1 | /*
|
---|
2 | * Copyright (C) 1999-2000 Harri Porten ([email protected])
|
---|
3 | * Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved.
|
---|
4 | * Copyright (C) 2003 Peter Kelly ([email protected])
|
---|
5 | * Copyright (C) 2006 Alexey Proskuryakov ([email protected])
|
---|
6 | *
|
---|
7 | * This library is free software; you can redistribute it and/or
|
---|
8 | * modify it under the terms of the GNU Lesser General Public
|
---|
9 | * License as published by the Free Software Foundation; either
|
---|
10 | * version 2 of the License, or (at your option) any later version.
|
---|
11 | *
|
---|
12 | * This library is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
15 | * Lesser General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU Lesser General Public
|
---|
18 | * License along with this library; if not, write to the Free Software
|
---|
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
20 | *
|
---|
21 | */
|
---|
22 |
|
---|
23 | #include "config.h"
|
---|
24 | #include "JSArray.h"
|
---|
25 |
|
---|
26 | #include "ArrayPrototype.h"
|
---|
27 | #include "PropertyNameArray.h"
|
---|
28 | #include <wtf/AVLTree.h>
|
---|
29 | #include <wtf/Assertions.h>
|
---|
30 |
|
---|
31 | #define CHECK_ARRAY_CONSISTENCY 0
|
---|
32 |
|
---|
33 | using namespace std;
|
---|
34 |
|
---|
35 | namespace KJS {
|
---|
36 |
|
---|
37 | // 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
|
---|
38 | static const unsigned maxArrayIndex = 0xFFFFFFFEU;
|
---|
39 |
|
---|
40 | // Our policy for when to use a vector and when to use a sparse map.
|
---|
41 | // For all array indices under sparseArrayCutoff, we always use a vector.
|
---|
42 | // When indices greater than sparseArrayCutoff are involved, we use a vector
|
---|
43 | // as long as it is 1/8 full. If more sparse than that, we use a map.
|
---|
44 | // This value has to be a macro to be used in max() and min() without introducing
|
---|
45 | // a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
|
---|
46 | #define sparseArrayCutoff 10000U
|
---|
47 | static const unsigned minDensityMultiplier = 8;
|
---|
48 |
|
---|
49 | const ClassInfo JSArray::info = {"Array", 0, 0, 0};
|
---|
50 |
|
---|
51 | static inline size_t storageSize(unsigned vectorLength)
|
---|
52 | {
|
---|
53 | return sizeof(ArrayStorage) - sizeof(JSValue*) + vectorLength * sizeof(JSValue*);
|
---|
54 | }
|
---|
55 |
|
---|
56 | static inline unsigned increasedVectorLength(unsigned newLength)
|
---|
57 | {
|
---|
58 | return (newLength * 3 + 1) / 2;
|
---|
59 | }
|
---|
60 |
|
---|
61 | static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
|
---|
62 | {
|
---|
63 | return length / minDensityMultiplier <= numValues;
|
---|
64 | }
|
---|
65 |
|
---|
66 | #if !CHECK_ARRAY_CONSISTENCY
|
---|
67 |
|
---|
68 | inline void JSArray::checkConsistency(ConsistencyCheckType)
|
---|
69 | {
|
---|
70 | }
|
---|
71 |
|
---|
72 | #endif
|
---|
73 |
|
---|
74 | JSArray::JSArray(JSValue* prototype, unsigned initialLength)
|
---|
75 | : JSObject(prototype)
|
---|
76 | {
|
---|
77 | unsigned initialCapacity = min(initialLength, sparseArrayCutoff);
|
---|
78 |
|
---|
79 | m_length = initialLength;
|
---|
80 | m_fastAccessCutoff = 0;
|
---|
81 | m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
|
---|
82 | m_storage->m_vectorLength = initialCapacity;
|
---|
83 |
|
---|
84 | Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValue*));
|
---|
85 |
|
---|
86 | checkConsistency();
|
---|
87 | }
|
---|
88 |
|
---|
89 | JSArray::JSArray(JSObject* prototype, const ArgList& list)
|
---|
90 | : JSObject(prototype)
|
---|
91 | {
|
---|
92 | unsigned length = list.size();
|
---|
93 |
|
---|
94 | m_length = length;
|
---|
95 | m_fastAccessCutoff = length;
|
---|
96 |
|
---|
97 | ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(length)));
|
---|
98 |
|
---|
99 | storage->m_vectorLength = length;
|
---|
100 | storage->m_numValuesInVector = length;
|
---|
101 | storage->m_sparseValueMap = 0;
|
---|
102 |
|
---|
103 | size_t i = 0;
|
---|
104 | ArgList::const_iterator end = list.end();
|
---|
105 | for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
|
---|
106 | storage->m_vector[i] = (*it).jsValue();
|
---|
107 |
|
---|
108 | m_storage = storage;
|
---|
109 |
|
---|
110 | // When the array is created non-empty, its cells are filled, so it's really no worse than
|
---|
111 | // a property map. Therefore don't report extra memory cost.
