand header and set it to the SEND value before encoding the
message to the byte[].

779

Chapter 41. Web Services Support
This chapter describes Spring Integration’s support for web services, including:

• Outbound Web Service Gateways

• Inbound Web Service Gateways

• Web Service Namespace Support

• Outbound URI Configuration

• WS Message Headers

• MTOM Support

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-ws</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-ws:5.4.0"

41.1. Outbound Web Service Gateways
To invoke a web service when you send a message to a channel, you have two options, both of
which build upon the Spring Web Services project: SimpleWebServiceOutboundGateway and
MarshallingWebServiceOutboundGateway. The former accepts either a String or
javax.xml.transform.Source as the message payload. The latter supports any implementation of the
Marshaller and Unmarshaller interfaces. Both require a Spring Web Services DestinationProvider, to
determine the URI of the web service to be called. The following example shows both options for
invoking a web service:

 simpleGateway = new SimpleWebServiceOutboundGateway(destinationProvider);

 marshallingGateway = new MarshallingWebServiceOutboundGateway(
destinationProvider, marshaller);

780

https://projects.spring.io/spring-ws/



When using the namespace support (described later), you need only set a URI.
Internally, the parser configures a fixed URI DestinationProvider implementation.
If you need dynamic resolution of the URI at runtime, however, then the
DestinationProvider can provide such behavior as looking up the URI from a
registry. See the Spring Web Services DestinationProvider Javadoc for more
information about this strategy.

Starting with version 5.0, you can supply the SimpleWebServiceOutboundGateway and
MarshallingWebServiceOutboundGateway with an external WebServiceTemplate instance, which you can
configure for any custom properties, including checkConnectionForFault (which allows your
application to deal with non-conforming services).

For more detail on the inner workings, see the Spring Web Services reference guide’s chapter
covering client access and the chapter covering Object/XML mapping.

41.2. Inbound Web Service Gateways
To send a message to a channel upon receiving a web service invocation, you again have two
options: SimpleWebServiceInboundGateway and MarshallingWebServiceInboundGateway. The former
extracts a javax.xml.transform.Source from the WebServiceMessage and sets it as the message
payload. The latter supports implementation of the Marshaller and Unmarshaller interfaces. If the
incoming web service message is a SOAP message, the SOAP action header is added to the headers
of the Message that is forwarded onto the request channel. The following example shows both
options:

 simpleGateway = new SimpleWebServiceInboundGateway();
 simpleGateway.setRequestChannel(forwardOntoThisChannel);
 simpleGateway.setReplyChannel(listenForResponseHere); //Optional

 marshallingGateway = new MarshallingWebServiceInboundGateway(marshaller);
 //set request and optionally reply channel

Both gateways implement the Spring Web Services MessageEndpoint interface, so they can be
configured with a MessageDispatcherServlet as per standard Spring Web Services configuration.

For more detail on how to use these components, see the Spring Web Services reference guide’s
chapter covering creating a web service. The chapter covering Object/XML mapping is also
applicable again.

To add the SimpleWebServiceInboundGateway and MarshallingWebServiceInboundGateway configurations
to the Spring WS infrastructure, you should add the EndpointMapping definition between
MessageDispatcherServlet and the target MessageEndpoint implementations, as you would for a
normal Spring WS application. For this purpose (from the Spring Integration perspective), Spring
WS provides the following convenient EndpointMapping implementations:

• o.s.ws.server.endpoint.mapping.UriEndpointMapping

781

https://docs.spring.io/spring-ws/docs/current/api/org/springframework/ws/client/support/destination/DestinationProvider.html
https://docs.spring.io/spring-ws/docs/current/reference/#client
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#oxm
https://docs.spring.io/spring-ws/docs/current/reference/#server
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#oxm

• o.s.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping

• o.s.ws.soap.server.endpoint.mapping.SoapActionEndpointMapping

• o.s.ws.server.endpoint.mapping.XPathPayloadEndpointMapping

You must specify the beans for these classes in the application context and reference the
SimpleWebServiceInboundGateway and/or MarshallingWebServiceInboundGateway bean definitions
according to the WS mapping algorithm.

See the endpoint mappings for more information.

41.3. Web Service Namespace Support
To configure an outbound web service gateway, use the outbound-gateway element from the ws
namespace, as the following example shows:

<int-ws:outbound-gateway id="simpleGateway"
 request-channel="inputChannel"
 uri="https://example.org"/>



This example does not provide a 'reply-channel'. If the web service returns a non-
empty response, the Message containing that response is sent to the reply channel
defined in the request message’s REPLY_CHANNEL header. If that is not available, a
channel resolution exception is thrown. If you want to send the reply to another
channel instead, provide a 'reply-channel' attribute on the 'outbound-gateway'
element.



By default, when you invoke a web service that returns an empty response after
using a String payload for the request Message, no reply Message is sent. Therefore,
you need not set a 'reply-channel' or have a REPLY_CHANNEL header in the request
Message. If you actually do want to receive the empty response as a Message, you
can set the 'ignore-empty-responses' attribute to false. Doing so works only for
String objects, because using a Source or a Document object leads to a null response
and consequently never generates a reply Message.

To set up an inbound Web Service Gateway, use the inbound-gateway element, as the following
example shows:

<int-ws:inbound-gateway id="simpleGateway"
 request-channel="inputChannel"/>

To use Spring OXM marshallers or unmarshallers, you must provide bean references. The following
example shows how to provide a bean reference for an outbound marshalling gateway:

782

https://docs.spring.io/spring-ws/docs/current/reference/#server-endpoint-mapping

<int-ws:outbound-gateway id="marshallingGateway"
 request-channel="requestChannel"
 uri="https://example.org"
 marshaller="someMarshaller"
 unmarshaller="someUnmarshaller"/>

The following example shows how to provide a bean reference for an inbound marshalling
gateway:

<int-ws:inbound-gateway id="marshallingGateway"
 request-channel="requestChannel"
 marshaller="someMarshaller"
 unmarshaller="someUnmarshaller"/>



Most Marshaller implementations also implement the Unmarshaller interface. When
using such a Marshaller, only the marshaller attribute is necessary. Even when
using a Marshaller, you may also provide a reference for the request-callback on
the outbound gateways.

For either outbound gateway type, you can specify a destination-provider attribute instead of the
uri (exactly one of them is required). You can then reference any Spring Web Services
DestinationProvider implementation (for example, to lookup the URI from a registry at runtime).

For either outbound gateway type, the message-factory attribute can also be configured with a
reference to any Spring Web Services WebServiceMessageFactory implementation.

For the simple inbound gateway type, you can set the extract-payload attribute to false to forward
the entire WebServiceMessage instead of just its payload as a Message to the request channel. Doing so
might be useful, for example, when a custom transformer works against the WebServiceMessage
directly.

Starting with version 5.0, the web-service-template reference attribute lets you inject a
WebServiceTemplate with any possible custom properties.

41.4. Web Service Java DSL Support
The equivalent configuration for the gateways shown in Web Service Namespace Support are
shown in the following snippets:

783

@Bean
IntegrationFlow inbound() {
 return IntegrationFlows.from(Ws.simpleInboundGateway()
 .id("simpleGateway"))
 ...
 .get();
}

@Bean
IntegrationFlow outboundMarshalled() {
 return f -> f.handle(Ws.marshallingOutboundGateway()
 .id("marshallingGateway")
 .marshaller(someMarshaller())
 .unmarshaller(someUnmarshalller()))
 ...
}

@Bean
IntegrationFlow inboundMarshalled() {
 return IntegrationFlows.from(Ws.marshallingInboundGateway()
 .marshaller(someMarshaller())
 .unmarshaller(someUnmarshalller())
 .id("marshallingGateway"))
 ...
 .get();
}

Other properties can be set on the endpoint specs in a fluent manner (with the properties
depending on whether or not an external WebServiceTemplate has been provided for outbound
gateways). Examples:

.from(Ws.simpleInboundGateway()
 .extractPayload(false))

784

.handle(Ws.simpleOutboundGateway(template)
 .uri(uri)
 .sourceExtractor(sourceExtractor)
 .encodingMode(DefaultUriBuilderFactory.EncodingMode.NONE)
 .headerMapper(headerMapper)
 .ignoreEmptyResponses(true)
 .requestCallback(requestCallback)
 .uriVariableExpressions(uriVariableExpressions)
 .extractPayload(false))
)

.handle(Ws.marshallingOutboundGateway()
 .destinationProvider(destinationProvider)
 .marshaller(marshaller)
 .unmarshaller(unmarshaller)
 .messageFactory(messageFactory)
 .encodingMode(DefaultUriBuilderFactory.EncodingMode.VALUES_ONLY)
 .faultMessageResolver(faultMessageResolver)
 .headerMapper(headerMapper)
 .ignoreEmptyResponses(true)
 .interceptors(interceptor)
 .messageSenders(messageSender)
 .requestCallback(requestCallback)
 .uriVariableExpressions(uriVariableExpressions))

.handle(Ws.marshallingOutboundGateway(template)
 .uri(uri)
 .encodingMode(DefaultUriBuilderFactory.EncodingMode.URI_COMPONENT)
 .headerMapper(headerMapper)
 .ignoreEmptyResponses(true)
 .requestCallback(requestCallback)
 .uriVariableExpressions(uriVariableExpressions))
)

41.5. Outbound URI Configuration
For all URI schemes supported by Spring Web Services (see URIs and Transports) <uri-variable/>
substitution is provided. The following example shows how to define it:

785

https://docs.spring.io/spring-ws/docs/current/reference/#client-transports

<ws:outbound-gateway id="gateway" request-channel="input"
 uri="https://springsource.org/{thing1}-{thing2}">
 <ws:uri-variable name="thing1" expression="payload.substring(1,7)"/>
 <ws:uri-variable name="thing2" expression="headers.x"/>
</ws:outbound-gateway>

<ws:outbound-gateway request-channel="inputJms"
 uri="jms:{destination}?deliveryMode={deliveryMode}&priority={priority}"
 message-sender="jmsMessageSender">
 <ws:uri-variable name="destination" expression="headers.jmsQueue"/>
 <ws:uri-variable name="deliveryMode" expression="headers.deliveryMode"/>
 <ws:uri-variable name="priority" expression="headers.jms_priority"/>
</ws:outbound-gateway>

If you supply a DestinationProvider, variable substitution is not supported and a configuration
error occurs if you provide variables.

41.5.1. Controlling URI Encoding

By default, the URL string is encoded (see UriComponentsBuilder) to the URI object before sending the
request. In some scenarios with a non-standard URI, it is undesirable to perform the encoding. The
<ws:outbound-gateway/> element provides an encoding-mode attribute. To disable encoding the URL,
set this attribute to NONE (by default, it is TEMPLATE_AND_VALUES). If you wish to partially encode some
of the URL, you can do so by using an expression within a <uri-variable/>, as the following example
shows:

<ws:outbound-gateway url="https://somehost/%2f/fooApps?bar={param}" encoding-mode
="NONE">
 <http:uri-variable name="param"
 expression="T(org.apache.commons.httpclient.util.URIUtil)
 .encodeWithinQuery('Hello World!')"/>
</ws:outbound-gateway>

 If you set DestinationProvider, encoding-mode is ignored.

41.6. WS Message Headers
The Spring Integration web service gateways automatically map the SOAP action header. By
default, it is copied to and from Spring Integration MessageHeaders by using the
DefaultSoapHeaderMapper.

You can pass in your own implementation of SOAP-specific header mappers, as the gateways have
properties to support doing so.

Unless explicitly specified by the requestHeaderNames or replyHeaderNames properties of the

786

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/util/UriComponentsBuilder.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/ws/DefaultSoapHeaderMapper.html

DefaultSoapHeaderMapper, any user-defined SOAP headers are not copied to or from a SOAP Message.

When you use the XML namespace for configuration, you can set these properties by using the
mapped-request-headers and mapped-reply-headers attributes, you can provide a custom mapper by
setting the header-mapper attribute.


When mapping user-defined headers, the values can also contain simple wildcard
patterns (such myheader* or myheader). For example, if you need to copy all
user-defined headers, you can use the wildcard character: .

Starting with version 4.1, the AbstractHeaderMapper (a DefaultSoapHeaderMapper superclass) lets the
NON_STANDARD_HEADERS token be configured for the requestHeaderNames and replyHeaderNames
properties (in addition to existing STANDARD_REQUEST_HEADERS and STANDARD_REPLY_HEADERS) to map all
user-defined headers.


Rather than using the wildcard (*), we recommend using the following
combination : STANDARD_REPLY_HEADERS, NON_STANDARD_HEADERS. Doing so avoids
mapping request headers to the reply.

Starting with version 4.3, you can negate patterns in the header mappings by preceding the pattern
with !. Negated patterns get priority, so a list such as
STANDARD_REQUEST_HEADERS,thing1,thing*,!thing2,!thing3,qux,!thing1 does not map thing1, thing2,
or thing3. It does map the standard headers, thing4, and qux. (Note that thing1 is included in both
non-negated and negated forms. Because negated values take precedence, thing1 is not mapped.)


If you have a user-defined header that begins with ! that you do wish to map, you
can escape it with \, as follows: STANDARD_REQUEST_HEADERS,\!myBangHeader. A
!myBangHeader is then mapped.

Inbound SOAP headers (request headers for the inbound gateway and reply headers for the
outbound gateway) are mapped as SoapHeaderElement objects. You can explore the contents by
accessing the Source:

787

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <auth>
 <username>user</username>
 <password>pass</password>
 </auth>
 <bar>BAR</bar>
 <baz>BAZ</baz>
 <qux>qux</qux>
 </soapenv:Header>
 <soapenv:Body>
 ...
 </soapenv:Body>
</soapenv:Envelope>

If mapped-request-headers is auth, ca*, the auth, cat, and can headers are mapped, but qux is not
mapped.

The following example shows how to get a value named user from a header named auth:

...
SoapHeaderElement header = (SoapHeaderElement) headers.get("auth");
DOMSource source = (DOMSource) header.getSource();
NodeList nodeList = source.getNode().getChildNodes();
assertEquals("username", nodeList.item(0).getNodeName());
assertEquals("user", nodeList.item(0).getFirstChild().getNodeValue());
...

Starting with version 5.0, the DefaultSoapHeaderMapper supports user-defined headers of type
javax.xml.transform.Source and populates them as child nodes of the <soapenv:Header>. The
following example shows how to do so:

788

Map<String, Object> headers = new HashMap<>();

String authXml =
 "<auth xmlns='http://test.auth.org'>"
 + "<username>user</username>"
 + "<password>pass</password>"
 + "</auth>";
headers.put("auth", new StringSource(authXml));
...
DefaultSoapHeaderMapper mapper = new DefaultSoapHeaderMapper();
mapper.setRequestHeaderNames("auth");

The result of the preceding examples is the following SOAP envelope:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <auth xmlns="http://test.auth.org">
 <username>user</username>
 <password>pass</password>
 </auth>
 </soapenv:Header>
 <soapenv:Body>
 ...
 </soapenv:Body>
</soapenv:Envelope>

41.7. MTOM Support
The marshalling inbound and outbound web service gateways support attachments directly
through built-in functionality of the marshaller (for example, Jaxb2Marshaller provides the
mtomEnabled option). Starting with version 5.0, the simple web service gateways can directly operate
with inbound and outbound MimeMessage instances, which have an API to manipulate attachments.
When you need to send web service message with attachments (either a reply from a server or a
client request) you should use the WebServiceMessageFactory directly and send a WebServiceMessage
with attachments as a payload to the request or reply channel of the gateway. The following
example shows how to do so:

789

WebServiceMessageFactory messageFactory = new SaajSoapMessageFactory
(MessageFactory.newInstance());
MimeMessage webServiceMessage = (MimeMessage) messageFactory
.createWebServiceMessage();

String request = "<test>foo</test>";

TransformerFactory transformerFactory = TransformerFactory.newInstance();
Transformer transformer = transformerFactory.newTransformer();
transformer.transform(new StringSource(request), webServiceMessage
.getPayloadResult());

webServiceMessage.addAttachment("myAttachment", new ByteArrayResource("my_data"
.getBytes()), "plain/text");

this.webServiceChannel.send(new GenericMessage<>(webServiceMessage));

790

Chapter 42. XML Support - Dealing with XML
Payloads
Spring Integration’s XML support extends the core of Spring Integration with the following
components:

• Marshalling Transformer

• Unmarshalling Transformer

• XSLT Transformer

• XPath Transformer

• XPath Splitter

• XPath Router

• XPath Header Enricher

• XPath Filter

• #xpath SpEL Function

• Validating Filter

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-xml</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-xml:5.4.0"

These components make working with XML messages in Spring Integration simpler. The messaging
components work with XML that is represented in a range of formats, including instances of
java.lang.String, org.w3c.dom.Document, and javax.xml.transform.Source. However, where a DOM
representation is required (for example, in order to evaluate an XPath expression), the String
payload is converted into the required type and then converted back to String. Components that
require an instance of DocumentBuilder create a namespace-aware instance if you do not provide
one. When you require greater control over document creation, you can provide an appropriately
configured instance of DocumentBuilder.

791

42.1. Namespace Support
All components within the Spring Integration XML module provide namespace support. In order to
enable namespace support, you need to import the schema for the Spring Integration XML Module.
The following example shows a typical setup:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-xml="http://www.springframework.org/schema/integration/xml"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/xml
 https://www.springframework.org/schema/integration/xml/spring-integration-
xml.xsd">
</beans>

42.1.1. XPath Expressions

Many of the components within the Spring Integration XML module work with XPath Expressions.
Each of those components either references an XPath Expression that has been defined as a top-
level element or uses a nested <xpath-expression/> element.

All forms of XPath expressions result in the creation of an XPathExpression that uses the Spring
org.springframework.xml.xpath.XPathExpressionFactory. When XPath expressions are created, the
best XPath implementation that is available on the classpath is used (either JAXP 1.3+ or Jaxen, with
JAXP being preferred).



Internally, Spring Integration uses the XPath functionality provided by the Spring
Web Services project (www.spring.io/spring-ws). Specifically, we use the Spring
Web Services XML module (spring-xml-x.x.x.jar). For a deeper understanding, see
the respective documentation at docs.spring.io/spring-ws/docs/current/reference/#
xpath.

Here is an overview of all available configuration parameters of the xpath-expression element: The
following listing shows the available attributes for the xpath-expression element:

792

https://www.spring.io/spring-ws
https://docs.spring.io/spring-ws/docs/current/reference/#xpath
https://docs.spring.io/spring-ws/docs/current/reference/#xpath

<int-xml:xpath-expression expression="" ①
 id="" ②
 namespace-map="" ③
 ns-prefix="" ④
 ns-uri=""> ⑤
 <map></map> ⑥
</int-xml:xpath-expression>

① Defines an XPath expression. Required.

② The identifier of the underlying bean definition. It is an instance of
org.springframework.xml.xpath.XPathExpression. Optional.

③ Reference to a map that contains namespaces. The key of the map defines the namespace
prefix, and the value of the map sets the namespace URI. It is not valid to specify both this
attribute and the map element or the ns-prefix and ns-uri attributes. Optional.

④ Lets you set the namespace prefix directly as an attribute on the XPath expression element.
If you set ns-prefix, you must also set the ns-uri attribute. Optional.

⑤ Lets you directly set the namespace URI as an attribute on the XPath expression element. If
you set ns-uri, you must also set the ns-prefix attribute. Optional.

⑥ Defines a map that contains namespaces. Only one map child element is allowed. The key of
the map defines the namespace prefix, and the value of the map sets the namespace URI. It
is not valid to specify both this element and the map attribute or set the ns-prefix and ns-uri
attributes. Optional.

Providing Namespaces (Optional) to XPath Expressions

For the XPath Expression Element, you can provide namespace information as configuration
parameters. You can define namespaces by using one of the following choices:

• Reference a map by using the namespace-map attribute

• Provide a map of namespaces by using the map sub-element

• Specify the ns-prefix and ns-uri attributes

All three options are mutually exclusive. Only one option can be set.

The following example shows several different ways to use XPath expressions, including the
options for setting the XML namespaces mentioned earlier:

793

<int-xml:xpath-filter id="filterReferencingXPathExpression"
 xpath-expression-ref="refToXpathExpression"/>

<int-xml:xpath-expression id="refToXpathExpression" expression="/name"/>

<int-xml:xpath-filter id="filterWithoutNamespace">
 <int-xml:xpath-expression expression="/name"/>
</int-xml:xpath-filter>

<int-xml:xpath-filter id="filterWithOneNamespace">
 <int-xml:xpath-expression expression="/ns1:name"
 ns-prefix="ns1" ns-uri="www.example.org"/>
</int-xml:xpath-filter>

<int-xml:xpath-filter id="filterWithTwoNamespaces">
 <int-xml:xpath-expression expression="/ns1:name/ns2:type">
 <map>
 <entry key="ns1" value="www.example.org/one"/>
 <entry key="ns2" value="www.example.org/two"/>
 </map>
 </int-xml:xpath-expression>
</int-xml:xpath-filter>

<int-xml:xpath-filter id="filterWithNamespaceMapReference">
 <int-xml:xpath-expression expression="/ns1:name/ns2:type"
 namespace-map="defaultNamespaces"/>
</int-xml:xpath-filter>

<util:map id="defaultNamespaces">
 <util:entry key="ns1" value="www.example.org/one"/>
 <util:entry key="ns2" value="www.example.org/two"/>
</util:map>

Using XPath Expressions with Default Namespaces

When working with default namespaces, you may run into situations that behave differently than
you might expect. Assume we have the following XML document (which represents an order of two
books):

794

<?xml version="1.0" encoding="UTF-8"?>
<order>
 <orderItem>
 <isbn>0321200683</isbn>
 <quantity>2</quantity>
 </orderItem>
 <orderItem>
 <isbn>1590596439</isbn>
 <quantity>1</quantity>
 </orderItem>
</order>

This document does not declare a namespace. Therefore, applying the following XPath Expression
works as expected:

<int-xml:xpath-expression expression="/order/orderItem" />

You might expect that the same expression also works for the following XML file:

<?xml version="1.0" encoding="UTF-8"?>
<order xmlns="http://www.example.org/orders">
 <orderItem>
 <isbn>0321200683</isbn>
 <quantity>2</quantity>
 </orderItem>
 <orderItem>
 <isbn>1590596439</isbn>
 <quantity>1</quantity>
 </orderItem>
</order>

The preceding example looks exactly the same as the previous example but declares a default
namespace.

However, the previous XPath expression (/order/orderItem) fails in this case.

In order to solve this issue, you must provide a namespace prefix and a namespace URI either by
setting the ns-prefix and ns-uri attributes or by setting the namespace-map attribute. The namespace
URI must match the namespace declared in your XML document. In the preceding example, that is
www.example.org/orders.

You can, however, arbitrarily choose the namespace prefix. In fact, providing an empty string

795

http://www.example.org/orders

actually works. (However, null is not allowed.) In the case of a namespace prefix consisting of an
empty string, your Xpath expression must use a colon (":") to indicate the default namespace. If you
leave off the colon, the XPath expression does not match. The following XPath Expression matches
against the XML document in the preceding example:

<int-xml:xpath-expression expression="/:order/:orderItem"
 ns-prefix="" ns-uri="https://www.example.org/prodcuts"/>

You can also provide any other arbitrarily chosen namespace prefix. The following XPath
expression (which use the myorder namespace prefix) also matches:

<int-xml:xpath-expression expression="/myorder:order/myorder:orderItem"
 ns-prefix="myorder" ns-uri="https://www.example.org/prodcuts"/>

The namespace URI is the really important piece of information, not the prefix.
Thehttps://github.com/jaxen-xpath/jaxen[Jaxen] summarizes the point very well:

In XPath 1.0, all unprefixed names are unqualified. There is no requirement
that the prefixes used in the XPath expression are the same as the prefixes
used in the document being queried. Only the namespace URIs need to
match, not the prefixes.

42.2. Transforming XML Payloads
This section covers how to transform XML payloads

42.2.1. Configuring Transformers as Beans

This section will explain the workings of the following transformers and how to configure them as
beans:

• UnmarshallingTransformer

• MarshallingTransformer

• XsltPayloadTransformer

All of the XML transformers extend either AbstractTransformer or AbstractPayloadTransformer and
therefore implement Transformer. When configuring XML transformers as beans in Spring
Integration, you would normally configure the Transformer in conjunction with a
MessageTransformingHandler. This lets the transformer be used as an endpoint. Finally, we discuss
the namespace support , which allows for configuring the transformers as elements in XML.

796

#xml-unmarshalling-transformer
#xml-marshalling-transformer
#xml-xslt-payload-transformers
https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/AbstractTransformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/AbstractPayloadTransformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/Transformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/transformer/MessageTransformingHandler.html

UnmarshallingTransformer

An UnmarshallingTransformer lets an XML Source be unmarshalled by using implementations of the
Spring OXM Unmarshaller. Spring’s Object/XML Mapping support provides several implementations
that support marshalling and unmarshalling by using JAXB, Castor, JiBX, and others. The
unmarshaller requires an instance of Source. If the message payload is not an instance of Source,
conversion is still attempted. Currently, String, File, byte[] and org.w3c.dom.Document payloads are
supported. To create a custom conversion to a Source, you can inject an implementation of a
SourceFactory.


If you do not explicitly set a SourceFactory, the property on the
UnmarshallingTransformer is, by default, set to a DomSourceFactory.

Starting with version 5.0, the UnmarshallingTransformer also supports an
org.springframework.ws.mime.MimeMessage as the incoming payload. This can be useful when we
receive a raw WebServiceMessage with MTOM attachments over SOAP . See MTOM Support for more
information.

The following example shows how to define an unmarshalling transformer:

<bean id="unmarshallingTransformer" class=
"o.s.i.xml.transformer.UnmarshallingTransformer">
 <constructor-arg>
 <bean class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
 <property name="contextPath" value="org.example" />
 </bean>
 </constructor-arg>
</bean>

Using MarshallingTransformer

The MarshallingTransformer lets an object graph be converted into XML by using a Spring OXM
Marshaller. By default, the MarshallingTransformer returns a DomResult. However, you can control
the type of result by configuring an alternative ResultFactory, such as StringResultFactory. In many
cases, it is more convenient to transform the payload into an alternative XML format. To do so,
configure a ResultTransformer. Spring integration provides two implementations, one that converts
to String and another that converts to Document. The following example configures a marshalling
transformer that transforms to a document:

797

https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/UnmarshallingTransformer.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html
https://en.wikipedia.org/wiki/Java_Architecture_for_XML_Binding
https://castor-data-binding.github.io/castor/reference-guide/reference/xml/xml-framework.html
https://en.wikipedia.org/wiki/JiBX
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/SourceFactory.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/DomSourceFactory.html
./ws.pdf#mtom-support
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/MarshallingTransformer.html

<bean id="marshallingTransformer" class="o.s.i.xml.transformer.MarshallingTransformer
">
 <constructor-arg>
 <bean class="org.springframework.oxm.jaxb.Jaxb2Marshaller">
 <property name="contextPath" value="org.example"/>
 </bean>
 </constructor-arg>
 <constructor-arg>
 <bean class="o.s.i.xml.transformer.ResultToDocumentTransformer"/>
 </constructor-arg>
</bean>

By default, the MarshallingTransformer passes the payload object to the Marshaller. However, if its
boolean extractPayload property is set to false, the entire Message instance is passed to the
Marshaller instead. That may be useful for certain custom implementations of the Marshaller
interface, but, typically, the payload is the appropriate source object for marshalling when you
delegate to any of the various Marshaller implementations.

XsltPayloadTransformer

The XsltPayloadTransformer transforms XML payloads by using Extensible Stylesheet Language
Transformations (XSLT). The transformer’s constructor requires an instance of either Resource or
Templates to be passed in. Passing in a Templates instance allows for greater configuration of the
TransformerFactory used to create the template instance.

As with the UnmarshallingTransformer, the XsltPayloadTransformer does the actual XSLT
transformation against instances of Source. Therefore, if the message payload is not an instance of
Source, conversion is still attempted. String and Document payloads are supported directly.

To create a custom conversion to a Source, you can inject an implementation of a SourceFactory.


If a SourceFactory is not set explicitly, the property on the XsltPayloadTransformer
is, by default, set to a DomSourceFactory.

By default, the XsltPayloadTransformer creates a message with a Result payload, similar to the
XmlPayloadMarshallingTransformer. You can customize this by providing a ResultFactory or a
ResultTransformer.

The following example configures a bean that works as an XSLT payload transformer:

<bean id="xsltPayloadTransformer" class="o.s.i.xml.transformer.XsltPayloadTransformer
">
 <constructor-arg value="classpath:org/example/xsl/transform.xsl"/>
 <constructor-arg>
 <bean class="o.s.i.xml.transformer.ResultToDocumentTransformer"/>
 </constructor-arg>
</bean>

798

https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/XsltPayloadTransformer.html
https://en.wikipedia.org/wiki/XSL_Transformations
https://en.wikipedia.org/wiki/XSL_Transformations
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
https://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Templates.html
#xml-unmarshalling-transformer
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/SourceFactory.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/DomSourceFactory.html
https://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Result.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/result/ResultFactory.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/ResultTransformer.html

Starting with Spring Integration 3.0, you can specify the transformer factory class name by using a
constructor argument. You can do so by using the transformer-factory-class attribute when you
use the namespace.

Using ResultTransformer Implementations

Both the MarshallingTransformer and the XsltPayloadTransformer let you specify a ResultTransformer.
Thus, if the marshalling or XSLT transformation returns a Result, you have the option to also use a
ResultTransformer to transform the Result into another format. Spring Integration provides two
concrete ResultTransformer implementations:

• ResultToDocumentTransformer

• ResultToStringTransformer

By default, the MarshallingTransformer always returns a Result. By specifying a ResultTransformer,
you can customize the type of payload returned.

The behavior is slightly more complex for the XsltPayloadTransformer. By default, if the input
payload is an instance of String or Document the resultTransformer property is ignored.

However, if the input payload is a Source or any other type, the resultTransformer property is
applied. Additionally, you can set the alwaysUseResultFactory property to true, which also causes the
specified resultTransformer to be used.

For more information and examples, see Namespace Configuration and Result Transformers.

42.2.2. Namespace Support for XML Transformers

Namespace support for all XML transformers is provided in the Spring Integration XML namespace,
a template for which was shown earlier. The namespace support for transformers creates an
instance of either EventDrivenConsumer or PollingConsumer, according to the type of the provided
input channel. The namespace support is designed to reduce the amount of XML configuration by
allowing the creation of an endpoint and transformer that use one element.

Using an UnmarshallingTransformer

The namespace support for the UnmarshallingTransformer is shown below. Since the namespace
create an endpoint instance rather than a transformer, you can nest a poller within the element to
control the polling of the input channel. The following example shows how to do so:

799

https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/ResultTransformer.html
https://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Result.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/ResultToDocumentTransformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/ResultToStringTransformer.html
https://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Result.html
https://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
https://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Source.html

<int-xml:unmarshalling-transformer id="defaultUnmarshaller"
 input-channel="input" output-channel="output"
 unmarshaller="unmarshaller"/>

<int-xml:unmarshalling-transformer id="unmarshallerWithPoller"
 input-channel="input" output-channel="output"
 unmarshaller="unmarshaller">
 <int:poller fixed-rate="2000"/>
<int-xml:unmarshalling-transformer/>

Using a MarshallingTransformer

The namespace support for the marshalling transformer requires an input-channel, an output-
channel, and a reference to a marshaller. You can use the optional result-type attribute to control
the type of result created. Valid values are StringResult or DomResult (the default). The following
example configures a marshalling transformer:

<int-xml:marshalling-transformer
 input-channel="marshallingTransformerStringResultFactory"
 output-channel="output"
 marshaller="marshaller"
 result-type="StringResult" />

<int-xml:marshalling-transformer
 input-channel="marshallingTransformerWithResultTransformer"
 output-channel="output"
 marshaller="marshaller"
 result-transformer="resultTransformer" />

<bean id="resultTransformer" class=
"o.s.i.xml.transformer.ResultToStringTransformer"/>

Where the provided result types do not suffice, you can provide a reference to a custom
implementation of ResultFactory as an alternative to setting the result-type attribute by using the
result-factory attribute. The result-type and result-factory attributes are mutually exclusive.


Internally, the StringResult and DomResult result types are represented by the
ResultFactory implementations: StringResultFactory and DomResultFactory
respectively.

Using an XsltPayloadTransformer

Namespace support for the XsltPayloadTransformer lets you either pass in a Resource (in order to
create the Templates instance) or pass in a pre-created Templates instance as a reference. As with the

800

https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/result/StringResultFactory.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/result/DomResultFactory.html
https://docs.oracle.com/javase/6/docs/api/javax/xml/transform/Templates.html

marshalling transformer, you can control the type of the result output by specifying either the
result-factory or the result-type attribute. When you need to convert result before sending, you
can use a result-transformer attribute to reference an implementation of ResultTransformer.


If you specify the result-factory or the result-type attribute, the
alwaysUseResultFactory property on the underlying XsltPayloadTransformer is set to
true by the XsltPayloadTransformerParser.

The following example configures two XSLT transformers:

<int-xml:xslt-transformer id="xsltTransformerWithResource"
 input-channel="withResourceIn" output-channel="output"
 xsl-resource="org/springframework/integration/xml/config/test.xsl"/>

<int-xml:xslt-transformer id="xsltTransformerWithTemplatesAndResultTransformer"
 input-channel="withTemplatesAndResultTransformerIn" output-channel="output"
 xsl-templates="templates"
 result-transformer="resultTransformer"/>

You may need to have access to Message data, such as the Message headers, in order to assist with
transformation. For example, you may need to get access to certain Message headers and pass them
on as parameters to a transformer (for example, transformer.setParameter(..)). Spring Integration
provides two convenient ways to accomplish this, as the following example shows:

<int-xml:xslt-transformer id="paramHeadersCombo"
 input-channel="paramHeadersComboChannel" output-channel="output"
 xsl-resource="classpath:transformer.xslt"
 xslt-param-headers="testP*, *foo, bar, baz">

 <int-xml:xslt-param name="helloParameter" value="hello"/>
 <int-xml:xslt-param name="firstName" expression="headers.fname"/>
</int-xml:xslt-transformer>

If message header names match one-to-one to parameter names, you can use the xslt-param-
headers attribute. In it, you can use wildcards for simple pattern matching. It supports the following
simple pattern styles: xxx*, xxx, *xxx, and xxx*yyy.

You can also configure individual XSLT parameters by using the <xslt-param/> element. On that
element, you can set the expression attribute or the value attribute. The expression attribute should
be any valid SpEL expression with the Message being the root object of the expression evaluation
context. The value attribute (as with any value in Spring beans) lets you specify simple scalar
values. You can also use property placeholders (such as ${some.value}). So, with the expression and
value attributes, you can map XSLT parameters to any accessible part of the Message as well as any
literal value.

801

https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/XsltPayloadTransformer.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/config/XsltPayloadTransformerParser.html

Starting with Spring Integration 3.0, you can now specify the transformer factory class name by
setting the transformer-factory-class attribute.

42.2.3. Namespace Configuration and Result Transformers

We cover using result transformers in Using ResultTransformer Implementations. The examples in
this section use XML namespace configuration to illustrates several special use cases. First, we
define the ResultTransformer, as the following example shows:

<beans:bean id="resultToDoc" class=
"o.s.i.xml.transformer.ResultToDocumentTransformer"/>

This ResultTransformer accepts either a StringResult or a DOMResult as input and converts the input
into a Document.

Now we can declare the transformer, as follows:

<int-xml:xslt-transformer input-channel="in" output-channel="fahrenheitChannel"
 xsl-resource="classpath:noop.xslt" result-transformer="resultToDoc"/>

If the incoming message’s payload is of type Source, then, as a first step, the Result is determined by
using the ResultFactory. As we did not specify a ResultFactory, the default DomResultFactory is used,
meaning that the transformation yields a DomResult.

However, as we specified a ResultTransformer, it is used and the resulting Message payload is of type
Document.



The specified ResultTransformer is ignored with String or Document payloads. If the
incoming message’s payload is of type String, the payload after the XSLT
transformation is a String. Similarly, if the incoming message’s payload is of type
Document, the payload after the XSLT transformation is a`Document`.

If the message payload is not a Source, a String, or a Document, as a fallback option, we try to create
a`Source` by using the default SourceFactory. As we did not specify a SourceFactory explicitly by
using the source-factory attribute, the default DomSourceFactory is used. If successful, the XSLT
transformation is executed as if the payload was of type Source, as described in the previous
paragraphs.


The DomSourceFactory supports the creation of a DOMSource from a Document, a File,
or a String payload.

The next transformer declaration adds a result-type attribute that uses StringResult as its value.
The result-type is internally represented by the StringResultFactory. Thus, you could have also
added a reference to a StringResultFactory, by using the result-factory attribute, which would

802

https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/SourceFactory.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/source/DomSourceFactory.html

have been the same. The following example shows that transformer declaration:

<int-xml:xslt-transformer input-channel="in" output-channel="fahrenheitChannel"
 xsl-resource="classpath:noop.xslt" result-transformer="resultToDoc"
 result-type="StringResult"/>

Because we use a ResultFactory, the alwaysUseResultFactory property of the XsltPayloadTransformer
class is implicitly set to true. Consequently, the referenced ResultToDocumentTransformer is used.

Therefore, if you transform a payload of type String, the resulting payload is of type Document.

XsltPayloadTransformer and <xsl:output method="text"/>

<xsl:output method="text"/> tells the XSLT template to produce only text content from the input
source. In this particular case, we have no reason to use a DomResult. Therefore, the
XsltPayloadTransformer defaults to StringResult if the output property called method of the
underlying javax.xml.transform.Transformer returns text. This coercion is performed
independently from the inbound payload type. This behavior is available only you set the if the
result-type attribute or the result-factory attribute for the <int-xml:xslt-transformer> component.

42.3. Transforming XML Messages with XPath
When it comes to message transformation, XPath is a great way to transform messages that have
XML payloads. You can do so by defining XPath transformers with the <xpath-transformer/>
element.

42.3.1. Simple XPath Transformation

Consider following transformer configuration:

<int-xml:xpath-transformer input-channel="inputChannel" output-channel=
"outputChannel"
 xpath-expression="/person/@name" />

Also consider the following Message:

Message<?> message =
 MessageBuilder.withPayload("<person name='John Doe' age='42' married='true'/>")
.build();

After sending this message to the 'inputChannel', the XPath transformer configured earlier

803

https://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/xml/transformer/XsltPayloadTransformer.html
https://docs.oracle.com/javase/7/docs/api/javax/xml/transform/Transformer.html#getOutputProperties()

transforms this XML Message to a simple Message with a payload of 'John Doe', all based on the
simple XPath Expression specified in the xpath-expression attribute.

XPath also lets you perform simple conversion of an extracted element to a desired type. Valid
return types are defined in javax.xml.xpath.XPathConstants and follow the conversion rules
specified by the javax.xml.xpath.XPath interface.

The following constants are defined by the XPathConstants class: BOOLEAN, DOM_OBJECT_MODEL, NODE,
NODESET, NUMBER, and STRING.

You can configure the desired type by using the evaluation-type attribute of the <xpath-
transformer/> element, as the following example shows (twice):

<int-xml:xpath-transformer input-channel="numberInput" xpath-expression=
"/person/@age"
 evaluation-type="NUMBER_RESULT" output-channel="output
"/>

<int-xml:xpath-transformer input-channel="booleanInput"
 xpath-expression="/person/@married = 'true'"
 evaluation-type="BOOLEAN_RESULT" output-channel="
output"/>

42.3.2. Node Mappers

If you need to provide custom mapping for the node extracted by the XPath expression, you can
provide a reference to the implementation of the org.springframework.xml.xpath.NodeMapper (an
interface used by XPathOperations implementations for mapping Node objects on a per-node basis).
To provide a reference to a NodeMapper, you can use the node-mapper attribute, as the following
example shows:

<int-xml:xpath-transformer input-channel="nodeMapperInput" xpath-expression=
"/person/@age"
 node-mapper="testNodeMapper" output-channel="output"/>

The following example shows a NodeMapper implementation that works with the preceding example:

class TestNodeMapper implements NodeMapper {
 public Object mapNode(Node node, int nodeNum) throws DOMException {
 return node.getTextContent() + "-mapped";
 }
}

804

42.3.3. XML Payload Converter

You can also use an implementation of the
org.springframework.integration.xml.XmlPayloadConverter to provide more granular
transformation. The following example shows how to define one:

<int-xml:xpath-transformer input-channel="customConverterInput"
 output-channel="output" xpath-expression="/test/@type"
 converter="testXmlPayloadConverter" />

The following example shows an XmlPayloadConverter implementation that works with the
preceding example:

class TestXmlPayloadConverter implements XmlPayloadConverter {
 public Source convertToSource(Object object) {
 throw new UnsupportedOperationException();
 }
 //
 public Node convertToNode(Object object) {
 try {
 return DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(
 new InputSource(new StringReader("<test type='custom'/>")));
 }
 catch (Exception e) {
 throw new IllegalStateException(e);
 }
 }
 //
 public Document convertToDocument(Object object) {
 throw new UnsupportedOperationException();
 }
}

If you do not provide this reference, the DefaultXmlPayloadConverter is used. It should suffice in
most cases, because it can convert from Node, Document, Source, File, String, InputStream, and byte[]
payloads. If you need to extend beyond the capabilities of that default implementation, an
upstream Transformer is probably a better option than providing a reference to a custom
implementation of this strategy here.

42.4. Splitting XML Messages
XPathMessageSplitter supports messages with either String or Document payloads. The splitter uses
the provided XPath expression to split the payload into a number of nodes. By default, this results
in each Node instance becoming the payload of a new message. When each message should be a

805

Document, you can set the createDocuments flag. Where a String payload is passed in, the payload is
converted and then split before being converted back to a number of String messages. The XPath
splitter implements MessageHandler and should therefore be configured in conjunction with an
appropriate endpoint (see the namespace support example after the following example for a
simpler configuration alternative). The following example configures a bean that uses an
XPathMessageSplitter:

<bean id="splittingEndpoint"
 class="org.springframework.integration.endpoint.EventDrivenConsumer">
 <constructor-arg ref="orderChannel" />
 <constructor-arg>
 <bean class="
org.springframework.integration.xml.splitter.XPathMessageSplitter">
 <constructor-arg value="/order/items" />
 <property name="documentBuilder" ref="customisedDocumentBuilder" />
 <property name="outputChannel" ref="orderItemsChannel" />
 </bean>
 </constructor-arg>
</bean>

XPath splitter namespace support lets you create a message endpoint with an input channel and
output channel, as the following example shows:

<!-- Split the order into items and create a new message for each item node -->
<int-xml:xpath-splitter id="orderItemSplitter"
 input-channel="orderChannel"
 output-channel="orderItemsChannel">
 <int-xml:xpath-expression expression="/order/items"/>
</int-xml:xpath-splitter>

<!-- Split the order into items, create a new document for each item-->
<int-xml:xpath-splitter id="orderItemDocumentSplitter"
 input-channel="orderChannel"
 output-channel="orderItemsChannel"
 create-documents="true">
 <int-xml:xpath-expression expression="/order/items"/>
 <int:poller fixed-rate="2000"/>
</int-xml:xpath-splitter>

Starting with version 4.2, the XPathMessageSplitter exposes the outputProperties (such as
OutputKeys.OMIT_XML_DECLARATION) property for an javax.xml.transform.Transformer instance when a
request payload is not of type org.w3c.dom.Node. The following example defines a property and uses
it with the output-properties property:

806

<util:properties id="outputProperties">
 <beans:prop key="#{T (javax.xml.transform.OutputKeys).OMIT_XML_DECLARATION}"
>yes</beans:prop>
</util:properties>

<xpath-splitter input-channel="input"
 output-properties="outputProperties">
 <xpath-expression expression="/orders/order"/>
</xpath-splitter>

Starting with version 4.2, the XPathMessageSplitter exposes an iterator option as a boolean flag
(defaults to true). This allows the “streaming” of split nodes in the downstream flow. With the
iterator mode set to true, each node is transformed while iterating. When false, all entries are first
transformed, before the split nodes start being sent to the output channel. (You can think of the
difference as “transform, send, transform, send” versus “transform, transform, send, send”.) See
Splitter for more information.

