Skip to content

BUG: "replace" does not work with different numpy-int types even when values are the same #45311

@Jakobhenningjensen

Description

@Jakobhenningjensen

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the master branch of pandas.

Reproducible Example

maps = pd.Series([np.int64(0),np.int64(2),np.int64(1)]) #index-value should be mapped to series-value

# 0 0    0-->0
# 1 2    1-->2
# 2 1    2-->1

map_dict = {old:new for (old,new) in zip(maps.values,maps.index)}

map_dict == {0: 0, 2: 1, 1: 2} #True

labs = pd.Series([1,1,1,0,0,2,2,2]).astype(np.int32) #Simulate a list of observations

(labs.replace({0: 0, 2: 1, 1: 2}) == labs.replace(map_dict)).mean() #0.25

labs.replace({0: 0, 2: 1, 1: 2}) # works

# 0    2
# 1    2
# 2    2
# 3    0
# 4    0
# 5    1
# 6    1
# 7    1



labs.replace(map_dict) #doesnt work
# 0    1
# 1    1
# 2    1
# 3    0
# 4    0
# 5    2
# 6    2
# 7    2

Issue Description

Using a mapping dictionary where the keys have np.int64 as type but a series of data where the values are np.int32 then the replacement is not working.

Expected Behavior

Expected to that all integer types can be evaluated against each-other

Installed Versions

INSTALLED VERSIONS

commit : 7c48ff4
python : 3.8.1.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19041
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Danish_Denmark.1252

pandas : 1.2.5
numpy : 1.21.0
pytz : 2021.1
dateutil : 2.8.1
pip : 19.2.3
setuptools : 41.2.0
Cython : 0.29.23
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.9.1 (dt dec pq3 ext lo64)
jinja2 : None
IPython : 7.24.1
pandas_datareader: None
bs4 : 4.9.3
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.4.2
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : 5.0.0
pyxlsb : None
s3fs : None
scipy : 1.7.1
sqlalchemy : 1.4.20
tables : 3.6.1
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None

Metadata

Metadata

Assignees

Labels

Type

No type

Projects

No projects

Milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions