source: webkit/trunk/JavaScriptCore/wtf/AVLTree.h@ 38205

Last change on this file since 38205 was 38190, checked in by Simon Hausmann, 17 years ago

2008-11-06 Laszlo Gombos <Laszlo Gombos>

Reviewed by Darin Adler.

https://bugs.webkit.org/show_bug.cgi?id=22107

Bug uncovered during RVCT port in functions not used. get_lt() and
get_gt() takes only one argument - remove second argument where
applicable.

  • Property svn:eol-style set to native
File size: 27.4 KB
Line 
1/*
2 * Copyright (C) 2008 Apple Inc. All rights reserved.
3 *
4 * Based on Abstract AVL Tree Template v1.5 by Walt Karas
5 * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
17 * its contributors may be used to endorse or promote products derived
18 * from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
21 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
24 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#ifndef KJS_AVL_TREE_H_
33#define KJS_AVL_TREE_H_
34
35#include "Assertions.h"
36
37namespace JSC {
38
39// Here is the reference class for BSet.
40//
41// class BSet
42// {
43// public:
44//
45// class ANY_bitref
46// {
47// public:
48// operator bool ();
49// void operator = (bool b);
50// };
51//
52// // Does not have to initialize bits.
53// BSet();
54//
55// // Must return a valid value for index when 0 <= index < maxDepth
56// ANY_bitref operator [] (unsigned index);
57//
58// // Set all bits to 1.
59// void set();
60//
61// // Set all bits to 0.
62// void reset();
63// };
64
65template<unsigned maxDepth>
66class AVLTreeDefaultBSet {
67public:
68 bool& operator[](unsigned i) { ASSERT(i < maxDepth); return m_data[i]; }
69 void set() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = true; }
70 void reset() { for (unsigned i = 0; i < maxDepth; ++i) m_data[i] = false; }
71
72private:
73 bool m_data[maxDepth];
74};
75
76// How to determine maxDepth:
77// d Minimum number of nodes
78// 2 2
79// 3 4
80// 4 7
81// 5 12
82// 6 20
83// 7 33
84// 8 54
85// 9 88
86// 10 143
87// 11 232
88// 12 376
89// 13 609
90// 14 986
91// 15 1,596
92// 16 2,583
93// 17 4,180
94// 18 6,764
95// 19 10,945
96// 20 17,710
97// 21 28,656
98// 22 46,367
99// 23 75,024
100// 24 121,392
101// 25 196,417
102// 26 317,810
103// 27 514,228
104// 28 832,039
105// 29 1,346,268
106// 30 2,178,308
107// 31 3,524,577
108// 32 5,702,886
109// 33 9,227,464
110// 34 14,930,351
111// 35 24,157,816
112// 36 39,088,168
113// 37 63,245,985
114// 38 102,334,154
115// 39 165,580,140
116// 40 267,914,295
117// 41 433,494,436
118// 42 701,408,732
119// 43 1,134,903,169
120// 44 1,836,311,902
121// 45 2,971,215,072
122//
123// E.g., if, in a particular instantiation, the maximum number of nodes in a tree instance is 1,000,000, the maximum depth should be 28.
124// You pick 28 because MN(28) is 832,039, which is less than or equal to 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000.
125
126template <class Abstractor, unsigned maxDepth = 32, class BSet = AVLTreeDefaultBSet<maxDepth> >
127class AVLTree {
128public:
129
130 typedef typename Abstractor::key key;
131 typedef typename Abstractor::handle handle;
132 typedef typename Abstractor::size size;
133
134 enum SearchType {
135 EQUAL = 1,
136 LESS = 2,
137 GREATER = 4,
138 LESS_EQUAL = EQUAL | LESS,
139 GREATER_EQUAL = EQUAL | GREATER
140 };
141
142
143 Abstractor& abstractor() { return abs; }
144
145 inline handle insert(handle h);
146
147 inline handle search(key k, SearchType st = EQUAL);
148 inline handle search_least();
149 inline handle search_greatest();
150
151 inline handle remove(key k);
152
153 inline handle subst(handle new_node);
154
155 void purge() { abs.root = null(); }
156
157 bool is_empty() { return abs.root == null(); }
158
159 AVLTree() { abs.root = null(); }
160
161 class Iterator {
162 public:
163
164 // Initialize depth to invalid value, to indicate iterator is
165 // invalid. (Depth is zero-base.)