|
---|
112 |
|
---|
113 | checkConsistency();
|
---|
114 | }
|
---|
115 |
|
---|
116 | JSArray::~JSArray()
|
---|
117 | {
|
---|
118 | checkConsistency(DestructorConsistencyCheck);
|
---|
119 |
|
---|
120 | delete m_storage->m_sparseValueMap;
|
---|
121 | fastFree(m_storage);
|
---|
122 | }
|
---|
123 |
|
---|
124 | JSValue* JSArray::lengthGetter(ExecState* exec, const Identifier&, const PropertySlot& slot)
|
---|
125 | {
|
---|
126 | return jsNumber(exec, static_cast<JSArray*>(slot.slotBase())->m_length);
|
---|
127 | }
|
---|
128 |
|
---|
129 | bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
|
---|
130 | {
|
---|
131 | ArrayStorage* storage = m_storage;
|
---|
132 |
|
---|
133 | if (i >= m_length) {
|
---|
134 | if (i > maxArrayIndex)
|
---|
135 | return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
|
---|
136 | return false;
|
---|
137 | }
|
---|
138 |
|
---|
139 | if (i < storage->m_vectorLength) {
|
---|
140 | JSValue*& valueSlot = storage->m_vector[i];
|
---|
141 | if (valueSlot) {
|
---|
142 | slot.setValueSlot(&valueSlot);
|
---|
143 | return true;
|
---|
144 | }
|
---|
145 | } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
146 | if (i >= sparseArrayCutoff) {
|
---|
147 | SparseArrayValueMap::iterator it = map->find(i);
|
---|
148 | if (it != map->end()) {
|
---|
149 | slot.setValueSlot(&it->second);
|
---|
150 | return true;
|
---|
151 | }
|
---|
152 | }
|
---|
153 | }
|
---|
154 |
|
---|
155 | return false;
|
---|
156 | }
|
---|
157 |
|
---|
158 | bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
|
---|
159 | {
|
---|
160 | if (propertyName == exec->propertyNames().length) {
|
---|
161 | slot.setCustom(this, lengthGetter);
|
---|
162 | return true;
|
---|
163 | }
|
---|
164 |
|
---|
165 | bool isArrayIndex;
|
---|
166 | unsigned i = propertyName.toArrayIndex(&isArrayIndex);
|
---|
167 | if (isArrayIndex)
|
---|
168 | return JSArray::getOwnPropertySlot(exec, i, slot);
|
---|
169 |
|
---|
170 | return JSObject::getOwnPropertySlot(exec, propertyName, slot);
|
---|
171 | }
|
---|
172 |
|
---|
173 | // ECMA 15.4.5.1
|
---|
174 | void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue* value)
|
---|
175 | {
|
---|
176 | bool isArrayIndex;
|
---|
177 | unsigned i = propertyName.toArrayIndex(&isArrayIndex);
|
---|
178 | if (isArrayIndex) {
|
---|
179 | put(exec, i, value);
|
---|
180 | return;
|
---|
181 | }
|
---|
182 |
|
---|
183 | if (propertyName == exec->propertyNames().length) {
|
---|
184 | unsigned newLength = value->toUInt32(exec);
|
---|
185 | if (value->toNumber(exec) != static_cast<double>(newLength)) {
|
---|
186 | throwError(exec, RangeError, "Invalid array length.");
|
---|
187 | return;
|
---|
188 | }
|
---|
189 | setLength(newLength);
|
---|
190 | return;
|
---|
191 | }
|
---|
192 |
|
---|
193 | JSObject::put(exec, propertyName, value);
|
---|
194 | }
|
---|
195 |
|
---|
196 | void JSArray::put(ExecState* exec, unsigned i, JSValue* value)
|
---|
197 | {
|
---|
198 | checkConsistency();
|
---|
199 |
|
---|
200 | unsigned length = m_length;
|
---|
201 | if (i >= length && i <= maxArrayIndex) {
|
---|
202 | length = i + 1;
|
---|
203 | m_length = length;
|
---|
204 | }
|
---|
205 |
|
---|
206 | if (i < m_storage->m_vectorLength) {
|
---|
207 | JSValue*& valueSlot = m_storage->m_vector[i];
|
---|
208 | if (valueSlot) {
|
---|
209 | valueSlot = value;
|
---|
210 | checkConsistency();
|
---|
211 | return;
|
---|
212 | }
|
---|
213 | valueSlot = value;
|
---|
214 | if (++m_storage->m_numValuesInVector == m_length)
|
---|
215 | m_fastAccessCutoff = m_length;
|
---|
216 | checkConsistency();
|
---|
217 | return;
|
---|
218 | }
|
---|
219 |
|
---|
220 | putSlowCase(exec, i, value);
|
---|
221 | }
|
---|
222 |
|
---|
223 | NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue* value)
|
---|
224 | {
|
---|
225 | ArrayStorage* storage = m_storage;
|
---|
226 | SparseArrayValueMap* map = storage->m_sparseValueMap;
|
---|
227 |
|
---|
228 | if (i >= sparseArrayCutoff) {
|
---|
229 | if (i > maxArrayIndex) {
|
---|
230 | put(exec, Identifier::from(exec, i), value);
|
---|
231 | return;
|
---|
232 | }
|
---|
233 |
|
---|
234 | // We miss some cases where we could compact the storage, such as a large array that is being filled from the end
|
---|
235 | // (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster.
