* transition values. hashcontext is the single context created to support
* all hash tables.
*
+ * Spilling To Disk
+ *
+ * When performing hash aggregation, if the hash table memory exceeds the
+ * limit (see hash_agg_check_limits()), we enter "spill mode". In spill
+ * mode, we advance the transition states only for groups already in the
+ * hash table. For tuples that would need to create a new hash table
+ * entries (and initialize new transition states), we instead spill them to
+ * disk to be processed later. The tuples are spilled in a partitioned
+ * manner, so that subsequent batches are smaller and less likely to exceed
+ * work_mem (if a batch does exceed work_mem, it must be spilled
+ * recursively).
+ *
+ * Spilled data is written to logical tapes. These provide better control
+ * over memory usage, disk space, and the number of files than if we were
+ * to use a BufFile for each spill.
+ *
+ * Note that it's possible for transition states to start small but then
+ * grow very large; for instance in the case of ARRAY_AGG. In such cases,
+ * it's still possible to significantly exceed work_mem. We try to avoid
+ * this situation by estimating what will fit in the available memory, and
+ * imposing a limit on the number of groups separately from the amount of
+ * memory consumed.
+ *
* Transition / Combine function invocation:
*
* For performance reasons transition functions, including combine
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
+#include "utils/dynahash.h"
#include "utils/expandeddatum.h"
+#include "utils/logtape.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/tuplesort.h"
+/*
+ * Control how many partitions are created when spilling HashAgg to
+ * disk.
+ *
+ * HASHAGG_PARTITION_FACTOR is multiplied by the estimated number of
+ * partitions needed such that each partition will fit in memory. The factor
+ * is set higher than one because there's not a high cost to having a few too
+ * many partitions, and it makes it less likely that a partition will need to
+ * be spilled recursively. Another benefit of having more, smaller partitions
+ * is that small hash tables may perform better than large ones due to memory
+ * caching effects.
+ *
+ * We also specify a min and max number of partitions per spill. Too few might
+ * mean a lot of wasted I/O from repeated spilling of the same tuples. Too
+ * many will result in lots of memory wasted buffering the spill files (which
+ * could instead be spent on a larger hash table).
+ */
+#define HASHAGG_PARTITION_FACTOR 1.50
+#define HASHAGG_MIN_PARTITIONS 4
+#define HASHAGG_MAX_PARTITIONS 1024
+
+/*
+ * For reading from tapes, the buffer size must be a multiple of
+ * BLCKSZ. Larger values help when reading from multiple tapes concurrently,
+ * but that doesn't happen in HashAgg, so we simply use BLCKSZ. Writing to a
+ * tape always uses a buffer of size BLCKSZ.
+ */
+#define HASHAGG_READ_BUFFER_SIZE BLCKSZ
+#define HASHAGG_WRITE_BUFFER_SIZE BLCKSZ
+
+/* minimum number of initial hash table buckets */
+#define HASHAGG_MIN_BUCKETS 256
+
+/*
+ * Track all tapes needed for a HashAgg that spills. We don't know the maximum
+ * number of tapes needed at the start of the algorithm (because it can
+ * recurse), so one tape set is allocated and extended as needed for new
+ * tapes. When a particular tape is already read, rewind it for write mode and
+ * put it in the free list.
+ *
+ * Tapes' buffers can take up substantial memory when many tapes are open at
+ * once. We only need one tape open at a time in read mode (using a buffer
+ * that's a multiple of BLCKSZ); but we need one tape open in write mode (each
+ * requiring a buffer of size BLCKSZ) for each partition.
+ */
+typedef struct HashTapeInfo
+{
+ LogicalTapeSet *tapeset;
+ int ntapes;
+ int *freetapes;
+ int nfreetapes;
+ int freetapes_alloc;
+} HashTapeInfo;
+
+/*
+ * Represents partitioned spill data for a single hashtable. Contains the
+ * necessary information to route tuples to the correct partition, and to
+ * transform the spilled data into new batches.
+ *
+ * The high bits are used for partition selection (when recursing, we ignore
+ * the bits that have already been used for partition selection at an earlier
+ * level).
+ */
+typedef struct HashAggSpill
+{
+ LogicalTapeSet *tapeset; /* borrowed reference to tape set */
+ int npartitions; /* number of partitions */
+ int *partitions; /* spill partition tape numbers */
+ int64 *ntuples; /* number of tuples in each partition */
+ uint32 mask; /* mask to find partition from hash value */
+ int shift; /* after masking, shift by this amount */
+} HashAggSpill;
+
+/*
+ * Represents work to be done for one pass of hash aggregation (with only one
+ * grouping set).
+ *
+ * Also tracks the bits of the hash already used for partition selection by
+ * earlier iterations, so that this batch can use new bits. If all bits have
+ * already been used, no partitioning will be done (any spilled data will go
+ * to a single output tape).
