--- /dev/null
+/*-------------------------------------------------------------------------
+ *
+ * predtest.c
+ * Routines to attempt to prove logical implications between predicate
+ * expressions.
+ *
+ * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ *
+ * IDENTIFICATION
+ * $PostgreSQL$
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "catalog/pg_amop.h"
+#include "catalog/pg_proc.h"
+#include "catalog/pg_type.h"
+#include "executor/executor.h"
+#include "miscadmin.h"
+#include "optimizer/clauses.h"
+#include "optimizer/predtest.h"
+#include "utils/catcache.h"
+#include "utils/lsyscache.h"
+#include "utils/syscache.h"
+
+
+static bool predicate_implied_by_recurse(Node *clause, Node *predicate);
+static bool predicate_refuted_by_recurse(Node *clause, Node *predicate);
+static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause);
+static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause);
+static bool btree_predicate_proof(Expr *predicate, Node *clause,
+ bool refute_it);
+
+
+/*
+ * predicate_implied_by
+ * Recursively checks whether the clauses in restrictinfo_list imply
+ * that the given predicate is true.
+ *
+ * The top-level List structure of each list corresponds to an AND list.
+ * We assume that eval_const_expressions() has been applied and so there
+ * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
+ * including AND just below the top-level List structure).
+ * If this is not true we might fail to prove an implication that is
+ * valid, but no worse consequences will ensue.
+ *
+ * We assume the predicate has already been checked to contain only
+ * immutable functions and operators. (In most current uses this is true
+ * because the predicate is part of an index predicate that has passed
+ * CheckPredicate().) We dare not make deductions based on non-immutable
+ * functions, because they might change answers between the time we make
+ * the plan and the time we execute the plan.
+ */
+bool
+predicate_implied_by(List *predicate_list, List *restrictinfo_list)
+{
+ ListCell *item;
+
+ if (predicate_list == NIL)
+ return true; /* no predicate: implication is vacuous */
+ if (restrictinfo_list == NIL)
+ return false; /* no restriction: implication must fail */
+
+ /*
+ * In all cases where the predicate is an AND-clause,
+ * predicate_implied_by_recurse() will prefer to iterate over the
+ * predicate's components. So we can just do that to start with here, and
+ * eliminate the need for predicate_implied_by_recurse() to handle a bare
+ * List on the predicate side.
+ *
+ * Logic is: restriction must imply each of the AND'ed predicate items.
+ */
+ foreach(item, predicate_list)
+ {
+ if (!predicate_implied_by_recurse((Node *) restrictinfo_list,
+ lfirst(item)))
+ return false;
+ }
+ return true;
+}
+
+/*
+ * predicate_refuted_by
+ * Recursively checks whether the clauses in restrictinfo_list refute
+ * the given predicate (that is, prove it false).
+ *
+ * This is NOT the same as !(predicate_implied_by), though it is similar
+ * in the technique and structure of the code.
+ *
+ * The top-level List structure of each list corresponds to an AND list.
+ * We assume that eval_const_expressions() has been applied and so there
+ * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
+ * including AND just below the top-level List structure).
+ * If this is not true we might fail to prove an implication that is
+ * valid, but no worse consequences will ensue.
+ *
+ * We assume the predicate has already been checked to contain only
+ * immutable functions and operators. We dare not make deductions based on
+ * non-immutable functions, because they might change answers between the
+ * time we make the plan and the time we execute the plan.
+ */
+bool
+predicate_refuted_by(List *predicate_list, List *restrictinfo_list)
+{
+ if (predicate_list == NIL)
+ return false; /* no predicate: no refutation is possible */
+ if (restrictinfo_list == NIL)
+ return false; /* no restriction: refutation must fail */
+
+ /*
+ * Unlike the implication case, predicate_refuted_by_recurse needs to be
+ * able to see the top-level AND structure on both sides --- otherwise it
+ * will fail to handle the case where one restriction clause is an OR that
+ * can refute the predicate AND as a whole, but not each predicate clause
+ * separately.
+ */
+ return predicate_refuted_by_recurse((Node *) restrictinfo_list,
+ (Node *) predicate_list);
+}
+
+/*----------
+ * predicate_implied_by_recurse
+ * Does the predicate implication test for non-NULL restriction and
+ * predicate clauses.
