source: webkit/trunk/JavaScriptCore/wtf/FastMalloc.cpp@ 27336

Last change on this file since 27336 was 27336, checked in by aroben, 18 years ago

Fix a crash on launch due to a static initializer race

We now use fast inline assembler spinlocks which can be statically
initialized at compile time.

As a side benefit, this speeds up SunSpider by 0.4%.

Reviewed by Oliver.

  • wtf/FastMalloc.cpp:
  • wtf/TCSpinLock.h: (TCMalloc_SpinLock::Lock): (TCMalloc_SpinLock::Unlock): (TCMalloc_SlowLock):
  • wtf/TCSystemAlloc.cpp:
  • Property svn:eol-style set to native
File size: 81.9 KB
Line 
1// Copyright (c) 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// ---
31// Author: Sanjay Ghemawat <[email protected]>
32//
33// A malloc that uses a per-thread cache to satisfy small malloc requests.
34// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
35//
36// See doc/tcmalloc.html for a high-level
37// description of how this malloc works.
38//
39// SYNCHRONIZATION
40// 1. The thread-specific lists are accessed without acquiring any locks.
41// This is safe because each such list is only accessed by one thread.
42// 2. We have a lock per central free-list, and hold it while manipulating
43// the central free list for a particular size.
44// 3. The central page allocator is protected by "pageheap_lock".
45// 4. The pagemap (which maps from page-number to descriptor),
46// can be read without holding any locks, and written while holding
47// the "pageheap_lock".
48//
49// This multi-threaded access to the pagemap is safe for fairly
50// subtle reasons. We basically assume that when an object X is
51// allocated by thread A and deallocated by thread B, there must
52// have been appropriate synchronization in the handoff of object
53// X from thread A to thread B.
54//
55// TODO: Bias reclamation to larger addresses
56// TODO: implement mallinfo/mallopt
57// TODO: Better testing
58// TODO: Return memory to system
59//
60// 9/28/2003 (new page-level allocator replaces ptmalloc2):
61// * malloc/free of small objects goes from ~300 ns to ~50 ns.
62// * allocation of a reasonably complicated struct
63// goes from about 1100 ns to about 300 ns.
64
65#include "config.h"
66#include "FastMalloc.h"
67
68#include "Assertions.h"
69#if USE(MULTIPLE_THREADS)
70#include <pthread.h>
71#endif
72
73#if !defined(USE_SYSTEM_MALLOC) && defined(NDEBUG)
74#define FORCE_SYSTEM_MALLOC 0
75#else
76#define FORCE_SYSTEM_MALLOC 1
77#endif
78
79#ifndef NDEBUG
80namespace WTF {
81
82#if USE(MULTIPLE_THREADS)
83static pthread_key_t isForbiddenKey;
84static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
85static void initializeIsForbiddenKey()
86{
87 pthread_key_create(&isForbiddenKey, 0);
88}
89
90static bool isForbidden()
91{
92 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
93 return !!pthread_getspecific(isForbiddenKey);
94}
95
96void fastMallocForbid()
97{
98 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
99 pthread_setspecific(isForbiddenKey, &isForbiddenKey);
100}
101
102void fastMallocAllow()
103{
104 pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
105 pthread_setspecific(isForbiddenKey, 0);
106}
107
108#else
109
110static bool staticIsForbidden;
111static bool isForbidden()
112{
113 return staticIsForbidden;
114}
115
116void fastMallocForbid()
117{
118 staticIsForbidden = true;
119}
120
121void fastMallocAllow()
122{
123 staticIsForbidden = false;
124}
125#endif // USE(MULTIPLE_THREADS)
126
127} // namespace WTF
128#endif // NDEBUG
129
130#if FORCE_SYSTEM_MALLOC
131
132#include <stdlib.h>
133#if !PLATFORM(WIN_OS)
134 #include <pthread.h>
135#endif
136
137namespace WTF {
138
139void *fastMalloc(size_t n)
140{
141 ASSERT(!isForbidden());
142 return malloc(n);
143}
144
145void *fastCalloc(size_t n_elements, size_t element_size)
146{
147 ASSERT(!isForbidden());
148 return calloc(n_elements, element_size);
149}
150
151void fastFree(void* p)
152{
153 ASSERT(!isForbidden());
154 free(p);
155}
156
157void *fastRealloc(void* p, size_t n)
158{
159 ASSERT(!isForbidden());
160 return realloc(p, n);
161}
162
163} // namespace WTF
164
165#if PLATFORM(DARWIN)
166// This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
167// It will never be used in this case, so it's type and value are less interesting than its presence.
168extern "C" const int jscore_fastmalloc_introspection = 0;
169#endif
170
171#else
172
173#if HAVE(STDINT_H)
174#include <stdint.h>
175#elif HAVE(INTTYPES_H)
176#include <inttypes.h>
177#else
178#include <sys/types.h>
179#endif
180
181#include "AlwaysInline.h"
182#include "Assertions.h"
183#include "TCPageMap.h"
184#include "TCSpinLock.h"
185#include "TCSystemAlloc.h"
186#include <errno.h>
187#include <new>
188#include <pthread.h>
189#include <stdarg.h>
190#include <stddef.h>
191#include <stdio.h>
192#include <string.h>
193#if COMPILER(MSVC)
194#define WIN32_LEAN_AND_MEAN
195#include <windows.h>
196#endif
197
198#if WTF_CHANGES
199
200#if PLATFORM(DARWIN)
201#include "MallocZoneSupport.h"
202#endif
203
204// Calling pthread_getspecific through a global function pointer is faster than a normal
205// call to the function on Mac OS X, and it's used in performance-critical code. So we
206// use a function pointer. But that's not necessarily faster on other platforms, and we had
207// problems with this technique on Windows, so we'll do this only on Mac OS X.
208#if PLATFORM(DARWIN)
209static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
210#define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
211#endif
212
213namespace WTF {
214
215#define malloc fastMalloc
216#define calloc fastCalloc
217#define free fastFree
218#define realloc fastRealloc
219
220#define MESSAGE LOG_ERROR
221#define CHECK_CONDITION ASSERT
222
223#if PLATFORM(DARWIN)
224class TCMalloc_PageHeap;
225class TCMalloc_ThreadCache;
226class TCMalloc_Central_FreeListPadded;
227
228class FastMallocZone {
229public:
230 static void init();
231
232 static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
233 static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
234 static boolean_t check(malloc_zone_t*) { return true; }
235 static void print(malloc_zone_t*, boolean_t) { }
236 static void log(malloc_zone_t*, void*) { }
237 static void forceLock(malloc_zone_t*) { }
238 static void forceUnlock(malloc_zone_t*) { }
239 static void statistics(malloc_zone_t*, malloc_statistics_t*) { }
240
241private:
242 FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*);
243 static size_t size(malloc_zone_t*, const void*);
244 static void* zoneMalloc(malloc_zone_t*, size_t);
245 static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
246 static void zoneFree(malloc_zone_t*, void*);
247 static void* zoneRealloc(malloc_zone_t*, void*, size_t);
248 static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
249 static void zoneDestroy(malloc_zone_t*) { }
250
251 malloc_zone_t m_zone;
252 TCMalloc_PageHeap* m_pageHeap;
253 TCMalloc_ThreadCache** m_threadHeaps;
254 TCMalloc_Central_FreeListPadded* m_centralCaches;
255};
256
257#endif
258
259#endif
260
261#if HAVE(INTTYPES_H)
262#define __STDC_FORMAT_MACROS
263#include <inttypes.h>
264#define LLU PRIu64
265#else
266#define LLU "llu" // hope for the best
267#endif
268
269//-------------------------------------------------------------------
270// Configuration
271//-------------------------------------------------------------------
272
273// Not all possible combinations of the following parameters make
274// sense. In particular, if kMaxSize increases, you may have to
275// increase kNumClasses as well.
276static const size_t kPageShift = 12;
277static const size_t kPageSize = 1 << kPageShift;
278static const size_t kMaxSize = 8u * kPageSize;
279static const size_t kAlignShift = 3;
280static const size_t kAlignment = 1 << kAlignShift;
281static const size_t kNumClasses = 170;
282static const size_t kMaxTinySize = 1 << 8;
283
284// Minimum number of pages to fetch from system at a time. Must be
285// significantly bigger than kBlockSize to amortize system-call
286// overhead, and also to reduce external fragementation. Also, we
287// should keep this value big because various incarnations of Linux
288// have small limits on the number of mmap() regions per
289// address-space.
290static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
291
292// Number of objects to move between a per-thread list and a central
293// list in one shot. We want this to be not too small so we can
294// amortize the lock overhead for accessing the central list. Making
295// it too big may temporarily cause unnecessary memory wastage in the
296// per-thread free list until the scavenger cleans up the list.
297static const int kNumObjectsToMove = 32;
298
299// Maximum length we allow a per-thread free-list to have before we
300// move objects from it into the corresponding central free-list. We
301// want this big to avoid locking the central free-list too often. It
302// should not hurt to make this list somewhat big because the
303// scavenging code will shrink it down when its contents are not in use.
304static const int kMaxFreeListLength = 256;
305
306// Lower and upper bounds on the per-thread cache sizes
307static const size_t kMinThreadCacheSize = kMaxSize * 2;
308static const size_t kMaxThreadCacheSize = 2 << 20;
309
310// Default bound on the total amount of thread caches
311static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
312
313// For all span-lengths < kMaxPages we keep an exact-size list.
314// REQUIRED: kMaxPages >= kMinSystemAlloc;
315static const size_t kMaxPages = kMinSystemAlloc;
316
317// Twice the approximate gap between sampling actions.
318// I.e., we take one sample approximately once every
319// kSampleParameter/2
320// bytes of allocation, i.e., ~ once every 128KB.
321// Must be a prime number.
322static const size_t kSampleParameter = 266053;
323
324//-------------------------------------------------------------------
325// Mapping from size to size_class and vice versa
326//-------------------------------------------------------------------
327
328// A pair of arrays we use for implementing the mapping from a size to
329// its size class. Indexed by "floor(lg(size))".
330static const int kSizeBits = 8 * sizeof(size_t);
331static unsigned char size_base[kSizeBits];
332static unsigned char size_shift[kSizeBits];
333
334// Mapping from size class to size
335static size_t class_to_size[kNumClasses];
336
337// Mapping from size class to number of pages to allocate at a time
338static size_t class_to_pages[kNumClasses];
339
340// Return floor(log2(n)) for n > 0.
341#if PLATFORM(X86) && COMPILER(GCC)
342static ALWAYS_INLINE int LgFloor(size_t n) {
343 // "ro" for the input spec means the input can come from either a
344 // register ("r") or offsetable memory ("o").
345 int result;
346 __asm__("bsrl %1, %0"
347 : "=r" (result) // Output spec
348 : "ro" (n) // Input spec
349 : "cc" // Clobbers condition-codes
350 );
351 return result;
352}
353
354#elif PLATFORM(PPC) && COMPILER(GCC)
355static ALWAYS_INLINE int LgFloor(size_t n) {
356 // "r" for the input spec means the input must come from a
357 // register ("r")
358 int result;
359
360 __asm__ ("{cntlz|cntlzw} %0,%1"
361 : "=r" (result) // Output spec
362 : "r" (n)); // Input spec
363
364 return 31 - result;
365}
366
367#else
368// Note: the following only works for "n"s that fit in 32-bits, but
369// that is fine since we only use it for small sizes.