+ */
+typedef struct HashAggBatch
+{
+ int setno; /* grouping set */
+ int used_bits; /* number of bits of hash already used */
+ LogicalTapeSet *tapeset; /* borrowed reference to tape set */
+ int input_tapenum; /* input partition tape */
+ int64 input_tuples; /* number of tuples in this batch */
+} HashAggBatch;
+
static void select_current_set(AggState *aggstate, int setno, bool is_hash);
static void initialize_phase(AggState *aggstate, int newphase);
static TupleTableSlot *fetch_input_tuple(AggState *aggstate);
static bool find_unaggregated_cols_walker(Node *node, Bitmapset **colnos);
static void build_hash_tables(AggState *aggstate);
static void build_hash_table(AggState *aggstate, int setno, long nbuckets);
+static void hashagg_recompile_expressions(AggState *aggstate, bool minslot,
+ bool nullcheck);
+static long hash_choose_num_buckets(double hashentrysize,
+ long estimated_nbuckets,
+ Size memory);
+static int hash_choose_num_partitions(uint64 input_groups,
+ double hashentrysize,
+ int used_bits,
+ int *log2_npartittions);
static AggStatePerGroup lookup_hash_entry(AggState *aggstate, uint32 hash);
static void lookup_hash_entries(AggState *aggstate);
static TupleTableSlot *agg_retrieve_direct(AggState *aggstate);
static void agg_fill_hash_table(AggState *aggstate);
+static bool agg_refill_hash_table(AggState *aggstate);
static TupleTableSlot *agg_retrieve_hash_table(AggState *aggstate);
+static TupleTableSlot *agg_retrieve_hash_table_in_memory(AggState *aggstate);
+static void hash_agg_check_limits(AggState *aggstate);
+static void hash_agg_enter_spill_mode(AggState *aggstate);
+static void hash_agg_update_metrics(AggState *aggstate, bool from_tape,
+ int npartitions);
+static void hashagg_finish_initial_spills(AggState *aggstate);
+static void hashagg_reset_spill_state(AggState *aggstate);
+static HashAggBatch *hashagg_batch_new(LogicalTapeSet *tapeset,
+ int input_tapenum, int setno,
+ int64 input_tuples, int used_bits);
+static MinimalTuple hashagg_batch_read(HashAggBatch *batch, uint32 *hashp);
+static void hashagg_spill_init(HashAggSpill *spill, HashTapeInfo *tapeinfo,
+ int used_bits, uint64 input_tuples,
+ double hashentrysize);
+static Size hashagg_spill_tuple(HashAggSpill *spill, TupleTableSlot *slot,
+ uint32 hash);
+static void hashagg_spill_finish(AggState *aggstate, HashAggSpill *spill,
+ int setno);
+static void hashagg_tapeinfo_init(AggState *aggstate);
+static void hashagg_tapeinfo_assign(HashTapeInfo *tapeinfo, int *dest,
+ int ndest);
+static void hashagg_tapeinfo_release(HashTapeInfo *tapeinfo, int tapenum);
static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
static void build_pertrans_for_aggref(AggStatePerTrans pertrans,
AggState *aggstate, EState *estate,
for (setno = 0; setno < aggstate->num_hashes; ++setno)
{
AggStatePerHash perhash = &aggstate->perhash[setno];
+ long nbuckets;
+ Size memory;
+
+ if (perhash->hashtable != NULL)
+ {
+ ResetTupleHashTable(perhash->hashtable);
+ continue;
+ }
Assert(perhash->aggnode->numGroups > 0);
- if (perhash->hashtable)
- ResetTupleHashTable(perhash->hashtable);
- else
- build_hash_table(aggstate, setno, perhash->aggnode->numGroups);
+ memory = aggstate->hash_mem_limit / aggstate->num_hashes;
+
+ /* choose reasonable number of buckets per hashtable */
+ nbuckets = hash_choose_num_buckets(
+ aggstate->hashentrysize, perhash->aggnode->numGroups, memory);
+
+ build_hash_table(aggstate, setno, nbuckets);
}
+
+ aggstate->hash_ngroups_current = 0;
}
/*
build_hash_table(AggState *aggstate, int setno, long nbuckets)
{
AggStatePerHash perhash = &aggstate->perhash[setno];
- MemoryContext metacxt = aggstate->ss.ps.state->es_query_cxt;
+ MemoryContext metacxt = aggstate->hash_metacxt;
MemoryContext hashcxt = aggstate->hashcontext->ecxt_per_tuple_memory;
MemoryContext tmpcxt = aggstate->tmpcontext->ecxt_per_tuple_memory;
Size additionalsize;
transitionSpace;
}
+/*
+ * hashagg_recompile_expressions()
+ *
+ * Identifies the right phase, compiles the right expression given the
+ * arguments, and then sets phase->evalfunc to that expression.
+ *
+ * Different versions of the compiled expression are needed depending on
+ * whether hash aggregation has spilled or not, and whether it's reading from
+ * the outer plan or a tape. Before spilling to disk, the expression reads
+ * from the outer plan and does not need to perform a NULL check. After
+ * HashAgg begins to spill, new groups will not be created in the hash table,
+ * and the AggStatePerGroup array may be NULL; therefore we need to add a null
+ * pointer check to the expression. Then, when reading spilled data from a
+ * tape, we change the outer slot type to be a fixed minimal tuple slot.
+ *
+ * It would be wasteful to recompile every time, so cache the compiled
+ * expressions in the AggStatePerPhase, and reuse when appropriate.
+ */
+static void
+hashagg_recompile_expressions(AggState *aggstate, bool minslot, bool nullcheck)
+{
+ AggStatePerPhase phase;
+ int i = minslot ? 1 : 0;
+ int j = nullcheck ? 1 : 0;
+
+ Assert(aggstate->aggstrategy == AGG_HASHED ||
+ aggstate->aggstrategy == AGG_MIXED);
+
+ if (aggstate->aggstrategy == AGG_HASHED)
+ phase = &aggstate->phases[0];
+ else /* AGG_MIXED */
+ phase = &aggstate->phases[1];
+
+ if (phase->evaltrans_cache[i][j] == NULL)
+ {
+ const TupleTableSlotOps *outerops = aggstate->ss.ps.outerops;
+ bool outerfixed = aggstate->ss.ps.outeropsfixed;
+ bool dohash = true;
+ bool dosort;
+
+ dosort = aggstate->aggstrategy == AGG_MIXED ? true : false;
+
+ /* temporarily change the outerops while compiling the expression */
+ if (minslot)
+ {
+ aggstate->ss.ps.outerops = &TTSOpsMinimalTuple;
+ aggstate->ss.ps.outeropsfixed = true;
+ }
+
+ phase->evaltrans_cache[i][j] = ExecBuildAggTrans(
+ aggstate, phase, dosort, dohash, nullcheck);
+
+ /* change back */
+ aggstate->ss.ps.outerops = outerops;
+ aggstate->ss.ps.outeropsfixed = outerfixed;
+ }
+
+ phase->evaltrans = phase->evaltrans_cache[i][j];
+}
+
+/*
+ * Set limits that trigger spilling to avoid exceeding work_mem. Consider the
+ * number of partitions we expect to create (if we do spill).
