1 | /*
|
---|
2 | * Copyright (C) 1999-2000 Harri Porten ([email protected])
|
---|
3 | * Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved.
|
---|
4 | * Copyright (C) 2003 Peter Kelly ([email protected])
|
---|
5 | * Copyright (C) 2006 Alexey Proskuryakov ([email protected])
|
---|
6 | *
|
---|
7 | * This library is free software; you can redistribute it and/or
|
---|
8 | * modify it under the terms of the GNU Lesser General Public
|
---|
9 | * License as published by the Free Software Foundation; either
|
---|
10 | * version 2 of the License, or (at your option) any later version.
|
---|
11 | *
|
---|
12 | * This library is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
15 | * Lesser General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU Lesser General Public
|
---|
18 | * License along with this library; if not, write to the Free Software
|
---|
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
20 | *
|
---|
21 | */
|
---|
22 |
|
---|
23 | #include "config.h"
|
---|
24 | #include "JSArray.h"
|
---|
25 |
|
---|
26 | #include "ArrayPrototype.h"
|
---|
27 | #include "PropertyNameArray.h"
|
---|
28 | #include <wtf/AVLTree.h>
|
---|
29 | #include <wtf/Assertions.h>
|
---|
30 | #include <operations.h>
|
---|
31 |
|
---|
32 | #define CHECK_ARRAY_CONSISTENCY 0
|
---|
33 |
|
---|
34 | using namespace std;
|
---|
35 |
|
---|
36 | namespace JSC {
|
---|
37 |
|
---|
38 | ASSERT_CLASS_FITS_IN_CELL(JSArray);
|
---|
39 |
|
---|
40 | // Overview of JSArray
|
---|
41 | //
|
---|
42 | // Properties of JSArray objects may be stored in one of three locations:
|
---|
43 | // * The regular JSObject property map.
|
---|
44 | // * A storage vector.
|
---|
45 | // * A sparse map of array entries.
|
---|
46 | //
|
---|
47 | // Properties with non-numeric identifiers, with identifiers that are not representable
|
---|
48 | // as an unsigned integer, or where the value is greater than MAX_ARRAY_INDEX
|
---|
49 | // (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
|
---|
50 | // integer) are not considered array indices and will be stored in the JSObject property map.
|
---|
51 | //
|
---|
52 | // All properties with a numeric identifer, representable as an unsigned integer i,
|
---|
53 | // where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
|
---|
54 | // storage vector or the sparse map. An array index i will be handled in the following
|
---|
55 | // fashion:
|
---|
56 | //
|
---|
57 | // * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector.
|
---|
58 | // * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
|
---|
59 | // be stored in the storage vector or in the sparse array, depending on the density of
|
---|
60 | // data that would be stored in the vector (a vector being used where at least
|
---|
61 | // (1 / minDensityMultiplier) of the entries would be populated).
|
---|
62 | // * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
|
---|
63 | // in the sparse array.
|
---|
64 |
|
---|
65 | // The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
|
---|
66 | // function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
|
---|
67 | // size calculation cannot overflow. (sizeof(ArrayStorage) - sizeof(JSValue*)) +
|
---|
68 | // (vectorLength * sizeof(JSValue*)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
|
---|
69 | #define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue*))) / sizeof(JSValue*))
|
---|
70 |
|
---|
71 | // These values have to be macros to be used in max() and min() without introducing
|
---|
72 | // a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
|
---|
73 | #define MIN_SPARSE_ARRAY_INDEX 10000U
|
---|
74 | #define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
|
---|
75 | // 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
|
---|
76 | #define MAX_ARRAY_INDEX 0xFFFFFFFEU
|
---|
77 |
|
---|
78 | // Our policy for when to use a vector and when to use a sparse map.
|
---|
79 | // For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
|
---|
80 | // When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
|
---|
81 | // as long as it is 1/8 full. If more sparse than that, we use a map.
|
---|
82 | static const unsigned minDensityMultiplier = 8;
|
---|
83 |
|
---|
84 | const ClassInfo JSArray::info = {"Array", 0, 0, 0};
|
---|
85 |
|
---|
86 | static inline size_t storageSize(unsigned vectorLength)
|
---|
87 | {
|
---|
88 | ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);
|
---|
89 |
|
---|
90 | // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
|
---|
91 | // - as asserted above - the following calculation cannot overflow.
|
---|
92 | size_t size = (sizeof(ArrayStorage) - sizeof(JSValue*)) + (vectorLength * sizeof(JSValue*));
|
---|
93 | // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
|
---|
94 | // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
|
---|
95 | ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue*))) / sizeof(JSValue*) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue*))));
|
---|
96 |
|
---|
97 | return size;
|
---|
98 | }
|
---|
99 |
|
---|
100 | static inline unsigned increasedVectorLength(unsigned newLength)
|
---|
101 | {
|
---|
102 | ASSERT(newLength <= MAX_STORAGE_VECTOR_LENGTH);
|
---|
103 |
|
---|
104 | // Mathematically equivalent to:
|
---|
105 | // increasedLength = (newLength * 3 + 1) / 2;
|
---|
106 | // or:
|
---|
107 | // increasedLength = (unsigned)ceil(newLength * 1.5));
|
---|
108 | // This form is not prone to internal overflow.
