@@ -203,11 +203,8 @@ def train(model, dataloader):
203
203
total_count += label .size (0 )
204
204
if idx % log_interval == 0 and idx > 0 :
205
205
elapsed = time .time () - start_time
206
- print ('| epoch {:3d} | {:5d}/{:5d} batches | lr {:05.5f} | '
207
- 'ms/batch {:5.2f} '
206
+ print ('| epoch {:3d} | {:5d}/{:5d} batches '
208
207
'| accuracy {:8.3f}' .format (epoch , idx , len (dataloader ),
209
- scheduler .get_last_lr ()[0 ],
210
- elapsed * 1000 / log_interval ,
211
208
total_acc / total_count ))
212
209
total_acc , total_count = 0 , 0
213
210
start_time = time .time ()
@@ -292,66 +289,66 @@ def evaluate(model, dataloader):
292
289
#
293
290
# ::
294
291
#
295
- # | epoch 1 | 500/ 1782 batches | lr 5.00000 | ms/batch 4.75 | accuracy 0.684
296
- # | epoch 1 | 1000/ 1782 batches | lr 5.00000 | ms/batch 4.42 | accuracy 0.852
297
- # | epoch 1 | 1500/ 1782 batches | lr 5.00000 | ms/batch 4.43 | accuracy 0.877
298
- # -----------------------------------------------------------------------------------------
292
+ # | epoch 1 | 500/ 1782 batches | accuracy 0.684
293
+ # | epoch 1 | 1000/ 1782 batches | accuracy 0.852
294
+ # | epoch 1 | 1500/ 1782 batches | accuracy 0.877
295
+ # -----------------------------------------------------------
299
296
# | end of epoch 1 | time: 8.33s | valid accuracy 0.867
300
- # -----------------------------------------------------------------------------------------
301
- # | epoch 2 | 500/ 1782 batches | lr 5.00000 | ms/batch 4.45 | accuracy 0.895
302
- # | epoch 2 | 1000/ 1782 batches | lr 5.00000 | ms/batch 4.43 | accuracy 0.900
303
- # | epoch 2 | 1500/ 1782 batches | lr 5.00000 | ms/batch 4.43 | accuracy 0.903
304
- # -----------------------------------------------------------------------------------------
297
+ # -----------------------------------------------------------
298
+ # | epoch 2 | 500/ 1782 batches | accuracy 0.895
299
+ # | epoch 2 | 1000/ 1782 batches | accuracy 0.900
300
+ # | epoch 2 | 1500/ 1782 batches | accuracy 0.903
301
+ # -----------------------------------------------------------
305
302
# | end of epoch 2 | time: 8.18s | valid accuracy 0.890
306
- # -----------------------------------------------------------------------------------------
307
- # | epoch 3 | 500/ 1782 batches | lr 5.00000 | ms/batch 4.46 | accuracy 0.914
308
- # | epoch 3 | 1000/ 1782 batches | lr 5.00000 | ms/batch 4.44 | accuracy 0.914
309
- # | epoch 3 | 1500/ 1782 batches | lr 5.00000 | ms/batch 4.43 | accuracy 0.916
310
- # -----------------------------------------------------------------------------------------
303
+ # -----------------------------------------------------------
304
+ # | epoch 3 | 500/ 1782 batches | accuracy 0.914
305
+ # | epoch 3 | 1000/ 1782 batches | accuracy 0.914
306
+ # | epoch 3 | 1500/ 1782 batches | accuracy 0.916
307
+ # -----------------------------------------------------------
311
308
# | end of epoch 3 | time: 8.20s | valid accuracy 0.897
312
- # -----------------------------------------------------------------------------------------
313
- # | epoch 4 | 500/ 1782 batches | lr 5.00000 | ms/batch 4.44 | accuracy 0.926
314
- # | epoch 4 | 1000/ 1782 batches | lr 5.00000 | ms/batch 4.44 | accuracy 0.924
315
- # | epoch 4 | 1500/ 1782 batches | lr 5.00000 | ms/batch 4.43 | accuracy 0.921
316
- # -----------------------------------------------------------------------------------------
309
+ # -----------------------------------------------------------
310
+ # | epoch 4 | 500/ 1782 batches | accuracy 0.926
311
+ # | epoch 4 | 1000/ 1782 batches | accuracy 0.924
312
+ # | epoch 4 | 1500/ 1782 batches | accuracy 0.921
313
+ # -----------------------------------------------------------
317
314
# | end of epoch 4 | time: 8.18s | valid accuracy 0.895
318
- # -----------------------------------------------------------------------------------------
319
- # | epoch 5 | 500/ 1782 batches | lr 0.50000 | ms/batch 4.44 | accuracy 0.938
320
- # | epoch 5 | 1000/ 1782 batches | lr 0.50000 | ms/batch 4.42 | accuracy 0.935
321
- # | epoch 5 | 1500/ 1782 batches | lr 0.50000 | ms/batch 4.41 | accuracy 0.937
322
- # -----------------------------------------------------------------------------------------
315
+ # -----------------------------------------------------------
316
+ # | epoch 5 | 500/ 1782 batches | accuracy 0.938
317
+ # | epoch 5 | 1000/ 1782 batches | accuracy 0.935
318
+ # | epoch 5 | 1500/ 1782 batches | accuracy 0.937
319