370static inline int LgFloor(size_t n) {
371 int log = 0;
372 for (int i = 4; i >= 0; --i) {
373 int shift = (1 << i);
374 size_t x = n >> shift;
375 if (x != 0) {
376 n = x;
377 log += shift;
378 }
379 }
380 ASSERT(n == 1);
381 return log;
382}
383#endif
384
385static ALWAYS_INLINE size_t SizeClass(size_t size) {
386 size += !size; // change 0 to 1 (with no branches)
387 const int lg = LgFloor(size);
388 const int align = size_shift[lg];
389 return size_base[lg] + ((size-1) >> align);
390}
391
392// Get the byte-size for a specified class
393static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
394 return class_to_size[cl];
395}
396
397// Initialize the mapping arrays
398static void InitSizeClasses() {
399 // Special initialization for small sizes
400 for (size_t lg = 0; lg < kAlignShift; lg++) {
401 size_base[lg] = 1;
402 size_shift[lg] = kAlignShift;
403 }
404
405 size_t next_class = 1;
406 unsigned char alignshift = kAlignShift;
407 int last_lg = -1;
408 for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
409 int lg = LgFloor(size);
410 if (lg > last_lg) {
411 // Increase alignment every so often.
412 //
413 // Since we double the alignment every time size doubles and
414 // size >= 256, this means that space wasted due to alignment is
415 // at most 16/256 i.e., 6.25%. Plus we cap the alignment at 512
416 // bytes, so the space wasted as a percentage starts falling for
417 // sizes > 4K.
418 if ((lg >= 8) && (alignshift < 9)) {
419 alignshift++;
420 }
421 size_base[lg] = static_cast<unsigned char>(next_class - ((size-1) >> alignshift));
422 size_shift[lg] = alignshift;
423 }
424
425 class_to_size[next_class] = size;
426 last_lg = lg;
427
428 next_class++;
429 }
430 if (next_class >= kNumClasses) {
431 MESSAGE("used up too many size classes: %d\n", next_class);
432 abort();
433 }
434
435 // Initialize the number of pages we should allocate to split into
436 // small objects for a given class.
437 for (size_t cl = 1; cl < next_class; cl++) {
438 // Allocate enough pages so leftover is less than 1/16 of total.
439 // This bounds wasted space to at most 6.25%.
440 size_t psize = kPageSize;
441 const size_t s = class_to_size[cl];
442 while ((psize % s) > (psize >> 4)) {
443 psize += kPageSize;
444 }
445 class_to_pages[cl] = psize >> kPageShift;
446 }
447
448 // Double-check sizes just to be safe
449 for (size_t size = 0; size <= kMaxSize; size++) {
450 const size_t sc = SizeClass(size);
451 if (sc == 0) {
452 MESSAGE("Bad size class %d for %" PRIuS "\n", sc, size);
453 abort();
454 }
455 if (sc > 1 && size <= class_to_size[sc-1]) {
456 MESSAGE("Allocating unnecessarily large class %d for %" PRIuS
457 "\n", sc, size);
458 abort();
459 }
460 if (sc >= kNumClasses) {
461 MESSAGE("Bad size class %d for %" PRIuS "\n", sc, size);
462 abort();
463 }
464 const size_t s = class_to_size[sc];
465 if (size > s) {
466 MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %d)\n", s, size, sc);
467 abort();
468 }
469 if (s == 0) {
470 MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %d)\n", s, size, sc);
471 abort();
472 }
473 }
474}
475
476// -------------------------------------------------------------------------
477// Simple allocator for objects of a specified type. External locking
478// is required before accessing one of these objects.
479// -------------------------------------------------------------------------
480
481// Metadata allocator -- keeps stats about how many bytes allocated
482static uint64_t metadata_system_bytes = 0;
483static void* MetaDataAlloc(size_t bytes) {
484 void* result = TCMalloc_SystemAlloc(bytes);
485 if (result != NULL) {
486 metadata_system_bytes += bytes;
487 }
488 return result;
489}
490
491template <class T>
492class PageHeapAllocator {
493 private:
494 // How much to allocate from system at a time
495 static const size_t kAllocIncrement = 32 << 10;
496
497 // Aligned size of T
498 static const size_t kAlignedSize
499 = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
500
501 // Free area from which to carve new objects
502 char* free_area_;
503 size_t free_avail_;
504
505 // Free list of already carved objects
506 void* free_list_;
507
508 // Number of allocated but unfreed objects
509 int inuse_;
510
511 public:
512 void Init() {
513 ASSERT(kAlignedSize <= kAllocIncrement);
514 inuse_ = 0;
515 free_area_ = NULL;
516 free_avail_ = 0;
517 free_list_ = NULL;
518 }
519
520 T* New() {
521 // Consult free list
522 void* result;
523 if (free_list_ != NULL) {
524 result = free_list_;
525 free_list_ = *(reinterpret_cast<void**>(result));
526 } else {
527 if (free_avail_ < kAlignedSize) {
528 // Need more room
529 free_area_ = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
530 if (free_area_ == NULL) abort();
531 free_avail_ = kAllocIncrement;
532 }
533 result = free_area_;
534 free_area_ += kAlignedSize;
535 free_avail_ -= kAlignedSize;
536 }
537 inuse_++;
538 return reinterpret_cast<T*>(result);
539 }
540
541 void Delete(T* p) {
542 *(reinterpret_cast<void**>(p)) = free_list_;
543 free_list_ = p;
544 inuse_--;
545 }
546
547 int inuse() const { return inuse_; }
548};
549
550// -------------------------------------------------------------------------
551// Span - a contiguous run of pages
552// -------------------------------------------------------------------------
553
554// Type that can hold a page number
555typedef uintptr_t PageID;
556
557// Type that can hold the length of a run of pages
558typedef uintptr_t Length;
559
560// Convert byte size into pages
561static inline Length pages(size_t bytes) {
562 return ((bytes + kPageSize - 1) >> kPageShift);
563}
564
565// Convert a user size into the number of bytes that will actually be
566// allocated
567static size_t AllocationSize(size_t bytes) {
568 if (bytes > kMaxSize) {
569 // Large object: we allocate an integral number of pages
570 return pages(bytes) << kPageShift;
571 } else {
572 // Small object: find the size class to which it belongs
573 return ByteSizeForClass(SizeClass(bytes));
574 }
575}
576
577// Information kept for a span (a contiguous run of pages).
578struct Span {
579 PageID start; // Starting page number
580 Length length; // Number of pages in span
581 Span* next; // Used when in link list
582 Span* prev; // Used when in link list
583 void* objects; // Linked list of free objects
584 unsigned int free : 1; // Is the span free
585 unsigned int sample : 1; // Sampled object?
586 unsigned int sizeclass : 8; // Size-class for small objects (or 0)
587 unsigned int refcount : 11; // Number of non-free objects
588
589#undef SPAN_HISTORY
590#ifdef SPAN_HISTORY
591 // For debugging, we can keep a log events per span
592 int nexthistory;
593 char history[64];
594 int value[64];
595#endif
596};
597
598#ifdef SPAN_HISTORY
599void Event(Span* span, char op, int v = 0) {
600 span->history[span->nexthistory] = op;
601 span->value[span->nexthistory] = v;
602 span->nexthistory++;
603 if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
604}
605#else
606#define Event(s,o,v) ((void) 0)
607#endif
608
609// Allocator/deallocator for spans
610static PageHeapAllocator<Span> span_allocator;
611static Span* NewSpan(PageID p, Length len) {
612 Span* result = span_allocator.New();
613 memset(result, 0, sizeof(*result));
614 result->start = p;
615 result->length = len;
616#ifdef SPAN_HISTORY
617 result->nexthistory = 0;
618#endif
619 return result;
620}
621
622static inline void DeleteSpan(Span* span) {
623#ifndef NDEBUG
624 // In debug mode, trash the contents of deleted Spans
625 memset(span, 0x3f, sizeof(*span));
626#endif
627 span_allocator.Delete(span);
628}
629
630// -------------------------------------------------------------------------
631// Doubly linked list of spans.
632// -------------------------------------------------------------------------
633
634static inline void DLL_Init(Span* list) {
635 list->next = list;
636 list->prev = list;
637}
638
639static inline void DLL_Remove(Span* span) {
640 span->prev->next = span->next;
641 span->next->prev = span->prev;
642 span->prev = NULL;
643 span->next = NULL;
644}
645
646static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
647 return list->next == list;
648}
649
650#ifndef WTF_CHANGES
651static int DLL_Length(const Span* list) {
652 int result = 0;
653 for (Span* s = list->next; s != list; s = s->next) {
654 result++;
655 }
656 return result;
657}
658#endif
659
660#if 0 /* Not needed at the moment -- causes compiler warnings if not used */
661static void DLL_Print(const char* label, const Span* list) {
662 MESSAGE("%-10s %p:", label, list);
663 for (const Span* s = list->next; s != list; s = s->next) {
664 MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
665 }
666 MESSAGE("\n");
667}
668#endif
669
670static inline void DLL_Prepend(Span* list, Span* span) {
671 ASSERT(span->next == NULL);
672 ASSERT(span->prev == NULL);
673 span->next = list->next;
674 span->prev = list;
675 list->next->prev = span;
676 list->next = span;
677}
678
679static void DLL_InsertOrdered(Span* list, Span* span) {
680 ASSERT(span->next == NULL);
681 ASSERT(span->prev == NULL);
682 // Look for appropriate place to insert
683 Span* x = list;
684 while ((x->next != list) && (x->next->start < span->start)) {
685 x = x->next;
686 }
687 span->next = x->next;
688 span->prev = x;
689 x->next->prev = span;
690 x->next = span;
691}
692
693// -------------------------------------------------------------------------
694// Stack traces kept for sampled allocations
695// The following state is protected by pageheap_lock_.
696// -------------------------------------------------------------------------
697
698static const int kMaxStackDepth = 31;
699struct StackTrace {
700 uintptr_t size; // Size of object
701 int depth; // Number of PC values stored in array below
702 void* stack[kMaxStackDepth];
703};
704static PageHeapAllocator<StackTrace> stacktrace_allocator;
705static Span sampled_objects;
706
707// -------------------------------------------------------------------------
708// Map from page-id to per-page data
709// -------------------------------------------------------------------------
710
711// We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
712
713// Selector class -- general selector uses 3-level map
714template <int BITS> class MapSelector {
715 public:
716 typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
717};
718
719// A two-level map for 32-bit machines
720template <> class MapSelector<32> {
721 public:
722 typedef TCMalloc_PageMap2<32-kPageShift> Type;
723};
724
725// -------------------------------------------------------------------------
726// Page-level allocator
727// * Eager coalescing
728//
729// Heap for page-level allocation. We allow allocating and freeing a
730// contiguous runs of pages (called a "span").
731// -------------------------------------------------------------------------
732
733class TCMalloc_PageHeap {
734 public:
735 void init();
736
737 // Allocate a run of "n" pages. Returns zero if out of memory.
738 Span* New(Length n);
739
740 // Delete the span "[p, p+n-1]".
741 // REQUIRES: span was returned by earlier call to New() and
742 // has not yet been deleted.