+ *
+ * The logic followed here is ("=>" means "implies"):
+ * atom A => atom B iff: predicate_implied_by_simple_clause says so
+ * atom A => AND-expr B iff: A => each of B's components
+ * atom A => OR-expr B iff: A => any of B's components
+ * AND-expr A => atom B iff: any of A's components => B
+ * AND-expr A => AND-expr B iff: A => each of B's components
+ * AND-expr A => OR-expr B iff: A => any of B's components,
+ * *or* any of A's components => B
+ * OR-expr A => atom B iff: each of A's components => B
+ * OR-expr A => AND-expr B iff: A => each of B's components
+ * OR-expr A => OR-expr B iff: each of A's components => any of B's
+ *
+ * An "atom" is anything other than an AND or OR node. Notice that we don't
+ * have any special logic to handle NOT nodes; these should have been pushed
+ * down or eliminated where feasible by prepqual.c.
+ *
+ * We can't recursively expand either side first, but have to interleave
+ * the expansions per the above rules, to be sure we handle all of these
+ * examples:
+ * (x OR y) => (x OR y OR z)
+ * (x AND y AND z) => (x AND y)
+ * (x AND y) => ((x AND y) OR z)
+ * ((x OR y) AND z) => (x OR y)
+ * This is still not an exhaustive test, but it handles most normal cases
+ * under the assumption that both inputs have been AND/OR flattened.
+ *
+ * A bare List node on the restriction side is interpreted as an AND clause,
+ * in order to handle the top-level restriction List properly. However we
+ * need not consider a List on the predicate side since predicate_implied_by()
+ * already expanded it.
+ *
+ * We have to be prepared to handle RestrictInfo nodes in the restrictinfo
+ * tree, though not in the predicate tree.
+ *----------
+ */
+static bool
+predicate_implied_by_recurse(Node *clause, Node *predicate)
+{
+ ListCell *item;
+
+ Assert(clause != NULL);
+ /* skip through RestrictInfo */
+ if (IsA(clause, RestrictInfo))
+ {
+ clause = (Node *) ((RestrictInfo *) clause)->clause;
+ Assert(clause != NULL);
+ Assert(!IsA(clause, RestrictInfo));
+ }
+ Assert(predicate != NULL);
+
+ /*
+ * Since a restriction List clause is handled the same as an AND clause,
+ * we can avoid duplicate code like this:
+ */
+ if (and_clause(clause))
+ clause = (Node *) ((BoolExpr *) clause)->args;
+
+ if (IsA(clause, List))
+ {
+ if (and_clause(predicate))
+ {
+ /* AND-clause => AND-clause if A implies each of B's items */
+ foreach(item, ((BoolExpr *) predicate)->args)
+ {
+ if (!predicate_implied_by_recurse(clause, lfirst(item)))
+ return false;
+ }
+ return true;
+ }
+ else if (or_clause(predicate))
+ {
+ /* AND-clause => OR-clause if A implies any of B's items */
+ /* Needed to handle (x AND y) => ((x AND y) OR z) */
+ foreach(item, ((BoolExpr *) predicate)->args)
+ {
+ if (predicate_implied_by_recurse(clause, lfirst(item)))
+ return true;
+ }
+ /* Also check if any of A's items implies B */
+ /* Needed to handle ((x OR y) AND z) => (x OR y) */
+ foreach(item, (List *) clause)
+ {
+ if (predicate_implied_by_recurse(lfirst(item), predicate))
+ return true;
+ }
+ return false;
+ }
+ else
+ {
+ /* AND-clause => atom if any of A's items implies B */
+ foreach(item, (List *) clause)
+ {
+ if (predicate_implied_by_recurse(lfirst(item), predicate))
+ return true;
+ }
+ return false;
+ }
+ }
+ else if (or_clause(clause))
+ {
+ if (or_clause(predicate))
+ {
+ /*
+ * OR-clause => OR-clause if each of A's items implies any of B's
+ * items. Messy but can't do it any more simply.