|
---|
236 | if (!isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
|
---|
237 | if (!map) {
|
---|
238 | map = new SparseArrayValueMap;
|
---|
239 | storage->m_sparseValueMap = map;
|
---|
240 | }
|
---|
241 | map->set(i, value);
|
---|
242 | return;
|
---|
243 | }
|
---|
244 | }
|
---|
245 |
|
---|
246 | // We have decided that we'll put the new item into the vector.
|
---|
247 | // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
|
---|
248 | if (!map || map->isEmpty()) {
|
---|
249 | increaseVectorLength(i + 1);
|
---|
250 | storage = m_storage;
|
---|
251 | ++storage->m_numValuesInVector;
|
---|
252 | storage->m_vector[i] = value;
|
---|
253 | checkConsistency();
|
---|
254 | return;
|
---|
255 | }
|
---|
256 |
|
---|
257 | // Decide how many values it would be best to move from the map.
|
---|
258 | unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
|
---|
259 | unsigned newVectorLength = increasedVectorLength(i + 1);
|
---|
260 | for (unsigned j = max(storage->m_vectorLength, sparseArrayCutoff); j < newVectorLength; ++j)
|
---|
261 | newNumValuesInVector += map->contains(j);
|
---|
262 | if (i >= sparseArrayCutoff)
|
---|
263 | newNumValuesInVector -= map->contains(i);
|
---|
264 | if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
|
---|
265 | unsigned proposedNewNumValuesInVector = newNumValuesInVector;
|
---|
266 | while (true) {
|
---|
267 | unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1);
|
---|
268 | for (unsigned j = max(newVectorLength, sparseArrayCutoff); j < proposedNewVectorLength; ++j)
|
---|
269 | proposedNewNumValuesInVector += map->contains(j);
|
---|
270 | if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
|
---|
271 | break;
|
---|
272 | newVectorLength = proposedNewVectorLength;
|
---|
273 | newNumValuesInVector = proposedNewNumValuesInVector;
|
---|
274 | }
|
---|
275 | }
|
---|
276 |
|
---|
277 | storage = static_cast<ArrayStorage*>(fastRealloc(storage, storageSize(newVectorLength)));
|
---|
278 |
|
---|
279 | unsigned vectorLength = storage->m_vectorLength;
|
---|
280 | if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
|
---|
281 | for (unsigned j = vectorLength; j < newVectorLength; ++j)
|
---|
282 | storage->m_vector[j] = 0;
|
---|
283 | if (i > sparseArrayCutoff)
|
---|
284 | map->remove(i);
|
---|
285 | } else {
|
---|
286 | for (unsigned j = vectorLength; j < max(vectorLength, sparseArrayCutoff); ++j)
|
---|
287 | storage->m_vector[j] = 0;
|
---|
288 | for (unsigned j = max(vectorLength, sparseArrayCutoff); j < newVectorLength; ++j)
|
---|
289 | storage->m_vector[j] = map->take(j);
|
---|
290 | }
|
---|
291 |
|
---|
292 | storage->m_vector[i] = value;
|
---|
293 |
|
---|
294 | storage->m_vectorLength = newVectorLength;
|
---|
295 | storage->m_numValuesInVector = newNumValuesInVector;
|
---|
296 |
|
---|
297 | m_storage = storage;
|
---|
298 |
|
---|
299 | checkConsistency();
|
---|
300 | }
|
---|
301 |
|
---|
302 | bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
|
---|
303 | {
|
---|
304 | bool isArrayIndex;
|
---|
305 | unsigned i = propertyName.toArrayIndex(&isArrayIndex);
|
---|
306 | if (isArrayIndex)
|
---|
307 | return deleteProperty(exec, i);
|
---|
308 |
|
---|
309 | if (propertyName == exec->propertyNames().length)
|
---|
310 | return false;
|
---|
311 |
|
---|
312 | return JSObject::deleteProperty(exec, propertyName);
|
---|
313 | }
|
---|
314 |
|
---|
315 | bool JSArray::deleteProperty(ExecState* exec, unsigned i)
|
---|
316 | {
|
---|
317 | checkConsistency();
|
---|
318 |
|
---|
319 | ArrayStorage* storage = m_storage;
|
---|
320 |
|
---|
321 | if (i < storage->m_vectorLength) {
|
---|
322 | JSValue*& valueSlot = storage->m_vector[i];
|
---|
323 | if (!valueSlot) {
|
---|
324 | checkConsistency();
|
---|
325 | return false;
|
---|
326 | }
|
---|
327 | valueSlot = 0;
|
---|
328 | --storage->m_numValuesInVector;
|
---|