743 void Delete(Span* span);
744
745 // Mark an allocated span as being used for small objects of the
746 // specified size-class.
747 // REQUIRES: span was returned by an earlier call to New()
748 // and has not yet been deleted.
749 void RegisterSizeClass(Span* span, size_t sc);
750
751 // Split an allocated span into two spans: one of length "n" pages
752 // followed by another span of length "span->length - n" pages.
753 // Modifies "*span" to point to the first span of length "n" pages.
754 // Returns a pointer to the second span.
755 //
756 // REQUIRES: "0 < n < span->length"
757 // REQUIRES: !span->free
758 // REQUIRES: span->sizeclass == 0
759 Span* Split(Span* span, Length n);
760
761 // Return the descriptor for the specified page.
762 inline Span* GetDescriptor(PageID p) const {
763 return reinterpret_cast<Span*>(pagemap_.get(p));
764 }
765
766#ifdef WTF_CHANGES
767 inline Span* GetDescriptorEnsureSafe(PageID p)
768 {
769 pagemap_.Ensure(p, 1);
770 return GetDescriptor(p);
771 }
772#endif
773
774 // Dump state to stderr
775#ifndef WTF_CHANGES
776 void Dump(TCMalloc_Printer* out);
777#endif
778
779 // Return number of bytes allocated from system
780 inline uint64_t SystemBytes() const { return system_bytes_; }
781
782 // Return number of free bytes in heap
783 uint64_t FreeBytes() const {
784 return (static_cast<uint64_t>(free_pages_) << kPageShift);
785 }
786
787 bool Check();
788 bool CheckList(Span* list, Length min_pages, Length max_pages);
789
790 private:
791 // Pick the appropriate map type based on pointer size
792 typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
793 PageMap pagemap_;
794
795 // List of free spans of length >= kMaxPages
796 Span large_;
797
798 // Array mapping from span length to a doubly linked list of free spans
799 Span free_[kMaxPages];
800
801 // Number of pages kept in free lists
802 uintptr_t free_pages_;
803
804 // Bytes allocated from system
805 uint64_t system_bytes_;
806
807 bool GrowHeap(Length n);
808
809 // REQUIRES span->length >= n
810 // Remove span from its free list, and move any leftover part of
811 // span into appropriate free lists. Also update "span" to have
812 // length exactly "n" and mark it as non-free so it can be returned
813 // to the client.
814 void Carve(Span* span, Length n);
815
816 void RecordSpan(Span* span) {
817 pagemap_.set(span->start, span);
818 if (span->length > 1) {
819 pagemap_.set(span->start + span->length - 1, span);
820 }
821 }
822#if defined(WTF_CHANGES) && PLATFORM(DARWIN)
823 friend class FastMallocZone;
824#endif
825};
826
827void TCMalloc_PageHeap::init()
828{
829 pagemap_.init(MetaDataAlloc);
830 free_pages_ = 0;
831 system_bytes_ = 0;
832
833 DLL_Init(&large_);
834 for (size_t i = 0; i < kMaxPages; i++) {
835 DLL_Init(&free_[i]);
836 }
837}
838
839inline Span* TCMalloc_PageHeap::New(Length n) {
840 ASSERT(Check());
841 if (n == 0) n = 1;
842
843 // Find first size >= n that has a non-empty list
844 for (size_t s = n; s < kMaxPages; s++) {
845 if (!DLL_IsEmpty(&free_[s])) {
846 Span* result = free_[s].next;
847 Carve(result, n);
848 ASSERT(Check());
849 free_pages_ -= n;
850 return result;
851 }
852 }
853
854 // Look in large list. If we first do not find something, we try to
855 // grow the heap and try again.
856 for (int i = 0; i < 2; i++) {
857 // find the best span (closest to n in size)
858 Span *best = NULL;
859 for (Span* span = large_.next; span != &large_; span = span->next) {
860 if (span->length >= n &&
861 (best == NULL || span->length < best->length)) {
862 best = span;
863 }
864 }
865 if (best != NULL) {
866 Carve(best, n);
867 ASSERT(Check());
868 free_pages_ -= n;
869 return best;
870 }
871 if (i == 0) {
872 // Nothing suitable in large list. Grow the heap and look again.
873 if (!GrowHeap(n)) {
874 ASSERT(Check());
875 return NULL;
876 }
877 }
878 }
879 return NULL;
880}
881
882Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
883 ASSERT(0 < n);
884 ASSERT(n < span->length);
885 ASSERT(!span->free);
886 ASSERT(span->sizeclass == 0);
887 Event(span, 'T', n);
888
889 const Length extra = span->length - n;
890 Span* leftover = NewSpan(span->start + n, extra);
891 Event(leftover, 'U', extra);
892 RecordSpan(leftover);
893 pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
894 span->length = n;
895
896 return leftover;
897}
898
899inline void TCMalloc_PageHeap::Carve(Span* span, Length n) {
900 ASSERT(n > 0);
901 DLL_Remove(span);
902 span->free = 0;
903 Event(span, 'A', n);
904
905 const size_t extra = span->length - n;
906 ASSERT(extra >= 0);
907 if (extra > 0) {
908 Span* leftover = NewSpan(span->start + n, extra);
909 leftover->free = 1;
910 Event(leftover, 'S', extra);
911 RecordSpan(leftover);
912 if (extra < kMaxPages) {
913 DLL_Prepend(&free_[extra], leftover);
914 } else {
915 DLL_InsertOrdered(&large_, leftover);
916 }
917 span->length = n;
918 pagemap_.set(span->start + n - 1, span);
919 }
920}
921
922inline void TCMalloc_PageHeap::Delete(Span* span) {
923 ASSERT(Check());
924 ASSERT(!span->free);
925 ASSERT(span->length > 0);
926 ASSERT(GetDescriptor(span->start) == span);
927 ASSERT(GetDescriptor(span->start + span->length - 1) == span);
928 span->sizeclass = 0;
929 span->sample = 0;
930
931 // Coalesce -- we guarantee that "p" != 0, so no bounds checking
932 // necessary. We do not bother resetting the stale pagemap
933 // entries for the pieces we are merging together because we only
934 // care about the pagemap entries for the boundaries.
935 const PageID p = span->start;
936 const Length n = span->length;
937 Span* prev = GetDescriptor(p-1);
938 if (prev != NULL && prev->free) {
939 // Merge preceding span into this span
940 ASSERT(prev->start + prev->length == p);
941 const Length len = prev->length;
942 DLL_Remove(prev);
943 DeleteSpan(prev);
944 span->start -= len;
945 span->length += len;
946 pagemap_.set(span->start, span);
947 Event(span, 'L', len);
948 }
949 Span* next = GetDescriptor(p+n);
950 if (next != NULL && next->free) {
951 // Merge next span into this span
952 ASSERT(next->start == p+n);
953 const Length len = next->length;
954 DLL_Remove(next);
955 DeleteSpan(next);
956 span->length += len;
957 pagemap_.set(span->start + span->length - 1, span);
958 Event(span, 'R', len);
959 }
960
961 Event(span, 'D', span->length);
962 span->free = 1;
963 if (span->length < kMaxPages) {
964 DLL_Prepend(&free_[span->length], span);
965 } else {
966 DLL_InsertOrdered(&large_, span);
967 }
968 free_pages_ += n;
969
970 ASSERT(Check());
971}
972
973void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
974 // Associate span object with all interior pages as well
975 ASSERT(!span->free);
976 ASSERT(GetDescriptor(span->start) == span);
977 ASSERT(GetDescriptor(span->start+span->length-1) == span);
978 Event(span, 'C', sc);
979 span->sizeclass = static_cast<unsigned int>(sc);
980 for (Length i = 1; i < span->length-1; i++) {
981 pagemap_.set(span->start+i, span);
982 }
983}
984
985#ifndef WTF_CHANGES
986void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
987 int nonempty_sizes = 0;
988 for (int s = 0; s < kMaxPages; s++) {
989 if (!DLL_IsEmpty(&free_[s])) nonempty_sizes++;
990 }
991 out->printf("------------------------------------------------\n");
992 out->printf("PageHeap: %d sizes; %6.1f MB free\n", nonempty_sizes,
993 (static_cast<double>(free_pages_) * kPageSize) / 1048576.0);
994 out->printf("------------------------------------------------\n");
995 uint64_t cumulative = 0;
996 for (int s = 0; s < kMaxPages; s++) {
997 if (!DLL_IsEmpty(&free_[s])) {
998 const int list_length = DLL_Length(&free_[s]);
999 uint64_t s_pages = s * list_length;
1000 cumulative += s_pages;
1001 out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum\n",
1002 s, list_length,
1003 (s_pages << kPageShift) / 1048576.0,
1004 (cumulative << kPageShift) / 1048576.0);
1005 }
1006 }
1007
1008 uint64_t large_pages = 0;
1009 int large_spans = 0;
1010 for (Span* s = large_.next; s != &large_; s = s->next) {
1011 out->printf(" [ %6" PRIuS " spans ]\n", s->length);
1012 large_pages += s->length;
1013 large_spans++;
1014 }
1015 cumulative += large_pages;
1016 out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum\n",
1017 large_spans,
1018 (large_pages << kPageShift) / 1048576.0,
1019 (cumulative << kPageShift) / 1048576.0);
1020}
1021#endif
1022
1023bool TCMalloc_PageHeap::GrowHeap(Length n) {
1024 ASSERT(kMaxPages >= kMinSystemAlloc);
1025 Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
1026 void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, kPageSize);
1027 if (ptr == NULL) {
1028 if (n < ask) {
1029 // Try growing just "n" pages
1030 ask = n;
1031 ptr = TCMalloc_SystemAlloc(ask << kPageShift, kPageSize);
1032 }
1033 if (ptr == NULL) return false;
1034 }
1035 system_bytes_ += (ask << kPageShift);
1036 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
1037 ASSERT(p > 0);
1038
1039 // Make sure pagemap_ has entries for all of the new pages.
1040 // Plus ensure one before and one after so coalescing code
1041 // does not need bounds-checking.
1042 if (pagemap_.Ensure(p-1, ask+2)) {
1043 // Pretend the new area is allocated and then Delete() it to
1044 // cause any necessary coalescing to occur.
1045 //
1046 // We do not adjust free_pages_ here since Delete() will do it for us.
1047 Span* span = NewSpan(p, ask);
1048 RecordSpan(span);
1049 Delete(span);
1050 ASSERT(Check());
1051 return true;
1052 } else {
1053 // We could not allocate memory within "pagemap_"
1054 // TODO: Once we can return memory to the system, return the new span
1055 return false;
1056 }
1057}
1058
1059bool TCMalloc_PageHeap::Check() {
1060 ASSERT(free_[0].next == &free_[0]);
1061 CheckList(&large_, kMaxPages, 1000000000);
1062 for (Length s = 1; s < kMaxPages; s++) {
1063 CheckList(&free_[s], s, s);
1064 }
1065 return true;
1066}
1067
1068#if ASSERT_DISABLED
1069bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
1070 return true;
1071}
1072#else
1073bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
1074 for (Span* s = list->next; s != list; s = s->next) {
1075 CHECK_CONDITION(s->free);
1076 CHECK_CONDITION(s->length >= min_pages);
1077 CHECK_CONDITION(s->length <= max_pages);
1078 CHECK_CONDITION(GetDescriptor(s->start) == s);
1079 CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
1080 }
1081 return true;
1082}
1083#endif
1084
1085//-------------------------------------------------------------------
1086// Free list
1087//-------------------------------------------------------------------
1088
1089class TCMalloc_ThreadCache_FreeList {
1090 private:
1091 void* list_; // Linked list of nodes
1092 uint16_t length_; // Current length
1093 uint16_t lowater_; // Low water mark for list length
1094
1095 public:
1096 void Init() {
1097 list_ = NULL;
1098 length_ = 0;
1099 lowater_ = 0;
1100 }
1101
1102 // Return current length of list
1103 int length() const {
1104 return length_;
1105 }
1106
1107 // Is list empty?
