# from google.colab import files
# uploaded = files.upload()
# !cp "data.csv" "/content/drive/My Drive/fifa.csv"
!pip install pycaret==2.0
Collecting pycaret==2.0 Downloading https://files.pythonhosted.org/packages/91/ae/000d825af8f7d9ff86808600f220e7ad57a873987fd6119c87dc4c5b1d91/pycaret-2.0-py3-none-any.whl (255kB) |████████████████████████████████| 256kB 3.3MB/s Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (3.2.2) Collecting yellowbrick>=1.0.1 Downloading https://files.pythonhosted.org/packages/13/95/a14e4fdfb8b1c8753bbe74a626e910a98219ef9c87c6763585bbd30d84cf/yellowbrick-1.1-py3-none-any.whl (263kB) |████████████████████████████████| 266kB 8.5MB/s Requirement already satisfied: joblib in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (0.16.0) Requirement already satisfied: umap-learn in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (0.4.6) Requirement already satisfied: plotly>=4.4.1 in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (4.4.1) Collecting mlflow Downloading https://files.pythonhosted.org/packages/00/2f/2529268d85af0a1521b0b7c137b63b731dff4784e1322fb3055403a959fb/mlflow-1.10.0-py3-none-any.whl (12.4MB) |████████████████████████████████| 12.4MB 314kB/s Collecting datefinder>=0.7.0 Downloading https://files.pythonhosted.org/packages/0c/4f/29524c9ca35d2ba1a8a3c6c895b90fc92525cf0fe357f747133890953ebe/datefinder-0.7.1-py2.py3-none-any.whl Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (0.10.1) Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (1.18.5) Collecting pyod Downloading https://files.pythonhosted.org/packages/77/4e/5767edaccbfc227914ca774cb6ca9b628a08cbb59b9b4839296953a63d34/pyod-0.8.1.tar.gz (93kB) |████████████████████████████████| 102kB 9.4MB/s Requirement already satisfied: textblob in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (0.15.3) Requirement already satisfied: ipywidgets in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (7.5.1) Collecting pandas-profiling>=2.3.0 Downloading https://files.pythonhosted.org/packages/b9/94/ef8ef4517540d13406fcc0b8adfd75336e014242c69bd4162ab46931f36a/pandas_profiling-2.8.0-py2.py3-none-any.whl (259kB) |████████████████████████████████| 266kB 41.5MB/s Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (0.4.3) Requirement already satisfied: spacy in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (2.2.4) Collecting scikit-learn>=0.23 Downloading https://files.pythonhosted.org/packages/5c/a1/273def87037a7fb010512bbc5901c31cfddfca8080bc63b42b26e3cc55b3/scikit_learn-0.23.2-cp36-cp36m-manylinux1_x86_64.whl (6.8MB) |████████████████████████████████| 6.8MB 47.1MB/s Collecting lightgbm>=2.3.1 Downloading https://files.pythonhosted.org/packages/0b/9d/ddcb2f43aca194987f1a99e27edf41cf9bc39ea750c3371c2a62698c509a/lightgbm-2.3.1-py2.py3-none-manylinux1_x86_64.whl (1.2MB) |████████████████████████████████| 1.2MB 40.7MB/s Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (1.0.5) Requirement already satisfied: cufflinks>=0.17.0 in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (0.17.3) Requirement already satisfied: xgboost>=0.90 in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (0.90) Collecting DateTime>=4.3 Downloading https://files.pythonhosted.org/packages/73/22/a5297f3a1f92468cc737f8ce7ba6e5f245fcfafeae810ba37bd1039ea01c/DateTime-4.3-py2.py3-none-any.whl (60kB) |████████████████████████████████| 61kB 6.7MB/s Requirement already satisfied: IPython in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (5.5.0) Requirement already satisfied: gensim in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (3.6.0) Requirement already satisfied: wordcloud in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (1.5.0) Collecting pyLDAvis Downloading https://files.pythonhosted.org/packages/a5/3a/af82e070a8a96e13217c8f362f9a73e82d61ac8fff3a2561946a97f96266/pyLDAvis-2.1.2.tar.gz (1.6MB) |████████████████████████████████| 1.6MB 37.7MB/s Collecting kmodes>=0.10.1 Downloading https://files.pythonhosted.org/packages/b2/55/d8ec1ae1f7e1e202a8a4184c6852a3ee993b202b0459672c699d0ac18fc8/kmodes-0.10.2-py2.py3-none-any.whl Requirement already satisfied: mlxtend in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (0.14.0) Requirement already satisfied: nltk in /usr/local/lib/python3.6/dist-packages (from pycaret==2.0) (3.2.5) Collecting catboost Downloading https://files.pythonhosted.org/packages/96/6c/6608210b29649267de52001b09e369777ee2a5cfe1c71fa75eba82a4f2dc/catboost-0.24-cp36-none-manylinux1_x86_64.whl (65.9MB) |████████████████████████████████| 65.9MB 52kB/s Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->pycaret==2.0) (0.10.0) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->pycaret==2.0) (2.8.1) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->pycaret==2.0) (2.4.7) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->pycaret==2.0) (1.2.0) Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.6/dist-packages (from yellowbrick>=1.0.1->pycaret==2.0) (1.4.1) Requirement already satisfied: numba!=0.47,>=0.46 in /usr/local/lib/python3.6/dist-packages (from umap-learn->pycaret==2.0) (0.48.0) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from plotly>=4.4.1->pycaret==2.0) (1.15.0) Requirement already satisfied: retrying>=1.3.3 in /usr/local/lib/python3.6/dist-packages (from plotly>=4.4.1->pycaret==2.0) (1.3.3) Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret==2.0) (3.12.4) Collecting gunicorn; platform_system != "Windows" Downloading https://files.pythonhosted.org/packages/69/ca/926f7cd3a2014b16870086b2d0fdc84a9e49473c68a8dff8b57f7c156f43/gunicorn-20.0.4-py2.py3-none-any.whl (77kB) |████████████████████████████████| 81kB 8.8MB/s Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret==2.0) (3.13) Requirement already satisfied: cloudpickle in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret==2.0) (1.3.0) Collecting databricks-cli>=0.8.7 Downloading https://files.pythonhosted.org/packages/1e/57/5c2d6b83cb8753d12f548e89f91037632baa8289677c1b2ab2adf14bf6b2/databricks-cli-0.11.0.tar.gz (49kB) |████████████████████████████████| 51kB 6.2MB/s Collecting alembic Downloading https://files.pythonhosted.org/packages/60/1e/cabc75a189de0fbb2841d0975243e59bde8b7822bacbb95008ac6fe9ad47/alembic-1.4.2.tar.gz (1.1MB) |████████████████████████████████| 1.1MB 42.6MB/s Installing build dependencies ... done Getting requirements to build wheel ... done Preparing wheel metadata ... done Requirement already satisfied: entrypoints in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret==2.0) (0.3) Requirement already satisfied: sqlparse in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret==2.0) (0.3.1) Collecting gitpython>=2.1.0 Downloading https://files.pythonhosted.org/packages/f9/1e/a45320cab182bf1c8656107b3d4c042e659742822fc6bff150d769a984dd/GitPython-3.1.7-py3-none-any.whl (158kB) |████████████████████████████████| 163kB 32.3MB/s Collecting azure-storage-blob>=12.0 Downloading https://files.pythonhosted.org/packages/6d/3d/31614573e8a197db12d8ab47a7fd813f15bd4a4b5c64e85d23b865de5b9b/azure_storage_blob-12.3.2-py2.py3-none-any.whl (280kB) |████████████████████████████████| 286kB 46.6MB/s Collecting gorilla Downloading https://files.pythonhosted.org/packages/e3/56/5a683944cbfc77e429c6f03c636ca50504a785f60ffae91ddd7f5f7bb520/gorilla-0.3.0-py2.py3-none-any.whl Collecting prometheus-flask-exporter Downloading https://files.pythonhosted.org/packages/84/b0/7549899a75e7ef0be5f8969094d0709e5dcc51dc21d58cc86b8d69441dce/prometheus_flask_exporter-0.15.4.tar.gz Collecting querystring-parser Downloading https://files.pythonhosted.org/packages/4a/fa/f54f5662e0eababf0c49e92fd94bf178888562c0e7b677c8941bbbcd1bd6/querystring_parser-1.2.4.tar.gz Requirement already satisfied: Flask in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret==2.0) (1.1.2) Requirement already satisfied: requests>=2.17.3 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret==2.0) (2.23.0) Collecting sqlalchemy<=1.3.13 Downloading https://files.pythonhosted.org/packages/af/47/35edeb0f86c0b44934c05d961c893e223ef27e79e1f53b5e6f14820ff553/SQLAlchemy-1.3.13.tar.gz (6.0MB) |████████████████████████████████| 6.0MB 40.7MB/s Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.6/dist-packages (from mlflow->pycaret==2.0) (7.1.2) Collecting docker>=4.0.0 Downloading https://files.pythonhosted.org/packages/3c/15/7a2f095a3b8b0fff9a0a5f56bd941e05fa958d4ca31105541001a5f7d3eb/docker-4.2.2-py2.py3-none-any.whl (144kB) |████████████████████████████████| 153kB 45.0MB/s Requirement already satisfied: pytz in /usr/local/lib/python3.6/dist-packages (from datefinder>=0.7.0->pycaret==2.0) (2018.9) Requirement already satisfied: regex>=2017.02.08 in /usr/local/lib/python3.6/dist-packages (from datefinder>=0.7.0->pycaret==2.0) (2019.12.20) Collecting combo Downloading https://files.pythonhosted.org/packages/0a/2a/61b6ac584e75d8df16dc27962aa5fe99d76b09da5b6710e83d4862c84001/combo-0.1.1.tar.gz Collecting suod Downloading https://files.pythonhosted.org/packages/a1/87/9170cabe1b5e10a7d095c0e28f2e30e7c1886a13f063de85d3cfacc06f4b/suod-0.0.4.tar.gz (2.1MB) |████████████████████████████████| 2.1MB 43.7MB/s Requirement already satisfied: traitlets>=4.3.1 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->pycaret==2.0) (4.3.3) Requirement already satisfied: ipykernel>=4.5.1 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->pycaret==2.0) (4.10.1) Requirement already satisfied: widgetsnbextension~=3.5.0 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->pycaret==2.0) (3.5.1) Requirement already satisfied: nbformat>=4.2.0 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->pycaret==2.0) (5.0.7) Collecting htmlmin>=0.1.12 Downloading https://files.pythonhosted.org/packages/b3/e7/fcd59e12169de19f0131ff2812077f964c6b960e7c09804d30a7bf2ab461/htmlmin-0.1.12.tar.gz Requirement already satisfied: missingno>=0.4.2 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.3.0->pycaret==2.0) (0.4.2) Collecting confuse>=1.0.0 Downloading https://files.pythonhosted.org/packages/b5/6d/bedc0d1068bd244cee05843313cbec6cebb9f01f925538269bababc6d887/confuse-1.3.0-py2.py3-none-any.whl (64kB) |████████████████████████████████| 71kB 8.1MB/s Requirement already satisfied: jinja2>=2.11.1 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.3.0->pycaret==2.0) (2.11.2) Requirement already satisfied: astropy>=4.0 in /usr/local/lib/python3.6/dist-packages (from pandas-profiling>=2.3.0->pycaret==2.0) (4.0.1.post1) Collecting tangled-up-in-unicode>=0.0.6 Downloading https://files.pythonhosted.org/packages/4a/e2/e588ab9298d4989ce7fdb2b97d18aac878d99dbdc379a4476a09d9271b68/tangled_up_in_unicode-0.0.6-py3-none-any.whl (3.1MB) |████████████████████████████████| 3.1MB 44.1MB/s Collecting tqdm>=4.43.0 Downloading https://files.pythonhosted.org/packages/28/7e/281edb5bc3274dfb894d90f4dbacfceaca381c2435ec6187a2c6f329aed7/tqdm-4.48.2-py2.py3-none-any.whl (68kB) |████████████████████████████████| 71kB 8.2MB/s Collecting visions[type_image_path]==0.4.4 Downloading https://files.pythonhosted.org/packages/4a/03/5a45d542257830cf1d9da2cdc1c0bc6f55a9212937b70fdd6d7031b46d6c/visions-0.4.4-py3-none-any.whl (59kB) |████████████████████████████████| 61kB 7.6MB/s Collecting phik>=0.9.10 Downloading https://files.pythonhosted.org/packages/01/5a/7ef1c04ce62cd72f900c06298dc2385840550d5c653a0dbc19109a5477e6/phik-0.10.0-py3-none-any.whl (599kB) |████████████████████████████████| 604kB 39.8MB/s Requirement already satisfied: blis<0.5.