166 Iterator() { depth = ~0U; }
167
168 void start_iter(AVLTree &tree, key k, SearchType st = EQUAL)
169 {
170 // Mask of high bit in an int.
171 const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1);
172
173 // Save the tree that we're going to iterate through in a
174 // member variable.
175 tree_ = &tree;
176
177 int cmp, target_cmp;
178 handle h = tree_->abs.root;
179 unsigned d = 0;
180
181 depth = ~0U;
182
183 if (h == null())
184 // Tree is empty.
185 return;
186
187 if (st & LESS)
188 // Key can be greater than key of starting node.
189 target_cmp = 1;
190 else if (st & GREATER)
191 // Key can be less than key of starting node.
192 target_cmp = -1;
193 else
194 // Key must be same as key of starting node.
195 target_cmp = 0;
196
197 for (;;) {
198 cmp = cmp_k_n(k, h);
199 if (cmp == 0) {
200 if (st & EQUAL) {
201 // Equal node was sought and found as starting node.
202 depth = d;
203 break;
204 }
205 cmp = -target_cmp;
206 } else if (target_cmp != 0)
207 if (!((cmp ^ target_cmp) & MASK_HIGH_BIT))
208 // cmp and target_cmp are both negative or both positive.
209 depth = d;
210 h = cmp < 0 ? get_lt(h) : get_gt(h);
211 if (h == null())
212 break;
213 branch[d] = cmp > 0;
214 path_h[d++] = h;
215 }
216 }
217
218 void start_iter_least(AVLTree &tree)
219 {
220 tree_ = &tree;
221
222 handle h = tree_->abs.root;
223
224 depth = ~0U;
225
226 branch.reset();
227
228 while (h != null()) {
229 if (depth != ~0U)
230 path_h[depth] = h;
231 depth++;
232 h = get_lt(h);
233 }
234 }
235
236 void start_iter_greatest(AVLTree &tree)
237 {
238 tree_ = &tree;
239
240 handle h = tree_->abs.root;
241
242 depth = ~0U;
243
244 branch.set();
245
246 while (h != null()) {
247 if (depth != ~0U)
248 path_h[depth] = h;
249 depth++;
250 h = get_gt(h);
251 }
252 }
253
254 handle operator*()
255 {
256 if (depth == ~0U)
257 return null();
258
259 return depth == 0 ? tree_->abs.root : path_h[depth - 1];
260 }
261
262 void operator++()
263 {
264 if (depth != ~0U) {
265 handle h = get_gt(**this);
266 if (h == null()) {
267 do {
268 if (depth == 0) {
269 depth = ~0U;
270 break;
271 }
272 depth--;
273 } while (branch[depth]);
274 } else {
275 branch[depth] = true;
276 path_h[depth++] = h;
277 for (;;) {
278 h = get_lt(h);
279 if (h == null())
280 break;
281 branch[depth] = false;
282 path_h[depth++] = h;
283 }
284 }
285 }
286 }
287
288 void operator--()
289 {
290 if (depth != ~0U) {
291 handle h = get_lt(**this);
292 if (h == null())
293 do {
294 if (depth == 0) {
295 depth = ~0U;
296 break;
297 }
298 depth--;
299 } while (!branch[depth]);
300 else {
301 branch[depth] = false;
302 path_h[depth++] = h;
303 for (;;) {
304 h = get_gt(h);
305 if (h == null())
306 break;
307 branch[depth] = true;
308 path_h[depth++] = h;
309 }
310 }
311 }
312 }
313
314 void operator++(int) { ++(*this); }
315 void operator--(int) { --(*this); }
316
317 protected:
318
319 // Tree being iterated over.
320 AVLTree *tree_;
321
322 // Records a path into the tree. If branch[n] is true, indicates
323 // take greater branch from the nth node in the path, otherwise
324 // take the less branch. branch[0] gives branch from root, and
325 // so on.
326 BSet branch;
327
328 // Zero-based depth of path into tree.
329 unsigned depth;
330
331 // Handles of nodes in path from root to current node (returned by *).
332 handle path_h[maxDepth - 1];
333
334 int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); }
335 int cmp_n_n(handle h1, handle h2) { return tree_->abs.compare_node_node(h1, h2); }
336 handle get_lt(handle h) { return tree_->abs.get_less(h); }
337 handle get_gt(handle h) { return tree_->abs.get_greater(h); }
338 handle null() { return tree_->abs.null(); }
339 };
340
341 template<typename fwd_iter>
342 bool build(fwd_iter p, size num_nodes)
343 {
344 if (num_nodes == 0) {
345 abs.root = null();
346 return true;
347 }
348
349 // Gives path to subtree being built. If branch[N] is false, branch
350 // less from the node at depth N, if true branch greater.
