1 | // Copyright (c) 2005, 2007, Google Inc.
|
---|
2 | // All rights reserved.
|
---|
3 | // Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
|
---|
4 | //
|
---|
5 | // Redistribution and use in source and binary forms, with or without
|
---|
6 | // modification, are permitted provided that the following conditions are
|
---|
7 | // met:
|
---|
8 | //
|
---|
9 | // * Redistributions of source code must retain the above copyright
|
---|
10 | // notice, this list of conditions and the following disclaimer.
|
---|
11 | // * Redistributions in binary form must reproduce the above
|
---|
12 | // copyright notice, this list of conditions and the following disclaimer
|
---|
13 | // in the documentation and/or other materials provided with the
|
---|
14 | // distribution.
|
---|
15 | // * Neither the name of Google Inc. nor the names of its
|
---|
16 | // contributors may be used to endorse or promote products derived from
|
---|
17 | // this software without specific prior written permission.
|
---|
18 | //
|
---|
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
30 |
|
---|
31 | // ---
|
---|
32 | // Author: Sanjay Ghemawat <[email protected]>
|
---|
33 | //
|
---|
34 | // A malloc that uses a per-thread cache to satisfy small malloc requests.
|
---|
35 | // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
|
---|
36 | //
|
---|
37 | // See doc/tcmalloc.html for a high-level
|
---|
38 | // description of how this malloc works.
|
---|
39 | //
|
---|
40 | // SYNCHRONIZATION
|
---|
41 | // 1. The thread-specific lists are accessed without acquiring any locks.
|
---|
42 | // This is safe because each such list is only accessed by one thread.
|
---|
43 | // 2. We have a lock per central free-list, and hold it while manipulating
|
---|
44 | // the central free list for a particular size.
|
---|
45 | // 3. The central page allocator is protected by "pageheap_lock".
|
---|
46 | // 4. The pagemap (which maps from page-number to descriptor),
|
---|
47 | // can be read without holding any locks, and written while holding
|
---|
48 | // the "pageheap_lock".
|
---|
49 | // 5. To improve performance, a subset of the information one can get
|
---|
50 | // from the pagemap is cached in a data structure, pagemap_cache_,
|
---|
51 | // that atomically reads and writes its entries. This cache can be
|
---|
52 | // read and written without locking.
|
---|
53 | //
|
---|
54 | // This multi-threaded access to the pagemap is safe for fairly
|
---|
55 | // subtle reasons. We basically assume that when an object X is
|
---|
56 | // allocated by thread A and deallocated by thread B, there must
|
---|
57 | // have been appropriate synchronization in the handoff of object
|
---|
58 | // X from thread A to thread B. The same logic applies to pagemap_cache_.
|
---|
59 | //
|
---|
60 | // THE PAGEID-TO-SIZECLASS CACHE
|
---|
61 | // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
|
---|
62 | // returns 0 for a particular PageID then that means "no information," not that
|
---|
63 | // the sizeclass is 0. The cache may have stale information for pages that do
|
---|
64 | // not hold the beginning of any free()'able object. Staleness is eliminated
|
---|
65 | // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
|
---|
66 | // do_memalign() for all other relevant pages.
|
---|
67 | //
|
---|
68 | // TODO: Bias reclamation to larger addresses
|
---|
69 | // TODO: implement mallinfo/mallopt
|
---|
70 | // TODO: Better testing
|
---|
71 | //
|
---|
72 | // 9/28/2003 (new page-level allocator replaces ptmalloc2):
|
---|
73 | // * malloc/free of small objects goes from ~300 ns to ~50 ns.
|
---|
74 | // * allocation of a reasonably complicated struct
|
---|
75 | // goes from about 1100 ns to about 300 ns.
|
---|
76 |
|
---|
77 | #include "config.h"
|
---|
78 | #include "FastMalloc.h"
|
---|
79 |
|
---|
80 | #include "Assertions.h"
|
---|
81 | #include <limits>
|
---|
82 | #if ENABLE(JSC_MULTIPLE_THREADS)
|
---|
83 | #include <pthread.h>
|
---|
84 | #endif
|
---|
85 |
|
---|
86 | #ifndef NO_TCMALLOC_SAMPLES
|
---|
87 | #ifdef WTF_CHANGES
|
---|
88 | #define NO_TCMALLOC_SAMPLES
|
---|
89 | #endif
|
---|
90 | #endif
|
---|
91 |
|
---|
92 | #if !defined(USE_SYSTEM_MALLOC) && defined(NDEBUG)
|
---|
93 | #define FORCE_SYSTEM_MALLOC 0
|
---|
94 | #else
|
---|
95 | #define FORCE_SYSTEM_MALLOC 1
|
---|
96 | #endif
|
---|
97 |
|
---|
98 |
|
---|
99 | // Use a background thread to periodically scavenge memory to release back to the system
|
---|
100 | #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1
|
---|
101 |
|
---|
102 | #ifndef NDEBUG
|
---|
103 | namespace WTF {
|
---|
104 |
|
---|
105 | #if ENABLE(JSC_MULTIPLE_THREADS)
|
---|
106 | static pthread_key_t isForbiddenKey;
|
---|
107 | static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
|
---|
108 | static void initializeIsForbiddenKey()
|
---|
109 | {
|
---|
110 | pthread_key_create(&isForbiddenKey, 0);
|
---|
111 | }
|
---|
112 |
|
---|
113 | static bool isForbidden()
|
---|
114 | {
|
---|
115 | pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
|
---|
116 | return !!pthread_getspecific(isForbiddenKey);
|
---|
117 | }
|
---|
118 |
|
---|
119 | void fastMallocForbid()
|
---|
120 | {
|
---|
121 | pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
|
---|
122 | pthread_setspecific(isForbiddenKey, &isForbiddenKey);
|
---|
123 | }
|
---|
124 |
|
---|
125 | void fastMallocAllow()
|
---|
126 | {
|
---|
127 | pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
|
---|
128 | pthread_setspecific(isForbiddenKey, 0);
|
---|
129 | }
|
---|
130 |
|
---|
131 | #else
|
---|
132 |
|
---|
133 | static bool staticIsForbidden;
|
---|
134 | static bool isForbidden()
|
---|
135 | {
|
---|
136 | return staticIsForbidden;
|
---|
137 | }
|
---|
138 |
|
---|
139 | void fastMallocForbid()
|
---|
140 | {
|
---|
141 | staticIsForbidden = true;
|
---|
142 | }
|
---|
143 |
|
---|
144 | void fastMallocAllow()
|
---|
145 | {
|
---|
146 | staticIsForbidden = false;
|
---|
147 | }
|
---|
148 | #endif // ENABLE(JSC_MULTIPLE_THREADS)
|
---|
149 |
|
---|
150 | } // namespace WTF
|
---|
151 | #endif // NDEBUG
|
---|
152 |
|
---|
153 | #include <string.h>
|
---|
154 |
|
---|
155 | namespace WTF {
|
---|
156 |
|
---|
157 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
158 |
|
---|
159 | namespace Internal {
|
---|
160 |
|
---|
161 | void fastMallocMatchFailed(void*)
|
---|
162 | {
|
---|
163 | CRASH();
|
---|
164 | }
|
---|
165 |
|
---|
166 | } // namespace Internal
|
---|
167 |
|
---|
168 | #endif
|
---|
169 |
|
---|
170 | void* fastZeroedMalloc(size_t n)
|
---|
171 | {
|
---|
172 | void* result = fastMalloc(n);
|
---|
173 | memset(result, 0, n);
|
---|
174 | return result;
|
---|
175 | }
|
---|
176 |
|
---|
177 | void* tryFastZeroedMalloc(size_t n)
|
---|
178 | {
|
---|
179 | void* result = tryFastMalloc(n);
|
---|
180 | if (!result)
|
---|
181 | return 0;
|
---|
182 | memset(result, 0, n);
|
---|
183 | return result;
|
---|
184 | }
|
---|
185 |
|
---|
186 | } // namespace WTF
|
---|
187 |
|
---|
188 | #if FORCE_SYSTEM_MALLOC
|
---|
189 |
|
---|
190 | #include <stdlib.h>
|
---|
191 | #if !PLATFORM(WIN_OS)
|
---|
192 | #include <pthread.h>
|
---|
193 | #else
|
---|
194 | #include "windows.h"
|
---|
195 | #endif
|
---|
196 |
|
---|
197 | namespace WTF {
|
---|
198 |
|
---|
199 | void* tryFastMalloc(size_t n)
|
---|
200 | {
|
---|
201 | ASSERT(!isForbidden());
|
---|
202 |
|
---|
203 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
204 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n) // If overflow would occur...
|
---|
205 | return 0;
|
---|
206 |
|
---|
207 | void* result = malloc(n + sizeof(AllocAlignmentInteger));
|
---|
208 | if (!result)
|
---|
209 | return 0;
|
---|
210 |
|
---|
211 | *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
|
---|
212 | result = static_cast<AllocAlignmentInteger*>(result) + 1;
|
---|
213 |
|
---|
214 | return result;
|
---|
215 | #else
|
---|
216 | return malloc(n);
|
---|
217 | #endif
|
---|
218 | }
|
---|
219 |
|
---|
220 | void* fastMalloc(size_t n)
|
---|
221 | {
|
---|
222 | ASSERT(!isForbidden());
|
---|
223 |
|
---|
224 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
225 | void* result = tryFastMalloc(n);
|
---|
226 | #else
|
---|
227 | void* result = malloc(n);
|
---|
228 | #endif
|
---|
229 |
|
---|
230 | if (!result)
|
---|
231 | CRASH();
|
---|
232 | return result;
|
---|
233 | }
|
---|
234 |
|
---|
235 | void* tryFastCalloc(size_t n_elements, size_t element_size)
|
---|
236 | {
|
---|
237 | ASSERT(!isForbidden());
|
---|
238 |
|
---|
239 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
240 | size_t totalBytes = n_elements * element_size;
|
---|
241 | if (n_elements > 1 && element_size && (totalBytes / element_size) != n_elements || (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes))
|
---|
242 | return 0;
|
---|
243 |
|
---|
244 | totalBytes += sizeof(AllocAlignmentInteger);
|
---|
245 | void* result = malloc(totalBytes);
|
---|
246 | if (!result)
|
---|
247 | return 0;
|
---|
248 |
|
---|
249 | memset(result, 0, totalBytes);
|
---|
250 | *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
|
---|
251 | result = static_cast<AllocAlignmentInteger*>(result) + 1;
|
---|
252 | return result;
|
---|
253 | #else
|
---|
254 | return calloc(n_elements, element_size);
|
---|
255 | #endif
|
---|
256 | }
|
---|
257 |
|
---|
258 | void* fastCalloc(size_t n_elements, size_t element_size)
|
---|
259 | {
|
---|
260 | ASSERT(!isForbidden());
|
---|
261 |
|
---|
262 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
263 | void* result = tryFastCalloc(n_elements, element_size);
|
---|
264 | #else
|
---|
265 | void* result = calloc(n_elements, element_size);
|
---|
266 | #endif
|
---|
267 |
|
---|
268 | if (!result)
|
---|
269 | CRASH();
|
---|
270 | return result;
|
---|
271 | }
|
---|
272 |
|
---|
273 | void fastFree(void* p)
|
---|
274 | {
|
---|
275 | ASSERT(!isForbidden());
|
---|
276 |
|
---|
277 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
278 | if (!p)
|
---|
279 | return;
|
---|
280 |
|
---|
281 | AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
|
---|
282 | if (*header != Internal::AllocTypeMalloc)
|
---|
283 | Internal::fastMallocMatchFailed(p);
|
---|
284 | free(header);
|
---|
285 | #else
|
---|
286 | free(p);
|
---|
287 | #endif
|
---|
288 | }
|
---|
289 |
|
---|
290 | void* tryFastRealloc(void* p, size_t n)
|
---|
291 | {
|
---|
292 | ASSERT(!isForbidden());
|
---|
293 |
|
---|
294 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
295 | if (p) {
|
---|
296 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n) // If overflow would occur...
|
---|
297 | return 0;
|
---|
298 | AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
|
---|
299 | if (*header != Internal::AllocTypeMalloc)
|
---|
300 | Internal::fastMallocMatchFailed(p);
|
---|
301 | void* result = realloc(header, n + sizeof(AllocAlignmentInteger));
|
---|
302 | if (!result)
|
---|
303 | return 0;
|
---|
304 |
|
---|
305 | // This should not be needed because the value is already there:
|
---|
306 | // *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
|
---|
307 | result = static_cast<AllocAlignmentInteger*>(result) + 1;
|
---|
308 | return result;
|
---|
309 | } else {
|
---|
310 | return fastMalloc(n);
|
---|
311 | }
|
---|
312 | #else
|
---|
313 | return realloc(p, n);
|
---|
314 | #endif
|
---|
315 | }
|
---|
316 |
|
---|
317 | void* fastRealloc(void* p, size_t n)
|
---|
318 | {
|
---|
319 | ASSERT(!isForbidden());
|
---|
320 |
|
---|
321 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
322 | void* result = tryFastRealloc(p, n);
|
---|
323 | #else
|
---|
324 | void* result = realloc(p, n);
|
---|
325 | #endif
|
---|
326 |
|
---|
327 | if (!result)
|
---|
328 | CRASH();
|
---|
329 | return result;
|
---|
330 | }
|
---|
331 |
|
---|
332 | void releaseFastMallocFreeMemory() { }
|
---|
333 |
|
---|
334 | FastMallocStatistics fastMallocStatistics()
|
---|
335 | {
|
---|
336 | FastMallocStatistics statistics = { 0, 0, 0, 0 };
|
---|
337 | return statistics;
|
---|
338 | }
|
---|
339 |
|
---|
340 | } // namespace WTF
|
---|
341 |
|
---|
342 | #if PLATFORM(DARWIN)
|
---|
343 | // This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
|
---|
344 | // It will never be used in this case, so it's type and value are less interesting than its presence.
|
---|
345 | extern "C" const int jscore_fastmalloc_introspection = 0;
|
---|
346 | #endif
|
---|
347 |
|
---|
348 | #else // FORCE_SYSTEM_MALLOC
|
---|
349 |
|
---|
350 | #if HAVE(STDINT_H)
|
---|
351 | #include <stdint.h>
|
---|
352 | #elif HAVE(INTTYPES_H)
|
---|
353 | #include <inttypes.h>
|
---|
354 | #else
|
---|
355 | #include <sys/types.h>
|
---|
356 | #endif
|
---|
357 |
|
---|
358 | #include "AlwaysInline.h"
|
---|
359 | #include "Assertions.h"
|
---|
360 | #include "TCPackedCache.h"
|
---|
361 | #include "TCPageMap.h"
|
---|
362 | #include "TCSpinLock.h"
|
---|
363 | #include "TCSystemAlloc.h"
|
---|
364 | #include <algorithm>
|
---|
365 | #include <errno.h>
|
---|
366 | #include <limits>
|
---|
367 | #include <new>
|
---|
368 | #include <pthread.h>
|
---|
369 | #include <stdarg.h>
|
---|
370 | #include <stddef.h>
|
---|
371 | #include <stdio.h>
|
---|
372 | #if COMPILER(MSVC)
|
---|
373 | #ifndef WIN32_LEAN_AND_MEAN
|
---|
374 | #define WIN32_LEAN_AND_MEAN
|
---|
375 | #endif
|
---|
376 | #include <windows.h>
|
---|
377 | #endif
|
---|
378 |
|
---|
379 | #if WTF_CHANGES
|
---|
380 |
|
---|
381 | #if PLATFORM(DARWIN)
|
---|
382 | #include "MallocZoneSupport.h"
|
---|
383 | #include <wtf/HashSet.h>
|
---|
384 | #endif
|
---|
385 |
|
---|
386 | #ifndef PRIuS
|
---|
387 | #define PRIuS "zu"
|
---|
388 | #endif
|
---|
389 |
|
---|
390 | // Calling pthread_getspecific through a global function pointer is faster than a normal
|
---|
391 | // call to the function on Mac OS X, and it's used in performance-critical code. So we
|
---|
392 | // use a function pointer. But that's not necessarily faster on other platforms, and we had
|
---|
393 | // problems with this technique on Windows, so we'll do this only on Mac OS X.