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (0.4.1) Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (1.0.2) Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (3.0.2) Requirement already satisfied: thinc==7.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (7.4.0) Requirement already satisfied: srsly<1.1.0,>=1.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (1.0.2) Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (49.2.0) Requirement already satisfied: wasabi<1.1.0,>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (0.7.1) Requirement already satisfied: plac<1.2.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (1.1.3) Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (2.0.3) Requirement already satisfied: catalogue<1.1.0,>=0.0.7 in /usr/local/lib/python3.6/dist-packages (from spacy->pycaret==2.0) (1.0.0) Collecting threadpoolctl>=2.0.0 Downloading https://files.pythonhosted.org/packages/f7/12/ec3f2e203afa394a149911729357aa48affc59c20e2c1c8297a60f33f133/threadpoolctl-2.1.0-py3-none-any.whl Requirement already satisfied: colorlover>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from cufflinks>=0.17.0->pycaret==2.0) (0.3.0) Collecting zope.interface Downloading https://files.pythonhosted.org/packages/57/33/565274c28a11af60b7cfc0519d46bde4125fcd7d32ebc0a81b480d0e8da6/zope.interface-5.1.0-cp36-cp36m-manylinux2010_x86_64.whl (234kB) |████████████████████████████████| 235kB 39.7MB/s Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret==2.0) (4.8.0) Requirement already satisfied: pickleshare in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret==2.0) (0.7.5) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret==2.0) (1.0.18) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret==2.0) (0.8.1) Requirement already satisfied: pygments in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret==2.0) (2.1.3) Requirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from IPython->pycaret==2.0) (4.4.2) Requirement already satisfied: smart-open>=1.2.1 in /usr/local/lib/python3.6/dist-packages (from gensim->pycaret==2.0) (2.1.0) Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from wordcloud->pycaret==2.0) (7.0.0) Requirement already satisfied: wheel>=0.23.0 in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret==2.0) (0.34.2) Requirement already satisfied: numexpr in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret==2.0) (2.7.1) Requirement already satisfied: pytest in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret==2.0) (3.6.4) Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from pyLDAvis->pycaret==2.0) (0.16.0) Collecting funcy Downloading https://files.pythonhosted.org/packages/ce/4b/6ffa76544e46614123de31574ad95758c421aae391a1764921b8a81e1eae/funcy-1.14.tar.gz (548kB) |████████████████████████████████| 552kB 32.1MB/s Requirement already satisfied: graphviz in /usr/local/lib/python3.6/dist-packages (from catboost->pycaret==2.0) (0.10.1) Requirement already satisfied: llvmlite<0.32.0,>=0.31.0dev0 in /usr/local/lib/python3.6/dist-packages (from numba!=0.47,>=0.46->umap-learn->pycaret==2.0) (0.31.0) Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.6/dist-packages (from databricks-cli>=0.8.7->mlflow->pycaret==2.0) (0.8.7) Collecting Mako Downloading https://files.pythonhosted.org/packages/a6/37/0e706200d22172eb8fa17d68a7ae22dec7631a0a92266634fb518a88a5b2/Mako-1.1.3-py2.py3-none-any.whl (75kB) |████████████████████████████████| 81kB 9.0MB/s Collecting python-editor>=0.3 Downloading https://files.pythonhosted.org/packages/c6/d3/201fc3abe391bbae6606e6f1d598c15d367033332bd54352b12f35513717/python_editor-1.0.4-py3-none-any.whl Collecting gitdb<5,>=4.0.1 Downloading https://files.pythonhosted.org/packages/48/11/d1800bca0a3bae820b84b7d813ad1eff15a48a64caea9c823fc8c1b119e8/gitdb-4.0.5-py3-none-any.whl (63kB) |████████████████████████████████| 71kB 8.0MB/s Collecting azure-core<2.0.0,>=1.6.0 Downloading https://files.pythonhosted.org/packages/8b/00/efb68e2dda82139d732090fc3b7ff47fe6f34724ea7ba31e518a854b15c1/azure_core-1.7.0-py2.py3-none-any.whl (121kB) |████████████████████████████████| 122kB 44.8MB/s Collecting msrest>=0.6.10 Downloading https://files.pythonhosted.org/packages/d9/ed/8e1b75721ad983c1672cd968ad3ae374d2e94767edff6f0b72a15dfde933/msrest-0.6.18-py2.py3-none-any.whl (84kB) |████████████████████████████████| 92kB 8.6MB/s Collecting cryptography>=2.1.4 Downloading https://files.pythonhosted.org/packages/ba/91/84a29d6a27fd6dfc21f475704c4d2053d58ed7a4033c2b0ce1b4ca4d03d9/cryptography-3.0-cp35-abi3-manylinux2010_x86_64.whl (2.7MB) |████████████████████████████████| 2.7MB 43.7MB/s Requirement already satisfied: prometheus_client in /usr/local/lib/python3.6/dist-packages (from prometheus-flask-exporter->mlflow->pycaret==2.0) (0.8.0) Requirement already satisfied: Werkzeug>=0.15 in /usr/local/lib/python3.6/dist-packages (from Flask->mlflow->pycaret==2.0) (1.0.1) Requirement already satisfied: itsdangerous>=0.24 in /usr/local/lib/python3.6/dist-packages (from Flask->mlflow->pycaret==2.0) (1.1.0) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests>=2.17.3->mlflow->pycaret==2.0) (2020.6.20) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests>=2.17.3->mlflow->pycaret==2.0) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests>=2.17.3->mlflow->pycaret==2.0) (2.10) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests>=2.17.3->mlflow->pycaret==2.0) (1.24.3) Collecting websocket-client>=0.32.0 Downloading https://files.pythonhosted.org/packages/4c/5f/f61b420143ed1c8dc69f9eaec5ff1ac36109d52c80de49d66e0c36c3dfdf/websocket_client-0.57.0-py2.py3-none-any.whl (200kB) |████████████████████████████████| 204kB 50.5MB/s Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.6/dist-packages (from traitlets>=4.3.1->ipywidgets->pycaret==2.0) (0.2.0) Requirement already satisfied: tornado>=4.0 in /usr/local/lib/python3.6/dist-packages (from ipykernel>=4.5.1->ipywidgets->pycaret==2.0) (5.1.1) Requirement already satisfied: jupyter-client in /usr/local/lib/python3.6/dist-packages (from ipykernel>=4.5.1->ipywidgets->pycaret==2.0) (5.3.5) Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.6/dist-packages (from widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (5.3.1) Requirement already satisfied: jupyter-core in /usr/local/lib/python3.6/dist-packages (from nbformat>=4.2.0->ipywidgets->pycaret==2.0) (4.6.3) Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /usr/local/lib/python3.6/dist-packages (from nbformat>=4.2.0->ipywidgets->pycaret==2.0) (2.6.0) Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from jinja2>=2.11.1->pandas-profiling>=2.3.0->pycaret==2.0) (1.1.1) Requirement already satisfied: attrs>=19.3.0 in /usr/local/lib/python3.6/dist-packages (from visions[type_image_path]==0.4.4->pandas-profiling>=2.3.0->pycaret==2.0) (19.3.0) Requirement already satisfied: networkx>=2.4 in /usr/local/lib/python3.6/dist-packages (from visions[type_image_path]==0.4.4->pandas-profiling>=2.3.0->pycaret==2.0) (2.4) Collecting imagehash; extra == "type_image_path" Downloading https://files.pythonhosted.org/packages/1a/5d/cc81830be3c4705a46cdbca74439b67f1017881383ba0127c41c4cecb7b3/ImageHash-4.1.0.tar.gz (291kB) |████████████████████████████████| 296kB 45.3MB/s Requirement already satisfied: importlib-metadata>=0.20; python_version < "3.8" in /usr/local/lib/python3.6/dist-packages (from catalogue<1.1.0,>=0.0.7->spacy->pycaret==2.0) (1.7.0) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.6/dist-packages (from pexpect; sys_platform != "win32"->IPython->pycaret==2.0) (0.6.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->IPython->pycaret==2.0) (0.2.5) Requirement already satisfied: boto in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim->pycaret==2.0) (2.49.0) Requirement already satisfied: boto3 in /usr/local/lib/python3.6/dist-packages (from smart-open>=1.2.1->gensim->pycaret==2.0) (1.14.33) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.6/dist-packages (from pytest->pyLDAvis->pycaret==2.0) (0.7.1) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.6/dist-packages (from pytest->pyLDAvis->pycaret==2.0) (1.9.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.6/dist-packages (from pytest->pyLDAvis->pycaret==2.0) (1.4.0) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.6/dist-packages (from pytest->pyLDAvis->pycaret==2.0) (8.4.0) Collecting smmap<4,>=3.0.1 Downloading https://files.pythonhosted.org/packages/b0/9a/4d409a6234eb940e6a78dfdfc66156e7522262f5f2fecca07dc55915952d/smmap-3.0.4-py2.py3-none-any.whl Collecting isodate>=0.6.0 Downloading https://files.pythonhosted.org/packages/9b/9f/b36f7774ff5ea8e428fdcfc4bb332c39ee5b9362ddd3d40d9516a55221b2/isodate-0.6.0-py2.py3-none-any.whl (45kB) |████████████████████████████████| 51kB 5.9MB/s Requirement already satisfied: requests-oauthlib>=0.5.0 in /usr/local/lib/python3.6/dist-packages (from msrest>=0.6.10->azure-storage-blob>=12.0->mlflow->pycaret==2.0) (1.3.0) Requirement already satisfied: cffi!