1108 bool empty() const {
1109 return list_ == NULL;
1110 }
1111
1112 // Low-water mark management
1113 int lowwatermark() const { return lowater_; }
1114 void clear_lowwatermark() { lowater_ = length_; }
1115
1116 ALWAYS_INLINE void Push(void* ptr) {
1117 *(reinterpret_cast<void**>(ptr)) = list_;
1118 list_ = ptr;
1119 length_++;
1120 }
1121
1122 ALWAYS_INLINE void* Pop() {
1123 ASSERT(list_ != NULL);
1124 void* result = list_;
1125 list_ = *(reinterpret_cast<void**>(result));
1126 length_--;
1127 if (length_ < lowater_) lowater_ = length_;
1128 return result;
1129 }
1130
1131#ifdef WTF_CHANGES
1132 template <class Finder, class Reader>
1133 void enumerateFreeObjects(Finder& finder, const Reader& reader)
1134 {
1135 for (void* nextObject = list_; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
1136 finder.visit(nextObject);
1137 }
1138#endif
1139};
1140
1141//-------------------------------------------------------------------
1142// Data kept per thread
1143//-------------------------------------------------------------------
1144
1145class TCMalloc_ThreadCache {
1146 private:
1147 typedef TCMalloc_ThreadCache_FreeList FreeList;
1148#if COMPILER(MSVC)
1149 typedef DWORD ThreadIdentifier;
1150#else
1151 typedef pthread_t ThreadIdentifier;
1152#endif
1153
1154 size_t size_; // Combined size of data
1155 ThreadIdentifier tid_; // Which thread owns it
1156 bool setspecific_; // Called pthread_setspecific?
1157 FreeList list_[kNumClasses]; // Array indexed by size-class
1158
1159 // We sample allocations, biased by the size of the allocation
1160 uint32_t rnd_; // Cheap random number generator
1161 size_t bytes_until_sample_; // Bytes until we sample next
1162
1163 public:
1164 // All ThreadCache objects are kept in a linked list (for stats collection)
1165 TCMalloc_ThreadCache* next_;
1166 TCMalloc_ThreadCache* prev_;
1167
1168 void Init(ThreadIdentifier tid);
1169 void Cleanup();
1170
1171 // Accessors (mostly just for printing stats)
1172 int freelist_length(size_t cl) const { return list_[cl].length(); }
1173
1174 // Total byte size in cache
1175 size_t Size() const { return size_; }
1176
1177 void* Allocate(size_t size);
1178 void Deallocate(void* ptr, size_t size_class);
1179
1180 void FetchFromCentralCache(size_t cl, size_t allocationSize);
1181 void ReleaseToCentralCache(size_t cl, int N);
1182 void Scavenge();
1183 void Print() const;
1184
1185 // Record allocation of "k" bytes. Return true iff allocation
1186 // should be sampled
1187 bool SampleAllocation(size_t k);
1188
1189 // Pick next sampling point
1190 void PickNextSample();
1191
1192 static void InitModule();
1193 static void InitTSD();
1194 static TCMalloc_ThreadCache* GetCache();
1195 static TCMalloc_ThreadCache* GetCacheIfPresent();
1196 static TCMalloc_ThreadCache* CreateCacheIfNecessary();
1197 static void DeleteCache(void* ptr);
1198 static void RecomputeThreadCacheSize();
1199
1200#ifdef WTF_CHANGES
1201 template <class Finder, class Reader>
1202 void enumerateFreeObjects(Finder& finder, const Reader& reader)
1203 {
1204 for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
1205 list_[sizeClass].enumerateFreeObjects(finder, reader);
1206 }
1207#endif
1208};
1209
1210//-------------------------------------------------------------------
1211// Data kept per size-class in central cache
1212//-------------------------------------------------------------------
1213
1214class TCMalloc_Central_FreeList {
1215 public:
1216 void Init(size_t cl);
1217
1218 // REQUIRES: lock_ is held
1219 // Insert object.
1220 // May temporarily release lock_.
1221 void Insert(void* object);
1222
1223 // REQUIRES: lock_ is held
1224 // Remove object from cache and return.
1225 // Return NULL if no free entries in cache.
1226 void* Remove();
1227
1228 // REQUIRES: lock_ is held
1229 // Populate cache by fetching from the page heap.
1230 // May temporarily release lock_.
1231 void Populate();
1232
1233 // REQUIRES: lock_ is held
1234 // Number of free objects in cache
1235 size_t length() const { return counter_; }
1236
1237 // Lock -- exposed because caller grabs it before touching this object
1238 SpinLock lock_;
1239
1240#ifdef WTF_CHANGES
1241 template <class Finder, class Reader>
1242 void enumerateFreeObjects(Finder& finder, const Reader& reader)
1243 {
1244 for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0))
1245 ASSERT(!span->objects);
1246
1247 ASSERT(!nonempty_.objects);
1248 for (Span* span = reader(nonempty_.next); span && span != &nonempty_; span = (span->next ? reader(span->next) : 0)) {
1249 for (void* nextObject = span->objects; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
1250 finder.visit(nextObject);
1251 }
1252 }
1253#endif
1254
1255 private:
1256 // We keep linked lists of empty and non-emoty spans.
1257 size_t size_class_; // My size class
1258 Span empty_; // Dummy header for list of empty spans
1259 Span nonempty_; // Dummy header for list of non-empty spans
1260 size_t counter_; // Number of free objects in cache entry
1261};
1262
1263// Pad each CentralCache object to multiple of 64 bytes
1264class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
1265 private:
1266 char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
1267};
1268
1269//-------------------------------------------------------------------
1270// Global variables
1271//-------------------------------------------------------------------
1272
1273// Central cache -- a collection of free-lists, one per size-class.
1274// We have a separate lock per free-list to reduce contention.
1275static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
1276
1277// Page-level allocator
1278static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
1279static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)];
1280static bool phinited = false;
1281
1282// Avoid extra level of indirection by making "pageheap" be just an alias
1283// of pageheap_memory.
1284
1285typedef union {
1286 void* m_memory;
1287 TCMalloc_PageHeap m_pageHeap;
1288} PageHeapUnion;
1289
1290static inline TCMalloc_PageHeap* getPageHeap()
1291{
1292 return &reinterpret_cast<PageHeapUnion*>(&pageheap_memory[0])->m_pageHeap;
1293}
1294
1295#define pageheap getPageHeap()
1296
1297// Thread-specific key. Initialization here is somewhat tricky
1298// because some Linux startup code invokes malloc() before it
1299// is in a good enough state to handle pthread_keycreate().
1300// Therefore, we use TSD keys only after tsd_inited is set to true.
1301// Until then, we use a slow path to get the heap object.
1302static bool tsd_inited = false;
1303static pthread_key_t heap_key;
1304#if COMPILER(MSVC)
1305DWORD tlsIndex = TLS_OUT_OF_INDEXES;
1306#endif
1307
1308static ALWAYS_INLINE TCMalloc_ThreadCache* getThreadHeap()
1309{
1310#if COMPILER(MSVC)
1311 return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
1312#else
1313 return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
1314#endif
1315}
1316
1317static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
1318{
1319 // still do pthread_setspecific when using MSVC fast TLS to
1320 // benefit from the delete callback.
1321 pthread_setspecific(heap_key, heap);
1322#if COMPILER(MSVC)
1323 TlsSetValue(tlsIndex, heap);
1324#endif
1325}
1326
1327// Allocator for thread heaps
1328static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
1329
1330// Linked list of heap objects. Protected by pageheap_lock.
1331static TCMalloc_ThreadCache* thread_heaps = NULL;
1332static int thread_heap_count = 0;
1333
1334// Overall thread cache size. Protected by pageheap_lock.
1335static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
1336
1337// Global per-thread cache size. Writes are protected by
1338// pageheap_lock. Reads are done without any locking, which should be
1339// fine as long as size_t can be written atomically and we don't place
1340// invariants between this variable and other pieces of state.
1341static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
1342
1343//-------------------------------------------------------------------
1344// Central cache implementation
1345//-------------------------------------------------------------------
1346
1347void TCMalloc_Central_FreeList::Init(size_t cl) {
1348 lock_.Init();
1349 size_class_ = cl;
1350 DLL_Init(&empty_);
1351 DLL_Init(&nonempty_);
1352 counter_ = 0;
1353}
1354
1355ALWAYS_INLINE void TCMalloc_Central_FreeList::Insert(void* object) {
1356 const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
1357 Span* span = pageheap->GetDescriptor(p);
1358 ASSERT(span != NULL);
1359 ASSERT(span->refcount > 0);
1360
1361 // If span is empty, move it to non-empty list
1362 if (span->objects == NULL) {
1363 DLL_Remove(span);
1364 DLL_Prepend(&nonempty_, span);
1365 Event(span, 'N', 0);
1366 }
1367
1368 // The following check is expensive, so it is disabled by default
1369 if (false) {
1370 // Check that object does not occur in list
1371 int got = 0;
1372 for (void* p = span->objects; p != NULL; p = *((void**) p)) {
1373 ASSERT(p != object);
1374 got++;
1375 }
1376 ASSERT(got + span->refcount ==
1377 (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
1378 }
1379
1380 counter_++;
1381 span->refcount--;
1382 if (span->refcount == 0) {
1383 Event(span, '#', 0);
1384 counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
1385 DLL_Remove(span);
1386
1387 // Release central list lock while operating on pageheap
1388 lock_.Unlock();
1389 {
1390 SpinLockHolder h(&pageheap_lock);
1391 pageheap->Delete(span);
1392 }
1393 lock_.Lock();
1394 } else {
1395 *(reinterpret_cast<void**>(object)) = span->objects;
1396 span->objects = object;
1397 }
1398}
1399
1400ALWAYS_INLINE void* TCMalloc_Central_FreeList::Remove() {
1401 if (DLL_IsEmpty(&nonempty_)) return NULL;
1402 Span* span = nonempty_.next;
1403
1404 ASSERT(span->objects != NULL);
1405 span->refcount++;
1406 void* result = span->objects;
1407 span->objects = *(reinterpret_cast<void**>(result));
1408 if (span->objects == NULL) {
1409 // Move to empty list
1410 DLL_Remove(span);
1411 DLL_Prepend(&empty_, span);
1412 Event(span, 'E', 0);
1413 }
1414 counter_--;
1415 return result;
1416}
1417
1418// Fetch memory from the system and add to the central cache freelist.