+ *
+ * There are two limits: a memory limit, and also an ngroups limit. The
+ * ngroups limit becomes important when we expect transition values to grow
+ * substantially larger than the initial value.
+ */
+void
+hash_agg_set_limits(double hashentrysize, uint64 input_groups, int used_bits,
+ Size *mem_limit, uint64 *ngroups_limit,
+ int *num_partitions)
+{
+ int npartitions;
+ Size partition_mem;
+
+ /* if not expected to spill, use all of work_mem */
+ if (input_groups * hashentrysize < work_mem * 1024L)
+ {
+ *mem_limit = work_mem * 1024L;
+ *ngroups_limit = *mem_limit / hashentrysize;
+ return;
+ }
+
+ /*
+ * Calculate expected memory requirements for spilling, which is the size
+ * of the buffers needed for all the tapes that need to be open at
+ * once. Then, subtract that from the memory available for holding hash
+ * tables.
+ */
+ npartitions = hash_choose_num_partitions(input_groups,
+ hashentrysize,
+ used_bits,
+ NULL);
+ if (num_partitions != NULL)
+ *num_partitions = npartitions;
+
+ partition_mem =
+ HASHAGG_READ_BUFFER_SIZE +
+ HASHAGG_WRITE_BUFFER_SIZE * npartitions;
+
+ /*
+ * Don't set the limit below 3/4 of work_mem. In that case, we are at the
+ * minimum number of partitions, so we aren't going to dramatically exceed
+ * work mem anyway.
+ */
+ if (work_mem * 1024L > 4 * partition_mem)
+ *mem_limit = work_mem * 1024L - partition_mem;
+ else
+ *mem_limit = work_mem * 1024L * 0.75;
+
+ if (*mem_limit > hashentrysize)
+ *ngroups_limit = *mem_limit / hashentrysize;
+ else
+ *ngroups_limit = 1;
+}
+
+/*
+ * hash_agg_check_limits
+ *
+ * After adding a new group to the hash table, check whether we need to enter
+ * spill mode. Allocations may happen without adding new groups (for instance,
+ * if the transition state size grows), so this check is imperfect.
+ */
+static void
+hash_agg_check_limits(AggState *aggstate)
+{
+ uint64 ngroups = aggstate->hash_ngroups_current;
+ Size meta_mem = MemoryContextMemAllocated(
+ aggstate->hash_metacxt, true);
+ Size hash_mem = MemoryContextMemAllocated(
+ aggstate->hashcontext->ecxt_per_tuple_memory, true);
+
+ /*
+ * Don't spill unless there's at least one group in the hash table so we
+ * can be sure to make progress even in edge cases.
+ */
+ if (aggstate->hash_ngroups_current > 0 &&
+ (meta_mem + hash_mem > aggstate->hash_mem_limit ||
+ ngroups > aggstate->hash_ngroups_limit))
+ {
+ hash_agg_enter_spill_mode(aggstate);
+ }
+}
+
+/*
+ * Enter "spill mode", meaning that no new groups are added to any of the hash
+ * tables. Tuples that would create a new group are instead spilled, and
+ * processed later.
+ */
+static void
+hash_agg_enter_spill_mode(AggState *aggstate)
+{
+ aggstate->hash_spill_mode = true;
+ hashagg_recompile_expressions(aggstate, aggstate->table_filled, true);
+
+ if (!aggstate->hash_ever_spilled)
+ {
+ Assert(aggstate->hash_tapeinfo == NULL);
+ Assert(aggstate->hash_spills == NULL);
+
+ aggstate->hash_ever_spilled = true;
+
+ hashagg_tapeinfo_init(aggstate);
+
+ aggstate->hash_spills = palloc(
+ sizeof(HashAggSpill) * aggstate->num_hashes);
+
+ for (int setno = 0; setno < aggstate->num_hashes; setno++)
+ {
+ AggStatePerHash perhash = &aggstate->perhash[setno];
+ HashAggSpill *spill = &aggstate->hash_spills[setno];
+
+ hashagg_spill_init(spill, aggstate->hash_tapeinfo, 0,
+ perhash->aggnode->numGroups,
+ aggstate->hashentrysize);
+ }
+ }
+}
+
+/*
+ * Update metrics after filling the hash table.
+ *
+ * If reading from the outer plan, from_tape should be false; if reading from
+ * another tape, from_tape should be true.