=1.11.3,>=1.8 in /usr/local/lib/python3.6/dist-packages (from cryptography>=2.1.4->azure-storage-blob>=12.0->mlflow->pycaret==2.0) (1.14.1) Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.6/dist-packages (from jupyter-client->ipykernel>=4.5.1->ipywidgets->pycaret==2.0) (19.0.2) Requirement already satisfied: nbconvert in /usr/local/lib/python3.6/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (5.6.1) Requirement already satisfied: terminado>=0.8.1 in /usr/local/lib/python3.6/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (0.8.3) Requirement already satisfied: Send2Trash in /usr/local/lib/python3.6/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (1.5.0) Requirement already satisfied: PyWavelets in /usr/local/lib/python3.6/dist-packages (from imagehash; extra == "type_image_path"->visions[type_image_path]==0.4.4->pandas-profiling>=2.3.0->pycaret==2.0) (1.1.1) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata>=0.20; python_version < "3.8"->catalogue<1.1.0,>=0.0.7->spacy->pycaret==2.0) (3.1.0) Requirement already satisfied: botocore<1.18.0,>=1.17.33 in /usr/local/lib/python3.6/dist-packages (from boto3->smart-open>=1.2.1->gensim->pycaret==2.0) (1.17.33) Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /usr/local/lib/python3.6/dist-packages (from boto3->smart-open>=1.2.1->gensim->pycaret==2.0) (0.3.3) Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /usr/local/lib/python3.6/dist-packages (from boto3->smart-open>=1.2.1->gensim->pycaret==2.0) (0.10.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.5.0->msrest>=0.6.10->azure-storage-blob>=12.0->mlflow->pycaret==2.0) (3.1.0) Requirement already satisfied: pycparser in /usr/local/lib/python3.6/dist-packages (from cffi!=1.11.3,>=1.8->cryptography>=2.1.4->azure-storage-blob>=12.0->mlflow->pycaret==2.0) (2.20) Requirement already satisfied: defusedxml in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (0.6.0) Requirement already satisfied: testpath in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (0.4.4) Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (1.4.2) Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (0.8.4) Requirement already satisfied: bleach in /usr/local/lib/python3.6/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (3.1.5) Requirement already satisfied: docutils<0.16,>=0.10 in /usr/local/lib/python3.6/dist-packages (from botocore<1.18.0,>=1.17.33->boto3->smart-open>=1.2.1->gensim->pycaret==2.0) (0.15.2) Requirement already satisfied: webencodings in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (0.5.1) Requirement already satisfied: packaging in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret==2.0) (20.4) Building wheels for collected packages: alembic Building wheel for alembic (PEP 517) ... done Created wheel for alembic: filename=alembic-1.4.2-cp36-none-any.whl size=159543 sha256=06ace8b7b91348fbaed3fa9a7b26ff102b4f539c521ff8b6f9bfdef088931eca Stored in directory: /root/.cache/pip/wheels/1f/04/83/76023f7a4c14688c0b5c2682a96392cfdd3ee4449eaaa287ef Successfully built alembic Building wheels for collected packages: pyod, pyLDAvis, databricks-cli, prometheus-flask-exporter, querystring-parser, sqlalchemy, combo, suod, htmlmin, funcy, imagehash Building wheel for pyod (setup.py) ... done Created wheel for pyod: filename=pyod-0.8.1-cp36-none-any.whl size=105653 sha256=c899b1ef39e8dc09b519cc1be1c2d0ce9cec77162f607442747ff2ef4eaa7bed Stored in directory: /root/.cache/pip/wheels/2e/ca/18/727e9d98a41f5f4385a97d5b429f3a9c8fbee13f9780c18642 Building wheel for pyLDAvis (setup.py) ... done Created wheel for pyLDAvis: filename=pyLDAvis-2.1.2-py2.py3-none-any.whl size=97711 sha256=ae97d19ffe6299d0fd60df3ec40fd4770ff7c3edfc902fdf8c527b2945862c2e Stored in directory: /root/.cache/pip/wheels/98/71/24/513a99e58bb6b8465bae4d2d5e9dba8f0bef8179e3051ac414 Building wheel for databricks-cli (setup.py) ... done Created wheel for databricks-cli: filename=databricks_cli-0.11.0-cp36-none-any.whl size=90300 sha256=35c931b30ff6d0817c52e8e5f2771f93ae12e125d229e6e12b530973f405f877 Stored in directory: /root/.cache/pip/wheels/63/d0/4f/3deeca1f4c47a6aca7c2c6a6e2bf272391565dc86a7718a59b Building wheel for prometheus-flask-exporter (setup.py) ... done Created wheel for prometheus-flask-exporter: filename=prometheus_flask_exporter-0.15.4-cp36-none-any.whl size=16454 sha256=4e3e01f48cf5ed377de2a57dd125ecaf7e436aa931dbe26c48eef4d15f435403 Stored in directory: /root/.cache/pip/wheels/4f/b4/70/b18fa12c1c0a30fd542767dbbcdac225c6aae012fa1b3124e4 Building wheel for querystring-parser (setup.py) ... done Created wheel for querystring-parser: filename=querystring_parser-1.2.4-cp36-none-any.whl size=7079 sha256=d22dec76fd72f2ab6552f6d7a8c2823862e97afd58f153afd5f152cb8466b2a6 Stored in directory: /root/.cache/pip/wheels/1e/41/34/23ebf5d1089a9aed847951e0ee375426eb4ad0a7079d88d41e Building wheel for sqlalchemy (setup.py) ... done Created wheel for sqlalchemy: filename=SQLAlchemy-1.3.13-cp36-cp36m-linux_x86_64.whl size=1217122 sha256=23749b51d34b91d033060c972f32b9c87047b672350bbc7dc4aa460121452719 Stored in directory: /root/.cache/pip/wheels/b3/35/98/4c9cb3fd63d21d5606b972dd70643769745adf60e622467b71 Building wheel for combo (setup.py) ... done Created wheel for combo: filename=combo-0.1.1-cp36-none-any.whl size=42111 sha256=327ca116529791bdf86a4e9099769a797ca492f80dd3e6a6e468c460c8f3e590 Stored in directory: /root/.cache/pip/wheels/55/ec/e5/a2331372c676c467e70c6646e646edf6997d5c4905b8c0f5e6 Building wheel for suod (setup.py) ... done Created wheel for suod: filename=suod-0.0.4-cp36-none-any.whl size=2167157 sha256=564306ff92a93409b2bf6b81c1b1212eff5896c01721b83b1d82b57518a87be3 Stored in directory: /root/.cache/pip/wheels/57/55/e5/a4fca65bba231f6d0115059b589148774b41faea25b3f2aa27 Building wheel for htmlmin (setup.py) ... done Created wheel for htmlmin: filename=htmlmin-0.1.12-cp36-none-any.whl size=27084 sha256=da60b51e32bb8929719684a8a60557ffbcbd982ef56b40019b5cadc048ec5be1 Stored in directory: /root/.cache/pip/wheels/43/07/ac/7c5a9d708d65247ac1f94066cf1db075540b85716c30255459 Building wheel for funcy (setup.py) ... done Created wheel for funcy: filename=funcy-1.14-py2.py3-none-any.whl size=32042 sha256=354b55cd981e15dae9a332dc8e242e16476e859847ff5cea23e340f06e164f6e Stored in directory: /root/.cache/pip/wheels/20/5a/d8/1d875df03deae6f178dfdf70238cca33f948ef8a6f5209f2eb Building wheel for imagehash (setup.py) ... done Created wheel for imagehash: filename=ImageHash-4.1.0-py2.py3-none-any.whl size=291990 sha256=b0694f24587fc5850a57b6b29f05a36c4734cb6c8cb79052a66d714559ed7e24 Stored in directory: /root/.cache/pip/wheels/07/1c/dc/6831446f09feb8cc199ec73a0f2f0703253f6ae013a22f4be9 Successfully built pyod pyLDAvis databricks-cli prometheus-flask-exporter querystring-parser sqlalchemy combo suod htmlmin funcy imagehash Installing collected packages: threadpoolctl, scikit-learn, yellowbrick, gunicorn, databricks-cli, Mako, python-editor, sqlalchemy, alembic, smmap, gitdb, gitpython, azure-core, isodate, msrest, cryptography, azure-storage-blob, gorilla, prometheus-flask-exporter, querystring-parser, websocket-client, docker, mlflow, datefinder, combo, suod, pyod, htmlmin, confuse, tangled-up-in-unicode, tqdm, imagehash, visions, phik, pandas-profiling, lightgbm, zope.interface, DateTime, funcy, pyLDAvis, kmodes, catboost, pycaret Found existing installation: scikit-learn 0.22.2.post1 Uninstalling scikit-learn-0.22.2.post1: Successfully uninstalled scikit-learn-0.22.2.post1 Found existing installation: yellowbrick 0.9.1 Uninstalling yellowbrick-0.9.1: Successfully uninstalled yellowbrick-0.9.1 Found existing installation: SQLAlchemy 1.3.18 Uninstalling SQLAlchemy-1.3.18: Successfully uninstalled SQLAlchemy-1.3.18 Found existing installation: tqdm 4.41.1 Uninstalling tqdm-4.41.1: Successfully uninstalled tqdm-4.41.1 Found existing installation: pandas-profiling 1.4.1 Uninstalling pandas-profiling-1.4.1: Successfully uninstalled pandas-profiling-1.4.1 Found existing installation: lightgbm 2.2.3 Uninstalling lightgbm-2.2.3: Successfully uninstalled lightgbm-2.2.3 Successfully installed DateTime-4.3 Mako-1.1.3 alembic-1.4.2 azure-core-1.7.0 azure-storage-blob-12.3.2 catboost-0.24 combo-0.1.1 confuse-1.3.0 cryptography-3.0 databricks-cli-0.11.0 datefinder-0.7.1 docker-4.2.2 funcy-1.14 gitdb-4.0.5 gitpython-3.1.7 gorilla-0.3.0 gunicorn-20.0.4 htmlmin-0.1.12 imagehash-4.1.0 isodate-0.6.0 kmodes-0.10.2 lightgbm-2.3.1 mlflow-1.10.0 msrest-0.6.18 pandas-profiling-2.8.0 phik-0.10.0 prometheus-flask-exporter-0.15.4 pyLDAvis-2.1.2 pycaret-2.0 pyod-0.8.1 python-editor-1.0.4 querystring-parser-1.2.4 scikit-learn-0.23.2 smmap-3.0.4 sqlalchemy-1.3.13 suod-0.0.4 tangled-up-in-unicode-0.0.6 threadpoolctl-2.1.0 tqdm-4.48.2 visions-0.4.4 websocket-client-0.57.0 yellowbrick-1.1 zope.interface-5.1.0
Importing the necessary dependancies for the Pycaret library
from pycaret.regression import *
from pycaret.utils import enable_colab
enable_colab()
Colab mode activated.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
import folium
import copy
from folium import plugins
plt.rcParams['figure.figsize'] = 10, 12
import warnings
warnings.filterwarnings('ignore')
/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm
fifaInput= pd.read_csv("/content/drive/My Drive/fifa.csv")
fifa = copy.deepcopy(fifaInput)
to_Drop = ["ID", "Photo", "Flag", "Club Logo", "Real Face", "Loaned From", "Name", "Club"]
fifa = fifa.drop(columns = to_Drop)
fifa['Value'] = fifa['Value'].str.split('\u20AC').str[1]
fifa['Wage'] = fifa['Wage'].str.split('\u20AC').str[1]
fifa['Release Clause'] = fifa['Release Clause'].str.split('\u20AC').str[1]
fifa
Unnamed: 0 | Age | Nationality | Overall | Potential | Value | Wage | Special | Preferred Foot | International Reputation | Weak Foot | Skill Moves | Work Rate | Body Type | Position | Jersey Number | Joined | Contract Valid Until | Height | Weight | LS | ST | RS | LW | LF | CF | RF | RW | LAM | CAM | RAM | LM | LCM | CM | RCM | RM | LWB | LDM | CDM | RDM | RWB | LB | LCB | CB | RCB | RB | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | GKDiving | GKHandling | GKKicking | GKPositioning | GKReflexes | Release Clause | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 31 | Argentina | 94 | 94 | 110.5M | 565K | 2202 | Left | 5.0 | 4.0 | 4.0 | Medium/ Medium | Messi | RF | 10.0 | Jul 1, 2004 | 2021 | 5'7 | 159lbs | 88+2 | 88+2 | 88+2 | 92+2 | 93+2 | 93+2 | 93+2 | 92+2 | 93+2 | 93+2 | 93+2 | 91+2 | 84+2 | 84+2 | 84+2 | 91+2 | 64+2 | 61+2 | 61+2 | 61+2 | 64+2 | 59+2 | 47+2 | 47+2 | 47+2 | 59+2 | 84.0 | 95.0 | 70.0 | 90.0 | 86.0 | 97.0 | 93.0 | 94.0 | 87.0 | 96.0 | 91.0 | 86.0 | 91.0 | 95.0 | 95.0 | 85.0 | 68.0 | 72.0 | 59.0 | 94.0 | 48.0 | 22.0 | 94.0 | 94.0 | 75.0 | 96.0 | 33.0 | 28.0 | 26.0 | 6.0 | 11.0 | 15.0 | 14.0 | 8.0 | 226.5M |