+ */
+ foreach(item, ((BoolExpr *) clause)->args)
+ {
+ Node *citem = lfirst(item);
+ ListCell *item2;
+
+ foreach(item2, ((BoolExpr *) predicate)->args)
+ {
+ if (predicate_implied_by_recurse(citem, lfirst(item2)))
+ break;
+ }
+ if (item2 == NULL)
+ return false; /* doesn't imply any of B's */
+ }
+ return true;
+ }
+ else
+ {
+ /* OR-clause => AND-clause if each of A's items implies B */
+ /* OR-clause => atom if each of A's items implies B */
+ foreach(item, ((BoolExpr *) clause)->args)
+ {
+ if (!predicate_implied_by_recurse(lfirst(item), predicate))
+ return false;
+ }
+ return true;
+ }
+ }
+ else
+ {
+ if (and_clause(predicate))
+ {
+ /* atom => AND-clause if A implies each of B's items */
+ foreach(item, ((BoolExpr *) predicate)->args)
+ {
+ if (!predicate_implied_by_recurse(clause, lfirst(item)))
+ return false;
+ }
+ return true;
+ }
+ else if (or_clause(predicate))
+ {
+ /* atom => OR-clause if A implies any of B's items */
+ foreach(item, ((BoolExpr *) predicate)->args)
+ {
+ if (predicate_implied_by_recurse(clause, lfirst(item)))
+ return true;
+ }
+ return false;
+ }
+ else
+ {
+ /* atom => atom is the base case */
+ return predicate_implied_by_simple_clause((Expr *) predicate,
+ clause);
+ }
+ }
+}
+
+/*----------
+ * predicate_refuted_by_recurse
+ * Does the predicate refutation test for non-NULL restriction and
+ * predicate clauses.
+ *
+ * The logic followed here is ("R=>" means "refutes"):
+ * atom A R=> atom B iff: predicate_refuted_by_simple_clause says so
+ * atom A R=> AND-expr B iff: A R=> any of B's components
+ * atom A R=> OR-expr B iff: A R=> each of B's components
+ * AND-expr A R=> atom B iff: any of A's components R=> B
+ * AND-expr A R=> AND-expr B iff: A R=> any of B's components,
+ * *or* any of A's components R=> B
+ * AND-expr A R=> OR-expr B iff: A R=> each of B's components
+ * OR-expr A R=> atom B iff: each of A's components R=> B
+ * OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's
+ * OR-expr A R=> OR-expr B iff: A R=> each of B's components
+ *
+ * Other comments are as for predicate_implied_by_recurse(), except that
+ * we have to handle a top-level AND list on both sides.
+ *----------
+ */
+static bool
+predicate_refuted_by_recurse(Node *clause, Node *predicate)
+{
+ ListCell *item;
+
+ Assert(clause != NULL);
+ /* skip through RestrictInfo */
+ if (IsA(clause, RestrictInfo))
+ {
+ clause = (Node *) ((RestrictInfo *) clause)->clause;
+ Assert(clause != NULL);
+ Assert(!IsA(clause, RestrictInfo));
+ }
+ Assert(predicate != NULL);
+
+ /*
+ * Since a restriction List clause is handled the same as an AND clause,
+ * we can avoid duplicate code like this:
+ */
+ if (and_clause(clause))
+ clause = (Node *) ((BoolExpr *) clause)->args;
+
+ /* Ditto for predicate AND-clause and List */
+ if (and_clause(predicate))
+ predicate = (Node *) ((BoolExpr *) predicate)->args;
+
+ if (IsA(clause, List))
+ {
+ if (IsA(predicate, List))
+ {
+ /* AND-clause R=> AND-clause if A refutes any of B's items */
+ /* Needed to handle (x AND y) R=> ((!x OR !y) AND z) */
+ foreach(item, (List *) predicate)
+ {
+ if (predicate_refuted_by_recurse(clause, lfirst(item)))
+ return true;
+ }
+ /* Also check if any of A's items refutes B */
+ /* Needed to handle ((x OR y) AND z) R=> (!x AND !y) */
+ foreach(item, (List *) clause)
+ {
+ if (predicate_refuted_by_recurse(lfirst(item), predicate))
+ return true;
+ }
+ return false;
+ }
+ else if (or_clause(predicate))
+ {
+ /* AND-clause R=> OR-clause if A refutes each of B's items */
+ foreach(item, ((BoolExpr *) predicate)->args)
+ {
+ if (!predicate_refuted_by_recurse(clause, lfirst(item)))
+ return false;
+ }
+ return true;
+ }
+ else
+ {
+ /* AND-clause R=> atom if any of A's items refutes B */
+ foreach(item, (List *) clause)
+ {
+ if (predicate_refuted_by_recurse(lfirst(item), predicate))
+ return true;
+ }
+ return false;
+ }
+ }
+ else if (or_clause(clause))
+ {
+ if (or_clause(predicate))
+ {
+ /* OR-clause R=> OR-clause if A refutes each of B's items */
+ foreach(item, ((BoolExpr *) predicate)->args)
+ {
+ if (!predicate_refuted_by_recurse(clause, lfirst(item)))
+ return false;
+ }
+ return true;
+ }
+ else if (IsA(predicate, List))
+ {
+ /*
+ * OR-clause R=> AND-clause if each of A's items refutes any of
+ * B's items.