|
---|
394 | #if PLATFORM(DARWIN)
|
---|
395 | static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
|
---|
396 | #define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
|
---|
397 | #endif
|
---|
398 |
|
---|
399 | #define DEFINE_VARIABLE(type, name, value, meaning) \
|
---|
400 | namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead { \
|
---|
401 | type FLAGS_##name(value); \
|
---|
402 | char FLAGS_no##name; \
|
---|
403 | } \
|
---|
404 | using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
|
---|
405 |
|
---|
406 | #define DEFINE_int64(name, value, meaning) \
|
---|
407 | DEFINE_VARIABLE(int64_t, name, value, meaning)
|
---|
408 |
|
---|
409 | #define DEFINE_double(name, value, meaning) \
|
---|
410 | DEFINE_VARIABLE(double, name, value, meaning)
|
---|
411 |
|
---|
412 | namespace WTF {
|
---|
413 |
|
---|
414 | #define malloc fastMalloc
|
---|
415 | #define calloc fastCalloc
|
---|
416 | #define free fastFree
|
---|
417 | #define realloc fastRealloc
|
---|
418 |
|
---|
419 | #define MESSAGE LOG_ERROR
|
---|
420 | #define CHECK_CONDITION ASSERT
|
---|
421 |
|
---|
422 | #if PLATFORM(DARWIN)
|
---|
423 | class Span;
|
---|
424 | class TCMalloc_Central_FreeListPadded;
|
---|
425 | class TCMalloc_PageHeap;
|
---|
426 | class TCMalloc_ThreadCache;
|
---|
427 | template <typename T> class PageHeapAllocator;
|
---|
428 |
|
---|
429 | class FastMallocZone {
|
---|
430 | public:
|
---|
431 | static void init();
|
---|
432 |
|
---|
433 | static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
|
---|
434 | static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
|
---|
435 | static boolean_t check(malloc_zone_t*) { return true; }
|
---|
436 | static void print(malloc_zone_t*, boolean_t) { }
|
---|
437 | static void log(malloc_zone_t*, void*) { }
|
---|
438 | static void forceLock(malloc_zone_t*) { }
|
---|
439 | static void forceUnlock(malloc_zone_t*) { }
|
---|
440 | static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); }
|
---|
441 |
|
---|
442 | private:
|
---|
443 | FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*);
|
---|
444 | static size_t size(malloc_zone_t*, const void*);
|
---|
445 | static void* zoneMalloc(malloc_zone_t*, size_t);
|
---|
446 | static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
|
---|
447 | static void zoneFree(malloc_zone_t*, void*);
|
---|
448 | static void* zoneRealloc(malloc_zone_t*, void*, size_t);
|
---|
449 | static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
|
---|
450 | static void zoneDestroy(malloc_zone_t*) { }
|
---|
451 |
|
---|
452 | malloc_zone_t m_zone;
|
---|
453 | TCMalloc_PageHeap* m_pageHeap;
|
---|
454 | TCMalloc_ThreadCache** m_threadHeaps;
|
---|
455 | TCMalloc_Central_FreeListPadded* m_centralCaches;
|
---|
456 | PageHeapAllocator<Span>* m_spanAllocator;
|
---|
457 | PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator;
|
---|
458 | };
|
---|
459 |
|
---|
460 | #endif
|
---|
461 |
|
---|
462 | #endif
|
---|
463 |
|
---|
464 | #ifndef WTF_CHANGES
|
---|
465 | // This #ifdef should almost never be set. Set NO_TCMALLOC_SAMPLES if
|
---|
466 | // you're porting to a system where you really can't get a stacktrace.
|
---|
467 | #ifdef NO_TCMALLOC_SAMPLES
|
---|
468 | // We use #define so code compiles even if you #include stacktrace.h somehow.
|
---|
469 | # define GetStackTrace(stack, depth, skip) (0)
|
---|
470 | #else
|
---|
471 | # include <google/stacktrace.h>
|
---|
472 | #endif
|
---|
473 | #endif
|
---|
474 |
|
---|
475 | // Even if we have support for thread-local storage in the compiler
|
---|
476 | // and linker, the OS may not support it. We need to check that at
|
---|
477 | // runtime. Right now, we have to keep a manual set of "bad" OSes.
|
---|
478 | #if defined(HAVE_TLS)
|
---|
479 | static bool kernel_supports_tls = false; // be conservative
|
---|
480 | static inline bool KernelSupportsTLS() {
|
---|
481 | return kernel_supports_tls;
|
---|
482 | }
|
---|
483 | # if !HAVE_DECL_UNAME // if too old for uname, probably too old for TLS
|
---|
484 | static void CheckIfKernelSupportsTLS() {
|
---|
485 | kernel_supports_tls = false;
|
---|
486 | }
|
---|
487 | # else
|
---|
488 | # include <sys/utsname.h> // DECL_UNAME checked for <sys/utsname.h> too
|
---|
489 | static void CheckIfKernelSupportsTLS() {
|
---|
490 | struct utsname buf;
|
---|
491 | if (uname(&buf) != 0) { // should be impossible
|
---|
492 | MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
|
---|
493 | kernel_supports_tls = false;
|
---|
494 | } else if (strcasecmp(buf.sysname, "linux") == 0) {
|
---|
495 | // The linux case: the first kernel to support TLS was 2.6.0
|
---|
496 | if (buf.release[0] < '2' && buf.release[1] == '.') // 0.x or 1.x
|
---|
497 | kernel_supports_tls = false;
|
---|
498 | else if (buf.release[0] == '2' && buf.release[1] == '.' &&
|
---|
499 | buf.release[2] >= '0' && buf.release[2] < '6' &&
|
---|
500 | buf.release[3] == '.') // 2.0 - 2.5
|
---|
501 | kernel_supports_tls = false;
|
---|
502 | else
|
---|
503 | kernel_supports_tls = true;
|
---|
504 | } else { // some other kernel, we'll be optimisitic
|
---|
505 | kernel_supports_tls = true;
|
---|
506 | }
|
---|
507 | // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
|
---|
508 | }
|
---|
509 | # endif // HAVE_DECL_UNAME
|
---|
510 | #endif // HAVE_TLS
|
---|
511 |
|
---|
512 | // __THROW is defined in glibc systems. It means, counter-intuitively,
|
---|
513 | // "This function will never throw an exception." It's an optional
|
---|
514 | // optimization tool, but we may need to use it to match glibc prototypes.
|
---|
515 | #ifndef __THROW // I guess we're not on a glibc system
|
---|
516 | # define __THROW // __THROW is just an optimization, so ok to make it ""
|
---|
517 | #endif
|
---|
518 |
|
---|
519 | //-------------------------------------------------------------------
|
---|
520 | // Configuration
|
---|
521 | //-------------------------------------------------------------------
|
---|
522 |
|
---|
523 | // Not all possible combinations of the following parameters make
|
---|
524 | // sense. In particular, if kMaxSize increases, you may have to
|
---|
525 | // increase kNumClasses as well.
|
---|
526 | static const size_t kPageShift = 12;
|
---|
527 | static const size_t kPageSize = 1 << kPageShift;
|
---|
528 | static const size_t kMaxSize = 8u * kPageSize;
|
---|
529 | static const size_t kAlignShift = 3;
|
---|
530 | static const size_t kAlignment = 1 << kAlignShift;
|
---|
531 | static const size_t kNumClasses = 68;
|
---|
532 |
|
---|
533 | // Allocates a big block of memory for the pagemap once we reach more than
|
---|
534 | // 128MB
|
---|
535 | static const size_t kPageMapBigAllocationThreshold = 128 << 20;
|
---|
536 |
|
---|
537 | // Minimum number of pages to fetch from system at a time. Must be
|
---|
538 | // significantly bigger than kBlockSize to amortize system-call
|
---|
539 | // overhead, and also to reduce external fragementation. Also, we
|
---|
540 | // should keep this value big because various incarnations of Linux
|
---|
541 | // have small limits on the number of mmap() regions per
|
---|
542 | // address-space.
|
---|
543 | static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
|
---|
544 |
|
---|
545 | // Number of objects to move between a per-thread list and a central
|
---|
546 | // list in one shot. We want this to be not too small so we can
|
---|
547 | // amortize the lock overhead for accessing the central list. Making
|
---|
548 | // it too big may temporarily cause unnecessary memory wastage in the
|
---|
549 | // per-thread free list until the scavenger cleans up the list.
|
---|
550 | static int num_objects_to_move[kNumClasses];
|
---|
551 |
|
---|
552 | // Maximum length we allow a per-thread free-list to have before we
|
---|
553 | // move objects from it into the corresponding central free-list. We
|
---|
554 | // want this big to avoid locking the central free-list too often. It
|
---|
555 | // should not hurt to make this list somewhat big because the
|
---|
556 | // scavenging code will shrink it down when its contents are not in use.
|
---|
557 | static const int kMaxFreeListLength = 256;
|
---|
558 |
|
---|
559 | // Lower and upper bounds on the per-thread cache sizes
|
---|
560 | static const size_t kMinThreadCacheSize = kMaxSize * 2;
|
---|
561 | static const size_t kMaxThreadCacheSize = 2 << 20;
|
---|
562 |
|
---|
563 | // Default bound on the total amount of thread caches
|
---|
564 | static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
|
---|
565 |
|
---|
566 | // For all span-lengths < kMaxPages we keep an exact-size list.
|
---|
567 | // REQUIRED: kMaxPages >= kMinSystemAlloc;
|
---|
568 | static const size_t kMaxPages = kMinSystemAlloc;
|
---|
569 |
|
---|
570 | /* The smallest prime > 2^n */
|
---|
571 | static int primes_list[] = {
|
---|
572 | // Small values might cause high rates of sampling
|
---|
573 | // and hence commented out.
|
---|
574 | // 2, 5, 11, 17, 37, 67, 131, 257,
|
---|
575 | // 521, 1031, 2053, 4099, 8209, 16411,
|
---|
576 | 32771, 65537, 131101, 262147, 524309, 1048583,
|
---|
577 | 2097169, 4194319, 8388617, 16777259, 33554467 };
|
---|
578 |
|
---|
579 | // Twice the approximate gap between sampling actions.
|
---|
580 | // I.e., we take one sample approximately once every
|
---|
581 | // tcmalloc_sample_parameter/2
|
---|
582 | // bytes of allocation, i.e., ~ once every 128KB.
|
---|
583 | // Must be a prime number.
|
---|
584 | #ifdef NO_TCMALLOC_SAMPLES
|
---|
585 | DEFINE_int64(tcmalloc_sample_parameter, 0,
|
---|
586 | "Unused: code is compiled with NO_TCMALLOC_SAMPLES");
|
---|
587 | static size_t sample_period = 0;
|
---|
588 | #else
|
---|
589 | DEFINE_int64(tcmalloc_sample_parameter, 262147,
|
---|
590 | "Twice the approximate gap between sampling actions."
|
---|
591 | " Must be a prime number. Otherwise will be rounded up to a "
|
---|
592 | " larger prime number");
|
---|
593 | static size_t sample_period = 262147;
|
---|
594 | #endif
|
---|
595 |
|
---|
596 | // Protects sample_period above
|
---|
597 | static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
|
---|
598 |
|
---|
599 | // Parameters for controlling how fast memory is returned to the OS.
|
---|
600 |
|
---|
601 | DEFINE_double(tcmalloc_release_rate, 1,
|
---|
602 | "Rate at which we release unused memory to the system. "
|
---|
603 | "Zero means we never release memory back to the system. "
|
---|
604 | "Increase this flag to return memory faster; decrease it "
|
---|
605 | "to return memory slower. Reasonable rates are in the "
|
---|
606 | "range [0,10]");
|
---|
607 |
|
---|
608 | //-------------------------------------------------------------------
|
---|
609 | // Mapping from size to size_class and vice versa
|
---|
610 | //-------------------------------------------------------------------
|
---|
611 |
|
---|
612 | // Sizes <= 1024 have an alignment >= 8. So for such sizes we have an
|
---|
613 | // array indexed by ceil(size/8). Sizes > 1024 have an alignment >= 128.
|
---|
614 | // So for these larger sizes we have an array indexed by ceil(size/128).
|
---|
615 | //
|
---|
616 | // We flatten both logical arrays into one physical array and use
|
---|
617 | // arithmetic to compute an appropriate index. The constants used by
|
---|
618 | // ClassIndex() were selected to make the flattening work.
|
---|
619 | //
|
---|
620 | // Examples:
|
---|
621 | // Size Expression Index
|
---|
622 | // -------------------------------------------------------
|
---|
623 | // 0 (0 + 7) / 8 0
|
---|
624 | // 1 (1 + 7) / 8 1
|
---|
625 | // ...
|
---|
626 | // 1024 (1024 + 7) / 8 128
|
---|
627 | // 1025 (1025 + 127 + (120<<7)) / 128 129
|
---|
628 | // ...
|
---|
629 | // 32768 (32768 + 127 + (120<<7)) / 128 376
|
---|
630 | static const size_t kMaxSmallSize = 1024;
|
---|
631 | static const int shift_amount[2] = { 3, 7 }; // For divides by 8 or 128
|
---|
632 | static const int add_amount[2] = { 7, 127 + (120 << 7) };
|
---|
633 | static unsigned char class_array[377];
|
---|
634 |
|
---|
635 | // Compute index of the class_array[] entry for a given size
|
---|
636 | static inline int ClassIndex(size_t s) {
|
---|
637 | const int i = (s > kMaxSmallSize);
|
---|
638 | return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
|
---|
639 | }
|
---|
640 |
|
---|
641 | // Mapping from size class to max size storable in that class
|
---|
642 | static size_t class_to_size[kNumClasses];
|
---|
643 |
|
---|
644 | // Mapping from size class to number of pages to allocate at a time
|
---|
645 | static size_t class_to_pages[kNumClasses];
|
---|
646 |
|
---|
647 | // TransferCache is used to cache transfers of num_objects_to_move[size_class]
|
---|
648 | // back and forth between thread caches and the central cache for a given size
|
---|
649 | // class.
|
---|
650 | struct TCEntry {
|
---|
651 | void *head; // Head of chain of objects.
|
---|
652 | void *tail; // Tail of chain of objects.
|
---|
653 | };
|
---|
654 | // A central cache freelist can have anywhere from 0 to kNumTransferEntries
|
---|
655 | // slots to put link list chains into. To keep memory usage bounded the total
|
---|
656 | // number of TCEntries across size classes is fixed. Currently each size
|
---|
657 | // class is initially given one TCEntry which also means that the maximum any
|
---|
658 | // one class can have is kNumClasses.
|
---|
659 | static const int kNumTransferEntries = kNumClasses;
|
---|
660 |
|
---|
661 | // Note: the following only works for "n"s that fit in 32-bits, but
|
---|
662 | // that is fine since we only use it for small sizes.
|
---|
663 | static inline int LgFloor(size_t n) {
|
---|
664 | int log = 0;
|
---|
665 | for (int i = 4; i >= 0; --i) {
|
---|
666 | int shift = (1 << i);
|
---|
667 | size_t x = n >> shift;
|
---|
668 | if (x != 0) {
|
---|
669 | n = x;
|
---|
670 | log += shift;
|
---|
671 | }
|
---|
672 | }
|
---|
673 | ASSERT(n == 1);
|
---|
674 | return log;
|
---|
675 | }
|
---|
676 |
|
---|
677 | // Some very basic linked list functions for dealing with using void * as
|
---|
678 | // storage.
|
---|
679 |
|
---|
680 | static inline void *SLL_Next(void *t) {
|
---|
681 | return *(reinterpret_cast<void**>(t));
|
---|
682 | }
|
---|
683 |
|
---|
684 | static inline void SLL_SetNext(void *t, void *n) {
|
---|
685 | *(reinterpret_cast<void**>(t)) = n;
|
---|
686 | }
|
---|
687 |
|
---|
688 | static inline void SLL_Push(void **list, void *element) {
|
---|
689 | SLL_SetNext(element, *list);
|
---|
690 | *list = element;
|
---|
691 | }
|
---|
692 |
|
---|
693 | static inline void *SLL_Pop(void **list) {
|
---|
694 | void *result = *list;
|
---|
695 | *list = SLL_Next(*list);
|
---|
696 | return result;
|
---|
697 | }
|
---|
698 |
|
---|
699 |
|
---|
700 | // Remove N elements from a linked list to which head points. head will be
|
---|
701 | // modified to point to the new head. start and end will point to the first
|
---|
702 | // and last nodes of the range. Note that end will point to NULL after this
|
---|
703 | // function is called.
|
---|
704 | static inline void SLL_PopRange(void **head, int N, void **start, void **end) {
|
---|
705 | if (N == 0) {
|
---|
706 | *start = NULL;
|
---|
707 | *end = NULL;
|
---|
708 | return;
|
---|
709 | }
|
---|
710 |
|
---|
711 | void *tmp = *head;
|
---|
712 | for (int i = 1; i < N; ++i) {
|
---|
713 | tmp = SLL_Next(tmp);
|
---|
714 | }
|
---|
715 |
|
---|
716 | *start = *head;
|
---|
717 | *end = tmp;
|
---|
718 | *head = SLL_Next(tmp);
|
---|
719 | // Unlink range from list.
|
---|
720 | SLL_SetNext(tmp, NULL);
|
---|
721 | }
|
---|
722 |
|
---|
723 | static inline void SLL_PushRange(void **head, void *start, void *end) {
|
---|
724 | if (!start) return;
|
---|
725 | SLL_SetNext(end, *head);
|
---|
726 | *head = start;
|
---|
727 | }
|
---|
728 |
|
---|
729 | static inline size_t SLL_Size(void *head) {
|
---|
730 | int count = 0;
|
---|
731 | while (head) {
|
---|
732 | count++;
|
---|
733 | head = SLL_Next(head);
|
---|
734 | }
|
---|
735 | return count;
|
---|
736 | }
|
---|
737 |
|
---|
738 | // Setup helper functions.