|
---|
109 | unsigned increasedLength = newLength + (newLength >> 1) + (newLength & 1);
|
---|
110 | ASSERT(increasedLength >= newLength);
|
---|
111 |
|
---|
112 | return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
|
---|
113 | }
|
---|
114 |
|
---|
115 | static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
|
---|
116 | {
|
---|
117 | return length / minDensityMultiplier <= numValues;
|
---|
118 | }
|
---|
119 |
|
---|
120 | #if !CHECK_ARRAY_CONSISTENCY
|
---|
121 |
|
---|
122 | inline void JSArray::checkConsistency(ConsistencyCheckType)
|
---|
123 | {
|
---|
124 | }
|
---|
125 |
|
---|
126 | #endif
|
---|
127 |
|
---|
128 | JSArray::JSArray(PassRefPtr<StructureID> structureID)
|
---|
129 | : JSObject(structureID)
|
---|
130 | {
|
---|
131 | unsigned initialCapacity = 0;
|
---|
132 |
|
---|
133 | m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
|
---|
134 | m_fastAccessCutoff = 0;
|
---|
135 | m_storage->m_vectorLength = initialCapacity;
|
---|
136 | m_storage->m_length = 0;
|
---|
137 |
|
---|
138 | checkConsistency();
|
---|
139 | }
|
---|
140 |
|
---|
141 | JSArray::JSArray(PassRefPtr<StructureID> structure, unsigned initialLength)
|
---|
142 | : JSObject(structure)
|
---|
143 | {
|
---|
144 | unsigned initialCapacity = min(initialLength, MIN_SPARSE_ARRAY_INDEX);
|
---|
145 |
|
---|
146 | m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
|
---|
147 | m_fastAccessCutoff = 0;
|
---|
148 | m_storage->m_vectorLength = initialCapacity;
|
---|
149 | m_storage->m_length = initialLength;
|
---|
150 |
|
---|
151 | Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValue*));
|
---|
152 |
|
---|
153 | checkConsistency();
|
---|
154 | }
|
---|
155 |
|
---|
156 | JSArray::JSArray(ExecState* exec, PassRefPtr<StructureID> structure, const ArgList& list)
|
---|
157 | : JSObject(structure)
|
---|
158 | {
|
---|
159 | unsigned length = list.size();
|
---|
160 |
|
---|
161 | m_fastAccessCutoff = length;
|
---|
162 |
|
---|
163 | ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(length)));
|
---|
164 |
|
---|
165 | storage->m_vectorLength = length;
|
---|
166 | storage->m_numValuesInVector = length;
|
---|
167 | storage->m_sparseValueMap = 0;
|
---|
168 | storage->m_length = length;
|
---|
169 |
|
---|
170 | size_t i = 0;
|
---|
171 | ArgList::const_iterator end = list.end();
|
---|
172 | for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
|
---|
173 | storage->m_vector[i] = (*it).jsValue(exec);
|
---|
174 |
|
---|
175 | m_storage = storage;
|
---|
176 |
|
---|
177 | // When the array is created non-empty, its cells are filled, so it's really no worse than
|
---|
178 | // a property map. Therefore don't report extra memory cost.
|
---|
179 |
|
---|
180 | checkConsistency();
|
---|
181 | }
|
---|
182 |
|
---|
183 | JSArray::~JSArray()
|
---|
184 | {
|
---|
185 | checkConsistency(DestructorConsistencyCheck);
|
---|
186 |
|
---|
187 | delete m_storage->m_sparseValueMap;
|
---|
188 | fastFree(m_storage);
|
---|
189 | }
|
---|
190 |
|
---|
191 | bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
|
---|
192 | {
|
---|
193 | ArrayStorage* storage = m_storage;
|
---|
194 |
|
---|
195 | if (i >= storage->m_length) {
|
---|
196 | if (i > MAX_ARRAY_INDEX)
|
---|
197 | return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
|
---|
198 | return false;
|
---|
199 | }
|
---|
200 |
|
---|
201 | if (i < storage->m_vectorLength) {
|
---|
202 | JSValue*& valueSlot = storage->m_vector[i];
|
---|
203 | if (valueSlot) {
|
---|
204 | slot.setValueSlot(&valueSlot);
|
---|
205 | return true;
|
---|
206 | }
|
---|
207 | } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
208 | if (i >= MIN_SPARSE_ARRAY_INDEX) {
|
---|
209 | SparseArrayValueMap::iterator it = map->find(i);
|
---|
210 | if (it != map->end()) {
|
---|
211 | slot.setValueSlot(&it->second);
|
---|
212 | return true;
|
---|
213 | }
|
---|
214 | }
|
---|
215 | }
|
---|
216 |
|
---|
217 | return false;
|
---|
218 | }
|
---|
219 |
|
---|
220 | bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
|
---|
221 | {
|
---|
222 | if (propertyName == exec->propertyNames().length) {
|
---|
223 | slot.setValue(jsNumber(exec, length()));
|
---|
224 | return true;
|
---|
225 | }
|
---|
226 |
|
---|
227 | bool isArrayIndex;
|
---|
228 | unsigned i = propertyName.toArrayIndex(&isArrayIndex);
|
---|
229 | if (isArrayIndex)
|
---|
230 | return JSArray::getOwnPropertySlot(exec, i, slot);
|
---|
231 |
|
---|
232 | return JSObject::getOwnPropertySlot(exec, propertyName, slot);
|
---|
233 | }
|
---|
234 |
|
---|
235 | // ECMA 15.4.5.1
|
---|
236 | void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue* value, PutPropertySlot& slot)
|
---|
237 | {
|
---|
238 | bool isArrayIndex;
|
---|
239 | unsigned i = propertyName.toArrayIndex(&isArrayIndex);
|
---|
240 | if (isArrayIndex) {
|
---|
241 | put(exec, i, value);
|
---|
242 | return;
|
---|
243 | }
|
---|
244 |
|
---|
245 | if (propertyName == exec->propertyNames().length) {
|
---|
246 | unsigned newLength = value->toUInt32(exec);