329 | if (m_fastAccessCutoff > i)
|
---|
330 | m_fastAccessCutoff = i;
|
---|
331 | checkConsistency();
|
---|
332 | return true;
|
---|
333 | }
|
---|
334 |
|
---|
335 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
336 | if (i >= sparseArrayCutoff) {
|
---|
337 | SparseArrayValueMap::iterator it = map->find(i);
|
---|
338 | if (it != map->end()) {
|
---|
339 | map->remove(it);
|
---|
340 | checkConsistency();
|
---|
341 | return true;
|
---|
342 | }
|
---|
343 | }
|
---|
344 | }
|
---|
345 |
|
---|
346 | checkConsistency();
|
---|
347 |
|
---|
348 | if (i > maxArrayIndex)
|
---|
349 | return deleteProperty(exec, Identifier::from(exec, i));
|
---|
350 |
|
---|
351 | return false;
|
---|
352 | }
|
---|
353 |
|
---|
354 | void JSArray::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames)
|
---|
355 | {
|
---|
356 | // FIXME: Filling PropertyNameArray with an identifier for every integer
|
---|
357 | // is incredibly inefficient for large arrays. We need a different approach,
|
---|
358 | // which almost certainly means a different structure for PropertyNameArray.
|
---|
359 |
|
---|
360 | ArrayStorage* storage = m_storage;
|
---|
361 |
|
---|
362 | unsigned usedVectorLength = min(m_length, storage->m_vectorLength);
|
---|
363 | for (unsigned i = 0; i < usedVectorLength; ++i) {
|
---|
364 | if (storage->m_vector[i])
|
---|
365 | propertyNames.add(Identifier::from(exec, i));
|
---|
366 | }
|
---|
367 |
|
---|
368 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
369 | SparseArrayValueMap::iterator end = map->end();
|
---|
370 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
|
---|
371 | propertyNames.add(Identifier::from(exec, it->first));
|
---|
372 | }
|
---|
373 |
|
---|
374 | JSObject::getPropertyNames(exec, propertyNames);
|
---|
375 | }
|
---|
376 |
|
---|
377 | bool JSArray::increaseVectorLength(unsigned newLength)
|
---|
378 | {
|
---|
379 | // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
|
---|
380 | // to the vector. Callers have to account for that, because they can do it more efficiently.
|
---|
381 |
|
---|
382 | ArrayStorage* storage = m_storage;
|
---|
383 |
|
---|
384 | unsigned vectorLength = storage->m_vectorLength;
|
---|
385 | ASSERT(newLength > vectorLength);
|
---|
386 | unsigned newVectorLength = increasedVectorLength(newLength);
|
---|
387 |
|
---|
388 | storage = static_cast<ArrayStorage*>(fastRealloc(storage, storageSize(newVectorLength)));
|
---|
389 | if (!storage)
|
---|
390 | return false;
|
---|
391 |
|
---|
392 | storage->m_vectorLength = newVectorLength;
|
---|
393 |
|
---|
394 | for (unsigned i = vectorLength; i < newVectorLength; ++i)
|
---|
395 | storage->m_vector[i] = 0;
|
---|
396 |
|
---|
397 | m_storage = storage;
|
---|
398 | return true;
|
---|
399 | }
|
---|
400 |
|
---|
401 | void JSArray::setLength(unsigned newLength)
|
---|
402 | {
|
---|
403 | checkConsistency();
|
---|
404 |
|
---|
405 | ArrayStorage* storage = m_storage;
|
---|
406 |
|
---|
407 | unsigned length = m_length;
|
---|
408 |
|
---|
409 | if (newLength < length) {
|
---|
410 | if (m_fastAccessCutoff > newLength)
|
---|
411 | m_fastAccessCutoff = newLength;
|
---|
412 |
|
---|
413 | unsigned usedVectorLength = min(length, storage->m_vectorLength);
|
---|
414 | for (unsigned i = newLength; i < usedVectorLength; ++i) {
|
---|
415 | JSValue*& valueSlot = storage->m_vector[i];
|
---|
416 | bool hadValue = valueSlot;
|
---|
417 | valueSlot = 0;
|
---|
418 | storage->m_numValuesInVector -= hadValue;
|
---|
419 | }
|
---|
420 |
|
---|
421 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
422 | SparseArrayValueMap copy = *map;
|
---|
423 | SparseArrayValueMap::iterator end = copy.end();
|
---|
424 | for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
|
---|
425 | if (it->first >= newLength)
|
---|
426 | map->remove(it->first);
|
---|
427 | }
|
---|
428 | if (map->isEmpty()) {
|
---|