+ */
+static void
+hash_agg_update_metrics(AggState *aggstate, bool from_tape, int npartitions)
+{
+ Size meta_mem;
+ Size hash_mem;
+ Size buffer_mem;
+ Size total_mem;
+
+ if (aggstate->aggstrategy != AGG_MIXED &&
+ aggstate->aggstrategy != AGG_HASHED)
+ return;
+
+ /* memory for the hash table itself */
+ meta_mem = MemoryContextMemAllocated(aggstate->hash_metacxt, true);
+
+ /* memory for the group keys and transition states */
+ hash_mem = MemoryContextMemAllocated(
+ aggstate->hashcontext->ecxt_per_tuple_memory, true);
+
+ /* memory for read/write tape buffers, if spilled */
+ buffer_mem = npartitions * HASHAGG_WRITE_BUFFER_SIZE;
+ if (from_tape)
+ buffer_mem += HASHAGG_READ_BUFFER_SIZE;
+
+ /* update peak mem */
+ total_mem = meta_mem + hash_mem + buffer_mem;
+ if (total_mem > aggstate->hash_mem_peak)
+ aggstate->hash_mem_peak = total_mem;
+
+ /* update disk usage */
+ if (aggstate->hash_tapeinfo != NULL)
+ {
+ uint64 disk_used = LogicalTapeSetBlocks(
+ aggstate->hash_tapeinfo->tapeset) * (BLCKSZ / 1024);
+
+ if (aggstate->hash_disk_used < disk_used)
+ aggstate->hash_disk_used = disk_used;
+ }
+
+ /*
+ * Update hashentrysize estimate based on contents. Don't include meta_mem
+ * in the memory used, because empty buckets would inflate the per-entry
+ * cost. An underestimate of the per-entry size is better than an
+ * overestimate, because an overestimate could compound with each level of
+ * recursion.
+ */
+ if (aggstate->hash_ngroups_current > 0)
+ {
+ aggstate->hashentrysize =
+ hash_mem / (double)aggstate->hash_ngroups_current;
+ }
+}
+
+/*
+ * Choose a reasonable number of buckets for the initial hash table size.
+ */
+static long
+hash_choose_num_buckets(double hashentrysize, long ngroups, Size memory)
+{
+ long max_nbuckets;
+ long nbuckets = ngroups;
+
+ max_nbuckets = memory / hashentrysize;
+
+ /*
+ * Leave room for slop to avoid a case where the initial hash table size
+ * exceeds the memory limit (though that may still happen in edge cases).
+ */
+ max_nbuckets *= 0.75;
+
+ if (nbuckets > max_nbuckets)
+ nbuckets = max_nbuckets;
+ if (nbuckets < HASHAGG_MIN_BUCKETS)
+ nbuckets = HASHAGG_MIN_BUCKETS;
+ return nbuckets;
+}
+
+/*
+ * Determine the number of partitions to create when spilling, which will
+ * always be a power of two. If log2_npartitions is non-NULL, set
+ * *log2_npartitions to the log2() of the number of partitions.
+ */
+static int
+hash_choose_num_partitions(uint64 input_groups, double hashentrysize,
+ int used_bits, int *log2_npartitions)
+{
+ Size mem_wanted;
+ int partition_limit;
+ int npartitions;
+ int partition_bits;
+
+ /*
+ * Avoid creating so many partitions that the memory requirements of the
+ * open partition files are greater than 1/4 of work_mem.
+ */
+ partition_limit =
+ (work_mem * 1024L * 0.25 - HASHAGG_READ_BUFFER_SIZE) /
+ HASHAGG_WRITE_BUFFER_SIZE;
+
+ mem_wanted = HASHAGG_PARTITION_FACTOR * input_groups * hashentrysize;
+
+ /* make enough partitions so that each one is likely to fit in memory */
+ npartitions = 1 + (mem_wanted / (work_mem * 1024L));
+
+ if (npartitions > partition_limit)
+ npartitions = partition_limit;
+
+ if (npartitions < HASHAGG_MIN_PARTITIONS)
+ npartitions = HASHAGG_MIN_PARTITIONS;
+ if (npartitions > HASHAGG_MAX_PARTITIONS)
+ npartitions = HASHAGG_MAX_PARTITIONS;
+
+ /* ceil(log2(npartitions)) */
+ partition_bits = my_log2(npartitions);
+
+ /* make sure that we don't exhaust the hash bits */
+ if (partition_bits + used_bits >= 32)
+ partition_bits = 32 - used_bits;
+
+ if (log2_npartitions != NULL)
+ *log2_npartitions = partition_bits;
+
+ /* number of partitions will be a power of two */
+ npartitions = 1L << partition_bits;
+
+ return npartitions;
+}
+
/*
* Find or create a hashtable entry for the tuple group containing the current
* tuple (already set in tmpcontext's outertuple slot), in the current grouping
*
* When called, CurrentMemoryContext should be the per-query context. The
* already-calculated hash value for the tuple must be specified.
+ *
+ * If in "spill mode", then only find existing hashtable entries; don't create
+ * new ones. If a tuple's group is not already present in the hash table for
+ * the current grouping set, return NULL and the caller will spill it to disk.
*/
static AggStatePerGroup
lookup_hash_entry(AggState *aggstate, uint32 hash)
AggStatePerHash perhash = &aggstate->perhash[aggstate->current_set];
TupleTableSlot *hashslot = perhash->hashslot;
TupleHashEntryData *entry;
- bool isnew;
+ bool isnew = false;
+ bool *p_isnew;
+
+ /* if hash table already spilled, don't create new entries */
+ p_isnew = aggstate->hash_spill_mode ? NULL : &isnew;
/* find or create the hashtable entry using the filtered tuple */
- entry = LookupTupleHashEntryHash(perhash->hashtable, hashslot, &isnew,
+ entry = LookupTupleHashEntryHash(perhash->hashtable, hashslot, p_isnew,
hash);
+ if (entry == NULL)
+ return NULL;
+
if (isnew)
{
- AggStatePerGroup pergroup;
- int transno;
+ AggStatePerGroup pergroup;
+ int transno;
+
+ aggstate->hash_ngroups_current++;
+ hash_agg_check_limits(aggstate);
pergroup = (AggStatePerGroup)
MemoryContextAlloc(perhash->hashtable->tablecxt,
* returning an array of pergroup pointers suitable for advance_aggregates.
*
* Be aware that lookup_hash_entry can reset the tmpcontext.
+ *
+ * Some entries may be left NULL if we are in "spill mode". The same tuple
+ * will belong to different groups for each grouping set, so may match a group
+ * already in memory for one set and match a group not in memory for another
+ * set. When in "spill mode", the tuple will be spilled for each grouping set
+ * where it doesn't match a group in memory.