42.5. Routing XML Messages with XPath
Similar to SpEL-based routers, Spring Integration provides support for routing messages based on
XPath expressions, which lets you create a message endpoint with an input channel but no output
channel. Instead, one or more output channels are determined dynamically. The following example
shows how to create such a router:

<int-xml:xpath-router id="orderTypeRouter" input-channel="orderChannel">
 <int-xml:xpath-expression expression="/order/type"/>
</int-xml:xpath-router>


For an overview of attributes that are common among Routers, see Common
Router Parameters.

Internally, XPath expressions are evaluated as type NODESET and converted to a List<String> that
represents channel names. Typically, such a list contains a single channel name. However, based on
the results of an XPath Expression, the XPath router can also take on the characteristics of a
recipient list router if the XPath expression returns more than one value. In that case, the
List<String> contains more than one channel name. Consequently, messages are sent to all the
channels in the list.

Thus, assuming that the XML file passed to the following router configuration contains many
responder sub-elements that represent channel names, the message is sent to all of those channels:

807

./splitter.pdf#splitter
./router.pdf#router-common-parameters
./router.pdf#router-common-parameters

<!-- route the order to all responders-->
<int-xml:xpath-router id="responderRouter" input-channel="orderChannel">
 <int-xml:xpath-expression expression="/request/responders"/>
</int-xml:xpath-router>

If the returned values do not represent the channel names directly, you can specify additional
mapping parameters to map those returned values to actual channel names. For example if the
/request/responders expression results in two values (responderA and responderB), but you do not
want to couple the responder names to channel names, you can provide additional mapping
configuration, such as the following:

<!-- route the order to all responders-->
<int-xml:xpath-router id="responderRouter" input-channel="orderChannel">
 <int-xml:xpath-expression expression="/request/responders"/>
 <int-xml:mapping value="responderA" channel="channelA"/>
 <int-xml:mapping value="responderB" channel="channelB"/>
</int-xml:xpath-router>

As already mentioned, the default evaluation type for XPath expressions is NODESET, which is
converted to a List<String> of channel names, which handles single channel scenarios as well as
multiple channel scenarios.

Nonetheless, certain XPath expressions may evaluate as type String from the very beginning.
Consider, for example, the following XPath Expression:

name(./node())

This expression returns the name of the root node. If the default evaluation type NODESET is being
used, it results in an exception.

For these scenarios, you can use the evaluate-as-string attribute, which lets you manage the
evaluation type. It is FALSE by default. However, if you set it to TRUE, the String evaluation type is
used.

808



XPath 1.0 specifies 4 data types:

• Node-sets

• Strings

• Number

• Boolean

When the XPath Router evaluates expressions by using the optional evaluate-as-
string attribute, the return value is determined by the string() function, as
defined in the XPath specification. This means that, if the expression selects
multiple nodes, it return the string value of the first node.

For further information, see:

• Specification: XML Path Language (XPath) Version 1.0

• XPath specification - string() function

For example, if we want to route based on the name of the root node, we can use the following
configuration:

<int-xml:xpath-router id="xpathRouterAsString"
 input-channel="xpathStringChannel"
 evaluate-as-string="true">
 <int-xml:xpath-expression expression="name(./node())"/>
</int-xml:xpath-router>

42.5.1. XML Payload Converter

For XPath Routers, you can also specify the Converter to use when converting payloads prior to
XPath evaluation. As such, the XPath Router supports custom implementations of the
XmlPayloadConverter strategy, and when configuring an xpath-router element in XML, a reference to
such an implementation may be provided via the converter attribute.

If this reference is not explicitly provided, the DefaultXmlPayloadConverter is used. It should be
sufficient in most cases, since it can convert from Node, Document, Source, File, and String typed
payloads. If you need to extend beyond the capabilities of that default implementation, then an
upstream Transformer is generally a better option in most cases, rather than providing a reference
to a custom implementation of this strategy here.

42.6. XPath Header Enricher
The XPath header enricher defines a header enricher message transformer that evaluates an XPath
expression against the message payload and inserts the result of the evaluation into a message
header.

809

https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath-functions-31

The following listing shows all the available configuration parameters:

810

<int-xml:xpath-header-enricher default-overwrite="true" ①
 id="" ②
 input-channel="" ③
 output-channel="" ④
 should-skip-nulls="true"> ⑤
 <int:poller></int:poller> ⑥
 <int-xml:header name="" ⑦
 evaluation-type="STRING_RESULT" ⑧
 header-type="int" ⑨
 overwrite="true" ⑩
 xpath-expression="" ⑪
 xpath-expression-ref=""/> ⑫
</int-xml:xpath-header-enricher>

① Specifies the default boolean value for whether to overwrite existing header values. This
takes effect only for child elements that do not provide their own 'overwrite' attribute. If
you do not set the 'default- overwrite' attribute, the specified header values do not
overwrite any existing ones with the same header names. Optional.

② ID for the underlying bean definition. Optional.

③ The receiving message channel of this endpoint. Optional.

④ Channel to which enriched messages are sent. Optional.

⑤ Specifies whether null values, such as might be returned from an expression evaluation,
should be skipped. The default value is true. If a null value should trigger removal of the
corresponding header, set this to false. Optional.

⑥ A poller to use with the header enricher. Optional.

⑦ The name of the header to be enriched. Mandatory.

⑧ The result type expected from the XPath evaluation. If you did not set a header-type
attribute, this is the type of the header value. The following values are allowed:
BOOLEAN_RESULT, STRING_RESULT, NUMBER_RESULT, NODE_RESULT, and NODE_LIST_RESULT. If not set, it
defaults internally to XPathEvaluationType.STRING_RESULT. Optional.

⑨ The fully qualified class name for the header value type. The result of the XPath evaluation
is converted to this type by ConversionService. This allows, for example, a NUMBER_RESULT (a
double) to be converted to an Integer. The type can be declared as a primitive (such as int),
but the result is always the equivalent wrapper class (such as Integer). The same
integration ConversionService discussed in Payload Type Conversion is used for the
conversion, so conversion to custom types is supported by adding a custom converter to the
service. Optional.

⑩ Boolean value to indicate whether this header value should overwrite an existing header
value for the same name if already present on the input Message.

⑪ The XPath expression as a String. You must set either this attribute or xpath-expression-ref,
but not both.

⑫ The XPath expression reference. You must set either this attribute or xpath-expression, but
not both.

811

./endpoint.pdf#payload-type-conversion

42.7. Using the XPath Filter
This component defines an XPath-based message filter. Internally, this components uses a
MessageFilter that wraps an instance of AbstractXPathMessageSelector.

 See Filter for further details.

to use the XPath filter you must, at a minimum, provide an XPath expression either by declaring the
xpath-expression element or by referencing an XPath Expression in the xpath-expression-ref
attribute.

If the provided XPath expression evaluates to a boolean value, no further configuration parameters
are necessary. However, if the XPath expression evaluates to a String, you should set the match-
value attribute, against which the evaluation result is matched.

match-type has three options:

• exact: Correspond to equals on java.lang.String. The underlying implementation uses a
StringValueTestXPathMessageSelector

• case-insensitive: Correspond to equals-ignore-case on java.lang.String. The underlying
implementation uses a StringValueTestXPathMessageSelector

• regex: Matches operations one java.lang.String. The underlying implementation uses a
RegexTestXPathMessageSelector

When providing a 'match-type' value of 'regex', the value provided with the match-value attribute
must be a valid regular expression.

The following example shows all the available attributes for the xpath-filter element:

812

./filter.pdf#filter

<int-xml:xpath-filter discard-channel="" ①
 id="" ②
 input-channel="" ③
 match-type="exact" ④
 match-value="" ⑤
 output-channel="" ⑥
 throw-exception-on-rejection="false" ⑦
 xpath-expression-ref=""> ⑧
 <int-xml:xpath-expression ... /> ⑨
 <int:poller ... /> ⑩
</int-xml:xpath-filter>

① Message channel where you want rejected messages to be sent. Optional.

② ID for the underlying bean definition. Optional.

③ The receiving message channel of this endpoint. Optional.

④ Type of match to apply between the XPath evaluation result and the match-value. The
default is exact. Optional.

⑤ String value to be matched against the XPath evaluation result. If you do not set this
attribute, the XPath evaluation must produce a boolean result. Optional.

⑥ The channel to which messages that matched the filter criteria are dispatched. Optional.

⑦ By default, this property is set to false and rejected messages (messages that did not match
the filter criteria) are silently dropped. However, if set to true, message rejection results in
an error condition and an exception being propagated upstream to the caller. Optional.

⑧ Reference to an XPath expression instance to evaluate.

⑨ This child element sets the XPath expression to be evaluated. If you do not include this
element, you must set the xpath-expression-ref attribute. Also, you can include only one
xpath-expression element.

⑩ A poller to use with the XPath filter. Optional.

42.8. #xpath SpEL Function
Spring Integration, since version 3.0, provides the built-in #xpath SpEL function, which invokes the
XPathUtils.evaluate(…) static method. This method delegates to an
org.springframework.xml.xpath.XPathExpression. The following listing shows some usage examples:

813

<transformer expression="#xpath(payload, '/name')"/>

<filter expression="#xpath(payload, headers.xpath, 'boolean')"/>

<splitter expression="#xpath(payload, '//book', 'document_list')"/>

<router expression="#xpath(payload, '/person/@age', 'number')">
 <mapping channel="output1" value="16"/>
 <mapping channel="output2" value="45"/>
</router>

The #xpath() also supports a third optional parameter for converting the result of the XPath
evaluation. It can be one of the String constants (string, boolean, number, node, node_list and
document_list) or an org.springframework.xml.xpath.NodeMapper instance. By default, the #xpath SpEL
function returns a String representation of the XPath evaluation.


To enable the #xpath SpEL function, you can add the spring-integration-xml.jar to
the classpath. You need no declare any components from the Spring Integration
XML Namespace.

For more information, see "`Spring Expression Language (SpEL).

42.9. XML Validating Filter
The XML Validating Filter lets you validate incoming messages against provided schema instances.
The following schema types are supported:

• xml-schema (www.w3.org/2001/XMLSchema)

• relax-ng (relaxng.org)

Messages that fail validation can either be silently dropped or be forwarded to a definable discard-
channel. Furthermore, you can configure this filter to throw an Exception in case validation fails.

The following listing shows all the available configuration parameters:

814

./spel.pdf#spel
https://www.w3.org/2001/XMLSchema
https://relaxng.org

<int-xml:validating-filter discard-channel="" ①
 id="" ②
 input-channel="" ③
 output-channel="" ④
 schema-location="" ⑤
 schema-type="xml-schema" ⑥
 throw-exception-on-rejection="false" ⑦
 xml-converter="" ⑧
 xml-validator=""> ⑨
 <int:poller .../> ⑩
</int-xml:validating-filter>

① Message channel where you want rejected messages to be sent. Optional.

② ID for the underlying bean definition. Optional.

③ The receiving message channel of this endpoint. Optional.

④ Message channel where you want accepted messages to be sent. Optional.

⑤ Sets the location of the schema to validate the message’s payload against. Internally uses
the org.springframework.core.io.Resource interface. You can set this attribute or the xml-
validator attribute but not both. Optional.

⑥ Sets the schema type. Can be either xml-schema or relax-ng. Optional. If not set, it defaults to
xml-schema, which internally translates to
org.springframework.xml.validation.XmlValidatorFactory#SCHEMA_W3C_XML.

⑦ If true, a MessageRejectedException is thrown if validation fails for the provided Message’s
payload. Defaults to false if not set. Optional.

⑧ Reference to a custom org.springframework.integration.xml.XmlPayloadConverter strategy.
Optional.

⑨ Reference to a custom sorg.springframework.xml.validation.XmlValidator strategy. You can
set this attribute or the schema-location attribute but not both. Optional.

⑩ A poller to use with the XPath filter. Optional.

815

Chapter 43. XMPP Support
Spring Integration provides channel adapters for XMPP. XMPP stands for “Extensible Messaging
and Presence Protocol”.

XMPP describes a way for multiple agents to communicate with each other in a distributed system.
The canonical use case is to send and receive chat messages, though XMPP can be (and is) used for
other kinds of applications. XMPP describes a network of actors. Within that network, actors may
address each other directly and broadcast status changes (such as “presence”).

XMPP provides the messaging fabric that underlies some of the biggest instant messaging networks
in the world, including Google Talk (GTalk, which is also available from within GMail) and
Facebook Chat. Many good open-source XMPP servers are available. Two popular implementations
are Openfire and ejabberd.

Spring integration provides support for XMPP by providing XMPP adapters, which support sending
and receiving both XMPP chat messages and presence changes from other entries in a client’s
roster.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-xmpp</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-xmpp:5.4.0"

As with other adapters, the XMPP adapters come with support for a convenient namespace-based
configuration. To configure the XMPP namespace, include the following elements in the headers of
your XML configuration file:

xmlns:int-xmpp="http://www.springframework.org/schema/integration/xmpp"
xsi:schemaLocation="http://www.springframework.org/schema/integration/xmpp
 https://www.springframework.org/schema/integration/xmpp/spring-integration-
xmpp.xsd"

816

https://www.xmpp.org
https://www.igniterealtime.org/projects/openfire/
https://www.ejabberd.im

43.1. XMPP Connection
Before using inbound or outbound XMPP adapters to participate in the XMPP network, an actor
must establish its XMPP connection. All XMPP adapters connected to a particular account can share
this connection object. Typically this requires (at a minimum) user, password, and host. To create a
basic XMPP connection, you can use the convenience of the namespace, as the following example
shows:

<int-xmpp:xmpp-connection
 id="myConnection"
 user="user"
 password="password"
 host="host"
 port="port"
 resource="theNameOfTheResource"
 subscription-mode="accept_all"/>


For added convenience, you can rely on the default naming convention and omit
the id attribute. The default name (xmppConnection) is used for this connection
bean.

If the XMPP connection goes stale, reconnection attempts are made with an automatic login as long
as the previous connection state was logged (authenticated). We also register a ConnectionListener,
which logs connection events if the DEBUG logging level is enabled.

The subscription-mode attribute initiates the roster listener to deal with incoming subscriptions
from other users. This functionality is not always available for the target XMPP servers. For
example, Google Cloud Messaging (GCM) and Firebase Cloud Messaging (FCM) fully disable it. To
switch off the roster listener for subscriptions, you can configure it with an empty string when
using XML configuration (subscription-mode="") or with
XmppConnectionFactoryBean.setSubscriptionMode(null) when using Java Configuration. Doing so
disables the roster at the login phase as well. See Roster.setRosterLoadedAtLogin(boolean) for more
information.

43.2. XMPP Messages
Spring Integration provides support for sending and receiving XMPP messages. For receiving them,
it offers an inbound message channel adapter. For sending them, it offers an outbound message
channel adapter.

43.2.1. Inbound Message Channel Adapter

The Spring Integration adapters support receiving chat messages from other users in the system. To
do so, the inbound message channel adapter “logs in” as a user on your behalf and receives the
messages sent to that user. Those messages are then forwarded to your Spring Integration client.

817

https://download.igniterealtime.org/smack/docs/latest/javadoc/org/jivesoftware/smack/roster/Roster.html#setRosterLoadedAtLogin-boolean-

The inbound-channel-adapter element provides Configuration support for the XMPP inbound
message channel adapter. The following example shows how to configure it:

<int-xmpp:inbound-channel-adapter id="xmppInboundAdapter"
 channel="xmppInbound"
 xmpp-connection="testConnection"
 payload-expression="getExtension('google:mobile:data').json"
 stanza-filter="stanzaFilter"
 auto-startup="true"/>

Along with the usual attributes (for a message channel adapter), this adapter also requires a
reference to an XMPP Connection.

The XMPP inbound adapter is event-driven and a Lifecycle implementation. When started, it
registers a PacketListener that listens for incoming XMPP chat messages. It forwards any received
messages to the underlying adapter, which converts them to Spring Integration messages and sends
them to the specified channel. When stopped, it unregisters the PacketListener.

Starting with version 4.3, the ChatMessageListeningEndpoint (and its <int-xmpp:inbound-channel-
adapter>) supports the injection of a org.jivesoftware.smack.filter.StanzaFilter to be registered on
the provided XMPPConnection, together with an internal StanzaListener implementation. See the
Javadoc for more information.

Version 4.3 introduced the payload-expression attribute for the ChatMessageListeningEndpoint. The
incoming org.jivesoftware.smack.packet.Message represents a root object for the evaluation
context. This option is useful when you use XMPP extensions. For example, for the GCM protocol we
can extract the body by using the following expression:

payload-expression="getExtension('google:mobile:data').json"

The following example extracts the body for the XHTML protocol:

payload-
expression="getExtension(T(org.jivesoftware.smackx.xhtmlim.packet.XHTMLExtension).
NAMESPACE).bodies[0]"

To simplify access to the extension in the XMPP Message, the extension variable is added into the
EvaluationContext. Note that it is added when only one extension is present in the message. The
preceding examples that show the namespace manipulations can be simplified to the following
example:

818

https://www.igniterealtime.org/builds/smack/docs/latest/javadoc/org/jivesoftware/smack/XMPPConnection.html#addAsyncStanzaListener%28org.jivesoftware.smack.StanzaListener,%20org.jivesoftware.smack.filter.StanzaFilter%29

payload-expression="#extension.json"
payload-expression="#extension.bodies[0]"

43.2.2. Outbound Message Channel Adapter

You can also send chat messages to other users on XMPP by using the outbound message channel
adapter. The outbound-channel-adapter element provides configuration support for the XMPP
outbound message channel adapter.

<int-xmpp:outbound-channel-adapter id="outboundEventAdapter"
 channel="outboundEventChannel"
 xmpp-connection="testConnection"/>

The adapter expects its input to be (at a minimum) a payload of type java.lang.String and a header
value for XmppHeaders.CHAT_TO that specifies to which user the message should be sent. To create a
message, you can use Java code similar to the following:

Message<String> xmppOutboundMsg = MessageBuilder.withPayload("Hello, XMPP!")
 .setHeader(XmppHeaders.CHAT_TO, "userhandle")
 .build();

You can also set the header by using the XMPP header-enricher support, as the following example
shows:

<int-xmpp:header-enricher input-channel="input" output-channel="output">
 <int-xmpp:chat-to value="test1@example.org"/>
</int-xmpp:header-enricher>

Starting with version 4.3, the packet extension support has been added to the
ChatMessageSendingMessageHandler (the <int-xmpp:outbound-channel-adapter> in XML configuration).
Along with the regular String and org.jivesoftware.smack.packet.Message payload, now you can
send a message with a payload of org.jivesoftware.smack.packet.ExtensionElement (which is
populated to the org.jivesoftware.smack.packet.Message.addExtension()) instead of setBody(). For
convenience, we added an extension-provider option for the ChatMessageSendingMessageHandler. It
lets you inject org.jivesoftware.smack.provider.ExtensionElementProvider, which builds an
ExtensionElement against the payload at runtime. For this case, the payload must be a string in JSON
or XML format, depending of the XEP protocol.

819

43.3. XMPP Presence
XMPP also supports broadcasting state. You can use this ability to let people who have you on their
roster see your state changes. This happens all the time with your IM clients. You change your away
status and set an away message, and everybody who has you on their roster sees your icon or
username change to reflect this new state and might see your new “away” message. If you would
like to receive notifications or notify others of state changes, you can use Spring Integration’s
“presence” adapters.

43.3.1. Inbound Presence Message Channel Adapter

Spring Integration provides an inbound presence message channel adapter, which supports
receiving presence events from other users in the system who are on your roster. To do this, the
adapter “logs in” as a user on your behalf, registers a RosterListener, and forwards received
presence update events as messages to the channel identified by the channel attribute. The payload
of the message is a org.jivesoftware.smack.packet.Presence object (see www.igniterealtime.org/
builds/smack/docs/latest/javadoc/org/jivesoftware/smack/packet/Presence.html).

The presence-inbound-channel-adapter element provides configuration support for the XMPP
inbound presence message channel adapter. The following example configures an inbound
presence message channel adapter:

<int-xmpp:presence-inbound-channel-adapter channel="outChannel"
 xmpp-connection="testConnection" auto-startup="false"/>

Along with the usual attributes, this adapter requires a reference to an XMPP Connection. This
adapter is event-driven and a Lifecycle implementation. It registers a RosterListener when started
and unregisters that RosterListener when stopped.

43.3.2. Outbound Presence Message Channel Adapter

Spring Integration also supports sending presence events to be seen by other users in the network
who happen to have you on their roster. When you send a message to the outbound presence
message channel adapter, it extracts the payload (which is expected to be of type
org.jivesoftware.smack.packet.Presence) and sends it to the XMPP Connection, thus advertising
your presence events to the rest of the network.

The presence-outbound-channel-adapter element provides configuration support for the XMPP
outbound presence message channel adapter. The following example shows how to configure an
outbound presence message channel adapter:

<int-xmpp:presence-outbound-channel-adapter id="eventOutboundPresenceChannel"
 xmpp-connection="testConnection"/>

820

https://www.igniterealtime.org/builds/smack/docs/latest/javadoc/org/jivesoftware/smack/packet/Presence.html
https://www.igniterealtime.org/builds/smack/docs/latest/javadoc/org/jivesoftware/smack/packet/Presence.html

It can also be a polling consumer (if it receives messages from a pollable channel) in which case you
would need to register a poller. The following example shows how to do so:

<int-xmpp:presence-outbound-channel-adapter id="pollingOutboundPresenceAdapter"
 xmpp-connection="testConnection"
 channel="pollingChannel">
 <int:poller fixed-rate="1000" max-messages-per-poll="1"/>
</int-xmpp:presence-outbound-channel-adapter>

Like its inbound counterpart, it requires a reference to an XMPP Connection.



If you rely on the default naming convention for an XMPP Connection bean
(described earlier) and you have only one XMPP Connection bean configured in
your application context, you can omit the xmpp-connection attribute. In that case,
the bean with named xmppConnection is located and injected into the adapter.

43.4. Advanced Configuration
Spring Integration’s XMPP support is based on the Smack 4.0 API (www.igniterealtime.org/projects/
smack/), which allows more complex configuration of the XMPP Connection object.

As stated earlier, the xmpp-connection namespace support is designed to simplify basic connection
configuration and supports only a few common configuration attributes. However, the
org.jivesoftware.smack.ConnectionConfiguration object defines about 20 attributes, and adding
namespace support for all of them offers no real value. So, for more complex connection
configurations, you can configure an instance of our XmppConnectionFactoryBean as a regular bean
and inject a org.jivesoftware.smack.ConnectionConfiguration as a constructor argument to that
FactoryBean. You can specify every property you need directly on that ConnectionConfiguration
instance. (A bean definition with the 'p' namespace would work well.) This way, you can directly set
SSL (or any other attributes). The following example shows how to do so:

821

https://www.igniterealtime.org/projects/smack/
https://www.igniterealtime.org/projects/smack/

<bean id="xmppConnection" class="o.s.i.xmpp.XmppConnectionFactoryBean">
 <constructor-arg>
 <bean class="org.jivesoftware.smack.ConnectionConfiguration">
 <constructor-arg value="myServiceName"/>
 <property name="socketFactory" ref="..."/>
 </bean>
 </constructor-arg>
</bean>

<int:channel id="outboundEventChannel"/>

<int-xmpp:outbound-channel-adapter id="outboundEventAdapter"
 channel="outboundEventChannel"
 xmpp-connection="xmppConnection"/>

The Smack API also offers static initializers, which can be helpful. For more complex cases (such as
registering a SASL mechanism), you may need to execute certain static initializers. One of those
static initializers is SASLAuthentication, which lets you register supported SASL mechanisms. For
that level of complexity, we recommend using Spring Java configuration for the XMPP connection
configuration. That way, you can configure the entire component through Java code and execute all
other necessary Java code, including static initializers, at the appropriate time. The following
exampe shows how to configure an XMPP connection with an SASL (Simple Authentication and
Security Layer) in Java:

@Configuration
public class CustomConnectionConfiguration {
 @Bean
 public XMPPConnection xmppConnection() {
 SASLAuthentication.supportSASLMechanism("EXTERNAL", 0); // static initializer

 ConnectionConfiguration config = new ConnectionConfiguration("localhost",
5223);
 config.setKeystorePath("path_to_truststore.jks");
 config.setSecurityEnabled(true);
 config.setSocketFactory(SSLSocketFactory.getDefault());
 return new XMPPConnection(config);
 }
}

For more information on using Java for application context configuration, see the following section
in the Spring Reference Manual.

822

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-java

43.5. XMPP Message Headers
The Spring Integration XMPP Adapters automatically map standard XMPP properties. By default,
these properties are copied to and from Spring Integration MessageHeaders by using
DefaultXmppHeaderMapper.

Any user-defined headers are not copied to or from an XMPP Message, unless explicitly specified by
the requestHeaderNames or replyHeaderNames properties of the DefaultXmppHeaderMapper.


When mapping user-defined headers, the values can also contain simple wildcard
patterns (such "thing*" or "*thing").

Starting with version 4.1, AbstractHeaderMapper (a superclass of DefaultXmppHeaderMapper) lets you
configure the NON_STANDARD_HEADERS token for the requestHeaderNames property (in addition to
STANDARD_REQUEST_HEADERS), to map all user-defined headers.

The org.springframework.xmpp.XmppHeaders class identifies the default headers to be used by the
DefaultXmppHeaderMapper:

• xmpp_from

• xmpp_subject

• xmpp_thread

• xmpp_to

• xmpp_type

Starting with version 4.3, you can negate patterns in the header mappings by preceding the pattern
with !. Negated patterns get priority, so a list such as
STANDARD_REQUEST_HEADERS,thing1,thing*,!thing2,!thing3,qux,!thing1 does not map thing1,
thing2,or thing3. That list does map the standard headers plus thing4 and qux.


If you have a user-defined header that begins with ! that you do wish to map, can
escape it with \ thus: STANDARD_REQUEST_HEADERS,\!myBangHeader. In that example,
the standard request headers and !myBangHeader are mapped.

43.6. XMPP Extensions
Extensions put the “Extensible” in the “Extensible Messaging and Presence Protocol”.

XMPP is based around XML, a data format that supports a concept known as namespacing. Through
namespacing, you can add bits to XMPP that are not defined in the original specifications. The
XMPP specification deliberately describes only a set of core features:

• How a client connects to a server

• Encryption (SSL/TLS)

• Authentication

• How servers can communicate with each other to relay messages

823

https://docs.spring.io/spring-integration/api/org/springframework/integration/xmpp/support/DefaultXmppHeaderMapper.html

• A few other basic building blocks

Once you have implemented this, you have an XMPP client and can send any kind of data you like.
However, you may need to do more than the basics. For example, you might need to include
formatting (bold, italic, and so on) in a message, which is not defined in the core XMPP
specification. Well, you can make up a way to do that, but, unless everyone else does it the same
way you do, no other software can interpret it (they ignore namespaces they cannot understand).

To solve that problem, the XMPP Standards Foundation (XSF) publishes a series of extra documents,
known as XMPP Extension Protocols (XEPs). In general, each XEP describes a particular activity
(from message formatting to file transfers, multi-user chats, and many more). They also provide a
standard format for everyone to use for that activity.

The Smack API provides many XEP implementations with its extensions and experimental projects.
Starting with Spring Integration version 4.3, you can use any XEP with the existing XMPP channel
adapters.

To be able to process XEPs or any other custom XMPP extensions, you must provide the Smack’s
ProviderManager pre-configuration. You can do so with static Java code, as the following example
shows:

ProviderManager.addIQProvider("element", "namespace", new MyIQProvider());
ProviderManager.addExtensionProvider("element", "namespace", new MyExtProvider());

You can also use a .providers configuration file in the specific instance and access it with a JVM
argument, as the following example shows:

-Dsmack.provider.file=file:///c:/my/provider/mycustom.providers

The mycustom.providers file might be as follows:

824

https://xmpp.org/extensions/xep-0001.html
https://www.igniterealtime.org/builds/smack/docs/latest/documentation/extensions/index.html

<?xml version="1.0"?>
<smackProviders>
<iqProvider>
 <elementName>query</elementName>
 <namespace>jabber:iq:time</namespace>
 <className>org.jivesoftware.smack.packet.Time</className>
</iqProvider>

<iqProvider>
 <elementName>query</elementName>
 <namespace>https://jabber.org/protocol/disco#items</namespace>
 <className>org.jivesoftware.smackx.provider.DiscoverItemsProvider</className>
</iqProvider>

<extensionProvider>
 <elementName>subscription</elementName>
 <namespace>https://jabber.org/protocol/pubsub</namespace>
 <className>
org.jivesoftware.smackx.pubsub.provider.SubscriptionProvider</className>
</extensionProvider>
</smackProviders>

For example, the most popular XMPP messaging extension is Google Cloud Messaging (GCM). The
Smack library provides org.jivesoftware.smackx.gcm.provider.GcmExtensionProvider for that
purposes. By default, it registers that class with the smack-experimental jar in the classpath by using
the experimental.providers resource, as the following Maven example shows:

<!-- GCM JSON payload -->
<extensionProvider>
 <elementName>gcm</elementName>
 <namespace>google:mobile:data</namespace>
 <className>
org.jivesoftware.smackx.gcm.provider.GcmExtensionProvider</className>
</extensionProvider>

Also, the GcmPacketExtension lets the target messaging protocol parse incoming packets and build
outgoing packets, as the following examples show:

825

https://developers.google.com/cloud-messaging/

GcmPacketExtension gcmExtension = (GcmPacketExtension) xmppMessage.getExtension
(GcmPacketExtension.NAMESPACE);
String message = gcmExtension.getJson());

GcmPacketExtension packetExtension = new GcmPacketExtension(gcmJson);
Message smackMessage = new Message();
smackMessage.addExtension(packetExtension);

See Inbound Message Channel Adapter and Outbound Message Channel Adapter earlier in this
chapter for more information.

826

Chapter 44. ZeroMQ Support
Spring Integration provides components to support ZeroMQ communication in the application. The
implementation is based on the well-supported Java API of the JeroMQ library. All components
encapsulate ZeroMQ socket lifecycles and manage threads for them internally making interactions
with these components lock-free and thread-safe.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-zeromq</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-zeromq:5.4.0"

44.1. ZeroMQ Proxy
The ZeroMqProxy is a Spring-friendly wrapper for the built-in ZMQ.proxy() function. It encapsulates
socket lifecycles and thread management. The clients of this proxy still can use a standard ZeroMQ
socket connection and interaction API. Alongside with the standard ZContext it requires one of the
well-known ZeroMQ proxy modes: SUB/PUB, PULL/PUSH or ROUTER/DEALER. This way an
appropriate pair of ZeroMQ socket types are used for the frontend and backend of the proxy. See
ZeroMqProxy.Type for details.

The ZeroMqProxy implements SmartLifecycle to create, bind and configure the sockets and to start
ZMQ.proxy() in a dedicated thread from an Executor (if any). The binding for frontend and backend
sockets is done over the tcp:// protocol onto all of the available network interfaces with the
provided ports. Otherwise they are bound to random ports which can be obtained later via the
respective getFrontendPort() and getBackendPort() API methods.

The control socket is exposed as a SocketType.PAIR with an inter-thread transport on the "inproc://"
+ beanName + ".control" address; it can be obtained via getControlAddress(). It should be used with
the same application from another SocketType.PAIR socket to send ZMQ.PROXY_TERMINATE,
ZMQ.PROXY_PAUSE and/or ZMQ.PROXY_RESUME commands. The ZeroMqProxy performs a
ZMQ.PROXY_TERMINATE command when stop() is called for its lifecycle to terminate the ZMQ.proxy()
loop and close all the bound sockets gracefully.

The setExposeCaptureSocket(boolean) option causes this component to bind an additional inter-
thread socket with SocketType.PUB to capture and publish all the communication between the
frontend and backend sockets as it states with ZMQ.proxy() implementation. This socket is bound to

827

https://zeromq.org/
https://github.com/zeromq/jeromq
https://zguide.zeromq.org/page:chapter2#toc15

the "inproc://" + beanName + ".capture" address and doesn’t expect any specific subscription for
filtering.

The frontend and backend sockets can be customized with additional properties, such as read/write
timeout or security. This customization is available through
setFrontendSocketConfigurer(Consumer<ZMQ.Socket>) and
setBackendSocketConfigurer(Consumer<ZMQ.Socket>) callbacks, respectively.

The ZeroMqProxy could be provided as simple bean like this:

@Bean
ZeroMqProxy zeroMqProxy() {
 ZeroMqProxy proxy = new ZeroMqProxy(CONTEXT, ZeroMqProxy.Type.SUB_PUB);
 proxy.setExposeCaptureSocket(true);
 proxy.setFrontendPort(6001);
 proxy.setBackendPort(6002);
 return proxy;
}

All the client nodes should connect to the host of this proxy via tcp:// and use the respective port of
their interest.

44.2. ZeroMQ Message Channel
The ZeroMqChannel is a SubscribableChannel which uses a pair of ZeroMQ sockets to connect
publishers and subscribers for messaging interaction. It can work in a PUB/SUB mode (defaults to
PUSH/PULL); it can also be used as a local inter-thread channel (uses PAIR sockets) - the connectUrl is
not provided in this case. In distributed mode it has to be connected to an externally managed
ZeroMQ proxy, where it can exchange messages with other similar channels connected to the same
proxy. The connect url option is a standard ZeroMQ connection string with the protocol and host
and a pair of ports over colon for frontend and backend sockets of the ZeroMQ proxy. For
convenience, the channel could be supplied with the ZeroMqProxy instance instead of connection
string, if it is configured in the same application as the proxy.

Both sending and receiving sockets are managed in their own dedicated threads making this
channel concurrency-friendly. This way we can publish and consume to/from a ZeroMqChannel from
different threads without synchronization.

By default the ZeroMqChannel uses an EmbeddedJsonHeadersMessageMapper to (de)serialize the Message
(including headers) from/to byte[] using a Jackson JSON processor. This logic can be configured via
setMessageMapper(BytesMessageMapper).

Sending and receiving sockets can be customized for any options (read/write timeout, security etc.)
via respective setSendSocketConfigurer(Consumer<ZMQ.Socket>) and
setSubscribeSocketConfigurer(Consumer<ZMQ.Socket>) callbacks.

The internal logic of the ZeroMqChannel is based on the reactive streams via Project Reactor Flux and

828

Mono operators. This provides easier threading control and allows lock-free concurrent publication
and consumption to/from the channel. Local PUB/SUB logic is implemented as a Flux.publish()
operator to allow all of the local subscribers to this channel to receive the same published message,
as distributed subscribers to the PUB socket.

The following is a simple example of a ZeroMqChannel configuration:

@Bean
ZeroMqChannel zeroMqPubSubChannel(ZContext context) {
 ZeroMqChannel channel = new ZeroMqChannel(context, true);
 channel.setConnectUrl("tcp://localhost:6001:6002");
 channel.setConsumeDelay(Duration.ofMillis(100));
 return channel;
}

44.3. ZeroMQ Inbound Channel Adapter
The ZeroMqMessageProducer is a MessageProducerSupport implementation with reactive semantics. It
constantly reads the data from a ZeroMQ socket in a non-blocking manner and publishes the
messages to an infinite Flux which is subscribed to by a FluxMessageChannel or explicitly in the
start() method, if the output channel is not reactive. When no data are received on the socket, a
consumeDelay (defaults to 1 second) is applied before the next read attempt.

Only SocketType.PAIR, SocketType.PULL and SocketType.SUB are supported by the
ZeroMqMessageProducer. This component can connect to the remote socket or bind onto TCP protocol
with the provided or random port. The actual port can be obtained via getBoundPort() after this
component is started and ZeroMQ socket is bound. The socket options (e.g. security or write
timeout) can be configured via setSocketConfigurer(Consumer<ZMQ.Socket> socketConfigurer)
callback.

If the receiveRaw option is set to true, a ZMsg, consumed from the socket, is sent as is in the payload
of the produced Message: it’s up to the downstream flow to parse and convert the ZMsg. Otherwise an
InboundMessageMapper is used to convert the consumed data into a Message. If the received ZMsg is
multi-frame, the first frame is treated as the ZeroMqHeaders.TOPIC header this ZeroMQ message was
published to.

With SocketType.SUB, the ZeroMqMessageProducer uses the provided topics option for subscriptions;
defaults to subscribe to all. Subscriptions can be adjusted at runtime using subscribeToTopics() and
unsubscribeFromTopics() @ManagedOperation s.

Here is a sample of ZeroMqMessageProducer configuration:

829

@Bean
ZeroMqMessageProducer zeroMqMessageProducer(ZContext context, MessageChannel
outputChannel) {
 ZeroMqMessageProducer messageProducer = new ZeroMqMessageProducer(context,
SocketType.SUB);
 messageProducer.setOutputChannel(outputChannel);
 messageProducer.setTopics("some");
 messageProducer.setReceiveRaw(true);
 messageProducer.setBindPort(7070);
 messageProducer.setConsumeDelay(Duration.ofMillis(100));
 return messageProducer;
}

44.4. ZeroMQ Outbound Channel Adapter
The ZeroMqMessageHandler is a ReactiveMessageHandler implementation to produce publish messages
into a ZeroMQ socket. Only SocketType.PAIR, SocketType.PUSH and SocketType.PUB are supported. The
ZeroMqMessageHandler only supports connecting the ZeroMQ socket; binding is not supported. When
the SocketType.PUB is used, the topicExpression is evaluated against a request message to inject a
topic frame into a ZeroMQ message if it is not null. The subscriber side (SocketType.SUB) must
receive the topic frame first before parsing the actual data. When the payload of the request
message is a ZMsg, no conversion or topic extraction is performed: the ZMsg is sent into a socket as is
and it is not destroyed for possible further reuse. Otherwise an OutboundMessageMapper<byte[]> is
used to convert a request message (or just its payload) into a ZeroMQ frame to publish. By default a
ConvertingBytesMessageMapper is used supplied with a ConfigurableCompositeMessageConverter. The
socket options (e.g. security or write timeout) can be configured via
setSocketConfigurer(Consumer<ZMQ.Socket> socketConfigurer) callback.

Here is a sample of ZeroMqMessageHandler configuration:

@Bean
@ServiceActivator(inputChannel = "zeroMqPublisherChannel")
ZeroMqMessageHandler zeroMqMessageHandler(ZContext context) {
 ZeroMqMessageHandler messageHandler =
 new ZeroMqMessageHandler(context, "tcp://localhost:6060",
SocketType.PUB);
 messageHandler.setTopicExpression(
 new FunctionExpression<Message<?>>((message) -> message
.getHeaders().get("topic")));
 messageHandler.setMessageMapper(new EmbeddedJsonHeadersMessageMapper());
}

830

44.5. ZeroMQ Java DSL Support
The spring-integration-zeromq provide a convenient Java DSL fluent API via ZeroMq factory and
IntegrationComponentSpec implementations for the components mentioned above.

This is a sample of Java DSL for ZeroMqChannel:

.channel(ZeroMq.zeroMqChannel(this.context)
 .connectUrl("tcp://localhost:6001:6002")
 .consumeDelay(Duration.ofMillis(100)))
}

The Inbound Channel Adapter for ZeroMQ Java DSL is:

IntegrationFlows.from(
 ZeroMq.inboundChannelAdapter(this.context, SocketType.SUB)
 .connectUrl("tcp://localhost:9000")
 .topics("someTopic")
 .receiveRaw(true)
 .consumeDelay(Duration.ofMillis(100)))
}

The Outbound Channel Adapter for ZeroMQ Java DSL is:

.handle(ZeroMq.outboundChannelAdapter(this.context, "tcp://localhost:9001",
SocketType.PUB)
 .topicFunction(message -> message.getHeaders().get("myTopic")))
}

831

Chapter 45. Zookeeper Support
Version 4.2 added Zookeeper support to the framework in version 4.2, which consists of:

• A metadata store

• A lock registry

• Leadership event handling

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-zookeeper</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-zookeeper:5.4.0"

45.1. Zookeeper Metadata Store
You ca use the ZookeeperMetadataStore where any MetadataStore is needed, such as for persistent file
list filters. See Metadata Store for more information. The following example configures a Zookeeper
metadata store with XML:

<bean id="client" class=
"org.springframework.integration.zookeeper.config.CuratorFrameworkFactoryBean">
 <constructor-arg value="${connect.string}" />
</bean>

<bean id="meta" class=
"org.springframework.integration.zookeeper.metadata.ZookeeperMetadataStore">
 <constructor-arg ref="client" />
</bean>

The following example shows how to configure a Zookeeper metadata store with Java:

832

https://zookeeper.apache.org/
./meta-data-store.pdf#metadata-store

@Bean
public MetadataStore zkStore(CuratorFramework client) {
 return new ZookeeperMetadataStore(client);
}

45.2. Zookeeper Lock Registry
The ZookeeperLockRegistry can be used where any LockRegistry is needed, such as when using an
aggregator in a clustered environment with a shared MessageStore.

A LockRegistry is used to “look up” a lock based on a key (the aggregator uses correlationId). By
default, locks in the ZookeeperLockRegistry are maintained in zookeeper under the following path:
/SpringIntegration-LockRegistry/. You can customize the path by providing an implementation of
ZookeeperLockRegistry.KeyToPathStrategy, as the following example shows:

public interface KeyToPathStrategy {

 String pathFor(String key);

 boolean bounded();

}

If the strategy returns true from isBounded, unused locks do not need to be harvested. For
unbounded strategies (such as the default), you need to periodically invoke
expireUnusedOlderThan(long age) to remove old unused locks from memory.

45.3. Zookeeper Leadership Event Handling
The following example uses XML to configure an application for leader election in Zookeeper:

<int-zk:leader-listener client="client" path="/siNamespace" role="cluster" />

client is a reference to a CuratorFramework bean. A CuratorFrameworkFactoryBean is available. When a
leader is elected, an OnGrantedEvent is published for the role cluster. Any endpoints in that role are
started. When leadership is revoked, an OnRevokedEvent is published for the role cluster. Any
endpoints in that role are stopped. See Endpoint Roles for more information.

You can use Java configuration to create an instance of the leader initiator, as the following
example shows:

833

./endpoint.pdf#endpoint-roles

@Bean
public LeaderInitiatorFactoryBean leaderInitiator(CuratorFramework client) {
 return new LeaderInitiatorFactoryBean()
 .setClient(client)
 .setPath("/siTest/")
 .setRole("cluster");
}

Starting with version 5.3, a candidate option is exposed on the LeaderInitiatorFactoryBean for more
configuration control of the externally provided Candidate instance. Only one of the candidate or
role options has to be provided, but not both; the role options creates internally a DefaultCandidate
instance with an UUID for id option.

834

Appendices
The appendices cover advanced topics and additional resources.

The last appendix covers the history of Spring Integration.

835

Appendix A: Error Handling
As described in the overview at the very beginning of this manual, one of the main motivations
behind a message-oriented framework such as Spring Integration is to promote loose coupling
between components. The message channel plays an important role, in that producers and
consumers do not have to know about each other. However, the advantages also have some
drawbacks. Some things become more complicated in a loosely coupled environment, and one
example is error handling.

When sending a message to a channel, the component that ultimately handles that message may or
may not be operating within the same thread as the sender. If using a simple default DirectChannel
(when the <channel> element that has no <queue> child element and no 'task-executor' attribute), the
message handling occurs in the same thread that sends the initial message. In that case, if an
Exception is thrown, it can be caught by the sender (or it may propagate past the sender if it is an
uncaught RuntimeException). This is the same behavior as an exception-throwing operation in a
normal Java call stack.

A message flow that runs on a caller thread might be invoked through a messaging gateway (see
Messaging Gateways) or a MessagingTemplate (see MessagingTemplate). In either case, the default
behavior is to throw any exceptions to the caller. For the messaging gateway, see Error Handling for
details about how the exception is thrown and how to configure the gateway to route the errors to
an error channel instead. When using a MessagingTemplate or sending to a MessageChannel directly,
exceptions are always thrown to the caller.

