*/
#define NUMERIC_DSCALE_MASK 0x3FFF
+#define NUMERIC_DSCALE_MAX NUMERIC_DSCALE_MASK
#define NUMERIC_SIGN(n) \
(NUMERIC_IS_SHORT(n) ? \
* Unlike add_var() and sub_var(), mul_var() will round its result. In the
* case of numeric_mul(), which is invoked for the * operator on numerics,
* we request exact representation for the product (rscale = sum(dscale of
- * arg1, dscale of arg2)).
+ * arg1, dscale of arg2)). If the exact result has more digits after the
+ * decimal point than can be stored in a numeric, we round it. Rounding
+ * after computing the exact result ensures that the final result is
+ * correctly rounded (rounding in mul_var() using a truncated product
+ * would not guarantee this).
*/
init_var_from_num(num1, &arg1);
init_var_from_num(num2, &arg2);
init_var(&result);
mul_var(&arg1, &arg2, &result, arg1.dscale + arg2.dscale);
+ if (result.dscale > NUMERIC_DSCALE_MAX)
+ round_var(&result, NUMERIC_DSCALE_MAX);
+
res = make_result(&result);
free_var(&result);
47699999999999999999999999999999999999999999999999999999999999999999999999999999999999985230000000000000000000000000000000000000000000000000000000000000000000000000000000000001
(1 row)
+select (0.1 - 2e-16383) * (0.1 - 3e-16383) = 0.01 as rounds_to_point_zero_one;
+ rounds_to_point_zero_one
+--------------------------
+ t
+(1 row)
+
--
-- Test some corner cases for division
--
select 4769999999999999999999999999999999999999999999999999999999999999999999999999999999999999 * 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999;
+select (0.1 - 2e-16383) * (0.1 - 3e-16383) = 0.01 as rounds_to_point_zero_one;
+
--
-- Test some corner cases for division
--