+ *
+ * NB: It's possible to spill the same tuple for several different grouping
+ * sets. This may seem wasteful, but it's actually a trade-off: if we spill
+ * the tuple multiple times for multiple grouping sets, it can be partitioned
+ * for each grouping set, making the refilling of the hash table very
+ * efficient.
*/
static void
lookup_hash_entries(AggState *aggstate)
{
- int numHashes = aggstate->num_hashes;
AggStatePerGroup *pergroup = aggstate->hash_pergroup;
int setno;
- for (setno = 0; setno < numHashes; setno++)
+ for (setno = 0; setno < aggstate->num_hashes; setno++)
{
- AggStatePerHash perhash = &aggstate->perhash[setno];
+ AggStatePerHash perhash = &aggstate->perhash[setno];
uint32 hash;
select_current_set(aggstate, setno, true);
prepare_hash_slot(aggstate);
hash = TupleHashTableHash(perhash->hashtable, perhash->hashslot);
pergroup[setno] = lookup_hash_entry(aggstate, hash);
+
+ /* check to see if we need to spill the tuple for this grouping set */
+ if (pergroup[setno] == NULL)
+ {
+ HashAggSpill *spill = &aggstate->hash_spills[setno];
+ TupleTableSlot *slot = aggstate->tmpcontext->ecxt_outertuple;
+
+ if (spill->partitions == NULL)
+ hashagg_spill_init(spill, aggstate->hash_tapeinfo, 0,
+ perhash->aggnode->numGroups,
+ aggstate->hashentrysize);
+
+ hashagg_spill_tuple(spill, slot, hash);
+ }
}
}
if (TupIsNull(outerslot))
{
/* no more outer-plan tuples available */
+
+ /* if we built hash tables, finalize any spills */
+ if (aggstate->aggstrategy == AGG_MIXED &&
+ aggstate->current_phase == 1)
+ hashagg_finish_initial_spills(aggstate);
+
if (hasGroupingSets)
{
aggstate->input_done = true;
ResetExprContext(aggstate->tmpcontext);
}
+ /* finalize spills, if any */
+ hashagg_finish_initial_spills(aggstate);
+
aggstate->table_filled = true;
/* Initialize to walk the first hash table */
select_current_set(aggstate, 0, true);
&aggstate->perhash[0].hashiter);
}
+/*
+ * If any data was spilled during hash aggregation, reset the hash table and
+ * reprocess one batch of spilled data. After reprocessing a batch, the hash
+ * table will again contain data, ready to be consumed by
+ * agg_retrieve_hash_table_in_memory().
+ *
+ * Should only be called after all in memory hash table entries have been
+ * finalized and emitted.
+ *
+ * Return false when input is exhausted and there's no more work to be done;
+ * otherwise return true.
+ */
+static bool
+agg_refill_hash_table(AggState *aggstate)
+{
+ HashAggBatch *batch;
+ HashAggSpill spill;
+ HashTapeInfo *tapeinfo = aggstate->hash_tapeinfo;
+ uint64 ngroups_estimate;
+ bool spill_initialized = false;
+
+ if (aggstate->hash_batches == NIL)
+ return false;
+
+ batch = linitial(aggstate->hash_batches);
+ aggstate->hash_batches = list_delete_first(aggstate->hash_batches);
+
+ /*
+ * Estimate the number of groups for this batch as the total number of
+ * tuples in its input file. Although that's a worst case, it's not bad
+ * here for two reasons: (1) overestimating is better than
+ * underestimating; and (2) we've already scanned the relation once, so
+ * it's likely that we've already finalized many of the common values.
+ */
+ ngroups_estimate = batch->input_tuples;
+
+ hash_agg_set_limits(aggstate->hashentrysize, ngroups_estimate,
+ batch->used_bits, &aggstate->hash_mem_limit,
+ &aggstate->hash_ngroups_limit, NULL);
+
+ /* there could be residual pergroup pointers; clear them */
+ for (int setoff = 0;
+ setoff < aggstate->maxsets + aggstate->num_hashes;
+ setoff++)
+ aggstate->all_pergroups[setoff] = NULL;
+
+ /* free memory and reset hash tables */
+ ReScanExprContext(aggstate->hashcontext);
+ for (int setno = 0; setno < aggstate->num_hashes; setno++)
+ ResetTupleHashTable(aggstate->perhash[setno].hashtable);
+
+ aggstate->hash_ngroups_current = 0;
+
+ /*
+ * In AGG_MIXED mode, hash aggregation happens in phase 1 and the output
+ * happens in phase 0. So, we switch to phase 1 when processing a batch,
+ * and back to phase 0 after the batch is done.
+ */
+ Assert(aggstate->current_phase == 0);
+ if (aggstate->phase->aggstrategy == AGG_MIXED)
+ {
+ aggstate->current_phase = 1;
+ aggstate->phase = &aggstate->phases[aggstate->current_phase];
+ }
+
+ select_current_set(aggstate, batch->setno, true);
+
+ /*
+ * Spilled tuples are always read back as MinimalTuples, which may be
+ * different from the outer plan, so recompile the aggregate expressions.
+ *
+ * We still need the NULL check, because we are only processing one
+ * grouping set at a time and the rest will be NULL.