|
---|
247 | if (value->toNumber(exec) != static_cast<double>(newLength)) {
|
---|
248 | throwError(exec, RangeError, "Invalid array length.");
|
---|
249 | return;
|
---|
250 | }
|
---|
251 | setLength(newLength);
|
---|
252 | return;
|
---|
253 | }
|
---|
254 |
|
---|
255 | JSObject::put(exec, propertyName, value, slot);
|
---|
256 | }
|
---|
257 |
|
---|
258 | void JSArray::put(ExecState* exec, unsigned i, JSValue* value)
|
---|
259 | {
|
---|
260 | checkConsistency();
|
---|
261 |
|
---|
262 | unsigned length = m_storage->m_length;
|
---|
263 | if (i >= length && i <= MAX_ARRAY_INDEX) {
|
---|
264 | length = i + 1;
|
---|
265 | m_storage->m_length = length;
|
---|
266 | }
|
---|
267 |
|
---|
268 | if (i < m_storage->m_vectorLength) {
|
---|
269 | JSValue*& valueSlot = m_storage->m_vector[i];
|
---|
270 | if (valueSlot) {
|
---|
271 | valueSlot = value;
|
---|
272 | checkConsistency();
|
---|
273 | return;
|
---|
274 | }
|
---|
275 | valueSlot = value;
|
---|
276 | if (++m_storage->m_numValuesInVector == m_storage->m_length)
|
---|
277 | m_fastAccessCutoff = m_storage->m_length;
|
---|
278 | checkConsistency();
|
---|
279 | return;
|
---|
280 | }
|
---|
281 |
|
---|
282 | putSlowCase(exec, i, value);
|
---|
283 | }
|
---|
284 |
|
---|
285 | NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue* value)
|
---|
286 | {
|
---|
287 | ArrayStorage* storage = m_storage;
|
---|
288 | SparseArrayValueMap* map = storage->m_sparseValueMap;
|
---|
289 |
|
---|
290 | if (i >= MIN_SPARSE_ARRAY_INDEX) {
|
---|
291 | if (i > MAX_ARRAY_INDEX) {
|
---|
292 | PutPropertySlot slot;
|
---|
293 | put(exec, Identifier::from(exec, i), value, slot);
|
---|
294 | return;
|
---|
295 | }
|
---|
296 |
|
---|
297 | // We miss some cases where we could compact the storage, such as a large array that is being filled from the end
|
---|
298 | // (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster.
|
---|
299 | if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
|
---|
300 | if (!map) {
|
---|
301 | map = new SparseArrayValueMap;
|
---|
302 | storage->m_sparseValueMap = map;
|
---|
303 | }
|
---|
304 | map->set(i, value);
|
---|
305 | return;
|
---|
306 | }
|
---|
307 | }
|
---|
308 |
|
---|
309 | // We have decided that we'll put the new item into the vector.
|
---|
310 | // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
|
---|
311 | if (!map || map->isEmpty()) {
|
---|
312 | if (increaseVectorLength(i + 1)) {
|
---|
313 | storage = m_storage;
|
---|
314 | storage->m_vector[i] = value;
|
---|
315 | if (++storage->m_numValuesInVector == storage->m_length)
|
---|
316 | m_fastAccessCutoff = storage->m_length;
|
---|
317 | checkConsistency();
|
---|
318 | } else
|
---|
319 | throwOutOfMemoryError(exec);
|
---|
320 | return;
|
---|
321 | }
|
---|
322 |
|
---|
323 | // Decide how many values it would be best to move from the map.
|
---|
324 | unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
|
---|
325 | unsigned newVectorLength = increasedVectorLength(i + 1);
|
---|
326 | for (unsigned j = max(storage->m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
|
---|
327 | newNumValuesInVector += map->contains(j);
|
---|
328 | if (i >= MIN_SPARSE_ARRAY_INDEX)
|
---|
329 | newNumValuesInVector -= map->contains(i);
|
---|
330 | if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
|
---|
331 | unsigned proposedNewNumValuesInVector = newNumValuesInVector;
|
---|
332 | // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
|
---|
333 | while (newVectorLength < MAX_STORAGE_VECTOR_LENGTH) {
|
---|
334 | unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1);
|
---|
335 | for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
|
---|
336 | proposedNewNumValuesInVector += map->contains(j);
|
---|
337 | if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
|
---|
338 | break;
|
---|
339 | newVectorLength = proposedNewVectorLength;
|
---|
340 | newNumValuesInVector = proposedNewNumValuesInVector;
|
---|
341 | }
|
---|
342 | }
|
---|
343 |
|
---|
344 | storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength)));
|
---|
345 | if (!storage) {
|
---|
346 | throwOutOfMemoryError(exec);
|
---|
347 | return;
|
---|
348 | }
|
---|
349 |
|
---|
350 | unsigned vectorLength = storage->m_vectorLength;
|
---|
351 | if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
|
---|
352 | for (unsigned j = vectorLength; j < newVectorLength; ++j)
|
---|
353 | storage->m_vector[j] = noValue();
|
---|
354 | if (i > MIN_SPARSE_ARRAY_INDEX)
|
---|
355 | map->remove(i);
|
---|
356 | } else {
|
---|
357 | for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
|
---|
358 | storage->m_vector[j] = noValue();
|
---|
359 | for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
|
---|
360 | storage->m_vector[j] = map->take(j);
|
---|
361 | }
|
---|
362 |
|
---|
363 | storage->m_vector[i] = value;
|
---|
364 |
|
---|
365 | storage->m_vectorLength = newVectorLength;
|
---|
366 | storage->m_numValuesInVector = newNumValuesInVector;