351 BSet branch;
352
353 // If rem[N] is true, then for the current subtree at depth N, it's
354 // greater subtree has one more node than it's less subtree.
355 BSet rem;
356
357 // Depth of root node of current subtree.
358 unsigned depth = 0;
359
360 // Number of nodes in current subtree.
361 size num_sub = num_nodes;
362
363 // The algorithm relies on a stack of nodes whose less subtree has
364 // been built, but whose right subtree has not yet been built. The
365 // stack is implemented as linked list. The nodes are linked
366 // together by having the "greater" handle of a node set to the
367 // next node in the list. "less_parent" is the handle of the first
368 // node in the list.
369 handle less_parent = null();
370
371 // h is root of current subtree, child is one of its children.
372 handle h, child;
373
374 for (;;) {
375 while (num_sub > 2) {
376 // Subtract one for root of subtree.
377 num_sub--;
378 rem[depth] = !!(num_sub & 1);
379 branch[depth++] = false;
380 num_sub >>= 1;
381 }
382
383 if (num_sub == 2) {
384 // Build a subtree with two nodes, slanting to greater.
385 // I arbitrarily chose to always have the extra node in the
386 // greater subtree when there is an odd number of nodes to
387 // split between the two subtrees.
388
389 h = *p;
390 p++;
391 child = *p;
392 p++;
393 set_lt(child, null());
394 set_gt(child, null());
395 set_bf(child, 0);
396 set_gt(h, child);
397 set_lt(h, null());
398 set_bf(h, 1);
399 } else { // num_sub == 1
400 // Build a subtree with one node.
401
402 h = *p;
403 p++;
404 set_lt(h, null());
405 set_gt(h, null());
406 set_bf(h, 0);
407 }
408
409 while (depth) {
410 depth--;
411 if (!branch[depth])
412 // We've completed a less subtree.
413 break;
414
415 // We've completed a greater subtree, so attach it to
416 // its parent (that is less than it). We pop the parent
417 // off the stack of less parents.
418 child = h;
419 h = less_parent;
420 less_parent = get_gt(h);
421 set_gt(h, child);
422 // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1
423 num_sub <<= 1;
424 num_sub += 1 - rem[depth];
425 if (num_sub & (num_sub - 1))
426 // num_sub is not a power of 2
427 set_bf(h, 0);
428 else
429 // num_sub is a power of 2
430 set_bf(h, 1);
431 }
432
433 if (num_sub == num_nodes)
434 // We've completed the full tree.
435 break;
436
437 // The subtree we've completed is the less subtree of the
438 // next node in the sequence.
439
440 child = h;
441 h = *p;
442 p++;
443 set_lt(h, child);
444
445 // Put h into stack of less parents.
446 set_gt(h, less_parent);
447 less_parent = h;
448
449 // Proceed to creating greater than subtree of h.
450 branch[depth] = true;
451 num_sub += rem[depth++];
452
453 } // end for (;;)
454
455 abs.root = h;
456
457 return true;
458 }
459
460protected:
461
462 friend class Iterator;
463
464 // Create a class whose sole purpose is to take advantage of
465 // the "empty member" optimization.
466 struct abs_plus_root : public Abstractor {
467 // The handle of the root element in the AVL tree.
468 handle root;
469 };
470
471 abs_plus_root abs;
472
473
474 handle get_lt(handle h) { return abs.get_less(h); }
475 void set_lt(handle h, handle lh) { abs.set_less(h, lh); }
476
477 handle get_gt(handle h) { return abs.get_greater(h); }
478 void set_gt(handle h, handle gh) { abs.set_greater(h, gh); }
479
480 int get_bf(handle h) { return abs.get_balance_factor(h); }
481 void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); }
482
483 int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); }
484 int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); }
485
486 handle null() { return abs.null(); }
487
488private:
489
490 // Balances subtree, returns handle of root node of subtree
491 // after balancing.
492 handle balance(handle bal_h)
493 {
494 handle deep_h;
495
496 // Either the "greater than" or the "less than" subtree of
497 // this node has to be 2 levels deeper (or else it wouldn't
498 // need balancing).
499
500 if (get_bf(bal_h) > 0) {
501 // "Greater than" subtree is deeper.