|
---|
739 |
|
---|
740 | static ALWAYS_INLINE size_t SizeClass(size_t size) {
|
---|
741 | return class_array[ClassIndex(size)];
|
---|
742 | }
|
---|
743 |
|
---|
744 | // Get the byte-size for a specified class
|
---|
745 | static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
|
---|
746 | return class_to_size[cl];
|
---|
747 | }
|
---|
748 | static int NumMoveSize(size_t size) {
|
---|
749 | if (size == 0) return 0;
|
---|
750 | // Use approx 64k transfers between thread and central caches.
|
---|
751 | int num = static_cast<int>(64.0 * 1024.0 / size);
|
---|
752 | if (num < 2) num = 2;
|
---|
753 | // Clamp well below kMaxFreeListLength to avoid ping pong between central
|
---|
754 | // and thread caches.
|
---|
755 | if (num > static_cast<int>(0.8 * kMaxFreeListLength))
|
---|
756 | num = static_cast<int>(0.8 * kMaxFreeListLength);
|
---|
757 |
|
---|
758 | // Also, avoid bringing in too many objects into small object free
|
---|
759 | // lists. There are lots of such lists, and if we allow each one to
|
---|
760 | // fetch too many at a time, we end up having to scavenge too often
|
---|
761 | // (especially when there are lots of threads and each thread gets a
|
---|
762 | // small allowance for its thread cache).
|
---|
763 | //
|
---|
764 | // TODO: Make thread cache free list sizes dynamic so that we do not
|
---|
765 | // have to equally divide a fixed resource amongst lots of threads.
|
---|
766 | if (num > 32) num = 32;
|
---|
767 |
|
---|
768 | return num;
|
---|
769 | }
|
---|
770 |
|
---|
771 | // Initialize the mapping arrays
|
---|
772 | static void InitSizeClasses() {
|
---|
773 | // Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
|
---|
774 | if (ClassIndex(0) < 0) {
|
---|
775 | MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
|
---|
776 | CRASH();
|
---|
777 | }
|
---|
778 | if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
|
---|
779 | MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
|
---|
780 | CRASH();
|
---|
781 | }
|
---|
782 |
|
---|
783 | // Compute the size classes we want to use
|
---|
784 | size_t sc = 1; // Next size class to assign
|
---|
785 | unsigned char alignshift = kAlignShift;
|
---|
786 | int last_lg = -1;
|
---|
787 | for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
|
---|
788 | int lg = LgFloor(size);
|
---|
789 | if (lg > last_lg) {
|
---|
790 | // Increase alignment every so often.
|
---|
791 | //
|
---|
792 | // Since we double the alignment every time size doubles and
|
---|
793 | // size >= 128, this means that space wasted due to alignment is
|
---|
794 | // at most 16/128 i.e., 12.5%. Plus we cap the alignment at 256
|
---|
795 | // bytes, so the space wasted as a percentage starts falling for
|
---|
796 | // sizes > 2K.
|
---|
797 | if ((lg >= 7) && (alignshift < 8)) {
|
---|
798 | alignshift++;
|
---|
799 | }
|
---|
800 | last_lg = lg;
|
---|
801 | }
|
---|
802 |
|
---|
803 | // Allocate enough pages so leftover is less than 1/8 of total.
|
---|
804 | // This bounds wasted space to at most 12.5%.
|
---|
805 | size_t psize = kPageSize;
|
---|
806 | while ((psize % size) > (psize >> 3)) {
|
---|
807 | psize += kPageSize;
|
---|
808 | }
|
---|
809 | const size_t my_pages = psize >> kPageShift;
|
---|
810 |
|
---|
811 | if (sc > 1 && my_pages == class_to_pages[sc-1]) {
|
---|
812 | // See if we can merge this into the previous class without
|
---|
813 | // increasing the fragmentation of the previous class.
|
---|
814 | const size_t my_objects = (my_pages << kPageShift) / size;
|
---|
815 | const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
|
---|
816 | / class_to_size[sc-1];
|
---|
817 | if (my_objects == prev_objects) {
|
---|
818 | // Adjust last class to include this size
|
---|
819 | class_to_size[sc-1] = size;
|
---|
820 | continue;
|
---|
821 | }
|
---|
822 | }
|
---|
823 |
|
---|
824 | // Add new class
|
---|
825 | class_to_pages[sc] = my_pages;
|
---|
826 | class_to_size[sc] = size;
|
---|
827 | sc++;
|
---|
828 | }
|
---|
829 | if (sc != kNumClasses) {
|
---|
830 | MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
|
---|
831 | sc, int(kNumClasses));
|
---|
832 | CRASH();
|
---|
833 | }
|
---|
834 |
|
---|
835 | // Initialize the mapping arrays
|
---|
836 | int next_size = 0;
|
---|
837 | for (unsigned char c = 1; c < kNumClasses; c++) {
|
---|
838 | const size_t max_size_in_class = class_to_size[c];
|
---|
839 | for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
|
---|
840 | class_array[ClassIndex(s)] = c;
|
---|
841 | }
|
---|
842 | next_size = static_cast<int>(max_size_in_class + kAlignment);
|
---|
843 | }
|
---|
844 |
|
---|
845 | // Double-check sizes just to be safe
|
---|
846 | for (size_t size = 0; size <= kMaxSize; size++) {
|
---|
847 | const size_t sc = SizeClass(size);
|
---|
848 | if (sc == 0) {
|
---|
849 | MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
|
---|
850 | CRASH();
|
---|
851 | }
|
---|
852 | if (sc > 1 && size <= class_to_size[sc-1]) {
|
---|
853 | MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
|
---|
854 | "\n", sc, size);
|
---|
855 | CRASH();
|
---|
856 | }
|
---|
857 | if (sc >= kNumClasses) {
|
---|
858 | MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
|
---|
859 | CRASH();
|
---|
860 | }
|
---|
861 | const size_t s = class_to_size[sc];
|
---|
862 | if (size > s) {
|
---|
863 | MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
|
---|
864 | CRASH();
|
---|
865 | }
|
---|
866 | if (s == 0) {
|
---|
867 | MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
|
---|
868 | CRASH();
|
---|
869 | }
|
---|
870 | }
|
---|
871 |
|
---|
872 | // Initialize the num_objects_to_move array.
|
---|
873 | for (size_t cl = 1; cl < kNumClasses; ++cl) {
|
---|
874 | num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
|
---|
875 | }
|
---|
876 |
|
---|
877 | #ifndef WTF_CHANGES
|
---|
878 | if (false) {
|
---|
879 | // Dump class sizes and maximum external wastage per size class
|
---|
880 | for (size_t cl = 1; cl < kNumClasses; ++cl) {
|
---|
881 | const int alloc_size = class_to_pages[cl] << kPageShift;
|
---|
882 | const int alloc_objs = alloc_size / class_to_size[cl];
|
---|
883 | const int min_used = (class_to_size[cl-1] + 1) * alloc_objs;
|
---|
884 | const int max_waste = alloc_size - min_used;
|
---|
885 | MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n",
|
---|
886 | int(cl),
|
---|
887 | int(class_to_size[cl-1] + 1),
|
---|
888 | int(class_to_size[cl]),
|
---|
889 | int(class_to_pages[cl] << kPageShift),
|
---|
890 | max_waste * 100.0 / alloc_size
|
---|
891 | );
|
---|
892 | }
|
---|
893 | }
|
---|
894 | #endif
|
---|
895 | }
|
---|
896 |
|
---|
897 | // -------------------------------------------------------------------------
|
---|
898 | // Simple allocator for objects of a specified type. External locking
|
---|
899 | // is required before accessing one of these objects.
|
---|
900 | // -------------------------------------------------------------------------
|
---|
901 |
|
---|
902 | // Metadata allocator -- keeps stats about how many bytes allocated
|
---|
903 | static uint64_t metadata_system_bytes = 0;
|
---|
904 | static void* MetaDataAlloc(size_t bytes) {
|
---|
905 | void* result = TCMalloc_SystemAlloc(bytes, 0);
|
---|
906 | if (result != NULL) {
|
---|
907 | metadata_system_bytes += bytes;
|
---|
908 | }
|
---|
909 | return result;
|
---|
910 | }
|
---|
911 |
|
---|
912 | template <class T>
|
---|
913 | class PageHeapAllocator {
|
---|
914 | private:
|
---|
915 | // How much to allocate from system at a time
|
---|
916 | static const size_t kAllocIncrement = 32 << 10;
|
---|
917 |
|
---|
918 | // Aligned size of T
|
---|
919 | static const size_t kAlignedSize
|
---|
920 | = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
|
---|
921 |
|
---|
922 | // Free area from which to carve new objects
|
---|
923 | char* free_area_;
|
---|
924 | size_t free_avail_;
|
---|
925 |
|
---|
926 | // Linked list of all regions allocated by this allocator
|
---|
927 | void* allocated_regions_;
|
---|
928 |
|
---|
929 | // Free list of already carved objects
|
---|
930 | void* free_list_;
|
---|
931 |
|
---|
932 | // Number of allocated but unfreed objects
|
---|
933 | int inuse_;
|
---|
934 |
|
---|
935 | public:
|
---|
936 | void Init() {
|
---|
937 | ASSERT(kAlignedSize <= kAllocIncrement);
|
---|
938 | inuse_ = 0;
|
---|
939 | allocated_regions_ = 0;
|
---|
940 | free_area_ = NULL;
|
---|
941 | free_avail_ = 0;
|
---|
942 | free_list_ = NULL;
|
---|
943 | }
|
---|
944 |
|
---|
945 | T* New() {
|
---|
946 | // Consult free list
|
---|
947 | void* result;
|
---|
948 | if (free_list_ != NULL) {
|
---|
949 | result = free_list_;
|
---|
950 | free_list_ = *(reinterpret_cast<void**>(result));
|
---|
951 | } else {
|
---|
952 | if (free_avail_ < kAlignedSize) {
|
---|
953 | // Need more room
|
---|
954 | char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
|
---|
955 | if (!new_allocation)
|
---|
956 | CRASH();
|
---|
957 |
|
---|
958 | *(void**)new_allocation = allocated_regions_;
|
---|
959 | allocated_regions_ = new_allocation;
|
---|
960 | free_area_ = new_allocation + kAlignedSize;
|
---|
961 | free_avail_ = kAllocIncrement - kAlignedSize;
|
---|
962 | }
|
---|
963 | result = free_area_;
|
---|
964 | free_area_ += kAlignedSize;
|
---|
965 | free_avail_ -= kAlignedSize;
|
---|
966 | }
|
---|
967 | inuse_++;
|
---|
968 | return reinterpret_cast<T*>(result);
|
---|
969 | }
|
---|
970 |
|
---|
971 | void Delete(T* p) {
|
---|
972 | *(reinterpret_cast<void**>(p)) = free_list_;
|
---|
973 | free_list_ = p;
|
---|
974 | inuse_--;
|
---|
975 | }
|
---|
976 |
|
---|
977 | int inuse() const { return inuse_; }
|
---|
978 |
|
---|
979 | #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
|
---|
980 | template <class Recorder>
|
---|
981 | void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader)
|
---|
982 | {
|
---|
983 | vm_address_t adminAllocation = reinterpret_cast<vm_address_t>(allocated_regions_);
|
---|
984 | while (adminAllocation) {
|
---|
985 | recorder.recordRegion(adminAllocation, kAllocIncrement);
|
---|
986 | adminAllocation = *reader(reinterpret_cast<vm_address_t*>(adminAllocation));
|
---|
987 | }
|
---|
988 | }
|
---|
989 | #endif
|
---|
990 | };
|
---|
991 |
|
---|
992 | // -------------------------------------------------------------------------
|
---|
993 | // Span - a contiguous run of pages
|
---|
994 | // -------------------------------------------------------------------------
|
---|
995 |
|
---|
996 | // Type that can hold a page number
|
---|
997 | typedef uintptr_t PageID;
|
---|
998 |
|
---|
999 | // Type that can hold the length of a run of pages
|
---|
1000 | typedef uintptr_t Length;
|
---|
1001 |
|
---|
1002 | static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
|
---|
1003 |
|
---|
1004 | // Convert byte size into pages. This won't overflow, but may return
|
---|
1005 | // an unreasonably large value if bytes is huge enough.
|
---|
1006 | static inline Length pages(size_t bytes) {
|
---|
1007 | return (bytes >> kPageShift) +
|
---|
1008 | ((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | // Convert a user size into the number of bytes that will actually be
|
---|
1012 | // allocated
|
---|
1013 | static size_t AllocationSize(size_t bytes) {
|
---|
1014 | if (bytes > kMaxSize) {
|
---|
1015 | // Large object: we allocate an integral number of pages
|
---|
1016 | ASSERT(bytes <= (kMaxValidPages << kPageShift));
|
---|
1017 | return pages(bytes) << kPageShift;
|
---|
1018 | } else {
|
---|
1019 | // Small object: find the size class to which it belongs
|
---|
1020 | return ByteSizeForClass(SizeClass(bytes));
|
---|
1021 | }
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | // Information kept for a span (a contiguous run of pages).
|
---|
1025 | struct Span {
|
---|
1026 | PageID start; // Starting page number
|
---|
1027 | Length length; // Number of pages in span
|
---|
1028 | Span* next; // Used when in link list
|
---|
1029 | Span* prev; // Used when in link list
|
---|
1030 | void* objects; // Linked list of free objects
|
---|
1031 | unsigned int free : 1; // Is the span free
|
---|
1032 | #ifndef NO_TCMALLOC_SAMPLES
|
---|
1033 | unsigned int sample : 1; // Sampled object?
|
---|
1034 | #endif
|
---|
1035 | unsigned int sizeclass : 8; // Size-class for small objects (or 0)
|
---|
1036 | unsigned int refcount : 11; // Number of non-free objects
|
---|
1037 | bool decommitted : 1;
|
---|
1038 |
|
---|
1039 | #undef SPAN_HISTORY
|
---|
1040 | #ifdef SPAN_HISTORY
|
---|
1041 | // For debugging, we can keep a log events per span
|
---|
1042 | int nexthistory;
|
---|
1043 | char history[64];
|
---|
1044 | int value[64];
|
---|
1045 | #endif
|
---|
1046 | };
|
---|
1047 |
|
---|
1048 | #define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted)
|
---|
1049 |
|
---|
1050 | #ifdef SPAN_HISTORY
|
---|
1051 | void Event(Span* span, char op, int v = 0) {
|
---|
1052 | span->history[span->nexthistory] = op;
|
---|
1053 | span->value[span->nexthistory] = v;
|
---|
1054 | span->nexthistory++;
|
---|
1055 | if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
|
---|
1056 | }
|
---|
1057 | #else
|
---|
1058 | #define Event(s,o,v) ((void) 0)
|
---|
1059 | #endif
|
---|
1060 |
|
---|
1061 | // Allocator/deallocator for spans
|
---|
1062 | static PageHeapAllocator<Span> span_allocator;
|
---|
1063 | static Span* NewSpan(PageID p, Length len) {
|
---|
1064 | Span* result = span_allocator.New();
|
---|
1065 | memset(result, 0, sizeof(*result));
|
---|
1066 | result->start = p;
|
---|
1067 | result->length = len;
|
---|
1068 | #ifdef SPAN_HISTORY
|
---|
1069 | result->nexthistory = 0;
|
---|
1070 | #endif
|
---|
1071 | return result;
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | static inline void DeleteSpan(Span* span) {
|
---|
1075 | #ifndef NDEBUG
|
---|
1076 | // In debug mode, trash the contents of deleted Spans
|
---|
1077 | memset(span, 0x3f, sizeof(*span));
|
---|
1078 | #endif
|
---|
1079 | span_allocator.Delete(span);
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | // -------------------------------------------------------------------------
|
---|
1083 | // Doubly linked list of spans.
|
---|
1084 | // -------------------------------------------------------------------------
|
---|
1085 |
|
---|
1086 | static inline void DLL_Init(Span* list) {
|
---|
1087 | list->next = list;
|
---|
1088 | list->prev = list;
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | static inline void DLL_Remove(Span* span) {
|
---|
1092 | span->prev->next = span->next;
|
---|
1093 | span->next->prev = span->prev;
|
---|
1094 | span->prev = NULL;
|
---|
1095 | span->next = NULL;
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
|
---|
1099 | return list->next == list;
|
---|
1100 | }
|
---|
1101 |
|
---|
1102 | static int DLL_Length(const Span* list) {
|
---|
1103 | int result = 0;
|
---|
1104 | for (Span* s = list->next; s != list; s = s->next) {
|
---|
1105 | result++;
|
---|
1106 | }
|
---|
1107 | return result;
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 | #if 0 /* Not needed at the moment -- causes compiler warnings if not used */
|
---|
1111 | static void DLL_Print(const char* label, const Span* list) {
|
---|
1112 | MESSAGE("%-10s %p:", label, list);
|
---|
1113 | for (const Span* s = list->next; s != list; s = s->next) {
|
---|
1114 | MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
|
---|
1115 | }
|
---|
1116 | MESSAGE("\n");
|
---|
1117 | }
|
---|
1118 | #endif
|
---|
1119 |
|
---|
1120 | static inline void DLL_Prepend(Span* list, Span* span) {
|
---|
1121 | ASSERT(span->next == NULL);
|
---|
1122 | ASSERT(span->prev == NULL);
|
---|
1123 | span->next = list->next;
|
---|
1124 | span->prev = list;
|
---|
1125 | list->next->prev = span;
|
---|
1126 | list->next = span;
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | // -------------------------------------------------------------------------
|
---|
1130 | // Stack traces kept for sampled allocations
|
---|
1131 | // The following state is protected by pageheap_lock_.