|
---|
367 |
|
---|
368 | m_storage = storage;
|
---|
369 |
|
---|
370 | checkConsistency();
|
---|
371 | }
|
---|
372 |
|
---|
373 | bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
|
---|
374 | {
|
---|
375 | bool isArrayIndex;
|
---|
376 | unsigned i = propertyName.toArrayIndex(&isArrayIndex);
|
---|
377 | if (isArrayIndex)
|
---|
378 | return deleteProperty(exec, i);
|
---|
379 |
|
---|
380 | if (propertyName == exec->propertyNames().length)
|
---|
381 | return false;
|
---|
382 |
|
---|
383 | return JSObject::deleteProperty(exec, propertyName);
|
---|
384 | }
|
---|
385 |
|
---|
386 | bool JSArray::deleteProperty(ExecState* exec, unsigned i)
|
---|
387 | {
|
---|
388 | checkConsistency();
|
---|
389 |
|
---|
390 | ArrayStorage* storage = m_storage;
|
---|
391 |
|
---|
392 | if (i < storage->m_vectorLength) {
|
---|
393 | JSValue*& valueSlot = storage->m_vector[i];
|
---|
394 | if (!valueSlot) {
|
---|
395 | checkConsistency();
|
---|
396 | return false;
|
---|
397 | }
|
---|
398 | valueSlot = noValue();
|
---|
399 | --storage->m_numValuesInVector;
|
---|
400 | if (m_fastAccessCutoff > i)
|
---|
401 | m_fastAccessCutoff = i;
|
---|
402 | checkConsistency();
|
---|
403 | return true;
|
---|
404 | }
|
---|
405 |
|
---|
406 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
407 | if (i >= MIN_SPARSE_ARRAY_INDEX) {
|
---|
408 | SparseArrayValueMap::iterator it = map->find(i);
|
---|
409 | if (it != map->end()) {
|
---|
410 | map->remove(it);
|
---|
411 | checkConsistency();
|
---|
412 | return true;
|
---|
413 | }
|
---|
414 | }
|
---|
415 | }
|
---|
416 |
|
---|
417 | checkConsistency();
|
---|
418 |
|
---|
419 | if (i > MAX_ARRAY_INDEX)
|
---|
420 | return deleteProperty(exec, Identifier::from(exec, i));
|
---|
421 |
|
---|
422 | return false;
|
---|
423 | }
|
---|
424 |
|
---|
425 | void JSArray::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames)
|
---|
426 | {
|
---|
427 | // FIXME: Filling PropertyNameArray with an identifier for every integer
|
---|
428 | // is incredibly inefficient for large arrays. We need a different approach,
|
---|
429 | // which almost certainly means a different structure for PropertyNameArray.
|
---|
430 |
|
---|
431 | ArrayStorage* storage = m_storage;
|
---|
432 |
|
---|
433 | unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength);
|
---|
434 | for (unsigned i = 0; i < usedVectorLength; ++i) {
|
---|
435 | if (storage->m_vector[i])
|
---|
436 | propertyNames.add(Identifier::from(exec, i));
|
---|
437 | }
|
---|
438 |
|
---|
439 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
440 | SparseArrayValueMap::iterator end = map->end();
|
---|
441 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
|
---|
442 | propertyNames.add(Identifier::from(exec, it->first));
|
---|
443 | }
|
---|
444 |
|
---|
445 | JSObject::getPropertyNames(exec, propertyNames);
|
---|
446 | }
|
---|
447 |
|
---|
448 | bool JSArray::increaseVectorLength(unsigned newLength)
|
---|
449 | {
|
---|
450 | // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
|
---|
451 | // to the vector. Callers have to account for that, because they can do it more efficiently.
|
---|
452 |
|
---|
453 | ArrayStorage* storage = m_storage;
|
---|
454 |
|
---|
455 | unsigned vectorLength = storage->m_vectorLength;
|
---|
456 | ASSERT(newLength > vectorLength);
|
---|
457 | ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
|
---|
458 | unsigned newVectorLength = increasedVectorLength(newLength);
|
---|
459 |
|
---|
460 | storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength)));
|
---|
461 | if (!storage)
|
---|
462 | return false;
|
---|
463 |
|
---|
464 | storage->m_vectorLength = newVectorLength;
|
---|
465 |
|
---|
466 | for (unsigned i = vectorLength; i < newVectorLength; ++i)
|
---|
467 | storage->m_vector[i] = noValue();
|
---|
468 |
|
---|
469 | m_storage = storage;
|
---|
470 | return true;
|
---|
471 | }
|
---|
472 |
|
---|
473 | void JSArray::setLength(unsigned newLength)
|
---|
474 | {
|
---|
475 | checkConsistency();
|
---|
476 |
|
---|
477 | ArrayStorage* storage = m_storage;
|
---|
478 |
|
---|
479 | unsigned length = m_storage->m_length;
|
---|
480 |
|
---|
481 | if (newLength < length) {
|
---|
482 | if (m_fastAccessCutoff > newLength)
|
---|
483 | m_fastAccessCutoff = newLength;
|
---|
484 |
|
---|
485 | unsigned usedVectorLength = min(length, storage->m_vectorLength);
|
---|
486 | for (unsigned i = newLength; i < usedVectorLength; ++i) {
|
---|
487 | JSValue*& valueSlot = storage->m_vector[i];
|
---|
488 | bool hadValue = valueSlot;
|
---|
489 | valueSlot = noValue();
|
---|
490 | storage->m_numValuesInVector -= hadValue;
|
---|
491 | }
|
---|
492 |
|
---|
493 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
494 | SparseArrayValueMap copy = *map;
|
---|
495 | SparseArrayValueMap::iterator end = copy.end();
|
---|
496 | for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
|
---|
497 | if (it->first >= newLength)
|
---|
498 | map->remove(it->first);
|
---|