1 | 1 | 33 | Portugal | 94 | 94 | 77M | 405K | 2228 | Right | 5.0 | 4.0 | 5.0 | High/ Low | C. Ronaldo | ST | 7.0 | Jul 10, 2018 | 2022 | 6'2 | 183lbs | 91+3 | 91+3 | 91+3 | 89+3 | 90+3 | 90+3 | 90+3 | 89+3 | 88+3 | 88+3 | 88+3 | 88+3 | 81+3 | 81+3 | 81+3 | 88+3 | 65+3 | 61+3 | 61+3 | 61+3 | 65+3 | 61+3 | 53+3 | 53+3 | 53+3 | 61+3 | 84.0 | 94.0 | 89.0 | 81.0 | 87.0 | 88.0 | 81.0 | 76.0 | 77.0 | 94.0 | 89.0 | 91.0 | 87.0 | 96.0 | 70.0 | 95.0 | 95.0 | 88.0 | 79.0 | 93.0 | 63.0 | 29.0 | 95.0 | 82.0 | 85.0 | 95.0 | 28.0 | 31.0 | 23.0 | 7.0 | 11.0 | 15.0 | 14.0 | 11.0 | 127.1M |
2 | 2 | 26 | Brazil | 92 | 93 | 118.5M | 290K | 2143 | Right | 5.0 | 5.0 | 5.0 | High/ Medium | Neymar | LW | 10.0 | Aug 3, 2017 | 2022 | 5'9 | 150lbs | 84+3 | 84+3 | 84+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 88+3 | 81+3 | 81+3 | 81+3 | 88+3 | 65+3 | 60+3 | 60+3 | 60+3 | 65+3 | 60+3 | 47+3 | 47+3 | 47+3 | 60+3 | 79.0 | 87.0 | 62.0 | 84.0 | 84.0 | 96.0 | 88.0 | 87.0 | 78.0 | 95.0 | 94.0 | 90.0 | 96.0 | 94.0 | 84.0 | 80.0 | 61.0 | 81.0 | 49.0 | 82.0 | 56.0 | 36.0 | 89.0 | 87.0 | 81.0 | 94.0 | 27.0 | 24.0 | 33.0 | 9.0 | 9.0 | 15.0 | 15.0 | 11.0 | 228.1M |
3 | 3 | 27 | Spain | 91 | 93 | 72M | 260K | 1471 | Right | 4.0 | 3.0 | 1.0 | Medium/ Medium | Lean | GK | 1.0 | Jul 1, 2011 | 2020 | 6'4 | 168lbs | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 17.0 | 13.0 | 21.0 | 50.0 | 13.0 | 18.0 | 21.0 | 19.0 | 51.0 | 42.0 | 57.0 | 58.0 | 60.0 | 90.0 | 43.0 | 31.0 | 67.0 | 43.0 | 64.0 | 12.0 | 38.0 | 30.0 | 12.0 | 68.0 | 40.0 | 68.0 | 15.0 | 21.0 | 13.0 | 90.0 | 85.0 | 87.0 | 88.0 | 94.0 | 138.6M |
4 | 4 | 27 | Belgium | 91 | 92 | 102M | 355K | 2281 | Right | 4.0 | 5.0 | 4.0 | High/ High | Normal | RCM | 7.0 | Aug 30, 2015 | 2023 | 5'11 | 154lbs | 82+3 | 82+3 | 82+3 | 87+3 | 87+3 | 87+3 | 87+3 | 87+3 | 88+3 | 88+3 | 88+3 | 88+3 | 87+3 | 87+3 | 87+3 | 88+3 | 77+3 | 77+3 | 77+3 | 77+3 | 77+3 | 73+3 | 66+3 | 66+3 | 66+3 | 73+3 | 93.0 | 82.0 | 55.0 | 92.0 | 82.0 | 86.0 | 85.0 | 83.0 | 91.0 | 91.0 | 78.0 | 76.0 | 79.0 | 91.0 | 77.0 | 91.0 | 63.0 | 90.0 | 75.0 | 91.0 | 76.0 | 61.0 | 87.0 | 94.0 | 79.0 | 88.0 | 68.0 | 58.0 | 51.0 | 15.0 | 13.0 | 5.0 | 10.0 | 13.0 | 196.4M |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
18202 | 18202 | 19 | England | 47 | 65 | 60K | 1K | 1307 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Lean | CM | 22.0 | May 3, 2017 | 2019 | 5'9 | 134lbs | 42+2 | 42+2 | 42+2 | 44+2 | 44+2 | 44+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 45+2 | 45+2 | 45+2 | 45+2 | 45+2 | 34.0 | 38.0 | 40.0 | 49.0 | 25.0 | 42.0 | 30.0 | 34.0 | 45.0 | 43.0 | 54.0 | 57.0 | 60.0 | 49.0 | 76.0 | 43.0 | 55.0 | 40.0 | 47.0 | 38.0 | 46.0 | 46.0 | 39.0 | 52.0 | 43.0 | 45.0 | 40.0 | 48.0 | 47.0 | 10.0 | 13.0 | 7.0 | 8.0 | 9.0 | 143K |
18203 | 18203 | 19 | Sweden | 47 | 63 | 60K | 1K | 1098 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Normal | ST | 21.0 | Mar 19, 2018 | 2020 | 6'3 | 170lbs | 45+2 | 45+2 | 45+2 | 39+2 | 42+2 | 42+2 | 42+2 | 39+2 | 40+2 | 40+2 | 40+2 | 38+2 | 35+2 | 35+2 | 35+2 | 38+2 | 30+2 | 31+2 | 31+2 | 31+2 | 30+2 | 29+2 | 32+2 | 32+2 | 32+2 | 29+2 | 23.0 | 52.0 | 52.0 | 43.0 | 36.0 | 39.0 | 32.0 | 20.0 | 25.0 | 40.0 | 41.0 | 39.0 | 38.0 | 40.0 | 52.0 | 41.0 | 47.0 | 43.0 | 67.0 | 42.0 | 47.0 | 16.0 | 46.0 | 33.0 | 43.0 | 42.0 | 22.0 | 15.0 | 19.0 | 10.0 | 9.0 | 9.0 | 5.0 | 12.0 | 113K |
18204 | 18204 | 16 | England | 47 | 67 | 60K | 1K | 1189 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Normal | ST | 33.0 | Jul 1, 2017 | 2021 | 5'8 | 148lbs | 45+2 | 45+2 | 45+2 | 45+2 | 46+2 | 46+2 | 46+2 | 45+2 | 44+2 | 44+2 | 44+2 | 44+2 | 38+2 | 38+2 | 38+2 | 44+2 | 34+2 | 30+2 | 30+2 | 30+2 | 34+2 | 33+2 | 28+2 | 28+2 | 28+2 | 33+2 | 25.0 | 40.0 | 46.0 | 38.0 | 38.0 | 45.0 | 38.0 | 27.0 | 28.0 | 44.0 | 70.0 | 69.0 | 50.0 | 47.0 | 58.0 | 45.0 | 60.0 | 55.0 | 32.0 | 45.0 | 32.0 | 15.0 | 48.0 | 43.0 | 55.0 | 41.0 | 32.0 | 13.0 | 11.0 | 6.0 | 5.0 | 10.0 | 6.0 | 13.0 | 165K |
18205 | 18205 | 17 | England | 47 | 66 | 60K | 1K | 1228 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | RW | 34.0 | Apr 24, 2018 | 2019 | 5'10 | 154lbs | 47+2 | 47+2 | 47+2 | 47+2 | 46+2 | 46+2 | 46+2 | 47+2 | 45+2 | 45+2 | 45+2 | 46+2 | 39+2 | 39+2 | 39+2 | 46+2 | 36+2 | 32+2 | 32+2 | 32+2 | 36+2 | 35+2 | 31+2 | 31+2 | 31+2 | 35+2 | 44.0 | 50.0 | 39.0 | 42.0 | 40.0 | 51.0 | 34.0 | 32.0 | 32.0 | 52.0 | 61.0 | 60.0 | 52.0 | 21.0 | 71.0 | 64.0 | 42.0 | 40.0 | 48.0 | 34.0 | 33.0 | 22.0 | 44.0 | 47.0 | 50.0 | 46.0 | 20.0 | 25.0 | 27.0 | 14.0 | 6.0 | 14.0 | 8.0 | 9.0 | 143K |
18206 | 18206 | 16 | England | 46 | 66 | 60K | 1K | 1321 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | CM | 33.0 | Oct 30, 2018 | 2019 | 5'10 | 176lbs | 43+2 | 43+2 | 43+2 | 45+2 | 44+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 45+2 | 46+2 | 45+2 | 45+2 | 45+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 47+2 | 47+2 | 47+2 | 46+2 | 41.0 | 34.0 | 46.0 | 48.0 | 30.0 | 43.0 | 40.0 | 34.0 | 44.0 | 51.0 | 57.0 | 55.0 | 55.0 | 51.0 | 63.0 | 43.0 | 62.0 | 47.0 | 60.0 | 32.0 | 56.0 | 42.0 | 34.0 | 49.0 | 33.0 | 43.0 | 40.0 | 43.0 | 50.0 | 10.0 | 15.0 | 9.0 | 12.0 | 9.0 | 165K |
18207 rows × 81 columns
repl_dict = {'[kK]': '*1000', '[mM]': '*1000000', '[bB]': '*1000000000', }
# fifa = fifa.fillna(fifa.mean())
fifa['Value'] = fifa['Value'].replace(repl_dict, regex=True)
new = fifa["Value"].str.split("*", n = 1, expand = True)
#print(new)
# making separate first name column from new data frame
fifa["Value1"]= new[0]
fifa["Value2"]= new[1]
fifa['Value1'] = pd.to_numeric(fifa['Value1'], errors='coerce')
fifa['Value2'] = pd.to_numeric(fifa['Value2'], errors='coerce')
fifa['Value'] = fifa['Value1'] * fifa['Value2']
fifa = fifa.drop(columns = ['Value1', 'Value2'])
fifa
Unnamed: 0 | Age | Nationality | Overall | Potential | Value | Wage | Special | Preferred Foot | International Reputation | Weak Foot | Skill Moves | Work Rate | Body Type | Position | Jersey Number | Joined | Contract Valid Until | Height | Weight | LS | ST | RS | LW | LF | CF | RF | RW | LAM | CAM | RAM | LM | LCM | CM | RCM | RM | LWB | LDM | CDM | RDM | RWB | LB | LCB | CB | RCB | RB | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | GKDiving | GKHandling | GKKicking | GKPositioning | GKReflexes | Release Clause | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 31 | Argentina | 94 | 94 | 110500000.0 | 565K | 2202 | Left | 5.0 | 4.0 | 4.0 | Medium/ Medium | Messi | RF | 10.0 | Jul 1, 2004 | 2021 | 5'7 | 159lbs | 88+2 | 88+2 | 88+2 | 92+2 | 93+2 | 93+2 | 93+2 | 92+2 | 93+2 | 93+2 | 93+2 | 91+2 | 84+2 | 84+2 | 84+2 | 91+2 | 64+2 | 61+2 | 61+2 | 61+2 | 64+2 | 59+2 | 47+2 | 47+2 | 47+2 | 59+2 | 84.0 | 95.0 | 70.0 | 90.0 | 86.0 | 97.0 | 93.0 | 94.0 | 87.0 | 96.0 | 91.0 | 86.0 | 91.0 | 95.0 | 95.0 | 85.0 | 68.0 | 72.0 | 59.0 | 94.0 | 48.0 | 22.0 | 94.0 | 94.0 | 75.0 | 96.0 | 33.0 | 28.0 | 26.0 | 6.0 | 11.0 | 15.0 | 14.0 | 8.0 | 226.5M |
1 | 1 | 33 | Portugal | 94 | 94 | 77000000.0 | 405K | 2228 | Right | 5.0 | 4.0 | 5.0 | High/ Low | C. Ronaldo | ST | 7.0 | Jul 10, 2018 | 2022 | 6'2 | 183lbs | 91+3 | 91+3 | 91+3 | 89+3 | 90+3 | 90+3 | 90+3 | 89+3 | 88+3 | 88+3 | 88+3 | 88+3 | 81+3 | 81+3 | 81+3 | 88+3 | 65+3 | 61+3 | 61+3 | 61+3 | 65+3 | 61+3 | 53+3 | 53+3 | 53+3 | 61+3 | 84.0 | 94.0 | 89.0 | 81.0 | 87.0 | 88.0 | 81.0 | 76.0 | 77.0 | 94.0 | 89.0 | 91.0 | 87.0 | 96.0 | 70.0 | 95.0 | 95.0 | 88.0 | 79.0 | 93.0 | 63.0 | 29.0 | 95.0 | 82.0 | 85.0 | 95.0 | 28.0 | 31.0 | 23.0 | 7.0 | 11.0 | 15.0 | 14.0 | 11.0 | 127.1M |
2 | 2 | 26 | Brazil | 92 | 93 | 118500000.0 | 290K | 2143 | Right | 5.0 | 5.0 | 5.0 | High/ Medium | Neymar | LW | 10.0 | Aug 3, 2017 | 2022 | 5'9 | 150lbs | 84+3 | 84+3 | 84+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 88+3 | 81+3 | 81+3 | 81+3 | 88+3 | 65+3 | 60+3 | 60+3 | 60+3 | 65+3 | 60+3 | 47+3 | 47+3 | 47+3 | 60+3 | 79.0 | 87.0 | 62.0 | 84.0 | 84.0 | 96.0 | 88.0 | 87.0 | 78.0 | 95.0 | 94.0 | 90.0 | 96.0 | 94.0 | 84.0 | 80.0 | 61.0 | 81.0 | 49.0 | 82.0 | 56.0 | 36.0 | 89.0 | 87.0 | 81.0 | 94.0 | 27.0 | 24.0 | 33.0 | 9.0 | 9.0 | 15.0 | 15.0 | 11.0 | 228.1M |
3 | 3 | 27 | Spain | 91 | 93 | 72000000.0 | 260K | 1471 | Right | 4.0 | 3.0 | 1.0 | Medium/ Medium | Lean | GK | 1.0 | Jul 1, 2011 | 2020 | 6'4 | 168lbs | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 17.0 | 13.0 | 21.0 | 50.0 | 13.0 | 18.0 | 21.0 | 19.0 | 51.0 | 42.0 | 57.0 | 58.0 | 60.0 | 90.0 | 43.0 | 31.0 | 67.0 | 43.0 | 64.0 | 12.0 | 38.0 | 30.0 | 12.0 | 68.0 | 40.0 | 68.0 | 15.0 | 21.0 | 13.0 | 90.0 | 85.0 | 87.0 | 88.0 | 94.0 | 138.6M |
4 | 4 | 27 | Belgium | 91 | 92 | 102000000.0 | 355K | 2281 | Right | 4.0 | 5.0 | 4.0 | High/ High | Normal | RCM | 7.0 | Aug 30, 2015 | 2023 | 5'11 | 154lbs | 82+3 | 82+3 | 82+3 | 87+3 | 87+3 | 87+3 | 87+3 | 87+3 | 88+3 | 88+3 | 88+3 | 88+3 | 87+3 | 87+3 | 87+3 | 88+3 | 77+3 | 77+3 | 77+3 | 77+3 | 77+3 | 73+3 | 66+3 | 66+3 | 66+3 | 73+3 | 93.0 | 82.0 | 55.0 | 92.0 | 82.0 | 86.0 | 85.0 | 83.0 | 91.0 | 91.0 | 78.0 | 76.0 | 79.0 | 91.0 | 77.0 | 91.0 | 63.0 | 90.0 | 75.0 | 91.0 | 76.0 | 61.0 | 87.0 | 94.0 | 79.0 | 88.0 | 68.0 | 58.0 | 51.0 | 15.0 | 13.0 | 5.0 | 10.0 | 13.0 | 196.4M |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
18202 | 18202 | 19 | England | 47 | 65 | 60000.0 | 1K | 1307 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Lean | CM | 22.0 | May 3, 2017 | 2019 | 5'9 | 134lbs | 42+2 | 42+2 | 42+2 | 44+2 | 44+2 | 44+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 45+2 | 45+2 | 45+2 | 45+2 | 45+2 | 34.0 | 38.0 | 40.0 | 49.0 | 25.0 | 42.0 | 30.0 | 34.0 | 45.0 | 43.0 | 54.0 | 57.0 | 60.0 | 49.0 | 76.0 | 43.0 | 55.0 | 40.0 | 47.0 | 38.0 | 46.0 | 46.0 | 39.0 | 52.0 | 43.0 | 45.0 | 40.0 | 48.0 | 47.0 | 10.0 | 13.0 | 7.0 | 8.0 | 9.0 | 143K |