429 | delete map;
|
---|
430 | storage->m_sparseValueMap = 0;
|
---|
431 | }
|
---|
432 | }
|
---|
433 | }
|
---|
434 |
|
---|
435 | m_length = newLength;
|
---|
436 |
|
---|
437 | checkConsistency();
|
---|
438 | }
|
---|
439 |
|
---|
440 | void JSArray::mark()
|
---|
441 | {
|
---|
442 | JSObject::mark();
|
---|
443 |
|
---|
444 | ArrayStorage* storage = m_storage;
|
---|
445 |
|
---|
446 | unsigned usedVectorLength = min(m_length, storage->m_vectorLength);
|
---|
447 | for (unsigned i = 0; i < usedVectorLength; ++i) {
|
---|
448 | JSValue* value = storage->m_vector[i];
|
---|
449 | if (value && !value->marked())
|
---|
450 | value->mark();
|
---|
451 | }
|
---|
452 |
|
---|
453 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
454 | SparseArrayValueMap::iterator end = map->end();
|
---|
455 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
|
---|
456 | JSValue* value = it->second;
|
---|
457 | if (!value->marked())
|
---|
458 | value->mark();
|
---|
459 | }
|
---|
460 | }
|
---|
461 | }
|
---|
462 |
|
---|
463 | typedef std::pair<JSValue*, UString> ArrayQSortPair;
|
---|
464 |
|
---|
465 | static int compareByStringPairForQSort(const void* a, const void* b)
|
---|
466 | {
|
---|
467 | const ArrayQSortPair* va = static_cast<const ArrayQSortPair*>(a);
|
---|
468 | const ArrayQSortPair* vb = static_cast<const ArrayQSortPair*>(b);
|
---|
469 | return compare(va->second, vb->second);
|
---|
470 | }
|
---|
471 |
|
---|
472 | void JSArray::sort(ExecState* exec)
|
---|
473 | {
|
---|
474 | unsigned lengthNotIncludingUndefined = compactForSorting();
|
---|
475 | if (m_storage->m_sparseValueMap) {
|
---|
476 | exec->setException(Error::create(exec, GeneralError, "Out of memory"));
|
---|
477 | return;
|
---|
478 | }
|
---|
479 |
|
---|
480 | if (!lengthNotIncludingUndefined)
|
---|
481 | return;
|
---|
482 |
|
---|
483 | // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
|
---|
484 | // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
|
---|
485 | // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
|
---|
486 | // random or otherwise changing results, effectively making compare function inconsistent.
|
---|
487 |
|
---|
488 | Vector<ArrayQSortPair> values(lengthNotIncludingUndefined);
|
---|
489 | if (!values.begin()) {
|
---|
490 | exec->setException(Error::create(exec, GeneralError, "Out of memory"));
|
---|
491 | return;
|
---|
492 | }
|
---|
493 |
|
---|
494 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
|
---|
495 | JSValue* value = m_storage->m_vector[i];
|
---|
496 | ASSERT(!value->isUndefined());
|
---|
497 | values[i].first = value;
|
---|
498 | }
|
---|
499 |
|
---|
500 | // FIXME: While calling these toString functions, the array could be mutated.
|
---|
501 | // In that case, objects pointed to by values in this vector might get garbage-collected!
|
---|
502 |
|
---|
503 | // FIXME: The following loop continues to call toString on subsequent values even after
|
---|
504 | // a toString call raises an exception.
|
---|
505 |
|
---|
506 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
|
---|
507 | values[i].second = values[i].first->toString(exec);
|
---|
508 |
|
---|
509 | if (exec->hadException())
|
---|
510 | return;
|
---|
511 |
|
---|
512 | // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
|
---|
513 | // than O(N log N).
|
---|
514 |
|
---|
515 | #if HAVE(MERGESORT)
|
---|
516 | mergesort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort);
|
---|
517 | #else
|
---|
518 | // FIXME: The qsort library function is likely to not be a stable sort.
|
---|
519 | // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
|
---|
520 | qsort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort);
|
---|
521 | #endif
|
---|
522 |
|
---|
523 | // FIXME: If the toString function changed the length of the array, this might be
|
---|
524 | // modifying the vector incorrectly.