|
---|
1132 | // -------------------------------------------------------------------------
|
---|
1133 |
|
---|
1134 | // size/depth are made the same size as a pointer so that some generic
|
---|
1135 | // code below can conveniently cast them back and forth to void*.
|
---|
1136 | static const int kMaxStackDepth = 31;
|
---|
1137 | struct StackTrace {
|
---|
1138 | uintptr_t size; // Size of object
|
---|
1139 | uintptr_t depth; // Number of PC values stored in array below
|
---|
1140 | void* stack[kMaxStackDepth];
|
---|
1141 | };
|
---|
1142 | static PageHeapAllocator<StackTrace> stacktrace_allocator;
|
---|
1143 | static Span sampled_objects;
|
---|
1144 |
|
---|
1145 | // -------------------------------------------------------------------------
|
---|
1146 | // Map from page-id to per-page data
|
---|
1147 | // -------------------------------------------------------------------------
|
---|
1148 |
|
---|
1149 | // We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
|
---|
1150 | // We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
|
---|
1151 | // because sometimes the sizeclass is all the information we need.
|
---|
1152 |
|
---|
1153 | // Selector class -- general selector uses 3-level map
|
---|
1154 | template <int BITS> class MapSelector {
|
---|
1155 | public:
|
---|
1156 | typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
|
---|
1157 | typedef PackedCache<BITS, uint64_t> CacheType;
|
---|
1158 | };
|
---|
1159 |
|
---|
1160 | #if defined(WTF_CHANGES)
|
---|
1161 | #if PLATFORM(X86_64)
|
---|
1162 | // On all known X86-64 platforms, the upper 16 bits are always unused and therefore
|
---|
1163 | // can be excluded from the PageMap key.
|
---|
1164 | // See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
|
---|
1165 |
|
---|
1166 | static const size_t kBitsUnusedOn64Bit = 16;
|
---|
1167 | #else
|
---|
1168 | static const size_t kBitsUnusedOn64Bit = 0;
|
---|
1169 | #endif
|
---|
1170 |
|
---|
1171 | // A three-level map for 64-bit machines
|
---|
1172 | template <> class MapSelector<64> {
|
---|
1173 | public:
|
---|
1174 | typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type;
|
---|
1175 | typedef PackedCache<64, uint64_t> CacheType;
|
---|
1176 | };
|
---|
1177 | #endif
|
---|
1178 |
|
---|
1179 | // A two-level map for 32-bit machines
|
---|
1180 | template <> class MapSelector<32> {
|
---|
1181 | public:
|
---|
1182 | typedef TCMalloc_PageMap2<32 - kPageShift> Type;
|
---|
1183 | typedef PackedCache<32 - kPageShift, uint16_t> CacheType;
|
---|
1184 | };
|
---|
1185 |
|
---|
1186 | // -------------------------------------------------------------------------
|
---|
1187 | // Page-level allocator
|
---|
1188 | // * Eager coalescing
|
---|
1189 | //
|
---|
1190 | // Heap for page-level allocation. We allow allocating and freeing a
|
---|
1191 | // contiguous runs of pages (called a "span").
|
---|
1192 | // -------------------------------------------------------------------------
|
---|
1193 |
|
---|
1194 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1195 | // The central page heap collects spans of memory that have been deleted but are still committed until they are released
|
---|
1196 | // back to the system. We use a background thread to periodically scan the list of free spans and release some back to the
|
---|
1197 | // system. Every 5 seconds, the background thread wakes up and does the following:
|
---|
1198 | // - Check if we needed to commit memory in the last 5 seconds. If so, skip this scavenge because it's a sign that we are short
|
---|
1199 | // of free committed pages and so we should not release them back to the system yet.
|
---|
1200 | // - Otherwise, go through the list of free spans (from largest to smallest) and release up to a fraction of the free committed pages
|
---|
1201 | // back to the system.
|
---|
1202 | // - If the number of free committed pages reaches kMinimumFreeCommittedPageCount, we can stop the scavenging and block the
|
---|
1203 | // scavenging thread until the number of free committed pages goes above kMinimumFreeCommittedPageCount.
|
---|
1204 |
|
---|
1205 | // Background thread wakes up every 5 seconds to scavenge as long as there is memory available to return to the system.
|
---|
1206 | static const int kScavengeTimerDelayInSeconds = 5;
|
---|
1207 |
|
---|
1208 | // Number of free committed pages that we want to keep around.
|
---|
1209 | static const size_t kMinimumFreeCommittedPageCount = 512;
|
---|
1210 |
|
---|
1211 | // During a scavenge, we'll release up to a fraction of the free committed pages.
|
---|
1212 | #if PLATFORM(WIN)
|
---|
1213 | // We are slightly less aggressive in releasing memory on Windows due to performance reasons.
|
---|
1214 | static const int kMaxScavengeAmountFactor = 3;
|
---|
1215 | #else
|
---|
1216 | static const int kMaxScavengeAmountFactor = 2;
|
---|
1217 | #endif
|
---|
1218 | #endif
|
---|
1219 |
|
---|
1220 | class TCMalloc_PageHeap {
|
---|
1221 | public:
|
---|
1222 | void init();
|
---|
1223 |
|
---|
1224 | // Allocate a run of "n" pages. Returns zero if out of memory.
|
---|
1225 | Span* New(Length n);
|
---|
1226 |
|
---|
1227 | // Delete the span "[p, p+n-1]".
|
---|
1228 | // REQUIRES: span was returned by earlier call to New() and
|
---|
1229 | // has not yet been deleted.
|
---|
1230 | void Delete(Span* span);
|
---|
1231 |
|
---|
1232 | // Mark an allocated span as being used for small objects of the
|
---|
1233 | // specified size-class.
|
---|
1234 | // REQUIRES: span was returned by an earlier call to New()
|
---|
1235 | // and has not yet been deleted.
|
---|
1236 | void RegisterSizeClass(Span* span, size_t sc);
|
---|
1237 |
|
---|
1238 | // Split an allocated span into two spans: one of length "n" pages
|
---|
1239 | // followed by another span of length "span->length - n" pages.
|
---|
1240 | // Modifies "*span" to point to the first span of length "n" pages.
|
---|
1241 | // Returns a pointer to the second span.
|
---|
1242 | //
|
---|
1243 | // REQUIRES: "0 < n < span->length"
|
---|
1244 | // REQUIRES: !span->free
|
---|
1245 | // REQUIRES: span->sizeclass == 0
|
---|
1246 | Span* Split(Span* span, Length n);
|
---|
1247 |
|
---|
1248 | // Return the descriptor for the specified page.
|
---|
1249 | inline Span* GetDescriptor(PageID p) const {
|
---|
1250 | return reinterpret_cast<Span*>(pagemap_.get(p));
|
---|
1251 | }
|
---|
1252 |
|
---|
1253 | #ifdef WTF_CHANGES
|
---|
1254 | inline Span* GetDescriptorEnsureSafe(PageID p)
|
---|
1255 | {
|
---|
1256 | pagemap_.Ensure(p, 1);
|
---|
1257 | return GetDescriptor(p);
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | size_t ReturnedBytes() const;
|
---|
1261 | #endif
|
---|
1262 |
|
---|
1263 | // Dump state to stderr
|
---|
1264 | #ifndef WTF_CHANGES
|
---|
1265 | void Dump(TCMalloc_Printer* out);
|
---|
1266 | #endif
|
---|
1267 |
|
---|
1268 | // Return number of bytes allocated from system
|
---|
1269 | inline uint64_t SystemBytes() const { return system_bytes_; }
|
---|
1270 |
|
---|
1271 | // Return number of free bytes in heap
|
---|
1272 | uint64_t FreeBytes() const {
|
---|
1273 | return (static_cast<uint64_t>(free_pages_) << kPageShift);
|
---|
1274 | }
|
---|
1275 |
|
---|
1276 | bool Check();
|
---|
1277 | bool CheckList(Span* list, Length min_pages, Length max_pages);
|
---|
1278 |
|
---|
1279 | // Release all pages on the free list for reuse by the OS:
|
---|
1280 | void ReleaseFreePages();
|
---|
1281 |
|
---|
1282 | // Return 0 if we have no information, or else the correct sizeclass for p.
|
---|
1283 | // Reads and writes to pagemap_cache_ do not require locking.
|
---|
1284 | // The entries are 64 bits on 64-bit hardware and 16 bits on
|
---|
1285 | // 32-bit hardware, and we don't mind raciness as long as each read of
|
---|
1286 | // an entry yields a valid entry, not a partially updated entry.
|
---|
1287 | size_t GetSizeClassIfCached(PageID p) const {
|
---|
1288 | return pagemap_cache_.GetOrDefault(p, 0);
|
---|
1289 | }
|
---|
1290 | void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
|
---|
1291 |
|
---|
1292 | private:
|
---|
1293 | // Pick the appropriate map and cache types based on pointer size
|
---|
1294 | typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
|
---|
1295 | typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
|
---|
1296 | PageMap pagemap_;
|
---|
1297 | mutable PageMapCache pagemap_cache_;
|
---|
1298 |
|
---|
1299 | // We segregate spans of a given size into two circular linked
|
---|
1300 | // lists: one for normal spans, and one for spans whose memory
|
---|
1301 | // has been returned to the system.
|
---|
1302 | struct SpanList {
|
---|
1303 | Span normal;
|
---|
1304 | Span returned;
|
---|
1305 | };
|
---|
1306 |
|
---|
1307 | // List of free spans of length >= kMaxPages
|
---|
1308 | SpanList large_;
|
---|
1309 |
|
---|
1310 | // Array mapping from span length to a doubly linked list of free spans
|
---|
1311 | SpanList free_[kMaxPages];
|
---|
1312 |
|
---|
1313 | // Number of pages kept in free lists
|
---|
1314 | uintptr_t free_pages_;
|
---|
1315 |
|
---|
1316 | // Bytes allocated from system
|
---|
1317 | uint64_t system_bytes_;
|
---|
1318 |
|
---|
1319 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1320 | // Number of pages kept in free lists that are still committed.
|
---|
1321 | Length free_committed_pages_;
|
---|
1322 |
|
---|
1323 | // Number of pages that we committed in the last scavenge wait interval.
|
---|
1324 | Length pages_committed_since_last_scavenge_;
|
---|
1325 | #endif
|
---|
1326 |
|
---|
1327 | bool GrowHeap(Length n);
|
---|
1328 |
|
---|
1329 | // REQUIRES span->length >= n
|
---|
1330 | // Remove span from its free list, and move any leftover part of
|
---|
1331 | // span into appropriate free lists. Also update "span" to have
|
---|
1332 | // length exactly "n" and mark it as non-free so it can be returned
|
---|
1333 | // to the client.
|
---|
1334 | //
|
---|
1335 | // "released" is true iff "span" was found on a "returned" list.
|
---|
1336 | void Carve(Span* span, Length n, bool released);
|
---|
1337 |
|
---|
1338 | void RecordSpan(Span* span) {
|
---|
1339 | pagemap_.set(span->start, span);
|
---|
1340 | if (span->length > 1) {
|
---|
1341 | pagemap_.set(span->start + span->length - 1, span);
|
---|
1342 | }
|
---|
1343 | }
|
---|
1344 |
|
---|
1345 | // Allocate a large span of length == n. If successful, returns a
|
---|
1346 | // span of exactly the specified length. Else, returns NULL.
|
---|
1347 | Span* AllocLarge(Length n);
|
---|
1348 |
|
---|
1349 | #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1350 | // Incrementally release some memory to the system.
|
---|
1351 | // IncrementalScavenge(n) is called whenever n pages are freed.
|
---|
1352 | void IncrementalScavenge(Length n);
|
---|
1353 | #endif
|
---|
1354 |
|
---|
1355 | // Number of pages to deallocate before doing more scavenging
|
---|
1356 | int64_t scavenge_counter_;
|
---|
1357 |
|
---|
1358 | // Index of last free list we scavenged
|
---|
1359 | size_t scavenge_index_;
|
---|
1360 |
|
---|
1361 | #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
|
---|
1362 | friend class FastMallocZone;
|
---|
1363 | #endif
|
---|
1364 |
|
---|
1365 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1366 | static NO_RETURN void* runScavengerThread(void*);
|
---|
1367 |
|
---|
1368 | NO_RETURN void scavengerThread();
|
---|
1369 |
|
---|
1370 | void scavenge();
|
---|
1371 |
|
---|
1372 | inline bool shouldContinueScavenging() const;
|
---|
1373 |
|
---|
1374 | pthread_mutex_t m_scavengeMutex;
|
---|
1375 |
|
---|
1376 | pthread_cond_t m_scavengeCondition;
|
---|
1377 |
|
---|
1378 | // Keeps track of whether the background thread is actively scavenging memory every kScavengeTimerDelayInSeconds, or
|
---|
1379 | // it's blocked waiting for more pages to be deleted.
|
---|
1380 | bool m_scavengeThreadActive;
|
---|
1381 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1382 | };
|
---|
1383 |
|
---|
1384 | void TCMalloc_PageHeap::init()
|
---|
1385 | {
|
---|
1386 | pagemap_.init(MetaDataAlloc);
|
---|
1387 | pagemap_cache_ = PageMapCache(0);
|
---|
1388 | free_pages_ = 0;
|
---|
1389 | system_bytes_ = 0;
|
---|
1390 |
|
---|
1391 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1392 | free_committed_pages_ = 0;
|
---|
1393 | pages_committed_since_last_scavenge_ = 0;
|
---|
1394 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1395 |
|
---|
1396 | scavenge_counter_ = 0;
|
---|
1397 | // Start scavenging at kMaxPages list
|
---|
1398 | scavenge_index_ = kMaxPages-1;
|
---|
1399 | COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
|
---|
1400 | DLL_Init(&large_.normal);
|
---|
1401 | DLL_Init(&large_.returned);
|
---|
1402 | for (size_t i = 0; i < kMaxPages; i++) {
|
---|
1403 | DLL_Init(&free_[i].normal);
|
---|
1404 | DLL_Init(&free_[i].returned);
|
---|
1405 | }
|
---|
1406 |
|
---|
1407 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1408 | pthread_mutex_init(&m_scavengeMutex, 0);
|
---|
1409 | pthread_cond_init(&m_scavengeCondition, 0);
|
---|
1410 | m_scavengeThreadActive = true;
|
---|
1411 | pthread_t thread;
|
---|
1412 | pthread_create(&thread, 0, runScavengerThread, this);
|
---|
1413 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1417 | void* TCMalloc_PageHeap::runScavengerThread(void* context)
|
---|
1418 | {
|
---|
1419 | reinterpret_cast<TCMalloc_PageHeap*>(context)->scavengerThread();
|
---|
1420 | }
|
---|
1421 |
|
---|
1422 | void TCMalloc_PageHeap::scavenge()
|
---|
1423 | {
|
---|
1424 | // If we have to commit memory in the last 5 seconds, it means we don't have enough free committed pages
|
---|
1425 | // for the amount of allocations that we do. So hold off on releasing memory back to the system.
|
---|
1426 | if (pages_committed_since_last_scavenge_ > 0) {
|
---|
1427 | pages_committed_since_last_scavenge_ = 0;
|
---|
1428 | return;
|
---|
1429 | }
|
---|
1430 | Length pagesDecommitted = 0;
|
---|
1431 | for (int i = kMaxPages; i >= 0; i--) {
|
---|
1432 | SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i];
|
---|
1433 | if (!DLL_IsEmpty(&slist->normal)) {
|
---|
1434 | // Release the last span on the normal portion of this list
|
---|
1435 | Span* s = slist->normal.prev;
|
---|
1436 | // Only decommit up to a fraction of the free committed pages if pages_allocated_since_last_scavenge_ > 0.
|
---|
1437 | if ((pagesDecommitted + s->length) * kMaxScavengeAmountFactor > free_committed_pages_)
|
---|
1438 | continue;
|
---|
1439 | DLL_Remove(s);
|
---|
1440 | TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
|
---|
1441 | static_cast<size_t>(s->length << kPageShift));
|
---|
1442 | if (!s->decommitted) {
|
---|
1443 | pagesDecommitted += s->length;
|
---|
1444 | s->decommitted = true;
|
---|
1445 | }
|
---|
1446 | DLL_Prepend(&slist->returned, s);
|
---|
1447 | // We can stop scavenging if the number of free committed pages left is less than or equal to the minimum number we want to keep around.