+ */
+ foreach(item, ((BoolExpr *) clause)->args)
+ {
+ Node *citem = lfirst(item);
+ ListCell *item2;
+
+ foreach(item2, (List *) predicate)
+ {
+ if (predicate_refuted_by_recurse(citem, lfirst(item2)))
+ break;
+ }
+ if (item2 == NULL)
+ return false; /* citem refutes nothing */
+ }
+ return true;
+ }
+ else
+ {
+ /* OR-clause R=> atom if each of A's items refutes B */
+ foreach(item, ((BoolExpr *) clause)->args)
+ {
+ if (!predicate_refuted_by_recurse(lfirst(item), predicate))
+ return false;
+ }
+ return true;
+ }
+ }
+ else
+ {
+ if (IsA(predicate, List))
+ {
+ /* atom R=> AND-clause if A refutes any of B's items */
+ foreach(item, (List *) predicate)
+ {
+ if (predicate_refuted_by_recurse(clause, lfirst(item)))
+ return true;
+ }
+ return false;
+ }
+ else if (or_clause(predicate))
+ {
+ /* atom R=> OR-clause if A refutes each of B's items */
+ foreach(item, ((BoolExpr *) predicate)->args)
+ {
+ if (!predicate_refuted_by_recurse(clause, lfirst(item)))
+ return false;
+ }
+ return true;
+ }
+ else
+ {
+ /* atom R=> atom is the base case */
+ return predicate_refuted_by_simple_clause((Expr *) predicate,
+ clause);
+ }
+ }
+}
+
+
+/*----------
+ * predicate_implied_by_simple_clause
+ * Does the predicate implication test for a "simple clause" predicate
+ * and a "simple clause" restriction.
+ *
+ * We return TRUE if able to prove the implication, FALSE if not.
+ *
+ * We have three strategies for determining whether one simple clause
+ * implies another:
+ *
+ * A simple and general way is to see if they are equal(); this works for any
+ * kind of expression. (Actually, there is an implied assumption that the
+ * functions in the expression are immutable, ie dependent only on their input
+ * arguments --- but this was checked for the predicate by the caller.)
+ *
+ * When the predicate is of the form "foo IS NOT NULL", we can conclude that
+ * the predicate is implied if the clause is a strict operator or function
+ * that has "foo" as an input. In this case the clause must yield NULL when
+ * "foo" is NULL, which we can take as equivalent to FALSE because we know
+ * we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is
+ * already known immutable, so the clause will certainly always fail.)
+ *
+ * Finally, we may be able to deduce something using knowledge about btree
+ * operator classes; this is encapsulated in btree_predicate_proof().