+ */
+ hashagg_recompile_expressions(aggstate, true, true);
+
+ LogicalTapeRewindForRead(tapeinfo->tapeset, batch->input_tapenum,
+ HASHAGG_READ_BUFFER_SIZE);
+ for (;;) {
+ TupleTableSlot *slot = aggstate->hash_spill_slot;
+ MinimalTuple tuple;
+ uint32 hash;
+
+ CHECK_FOR_INTERRUPTS();
+
+ tuple = hashagg_batch_read(batch, &hash);
+ if (tuple == NULL)
+ break;
+
+ ExecStoreMinimalTuple(tuple, slot, true);
+ aggstate->tmpcontext->ecxt_outertuple = slot;
+
+ prepare_hash_slot(aggstate);
+ aggstate->hash_pergroup[batch->setno] = lookup_hash_entry(aggstate, hash);
+
+ if (aggstate->hash_pergroup[batch->setno] != NULL)
+ {
+ /* Advance the aggregates (or combine functions) */
+ advance_aggregates(aggstate);
+ }
+ else
+ {
+ if (!spill_initialized)
+ {
+ /*
+ * Avoid initializing the spill until we actually need it so
+ * that we don't assign tapes that will never be used.
+ */
+ spill_initialized = true;
+ hashagg_spill_init(&spill, tapeinfo, batch->used_bits,
+ ngroups_estimate, aggstate->hashentrysize);
+ }
+ /* no memory for a new group, spill */
+ hashagg_spill_tuple(&spill, slot, hash);
+ }
+
+ /*
+ * Reset per-input-tuple context after each tuple, but note that the
+ * hash lookups do this too
+ */
+ ResetExprContext(aggstate->tmpcontext);
+ }
+
+ hashagg_tapeinfo_release(tapeinfo, batch->input_tapenum);
+
+ /* change back to phase 0 */
+ aggstate->current_phase = 0;
+ aggstate->phase = &aggstate->phases[aggstate->current_phase];
+
+ if (spill_initialized)
+ {
+ hash_agg_update_metrics(aggstate, true, spill.npartitions);
+ hashagg_spill_finish(aggstate, &spill, batch->setno);
+ }
+ else
+ hash_agg_update_metrics(aggstate, true, 0);
+
+ aggstate->hash_spill_mode = false;
+
+ /* prepare to walk the first hash table */
+ select_current_set(aggstate, batch->setno, true);
+ ResetTupleHashIterator(aggstate->perhash[batch->setno].hashtable,
+ &aggstate->perhash[batch->setno].hashiter);
+
+ pfree(batch);
+
+ return true;
+}
+
/*
* ExecAgg for hashed case: retrieving groups from hash table
+ *
+ * After exhausting in-memory tuples, also try refilling the hash table using
+ * previously-spilled tuples. Only returns NULL after all in-memory and
+ * spilled tuples are exhausted.
*/
static TupleTableSlot *
agg_retrieve_hash_table(AggState *aggstate)
+{
+ TupleTableSlot *result = NULL;
+
+ while (result == NULL)
+ {
+ result = agg_retrieve_hash_table_in_memory(aggstate);
+ if (result == NULL)
+ {
+ if (!agg_refill_hash_table(aggstate))
+ {
+ aggstate->agg_done = true;
+ break;
+ }
+ }
+ }
+
+ return result;
+}
+
+/*
+ * Retrieve the groups from the in-memory hash tables without considering any
+ * spilled tuples.
+ */
+static TupleTableSlot *
+agg_retrieve_hash_table_in_memory(AggState *aggstate)
{
ExprContext *econtext;
AggStatePerAgg peragg;
* We loop retrieving groups until we find one satisfying
* aggstate->ss.ps.qual
*/
- while (!aggstate->agg_done)
+ for (;;)
{
TupleTableSlot *hashslot = perhash->hashslot;
int i;
}
else
{
- /* No more hashtables, so done */
- aggstate->agg_done = true;
return NULL;
}
}
return NULL;
}
+/*
+ * Initialize HashTapeInfo
+ */
+static void
+hashagg_tapeinfo_init(AggState *aggstate)
+{
+ HashTapeInfo *tapeinfo = palloc(sizeof(HashTapeInfo));
+ int init_tapes = 16; /* expanded dynamically */
+
+ tapeinfo->tapeset = LogicalTapeSetCreate(init_tapes, NULL, NULL, -1);
+ tapeinfo->ntapes = init_tapes;
+ tapeinfo->nfreetapes = init_tapes;
+ tapeinfo->freetapes_alloc = init_tapes;
+ tapeinfo->freetapes = palloc(init_tapes * sizeof(int));
+ for (int i = 0; i < init_tapes; i++)
+ tapeinfo->freetapes[i] = i;
+
+ aggstate->hash_tapeinfo = tapeinfo;
+}
+
+/*
+ * Assign unused tapes to spill partitions, extending the tape set if
+ * necessary.
+ */
+static void
+hashagg_tapeinfo_assign(HashTapeInfo *tapeinfo, int *partitions,
+ int npartitions)
+{
+ int partidx = 0;
+
+ /* use free tapes if available */
+ while (partidx < npartitions && tapeinfo->nfreetapes > 0)
+ partitions[partidx++] = tapeinfo->freetapes[--tapeinfo->nfreetapes];
+
+ if (partidx < npartitions)
+ {
+ LogicalTapeSetExtend(tapeinfo->tapeset, npartitions - partidx);
+
+ while (partidx < npartitions)
+ partitions[partidx++] = tapeinfo->ntapes++;
+ }
+}
+
+/*
+ * After a tape has already been written to and then read, this function
+ * rewinds it for writing and adds it to the free list.
+ */
+static void
+hashagg_tapeinfo_release(HashTapeInfo *tapeinfo, int tapenum)
+{
+ LogicalTapeRewindForWrite(tapeinfo->tapeset, tapenum);
+ if (tapeinfo->freetapes_alloc == tapeinfo->nfreetapes)
+ {
+ tapeinfo->freetapes_alloc <<= 1;
+ tapeinfo->freetapes = repalloc(
+ tapeinfo->freetapes, tapeinfo->freetapes_alloc * sizeof(int));
+ }
+ tapeinfo->freetapes[tapeinfo->nfreetapes++] = tapenum;
+}
+
+/*
+ * hashagg_spill_init
+ *
+ * Called after we determined that spilling is necessary. Chooses the number
+ * of partitions to create, and initializes them.