|
---|
1448 | if (free_committed_pages_ <= kMinimumFreeCommittedPageCount + pagesDecommitted)
|
---|
1449 | break;
|
---|
1450 | }
|
---|
1451 | }
|
---|
1452 | pages_committed_since_last_scavenge_ = 0;
|
---|
1453 | ASSERT(free_committed_pages_ >= pagesDecommitted);
|
---|
1454 | free_committed_pages_ -= pagesDecommitted;
|
---|
1455 | }
|
---|
1456 |
|
---|
1457 | inline bool TCMalloc_PageHeap::shouldContinueScavenging() const
|
---|
1458 | {
|
---|
1459 | return free_committed_pages_ > kMinimumFreeCommittedPageCount;
|
---|
1460 | }
|
---|
1461 |
|
---|
1462 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1463 |
|
---|
1464 | inline Span* TCMalloc_PageHeap::New(Length n) {
|
---|
1465 | ASSERT(Check());
|
---|
1466 | ASSERT(n > 0);
|
---|
1467 |
|
---|
1468 | // Find first size >= n that has a non-empty list
|
---|
1469 | for (Length s = n; s < kMaxPages; s++) {
|
---|
1470 | Span* ll = NULL;
|
---|
1471 | bool released = false;
|
---|
1472 | if (!DLL_IsEmpty(&free_[s].normal)) {
|
---|
1473 | // Found normal span
|
---|
1474 | ll = &free_[s].normal;
|
---|
1475 | } else if (!DLL_IsEmpty(&free_[s].returned)) {
|
---|
1476 | // Found returned span; reallocate it
|
---|
1477 | ll = &free_[s].returned;
|
---|
1478 | released = true;
|
---|
1479 | } else {
|
---|
1480 | // Keep looking in larger classes
|
---|
1481 | continue;
|
---|
1482 | }
|
---|
1483 |
|
---|
1484 | Span* result = ll->next;
|
---|
1485 | Carve(result, n, released);
|
---|
1486 | if (result->decommitted) {
|
---|
1487 | TCMalloc_SystemCommit(reinterpret_cast<void*>(result->start << kPageShift), static_cast<size_t>(n << kPageShift));
|
---|
1488 | result->decommitted = false;
|
---|
1489 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1490 | pages_committed_since_last_scavenge_ += n;
|
---|
1491 | #endif
|
---|
1492 | }
|
---|
1493 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1494 | else {
|
---|
1495 | // The newly allocated memory is from a span that's in the normal span list (already committed). Update the
|
---|
1496 | // free committed pages count.
|
---|
1497 | ASSERT(free_committed_pages_ >= n);
|
---|
1498 | free_committed_pages_ -= n;
|
---|
1499 | }
|
---|
1500 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1501 | ASSERT(Check());
|
---|
1502 | free_pages_ -= n;
|
---|
1503 | return result;
|
---|
1504 | }
|
---|
1505 |
|
---|
1506 | Span* result = AllocLarge(n);
|
---|
1507 | if (result != NULL) {
|
---|
1508 | ASSERT_SPAN_COMMITTED(result);
|
---|
1509 | return result;
|
---|
1510 | }
|
---|
1511 |
|
---|
1512 | // Grow the heap and try again
|
---|
1513 | if (!GrowHeap(n)) {
|
---|
1514 | ASSERT(Check());
|
---|
1515 | return NULL;
|
---|
1516 | }
|
---|
1517 |
|
---|
1518 | return AllocLarge(n);
|
---|
1519 | }
|
---|
1520 |
|
---|
1521 | Span* TCMalloc_PageHeap::AllocLarge(Length n) {
|
---|
1522 | // find the best span (closest to n in size).
|
---|
1523 | // The following loops implements address-ordered best-fit.
|
---|
1524 | bool from_released = false;
|
---|
1525 | Span *best = NULL;
|
---|
1526 |
|
---|
1527 | // Search through normal list
|
---|
1528 | for (Span* span = large_.normal.next;
|
---|
1529 | span != &large_.normal;
|
---|
1530 | span = span->next) {
|
---|
1531 | if (span->length >= n) {
|
---|
1532 | if ((best == NULL)
|
---|
1533 | || (span->length < best->length)
|
---|
1534 | || ((span->length == best->length) && (span->start < best->start))) {
|
---|
1535 | best = span;
|
---|
1536 | from_released = false;
|
---|
1537 | }
|
---|
1538 | }
|
---|
1539 | }
|
---|
1540 |
|
---|
1541 | // Search through released list in case it has a better fit
|
---|
1542 | for (Span* span = large_.returned.next;
|
---|
1543 | span != &large_.returned;
|
---|
1544 | span = span->next) {
|
---|
1545 | if (span->length >= n) {
|
---|
1546 | if ((best == NULL)
|
---|
1547 | || (span->length < best->length)
|
---|
1548 | || ((span->length == best->length) && (span->start < best->start))) {
|
---|
1549 | best = span;
|
---|
1550 | from_released = true;
|
---|
1551 | }
|
---|
1552 | }
|
---|
1553 | }
|
---|
1554 |
|
---|
1555 | if (best != NULL) {
|
---|
1556 | Carve(best, n, from_released);
|
---|
1557 | if (best->decommitted) {
|
---|
1558 | TCMalloc_SystemCommit(reinterpret_cast<void*>(best->start << kPageShift), static_cast<size_t>(n << kPageShift));
|
---|
1559 | best->decommitted = false;
|
---|
1560 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1561 | pages_committed_since_last_scavenge_ += n;
|
---|
1562 | #endif
|
---|
1563 | }
|
---|
1564 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1565 | else {
|
---|
1566 | // The newly allocated memory is from a span that's in the normal span list (already committed). Update the
|
---|
1567 | // free committed pages count.
|
---|
1568 | ASSERT(free_committed_pages_ >= n);
|
---|
1569 | free_committed_pages_ -= n;
|
---|
1570 | }
|
---|
1571 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1572 | ASSERT(Check());
|
---|
1573 | free_pages_ -= n;
|
---|
1574 | return best;
|
---|
1575 | }
|
---|
1576 | return NULL;
|
---|
1577 | }
|
---|
1578 |
|
---|
1579 | Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
|
---|
1580 | ASSERT(0 < n);
|
---|
1581 | ASSERT(n < span->length);
|
---|
1582 | ASSERT(!span->free);
|
---|
1583 | ASSERT(span->sizeclass == 0);
|
---|
1584 | Event(span, 'T', n);
|
---|
1585 |
|
---|
1586 | const Length extra = span->length - n;
|
---|
1587 | Span* leftover = NewSpan(span->start + n, extra);
|
---|
1588 | Event(leftover, 'U', extra);
|
---|
1589 | RecordSpan(leftover);
|
---|
1590 | pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
|
---|
1591 | span->length = n;
|
---|
1592 |
|
---|
1593 | return leftover;
|
---|
1594 | }
|
---|
1595 |
|
---|
1596 | static ALWAYS_INLINE void propagateDecommittedState(Span* destination, Span* source)
|
---|
1597 | {
|
---|
1598 | destination->decommitted = source->decommitted;
|
---|
1599 | }
|
---|
1600 |
|
---|
1601 | inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
|
---|
1602 | ASSERT(n > 0);
|
---|
1603 | DLL_Remove(span);
|
---|
1604 | span->free = 0;
|
---|
1605 | Event(span, 'A', n);
|
---|
1606 |
|
---|
1607 | const int extra = static_cast<int>(span->length - n);
|
---|
1608 | ASSERT(extra >= 0);
|
---|
1609 | if (extra > 0) {
|
---|
1610 | Span* leftover = NewSpan(span->start + n, extra);
|
---|
1611 | leftover->free = 1;
|
---|
1612 | propagateDecommittedState(leftover, span);
|
---|
1613 | Event(leftover, 'S', extra);
|
---|
1614 | RecordSpan(leftover);
|
---|
1615 |
|
---|
1616 | // Place leftover span on appropriate free list
|
---|
1617 | SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
|
---|
1618 | Span* dst = released ? &listpair->returned : &listpair->normal;
|
---|
1619 | DLL_Prepend(dst, leftover);
|
---|
1620 |
|
---|
1621 | span->length = n;
|
---|
1622 | pagemap_.set(span->start + n - 1, span);
|
---|
1623 | }
|
---|
1624 | }
|
---|
1625 |
|
---|
1626 | static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other)
|
---|
1627 | {
|
---|
1628 | if (destination->decommitted && !other->decommitted) {
|
---|
1629 | TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift),
|
---|
1630 | static_cast<size_t>(other->length << kPageShift));
|
---|
1631 | } else if (other->decommitted && !destination->decommitted) {
|
---|
1632 | TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift),
|
---|
1633 | static_cast<size_t>(destination->length << kPageShift));
|
---|
1634 | destination->decommitted = true;
|
---|
1635 | }
|
---|
1636 | }
|
---|
1637 |
|
---|
1638 | inline void TCMalloc_PageHeap::Delete(Span* span) {
|
---|
1639 | ASSERT(Check());
|
---|
1640 | ASSERT(!span->free);
|
---|
1641 | ASSERT(span->length > 0);
|
---|
1642 | ASSERT(GetDescriptor(span->start) == span);
|
---|
1643 | ASSERT(GetDescriptor(span->start + span->length - 1) == span);
|
---|
1644 | span->sizeclass = 0;
|
---|
1645 | #ifndef NO_TCMALLOC_SAMPLES
|
---|
1646 | span->sample = 0;
|
---|
1647 | #endif
|
---|
1648 |
|
---|
1649 | // Coalesce -- we guarantee that "p" != 0, so no bounds checking
|
---|
1650 | // necessary. We do not bother resetting the stale pagemap
|
---|
1651 | // entries for the pieces we are merging together because we only
|
---|
1652 | // care about the pagemap entries for the boundaries.
|
---|
1653 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1654 | // Track the total size of the neighboring free spans that are committed.
|
---|
1655 | Length neighboringCommittedSpansLength = 0;
|
---|
1656 | #endif
|
---|
1657 | const PageID p = span->start;
|
---|
1658 | const Length n = span->length;
|
---|
1659 | Span* prev = GetDescriptor(p-1);
|
---|
1660 | if (prev != NULL && prev->free) {
|
---|
1661 | // Merge preceding span into this span
|
---|
1662 | ASSERT(prev->start + prev->length == p);
|
---|
1663 | const Length len = prev->length;
|
---|
1664 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1665 | if (!prev->decommitted)
|
---|
1666 | neighboringCommittedSpansLength += len;
|
---|
1667 | #endif
|
---|
1668 | mergeDecommittedStates(span, prev);
|
---|
1669 | DLL_Remove(prev);
|
---|
1670 | DeleteSpan(prev);
|
---|
1671 | span->start -= len;
|
---|
1672 | span->length += len;
|
---|
1673 | pagemap_.set(span->start, span);
|
---|
1674 | Event(span, 'L', len);
|
---|
1675 | }
|
---|
1676 | Span* next = GetDescriptor(p+n);
|
---|
1677 | if (next != NULL && next->free) {
|
---|
1678 | // Merge next span into this span
|
---|
1679 | ASSERT(next->start == p+n);
|
---|
1680 | const Length len = next->length;
|
---|
1681 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1682 | if (!next->decommitted)
|
---|
1683 | neighboringCommittedSpansLength += len;
|
---|
1684 | #endif
|
---|
1685 | mergeDecommittedStates(span, next);
|
---|
1686 | DLL_Remove(next);
|
---|
1687 | DeleteSpan(next);
|
---|
1688 | span->length += len;
|
---|
1689 | pagemap_.set(span->start + span->length - 1, span);
|
---|
1690 | Event(span, 'R', len);
|
---|
1691 | }
|
---|
1692 |
|
---|
1693 | Event(span, 'D', span->length);
|
---|
1694 | span->free = 1;
|
---|
1695 | if (span->decommitted) {
|
---|
1696 | if (span->length < kMaxPages)
|
---|
1697 | DLL_Prepend(&free_[span->length].returned, span);
|
---|
1698 | else
|
---|
1699 | DLL_Prepend(&large_.returned, span);
|
---|
1700 | } else {
|
---|
1701 | if (span->length < kMaxPages)
|
---|
1702 | DLL_Prepend(&free_[span->length].normal, span);
|
---|
1703 | else
|
---|
1704 | DLL_Prepend(&large_.normal, span);
|
---|
1705 | }
|
---|
1706 | free_pages_ += n;
|
---|
1707 |
|
---|
1708 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1709 | if (span->decommitted) {
|
---|
1710 | // If the merged span is decommitted, that means we decommitted any neighboring spans that were
|
---|
1711 | // committed. Update the free committed pages count.
|
---|
1712 | free_committed_pages_ -= neighboringCommittedSpansLength;
|
---|
1713 | } else {
|
---|
1714 | // If the merged span remains committed, add the deleted span's size to the free committed pages count.
|
---|
1715 | free_committed_pages_ += n;
|
---|
1716 | }
|
---|
1717 |
|
---|
1718 | // Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system.
|
---|
1719 | if (!m_scavengeThreadActive && shouldContinueScavenging())
|
---|
1720 | pthread_cond_signal(&m_scavengeCondition);
|
---|
1721 | #else
|
---|
1722 | IncrementalScavenge(n);
|
---|
1723 | #endif
|
---|
1724 |
|
---|
1725 | ASSERT(Check());
|
---|
1726 | }
|
---|
1727 |
|
---|
1728 | #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1729 | void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
|
---|
1730 | // Fast path; not yet time to release memory
|
---|
1731 | scavenge_counter_ -= n;
|
---|
1732 | if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
|
---|
1733 |
|
---|
1734 | // If there is nothing to release, wait for so many pages before
|
---|
1735 | // scavenging again. With 4K pages, this comes to 16MB of memory.