+ *----------
+ */
+static bool
+predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
+{
+ /* Allow interrupting long proof attempts */
+ CHECK_FOR_INTERRUPTS();
+
+ /* First try the equal() test */
+ if (equal((Node *) predicate, clause))
+ return true;
+
+ /* Next try the IS NOT NULL case */
+ if (predicate && IsA(predicate, NullTest) &&
+ ((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
+ {
+ Expr *nonnullarg = ((NullTest *) predicate)->arg;
+
+ if (is_opclause(clause) &&
+ list_member(((OpExpr *) clause)->args, nonnullarg) &&
+ op_strict(((OpExpr *) clause)->opno))
+ return true;
+ if (is_funcclause(clause) &&
+ list_member(((FuncExpr *) clause)->args, nonnullarg) &&
+ func_strict(((FuncExpr *) clause)->funcid))
+ return true;
+ return false; /* we can't succeed below... */
+ }
+
+ /* Else try btree operator knowledge */
+ return btree_predicate_proof(predicate, clause, false);
+}
+
+/*----------
+ * predicate_refuted_by_simple_clause
+ * Does the predicate refutation test for a "simple clause" predicate
+ * and a "simple clause" restriction.
+ *
+ * We return TRUE if able to prove the refutation, FALSE if not.
+ *
+ * Unlike the implication case, checking for equal() clauses isn't
+ * helpful. (XXX is it worth looking at "x vs NOT x" cases? Probably
+ * not seeing that canonicalization tries to get rid of NOTs.)
+ *
+ * When the predicate is of the form "foo IS NULL", we can conclude that
+ * the predicate is refuted if the clause is a strict operator or function
+ * that has "foo" as an input. See notes for implication case.
+ *
+ * Finally, we may be able to deduce something using knowledge about btree
+ * operator classes; this is encapsulated in btree_predicate_proof().
+ *----------
+ */
+static bool
+predicate_refuted_by_simple_clause(Expr *predicate, Node *clause)
+{
+ /* Allow interrupting long proof attempts */
+ CHECK_FOR_INTERRUPTS();
+
+ /* First try the IS NULL case */
+ if (predicate && IsA(predicate, NullTest) &&
+ ((NullTest *) predicate)->nulltesttype == IS_NULL)
+ {
+ Expr *isnullarg = ((NullTest *) predicate)->arg;
+
+ if (is_opclause(clause) &&
+ list_member(((OpExpr *) clause)->args, isnullarg) &&
+ op_strict(((OpExpr *) clause)->opno))
+ return true;
+ if (is_funcclause(clause) &&
+ list_member(((FuncExpr *) clause)->args, isnullarg) &&
+ func_strict(((FuncExpr *) clause)->funcid))
+ return true;
+ return false; /* we can't succeed below... */
+ }
+
+ /* Else try btree operator knowledge */
+ return btree_predicate_proof(predicate, clause, true);
+}
+
+
+/*
+ * Define an "operator implication table" for btree operators ("strategies"),
+ * and a similar table for refutation.
+ *
+ * The strategy numbers defined by btree indexes (see access/skey.h) are:
+ * (1) < (2) <= (3) = (4) >= (5) >
+ * and in addition we use (6) to represent <>. <> is not a btree-indexable
+ * operator, but we assume here that if the equality operator of a btree
+ * opclass has a negator operator, the negator behaves as <> for the opclass.
+ *
+ * The interpretation of:
+ *
+ * test_op = BT_implic_table[given_op-1][target_op-1]
+ *
+ * where test_op, given_op and target_op are strategy numbers (from 1 to 6)
+ * of btree operators, is as follows:
+ *
+ * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
+ * want to determine whether "ATTR target_op CONST2" must also be true, then
+ * you can use "CONST2 test_op CONST1" as a test. If this test returns true,
+ * then the target expression must be true; if the test returns false, then
+ * the target expression may be false.
+ *
+ * For example, if clause is "Quantity > 10" and pred is "Quantity > 5"
+ * then we test "5 <= 10" which evals to true, so clause implies pred.
+ *
+ * Similarly, the interpretation of a BT_refute_table entry is:
+ *
+ * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
+ * want to determine whether "ATTR target_op CONST2" must be false, then
+ * you can use "CONST2 test_op CONST1" as a test. If this test returns true,
+ * then the target expression must be false; if the test returns false, then
+ * the target expression may be true.
+ *
+ * For example, if clause is "Quantity > 10" and pred is "Quantity < 5"
+ * then we test "5 <= 10" which evals to true, so clause refutes pred.
+ *
+ * An entry where test_op == 0 means the implication cannot be determined.