18203 | 18203 | 19 | Sweden | 47 | 63 | 60000.0 | 1K | 1098 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Normal | ST | 21.0 | Mar 19, 2018 | 2020 | 6'3 | 170lbs | 45+2 | 45+2 | 45+2 | 39+2 | 42+2 | 42+2 | 42+2 | 39+2 | 40+2 | 40+2 | 40+2 | 38+2 | 35+2 | 35+2 | 35+2 | 38+2 | 30+2 | 31+2 | 31+2 | 31+2 | 30+2 | 29+2 | 32+2 | 32+2 | 32+2 | 29+2 | 23.0 | 52.0 | 52.0 | 43.0 | 36.0 | 39.0 | 32.0 | 20.0 | 25.0 | 40.0 | 41.0 | 39.0 | 38.0 | 40.0 | 52.0 | 41.0 | 47.0 | 43.0 | 67.0 | 42.0 | 47.0 | 16.0 | 46.0 | 33.0 | 43.0 | 42.0 | 22.0 | 15.0 | 19.0 | 10.0 | 9.0 | 9.0 | 5.0 | 12.0 | 113K |
18204 | 18204 | 16 | England | 47 | 67 | 60000.0 | 1K | 1189 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Normal | ST | 33.0 | Jul 1, 2017 | 2021 | 5'8 | 148lbs | 45+2 | 45+2 | 45+2 | 45+2 | 46+2 | 46+2 | 46+2 | 45+2 | 44+2 | 44+2 | 44+2 | 44+2 | 38+2 | 38+2 | 38+2 | 44+2 | 34+2 | 30+2 | 30+2 | 30+2 | 34+2 | 33+2 | 28+2 | 28+2 | 28+2 | 33+2 | 25.0 | 40.0 | 46.0 | 38.0 | 38.0 | 45.0 | 38.0 | 27.0 | 28.0 | 44.0 | 70.0 | 69.0 | 50.0 | 47.0 | 58.0 | 45.0 | 60.0 | 55.0 | 32.0 | 45.0 | 32.0 | 15.0 | 48.0 | 43.0 | 55.0 | 41.0 | 32.0 | 13.0 | 11.0 | 6.0 | 5.0 | 10.0 | 6.0 | 13.0 | 165K |
18205 | 18205 | 17 | England | 47 | 66 | 60000.0 | 1K | 1228 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | RW | 34.0 | Apr 24, 2018 | 2019 | 5'10 | 154lbs | 47+2 | 47+2 | 47+2 | 47+2 | 46+2 | 46+2 | 46+2 | 47+2 | 45+2 | 45+2 | 45+2 | 46+2 | 39+2 | 39+2 | 39+2 | 46+2 | 36+2 | 32+2 | 32+2 | 32+2 | 36+2 | 35+2 | 31+2 | 31+2 | 31+2 | 35+2 | 44.0 | 50.0 | 39.0 | 42.0 | 40.0 | 51.0 | 34.0 | 32.0 | 32.0 | 52.0 | 61.0 | 60.0 | 52.0 | 21.0 | 71.0 | 64.0 | 42.0 | 40.0 | 48.0 | 34.0 | 33.0 | 22.0 | 44.0 | 47.0 | 50.0 | 46.0 | 20.0 | 25.0 | 27.0 | 14.0 | 6.0 | 14.0 | 8.0 | 9.0 | 143K |
18206 | 18206 | 16 | England | 46 | 66 | 60000.0 | 1K | 1321 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | CM | 33.0 | Oct 30, 2018 | 2019 | 5'10 | 176lbs | 43+2 | 43+2 | 43+2 | 45+2 | 44+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 45+2 | 46+2 | 45+2 | 45+2 | 45+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 47+2 | 47+2 | 47+2 | 46+2 | 41.0 | 34.0 | 46.0 | 48.0 | 30.0 | 43.0 | 40.0 | 34.0 | 44.0 | 51.0 | 57.0 | 55.0 | 55.0 | 51.0 | 63.0 | 43.0 | 62.0 | 47.0 | 60.0 | 32.0 | 56.0 | 42.0 | 34.0 | 49.0 | 33.0 | 43.0 | 40.0 | 43.0 | 50.0 | 10.0 | 15.0 | 9.0 | 12.0 | 9.0 | 165K |
18207 rows × 81 columns
fifa['Wage'] = fifa['Wage'].replace(repl_dict, regex=True)
new = fifa["Wage"].str.split("*", n = 1, expand = True)
#print(new)
# making separate first name column from new data frame
fifa["Wage1"]= new[0]
fifa["Wage2"]= new[1]
fifa['Wage1'] = pd.to_numeric(fifa['Wage1'], errors='coerce')
fifa['Wage2'] = pd.to_numeric(fifa['Wage2'], errors='coerce')
fifa['Wage'] = fifa['Wage1'] * fifa['Wage2']
fifa = fifa.drop(columns = ['Wage1', 'Wage2'])
fifa
Unnamed: 0 | Age | Nationality | Overall | Potential | Value | Wage | Special | Preferred Foot | International Reputation | Weak Foot | Skill Moves | Work Rate | Body Type | Position | Jersey Number | Joined | Contract Valid Until | Height | Weight | LS | ST | RS | LW | LF | CF | RF | RW | LAM | CAM | RAM | LM | LCM | CM | RCM | RM | LWB | LDM | CDM | RDM | RWB | LB | LCB | CB | RCB | RB | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | GKDiving | GKHandling | GKKicking | GKPositioning | GKReflexes | Release Clause | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 31 | Argentina | 94 | 94 | 110500000.0 | 565000.0 | 2202 | Left | 5.0 | 4.0 | 4.0 | Medium/ Medium | Messi | RF | 10.0 | Jul 1, 2004 | 2021 | 5'7 | 159lbs | 88+2 | 88+2 | 88+2 | 92+2 | 93+2 | 93+2 | 93+2 | 92+2 | 93+2 | 93+2 | 93+2 | 91+2 | 84+2 | 84+2 | 84+2 | 91+2 | 64+2 | 61+2 | 61+2 | 61+2 | 64+2 | 59+2 | 47+2 | 47+2 | 47+2 | 59+2 | 84.0 | 95.0 | 70.0 | 90.0 | 86.0 | 97.0 | 93.0 | 94.0 | 87.0 | 96.0 | 91.0 | 86.0 | 91.0 | 95.0 | 95.0 | 85.0 | 68.0 | 72.0 | 59.0 | 94.0 | 48.0 | 22.0 | 94.0 | 94.0 | 75.0 | 96.0 | 33.0 | 28.0 | 26.0 | 6.0 | 11.0 | 15.0 | 14.0 | 8.0 | 226.5M |
1 | 1 | 33 | Portugal | 94 | 94 | 77000000.0 | 405000.0 | 2228 | Right | 5.0 | 4.0 | 5.0 | High/ Low | C. Ronaldo | ST | 7.0 | Jul 10, 2018 | 2022 | 6'2 | 183lbs | 91+3 | 91+3 | 91+3 | 89+3 | 90+3 | 90+3 | 90+3 | 89+3 | 88+3 | 88+3 | 88+3 | 88+3 | 81+3 | 81+3 | 81+3 | 88+3 | 65+3 | 61+3 | 61+3 | 61+3 | 65+3 | 61+3 | 53+3 | 53+3 | 53+3 | 61+3 | 84.0 | 94.0 | 89.0 | 81.0 | 87.0 | 88.0 | 81.0 | 76.0 | 77.0 | 94.0 | 89.0 | 91.0 | 87.0 | 96.0 | 70.0 | 95.0 | 95.0 | 88.0 | 79.0 | 93.0 | 63.0 | 29.0 | 95.0 | 82.0 | 85.0 | 95.0 | 28.0 | 31.0 | 23.0 | 7.0 | 11.0 | 15.0 | 14.0 | 11.0 | 127.1M |
2 | 2 | 26 | Brazil | 92 | 93 | 118500000.0 | 290000.0 | 2143 | Right | 5.0 | 5.0 | 5.0 | High/ Medium | Neymar | LW | 10.0 | Aug 3, 2017 | 2022 | 5'9 | 150lbs | 84+3 | 84+3 | 84+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 88+3 | 81+3 | 81+3 | 81+3 | 88+3 | 65+3 | 60+3 | 60+3 | 60+3 | 65+3 | 60+3 | 47+3 | 47+3 | 47+3 | 60+3 | 79.0 | 87.0 | 62.0 | 84.0 | 84.0 | 96.0 | 88.0 | 87.0 | 78.0 | 95.0 | 94.0 | 90.0 | 96.0 | 94.0 | 84.0 | 80.0 | 61.0 | 81.0 | 49.0 | 82.0 | 56.0 | 36.0 | 89.0 | 87.0 | 81.0 | 94.0 | 27.0 | 24.0 | 33.0 | 9.0 | 9.0 | 15.0 | 15.0 | 11.0 | 228.1M |
3 | 3 | 27 | Spain | 91 | 93 | 72000000.0 | 260000.0 | 1471 | Right | 4.0 | 3.0 | 1.0 | Medium/ Medium | Lean | GK | 1.0 | Jul 1, 2011 | 2020 | 6'4 | 168lbs | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 17.0 | 13.0 | 21.0 | 50.0 | 13.0 | 18.0 | 21.0 | 19.0 | 51.0 | 42.0 | 57.0 | 58.0 | 60.0 | 90.0 | 43.0 | 31.0 | 67.0 | 43.0 | 64.0 | 12.0 | 38.0 | 30.0 | 12.0 | 68.0 | 40.0 | 68.0 | 15.0 | 21.0 | 13.0 | 90.0 | 85.0 | 87.0 | 88.0 | 94.0 | 138.6M |
4 | 4 | 27 | Belgium | 91 | 92 | 102000000.0 | 355000.0 | 2281 | Right | 4.0 | 5.0 | 4.0 | High/ High | Normal | RCM | 7.0 | Aug 30, 2015 | 2023 | 5'11 | 154lbs | 82+3 | 82+3 | 82+3 | 87+3 | 87+3 | 87+3 | 87+3 | 87+3 | 88+3 | 88+3 | 88+3 | 88+3 | 87+3 | 87+3 | 87+3 | 88+3 | 77+3 | 77+3 | 77+3 | 77+3 | 77+3 | 73+3 | 66+3 | 66+3 | 66+3 | 73+3 | 93.0 | 82.0 | 55.0 | 92.0 | 82.0 | 86.0 | 85.0 | 83.0 | 91.0 | 91.0 | 78.0 | 76.0 | 79.0 | 91.0 | 77.0 | 91.0 | 63.0 | 90.0 | 75.0 | 91.0 | 76.0 | 61.0 | 87.0 | 94.0 | 79.0 | 88.0 | 68.0 | 58.0 | 51.0 | 15.0 | 13.0 | 5.0 | 10.0 | 13.0 | 196.4M |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
18202 | 18202 | 19 | England | 47 | 65 | 60000.0 | 1000.0 | 1307 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Lean | CM | 22.0 | May 3, 2017 | 2019 | 5'9 | 134lbs | 42+2 | 42+2 | 42+2 | 44+2 | 44+2 | 44+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 45+2 | 45+2 | 45+2 | 45+2 | 45+2 | 34.0 | 38.0 | 40.0 | 49.0 | 25.0 | 42.0 | 30.0 | 34.0 | 45.0 | 43.0 | 54.0 | 57.0 | 60.0 | 49.0 | 76.0 | 43.0 | 55.0 | 40.0 | 47.0 | 38.0 | 46.0 | 46.0 | 39.0 | 52.0 | 43.0 | 45.0 | 40.0 | 48.0 | 47.0 | 10.0 | 13.0 | 7.0 | 8.0 | 9.0 | 143K |
18203 | 18203 | 19 | Sweden | 47 | 63 | 60000.0 | 1000.0 | 1098 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Normal | ST | 21.0 | Mar 19, 2018 | 2020 | 6'3 | 170lbs | 45+2 | 45+2 | 45+2 | 39+2 | 42+2 | 42+2 | 42+2 | 39+2 | 40+2 | 40+2 | 40+2 | 38+2 | 35+2 | 35+2 | 35+2 | 38+2 | 30+2 | 31+2 | 31+2 | 31+2 | 30+2 | 29+2 | 32+2 | 32+2 | 32+2 | 29+2 | 23.0 | 52.0 | 52.0 | 43.0 | 36.0 | 39.0 | 32.0 | 20.0 | 25.0 | 40.0 | 41.0 | 39.0 | 38.0 | 40.0 | 52.0 | 41.0 | 47.0 | 43.0 | 67.0 | 42.0 | 47.0 | 16.0 | 46.0 | 33.0 | 43.0 | 42.0 | 22.0 | 15.0 | 19.0 | 10.0 | 9.0 | 9.0 | 5.0 | 12.0 | 113K |
18204 | 18204 | 16 | England | 47 | 67 | 60000.0 | 1000.0 | 1189 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Normal | ST | 33.0 | Jul 1, 2017 | 2021 | 5'8 | 148lbs | 45+2 | 45+2 | 45+2 | 45+2 | 46+2 | 46+2 | 46+2 | 45+2 | 44+2 | 44+2 | 44+2 | 44+2 | 38+2 | 38+2 | 38+2 | 44+2 | 34+2 | 30+2 | 30+2 | 30+2 | 34+2 | 33+2 | 28+2 | 28+2 | 28+2 | 33+2 | 25.0 | 40.0 | 46.0 | 38.0 | 38.0 | 45.0 | 38.0 | 27.0 | 28.0 | 44.0 | 70.0 | 69.0 | 50.0 | 47.0 | 58.0 | 45.0 | 60.0 | 55.0 | 32.0 | 45.0 | 32.0 | 15.0 | 48.0 | 43.0 | 55.0 | 41.0 | 32.0 | 13.0 | 11.0 | 6.0 | 5.0 | 10.0 | 6.0 | 13.0 | 165K |
18205 | 18205 | 17 | England | 47 | 66 | 60000.0 | 1000.0 | 1228 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | RW | 34.0 | Apr 24, 2018 | 2019 | 5'10 | 154lbs | 47+2 | 47+2 | 47+2 | 47+2 | 46+2 | 46+2 | 46+2 | 47+2 | 45+2 | 45+2 | 45+2 | 46+2 | 39+2 | 39+2 | 39+2 | 46+2 | 36+2 | 32+2 | 32+2 | 32+2 | 36+2 | 35+2 | 31+2 | 31+2 | 31+2 | 35+2 | 44.0 | 50.0 | 39.0 | 42.0 | 40.0 | 51.0 | 34.0 | 32.0 | 32.0 | 52.0 | 61.0 | 60.0 | 52.0 | 21.0 | 71.0 | 64.0 | 42.0 | 40.0 | 48.0 | 34.0 | 33.0 | 22.0 | 44.0 | 47.0 | 50.0 | 46.0 | 20.0 | 25.0 | 27.0 | 14.0 | 6.0 | 14.0 | 8.0 | 9.0 | 143K |
18206 | 18206 | 16 | England | 46 | 66 | 60000.0 | 1000.0 | 1321 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | CM | 33.0 | Oct 30, 2018 | 2019 | 5'10 | 176lbs | 43+2 | 43+2 | 43+2 | 45+2 | 44+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 45+2 | 46+2 | 45+2 | 45+2 | 45+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 47+2 | 47+2 | 47+2 | 46+2 | 41.0 | 34.0 | 46.0 | 48.0 | 30.0 | 43.0 | 40.0 | 34.0 | 44.0 | 51.0 | 57.0 | 55.0 | 55.0 | 51.0 | 63.0 | 43.0 | 62.0 | 47.0 | 60.0 | 32.0 | 56.0 | 42.0 | 34.0 | 49.0 | 33.0 | 43.0 | 40.0 | 43.0 | 50.0 | 10.0 | 15.0 | 9.0 | 12.0 | 9.0 | 165K |
18207 rows × 81 columns
fifa['Release Clause'] = fifa['Release Clause'].replace(repl_dict, regex=True)
new = fifa["Release Clause"].str.split("*", n = 1, expand = True)
fifa["Wage1"]= new[0]
fifa["Wage2"]= new[1]
fifa['Wage1'] = pd.to_numeric(fifa['Wage1'], errors='coerce')
fifa['Wage2'] = pd.to_numeric(fifa['Wage2'], errors='coerce')
fifa['Release Clause'] = fifa['Wage1'] * fifa['Wage2']
fifa = fifa.drop(columns = ['Wage1', 'Wage2'])
fifa = fifa.dropna()
fifa