502
503 deep_h = get_gt(bal_h);
504
505 if (get_bf(deep_h) < 0) {
506 handle old_h = bal_h;
507 bal_h = get_lt(deep_h);
508
509 set_gt(old_h, get_lt(bal_h));
510 set_lt(deep_h, get_gt(bal_h));
511 set_lt(bal_h, old_h);
512 set_gt(bal_h, deep_h);
513
514 int bf = get_bf(bal_h);
515 if (bf != 0) {
516 if (bf > 0) {
517 set_bf(old_h, -1);
518 set_bf(deep_h, 0);
519 } else {
520 set_bf(deep_h, 1);
521 set_bf(old_h, 0);
522 }
523 set_bf(bal_h, 0);
524 } else {
525 set_bf(old_h, 0);
526 set_bf(deep_h, 0);
527 }
528 } else {
529 set_gt(bal_h, get_lt(deep_h));
530 set_lt(deep_h, bal_h);
531 if (get_bf(deep_h) == 0) {
532 set_bf(deep_h, -1);
533 set_bf(bal_h, 1);
534 } else {
535 set_bf(deep_h, 0);
536 set_bf(bal_h, 0);
537 }
538 bal_h = deep_h;
539 }
540 } else {
541 // "Less than" subtree is deeper.
542
543 deep_h = get_lt(bal_h);
544
545 if (get_bf(deep_h) > 0) {
546 handle old_h = bal_h;
547 bal_h = get_gt(deep_h);
548 set_lt(old_h, get_gt(bal_h));
549 set_gt(deep_h, get_lt(bal_h));
550 set_gt(bal_h, old_h);
551 set_lt(bal_h, deep_h);
552
553 int bf = get_bf(bal_h);
554 if (bf != 0) {
555 if (bf < 0) {
556 set_bf(old_h, 1);
557 set_bf(deep_h, 0);
558 } else {
559 set_bf(deep_h, -1);
560 set_bf(old_h, 0);
561 }
562 set_bf(bal_h, 0);
563 } else {
564 set_bf(old_h, 0);
565 set_bf(deep_h, 0);
566 }
567 } else {
568 set_lt(bal_h, get_gt(deep_h));
569 set_gt(deep_h, bal_h);
570 if (get_bf(deep_h) == 0) {
571 set_bf(deep_h, 1);
572 set_bf(bal_h, -1);
573 } else {
574 set_bf(deep_h, 0);
575 set_bf(bal_h, 0);
576 }
577 bal_h = deep_h;
578 }
579 }
580
581 return bal_h;
582 }
583
584};
585
586template <class Abstractor, unsigned maxDepth, class BSet>
587inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
588AVLTree<Abstractor, maxDepth, BSet>::insert(handle h)
589{
590 set_lt(h, null());
591 set_gt(h, null());
592 set_bf(h, 0);
593
594 if (abs.root == null())
595 abs.root = h;
596 else {
597 // Last unbalanced node encountered in search for insertion point.
598 handle unbal = null();
599 // Parent of last unbalanced node.
600 handle parent_unbal = null();
601 // Balance factor of last unbalanced node.
602 int unbal_bf;
603
604 // Zero-based depth in tree.
605 unsigned depth = 0, unbal_depth = 0;
606
607 // Records a path into the tree. If branch[n] is true, indicates
608 // take greater branch from the nth node in the path, otherwise
609 // take the less branch. branch[0] gives branch from root, and
610 // so on.
611 BSet branch;
612
613 handle hh = abs.root;
614 handle parent = null();
615 int cmp;
616
617 do {
618 if (get_bf(hh) != 0) {
619 unbal = hh;
620 parent_unbal = parent;
621 unbal_depth = depth;
622 }
623 cmp = cmp_n_n(h, hh);
624 if (cmp == 0)
625 // Duplicate key.
626 return hh;
627 parent = hh;
628 hh = cmp < 0 ? get_lt(hh) : get_gt(hh);
629 branch[depth++] = cmp > 0;
630 } while (hh != null());
631
632 // Add node to insert as leaf of tree.
633 if (cmp < 0)
634 set_lt(parent, h);
635 else
636 set_gt(parent, h);
637
638 depth = unbal_depth;
639
640 if (unbal == null())
641 hh = abs.root;
642 else {
643 cmp = branch[depth++] ? 1 : -1;
644 unbal_bf = get_bf(unbal);
645 if (cmp < 0)
646 unbal_bf--;
647 else // cmp > 0
648 unbal_bf++;
649 hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal);
650 if ((unbal_bf != -2) && (unbal_bf != 2)) {
651 // No rebalancing of tree is necessary.