499 | }
|
---|
500 | if (map->isEmpty()) {
|
---|
501 | delete map;
|
---|
502 | storage->m_sparseValueMap = 0;
|
---|
503 | }
|
---|
504 | }
|
---|
505 | }
|
---|
506 |
|
---|
507 | m_storage->m_length = newLength;
|
---|
508 |
|
---|
509 | checkConsistency();
|
---|
510 | }
|
---|
511 |
|
---|
512 | JSValue* JSArray::pop()
|
---|
513 | {
|
---|
514 | checkConsistency();
|
---|
515 |
|
---|
516 | unsigned length = m_storage->m_length;
|
---|
517 | if (!length)
|
---|
518 | return jsUndefined();
|
---|
519 |
|
---|
520 | --length;
|
---|
521 |
|
---|
522 | JSValue* result;
|
---|
523 |
|
---|
524 | if (m_fastAccessCutoff > length) {
|
---|
525 | JSValue*& valueSlot = m_storage->m_vector[length];
|
---|
526 | result = valueSlot;
|
---|
527 | ASSERT(result);
|
---|
528 | valueSlot = noValue();
|
---|
529 | --m_storage->m_numValuesInVector;
|
---|
530 | m_fastAccessCutoff = length;
|
---|
531 | } else if (length < m_storage->m_vectorLength) {
|
---|
532 | JSValue*& valueSlot = m_storage->m_vector[length];
|
---|
533 | result = valueSlot;
|
---|
534 | valueSlot = noValue();
|
---|
535 | if (result)
|
---|
536 | --m_storage->m_numValuesInVector;
|
---|
537 | else
|
---|
538 | result = jsUndefined();
|
---|
539 | } else {
|
---|
540 | result = jsUndefined();
|
---|
541 | if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
|
---|
542 | SparseArrayValueMap::iterator it = map->find(length);
|
---|
543 | if (it != map->end()) {
|
---|
544 | result = it->second;
|
---|
545 | map->remove(it);
|
---|
546 | if (map->isEmpty()) {
|
---|
547 | delete map;
|
---|
548 | m_storage->m_sparseValueMap = 0;
|
---|
549 | }
|
---|
550 | }
|
---|
551 | }
|
---|
552 | }
|
---|
553 |
|
---|
554 | m_storage->m_length = length;
|
---|
555 |
|
---|
556 | checkConsistency();
|
---|
557 |
|
---|
558 | return result;
|
---|
559 | }
|
---|
560 |
|
---|
561 | void JSArray::push(ExecState* exec, JSValue* value)
|
---|
562 | {
|
---|
563 | checkConsistency();
|
---|
564 |
|
---|
565 | if (m_storage->m_length < m_storage->m_vectorLength) {
|
---|
566 | ASSERT(!m_storage->m_vector[m_storage->m_length]);
|
---|
567 | m_storage->m_vector[m_storage->m_length] = value;
|
---|
568 | if (++m_storage->m_numValuesInVector == ++m_storage->m_length)
|
---|
569 | m_fastAccessCutoff = m_storage->m_length;
|
---|
570 | checkConsistency();
|
---|
571 | return;
|
---|
572 | }
|
---|
573 |
|
---|
574 | if (m_storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
|
---|
575 | SparseArrayValueMap* map = m_storage->m_sparseValueMap;
|
---|
576 | if (!map || map->isEmpty()) {
|
---|
577 | if (increaseVectorLength(m_storage->m_length + 1)) {
|
---|
578 | m_storage->m_vector[m_storage->m_length] = value;
|
---|
579 | if (++m_storage->m_numValuesInVector == ++m_storage->m_length)
|
---|
580 | m_fastAccessCutoff = m_storage->m_length;
|
---|
581 | checkConsistency();
|
---|
582 | return;
|
---|
583 | }
|
---|
584 | checkConsistency();
|
---|
585 | throwOutOfMemoryError(exec);
|
---|
586 | return;
|
---|
587 | }
|
---|
588 | }
|
---|
589 |
|
---|
590 | putSlowCase(exec, m_storage->m_length++, value);
|
---|
591 | }
|
---|
592 |
|
---|
593 | void JSArray::mark()
|
---|
594 | {
|
---|
595 | JSObject::mark();
|
---|
596 |
|
---|
597 | ArrayStorage* storage = m_storage;
|
---|
598 |
|
---|
599 | unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength);
|
---|
600 | for (unsigned i = 0; i < usedVectorLength; ++i) {
|
---|
601 | JSValue* value = storage->m_vector[i];
|
---|
602 | if (value && !value->marked())
|
---|
603 | value->mark();
|
---|
604 | }
|
---|
605 |
|
---|
606 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
607 | SparseArrayValueMap::iterator end = map->end();
|
---|
608 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
|
---|
609 | JSValue* value = it->second;
|
---|
610 | if (!value->marked())
|
---|
611 | value->mark();
|
---|
612 | }
|
---|
613 | }
|
---|
614 | }
|
---|
615 |
|
---|
616 | typedef std::pair<JSValue*, UString> ArrayQSortPair;
|
---|
617 |
|
---|
618 | static int compareByStringPairForQSort(const void* a, const void* b)
|
---|
619 | {
|
---|
620 | const ArrayQSortPair* va = static_cast<const ArrayQSortPair*>(a);
|
---|
621 | const ArrayQSortPair* vb = static_cast<const ArrayQSortPair*>(b);
|
---|
622 | return compare(va->second, vb->second);
|
---|
623 | }
|
---|
624 |
|
---|
625 | void JSArray::sort(ExecState* exec)
|
---|
626 | {
|
---|
627 | unsigned lengthNotIncludingUndefined = compactForSorting();
|
---|
628 | if (m_storage->m_sparseValueMap) {
|
---|
629 | throwOutOfMemoryError(exec);
|
---|
630 | return;
|
---|
631 | }
|
---|
632 |
|
---|
633 | if (!lengthNotIncludingUndefined)
|
---|
634 | return;
|
---|
635 |
|
---|
636 | // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
|
---|
637 | // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
|
---|
638 | // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
|
---|
639 | // random or otherwise changing results, effectively making compare function inconsistent.