Unnamed: 0 | Age | Nationality | Overall | Potential | Value | Wage | Special | Preferred Foot | International Reputation | Weak Foot | Skill Moves | Work Rate | Body Type | Position | Jersey Number | Joined | Contract Valid Until | Height | Weight | LS | ST | RS | LW | LF | CF | RF | RW | LAM | CAM | RAM | LM | LCM | CM | RCM | RM | LWB | LDM | CDM | RDM | RWB | LB | LCB | CB | RCB | RB | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | GKDiving | GKHandling | GKKicking | GKPositioning | GKReflexes | Release Clause | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 31 | Argentina | 94 | 94 | 110500000.0 | 565000.0 | 2202 | Left | 5.0 | 4.0 | 4.0 | Medium/ Medium | Messi | RF | 10.0 | Jul 1, 2004 | 2021 | 5'7 | 159lbs | 88+2 | 88+2 | 88+2 | 92+2 | 93+2 | 93+2 | 93+2 | 92+2 | 93+2 | 93+2 | 93+2 | 91+2 | 84+2 | 84+2 | 84+2 | 91+2 | 64+2 | 61+2 | 61+2 | 61+2 | 64+2 | 59+2 | 47+2 | 47+2 | 47+2 | 59+2 | 84.0 | 95.0 | 70.0 | 90.0 | 86.0 | 97.0 | 93.0 | 94.0 | 87.0 | 96.0 | 91.0 | 86.0 | 91.0 | 95.0 | 95.0 | 85.0 | 68.0 | 72.0 | 59.0 | 94.0 | 48.0 | 22.0 | 94.0 | 94.0 | 75.0 | 96.0 | 33.0 | 28.0 | 26.0 | 6.0 | 11.0 | 15.0 | 14.0 | 8.0 | 226500000.0 |
1 | 1 | 33 | Portugal | 94 | 94 | 77000000.0 | 405000.0 | 2228 | Right | 5.0 | 4.0 | 5.0 | High/ Low | C. Ronaldo | ST | 7.0 | Jul 10, 2018 | 2022 | 6'2 | 183lbs | 91+3 | 91+3 | 91+3 | 89+3 | 90+3 | 90+3 | 90+3 | 89+3 | 88+3 | 88+3 | 88+3 | 88+3 | 81+3 | 81+3 | 81+3 | 88+3 | 65+3 | 61+3 | 61+3 | 61+3 | 65+3 | 61+3 | 53+3 | 53+3 | 53+3 | 61+3 | 84.0 | 94.0 | 89.0 | 81.0 | 87.0 | 88.0 | 81.0 | 76.0 | 77.0 | 94.0 | 89.0 | 91.0 | 87.0 | 96.0 | 70.0 | 95.0 | 95.0 | 88.0 | 79.0 | 93.0 | 63.0 | 29.0 | 95.0 | 82.0 | 85.0 | 95.0 | 28.0 | 31.0 | 23.0 | 7.0 | 11.0 | 15.0 | 14.0 | 11.0 | 127100000.0 |
2 | 2 | 26 | Brazil | 92 | 93 | 118500000.0 | 290000.0 | 2143 | Right | 5.0 | 5.0 | 5.0 | High/ Medium | Neymar | LW | 10.0 | Aug 3, 2017 | 2022 | 5'9 | 150lbs | 84+3 | 84+3 | 84+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 88+3 | 81+3 | 81+3 | 81+3 | 88+3 | 65+3 | 60+3 | 60+3 | 60+3 | 65+3 | 60+3 | 47+3 | 47+3 | 47+3 | 60+3 | 79.0 | 87.0 | 62.0 | 84.0 | 84.0 | 96.0 | 88.0 | 87.0 | 78.0 | 95.0 | 94.0 | 90.0 | 96.0 | 94.0 | 84.0 | 80.0 | 61.0 | 81.0 | 49.0 | 82.0 | 56.0 | 36.0 | 89.0 | 87.0 | 81.0 | 94.0 | 27.0 | 24.0 | 33.0 | 9.0 | 9.0 | 15.0 | 15.0 | 11.0 | 228100000.0 |
4 | 4 | 27 | Belgium | 91 | 92 | 102000000.0 | 355000.0 | 2281 | Right | 4.0 | 5.0 | 4.0 | High/ High | Normal | RCM | 7.0 | Aug 30, 2015 | 2023 | 5'11 | 154lbs | 82+3 | 82+3 | 82+3 | 87+3 | 87+3 | 87+3 | 87+3 | 87+3 | 88+3 | 88+3 | 88+3 | 88+3 | 87+3 | 87+3 | 87+3 | 88+3 | 77+3 | 77+3 | 77+3 | 77+3 | 77+3 | 73+3 | 66+3 | 66+3 | 66+3 | 73+3 | 93.0 | 82.0 | 55.0 | 92.0 | 82.0 | 86.0 | 85.0 | 83.0 | 91.0 | 91.0 | 78.0 | 76.0 | 79.0 | 91.0 | 77.0 | 91.0 | 63.0 | 90.0 | 75.0 | 91.0 | 76.0 | 61.0 | 87.0 | 94.0 | 79.0 | 88.0 | 68.0 | 58.0 | 51.0 | 15.0 | 13.0 | 5.0 | 10.0 | 13.0 | 196400000.0 |
5 | 5 | 27 | Belgium | 91 | 91 | 93000000.0 | 340000.0 | 2142 | Right | 4.0 | 4.0 | 4.0 | High/ Medium | Normal | LF | 10.0 | Jul 1, 2012 | 2020 | 5'8 | 163lbs | 83+3 | 83+3 | 83+3 | 89+3 | 88+3 | 88+3 | 88+3 | 89+3 | 89+3 | 89+3 | 89+3 | 89+3 | 82+3 | 82+3 | 82+3 | 89+3 | 66+3 | 63+3 | 63+3 | 63+3 | 66+3 | 60+3 | 49+3 | 49+3 | 49+3 | 60+3 | 81.0 | 84.0 | 61.0 | 89.0 | 80.0 | 95.0 | 83.0 | 79.0 | 83.0 | 94.0 | 94.0 | 88.0 | 95.0 | 90.0 | 94.0 | 82.0 | 56.0 | 83.0 | 66.0 | 80.0 | 54.0 | 41.0 | 87.0 | 89.0 | 86.0 | 91.0 | 34.0 | 27.0 | 22.0 | 11.0 | 12.0 | 6.0 | 8.0 | 8.0 | 172100000.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
18202 | 18202 | 19 | England | 47 | 65 | 60000.0 | 1000.0 | 1307 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Lean | CM | 22.0 | May 3, 2017 | 2019 | 5'9 | 134lbs | 42+2 | 42+2 | 42+2 | 44+2 | 44+2 | 44+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 44+2 | 45+2 | 45+2 | 45+2 | 45+2 | 45+2 | 34.0 | 38.0 | 40.0 | 49.0 | 25.0 | 42.0 | 30.0 | 34.0 | 45.0 | 43.0 | 54.0 | 57.0 | 60.0 | 49.0 | 76.0 | 43.0 | 55.0 | 40.0 | 47.0 | 38.0 | 46.0 | 46.0 | 39.0 | 52.0 | 43.0 | 45.0 | 40.0 | 48.0 | 47.0 | 10.0 | 13.0 | 7.0 | 8.0 | 9.0 | 143000.0 |
18203 | 18203 | 19 | Sweden | 47 | 63 | 60000.0 | 1000.0 | 1098 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Normal | ST | 21.0 | Mar 19, 2018 | 2020 | 6'3 | 170lbs | 45+2 | 45+2 | 45+2 | 39+2 | 42+2 | 42+2 | 42+2 | 39+2 | 40+2 | 40+2 | 40+2 | 38+2 | 35+2 | 35+2 | 35+2 | 38+2 | 30+2 | 31+2 | 31+2 | 31+2 | 30+2 | 29+2 | 32+2 | 32+2 | 32+2 | 29+2 | 23.0 | 52.0 | 52.0 | 43.0 | 36.0 | 39.0 | 32.0 | 20.0 | 25.0 | 40.0 | 41.0 | 39.0 | 38.0 | 40.0 | 52.0 | 41.0 | 47.0 | 43.0 | 67.0 | 42.0 | 47.0 | 16.0 | 46.0 | 33.0 | 43.0 | 42.0 | 22.0 | 15.0 | 19.0 | 10.0 | 9.0 | 9.0 | 5.0 | 12.0 | 113000.0 |
18204 | 18204 | 16 | England | 47 | 67 | 60000.0 | 1000.0 | 1189 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Normal | ST | 33.0 | Jul 1, 2017 | 2021 | 5'8 | 148lbs | 45+2 | 45+2 | 45+2 | 45+2 | 46+2 | 46+2 | 46+2 | 45+2 | 44+2 | 44+2 | 44+2 | 44+2 | 38+2 | 38+2 | 38+2 | 44+2 | 34+2 | 30+2 | 30+2 | 30+2 | 34+2 | 33+2 | 28+2 | 28+2 | 28+2 | 33+2 | 25.0 | 40.0 | 46.0 | 38.0 | 38.0 | 45.0 | 38.0 | 27.0 | 28.0 | 44.0 | 70.0 | 69.0 | 50.0 | 47.0 | 58.0 | 45.0 | 60.0 | 55.0 | 32.0 | 45.0 | 32.0 | 15.0 | 48.0 | 43.0 | 55.0 | 41.0 | 32.0 | 13.0 | 11.0 | 6.0 | 5.0 | 10.0 | 6.0 | 13.0 | 165000.0 |
18205 | 18205 | 17 | England | 47 | 66 | 60000.0 | 1000.0 | 1228 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | RW | 34.0 | Apr 24, 2018 | 2019 | 5'10 | 154lbs | 47+2 | 47+2 | 47+2 | 47+2 | 46+2 | 46+2 | 46+2 | 47+2 | 45+2 | 45+2 | 45+2 | 46+2 | 39+2 | 39+2 | 39+2 | 46+2 | 36+2 | 32+2 | 32+2 | 32+2 | 36+2 | 35+2 | 31+2 | 31+2 | 31+2 | 35+2 | 44.0 | 50.0 | 39.0 | 42.0 | 40.0 | 51.0 | 34.0 | 32.0 | 32.0 | 52.0 | 61.0 | 60.0 | 52.0 | 21.0 | 71.0 | 64.0 | 42.0 | 40.0 | 48.0 | 34.0 | 33.0 | 22.0 | 44.0 | 47.0 | 50.0 | 46.0 | 20.0 | 25.0 | 27.0 | 14.0 | 6.0 | 14.0 | 8.0 | 9.0 | 143000.0 |
18206 | 18206 | 16 | England | 46 | 66 | 60000.0 | 1000.0 | 1321 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | CM | 33.0 | Oct 30, 2018 | 2019 | 5'10 | 176lbs | 43+2 | 43+2 | 43+2 | 45+2 | 44+2 | 44+2 | 44+2 | 45+2 | 45+2 | 45+2 | 45+2 | 46+2 | 45+2 | 45+2 | 45+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 46+2 | 47+2 | 47+2 | 47+2 | 46+2 | 41.0 | 34.0 | 46.0 | 48.0 | 30.0 | 43.0 | 40.0 | 34.0 | 44.0 | 51.0 | 57.0 | 55.0 | 55.0 | 51.0 | 63.0 | 43.0 | 62.0 | 47.0 | 60.0 | 32.0 | 56.0 | 42.0 | 34.0 | 49.0 | 33.0 | 43.0 | 40.0 | 43.0 | 50.0 | 10.0 | 15.0 | 9.0 | 12.0 | 9.0 | 165000.0 |
14743 rows × 81 columns
fifa.LS = fifa.LS.apply(lambda x: pd.Series(str(x).split("+")))
fifa.ST = fifa.ST.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RS = fifa.RS.apply(lambda x: pd.Series(str(x).split("+")))
fifa.LW = fifa.LW.apply(lambda x: pd.Series(str(x).split("+")))
fifa.LF = fifa.LF.apply(lambda x: pd.Series(str(x).split("+")))
fifa.CF = fifa.CF.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RF = fifa.RF.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RW = fifa.RW.apply(lambda x: pd.Series(str(x).split("+")))
fifa.LAM = fifa.LAM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.CAM = fifa.CAM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RAM = fifa.RAM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RM = fifa.RM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.LM = fifa.LM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.CM = fifa.CM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RCM = fifa.RCM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.LCM = fifa.LCM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.LWB = fifa.LWB.apply(lambda x: pd.Series(str(x).split("+")))
fifa.LDM = fifa.LDM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.CDM = fifa.CDM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RDM = fifa.RDM.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RWB = fifa.RWB.apply(lambda x: pd.Series(str(x).split("+")))
fifa.LB = fifa.LB.apply(lambda x: pd.Series(str(x).split("+")))
fifa.LCB = fifa.LCB.apply(lambda x: pd.Series(str(x).split("+")))
fifa.CB = fifa.CB.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RCB = fifa.RCB.apply(lambda x: pd.Series(str(x).split("+")))
fifa.RB = fifa.RB.apply(lambda x: pd.Series(str(x).split("+")))
fifa
Unnamed: 0 | Age | Nationality | Overall | Potential | Value | Wage | Special | Preferred Foot | International Reputation | Weak Foot | Skill Moves | Work Rate | Body Type | Position | Jersey Number | Joined | Contract Valid Until | Height | Weight | LS | ST | RS | LW | LF | CF | RF | RW | LAM | CAM | RAM | LM | LCM | CM | RCM | RM | LWB | LDM | CDM | RDM | RWB | LB | LCB | CB | RCB | RB | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | GKDiving | GKHandling | GKKicking | GKPositioning | GKReflexes | Release Clause | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 31 | Argentina | 94 | 94 | 110500000.0 | 565000.0 | 2202 | Left | 5.0 | 4.0 | 4.0 | Medium/ Medium | Messi | RF | 10.0 | Jul 1, 2004 | 2021 | 5'7 | 159lbs | 88 | 88 | 88 | 92 | 93 | 93 | 93 | 92 | 93 | 93 | 93 | 91 | 84 | 84 | 84 | 91 | 64 | 61 | 61 | 61 | 64 | 59 | 47 | 47 | 47 | 59 | 84.0 | 95.0 | 70.0 | 90.0 | 86.0 | 97.0 | 93.0 | 94.0 | 87.0 | 96.0 | 91.0 | 86.0 | 91.0 | 95.0 | 95.0 | 85.0 | 68.0 | 72.0 | 59.0 | 94.0 | 48.0 | 22.0 | 94.0 | 94.0 | 75.0 | 96.0 | 33.0 | 28.0 | 26.0 | 6.0 | 11.0 | 15.0 | 14.0 | 8.0 | 226500000.0 |
1 | 1 | 33 | Portugal | 94 | 94 | 77000000.0 | 405000.0 | 2228 | Right | 5.0 | 4.0 | 5.0 | High/ Low | C. Ronaldo | ST | 7.0 | Jul 10, 2018 | 2022 | 6'2 | 183lbs | 91 | 91 | 91 | 89 | 90 | 90 | 90 | 89 | 88 | 88 | 88 | 88 | 81 | 81 | 81 | 88 | 65 | 61 | 61 | 61 | 65 | 61 | 53 | 53 | 53 | 61 | 84.0 | 94.0 | 89.0 | 81.0 | 87.0 | 88.0 | 81.0 | 76.0 | 77.0 | 94.0 | 89.0 | 91.0 | 87.0 | 96.0 | 70.0 | 95.0 | 95.0 | 88.0 | 79.0 | 93.0 | 63.0 | 29.0 | 95.0 | 82.0 | 85.0 | 95.0 | 28.0 | 31.0 | 23.0 | 7.0 | 11.0 | 15.0 | 14.0 | 11.0 | 127100000.0 |
2 | 2 | 26 | Brazil | 92 | 93 | 118500000.0 | 290000.0 | 2143 | Right | 5.0 | 5.0 | 5.0 | High/ Medium | Neymar | LW | 10.0 | Aug 3, 2017 | 2022 | 5'9 | 150lbs | 84 | 84 | 84 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 88 | 81 | 81 | 81 | 88 | 65 | 60 | 60 | 60 | 65 | 60 | 47 | 47 | 47 | 60 | 79.0 | 87.0 | 62.0 | 84.0 | 84.0 | 96.0 | 88.0 | 87.0 | 78.0 | 95.0 | 94.0 | 90.0 | 96.0 | 94.0 | 84.0 | 80.0 | 61.0 | 81.0 | 49.0 | 82.0 | 56.0 | 36.0 | 89.0 | 87.0 | 81.0 | 94.0 | 27.0 | 24.0 | 33.0 | 9.0 | 9.0 | 15.0 | 15.0 | 11.0 | 228100000.0 |
4 | 4 | 27 | Belgium | 91 | 92 | 102000000.0 | 355000.0 | 2281 | Right | 4.0 | 5.0 | 4.0 | High/ High | Normal | RCM | 7.0 | Aug 30, 2015 | 2023 | 5'11 | 154lbs | 82 | 82 | 82 | 87 | 87 | 87 | 87 | 87 | 88 | 88 | 88 | 88 | 87 | 87 | 87 | 88 | 77 | 77 | 77 | 77 | 77 | 73 | 66 | 66 | 66 | 73 | 93.0 | 82.0 | 55.0 | 92.0 | 82.0 | 86.0 | 85.0 | 83.0 | 91.0 | 91.0 | 78.0 | 76.0 | 79.0 | 91.0 | 77.0 | 91.0 | 63.0 | 90.0 | 75.0 | 91.0 | 76.0 | 61.0 | 87.0 | 94.0 | 79.0 | 88.0 | 68.0 | 58.0 | 51.0 | 15.0 | 13.0 | 5.0 | 10.0 | 13.0 | 196400000.0 |