When adding asynchronous processing, things become rather more complicated. For instance, if
the 'channel' element does provide a 'queue' child element (QueueChannel in Java & Annotations
Configuration), the component that handles the message operates in a different thread than the
sender. The same is true when an ExecutorChannel is used. The sender may have dropped the
Message into the channel and moved on to other things. There is no way for the Exception to be
thrown directly back to that sender by using standard Exception throwing techniques. Instead,
handling errors for asynchronous processes requires that the error-handling mechanism also be
asynchronous.

Spring Integration supports error handling for its components by publishing errors to a message
channel. Specifically, the Exception becomes the payload of a Spring Integration ErrorMessage. That
Message is then sent to a message channel that is resolved in a way that is similar to the
'replyChannel' resolution. First, if the request Message being handled at the time the Exception
occurred contains an 'errorChannel' header (the header name is defined in the
MessageHeaders.ERROR_CHANNEL constant), the ErrorMessage is sent to that channel. Otherwise, the
error handler sends to a “global” channel whose bean name is errorChannel (this is also defined as a
constant: IntegrationContextUtils.ERROR_CHANNEL_BEAN_NAME).

A default errorChannel bean is created internally by the Framework. However, you can define your
own if you want to control the settings. The following example shows how to define an error
channel in XML configuration backed by a queue with a capacity of 500:

836

./overview.pdf#overview
./gateway.pdf#gateway
./channel.pdf#channel-template
./gateway.pdf#gateway-error-handling

<int:channel id="errorChannel">
 <int:queue capacity="500"/>
</int:channel>

 The default error channel is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling applies
only to exceptions that are thrown by a Spring Integration task that is executing within a
TaskExecutor. This does not apply to exceptions thrown by a handler that operates within the same
thread as the sender (for example, through a DirectChannel as described earlier in this section).


When exceptions occur in a scheduled poller task’s execution, those exceptions are
wrapped in ErrorMessage instances and sent to the 'errorChannel' as well.

To enable global error handling, register a handler on that channel. For example, you can configure
Spring Integration’s ErrorMessageExceptionTypeRouter as the handler of an endpoint that is
subscribed to the 'errorChannel'. That router can then spread the error messages across multiple
channels, based on the Exception type.

Starting with version 4.3.10, Spring Integration provides the ErrorMessagePublisher and the
ErrorMessageStrategy. You can use them as a general mechanism for publishing ErrorMessage
instances. You can call or extend them in any error handling scenarios. The
ErrorMessageSendingRecoverer extends this class as a RecoveryCallback implementation that can be
used with retry, such as the RequestHandlerRetryAdvice. The ErrorMessageStrategy is used to build an
ErrorMessage based on the provided exception and an AttributeAccessor context. It can be injected
into any MessageProducerSupport or MessagingGatewaySupport. The requestMessage is stored under
ErrorMessageUtils.INPUT_MESSAGE_CONTEXT_KEY in the AttributeAccessor context. The
ErrorMessageStrategy can use that requestMessage as the originalMessage property of the
ErrorMessage it creates. The DefaultErrorMessageStrategy does exactly that.

Starting with version 5.2, all the MessageHandlingException instances thrown by the framework
components, includes a component BeanDefinition resource and source to determine a
configuration point form the exception. In case of XML configuration, a resource is an XML file path
and source an XML tag with its id attribute. With Java & Annotation configuration, a resource is a
@Configuration class and source is a @Bean method. In most case the target integration flow solution
is based on the out-of-the-box components and their configuration options. When an exception
happens at runtime, there is no any end-user code involved in stack trace because an execution is
against beans, not their configuration. Including a resource and source of the bean definition helps
to determine possible configuration mistakes and provides better developer experience.

837

./handler-advice.pdf#retry-advice

Appendix B: Spring Expression Language
(SpEL)
You can configure many Spring Integration components by using expressions written in the Spring
Expression Language.

In most cases, the #root object is the Message, which has two properties (headers and payload) that
allow such expressions as payload, payload.thing, headers['my.header'], and so on.

In some cases, additional variables are provided. For example, <int-http:inbound-gateway/>
provides #requestParams (parameters from the HTTP request) and #pathVariables (values from path
placeholders in the URI).

For all SpEL expressions, a BeanResolver is available to enable references to any bean in the
application context (for example, @myBean.foo(payload)). In addition, two PropertyAccessors are
available. A MapAccessor enables accessing values in a Map by using a key and a
ReflectivePropertyAccessor, which allows access to fields and JavaBean compliant properties (by
using getters and setters). This is how you can access the Message headers and payload properties.

B.1. SpEL Evaluation Context Customization
Starting with Spring Integration 3.0, you can add additional PropertyAccessor instances to the SpEL
evaluation contexts used by the framework. The framework provides the (read-only)
JsonPropertyAccessor, which you can use to access fields from a JsonNode or JSON in a String. You
can also create your own PropertyAccessor if you have specific needs.

In addition, you can add custom functions. Custom functions are static methods declared on a
class. Functions and property accessors are available in any SpEL expression used throughout the
framework.

The following configuration shows how to directly configure the
IntegrationEvaluationContextFactoryBean with custom property accessors and functions:

838

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions

<bean id="integrationEvaluationContext"
 class=
"org.springframework.integration.config.IntegrationEvaluationContextFactoryBean">
 <property name="propertyAccessors">
 <util:map>
 <entry key="things">
 <bean class="things.MyCustomPropertyAccessor"/>
 </entry>
 </util:map>
 </property>
 <property name="functions">
 <map>
 <entry key="barcalc" value="#{T(things.MyFunctions).getMethod('calc',
T(things.MyThing))}"/>
 </map>
 </property>
</bean>

For convenience, Spring Integration provides namespace support for both property accessors and
functions, as described in the following sections. The framework automatically configures the
factory bean on your behalf.

This factory bean definition overrides the default integrationEvaluationContext bean definition. It
adds the custom accessor and one custom function to the list (which also includes the standard
accessors mentioned earlier).

Note that custom functions are static methods. In the preceding example, the custom function is a
static method called calc on a class called MyFunctions and takes a single parameter of type MyThing.

Suppose you have a Message with a payload that has a type of MyThing. Further suppose that you
need to perform some action to create an object called MyObject from MyThing and then invoke a
custom function called calc on that object.

The standard property accessors do not know how to get a MyObject from a MyThing, so you could
write and configure a custom property accessor to do so. As a result, your final expression might be
"#barcalc(payload.myObject)".

The factory bean has another property (typeLocator), which lets you customize the TypeLocator used
during SpEL evaluation. You might need to do so running in some environments that use a non-
standard ClassLoader. In the following example, SpEL expressions always use the bean factory’s
class loader:

839

<bean id="integrationEvaluationContext"
 class=
"org.springframework.integration.config.IntegrationEvaluationContextFactoryBean">
 <property name="typeLocator">
 <bean class=
"org.springframework.expression.spel.support.StandardTypeLocator">
 <constructor-arg value="#{beanFactory.beanClassLoader}"/>
 </bean>
 </property>
</bean>

B.2. SpEL Functions
Spring Integration provides namespace support to let you create SpEL custom functions. You can
specify <spel-function/> components to provide custom SpEL functions to the EvaluationContext
used throughout the framework. Instead of configuring the factory bean shown earlier, you can
add one or more of these components, and the framework automatically adds them to the default
integrationEvaluationContext factory bean.

For example, suppose you have a useful static method to evaluate XPath. The following example
shows how you can create a custom function to use that method:

<int:spel-function id="xpath"
 class="com.something.test.XPathUtils" method="evaluate(java.lang.String,
java.lang.Object)"/>

<int:transformer input-channel="in" output-channel="out"
 expression="#xpath('//things/@mythings', payload)" />

Given the preceding example:

• The default IntegrationEvaluationContextFactoryBean bean with an ID of
integrationEvaluationContext is registered with the application context.

• The <spel-function/> is parsed and added to the functions Map of integrationEvaluationContext
as a map entry with its id as the key and the static Method as the value.

• The integrationEvaluationContext factory bean creates a new StandardEvaluationContext
instance, and it is configured with the default PropertyAccessor instances, a BeanResolver, and
the custom functions.

• That EvaluationContext instance is injected into the ExpressionEvaluatingTransformer bean.

To provide a SpEL Function by using Java configuration, you can declare a SpelFunctionFactoryBean
bean for each function. The following example shows how to create a custom function:

840

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-ref-functions

@Bean
public SpelFunctionFactoryBean xpath() {
 return new SpelFunctionFactoryBean(XPathUtils.class, "evaluate");
}



SpEL functions declared in a parent context are also made available in any child
contexts. Each context has its own instance of the integrationEvaluationContext
factory bean, because each needs a different BeanResolver, but the function
declarations are inherited and can be overridden by declaring a SpEL function
with the same name.

B.2.1. Built-in SpEL Functions

Spring Integration provides the folloiwng standard functions, which are registered with the
application context automatically on start up:

• #jsonPath: Evaluates a 'jsonPath' on a specified object. This function invokes
JsonPathUtils.evaluate(…), which delegates to the Jayway JsonPath library. The following
listing shows some usage examples:

<transformer expression="#jsonPath(payload, '$.store.book[0].author')"/>

<filter expression="#jsonPath(payload,'$..book[2].isbn') matches '\d-\d{3}-
\d{5}-\d'"/>

<splitter expression="#jsonPath(payload, '$.store.book')"/>

<router expression="#jsonPath(payload, headers.jsonPath)">
 <mapping channel="output1" value="reference"/>
 <mapping channel="output2" value="fiction"/>
</router>

#jsonPath also supports a third (optional) parameter: an array of com.jayway.jsonpath.Filter,
which can be provided by a reference to a bean or bean method (for example).


Using this function requires the Jayway JsonPath library (json-path.jar) to be
on the classpath. Otherwise the #jsonPath SpEL function is not registered.

For more information regarding JSON see 'JSON Transformers' in Transformer.

• #xpath: To evaluate an 'xpath' on some provided object. For more information regarding XML
and XPath, see XML Support - Dealing with XML Payloads.

841

https://github.com/json-path/JsonPath
https://github.com/jayway/JsonPath/blob/master/json-path/src/main/java/com/jayway/jsonpath/Filter.java
./transformer.pdf#transformer
./xml.pdf#xml

B.3. Property Accessors
Spring Integration provides namespace support to let you create SpEL custom PropertyAccessor
implementations. You can use the <spel-property-accessors/> component to provide a list of custom
PropertyAccessor instances to the EvaluationContext used throughout the framework. Instead of
configuring the factory bean shown earlier, you can add one or more of these components, and the
framework automatically adds the accessors to the default integrationEvaluationContext factory
bean. The following example shows how to do so:

<int:spel-property-accessors>
 <bean id="jsonPA" class=
"org.springframework.integration.json.JsonPropertyAccessor"/>
 <ref bean="fooPropertyAccessor"/>
</int:spel-property-accessors>

In the preceding example, two custom PropertyAccessor instances are injected into the
EvaluationContext (in the order in which they are declared).

To provide PropertyAccessor instances by using Java Configuration, you should declare a
SpelPropertyAccessorRegistrar bean with a name of spelPropertyAccessorRegistrar (dictated by the
IntegrationContextUtils.SPEL_PROPERTY_ACCESSOR_REGISTRAR_BEAN_NAME constant). The following
example shows how to configure two custom PropertyAccessor instances with Java:

@Bean
public SpelPropertyAccessorRegistrar spelPropertyAccessorRegistrar() {
 return new SpelPropertyAccessorRegistrar(new JsonPropertyAccessor())
 .add(fooPropertyAccessor());
}



Custom PropertyAccessor instances declared in a parent context are also made
available in any child contexts. They are placed at the end of result list (but before
the default org.springframework.context.expression.MapAccessor and
o.s.expression.spel.support.ReflectivePropertyAccessor). If you declare a
PropertyAccessor with the same bean ID in a child context, it overrides the parent
accessor. Beans declared within a <spel-property-accessors/> must have an 'id'
attribute. The final order of usage is as follows:

• The accessors in the current context, in the order in which they are declared

• Any accessors from parent contexts, in order

• The MapAccessor

• The ReflectivePropertyAccessor

842

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/expression/PropertyAccessor.html

Appendix C: Message Publishing
The (Aspect-oriented Programming) AOP message publishing feature lets you construct and send a
message as a by-product of a method invocation. For example, imagine you have a component and,
every time the state of this component changes, you want to be notified by a message. The easiest
way to send such notifications is to send a message to a dedicated channel, but how would you
connect the method invocation that changes the state of the object to a message sending process,
and how should the notification message be structured? The AOP message publishing feature
handles these responsibilities with a configuration-driven approach.

C.1. Message Publishing Configuration
Spring Integration provides two approaches: XML configuration and annotation-driven (Java)
configuration.

C.1.1. Annotation-driven Configuration with the @Publisher Annotation

The annotation-driven approach lets you annotate any method with the @Publisher annotation to
specify a 'channel' attribute. Starting with version 5.1, to switch this functionality on, you must use
the @EnablePublisher annotation on some @Configuration class. See Configuration and
@EnableIntegration for more information. The message is constructed from the return value of the
method invocation and sent to the channel specified by the 'channel' attribute. To further manage
message structure, you can also use a combination of both @Payload and @Header annotations.

Internally, this message publishing feature of Spring Integration uses both Spring AOP by defining
PublisherAnnotationAdvisor and the Spring Expression Language (SpEL), giving you considerable
flexibility and control over the structure of the Message it publishes.

The PublisherAnnotationAdvisor defines and binds the following variables:

• #return: Binds to a return value, letting you reference it or its attributes (for example,
#return.something, where 'something' is an attribute of the object bound to #return)

• #exception: Binds to an exception if one is thrown by the method invocation

• #args: Binds to method arguments so that you can extract individual arguments by name (for
example, #args.fname)

Consider the following example:

@Publisher
public String defaultPayload(String fname, String lname) {
 return fname + " " + lname;
}

In the preceding example, the message is constructed with the following structure:

843

./overview.pdf#configuration-enable-integration
./overview.pdf#configuration-enable-integration

• The message payload is the return type and value of the method. This is the default.

• A newly constructed message is sent to a default publisher channel that is configured with an
annotation post processor (covered later in this section).

The following example is the same as the preceding example, except that it does not use a default
publishing channel:

@Publisher(channel="testChannel")
public String defaultPayload(String fname, @Header("last") String lname) {
 return fname + " " + lname;
}

Instead of using a default publishing channel, we specify the publishing channel by setting the
'channel' attribute of the @Publisher annotation. We also add a @Header annotation, which results in
the message header named 'last' having the same value as the 'lname' method parameter. That
header is added to the newly constructed message.

The following example is almost identical to the preceding example:

@Publisher(channel="testChannel")
@Payload
public String defaultPayloadButExplicitAnnotation(String fname, @Header String
lname) {
 return fname + " " + lname;
}

The only difference is that we use a @Payload annotation on the method to explicitly specify that the
return value of the method should be used as the payload of the message.

The following example expands on the previous configuration by using the Spring Expression
Language in the @Payload annotation to further instruct the framework about how the message
should be constructed:

@Publisher(channel="testChannel")
@Payload("#return + #args.lname")
public String setName(String fname, String lname, @Header("x") int num) {
 return fname + " " + lname;
}

In the preceding example, the message is a concatenation of the return value of the method
invocation and the 'lname' input argument. The Message header named 'x' has its value determined
by the 'num' input argument. That header is added to the newly constructed message.

844

@Publisher(channel="testChannel")
public String argumentAsPayload(@Payload String fname, @Header String lname) {
 return fname + " " + lname;
}

In the preceding example, you see another usage of the @Payload annotation. Here, we annotate a
method argument that becomes the payload of the newly constructed message.

As with most other annotation-driven features in Spring, you need to register a post-processor
(PublisherAnnotationBeanPostProcessor). The following example shows how to do so:

<bean class=
"org.springframework.integration.aop.PublisherAnnotationBeanPostProcessor"/>

For a more concise configuration, you can instead use namespace support, as the following
example shows:

<int:annotation-config>
 <int:enable-publisher default-publisher-channel="defaultChannel"/>
</int:annotation-config>

For Java configuration, you must use the @EnablePublisher annotation, as the following example
shows:

@Configuration
@EnableIntegration
@EnablePublisher("defaultChannel")
public class IntegrationConfiguration {
 ...
}

Starting with version 5.1.3, the <int:enable-publisher> component, as well as the @EnablePublisher
annotation have the proxy-target-class and order attributes for tuning the ProxyFactory
configuration.

Similar to other Spring annotations (@Component, @Scheduled, and so on), you can also use @Publisher
as a meta-annotation. This means that you can define your own annotations that are treated in the
same way as the @Publisher itself. The following example shows how to do so:

845

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Publisher(channel="auditChannel")
public @interface Audit {
...
}

In the preceding example, we define the @Audit annotation, which is itself annotated with
@Publisher. Also note that you can define a channel attribute on the meta-annotation to encapsulate
where messages are sent inside of this annotation. Now you can annotate any method with the
@Audit annotation, as the following example shows:

@Audit
public String test() {
 return "Hello";
}

In the preceding example, every invocation of the test() method results in a message with a
payload created from its return value. Each message is sent to the channel named auditChannel.
One of the benefits of this technique is that you can avoid the duplication of the same channel
name across multiple annotations. You also can provide a level of indirection between your own,
potentially domain-specific, annotations and those provided by the framework.

You can also annotate the class, which lets you apply the properties of this annotation on every
public method of that class, as the following example shows:

@Audit
static class BankingOperationsImpl implements BankingOperations {

 public String debit(String amount) {
 . . .

 }

 public String credit(String amount) {
 . . .
 }

}

846

C.1.2. XML-based Approach with the <publishing-interceptor> element

The XML-based approach lets you configure the same AOP-based message publishing functionality
as a namespace-based configuration of a MessagePublishingInterceptor. It certainly has some
benefits over the annotation-driven approach, since it lets you use AOP pointcut expressions, thus
possibly intercepting multiple methods at once or intercepting and publishing methods to which
you do not have the source code.

To configure message publishing with XML, you need only do the following two things:

• Provide configuration for MessagePublishingInterceptor by using the <publishing-interceptor>
XML element.

• Provide AOP configuration to apply the MessagePublishingInterceptor to managed objects.

The following example shows how to configure a publishing-interceptor element:

<aop:config>
 <aop:advisor advice-ref="interceptor" pointcut="bean(testBean)" />
</aop:config>
<publishing-interceptor id="interceptor" default-channel="defaultChannel">
 <method pattern="echo" payload="'Echoing: ' + #return" channel="echoChannel">
 <header name="things" value="something"/>
 </method>
 <method pattern="repl*" payload="'Echoing: ' + #return" channel="echoChannel">
 <header name="things" expression="'something'.toUpperCase()"/>
 </method>
 <method pattern="echoDef*" payload="#return"/>
</publishing-interceptor>

The <publishing-interceptor> configuration looks rather similar to the annotation-based approach,
and it also uses the power of the Spring Expression Language.

In the preceding example, the execution of the echo method of a testBean renders a Message with the
following structure:

• The Message payload is of type String with the following content: Echoing: [value], where value
is the value returned by an executed method.

• The Message has a header with a name of things and a value of something.

• The Message is sent to echoChannel.

The second method is very similar to the first. Here, every method that begins with 'repl' renders a
Message with the following structure:

• The Message payload is the same as in the preceding sample.

• The Message has a header named things whose value is the result of the SpEL expression
'something'.toUpperCase().

• The Message is sent to echoChannel.

847

The second method, mapping the execution of any method that begins with echoDef, produces a
Message with the following structure:

• The Message payload is the value returned by an executed method.

• Since the channel attribute is not provided, the Message is sent to the defaultChannel defined by
the publisher.

For simple mapping rules you can rely on the publisher defaults, as the following example shows:

<publishing-interceptor id="anotherInterceptor"/>

The preceding example maps the return value of every method that matches the pointcut
expression to a payload and is sent to a default-channel. If you do not specify the defaultChannel (as
the preceding example does not do), the messages are sent to the global nullChannel (the equivalent
of /dev/null).

Asynchronous Publishing

Publishing occurs in the same thread as your component’s execution. So, by default, it is
synchronous. This means that the entire message flow has to wait until the publisher’s flow
completes. However, developers often want the complete opposite: to use this message-publishing
feature to initiate asynchronous flows. For example, you might host a service (HTTP, WS, and so on)
which receives a remote request. You may want to send this request internally into a process that
might take a while. However you may also want to reply to the user right away. So, instead of
sending inbound requests for processing to the output channel (the conventional way), you can use
'output-channel' or a 'replyChannel' header to send a simple acknowledgment-like reply back to the
caller while using the message-publisher feature to initiate a complex flow.

The service in the following example receives a complex payload (which needs to be sent further
for processing), but it also needs to reply to the caller with a simple acknowledgment:

public String echo(Object complexPayload) {
 return "ACK";
}

So, instead of hooking up the complex flow to the output channel, we use the message-publishing
feature instead. We configure it to create a new message, by using the input argument of the service
method (shown in the preceding example), and send that to the 'localProcessChannel'. To make sure
this flow is asynchronous, all we need to do is send it to any type of asynchronous channel
(ExecutorChannel in the next example). The following example shows how to an asynchronous
publishing-interceptor:

848

<int:service-activator input-channel="inputChannel" output-channel="
outputChannel" ref="sampleservice"/>

<bean id="sampleservice" class="test.SampleService"/>

<aop:config>
 <aop:advisor advice-ref="interceptor" pointcut="bean(sampleservice)" />
</aop:config>

<int:publishing-interceptor id="interceptor" >
 <int:method pattern="echo" payload="#args[0]" channel="localProcessChannel">
 <int:header name="sample_header" expression="'some sample value'"/>
 </int:method>
</int:publishing-interceptor>

<int:channel id="localProcessChannel">
 <int:dispatcher task-executor="executor"/>
</int:channel>

<task:executor id="executor" pool-size="5"/>

Another way of handling this type of scenario is with a wire-tap. See Wire Tap.

C.1.3. Producing and Publishing Messages Based on a Scheduled Trigger

In the preceding sections, we looked at the message-publishing feature, which constructs and
publishes messages as by-products of method invocations. However, in those cases, you are still
responsible for invoking the method. Spring Integration 2.0 added support for scheduled message
producers and publishers with the new expression attribute on the 'inbound-channel-adapter'
element. You can schedule based on several triggers, any one of which can be configured on the
'poller' element. Currently, we support cron, fixed-rate, fixed-delay and any custom trigger
implemented by you and referenced by the 'trigger' attribute value.

As mentioned earlier, support for scheduled producers and publishers is provided via the <inbound-
channel-adapter> XML element. Consider the following example:

<int:inbound-channel-adapter id="fixedDelayProducer"
 expression="'fixedDelayTest'"
 channel="fixedDelayChannel">
 <int:poller fixed-delay="1000"/>
</int:inbound-channel-adapter>

The preceding example creates an inbound channel adapter that constructs a Message, with its
payload being the result of the expression defined in the expression attribute. Such messages are

849

./channel.pdf#channel-wiretap

created and sent every time the delay specified by the fixed-delay attribute occurs.

The following example is similar to the preceding example, except that it uses the fixed-rate
attribute:

<int:inbound-channel-adapter id="fixedRateProducer"
 expression="'fixedRateTest'"
 channel="fixedRateChannel">
 <int:poller fixed-rate="1000"/>
</int:inbound-channel-adapter>

The fixed-rate attribute lets you send messages at a fixed rate (measuring from the start time of
each task).

The following example shows how you can apply a Cron trigger with a value specified in the cron
attribute:

<int:inbound-channel-adapter id="cronProducer"
 expression="'cronTest'"
 channel="cronChannel">
 <int:poller cron="7 6 5 4 3 ?"/>
</int:inbound-channel-adapter>

The following example shows how to insert additional headers into the message:

<int:inbound-channel-adapter id="headerExpressionsProducer"
 expression="'headerExpressionsTest'"
 channel="headerExpressionsChannel"
 auto-startup="false">
 <int:poller fixed-delay="5000"/>
 <int:header name="foo" expression="6 * 7"/>
 <int:header name="bar" value="x"/>
</int:inbound-channel-adapter>

The additional message headers can take scalar values or the results of evaluating Spring
expressions.

If you need to implement your own custom trigger, you can use the trigger attribute to provide a
reference to any spring configured bean that implements the
org.springframework.scheduling.Trigger interface. The following example shows how to do so:

850

<int:inbound-channel-adapter id="triggerRefProducer"
 expression="'triggerRefTest'" channel="triggerRefChannel">
 <int:poller trigger="customTrigger"/>
</int:inbound-channel-adapter>

<beans:bean id="customTrigger" class="o.s.scheduling.support.PeriodicTrigger">
 <beans:constructor-arg value="9999"/>
</beans:bean>

851

Appendix D: Transaction Support
This chapter covers Spring Integration’s support for transactions. It covers the following topics:

• Understanding Transactions in Message flows

• Transaction Boundaries

• Transaction Synchronization

• Pseudo Transactions

D.1. Understanding Transactions in Message flows
Spring Integration exposes several hooks to address the transactional needs of your message flows.
To better understand these hooks and how you can benefit from them, we must first revisit the six
mechanisms that you can use to initiate message flows and see how you can address the
transactional needs of these flows within each of these mechanisms.

The following six mechanisms initiate a message flow (details for each are provided throughout
this manual):

• Gateway proxy: A basic messaging gateway.

• Message channel: Direct interactions with MessageChannel methods (for example,
channel.send(message)).

• Message publisher: The way to initiate a message flow as the by-product of method invocations
on Spring beans.

• Inbound channel adapters and gateways: The way to initiate a message flow based on
connecting third-party system with the Spring Integration messaging system (for example,
[JmsMessage] → Jms Inbound Adapter[SI Message] → SI Channel).

• Scheduler: The way to initiate a message flow based on scheduling events distributed by a pre-
configured scheduler.

• Poller: Similar to the scheduler, this is the way to initiate message flow based on scheduling or
interval-based events distributed by a pre-configured poller.

We can split these six mechanisms into two general categories:

• Message flows initiated by a user process: Example scenarios in this category would be invoking
a gateway method or explicitly sending a Message to a MessageChannel. In other words, these
message flows depend on a third party process (such as some code that you wrote) to be
initiated.

• Message flows initiated by a daemon process: Example scenarios in this category include a
Poller polling a message queue to initiate a new message flow with the polled message or a
scheduler scheduling the process by creating a new message and initiating a message flow at a
predefined time.

Clearly the gateway proxy, MessageChannel.send(…) and MessagePublisher all belong to the first
category, and inbound adapters and gateways, scheduler, and poller belong to the second category.

852

So, how can you address transactional needs in various scenarios within each category, and is there
a need for Spring Integration to provide something explicit with regard to transactions for a
particular scenario? Or can you use Spring’s transaction support instead?

Spring itself provides first class support for transaction management. So our goal here is not to
provide something new but rather use Spring to benefit from its existing support for transactions.
In other words, as a framework, we must expose hooks to Spring’s transaction management
functionality. However, since Spring Integration configuration is based on Spring configuration, we
need not always expose these hooks, because Spring already exposes them . After all, every Spring
Integration component is a Spring Bean.

With this goal in mind, we can again consider the two scenarios: messgae flows initiated by a user
process and message flows initiated by a daemon.

Message flows that are initiated by a user process and configured in a Spring application context
are subject to the usual transactional configuration of such processes. Therefore they need not be
explicitly configured by Spring Integration to support transactions. The transaction could and
should be initiated through Spring’s standard transaction support. The Spring Integration message
flow naturally honors the transactional semantics of the components, because it is itself configured
by Spring. For example, a gateway or service activator method could be annotated with
@Transactional, or a TransactionInterceptor could be defined in an XML configuration with a
pointcut expression that points to specific methods that should be transactional. The bottom line is
that you have full control over transaction configuration and boundaries in these scenarios.

However, things are a bit different when it comes to message flows initiated by a daemon process.
Although configured by the developer, these flows do not directly involve a human or some other
process to be initiated. These are trigger-based flows that are initiated by a trigger process (a
daemon process) based on the configuration of the process. For example, we could have a scheduler
initiate a message flow every Friday night. We can also configure a trigger that initiates a message
flow every second and so on. As a result, we need a way to let these trigger-based processes know of
our intention to make the resulting message flows be transactional, so that a Transaction context
can be created whenever a new message flow is initiated. In other words, we need to expose some
transaction configuration, but only enough to delegate to the transaction support already provided
by Spring (as we do in other scenarios).

D.1.1. Poller Transaction Support

Spring Integration provides transactional support for pollers. Pollers are a special type of
component because, within a poller task, we can call receive() against a resource that is itself
transactional, thus including the receive() call in the the boundaries of the transaction, which lets
it be rolled back in case of a task failure. If we were to add the same support for channels, the
added transactions would affect all downstream components starting with the send() call. That
provides a rather wide scope for transaction demarcation without any strong reason, especially
when Spring already provides several ways to address the transactional needs of any component
downstream. However the receive() method being included in a transaction boundary is the
“strong reason” for pollers.

Any time you configure a Poller, you can provide transactional configuration by using the
transactional child element and its attributes,as the following example shows:

853

<int:poller max-messages-per-poll="1" fixed-rate="1000">
 <transactional transaction-manager="txManager"
 isolation="DEFAULT"
 propagation="REQUIRED"
 read-only="true"
 timeout="1000"/>
</poller>

The preceding configuration looks similar to a native Spring transaction configuration. You must
still provide a reference to a transaction manager and either specify transaction attributes or rely
on defaults (for example, if the 'transaction-manager' attribute is not specified, it defaults to the
bean named 'transactionManager'). Internally, the process is wrapped in Spring’s native
transaction, where TransactionInterceptor is responsible for handling transactions. For more
information on how to configure a transaction manager, the types of transaction managers (such as
JTA, Datasource, and others), and other details related to transaction configuration, see the Spring
Framework Reference Guide.

With the preceding configuration, all message flows initiated by this poller are transactional. For
more information and details on a poller’s transactional configuration, see Polling and
Transactions.

Along with transactions, you might need to address several more cross-cutting concerns when you
run a poller. To help with that, the poller element accepts an <advice-chain> child element, which
lets you define a custom chain of advice instances to be applied on the Poller. (See Pollable Message
Source for more details.) In Spring Integration 2.0, the Poller went through a refactoring effort and
now uses a proxy mechanism to address transactional concerns as well as other cross-cutting
concerns. One of the significant changes evolving from this effort is that we made the
<transactional> and <advice-chain> elements be mutually exclusive. The rationale behind this is
that, if you need more than one advice and one of them is Transaction advice, you can include it in
the <advice-chain> with the same convenience as before but with much more control, since you
now have an option to position the advice in the desired order. The following example shows how
to do so:

854

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
./jdbc.pdf#jdbc-polling-transactions
./jdbc.pdf#jdbc-polling-transactions
./polling-consumer.pdf#pollable-message-source
./polling-consumer.pdf#pollable-message-source

<int:poller max-messages-per-poll="1" fixed-rate="10000">
 <advice-chain>
 <ref bean="txAdvice"/>
 <ref bean="someAotherAdviceBean" />
 <beans:bean class="foo.bar.SampleAdvice"/>
 </advice-chain>
</poller>

<tx:advice id="txAdvice" transaction-manager="txManager">
 <tx:attributes>
 <tx:method name="get*" read-only="true"/>
 <tx:method name="*"/>
 </tx:attributes>
</tx:advice>

The preceding example shows a basic XML-based configuration of Spring Transaction advice
(txAdvice) and included it within the <advice-chain> defined by the Poller. If you need to address
only the transactional concerns of the poller, you can still use the <transactional> element as a
convenience.

D.2. Transaction Boundaries
Another important factor is the boundaries of Transactions within a Message flow. When a
transaction is started, the transaction context is bound to the current thread. So regardless of how
many endpoints and channels you have in your Message flow your transaction context will be
preserved as long as you are ensuring that the flow continues on the same thread. As soon as you
break it by introducing a Pollable Channel or Executor Channel or initiate a new thread manually in
some service, the Transactional boundary will be broken as well. Essentially the Transaction will
END right there, and if a successful handoff has transpired between the threads, the flow would be
considered a success and a COMMIT signal would be sent even though the flow will continue and
might still result in an Exception somewhere downstream. If such a flow were synchronous, that
Exception could be thrown back to the initiator of the Message flow who is also the initiator of the
transactional context and the transaction would result in a ROLLBACK. The middle ground is to use
transactional channels at any point where a thread boundary is being broken. For example, you
can use a Queue-backed Channel that delegates to a transactional MessageStore strategy, or you
could use a JMS-backed channel.

D.3. Transaction Synchronization
In some environments, it help to synchronize operations with a transaction that encompasses the
entire flow. For example, consider a <file:inbound-channel-adapter/> at the start of a flow that
performs a number of database updates. If the transaction commits, we might want to move the file
to a success directory, while we might want to move it to a failure directory if the transaction rolls
back.

855

Spring Integration 2.2 introduced the capability of synchronizing these operations with a
transaction. In addition, you can configure a PseudoTransactionManager if you do not have a 'real'
transaction but still want to perform different actions on success or failure. For more information,
see Pseudo Transactions.

The following listing shows the key strategy interfaces for this feature:

public interface TransactionSynchronizationFactory {

 TransactionSynchronization create(Object key);
}

public interface TransactionSynchronizationProcessor {

 void processBeforeCommit(IntegrationResourceHolder holder);

 void processAfterCommit(IntegrationResourceHolder holder);

 void processAfterRollback(IntegrationResourceHolder holder);

}

The factory is responsible for creating a TransactionSynchronization object. You can implement your
own or use the one provided by the framework: DefaultTransactionSynchronizationFactory. This
implementation returns a TransactionSynchronization that delegates to a default implementation of
TransactionSynchronizationProcessor: ExpressionEvaluatingTransactionSynchronizationProcessor.
This processor supports three SpEL expressions: beforeCommitExpression, afterCommitExpression,
and afterRollbackExpression.

These actions should be self-explanatory to those familiar with transactions. In each case, the #root
variable is the original Message. In some cases, other SpEL variables are made available, depending
on the MessageSource being polled by the poller. For example, the MongoDbMessageSource provides the
#mongoTemplate variable, which references the message source’s MongoTemplate. Similarly, the
RedisStoreMessageSource provides the #store variable, which references the RedisStore created by
the poll.

To enable the feature for a particular poller, you can provide a reference to the
TransactionSynchronizationFactory on the poller’s <transactional/> element by using the
synchronization-factory attribute.

Starting with version 5.0, Spring Integration provides
PassThroughTransactionSynchronizationFactory, which is applied by default to polling endpoints
when no TransactionSynchronizationFactory is configured but an advice of type
TransactionInterceptor exists in the advice chain. When using any out-of-the-box
TransactionSynchronizationFactory implementation, polling endpoints bind a polled message to the
current transactional context and provide it as a failedMessage in a MessagingException if an
exception is thrown after the transaction advice. When using a custom transaction advice that does

856

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/transaction/support/TransactionSynchronization.html

not implement TransactionInterceptor, you can explicitly configure a
PassThroughTransactionSynchronizationFactory to achieve this behavior. In either case, the
MessagingException becomes the payload of the ErrorMessage that is sent to the errorChannel, and the
cause is the raw exception thrown by the advice. Previously, the ErrorMessage had a payload that
was the raw exception thrown by the advice and did not provide a reference to the failedMessage
information, making it difficult to determine the reasons for the transaction commit problem.

To simplify configuration of these components, Spring Integration provides namespace support for
the default factory. The following example shows how to use the namespace to configure a file
inbound channel adapter:

<int-file:inbound-channel-adapter id="inputDirPoller"
 channel="someChannel"
 directory="/foo/bar"
 filter="filter"
 comparator="testComparator">
 <int:poller fixed-rate="5000">
 <int:transactional transaction-manager="transactionManager"
synchronization-factory="syncFactory" />
 </int:poller>
</int-file:inbound-channel-adapter>

<int:transaction-synchronization-factory id="syncFactory">
 <int:after-commit expression="payload.renameTo(new java.io.File('/success/' +
payload.name))"
 channel="committedChannel" />
 <int:after-rollback expression="payload.renameTo(new java.io.File('/failed/' +
payload.name))"
 channel="rolledBackChannel" />
</int:transaction-synchronization-factory>

The result of the SpEL evaluation is sent as the payload to either committedChannel or
rolledBackChannel (in this case, this would be Boolean.TRUE or Boolean.FALSE — the result of the
java.io.File.renameTo() method call).

If you wish to send the entire payload for further Spring Integration processing, use the 'payload'
expression.

857



It is important to understand that this synchronizes the actions with a transaction.
It does not make a resource that is not inherently transactional actually be
transactional. Instead, the transaction (be it JDBC or otherwise) is started before
the poll and either committed or rolled back when the flow completes, followed by
the synchronized action.

If you provide a custom TransactionSynchronizationFactory, it is responsible for
creating a resource synchronization that causes the bound resource to be unbound
automatically when the transaction completes. The default
TransactionSynchronizationFactory does so by returning a subclass of
ResourceHolderSynchronization, with the default shouldUnbindAtCompletion()
returning true.

In addition to the after-commit and after-rollback expressions, before-commit is also supported. In
that case, if the evaluation (or downstream processing) throws an exception, the transaction is
rolled back instead of being committed.

D.4. Pseudo Transactions
After reading the Transaction Synchronization section, you might think it would be useful to take
these 'success' or 'failure' actions when a flow completes, even if there is no “real” transactional
resources (such as JDBC) downstream of the poller. For example, consider a “<file:inbound-channel-
adapter/>” followed by an “<ftp:outbout-channel-adapter/>”. Neither of these components is
transactional, but we might want to move the input file to different directories, based on the
success or failure of the FTP transfer.

To provide this functionality, the framework provides a PseudoTransactionManager, enabling the
above configuration even when there is no real transactional resource involved. If the flow
completes normally, the beforeCommit and afterCommit synchronizations are called. On failure, the
afterRollback synchronization is called. Because it is not a real transaction, no actual commit or
rollback occurs. The pseudo transaction is a vehicle used to enable the synchronization features.

To use a PseudoTransactionManager, you can define it as a <bean/>, in the same way you would
configure a real transaction manager. The following example shows how to do so:

<bean id="transactionManager" class="o.s.i.transaction.PseudoTransactionManager"
/>

D.5. Reactive Transactions
Starting with version 5.3, a ReactiveTransactionManager can also be used together with a
TransactionInterceptor advice for endpoints returning a reactive type. This includes MessageSource
and ReactiveMessageHandler implementations (e.g. ReactiveMongoDbMessageSource) which produce a
message with a Flux or Mono payload. All other reply producing message handler implementations
can rely on a ReactiveTransactionManager when their reply payload is also some reactive type.

858

Appendix E: Security in Spring Integration
Security is one of the important functions in any modern enterprise (or cloud) application.
Moreover, it is critical for distributed systems, such as those built on Enterprise Integration
Patterns. Messaging independence and loose coupling let target systems communicate with each
other with any type of data in the message’s payload. We can either trust all those messages or
secure our service against “infecting” messages.

Spring Integration, together with Spring Security, provides a simple and comprehensive way to
secure message channels, as well as other part of the integration solution.

You need to include this dependency into your project:

Maven

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-security</artifactId>
 <version>5.4.0</version>
</dependency>

Gradle

compile "org.springframework.integration:spring-integration-security:5.4.0"

E.1. Securing channels
Spring Integration provides the ChannelSecurityInterceptor interceptor, which extends
AbstractSecurityInterceptor and intercepts send and receive calls on the channel. Access decisions
are then made with reference to a ChannelSecurityMetadataSource, which provides the metadata that
describes the send and receive access policies for certain channels. The interceptor requires that a
valid SecurityContext has been established by authenticating with Spring Security. See the Spring
Security Reference Guide for details.

Spring Integration provides Namespace support to allow easy configuration of security constraints.
This support consists of the secured channels tag, which allows definition of one or more channel
name patterns in conjunction with a definition of the security configuration for send and receive.
The pattern is a java.util.regexp.Pattern.

The following example shows how to configure a bean that includes security and how to set up
policies with patterns:

859

https://projects.spring.io/spring-security/
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-security="http://www.springframework.org/schema/integration/security"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:security="http://www.springframework.org/schema/security"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/security
 https://www.springframework.org/schema/security/spring-security.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/security
 https://www.springframework.org/schema/integration/security/spring-
integration-security.xsd">

<int-security:secured-channels>
 <int-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>
 <int-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>
</int-security:secured-channels>

By default, the secured-channels namespace element expects a bean named authenticationManager
(which implements AuthenticationManager) and a bean named accessDecisionManager (which
implements AccessDecisionManager). Where this is not the case, references to the appropriate beans
can be configured as attributes of the secured-channels element, as the following example shows:

<int-security:secured-channels access-decision-manager=
"customAccessDecisionManager"
 authentication-manager="customAuthenticationManager
">
 <int-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>
 <int-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>
</int-security:secured-channels>

Starting with version 4.2, the @SecuredChannel annotation is available for Java configuration in
@Configuration classes.

The following example shows the Java equivalent of the preceding XML examples:

860

@Configuration
@EnableIntegration
public class ContextConfiguration {

 @Bean
 @SecuredChannel(interceptor = "channelSecurityInterceptor", sendAccess =
"ROLE_ADMIN")
 public SubscribableChannel adminChannel() {
 return new DirectChannel();
 }

 @Bean
 @SecuredChannel(interceptor = "channelSecurityInterceptor", receiveAccess =
"ROLE_USER")
 public SubscribableChannel userChannel() {
 return new DirectChannel();
 }

 @Bean
 public ChannelSecurityInterceptor channelSecurityInterceptor(
 AuthenticationManager authenticationManager,
 AccessDecisionManager accessDecisionManager) {
 ChannelSecurityInterceptor channelSecurityInterceptor = new
ChannelSecurityInterceptor();
 channelSecurityInterceptor.setAuthenticationManager(authenticationManager
);
 channelSecurityInterceptor.setAccessDecisionManager(accessDecisionManager
);
 return channelSecurityInterceptor;
 }

}

E.2. Security Context Propagation
To be sure that our interaction with the application is secure, according to its security system rules,
we should supply some security context with an authentication (principal) object. The Spring
Security project provides a flexible, canonical mechanism to authenticate our application clients
over HTTP, WebSocket, or SOAP protocols (as can be done for any other integration protocol with a
simple Spring Security extension). It also provides a SecurityContext for further authorization
checks on the application objects, such as message channels. By default, the SecurityContext is tied
to the execution state of the current Thread by using the (ThreadLocalSecurityContextHolderStrategy).
It is accessed by an AOP (Aspect-oriented Programming) interceptor on secured methods to check
(for example) whether that principal of the invocation has sufficient permissions to call that
method. This works well with the current thread. Often, though, processing logic can be performed
on another thread, on several threads, or even on external systems.

861

Standard thread-bound behavior is easy to configure if our application is built on the Spring
Integration components and its message channels. In this case, the secured objects can be any
service activator or transformer, secured with a MethodSecurityInterceptor in their <request-
handler-advice-chain> (see Adding Behavior to Endpoints) or even MessageChannel (see Securing
channels, earlier). When using DirectChannel communication, the SecurityContext is automatically
available, because the downstream flow runs on the current thread. However, in the cases of the
QueueChannel, ExecutorChannel, and PublishSubscribeChannel with an Executor, messages are
transferred from one thread to another (or several) by the nature of those channels. In order to
support such scenarios, we have two choices:

• Transfer an Authentication object within the message headers and extract and authenticate it
on the other side before secured object access.

• Propagate the SecurityContext to the thread that receives the transferred message.

Version 4.2 introduced SecurityContext propagation. It is implemented as a
SecurityContextPropagationChannelInterceptor, which you can add to any MessageChannel or
configure as a @GlobalChannelInterceptor. The logic of this interceptor is based on the
SecurityContext extraction from the current thread (from the preSend() method) and its populating
to another thread from the postReceive() (beforeHandle()) method. Actually, this interceptor is an
extension of the more generic ThreadStatePropagationChannelInterceptor, which wraps the message
to send with the state to propagate in an internal Message<?> extension (MessageWithThreadState<S>)
on one side and extracts the original message and the state to propagate on the other side. You can
extend the ThreadStatePropagationChannelInterceptor for any context propagation use case, and
SecurityContextPropagationChannelInterceptor is a good example of doing so.