+ */
+
+#define BTLT BTLessStrategyNumber
+#define BTLE BTLessEqualStrategyNumber
+#define BTEQ BTEqualStrategyNumber
+#define BTGE BTGreaterEqualStrategyNumber
+#define BTGT BTGreaterStrategyNumber
+#define BTNE 6
+
+static const StrategyNumber BT_implic_table[6][6] = {
+/*
+ * The target operator:
+ *
+ * LT LE EQ GE GT NE
+ */
+ {BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */
+ {BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */
+ {BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
+ {0, 0, 0, BTLE, BTLT, BTLT}, /* GE */
+ {0, 0, 0, BTLE, BTLE, BTLE}, /* GT */
+ {0, 0, 0, 0, 0, BTEQ} /* NE */
+};
+
+static const StrategyNumber BT_refute_table[6][6] = {
+/*
+ * The target operator:
+ *
+ * LT LE EQ GE GT NE
+ */
+ {0, 0, BTGE, BTGE, BTGE, 0}, /* LT */
+ {0, 0, BTGT, BTGT, BTGE, 0}, /* LE */
+ {BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */
+ {BTLE, BTLT, BTLT, 0, 0, 0}, /* GE */
+ {BTLE, BTLE, BTLE, 0, 0, 0}, /* GT */
+ {0, 0, BTEQ, 0, 0, 0} /* NE */
+};
+
+
+/*----------
+ * btree_predicate_proof
+ * Does the predicate implication or refutation test for a "simple clause"
+ * predicate and a "simple clause" restriction, when both are simple
+ * operator clauses using related btree operators.
+ *
+ * When refute_it == false, we want to prove the predicate true;
+ * when refute_it == true, we want to prove the predicate false.
+ * (There is enough common code to justify handling these two cases
+ * in one routine.) We return TRUE if able to make the proof, FALSE
+ * if not able to prove it.
+ *
+ * What we look for here is binary boolean opclauses of the form
+ * "foo op constant", where "foo" is the same in both clauses. The operators
+ * and constants can be different but the operators must be in the same btree
+ * operator class. We use the above operator implication tables to
+ * derive implications between nonidentical clauses. (Note: "foo" is known
+ * immutable, and constants are surely immutable, but we have to check that
+ * the operators are too. As of 8.0 it's possible for opclasses to contain
+ * operators that are merely stable, and we dare not make deductions with
+ * these.)
+ *----------
+ */
+static bool
+btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it)
+{
+ Node *leftop,
+ *rightop;
+ Node *pred_var,
+ *clause_var;
+ Const *pred_const,
+ *clause_const;
+ bool pred_var_on_left,
+ clause_var_on_left,
+ pred_op_negated;
+ Oid pred_op,
+ clause_op,
+ pred_op_negator,
+ clause_op_negator,
+ test_op = InvalidOid;
+ Oid opclass_id;
+ bool found = false;
+ StrategyNumber pred_strategy,
+ clause_strategy,
+ test_strategy;
+ Oid clause_subtype;
+ Expr *test_expr;
+ ExprState *test_exprstate;
+ Datum test_result;
+ bool isNull;
+ CatCList *catlist;
+ int i;
+ EState *estate;
+ MemoryContext oldcontext;
+
+ /*
+ * Both expressions must be binary opclauses with a Const on one side, and
+ * identical subexpressions on the other sides. Note we don't have to
+ * think about binary relabeling of the Const node, since that would have
+ * been folded right into the Const.
+ *
+ * If either Const is null, we also fail right away; this assumes that the
+ * test operator will always be strict.