|
---|
1736 | static const size_t kDefaultReleaseDelay = 1 << 8;
|
---|
1737 |
|
---|
1738 | // Find index of free list to scavenge
|
---|
1739 | size_t index = scavenge_index_ + 1;
|
---|
1740 | for (size_t i = 0; i < kMaxPages+1; i++) {
|
---|
1741 | if (index > kMaxPages) index = 0;
|
---|
1742 | SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
|
---|
1743 | if (!DLL_IsEmpty(&slist->normal)) {
|
---|
1744 | // Release the last span on the normal portion of this list
|
---|
1745 | Span* s = slist->normal.prev;
|
---|
1746 | DLL_Remove(s);
|
---|
1747 | TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
|
---|
1748 | static_cast<size_t>(s->length << kPageShift));
|
---|
1749 | s->decommitted = true;
|
---|
1750 | DLL_Prepend(&slist->returned, s);
|
---|
1751 |
|
---|
1752 | scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
|
---|
1753 |
|
---|
1754 | if (index == kMaxPages && !DLL_IsEmpty(&slist->normal))
|
---|
1755 | scavenge_index_ = index - 1;
|
---|
1756 | else
|
---|
1757 | scavenge_index_ = index;
|
---|
1758 | return;
|
---|
1759 | }
|
---|
1760 | index++;
|
---|
1761 | }
|
---|
1762 |
|
---|
1763 | // Nothing to scavenge, delay for a while
|
---|
1764 | scavenge_counter_ = kDefaultReleaseDelay;
|
---|
1765 | }
|
---|
1766 | #endif
|
---|
1767 |
|
---|
1768 | void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
|
---|
1769 | // Associate span object with all interior pages as well
|
---|
1770 | ASSERT(!span->free);
|
---|
1771 | ASSERT(GetDescriptor(span->start) == span);
|
---|
1772 | ASSERT(GetDescriptor(span->start+span->length-1) == span);
|
---|
1773 | Event(span, 'C', sc);
|
---|
1774 | span->sizeclass = static_cast<unsigned int>(sc);
|
---|
1775 | for (Length i = 1; i < span->length-1; i++) {
|
---|
1776 | pagemap_.set(span->start+i, span);
|
---|
1777 | }
|
---|
1778 | }
|
---|
1779 |
|
---|
1780 | #ifdef WTF_CHANGES
|
---|
1781 | size_t TCMalloc_PageHeap::ReturnedBytes() const {
|
---|
1782 | size_t result = 0;
|
---|
1783 | for (unsigned s = 0; s < kMaxPages; s++) {
|
---|
1784 | const int r_length = DLL_Length(&free_[s].returned);
|
---|
1785 | unsigned r_pages = s * r_length;
|
---|
1786 | result += r_pages << kPageShift;
|
---|
1787 | }
|
---|
1788 |
|
---|
1789 | for (Span* s = large_.returned.next; s != &large_.returned; s = s->next)
|
---|
1790 | result += s->length << kPageShift;
|
---|
1791 | return result;
|
---|
1792 | }
|
---|
1793 | #endif
|
---|
1794 |
|
---|
1795 | #ifndef WTF_CHANGES
|
---|
1796 | static double PagesToMB(uint64_t pages) {
|
---|
1797 | return (pages << kPageShift) / 1048576.0;
|
---|
1798 | }
|
---|
1799 |
|
---|
1800 | void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
|
---|
1801 | int nonempty_sizes = 0;
|
---|
1802 | for (int s = 0; s < kMaxPages; s++) {
|
---|
1803 | if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) {
|
---|
1804 | nonempty_sizes++;
|
---|
1805 | }
|
---|
1806 | }
|
---|
1807 | out->printf("------------------------------------------------\n");
|
---|
1808 | out->printf("PageHeap: %d sizes; %6.1f MB free\n",
|
---|
1809 | nonempty_sizes, PagesToMB(free_pages_));
|
---|
1810 | out->printf("------------------------------------------------\n");
|
---|
1811 | uint64_t total_normal = 0;
|
---|
1812 | uint64_t total_returned = 0;
|
---|
1813 | for (int s = 0; s < kMaxPages; s++) {
|
---|
1814 | const int n_length = DLL_Length(&free_[s].normal);
|
---|
1815 | const int r_length = DLL_Length(&free_[s].returned);
|
---|
1816 | if (n_length + r_length > 0) {
|
---|
1817 | uint64_t n_pages = s * n_length;
|
---|
1818 | uint64_t r_pages = s * r_length;
|
---|
1819 | total_normal += n_pages;
|
---|
1820 | total_returned += r_pages;
|
---|
1821 | out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"
|
---|
1822 | "; unmapped: %6.1f MB; %6.1f MB cum\n",
|
---|
1823 | s,
|
---|
1824 | (n_length + r_length),
|
---|
1825 | PagesToMB(n_pages + r_pages),
|
---|
1826 | PagesToMB(total_normal + total_returned),
|
---|
1827 | PagesToMB(r_pages),
|
---|
1828 | PagesToMB(total_returned));
|
---|
1829 | }
|
---|
1830 | }
|
---|
1831 |
|
---|
1832 | uint64_t n_pages = 0;
|
---|
1833 | uint64_t r_pages = 0;
|
---|
1834 | int n_spans = 0;
|
---|
1835 | int r_spans = 0;
|
---|
1836 | out->printf("Normal large spans:\n");
|
---|
1837 | for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
|
---|
1838 | out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
|
---|
1839 | s->length, PagesToMB(s->length));
|
---|
1840 | n_pages += s->length;
|
---|
1841 | n_spans++;
|
---|
1842 | }
|
---|
1843 | out->printf("Unmapped large spans:\n");
|
---|
1844 | for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
|
---|
1845 | out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n",
|
---|
1846 | s->length, PagesToMB(s->length));
|
---|
1847 | r_pages += s->length;
|
---|
1848 | r_spans++;
|
---|
1849 | }
|
---|
1850 | total_normal += n_pages;
|
---|
1851 | total_returned += r_pages;
|
---|
1852 | out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum"
|
---|
1853 | "; unmapped: %6.1f MB; %6.1f MB cum\n",
|
---|
1854 | (n_spans + r_spans),
|
---|
1855 | PagesToMB(n_pages + r_pages),
|
---|
1856 | PagesToMB(total_normal + total_returned),
|
---|
1857 | PagesToMB(r_pages),
|
---|
1858 | PagesToMB(total_returned));
|
---|
1859 | }
|
---|
1860 | #endif
|
---|
1861 |
|
---|
1862 | bool TCMalloc_PageHeap::GrowHeap(Length n) {
|
---|
1863 | ASSERT(kMaxPages >= kMinSystemAlloc);
|
---|
1864 | if (n > kMaxValidPages) return false;
|
---|
1865 | Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
|
---|
1866 | size_t actual_size;
|
---|
1867 | void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
|
---|
1868 | if (ptr == NULL) {
|
---|
1869 | if (n < ask) {
|
---|
1870 | // Try growing just "n" pages
|
---|
1871 | ask = n;
|
---|
1872 | ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
|
---|
1873 | }
|
---|
1874 | if (ptr == NULL) return false;
|
---|
1875 | }
|
---|
1876 | ask = actual_size >> kPageShift;
|
---|
1877 |
|
---|
1878 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
1879 | pages_committed_since_last_scavenge_ += ask;
|
---|
1880 | #endif
|
---|
1881 |
|
---|
1882 | uint64_t old_system_bytes = system_bytes_;
|
---|
1883 | system_bytes_ += (ask << kPageShift);
|
---|
1884 | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
|
---|
1885 | ASSERT(p > 0);
|
---|
1886 |
|
---|
1887 | // If we have already a lot of pages allocated, just pre allocate a bunch of
|
---|
1888 | // memory for the page map. This prevents fragmentation by pagemap metadata
|
---|
1889 | // when a program keeps allocating and freeing large blocks.
|
---|
1890 |
|
---|
1891 | if (old_system_bytes < kPageMapBigAllocationThreshold
|
---|
1892 | && system_bytes_ >= kPageMapBigAllocationThreshold) {
|
---|
1893 | pagemap_.PreallocateMoreMemory();
|
---|
1894 | }
|
---|
1895 |
|
---|
1896 | // Make sure pagemap_ has entries for all of the new pages.
|
---|
1897 | // Plus ensure one before and one after so coalescing code
|
---|
1898 | // does not need bounds-checking.
|
---|
1899 | if (pagemap_.Ensure(p-1, ask+2)) {
|
---|
1900 | // Pretend the new area is allocated and then Delete() it to
|
---|
1901 | // cause any necessary coalescing to occur.
|
---|
1902 | //
|
---|
1903 | // We do not adjust free_pages_ here since Delete() will do it for us.
|
---|
1904 | Span* span = NewSpan(p, ask);
|
---|
1905 | RecordSpan(span);
|
---|
1906 | Delete(span);
|
---|
1907 | ASSERT(Check());
|
---|
1908 | return true;
|
---|
1909 | } else {
|
---|
1910 | // We could not allocate memory within "pagemap_"
|
---|
1911 | // TODO: Once we can return memory to the system, return the new span
|
---|
1912 | return false;
|
---|
1913 | }
|
---|
1914 | }
|
---|
1915 |
|
---|
1916 | bool TCMalloc_PageHeap::Check() {
|
---|
1917 | ASSERT(free_[0].normal.next == &free_[0].normal);
|
---|
1918 | ASSERT(free_[0].returned.next == &free_[0].returned);
|
---|
1919 | CheckList(&large_.normal, kMaxPages, 1000000000);
|
---|
1920 | CheckList(&large_.returned, kMaxPages, 1000000000);
|
---|
1921 | for (Length s = 1; s < kMaxPages; s++) {
|
---|
1922 | CheckList(&free_[s].normal, s, s);
|
---|
1923 | CheckList(&free_[s].returned, s, s);
|
---|
1924 | }
|
---|
1925 | return true;
|
---|
1926 | }
|
---|
1927 |
|
---|
1928 | #if ASSERT_DISABLED
|
---|
1929 | bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
|
---|
1930 | return true;
|
---|
1931 | }
|
---|
1932 | #else
|
---|
1933 | bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
|
---|
1934 | for (Span* s = list->next; s != list; s = s->next) {
|
---|
1935 | CHECK_CONDITION(s->free);
|
---|
1936 | CHECK_CONDITION(s->length >= min_pages);
|
---|
1937 | CHECK_CONDITION(s->length <= max_pages);
|
---|
1938 | CHECK_CONDITION(GetDescriptor(s->start) == s);
|
---|
1939 | CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
|
---|
1940 | }
|
---|
1941 | return true;
|
---|
1942 | }
|
---|
1943 | #endif
|
---|
1944 |
|
---|
1945 | static void ReleaseFreeList(Span* list, Span* returned) {
|
---|
1946 | // Walk backwards through list so that when we push these
|
---|
1947 | // spans on the "returned" list, we preserve the order.
|
---|
1948 | while (!DLL_IsEmpty(list)) {
|
---|
1949 | Span* s = list->prev;
|
---|
1950 | DLL_Remove(s);
|
---|
1951 | DLL_Prepend(returned, s);
|
---|
1952 | TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
|
---|
1953 | static_cast<size_t>(s->length << kPageShift));
|
---|
1954 | }
|
---|
1955 | }
|
---|
1956 |
|
---|
1957 | void TCMalloc_PageHeap::ReleaseFreePages() {
|
---|
1958 | for (Length s = 0; s < kMaxPages; s++) {
|
---|
1959 | ReleaseFreeList(&free_[s].normal, &free_[s].returned);
|
---|
1960 | }
|
---|
1961 | ReleaseFreeList(&large_.normal, &large_.returned);
|
---|
1962 | ASSERT(Check());
|
---|
1963 | }
|
---|
1964 |
|
---|
1965 | //-------------------------------------------------------------------
|
---|
1966 | // Free list
|
---|
1967 | //-------------------------------------------------------------------
|
---|
1968 |
|
---|
1969 | class TCMalloc_ThreadCache_FreeList {
|
---|
1970 | private:
|
---|
1971 | void* list_; // Linked list of nodes
|
---|
1972 | uint16_t length_; // Current length
|
---|
1973 | uint16_t lowater_; // Low water mark for list length
|
---|
1974 |
|
---|
1975 | public:
|
---|
1976 | void Init() {
|
---|
1977 | list_ = NULL;
|
---|
1978 | length_ = 0;
|
---|
1979 | lowater_ = 0;
|
---|
1980 | }
|
---|
1981 |
|
---|
1982 | // Return current length of list
|
---|
1983 | int length() const {
|
---|
1984 | return length_;
|
---|
1985 | }
|
---|
1986 |
|
---|
1987 | // Is list empty?
|
---|
1988 | bool empty() const {
|
---|
1989 | return list_ == NULL;
|
---|
1990 | }
|
---|
1991 |
|
---|
1992 | // Low-water mark management
|
---|
1993 | int lowwatermark() const { return lowater_; }
|
---|
1994 | void clear_lowwatermark() { lowater_ = length_; }
|
---|
1995 |
|
---|
1996 | ALWAYS_INLINE void Push(void* ptr) {
|
---|
1997 | SLL_Push(&list_, ptr);
|
---|
1998 | length_++;
|
---|
1999 | }
|
---|
2000 |
|
---|
2001 | void PushRange(int N, void *start, void *end) {
|
---|
2002 | SLL_PushRange(&list_, start, end);
|
---|
2003 | length_ = length_ + static_cast<uint16_t>(N);
|
---|
2004 | }
|
---|
2005 |
|
---|
2006 | void PopRange(int N, void **start, void **end) {
|
---|
2007 | SLL_PopRange(&list_, N, start, end);
|
---|
2008 | ASSERT(length_ >= N);
|
---|
2009 | length_ = length_ - static_cast<uint16_t>(N);
|
---|
2010 | if (length_ < lowater_) lowater_ = length_;
|
---|
2011 | }
|
---|
2012 |
|
---|
2013 | ALWAYS_INLINE void* Pop() {
|
---|
2014 | ASSERT(list_ != NULL);
|
---|
2015 | length_--;
|
---|
2016 | if (length_ < lowater_) lowater_ = length_;
|
---|
2017 | return SLL_Pop(&list_);
|
---|
2018 | }
|
---|
2019 |
|
---|
2020 | #ifdef WTF_CHANGES
|
---|
2021 | template <class Finder, class Reader>
|
---|
2022 | void enumerateFreeObjects(Finder& finder, const Reader& reader)
|
---|
2023 | {
|
---|
2024 | for (void* nextObject = list_; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
|
---|
2025 | finder.visit(nextObject);
|
---|
2026 | }
|
---|
2027 | #endif
|
---|
2028 | };
|
---|
2029 |
|
---|
2030 | //-------------------------------------------------------------------
|
---|
2031 | // Data kept per thread
|
---|
2032 | //-------------------------------------------------------------------
|
---|
2033 |
|
---|
2034 | class TCMalloc_ThreadCache {
|
---|
2035 | private:
|
---|
2036 | typedef TCMalloc_ThreadCache_FreeList FreeList;
|
---|
2037 | #if COMPILER(MSVC)
|
---|
2038 | typedef DWORD ThreadIdentifier;
|
---|
2039 | #else
|
---|
2040 | typedef pthread_t ThreadIdentifier;
|
---|
2041 | #endif
|
---|
2042 |
|
---|
2043 | size_t size_; // Combined size of data
|
---|
2044 | ThreadIdentifier tid_; // Which thread owns it
|
---|
2045 | bool in_setspecific_; // Called pthread_setspecific?
|
---|
2046 | FreeList list_[kNumClasses]; // Array indexed by size-class
|
---|
2047 |
|
---|
2048 | // We sample allocations, biased by the size of the allocation
|
---|
2049 | uint32_t rnd_; // Cheap random number generator
|
---|
2050 | size_t bytes_until_sample_; // Bytes until we sample next
|
---|
2051 |
|
---|
2052 | // Allocate a new heap. REQUIRES: pageheap_lock is held.
|
---|
2053 | static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid);
|
---|
2054 |
|
---|
2055 | // Use only as pthread thread-specific destructor function.
|
---|
2056 | static void DestroyThreadCache(void* ptr);
|
---|
2057 | public:
|
---|
2058 | // All ThreadCache objects are kept in a linked list (for stats collection)
|
---|
2059 | TCMalloc_ThreadCache* next_;
|
---|
2060 | TCMalloc_ThreadCache* prev_;
|
---|
2061 |
|
---|
2062 | void Init(ThreadIdentifier tid);
|
---|
2063 | void Cleanup();
|
---|
2064 |
|
---|
2065 | // Accessors (mostly just for printing stats)
|
---|
2066 | int freelist_length(size_t cl) const { return list_[cl].length(); }
|
---|
2067 |
|
---|
2068 | // Total byte size in cache
|
---|
2069 | size_t Size() const { return size_; }
|
---|
2070 |
|
---|
2071 | void* Allocate(size_t size);
|
---|
2072 | void Deallocate(void* ptr, size_t size_class);
|
---|
2073 |
|
---|
2074 | void FetchFromCentralCache(size_t cl, size_t allocationSize);
|
---|
2075 | void ReleaseToCentralCache(size_t cl, int N);
|
---|
2076 | void Scavenge();
|
---|
2077 | void Print() const;
|
---|
2078 |
|
---|
2079 | // Record allocation of "k" bytes. Return true iff allocation
|
---|
2080 | // should be sampled
|
---|
2081 | bool SampleAllocation(size_t k);
|
---|
2082 |
|
---|
2083 | // Pick next sampling point
|
---|
2084 | void PickNextSample(size_t k);
|
---|
2085 |
|
---|
2086 | static void InitModule();
|
---|
2087 | static void InitTSD();
|
---|
2088 | static TCMalloc_ThreadCache* GetThreadHeap();
|
---|
2089 | static TCMalloc_ThreadCache* GetCache();
|
---|
2090 | static TCMalloc_ThreadCache* GetCacheIfPresent();
|
---|
2091 | static TCMalloc_ThreadCache* CreateCacheIfNecessary();
|
---|
2092 | static void DeleteCache(TCMalloc_ThreadCache* heap);
|
---|
2093 | static void BecomeIdle();
|
---|
2094 | static void RecomputeThreadCacheSize();
|
---|
2095 |
|
---|
2096 | #ifdef WTF_CHANGES
|
---|
2097 | template <class Finder, class Reader>
|
---|
2098 | void enumerateFreeObjects(Finder& finder, const Reader& reader)
|
---|
2099 | {
|
---|
2100 | for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
|
---|
2101 | list_[sizeClass].enumerateFreeObjects(finder, reader);
|
---|
2102 | }
|
---|
2103 | #endif
|
---|
2104 | };
|
---|
2105 |
|
---|
2106 | //-------------------------------------------------------------------
|
---|
2107 | // Data kept per size-class in central cache
|
---|
2108 | //-------------------------------------------------------------------
|
---|
2109 |
|
---|
2110 | class TCMalloc_Central_FreeList {
|
---|
2111 | public:
|
---|
2112 | void Init(size_t cl);
|
---|
2113 |
|
---|
2114 | // These methods all do internal locking.
|
---|
2115 |
|
---|
2116 | // Insert the specified range into the central freelist. N is the number of
|
---|
2117 | // elements in the range.
|
---|
2118 | void InsertRange(void *start, void *end, int N);
|
---|
2119 |
|
---|
2120 | // Returns the actual number of fetched elements into N.
|
---|
2121 | void RemoveRange(void **start, void **end, int *N);
|
---|
2122 |
|
---|
2123 | // Returns the number of free objects in cache.
|
---|
2124 | size_t length() {
|
---|
2125 | SpinLockHolder h(&lock_);
|
---|
2126 | return counter_;
|
---|
2127 | }
|
---|
2128 |
|
---|
2129 | // Returns the number of free objects in the transfer cache.