The logic of the ThreadStatePropagationChannelInterceptor is based on message
modification (it returns an internal MessageWithThreadState object to send).
Consequently, you should be careful when combining this interceptor with any
other that can also modify messages (for example, through the
MessageBuilder.withPayload(…)…build()). The state to propagate may be lost. In
most cases, to overcome the issue, you can order the interceptors for the channel
and ensure the ThreadStatePropagationChannelInterceptor is the last one in the
stack.

Propagation and population of SecurityContext is just one half of the work. Since the message is not
an owner of the threads in the message flow and we should be sure that we are secure against any
incoming messages, we have to clean up the SecurityContext from ThreadLocal. The
SecurityContextPropagationChannelInterceptor provides the afterMessageHandled() interceptor
method implementation. It cleans up operation by freeing the thread at the end of invocation from
that propagated principal. This means that, when the thread that processes the handed-off message
finishes processing the message (successful or otherwise), the context is cleared so that it cannot
inadvertently be used when processing another message.

862

./handler-advice.pdf#message-handler-advice-chain



When working with an asynchronous gateway, you should use an appropriate
AbstractDelegatingSecurityContextSupport implementation from Spring Security
Concurrency Support, to let security context propagation be ensured over gateway
invocation. The following example shows how to do so:

@Configuration
@EnableIntegration
@IntegrationComponentScan
public class ContextConfiguration {

 @Bean
 public AsyncTaskExecutor securityContextExecutor() {
 return new DelegatingSecurityContextAsyncTaskExecutor(
 new SimpleAsyncTaskExecutor());
 }

}

...

@MessagingGateway(asyncExecutor = "securityContextExecutor")
public interface SecuredGateway {

 @Gateway(requestChannel = "queueChannel")
 Future<String> send(String payload);

}

863

./gateway.pdf#async-gateway
https://docs.spring.io/spring-security/site/docs/current/reference/html/servlet-webclient.html#concurrency

Appendix F: Configuration
Spring Integration offers a number of configuration options. Which option you choose depends
upon your particular needs and at what level you prefer to work. As with the Spring framework in
general, you can mix and match the various techniques to suit the problem at hand. For example,
you can choose the XSD-based namespace for the majority of configuration and combine it with a
handful of objects that you configure with annotations. As much as possible, the two provide
consistent naming. The XML elements defined by the XSD schema match the names of the
annotations, and the attributes of those XML elements match the names of annotation properties.
You can also use the API directly, but we expect most developers to choose one of the higher-level
options or a combination of the namespace-based and annotation-driven configuration.

F.1. Namespace Support
You can configure Spring Integration components with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match those
of the Enterprise Integration Patterns book.

To enable Spring Integration’s core namespace support within your Spring configuration files, add
the following namespace reference and schema mapping in your top-level 'beans' element:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-
integration.xsd">

(We have emphasized the lines that are particular to Spring Integration.)

You can choose any name after "xmlns:". We use int (short for Integration) for clarity, but you
might prefer another abbreviation. On the other hand, if you use an XML editor or IDE support, the
availability of auto-completion may convince you to keep the longer name for clarity. Alternatively,
you can create configuration files that use the Spring Integration schema as the primary
namespace, as the following example shows:

864

https://www.enterpriseintegrationpatterns.com/

<beans:beans xmlns="http://www.springframework.org/schema/integration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-
integration.xsd">

(We have emphasized the lines that are particular to Spring Integration.)

When using this alternative, no prefix is necessary for the Spring Integration elements. On the
other hand, if you define a generic Spring bean within the same configuration file, the bean
element requires a prefix (<beans:bean …/>). Since it is generally a good idea to modularize the
configuration files themselves (based on responsibility or architectural layer), you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic
beans are seldom necessary within those files. For the purposes of this documentation, we assume
the integration namespace is the primary.

Spring Integration provides many other namespaces. In fact, each adapter type (JMS, file, and so on)
that provides namespace support defines its elements within a separate schema. In order to use
these elements, add the necessary namespaces with an xmlns entry and the corresponding
schemaLocation mapping. For example, the following root element shows several of these
namespace declarations:

865

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-file="http://www.springframework.org/schema/integration/file"
 xmlns:int-jms="http://www.springframework.org/schema/integration/jms"
 xmlns:int-mail="http://www.springframework.org/schema/integration/mail"
 xmlns:int-rmi="http://www.springframework.org/schema/integration/rmi"
 xmlns:int-ws="http://www.springframework.org/schema/integration/ws"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/file
 https://www.springframework.org/schema/integration/file/spring-integration-
file.xsd
 http://www.springframework.org/schema/integration/jms
 https://www.springframework.org/schema/integration/jms/spring-integration-
jms.xsd
 http://www.springframework.org/schema/integration/mail
 https://www.springframework.org/schema/integration/mail/spring-integration-
mail.xsd
 http://www.springframework.org/schema/integration/rmi
 https://www.springframework.org/schema/integration/rmi/spring-integration-
rmi.xsd
 http://www.springframework.org/schema/integration/ws
 https://www.springframework.org/schema/integration/ws/spring-integration-
ws.xsd">
 ...
</beans>

This reference manual provides specific examples of the various elements in their corresponding
chapters. Here, the main thing to recognize is the consistency of the naming for each namespace
URI and schema location.

F.2. Configuring the Task Scheduler
In Spring Integration, the ApplicationContext plays the central role of a message bus, and you need
to consider only a couple of configuration options. First, you may want to control the central
TaskScheduler instance. You can do so by providing a single bean named taskScheduler. This is also
defined as a constant, as follows:

IntegrationContextUtils.TASK_SCHEDULER_BEAN_NAME

866

By default, Spring Integration relies on an instance of ThreadPoolTaskScheduler, as described in the
Task Execution and Scheduling section of the Spring Framework reference manual. That default
TaskScheduler starts up automatically with a pool of ten threads, but see Global Properties. If you
provide your own TaskScheduler instance instead, you can set the 'autoStartup' property to false or
provide your own pool size value.

When polling consumers provide an explicit task executor reference in their configuration, the
invocation of the handler methods happens within that executor’s thread pool and not the main
scheduler pool. However, when no task executor is provided for an endpoint’s poller, it is invoked
by one of the main scheduler’s threads.



Do not run long-running tasks on poller threads. Use a task executor instead. If you
have a lot of polling endpoints, you can cause thread starvation, unless you
increase the pool size. Also, polling consumers have a default receiveTimeout of
one second. Since the poller thread blocks for this time, we recommend that you
use a task executor when many such endpoints exist, again to avoid starvation.
Alternatively, you can reduce the receiveTimeout.



An endpoint is a Polling Consumer if its input channel is one of the queue-based
(that is, pollable) channels. Event-driven consumers are those having input
channels that have dispatchers instead of queues (in other words, they are
subscribable). Such endpoints have no poller configuration, since their handlers
are invoked directly.



When running in a JEE container, you may need to use Spring’s
TimerManagerTaskScheduler, as described here, instead of the default taskScheduler.
To do so, define a bean with the appropriate JNDI name for your environment, as
the following example shows:

<bean id="taskScheduler" class=
"o.s.scheduling.commonj.TimerManagerTaskScheduler">
 <property name="timerManagerName" value="tm/MyTimerManager" />
 <property name="resourceRef" value="true" />
</bean>

The next section describes what happens if exceptions occur within the asynchronous invocations.

F.3. Global Properties
Certain global framework properties can be overridden by providing a properties file on the
classpath.

The default properties can be found in /META-INF/spring.integration.default.properties in the
spring-integration-core jar. You can see them on GitHub here. The following listing shows the
default values:

867

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling-task-scheduler-implementations
https://github.com/spring-projects/spring-integration/blob/master/spring-integration-core/src/main/resources/META-INF/spring.integration.default.properties

spring.integration.channels.autoCreate=true ①
spring.integration.channels.maxUnicastSubscribers=0x7fffffff ②
spring.integration.channels.maxBroadcastSubscribers=0x7fffffff ③
spring.integration.taskScheduler.poolSize=10 ④
spring.integration.messagingTemplate.throwExceptionOnLateReply=false ⑤
spring.integration.readOnly.headers= ⑥
spring.integration.endpoints.noAutoStartup= ⑦
spring.integration.postProcessDynamicBeans=false ⑧

① When true, input-channel instances are automatically declared as DirectChannel instances
when not explicitly found in the application context.

② Sets the default number of subscribers allowed on, for example, a DirectChannel. It can be
used to avoid inadvertently subscribing multiple endpoints to the same channel. You can
override it on individual channels by setting the max-subscribers attribute.

③ This property provides the default number of subscribers allowed on, for example, a
PublishSubscribeChannel. It can be used to avoid inadvertently subscribing more than the
expected number of endpoints to the same channel. You can override it on individual
channels by setting the max-subscribers attribute.

④ The number of threads available in the default taskScheduler bean. See Configuring the
Task Scheduler.

⑤ When true, messages that arrive at a gateway reply channel throw an exception when the
gateway is not expecting a reply (because the sending thread has timed out or already
received a reply).

⑥ A comma-separated list of message header names that should not be populated into Message
instances during a header copying operation. The list is used by the
DefaultMessageBuilderFactory bean and propagated to the IntegrationMessageHeaderAccessor
instances (see MessageHeaderAccessor API) used to build messages via MessageBuilder (see
The MessageBuilder Helper Class). By default, only MessageHeaders.ID and
MessageHeaders.TIMESTAMP are not copied during message building. Since version 4.3.2.

⑦ A comma-separated list of AbstractEndpoint bean names patterns (xxx*, xxx, *xxx or
xxx*yyy) that should not be started automatically during application startup. You can
manually start these endpoints later by their bean name through a Control Bus (see Control
Bus), by their role with the SmartLifecycleRoleController (see Endpoint Roles), or by
Lifecycle bean injection. You can explicitly override the effect of this global property by
specifying auto-startup XML annotation or the autoStartup annotation attribute or by
calling AbstractEndpoint.setAutoStartup() in the bean definition. Since version 4.3.12.

⑧ A boolean flag to indicate that BeanPostProcessor instances should post-process beans
registered at runtime (for example, message channels created by IntegrationFlowContext
can be supplied with global channel interceptors). Since version 4.3.15.

These properties can be overridden by adding a /META-INF/spring.integration.properties file to the
classpath. You need not provide all the properties — only those that you want to override.

Starting with version 5.1, all the merged global properties are printed in the logs after application

868

./message.pdf#message-header-accessor
./message.pdf#message-header-accessor
./message.pdf#message-builder
./message.pdf#message-builder
./message.pdf#message-builder
./control-bus.pdf#control-bus
./control-bus.pdf#control-bus
./endpoint.pdf#endpoint-roles

context startup when a DEBUG logic level is turned on for the org.springframework.integration
category. The output looks like this:

Spring Integration global properties:

spring.integration.endpoints.noAutoStartup=fooService*
spring.integration.taskScheduler.poolSize=20
spring.integration.channels.maxUnicastSubscribers=0x7fffffff
spring.integration.channels.autoCreate=true
spring.integration.channels.maxBroadcastSubscribers=0x7fffffff
spring.integration.readOnly.headers=
spring.integration.messagingTemplate.throwExceptionOnLateReply=true

F.4. Annotation Support
In addition to the XML namespace support for configuring message endpoints, you can also use
annotations. First, Spring Integration provides the class-level @MessageEndpoint as a stereotype
annotation, meaning that it is itself annotated with Spring’s @Component annotation and is therefore
automatically recognized as a bean definition by Spring’s component scanning.

Even more important are the various method-level annotations. They indicate that the annotated
method is capable of handling a message. The following example demonstrates both class-level and
method-level annotations:

@MessageEndpoint
public class FooService {

 @ServiceActivator
 public void processMessage(Message message) {
 ...
 }
}

Exactly what it means for the method to “handle” the Message depends on the particular
annotation. Annotations available in Spring Integration include:

• @Aggregator (see Aggregator)

• @Filter (see Filter)

• @Router (see Routers)

• @ServiceActivator (see Service Activator)

• @Splitter (see Splitter)

• @Transformer (see Transformer)

869

./aggregator.pdf#aggregator
./filter.pdf#filter
./router.pdf#router
./service-activator.pdf#service-activator
./splitter.pdf#splitter
./transformer.pdf#transformer

• @InboundChannelAdapter (see Channel Adapter)

• @BridgeFrom (see Configuring a Bridge with Java Configuration)

• @BridgeTo (see Configuring a Bridge with Java Configuration)

• @MessagingGateway (see Messaging Gateways)

• @IntegrationComponentScan (see Configuration and @EnableIntegration)



If you use XML configuration in combination with annotations, the
@MessageEndpoint annotation is not required. If you want to configure a POJO
reference from the ref attribute of a <service-activator/> element, you can
provide only the method-level annotations. In that case, the annotation prevents
ambiguity even when no method-level attribute exists on the <service-activator/>
element.

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message’s payload type, as the following
example shows:

public class ThingService {

 @ServiceActivator
 public void bar(Thing thing) {
 ...
 }

}

When the method parameter should be mapped from a value in the MessageHeaders, another option
is to use the parameter-level @Header annotation. In general, methods annotated with the Spring
Integration annotations can accept the Message itself, the message payload, or a header value (with
@Header) as the parameter. In fact, the method can accept a combination, as the following example
shows:

public class ThingService {

 @ServiceActivator
 public void otherThing(String payload, @Header("x") int valueX, @Header("y")
int valueY) {
 ...
 }

}

870

./channel-adapter.pdf#channel-adapter
./bridge.pdf#bridge-annot
./bridge.pdf#bridge-annot
./gateway.pdf#gateway
./overview.pdf#configuration-enable-integration
./overview.pdf#configuration-enable-integration

You can also use the @Headers annotation to provide all of the message headers as a Map, as the
following example shows:

public class ThingService {

 @ServiceActivator
 public void otherThing(String payload, @Headers Map<String, Object> headerMap)
{
 ...
 }

}



The value of the annotation can also be a SpEL expression (for example,
someHeader.toUpperCase()), which is useful when you wish to manipulate the
header value before injecting it. It also provides an optional required property,
which specifies whether the attribute value must be available within the headers.
The default value for the required property is true.

For several of these annotations, when a message-handling method returns a non-null value, the
endpoint tries to send a reply. This is consistent across both configuration options (namespace and
annotations) in that such an endpoint’s output channel is used (if available), and the REPLY_CHANNEL
message header value is used as a fallback.



The combination of output channels on endpoints and the reply channel message
header enables a pipeline approach, where multiple components have an output
channel and the final component allows the reply message to be forwarded to the
reply channel (as specified in the original request message). In other words, the
final component depends on the information provided by the original sender and
can dynamically support any number of clients as a result. This is an example of
the return address pattern.

In addition to the examples shown here, these annotations also support the inputChannel and
outputChannel properties, as the following example shows:

871

https://www.enterpriseintegrationpatterns.com/ReturnAddress.html

@Service
public class ThingService {

 @ServiceActivator(inputChannel="input", outputChannel="output")
 public void otherThing(String payload, @Headers Map<String, Object> headerMap)
{
 ...
 }

}

The processing of these annotations creates the same beans as the corresponding XML
components — AbstractEndpoint instances and MessageHandler instances (or MessageSource instances
for the inbound channel adapter). See Annotations on @Bean Methods. The bean names are
generated from the following pattern:
[componentName].[methodName].[decapitalizedAnnotationClassShortName]. In the preceding example
the bean name is thingService.otherThing.serviceActivator for the AbstractEndpoint and the same
name with an additional .handler (.source) suffix for the MessageHandler (MessageSource) bean. Such
a name can be customized using an @EndpointId annotation alongside with these messaging
annotations. The MessageHandler instances (MessageSource instances) are also eligible to be tracked
by the message history.

Starting with version 4.0, all messaging annotations provide SmartLifecycle options (autoStartup
and phase) to allow endpoint lifecycle control on application context initialization. They default to
true and 0, respectively. To change the state of an endpoint (such as ` start()` or stop()), you can
obtain a reference to the endpoint bean by using the BeanFactory (or autowiring) and invoke the
methods. Alternatively, you can send a command message to the Control Bus (see Control Bus). For
these purposes, you should use the beanName mentioned earlier in the preceding paragraph.

872

./message-history.pdf#message-history
./control-bus.pdf#control-bus



Channels automatically created after parsing the mentioned annotations (when no
specific channel bean is configured), and the corresponding consumer endpoints,
are declared as beans near the end of the context initialization. These beans can
be autowired in other services, but they have to be marked with the @Lazy
annotation because the definitions, typically, won’t yet be available during normal
autowiring processing.

@Autowired
@Lazy
@Qualifier("someChannel")
MessageChannel someChannel;
...

@Bean
Thing1 dependsOnSPCA(@Qualifier("someInboundAdapter") @Lazy
SourcePollingChannelAdapter someInboundAdapter) {
 ...
}

F.4.1. Using the @Poller Annotation

Before Spring Integration 4.0, messaging annotations required that the inputChannel be a reference
to a SubscribableChannel. For PollableChannel instances, an <int:bridge/> element was needed to
configure an <int:poller/> and make the composite endpoint be a PollingConsumer. Version 4.0
introduced the @Poller annotation to allow the configuration of poller attributes directly on the
messaging annotations, as the following example shows:

public class AnnotationService {

 @Transformer(inputChannel = "input", outputChannel = "output",
 poller = @Poller(maxMessagesPerPoll = "${poller.maxMessagesPerPoll}",
fixedDelay = "${poller.fixedDelay}"))
 public String handle(String payload) {
 ...
 }
}

The @Poller annotation provides only simple PollerMetadata options. You can configure the @Poller
annotation’s attributes (maxMessagesPerPoll, fixedDelay, fixedRate, and cron) with property
placeholders. Also, starting with version 5.1, the receiveTimeout option for PollingConsumer s is also
provided. If it is necessary to provide more polling options (for example, transaction, advice-chain,
error-handler, and others), you should configure the PollerMetadata as a generic bean and use its
bean name as the @Poller 's value attribute. In this case, no other attributes are allowed (they must

873

be specified on the PollerMetadata bean). Note, if inputChannel is a PollableChannel and no @Poller is
configured, the default PollerMetadata is used (if it is present in the application context). To declare
the default poller by using a @Configuration annotation, use code similar to the following example:

@Bean(name = PollerMetadata.DEFAULT_POLLER)
public PollerMetadata defaultPoller() {
 PollerMetadata pollerMetadata = new PollerMetadata();
 pollerMetadata.setTrigger(new PeriodicTrigger(10));
 return pollerMetadata;
}

The following example shows how to use the default poller:

public class AnnotationService {

 @Transformer(inputChannel = "aPollableChannel", outputChannel = "output")
 public String handle(String payload) {
 ...
 }
}

The following example shows how to use a named poller:

@Bean
public PollerMetadata myPoller() {
 PollerMetadata pollerMetadata = new PollerMetadata();
 pollerMetadata.setTrigger(new PeriodicTrigger(1000));
 return pollerMetadata;
}

The following example shows an endpoint that uses the default poller:

874

public class AnnotationService {

 @Transformer(inputChannel = "aPollableChannel", outputChannel = "output"
 poller = @Poller("myPoller"))
 public String handle(String payload) {
 ...
 }
}

Starting with version 4.3.3, the @Poller annotation has the errorChannel attribute for easier
configuration of the underlying MessagePublishingErrorHandler. This attribute plays the same role as
error-channel in the <poller> XML component. See Endpoint Namespace Support for more
information.

F.4.2. Using the @InboundChannelAdapter Annotation

Version 4.0 introduced the @InboundChannelAdapter method-level annotation. It produces a
SourcePollingChannelAdapter integration component based on a MethodInvokingMessageSource for the
annotated method. This annotation is an analogue of the <int:inbound-channel-adapter> XML
component and has the same restrictions: The method cannot have parameters, and the return type
must not be void. It has two attributes: value (the required MessageChannel bean name) and poller
(an optional @Poller annotation, as described earlier). If you need to provide some MessageHeaders,
use a Message<?> return type and use a MessageBuilder to build the Message<?>. Using a
MessageBuilder lets you configure the MessageHeaders. The following example shows how to use an
@InboundChannelAdapter annotation:

@InboundChannelAdapter("counterChannel")
public Integer count() {
 return this.counter.incrementAndGet();
}

@InboundChannelAdapter(value = "fooChannel", poller = @Poller(fixed-rate = "5000"
))
public String foo() {
 return "foo";
}

Version 4.3 introduced the channel alias for the value annotation attribute, to provide better source
code readability. Also, the target MessageChannel bean is resolved in the SourcePollingChannelAdapter
by the provided name (set by the outputChannelName option) on the first receive() call, not during
the initialization phase. It allows “late binding” logic: The target MessageChannel bean from the
consumer perspective is created and registered a bit later than the @InboundChannelAdapter parsing
phase.

875

./endpoint.pdf#endpoint-namespace

The first example requires that the default poller has been declared elsewhere in the application
context.

Using the @MessagingGateway Annotation

See @MessagingGateway Annotation.

F.4.3. Using the @IntegrationComponentScan Annotation

The standard Spring Framework @ComponentScan annotation does not scan interfaces for stereotype
@Component annotations. To overcome this limitation and allow the configuration of
@MessagingGateway (see @MessagingGateway Annotation), we introduced the @IntegrationComponentScan
mechanism. This annotation must be placed with a @Configuration annotation and be customized to
define its scanning options, such as basePackages and basePackageClasses. In this case, all discovered
interfaces annotated with @MessagingGateway are parsed and registered as GatewayProxyFactoryBean
instances. All other class-based components are parsed by the standard @ComponentScan.

F.5. Messaging Meta-Annotations
Starting with version 4.0, all messaging annotations can be configured as meta-annotations and all
user-defined messaging annotations can define the same attributes to override their default values.
In addition, meta-annotations can be configured hierarchically, as the following example shows:

@Target({ElementType.METHOD, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
@ServiceActivator(inputChannel = "annInput", outputChannel = "annOutput")
public @interface MyServiceActivator {

 String[] adviceChain = { "annAdvice" };
}

@Target({ElementType.METHOD, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
@MyServiceActivator
public @interface MyServiceActivator1 {

 String inputChannel();

 String outputChannel();
}
...

@MyServiceActivator1(inputChannel = "inputChannel", outputChannel = "
outputChannel")
public Object service(Object payload) {
 ...
}

876

./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation

Configuring meta-annotations hierarchically lets users set defaults for various attributes and
enables isolation of framework Java dependencies to user annotations, avoiding their use in user
classes. If the framework finds a method with a user annotation that has a framework meta-
annotation, it is treated as if the method were annotated directly with the framework annotation.

F.5.1. Annotations on @Bean Methods

Starting with version 4.0, you can configure messaging annotations on @Bean method definitions in
@Configuration classes, to produce message endpoints based on the beans, not the methods. It is
useful when @Bean definitions are “out-of-the-box” MessageHandler instances
(AggregatingMessageHandler, DefaultMessageSplitter, and others), Transformer instances
(JsonToObjectTransformer, ClaimCheckOutTransformer, and others), and MessageSource instances
(FileReadingMessageSource, RedisStoreMessageSource, and others). The following example shows how
to use messaging annotations with @Bean annotations:

877

@Configuration
@EnableIntegration
public class MyFlowConfiguration {

 @Bean
 @InboundChannelAdapter(value = "inputChannel", poller = @Poller(fixedDelay =
"1000"))
 public MessageSource<String> consoleSource() {
 return CharacterStreamReadingMessageSource.stdin();
 }

 @Bean
 @Transformer(inputChannel = "inputChannel", outputChannel = "httpChannel")
 public ObjectToMapTransformer toMapTransformer() {
 return new ObjectToMapTransformer();
 }

 @Bean
 @ServiceActivator(inputChannel = "httpChannel")
 public MessageHandler httpHandler() {
 HttpRequestExecutingMessageHandler handler = new
HttpRequestExecutingMessageHandler("https://foo/service");
 handler.setExpectedResponseType(String.class);
 handler.setOutputChannelName("outputChannel");
 return handler;
 }

 @Bean
 @ServiceActivator(inputChannel = "outputChannel")
 public LoggingHandler loggingHandler() {
 return new LoggingHandler("info");
 }

}

Version 5.0 introduced support for a @Bean annotated with @InboundChannelAdapter that returns
java.util.function.Supplier, which can produce either a POJO or a Message. The followig example
shows how to use that combination:

878

@Configuration
@EnableIntegration
public class MyFlowConfiguration {

 @Bean
 @InboundChannelAdapter(value = "inputChannel", poller = @Poller(fixedDelay =
"1000"))
 public Supplier<String> pojoSupplier() {
 return () -> "foo";
 }

 @Bean
 @InboundChannelAdapter(value = "inputChannel", poller = @Poller(fixedDelay =
"1000"))
 public Supplier<Message<String>> messageSupplier() {
 return () -> new GenericMessage<>("foo");
 }
}

The meta-annotation rules work on @Bean methods as well (the @MyServiceActivator annotation
described earlier can be applied to a @Bean definition).



When you use these annotations on consumer @Bean definitions, if the bean
definition returns an appropriate MessageHandler (depending on the annotation
type), you must set attributes (such as outputChannel, requiresReply, order, and
others), on the MessageHandler @Bean definition itself. Only the following annotation
attributes are used: adviceChain, autoStartup, inputChannel, phase, and poller. All
other attributes are for the handler.

 The bean names are generated with the following algorithm:

• The MessageHandler (MessageSource) @Bean gets its own standard name from the method name or
name attribute on the @Bean. This works as though there were no messaging annotation on the
@Bean method.

• The AbstractEndpoint bean name is generated with the following pattern:
[configurationComponentName].[methodName].[decapitalizedAnnotationClassShortName]. For
example, the SourcePollingChannelAdapter endpoint for the consoleSource() definition shown
earlier gets a bean name of myFlowConfiguration.consoleSource.inboundChannelAdapter. See also
Endpoint Bean Names.


When using these annotations on @Bean definitions, the inputChannel must
reference a declared bean. Channels are not automatically declared in this case.

879

./overview.pdf#endpoint-bean-names



With Java configuration, you can use any @Conditional (for example, @Profile)
definition on the @Bean method level to skip the bean registration for some
conditional reason. The following example shows how to do so:

@Bean
@ServiceActivator(inputChannel = "skippedChannel")
@Profile("thing")
public MessageHandler skipped() {
 return System.out::println;
}

Together with the existing Spring container logic, the messaging endpoint bean
(based on the @ServiceActivator annotation), is also not registered.

F.5.2. Creating a Bridge with Annotations

Starting with version 4.0, Java configuration provides the @BridgeFrom and @BridgeTo @Bean method
annotations to mark MessageChannel beans in @Configuration classes. These really exists for
completeness, providing a convenient mechanism to declare a BridgeHandler and its message
endpoint configuration:

@Bean
public PollableChannel bridgeFromInput() {
 return new QueueChannel();
}

@Bean
@BridgeFrom(value = "bridgeFromInput", poller = @Poller(fixedDelay = "1000"))
public MessageChannel bridgeFromOutput() {
 return new DirectChannel();
}
@Bean
public QueueChannel bridgeToOutput() {
 return new QueueChannel();
}

@Bean
@BridgeTo("bridgeToOutput")
public MessageChannel bridgeToInput() {
 return new DirectChannel();
}

You can use these annotations as meta-annotations as well.

880

F.5.3. Advising Annotated Endpoints

See Advising Endpoints Using Annotations.

F.6. Message Mapping Rules and Conventions
Spring Integration implements a flexible facility to map messages to methods and their arguments
without providing extra configuration, by relying on some default rules and defining certain
conventions. The examples in the following sections articulate the rules.

F.6.1. Sample Scenarios

The following example shows a single un-annotated parameter (object or primitive) that is not a Map
or a Properties object with a non-void return type:

public String doSomething(Object o);

The input parameter is a message payload. If the parameter type is not compatible with a message
payload, an attempt is made to convert it by using a conversion service provided by Spring 3.0. The
return value is incorporated as a payload of the returned message.

The following example shows a single un-annotated parameter (object or primitive)that is not a Map
or a Properties with a Message return type:

public Message doSomething(Object o);

The input parameter is a message payload. If the parameter type is not compatible with a message
payload, an attempt is made to convert it by using a conversion service provided by Spring 3.0. The
return value is a newly constructed message that is sent to the next destination.

The followig example shows a single parameter that is a message (or one of its subclasses) with an
arbitrary object or primitive return type:

public int doSomething(Message msg);

The input parameter is itself a Message. The return value becomes a payload of the Message that is
sent to the next destination.

The following example shows a single parameter that is a Message (or one of its subclasses) with a
Message (or one of its subclasses) as the return type:

881

./handler-advice.pdf#advising-with-annotations

public Message doSomething(Message msg);

The input parameter is itself a Message. The return value is a newly constructed Message that is sent
to the next destination.

The following example shows a single parameter of type Map or Properties with a Message as the
return type:

public Message doSomething(Map m);

This one is a bit interesting. Although, at first, it might seem like an easy mapping straight to
message headers, preference is always given to a Message payload. This means that if a Message
payload is of type Map, this input argument represents a Message payload. However, if the Message
payload is not of type Map, the conversion service does not try to convert the payload, and the input
argument is mapped to message headers.

The following example shows two parameters, where one of them is an arbitrary type (an object or
a primitive) that is not a Map or a Properties object and the other is of type Map or Properties type
(regardless of the return):

public Message doSomething(Map h, <T> t);

This combination contains two input parameters where one of them is of type Map. The non-Map
parameters (regardless of the order) are mapped to a Message payload and the Map or Properties
(regardless of the order) is mapped to message headers, giving you a nice POJO way of interacting
with Message structure.

The following example shows no parameters (regardless of the return):

public String doSomething();

This message handler method is invoked based on the Message sent to the input channel to which
this handler is connected. However no Message data is mapped, thus making the Message act as event
or trigger to invoke the handler. The output is mapped according to the rules described earlier.

The following example shows no parameters and a void return:

882

public void soSomething();

This example is the same as the previous example, but it produces no output.

F.6.2. Annotation-based Mapping

Annotation-based mapping is the safest and least ambiguous approach to map messages to
methods. The following example shows how to explicitly map a method to a header:

public String doSomething(@Payload String s, @Header("someheader") String b)

As you can see later on, without an annotation this signature would result in an ambiguous
condition. However, by explicitly mapping the first argument to a Message payload and the second
argument to a value of the someheader message header, we avoid any ambiguity.

The following example is nearly identical to the preceding example:

public String doSomething(@Payload String s, @RequestParam("something") String b)

@RequestMapping or any other non-Spring Integration mapping annotation is irrelevant and is
therefore ignored, leaving the second parameter unmapped. Although the second parameter could
easily be mapped to a payload, there can only be one payload. Therefore, the annotations keep this
method from being ambiguous.

The following example shows another similar method that would be ambiguous were it not for
annotations to clarify the intent:

public String foo(String s, @Header("foo") String b)

The only difference is that the first argument is implicitly mapped to the message payload.

The following example shows yet another signature that would definitely be treated as ambiguous
without annotations, because it has more than two arguments:

public String soSomething(@Headers Map m, @Header("something") Map f, @Header(
"someotherthing") String bar)

This example would be especially problematic, because two of its arguments are Map instances.

883

However, with annotation-based mapping, the ambiguity is easily avoided. In this example the first
argument is mapped to all the message headers, while the second and third argument map to the
values of the message headers named 'something' and 'someotherthing'. The payload is not being
mapped to any argument.

F.6.3. Complex Scenarios

The following example uses multiple parameters:

Multiple parameters can create a lot of ambiguity with regards to determining the appropriate
mappings. The general advice is to annotate your method parameters with @Payload, @Header, and
@Headers. The examples in this section show ambiguous conditions that result in an exception being
raised.

public String doSomething(String s, int i)

The two parameters are equal in weight. Therefore, there is no way to determine which one is a
payload.

The following example shows a similar problem, only with three parameters:

public String foo(String s, Map m, String b)

Although the Map could be easily mapped to message headers, there is no way to determine what
to do with the two String parameters.

The following example shows another ambiguous method:

public String foo(Map m, Map f)

Although one might argue that one Map could be mapped to the message payload and the other one
to the message headers, we cannot rely on the order.


Any method signature with more than one method argument that is not (Map, <T>)
and with unannotated parameters results in an ambiguous condition and triggers
an exception.

The next set of examples each show mutliple methods that result in ambiguity.

Message handlers with multiple methods are mapped based on the same rules that are described
earlier (in the examples). However, some scenarios might still look confusing.

884

The following example shows multiple methods with legal (mappable and unambiguous)
signatures:

public class Something {
 public String doSomething(String str, Map m);

 public String doSomething(Map m);
}

(Whether the methods have the same name or different names makes no difference). The Message
could be mapped to either method. The first method would be invoked when the message payload
could be mapped to str and the message headers could be mapped to m. The second method could
also be a candidate by mapping only the message headers to m. To make matters worse, both
methods have the same name. At first, that might look ambiguous because of the following
configuration:

<int:service-activator input-channel="input" output-channel="output" method=
"doSomething">
 <bean class="org.things.Something"/>
</int:service-activator>

It works because mappings are based on the payload first and everything else next. In other words,
the method whose first argument can be mapped to a payload takes precedence over all other
methods.

Now consider an alternate example, which produces a truly ambiguous condition:

public class Something {
 public String doSomething(String str, Map m);

 public String doSomething(String str);
}

Both methods have signatures that could be mapped to a message payload. They also have the same
name. Such handler methods will trigger an exception. However, if the method names were
different, you could influence the mapping with a method attribute (shown in the next example). The
following example shows the same example with two different method names:

885

public class Something {
 public String doSomething(String str, Map m);

 public String doSomethingElse(String str);
}

The following example shows how to use the method attribute to dictate the mapping:

<int:service-activator input-channel="input" output-channel="output" method=
"doSomethingElse">
 <bean class="org.bar.Foo"/>
</int:service-activator>

Because the configuration explicitly maps the doSomethingElse method, we have eliminated the
ambiguity.

886

Appendix G: Testing support
Spring Integration provides a number of utilities and annotations to help you test your application.
Testing support is presented by two modules:

• spring-integration-test-support contains core items and shared utilities

• spring-integration-test provides mocking and application context configuration components
for integration tests

spring-integration-test-support (spring-integration-test in versions before 5.0) provides basic,
standalone utilities, rules, and matchers for unit testing. (it also has no dependencies on Spring
Integration itself and is used internally in Framework tests). spring-integration-test aims to help
with integration testing and provides a comprehensive high-level API to mock integration
components and verify the behavior of individual components, including whole integration flows
or only parts of them.

A thorough treatment of testing in the enterprise is beyond the scope of this reference manual. See
the “Test-Driven Development in Enterprise Integration Projects” paper, by Gregor Hohpe and
Wendy Istvanick, for a source of ideas and principles for testing your target integration solution.

The Spring Integration Test Framework and test utilities are fully based on existing JUnit, Hamcrest,
and Mockito libraries. The application context interaction is based on the Spring test framework.
See the documentation for those projects for further information.

Thanks to the canonical implementation of the EIP in Spring Integration Framework and its first-
class citizens (such as MessageChannel, Endpoint and MessageHandler), abstractions, and loose coupling
principles, you can implement integration solutions of any complexity. With the Spring Integration
API for the flow definitions, you can improve, modify or even replace some part of the flow without
impacting (mostly) other components in the integration solution. Testing such an integration
solution is still a challenge, both from an end-to-end approach and from an in-isolation approach.
Several existing tools can help to test or mock some integration protocols, and they work well with
Spring Integration channel adapters. Examples of such tools include the following:

• Spring MockMVC and its MockRestServiceServer can be used for testing HTTP.

• Some RDBMS vendors provide embedded data bases for JDBC or JPA support.

• ActiveMQ can be embedded for testing JMS or STOMP protocols.

• There are tools for embedded MongoDB and Redis.

• Tomcat and Jetty have embedded libraries to test real HTTP, Web Services, or WebSockets.

• The FtpServer and SshServer from the Apache Mina project can be used for testing the FTP and
SFTP protocols.

• Gemfire and Hazelcast can be run as real-data grid nodes in the tests.

• The Curator Framework provides a TestingServer for Zookeeper interaction.

• Apache Kafka provides admin tools to embed a Kafka Broker in the tests.

Most of these tools and libraries are used in Spring Integration tests. Also, from the GitHub

887

https://www.enterpriseintegrationpatterns.com/docs/TestDrivenEAI.pdf
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/testing.html#testing

repository (in the test directory of each module), you can discover ideas for how to build your own
tests for integration solutions.

The rest of this chapter describes the testing tools and utilities provided by Spring Integration.

G.1. Testing Utilities
The spring-integration-test-support module provides utilities and helpers for unit testing.

G.1.1. TestUtils

The TestUtils class is mostly used for properties assertions in JUnit tests, as the following example
shows:

@Test
public void loadBalancerRef() {
 MessageChannel channel = channels.get("lbRefChannel");
 LoadBalancingStrategy lbStrategy = TestUtils.getPropertyValue(channel,
 "dispatcher.loadBalancingStrategy", LoadBalancingStrategy.class);
 assertTrue(lbStrategy instanceof SampleLoadBalancingStrategy);
}

TestUtils.getPropertyValue() is based on Spring’s DirectFieldAccessor and provides the ability to
get a value from the target private property. As shown in the preceding example, it also supports
nested properties access by using dotted notation.

The createTestApplicationContext() factory method produces a TestApplicationContext instance
with the supplied Spring Integration environment.

See the Javadoc of other TestUtils methods for more information about this class.

G.1.2. Using the SocketUtils Class

The SocketUtils class provides several methods that select one or more random ports for exposing
server-side components without conflicts, as the following example shows:

888

https://github.com/spring-projects/spring-integration
https://docs.spring.io/spring-integration/api/org/springframework/integration/test/util/TestUtils.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/SocketUtils.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/SocketUtils.html

<bean id="socketUtils" class="org.springframework.util.SocketUtils" />

<int-syslog:inbound-channel-adapter id="syslog"
 channel="sysLogs"
 port="#{socketUtils.findAvailableUdpPort(1514)}" />

<int:channel id="sysLogs">
 <int:queue/>
</int:channel>

The following example shows how the preceding configuration is used from the unit test:

@Autowired @Qualifier("syslog.adapter")
private UdpSyslogReceivingChannelAdapter adapter;

@Autowired
private PollableChannel sysLogs;
...
@Test
public void testSimplestUdp() throws Exception {
 int port = TestUtils.getPropertyValue(adapter1, "udpAdapter.port", Integer
.class);
 byte[] buf = "<157>JUL 26 22:08:35 WEBERN TESTING[70729]: TEST SYSLOG MESSAGE
".getBytes("UTF-8");
 DatagramPacket packet = new DatagramPacket(buf, buf.length,
 new InetSocketAddress("localhost", port));
 DatagramSocket socket = new DatagramSocket();
 socket.send(packet);
 socket.close();
 Message<?> message = foo.receive(10000);
 assertNotNull(message);
}



This technique is not foolproof. Some other process could be allocated the “free”
port before your test opens it. It is generally more preferable to use server port 0,
let the operating system select the port for you, and then discover the selected port
in your test. We have converted most framework tests to use this preferred
technique.

G.1.3. Using OnlyOnceTrigger

OnlyOnceTrigger is useful for polling endpoints when you need to produce only one test message
and verify the behavior without impacting other period messages. The following example shows
how to configure OnlyOnceTrigger:

889

https://docs.spring.io/spring-integration/api/org/springframework/integration/test/util/OnlyOnceTrigger.html

<bean id="testTrigger" class=
"org.springframework.integration.test.util.OnlyOnceTrigger" />

<int:poller id="jpaPoller" trigger="testTrigger">
 <int:transactional transaction-manager="transactionManager" />
</int:poller>

The following example shows how to use the preceding configuration of OnlyOnceTrigger for testing:

@Autowired
@Qualifier("jpaPoller")
PollerMetadata poller;

@Autowired
OnlyOnceTrigger testTrigger;
...
@Test
@DirtiesContext
public void testWithEntityClass() throws Exception {
 this.testTrigger.reset();
 ...
 JpaPollingChannelAdapter jpaPollingChannelAdapter = new
JpaPollingChannelAdapter(jpaExecutor);

 SourcePollingChannelAdapter adapter = JpaTestUtils
.getSourcePollingChannelAdapter(
 jpaPollingChannelAdapter, this.outputChannel, this.poller, this
.context,
 this.getClass().getClassLoader());
 adapter.start();
 ...
}

G.1.4. Support Components

The org.springframework.integration.test.support package contains various abstract classes that
you should implement in target tests

• AbstractRequestResponseScenarioTests

• AbstractResponseValidator

• LogAdjustingTestSupport (Deprecated)

• MessageValidator

• PayloadValidator

890

https://docs.spring.io/spring-integration/api/org/springframework/integration/test/support/AbstractRequestResponseScenarioTests.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/test/support/AbstractResponseValidator.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/test/support/LogAdjustingTestSupport.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/test/support/MessageValidator.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/test/support/PayloadValidator.html

• RequestResponseScenario

• SingleRequestResponseScenarioTests

G.1.5. JUnit Rules and Conditions

The LongRunningIntegrationTest JUnit 4 test rule is present to indicate if test should be run if
RUN_LONG_INTEGRATION_TESTS environment or system property is set to true. Otherwise it is skipped.
For the same reason since version 5.1, a @LongRunningTest conditional annotation is provided for
JUnit 5 tests.

G.1.6. Hamcrest and Mockito Matchers

The org.springframework.integration.test.matcher package contains several Matcher
implementations to assert Message and its properties in unit tests. The following example shows
how to use one such matcher (PayloadMatcher):

import static
org.springframework.integration.test.matcher.PayloadMatcher.hasPayload;
...
@Test
public void transform_withFilePayload_convertedToByteArray() throws Exception {
 Message<?> result = this.transformer.transform(message);
 assertThat(result, is(notNullValue()));
 assertThat(result, hasPayload(is(instanceOf(byte[].class))));
 assertThat(result, hasPayload(SAMPLE_CONTENT.getBytes(DEFAULT_ENCODING)));
}

The MockitoMessageMatchers factory can be used for mocks for stubbing and verifications, as the
following example shows:

891

https://docs.spring.io/spring-integration/api/org/springframework/integration/test/support/RequestResponseScenario.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/test/support/SingleRequestResponseScenarioTests.html

static final Date SOME_PAYLOAD = new Date();

static final String SOME_HEADER_VALUE = "bar";

static final String SOME_HEADER_KEY = "test.foo";
...
Message<?> message = MessageBuilder.withPayload(SOME_PAYLOAD)
 .setHeader(SOME_HEADER_KEY, SOME_HEADER_VALUE)
 .build();
MessageHandler handler = mock(MessageHandler.class);
handler.handleMessage(message);
verify(handler).handleMessage(messageWithPayload(SOME_PAYLOAD));
verify(handler).handleMessage(messageWithPayload(is(instanceOf(Date.class))));
...
MessageChannel channel = mock(MessageChannel.class);
when(channel.send(messageWithHeaderEntry(SOME_HEADER_KEY, is(instanceOf(Short
.class)))))
 .thenReturn(true);
assertThat(channel.send(message), is(false));

G.1.7. AssertJ conditions and predicates

Starting with version 5.2, the MessagePredicate is introduced to be used in the AssertJ matches()
assertion. It requires a Message object as an expectation. And also ot can be configured with headers
to exclude from expectation as well as from actual message to assert.