|
---|
525 |
|
---|
526 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
|
---|
527 | m_storage->m_vector[i] = values[i].first;
|
---|
528 |
|
---|
529 | checkConsistency(SortConsistencyCheck);
|
---|
530 | }
|
---|
531 |
|
---|
532 | struct AVLTreeNodeForArrayCompare {
|
---|
533 | JSValue* value;
|
---|
534 |
|
---|
535 | // Child pointers. The high bit of gt is robbed and used as the
|
---|
536 | // balance factor sign. The high bit of lt is robbed and used as
|
---|
537 | // the magnitude of the balance factor.
|
---|
538 | int32_t gt;
|
---|
539 | int32_t lt;
|
---|
540 | };
|
---|
541 |
|
---|
542 | struct AVLTreeAbstractorForArrayCompare {
|
---|
543 | typedef int32_t handle; // Handle is an index into m_nodes vector.
|
---|
544 | typedef JSValue* key;
|
---|
545 | typedef int32_t size;
|
---|
546 |
|
---|
547 | Vector<AVLTreeNodeForArrayCompare> m_nodes;
|
---|
548 | ExecState* m_exec;
|
---|
549 | JSValue* m_compareFunction;
|
---|
550 | CallType m_compareCallType;
|
---|
551 | const CallData* m_compareCallData;
|
---|
552 | JSValue* m_globalThisValue;
|
---|
553 |
|
---|
554 | handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
|
---|
555 | void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
|
---|
556 | handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
|
---|
557 | void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
|
---|
558 |
|
---|
559 | int get_balance_factor(handle h)
|
---|
560 | {
|
---|
561 | if (m_nodes[h].gt & 0x80000000)
|
---|
562 | return -1;
|
---|
563 | return static_cast<unsigned>(m_nodes[h].lt) >> 31;
|
---|
564 | }
|
---|
565 |
|
---|
566 | void set_balance_factor(handle h, int bf)
|
---|
567 | {
|
---|
568 | if (bf == 0) {
|
---|
569 | m_nodes[h].lt &= 0x7FFFFFFF;
|
---|
570 | m_nodes[h].gt &= 0x7FFFFFFF;
|
---|
571 | } else {
|
---|
572 | m_nodes[h].lt |= 0x80000000;
|
---|
573 | if (bf < 0)
|
---|
574 | m_nodes[h].gt |= 0x80000000;
|
---|
575 | else
|
---|
576 | m_nodes[h].gt &= 0x7FFFFFFF;
|
---|
577 | }
|
---|
578 | }
|
---|
579 |
|
---|
580 | int compare_key_key(key va, key vb)
|
---|
581 | {
|
---|
582 | ASSERT(!va->isUndefined());
|
---|
583 | ASSERT(!vb->isUndefined());
|
---|
584 |
|
---|
585 | if (m_exec->hadException())
|
---|
586 | return 1;
|
---|
587 |
|
---|
588 | ArgList arguments;
|
---|
589 | arguments.append(va);
|
---|
590 | arguments.append(vb);
|
---|
591 | double compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments)->toNumber(m_exec);
|
---|
592 | return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
|
---|
593 | }
|
---|
594 |
|
---|
595 | int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
|
---|
596 | int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
|
---|
597 |
|
---|
598 | static handle null() { return 0x7FFFFFFF; }
|
---|
599 | };
|
---|
600 |
|
---|
601 | void JSArray::sort(ExecState* exec, JSValue* compareFunction, CallType callType, const CallData& callData)
|
---|
602 | {
|
---|
603 | checkConsistency();
|
---|
604 |
|
---|
605 | // FIXME: This ignores exceptions raised in the compare function or in toNumber.
|
---|
606 |
|
---|
607 | // The maximum tree depth is compiled in - but the caller is clearly up to no good
|
---|
608 | // if a larger array is passed.
|
---|
609 | ASSERT(m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
|
---|
610 | if (m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
|
---|
611 | return;
|
---|
612 |
|
---|
613 | if (!m_length)
|
---|
614 | return;
|
---|
615 |
|
---|
616 | unsigned usedVectorLength = min(m_length, m_storage->m_vectorLength);
|
---|
617 |
|
---|
618 | AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
|
---|
619 | tree.abstractor().m_exec = exec;
|
---|
620 | tree.abstractor().m_compareFunction = compareFunction;
|
---|
621 | tree.abstractor().m_compareCallType = callType;
|
---|
622 | tree.abstractor().m_compareCallData = &callData;
|
---|
623 | tree.abstractor().m_globalThisValue = exec->globalThisValue();
|
---|
624 | tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0));
|
---|
625 |
|
---|
626 | if (!tree.abstractor().m_nodes.begin()) {
|
---|
627 | exec->setException(Error::create(exec, GeneralError, "Out of memory"));
|
---|
628 | return;
|
---|
629 | }
|
---|
630 |
|
---|
631 | // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
|
---|
632 | // right out from under us while we're building the tree here.