1419ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
1420 // Release central list lock while operating on pageheap
1421 lock_.Unlock();
1422 const size_t npages = class_to_pages[size_class_];
1423
1424 Span* span;
1425 {
1426 SpinLockHolder h(&pageheap_lock);
1427 span = pageheap->New(npages);
1428 if (span) pageheap->RegisterSizeClass(span, size_class_);
1429 }
1430 if (span == NULL) {
1431 MESSAGE("allocation failed: %d\n", errno);
1432 lock_.Lock();
1433 return;
1434 }
1435
1436 // Split the block into pieces and add to the free-list
1437 // TODO: coloring of objects to avoid cache conflicts?
1438 void** tail = &span->objects;
1439 char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
1440 char* limit = ptr + (npages << kPageShift);
1441 const size_t size = ByteSizeForClass(size_class_);
1442 int num = 0;
1443 char* nptr;
1444 while ((nptr = ptr + size) <= limit) {
1445 *tail = ptr;
1446 tail = reinterpret_cast<void**>(ptr);
1447 ptr = nptr;
1448 num++;
1449 }
1450 ASSERT(ptr <= limit);
1451 *tail = NULL;
1452 span->refcount = 0; // No sub-object in use yet
1453
1454 // Add span to list of non-empty spans
1455 lock_.Lock();
1456 DLL_Prepend(&nonempty_, span);
1457 counter_ += num;
1458}
1459
1460//-------------------------------------------------------------------
1461// TCMalloc_ThreadCache implementation
1462//-------------------------------------------------------------------
1463
1464inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
1465 if (bytes_until_sample_ < k) {
1466 PickNextSample();
1467 return true;
1468 } else {
1469 bytes_until_sample_ -= k;
1470 return false;
1471 }
1472}
1473
1474void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) {
1475 size_ = 0;
1476 next_ = NULL;
1477 prev_ = NULL;
1478 tid_ = tid;
1479 setspecific_ = false;
1480 for (size_t cl = 0; cl < kNumClasses; ++cl) {
1481 list_[cl].Init();
1482 }
1483
1484 // Initialize RNG -- run it for a bit to get to good values
1485 rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
1486 for (int i = 0; i < 100; i++) {
1487 PickNextSample();
1488 }
1489}
1490
1491void TCMalloc_ThreadCache::Cleanup() {
1492 // Put unused memory back into central cache
1493 for (size_t cl = 0; cl < kNumClasses; ++cl) {
1494 FreeList* src = &list_[cl];
1495 TCMalloc_Central_FreeList* dst = &central_cache[cl];
1496 SpinLockHolder h(&dst->lock_);
1497 while (!src->empty()) {
1498 dst->Insert(src->Pop());
1499 }
1500 }
1501}
1502
1503ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
1504 ASSERT(size <= kMaxSize);
1505 const size_t cl = SizeClass(size);
1506 FreeList* list = &list_[cl];
1507 size_t allocationSize = (size <= kMaxTinySize) ? (size + 7) & ~0x7 : ByteSizeForClass(cl);
1508 if (list->empty()) {
1509 FetchFromCentralCache(cl, allocationSize);
1510 if (list->empty()) return NULL;
1511 }
1512 size_ -= allocationSize;
1513 return list->Pop();
1514}
1515
1516inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
1517 size_ += ByteSizeForClass(cl);
1518 FreeList* list = &list_[cl];
1519 list->Push(ptr);
1520 // If enough data is free, put back into central cache
1521 if (list->length() > kMaxFreeListLength) {
1522 ReleaseToCentralCache(cl, kNumObjectsToMove);
1523 }
1524 if (size_ >= per_thread_cache_size) Scavenge();
1525}
1526
1527// Remove some objects of class "cl" from central cache and add to thread heap
1528ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t byteSize) {
1529 TCMalloc_Central_FreeList* src = &central_cache[cl];
1530 FreeList* dst = &list_[cl];
1531 SpinLockHolder h(&src->lock_);
1532 for (int i = 0; i < kNumObjectsToMove; i++) {
1533 void* object = src->Remove();
1534 if (object == NULL) {
1535 if (i == 0) {
1536 src->Populate(); // Temporarily releases src->lock_
1537 object = src->Remove();
1538 }
1539 if (object == NULL) {
1540 break;
1541 }
1542 }
1543 dst->Push(object);
1544 size_ += byteSize;
1545 }
1546}
1547
1548// Remove some objects of class "cl" from thread heap and add to central cache
1549inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
1550 FreeList* src = &list_[cl];
1551 TCMalloc_Central_FreeList* dst = &central_cache[cl];
1552 SpinLockHolder h(&dst->lock_);
1553 if (N > src->length()) N = src->length();
1554 size_ -= N*ByteSizeForClass(cl);
1555 while (N-- > 0) {
1556 void* ptr = src->Pop();
1557 dst->Insert(ptr);
1558 }
1559}
1560
1561// Release idle memory to the central cache
1562inline void TCMalloc_ThreadCache::Scavenge() {
1563 // If the low-water mark for the free list is L, it means we would
1564 // not have had to allocate anything from the central cache even if
1565 // we had reduced the free list size by L. We aim to get closer to
1566 // that situation by dropping L/2 nodes from the free list. This
1567 // may not release much memory, but if so we will call scavenge again
1568 // pretty soon and the low-water marks will be high on that call.
1569#ifndef WTF_CHANGES
1570 int64 start = CycleClock::Now();
1571#endif
1572
1573 for (size_t cl = 0; cl < kNumClasses; cl++) {
1574 FreeList* list = &list_[cl];
1575 const int lowmark = list->lowwatermark();
1576 if (lowmark > 0) {
1577 const int drop = (lowmark > 1) ? lowmark/2 : 1;
1578 ReleaseToCentralCache(cl, drop);
1579 }
1580 list->clear_lowwatermark();
1581 }
1582
1583#ifndef WTF_CHANGES
1584 int64 finish = CycleClock::Now();
1585 CycleTimer ct;
1586 MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
1587#endif
1588}
1589
1590ALWAYS_INLINE TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
1591 TCMalloc_ThreadCache* ptr = NULL;
1592 if (!tsd_inited) {
1593 InitModule();
1594 } else {
1595 ptr = getThreadHeap();
1596 }
1597 if (ptr == NULL) ptr = CreateCacheIfNecessary();
1598 return ptr;
1599}
1600
1601// In deletion paths, we do not try to create a thread-cache. This is
1602// because we may be in the thread destruction code and may have
1603// already cleaned up the cache for this thread.
1604inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
1605 if (!tsd_inited) return NULL;
1606 return getThreadHeap();
1607}
1608
1609void TCMalloc_ThreadCache::PickNextSample() {
1610 // Make next "random" number
1611 // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
1612 static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
1613 uint32_t r = rnd_;
1614 rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
1615
1616 // Next point is "rnd_ % (2*sample_period)". I.e., average
1617 // increment is "sample_period".
1618 bytes_until_sample_ = rnd_ % kSampleParameter;
1619}
1620
1621void TCMalloc_ThreadCache::InitModule() {
1622 // There is a slight potential race here because of double-checked
1623 // locking idiom. However, as long as the program does a small
1624 // allocation before switching to multi-threaded mode, we will be
1625 // fine. We increase the chances of doing such a small allocation
1626 // by doing one in the constructor of the module_enter_exit_hook
1627 // object declared below.
1628 SpinLockHolder h(&pageheap_lock);
1629 if (!phinited) {
1630#ifdef WTF_CHANGES
1631 InitTSD();
1632#endif
1633 InitSizeClasses();
1634 threadheap_allocator.Init();
1635 span_allocator.Init();
1636 span_allocator.New(); // Reduce cache conflicts
1637 span_allocator.New(); // Reduce cache conflicts
1638 stacktrace_allocator.Init();
1639 DLL_Init(&sampled_objects);
1640 for (size_t i = 0; i < kNumClasses; ++i) {
1641 central_cache[i].Init(i);
1642 }
1643 pageheap->init();
1644 phinited = 1;
1645#if defined(WTF_CHANGES) && PLATFORM(DARWIN)
1646 FastMallocZone::init();
1647#endif
1648 }
1649}
1650
1651void TCMalloc_ThreadCache::InitTSD() {
1652 ASSERT(!tsd_inited);
1653 pthread_key_create(&heap_key, DeleteCache);
1654#if COMPILER(MSVC)
1655 tlsIndex = TlsAlloc();
1656#endif
1657 tsd_inited = true;
1658
1659#if !COMPILER(MSVC)
1660 // We may have used a fake pthread_t for the main thread. Fix it.
1661 pthread_t zero;
1662 memset(&zero, 0, sizeof(zero));
1663#endif
1664#ifndef WTF_CHANGES
1665 SpinLockHolder h(&pageheap_lock);
1666#else
1667 ASSERT(pageheap_lock.IsLocked());
1668#endif
1669 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
1670#if COMPILER(MSVC)
1671 if (h->tid_ == 0) {
1672 h->tid_ = GetCurrentThreadId();
1673 }
1674#else
1675 if (pthread_equal(h->tid_, zero)) {
1676 h->tid_ = pthread_self();
1677 }
1678#endif
1679 }
1680}
1681
1682TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
1683 // Initialize per-thread data if necessary
1684 TCMalloc_ThreadCache* heap = NULL;
1685 {
1686 SpinLockHolder h(&pageheap_lock);
1687
1688#if COMPILER(MSVC)
1689 DWORD me;
1690 if (!tsd_inited) {
1691 me = 0;
1692 } else {
1693 me = GetCurrentThreadId();
1694 }
1695#else
1696 // Early on in glibc's life, we cannot even call pthread_self()
1697 pthread_t me;
1698 if (!tsd_inited) {
1699 memset(&me, 0, sizeof(me));
1700 } else {
1701 me = pthread_self();
1702 }
1703#endif
1704
1705 // This may be a recursive malloc call from pthread_setspecific()
1706 // In that case, the heap for this thread has already been created
1707 // and added to the linked list. So we search for that first.
1708 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
1709#if COMPILER(MSVC)
1710 if (h->tid_ == me) {
1711#else
1712 if (pthread_equal(h->tid_, me)) {
1713#endif
1714 heap = h;
1715 break;
1716 }
1717 }
1718
1719 if (heap == NULL) {
1720 // Create the heap and add it to the linked list
1721 heap = threadheap_allocator.New();
1722 heap->Init(me);
1723 heap->next_ = thread_heaps;
1724 heap->prev_ = NULL;
1725 if (thread_heaps != NULL) thread_heaps->prev_ = heap;
1726 thread_heaps = heap;
1727 thread_heap_count++;
1728 RecomputeThreadCacheSize();
1729 }
1730 }
1731
1732 // We call pthread_setspecific() outside the lock because it may
1733 // call malloc() recursively. The recursive call will never get
1734 // here again because it will find the already allocated heap in the
1735 // linked list of heaps.