G.2. Spring Integration and the Test Context
Typically, tests for Spring applications use the Spring Test Framework. Since Spring Integration is
based on the Spring Framework foundation, everything we can do with the Spring Test Framework
also applies when testing integration flows. The org.springframework.integration.test.context
package provides some components for enhancing the test context for integration needs. First of all,
we configure our test class with a @SpringIntegrationTest annotation to enable the Spring
Integration Test Framework, as the following example shows:

@RunWith(SpringRunner.class)
@SpringIntegrationTest(noAutoStartup = {"inboundChannelAdapter", "*Source*"})
public class MyIntegrationTests {

 @Autowired
 private MockIntegrationContext mockIntegrationContext;

}

892

The @SpringIntegrationTest annotation populates a MockIntegrationContext bean, which you can
autowire to the test class to access its methods. With the noAutoStartup option, the Spring
Integration Test Framework prevents endpoints that are normally autoStartup=true from starting.
The endpoints are matched to the provided patterns, which support the following simple pattern
styles: xxx*, xxx, *xxx, and xxx*yyy.

This is useful when we would like to not have real connections to the target systems from inbound
channel adapters (for example an AMQP Inbound Gateway, JDBC Polling Channel Adapter,
WebSocket Message Producer in client mode, and so on).

The MockIntegrationContext is meant to be used in the target test cases for modifications to beans in
the real application context. For example, endpoints that have autoStartup overridden to false can
be replaced with mocks, as the following example shows:

@Test
public void testMockMessageSource() {
 MessageSource<String> messageSource = () -> new GenericMessage<>("foo");

 this.mockIntegrationContext.substituteMessageSourceFor("mySourceEndpoint",
messageSource);

 Message<?> receive = this.results.receive(10_000);
 assertNotNull(receive);
}



The mySourceEndpoint refers here to the bean name of the
SourcePollingChannelAdapter for which we replace the real MessageSource with our
mock. Similarly the MockIntegrationContext.substituteMessageHandlerFor() expects
a bean name for the IntegrationConsumer, which wraps a MessageHandler as an
endpoint.

After test is performed you can restore the state of endpoint beans to the real configuration using
MockIntegrationContext.resetBeans():

@After
public void tearDown() {
 this.mockIntegrationContext.resetBeans();
}

See the Javadoc for more information.

893

https://docs.spring.io/spring-integration/api/org/springframework/integration/test/context/MockIntegrationContext.html

G.3. Integration Mocks
The org.springframework.integration.test.mock package offers tools and utilities for mocking,
stubbing, and verification of activity on Spring Integration components. The mocking functionality
is fully based on and compatible with the well known Mockito Framework. (The current Mockito
transitive dependency is on version 2.5.x or higher.)

G.3.1. MockIntegration

The MockIntegration factory provides an API to build mocks for Spring Integration beans that are
parts of the integration flow (MessageSource, MessageProducer, MessageHandler, and MessageChannel).
You can use the target mocks during the configuration phase as well as in the target test method to
replace the real endpoints before performing verifications and assertions, as the following example
shows:

<int:inbound-channel-adapter id="inboundChannelAdapter" channel="results">
 <bean class="org.springframework.integration.test.mock.MockIntegration"
factory-method="mockMessageSource">
 <constructor-arg value="a"/>
 <constructor-arg>
 <array>
 <value>b</value>
 <value>c</value>
 </array>
 </constructor-arg>
 </bean>
</int:inbound-channel-adapter>

The following example shows how to use Java Configuration to achieve the same configuration as
the preceding example:

894

@InboundChannelAdapter(channel = "results")
@Bean
public MessageSource<Integer> testingMessageSource() {
 return MockIntegration.mockMessageSource(1, 2, 3);
}
...
StandardIntegrationFlow flow = IntegrationFlows
 .from(MockIntegration.mockMessageSource("foo", "bar", "baz"))
 .<String, String>transform(String::toUpperCase)
 .channel(out)
 .get();
IntegrationFlowRegistration registration = this.integrationFlowContext
.registration(flow)
 .register();

For this purpose, the aforementioned MockIntegrationContext should be used from the test, as the
following example shows:

this.mockIntegrationContext.substituteMessageSourceFor("mySourceEndpoint",
 MockIntegration.mockMessageSource("foo", "bar", "baz"));
Message<?> receive = this.results.receive(10_000);
assertNotNull(receive);
assertEquals("FOO", receive.getPayload());

Unlike the Mockito MessageSource mock object, the MockMessageHandler is a regular
AbstractMessageProducingHandler extension with a chain API to stub handling for incoming
messages. The MockMessageHandler provides handleNext(Consumer<Message<?>>) to specify a one-way
stub for the next request message. It is used to mock message handlers that do not produce replies.
handleNextAndReply(Function<Message<?>, ?>) is provided for performing the same stub logic for the
next request message and producing a reply for it. They can be chained to simulate any arbitrary
request-reply scenarios for all expected request messages variants. These consumers and functions
are applied to the incoming messages, one at a time from the stack, until the last, which is then used
for all remaining messages. The behavior is similar to the Mockito Answer or doReturn() API.

In addition, you can supply a Mockito ArgumentCaptor<Message<?>> to the MockMessageHandler in a
constructor argument. Each request message for the MockMessageHandler is captured by that
ArgumentCaptor. During the test, you can use its getValue() and getAllValues() methods to verify and
assert those request messages.

The MockIntegrationContext provides a substituteMessageHandlerFor() API that lets you replace the
actual configured MessageHandler with a MockMessageHandler in the endpoint under test.

The following example shows a typical usage scenario:

895

ArgumentCaptor<Message<?>> messageArgumentCaptor = ArgumentCaptor.forClass(
Message.class);

MessageHandler mockMessageHandler =
 mockMessageHandler(messageArgumentCaptor)
 .handleNextAndReply(m -> m.getPayload().toString().toUpperCase());

this.mockIntegrationContext.substituteMessageHandlerFor("myService.serviceActivato
r",
 mockMessageHandler);
GenericMessage<String> message = new GenericMessage<>("foo");
this.myChannel.send(message);
Message<?> received = this.results.receive(10000);
assertNotNull(received);
assertEquals("FOO", received.getPayload());
assertSame(message, messageArgumentCaptor.getValue());

See the MockIntegration and MockMessageHandler Javadoc for more information.

G.4. Other Resources
As well as exploring the test cases in the framework itself, the Spring Integration Samples
repository has some sample applications specifically made to show testing, such as testing-
examples and advanced-testing-examples. In some cases, the samples themselves have
comprehensive end-to-end tests, such as the file-split-ftp sample.

896

https://docs.spring.io/spring-integration/api/org/springframework/integration/test/mock/MockIntegration.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/test/mock/MockMessageHandler.html
https://github.com/spring-projects/spring-integration-samples
https://github.com/spring-projects/spring-integration-samples

Appendix H: Spring Integration Samples
As of Spring Integration 2.0, the Spring Integration distribution no longer includes the samples.
Instead, we have switched to a much simpler collaborative model that should promote better
community participation and, ideally, more contributions. Samples now have a dedicated Git
repository and a dedicated JIRA Issue Tracking system. Sample development also has its own
lifecycle, which is not dependent on the lifecycle of the framework releases, although the repository
is still tagged with each major release for compatibility reasons.

The great benefit to the community is that we can now add more samples and make them available
to you right away without waiting for the next release. Having its own JIRA that is not tied to the
the actual framework is also a great benefit. You now have a dedicated place to suggest samples as
well as report issues with existing samples. You can also submit a sample to us as an attachment
through JIRA or, better, through the collaborative model that Git promotes. If we believe your
sample adds value, we would be more then glad to add it to the 'samples' repository, properly
crediting you as the author.

H.1. Where to Get Samples
The Spring Integration Samples project is hosted on GitHub. You can find the repository at:

https://github.com/SpringSource/spring-integration-samples

In order to check out or clone the samples, you must have a Git client installed on your system.
There are several GUI-based products available for many platforms (such as EGit for the Eclipse
IDE). A simple Google search can help you find them. You can also use the command line interface
for Git.


If you need more information on how to install or use Git, visit: https://git-
scm.com/.

To clone (check out) the Spring Integration samples repository by using the Git command line tool,
issue the following command:

$ git clone https://github.com/SpringSource/spring-integration-samples.git

The preceding command clones the entire samples repository into a directory named spring-
integration-samples within the working directory where you issued that git command. Since the
samples repository is a live repository, you might want to perform periodic pulls (updates) to get
new samples and updates to the existing samples. To do so, issue the following git pull command:

$ git pull

897

https://github.com/SpringSource/spring-integration-samples/
https://github.com/SpringSource/spring-integration-samples
https://eclipse.org/egit/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/

H.2. Submitting Samples or Sample Requests
You can submit both new samples and requests for samples. We greatly appreciate any effort
toward improving the samples, including the sharing of good ideas.

H.2.1. How Can I Contribute My Own Samples?

Github is for social coding: if you want to submit your own code examples to the Spring Integration
Samples project, we encourage contributions through pull requests from forks of this repository. If
you want to contribute code this way, please reference, if possible, a JIRA ticket that provides some
details regarding your sample.



Sign the contributor license agreement

Very important: Before we can accept your Spring Integration sample, we need
you to sign the SpringSource contributor license agreement (CLA). Signing the
contributor’s agreement does not grant anyone commit rights to the main
repository, but it does mean that we can accept your contributions, and you will
get an author credit if we do. In order to read and sign the CLA, go to:

support.springsource.com/spring_committer_signup

From the Project drop down, select Spring Integration. The Project Lead is Gary
Russell.

H.2.2. Code Contribution Process

For the actual code contribution process, read the the Contributor Guidelines for Spring
Integration. They apply for the samples project as well. You can find them at github.com/spring-
projects/spring-integration/blob/master/CONTRIBUTING.md

This process ensures that every commit gets peer-reviewed. As a matter of fact, the core committers
follow the exact same rules. We gratefully look forward to your Spring Integration samples!

H.2.3. Sample Requests

As mentioned earlier, the Spring Integration Samples project has a dedicated JIRA issue tracking
system. To submit new sample requests, visit the JIRA Issue Tracking system at
jira.springframework.org/browse/INTSAMPLES.

H.3. Samples Structure
Starting with Spring Integration 2.0, the structure of the samples has changed. With plans for more
samples, we realized that not all samples have the same goals. They all share the common goal of
showing you how to apply and work with the Spring Integration framework. However, they differ
in that some samples concentrate on a technical use case, while others focus on a business use case.
Also, some samples are about showcasing various techniques that could be applied to address
certain scenarios (both technical and business). The new categorization of samples lets us better
organize them based on the problem each sample addresses while giving you a simpler way of

898

https://help.github.com/en/articles/creating-a-pull-request/
https://help.github.com/en/articles/fork-a-repo
https://jira.springframework.org/browse/INTSAMPLES
https://support.springsource.com/spring_committer_signup
https://github.com/spring-projects/spring-integration/blob/master/CONTRIBUTING.md
https://github.com/spring-projects/spring-integration/blob/master/CONTRIBUTING.md
https://jira.springframework.org/browse/INTSAMPLES

finding the right sample for your needs.

Currently there are four categories. Within the samples repository, each category has its own
directory, which is named after the category name:

Basic (samples/basic)

This is a good place to get started. The samples here are technically motivated and demonstrate
the bare minimum with regard to configuration and code. These should help you to get started
quickly by introducing you to the basic concepts, API, and configuration of Spring Integration as
well as Enterprise Integration Patterns (EIP). For example, if you are looking for an answer on
how to implement and wire a service activator to a message channel, how to use a messaging
gateway as a facade to your message exchange, or how to get started with MAIL, TCP/UDP or
other modules, this is the right place to find a good sample. The bottom line is samples/basic is a
good place to get started.

Intermediate (samples/intermediate)

This category targets developers who are already familiar with the Spring Integration
framework (beyond getting started) but need some more guidance while resolving the more
advanced technical problems they might encounter after switching to a messaging architecture.
For example, if you are looking for an answer on how to handle errors in various message
exchange scenarios or how to properly configure the aggregator for a situation where some
messages do not ever arrive for aggregation, or any other issue that goes beyond a basic
implementation and configuration of a particular component and exposes “what else” types of
problems, this is the right place to find these type of samples.

Advanced (samples/advanced)

This category targets developers who are very familiar with the Spring Integration framework
but are looking to extend it to address a specific custom need by using Spring Integration’s
public API. For example, if you are looking for samples showing you how to implement a custom
channel or consumer (event-based or polling-based) or you are trying to figure out the most
appropriate way to implement a custom bean parser on top of the Spring Integration bean
parser hierarchy (perhaps when implementing your own namespace and schema for a custom
component), this is the right place to look. Here you can also find samples that will help you with
adapter development. Spring Integration comes with an extensive library of adapters to let you
connect remote systems with the Spring Integration messaging framework. However, you might
need to integrate with a system for which the core framework does not provide an adapter. If so,
you might decide to implement your own (please consider contributing it). This category would
include samples showing you how.

Applications (samples/applications)

This category targets developers and architects who have a good understanding of message-
driven architecture and EIP and an above-average understanding of Spring and Spring
Integration who are looking for samples that address a particular business problem. In other
words, the emphasis of the samples in this category is business use cases and how they can be
solved with a message-driven architecture and Spring Integration in particular. For example, if
you want to see how a loan broker or travel agent process could be implemented and automated
with Spring Integration, this is the right place to find these types of samples.

899


Spring Integration is a community-driven framework. Therefore community
participation is IMPORTANT. That includes samples. If you cannot find what you
are looking for, let us know!

H.4. Samples
Currently, Spring Integration comes with quite a few samples and you can only expect more. To
help you better navigate through them, each sample comes with its own readme.txt file which
covers several details about the sample (for example, what EIP patterns it addresses, what problem
it is trying to solve, how to run the sample, and other details). However, certain samples require a
more detailed and sometimes graphical explanation. In this section, you can find details on samples
that we believe require special attention.

H.4.1. Loan Broker

This section covers the loan broker sample application that is included in the Spring Integration
samples. This sample is inspired by one of the samples featured in Gregor Hohpe and Bobby
Woolf’s book, Enterprise Integration Patterns.

The following diagram shows the entire process:

Figure 10. Loan Broker Sample

At the core of an EIP architecture are the very simple yet powerful concepts of pipes, filters, and, of
course: messages. Endpoints (filters) are connected with one another via channels (pipes).
Producing endpoints send messages to the channel, and the consuming endpoint retrieves the
messages. This architecture is meant to define various mechanisms that describe how information
is exchanged between the endpoints, without any awareness of what those endpoints are or what

900

https://www.enterpriseintegrationpatterns.com/

information they are exchanging. Thus, it provides for a very loosely coupled and flexible
collaboration model while also decoupling integration concerns from business concerns. EIP
extends this architecture by further defining:

• The types of pipes (point-to-point channel, publish-subscribe channel, channel adapter, and
others)

• The core filters and patterns around how filters collaborate with pipes (Message router, splitters
and aggregators, various message transformation patterns, and others)

Chapter 9 of the EIP book nicely describes the details and variations of this use case, but here is the
brief summary: While shopping for the best loan quote, a consumer subscribes to the services of a
loan broker, which handles such details as:

• Consumer pre-screening (for example, obtaining and reviewing the consumer’s Credit history)

• Determining the most appropriate banks (for example, based on the consumer’s credit history
or score)

• Sending a loan quote request to each selected bank

• Collecting responses from each bank

• Filtering responses and determining the best quotes, based on consumer’s requirements.

• Pass the Loan quotes back to the consumer.

The real process of obtaining a loan quote is generally a bit more complex. However, since our goal
is to demonstrate how Enterprise Integration Patterns are realized and implemented within Spring
Integration, the use case has been simplified to concentrate only on the integration aspects of the
process. It is not an attempt to give you advice in consumer finances.

By engaging a loan broker, the consumer is isolated from the details of the loan broker’s operations,
and each loan broker’s operations may defer from one another to maintain competitive advantage,
so whatever we assemble and implement must be flexible so that any changes could be introduced
quickly and painlessly.


The loan broker sample does not actually talk to any 'imaginary' Banks or Credit
bureaus. Those services are stubbed out.

Our goal here is to assemble, orchestrate, and test the integration aspects of the process as a whole.
Only then can we start thinking about wiring such processes to the real services. At that time, the
assembled process and its configuration do not change regardless of the number of banks with
which a particular loan broker deals or the type of communication media (or protocols) used (JMS,
WS, TCP, and so on) to communicate with these banks.

Design

As you analyze the six requirements listed earlier, you can see that they are all integration
concerns. For example, in the consumer pre-screening step, we need to gather additional
information about the consumer and the consumer’s desires and enrich the loan request with
additional meta-information. We then have to filter such information to select the most appropriate
list of banks and so on. Enrich, filter, and select are all integration concerns for which EIP defines a

901

solution in the form of patterns. Spring Integration provides an implementation of these patterns.

The following image shows a representation of a messaging gateway:

Figure 11. Messaging Gateway

The messaging gateway pattern provides a simple mechanism to access messaging systems,
including our loan broker. In Spring Integration, you can define the gateway as a plain old java
interface (you need not provide an implementation), configure it with the XML <gateway> element
or with an annotation in Java, and use it as you would any other Spring bean. Spring Integration
takes care of delegating and mapping method invocations to the messaging infrastructure by
generating a message (the payload is mapped to an input parameter of the method) and sending it
to the designated channel. The following example shows how to define such a gateway with XML:

<int:gateway id="loanBrokerGateway"
 default-request-channel="loanBrokerPreProcessingChannel"
 service-interface=
"org.springframework.integration.samples.loanbroker.LoanBrokerGateway">
 <int:method name="getBestLoanQuote">
 <int:header name="RESPONSE_TYPE" value="BEST"/>
 </int:method>
</int:gateway>

Our current gateway provides two methods that could be invoked. One that returns the best single
quote and another one that returns all quotes. Somehow, downstream, we need to know what type
of reply the caller needs. The best way to achieve this in messaging architecture is to enrich the
content of the message with some metadata that describes your intentions. Content Enricher is one
of the patterns that addresses this. Spring Integration does, as a convenience, provide a separate
configuration element to enrich message headers with arbitrary data (described later) However,
since the gateway element is responsible for constructing the initial message, it includes ability to
enrich the newly created message with arbitrary message headers. In our example, we add a
RESPONSE_TYPE header with a value of BEST whenever the getBestQuote() method is invoked. For
other methods, we do not add any header. Now we can check downstream for the existence of this
header. Based on its presence and its value, we can determine what type of reply the caller wants.

Based on the use case, we also know tat some pre-screening steps need to be performed, such as
getting and evaluating the consumer’s credit score, because some premiere banks only accept
quote requests from consumers that meet a minimum credit score requirement. So it would be nice
if the message would be enriched with such information before it is forwarded to the banks. It
would also be nice if, when several processes need to be completed to provide such meta-
information, those processes could be grouped in a single unit. In our use case, we need to
determine the credit score and, based on the credit score and some rule, select a list of message

902

channels (bank channels) to which to send quote request.

Composed Message Processor

The composed message processor pattern describes rules around building endpoints that maintain
control over message flow, which consists of multiple message processors. In Spring Integration,
the composed message processor pattern is implemented by the <chain> element.

The following image shows the chain pattern:

Figure 12. Chain

The preceding image shows that we have a chain with an inner header-enricher element that
further enriches the content of the message with the CREDIT_SCORE header and the value (which is
determined by the call to a credit service — a simple POJO spring bean identified by 'creditBureau'
name). Then it delegates to the message router.

The following image shows the message router pattern:

Figure 13. Message Router

Spring Integration offers several implementations of the message routing pattern. In this case, we
use a router that determines a list of channels based on evaluating an expression (in Spring
Expression Language) that looks at the credit score (determined in the previous step) and selects
the list of channels from the Map bean with an id of banks whose values are premier or secondary,
based on the value of credit score. Once the list of channels is selected, the message is routed to
those channels.

Now, one last thing the loan broker needs to receive the loan quotes form the banks, aggregate
them by consumer (we do not want to show quotes from one consumer to another), assemble the
response based on the consumer’s selection criteria (single best quote or all quotes) and send the
reply to the consumer.

The following image shows the message aggregator pattern:

903

Figure 14. Message Aggregator

An aggregator pattern describes an endpoint that groups related messages into a single message.
Criteria and rules can be provided to determine an aggregation and correlation strategy. Spring
Integration provides several implementations of the aggregator pattern as well as a convenient
namespace-based configuration.

The following example shows how to define an aggregator:

<int:aggregator id="quotesAggregator"
 input-channel="quotesAggregationChannel"
 method="aggregateQuotes">
 <beans:bean class=
"org.springframework.integration.samples.loanbroker.LoanQuoteAggregator"/>
</int:aggregator>

Our Loan Broker defines a 'quotesAggregator' bean with the <aggregator> element, which provides
a default aggregation and correlation strategy. The default correlation strategy correlates messages
based on the correlationId header (see the correlation identifier pattern in the EIP book). Note that
we never provided the value for this header. It was automatically set earlier by the router, when it
generated a separate message for each bank channel.

Once the messages are correlated, they are released to the actual aggregator implementation.
Although Spring Integration provides a default aggregator, its strategy (gather the list of payloads
from all messages and construct a new message with this list as its payload) does not satisfy our
requirement. Having all the results in the message is a problem, because our consumer might
require a single best quote or all quotes. To communicate the consumer’s intention, earlier in the
process we set the RESPONSE_TYPE header. Now we have to evaluate this header and return either all
the quotes (the default aggregation strategy would work) or the best quote (the default aggregation
strategy does not work because we have to determine which loan quote is the best).

In a more realistic application, selecting the best quote might be based on complex criteria that
might influence the complexity of the aggregator implementation and configuration. For now,
though, we are making it simple. If the consumer wants the best quote, we select a quote with the
lowest interest rate. To accomplish that, the LoanQuoteAggregator class sorts all the quotes by interest
rate and returns the first one. The LoanQuote class implements Comparable to compare quotes based
on the rate attribute. Once the response message is created, it is sent to the default reply channel of
the messaging gateway (and, thus, to the consumer) that started the process. Our consumer got the
loan quote!

In conclusion, a rather complex process was assembled based on POJO (that is existing or legacy)

904

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CorrelationIdentifier.html

logic and a light-weight, embeddable messaging framework (Spring Integration) with a loosely
coupled programming model intended to simplify integration of heterogeneous systems without
requiring a heavy-weight ESB-like engine or a proprietary development and deployment
environment. As a developer, you should not need to port your Swing or console-based application
to an ESB-like server or implement proprietary interfaces just because you have an integration
concern.

This sample and the other samples in this section are built on top of Enterprise Integration
Patterns. You can consider them to be “building blocks” for your solution. They are not intended to
be complete solutions. Integration concerns exist in all types of application (whether server-based
or not). Our goal is to make is so that integrating applications does not require changes in design,
testing, and deployment strategy.

H.4.2. The Cafe Sample

This section covers the cafe sample application that is included in the Spring Integration samples.
This sample is inspired by another sample featured in Gregor Hohpe’s Ramblings.

The domain is that of a cafe, and the following diagram depicts the basic flow:

Figure 15. Cafe Sample

The Order object may contain multiple OrderItems. Once the order is placed, a splitter breaks the
composite order message into a single message for each drink. Each of these is then processed by a
router that determines whether the drink is hot or cold (by checking the OrderItem object’s 'isIced'
property). The Barista prepares each drink, but hot and cold drink preparation are handled by two
distinct methods: 'prepareHotDrink' and 'prepareColdDrink'. The prepared drinks are then sent to
the Waiter where they are aggregated into a Delivery object.

The following listing shows the XML configuration:

905

https://www.enterpriseintegrationpatterns.com/ramblings.html

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:int-stream="http://www.springframework.org/schema/integration/stream"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/stream
 https://www.springframework.org/schema/integration/stream/spring-integration-
stream.xsd">

 <int:gateway id="cafe" service-interface="o.s.i.samples.cafe.Cafe"/>

 <int:channel id="orders"/>
 <int:splitter input-channel="orders" ref="orderSplitter"
 method="split" output-channel="drinks"/>

 <int:channel id="drinks"/>
 <int:router input-channel="drinks"
 ref="drinkRouter" method="resolveOrderItemChannel"/>

 <int:channel id="coldDrinks"><int:queue capacity="10"/></int:channel>
 <int:service-activator input-channel="coldDrinks" ref="barista"
 method="prepareColdDrink" output-channel=
"preparedDrinks"/>

 <int:channel id="hotDrinks"><int:queue capacity="10"/></int:channel>
 <int:service-activator input-channel="hotDrinks" ref="barista"
 method="prepareHotDrink" output-channel="
preparedDrinks"/>

 <int:channel id="preparedDrinks"/>
 <int:aggregator input-channel="preparedDrinks" ref="waiter"
 method="prepareDelivery" output-channel="deliveries"/>

 <int-stream:stdout-channel-adapter id="deliveries"/>

 <beans:bean id="orderSplitter"
 class=
"org.springframework.integration.samples.cafe.xml.OrderSplitter"/>

 <beans:bean id="drinkRouter"
 class=
"org.springframework.integration.samples.cafe.xml.DrinkRouter"/>

 <beans:bean id="barista" class="o.s.i.samples.cafe.xml.Barista"/>
 <beans:bean id="waiter" class="o.s.i.samples.cafe.xml.Waiter"/>

906

 <int:poller id="poller" default="true" fixed-rate="1000"/>

</beans:beans>

Each message endpoint connects to input channels, output channels, or both. Each endpoint
manages its own lifecycle (by default, endpoints start automatically upon initialization, to prevent
that, add the auto-startup attribute with a value of false). Most importantly, notice that the objects
are simple POJOs with strongly typed method arguments. The following example shows the Splitter:

public class OrderSplitter {
 public List<OrderItem> split(Order order) {
 return order.getItems();
 }
}

In the case of the router, the return value does not have to be a MessageChannel instance (although it
can be). In this example, a String value that holds the channel name is returned instead, as the
following listing shows.

public class DrinkRouter {
 public String resolveOrderItemChannel(OrderItem orderItem) {
 return (orderItem.isIced()) ? "coldDrinks" : "hotDrinks";
 }
}

Now, turning back to the XML, you can see that there are two <service-activator> elements. Each of
these is delegating to the same Barista instance but with different methods (prepareHotDrink or
prepareColdDrink), each corresponding to one of the two channels where order items have been
routed. The following listing shows the Barista class (which contains the prepareHotDrink and
prepareColdDrink methods)

907

public class Barista {

 private long hotDrinkDelay = 5000;
 private long coldDrinkDelay = 1000;

 private AtomicInteger hotDrinkCounter = new AtomicInteger();
 private AtomicInteger coldDrinkCounter = new AtomicInteger();

 public void setHotDrinkDelay(long hotDrinkDelay) {
 this.hotDrinkDelay = hotDrinkDelay;
 }

 public void setColdDrinkDelay(long coldDrinkDelay) {
 this.coldDrinkDelay = coldDrinkDelay;
 }

 public Drink prepareHotDrink(OrderItem orderItem) {
 try {
 Thread.sleep(this.hotDrinkDelay);
 System.out.println(Thread.currentThread().getName()
 + " prepared hot drink #" + hotDrinkCounter.incrementAndGet()
 + " for order #" + orderItem.getOrder().getNumber()
 + ": " + orderItem);
 return new Drink(orderItem.getOrder().getNumber(), orderItem
.getDrinkType(),
 orderItem.isIced(), orderItem.getShots());
 }
 catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 return null;
 }
 }

 public Drink prepareColdDrink(OrderItem orderItem) {
 try {
 Thread.sleep(this.coldDrinkDelay);
 System.out.println(Thread.currentThread().getName()
 + " prepared cold drink #" + coldDrinkCounter.incrementAndGet
()
 + " for order #" + orderItem.getOrder().getNumber() + ": "
 + orderItem);
 return new Drink(orderItem.getOrder().getNumber(), orderItem
.getDrinkType(),
 orderItem.isIced(), orderItem.getShots());
 }
 catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 return null;
 }

908

 }
}

As you can see from the preceding code excerpt, the Barista methods have different delays (the hot
drinks take five times as long to prepare). This simulates work being completed at different rates.
When the CafeDemo 'main' method runs, it loops 100 times and sends a single hot drink and a single
cold drink each time. It actually sends the messages by invoking the 'placeOrder' method on the
Cafe interface. In the earlier XML configuration, you can see that the <gateway> element is specified.
This triggers the creation of a proxy that implements the given service interface and connects it to a
channel. The channel name is provided on the @Gateway annotation of the Cafe interface, as the
following interface definition shows:

public interface Cafe {

 @Gateway(requestChannel="orders")
 void placeOrder(Order order);

}

Finally, have a look at the main() method of the CafeDemo itself:

public static void main(String[] args) {
 AbstractApplicationContext context = null;
 if (args.length > 0) {
 context = new FileSystemXmlApplicationContext(args);
 }
 else {
 context = new ClassPathXmlApplicationContext("cafeDemo.xml", CafeDemo
.class);
 }
 Cafe cafe = context.getBean("cafe", Cafe.class);
 for (int i = 1; i <= 100; i++) {
 Order order = new Order(i);
 order.addItem(DrinkType.LATTE, 2, false);
 order.addItem(DrinkType.MOCHA, 3, true);
 cafe.placeOrder(order);
 }
}


To run this sample as well as eight others, refer to the README.txt within the
samples directory of the main distribution (as described at the beginning of this
chapter).

909

When you run cafeDemo, you can see that the cold drinks are initially prepared more quickly than
the hot drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of
the hot drink preparation. This is to be expected, based on their respective delays of 1000 and 5000
milliseconds. However, by configuring a poller with a concurrent task executor, you can
dramatically change the results. For example, you could use a thread pool executor with five
workers for the hot drink barista while keeping the cold drink barista as it is. The following listing
configures such an arrangement:

<int:service-activator input-channel="hotDrinks"
 ref="barista"
 method="prepareHotDrink"
 output-channel="preparedDrinks"/>

 <int:service-activator input-channel="hotDrinks"
 ref="barista"
 method="prepareHotDrink"
 output-channel="preparedDrinks">
 <int:poller task-executor="pool" fixed-rate="1000"/>
 </int:service-activator>

 <task:executor id="pool" pool-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. You can see that the hot
drinks are prepared by the task-executor threads. If you provide a much shorter poller interval
(such as 100 milliseconds), you can see that it occasionally throttles the input by forcing the task
scheduler (the caller) to invoke the operation.


In addition to experimenting with the poller’s concurrency settings, you can also
add the 'transactional' child element and then refer to any
PlatformTransactionManager instance within the context.

H.4.3. The XML Messaging Sample

The XML messaging sample in basic/xml shows how to use some of the provided components that
deal with XML payloads. The sample uses the idea of processing an order for books represented as
XML.


This sample shows that the namespace prefix can be whatever you want. While we
usually use, int-xml for integration XML components, the sample uses si-xml. (int
is short for “Integration”, and si is short for “Spring Integration”.)

First, the order is split into a number of messages, each one representing a single order item from
the XPath splitter component. The following listing shows the configuration of the splitter:

910

<si-xml:xpath-splitter id="orderItemSplitter" input-channel="ordersChannel"
 output-channel="stockCheckerChannel" create-documents="true">
 <si-xml:xpath-expression expression="/orderNs:order/orderNs:orderItem"
 namespace-map="orderNamespaceMap" />
 </si-xml:xpath-splitter>

A service activator then passes the message into a stock checker POJO. The order item document is
enriched with information from the stock checker about the order item stock level. This enriched
order item message is then used to route the message. In the case where the order item is in stock,
the message is routed to the warehouse. The following listing configures the xpath-router that
routes the messages:

<si-xml:xpath-router id="instockRouter" input-channel="orderRoutingChannel"
resolution-required="true">
 <si-xml:xpath-expression expression="/orderNs:orderItem/@in-stock" namespace-
map="orderNamespaceMap" />
 <si-xml:mapping value="true" channel="warehouseDispatchChannel"/>
 <si-xml:mapping value="false" channel="outOfStockChannel"/>
</si-xml:xpath-router>

When the order item is not in stock, the message is transformed with XSLT into a format suitable
for sending to the supplier. The following listing configures the XSLT transformer:

<si-xml:xslt-transformer input-channel="outOfStockChannel"
 output-channel="resupplyOrderChannel"
 xsl-resource=
"classpath:org/springframework/integration/samples/xml/bigBooksSupplierTransformer
.xsl"/>

911

Appendix I: Additional Resources
The definitive source of information about Spring Integration is the Spring Integration Home at
https://spring.io. That site serves as a hub of information and is the best place to find up-to-date
announcements about the project as well as links to articles, blogs, and new sample applications.

912

https://projects.spring.io/spring-integration/
https://spring.io

Appendix J: Change History

J.1. Changes between 5.2 and 5.3

J.2. New Components

J.2.1. Integration Pattern

The IntegrationPattern abstraction has been introduced to indicate which enterprise integration
pattern (an IntegrationPatternType) and category a Spring Integration component belongs to. See its
JavaDocs and Integration Graph for more information about this abstraction and its use-cases.

J.2.2. ReactiveMessageHandler

The ReactiveMessageHandler is now natively supported in the framework. See
ReactiveMessageHandler for more information.

J.2.3. ReactiveMessageSourceProducer

The ReactiveMessageSourceProducer is a reactive implementation of the MessageProducerSupport to
wrap a provided MessageSource into a Flux for on demand receive() calls. See Reactive Streams
Support for more information.

J.2.4. Java DSL Extensions

A new IntegrationFlowExtension API has been introduced to allow extension of the existing Java
DSL with custom or composed EIP-operators. This also can be used to introduce customizers for any
out-of-the-box IntegrationComponentSpec extensions. See DSL Extensions for more information.

J.2.5. Kotlin DSL

The Kotlin DSL for integration flow configurations has been introduced. See Kotlin DSL Chapter for
more information.

J.2.6. ReactiveRequestHandlerAdvice

A ReactiveRequestHandlerAdvice is provided to customize Mono replies from message handlers. See
Reactive Advice for more information.

J.2.7. HandleMessageAdviceAdapter

A HandleMessageAdviceAdapter is provided to wrap any MethodInterceptor for applying on the
MessageHandler.handleMessage() instead of a default
AbstractReplyProducingMessageHandler.RequestHandler.handleRequestMessage() behavior. See
Handling Message Advice for more information.

913

./graph.pdf#integration-graph
./reactive-streams.pdf#reactive-message-handler
./reactive-streams.pdf#reactive-streams
./reactive-streams.pdf#reactive-streams
./dsl.pdf#java-dsl-extensions
./kotlin-dsl.pdf#kotlin-dsl
./handler-advice.pdf#reactive-advice
./handler-advice.pdf#handle-message-advice

J.2.8. MongoDB Reactive Channel Adapters

The spring-integration-mongodb module now provides channel adapter implementations for the
Reactive MongoDb driver support in Spring Data. Also, a reactive implementation for MongoDb
change stream support is present with the MongoDbChangeStreamMessageProducer. See MongoDB
Support for more information.

J.2.9. ReceiveMessageAdvice

A special ReceiveMessageAdvice has been introduced to proxy exactly MessageSource.receive() or
PollableChannel.receive(). See Smart Polling for more information.

J.3. General Changes
The gateway proxy now doesn’t proxy default methods by default. See Invoking default Methods
for more information.

Internal components (such as _org.springframework.integration.errorLogger) now have a shortened
name when they are represented in the integration graph. See Integration Graph for more
information.

In the aggregator, when the MessageGroupProcessor returns a Message, the
MessageBuilder.popSequenceDetails() is performed on the output message if the sequenceDetails
matches the header in the first message of the group. See Aggregator Programming Model for more
information.

A new publishSubscribeChannel() operator, based on the BroadcastCapableChannel and
BroadcastPublishSubscribeSpec, was added into Java DSL. This fluent API has its advantage when we
configure sub-flows as pub-sub subscribers for broker-backed channels like SubscribableJmsChannel,
SubscribableRedisChannel etc. See Sub-flows support for more information.

Transactional support in Spring Integration now also includes options to configure a
ReactiveTransactionManager if a MessageSource or MessageHandler implementation produces a
reactive type for payload to send. See TransactionInterceptorBuilder for more information. See also
Reactive Transactions.

A new intercept() operator to register ChannelInterceptor instances without creating explicit
channels was added into Java DSL. See Operator intercept() for more information.

The MessageStoreSelector has a new mechanism to compare an old and new value. See Idempotent
Receiver Enterprise Integration Pattern for more information.

The MessageProducerSupport base class now has a subscribeToPublisher(Publisher<? extends
Message<?>>) API to allow implementation of message-driven producer endpoints which emit
messages via reactive Publisher. See Reactive Streams Support for more information.

J.4. AMQP Changes
The outbound channel adapter has a new property multiSend allowing multiple messages to be sent

914

./mongodb.pdf#mongodb
./mongodb.pdf#mongodb
./polling-consumer.pdf#smart-polling
./gateway.pdf#gateway-calling-default-methods
./gateway.pdf#gateway-calling-default-methods
./gateway.pdf#gateway-calling-default-methods
./graph.pdf#integration-graph
./aggregator.pdf#aggregator-api
./dsl.pdf#java-dsl-subflows
./transactions.pdf#reactive-transactions
./dsl.pdf#java-dsl-intercept
./handler-advice.pdf#idempotent-receiver
./handler-advice.pdf#idempotent-receiver
./reactive-streams.pdf#reactive-streams

within the scope of one RabbitTemplate invocation. See AMQP Outbound Channel Adapter for more
information.

The inbound channel adapter now supports a listener container with the consumerBatchEnabled
property set to true. See AMQP Inbound Channel Adapter

J.5. HTTP Changes
The encodeUri property on the AbstractHttpRequestExecutingMessageHandler has been deprecated in
favor of newly introduced encodingMode. See DefaultUriBuilderFactory.EncodingMode JavaDocs and
Controlling URI Encoding for more information. This also affects
WebFluxRequestExecutingMessageHandler, respective Java DSL and XML configuration. The same
option is added into an AbstractWebServiceOutboundGateway.

J.6. Web Services Changes
Java DSL support has been added for Web Service components. The encodeUri property on the
AbstractWebServiceOutboundGateway has been deprecated in favor of newly introduced encodingMode -
similar to HTTP changes above. See Web Services Support for more information.

J.7. TCP Changes
The FailoverClientConnectionFactory no longer fails back, by default, until the current connection
fails. See TCP Failover Client Connection Factory for more information.

The TcpOutboundGateway now supports asynchronous request/reply. See TCP Gateways for more
information.

You can now configure client connections to perform some arbitrary test on new connections. See
Testing Connections for more information.

J.8. RSocket Changes
A decodeFluxAsUnit option has been added to the RSocketInboundGateway with the meaning to decode
incoming Flux as a single unit or apply decoding for each event in it. See RSocket Inbound Gateway
for more information.

J.9. Zookeeper Changes
A LeaderInitiatorFactoryBean (as well as its XML <int-zk:leader-listener>) exposes a candidate
option for more control over a Candidate configuration. See Leadership event handling for more
information.

J.10. MQTT Changes
The inbound channel adapter can now be configured to provide user control over when a message
is acknowledged as being delivered. See Manual Acks for more information.

915

./amqp.pdf#amqp-outbound-channel-adapter
./amqp.pdf#amqp-inbound-channel-adapter
./http.pdf#http-uri-encoding
./ws.pdf#ws
./ip.pdf#failover-cf
./ip.pdf#tcp-gateways
./ip.pdf#testing-connections
./rsocket.pdf#rsocket-inbound
./zookeeper.pdf#zk-leadership
./mqtt.pdf#mqtt-ack-mode

The outbound adapter now publishes a MqttConnectionFailedEvent when a connection can’t be
created, or is lost. Previously, only the inbound adapter did so. See MQTT Events.

J.11. (S)FTP Changes
The FileTransferringMessageHandler (for FTP and SFTP, for example) in addition to File, byte[],
String and InputStream now also supports an org.springframework.core.io.Resource. See SFTP
Support and FTP Support for more information.

J.12. File Changes
The FileSplitter doesn’t require a Jackson processor (or similar) dependency any more for the
markersJson mode. It uses a SimpleJsonSerializer for a straightforward string representation of the
FileSplitter.FileMarker instances. See FileSplitter for more information.

J.13. Changes between 5.1 and 5.2

J.14. Package and Class Changes
Pausable has been moved from o.s.i.endpoint to o.s.i.core.

J.15. Behavior Changes
See the Migration Guide about behavior changes in this version.

J.16. New Components

J.16.1. RSocket Support

The spring-integration-rsocket module is now available with channel adapter implementations for
RSocket protocol support. See RSocket Support for more information.

J.16.2. Rate Limit Advice Support

The RateLimiterRequestHandlerAdvice is now available for limiting requests rate on handlers. See
Rate Limiter Advice for more information.

J.16.3. Caching Advice Support

The CacheRequestHandlerAdvice is now available for caching request results on handlers. See
Caching Advice for more information.

J.16.4. Kotlin Scripts Support

The JSR223 scripting module now includes a support for Kotlin scripts. See Scripting Support for
more information.

916

./mqtt.pdf#mqtt-events
./sftp.pdf#sftp
./sftp.pdf#sftp
./ftp.pdf#ftp
./file.pdf#file-splitter
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-5.1-to-5.2-Migration-Guide
./rsocket.pdf#rsocket
./handler-advice.pdf#rate-limiter-advice
./handler-advice.pdf#cache-advice
./scripting.pdf#scripting

J.16.5. Flux Aggregator Support

The FluxAggregatorMessageHandler is now available for grouping and windowing messages logic
based on the Project Reactor Flux operators. See Flux Aggregator for more information.

J.16.6. FTP/SFTP Event Publisher

The FTP and SFTP modules now provide an event listener for certain Apache Mina FTP/SFTP server
events. See Apache Mina FTP Server Events and Apache Mina SFTP Server Events for more
information.

J.16.7. Avro Transformers

Simple Apache Avro transformers are now provided. See Avro Transformers for more information.

J.17. General Changes
The JsonToObjectTransformer now supports generics for the target object to deserialize into. See
JSON Transformers for more information.

The splitter now supports a discardChannel configuration option. See Splitter for more
information.

The Control Bus can now handle Pausable (extension of Lifecycle) operations. See Control Bus for
more information.

The Function<MessageGroup, Map<String, Object>> strategy has been introduced for the aggregator
component to merge and compute headers for output messages. See Aggregator Programming
Model for more information.

All the MessageHandlingException s thrown in the framework, includes now a bean resource and
source for back tracking a configuration part in case no end-user code involved. See Error Handling
for more information.

For better end-user experience, Java DSL now provides a configurer variant for starting flow with a
gateway interface. See IntegrationFlows.from(Class<?> serviceInterface,
Consumer<GatewayProxySpec> endpointConfigurer) JavaDocs for more information. Also a
MethodArgsHolder is now a root object for evaluation context for all the expressions in the
GatewayProxyFactoryBean. The #args and #method evaluation context variables are now deprecated.
See Messaging Gateways for more information.

J.17.1. AMQP Changes

The outbound endpoints can now be configured to synthesize a "nack" if no publisher confirm is
received within a timeout. See Outbound Channel Adapter for more information.

The inbound channel adapter can now receive batched messages as a List<?> payload instead of
receiving a discrete message for each batch fragment. See Batched Messages for more information.

The outbound channel adapter can now be configured to block the calling thread until a publisher

917

./aggregator.pdf#flux-aggregator
./ftp.pdf#ftp-server-events
./sftp.pdf#sftp-server-events
./transformers.pdf#avro-transformers
./transformer.pdf#json-transformers
./splitter.pdf#splitter
./control-bus.pdf#control-bus
./aggregator.pdf#aggregator-api
./aggregator.pdf#aggregator-api
./error-handling.pdf#error-handling
./gateway.pdf#gateway
./amqp.pdf#amqp-outbound-endpoints
./amqp.pdf#amqp-debatching

confirm (acknowledgment) is received. See Outbound Channel Adapter for more information.

J.17.2. File Changes

Some improvements to filtering remote files have been made. See Remote Persistent File List Filters
for more information.

J.17.3. TCP Changes

The length header used by the ByteArrayLengthHeaderSerializer can now include the length of the
header in addition to the payload. See Message Demarcation (Serializers and Deserializers) for
more information.

When using a TcpNioServerConnectionFactory, priority is now given to accepting new connections
over reading from existing connections, but it is configurable. See About Non-blocking I/O (NIO) for
more information.