|
---|
633 |
|
---|
634 | unsigned numDefined = 0;
|
---|
635 | unsigned numUndefined = 0;
|
---|
636 |
|
---|
637 | // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
|
---|
638 | for (; numDefined < usedVectorLength; ++numDefined) {
|
---|
639 | JSValue* v = m_storage->m_vector[numDefined];
|
---|
640 | if (!v || v->isUndefined())
|
---|
641 | break;
|
---|
642 | tree.abstractor().m_nodes[numDefined].value = v;
|
---|
643 | tree.insert(numDefined);
|
---|
644 | }
|
---|
645 | for (unsigned i = numDefined; i < usedVectorLength; ++i) {
|
---|
646 | if (JSValue* v = m_storage->m_vector[i]) {
|
---|
647 | if (v->isUndefined())
|
---|
648 | ++numUndefined;
|
---|
649 | else {
|
---|
650 | tree.abstractor().m_nodes[numDefined].value = v;
|
---|
651 | tree.insert(numDefined);
|
---|
652 | ++numDefined;
|
---|
653 | }
|
---|
654 | }
|
---|
655 | }
|
---|
656 |
|
---|
657 | unsigned newUsedVectorLength = numDefined + numUndefined;
|
---|
658 |
|
---|
659 | if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
|
---|
660 | newUsedVectorLength += map->size();
|
---|
661 | if (newUsedVectorLength > m_storage->m_vectorLength) {
|
---|
662 | if (!increaseVectorLength(newUsedVectorLength)) {
|
---|
663 | exec->setException(Error::create(exec, GeneralError, "Out of memory"));
|
---|
664 | return;
|
---|
665 | }
|
---|
666 | }
|
---|
667 |
|
---|
668 | SparseArrayValueMap::iterator end = map->end();
|
---|
669 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
|
---|
670 | tree.abstractor().m_nodes[numDefined].value = it->second;
|
---|
671 | tree.insert(numDefined);
|
---|
672 | ++numDefined;
|
---|
673 | }
|
---|
674 |
|
---|
675 | delete map;
|
---|
676 | m_storage->m_sparseValueMap = 0;
|
---|
677 | }
|
---|
678 |
|
---|
679 | ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
|
---|
680 |
|
---|
681 | // FIXME: If the compare function changed the length of the array, the following might be
|
---|
682 | // modifying the vector incorrectly.
|
---|
683 |
|
---|
684 | // Copy the values back into m_storage.
|
---|
685 | AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
|
---|
686 | iter.start_iter_least(tree);
|
---|
687 | for (unsigned i = 0; i < numDefined; ++i) {
|
---|
688 | m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value;
|
---|
689 | ++iter;
|
---|
690 | }
|
---|
691 |
|
---|
692 | // Put undefined values back in.
|
---|
693 | for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
|
---|
694 | m_storage->m_vector[i] = jsUndefined();
|
---|
695 |
|
---|
696 | // Ensure that unused values in the vector are zeroed out.
|
---|
697 | for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
|
---|
698 | m_storage->m_vector[i] = 0;
|
---|
699 |
|
---|
700 | m_fastAccessCutoff = newUsedVectorLength;
|
---|
701 | m_storage->m_numValuesInVector = newUsedVectorLength;
|
---|
702 |
|
---|
703 | checkConsistency(SortConsistencyCheck);
|
---|
704 | }
|
---|
705 |
|
---|
706 | unsigned JSArray::compactForSorting()
|
---|
707 | {
|
---|
708 | checkConsistency();
|
---|
709 |
|
---|
710 | ArrayStorage* storage = m_storage;
|
---|
711 |
|
---|
712 | unsigned usedVectorLength = min(m_length, storage->m_vectorLength);
|
---|
713 |
|
---|
714 | unsigned numDefined = 0;
|
---|
715 | unsigned numUndefined = 0;
|
---|
716 |
|
---|
717 | for (; numDefined < usedVectorLength; ++numDefined) {
|
---|
718 | JSValue* v = storage->m_vector[numDefined];
|
---|
719 | if (!v || v->isUndefined())
|
---|
720 | break;
|
---|
721 | }
|
---|
722 | for (unsigned i = numDefined; i < usedVectorLength; ++i) {
|
---|
723 | if (JSValue* v = storage->m_vector[i]) {
|
---|
724 | if (v->isUndefined())
|
---|
725 | ++numUndefined;
|
---|
726 | else
|
---|
727 | storage->m_vector[numDefined++] = v;
|
---|
728 | }
|
---|
729 | }
|
---|
730 |
|
---|
731 | unsigned newUsedVectorLength = numDefined + numUndefined;
|
---|
732 |
|
---|
733 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
734 | newUsedVectorLength += map->size();
|
---|