1736 if (!heap->setspecific_ && tsd_inited) {
1737 heap->setspecific_ = true;
1738 setThreadHeap(heap);
1739 }
1740 return heap;
1741}
1742
1743void TCMalloc_ThreadCache::DeleteCache(void* ptr) {
1744 // Remove all memory from heap
1745 TCMalloc_ThreadCache* heap;
1746 heap = static_cast<TCMalloc_ThreadCache*>(ptr);
1747 heap->Cleanup();
1748
1749 // Remove from linked list
1750 SpinLockHolder h(&pageheap_lock);
1751 if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
1752 if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
1753 if (thread_heaps == heap) thread_heaps = heap->next_;
1754 thread_heap_count--;
1755 RecomputeThreadCacheSize();
1756
1757 threadheap_allocator.Delete(heap);
1758}
1759
1760void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
1761 // Divide available space across threads
1762 int n = thread_heap_count > 0 ? thread_heap_count : 1;
1763 size_t space = overall_thread_cache_size / n;
1764
1765 // Limit to allowed range
1766 if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
1767 if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
1768
1769 per_thread_cache_size = space;
1770}
1771
1772void TCMalloc_ThreadCache::Print() const {
1773 for (size_t cl = 0; cl < kNumClasses; ++cl) {
1774 MESSAGE(" %5" PRIuS " : %4d len; %4d lo\n",
1775 ByteSizeForClass(cl),
1776 list_[cl].length(),
1777 list_[cl].lowwatermark());
1778 }
1779}
1780
1781// Extract interesting stats
1782struct TCMallocStats {
1783 uint64_t system_bytes; // Bytes alloced from system
1784 uint64_t thread_bytes; // Bytes in thread caches
1785 uint64_t central_bytes; // Bytes in central cache
1786 uint64_t pageheap_bytes; // Bytes in page heap
1787 uint64_t metadata_bytes; // Bytes alloced for metadata
1788};
1789
1790#ifndef WTF_CHANGES
1791// Get stats into "r". Also get per-size-class counts if class_count != NULL
1792static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
1793 r->central_bytes = 0;
1794 for (size_t cl = 0; cl < kNumClasses; ++cl) {
1795 SpinLockHolder h(&central_cache[cl].lock_);
1796 const int length = central_cache[cl].length();
1797 r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
1798 if (class_count) class_count[cl] = length;
1799 }
1800
1801 // Add stats from per-thread heaps
1802 r->thread_bytes = 0;
1803 { // scope
1804 SpinLockHolder h(&pageheap_lock);
1805 for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
1806 r->thread_bytes += h->Size();
1807 if (class_count) {
1808 for (size_t cl = 0; cl < kNumClasses; ++cl) {
1809 class_count[cl] += h->freelist_length(cl);
1810 }
1811 }
1812 }
1813 }
1814
1815 { //scope
1816 SpinLockHolder h(&pageheap_lock);
1817 r->system_bytes = pageheap->SystemBytes();
1818 r->metadata_bytes = metadata_system_bytes;
1819 r->pageheap_bytes = pageheap->FreeBytes();
1820 }
1821}
1822#endif
1823
1824#ifndef WTF_CHANGES
1825// WRITE stats to "out"
1826static void DumpStats(TCMalloc_Printer* out, int level) {
1827 TCMallocStats stats;
1828 uint64_t class_count[kNumClasses];
1829 ExtractStats(&stats, (level >= 2 ? class_count : NULL));
1830
1831 if (level >= 2) {
1832 out->printf("------------------------------------------------\n");
1833 uint64_t cumulative = 0;
1834 for (int cl = 0; cl < kNumClasses; ++cl) {
1835 if (class_count[cl] > 0) {
1836 uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
1837 cumulative += class_bytes;
1838 out->printf("class %3d [ %8" PRIuS " bytes ] : "
1839 "%8" LLU " objs; %5.1f MB; %5.1f cum MB\n",
1840 cl, ByteSizeForClass(cl),
1841 class_count[cl],
1842 class_bytes / 1048576.0,
1843 cumulative / 1048576.0);
1844 }
1845 }
1846
1847 SpinLockHolder h(&pageheap_lock);
1848 pageheap->Dump(out);
1849 }
1850
1851 const uint64_t bytes_in_use = stats.system_bytes
1852 - stats.pageheap_bytes
1853 - stats.central_bytes
1854 - stats.thread_bytes;
1855
1856 out->printf("------------------------------------------------\n"
1857 "MALLOC: %12" LLU " Heap size\n"
1858 "MALLOC: %12" LLU " Bytes in use by application\n"
1859 "MALLOC: %12" LLU " Bytes free in page heap\n"
1860 "MALLOC: %12" LLU " Bytes free in central cache\n"
1861 "MALLOC: %12" LLU " Bytes free in thread caches\n"
1862 "MALLOC: %12" LLU " Spans in use\n"
1863 "MALLOC: %12" LLU " Thread heaps in use\n"
1864 "MALLOC: %12" LLU " Metadata allocated\n"
1865 "------------------------------------------------\n",
1866 stats.system_bytes,
1867 bytes_in_use,
1868 stats.pageheap_bytes,
1869 stats.central_bytes,
1870 stats.thread_bytes,
1871 uint64_t(span_allocator.inuse()),
1872 uint64_t(threadheap_allocator.inuse()),
1873 stats.metadata_bytes);
1874}
1875
1876static void PrintStats(int level) {
1877 const int kBufferSize = 16 << 10;
1878 char* buffer = new char[kBufferSize];
1879 TCMalloc_Printer printer(buffer, kBufferSize);
1880 DumpStats(&printer, level);
1881 write(STDERR_FILENO, buffer, strlen(buffer));
1882 delete[] buffer;
1883}
1884
1885static void** DumpStackTraces() {
1886 // Count how much space we need
1887 int needed_slots = 0;
1888 {
1889 SpinLockHolder h(&pageheap_lock);
1890 for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
1891 StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
1892 needed_slots += 3 + stack->depth;
1893 }
1894 needed_slots += 100; // Slop in case sample grows
1895 needed_slots += needed_slots/8; // An extra 12.5% slop
1896 }
1897
1898 void** result = new void*[needed_slots];
1899 if (result == NULL) {
1900 MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
1901 needed_slots);
1902 return NULL;
1903 }
1904
1905 SpinLockHolder h(&pageheap_lock);
1906 int used_slots = 0;
1907 for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
1908 ASSERT(used_slots < needed_slots); // Need to leave room for terminator
1909 StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
1910 if (used_slots + 3 + stack->depth >= needed_slots) {
1911 // No more room
1912 break;
1913 }
1914
1915 result[used_slots+0] = reinterpret_cast<void*>(1);
1916 result[used_slots+1] = reinterpret_cast<void*>(stack->size);
1917 result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
1918 for (int d = 0; d < stack->depth; d++) {
1919 result[used_slots+3+d] = stack->stack[d];
1920 }
1921 used_slots += 3 + stack->depth;
1922 }
1923 result[used_slots] = reinterpret_cast<void*>(0);
1924 return result;
1925}
1926#endif
1927
1928#ifndef WTF_CHANGES
1929
1930// TCMalloc's support for extra malloc interfaces
1931class TCMallocImplementation : public MallocExtension {
1932 public:
1933 virtual void GetStats(char* buffer, int buffer_length) {
1934 ASSERT(buffer_length > 0);
1935 TCMalloc_Printer printer(buffer, buffer_length);
1936
1937 // Print level one stats unless lots of space is available
1938 if (buffer_length < 10000) {
1939 DumpStats(&printer, 1);
1940 } else {
1941 DumpStats(&printer, 2);
1942 }
1943 }
1944
1945 virtual void** ReadStackTraces() {
1946 return DumpStackTraces();
1947 }
1948
1949 virtual bool GetNumericProperty(const char* name, size_t* value) {
1950 ASSERT(name != NULL);
1951
1952 if (strcmp(name, "generic.current_allocated_bytes") == 0) {
1953 TCMallocStats stats;
1954 ExtractStats(&stats, NULL);
1955 *value = stats.system_bytes
1956 - stats.thread_bytes
1957 - stats.central_bytes
1958 - stats.pageheap_bytes;
1959 return true;
1960 }
1961
1962 if (strcmp(name, "generic.heap_size") == 0) {
1963 TCMallocStats stats;
1964 ExtractStats(&stats, NULL);
1965 *value = stats.system_bytes;
1966 return true;
1967 }
1968
1969 if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
1970 // We assume that bytes in the page heap are not fragmented too
1971 // badly, and are therefore available for allocation.
1972 SpinLockHolder l(&pageheap_lock);
1973 *value = pageheap->FreeBytes();
1974 return true;
1975 }
1976
1977 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
1978 SpinLockHolder l(&pageheap_lock);
1979 *value = overall_thread_cache_size;
1980 return true;
1981 }
1982
1983 if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
1984 TCMallocStats stats;
1985 ExtractStats(&stats, NULL);
1986 *value = stats.thread_bytes;
1987 return true;
1988 }
1989
1990 return false;
1991 }
1992
1993 virtual bool SetNumericProperty(const char* name, size_t value) {
1994 ASSERT(name != NULL);
1995
1996 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
1997 // Clip the value to a reasonable range
1998 if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
1999 if (value > (1<<30)) value = (1<<30); // Limit to 1GB
2000
2001 SpinLockHolder l(&pageheap_lock);
2002 overall_thread_cache_size = static_cast<size_t>(value);
2003 TCMalloc_ThreadCache::RecomputeThreadCacheSize();
2004 return true;
2005 }
2006
2007 return false;
2008 }
2009};
2010#endif
2011
2012// RedHat 9's pthread manager allocates an object directly by calling
2013// a __libc_XXX() routine. This memory block is not known to tcmalloc.
2014// At cleanup time, the pthread manager calls free() on this
2015// pointer, which then crashes.
2016//
2017// We hack around this problem by disabling all deallocations
2018// after a global object destructor in this module has been called.
2019#ifndef WTF_CHANGES
2020static bool tcmalloc_is_destroyed = false;
2021#endif
2022
2023//-------------------------------------------------------------------
2024// Helpers for the exported routines below
2025//-------------------------------------------------------------------
2026
2027#ifndef WTF_CHANGES
2028
2029static Span* DoSampledAllocation(size_t size) {
2030 SpinLockHolder h(&pageheap_lock);
2031
2032 // Allocate span
2033 Span* span = pageheap->New(pages(size == 0 ? 1 : size));
2034 if (span == NULL) {
2035 return NULL;
2036 }
2037
2038 // Allocate stack trace
2039 StackTrace* stack = stacktrace_allocator.New();
2040 if (stack == NULL) {
2041 // Sampling failed because of lack of memory
2042 return span;
2043 }
2044
2045 // Fill stack trace and record properly
2046 stack->depth = GetStackTrace(stack->stack, kMaxStackDepth, 2);
2047 stack->size = size;
2048 span->sample = 1;
2049 span->objects = stack;
2050 DLL_Prepend(&sampled_objects, span);
2051
2052 return span;
2053}
2054#endif
2055
2056static ALWAYS_INLINE void* do_malloc(size_t size) {
2057
2058#ifdef WTF_CHANGES
2059 ASSERT(!isForbidden());
2060#endif
2061
2062#ifndef WTF_CHANGES
2063 if (TCMallocDebug::level >= TCMallocDebug::kVerbose)
2064 MESSAGE("In tcmalloc do_malloc(%" PRIuS")\n", size);
2065#endif
2066 // The following call forces module initialization
2067 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
2068#ifndef WTF_CHANGES
2069 if (heap->SampleAllocation(size)) {
2070 Span* span = DoSampledAllocation(size);
2071 if (span == NULL) return NULL;
2072 return reinterpret_cast<void*>(span->start << kPageShift);
2073 } else
2074#endif
2075 if (size > kMaxSize) {
2076 // Use page-level allocator
2077 SpinLockHolder h(&pageheap_lock);
2078 Span* span = pageheap->New(pages(size));
2079 if (span == NULL) return NULL;
2080 return reinterpret_cast<void*>(span->start << kPageShift);
2081 } else {
2082 return heap->Allocate(size);
2083 }
2084}
2085
2086static ALWAYS_INLINE void do_free(void* ptr) {
2087#ifndef WTF_CHANGES
2088 if (TCMallocDebug::level >= TCMallocDebug::kVerbose)
2089 MESSAGE("In tcmalloc do_free(%p)\n", ptr);
2090#endif
2091#if WTF_CHANGES
2092 if (ptr == NULL) return;
2093#else
2094 if (ptr == NULL || tcmalloc_is_destroyed) return;
2095#endif
2096
2097 ASSERT(pageheap != NULL); // Should not call free() before malloc()
2098 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
2099 Span* span = pageheap->GetDescriptor(p);
2100
2101#ifndef WTF_CHANGES
2102 if (span == NULL) {
2103 // We've seen systems where a piece of memory allocated using the
2104 // allocator built in to libc is deallocated using free() and
2105 // therefore ends up inside tcmalloc which can't find the
2106 // corresponding span. We silently throw this object on the floor
2107 // instead of crashing.