652 set_bf(unbal, unbal_bf);
653 unbal = null();
654 }
655 }
656
657 if (hh != null())
658 while (h != hh) {
659 cmp = branch[depth++] ? 1 : -1;
660 if (cmp < 0) {
661 set_bf(hh, -1);
662 hh = get_lt(hh);
663 } else { // cmp > 0
664 set_bf(hh, 1);
665 hh = get_gt(hh);
666 }
667 }
668
669 if (unbal != null()) {
670 unbal = balance(unbal);
671 if (parent_unbal == null())
672 abs.root = unbal;
673 else {
674 depth = unbal_depth - 1;
675 cmp = branch[depth] ? 1 : -1;
676 if (cmp < 0)
677 set_lt(parent_unbal, unbal);
678 else // cmp > 0
679 set_gt(parent_unbal, unbal);
680 }
681 }
682 }
683
684 return h;
685}
686
687template <class Abstractor, unsigned maxDepth, class BSet>
688inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
689AVLTree<Abstractor, maxDepth, BSet>::search(key k, typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st)
690{
691 const int MASK_HIGH_BIT = (int) ~ ((~ (unsigned) 0) >> 1);
692
693 int cmp, target_cmp;
694 handle match_h = null();
695 handle h = abs.root;
696
697 if (st & LESS)
698 target_cmp = 1;
699 else if (st & GREATER)
700 target_cmp = -1;
701 else
702 target_cmp = 0;
703
704 while (h != null()) {
705 cmp = cmp_k_n(k, h);
706 if (cmp == 0) {
707 if (st & EQUAL) {
708 match_h = h;
709 break;
710 }
711 cmp = -target_cmp;
712 } else if (target_cmp != 0)
713 if (!((cmp ^ target_cmp) & MASK_HIGH_BIT))
714 // cmp and target_cmp are both positive or both negative.
715 match_h = h;
716 h = cmp < 0 ? get_lt(h) : get_gt(h);
717 }
718
719 return match_h;
720}
721
722template <class Abstractor, unsigned maxDepth, class BSet>
723inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
724AVLTree<Abstractor, maxDepth, BSet>::search_least()
725{
726 handle h = abs.root, parent = null();
727
728 while (h != null()) {
729 parent = h;
730 h = get_lt(h);
731 }
732
733 return parent;
734}
735
736template <class Abstractor, unsigned maxDepth, class BSet>
737inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
738AVLTree<Abstractor, maxDepth, BSet>::search_greatest()
739{
740 handle h = abs.root, parent = null();
741
742 while (h != null()) {
743 parent = h;
744 h = get_gt(h);
745 }
746
747 return parent;
748}
749
750template <class Abstractor, unsigned maxDepth, class BSet>
751inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
752AVLTree<Abstractor, maxDepth, BSet>::remove(key k)
753{
754 // Zero-based depth in tree.
755 unsigned depth = 0, rm_depth;
756
757 // Records a path into the tree. If branch[n] is true, indicates
758 // take greater branch from the nth node in the path, otherwise
759 // take the less branch. branch[0] gives branch from root, and
760 // so on.
761 BSet branch;
762
763 handle h = abs.root;
764 handle parent = null(), child;
765 int cmp, cmp_shortened_sub_with_path;
766
767 for (;;) {
768 if (h == null())
769 // No node in tree with given key.
770 return null();
771 cmp = cmp_k_n(k, h);
772 if (cmp == 0)
773 // Found node to remove.
774 break;
775 parent = h;
776 h = cmp < 0 ? get_lt(h) : get_gt(h);
777 branch[depth++] = cmp > 0;
778 cmp_shortened_sub_with_path = cmp;
779 }
780 handle rm = h;
781 handle parent_rm = parent;
782 rm_depth = depth;
783
784 // If the node to remove is not a leaf node, we need to get a
785 // leaf node, or a node with a single leaf as its child, to put
786 // in the place of the node to remove. We will get the greatest
787 // node in the less subtree (of the node to remove), or the least
788 // node in the greater subtree. We take the leaf node from the
789 // deeper subtree, if there is one.