The outbound gateway has a new property closeStreamAfterSend; when used with a new connection
for each request/reply it signals EOF to the server, without closing the connection. This is useful for
servers that use the EOF to signal end of message instead of some delimiter in the data. See TCP
Gateways for more information.

The client connection factories now support connectTimeout which causes an exception to be
thrown if the connection is not established in that time. See TCP Connection Factories for more
information.

SoftEndOfStreamException is now a RuntimeException instead of extending IOException.

J.17.4. Mail Changes

The AbstractMailReceiver has now an autoCloseFolder option (true by default), to disable an
automatic folder close after a fetch, but populate
IntegrationMessageHeaderAccessor.CLOSEABLE_RESOURCE header instead for downstream interaction.
See Mail-receiving Channel Adapter for more information.

J.17.5. HTTP Changes

The HTTP inbound endpoint now support a request payload validation. See HTTP Support for more
information.

J.17.6. WebFlux Changes

The WebFluxRequestExecutingMessageHandler now supports a Publisher, Resource and MultiValueMap as
a request message payload. The WebFluxInboundEndpoint now supports a request payload validation.
See WebFlux Support for more information.

J.17.7. MongoDb Changes

The MongoDbMessageStore can now be configured with custom converters. See MongoDB Support for

918

./amqp.pdf#amqp-outbound-channel-adapter
./file.pdf#remote-persistent-flf
./ip.pdf#tcp-codecs
./ip.pdf#note-nio
./ip.pdf#tcp-gateways
./ip.pdf#tcp-gateways
./ip.pdf#tcp-connection-factory
./mail.pdf#mail-inbound
./http.pdf#http
./webflux.pdf#webflux
./mongodb.pdf#mongodb

more information.

J.17.8. Router Changes

You can now disable falling back to the channel key as the channel bean name. See Dynamic
Routers for more information.

J.17.9. FTP/SFTP Changes

The RotatingServerAdvice is decoupled now from the RotationPolicy and its StandardRotationPolicy.

The remote file information, including host/port and directory are included now into message
headers in the AbstractInboundFileSynchronizingMessageSource and
AbstractRemoteFileStreamingMessageSource implementations. Also this information is included into
headers in the read operations results of the AbstractRemoteFileOutboundGateway implementations.
The FTP outbound endpoints now support chmod to change permissions on the uploaded file. (SFTP
already supported it since version 4.3). See FTP(S) Support and SFTP Support for more information.

J.18. Changes between 5.0 and 5.1

J.18.1. New Components

The following components are new in 5.1:

• AmqpDedicatedChannelAdvice

AmqpDedicatedChannelAdvice

See Strict Message Ordering.

Improved Function Support

The java.util.function interfaces now have improved integration support in the Framework
components. Also Kotlin lambdas now can be used for handler and source methods.

See java.util.function Interfaces Support.

@LongRunningTest

A JUnit 5 @LongRunningTest conditional annotation is provided to check the environment or system
properties for the RUN_LONG_INTEGRATION_TESTS entry with the value of true to determine if test
should be run or skipped.

See JUnit Rules and Conditions.

J.18.2. General Changes

The following changes have been made in version 5.1:

• Java DSL

919

./router.pdf#dynamic-routers
./router.pdf#dynamic-routers
./ftp.pdf#ftp
./sftp.pdf#sftp
./amqp.pdf#amqp-strict-ordering
./functions-support.pdf#functions-support
./functions-support.pdf#functions-support
./testing.pdf#test-junit-rules

• Dispatcher Exceptions

• Global Channel Interceptors

• ObjectToJsonTransformer

• Integration Flows: Generated Bean Names

• Aggregator Changes

• @Publisher annotation changes

• Integration Graph Customization

• Integration Global Properties

• The receiveTimeout for @Poller

Java DSL

The IntegrationFlowContext is now an interface and IntegrationFlowRegistration is an inner
interface of IntegrationFlowContext.

A new logAndReply() operator has been introduced for convenience when you wish to log at the end
of a flow for request-reply configurations. This avoid confusion with log() which is treated as a
one-way end flow component.

A generated bean name for any NamedComponent within an integration flow is now based on the
component type for better readability from visual tools, logs analyzers and metrics collectors.

The GenericHandler.handle() now excepts a MessageHeaders type for the second argument.

Dispatcher Exceptions

Exceptions caught and re-thrown by AbstractDispatcher are now more consistent:

• A MessagingException of any kind that has a failedMessage property is re-thrown unchanged.

• All other exceptions are wrapped in a MessageDeliveryException with the failedMessage property
set.

Previously:

• A MessagingException of any kind that has a failedMessage property was re-thrown unchanged

• A MessagingException that had no failedMessage property was wrapped in a MessagingException
with the failedMessage property set.

• Other RuntimeException instances were re-thrown unchanged.

• Checked exceptions were wrapped in a MessageDeliveryException with the failedMessage
property set.

Global Channel Interceptors

Global channel interceptors now apply to dynamically registered channels, such as through the
IntegrationFlowContext when using the Java DSL or beans that are initialized using

920

beanFactory.initializeBean(). Previously, when beans were created after the application context
was refreshed, interceptors were not applied.

Channel Interceptors

ChannelInterceptor.postReceive() is no longer called when no message is received; it is no longer
necessary to check for a null Message<?>. Previously, the method was called. If you have an
interceptor that relies on the previous behavior, implement afterReceiveCompleted() instead, since
that method is invoked, regardless of whether a message is received or not. Furthermore, the
PolledAmqpChannel and PolledJmsChannel previously did not invoke afterReceiveCompleted() with
null; they now do.

ObjectToJsonTransformer

A new ResultType.BYTES mode is introduced for the ObjectToJsonTransformer.

See JSON Transformers for more information.

Integration Flows: Generated Bean Names

Starting with version 5.0.5, generated bean names for the components in an IntegrationFlow
include the flow bean name, followed by a dot, as a prefix. For example, if a flow bean were named
flowBean, a generated bean might be named flowBean.generatedBean.

See Working With Message Flows for more information.

Aggregator Changes

If the groupTimeout is evaluated to a negative value, an aggregator now expires the group
immediately. Only null is considered as a signal to do nothing for the current message.

A new popSequence property has been introduced to allow (by default) to call a
MessageBuilder.popSequenceDetails() for the output message. Also an
AbstractAggregatingMessageGroupProcessor returns now an AbstractIntegrationMessageBuilder
instead of the whole Message for optimization.

See Aggregator for more information.

@Publisher annotation changes

Starting with version 5.1, you must explicitly turn on the @Publisher AOP functionality by using
@EnablePublisher or by using the <int:enable-publisher> child element on <int:annotation-config>.
Also the proxy-target-class and order attributes have been added for tuning the ProxyFactory
configuration.

See Annotation-driven Configuration with the @Publisher Annotation for more information.

J.18.3. Files Changes

If you are using FileExistsMode.APPEND or FileExistsMode.APPEND_NO_FLUSH you can provide a
newFileCallback that will be called when creating a new file. This callback receives the newly

921

./transformer.pdf#json-transformers
./dsl.pdf#java-dsl-flows
./aggregator.pdf#aggregator
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation

created file and the message that triggered the callback. This could be used to write a CSV header,
for an example.

The FileReadingMessageSource now doesn’t check and create a directory until its start() is called. So,
if an Inbound Channel Adapter for the FileReadingMessageSource has autoStartup = false, there are
no failures against the file system during application start up.

See File Support for more information.

J.18.4. AMQP Changes

We have made ID and Timestamp header mapping changes in the DefaultAmqpHeaderMapper. See the
note near the bottom of AMQP Message Headers for more information.

The contentType header is now correctly mapped as an entry in the general headers map. See
contentType Header for more information.

Starting with version 5.1.3, if a message conversion exception occurs when using manual
acknowledgments, and an error channel is defined, the payload is a
ManualAckListenerExecutionFailedException with additional channel and deliveryTag properties. This
enables the error flow to ack/nack the original message. See Inbound Message Conversion for more
information.

J.18.5. JDBC Changes

A confusing max-rows-per-poll property on the JDBC Inbound Channel Adapter and JDBC Outbound
Gateway has been deprecated in favor of the newly introduced max-rows property.

The JdbcMessageHandler supports now a batchUpdate functionality when the payload of the request
message is an instance of an Iterable type.

The indexes for the INT_CHANNEL_MESSAGE table (for the JdbcChannelMessageStore) have been
optimized. If you have large message groups in such a store, you may wish to alter the indexes.

See JDBC Support for more information.

J.18.6. FTP and SFTP Changes

A RotatingServerAdvice is now available to poll multiple servers and directories with the inbound
channel adapters. See Inbound Channel Adapters: Polling Multiple Servers and Directories and
Inbound Channel Adapters: Polling Multiple Servers and Directories for more information.

Also, inbound adapter localFilenameExpression instances can contain the #remoteDirectory variable,
which contains the remote directory being polled. The generic type of the comparators (used to sort
the fetched file list for the streaming adapters) has changed from Comparator<AbstractFileInfo<F>>
to Comparator<F>. See FTP Streaming Inbound Channel Adapter and SFTP Streaming Inbound
Channel Adapter for more information.

In addition, the synchronizers for inbound channel adapters can now be provided with a
Comparator. This is useful when using maxFetchSize to limit the files retrieved.

922

./file.pdf#files
./amqp.pdf#amqp-message-headers
./amqp.pdf#amqp-content-type
./amqp.pdf#amqp-conversion-inbound
./jdbc.pdf#jdbc
./ftp.pdf#ftp-rotating-server-advice
./sftp.pdf#sftp-rotating-server-advice
./ftp.pdf#ftp-streaming
./sftp.pdf#sftp-streaming
./sftp.pdf#sftp-streaming

The CachingSessionFactory has a new property testSession which, when true, causes the factory to
perform a test() operation on the Session when checking out an existing session from the cache.

See SFTP Session Caching and FTP Session Caching for more information.

The outbound gateway MPUT command now supports a message payload with a collection of files
or strings. See SFTP Outbound Gateway and FTP Outbound Gateway for more information.

J.18.7. TCP Support

When using SSL, host verification is now enabled, by default, to prevent man-in-the-middle attacks
with a trusted certificate. See Host Verification for more information.

In addition the key and trust store types can now be configured on the DefaultTcpSSLContextSupport.

J.18.8. Twitter Support

Since the Spring Social project has moved to end of life status, Twitter support in Spring Integration
has been moved to the Extensions project. See Spring Integration Social Twitter for more
information.

J.18.9. JMS Support

The JmsSendingMessageHandler now provides deliveryModeExpression and timeToLiveExpression
options to determine respective QoS options for JMS message to send at runtime. The
DefaultJmsHeaderMapper now allows to map inbound JMSDeliveryMode and JMSExpiration properties
via setting to true respective setMapInboundDeliveryMode() and setMapInboundExpiration() options.
When a JmsMessageDrivenEndpoint or JmsInboundGateway is stopped, the associated listener container
is now shut down; this closes its shared connection and any consumers. You can configure the
endpoints to revert to the previous behavior.

See JMS Support for more information.

J.18.10. HTTP/WebFlux Support

The statusCodeExpression (and Function) is now supplied with the RequestEntity<?> as a root object
for evaluation context, so request headers, method, URI and body are available for target status
code calculation.

See HTTP Support and WebFlux Support for more information.

J.18.11. JMX Changes

Object name key values are now quoted if they contain any characters other than those allowed in
a Java identifier (or period .). For example org.springframework.integration:type=MessageChannel,
name="input:foo.myGroup.errors". This has the side effect that previously "allowed" names, with
such characters, will now be quoted. For example
org.springframework.integration:type=MessageChannel, name="input#foo.myGroup.errors".

923

./sftp.pdf#sftp-session-caching
./ftp.pdf#ftp-session-caching
./sftp.pdf#sftp-outbound-gateway
./ftp.pdf#ftp-outbound-gateway
./ip.pdf#tcp-ssl-host-verification
https://spring.io/blog/2018/07/03/spring-social-end-of-life-announcement
https://github.com/spring-projects/spring-integration-extensions/tree/master/spring-integration-social-twitter
./jms.pdf#jms
./http.pdf#http
./webflux.pdf#webflux

J.18.12. Micrometer Support Changes

It is now simpler to customize the standard Micrometer meters created by the framework. See
Micrometer Integration for more information.

J.18.13. Integration Graph Customization

It is now possible to add additional properties to the IntegrationNode s via Function<NamedComponent,
Map<String, Object>> additionalPropertiesCallback on the IntegrationGraphServer. See Integration
Graph for more information.

J.18.14. Integration Global Properties

The Integration global properties (including defaults) can now be printed in the logs, when a DEBUG
logic level is turned on for the org.springframework.integration category. See Global Properties for
more information.

J.18.15. The receiveTimeout for @Poller

The @Poller annotation now provides a receiveTimeout option for convenience. See Using the
@Poller Annotation for more information.

J.19. Changes between 4.3 and 5.0
See the Migration Guide for important changes that might affect your applications. You can find
migration guides for all versions back to 2.1 on the wiki.

J.19.1. New Components

Version 5.0 added a number of new components.

Java DSL

The separate Spring Integration Java DSL project has now been merged into the core Spring
Integration project. The IntegrationComponentSpec implementations for channel adapters and
gateways are distributed to their specific modules. See Java DSL for more information about Java
DSL support. See also the 4.3 to 5.0 Migration Guide for the required steps to move to Spring
Integration 5.0.

Testing Support

We created a new Spring Integration Test Framework to help with testing Spring Integration
applications. Now, with the @SpringIntegrationTest annotation on test classes and the
MockIntegration factory, you can make your JUnit tests for integration flows somewhat easier.

See Testing support for more information.

924

./metrics.pdf#micrometer-integration
./graph.pdf#integration-graph
./graph.pdf#integration-graph
./configuration.pdf#global-properties
./configuration.pdf#configuration-using-poller-annotation
./configuration.pdf#configuration-using-poller-annotation
./configuration.pdf#configuration-using-poller-annotation
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.3-to-5.0-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki
https://github.com/spring-projects/spring-integration-java-dsl
./dsl.pdf#java-dsl
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.3-to-5.0-Migration-Guide#java-dsl
./testing.pdf#testing

MongoDB Outbound Gateway

The new MongoDbOutboundGateway lets you make queries to the database on demand by sending a
message to its request channel.

See MongoDB Outbound Gateway for more information.

WebFlux Gateways and Channel Adapters

We introduced the new WebFlux support module for Spring WebFlux Framework gateways and
channel adapters.

See WebFlux Support for more information.

Content Type Conversion

Now that we use the new InvocableHandlerMethod-based infrastructure for service method
invocations, we can perform contentType conversion from the payload to a target method
argument.

See Content Type Conversion for more information.

ErrorMessagePublisher and ErrorMessageStrategy

We added ErrorMessagePublisher and the ErrorMessageStrategy for creating ErrorMessage instances.

See Error Handling for more information.

JDBC Metadata Store

We added a JDBC implementation of the MetadataStore implementation. This is useful when you
need to ensure transactional boundaries for metadata.

See JDBC Metadata Store for more information.

J.19.2. General Changes

Spring Integration is now fully based on Spring Framework 5.0 and Project Reactor 3.1. Previous
Project Reactor versions are no longer supported.

Core Changes

The @Poller annotation now has the errorChannel attribute for easier configuration of the
underlying MessagePublishingErrorHandler. See Annotation Support for more information.

All the request-reply endpoints (based on AbstractReplyProducingMessageHandler) can now start
transactions and, therefore, make the whole downstream flow transactional. See Transaction
Support for more information.

The SmartLifecycleRoleController now provides methods to obtain status of endpoints in roles. See
Endpoint Roles for more information.

925

./mongodb.pdf#mongodb-outbound-gateway
./webflux.pdf#webflux
./endpoint.pdf#content-type-conversion
./error-handling.pdf#error-handling
./jdbc.pdf#jdbc-metadata-store
./configuration.pdf#annotations
./handler-advice.pdf#tx-handle-message-advice
./handler-advice.pdf#tx-handle-message-advice
./endpoint.pdf#endpoint-roles

By default, POJO methods are now invoked by using an InvocableHandlerMethod, but you can
configure them to use SpEL, as before. See POJO Method invocation for more information.

When targeting POJO methods as message handlers, you can now mark one of the service methods
with the @Default annotation to provide a fallback mechanism for non-matched conditions. See
Configuring Service Activator for more information.

We added a simple PassThroughTransactionSynchronizationFactory to always store a polled message
in the current transaction context. That message is used as a failedMessage property of the
MessagingException, which wraps any raw exception thrown during transaction completion. See
Transaction Synchronization for more information.

The aggregator expression-based ReleaseStrategy now evaluates the expression against the
MessageGroup instead of just the collection of Message<?>. See Aggregators and Spring Expression
Language (SpEL) for more information.

You can now supply the ObjectToMapTransformer with a customized JsonObjectMapper.

See Aggregators and Spring Expression Language (SpEL) for more information.

The @GlobalChannelInterceptor annotation and <int:channel-interceptor> now support negative
patterns (via ! prepending) for component names matching. See Global Channel Interceptor
Configuration for more information.

When a candidate failed to acquire the lock, the LockRegistryLeaderInitiator now emits a new
OnFailedToAcquireMutexEvent through DefaultLeaderEventPublisher. See Leadership Event Handling
for more information.

Gateway Changes

When the gateway method has a void return type and an error channel is provided, the gateway
now correctly sets the errorChannel header. Previously, the header was not populated. This caused
synchronous downstream flows (running on the calling thread) to send the exception to the
configured channel, but an exception on an asynchronous downstream flow would be sent to the
default errorChannel instead.

The RequestReplyExchanger interface now has a throws MessagingException clause to meet the
proposed messages exchange contract.

You can now specify the request and reply timeouts with SpEL expressions. See Messaging
Gateways for more information.

Aggregator Performance Changes

By default, aggregators now use a SimpleSequenceSizeReleaseStrategy, which is more efficient,
especially with large groups. Empty groups are now scheduled for removal after empty-group-min-
timeout. See Aggregator for more information.

Splitter Changes

The splitter component can now handle and split Java Stream and Reactive Streams Publisher

926

./overview.pdf#pojo-invocation
./service-activator.pdf#service-activator-namespace
./transactions.pdf#transaction-synchronization
./aggregator.pdf#aggregator-spel
./aggregator.pdf#aggregator-spel
./aggregator.pdf#aggregator-spel
./channel.pdf#global-channel-configuration-interceptors
./channel.pdf#global-channel-configuration-interceptors
./endpoint.pdf#leadership-event-handling
./gateway.pdf#gateway
./gateway.pdf#gateway
./aggregator.pdf#aggregator

objects. If the output channel is a ReactiveStreamsSubscribableChannel, the AbstractMessageSplitter
builds a Flux for subsequent iteration instead of a regular Iterator, independent of the object being
split. In addition, AbstractMessageSplitter provides protected obtainSizeIfPossible() methods to
allow determination of the size of the Iterable and Iterator objects, if that is possible. See Splitter
for more information.

JMS Changes

Previously, Spring Integration JMS XML configuration used a default bean name of
connectionFactory for the JMS connection factory, letting the property be omitted from component
definitions. We renamed it to jmsConnectionFactory, which is the bean name used by Spring Boot to
auto-configure the JMS connection factory bean.

If your application relies on the previous behavior, you can rename your connectionFactory bean to
jmsConnectionFactory or specifically configure your components to use your bean by using its
current name. See JMS Support for more information.

Mail Changes

Some inconsistencies with rendering IMAP mail content have been resolved. See the note in the
“Mail-receiving Channel Adapter” section for more information.

Feed Changes

Instead of the com.rometools.fetcher.FeedFetcher, which is deprecated in ROME, we introduced a
new Resource property for the FeedEntryMessageSource. See Feed Adapter for more information.

File Changes

We introduced the new FileHeaders.RELATIVE_PATH message header to represent relative path in
FileReadingMessageSource.

The tail adapter now supports idleEventInterval to emit events when there is no data in the file
during that period.

The flush predicates for the FileWritingMessageHandler now have an additional parameter.

The file outbound channel adapter and gateway (FileWritingMessageHandler) now support the
REPLACE_IF_MODIFIED FileExistsMode.

They also now support setting file permissions on the newly written file.

A new FileSystemMarkerFilePresentFileListFilter is now available. See Dealing With Incomplete
Data for more information.

The FileSplitter now provides a firstLineAsHeader option to carry the first line of content as a
header in the messages emitted for the remaining lines.

See File Support for more information.

927

./splitter.pdf#splitter
./jms.pdf#jms
./mail.pdf#imap-format-important
./mail.pdf#imap-format-important
./feed.pdf#feed
./file.pdf#file-incomplete
./file.pdf#file-incomplete
./file.pdf#files

FTP and SFTP Changes

The inbound channel adapters now have a property called max-fetch-size, which is used to limit
the number of files fetched during a poll when no files are currently in the local directory. By
default, they also are configured with a FileSystemPersistentAcceptOnceFileListFilter in the local-
filter.

You can also provide a custom DirectoryScanner implementation to inbound channel adapters by
setting the newly introduced scanner attribute.

You can now configure the regex and pattern filters to always pass directories. This can be useful
when you use recursion in the outbound gateways.

By default, all the inbound channel adapters (streaming and synchronization-based) now use an
appropriate AbstractPersistentAcceptOnceFileListFilter implementation to prevent duplicate
downloads of remote files.

The FTP and SFTP outbound gateways now support the REPLACE_IF_MODIFIED FileExistsMode when
fetching remote files.

The FTP and SFTP streaming inbound channel adapters now add remote file information in a
message header.

The FTP and SFTP outbound channel adapters (as well as the PUT command for outbound gateways)
now support InputStream as payload, too.

The inbound channel adapters can now build file trees locally by using a newly introduced
RecursiveDirectoryScanner. See the scanner option in the FTP Inbound Channel Adapter section for
injection. Also, you can now switch these adapters to the WatchService instead.

We added The NLST command to the AbstractRemoteFileOutboundGateway to perform the list files
names remote command.

You can now supply the FtpOutboundGateway with workingDirExpression to change the FTP client
working directory for the current request message.

The RemoteFileTemplate is supplied now with the invoke(OperationsCallback<F, T> action) to
perform several RemoteFileOperations calls in the scope of the same, thread-bounded, Session.

We added new filters for detecting incomplete remote files.

The FtpOutboundGateway and SftpOutboundGateway now support an option to remove the remote file
after a successful transfer by using the GET or MGET commands.

See FTP/FTPS Adapters and SFTP Adapters for more information.

Integration Properties

Version 4.3.2 added a new spring.integration.readOnly.headers global property to let you customize
the list of headers that should not be copied to a newly created Message by the MessageBuilder. See
Global Properties for more information.

928

./ftp.pdf#ftp-inbound
./ftp.pdf#ftp
./sftp.pdf#sftp
./configuration.pdf#global-properties

Stream Changes

We added a new option on the CharacterStreamReadingMessageSource to let it be used to “pipe” stdin
and publish an application event when the pipe is closed. See Reading from Streams for more
information.

Barrier Changes

The BarrierMessageHandler now supports a discard channel to which late-arriving trigger messages
are sent. See Thread Barrier for more information.

AMQP Changes

The AMQP outbound endpoints now support setting a delay expression when you use the RabbitMQ
Delayed Message Exchange plugin.

The inbound endpoints now support the Spring AMQP DirectMessageListenerContainer.

Pollable AMQP-backed channels now block the poller thread for the poller’s configured
receiveTimeout (default: one second).

Headers, such as contentType, that are added to message properties by the message converter are
now used in the final message. Previously, it depended on the converter type as to which headers
and message properties appeared in the final message. To override the headers set by the
converter, set the headersMappedLast property to true. See AMQP Support for more information.

HTTP Changes

By default, the DefaultHttpHeaderMapper.userDefinedHeaderPrefix property is now an empty string
instead of X-. See HTTP Header Mappings for more information.

By default, uriVariablesExpression now uses a SimpleEvaluationContext (since 5.0.4).

See Mapping URI Variables for more information.

MQTT Changes

Inbound messages are now mapped with the RECEIVED_TOPIC, RECEIVED_QOS, and RECEIVED_RETAINED
headers to avoid inadvertent propagation to outbound messages when an application relays
messages.

The outbound channel adapter now supports expressions for the topic, qos, and retained
properties. The defaults remain the same. See MQTT Support for more information.

STOMP Changes

We changed the STOMP module to use ReactorNettyTcpStompClient, based on the Project Reactor 3.1
and reactor-netty extension. We renamed Reactor2TcpStompSessionManager to
ReactorNettyTcpStompSessionManager, according to the ReactorNettyTcpStompClient foundation. See
STOMP Support for more information.

929

./stream.pdf#stream-reading
./barrier.pdf#barrier
./amqp.pdf#amqp
./http.pdf#http-header-mapping
./http.pdf#mapping-uri-variables
./mqtt.pdf#mqtt
./stomp.pdf#stomp

Web Services Changes

You can now supply WebServiceOutboundGateway instances with an externally configured
WebServiceTemplate instances.

DefaultSoapHeaderMapper can now map a javax.xml.transform.Source user-defined header to a SOAP
header element.

Simple WebService inbound and outbound gateways can now deal with the complete
WebServiceMessage as a payload, allowing the manipulation of MTOM attachments.

See Web Services Support for more information.

Redis Changes

The RedisStoreWritingMessageHandler is supplied now with additional String-based setters for SpEL
expressions (for convenience with Java configuration). You can now configure the
zsetIncrementExpression on the RedisStoreWritingMessageHandler as well. In addition, this property
has been changed from true to false since the INCR option on ZADD Redis command is optional.

You can now supply the RedisInboundChannelAdapter with an Executor for executing Redis listener
invokers. In addition, the received messages now contain a RedisHeaders.MESSAGE_SOURCE header to
indicate the source of the message (topic or pattern).

See Redis Support for more information.

TCP Changes

We added a new ThreadAffinityClientConnectionFactory to bind TCP connections to threads.

You can now configure the TCP connection factories to support PushbackInputStream instances,
letting deserializers “unread” (push back) bytes after “reading ahead”.

We added a ByteArrayElasticRawDeserializer without maxMessageSize to control and buffer incoming
data as needed.

See TCP and UDP Support for more information.

Gemfire Changes

The GemfireMetadataStore now implements ListenableMetadataStore, letting you listen to cache
events by providing MetadataStoreListener instances to the store. See Pivotal GemFire and Apache
Geode Support for more information.

JDBC Changes

The JdbcMessageChannelStore now provides a setter for ChannelMessageStorePreparedStatementSetter,
letting you customize message insertion in the store.

The ExpressionEvaluatingSqlParameterSourceFactory now provides a setter for sqlParameterTypes,
letting you customize the SQL types of the parameters.

930

./ws.pdf#ws
./redis.pdf#redis
./ip.pdf#ip
./gemfire.pdf#gemfire
./gemfire.pdf#gemfire

See JDBC Support for more information.

Metrics Changes

Micrometer application monitoring is now supported (since version 5.0.2). See Micrometer
Integration for more information.


Changes were made to the Micrometer Meters in version 5.0.3 to make them more
suitable for use in dimensional systems. Further changes were made in 5.0.4. If
you use Micrometer, we recommend a minimum of version 5.0.4.

@EndpointId Annotations

Introduced in version 5.0.4, this annotation provides control over bean naming when you use Java
configuration. See Endpoint Bean Names for more information.

J.20. Changes between 4.2 and 4.3
See the Migration Guide for important changes that might affect your applications. You can find
migration guides for all versions back to 2.1 on the Wiki.

J.20.1. New Components

Version 4.3 added a number of new components.

AMQP Async Outbound Gateway

See Asynchronous Outbound Gateway.

MessageGroupFactory

We introduced the MessageGroupFactory strategy to allow control over MessageGroup instances in
MessageGroupStore logic. We added SimpleMessageGroupFactory implementation for the
SimpleMessageGroup, with the GroupType.HASH_SET as the default factory for the standard
MessageGroupStore implementations. See Message Store for more information.

PersistentMessageGroup

We added the PersistentMessageGroup (lazy-load proxy) implementation for persistent
MessageGroupStore instances, which return this instance for the getMessageGroup() when their
lazyLoadMessageGroups is true (the default). See Message Store for more information.

FTP and SFTP Streaming Inbound Channel Adapters

We added inbound channel adapters that return an InputStream for each file, letting you retrieve
remote files without writing them to the local file system. See FTP Streaming Inbound Channel
Adapter and SFTP Streaming Inbound Channel Adapter for more information.

931

./jdbc.pdf#jdbc
https://micrometer.io/
./metrics.pdf#micrometer-integration
./metrics.pdf#micrometer-integration
./overview.pdf#endpoint-bean-names
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.2-to-4.3-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki
./amqp.pdf#amqp-async-outbound-gateway
./message-store.pdf#message-store
./message-store.pdf#message-store
./ftp.pdf#ftp-streaming
./ftp.pdf#ftp-streaming
./sftp.pdf#sftp-streaming

StreamTransformer

We added StreamTransformer to transform an InputStream payload to either a byte[] or a String. See
Stream Transformer for more information.

Integration Graph

We added IntegrationGraphServer, together with the IntegrationGraphController REST service, to
expose the runtime model of a Spring Integration application as a graph. See Integration Graph for
more information.

JDBC Lock Registry

We added JdbcLockRegistry for distributed locks shared through a database table. See JDBC Lock
Registry for more information.

LeaderInitiator for LockRegistry

We added LeaderInitiator implementation based on the LockRegistry strategy. See Leadership
Event Handling for more information.

J.20.2. General Changes

This section describes general changes that version 4.3 brought to Spring Integration.

Core Changes

This section describes general changes to the core of Spring Integration.

Outbound Gateway within a Chain

Previously, you could specify a reply-channel on an outbound gateway within a chain. It was
completely ignored. The gateway’s reply goes to the next chain element or, if the gateway is the last
element, to the chain’s output channel. This condition is now detected and disallowed. If you have
such a configuration, remove the reply-channel.

Asynchronous Service Activator

We added an option to make the service activator be synchronous. See Asynchronous Service
Activator for more information.

Messaging Annotation Support changes

The messaging annotation support does not require a @MessageEndpoint (or any other @Component)
annotation declaration on the class level. To restore the previous behavior, set the
spring.integration.messagingAnnotations.require.componentAnnotation of
spring.integration.properties to true. See Global Properties and Annotation Support for more
information.

932

./transformer.pdf#stream-transformer
./graph.pdf#integration-graph
./jdbc.pdf#jdbc-lock-registry
./jdbc.pdf#jdbc-lock-registry
./endpoint.pdf#leadership-event-handling
./endpoint.pdf#leadership-event-handling
./service-activator.pdf#async-service-activator
./service-activator.pdf#async-service-activator
./configuration.pdf#global-properties
./configuration.pdf#annotations

Mail Changes

This section describes general changes to the Spring Integration Mail functionality.

Customizable User Flag

The customizable userFlag (added in 4.2.2 to provide customization of the flag used to denote that
the mail has been seen) is now available in the XML namespace. See Marking IMAP Messages When
\Recent Is Not Supported for more information.

Mail Message Mapping

You can now map inbound mail messages with the MessageHeaders containing the mail headers and
the payload containing the email content. Previously, the payload was always the raw MimeMessage.
See Inbound Mail Message Mapping for more information.

JMS Changes

This section describes general changes to the Spring Integration JMS functionality.

Header Mapper

The DefaultJmsHeaderMapper now maps the standard correlationId header as a message property by
invoking its toString() method. See Mapping Message Headers to and from JMS Message for more
information.

Asynchronous Gateway

The JMS outbound gateway now has an async property. See Async Gateway for more information.

Aggregator Changes

There is a change in behavior when a POJO aggregator releases a collection of Message<?> objects.
This is rare, but, if your application does that, you need to make a small change to your POJO. See
this IMPORTANT: The SimpleMessageGroup.getMessages() method returns an unmodifiableCollection.
note for more information.

TCP/UDP Changes

This section describes general changes to the Spring Integration TCP/UDP functionality.

Events

A new TcpConnectionServerListeningEvent is emitted when a server connection factory is started.
See TCP Connection Events for more information.

You can now use the destination-expression and socket-expression attributes on <int-ip:udp-
outbound-channel-adapter>. See UDP Adapters for more information.

Stream Deserializers

The various deserializers that cannot allocate the final buffer until the whole message has been

933

./mail.pdf#imap-seen
./mail.pdf#imap-seen
./mail.pdf#imap-seen
./mail.pdf#imap-seen
./mail.pdf#mail-mapping
./jms.pdf#jms-header-mapping
./jms.pdf#jms-async-gateway
./aggregator.pdf#agg-message-collection
./aggregator.pdf#agg-message-collection
./aggregator.pdf#agg-message-collection
./aggregator.pdf#agg-message-collection
./aggregator.pdf#agg-message-collection
./ip.pdf#tcp-events
./ip.pdf#udp-adapters

assembled now support pooling the raw buffer into which the data is received rather than creating
and discarding a buffer for each message. See TCP Connection Factories for more information.

TCP Message Mapper

The message mapper now, optionally, sets a configured content type header. See IP Message
Headers for more information.

File Changes

This section describes general changes to the Spring Integration File functionality.

Destination Directory Creation

The generated file name for the FileWritingMessageHandler can represent a sub-path to save the
desired directory structure for a file in the target directory. See Generating File Names for more
information.

The FileReadingMessageSource now hides the WatchService directory scanning logic in the inner
class. We added the use-watch-service and watch-events options to enable this behavior. We
deprecated the top-level WatchServiceDirectoryScanner because of inconsistency around the API. See
WatchServiceDirectoryScanner for more information.

Buffer Size

When writing files, you can now specify the buffer size.

Appending and Flushing

You can now avoid flushing files when appending and use a number of strategies to flush the data
during idle periods. See Flushing Files When Using APPEND_NO_FLUSH for more information.

Preserving Timestamps

You can now configure the outbound channel adapter to set the destination file’s lastmodified
timestamp. See File Timestamps for more information.

Splitter Changes

The FileSplitter now automatically closes an FTP or SFTP session when the file is completely read.
This applies when the outbound gateway returns an InputStream or when you use the new FTP or
SFTP streaming channel adapters. We also introduced a new markers-json option to convert
FileSplitter.FileMarker to JSON String for relaxed downstream network interaction. See File
Splitter for more information.

File Filters

We added ChainFileListFilter as an alternative to CompositeFileListFilter. See Reading Files for
more information.

934

./ip.pdf#tcp-connection-factories
./ip.pdf#ip-msg-headers
./ip.pdf#ip-msg-headers
./file.pdf#file-writing-file-names
./file.pdf#watch-service-directory-scanner
./file.pdf#file-flushing
./file.pdf#file-flushing
./file.pdf#file-timestamps
./file.pdf#file-splitter
./file.pdf#file-splitter
./file.pdf#file-reading

AMQP Changes

This section describes general changes to the Spring Integration AMQP functionality.

Content Type Message Converter

The outbound endpoints now support a RabbitTemplate configured with a
ContentTypeDelegatingMessageConverter such that you can choose the converter based on the
message content type. See Outbound Message Conversion for more information.

Headers for Delayed Message Handling

Spring AMQP 1.6 adds support for delayed message exchanges. Header mapping now supports the
headers (amqp_delay and amqp_receivedDelay) used by this feature.

AMQP-Backed Channels

AMQP-backed channels now support message mapping. See AMQP-backed Message Channels for
more information.

Redis Changes

This section describes general changes to the Spring Integration Redis functionality.

List Push/Pop Direction

Previously, the queue channel adapters always used the Redis list in a fixed direction, pushing to
the left end and reading from the right end. You can now configure the reading and writing
direction with the rightPop and leftPush options for the RedisQueueMessageDrivenEndpoint and
RedisQueueOutboundChannelAdapter, respectively. See Redis Queue Inbound Channel Adapter and
Redis Queue Outbound Channel Adapter for more information.

Queue Inbound Gateway Default Serializer

The default serializer in the inbound gateway has been changed to a
JdkSerializationRedisSerializer for compatibility with the outbound gateway. See Redis Queue
Inbound Gateway for more information.

HTTP Changes

Previously, with requests that had a body (such as POST) that had no content-type header, the body
was ignored. With this release, the content type of such requests is considered to be
application/octet-stream as recommended by RFC 2616. See Http Inbound Components for more
information.

uriVariablesExpression now uses a SimpleEvaluationContext by default (since 4.3.15). See Mapping
URI Variables for more information.

SFTP Changes

This section describes general changes to the Spring Integration SFTP functionality.

935

./amqp.pdf#content-type-conversion-outbound
https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/
./amqp.pdf#amqp-channels
./redis.pdf#redis-queue-inbound-channel-adapter
./redis.pdf#redis-queue-outbound-channel-adapter
./redis.pdf#redis-queue-inbound-gateway
./redis.pdf#redis-queue-inbound-gateway
./http.pdf#http-inbound
./http.pdf#mapping-uri-variables
./http.pdf#mapping-uri-variables

Factory Bean

We added a new factory bean to simplify the configuration of Jsch proxies for SFTP. See Proxy
Factory Bean for more information.

chmod Changes

The SFTP outbound gateway (for put and mput commands) and the SFTP outbound channel adapter
now support the chmod attribute to change the remote file permissions after uploading. See SFTP
Outbound Channel Adapter and SFTP Outbound Gateway for more information.

FTP Changes

This section describes general changes to the Spring Integration FTP functionality.

Session Changes

The FtpSession now supports null for the list() and listNames() methods, since underlying FTP
Client can use it. With that, you can now configure the FtpOutboundGateway without the
remoteDirectory expression. You can also configure the <int-ftp:inbound-channel-adapter> without
remote-directory or remote-directory-expression. See FTP/FTPS Adapters for more information.

Router Changes

The ErrorMessageExceptionTypeRouter now supports the Exception superclass mappings to avoid
duplication for the same channel in case of multiple inheritors. For this purpose, the
ErrorMessageExceptionTypeRouter loads mapping classes during initialization to fail-fast for a
ClassNotFoundException.

See Routers for more information.

Header Mapping

This section describes the changes to header mapping between version 4.2 and 4.3.

General

AMQP, WS, and XMPP header mappings (such as request-header-mapping and reply-header-mapping)
now support negated patterns. See AMQP Message Headers, WS Message Headers, and XMPP
Message Headers for more information.

AMQP Header Mapping

Previously, only standard AMQP headers were mapped by default. You had to explicitly enable
mapping of user-defined headers. With this release, all headers are mapped by default. In addition,
the inbound amqp_deliveryMode header is no longer mapped by default. See AMQP Message Headers
for more information.

Groovy Scripts

You can now configure groovy scripts with the compile-static hint or any other
CompilerConfiguration options. See Groovy Configuration for more information.

936

./sftp.pdf#sftp-proxy-factory-bean
./sftp.pdf#sftp-proxy-factory-bean
./sftp.pdf#sftp-outbound
./sftp.pdf#sftp-outbound
./sftp.pdf#sftp-outbound-gateway
./ftp.pdf#ftp
./router.pdf#router
./amqp.pdf#amqp-message-headers
./ws.pdf#ws-message-headers
./xmpp.pdf#xmpp-message-headers
./xmpp.pdf#xmpp-message-headers
./amqp.pdf#amqp-message-headers
./groovy.pdf#groovy-config

@InboundChannelAdapter Changes

The @InboundChannelAdapter now has an alias channel attribute for the regular value. In addition, the
target SourcePollingChannelAdapter components can now resolve the target outputChannel bean
from its provided name (outputChannelName options) in a late-binding manner. See Annotation
Support for more information.

XMPP Changes

The XMPP channel adapters now support the XMPP Extensions (XEP). See XMPP Extensions for
more information.

WireTap Late Binding

The WireTap ChannelInterceptor now can accept a channelName that is resolved to the target
MessageChannel later, during the first active interceptor operation. See Wire Tap for more
information.

ChannelMessageStoreQueryProvider Changes

The ChannelMessageStoreQueryProvider now supports H2 databases. See Backing Message Channels
for more information.

WebSocket Changes

The ServerWebSocketContainer now exposes an allowedOrigins option, and SockJsServiceOptions
exposes a suppressCors option. See WebSockets Support for more information.

J.21. Changes between 4.1 and 4.2
See the Migration Guide for important changes that might affect your applications. You can find
migration guides for all versions back to 2.1 on the wiki.

J.21.1. New Components

Version 4.2 added a number of new components.

Major Management/JMX Rework

We added a new MetricsFactory strategy interface. This change, together with other changes in the
JMX and management infrastructure, provides much more control over management configuration
and runtime performance.

However, this has some important implications for (some) user environments.

For complete details, see Metrics and Management and JMX Improvements.

MongoDB Metadata Store

The MongoDbMetadataStore is now available. For more information, see MongoDB Metadata Store.

937

./configuration.pdf#annotations
./configuration.pdf#annotations
./xmpp.pdf#xmpp-extensions
./channel.pdf#channel-wiretap
./jdbc.pdf#jdbc-message-store-channels
./web-sockets.pdf#web-sockets
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.1-to-4.2-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki
./metrics.pdf#metrics-management
./jmx.pdf#jmx-42-improvements
./mongodb.pdf#mongodb-metadata-store

SecuredChannel Annotation

We introduced the @SecuredChannel annotation, replacing the deprecated
ChannelSecurityInterceptorFactoryBean. For more information, see Security in Spring Integration.

SecurityContext Propagation

We introduced the SecurityContextPropagationChannelInterceptor for the SecurityContext
propagation from one message flow’s thread to another. For more information, see Security in
Spring Integration.

FileSplitter

In 4.1.2, we added FileSplitter, which splits text files into lines. It now has full support in the int-
file: namespace. See File Splitter for more information.

Zookeeper Support

We added Zookeeper support to the framework to assist when running on a clustered or multi-host
environment. The change impacts the following features:

• ZookeeperMetadataStore

• ZookeeperLockRegistry

• Zookeeper Leadership

See Zookeeper Support for more information.

Thread Barrier

A new thread <int:barrier/> component is available, letting a thread be suspended until some
asynchronous event occurs. See Thread Barrier for more information.

STOMP Support

We added STOMP support to the framework as an inbound and outbound channel adapters pair.
See STOMP Support for more information.

Codec

A new Codec abstraction has been introduced, to encode and decode objects to and from byte[]. We
added an implementation that uses Kryo. We also added codec-based transformers and message
converters. See Codec for more information.

Message PreparedStatement Setter

A new MessagePreparedStatementSetter functional interface callback is available for the
JdbcMessageHandler (<int-jdbc:outbound-gateway> and <int-jdbc:outbound-channel-adapter>) as an
alternative to using SqlParameterSourceFactory to populate parameters on the PreparedStatement
with the requestMessage context. See Outbound Channel Adapter for more information.

938

./security.pdf#security
./security.pdf#security
./security.pdf#security
./file.pdf#file-splitter
./zookeeper.pdf#zookeeper
./barrier.pdf#barrier
./stomp.pdf#stomp
./codec.pdf#codec
./jdbc.pdf#jdbc-outbound-channel-adapter

J.21.2. General Changes

This section describes general changes from version 4.1 to version 4.2.

WireTap

As an alternative to the existing selector attribute, the <wire-tap/> element now supports the
selector-expression attribute.

File Changes

See File Support for more information about these changes.

Appending New Lines

The <int-file:outbound-channel-adapter> and <int-file:outbound-gateway> now support an append-
new-line attribute. If set to true, a new line is appended to the file after a message is written. The
default attribute value is false.

Ignoring Hidden Files

We added the ignore-hidden attribute for the <int-file:inbound-channel-adapter> to let you set
whether to pick up hidden files from the source directory. It defaults to true.

Writing InputStream Payloads

The FileWritingMessageHandler now also accepts InputStream as a valid message payload type.

HeadDirectoryScanner

You can now use the HeadDirectoryScanner with other FileListFilter implementations.

Last Modified Filter

We added the LastModifiedFileListFilter.

Watch Service Directory Scanner

We added the WatchServiceDirectoryScanner.

Persistent File List Filter Changes

The AbstractPersistentFileListFilter has a new property (flushOnUpdate) which, when set to true,
calls flush() on the metadata store if it implements Flushable (for example,
PropertiesPersistingMetadataStore).