|
---|
2130 | int tc_length() {
|
---|
2131 | SpinLockHolder h(&lock_);
|
---|
2132 | return used_slots_ * num_objects_to_move[size_class_];
|
---|
2133 | }
|
---|
2134 |
|
---|
2135 | #ifdef WTF_CHANGES
|
---|
2136 | template <class Finder, class Reader>
|
---|
2137 | void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList)
|
---|
2138 | {
|
---|
2139 | for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0))
|
---|
2140 | ASSERT(!span->objects);
|
---|
2141 |
|
---|
2142 | ASSERT(!nonempty_.objects);
|
---|
2143 | static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this);
|
---|
2144 |
|
---|
2145 | Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset);
|
---|
2146 | Span* remoteSpan = nonempty_.next;
|
---|
2147 |
|
---|
2148 | for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) {
|
---|
2149 | for (void* nextObject = span->objects; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
|
---|
2150 | finder.visit(nextObject);
|
---|
2151 | }
|
---|
2152 | }
|
---|
2153 | #endif
|
---|
2154 |
|
---|
2155 | private:
|
---|
2156 | // REQUIRES: lock_ is held
|
---|
2157 | // Remove object from cache and return.
|
---|
2158 | // Return NULL if no free entries in cache.
|
---|
2159 | void* FetchFromSpans();
|
---|
2160 |
|
---|
2161 | // REQUIRES: lock_ is held
|
---|
2162 | // Remove object from cache and return. Fetches
|
---|
2163 | // from pageheap if cache is empty. Only returns
|
---|
2164 | // NULL on allocation failure.
|
---|
2165 | void* FetchFromSpansSafe();
|
---|
2166 |
|
---|
2167 | // REQUIRES: lock_ is held
|
---|
2168 | // Release a linked list of objects to spans.
|
---|
2169 | // May temporarily release lock_.
|
---|
2170 | void ReleaseListToSpans(void *start);
|
---|
2171 |
|
---|
2172 | // REQUIRES: lock_ is held
|
---|
2173 | // Release an object to spans.
|
---|
2174 | // May temporarily release lock_.
|
---|
2175 | void ReleaseToSpans(void* object);
|
---|
2176 |
|
---|
2177 | // REQUIRES: lock_ is held
|
---|
2178 | // Populate cache by fetching from the page heap.
|
---|
2179 | // May temporarily release lock_.
|
---|
2180 | void Populate();
|
---|
2181 |
|
---|
2182 | // REQUIRES: lock is held.
|
---|
2183 | // Tries to make room for a TCEntry. If the cache is full it will try to
|
---|
2184 | // expand it at the cost of some other cache size. Return false if there is
|
---|
2185 | // no space.
|
---|
2186 | bool MakeCacheSpace();
|
---|
2187 |
|
---|
2188 | // REQUIRES: lock_ for locked_size_class is held.
|
---|
2189 | // Picks a "random" size class to steal TCEntry slot from. In reality it
|
---|
2190 | // just iterates over the sizeclasses but does so without taking a lock.
|
---|
2191 | // Returns true on success.
|
---|
2192 | // May temporarily lock a "random" size class.
|
---|
2193 | static bool EvictRandomSizeClass(size_t locked_size_class, bool force);
|
---|
2194 |
|
---|
2195 | // REQUIRES: lock_ is *not* held.
|
---|
2196 | // Tries to shrink the Cache. If force is true it will relase objects to
|
---|
2197 | // spans if it allows it to shrink the cache. Return false if it failed to
|
---|
2198 | // shrink the cache. Decrements cache_size_ on succeess.
|
---|
2199 | // May temporarily take lock_. If it takes lock_, the locked_size_class
|
---|
2200 | // lock is released to the thread from holding two size class locks
|
---|
2201 | // concurrently which could lead to a deadlock.
|
---|
2202 | bool ShrinkCache(int locked_size_class, bool force);
|
---|
2203 |
|
---|
2204 | // This lock protects all the data members. cached_entries and cache_size_
|
---|
2205 | // may be looked at without holding the lock.
|
---|
2206 | SpinLock lock_;
|
---|
2207 |
|
---|
2208 | // We keep linked lists of empty and non-empty spans.
|
---|
2209 | size_t size_class_; // My size class
|
---|
2210 | Span empty_; // Dummy header for list of empty spans
|
---|
2211 | Span nonempty_; // Dummy header for list of non-empty spans
|
---|
2212 | size_t counter_; // Number of free objects in cache entry
|
---|
2213 |
|
---|
2214 | // Here we reserve space for TCEntry cache slots. Since one size class can
|
---|
2215 | // end up getting all the TCEntries quota in the system we just preallocate
|
---|
2216 | // sufficient number of entries here.
|
---|
2217 | TCEntry tc_slots_[kNumTransferEntries];
|
---|
2218 |
|
---|
2219 | // Number of currently used cached entries in tc_slots_. This variable is
|
---|
2220 | // updated under a lock but can be read without one.
|
---|
2221 | int32_t used_slots_;
|
---|
2222 | // The current number of slots for this size class. This is an
|
---|
2223 | // adaptive value that is increased if there is lots of traffic
|
---|
2224 | // on a given size class.
|
---|
2225 | int32_t cache_size_;
|
---|
2226 | };
|
---|
2227 |
|
---|
2228 | // Pad each CentralCache object to multiple of 64 bytes
|
---|
2229 | class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
|
---|
2230 | private:
|
---|
2231 | char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
|
---|
2232 | };
|
---|
2233 |
|
---|
2234 | //-------------------------------------------------------------------
|
---|
2235 | // Global variables
|
---|
2236 | //-------------------------------------------------------------------
|
---|
2237 |
|
---|
2238 | // Central cache -- a collection of free-lists, one per size-class.
|
---|
2239 | // We have a separate lock per free-list to reduce contention.
|
---|
2240 | static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
|
---|
2241 |
|
---|
2242 | // Page-level allocator
|
---|
2243 | static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
|
---|
2244 | static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)];
|
---|
2245 | static bool phinited = false;
|
---|
2246 |
|
---|
2247 | // Avoid extra level of indirection by making "pageheap" be just an alias
|
---|
2248 | // of pageheap_memory.
|
---|
2249 | typedef union {
|
---|
2250 | void* m_memory;
|
---|
2251 | TCMalloc_PageHeap* m_pageHeap;
|
---|
2252 | } PageHeapUnion;
|
---|
2253 |
|
---|
2254 | static inline TCMalloc_PageHeap* getPageHeap()
|
---|
2255 | {
|
---|
2256 | PageHeapUnion u = { &pageheap_memory[0] };
|
---|
2257 | return u.m_pageHeap;
|
---|
2258 | }
|
---|
2259 |
|
---|
2260 | #define pageheap getPageHeap()
|
---|
2261 |
|
---|
2262 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
|
---|
2263 | #if PLATFORM(WIN)
|
---|
2264 | static void sleep(unsigned seconds)
|
---|
2265 | {
|
---|
2266 | ::Sleep(seconds * 1000);
|
---|
2267 | }
|
---|
2268 | #endif
|
---|
2269 |
|
---|
2270 | void TCMalloc_PageHeap::scavengerThread()
|
---|
2271 | {
|
---|
2272 | while (1) {
|
---|
2273 | if (!shouldContinueScavenging()) {
|
---|
2274 | pthread_mutex_lock(&m_scavengeMutex);
|
---|
2275 | m_scavengeThreadActive = false;
|
---|
2276 | // Block until there are enough freed pages to release back to the system.
|
---|
2277 | pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex);
|
---|
2278 | m_scavengeThreadActive = true;
|
---|
2279 | pthread_mutex_unlock(&m_scavengeMutex);
|
---|
2280 | }
|
---|
2281 | sleep(kScavengeTimerDelayInSeconds);
|
---|
2282 | {
|
---|
2283 | SpinLockHolder h(&pageheap_lock);
|
---|
2284 | pageheap->scavenge();
|
---|
2285 | }
|
---|
2286 | }
|
---|
2287 | }
|
---|
2288 | #endif
|
---|
2289 |
|
---|
2290 | // If TLS is available, we also store a copy
|
---|
2291 | // of the per-thread object in a __thread variable
|
---|
2292 | // since __thread variables are faster to read
|
---|
2293 | // than pthread_getspecific(). We still need
|
---|
2294 | // pthread_setspecific() because __thread
|
---|
2295 | // variables provide no way to run cleanup
|
---|
2296 | // code when a thread is destroyed.
|
---|
2297 | #ifdef HAVE_TLS
|
---|
2298 | static __thread TCMalloc_ThreadCache *threadlocal_heap;
|
---|
2299 | #endif
|
---|
2300 | // Thread-specific key. Initialization here is somewhat tricky
|
---|
2301 | // because some Linux startup code invokes malloc() before it
|
---|
2302 | // is in a good enough state to handle pthread_keycreate().
|
---|
2303 | // Therefore, we use TSD keys only after tsd_inited is set to true.
|
---|
2304 | // Until then, we use a slow path to get the heap object.
|
---|
2305 | static bool tsd_inited = false;
|
---|
2306 | static pthread_key_t heap_key;
|
---|
2307 | #if COMPILER(MSVC)
|
---|
2308 | DWORD tlsIndex = TLS_OUT_OF_INDEXES;
|
---|
2309 | #endif
|
---|
2310 |
|
---|
2311 | static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
|
---|
2312 | {
|
---|
2313 | // still do pthread_setspecific when using MSVC fast TLS to
|
---|
2314 | // benefit from the delete callback.
|
---|
2315 | pthread_setspecific(heap_key, heap);
|
---|
2316 | #if COMPILER(MSVC)
|
---|
2317 | TlsSetValue(tlsIndex, heap);
|
---|
2318 | #endif
|
---|
2319 | }
|
---|
2320 |
|
---|
2321 | // Allocator for thread heaps
|
---|
2322 | static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
|
---|
2323 |
|
---|
2324 | // Linked list of heap objects. Protected by pageheap_lock.
|
---|
2325 | static TCMalloc_ThreadCache* thread_heaps = NULL;
|
---|
2326 | static int thread_heap_count = 0;
|
---|
2327 |
|
---|
2328 | // Overall thread cache size. Protected by pageheap_lock.
|
---|
2329 | static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
|
---|
2330 |
|
---|
2331 | // Global per-thread cache size. Writes are protected by
|
---|
2332 | // pageheap_lock. Reads are done without any locking, which should be
|
---|
2333 | // fine as long as size_t can be written atomically and we don't place
|
---|
2334 | // invariants between this variable and other pieces of state.
|
---|
2335 | static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
|
---|
2336 |
|
---|
2337 | //-------------------------------------------------------------------
|
---|
2338 | // Central cache implementation
|
---|
2339 | //-------------------------------------------------------------------
|
---|
2340 |
|
---|
2341 | void TCMalloc_Central_FreeList::Init(size_t cl) {
|
---|
2342 | lock_.Init();
|
---|
2343 | size_class_ = cl;
|
---|
2344 | DLL_Init(&empty_);
|
---|
2345 | DLL_Init(&nonempty_);
|
---|
2346 | counter_ = 0;
|
---|
2347 |
|
---|
2348 | cache_size_ = 1;
|
---|
2349 | used_slots_ = 0;
|
---|
2350 | ASSERT(cache_size_ <= kNumTransferEntries);
|
---|
2351 | }
|
---|
2352 |
|
---|
2353 | void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) {
|
---|
2354 | while (start) {
|
---|
2355 | void *next = SLL_Next(start);
|
---|
2356 | ReleaseToSpans(start);
|
---|
2357 | start = next;
|
---|
2358 | }
|
---|
2359 | }
|
---|
2360 |
|
---|
2361 | ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) {
|
---|
2362 | const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
|
---|
2363 | Span* span = pageheap->GetDescriptor(p);
|
---|
2364 | ASSERT(span != NULL);
|
---|
2365 | ASSERT(span->refcount > 0);
|
---|
2366 |
|
---|
2367 | // If span is empty, move it to non-empty list
|
---|
2368 | if (span->objects == NULL) {
|
---|
2369 | DLL_Remove(span);
|
---|
2370 | DLL_Prepend(&nonempty_, span);
|
---|
2371 | Event(span, 'N', 0);
|
---|
2372 | }
|
---|
2373 |
|
---|
2374 | // The following check is expensive, so it is disabled by default
|
---|
2375 | if (false) {
|
---|
2376 | // Check that object does not occur in list
|
---|
2377 | int got = 0;
|
---|
2378 | for (void* p = span->objects; p != NULL; p = *((void**) p)) {
|
---|
2379 | ASSERT(p != object);
|
---|
2380 | got++;
|
---|
2381 | }
|
---|
2382 | ASSERT(got + span->refcount ==
|
---|
2383 | (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
|
---|
2384 | }
|
---|
2385 |
|
---|
2386 | counter_++;
|
---|
2387 | span->refcount--;
|
---|
2388 | if (span->refcount == 0) {
|
---|
2389 | Event(span, '#', 0);
|
---|
2390 | counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
|
---|
2391 | DLL_Remove(span);
|
---|
2392 |
|
---|
2393 | // Release central list lock while operating on pageheap
|
---|
2394 | lock_.Unlock();
|
---|
2395 | {
|
---|
2396 | SpinLockHolder h(&pageheap_lock);
|
---|
2397 | pageheap->Delete(span);
|
---|
2398 | }
|
---|
2399 | lock_.Lock();
|
---|
2400 | } else {
|
---|
2401 | *(reinterpret_cast<void**>(object)) = span->objects;
|
---|
2402 | span->objects = object;
|
---|
2403 | }
|
---|
2404 | }
|
---|
2405 |
|
---|
2406 | ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
|
---|
2407 | size_t locked_size_class, bool force) {
|
---|
2408 | static int race_counter = 0;
|
---|
2409 | int t = race_counter++; // Updated without a lock, but who cares.
|
---|
2410 | if (t >= static_cast<int>(kNumClasses)) {
|
---|
2411 | while (t >= static_cast<int>(kNumClasses)) {
|
---|
2412 | t -= kNumClasses;
|
---|
2413 | }
|
---|
2414 | race_counter = t;
|
---|
2415 | }
|
---|
2416 | ASSERT(t >= 0);
|
---|
2417 | ASSERT(t < static_cast<int>(kNumClasses));
|
---|
2418 | if (t == static_cast<int>(locked_size_class)) return false;
|
---|
2419 | return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
|
---|
2420 | }
|
---|
2421 |
|
---|
2422 | bool TCMalloc_Central_FreeList::MakeCacheSpace() {
|
---|
2423 | // Is there room in the cache?
|
---|
2424 | if (used_slots_ < cache_size_) return true;
|
---|
2425 | // Check if we can expand this cache?
|
---|
2426 | if (cache_size_ == kNumTransferEntries) return false;
|
---|
2427 | // Ok, we'll try to grab an entry from some other size class.
|
---|
2428 | if (EvictRandomSizeClass(size_class_, false) ||
|
---|
2429 | EvictRandomSizeClass(size_class_, true)) {
|
---|
2430 | // Succeeded in evicting, we're going to make our cache larger.
|
---|
2431 | cache_size_++;
|
---|
2432 | return true;
|
---|
2433 | }
|
---|
2434 | return false;
|
---|
2435 | }
|
---|
2436 |
|
---|
2437 |
|
---|
2438 | namespace {
|
---|
2439 | class LockInverter {
|
---|
2440 | private:
|
---|
2441 | SpinLock *held_, *temp_;
|
---|
2442 | public:
|
---|
2443 | inline explicit LockInverter(SpinLock* held, SpinLock *temp)
|
---|
2444 | : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
|
---|
2445 | inline ~LockInverter() { temp_->Unlock(); held_->Lock(); }
|
---|
2446 | };
|
---|
2447 | }
|
---|
2448 |
|
---|
2449 | bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
|
---|
2450 | // Start with a quick check without taking a lock.
|
---|
2451 | if (cache_size_ == 0) return false;
|
---|
2452 | // We don't evict from a full cache unless we are 'forcing'.
|
---|
2453 | if (force == false && used_slots_ == cache_size_) return false;
|
---|
2454 |
|
---|
2455 | // Grab lock, but first release the other lock held by this thread. We use
|
---|
2456 | // the lock inverter to ensure that we never hold two size class locks
|
---|
2457 | // concurrently. That can create a deadlock because there is no well
|
---|
2458 | // defined nesting order.
|
---|
2459 | LockInverter li(¢ral_cache[locked_size_class].lock_, &lock_);
|
---|
2460 | ASSERT(used_slots_ <= cache_size_);
|
---|
2461 | ASSERT(0 <= cache_size_);
|
---|
2462 | if (cache_size_ == 0) return false;
|
---|
2463 | if (used_slots_ == cache_size_) {
|
---|
2464 | if (force == false) return false;
|
---|
2465 | // ReleaseListToSpans releases the lock, so we have to make all the
|
---|
2466 | // updates to the central list before calling it.