+ # -----------------------------------------------------------
323
320
# | end of epoch 5 | time: 8.16s | valid accuracy 0.902
324
- # -----------------------------------------------------------------------------------------
325
- # | epoch 6 | 500/ 1782 batches | lr 0.50000 | ms/batch 4.43 | accuracy 0.939
326
- # | epoch 6 | 1000/ 1782 batches | lr 0.50000 | ms/batch 4.41 | accuracy 0.939
327
- # | epoch 6 | 1500/ 1782 batches | lr 0.50000 | ms/batch 4.41 | accuracy 0.938
328
- # -----------------------------------------------------------------------------------------
321
+ # -----------------------------------------------------------
322
+ # | epoch 6 | 500/ 1782 batches | accuracy 0.939
323
+ # | epoch 6 | 1000/ 1782 batches | accuracy 0.939
324
+ # | epoch 6 | 1500/ 1782 batches | accuracy 0.938
325
+ # -----------------------------------------------------------
329
326
# | end of epoch 6 | time: 8.16s | valid accuracy 0.906
330
- # -----------------------------------------------------------------------------------------
331
- # | epoch 7 | 500/ 1782 batches | lr 0.50000 | ms/batch 4.44 | accuracy 0.941
332
- # | epoch 7 | 1000/ 1782 batches | lr 0.50000 | ms/batch 4.42 | accuracy 0.939
333
- # | epoch 7 | 1500/ 1782 batches | lr 0.50000 | ms/batch 4.44 | accuracy 0.939
334
- # -----------------------------------------------------------------------------------------
327
+ # -----------------------------------------------------------
328
+ # | epoch 7 | 500/ 1782 batches | accuracy 0.941
329
+ # | epoch 7 | 1000/ 1782 batches | accuracy 0.939
330
+ # | epoch 7 | 1500/ 1782 batches | accuracy 0.939
331
+ # -----------------------------------------------------------
335
332
# | end of epoch 7 | time: 8.19s | valid accuracy 0.903
336
- # -----------------------------------------------------------------------------------------
337
- # | epoch 8 | 500/ 1782 batches | lr 0.05000 | ms/batch 4.44 | accuracy 0.942
338
- # | epoch 8 | 1000/ 1782 batches | lr 0.05000 | ms/batch 4.41 | accuracy 0.941
339
- # | epoch 8 | 1500/ 1782 batches | lr 0.05000 | ms/batch 4.42 | accuracy 0.942
340
- # -----------------------------------------------------------------------------------------
333
+ # -----------------------------------------------------------
334
+ # | epoch 8 | 500/ 1782 batches | accuracy 0.942
335
+ # | epoch 8 | 1000/ 1782 batches | accuracy 0.941
336
+ # | epoch 8 | 1500/ 1782 batches | accuracy 0.942
337
+ # -----------------------------------------------------------
341
338
# | end of epoch 8 | time: 8.16s | valid accuracy 0.904
342
- # -----------------------------------------------------------------------------------------
343
- # | epoch 9 | 500/ 1782 batches | lr 0.00500 | ms/batch 4.44 | accuracy 0.942
344
- # | epoch 9 | 1000/ 1782 batches | lr 0.00500 | ms/batch 4.42 | accuracy 0.941
345
- # | epoch 9 | 1500/ 1782 batches | lr 0.00500 | ms/batch 4.42 | accuracy 0.942
346
- # -----------------------------------------------------------------------------------------
339
+ # -----------------------------------------------------------
340
+ # | epoch 9 | 500/ 1782 batches | accuracy 0.942
341
+ # | epoch 9 | 1000/ 1782 batches | accuracy 0.941
342
+ # | epoch 9 | 1500/ 1782 batches | accuracy 0.942
343
+ # -----------------------------------------------------------
347
344
#| end of epoch 9 | time: 8.16s | valid accuracy 0.904
348
- # -----------------------------------------------------------------------------------------
349
- # | epoch 10 | 500/ 1782 batches | lr 0.00050 | ms/batch 4.43 | accuracy 0.940
350
- # | epoch 10 | 1000/ 1782 batches | lr 0.00050 | ms/batch 4.41 | accuracy 0.942
351
- # | epoch 10 | 1500/ 1782 batches | lr 0.00050 | ms/batch 4.41 | accuracy 0.942
352
- #i -----------------------------------------------------------------------------------------
345
+ # -----------------------------------------------------------
346
+ # | epoch 10 | 500/ 1782 batches | accuracy 0.940
347
+ # | epoch 10 | 1000/ 1782 batches | accuracy 0.942
348
+ # | epoch 10 | 1500/ 1782 batches | accuracy 0.942
349
+ #i -----------------------------------------------------------
353
350
# | end of epoch 10 | time: 8.15s | valid accuracy 0.904
354
- # -----------------------------------------------------------------------------------------
351
+ # -----------------------------------------------------------
355
352
356
353
357
354
######################################################################
0 commit comments