2108 MESSAGE("tcmalloc: ignoring potential glibc-2.3.5 induced free "
2109 "of an unknown object %p\n", ptr);
2110 return;
2111 }
2112#endif
2113
2114 ASSERT(span != NULL);
2115 ASSERT(!span->free);
2116 const size_t cl = span->sizeclass;
2117 if (cl != 0) {
2118 ASSERT(!span->sample);
2119 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
2120 if (heap != NULL) {
2121 heap->Deallocate(ptr, cl);
2122 } else {
2123 // Delete directly into central cache
2124 SpinLockHolder h(&central_cache[cl].lock_);
2125 central_cache[cl].Insert(ptr);
2126 }
2127 } else {
2128 SpinLockHolder h(&pageheap_lock);
2129 ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
2130 ASSERT(span->start == p);
2131 if (span->sample) {
2132 DLL_Remove(span);
2133 stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
2134 span->objects = NULL;
2135 }
2136 pageheap->Delete(span);
2137 }
2138}
2139
2140#ifndef WTF_CHANGES
2141// For use by exported routines below that want specific alignments
2142//
2143// Note: this code can be slow, and can significantly fragment memory.
2144// The expectation is that memalign/posix_memalign/valloc/pvalloc will
2145// not be invoked very often. This requirement simplifies our
2146// implementation and allows us to tune for expected allocation
2147// patterns.
2148static void* do_memalign(size_t align, size_t size) {
2149 ASSERT((align & (align - 1)) == 0);
2150 ASSERT(align > 0);
2151 if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
2152
2153 // Allocate at least one byte to avoid boundary conditions below
2154 if (size == 0) size = 1;
2155
2156 if (size <= kMaxSize && align < kPageSize) {
2157 // Search through acceptable size classes looking for one with
2158 // enough alignment. This depends on the fact that
2159 // InitSizeClasses() currently produces several size classes that
2160 // are aligned at powers of two. We will waste time and space if
2161 // we miss in the size class array, but that is deemed acceptable
2162 // since memalign() should be used rarely.
2163 size_t cl = SizeClass(size);
2164 while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
2165 cl++;
2166 }
2167 if (cl < kNumClasses) {
2168 TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
2169 return heap->Allocate(class_to_size[cl]);
2170 }
2171 }
2172
2173 // We will allocate directly from the page heap
2174 SpinLockHolder h(&pageheap_lock);
2175
2176 if (align <= kPageSize) {
2177 // Any page-level allocation will be fine
2178 // TODO: We could put the rest of this page in the appropriate
2179 // TODO: cache but it does not seem worth it.
2180 Span* span = pageheap->New(pages(size));
2181 if (span == NULL) return NULL;
2182 return reinterpret_cast<void*>(span->start << kPageShift);
2183 }
2184
2185 // Allocate extra pages and carve off an aligned portion
2186 const int alloc = pages(size + align);
2187 Span* span = pageheap->New(alloc);
2188 if (span == NULL) return NULL;
2189
2190 // Skip starting portion so that we end up aligned
2191 int skip = 0;
2192 while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
2193 skip++;
2194 }
2195 ASSERT(skip < alloc);
2196 if (skip > 0) {
2197 Span* rest = pageheap->Split(span, skip);
2198 pageheap->Delete(span);
2199 span = rest;
2200 }
2201
2202 // Skip trailing portion that we do not need to return
2203 const size_t needed = pages(size);
2204 ASSERT(span->length >= needed);
2205 if (span->length > needed) {
2206 Span* trailer = pageheap->Split(span, needed);
2207 pageheap->Delete(trailer);
2208 }
2209 return reinterpret_cast<void*>(span->start << kPageShift);
2210}
2211#endif
2212
2213
2214// The constructor allocates an object to ensure that initialization
2215// runs before main(), and therefore we do not have a chance to become
2216// multi-threaded before initialization. We also create the TSD key
2217// here. Presumably by the time this constructor runs, glibc is in
2218// good enough shape to handle pthread_key_create().
2219//
2220// The constructor also takes the opportunity to tell STL to use
2221// tcmalloc. We want to do this early, before construct time, so
2222// all user STL allocations go through tcmalloc (which works really
2223// well for STL).
2224//
2225// The destructor prints stats when the program exits.
2226
2227class TCMallocGuard {
2228 public:
2229 TCMallocGuard() {
2230#ifndef WTF_CHANGES
2231 char *envval;
2232 if ((envval = getenv("TCMALLOC_DEBUG"))) {
2233 TCMallocDebug::level = atoi(envval);
2234 MESSAGE("Set tcmalloc debugging level to %d\n", TCMallocDebug::level);
2235 }
2236#endif
2237 do_free(do_malloc(1));
2238 TCMalloc_ThreadCache::InitTSD();
2239 do_free(do_malloc(1));
2240#ifndef WTF_CHANGES
2241 MallocExtension::Register(new TCMallocImplementation);
2242#endif
2243 }
2244
2245#ifndef WTF_CHANGES
2246 ~TCMallocGuard() {
2247 const char* env = getenv("MALLOCSTATS");
2248 if (env != NULL) {
2249 int level = atoi(env);
2250 if (level < 1) level = 1;
2251 PrintStats(level);
2252 }
2253 }
2254#endif
2255};
2256
2257#ifndef WTF_CHANGES
2258static TCMallocGuard module_enter_exit_hook;
2259#endif
2260
2261//-------------------------------------------------------------------
2262// Exported routines
2263//-------------------------------------------------------------------
2264
2265// CAVEAT: The code structure below ensures that MallocHook methods are always
2266// called from the stack frame of the invoked allocation function.
2267// heap-checker.cc depends on this to start a stack trace from
2268// the call to the (de)allocation function.
2269
2270#ifndef WTF_CHANGES
2271extern "C"
2272#endif
2273void* malloc(size_t size) {
2274 void* result = do_malloc(size);
2275#ifndef WTF_CHANGES
2276 MallocHook::InvokeNewHook(result, size);
2277#endif
2278 return result;
2279}
2280
2281#ifndef WTF_CHANGES
2282extern "C"
2283#endif
2284void free(void* ptr) {
2285#ifndef WTF_CHANGES
2286 MallocHook::InvokeDeleteHook(ptr);
2287#endif
2288 do_free(ptr);
2289}
2290
2291#ifndef WTF_CHANGES
2292extern "C"
2293#endif
2294void* calloc(size_t n, size_t elem_size) {
2295 void* result = do_malloc(n * elem_size);
2296 if (result != NULL) {
2297 memset(result, 0, n * elem_size);
2298 }
2299#ifndef WTF_CHANGES
2300 MallocHook::InvokeNewHook(result, n * elem_size);
2301#endif
2302 return result;
2303}
2304
2305#ifndef WTF_CHANGES
2306extern "C"
2307#endif
2308void cfree(void* ptr) {
2309#ifndef WTF_CHANGES
2310 MallocHook::InvokeDeleteHook(ptr);
2311#endif
2312 do_free(ptr);
2313}
2314
2315#ifndef WTF_CHANGES
2316extern "C"
2317#endif
2318void* realloc(void* old_ptr, size_t new_size) {
2319 if (old_ptr == NULL) {
2320 void* result = do_malloc(new_size);
2321#ifndef WTF_CHANGES
2322 MallocHook::InvokeNewHook(result, new_size);
2323#endif
2324 return result;
2325 }
2326 if (new_size == 0) {
2327#ifndef WTF_CHANGES
2328 MallocHook::InvokeDeleteHook(old_ptr);
2329#endif
2330 free(old_ptr);
2331 return NULL;
2332 }
2333
2334 // Get the size of the old entry
2335 const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
2336 Span* span = pageheap->GetDescriptor(p);
2337 size_t old_size;
2338 if (span->sizeclass != 0) {
2339 old_size = ByteSizeForClass(span->sizeclass);
2340 } else {
2341 old_size = span->length << kPageShift;
2342 }
2343
2344 // Reallocate if the new size is larger than the old size,
2345 // or if the new size is significantly smaller than the old size.
2346 if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
2347 // Need to reallocate
2348 void* new_ptr = do_malloc(new_size);
2349 if (new_ptr == NULL) {
2350 return NULL;
2351 }
2352#ifndef WTF_CHANGES
2353 MallocHook::InvokeNewHook(new_ptr, new_size);
2354#endif
2355 memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
2356#ifndef WTF_CHANGES
2357 MallocHook::InvokeDeleteHook(old_ptr);
2358#endif
2359 free(old_ptr);
2360 return new_ptr;
2361 } else {
2362 return old_ptr;
2363 }
2364}
2365
2366#ifndef COMPILER_INTEL
2367#define OPNEW_THROW
2368#define OPDELETE_THROW
2369#else
2370#define OPNEW_THROW throw(std::bad_alloc)
2371#define OPDELETE_THROW throw()
2372#endif
2373
2374#ifndef WTF_CHANGES
2375
2376void* operator new(size_t size) OPNEW_THROW {
2377 void* p = do_malloc(size);
2378 if (p == NULL) {
2379 MESSAGE("Unable to allocate %" PRIuS " bytes: new failed\n", size);
2380 abort();
2381 }
2382 MallocHook::InvokeNewHook(p, size);
2383 return p;
2384}
2385
2386void operator delete(void* p) OPDELETE_THROW {
2387 MallocHook::InvokeDeleteHook(p);
2388 do_free(p);
2389}
2390
2391void* operator new[](size_t size) OPNEW_THROW {
2392 void* p = do_malloc(size);
2393 if (p == NULL) {
2394 MESSAGE("Unable to allocate %" PRIuS " bytes: new failed\n", size);
2395 abort();
2396 }
2397 MallocHook::InvokeNewHook(p, size);
2398 return p;
2399}
2400
2401void operator delete[](void* p) OPDELETE_THROW {
2402 MallocHook::InvokeDeleteHook(p);
2403 do_free(p);
2404}
2405
2406extern "C" void* memalign(size_t align, size_t size) {
2407 void* result = do_memalign(align, size);
2408 MallocHook::InvokeNewHook(result, size);
2409 return result;
2410}
2411
2412extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size) {
2413 if (((align % sizeof(void*)) != 0) ||
2414 ((align & (align - 1)) != 0) ||
2415 (align == 0)) {
2416 return EINVAL;
2417 }
2418
2419 void* result = do_memalign(align, size);
2420 MallocHook::InvokeNewHook(result, size);
2421 if (result == NULL) {
2422 return ENOMEM;
2423 } else {
2424 *result_ptr = result;
2425 return 0;
2426 }
2427}
2428
2429static size_t pagesize = 0;
2430
2431extern "C" void* valloc(size_t size) {
2432 // Allocate page-aligned object of length >= size bytes
2433 if (pagesize == 0) pagesize = getpagesize();
2434 void* result = do_memalign(pagesize, size);
2435 MallocHook::InvokeNewHook(result, size);
2436 return result;
2437}
2438
2439extern "C" void* pvalloc(size_t size) {
2440 // Round up size to a multiple of pagesize
2441 if (pagesize == 0) pagesize = getpagesize();
2442 size = (size + pagesize - 1) & ~(pagesize - 1);
2443 void* result = do_memalign(pagesize, size);
2444 MallocHook::InvokeNewHook(result, size);
2445 return result;
2446}
2447
2448extern "C" void malloc_stats(void) {
2449 PrintStats(1);
2450}
2451
2452extern "C" int mallopt(int cmd, int value) {
2453 return 1; // Indicates error
2454}
2455
2456extern "C" struct mallinfo mallinfo(void) {
2457 TCMallocStats stats;
2458 ExtractStats(&stats, NULL);
2459
2460 // Just some of the fields are filled in.
