-
Notifications
You must be signed in to change notification settings - Fork 12.8k
Labels
bugSomething isn't workingSomething isn't working
Description
Name and Version
b5237
Operating systems
Linux
GGML backends
CUDA
Hardware
4070
Models
Llama4 scout. Quant should not matter but I am using my hybrid layer quant here:
Problem description & steps to reproduce
crash with illegal memory access running a perplexity:
short.txt is first 9783 bytes of wiki.test.raw
llama-perplexity -m /data3hd/models/Llama-4-Scout-17B-16E-Instruct.Q3_K_H.gguf -ngl 10 -c 1024 -b 128 -fa -f short.txt
First Bad Commit
b5237. b5236 works fine.
Relevant log output
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4070, compute capability 8.9, VMM: yes
build: 5237 (e1e8e099) with cc (GCC) 11.2.0 for x86_64-slackware-linux
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4070) - 11536 MiB free
llama_model_loader: loaded meta data with 42 key-value pairs and 628 tensors from /data3hd/models/Llama-4-Scout-17B-16E-Instruct.Q3_K_H.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama4
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Llama 4 Scout 17B 16E Instruct
llama_model_loader: - kv 3: general.finetune str = 16E-Instruct
llama_model_loader: - kv 4: general.basename str = Llama-4-Scout
llama_model_loader: - kv 5: general.size_label str = 17B
llama_model_loader: - kv 6: general.license str = other
llama_model_loader: - kv 7: general.license.name str = llama4
llama_model_loader: - kv 8: general.base_model.count u32 = 1
llama_model_loader: - kv 9: general.base_model.0.name str = Llama 4 Scout 17B 16E
llama_model_loader: - kv 10: general.base_model.0.organization str = Meta Llama
llama_model_loader: - kv 11: general.base_model.0.repo_url str = https://huggingface.co/meta-llama/Lla...
llama_model_loader: - kv 12: general.tags arr[str,5] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 13: general.languages arr[str,12] = ["ar", "de", "en", "es", "fr", "hi", ...
llama_model_loader: - kv 14: llama4.block_count u32 = 48
llama_model_loader: - kv 15: llama4.context_length u32 = 10485760
llama_model_loader: - kv 16: llama4.embedding_length u32 = 5120
llama_model_loader: - kv 17: llama4.feed_forward_length u32 = 16384
llama_model_loader: - kv 18: llama4.attention.head_count u32 = 40
llama_model_loader: - kv 19: llama4.attention.head_count_kv u32 = 8
llama_model_loader: - kv 20: llama4.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 21: llama4.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 22: llama4.expert_count u32 = 16
llama_model_loader: - kv 23: llama4.expert_used_count u32 = 1
llama_model_loader: - kv 24: llama4.attention.key_length u32 = 128
llama_model_loader: - kv 25: llama4.attention.value_length u32 = 128
llama_model_loader: - kv 26: llama4.vocab_size u32 = 202048
llama_model_loader: - kv 27: llama4.rope.dimension_count u32 = 128
llama_model_loader: - kv 28: llama4.interleave_moe_layer_step u32 = 1
llama_model_loader: - kv 29: llama4.expert_feed_forward_length u32 = 8192
llama_model_loader: - kv 30: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 31: tokenizer.ggml.pre str = llama4
llama_model_loader: - kv 32: tokenizer.ggml.tokens arr[str,202048] = ["À", "Á", "õ", "ö", "÷", "ø", ...