790
791 if (get_bf(h) < 0) {
792 child = get_lt(h);
793 branch[depth] = false;
794 cmp = -1;
795 } else {
796 child = get_gt(h);
797 branch[depth] = true;
798 cmp = 1;
799 }
800 depth++;
801
802 if (child != null()) {
803 cmp = -cmp;
804 do {
805 parent = h;
806 h = child;
807 if (cmp < 0) {
808 child = get_lt(h);
809 branch[depth] = false;
810 } else {
811 child = get_gt(h);
812 branch[depth] = true;
813 }
814 depth++;
815 } while (child != null());
816
817 if (parent == rm)
818 // Only went through do loop once. Deleted node will be replaced
819 // in the tree structure by one of its immediate children.
820 cmp_shortened_sub_with_path = -cmp;
821 else
822 cmp_shortened_sub_with_path = cmp;
823
824 // Get the handle of the opposite child, which may not be null.
825 child = cmp > 0 ? get_lt(h) : get_gt(h);
826 }
827
828 if (parent == null())
829 // There were only 1 or 2 nodes in this tree.
830 abs.root = child;
831 else if (cmp_shortened_sub_with_path < 0)
832 set_lt(parent, child);
833 else
834 set_gt(parent, child);
835
836 // "path" is the parent of the subtree being eliminated or reduced
837 // from a depth of 2 to 1. If "path" is the node to be removed, we
838 // set path to the node we're about to poke into the position of the
839 // node to be removed.
840 handle path = parent == rm ? h : parent;
841
842 if (h != rm) {
843 // Poke in the replacement for the node to be removed.
844 set_lt(h, get_lt(rm));
845 set_gt(h, get_gt(rm));
846 set_bf(h, get_bf(rm));
847 if (parent_rm == null())
848 abs.root = h;
849 else {
850 depth = rm_depth - 1;
851 if (branch[depth])
852 set_gt(parent_rm, h);
853 else
854 set_lt(parent_rm, h);
855 }
856 }
857
858 if (path != null()) {
859 // Create a temporary linked list from the parent of the path node
860 // to the root node.
861 h = abs.root;
862 parent = null();
863 depth = 0;
864 while (h != path) {
865 if (branch[depth++]) {
866 child = get_gt(h);
867 set_gt(h, parent);
868 } else {
869 child = get_lt(h);
870 set_lt(h, parent);
871 }
872 parent = h;
873 h = child;
874 }
875
876 // Climb from the path node to the root node using the linked
877 // list, restoring the tree structure and rebalancing as necessary.
878 bool reduced_depth = true;
879 int bf;
880 cmp = cmp_shortened_sub_with_path;
881 for (;;) {
882 if (reduced_depth) {
883 bf = get_bf(h);
884 if (cmp < 0)
885 bf++;
886 else // cmp > 0
887 bf--;
888 if ((bf == -2) || (bf == 2)) {
889 h = balance(h);
890 bf = get_bf(h);
891 } else
892 set_bf(h, bf);
893 reduced_depth = (bf == 0);
894 }
895 if (parent == null())
896 break;
897 child = h;
898 h = parent;
899 cmp = branch[--depth] ? 1 : -1;
900 if (cmp < 0) {
901 parent = get_lt(h);
902 set_lt(h, child);
903 } else {
904 parent = get_gt(h);
905 set_gt(h, child);
906 }
907 }
908 abs.root = h;
909 }
910
911 return rm;
912}
913
914template <class Abstractor, unsigned maxDepth, class BSet>
915inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
916AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node)
917{
918 handle h = abs.root;
919 handle parent = null();
920 int cmp, last_cmp;
921
922 /* Search for node already in tree with same key. */
923 for (;;) {
924 if (h == null())
925 /* No node in tree with same key as new node. */
926 return null();
927 cmp = cmp_n_n(new_node, h);
928 if (cmp == 0)
929 /* Found the node to substitute new one for. */
930 break;
931 last_cmp = cmp;
932 parent = h;
933 h = cmp < 0 ? get_lt(h) : get_gt(h);
934 }
935
936 /* Copy tree housekeeping fields from node in tree to new node. */
937 set_lt(new_node, get_lt(h));
938 set_gt(new_node, get_gt(h));
939 set_bf(new_node, get_bf(h));
940
941 if (parent == null())
942 /* New node is also new root. */
943 abs.root = new_node;
944 else {
945 /* Make parent point to new node. */
946 if (last_cmp < 0)
947 set_lt(parent, new_node);
948 else
949 set_gt(parent, new_node);
950 }
951
952 return h;
953}
954
955}
956
957#endif
Note: See TracBrowser for help on using the repository browser.