+ */
+static void
+hashagg_spill_init(HashAggSpill *spill, HashTapeInfo *tapeinfo, int used_bits,
+ uint64 input_groups, double hashentrysize)
+{
+ int npartitions;
+ int partition_bits;
+
+ npartitions = hash_choose_num_partitions(
+ input_groups, hashentrysize, used_bits, &partition_bits);
+
+ spill->partitions = palloc0(sizeof(int) * npartitions);
+ spill->ntuples = palloc0(sizeof(int64) * npartitions);
+
+ hashagg_tapeinfo_assign(tapeinfo, spill->partitions, npartitions);
+
+ spill->tapeset = tapeinfo->tapeset;
+ spill->shift = 32 - used_bits - partition_bits;
+ spill->mask = (npartitions - 1) << spill->shift;
+ spill->npartitions = npartitions;
+}
+
+/*
+ * hashagg_spill_tuple
+ *
+ * No room for new groups in the hash table. Save for later in the appropriate
+ * partition.
+ */
+static Size
+hashagg_spill_tuple(HashAggSpill *spill, TupleTableSlot *slot, uint32 hash)
+{
+ LogicalTapeSet *tapeset = spill->tapeset;
+ int partition;
+ MinimalTuple tuple;
+ int tapenum;
+ int total_written = 0;
+ bool shouldFree;
+
+ Assert(spill->partitions != NULL);
+
+ /* XXX: may contain unnecessary attributes, should project */
+ tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
+
+ partition = (hash & spill->mask) >> spill->shift;
+ spill->ntuples[partition]++;
+
+ tapenum = spill->partitions[partition];
+
+ LogicalTapeWrite(tapeset, tapenum, (void *) &hash, sizeof(uint32));
+ total_written += sizeof(uint32);
+
+ LogicalTapeWrite(tapeset, tapenum, (void *) tuple, tuple->t_len);
+ total_written += tuple->t_len;
+
+ if (shouldFree)
+ pfree(tuple);
+
+ return total_written;
+}
+
+/*
+ * hashagg_batch_new
+ *
+ * Construct a HashAggBatch item, which represents one iteration of HashAgg to
+ * be done.
+ */
+static HashAggBatch *
+hashagg_batch_new(LogicalTapeSet *tapeset, int tapenum, int setno,
+ int64 input_tuples, int used_bits)
+{
+ HashAggBatch *batch = palloc0(sizeof(HashAggBatch));
+
+ batch->setno = setno;
+ batch->used_bits = used_bits;
+ batch->tapeset = tapeset;
+ batch->input_tapenum = tapenum;
+ batch->input_tuples = input_tuples;
+
+ return batch;
+}
+
+/*
+ * read_spilled_tuple
+ * read the next tuple from a batch's tape. Return NULL if no more.
+ */
+static MinimalTuple
+hashagg_batch_read(HashAggBatch *batch, uint32 *hashp)
+{
+ LogicalTapeSet *tapeset = batch->tapeset;
+ int tapenum = batch->input_tapenum;
+ MinimalTuple tuple;
+ uint32 t_len;
+ size_t nread;
+ uint32 hash;
+
+ nread = LogicalTapeRead(tapeset, tapenum, &hash, sizeof(uint32));
+ if (nread == 0)
+ return NULL;
+ if (nread != sizeof(uint32))
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("unexpected EOF for tape %d: requested %zu bytes, read %zu bytes",
+ tapenum, sizeof(uint32), nread)));
+ if (hashp != NULL)
+ *hashp = hash;
+
+ nread = LogicalTapeRead(tapeset, tapenum, &t_len, sizeof(t_len));
+ if (nread != sizeof(uint32))
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("unexpected EOF for tape %d: requested %zu bytes, read %zu bytes",
+ tapenum, sizeof(uint32), nread)));
+
+ tuple = (MinimalTuple) palloc(t_len);
+ tuple->t_len = t_len;
+
+ nread = LogicalTapeRead(tapeset, tapenum,
+ (void *)((char *)tuple + sizeof(uint32)),
+ t_len - sizeof(uint32));
+ if (nread != t_len - sizeof(uint32))
+ ereport(ERROR,
+ (errcode_for_file_access(),
+ errmsg("unexpected EOF for tape %d: requested %zu bytes, read %zu bytes",
+ tapenum, t_len - sizeof(uint32), nread)));
+
+ return tuple;
+}
+
+/*
+ * hashagg_finish_initial_spills
+ *
+ * After a HashAggBatch has been processed, it may have spilled tuples to
+ * disk. If so, turn the spilled partitions into new batches that must later
+ * be executed.
+ */
+static void
+hashagg_finish_initial_spills(AggState *aggstate)
+{
+ int setno;
+ int total_npartitions = 0;
+
+ if (aggstate->hash_spills != NULL)
+ {
+ for (setno = 0; setno < aggstate->num_hashes; setno++)
+ {
+ HashAggSpill *spill = &aggstate->hash_spills[setno];
+ total_npartitions += spill->npartitions;
+ hashagg_spill_finish(aggstate, spill, setno);
+ }
+
+ /*
+ * We're not processing tuples from outer plan any more; only
+ * processing batches of spilled tuples. The initial spill structures
+ * are no longer needed.
+ */
+ pfree(aggstate->hash_spills);
+ aggstate->hash_spills = NULL;
+ }
+
+ hash_agg_update_metrics(aggstate, false, total_npartitions);
+ aggstate->hash_spill_mode = false;
+}
+
+/*
+ * hashagg_spill_finish
+ *
+ * Transform spill partitions into new batches.