Class Package Change

We moved the ScatterGatherHandler class from the org.springframework.integration.handler to the
org.springframework.integration.scattergather.

939

./file.pdf#files

TCP Changes

This section describes general changes to the Spring Integration TCP functionality.

TCP Serializers

The TCP Serializers no longer flush() the OutputStream. This is now done by the TcpNxxConnection
classes. If you use the serializers directly within your code, you may have to flush() the
OutputStream.

Server Socket Exceptions

TcpConnectionServerExceptionEvent instances are now published whenever an unexpected
exception occurs on a TCP server socket (also added to 4.1.3 and 4.0.7). See TCP Connection Events
for more information.

TCP Server Port

If you configure a TCP server socket factory to listen on a random port, you can now obtain the
actual port chosen by the OS by using getPort(). getServerSocketAddress() is also available.

See "TCP Connection Factories" for more information.

TCP Gateway Remote Timeout

The TcpOutboundGateway now supports remote-timeout-expression as an alternative to the existing
remote-timeout attribute. This allows setting the timeout based on each message.

Also, the remote-timeout no longer defaults to the same value as reply-timeout, which has a
completely different meaning.

See .TCP Outbound Gateway Attributes for more information.

TCP SSLSession Available for Header Mapping

TcpConnection implementations now support getSslSession() to let you extract information from
the session to add to message headers. See IP Message Headers for more information.

TCP Events

New events are now published whenever a correlation exception occurs — such as sending a
message to a non-existent socket.

The TcpConnectionEventListeningMessageProducer is deprecated. Use the generic event adapter
instead.

See TCP Connection Events for more information.

@InboundChannelAdapter Changes

Previously, the @Poller on an inbound channel adapter defaulted the maxMessagesPerPoll attribute to
-1 (infinity). This was inconsistent with the XML configuration of <inbound-channel-adapter/>,

940

./ip.pdf#tcp-events
./ip.pdf#tcp-connection-factories
./ip.pdf#tcp-ob-gateway-attributes
./ip.pdf#ip-msg-headers
./ip.pdf#tcp-events

which defaults to 1. The annotation now defaults this attribute to 1.

API Changes

o.s.integration.util.FunctionIterator now requires a o.s.integration.util.Function instead of a
reactor.function.Function. This was done to remove an unnecessary hard dependency on Reactor.
Any uses of this iterator need to change the import.

Reactor is still supported for functionality such as the Promise gateway. The dependency was
removed for those users who do not need it.

JMS Changes

This section describes general changes to the Spring Integration TCP functionality.

Reply Listener Lazy Initialization

You can now configure the reply listener in JMS outbound gateways to be initialized on-demand
and stopped after an idle period, instead of being controlled by the gateway’s lifecycle. See
Outbound Gateway for more information.

Conversion Errors in Message-Driven Endpoints

The error-channel is now used for the conversion errors. In previous versions, they caused
transaction rollback and message redelivery.

See Message-driven Channel Adapter and Inbound Gateway for more information.

Default Acknowledge Mode

When using an implicitly defined DefaultMessageListenerContainer, the default acknowledge is now
transacted. We recommend using transacted when using this container, to avoid message loss. This
default now applies to the message-driven inbound adapter and the inbound gateway. It was
already the default for JMS-backed channels.

See Message-driven Channel Adapter and Inbound Gateway for more information.

Shared Subscriptions

We added Namespace support for shared subscriptions (JMS 2.0) to message-driven endpoints and
the <int-jms:publish-subscribe-channel>. Previously, you had to wire up listener containers as
<bean/> declarations to use shared connections.

See JMS Support for more information.

Conditional Pollers

We now provide much more flexibility for dynamic polling.

See Conditional Pollers for Message Sources for more information.

941

./jms.pdf#jms-outbound-gateway
./jms.pdf#jms-message-driven-channel-adapter
./jms.pdf#jms-inbound-gateway
./jms.pdf#jms-message-driven-channel-adapter
./jms.pdf#jms-inbound-gateway
./jms.pdf#jms
./polling-consumer.pdf#conditional-pollers

AMQP Changes

This section describes general changes to the Spring Integration AMQP functionality.

Publisher Confirmations

The <int-amqp:outbound-gateway> now supports confirm-correlation-expression, confirm-ack-
channel, and confirm-nack-channel attributes (which have a purpose similar to that of <int-
amqp:outbound-channel-adapter>).

Correlation Data

For both the outbound channel adapter and the inbound gateway, if the correlation data is a
Message<?>, it becomes the basis of the message on the ack or nack channel, with the additional
header(s) added. Previously, any correlation data (including Message<?>) was returned as the
payload of the ack or nack message.

Inbound Gateway Properties

The <int-amqp:inbound-gateway> now exposes the amqp-template attribute to allow more control over
an external bean for the reply RabbitTemplate. You can also provide your own AmqpTemplate
implementation. In addition, you can use default-reply-to if the request message does not have a
replyTo property.

See AMQP Support for more information.

XPath Splitter Improvements

The XPathMessageSplitter (<int-xml:xpath-splitter>) now allows the configuration of output-
properties for the internal javax.xml.transform.Transformer and supports an Iterator mode
(defaults to true) for the XPath evaluation org.w3c.dom.NodeList result.

See Splitting XML Messages for more information.

HTTP Changes

This section describes general changes to the Spring Integration HTTP functionality.

CORS

The HTTP inbound endpoints (<int-http:inbound-channel-adapter> and <int-http:inbound-gateway>)
now allow the configuration of Cross-origin Resource Sharing (CORS).

See Cross-origin Resource Sharing (CORS) Support for more information.

Inbound Gateway Timeout

You can configure the HTTP inbound gate way to return a status code that you specify when a
request times out. The default is now 500 Internal Server Error instead of 200 OK.

See Response Status Code for more information.

942

./amqp.pdf#amqp
./xml.pdf#xml-xpath-splitting
./http.pdf#http-cors
./http.pdf#http-response-statuscode

Form Data

We added documentation for proxying multipart/form-data requests. See HTTP Support for more
information.

Gateway Changes

This section describes general changes to the Spring Integration Gateway functionality.

Gateway Methods can Return CompletableFuture<?>

When using Java 8, gateway methods can now return CompletableFuture<?>. See CompletableFuture
for more information.

MessagingGateway Annotation

The request and reply timeout properties are now String instead of Long to allow configuration with
property placeholders or SpEL. See @MessagingGateway Annotation.

Aggregator Changes

This section describes general changes to the Spring Integration aggregator functionality.

Aggregator Performance

This release includes some performance improvements for aggregating components (aggregator,
resequencer, and others), by more efficiently removing messages from groups when they are
released. New methods (removeMessagesFromGroup) have been added to the message store. Set the
removeBatchSize property (default: 100) to adjust the number of messages deleted in each operation.
Currently, the JDBC, Redis, and MongoDB message stores support this property.

Output Message Group Processor

When using a ref or inner bean for the aggregator, you can now directly bind a
MessageGroupProcessor. In addition, we added a SimpleMessageGroupProcessor that returns the
collection of messages in the group. When an output processor produces a collection of Message<?>,
the aggregator releases those messages individually. Configuring the SimpleMessageGroupProcessor
makes the aggregator a message barrier, where messages are held up until they all arrive and are
then released individually. See Aggregator for more information.

FTP and SFTP Changes

This section describes general changes to the Spring Integration FTP and SFTP functionality.

Inbound Channel Adapters

You can now specify a remote-directory-expression on the inbound channel adapters, to determine
the directory at runtime. See FTP/FTPS Adapters and SFTP Adapters for more information.

Gateway Partial Results

When you use FTP or SFTP outbound gateways to operate on multiple files (with mget and mput), an

943

./http.pdf#http
./gateway.pdf#gw-completable-future
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./aggregator.pdf#aggregator
./ftp.pdf#ftp
./sftp.pdf#sftp

exception can occur after part of the request is completed. If such a condition occurs, a
PartialSuccessException that contains the partial results is thrown. See FTP Outbound Gateway and
SFTP Outbound Gateway for more information.

Delegating Session Factory

We added a delegating session factory, enabling the selection of a particular session factory based
on some thread context value.

See Delegating Session Factory and Delegating Session Factory for more information.

Default Sftp Session Factory

Previously, the DefaultSftpSessionFactory unconditionally allowed connections to unknown hosts.
This is now configurable (default: false).

The factory now requires a configured knownHosts, file unless the allowUnknownKeys property is true
(default: false).

See allowUnknownKeys::Set to true to allow connections to hosts with unknown (or changed) keys. for
more information.

Message Session Callback

We introduced the MessageSessionCallback<F, T> to perform any custom Session operations with
the requestMessage context in the <int-(s)ftp:outbound-gateway/>.

See Using MessageSessionCallback and MessageSessionCallback for more information.

Websocket Changes

We added WebSocketHandlerDecoratorFactory support to the ServerWebSocketContainer to allow
chained customization for the internal WebSocketHandler. See WebSockets Namespace Support for
more information.

Application Event Adapters changes

The ApplicationEvent adapters can now operate with payload as an event to directly allow omitting
custom ApplicationEvent extensions. For this purpose, we introduced the publish-payload boolean
attribute has been introduced on the <int-event:outbound-channel-adapter>. See Spring
ApplicationEvent Support for more information.

J.22. Changes between 4.0 and 4.1
See the Migration Guide for important changes that might affect your applications. You can find
migration guides for all versions back to 2.1 on the wiki.

J.22.1. New Components

Version 4.1 added a number of new components.

944

./ftp.pdf#ftp-outbound-gateway
./sftp.pdf#sftp-outbound-gateway
./ftp.pdf#ftp-dsf
./sftp.pdf#sftp-dsf
./sftp.pdf#sftp-unk-keys
./sftp.pdf#sftp-unk-keys
./sftp.pdf#sftp-unk-keys
./sftp.pdf#sftp-unk-keys
./ftp.pdf#ftp-session-callback
./ftp.pdf#ftp-session-callback
./sftp.pdf#sftp-session-callback
./web-sockets.pdf#web-sockets-namespace
./event.pdf#applicationevent
./event.pdf#applicationevent
./event.pdf#applicationevent
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.0-to-4.1-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki

Promise<?> Gateway

The messaging gateway methods now support a Reactor Promise return type. See Asynchronous
Gateway.

WebSocket support

The WebSocket module is now available. It is fully based on the Spring WebSocket and Spring
Messaging modules and provides an <inbound-channel-adapter> and an <outbound-channel-adapter>.
See WebSockets Support for more information.

Scatter-Gather Enterprise Integration Pattern

We implemented the scatter-gather enterprise integration pattern. See Scatter-Gather for more
information.

Routing Slip Pattern

We added the routing slip EIP pattern implementation. See Routing Slip for more information.

Idempotent Receiver Pattern

We added the idempotent receiver enterprise integration pattern implementation by adding the
<idempotent-receiver> component in XML or the IdempotentReceiverInterceptor and
IdempotentReceiver annotations for Java configuration. See Idempotent Receiver Enterprise
Integration Pattern and the Javadoc for more information.

Boon JsonObjectMapper

We added the Boon JsonObjectMapper for the JSON transformers. See Transformer for more
information.

Redis Queue Gateways

We added the <redis-queue-inbound-gateway> and <redis-queue-outbound-gateway> components. See
Redis Queue Inbound Gateway and Redis Queue Outbound Gateway.

PollSkipAdvice

We added the PollSkipAdvice, which you can use within the <advice-chain> of the <poller> to
determine if the current poll should be suppressed (skipped) by some condition that you implement
with PollSkipStrategy. See Poller for more information.

J.22.2. General Changes

This section describes general changes from version 4.0 to version 4.1.

AMQP Inbound Endpoints, Channel

Elements that use a message listener container (inbound endpoints and channel) now support the
missing-queues-fatal attribute. See AMQP Support for more information.

945

./gateway.pdf#async-gateway
./gateway.pdf#async-gateway
./web-sockets.pdf#web-sockets
./scatter-gather.pdf#scatter-gather
./router.pdf#routing-slip
./handler-advice.pdf#idempotent-receiver
./handler-advice.pdf#idempotent-receiver
https://docs.spring.io/spring-integration/api/index.html
./transformer.pdf#transformer
./redis.pdf#redis-queue-inbound-gateway
./redis.pdf#redis-queue-outbound-gateway
./polling-consumer.pdf#polling-consumer
./amqp.pdf#amqp

AMQP Outbound Endpoints

The AMQP outbound endpoints support a new property called lazy-connect (default: true). When
true, the connection to the broker is not established until the first message arrives (assuming there
are no inbound endpoints, which always try to establish the connection during startup). When set
to false, an attempt to establish the connection is made during application startup. See AMQP
Support for more information.

SimpleMessageStore

The SimpleMessageStore no longer makes a copy of the group when calling getMessageGroup(). See
[WARNING] for more information.

Web Service Outbound Gateway: encode-uri

The <ws:outbound-gateway/> now provides an encode-uri attribute to allow disabling the encoding of
the URI object before sending the request.

Http Inbound Channel Adapter and Status Code

The <http:inbound-channel-adapter> can now be configured with a status-code-expression to
override the default 200 OK status. See HTTP Namespace Support for more information.

MQTT Adapter Changes

You can now configure the MQTT channel adapters to connect to multiple servers — for example, to
support High Availability (HA). See MQTT Support for more information.

The MQTT message-driven channel adapter now supports specifying the QoS setting for each
subscription. See Inbound (Message-driven) Channel Adapter for more information.

The MQTT outbound channel adapter now supports asynchronous sends, avoiding blocking until
delivery is confirmed. See Outbound Channel Adapter for more information.

It is now possible to programmatically subscribe to and unsubscribe from topics at runtime. See
Inbound (Message-driven) Channel Adapter for more information.

FTP and SFTP Adapter Changes

The FTP and SFTP outbound channel adapters now support appending to remote files and taking
specific actions when a remote file already exists. The remote file templates now also supports this,
as well as rmdir() and exists(). In addition, the remote file templates provide access to the
underlying client object, enabling access to low-level APIs.

See FTP/FTPS Adapters and SFTP Adapters for more information.

Splitter and Iterator

Splitter components now support an Iterator as the result object for producing output messages.
See Splitter for more information.

946

./amqp.pdf#amqp
./amqp.pdf#amqp
./message-store.pdf#sms-caution
./http.pdf#http-namespace
./mqtt.pdf#mqtt
./mqtt.pdf#mqtt-inbound
./mqtt.pdf#mqtt-outbound
./mqtt.pdf#mqtt-inbound
./ftp.pdf#ftp
./sftp.pdf#sftp
./splitter.pdf#splitter

Aggregator

Aggregator instancess now support a new attribute expire-groups-upon-timeout. See Aggregator for
more information.

Content Enricher Improvements

We added a null-result-expression attribute, which is evaluated and returned if <enricher> returns
null. You can add it in <header> and <property>. See Content Enricher for more information.

We added an error-channel attribute, which is used to handle an error flow if an Exception occurs
downstream of the request-channel. This lets you return an alternative object to use for enrichment.
See Content Enricher for more information.

Header Channel Registry

The <header-enricher/> element’s <header-channels-to-string/> child element can now override the
header channel registry’s default time for retaining channel mappings. See Header Channel
Registry for more information.

Orderly Shutdown

We made improvements to the orderly shutdown algorithm. See Orderly Shutdown for more
information.

Management for RecipientListRouter

The RecipientListRouter now provides several management operations to configure recipients at
runtime. With that, you can now configure the <recipient-list-router> without any <recipient>
from the start. See RecipientListRouterManagement for more information.

AbstractHeaderMapper: NON_STANDARD_HEADERS token

The AbstractHeaderMapper implementation now provides the additional NON_STANDARD_HEADERS token
to map any user-defined headers, which are not mapped by default. See AMQP Message Headers for
more information.

AMQP Channels: template-channel-transacted

We introduced the template-channel-transacted attribute for AMQP MessageChannel instances. See
AMQP-backed Message Channels for more information.

Syslog Adapter

The default syslog message converter now has an option to retain the original message in the
payload while still setting the headers. See Syslog Inbound Channel Adapter for more information.

Asynchronous Gateway

In addition to the Promise return type mentioned earlier, gateway methods may now return a
ListenableFuture, introduced in Spring Framework 4.0. You can also disable asynchronous

947

./aggregator.pdf#aggregator
./content-enrichment.pdf#content-enricher
./content-enrichment.pdf#content-enricher
./content-enrichment.pdf#header-channel-registry
./content-enrichment.pdf#header-channel-registry
./shutdown.pdf#jmx-shutdown
./router.pdf#recipient-list-router-management
./amqp.pdf#amqp-message-headers
./amqp.pdf#amqp-channels
./syslog.pdf#syslog-inbound-adapter

processing in the gateway, letting a downstream flow directly return a Future. See Asynchronous
Gateway.

Aggregator Advice Chain

Aggregator and Resequencer now support <expire-advice-chain/> and <expire-transactional/> child
elements to advise the forceComplete operation. See Configuring an Aggregator with XML for more
information.

Outbound Channel Adapter and Scripts

The <int:outbound-channel-adapter/> now supports the <script/> child element. The underlying
script must have a void return type or return null. See Groovy support and Scripting Support.

Resequencer Changes

When a message group in a resequencer times out (using group-timeout or a
MessageGroupStoreReaper), late arriving messages are now, by default, discarded immediately. See
Resequencer.

Optional POJO method parameter

Spring Integration now consistently handles the Java 8’s Optional type. See Configuring Service
Activator.

QueueChannel backed Queue type

The QueueChannel backed Queue type has been changed from BlockingQueue to the more generic
Queue. This change allows the use of any external Queue implementation (for example, Reactor’s
PersistentQueue). See QueueChannel Configuration.

ChannelInterceptor Changes

The ChannelInterceptor now supports additional afterSendCompletion() and
afterReceiveCompletion() methods. See Channel Interceptors.

IMAP PEEK

Since version 4.1.1 there is a change of behavior if you explicitly set the mail.[protocol].peek
JavaMail property to false (where [protocol] is imap or imaps). See [IMPORTANT].

J.23. Changes between 3.0 and 4.0
See the Migration Guide for important changes that might affect your applications. You can find
migration guides for all versions back to 2.1 on the wiki.

J.23.1. New Components

Version 4.0 added a number of new components.

948

./gateway.pdf#async-gateway
./gateway.pdf#async-gateway
./aggregator.pdf#aggregator-xml
./groovy.pdf#groovy
./scripting.pdf#scripting
./resequencer.pdf#resequencer
./service-activator.pdf#service-activator-namespace
./service-activator.pdf#service-activator-namespace
./channel.pdf#channel-configuration-queuechannel
./channel.pdf#channel-configuration-queuechannel
./channel.pdf#channel-interceptors
./mail.pdf#imap-peek
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-3.0-to-4.0-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki

MQTT Channel Adapters

The MQTT channel adapters (previously available in the Spring Integration Extensions repository)
are now available as part of the normal Spring Integration distribution. See MQTT Support.

@EnableIntegration

We added the @EnableIntegration annotation to permit declaration of standard Spring Integration
beans when using @Configuration classes. See Annotation Support for more information.

@IntegrationComponentScan

We added the @IntegrationComponentScan annotation to permit classpath scanning for Spring
Integration-specific components. See Annotation Support for more information.

“@EnableMessageHistory”

You can now enable message history with the @EnableMessageHistory annotation in a @Configuration
class. In addition, a JMX MBean can modify the message history settings. Also, MessageHistory can
track auto-created MessageHandler instances for annotated endpoints (such as @ServiceActivator,
@Splitter, and others). For more information, see Message History.

@MessagingGateway

You can now configure messaging gateway interfaces with the @MessagingGateway annotation. It is
an analogue of the <int:gateway/> XML element. For more information, see @MessagingGateway
Annotation.

Spring Boot @EnableAutoConfiguration

As well as the @EnableIntegration annotation mentioned earlier, we introduced a hook to allow the
Spring Integration infrastructure beans to be configured with Spring Boot’s
@EnableAutoConfiguration annotation. For more information, see “Auto-configuration” in the Spring
Boot Reference Guide.

@GlobalChannelInterceptor

As well as the @EnableIntegration annotation mentioned above, we introduced the
@GlobalChannelInterceptor annotation. For more information, see Annotation Support.

@IntegrationConverter

We introduced the @IntegrationConverter annotation as an analogue of the <int:converter/>
component. For more information, see Annotation Support.

@EnablePublisher

We added the @EnablePublisher annotation to allow the specification of a default-publisher-channel
for @Publisher annotations. See Annotation Support for more information.

949

./mqtt.pdf#mqtt
./configuration.pdf#annotations
./configuration.pdf#annotations
./message-history.pdf#message-history
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-auto-configuration.html
./configuration.pdf#annotations
./configuration.pdf#annotations
./configuration.pdf#annotations

Redis Channel Message Stores

We added a Redis MessageGroupStore that is optimized for use when backing a QueueChannel for
persistence. For more information, see Redis Channel Message Stores.

We added a Redis ChannelPriorityMessageStore. You can use it to retrieve messages by priority. For
more information, see Redis Channel Message Stores.

MongodDB Channel Message Store

The MongoDB support now provides the MongoDbChannelMessageStore, which is a channel-specific
MessageStore implementation. With priorityEnabled = true, you can use it in <int:priority-queue>
elements to achieve priority order polling of persisted messages. For more information see
MongoDB Channel Message Store.

@EnableIntegrationMBeanExport

You can now enable the IntegrationMBeanExporter with the @EnableIntegrationMBeanExport
annotation in a @Configuration class. For more information, see MBean Exporter.

ChannelSecurityInterceptorFactoryBean

ChannelSecurityInterceptorFactoryBean now supports configuration of Spring Security for message
channels that use @Configuration classes. For more information, see Security in Spring Integration.

Redis Command Gateway

The Redis support now provides the <outbound-gateway> component to perform generic Redis
commands by using the RedisConnection#execute method. For more information, see Redis
Outbound Command Gateway.

RedisLockRegistry and GemfireLockRegistry

The RedisLockRegistry and GemfireLockRegistry are now available to support global locks visible to
multiple application instances and servers. These can be used with aggregating message handlers
across multiple application instances such that group release occurs on only one instance. For more
information, see Redis Lock Registry, Gemfire Lock Registry, and Aggregator.

@Poller

Annotation-based messaging configuration can now have a poller attribute. This means that
methods annotated with @ServiceActivator, @Aggregator, and similar annotations can now use an
inputChannel that is a reference to a PollableChannel. For more information, see Annotation
Support.

@InboundChannelAdapter and SmartLifecycle for Annotated Endpoints

We added the @InboundChannelAdapter method annotation. It is an analogue of the <int:inbound-
channel-adapter> XML component. In addition, all messaging annotations now provide
SmartLifecycle options. For more information, see Annotation Support.

950

./redis.pdf#redis-cms
./redis.pdf#redis-cms
./mongodb.pdf#mongodb-priority-channel-message-store
./jmx.pdf#jmx-mbean-exporter
./security.pdf#security
./redis.pdf#redis-outbound-gateway
./redis.pdf#redis-outbound-gateway
./redis.pdf#redis-lock-registry
./gemfire.pdf#gemfire-lock-registry
./aggregator.pdf#aggregator
./configuration.pdf#annotations
./configuration.pdf#annotations
./configuration.pdf#annotations

Twitter Search Outbound Gateway

We added a new twitter endpoint: <int-twitter-search-outbound-gateway/>. Unlike the search
inbound adapter, which polls by using the same search query each time, the outbound gateway
allows on-demand customized queries. For more information, see Spring Integration Social Twitter.

Gemfire Metadata Store

We added the GemfireMetadataStore, letting it be used, for example, in an
AbstractPersistentAcceptOnceFileListFilter implementation in a multiple application instance or
server environment. For more information, see Metadata Store, Reading Files, FTP Inbound
Channel Adapter, and SFTP Inbound Channel Adapter.

@BridgeFrom and @BridgeTo Annotations

We introduced @BridgeFrom and @BridgeTo @Bean method annotations to mark MessageChannel beans
in @Configuration classes. For more information, see Annotation Support.

Meta-messaging Annotations

Messaging annotations (@ServiceActivator, @Router, @MessagingGateway, and others) can now be
configured as meta-annotations for user-defined messaging annotations. In addition, the user-
defined annotations can have the same attributes (inputChannel, @Poller, autoStartup, and others).
For more information, see Annotation Support.

J.23.2. General Changes

This section describes general changes from version 3.0 to version 4.0.

Requires Spring Framework 4.0

We moved the core messaging abstractions (Message, MessageChannel, and others) to the Spring
Framework spring-messaging module. Developers who reference these classes directly in their code
need to make changes, as described in the first section of the 3.0 to 4.0 Migration Guide.

Header Type for XPath Header Enricher

We introduced the header-type attribute for the header child element of the <int-xml:xpath-header-
enricher>. This attribute provides the target type for the header value (to which the result of the
XPath expression evaluation is converted). For more information see XPath Header Enricher.

Object To JSON Transformer: Node Result

We introduced the result-type attribute for the <int:object-to-json-transformer>. This attribute
provides the target type for the result of mapping an object to JSON. It supports STRING (the default)
and NODE. For more information see Since version 3.0, Spring Integration also provides a built-in
#xpath SpEL function for use in expressions..

951

https://github.com/spring-projects/spring-integration-extensions/tree/master/spring-integration-social-twitter
./meta-data-store.pdf#metadata-store
./file.pdf#file-reading
./ftp.pdf#ftp-inbound
./ftp.pdf#ftp-inbound
./sftp.pdf#sftp-inbound
./configuration.pdf#annotations
./configuration.pdf#annotations
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-3.0-to-4.0-Migration-Guide
./xml.pdf#xml-xpath-header-enricher
./transformer.pdf#transformer-xpath-spel-function
./transformer.pdf#transformer-xpath-spel-function
./transformer.pdf#transformer-xpath-spel-function

JMS Header Mapping

The DefaultJmsHeaderMapper now maps an incoming JMSPriority header to the Spring Integration
priority header. Previously, priority was only considered for outbound messages. For more
information, see Mapping Message Headers to and from JMS Message.

JMS Outbound Channel Adapter

The JMS outbound channel adapter now supports the session-transacted attribute (default: false).
Previously, you had to inject a customized JmsTemplate to use transactions. See Outbound Channel
Adapter.

JMS Inbound Channel Adapter

The JMS inbound channel adapter now supports the session-transacted attribute (default: false).
Previously, you had to inject a customized JmsTemplate to use transactions. The adapter allowed
'transacted' in the acknowledgeMode, which was incorrect and didn’t work. This value is no longer
allowed. See Inbound Channel Adapter.

Datatype Channels

You can now specify a MessageConverter to be used when converting (if necessary) payloads to one
of the accepted datatype instances in a Datatype channel. For more information, see Datatype
Channel Configuration.

Simpler Retry Advice Configuration

We added simplified namespace support to configure a RequestHandlerRetryAdvice. For more
information, see Configuring the Retry Advice.

Correlation Endpoint: Time-based Release Strategy

We added the mutually exclusive group-timeout and group-timeout-expression attributes to
<int:aggregator> and <int:resequencer>. These attributes allow forced completion of a partial
MessageGroup, provided the ReleaseStrategy does not release a group and no further messages arrive
within the time specified. For more information, see Configuring an Aggregator with XML.

Redis Metadata Store

The RedisMetadataStore now implements ConcurrentMetadataStore, letting it be used, for example, in
an AbstractPersistentAcceptOnceFileListFilter implementation in a multiple application instance
or server environment. For more information, see Redis Metadata Store, Reading Files, FTP
Inbound Channel Adapter, and SFTP Inbound Channel Adapter.

JdbcChannelMessageStore and PriorityChannel

T`JdbcChannelMessageStore` now implements PriorityCapableChannelMessageStore, letting it be
used as a message-store reference for priority-queue instances. For more information, see Backing
Message Channels.

952

./jms.pdf#jms-header-mapping
./jms.pdf#jms-outbound-channel-adapter
./jms.pdf#jms-outbound-channel-adapter
./jms.pdf#jms-inbound-channel-adapter
./channel.pdf#channel-datatype-channel
./channel.pdf#channel-datatype-channel
./handler-advice.pdf#retry-config
./aggregator.pdf#aggregator-xml
./redis.pdf#redis-metadata-store
./file.pdf#file-reading
./ftp.pdf#ftp-inbound
./ftp.pdf#ftp-inbound
./sftp.pdf#sftp-inbound
./jdbc.pdf#jdbc-message-store-channels
./jdbc.pdf#jdbc-message-store-channels

AMQP Endpoints Delivery Mode

Spring AMQP, by default, creates persistent messages on the broker. You can override this behavior
by setting the amqp_deliveryMode header or customizing the mappers. We added a convenient
default-delivery-mode attribute to the adapters to provide easier configuration of this important
setting. For more information, see Outbound Channel Adapter and Outbound Gateway.

FTP Timeouts

The DefaultFtpSessionFactory now exposes the connectTimeout, defaultTimeout, and dataTimeout
properties, avoiding the need to subclass the factory to set these common properties. The
postProcess* methods are still available for more advanced configuration. See FTP Session Factory
for more information.

Twitter: StatusUpdatingMessageHandler

The StatusUpdatingMessageHandler (<int-twitter:outbound-channel-adapter>) now supports the
tweet-data-expression attribute to build a org.springframework.social.twitter.api.TweetData object
for updating the timeline status. This feature allows, for example, attaching an image. See Spring
Integration Social Twitter for more information.

JPA Retrieving Gateway: id-expression

We introduced the id-expression attribute for <int-jpa:retrieving-outbound-gateway> to perform
EntityManager.find(Class entityClass, Object primaryKey). See Retrieving Outbound Gateway for
more information.

TCP Deserialization Events

When one of the standard deserializers encounters a problem decoding the input stream to a
message, it now emits a TcpDeserializationExceptionEvent, letting applications examine the data at
the point at which the exception occurred. See TCP Connection Events for more information.

Messaging Annotations on @Bean Definitions

You can now configure messaging annotations (@ServiceActivator, @Router, @InboundChannelAdapter,
and others) on @Bean definitions in @Configuration classes. For more information, see Annotation
Support.

J.24. Changes Between 2.2 and 3.0
See the Migration Guide for important changes that might affect your applications. You can find
migration guides for all versions back to 2.1 on the wiki.

J.24.1. New Components

Version 3.0 added a number of new components.

953

./amqp.pdf#amqp-outbound-channel-adapter
./amqp.pdf#amqp-outbound-gateway
./ftp.pdf#ftp-session-factory
https://github.com/spring-projects/spring-integration-extensions/tree/master/spring-integration-social-twitter
https://github.com/spring-projects/spring-integration-extensions/tree/master/spring-integration-social-twitter
./jpa.pdf#jpa-retrieving-outbound-gateway
./ip.pdf#tcp-events
./configuration.pdf#annotations
./configuration.pdf#annotations
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-2.2-to-3.0-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki

HTTP Request Mapping

The HTTP module now provides powerful request mapping support for inbound endpoints. We
replaced the UriPathHandlerMapping class with IntegrationRequestMappingHandlerMapping, which is
registered under the bean name of integrationRequestMappingHandlerMapping in the application
context. Upon parsing of the HTTP inbound endpoint, either a new
IntegrationRequestMappingHandlerMapping bean is registered or an existing bean is reused. To
achieve flexible request mapping configuration, Spring Integration provides the <request-mapping/>
child element for <http:inbound-channel-adapter/> and the <http:inbound-gateway/>. Both HTTP
inbound endpoints are now fully based on the request mapping infrastructure that was introduced
with Spring MVC 3.1. For example, multiple paths are supported on a single inbound endpoint. For
more information see HTTP Namespace Support.

Spring Expression Language (SpEL) Configuration

We added a new IntegrationEvaluationContextFactoryBean to allow configuration of custom
PropertyAccessor implementations and functions for use in SpEL expressions throughout the
framework. For more information, see Spring Expression Language (SpEL).

SpEL Functions Support

To customize the SpEL EvaluationContext with static Method functions, we introduced the <spel-
function/> component. We also added two built-in functions: #jsonPath and #xpath. For more
information, see SpEL Functions.

SpEL PropertyAccessors Support

To customize the SpEL EvaluationContext with PropertyAccessor implementations, we added the
<spel-property-accessors/> component. For more information, see Property Accessors.

Redis: New Components

We added a new Redis-based MetadataStore implementation. You can use the RedisMetadataStore to
maintain the state of a MetadataStore across application restarts. This new MetadataStore
implementation can be used with adapters, such as:

• Twitter inbound adapters

• Feed inbound channel adapter

We added new queue-based components. We added the <int-redis:queue-inbound-channel-
adapter/> and <int-redis:queue-outbound-channel-adapter/> components to perform 'right pop' and
'left push' operations, respectively, on a Redis List.

For more information, “see Redis Support”.

Header Channel Registry

You can now instruct the framework to store reply channels and error channels in a registry for
later resolution. This is useful for cases where the replyChannel or errorChannel might be lost (for
example, when serializing a message). See Header Enricher for more information.

954

./http.pdf#http-namespace
./spel.pdf#spel
./spel.pdf#spel-functions
./spel.pdf#spel-property-accessors
https://docs.spring.io/spring-integration/api/org/springframework/integration/metadata/MetadataStore.html
./redis.pdf#redis
./content-enrichment.pdf#header-enricher

MongoDB support: New ConfigurableMongoDbMessageStore

In addition to the existing eMongoDbMessageStore, we introduced a new
ConfigurableMongoDbMessageStore. This provides a more robust and flexible implementation of
MessageStore for MongoDB. It does not have backward compatibility with the existing store, but we
recommend using it for new applications. Existing applications can use it, but messages in the old
store are not available. See MongoDb Support for more information.

Syslog Support

Building on the 2.2 SyslogToMapTransformer, Spring Integration 3.0 introduces UDP and TCP inbound
channel adapters especially tailored for receiving SYSLOG messages. For more information, see
Syslog Support.

tail Support

We added file inbound channel adapters that use the tail command to generate messages when
lines are added to the end of text files. See 'tail’ing Files.

JMX Support

We added <int-jmx:tree-polling-channel-adapter/>. This adapter queries the JMX MBean tree and
sends a message with a payload that is the graph of objects that match the query. By default, the
MBeans are mapped to primitives and simple Objects (such as Map, List, and arrays). It permits
simple transformation to, for example, JSON.

The IntegrationMBeanExporter now allows the configuration of a custom ObjectNamingStrategy by
using the naming-strategy attribute.

For more information, see JMX Support.

TCP/IP Connection Events and Connection Management

TcpConnection instances now emit ApplicationEvent instances (specifically TcpConnectionEvent
instances) when connections are opened or closed or when an exception occurs. This change lets
applications be informed of changes to TCP connections by using the normal Spring
ApplicationListener mechanism.

We renamed AbstractTcpConnection to TcpConnectionSupport. Custom connections that are
subclasses of this class can use its methods to publish events. Similarly, we renamed
AbstractTcpConnectionInterceptor to TcpConnectionInterceptorSupport.

In addition, we added <int-ip:tcp-connection-event-inbound-channel-adapter/>. By default, this
adapter sends all TcpConnectionEvent instances to a Channel.

Further, the TCP connection factories now provide a new method called getOpenConnectionIds(),
which returns a list of identifiers for all open connections. It lets applications broadcast to all open
connections, among other uses.

Finally, the connection factories also provide a new method called closeConnection(String
connectionId), which lets applications explicitly close a connection by using its ID.

955

./mongodb.pdf#mongodb
./syslog.pdf#syslog
./file.pdf#file-tailing
./jmx.pdf#jmx

For more information see TCP Connection Events.

Inbound Channel Adapter Script Support

The <int:inbound-channel-adapter/> now supports using <expression/> and <script/> child elements
to create a MessageSource. See Channel Adapter Expressions and Scripts.

Content Enricher: Headers Enrichment Support

The content enricher now provides configuration for <header/> child elements, to enrich the
outbound message with headers based on the reply message from the underlying message flow. For
more information see Payload Enricher.

J.24.2. General Changes

This section describes general changes from version 2.2 to version 3.0.

Message ID Generation

Previously, message IDs were generated by using the JDK UUID.randomUUID() method. With this
release, the default mechanism has been changed to use a more efficient and significantly faster
algorithm. In addition, we added the ability to change the strategy used to generate message IDs.
For more information see Message ID Generation.

“<gateway>” Changes

You can now set common headers across all gateway methods, and we added more options for
adding information to the message about which method was invoked.

You can now entirely customize the way that gateway method calls are mapped to messages.

The GatewayMethodMetadata is now a public class. It lets you programmatically configure the
GatewayProxyFactoryBean from Java.

For more information, see Messaging Gateways.

HTTP Endpoint Changes

• Outbound Endpoint encode-uri: <http:outbound-gateway/> and <http:outbound-channel-
adapter/> now provide an encode-uri attribute to allow disabling the encoding of the URI object
before sending the request.

• Inbound Endpoint merge-with-default-converters: <http:inbound-gateway/> and <http:inbound-
channel-adapter/> now have a merge-with-default-converters attribute to include the list of
default HttpMessageConverter instances after the custom message converters.

• If-Modified-Since and If-Unmodified-Since HTTP Headers: Previously, the If-Modified-Since
and If-Unmodified-Since HTTP headers were incorrectly processed within from and to HTTP
headers mapped in the DefaultHttpHeaderMapper. Now, in addition to correcting that issue,
DefaultHttpHeaderMapper provides date parsing from formatted strings for any HTTP headers
that accept date-time values.

956

./ip.pdf#tcp-events
./channel-adapter.pdf#channel-adapter-expressions-and-scripts
./content-enrichment.pdf#payload-enricher
./message.pdf#message-id-generation
./gateway.pdf#gateway

• Inbound Endpoint Expression Variables: In addition to the existing #requestParams and
#pathVariables, the <http:inbound-gateway/> and <http:inbound-channel-adapter/> now support
additional useful variables: #matrixVariables, #requestAttributes, #requestHeaders, and #cookies.
These variables are available in both payload and header expressions.

• Outbound Endpoint 'uri-variables-expression': HTTP outbound endpoints now support the
uri-variables-expression attribute to specify an Expression to evaluate a Map for all URI variable
placeholders within URL template. This allows selection of a different map of expressions based
on the outgoing message.

For more information, see HTTP Support.

Jackson Support (JSON)

• A new abstraction for JSON conversion has been introduced. Implementations for Jackson 1.x
and Jackson 2 are currently provided, with the version being determined by presence on the
classpath. Previously, only Jackson 1.x was supported.

• The ObjectToJsonTransformer and JsonToObjectTransformer now emit/consume headers
containing type information.

For more information, see “JSON Transformers” in Transformer.

Chain Elements id Attribute

Previously, the id attribute for elements within a <chain> was ignored and, in some cases,
disallowed. Now, the id attribute is allowed for all elements within a <chain>. The bean names of
chain elements is a combination of the surrounding chain’s id and the id of the element itself. For
example: 'myChain$child.myTransformer.handler'. For more information see, Message Handler
Chain.

Aggregator 'empty-group-min-timeout' property

The AbstractCorrelatingMessageHandler provides a new property called empty-group-min-timeout to
allow empty group expiry to run on a longer schedule than expiring partial groups. Empty groups
are not removed from the MessageStore until they have not been modified for at least this number
of milliseconds. For more information, see Configuring an Aggregator with XML.

Persistent File List Filters (file, (S)FTP)

New FileListFilter implementations that use a persistent MetadataStore are now available. You can
use these to prevent duplicate files after a system restart. See Reading Files, FTP Inbound Channel
Adapter, and SFTP Inbound Channel Adapter for more information.

Scripting Support: Variables Changes

We introduced a new variables attribute for scripting components. In addition, variable bindings
are now allowed for inline scripts. See Groovy support and Scripting Support for more information.

957

./http.pdf#http
./transformer.pdf#transformer
./chain.pdf#chain
./chain.pdf#chain
./aggregator.pdf#aggregator-xml
./file.pdf#file-reading
./ftp.pdf#ftp-inbound
./ftp.pdf#ftp-inbound
./sftp.pdf#sftp-inbound
./groovy.pdf#groovy
./scripting.pdf#scripting

Direct Channel Load Balancing configuration

Previously, when configuring LoadBalancingStrategy on the channel’s dispatcher child element, the
only available option was to use a pre-defined enumeration of values which did not let developers
set a custom implementation of the LoadBalancingStrategy. You can now use load-balancer-ref to
provide a reference to a custom implementation of the LoadBalancingStrategy. For more
information, see DirectChannel.

PublishSubscribeChannel Behavior

Previously, sending to a <publish-subscribe-channel/> that had no subscribers would return a false
result. If used in conjunction with a MessagingTemplate, this would result in an exception being
thrown. Now, the PublishSubscribeChannel has a property called minSubscribers (default: 0). If the
message is sent to at least the minimum number of subscribers, the send operation is deemed to be
successful (even if the number is zero). If an application expects to get an exception under these
conditions, set the minimum subscribers to at least 1.

FTP, SFTP and FTPS Changes

The FTP, SFTP and FTPS endpoints no longer cache sessions by default.

We removed the deprecated cached-sessions attribute from all endpoints. Previously, the embedded
caching mechanism controlled by this attribute’s value did not provide a way to limit the size of the
cache, which could grow indefinitely. Release 2.1 introduced CachingConnectionFactory, and it
became the preferred (and is now the only) way to cache sessions.

CachingConnectionFactory now provides a new method: resetCache(). This method immediately
closes idle sessions and causes in-use sessions to be closed as and when they are returned to the
cache.

The DefaultSftpSessionFactory (in conjunction with a CachingSessionFactory) now supports
multiplexing channels over a single SSH connection (SFTP Only).

FTP, SFTP and FTPS Inbound Adapters

Previously, there was no way to override the default filter used to process files retrieved from a
remote server. The filter attribute determines which files are retrieved, but the
FileReadingMessageSource uses an AcceptOnceFileListFilter. This means that, if a new copy of a file
is retrieved with the same name as a previously copied file, no message was sent from the adapter.

With this release, a new attribute local-filter lets you override the default filter (for example, with
an AcceptAllFileListFilter or some other custom filter).

If you want the behavior of the AcceptOnceFileListFilter to be maintained across JVM executions,
you can now configure a custom filter that retains state, perhaps on the file system.

Inbound channel adapters now support the preserve-timestamp attribute, which sets the local file
modified timestamp to the timestamp from the server (default: false).

958

./channel.pdf#channel-implementations-directchannel

FTP, SFTP, and FTPS Gateways

The gateways now support the mv command, enabling the renaming of remote files.

The gateways now support recursive ls and mget commands, enabling the retrieval of a remote file
tree.

The gateways now support put and mput commands, enabling sending files to the remote server.

The local-filename-generator-expression attribute is now supported, enabling the naming of local
files during retrieval. By default, the same name as the remote file is used.

The local-directory-expression attribute is now supported, enabling the naming of local directories
during retrieval (based on the remote directory).

Remote File Template

A new higher-level abstraction (RemoteFileTemplate) is provided over the Session implementations
used by the FTP and SFTP modules. While it is used internally by endpoints, you can also use this
abstraction programmatically. Like all Spring *Template implementations, it reliably closes the
underlying session while allowing low level access to the session.

For more information, see FTP/FTPS Adapters and SFTP Adapters.

'requires-reply' Attribute for Outbound Gateways

All outbound gateways (such as <jdbc:outbound-gateway/> or <jms:outbound-gateway/>) are designed
for 'request-reply' scenarios. A response is expected from the external service and is published to
the reply-channel or the replyChannel message header. However, there are some cases where the
external system might not always return a result (for example, a <jdbc:outbound-gateway/> when a
SELECT ends with an empty ResultSet or perhaps a one-way web service). Consequently, developers
needed an option to configure whether or not a reply is required. For this purpose, we introduced
the requires-reply attribute for outbound gateway components. In most cases, the default value for
requires-reply is true. If there is no result, a ReplyRequiredException is thrown. Changing the value
to false means that, if an external service does not return anything, the message flow ends at that
point, similar to an outbound channel adapter.