5 | 5 | 27 | Belgium | 91 | 91 | 93000000.0 | 340000.0 | 2142 | Right | 4.0 | 4.0 | 4.0 | High/ Medium | Normal | LF | 10.0 | Jul 1, 2012 | 2020 | 5'8 | 163lbs | 83 | 83 | 83 | 89 | 88 | 88 | 88 | 89 | 89 | 89 | 89 | 89 | 82 | 82 | 82 | 89 | 66 | 63 | 63 | 63 | 66 | 60 | 49 | 49 | 49 | 60 | 81.0 | 84.0 | 61.0 | 89.0 | 80.0 | 95.0 | 83.0 | 79.0 | 83.0 | 94.0 | 94.0 | 88.0 | 95.0 | 90.0 | 94.0 | 82.0 | 56.0 | 83.0 | 66.0 | 80.0 | 54.0 | 41.0 | 87.0 | 89.0 | 86.0 | 91.0 | 34.0 | 27.0 | 22.0 | 11.0 | 12.0 | 6.0 | 8.0 | 8.0 | 172100000.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
18202 | 18202 | 19 | England | 47 | 65 | 60000.0 | 1000.0 | 1307 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Lean | CM | 22.0 | May 3, 2017 | 2019 | 5'9 | 134lbs | 42 | 42 | 42 | 44 | 44 | 44 | 44 | 44 | 45 | 45 | 45 | 44 | 45 | 45 | 45 | 44 | 44 | 45 | 45 | 45 | 44 | 45 | 45 | 45 | 45 | 45 | 34.0 | 38.0 | 40.0 | 49.0 | 25.0 | 42.0 | 30.0 | 34.0 | 45.0 | 43.0 | 54.0 | 57.0 | 60.0 | 49.0 | 76.0 | 43.0 | 55.0 | 40.0 | 47.0 | 38.0 | 46.0 | 46.0 | 39.0 | 52.0 | 43.0 | 45.0 | 40.0 | 48.0 | 47.0 | 10.0 | 13.0 | 7.0 | 8.0 | 9.0 | 143000.0 |
18203 | 18203 | 19 | Sweden | 47 | 63 | 60000.0 | 1000.0 | 1098 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Normal | ST | 21.0 | Mar 19, 2018 | 2020 | 6'3 | 170lbs | 45 | 45 | 45 | 39 | 42 | 42 | 42 | 39 | 40 | 40 | 40 | 38 | 35 | 35 | 35 | 38 | 30 | 31 | 31 | 31 | 30 | 29 | 32 | 32 | 32 | 29 | 23.0 | 52.0 | 52.0 | 43.0 | 36.0 | 39.0 | 32.0 | 20.0 | 25.0 | 40.0 | 41.0 | 39.0 | 38.0 | 40.0 | 52.0 | 41.0 | 47.0 | 43.0 | 67.0 | 42.0 | 47.0 | 16.0 | 46.0 | 33.0 | 43.0 | 42.0 | 22.0 | 15.0 | 19.0 | 10.0 | 9.0 | 9.0 | 5.0 | 12.0 | 113000.0 |
18204 | 18204 | 16 | England | 47 | 67 | 60000.0 | 1000.0 | 1189 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Normal | ST | 33.0 | Jul 1, 2017 | 2021 | 5'8 | 148lbs | 45 | 45 | 45 | 45 | 46 | 46 | 46 | 45 | 44 | 44 | 44 | 44 | 38 | 38 | 38 | 44 | 34 | 30 | 30 | 30 | 34 | 33 | 28 | 28 | 28 | 33 | 25.0 | 40.0 | 46.0 | 38.0 | 38.0 | 45.0 | 38.0 | 27.0 | 28.0 | 44.0 | 70.0 | 69.0 | 50.0 | 47.0 | 58.0 | 45.0 | 60.0 | 55.0 | 32.0 | 45.0 | 32.0 | 15.0 | 48.0 | 43.0 | 55.0 | 41.0 | 32.0 | 13.0 | 11.0 | 6.0 | 5.0 | 10.0 | 6.0 | 13.0 | 165000.0 |
18205 | 18205 | 17 | England | 47 | 66 | 60000.0 | 1000.0 | 1228 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | RW | 34.0 | Apr 24, 2018 | 2019 | 5'10 | 154lbs | 47 | 47 | 47 | 47 | 46 | 46 | 46 | 47 | 45 | 45 | 45 | 46 | 39 | 39 | 39 | 46 | 36 | 32 | 32 | 32 | 36 | 35 | 31 | 31 | 31 | 35 | 44.0 | 50.0 | 39.0 | 42.0 | 40.0 | 51.0 | 34.0 | 32.0 | 32.0 | 52.0 | 61.0 | 60.0 | 52.0 | 21.0 | 71.0 | 64.0 | 42.0 | 40.0 | 48.0 | 34.0 | 33.0 | 22.0 | 44.0 | 47.0 | 50.0 | 46.0 | 20.0 | 25.0 | 27.0 | 14.0 | 6.0 | 14.0 | 8.0 | 9.0 | 143000.0 |
18206 | 18206 | 16 | England | 46 | 66 | 60000.0 | 1000.0 | 1321 | Right | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | CM | 33.0 | Oct 30, 2018 | 2019 | 5'10 | 176lbs | 43 | 43 | 43 | 45 | 44 | 44 | 44 | 45 | 45 | 45 | 45 | 46 | 45 | 45 | 45 | 46 | 46 | 46 | 46 | 46 | 46 | 46 | 47 | 47 | 47 | 46 | 41.0 | 34.0 | 46.0 | 48.0 | 30.0 | 43.0 | 40.0 | 34.0 | 44.0 | 51.0 | 57.0 | 55.0 | 55.0 | 51.0 | 63.0 | 43.0 | 62.0 | 47.0 | 60.0 | 32.0 | 56.0 | 42.0 | 34.0 | 49.0 | 33.0 | 43.0 | 40.0 | 43.0 | 50.0 | 10.0 | 15.0 | 9.0 | 12.0 | 9.0 | 165000.0 |
14743 rows × 81 columns
fifa["Nationality"].value_counts().head(10).plot(kind = 'bar', figsize = [15,5])
plt.show()
fifa["Value"].value_counts().plot(kind = 'hist', figsize = [15,8])
plt.show()
from sklearn.model_selection import train_test_split
train, test = train_test_split(fifa, test_size = 0.9, random_state=42)
train
Unnamed: 0 | Age | Nationality | Overall | Potential | Value | Wage | Special | Preferred Foot | International Reputation | Weak Foot | Skill Moves | Work Rate | Body Type | Position | Jersey Number | Joined | Contract Valid Until | Height | Weight | LS | ST | RS | LW | LF | CF | RF | RW | LAM | CAM | RAM | LM | LCM | CM | RCM | RM | LWB | LDM | CDM | RDM | RWB | LB | LCB | CB | RCB | RB | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | GKDiving | GKHandling | GKKicking | GKPositioning | GKReflexes | Release Clause | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15998 | 15998 | 21 | France | 58 | 65 | 150000.0 | 3000.0 | 1464 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Normal | RB | 35.0 | Jul 12, 2017 | 2019 | 5'11 | 174lbs | 48 | 48 | 48 | 50 | 49 | 49 | 49 | 50 | 49 | 49 | 49 | 52 | 50 | 50 | 50 | 52 | 57 | 54 | 54 | 54 | 57 | 57 | 56 | 56 | 56 | 57 | 56.0 | 36.0 | 48.0 | 52.0 | 35.0 | 53.0 | 31.0 | 36.0 | 47.0 | 52.0 | 64.0 | 61.0 | 52.0 | 54.0 | 57.0 | 44.0 | 56.0 | 62.0 | 61.0 | 41.0 | 58.0 | 58.0 | 49.0 | 39.0 | 40.0 | 45.0 | 51.0 | 63.0 | 60.0 | 8.0 | 13.0 | 9.0 | 9.0 | 9.0 | 315000.0 |
6032 | 6032 | 18 | Germany | 69 | 88 | 2200000.0 | 4000.0 | 1547 | Right | 1.0 | 3.0 | 3.0 | Medium/ Medium | Lean | ST | 15.0 | Jul 1, 2017 | 2020 | 6'0 | 172lbs | 68 | 68 | 68 | 64 | 67 | 67 | 67 | 64 | 63 | 63 | 63 | 61 | 53 | 53 | 53 | 61 | 42 | 39 | 39 | 39 | 42 | 40 | 36 | 36 | 36 | 40 | 36.0 | 74.0 | 63.0 | 50.0 | 65.0 | 69.0 | 39.0 | 38.0 | 34.0 | 69.0 | 71.0 | 68.0 | 80.0 | 73.0 | 71.0 | 66.0 | 59.0 | 57.0 | 65.0 | 58.0 | 31.0 | 16.0 | 74.0 | 57.0 | 55.0 | 58.0 | 18.0 | 17.0 | 20.0 | 14.0 | 12.0 | 10.0 | 7.0 | 11.0 | 4900000.0 |
17678 | 17678 | 19 | England | 53 | 60 | 80000.0 | 1000.0 | 1425 | Left | 1.0 | 3.0 | 2.0 | Medium/ Medium | Lean | ST | 21.0 | Mar 31, 2016 | 2020 | 5'9 | 137lbs | 51 | 51 | 51 | 52 | 51 | 51 | 51 | 52 | 49 | 49 | 49 | 50 | 45 | 45 | 45 | 50 | 48 | 45 | 45 | 45 | 48 | 48 | 46 | 46 | 46 | 48 | 46.0 | 57.0 | 40.0 | 43.0 | 33.0 | 54.0 | 32.0 | 29.0 | 32.0 | 52.0 | 59.0 | 63.0 | 69.0 | 57.0 | 74.0 | 46.0 | 65.0 | 50.0 | 54.0 | 40.0 | 52.0 | 54.0 | 56.0 | 38.0 | 55.0 | 40.0 | 37.0 | 42.0 | 41.0 | 12.0 | 14.0 | 9.0 | 10.0 | 10.0 | 156000.0 |
16217 | 16217 | 20 | Germany | 58 | 71 | 250000.0 | 3000.0 | 1419 | Left | 1.0 | 3.0 | 3.0 | Medium/ Medium | Lean | RM | 16.0 | Jul 1, 2017 | 2019 | 5'9 | 152lbs | 51 | 51 | 51 | 57 | 54 | 54 | 54 | 57 | 55 | 55 | 55 | 56 | 50 | 50 | 50 | 56 | 43 | 40 | 40 | 40 | 43 | 41 | 34 | 34 | 34 | 41 | 55.0 | 51.0 | 40.0 | 54.0 | 50.0 | 67.0 | 57.0 | 47.0 | 51.0 | 60.0 | 68.0 | 67.0 | 78.0 | 46.0 | 76.0 | 45.0 | 34.0 | 45.0 | 44.0 | 44.0 | 38.0 | 21.0 | 47.0 | 52.0 | 53.0 | 50.0 | 23.0 | 30.0 | 25.0 | 13.0 | 10.0 | 8.0 | 13.0 | 7.0 | 606000.0 |
8279 | 8279 | 18 | Netherlands | 67 | 79 | 1300000.0 | 9000.0 | 1673 | Right | 1.0 | 3.0 | 3.0 | Medium/ Medium | Lean | CAM | 71.0 | Jul 14, 2018 | 2022 | 5'8 | 141lbs | 60 | 60 | 60 | 65 | 64 | 64 | 64 | 65 | 65 | 65 | 65 | 65 | 61 | 61 | 61 | 65 | 53 | 50 | 50 | 50 | 53 | 49 | 41 | 41 | 41 | 49 | 64.0 | 58.0 | 42.0 | 64.0 | 60.0 | 72.0 | 70.0 | 64.0 | 57.0 | 70.0 | 72.0 | 72.0 | 68.0 | 62.0 | 81.0 | 64.0 | 60.0 | 66.0 | 54.0 | 60.0 | 39.0 | 36.0 | 52.0 | 72.0 | 52.0 | 54.0 | 35.0 | 29.0 | 28.0 | 10.0 | 13.0 | 11.0 | 11.0 | 5.0 | 2600000.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
6303 | 6303 | 30 | Spain | 69 | 69 | 775000.0 | 5000.0 | 1890 | Right | 1.0 | 3.0 | 3.0 | Medium/ High | Lean | LDM | 6.0 | Aug 16, 2016 | 2020 | 6'0 | 154lbs | 63 | 63 | 63 | 64 | 64 | 64 | 64 | 64 | 65 | 65 | 65 | 65 | 67 | 67 | 67 | 65 | 66 | 68 | 68 | 68 | 66 | 66 | 66 | 66 | 66 | 66 | 58.0 | 49.0 | 57.0 | 69.0 | 66.0 | 66.0 | 71.0 | 56.0 | 66.0 | 70.0 | 68.0 | 67.0 | 62.0 | 71.0 | 69.0 | 75.0 | 75.0 | 73.0 | 72.0 | 68.0 | 72.0 | 73.0 | 58.0 | 66.0 | 53.0 | 60.0 | 55.0 | 69.0 | 62.0 | 8.0 | 14.0 | 12.0 | 6.0 | 14.0 | 1200000.0 |
16473 | 16473 | 19 | Mexico | 57 | 71 | 200000.0 | 1000.0 | 1436 | Right | 1.0 | 2.0 | 2.0 | Medium/ Medium | Normal | RB | 35.0 | Jul 1, 2018 | 2021 | 5'9 | 170lbs | 45 | 45 | 45 | 48 | 47 | 47 | 47 | 48 | 47 | 47 | 47 | 50 | 48 | 48 | 48 | 50 | 55 | 53 | 53 | 53 | 55 | 56 | 56 | 56 | 56 | 56 | 45.0 | 31.0 | 53.0 | 53.0 | 29.0 | 62.0 | 36.0 | 41.0 | 47.0 | 40.0 | 69.0 | 54.0 | 53.0 | 55.0 | 68.0 | 31.0 | 56.0 | 62.0 | 57.0 | 28.0 | 54.0 | 54.0 | 49.0 | 37.0 | 45.0 | 38.0 | 49.0 | 67.0 | 64.0 | 13.0 | 5.0 | 8.0 | 13.0 | 8.0 | 465000.0 |
6559 | 6559 | 18 | Spain | 69 | 86 | 2200000.0 | 24000.0 | 1628 | Right | 1.0 | 5.0 | 4.0 | Medium/ Medium | Normal | LW | 55.0 | Aug 31, 2016 | 2019 | 5'7 | 150lbs | 62 | 62 | 62 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 67 | 60 | 60 | 60 | 67 | 50 | 46 | 46 | 46 | 50 | 45 | 37 | 37 | 37 | 45 | 53.0 | 66.0 | 30.0 | 71.0 | 44.0 | 76.0 | 62.0 | 47.0 | 50.0 | 74.0 | 78.0 | 71.0 | 81.0 | 61.0 | 84.0 | 70.0 | 65.0 | 58.0 | 38.0 | 63.0 | 41.0 | 20.0 | 65.0 | 64.0 | 58.0 | 62.0 | 43.0 | 23.0 | 21.0 | 13.0 | 9.0 | 13.0 | 10.0 | 6.0 | 5400000.0 |
1016 | 1016 | 21 | Germany | 77 | 84 | 11000000.0 | 22000.0 | 1795 | Right | 1.0 | 3.0 | 3.0 | Medium/ Medium | Lean | RCB | 31.0 | May 15, 2015 | 2021 | 6'2 | 165lbs | 60 | 60 | 60 | 59 | 61 | 61 | 61 | 59 | 62 | 62 | 62 | 62 | 66 | 66 | 66 | 62 | 69 | 73 | 73 | 73 | 69 | 71 | 76 | 76 | 76 | 71 | 42.0 | 42.0 | 74.0 | 71.0 | 38.0 | 66.0 | 37.0 | 39.0 | 69.0 | 70.0 | 54.0 | 73.0 | 62.0 | 75.0 | 56.0 | 55.0 | 71.0 | 72.0 | 78.0 | 45.0 | 76.0 | 78.0 | 52.0 | 57.0 | 48.0 | 72.0 | 79.0 | 79.0 | 76.0 | 11.0 | 12.0 | 12.0 | 13.0 | 13.0 | 22000000.0 |
8852 | 8852 | 25 | Germany | 66 | 70 | 675000.0 | 1000.0 | 1699 | Right | 1.0 | 3.0 | 3.0 | High/ Medium | Lean | RB | 27.0 | Jul 1, 2017 | 2019 | 5'8 | 161lbs | 52 | 52 | 52 | 60 | 57 | 57 | 57 | 60 | 59 | 59 | 59 | 62 | 58 | 58 | 58 | 62 | 65 | 61 | 61 | 61 | 65 | 65 | 60 | 60 | 60 | 65 | 65.0 | 33.0 | 45.0 | 62.0 | 42.0 | 70.0 | 44.0 | 34.0 | 51.0 | 66.0 | 79.0 | 75.0 | 77.0 | 57.0 | 82.0 | 49.0 | 73.0 | 74.0 | 49.0 | 44.0 | 66.0 | 62.0 | 51.0 | 52.0 | 41.0 | 55.0 | 59.0 | 64.0 | 69.0 | 12.0 | 14.0 | 14.0 | 10.0 | 14.0 | 1000000.0 |
1474 rows × 81 columns
Setting up a pycaret session
session_1 = setup(train, target = 'Value', session_id=1, log_experiment=False, experiment_name='Cases_1')
# , pca = True, pca_method='linear'
Setup Succesfully Completed.