|
---|
640 |
|
---|
641 | Vector<ArrayQSortPair> values(lengthNotIncludingUndefined);
|
---|
642 | if (!values.begin()) {
|
---|
643 | throwOutOfMemoryError(exec);
|
---|
644 | return;
|
---|
645 | }
|
---|
646 |
|
---|
647 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
|
---|
648 | JSValue* value = m_storage->m_vector[i];
|
---|
649 | ASSERT(!value->isUndefined());
|
---|
650 | values[i].first = value;
|
---|
651 | }
|
---|
652 |
|
---|
653 | // FIXME: While calling these toString functions, the array could be mutated.
|
---|
654 | // In that case, objects pointed to by values in this vector might get garbage-collected!
|
---|
655 |
|
---|
656 | // FIXME: The following loop continues to call toString on subsequent values even after
|
---|
657 | // a toString call raises an exception.
|
---|
658 |
|
---|
659 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
|
---|
660 | values[i].second = values[i].first->toString(exec);
|
---|
661 |
|
---|
662 | if (exec->hadException())
|
---|
663 | return;
|
---|
664 |
|
---|
665 | // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
|
---|
666 | // than O(N log N).
|
---|
667 |
|
---|
668 | #if HAVE(MERGESORT)
|
---|
669 | mergesort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort);
|
---|
670 | #else
|
---|
671 | // FIXME: The qsort library function is likely to not be a stable sort.
|
---|
672 | // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
|
---|
673 | qsort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort);
|
---|
674 | #endif
|
---|
675 |
|
---|
676 | // FIXME: If the toString function changed the length of the array, this might be
|
---|
677 | // modifying the vector incorrectly.
|
---|
678 |
|
---|
679 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
|
---|
680 | m_storage->m_vector[i] = values[i].first;
|
---|
681 |
|
---|
682 | checkConsistency(SortConsistencyCheck);
|
---|
683 | }
|
---|
684 |
|
---|
685 | struct AVLTreeNodeForArrayCompare {
|
---|
686 | JSValue* value;
|
---|
687 |
|
---|
688 | // Child pointers. The high bit of gt is robbed and used as the
|
---|
689 | // balance factor sign. The high bit of lt is robbed and used as
|
---|
690 | // the magnitude of the balance factor.
|
---|
691 | int32_t gt;
|
---|
692 | int32_t lt;
|
---|
693 | };
|
---|
694 |
|
---|
695 | struct AVLTreeAbstractorForArrayCompare {
|
---|
696 | typedef int32_t handle; // Handle is an index into m_nodes vector.
|
---|
697 | typedef JSValue* key;
|
---|
698 | typedef int32_t size;
|
---|
699 |
|
---|
700 | Vector<AVLTreeNodeForArrayCompare> m_nodes;
|
---|
701 | ExecState* m_exec;
|
---|
702 | JSValue* m_compareFunction;
|
---|
703 | CallType m_compareCallType;
|
---|
704 | const CallData* m_compareCallData;
|
---|
705 | JSValue* m_globalThisValue;
|
---|
706 |
|
---|
707 | handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
|
---|
708 | void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
|
---|
709 | handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
|
---|
710 | void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
|
---|
711 |
|
---|
712 | int get_balance_factor(handle h)
|
---|
713 | {
|
---|
714 | if (m_nodes[h].gt & 0x80000000)
|
---|
715 | return -1;
|
---|
716 | return static_cast<unsigned>(m_nodes[h].lt) >> 31;
|
---|
717 | }
|
---|
718 |
|
---|
719 | void set_balance_factor(handle h, int bf)
|
---|
720 | {
|
---|
721 | if (bf == 0) {
|
---|
722 | m_nodes[h].lt &= 0x7FFFFFFF;
|
---|
723 | m_nodes[h].gt &= 0x7FFFFFFF;
|
---|
724 | } else {
|
---|
725 | m_nodes[h].lt |= 0x80000000;
|
---|
726 | if (bf < 0)
|
---|
727 | m_nodes[h].gt |= 0x80000000;
|
---|
728 | else
|
---|
729 | m_nodes[h].gt &= 0x7FFFFFFF;
|
---|
730 | }
|
---|
731 | }
|
---|
732 |
|
---|
733 | int compare_key_key(key va, key vb)
|
---|
734 | {
|
---|
735 | ASSERT(!va->isUndefined());
|
---|
736 | ASSERT(!vb->isUndefined());
|
---|
737 |
|
---|
738 | if (m_exec->hadException())
|
---|
739 | return 1;
|
---|
740 |
|
---|
741 | ArgList arguments;
|
---|
742 | arguments.append(va);
|
---|
743 | arguments.append(vb);
|
---|
744 | double compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments)->toNumber(m_exec);
|
---|
745 | return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
|
---|
746 | }
|
---|
747 |
|
---|
748 | int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
|
---|
749 | int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
|
---|
750 |
|
---|
751 | static handle null() { return 0x7FFFFFFF; }
|
---|
752 | };
|
---|
753 |
|
---|
754 | void JSArray::sort(ExecState* exec, JSValue* compareFunction, CallType callType, const CallData& callData)
|
---|
755 | {
|
---|
756 | checkConsistency();
|
---|
757 |
|
---|
758 | // FIXME: This ignores exceptions raised in the compare function or in toNumber.