The WebService outbound gateway has an additional attribute called ignore-
empty-responses. It is used to treat an empty String response as if no response were
received. By default, it is true, but you can set it to false to allow the application to
receive an empty String in the reply message payload. When the attribute is true,
an empty string is treated as no response for the purposes of the requires-reply
attribute. By default, requires-reply is false for the WebService outbound gateway.

Note that the requiresReply property was previously present but set to false in the
AbstractReplyProducingMessageHandler, and there was no way to configure it on outbound gateways
by using the XML namespace.

959

./ftp.pdf#ftp
./sftp.pdf#sftp


Previously, a gateway receiving no reply would silently end the flow (with a
DEBUG log message). By default, with this change, an exception is now thrown by
most gateways. To revert to the previous behavior, set requires-reply to false.

AMQP Outbound Gateway Header Mapping

Previously, the <int-amqp:outbound-gateway/> mapped headers before invoking the message
converter, and the converter could overwrite headers such as content-type. The outbound adapter
maps the headers after the conversion, which means headers like content-type from the outbound
Message (if present) are used.

Starting with this release, the gateway now maps the headers after the message conversion,
consistent with the adapter. If your application relies on the previous behavior (where the
converter’s headers overrode the mapped headers), you either need to filter those headers (before
the message reaches the gateway) or set them appropriately. The headers affected by the
SimpleMessageConverter are content-type and content-encoding. Custom message converters may set
other headers.

Stored Procedure Components Improvements

For more complex database-specific types not supported by the standard
CallableStatement.getObject method, we introduced two new additional attributes to the <sql-
parameter-definition/> element with OUT-direction:

• type-name

• return-type

The row-mapper attribute of the stored procedure inbound channel adapter <returning-resultset/>
child element now supports a reference to a RowMapper bean definition. Previously, it contained only
a class name (which is still supported).

For more information, see Stored Procedures.

Web Service Outbound URI Configuration

The web service outbound gateway 'uri' attribute now supports <uri-variable/> substitution for all
URI schemes supported by Spring Web Services. For more information, see Outbound URI
Configuration.

Redis Adapter Changes

The Redis inbound channel adapter can now use a null value for the serializer property, with the
raw data being the message payload.

The Redis outbound channel adapter now has the topic-expression property to determine the Redis
topic for the Message at runtime.

The Redis inbound channel adapter, in addition to the existing topics attribute, now has the topic-
patterns attribute.

960

./jdbc.pdf#stored-procedures
./ws.pdf#outbound-uri
./ws.pdf#outbound-uri

For more information, see Redis Support.

Advising Filters

Previously, when a <filter/> had a <request-handler-advice-chain/>, the discard action was all
performed within the scope of the advice chain (including any downstream flow on the discard-
channel). The filter element now has an attribute called discard-within-advice (default: true) to
allow the discard action to be performed after the advice chain completes. See Advising Filters.

Advising Endpoints using Annotations

Request handler advice chains can now be configured using annotations. See Advising Endpoints
Using Annotations.

ObjectToStringTransformer Improvements

This transformer now correctly transforms byte[] and char[] payloads to String. For more
information, see Transformer.

JPA Support Changes

Payloads to persist or merge can now be of type java.lang.Iterable.

In that case, each object returned by the Iterable is treated as an entity and persisted or merged by
using the underlying EntityManager. Null values returned by the iterator are ignored.

The JPA adapters now have additional attributes to optionally flush and clear entities from the
associated persistence context after performing persistence operations.

Retrieving gateways had no mechanism to specify the first record to be retrieved, which is a
common use case. The retrieving gateways now support specifying this parameter by adding the
first-result and first-result-expression attributes to the gateway definition. For more
information, see Retrieving Outbound Gateway.

The JPA retrieving gateway and inbound adapter now have an attribute to specify the maximum
number of results in a result set as an expression. In addition, we introduced the max-results
attribute to replace max-number-of-results, which has been deprecated. max-results and max-
results-expression are used to provide the maximum number of results or an expression to
compute the maximum number of results, respectively, in the result set.

For more information, see JPA Support.

Delayer: delay expression

Previously, the <delayer> provided a delay-header-name attribute to determine the delay value at
runtime. In complex cases, the <delayer> had to be preceded with a <header-enricher>. Spring
Integration 3.0 introduced the expression attribute and expression child element for dynamic delay
determination. The delay-header-name attribute is now deprecated, because you can specify the
header evaluation in the expression. In addition, we introduced the ignore-expression-failures to
control the behavior when an expression evaluation fails. For more information, see Delayer.

961

./redis.pdf#redis
./handler-advice.pdf#advising-filters
./handler-advice.pdf#advising-with-annotations
./handler-advice.pdf#advising-with-annotations
./transformer.pdf#transformer
https://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html
./jpa.pdf#jpa-retrieving-outbound-gateway
./jpa.pdf#jpa
./delayer.pdf#delayer

JDBC Message Store Improvements

Spring Integration 3.0 adds a new set of DDL scripts for MySQL version 5.6.4 and higher. Now
MySQL supports fractional seconds and is thus improving the FIFO ordering when polling from a
MySQL-based message store. For more information, see The Generic JDBC Message Store.

IMAP Idle Connection Exceptions

Previously, if an IMAP idle connection failed, it was logged, but there was no mechanism to inform
an application. Such exceptions now generate ApplicationEvent instances. Applications can obtain
these events by using an <int-event:inbound-channel-adapter> or any ApplicationListener
configured to receive an ImapIdleExceptionEvent (or one of its super classes).

Message Headers and TCP

The TCP connection factories now enable the configuration of a flexible mechanism to transfer
selected headers (as well as the payload) over TCP. A new TcpMessageMapper enables the selection of
the headers, and you need to configure an appropriate serializer or deserializer to write the
resulting Map to the TCP stream. We added a MapJsonSerializer as a convenient mechanism to
transfer headers and payload over TCP. For more information, see Transferring Headers.

JMS Message Driven Channel Adapter

Previously, when configuring a <message-driven-channel-adapter/>, if you wished to use a specific
TaskExecutor, you had to declare a container bean and provide it to the adapter by setting the
container attribute. We added the task-executor, letting it be set directly on the adapter. This is in
addition to several other container attributes that were already available.

RMI Inbound Gateway

The RMI Inbound Gateway now supports an error-channel attribute. See Inbound RMI.

XsltPayloadTransformer

You can now specify the transformer factory class name by setting the transformer-factory-class
attribute. See XsltPayloadTransformer.

J.25. Changes between 2.1 and 2.2
See the Migration Guide for important changes that might affect your applications. You can find
migration guides for all versions back to 2.1 on the wiki.

J.25.1. New Components

Version 2.2 added a number of new components.

RedisStore Inbound and Outbound Channel Adapters

Spring Integration now has RedisStore Inbound and Outbound Channel Adapters, letting you write
and read Message payloads to and from Redis collections. For more information, see RedisStore

962

./jdbc.pdf#jdbc-message-store-generic
./ip.pdf#ip-headers
./rmi.pdf#rmi-inbound
./xml.pdf#xml-xslt-payload-transformers
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-2.1-to-2.2-Migration-Guide
https://github.com/spring-projects/spring-integration/wiki
./redis.pdf#redis-store-outbound-channel-adapter

Outbound Channel Adapter and Redis Store Inbound Channel Adapter.

MongoDB Inbound and Outbound Channel Adapters

Spring Integration now has MongoDB inbound and outbound channel adapters, letting you write
and read Message payloads to and from a MongoDB document store. For more information, see
MongoDB Outbound Channel Adapter and MongoDB Inbound Channel Adapter.

JPA Endpoints

Spring Integration now includes components for the Java Persistence API (JPA) for retrieving and
persisting JPA entity objects. The JPA Adapter includes the following components:

• Inbound channel adapter

• Outbound channel adapter

• Updating outbound gateway

• Retrieving outbound gateway

For more information, see JPA Support.

J.25.2. General Changes

This section describes general changes from version 2.1 to version 2.2.

Spring 3.1 Used by Default

Spring Integration now uses Spring 3.1.

Adding Behavior to Endpoints

The ability to add an <advice-chain/> to a poller has been available for some time. However, the
behavior added by this affects the entire integration flow. It did not address the ability to add (for
example) retry to an individual endpoint. The 2.2 release introduced the <request-handler-advice-
chain/> to many endpoints.

In addition, we added three standard advice classes for this purpose:

• MessageHandlerRetryAdvice

• MessageHandlerCircuitBreakerAdvice

• ExpressionEvaluatingMessageHandlerAdvice

For more information, see Adding Behavior to Endpoints.

Transaction Synchronization and Pseudo Transactions

Pollers can now participate in Spring’s Transaction Synchronization feature. This allows for
synchronizing such operations as renaming files by an inbound channel adapter, depending on
whether the transaction commits or rolls back.

963

./redis.pdf#redis-store-outbound-channel-adapter
./redis.pdf#redis-store-inbound-channel-adapter
./mongodb.pdf#mongodb-outbound-channel-adapter
./mongodb.pdf#mongodb-inbound-channel-adapter
./jpa.pdf#jpa-inbound-channel-adapter
./jpa.pdf#jpa-outbound-channel-adapter
./jpa.pdf#jpa-updating-outbound-gateway
./jpa.pdf#jpa-retrieving-outbound-gateway
./jpa.pdf#jpa
./handler-advice.pdf#message-handler-advice-chain

In addition, you can enable these features when no “real” transaction is present, by means of a
PseudoTransactionManager.

For more information, see Transaction Synchronization.

File Adapter: Improved File Overwrite and Append Handling

When using the file outbound channel adapter or the file outbound gateway, you can use a new
mode property. Prior to Spring Integration 2.2, target files were replaced when they existed. Now you
can specify the following options:

• REPLACE (default)

• APPEND

• FAIL

• IGNORE

For more information, see Dealing with Existing Destination Files.

Reply-Timeout Added to More Outbound Gateways

The XML Namespace support adds the reply-timeout attribute to the following outbound gateways:

• AMQP Outbound Gateway

• File Outbound Gateway

• FTP Outbound Gateway

• SFTP Outbound Gateway

• WS Outbound Gateway

Spring-AMQP 1.1

Spring Integration now uses Spring AMQP 1.1. This enables several features to be used within a
Spring Integration application, including the following:

• A fixed reply queue for the outbound gateway

• HA (mirrored) queues

• Publisher confirmations

• Returned messages

• Support for dead letter exchanges and dead letter queues

JDBC Support - Stored Procedures Components

SpEL Support

When using the stored procedure components of the Spring Integration JDBC Adapter, you can now
provide stored procedure names or stored function names by using the Spring Expression
Language (SpEL).

964

./transactions.pdf#transaction-synchronization
./file.pdf#file-writing-destination-exists

Doing so lets you specify the stored procedures to be invoked at runtime. For example, you can
provide stored procedure names that you would like to execute through message headers. For more
information, see Stored Procedures.

JMX Support

The stored procedure components now provide basic JMX support, exposing some of their
properties as MBeans:

• Stored procedure name

• Stored procedure name expression

• JdbcCallOperations cache statistics

JDBC Support: Outbound Gateway

When you use the JDBC outbound gateway, the update query is no longer mandatory. You can now
provide only a select query by using the request message as a source of parameters.

JDBC Support: Channel-specific Message Store Implementation

We added a new message channel-specific message store implementation, providing a more
scalable solution using database-specific SQL queries. For more information, see Backing Message
Channels.

Orderly Shutdown

We added a method called stopActiveComponents() to the IntegrationMBeanExporter. It allows a
Spring Integration application to be shut down in an orderly manner, disallowing new inbound
messages to certain adapters and waiting for some time to allow in-flight messages to complete.

JMS Outbound Gateway Improvements

You can now configure the JMS outbound gateway to use a MessageListener container to receive
replies. Doing so can improve performance of the gateway.

ObjectToJsonTransformer

By default, the ObjectToJsonTransformer now sets the content-type header to application/json. For
more information, see Transformer.

HTTP Support

Java serialization over HTTP is no longer enabled by default. Previously, when setting an expected-
response-type on a Serializable object, the Accept header was not properly set up. We updated the
SerializingHttpMessageConverter to set the Accept header to application/x-java-serialized-object.
However, because this could cause incompatibility with existing applications, we decided to no
longer automatically add this converter to the HTTP endpoints.

If you wish to use Java serialization, you need to add the SerializingHttpMessageConverter to the
appropriate endpoints by using the message-converters attribute (when you use XML configuration)

965

./jdbc.pdf#stored-procedures
./jdbc.pdf#jdbc-message-store-channels
./jdbc.pdf#jdbc-message-store-channels
./transformer.pdf#transformer

or by using the setMessageConverters() method (in Java).

Alternatively, you may wish to consider using JSON instead. It is enabled by having Jackson on the
classpath.

J.26. Changes between 2.0 and 2.1
See the Migration Guide for important changes that might affect your applications.

J.26.1. New Components

Version 2.1 added a number of new components.

JSR-223 Scripting Support

In Spring Integration 2.0, we added support for Groovy. With Spring Integration 2.1, we expanded
support for additional languages substantially by implementing support for JSR-223 (“Scripting for
the Java™ Platform”). Now you have the ability to use any scripting language that supports JSR-223
including:

• Javascript

• Ruby and JRuby

• Python and Jython

• Groovy

For further details, see Scripting Support.

GemFire Support

Spring Integration provides support for GemFire by providing inbound adapters for entry and
continuous query events, an outbound adapter to write entries to the cache, and MessageStore and
MessageGroupStore implementations. Spring integration leverages the Spring Gemfire project,
providing a thin wrapper over its components.

For further details, see Pivotal GemFire and Apache Geode Support.

AMQP Support

Spring Integration 2.1 added several channel adapters for receiving and sending messages by using
the Advanced Message Queuing Protocol (AMQP). Furthermore, Spring Integration also provides a
point-to-point message channel and a publish-subscribe message channel, both of which are backed
by AMQP Exchanges and Queues.

For further details, see AMQP Support.

MongoDB Support

As of version 2.1, Spring Integration provides support for MongoDB by providing a MongoDB-based
MessageStore.

966

https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-2.0-to-2.1-Migration-Guide
https://groovy.codehaus.org/
https://www.jcp.org/en/jsr/detail?id=223
./scripting.pdf#scripting
https://www.vmware.com/products/pivotal-gemfire.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/store/MessageStore.html
https://docs.spring.io/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html
https://spring.io/projects/spring-data-gemfire
./gemfire.pdf#gemfire
https://www.amqp.org/
./amqp.pdf#amqp
https://www.mongodb.org/

For further details, see MongoDb Support.

Redis Support

As of version 2.1, Spring Integration supports Redis, an advanced key-value store, by providing a
Redis-based MessageStore as well as publish-subscribe messaging adapters.

For further details, see Redis Support.

Support for Spring’s Resource abstraction

In version 2.1, we introduced a new resource inbound channel adapter that builds upon Spring’s
resource abstraction to support greater flexibility across a variety of actual types of underlying
resources, such as a file, a URL, or a classpath resource. Therefore, it is similar to but more generic
than the file inbound channel adapter.

For further details, see Resource Inbound Channel Adapter.

Stored Procedure Components

With Spring Integration 2.1, the JDBC Module also provides stored procedure support by adding
several new components, including inbound and outbound channel adapters and an outbound
gateway. The stored procedure support leverages Spring’s SimpleJdbcCall class and consequently
supports stored procedures for:

• Apache Derby

• DB2

• MySQL

• Microsoft SQL Server

• Oracle

• PostgreSQL

• Sybase

The stored procedure components also support SQL functions for the following databases:

• MySQL

• Microsoft SQL Server

• Oracle

• PostgreSQL

For further details, see Stored Procedures.

XPath and XML Validating Filter

Spring Integration 2.1 provides a new XPath-based message filter. It is part of the XML module. The
XPath filter lets you filter messages by using XPath Expressions. We also added documentation for
the XML validating filter.

967

./mongodb.pdf#mongodb
https://redis.io/
./redis.pdf#redis
./resource.pdf#resource-inbound-channel-adapter
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/jdbc/core/simple/SimpleJdbcCall.html
./jdbc.pdf#stored-procedures

For more details, see Using the XPath Filter and XML Validating Filter.

Payload Enricher

Since Spring Integration 2.1, we added the payload enricher. A payload enricher defines an
endpoint that typically passes a Message to the exposed request channel and then expects a reply
message. The reply message then becomes the root object for evaluation of expressions to enrich
the target payload.

For further details, see Payload Enricher.

FTP and SFTP Outbound Gateways

Spring Integration 2.1 provides two new outbound gateways to interact with remote File Transfer
Protocol (FTP) or Secure File Transfer Protocol (SFT) servers. These two gateways let you directly
execute a limited set of remote commands.

For instance, you can use these outbound gateways to list, retrieve, and delete remote files and
have the Spring Integration message flow continue with the remote server’s response.

For further details, see FTP Outbound Gateway and SFTP Outbound Gateway.

FTP Session Caching

As of version 2.1, we have exposed more flexibility with regards to session management for remote
file adapters (for example, FTP, SFTP, and others).

Specifically, we deprecated the cache-sessions attribute (which is available via the XML namespace
support). As an alternative, we added the sessionCacheSize and sessionWaitTimeout attributes on the
CachingSessionFactory.

For further details, see FTP Session Caching and SFTP Session Caching.

J.26.2. Framework Refactoring

We refactored the Spring Integration framework in a number of ways, all described in this section.

Standardizing Router Configuration

We standardized router parameters across all router implementations with Spring Integration 2.1
to provide a more consistent user experience.

In Spring Integration 2.1, we removed the ignore-channel-name-resolution-failures attribute in
favor of consolidating its behavior with the resolution-required attribute. Also, the resolution-
required attribute now defaults to true.

Starting with Spring Integration 2.1, routers no longer silently drop any messages if no default
output channel was defined. This means that, by default, routers now require at least one resolved
channel (if no default-output-channel was set) and, by default, throw a MessageDeliveryException if
no channel was determined (or an attempt to send was not successful).

968

./xml.pdf#xml-xpath-filter
./xml.pdf#xml-validating-filter
https://docs.spring.io/spring-integration/api/org/springframework/integration/Message.html
./content-enrichment.pdf#payload-enricher
./ftp.pdf#ftp-outbound-gateway
./sftp.pdf#sftp-outbound-gateway
./ftp.pdf#ftp-session-caching
./sftp.pdf#sftp-session-caching

If, however, you do want to drop messages silently, you can set default-output-
channel="nullChannel".


With the standardization of router parameters and the consolidation of the
parameters described earlier, older Spring Integration based applications may
break.

For further details, see Routers.

XML Schemas updated to 2.1

Spring Integration 2.1 ships with an updated XML Schema (version 2.1). It provides many
improvements, such as the Router standardizations discussed earlier.

From now on, developers must always declare the latest XML schema (currently version 2.1).
Alternatively, they can use the version-less schema. Generally, the best option is to use version-less
namespaces, as these automatically use the latest available version of Spring Integration.

The following example declares a version-less Spring Integration namespace:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xsi:schemaLocation="http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-
integration.xsd
 http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd">
...
</beans>

The following example declares a Spring Integration namespace with an explicit version:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xsi:schemaLocation="http://www.springframework.org/schema/integration
 https://www.springframework.org/schema/integration/spring-integration-
2.2.xsd
 http://www.springframework.org/schema/beans
 https://www.springframework.org/schema/beans/spring-beans.xsd">
...
</beans>

969

./router.pdf#router

The old 1.0 and 2.0 schemas are still there. However, if an application context still references one of
those deprecated schemas, the validator fails on initialization.

J.26.3. Source Control Management and Build Infrastructure

Version 2.1 introduced a number of changes to source control management and build
infrastructure. This section covers those changes.

Source Code Now Hosted on Github

Since version 2.0, the Spring Integration project uses Git for version control. To increase community
visibility even further, the project was moved from SpringSource hosted Git repositories to Github.
The Spring Integration Git repository is located at: spring-integration.

For the project, we also improved the process of providing code contributions. Further, we ensure
that every commit is peer-reviewed. In fact, core committers now follow the same process as
contributors. For more details, see Contributing.

Improved Source Code Visibility with Sonar

In an effort to provide better source code visibility and consequently to monitor the quality of
Spring Integration’s source code, we set up an instance of Sonar. We gather metrics nightly and
make them available at sonar.spring.io.

J.26.4. New Samples

For the 2.1 release of Spring Integration, we also expanded the Spring Integration Samples project
and added many new samples, such as samples that cover AMQP support, a sample that showcases
the new payload enricher, a sample illustrating techniques for testing Spring Integration flow
fragments, and a sample for executing stored procedures against Oracle databases. For details, visit
spring-integration-samples.

J.27. Changes between Versions 1.0 and 2.0
See the Migration Guide for important changes that might affect your applications.

J.27.1. Spring 3 support

Spring Integration 2.0 is built on top of Spring 3.0.5 and makes many of its features available to our
users.

[[2.0-spel-support]] ===== Support for the Spring Expression Language (SpEL)

You can now use SpEL expressions within the transformer, router, filter, splitter, aggregator,
service-activator, header-enricher, and many more elements of the Spring Integration core
namespace as well as within various adapters. This guide includes many samples.

970

https://git-scm.com/
https://www.github.com/
https://github.com/spring-projects/spring-integration
https://github.com/spring-projects/spring-integration/blob/master/CONTRIBUTING.adoc
https://www.sonarqube.org/
https://sonar.spring.io/dashboard?id=org.springframework.integration%3Aspring-integration%3Amaster
https://github.com/spring-projects/spring-integration-samples
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-1.0-to-2.0-Migration-Guide

Conversion Service and Converter

You can now benefit from the conversion service support provided with Spring while configuring
many Spring Integration components, such as a Datatype channel. See Message Channel
Implementations and Service Activator. Also, the SpEL support mentioned in the previous point
also relies upon the conversion service. Therefore, you can register converters once and take
advantage of them anywhere you use SpEL expressions.

TaskScheduler and Trigger

Spring 3.0 defines two new strategies related to scheduling: TaskScheduler and Trigger. Spring
Integration (which uses a lot of scheduling) now builds upon these. In fact, Spring Integration 1.0
had originally defined some of the components (such as CronTrigger) that have now been migrated
into Spring 3.0’s core API. Now you can benefit from reusing the same components within the
entire application context (not just Spring Integration configuration). We also greatly simplified
configuration of Spring Integration pollers by providing attributes for directly configuring rates,
delays, cron expressions, and trigger references. See Channel Adapter for sample configurations.

RestTemplate and HttpMessageConverter

Our outbound HTTP adapters now delegate to Spring’s RestTemplate for executing the HTTP request
and handling its response. This also means that you can reuse any custom HttpMessageConverter
implementations. See HTTP Outbound Components for more details.

J.27.2. Enterprise Integration Pattern Additions

Also in 2.0, we have added support for even more of the patterns described in Hohpe and Woolf’s
Enterprise Integration Patterns book.

Message History

We now provide support for the message history pattern, letting you keep track of all traversed
components, including the name of each channel and endpoint as well as the timestamp of that
traversal. See Message History for more details.

Message Store

We now provide support for the message store pattern. The message store provides a strategy for
persisting messages on behalf of any process whose scope extends beyond a single transaction,
such as the aggregator and the resequencer. Many sections of this guide include samples of how to
use a message store, as it affects several areas of Spring Integration. See Message Store, Claim
Check, Message Channels, Aggregator, JDBC Support`", and Resequencer for more details.

Claim Check

We have added an implementation of the claim check pattern. The idea behind the claim check
pattern is that you can exchange a message payload for a “claim ticket”. This lets you reduce
bandwidth and avoid potential security issues when sending messages across channels. See Claim
Check for more details.

971

https://www.enterpriseintegrationpatterns.com/DatatypeChannel.html
./channel.pdf#channel-implementations
./channel.pdf#channel-implementations
./service-activator.pdf#service-activator
./channel-adapter.pdf#channel-adapter
./http.pdf#http-outbound
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/MessageHistory.html
./message-history.pdf#message-history
https://www.enterpriseintegrationpatterns.com/MessageStore.html
./message-store.pdf#message-store
./claim-check.pdf#claim-check
./claim-check.pdf#claim-check
./channel.pdf#channel
./aggregator.pdf#aggregator
./jdbc.pdf#jdbc
./resequencer.pdf#resequencer
https://www.enterpriseintegrationpatterns.com/StoreInLibrary.html
./claim-check.pdf#claim-check
./claim-check.pdf#claim-check

Control Bus

We have provided implementations of the control bus pattern, which lets you use messaging to
manage and monitor endpoints and channels. The implementations include both a SpEL-based
approach and one that runs Groovy scripts. See Control Bus and Control Bus for more details.

J.27.3. New Channel Adapters and Gateways

We have added several new channel adapters and messaging gateways in Spring Integration 2.0.

TCP and UDP Adapters

We have added channel adapters for receiving and sending messages over the TCP and UDP
internet protocols. See TCP and UDP Support for more details. See also the following blog: “Using
UDP and TCP Adapters in Spring Integration 2.0 M3”.

Twitter Adapters

Twitter adapters provides support for sending and receiving Twitter status updates as well as direct
messages. You can also perform Twitter Searches with an inbound channel adapter. See Spring
Integration Social Twitter for more details.

XMPP Adapters

The new XMPP adapters support both chat messages and presence events. See XMPP Support for
more details.

FTP and FTPS Adapters

Inbound and outbound file transfer support over FTP and FTPS is now available. See FTP/FTPS
Adapters for more details.

SFTP Adapters

Inbound and outbound file transfer support over SFTP is now available. See SFTP Adapters for
more details.

Feed Adapters

We have also added channel adapters for receiving news feeds (ATOM and RSS). See Feed Adapter
for more details.

J.27.4. Other Additions

Spring Integration adds a number of other features. This section describes them.

Groovy Support

Spring Integration 2.0 added Groovy support, letting you use the Groovy scripting language to
provide integration and business logic. See Groovy support for more details.

972

https://www.enterpriseintegrationpatterns.com/ControlBus.html
./control-bus.pdf#control-bus
./groovy.pdf#groovy-control-bus
./ip.pdf#ip
https://spring.io/blog/2010/03/29/using-udp-and-tcp-adapters-in-spring-integration-2-0-m3/
https://spring.io/blog/2010/03/29/using-udp-and-tcp-adapters-in-spring-integration-2-0-m3/
https://github.com/spring-projects/spring-integration-extensions/tree/master/spring-integration-social-twitter
https://github.com/spring-projects/spring-integration-extensions/tree/master/spring-integration-social-twitter
./xmpp.pdf#xmpp
./ftp.pdf#ftp
./ftp.pdf#ftp
./sftp.pdf#sftp
./feed.pdf#feed
./groovy.pdf#groovy

Map Transformers

These symmetrical transformers convert payload objects to and from Map objects. See Transformer
for more details.

JSON Transformers

These symmetrical transformers convert payload objects to and from JSON. See Transformer for
more details.

Serialization Transformers

These symmetrical transformers convert payload objects to and from byte arrays. They also
support the serializer and deserializer strategy interfaces that Spring 3.0.5 added. See Transformer
for more details.

J.27.5. Framework Refactoring

The core API went through some significant refactoring to make it simpler and more usable.
Although we anticipate that the impact to developers should be minimal, you should read through
this document to find what was changed. Specifically, you should read Dynamic Routers, Messaging
Gateways, HTTP Outbound Components, Message, and Aggregator. If you directly depend on some
of the core components (Message, MessageHeaders, MessageChannel, MessageBuilder, and others), you
need to update any import statements. We restructured some packaging to provide the flexibility
we needed for extending the domain model while avoiding any cyclical dependencies (it is a policy
of the framework to avoid such “tangles”).

J.27.6. New Source Control Management and Build Infrastructure

With Spring Integration 2.0, we switched our build environment to use Git for source control. To
access our repository, visit git.springsource.org/spring-integration. We have also switched our build
system to Gradle.

J.27.7. New Spring Integration Samples

With Spring Integration 2.0, we have decoupled the samples from our main release distribution.
Please read the following blog to get more information: New Spring Integration Samples. We have
also created many new samples, including samples for every new adapter.

J.27.8. Spring Tool Suite Visual Editor for Spring Integration

There is an amazing new visual editor for Spring Integration included within the latest version of
SpringSource Tool Suite. If you are not already using STS, you can download it at Spring Tool Suite.

973

./transformer.pdf#transformer
./transformer.pdf#transformer
./transformer.pdf#transformer
./router.pdf#dynamic-routers
./gateway.pdf#gateway
./gateway.pdf#gateway
./http.pdf#http-outbound
./message.pdf#message
./aggregator.pdf#aggregator
https://git.springsource.org/spring-integration
https://gradle.org/
https://spring.io/blog/2010/09/29/new-spring-integration-samples/
https://spring.io/tools/sts

	Spring Integration Reference Guide
	Table of Contents
	Preface
	Chapter 1. Requirements
	1.1. Compatible Java Versions
	1.2. Compatible Versions of the Spring Framework

	Chapter 2. Code Conventions
	Chapter 3. Conventions in This Guide

	What’s New?
	Chapter 4. What’s New in Spring Integration 5.4?
	4.1. New Components
	4.2. General Changes
	4.3. TCP/UDP Changes
	4.4. RMI Changes
	4.5. AMQP Changes
	4.6. Mail Changes

	Overview of Spring Integration Framework
	Chapter 5. Spring Integration Overview
	5.1. Background
	5.2. Goals and Principles
	5.3. Main Components
	5.4. Message Endpoints
	5.5. Configuration and @EnableIntegration
	5.6. Programming Considerations
	5.7. Programming Tips and Tricks
	5.8. POJO Method invocation

	Core Messaging
	Chapter 6. Messaging Channels
	6.1. Message Channels
	6.2. Poller
	6.3. Channel Adapter
	6.4. Messaging Bridge

	Chapter 7. Message
	7.1. The Message Interface
	7.2. Message Headers
	7.3. Message Implementations
	7.4. The MessageBuilder Helper Class

	Chapter 8. Message Routing
	8.1. Routers
	8.2. Filter
	8.3. Splitter
	8.4. Aggregator
	8.5. Resequencer
	8.6. Message Handler Chain
	8.7. Scatter-Gather
	8.8. Thread Barrier

	Chapter 9. Message Transformation
	9.1. Transformer
	9.2. Content Enricher
	9.3. Claim Check
	9.4. Codec

	Chapter 10. Messaging Endpoints
	10.1. Message Endpoints
	10.2. Endpoint Roles
	10.3. Leadership Event Handling
	10.4. Messaging Gateways
	10.5. Service Activator
	10.6. Delayer
	10.7. Scripting Support
	10.8. Groovy support
	10.9. Adding Behavior to Endpoints
	10.10. Logging Channel Adapter
	10.11. java.util.function Interfaces Support

	Chapter 11. Java DSL
	11.1. DSL Basics
	11.2. Message Channels
	11.3. Pollers
	11.4. DSL and Endpoint Configuration
	11.5. Transformers
	11.6. Inbound Channel Adapters
	11.7. Message Routers
	11.8. Splitters
	11.9. Aggregators and Resequencers
	11.10. Service Activators and the .handle() method
	11.11. Operator log()
	11.12. Operator intercept()
	11.13. MessageChannelSpec.wireTap()
	11.14. Working With Message Flows
	11.15. FunctionExpression
	11.16. Sub-flows support
	11.17. Using Protocol Adapters
	11.18. IntegrationFlowAdapter
	11.19. Dynamic and Runtime Integration Flows
	11.20. IntegrationFlow as a Gateway
	11.21. DSL Extensions

	Chapter 12. Kotlin DSL
	Chapter 13. System Management
	13.1. Metrics and Management
	13.2. JMX Support
	13.3. Message History
	13.4. Message Store
	13.5. Metadata Store
	13.6. Control Bus
	13.7. Orderly Shutdown
	13.8. Integration Graph
	13.9. Integration Graph Controller

	Integration Endpoints
	Chapter 14. Endpoint Quick Reference Table
	Chapter 15. AMQP Support
	15.1. Inbound Channel Adapter
	15.2. Polled Inbound Channel Adapter
	15.3. Inbound Gateway
	15.4. Inbound Endpoint Acknowledge Mode
	15.5. Outbound Channel Adapter
	15.6. Outbound Channel Adapter
	15.7. Outbound Gateway
	15.8. Asynchronous Outbound Gateway
	15.9. Alternative Mechanism for Publisher Confirms and Returns
	15.10. Inbound Message Conversion
	15.11. Outbound Message Conversion
	15.12. Outbound User ID
	15.13. Delayed Message Exchange
	15.14. AMQP-backed Message Channels
	15.15. AMQP Message Headers
	15.16. Strict Message Ordering
	15.17. AMQP Samples

	Chapter 16. Spring ApplicationEvent Support
	16.1. Receiving Spring Application Events
	16.2. Sending Spring Application Events

	Chapter 17. Feed Adapter
	17.1. Feed Inbound Channel Adapter
	17.2. Duplicate Entries
	17.3. Other Options
	17.4. Java DSL Configuration

	Chapter 18. File Support
	18.1. Reading Files
	18.2. Writing files
	18.3. File Transformers
	18.4. File Splitter
	18.5. Remote Persistent File List Filters

	Chapter 19. FTP/FTPS Adapters
	19.1. FTP Session Factory
	19.2. Advanced Configuration
	19.3. Delegating Session Factory
	19.4. FTP Inbound Channel Adapter
	19.5. FTP Streaming Inbound Channel Adapter
	19.6. Inbound Channel Adapters: Polling Multiple Servers and Directories
	19.7. Inbound Channel Adapters: Controlling Remote File Fetching
	19.8. FTP Outbound Channel Adapter
	19.9. FTP Outbound Gateway
	19.10. FTP Session Caching
	19.11. Using RemoteFileTemplate
	19.12. Using MessageSessionCallback
	19.13. Apache Mina FTP Server Events
	19.14. Remote File Information

	Chapter 20. Pivotal GemFire and Apache Geode Support
	20.1. Inbound Channel Adapter
	20.2. Continuous Query Inbound Channel Adapter
	20.3. Outbound Channel Adapter
	20.4. Gemfire Message Store
	20.5. Gemfire Lock Registry
	20.6. Gemfire Metadata Store

	Chapter 21. HTTP Support
	21.1. Http Inbound Components
	21.2. HTTP Outbound Components
	21.3. HTTP Namespace Support
	21.4. Configuring HTTP Endpoints with Java
	21.5. Timeout Handling
	21.6. HTTP Proxy configuration
	21.7. HTTP Header Mappings
	21.8. Integration Graph Controller
	21.9. HTTP Samples

	Chapter 22. JDBC Support
	22.1. Inbound Channel Adapter
	22.2. Outbound Channel Adapter
	22.3. Outbound Gateway
	22.4. JDBC Message Store
	22.5. Stored Procedures
	22.6. JDBC Lock Registry
	22.7. JDBC Metadata Store

	Chapter 23. JPA Support
	23.1. Functionality
	23.2. Supported Persistence Providers
	23.3. Java Implementation
	23.4. Namespace Support
	23.5. Inbound Channel Adapter
	23.6. Outbound Channel Adapter
	23.7. Outbound Gateways

	Chapter 24. JMS Support
	24.1. Inbound Channel Adapter
	24.2. Message-driven Channel Adapter
	24.3. Outbound Channel Adapter
	24.4. Inbound Gateway
	24.5. Outbound Gateway
	24.6. Mapping Message Headers to and from JMS Message
	24.7. Message Conversion, Marshalling, and Unmarshalling
	24.8. JMS-backed Message Channels
	24.9. Using JMS Message Selectors
	24.10. JMS Samples
	24.11. JMX Support

	Chapter 25. Spring for Apache Kafka Support
	25.1. Overview
	25.2. Outbound Channel Adapter
	25.3. Message-driven Channel Adapter
	25.4. Inbound Channel Adapter
	25.5. Outbound Gateway
	25.6. Inbound Gateway
	25.7. Channels Backed by Kafka Topics
	25.8. Message Conversion
	25.9. Null Payloads and Log Compaction 'Tombstone' Records
	25.10. Calling a Spring Integration flow from a KStream
	25.11. Performance Considerations for read/process/write Scenarios

	Chapter 26. Mail Support
	26.1. Mail-sending Channel Adapter
	26.2. Mail-receiving Channel Adapter
	26.3. Inbound Mail Message Mapping
	26.4. Mail Namespace Support
	26.5. Marking IMAP Messages When \Recent Is Not Supported
	26.6. Email Message Filtering
	26.7. Transaction Synchronization
	26.8. Configuring channel adapters with the Java DSL

	Chapter 27. MongoDb Support
	27.1. Connecting to MongoDb
	27.2. MongoDB Message Store
	27.3. MongoDB Inbound Channel Adapter
	27.4. MongoDB Change Stream Inbound Channel Adapter
	27.5. MongoDB Outbound Channel Adapter
	27.6. MongoDB Outbound Gateway
	27.7. MongoDB Reactive Channel Adapters

	Chapter 28. MQTT Support
	28.1. Inbound (Message-driven) Channel Adapter
	28.2. Outbound Channel Adapter
	28.3. Events

	Chapter 29. R2DBC Support
	29.1. R2DBC Inbound Channel Adapter
	29.2. R2DBC Outbound Channel Adapter

	Chapter 30. Redis Support
	30.1. Connecting to Redis
	30.2. Messaging with Redis
	30.3. Redis Message Store
	30.4. Redis Metadata Store
	30.5. Redis Store Inbound Channel Adapter
	30.6. RedisStore Outbound Channel Adapter
	30.7. Redis Outbound Command Gateway
	30.8. Redis Queue Outbound Gateway
	30.9. Redis Queue Inbound Gateway
	30.10. Redis Stream Outbound Channel Adapter
	30.11. Redis Stream Inbound Channel Adapter
	30.12. Redis Lock Registry

	Chapter 31. Resource Support
	31.1. Resource Inbound Channel Adapter

	Chapter 32. RMI Support
	32.1. Outbound RMI
	32.2. Inbound RMI
	32.3. RMI namespace support
	32.4. Configuring with Java Configuration

	Chapter 33. RSocket Support
	33.1. RSocket Inbound Gateway
	33.2. RSocket Outbound Gateway
	33.3. RSocket Namespace Support
	33.4. Configuring RSocket Endpoints with Java

	Chapter 34. SFTP Adapters
	34.1. SFTP Session Factory
	34.2. Proxy Factory Bean
	34.3. Delegating Session Factory
	34.4. SFTP Session Caching
	34.5. Using RemoteFileTemplate
	34.6. SFTP Inbound Channel Adapter
	34.7. SFTP Streaming Inbound Channel Adapter
	34.8. Inbound Channel Adapters: Polling Multiple Servers and Directories
	34.9. Inbound Channel Adapters: Controlling Remote File Fetching
	34.10. SFTP Outbound Channel Adapter
	34.11. SFTP Outbound Gateway
	34.12. SFTP/JSCH Logging
	34.13. MessageSessionCallback
	34.14. Apache Mina SFTP Server Events
	34.15. Remote File Information

	Chapter 35. STOMP Support
	35.1. Overview
	35.2. STOMP Inbound Channel Adapter
	35.3. STOMP Outbound Channel Adapter
	35.4. STOMP Headers Mapping
	35.5. STOMP Integration Events
	35.6. STOMP Adapters Java Configuration
	35.7. STOMP Namespace Support

	Chapter 36. Stream Support
	36.1. Reading from Streams
	36.2. Writing to Streams
	36.3. Stream Namespace Support

	Chapter 37. Syslog Support
	37.1. Syslog Inbound Channel Adapter

	Chapter 38. TCP and UDP Support
	38.1. Introduction
	38.2. UDP Adapters
	38.3. TCP Connection Factories
	38.4. Testing Connections
	38.5. TCP Connection Interceptors
	38.6. TCP Connection Events
	38.7. TCP Adapters
	38.8. TCP Gateways
	38.9. TCP Message Correlation
	38.10. About Non-blocking I/O (NIO)
	38.11. SSL/TLS Support
	38.12. Advanced Techniques
	38.13. IP Configuration Attributes
	38.14. IP Message Headers
	38.15. Annotation-Based Configuration

	Chapter 39. WebFlux Support
	39.1. WebFlux Inbound Components
	39.2. WebFlux Outbound Components
	39.3. WebFlux Namespace Support
	39.4. Configuring WebFlux Endpoints with Java
	39.5. WebFlux Header Mappings

	Chapter 40. WebSockets Support
	40.1. Overview
	40.2. WebSocket Inbound Channel Adapter
	40.3. WebSocket Outbound Channel Adapter
	40.4. WebSockets Namespace Support
	40.5. Using ClientStompEncoder

	Chapter 41. Web Services Support
	41.1. Outbound Web Service Gateways
	41.2. Inbound Web Service Gateways
	41.3. Web Service Namespace Support
	41.4. Web Service Java DSL Support
	41.5. Outbound URI Configuration
	41.6. WS Message Headers
	41.7. MTOM Support

	Chapter 42. XML Support - Dealing with XML Payloads
	42.1. Namespace Support
	42.2. Transforming XML Payloads
	42.3. Transforming XML Messages with XPath
	42.4. Splitting XML Messages
	42.5. Routing XML Messages with XPath
	42.6. XPath Header Enricher
	42.7. Using the XPath Filter
	42.8. #xpath SpEL Function
	42.9. XML Validating Filter

	Chapter 43. XMPP Support
	43.1. XMPP Connection
	43.2. XMPP Messages
	43.3. XMPP Presence
	43.4. Advanced Configuration
	43.5. XMPP Message Headers
	43.6. XMPP Extensions

	Chapter 44. ZeroMQ Support
	44.1. ZeroMQ Proxy
	44.2. ZeroMQ Message Channel
	44.3. ZeroMQ Inbound Channel Adapter
	44.4. ZeroMQ Outbound Channel Adapter
	44.5. ZeroMQ Java DSL Support

	Chapter 45. Zookeeper Support
	45.1. Zookeeper Metadata Store
	45.2. Zookeeper Lock Registry
	45.3. Zookeeper Leadership Event Handling

	Appendices
	Appendix A: Error Handling
	Appendix B: Spring Expression Language (SpEL)
	B.1. SpEL Evaluation Context Customization
	B.2. SpEL Functions
	B.3. Property Accessors

	Appendix C: Message Publishing
	C.1. Message Publishing Configuration

	Appendix D: Transaction Support
	D.1. Understanding Transactions in Message flows
	D.2. Transaction Boundaries
	D.3. Transaction Synchronization
	D.4. Pseudo Transactions
	D.5. Reactive Transactions

	Appendix E: Security in Spring Integration
	E.1. Securing channels
	E.2. Security Context Propagation

	Appendix F: Configuration
	F.1. Namespace Support
	F.2. Configuring the Task Scheduler
	F.3. Global Properties
	F.4. Annotation Support
	F.5. Messaging Meta-Annotations
	F.6. Message Mapping Rules and Conventions

	Appendix G: Testing support
	G.1. Testing Utilities
	G.2. Spring Integration and the Test Context
	G.3. Integration Mocks
	G.4. Other Resources

	Appendix H: Spring Integration Samples
	H.1. Where to Get Samples
	H.2. Submitting Samples or Sample Requests
	H.3. Samples Structure
	H.4. Samples

	Appendix I: Additional Resources
	Appendix J: Change History
	J.1. Changes between 5.2 and 5.3
	J.2. New Components
	J.3. General Changes
	J.4. AMQP Changes
	J.5. HTTP Changes
	J.6. Web Services Changes
	J.7. TCP Changes
	J.8. RSocket Changes
	J.9. Zookeeper Changes
	J.10. MQTT Changes
	J.11. (S)FTP Changes
	J.12. File Changes
	J.13. Changes between 5.1 and 5.2
	J.14. Package and Class Changes
	J.15. Behavior Changes
	J.16. New Components
	J.17. General Changes
	J.18. Changes between 5.0 and 5.1
	J.19. Changes between 4.3 and 5.0
	J.20. Changes between 4.2 and 4.3
	J.21. Changes between 4.1 and 4.2
	J.22. Changes between 4.0 and 4.1
	J.23. Changes between 3.0 and 4.0
	J.24. Changes Between 2.2 and 3.0
	J.25. Changes between 2.1 and 2.2
	J.26. Changes between 2.0 and 2.1
	J.27. Changes between Versions 1.0 and 2.0