Description | Value | |
---|---|---|
0 | session_id | 1 |
1 | Transform Target | False |
2 | Transform Target Method | None |
3 | Original Data | (1474, 81) |
4 | Missing Values | False |
5 | Numeric Features | 71 |
6 | Categorical Features | 8 |
7 | Ordinal Features | False |
8 | High Cardinality Features | False |
9 | High Cardinality Method | None |
10 | Sampled Data | (1474, 81) |
11 | Transformed Train Set | (1031, 312) |
12 | Transformed Test Set | (443, 312) |
13 | Numeric Imputer | mean |
14 | Categorical Imputer | constant |
15 | Normalize | False |
16 | Normalize Method | None |
17 | Transformation | False |
18 | Transformation Method | None |
19 | PCA | False |
20 | PCA Method | None |
21 | PCA Components | None |
22 | Ignore Low Variance | False |
23 | Combine Rare Levels | False |
24 | Rare Level Threshold | None |
25 | Numeric Binning | False |
26 | Remove Outliers | False |
27 | Outliers Threshold | None |
28 | Remove Multicollinearity | False |
29 | Multicollinearity Threshold | None |
30 | Clustering | False |
31 | Clustering Iteration | None |
32 | Polynomial Features | False |
33 | Polynomial Degree | None |
34 | Trignometry Features | False |
35 | Polynomial Threshold | None |
36 | Group Features | False |
37 | Feature Selection | False |
38 | Features Selection Threshold | None |
39 | Feature Interaction | False |
40 | Feature Ratio | False |
41 | Interaction Threshold | None |
best_model = compare_models()
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE | TT (Sec) | |
---|---|---|---|---|---|---|---|---|
0 | Lasso Least Angle Regression | 282783.0442 | 423761074666.3661 | 618255.7624 | 0.9794 | 0.5431 | 0.3628 | 0.0554 |
1 | Gradient Boosting Regressor | 249016.2020 | 697890264418.2385 | 718749.2301 | 0.9793 | 0.1910 | 0.1494 | 1.3029 |
2 | Elastic Net | 321864.4501 | 439091653534.2890 | 634103.3412 | 0.9787 | 0.6109 | 0.5726 | 0.2823 |
3 | Huber Regressor | 272589.6630 | 441193740635.0476 | 643752.9687 | 0.9786 | 0.2102 | 0.1589 | 0.1302 |
4 | Bayesian Ridge | 270370.4972 | 451737756385.2668 | 636500.0104 | 0.9784 | 0.4566 | 0.2395 | 0.1347 |
5 | Extreme Gradient Boosting | 267334.9126 | 663289327027.7209 | 752380.4902 | 0.9778 | 0.2164 | 0.1699 | 0.5436 |
6 | TheilSen Regressor | 363298.5789 | 467526227166.3256 | 661961.4975 | 0.9777 | 0.7542 | 0.6181 | 539.9337 |
7 | Ridge Regression | 376534.7130 | 451663765364.9515 | 647883.3563 | 0.9777 | 0.7450 | 0.7241 | 0.0197 |
8 | Orthogonal Matching Pursuit | 321516.2408 | 474298331234.1436 | 660397.7113 | 0.9761 | 0.5408 | 0.4595 | 0.0211 |
9 | Lasso Regression | 391584.6039 | 496889428240.3161 | 683211.5390 | 0.9748 | 0.7241 | 0.7383 | 0.3531 |
10 | Linear Regression | 401123.0674 | 499013888281.1590 | 685450.5461 | 0.9746 | 0.6867 | 0.7735 | 0.0490 |
11 | Extra Trees Regressor | 242228.1600 | 1273580457742.6252 | 892912.1996 | 0.9648 | 0.1252 | 0.0934 | 2.3143 |
12 | Random Forest | 284029.1127 | 1515355955273.2683 | 1008251.6042 | 0.9632 | 0.1317 | 0.1048 | 2.6496 |
13 | CatBoost Regressor | 279535.2383 | 1850800579453.9272 | 1010098.9721 | 0.9629 | 0.3135 | 0.1640 | 7.0155 |
14 | K Neighbors Regressor | 345007.0948 | 2102487415982.0759 | 1166314.1061 | 0.9488 | 0.1826 | 0.1489 | 0.0260 |
15 | Passive Aggressive Regressor | 408370.6432 | 1261604319312.5366 | 1042123.1443 | 0.9391 | 0.2455 | 0.1952 | 0.0256 |
16 | Decision Tree | 409796.3032 | 2187238335511.5757 | 1345973.7968 | 0.9294 | 0.1842 | 0.1437 | 0.0675 |
17 | AdaBoost Regressor | 718681.0211 | 2563097796765.3745 | 1390477.9733 | 0.9277 | 1.0277 | 1.8889 | 0.5268 |
18 | Light Gradient Boosting Machine | 435781.1752 | 3666142106110.5806 | 1583551.9247 | 0.9138 | 0.2488 | 0.1447 | 0.3356 |
19 | Random Sample Consensus | 405678.3472 | 2767493507852.2100 | 1122299.7747 | 0.8165 | 0.5970 | 0.8472 | 3.3608 |
20 | Support Vector Machine | 2087378.6090 | 33234606101056.3633 | 5436038.1265 | -0.1267 | 1.3826 | 1.3679 | 0.4923 |
21 | Least Angle Regression | 28477922902607237878544330716293095344832512.0000 | 455478406000872500511301671368618166157698670765252318388099071450535744244678880210714624.0000 | 213419400773072811771872404793673993099935744.0000 | -22339438705739811992478101946947357107486588606143416563650532566228048805888.0000 | 20.4804 | 47376671302580016906739564486764527616.0000 | 0.5740 |
model_metadata = models()
model_metadata['Name']
ID lr Linear Regression lasso Lasso Regression ridge Ridge Regression en Elastic Net lar Least Angle Regression llar Lasso Least Angle Regression omp Orthogonal Matching Pursuit br Bayesian Ridge ard Automatic Relevance Determination par Passive Aggressive Regressor ransac Random Sample Consensus tr TheilSen Regressor huber Huber Regressor kr Kernel Ridge svm Support Vector Machine knn K Neighbors Regressor dt Decision Tree rf Random Forest et Extra Trees Regressor ada AdaBoost Regressor gbr Gradient Boosting Regressor mlp Multi Level Perceptron xgboost Extreme Gradient Boosting lightgbm Light Gradient Boosting Machine catboost CatBoost Regressor Name: Name, dtype: object
llar = create_model('llar')
MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
---|---|---|---|---|---|---|
0 | 242943.5319 | 317938532908.5282 | 563860.3842 | 0.9899 | 0.5490 | 0.3871 |
1 | 272474.3952 | 255396296253.6623 | 505367.4863 | 0.9955 | 0.4174 | 0.4260 |
2 | 299320.0049 | 384062866058.8424 | 619728.0582 | 0.9951 | 0.6462 | 0.4325 |
3 | 233591.5346 | 163123816830.0286 | 403885.8958 | 0.9920 | 0.6024 | 0.4074 |
4 | 310272.4685 | 757208717093.8486 | 870177.4055 | 0.9405 | 0.4307 | 0.1767 |
5 | 239171.0924 | 288630406424.4498 | 537243.3400 | 0.9691 | 0.8464 | 0.3859 |
6 | 392617.9219 | 1191661077892.1279 | 1091632.2998 | 0.9648 | 0.4253 | 0.4027 |
7 | 257183.3933 | 168887542836.5881 | 410959.2958 | 0.9782 | 0.5327 | 0.3221 |
8 | 275441.9692 | 253692864859.1576 | 503679.3274 | 0.9822 | 0.3591 | 0.3421 |
9 | 304814.1295 | 457008625506.4266 | 676024.1309 | 0.9871 | 0.6219 | 0.3450 |
Mean | 282783.0442 | 423761074666.3661 | 618255.7624 | 0.9794 | 0.5431 | 0.3628 |
SD | 45058.5220 | 303835480554.6078 | 203766.7464 | 0.0164 | 0.1373 | 0.0711 |
gbr = create_model('gbr')
MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
---|---|---|---|---|---|---|
0 | 235734.6989 | 437268521792.1236 | 661262.8235 | 0.9861 | 0.2263 | 0.1735 |
1 | 239582.3790 | 246721789834.1528 | 496710.9721 | 0.9957 | 0.1793 | 0.1368 |
2 | 344322.7507 | 3366666462331.4697 | 1834847.8036 | 0.9569 | 0.1705 | 0.1361 |
3 | 247847.7778 | 910555587931.8813 | 954230.3642 | 0.9553 | 0.1938 | 0.1402 |
4 | 260095.0887 | 366795816073.5381 | 605636.7030 | 0.9712 | 0.1674 | 0.1311 |
5 | 165263.0013 | 95822971602.6585 | 309552.8575 | 0.9897 | 0.1760 | 0.1331 |
6 | 272568.9045 | 614652691055.9829 | 783997.8897 | 0.9818 | 0.1845 | 0.1447 |
7 | 179339.0986 | 112536689841.8306 | 335464.8862 | 0.9855 | 0.1773 | 0.1449 |
8 | 208126.7229 | 143081559525.7167 | 378261.2319 | 0.9900 | 0.1910 | 0.1550 |
9 | 337281.5981 | 684800554193.0310 | 827526.7695 | 0.9806 | 0.2443 | 0.1986 |
Mean | 249016.2020 | 697890264418.2385 | 718749.2301 | 0.9793 | 0.1910 | 0.1494 |
SD | 55999.8190 | 925674322793.4565 | 425781.4094 | 0.0131 | 0.0238 | 0.0202 |
en = create_model('en')
MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
---|---|---|---|---|---|---|
0 | 314520.8248 | 372394275396.3943 | 610241.1617 | 0.9882 | 0.6919 | 0.6782 |
1 | 313363.3779 | 279816560903.9476 | 528976.9002 | 0.9951 | 0.6625 | 0.7353 |
2 | 294572.0500 | 356054391770.7558 | 596702.9343 | 0.9954 | 0.8665 | 0.4919 |
3 | 289293.1310 | 302410799111.7908 | 549918.9023 | 0.9852 | 0.6134 | 0.6220 |
4 | 359663.1823 | 823463360870.0308 | 907448.8200 | 0.9353 | 0.3746 | 0.3215 |
5 | 277214.4139 | 242500630821.6496 | 492443.5306 | 0.9740 | 0.3776 | 0.4259 |
6 | 431248.4753 | 1145975018672.9460 | 1070502.2273 | 0.9661 | 0.6403 | 0.6521 |
7 | 270836.6835 | 171228571957.6938 | 413797.7428 | 0.9779 | 0.5140 | 0.4214 |
8 | 324672.5398 | 259930162773.1474 | 509833.4657 | 0.9817 | 0.7563 | 0.6482 |
9 | 343259.8229 | 437142763064.5327 | 661167.7269 | 0.9876 | 0.6120 | 0.7298 |
Mean | 321864.4501 | 439091653534.2890 | 634103.3412 | 0.9787 | 0.6109 | 0.5726 |
SD | 45153.8239 | 290744034870.6052 | 192365.8136 | 0.0168 | 0.1471 | 0.1381 |
tuned_llar = tune_model(llar)
MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
---|---|---|---|---|---|---|
0 | 289979.0259 | 322089950804.6690 | 567529.6916 | 0.9898 | 0.4839 | 0.5108 |
1 | 232743.8326 | 227522353294.4826 | 476993.0328 | 0.9960 | 0.3679 | 0.2513 |
2 | 251980.3530 | 365312028384.2730 | 604410.4800 | 0.9953 | 0.3774 | 0.2472 |
3 | 239734.2039 | 169203004572.4914 | 411342.9282 | 0.9917 | 0.6680 | 0.4263 |
4 | 309129.0897 | 755943408649.7677 | 869450.0610 | 0.9406 | 0.3532 | 0.1796 |
5 | 300644.1337 | 358718738645.5584 | 598931.3305 | 0.9616 | 0.6977 | 0.5089 |
6 | 387895.1744 | 1185057819017.0984 | 1088603.6097 | 0.9650 | 0.3973 | 0.3048 |
7 | 288825.5266 | 183906942546.0412 | 428843.7274 | 0.9763 | 0.5001 | 0.4076 |
8 | 319896.7195 | 290853935709.5784 | 539308.7573 | 0.9796 | 0.6416 | 0.4787 |
9 | 368209.4311 | 521650478342.3383 | 722253.7493 | 0.9852 | 0.5062 | 0.6609 |
Mean | 298903.7490 | 438025865996.6299 | 630766.7368 | 0.9781 | 0.4993 | 0.3976 |
SD | 48510.0388 | 298990451622.5987 | 200397.5793 | 0.0169 | 0.1234 | 0.1422 |
tuned_gbr = tune_model(gbr)
MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
---|---|---|---|---|---|---|
0 | 558122.9387 | 5272560990477.8496 | 2296205.7814 | 0.8323 | 0.2633 | 0.2076 |
1 | 739998.4752 | 7569379251828.7100 | 2751250.4887 | 0.8679 | 0.2870 | 0.2096 |
2 | 831756.5941 | 13798195187051.3418 | 3714592.1966 | 0.8234 | 0.2634 | 0.1865 |
3 | 340452.8458 | 908205269923.9082 | 952998.0430 | 0.9555 | 0.2754 | 0.1924 |
4 | 674109.4217 | 3846016468705.2871 | 1961126.3266 | 0.6976 | 0.3031 | 0.2124 |
5 | 395772.3860 | 819668446328.4290 | 905355.4254 | 0.9121 | 0.3706 | 0.2376 |
6 | 561391.2692 | 2465924916451.6304 | 1570326.3726 | 0.9271 | 0.3657 | 0.1839 |
7 | 299570.2771 | 316935959481.7112 | 562970.6560 | 0.9591 | 0.2940 | 0.1957 |
8 | 396341.8760 | 1207542097136.1785 | 1098882.2035 | 0.9152 | 0.2352 | 0.1916 |
9 | 882730.1880 | 12974755653040.2793 | 3602048.8133 | 0.6325 | 0.3279 | 0.2408 |
Mean | 568024.6272 | 4917918424042.5332 | 1941575.6307 | 0.8523 | 0.2986 | 0.2058 |
SD | 198133.1948 | 4752879000575.7910 | 1071542.1104 | 0.1044 | 0.0421 | 0.0191 |
tuned_en = tune_model(en)
MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
---|---|---|---|---|---|---|
0 | 313386.9529 | 369029649933.3783 | 607478.1065 | 0.9883 | 0.6378 | 0.6914 |
1 | 314569.0319 | 279983556880.9034 | 529134.7247 | 0.9951 | 0.6247 | 0.7503 |
2 | 292879.1641 | 354436751713.6628 | 595345.9093 | 0.9955 | 0.7697 | 0.4970 |
3 | 290623.1410 | 300547186625.9410 | 548221.8407 | 0.9853 | 0.6245 | 0.6329 |
4 | 359787.9423 | 814824678870.1437 | 902676.3976 | 0.9359 | 0.4036 | 0.3250 |
5 | 278805.5993 | 241523530453.4208 | 491450.4354 | 0.9741 | 0.3844 | 0.4314 |
6 | 431369.8737 | 1139086954764.6711 | 1067280.1669 | 0.9663 | 0.6725 | 0.6736 |
7 | 272358.7211 | 171746519052.9784 | 414423.1160 | 0.9779 | 0.4813 | 0.4294 |
8 | 324856.6863 | 261958193571.1935 | 511818.5162 | 0.9816 | 0.7129 | 0.6533 |
9 | 345653.6038 | 438950557480.9849 | 662533.4388 | 0.9876 | 0.5609 | 0.7611 |
Mean | 322429.0716 | 437208757934.7278 | 633036.2652 | 0.9788 | 0.5872 | 0.5845 |
SD | 44997.1749 | 288027990711.2840 | 190981.2683 | 0.0167 | 0.1219 | 0.1441 |
plot_model(tuned_en)
plot_model(tuned_en, plot = 'error')
plot_model(tuned_en, plot='feature')
evaluate_model(tuned_gbr)
interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Hyperparameters', 'param…
evaluate_model(tuned_en)
interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Hyperparameters', 'param…
evaluate_model(tuned_llar)
interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Hyperparameters', 'param…
blend = blend_models(estimator_list = [tuned_llar, tuned_gbr, tuned_en])
MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
---|---|---|---|---|---|---|
0 | 298124.0824 | 611464768604.9042 | 781962.1273 | 0.9806 | 0.5947 | 0.3850 |
1 | 338157.1802 | 757889217295.3031 | 870568.3301 | 0.9868 | 0.4962 | 0.3490 |
2 | 380954.5559 | 1594002809665.1304 | 1262538.2409 | 0.9796 | 0.4179 | 0.2603 |
3 | 275082.5747 | 333937002788.1300 | 577872.8258 | 0.9836 | 0.5529 | 0.4655 |
4 | 318669.4518 | 599903488246.2401 | 774534.3687 | 0.9528 | 0.3643 | 0.1977 |
5 | 279616.8154 | 260830511409.8741 | 510715.6855 | 0.9720 | 0.5768 | 0.3315 |
6 | 315413.1655 | 596632593213.6093 | 772419.9591 | 0.9824 | 0.4040 | 0.3430 |
7 | 240057.2984 | 171721535478.8066 | 414392.9723 | 0.9779 | 0.3392 | 0.2769 |
8 | 283373.2155 | 350993014683.1928 | 592446.6345 | 0.9753 | 0.3539 | 0.3814 |
9 | 467484.1193 | 2111686762935.4600 | 1453164.3964 | 0.9402 | 0.4916 | 0.4367 |
Mean | 319693.2459 | 738906170432.0651 | 801061.5540 | 0.9731 | 0.4591 | 0.3427 |
SD | 61382.2974 | 594694324001.8995 | 311779.6611 | 0.0142 | 0.0909 | 0.0771 |
pred = predict_model(blend);
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE | |
---|---|---|---|---|---|---|---|
0 | Voting Regressor | 312303.2999 | 9.819626e+11 | 990940.2462 | 0.9719 | 0.4618 | 0.3341 |
final_blend = finalize_model(blend)
plot_model(final_blend)
plot_model(final_blend, plot = 'error')
save_model(final_blend,'Final Blend Model 05August2020')
Transformation Pipeline and Model Succesfully Saved