|
---|
759 |
|
---|
760 | // The maximum tree depth is compiled in - but the caller is clearly up to no good
|
---|
761 | // if a larger array is passed.
|
---|
762 | ASSERT(m_storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
|
---|
763 | if (m_storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
|
---|
764 | return;
|
---|
765 |
|
---|
766 | if (!m_storage->m_length)
|
---|
767 | return;
|
---|
768 |
|
---|
769 | unsigned usedVectorLength = min(m_storage->m_length, m_storage->m_vectorLength);
|
---|
770 |
|
---|
771 | AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
|
---|
772 | tree.abstractor().m_exec = exec;
|
---|
773 | tree.abstractor().m_compareFunction = compareFunction;
|
---|
774 | tree.abstractor().m_compareCallType = callType;
|
---|
775 | tree.abstractor().m_compareCallData = &callData;
|
---|
776 | tree.abstractor().m_globalThisValue = exec->globalThisValue();
|
---|
777 | tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0));
|
---|
778 |
|
---|
779 | if (!tree.abstractor().m_nodes.begin()) {
|
---|
780 | throwOutOfMemoryError(exec);
|
---|
781 | return;
|
---|
782 | }
|
---|
783 |
|
---|
784 | // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
|
---|
785 | // right out from under us while we're building the tree here.
|
---|
786 |
|
---|
787 | unsigned numDefined = 0;
|
---|
788 | unsigned numUndefined = 0;
|
---|
789 |
|
---|
790 | // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
|
---|
791 | for (; numDefined < usedVectorLength; ++numDefined) {
|
---|
792 | JSValue* v = m_storage->m_vector[numDefined];
|
---|
793 | if (!v || v->isUndefined())
|
---|
794 | break;
|
---|
795 | tree.abstractor().m_nodes[numDefined].value = v;
|
---|
796 | tree.insert(numDefined);
|
---|
797 | }
|
---|
798 | for (unsigned i = numDefined; i < usedVectorLength; ++i) {
|
---|
799 | if (JSValue* v = m_storage->m_vector[i]) {
|
---|
800 | if (v->isUndefined())
|
---|
801 | ++numUndefined;
|
---|
802 | else {
|
---|
803 | tree.abstractor().m_nodes[numDefined].value = v;
|
---|
804 | tree.insert(numDefined);
|
---|
805 | ++numDefined;
|
---|
806 | }
|
---|
807 | }
|
---|
808 | }
|
---|
809 |
|
---|
810 | unsigned newUsedVectorLength = numDefined + numUndefined;
|
---|
811 |
|
---|
812 | if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
|
---|
813 | newUsedVectorLength += map->size();
|
---|
814 | if (newUsedVectorLength > m_storage->m_vectorLength) {
|
---|
815 | // Check that it is possible to allocate an array large enough to hold all the entries.
|
---|
816 | if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
|
---|
817 | throwOutOfMemoryError(exec);
|
---|
818 | return;
|
---|
819 | }
|
---|
820 | }
|
---|
821 |
|
---|
822 | SparseArrayValueMap::iterator end = map->end();
|
---|
823 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
|
---|
824 | tree.abstractor().m_nodes[numDefined].value = it->second;
|
---|
825 | tree.insert(numDefined);
|
---|
826 | ++numDefined;
|
---|
827 | }
|
---|
828 |
|
---|
829 | delete map;
|
---|
830 | m_storage->m_sparseValueMap = 0;
|
---|
831 | }
|
---|
832 |
|
---|
833 | ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
|
---|
834 |
|
---|
835 | // FIXME: If the compare function changed the length of the array, the following might be
|
---|
836 | // modifying the vector incorrectly.
|
---|
837 |
|
---|
838 | // Copy the values back into m_storage.
|
---|
839 | AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
|
---|
840 | iter.start_iter_least(tree);
|
---|
841 | for (unsigned i = 0; i < numDefined; ++i) {
|
---|
842 | m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value;
|
---|
843 | ++iter;
|
---|
844 | }
|
---|
845 |
|
---|
846 | // Put undefined values back in.
|
---|
847 | for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
|
---|
848 | m_storage->m_vector[i] = jsUndefined();
|
---|
849 |
|
---|
850 | // Ensure that unused values in the vector are zeroed out.
|
---|
851 | for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
|
---|
852 | m_storage->m_vector[i] = noValue();
|
---|
853 |
|
---|
854 | m_fastAccessCutoff = newUsedVectorLength;
|
---|
855 | m_storage->m_numValuesInVector = newUsedVectorLength;
|
---|
856 |
|
---|
857 | checkConsistency(SortConsistencyCheck);
|
---|
858 | }
|
---|
859 |
|
---|
860 | void JSArray::fillArgList(ExecState* exec, ArgList& args)
|
---|
861 | {
|
---|
862 | unsigned fastAccessLength = min(m_storage->m_length, m_fastAccessCutoff);
|
---|
863 | unsigned i = 0;
|
---|
864 | for (; i < fastAccessLength; ++i)
|
---|
865 | args.append(getIndex(i));
|
---|
866 | for (; i < m_storage->m_length; ++i)
|
---|
867 | args.append(get(exec, i));
|
---|
868 | }
|
---|
869 |
|
---|
870 | unsigned JSArray::compactForSorting()
|
---|
871 | {
|
---|
872 | checkConsistency();
|
---|
873 |
|
---|
874 | ArrayStorage* storage = m_storage;
|
---|
875 |
|
---|
876 | unsigned usedVectorLength = min(m_storage->m_length, storage->m_vectorLength);
|
---|
877 |
|
---|
878 | unsigned numDefined = 0;
|
---|
879 | unsigned numUndefined = 0;
|
---|
880 |
|
---|
881 | for (; numDefined < usedVectorLength; ++numDefined) {
|
---|
882 | JSValue* v = storage->m_vector[numDefined];
|
---|
883 | if (!v || v->isUndefined())
|
---|
884 | break;
|
---|
885 | }
|
---|
886 | for (unsigned i = numDefined; i < usedVectorLength; ++i) {
|
---|
887 | if (JSValue* v = storage->m_vector[i]) {
|
---|
888 | if (v->isUndefined())
|
---|
889 | ++numUndefined;
|
---|
890 | else
|
---|
891 | storage->m_vector[numDefined++] = v;
|
---|
892 | }
|
---|
893 | }
|
---|
894 |
|
---|
895 | unsigned newUsedVectorLength = numDefined + numUndefined;
|
---|
896 |
|
---|
897 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
|
---|
898 | newUsedVectorLength += map->size();
|
---|
899 | if (newUsedVectorLength > storage->m_vectorLength) {
|
---|
900 | // Check that it is possible to allocate an array large enough to hold all the entries - if not,
|
---|
901 | // exception is thrown by caller.
