searches.interpolation_search¶

This is pure Python implementation of interpolation search algorithm

Functions¶

interpolation_search(→ int | None)

Searches for an item in a sorted collection by interpolation search algorithm.

interpolation_search_by_recursion(→ int | None)

Pure implementation of interpolation search algorithm in Python by recursion

Module Contents¶

searches.interpolation_search.interpolation_search(sorted_collection: list[int], item: int) → int | None¶

Searches for an item in a sorted collection by interpolation search algorithm.

Args:

sorted_collection: sorted list of integers item: item value to search

Returns:

int: The index of the found item, or None if the item is not found.

Examples: >>> interpolation_search([1, 2, 3, 4, 5], 2) 1 >>> interpolation_search([1, 2, 3, 4, 5], 4) 3 >>> interpolation_search([1, 2, 3, 4, 5], 6) is None True >>> interpolation_search([], 1) is None True >>> interpolation_search([100], 100) 0 >>> interpolation_search([1, 2, 3, 4, 5], 0) is None True >>> interpolation_search([1, 2, 3, 4, 5], 7) is None True >>> interpolation_search([1, 2, 3, 4, 5], 2) 1 >>> interpolation_search([1, 2, 3, 4, 5], 0) is None True >>> interpolation_search([1, 2, 3, 4, 5], 7) is None True >>> interpolation_search([1, 2, 3, 4, 5], 2) 1 >>> interpolation_search([5, 5, 5, 5, 5], 3) is None True

searches.interpolation_search.interpolation_search_by_recursion(sorted_collection: list[int], item: int, left: int = 0, right: int | None = None) → int | None¶

Pure implementation of interpolation search algorithm in Python by recursion Be careful collection must be ascending sorted, otherwise result will be unpredictable First recursion should be started with left=0 and right=(len(sorted_collection)-1)

Args:

sorted_collection: some sorted collection with comparable items item: item value to search left: left index in collection right: right index in collection

Returns:

index of item in collection or None if item is not present

Examples: >>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 0) 0 >>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 15) 4 >>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 5) 1 >>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 100) is None True >>> interpolation_search_by_recursion([5, 5, 5, 5, 5], 3) is None True

thealgorithms-python

Navigation

index.md

  • Contributing guidelines
  • Getting Started
  • Community Channels
  • List of Algorithms
  • MIT License
  • API Reference
    • maths
    • other
    • sorts
    • graphs
    • hashes
    • matrix
    • ciphers
    • geodesy
    • physics
    • quantum
    • strings
    • fractals
    • geometry
    • graphics
    • knapsack
    • searches
    • financial
    • blockchain
    • scheduling
    • conversions
    • electronics
    • fuzzy_logic
    • backtracking
    • audio_filters
    • file_transfer
    • project_euler
    • greedy_methods
    • linear_algebra
    • neural_network
    • boolean_algebra
    • computer_vision
    • data_structures
    • networking_flow
    • web_programming
    • bit_manipulation
    • data_compression
    • machine_learning
    • cellular_automata
    • genetic_algorithm
    • divide_and_conquer
    • linear_programming
    • dynamic_programming
    • digital_image_processing

Related Topics

  • Documentation overview
    • API Reference
      • searches
        • Previous: searches.hill_climbing
        • Next: searches.jump_search
©2014, TheAlgorithms. | Powered by Sphinx 8.2.3 & Alabaster 1.0.0 | Page source