+ */
+ if (!is_opclause(predicate))
+ return false;
+ leftop = get_leftop(predicate);
+ rightop = get_rightop(predicate);
+ if (rightop == NULL)
+ return false; /* not a binary opclause */
+ if (IsA(rightop, Const))
+ {
+ pred_var = leftop;
+ pred_const = (Const *) rightop;
+ pred_var_on_left = true;
+ }
+ else if (IsA(leftop, Const))
+ {
+ pred_var = rightop;
+ pred_const = (Const *) leftop;
+ pred_var_on_left = false;
+ }
+ else
+ return false; /* no Const to be found */
+ if (pred_const->constisnull)
+ return false;
+
+ if (!is_opclause(clause))
+ return false;
+ leftop = get_leftop((Expr *) clause);
+ rightop = get_rightop((Expr *) clause);
+ if (rightop == NULL)
+ return false; /* not a binary opclause */
+ if (IsA(rightop, Const))
+ {
+ clause_var = leftop;
+ clause_const = (Const *) rightop;
+ clause_var_on_left = true;
+ }
+ else if (IsA(leftop, Const))
+ {
+ clause_var = rightop;
+ clause_const = (Const *) leftop;
+ clause_var_on_left = false;
+ }
+ else
+ return false; /* no Const to be found */
+ if (clause_const->constisnull)
+ return false;
+
+ /*
+ * Check for matching subexpressions on the non-Const sides. We used to
+ * only allow a simple Var, but it's about as easy to allow any
+ * expression. Remember we already know that the pred expression does not
+ * contain any non-immutable functions, so identical expressions should
+ * yield identical results.
+ */
+ if (!equal(pred_var, clause_var))
+ return false;
+
+ /*
+ * Okay, get the operators in the two clauses we're comparing. Commute
+ * them if needed so that we can assume the variables are on the left.
+ */
+ pred_op = ((OpExpr *) predicate)->opno;
+ if (!pred_var_on_left)
+ {
+ pred_op = get_commutator(pred_op);
+ if (!OidIsValid(pred_op))
+ return false;
+ }
+
+ clause_op = ((OpExpr *) clause)->opno;
+ if (!clause_var_on_left)
+ {
+ clause_op = get_commutator(clause_op);
+ if (!OidIsValid(clause_op))
+ return false;
+ }
+
+ /*
+ * Try to find a btree opclass containing the needed operators.
+ *
+ * We must find a btree opclass that contains both operators, else the
+ * implication can't be determined. Also, the pred_op has to be of
+ * default subtype (implying left and right input datatypes are the same);
+ * otherwise it's unsafe to put the pred_const on the left side of the
+ * test. Also, the opclass must contain a suitable test operator matching
+ * the clause_const's type (which we take to mean that it has the same
+ * subtype as the original clause_operator).
+ *
+ * If there are multiple matching opclasses, assume we can use any one to
+ * determine the logical relationship of the two operators and the correct
+ * corresponding test operator. This should work for any logically
+ * consistent opclasses.
+ */
+ catlist = SearchSysCacheList(AMOPOPID, 1,
+ ObjectIdGetDatum(pred_op),
+ 0, 0, 0);
+
+ /*
+ * If we couldn't find any opclass containing the pred_op, perhaps it is a
+ * <> operator. See if it has a negator that is in an opclass.
+ */
+ pred_op_negated = false;
+ if (catlist->n_members == 0)
+ {
+ pred_op_negator = get_negator(pred_op);
+ if (OidIsValid(pred_op_negator))
+ {
+ pred_op_negated = true;
+ ReleaseSysCacheList(catlist);
+ catlist = SearchSysCacheList(AMOPOPID, 1,
+ ObjectIdGetDatum(pred_op_negator),
+ 0, 0, 0);
+ }
+ }
+
+ /* Also may need the clause_op's negator */
+ clause_op_negator = get_negator(clause_op);
+
+ /* Now search the opclasses */
+ for (i = 0; i < catlist->n_members; i++)
+ {
+ HeapTuple pred_tuple = &catlist->members[i]->tuple;
+ Form_pg_amop pred_form = (Form_pg_amop) GETSTRUCT(pred_tuple);
+ HeapTuple clause_tuple;
+
+ opclass_id = pred_form->amopclaid;
+
+ /* must be btree */
+ if (!opclass_is_btree(opclass_id))
+ continue;
+ /* predicate operator must be default within this opclass */
+ if (pred_form->amopsubtype != InvalidOid)
+ continue;
+