735 | if (newUsedVectorLength > storage->m_vectorLength) {
|
---|
736 | if (!increaseVectorLength(newUsedVectorLength))
|
---|
737 | return 0;
|
---|
738 | storage = m_storage;
|
---|
739 | }
|
---|
740 |
|
---|
741 | SparseArrayValueMap::iterator end = map->end();
|
---|
742 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
|
---|
743 | storage->m_vector[numDefined++] = it->second;
|
---|
744 |
|
---|
745 | delete map;
|
---|
746 | storage->m_sparseValueMap = 0;
|
---|
747 | }
|
---|
748 |
|
---|
749 | for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
|
---|
750 | storage->m_vector[i] = jsUndefined();
|
---|
751 | for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
|
---|
752 | storage->m_vector[i] = 0;
|
---|
753 |
|
---|
754 | m_fastAccessCutoff = newUsedVectorLength;
|
---|
755 | storage->m_numValuesInVector = newUsedVectorLength;
|
---|
756 |
|
---|
757 | checkConsistency(SortConsistencyCheck);
|
---|
758 |
|
---|
759 | return numDefined;
|
---|
760 | }
|
---|
761 |
|
---|
762 | void* JSArray::lazyCreationData()
|
---|
763 | {
|
---|
764 | return m_storage->lazyCreationData;
|
---|
765 | }
|
---|
766 |
|
---|
767 | void JSArray::setLazyCreationData(void* d)
|
---|
768 | {
|
---|
769 | m_storage->lazyCreationData = d;
|
---|
770 | }
|
---|
771 |
|
---|
772 | #if CHECK_ARRAY_CONSISTENCY
|
---|
773 |
|
---|
774 | void JSArray::checkConsistency(ConsistencyCheckType type)
|
---|
775 | {
|
---|
776 | ASSERT(m_storage);
|
---|
777 | if (type == SortConsistencyCheck)
|
---|
778 | ASSERT(!m_storage->m_sparseValueMap);
|
---|
779 |
|
---|
780 | ASSERT(m_fastAccessCutoff <= m_length);
|
---|
781 | ASSERT(m_fastAccessCutoff <= m_storage->m_numValuesInVector);
|
---|
782 |
|
---|
783 | unsigned numValuesInVector = 0;
|
---|
784 | for (unsigned i = 0; i < m_storage->m_vectorLength; ++i) {
|
---|
785 | if (JSValue* value = m_storage->m_vector[i]) {
|
---|
786 | ASSERT(i < m_length);
|
---|
787 | if (type != DestructorConsistencyCheck)
|
---|
788 | value->type(); // Likely to crash if the object was deallocated.
|
---|
789 | ++numValuesInVector;
|
---|
790 | } else {
|
---|
791 | ASSERT(i >= m_fastAccessCutoff);
|
---|
792 | if (type == SortConsistencyCheck)
|
---|
793 | ASSERT(i >= m_storage->m_numValuesInVector);
|
---|
794 | }
|
---|
795 | }
|
---|
796 | ASSERT(numValuesInVector == m_storage->m_numValuesInVector);
|
---|
797 |
|
---|
798 | if (m_storage->m_sparseValueMap) {
|
---|
799 | SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end();
|
---|
800 | for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) {
|
---|
801 | unsigned index = it->first;
|
---|
802 | ASSERT(index < m_length);
|
---|
803 | ASSERT(index >= m_storage->m_vectorLength);
|
---|
804 | ASSERT(index <= maxArrayIndex);
|
---|
805 | ASSERT(it->second);
|
---|
806 | if (type != DestructorConsistencyCheck)
|
---|
807 | it->second->type(); // Likely to crash if the object was deallocated.
|
---|
808 | }
|
---|
809 | }
|
---|
810 | }
|
---|
811 |
|
---|
812 | #endif
|
---|
813 |
|
---|
814 | JSArray* constructEmptyArray(ExecState* exec)
|
---|
815 | {
|
---|
816 | return new (exec) JSArray(exec->lexicalGlobalObject()->arrayPrototype(), 0);
|
---|
817 | }
|
---|
818 |
|
---|
819 | JSArray* constructEmptyArray(ExecState* exec, unsigned initialLength)
|
---|
820 | {
|
---|
821 | return new (exec) JSArray(exec->lexicalGlobalObject()->arrayPrototype(), initialLength);
|
---|
822 | }
|
---|
823 |
|
---|
824 | JSArray* constructArray(ExecState* exec, JSValue* singleItemValue)
|
---|
825 | {
|
---|
826 | ArgList values;
|
---|
827 | values.append(singleItemValue);
|
---|
828 | return new (exec) JSArray(exec->lexicalGlobalObject()->arrayPrototype(), values);
|
---|
829 | }
|
---|
830 |
|
---|
831 | JSArray* constructArray(ExecState* exec, const ArgList& values)
|
---|
832 | {
|
---|
833 | return new (exec) JSArray(exec->lexicalGlobalObject()->arrayPrototype(), values);
|
---|
834 | }
|
---|
835 |
|
---|
836 | } // namespace KJS
|
---|