2461 struct mallinfo info;
2462 memset(&info, 0, sizeof(info));
2463
2464 // Unfortunately, the struct contains "int" field, so some of the
2465 // size values will be truncated.
2466 info.arena = static_cast<int>(stats.system_bytes);
2467 info.fsmblks = static_cast<int>(stats.thread_bytes + stats.central_bytes);
2468 info.fordblks = static_cast<int>(stats.pageheap_bytes);
2469 info.uordblks = static_cast<int>(stats.system_bytes
2470 - stats.thread_bytes
2471 - stats.central_bytes
2472 - stats.pageheap_bytes);
2473
2474 return info;
2475}
2476
2477//-------------------------------------------------------------------
2478// Some library routines on RedHat 9 allocate memory using malloc()
2479// and free it using __libc_free() (or vice-versa). Since we provide
2480// our own implementations of malloc/free, we need to make sure that
2481// the __libc_XXX variants also point to the same implementations.
2482//-------------------------------------------------------------------
2483
2484extern "C" {
2485#if COMPILER(GCC) && HAVE(__ATTRIBUTE__)
2486 // Potentially faster variants that use the gcc alias extension
2487#define ALIAS(x) __attribute__ ((weak, alias (x)))
2488 void* __libc_malloc(size_t size) ALIAS("malloc");
2489 void __libc_free(void* ptr) ALIAS("free");
2490 void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc");
2491 void* __libc_calloc(size_t n, size_t size) ALIAS("calloc");
2492 void __libc_cfree(void* ptr) ALIAS("cfree");
2493 void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
2494 void* __libc_valloc(size_t size) ALIAS("valloc");
2495 void* __libc_pvalloc(size_t size) ALIAS("pvalloc");
2496 int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
2497#undef ALIAS
2498#else
2499 // Portable wrappers
2500 void* __libc_malloc(size_t size) { return malloc(size); }
2501 void __libc_free(void* ptr) { free(ptr); }
2502 void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); }
2503 void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); }
2504 void __libc_cfree(void* ptr) { cfree(ptr); }
2505 void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
2506 void* __libc_valloc(size_t size) { return valloc(size); }
2507 void* __libc_pvalloc(size_t size) { return pvalloc(size); }
2508 int __posix_memalign(void** r, size_t a, size_t s) {
2509 return posix_memalign(r, a, s);
2510 }
2511#endif
2512
2513}
2514
2515#endif
2516
2517#if defined(WTF_CHANGES) && PLATFORM(DARWIN)
2518#include <wtf/HashSet.h>
2519
2520class FreeObjectFinder {
2521 const RemoteMemoryReader& m_reader;
2522 HashSet<void*> m_freeObjects;
2523
2524public:
2525 FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
2526
2527 void visit(void* ptr) { m_freeObjects.add(ptr); }
2528 bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
2529 size_t freeObjectCount() const { return m_freeObjects.size(); }
2530
2531 void findFreeObjects(TCMalloc_ThreadCache* threadCache)
2532 {
2533 for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
2534 threadCache->enumerateFreeObjects(*this, m_reader);
2535 }
2536
2537 void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes)
2538 {
2539 for (unsigned i = 0; i < numSizes; i++)
2540 centralFreeList[i].enumerateFreeObjects(*this, m_reader);
2541 }
2542};
2543
2544class PageMapFreeObjectFinder {
2545 const RemoteMemoryReader& m_reader;
2546 FreeObjectFinder& m_freeObjectFinder;
2547
2548public:
2549 PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder)
2550 : m_reader(reader)
2551 , m_freeObjectFinder(freeObjectFinder)
2552 { }
2553
2554 int visit(void* ptr) const
2555 {
2556 if (!ptr)
2557 return 1;
2558
2559 Span* span = m_reader(reinterpret_cast<Span*>(ptr));
2560 if (span->free) {
2561 void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
2562 m_freeObjectFinder.visit(ptr);
2563 } else if (span->sizeclass) {
2564 // Walk the free list of the small-object span, keeping track of each object seen
2565 for (void* nextObject = span->objects; nextObject; nextObject = *m_reader(reinterpret_cast<void**>(nextObject)))
2566 m_freeObjectFinder.visit(nextObject);
2567 }
2568 return span->length;
2569 }
2570};
2571
2572class PageMapMemoryUsageRecorder {
2573 task_t m_task;
2574 void* m_context;
2575 unsigned m_typeMask;
2576 vm_range_recorder_t* m_recorder;
2577 const RemoteMemoryReader& m_reader;
2578 const FreeObjectFinder& m_freeObjectFinder;
2579 mutable HashSet<void*> m_seenPointers;
2580
2581public:
2582 PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
2583 : m_task(task)
2584 , m_context(context)
2585 , m_typeMask(typeMask)
2586 , m_recorder(recorder)
2587 , m_reader(reader)
2588 , m_freeObjectFinder(freeObjectFinder)
2589 { }
2590
2591 int visit(void* ptr) const
2592 {
2593 if (!ptr)
2594 return 1;
2595
2596 Span* span = m_reader(reinterpret_cast<Span*>(ptr));
2597 if (m_seenPointers.contains(ptr))
2598 return span->length;
2599 m_seenPointers.add(ptr);
2600
2601 // Mark the memory used for the Span itself as an administrative region
2602 vm_range_t ptrRange = { reinterpret_cast<vm_address_t>(ptr), sizeof(Span) };
2603 if (m_typeMask & (MALLOC_PTR_REGION_RANGE_TYPE | MALLOC_ADMIN_REGION_RANGE_TYPE))
2604 (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, &ptrRange, 1);
2605
2606 ptrRange.address = span->start << kPageShift;
2607 ptrRange.size = span->length * kPageSize;
2608
2609 // Mark the memory region the span represents as candidates for containing pointers
2610 if (m_typeMask & (MALLOC_PTR_REGION_RANGE_TYPE | MALLOC_ADMIN_REGION_RANGE_TYPE))
2611 (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1);
2612
2613 if (!span->free && (m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) {
2614 // If it's an allocated large object span, mark it as in use
2615 if (span->sizeclass == 0 && !m_freeObjectFinder.isFreeObject(reinterpret_cast<void*>(ptrRange.address)))
2616 (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, &ptrRange, 1);
2617 else if (span->sizeclass) {
2618 const size_t byteSize = ByteSizeForClass(span->sizeclass);
2619 unsigned totalObjects = (span->length << kPageShift) / byteSize;
2620 ASSERT(span->refcount <= totalObjects);
2621 char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
2622
2623 // Mark each allocated small object within the span as in use
2624 for (unsigned i = 0; i < totalObjects; i++) {
2625 char* thisObject = ptr + (i * byteSize);
2626 if (m_freeObjectFinder.isFreeObject(thisObject))
2627 continue;
2628
2629 vm_range_t objectRange = { reinterpret_cast<vm_address_t>(thisObject), byteSize };
2630 (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, &objectRange, 1);
2631 }
2632 }
2633 }
2634
2635 return span->length;
2636 }
2637};
2638
2639kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
2640{
2641 RemoteMemoryReader memoryReader(task, reader);
2642
2643 InitSizeClasses();
2644
2645 FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
2646 TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
2647 TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
2648 TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
2649
2650 TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
2651
2652 FreeObjectFinder finder(memoryReader);
2653 finder.findFreeObjects(threadHeaps);
2654 finder.findFreeObjects(centralCaches, kNumClasses);
2655
2656 TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
2657 PageMapFreeObjectFinder pageMapFinder(memoryReader, finder);
2658 pageMap->visit(pageMapFinder, memoryReader);
2659
2660 PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
2661 pageMap->visit(usageRecorder, memoryReader);
2662
2663 return 0;
2664}
2665
2666size_t FastMallocZone::size(malloc_zone_t*, const void*)
2667{
2668 return 0;
2669}
2670
2671void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
2672{
2673 return 0;
2674}
2675
2676void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
2677{
2678 return 0;
2679}
2680
2681void FastMallocZone::zoneFree(malloc_zone_t*, void*)
2682{
2683}
2684
2685void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
2686{
2687 return 0;
2688}
2689
2690
2691#undef malloc
2692#undef free
2693#undef realloc
2694#undef calloc
2695
2696extern "C" {
2697malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
2698 &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics };
2699}
2700
2701FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches)
2702 : m_pageHeap(pageHeap)
2703 , m_threadHeaps(threadHeaps)
2704 , m_centralCaches(centralCaches)
2705{
2706 memset(&m_zone, 0, sizeof(m_zone));
2707 m_zone.zone_name = "JavaScriptCore FastMalloc";
2708 m_zone.size = &FastMallocZone::size;
2709 m_zone.malloc = &FastMallocZone::zoneMalloc;
2710 m_zone.calloc = &FastMallocZone::zoneCalloc;
2711 m_zone.realloc = &FastMallocZone::zoneRealloc;
2712 m_zone.free = &FastMallocZone::zoneFree;
2713 m_zone.valloc = &FastMallocZone::zoneValloc;
2714 m_zone.destroy = &FastMallocZone::zoneDestroy;
2715 m_zone.introspect = &jscore_fastmalloc_introspection;
2716 malloc_zone_register(&m_zone);
2717}
2718
2719
2720void FastMallocZone::init()
2721{
2722 static FastMallocZone zone(getPageHeap(), &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache));
2723}
2724
2725#endif
2726
2727#if WTF_CHANGES
2728} // namespace WTF
2729#endif
2730
2731#endif // USE_SYSTEM_MALLOC
Note: See TracBrowser for help on using the repository browser.