+ */
+static void
+hashagg_spill_finish(AggState *aggstate, HashAggSpill *spill, int setno)
+{
+ int i;
+ int used_bits = 32 - spill->shift;
+
+ if (spill->npartitions == 0)
+ return; /* didn't spill */
+
+ for (i = 0; i < spill->npartitions; i++)
+ {
+ int tapenum = spill->partitions[i];
+ HashAggBatch *new_batch;
+
+ /* if the partition is empty, don't create a new batch of work */
+ if (spill->ntuples[i] == 0)
+ continue;
+
+ new_batch = hashagg_batch_new(aggstate->hash_tapeinfo->tapeset,
+ tapenum, setno, spill->ntuples[i],
+ used_bits);
+ aggstate->hash_batches = lcons(new_batch, aggstate->hash_batches);
+ aggstate->hash_batches_used++;
+ }
+
+ pfree(spill->ntuples);
+ pfree(spill->partitions);
+}
+
+/*
+ * Free resources related to a spilled HashAgg.
+ */
+static void
+hashagg_reset_spill_state(AggState *aggstate)
+{
+ ListCell *lc;
+
+ /* free spills from initial pass */
+ if (aggstate->hash_spills != NULL)
+ {
+ int setno;
+
+ for (setno = 0; setno < aggstate->num_hashes; setno++)
+ {
+ HashAggSpill *spill = &aggstate->hash_spills[setno];
+ pfree(spill->ntuples);
+ pfree(spill->partitions);
+ }
+ pfree(aggstate->hash_spills);
+ aggstate->hash_spills = NULL;
+ }
+
+ /* free batches */
+ foreach(lc, aggstate->hash_batches)
+ {
+ HashAggBatch *batch = (HashAggBatch*) lfirst(lc);
+ pfree(batch);
+ }
+ list_free(aggstate->hash_batches);
+ aggstate->hash_batches = NIL;
+
+ /* close tape set */
+ if (aggstate->hash_tapeinfo != NULL)
+ {
+ HashTapeInfo *tapeinfo = aggstate->hash_tapeinfo;
+
+ LogicalTapeSetClose(tapeinfo->tapeset);
+ pfree(tapeinfo->freetapes);
+ pfree(tapeinfo);
+ aggstate->hash_tapeinfo = NULL;
+ }
+}
+
+
/* -----------------
* ExecInitAgg
*
*/
if (use_hashing)
{
+ Plan *outerplan = outerPlan(node);
+ uint64 totalGroups = 0;
+ int i;
+
+ aggstate->hash_metacxt = AllocSetContextCreate(
+ aggstate->ss.ps.state->es_query_cxt,
+ "HashAgg meta context",
+ ALLOCSET_DEFAULT_SIZES);
+ aggstate->hash_spill_slot = ExecInitExtraTupleSlot(
+ estate, scanDesc, &TTSOpsMinimalTuple);
+
/* this is an array of pointers, not structures */
aggstate->hash_pergroup = pergroups;
+ aggstate->hashentrysize = hash_agg_entry_size(
+ aggstate->numtrans, outerplan->plan_width, node->transitionSpace);
+
+ /*
+ * Consider all of the grouping sets together when setting the limits
+ * and estimating the number of partitions. This can be inaccurate
+ * when there is more than one grouping set, but should still be
+ * reasonable.
+ */
+ for (i = 0; i < aggstate->num_hashes; i++)
+ totalGroups = aggstate->perhash[i].aggnode->numGroups;
+
+ hash_agg_set_limits(aggstate->hashentrysize, totalGroups, 0,
+ &aggstate->hash_mem_limit,
+ &aggstate->hash_ngroups_limit,
+ &aggstate->hash_planned_partitions);
find_hash_columns(aggstate);
build_hash_tables(aggstate);
aggstate->table_filled = false;
phase->evaltrans = ExecBuildAggTrans(aggstate, phase, dosort, dohash,
false);
+ /* cache compiled expression for outer slot without NULL check */
+ phase->evaltrans_cache[0][0] = phase->evaltrans;
}
return aggstate;
if (node->sort_out)
tuplesort_end(node->sort_out);
+ hashagg_reset_spill_state(node);
+
+ if (node->hash_metacxt != NULL)
+ {
+ MemoryContextDelete(node->hash_metacxt);
+ node->hash_metacxt = NULL;
+ }
+
for (transno = 0; transno < node->numtrans; transno++)
{
AggStatePerTrans pertrans = &node->pertrans[transno];
return;
/*
- * If we do have the hash table, and the subplan does not have any
- * parameter changes, and none of our own parameter changes affect
- * input expressions of the aggregated functions, then we can just
- * rescan the existing hash table; no need to build it again.
+ * If we do have the hash table, and it never spilled, and the subplan
+ * does not have any parameter changes, and none of our own parameter
+ * changes affect input expressions of the aggregated functions, then
+ * we can just rescan the existing hash table; no need to build it
+ * again.
*/
- if (outerPlan->chgParam == NULL &&
+ if (outerPlan->chgParam == NULL && !node->hash_ever_spilled &&
!bms_overlap(node->ss.ps.chgParam, aggnode->aggParams))
{
ResetTupleHashIterator(node->perhash[0].hashtable,
*/
if (node->aggstrategy == AGG_HASHED || node->aggstrategy == AGG_MIXED)
{
+ hashagg_reset_spill_state(node);
+
+ node->hash_ever_spilled = false;
+ node->hash_spill_mode = false;
+ node->hash_ngroups_current = 0;
+
ReScanExprContext(node->hashcontext);
/* Rebuild an empty hash table */
build_hash_tables(node);
node->table_filled = false;
/* iterator will be reset when the table is filled */
+
+ hashagg_recompile_expressions(node, false, false);
}
if (node->aggstrategy != AGG_HASHED)