|
---|
902 | if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
|
---|
903 | return 0;
|
---|
904 | storage = m_storage;
|
---|
905 | }
|
---|
906 |
|
---|
907 | SparseArrayValueMap::iterator end = map->end();
|
---|
908 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
|
---|
909 | storage->m_vector[numDefined++] = it->second;
|
---|
910 |
|
---|
911 | delete map;
|
---|
912 | storage->m_sparseValueMap = 0;
|
---|
913 | }
|
---|
914 |
|
---|
915 | for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
|
---|
916 | storage->m_vector[i] = jsUndefined();
|
---|
917 | for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
|
---|
918 | storage->m_vector[i] = noValue();
|
---|
919 |
|
---|
920 | m_fastAccessCutoff = newUsedVectorLength;
|
---|
921 | storage->m_numValuesInVector = newUsedVectorLength;
|
---|
922 |
|
---|
923 | checkConsistency(SortConsistencyCheck);
|
---|
924 |
|
---|
925 | return numDefined;
|
---|
926 | }
|
---|
927 |
|
---|
928 | void* JSArray::lazyCreationData()
|
---|
929 | {
|
---|
930 | return m_storage->lazyCreationData;
|
---|
931 | }
|
---|
932 |
|
---|
933 | void JSArray::setLazyCreationData(void* d)
|
---|
934 | {
|
---|
935 | m_storage->lazyCreationData = d;
|
---|
936 | }
|
---|
937 |
|
---|
938 | #if CHECK_ARRAY_CONSISTENCY
|
---|
939 |
|
---|
940 | void JSArray::checkConsistency(ConsistencyCheckType type)
|
---|
941 | {
|
---|
942 | ASSERT(m_storage);
|
---|
943 | if (type == SortConsistencyCheck)
|
---|
944 | ASSERT(!m_storage->m_sparseValueMap);
|
---|
945 |
|
---|
946 | ASSERT(m_fastAccessCutoff <= m_storage->m_length);
|
---|
947 | ASSERT(m_fastAccessCutoff <= m_storage->m_numValuesInVector);
|
---|
948 |
|
---|
949 | unsigned numValuesInVector = 0;
|
---|
950 | for (unsigned i = 0; i < m_storage->m_vectorLength; ++i) {
|
---|
951 | if (JSValue* value = m_storage->m_vector[i]) {
|
---|
952 | ASSERT(i < m_storage->m_length);
|
---|
953 | if (type != DestructorConsistencyCheck)
|
---|
954 | value->type(); // Likely to crash if the object was deallocated.
|
---|
955 | ++numValuesInVector;
|
---|
956 | } else {
|
---|
957 | ASSERT(i >= m_fastAccessCutoff);
|
---|
958 | if (type == SortConsistencyCheck)
|
---|
959 | ASSERT(i >= m_storage->m_numValuesInVector);
|
---|
960 | }
|
---|
961 | }
|
---|
962 | ASSERT(numValuesInVector == m_storage->m_numValuesInVector);
|
---|
963 |
|
---|
964 | if (m_storage->m_sparseValueMap) {
|
---|
965 | SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end();
|
---|
966 | for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) {
|
---|
967 | unsigned index = it->first;
|
---|
968 | ASSERT(index < m_storage->m_length);
|
---|
969 | ASSERT(index >= m_storage->m_vectorLength);
|
---|
970 | ASSERT(index <= MAX_ARRAY_INDEX);
|
---|
971 | ASSERT(it->second);
|
---|
972 | if (type != DestructorConsistencyCheck)
|
---|
973 | it->second->type(); // Likely to crash if the object was deallocated.
|
---|
974 | }
|
---|
975 | }
|
---|
976 | }
|
---|
977 |
|
---|
978 | #endif
|
---|
979 |
|
---|
980 | JSArray* constructEmptyArray(ExecState* exec)
|
---|
981 | {
|
---|
982 | return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure());
|
---|
983 | }
|
---|
984 |
|
---|
985 | JSArray* constructEmptyArray(ExecState* exec, unsigned initialLength)
|
---|
986 | {
|
---|
987 | return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure(), initialLength);
|
---|
988 | }
|
---|
989 |
|
---|
990 | JSArray* constructArray(ExecState* exec, JSValue* singleItemValue)
|
---|
991 | {
|
---|
992 | ArgList values;
|
---|
993 | values.append(singleItemValue);
|
---|
994 | return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values);
|
---|
995 | }
|
---|
996 |
|
---|
997 | JSArray* constructArray(ExecState* exec, const ArgList& values)
|
---|
998 | {
|
---|
999 | return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values);
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | } // namespace JSC
|
---|