llama_model_loader: - kv 33: tokenizer.ggml.token_type arr[i32,202048] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 34: tokenizer.ggml.merges arr[str,439802] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 35: tokenizer.ggml.bos_token_id u32 = 200000
llama_model_loader: - kv 36: tokenizer.ggml.eos_token_id u32 = 200008
llama_model_loader: - kv 37: tokenizer.ggml.padding_token_id u32 = 201134
llama_model_loader: - kv 38: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv 39: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 40: general.quantization_version u32 = 2
llama_model_loader: - kv 41: general.file_type u32 = 12
llama_model_loader: - type f32: 146 tensors
llama_model_loader: - type q2_K: 54 tensors
llama_model_loader: - type q3_K: 372 tensors
llama_model_loader: - type q4_K: 51 tensors
llama_model_loader: - type q5_K: 5 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q3_K - Medium
print_info: file size = 43.34 GiB (3.45 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 1135
load: token to piece cache size = 1.3873 MB
print_info: arch = llama4
print_info: vocab_only = 0
print_info: n_ctx_train = 10485760
print_info: n_embd = 5120
print_info: n_layer = 48
print_info: n_head = 40
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 1
print_info: n_swa_pattern = 4
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 5
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 16384
print_info: n_expert = 16
print_info: n_expert_used = 1
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = linear
print_info: freq_base_train = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 10485760
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 17Bx16E (Scout)
print_info: model params = 107.77 B
print_info: general.name = Llama 4 Scout 17B 16E Instruct
print_info: vocab type = BPE
print_info: n_vocab = 202048
print_info: n_merges = 439802
print_info: BOS token = 200000 '<|begin_of_text|>'
print_info: EOS token = 200008 '<|eot|>'
print_info: PAD token = 201134 '<|finetune_right_pad_id|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 200002 '<|fim_prefix|>'
print_info: FIM SUF token = 200004 '<|fim_suffix|>'
print_info: FIM MID token = 200003 '<|fim_middle|>'
print_info: EOG token = 200008 '<|eot|>'
print_info: max token length = 192
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 10 repeating layers to GPU
load_tensors: offloaded 10/49 layers to GPU
load_tensors: CPU_Mapped model buffer size = 34140.05 MiB
load_tensors: CUDA0 model buffer size = 10243.28 MiB
...................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 1024
llama_context: n_ctx_per_seq = 1024
llama_context: n_batch = 128
llama_context: n_ubatch = 128
llama_context: causal_attn = 1
llama_context: flash_attn = 1
llama_context: freq_base = 500000.0
llama_context: freq_scale = 1
llama_context: yarn_log_mul = 0
llama_context: n_ctx_per_seq (1024) < n_ctx_train (10485760) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.77 MiB
init: kv_size = 1024, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1
init: CPU KV buffer size = 152.00 MiB
init: CUDA0 KV buffer size = 40.00 MiB
llama_context: KV self size = 192.00 MiB, K (f16): 96.00 MiB, V (f16): 96.00 MiB
llama_context: CUDA0 compute buffer size = 786.92 MiB
llama_context: CUDA_Host compute buffer size = 3.50 MiB
llama_context: graph nodes = 2324
llama_context: graph splits = 575 (with bs=128), 3 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 1024
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CUDA : ARCHS = 600,610,700,750 | F16 = 1 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
perplexity: tokenizing the input ..
perplexity: tokenization took 12.048 ms
perplexity: calculating perplexity over 2 chunks, n_ctx=1024, batch_size=128, n_seq=1
/usr/local/src/ai/llamacpp/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:75: CUDA error
CUDA error: an illegal memory access was encountered
current device: 0, in function ggml_backend_cuda_synchronize at /usr/local/src/ai/llamacpp/llama.cpp/ggml/src/ggml-cuda/ggml-cuda.cu:2443
cudaStreamSynchronize(cuda_ctx->stream())
[New LWP 15539]
[New LWP 15543]
[New LWP 15544]
[New LWP 15545]
[New LWP 15546]
[New LWP 15547]
[New LWP 15548]
[New LWP 15549]
[New LWP 15550]
[New LWP 15551]
[New LWP 15552]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
0x00007fa1640d33c7 in wait4 () from /lib64/libc.so.6
#0 0x00007fa1640d33c7 in wait4 () from /lib64/libc.so.6
#1 0x00007fa1646601e1 in ggml_abort () from /usr/lib64/libggml-base.so
#2 0x00007fa1647cb422 in ggml_cuda_error(char const*, char const*, char const*, int, char const*) () from /usr/lib64/libggml-cuda.so
#3 0x00007fa1647cc87b in ggml_backend_cuda_synchronize(ggml_backend*) () from /usr/lib64/libggml-cuda.so
#4 0x00007fa164675565 in ggml_backend_sched_graph_compute_async () from /usr/lib64/libggml-base.so
#5 0x00007fa1797d3a91 in llama_context::graph_compute(ggml_cgraph*, bool) () from /usr/lib64/libllama.so
#6 0x00007fa1797d68d2 in llama_context::decode(llama_batch&) () from /usr/lib64/libllama.so
#7 0x00007fa1797d7adc in llama_decode () from /usr/lib64/libllama.so
#8 0x0000000000435d8c in perplexity(llama_context*, common_params const&, int) ()
#9 0x000000000042f63b in main ()
[Inferior 1 (process 15538) detached]
/usr/local/bin/ll_start: line 2092: 15538 Aborted ${EXPREFIX}$PERPLEXITY -m $MODEL_ROOT/$MODEL_FILE $RPC -ngl $NGL -c $NKV -b $BATCH $FATTN_FLAG -f $DATA_FILE
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working