+ /* Get the predicate operator's btree strategy number */
+ pred_strategy = (StrategyNumber) pred_form->amopstrategy;
+ Assert(pred_strategy >= 1 && pred_strategy <= 5);
+
+ if (pred_op_negated)
+ {
+ /* Only consider negators that are = */
+ if (pred_strategy != BTEqualStrategyNumber)
+ continue;
+ pred_strategy = BTNE;
+ }
+
+ /*
+ * From the same opclass, find a strategy number for the clause_op, if
+ * possible
+ */
+ clause_tuple = SearchSysCache(AMOPOPID,
+ ObjectIdGetDatum(clause_op),
+ ObjectIdGetDatum(opclass_id),
+ 0, 0);
+ if (HeapTupleIsValid(clause_tuple))
+ {
+ Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
+
+ /* Get the restriction clause operator's strategy/subtype */
+ clause_strategy = (StrategyNumber) clause_form->amopstrategy;
+ Assert(clause_strategy >= 1 && clause_strategy <= 5);
+ clause_subtype = clause_form->amopsubtype;
+ ReleaseSysCache(clause_tuple);
+ }
+ else if (OidIsValid(clause_op_negator))
+ {
+ clause_tuple = SearchSysCache(AMOPOPID,
+ ObjectIdGetDatum(clause_op_negator),
+ ObjectIdGetDatum(opclass_id),
+ 0, 0);
+ if (HeapTupleIsValid(clause_tuple))
+ {
+ Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
+
+ /* Get the restriction clause operator's strategy/subtype */
+ clause_strategy = (StrategyNumber) clause_form->amopstrategy;
+ Assert(clause_strategy >= 1 && clause_strategy <= 5);
+ clause_subtype = clause_form->amopsubtype;
+ ReleaseSysCache(clause_tuple);
+
+ /* Only consider negators that are = */
+ if (clause_strategy != BTEqualStrategyNumber)
+ continue;
+ clause_strategy = BTNE;
+ }
+ else
+ continue;
+ }
+ else
+ continue;
+
+ /*
+ * Look up the "test" strategy number in the implication table
+ */
+ if (refute_it)
+ test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1];
+ else
+ test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
+
+ if (test_strategy == 0)
+ {
+ /* Can't determine implication using this interpretation */
+ continue;
+ }
+
+ /*
+ * See if opclass has an operator for the test strategy and the clause
+ * datatype.
+ */
+ if (test_strategy == BTNE)
+ {
+ test_op = get_opclass_member(opclass_id, clause_subtype,
+ BTEqualStrategyNumber);
+ if (OidIsValid(test_op))
+ test_op = get_negator(test_op);
+ }
+ else
+ {
+ test_op = get_opclass_member(opclass_id, clause_subtype,
+ test_strategy);
+ }
+ if (OidIsValid(test_op))
+ {
+ /*
+ * Last check: test_op must be immutable.
+ *
+ * Note that we require only the test_op to be immutable, not the
+ * original clause_op. (pred_op is assumed to have been checked
+ * immutable by the caller.) Essentially we are assuming that the
+ * opclass is consistent even if it contains operators that are
+ * merely stable.
+ */
+ if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
+ {
+ found = true;
+ break;
+ }
+ }
+ }
+
+ ReleaseSysCacheList(catlist);
+
+ if (!found)
+ {
+ /* couldn't find a btree opclass to interpret the operators */
+ return false;
+ }
+
+ /*
+ * Evaluate the test. For this we need an EState.
+ */
+ estate = CreateExecutorState();
+
+ /* We can use the estate's working context to avoid memory leaks. */
+ oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
+
+ /* Build expression tree */
+ test_expr = make_opclause(test_op,
+ BOOLOID,
+ false,
+ (Expr *) pred_const,
+ (Expr *) clause_const);
+
+ /* Prepare it for execution */
+ test_exprstate = ExecPrepareExpr(test_expr, estate);
+
+ /* And execute it. */
+ test_result = ExecEvalExprSwitchContext(test_exprstate,
+ GetPerTupleExprContext(estate),
+ &isNull, NULL);
+
+ /* Get back to outer memory context */
+ MemoryContextSwitchTo(oldcontext);
+
+ /* Release all the junk we just created */
+ FreeExecutorState(estate);
+
+ if (isNull)
+ {
+ /* Treat a null result as non-proof ... but it's a tad fishy ... */
+ elog(DEBUG2, "null predicate test result");
+ return false;
+ }
+ return DatumGetBool(test_result);
+}