|
---|
2467 | cache_size_--;
|
---|
2468 | used_slots_--;
|
---|
2469 | ReleaseListToSpans(tc_slots_[used_slots_].head);
|
---|
2470 | return true;
|
---|
2471 | }
|
---|
2472 | cache_size_--;
|
---|
2473 | return true;
|
---|
2474 | }
|
---|
2475 |
|
---|
2476 | void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) {
|
---|
2477 | SpinLockHolder h(&lock_);
|
---|
2478 | if (N == num_objects_to_move[size_class_] &&
|
---|
2479 | MakeCacheSpace()) {
|
---|
2480 | int slot = used_slots_++;
|
---|
2481 | ASSERT(slot >=0);
|
---|
2482 | ASSERT(slot < kNumTransferEntries);
|
---|
2483 | TCEntry *entry = &tc_slots_[slot];
|
---|
2484 | entry->head = start;
|
---|
2485 | entry->tail = end;
|
---|
2486 | return;
|
---|
2487 | }
|
---|
2488 | ReleaseListToSpans(start);
|
---|
2489 | }
|
---|
2490 |
|
---|
2491 | void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) {
|
---|
2492 | int num = *N;
|
---|
2493 | ASSERT(num > 0);
|
---|
2494 |
|
---|
2495 | SpinLockHolder h(&lock_);
|
---|
2496 | if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
|
---|
2497 | int slot = --used_slots_;
|
---|
2498 | ASSERT(slot >= 0);
|
---|
2499 | TCEntry *entry = &tc_slots_[slot];
|
---|
2500 | *start = entry->head;
|
---|
2501 | *end = entry->tail;
|
---|
2502 | return;
|
---|
2503 | }
|
---|
2504 |
|
---|
2505 | // TODO: Prefetch multiple TCEntries?
|
---|
2506 | void *tail = FetchFromSpansSafe();
|
---|
2507 | if (!tail) {
|
---|
2508 | // We are completely out of memory.
|
---|
2509 | *start = *end = NULL;
|
---|
2510 | *N = 0;
|
---|
2511 | return;
|
---|
2512 | }
|
---|
2513 |
|
---|
2514 | SLL_SetNext(tail, NULL);
|
---|
2515 | void *head = tail;
|
---|
2516 | int count = 1;
|
---|
2517 | while (count < num) {
|
---|
2518 | void *t = FetchFromSpans();
|
---|
2519 | if (!t) break;
|
---|
2520 | SLL_Push(&head, t);
|
---|
2521 | count++;
|
---|
2522 | }
|
---|
2523 | *start = head;
|
---|
2524 | *end = tail;
|
---|
2525 | *N = count;
|
---|
2526 | }
|
---|
2527 |
|
---|
2528 |
|
---|
2529 | void* TCMalloc_Central_FreeList::FetchFromSpansSafe() {
|
---|
2530 | void *t = FetchFromSpans();
|
---|
2531 | if (!t) {
|
---|
2532 | Populate();
|
---|
2533 | t = FetchFromSpans();
|
---|
2534 | }
|
---|
2535 | return t;
|
---|
2536 | }
|
---|
2537 |
|
---|
2538 | void* TCMalloc_Central_FreeList::FetchFromSpans() {
|
---|
2539 | if (DLL_IsEmpty(&nonempty_)) return NULL;
|
---|
2540 | Span* span = nonempty_.next;
|
---|
2541 |
|
---|
2542 | ASSERT(span->objects != NULL);
|
---|
2543 | ASSERT_SPAN_COMMITTED(span);
|
---|
2544 | span->refcount++;
|
---|
2545 | void* result = span->objects;
|
---|
2546 | span->objects = *(reinterpret_cast<void**>(result));
|
---|
2547 | if (span->objects == NULL) {
|
---|
2548 | // Move to empty list
|
---|
2549 | DLL_Remove(span);
|
---|
2550 | DLL_Prepend(&empty_, span);
|
---|
2551 | Event(span, 'E', 0);
|
---|
2552 | }
|
---|
2553 | counter_--;
|
---|
2554 | return result;
|
---|
2555 | }
|
---|
2556 |
|
---|
2557 | // Fetch memory from the system and add to the central cache freelist.
|
---|
2558 | ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
|
---|
2559 | // Release central list lock while operating on pageheap
|
---|
2560 | lock_.Unlock();
|
---|
2561 | const size_t npages = class_to_pages[size_class_];
|
---|
2562 |
|
---|
2563 | Span* span;
|
---|
2564 | {
|
---|
2565 | SpinLockHolder h(&pageheap_lock);
|
---|
2566 | span = pageheap->New(npages);
|
---|
2567 | if (span) pageheap->RegisterSizeClass(span, size_class_);
|
---|
2568 | }
|
---|
2569 | if (span == NULL) {
|
---|
2570 | MESSAGE("allocation failed: %d\n", errno);
|
---|
2571 | lock_.Lock();
|
---|
2572 | return;
|
---|
2573 | }
|
---|
2574 | ASSERT_SPAN_COMMITTED(span);
|
---|
2575 | ASSERT(span->length == npages);
|
---|
2576 | // Cache sizeclass info eagerly. Locking is not necessary.
|
---|
2577 | // (Instead of being eager, we could just replace any stale info
|
---|
2578 | // about this span, but that seems to be no better in practice.)
|
---|
2579 | for (size_t i = 0; i < npages; i++) {
|
---|
2580 | pageheap->CacheSizeClass(span->start + i, size_class_);
|
---|
2581 | }
|
---|
2582 |
|
---|
2583 | // Split the block into pieces and add to the free-list
|
---|
2584 | // TODO: coloring of objects to avoid cache conflicts?
|
---|
2585 | void** tail = &span->objects;
|
---|
2586 | char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
|
---|
2587 | char* limit = ptr + (npages << kPageShift);
|
---|
2588 | const size_t size = ByteSizeForClass(size_class_);
|
---|
2589 | int num = 0;
|
---|
2590 | char* nptr;
|
---|
2591 | while ((nptr = ptr + size) <= limit) {
|
---|
2592 | *tail = ptr;
|
---|
2593 | tail = reinterpret_cast<void**>(ptr);
|
---|
2594 | ptr = nptr;
|
---|
2595 | num++;
|
---|
2596 | }
|
---|
2597 | ASSERT(ptr <= limit);
|
---|
2598 | *tail = NULL;
|
---|
2599 | span->refcount = 0; // No sub-object in use yet
|
---|
2600 |
|
---|
2601 | // Add span to list of non-empty spans
|
---|
2602 | lock_.Lock();
|
---|
2603 | DLL_Prepend(&nonempty_, span);
|
---|
2604 | counter_ += num;
|
---|
2605 | }
|
---|
2606 |
|
---|
2607 | //-------------------------------------------------------------------
|
---|
2608 | // TCMalloc_ThreadCache implementation
|
---|
2609 | //-------------------------------------------------------------------
|
---|
2610 |
|
---|
2611 | inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
|
---|
2612 | if (bytes_until_sample_ < k) {
|
---|
2613 | PickNextSample(k);
|
---|
2614 | return true;
|
---|
2615 | } else {
|
---|
2616 | bytes_until_sample_ -= k;
|
---|
2617 | return false;
|
---|
2618 | }
|
---|
2619 | }
|
---|
2620 |
|
---|
2621 | void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) {
|
---|
2622 | size_ = 0;
|
---|
2623 | next_ = NULL;
|
---|
2624 | prev_ = NULL;
|
---|
2625 | tid_ = tid;
|
---|
2626 | in_setspecific_ = false;
|
---|
2627 | for (size_t cl = 0; cl < kNumClasses; ++cl) {
|
---|
2628 | list_[cl].Init();
|
---|
2629 | }
|
---|
2630 |
|
---|
2631 | // Initialize RNG -- run it for a bit to get to good values
|
---|
2632 | bytes_until_sample_ = 0;
|
---|
2633 | rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
|
---|
2634 | for (int i = 0; i < 100; i++) {
|
---|
2635 | PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
|
---|
2636 | }
|
---|
2637 | }
|
---|
2638 |
|
---|
2639 | void TCMalloc_ThreadCache::Cleanup() {
|
---|
2640 | // Put unused memory back into central cache
|
---|
2641 | for (size_t cl = 0; cl < kNumClasses; ++cl) {
|
---|
2642 | if (list_[cl].length() > 0) {
|
---|
2643 | ReleaseToCentralCache(cl, list_[cl].length());
|
---|
2644 | }
|
---|
2645 | }
|
---|
2646 | }
|
---|
2647 |
|
---|
2648 | ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
|
---|
2649 | ASSERT(size <= kMaxSize);
|
---|
2650 | const size_t cl = SizeClass(size);
|
---|
2651 | FreeList* list = &list_[cl];
|
---|
2652 | size_t allocationSize = ByteSizeForClass(cl);
|
---|
2653 | if (list->empty()) {
|
---|
2654 | FetchFromCentralCache(cl, allocationSize);
|
---|
2655 | if (list->empty()) return NULL;
|
---|
2656 | }
|
---|
2657 | size_ -= allocationSize;
|
---|
2658 | return list->Pop();
|
---|
2659 | }
|
---|
2660 |
|
---|
2661 | inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
|
---|
2662 | size_ += ByteSizeForClass(cl);
|
---|
2663 | FreeList* list = &list_[cl];
|
---|
2664 | list->Push(ptr);
|
---|
2665 | // If enough data is free, put back into central cache
|
---|
2666 | if (list->length() > kMaxFreeListLength) {
|
---|
2667 | ReleaseToCentralCache(cl, num_objects_to_move[cl]);
|
---|
2668 | }
|
---|
2669 | if (size_ >= per_thread_cache_size) Scavenge();
|
---|
2670 | }
|
---|
2671 |
|
---|
2672 | // Remove some objects of class "cl" from central cache and add to thread heap
|
---|
2673 | ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
|
---|
2674 | int fetch_count = num_objects_to_move[cl];
|
---|
2675 | void *start, *end;
|
---|
2676 | central_cache[cl].RemoveRange(&start, &end, &fetch_count);
|
---|
2677 | list_[cl].PushRange(fetch_count, start, end);
|
---|
2678 | size_ += allocationSize * fetch_count;
|
---|
2679 | }
|
---|
2680 |
|
---|
2681 | // Remove some objects of class "cl" from thread heap and add to central cache
|
---|
2682 | inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
|
---|
2683 | ASSERT(N > 0);
|
---|
2684 | FreeList* src = &list_[cl];
|
---|
2685 | if (N > src->length()) N = src->length();
|
---|
2686 | size_ -= N*ByteSizeForClass(cl);
|
---|
2687 |
|
---|
2688 | // We return prepackaged chains of the correct size to the central cache.
|
---|
2689 | // TODO: Use the same format internally in the thread caches?
|
---|
2690 | int batch_size = num_objects_to_move[cl];
|
---|
2691 | while (N > batch_size) {
|
---|
2692 | void *tail, *head;
|
---|
2693 | src->PopRange(batch_size, &head, &tail);
|
---|
2694 | central_cache[cl].InsertRange(head, tail, batch_size);
|
---|
2695 | N -= batch_size;
|
---|
2696 | }
|
---|
2697 | void *tail, *head;
|
---|
2698 | src->PopRange(N, &head, &tail);
|
---|
2699 | central_cache[cl].InsertRange(head, tail, N);
|
---|
2700 | }
|
---|
2701 |
|
---|
2702 | // Release idle memory to the central cache
|
---|
2703 | inline void TCMalloc_ThreadCache::Scavenge() {
|
---|
2704 | // If the low-water mark for the free list is L, it means we would
|
---|
2705 | // not have had to allocate anything from the central cache even if
|
---|
2706 | // we had reduced the free list size by L. We aim to get closer to
|
---|
2707 | // that situation by dropping L/2 nodes from the free list. This
|
---|
2708 | // may not release much memory, but if so we will call scavenge again
|
---|
2709 | // pretty soon and the low-water marks will be high on that call.
|
---|
2710 | //int64 start = CycleClock::Now();
|
---|
2711 |
|
---|
2712 | for (size_t cl = 0; cl < kNumClasses; cl++) {
|
---|
2713 | FreeList* list = &list_[cl];
|
---|
2714 | const int lowmark = list->lowwatermark();
|
---|
2715 | if (lowmark > 0) {
|
---|
2716 | const int drop = (lowmark > 1) ? lowmark/2 : 1;
|
---|
2717 | ReleaseToCentralCache(cl, drop);
|
---|
2718 | }
|
---|
2719 | list->clear_lowwatermark();
|
---|
2720 | }
|
---|
2721 |
|
---|
2722 | //int64 finish = CycleClock::Now();
|
---|
2723 | //CycleTimer ct;
|
---|
2724 | //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
|
---|
2725 | }
|
---|
2726 |
|
---|
2727 | void TCMalloc_ThreadCache::PickNextSample(size_t k) {
|
---|
2728 | // Make next "random" number
|
---|
2729 | // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
|
---|
2730 | static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
|
---|
2731 | uint32_t r = rnd_;
|
---|
2732 | rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
|
---|
2733 |
|
---|
2734 | // Next point is "rnd_ % (sample_period)". I.e., average
|
---|
2735 | // increment is "sample_period/2".
|
---|
2736 | const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter);
|
---|
2737 | static int last_flag_value = -1;
|
---|
2738 |
|
---|
2739 | if (flag_value != last_flag_value) {
|
---|
2740 | SpinLockHolder h(&sample_period_lock);
|
---|
2741 | int i;
|
---|
2742 | for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) {
|
---|
2743 | if (primes_list[i] >= flag_value) {
|
---|
2744 | break;
|
---|
2745 | }
|
---|
2746 | }
|
---|
2747 | sample_period = primes_list[i];
|
---|
2748 | last_flag_value = flag_value;
|
---|
2749 | }
|
---|
2750 |
|
---|
2751 | bytes_until_sample_ += rnd_ % sample_period;
|
---|
2752 |
|
---|
2753 | if (k > (static_cast<size_t>(-1) >> 2)) {
|
---|
2754 | // If the user has asked for a huge allocation then it is possible
|
---|
2755 | // for the code below to loop infinitely. Just return (note that
|
---|
2756 | // this throws off the sampling accuracy somewhat, but a user who
|
---|
2757 | // is allocating more than 1G of memory at a time can live with a
|
---|
2758 | // minor inaccuracy in profiling of small allocations, and also
|
---|
2759 | // would rather not wait for the loop below to terminate).
|
---|
2760 | return;
|
---|
2761 | }
|
---|
2762 |
|
---|
2763 | while (bytes_until_sample_ < k) {
|
---|
2764 | // Increase bytes_until_sample_ by enough average sampling periods
|
---|
2765 | // (sample_period >> 1) to allow us to sample past the current
|
---|
2766 | // allocation.
|
---|
2767 | bytes_until_sample_ += (sample_period >> 1);
|
---|
2768 | }
|
---|
2769 |
|
---|
2770 | bytes_until_sample_ -= k;
|
---|
2771 | }
|
---|
2772 |
|
---|
2773 | void TCMalloc_ThreadCache::InitModule() {
|
---|
2774 | // There is a slight potential race here because of double-checked
|
---|
2775 | // locking idiom. However, as long as the program does a small
|
---|
2776 | // allocation before switching to multi-threaded mode, we will be
|
---|
2777 | // fine. We increase the chances of doing such a small allocation
|
---|
2778 | // by doing one in the constructor of the module_enter_exit_hook
|
---|
2779 | // object declared below.
|
---|
2780 | SpinLockHolder h(&pageheap_lock);
|
---|
2781 | if (!phinited) {
|
---|
2782 | #ifdef WTF_CHANGES
|
---|
2783 | InitTSD();
|
---|
2784 | #endif
|
---|
2785 | InitSizeClasses();
|
---|
2786 | threadheap_allocator.Init();
|
---|
2787 | span_allocator.Init();
|
---|
2788 | span_allocator.New(); // Reduce cache conflicts
|
---|
2789 | span_allocator.New(); // Reduce cache conflicts
|
---|
2790 | stacktrace_allocator.Init();
|
---|
2791 | DLL_Init(&sampled_objects);
|
---|
2792 | for (size_t i = 0; i < kNumClasses; ++i) {
|
---|
2793 | central_cache[i].Init(i);
|
---|
2794 | }
|
---|
2795 | pageheap->init();
|
---|
2796 | phinited = 1;
|
---|
2797 | #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
|
---|
2798 | FastMallocZone::init();
|
---|
2799 | #endif
|
---|
2800 | }
|
---|
2801 | }
|
---|
2802 |
|
---|
2803 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) {
|
---|
2804 | // Create the heap and add it to the linked list
|
---|
2805 | TCMalloc_ThreadCache *heap = threadheap_allocator.New();
|
---|
2806 | heap->Init(tid);
|
---|
2807 | heap->next_ = thread_heaps;
|
---|
2808 | heap->prev_ = NULL;
|
---|
2809 | if (thread_heaps != NULL) thread_heaps->prev_ = heap;
|
---|
2810 | thread_heaps = heap;
|
---|
2811 | thread_heap_count++;
|
---|
2812 | RecomputeThreadCacheSize();
|
---|
2813 | return heap;
|
---|
2814 | }
|
---|
2815 |
|
---|
2816 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() {
|
---|
2817 | #ifdef HAVE_TLS
|
---|
2818 | // __thread is faster, but only when the kernel supports it
|
---|
2819 | if (KernelSupportsTLS())
|
---|
2820 | return threadlocal_heap;
|
---|
2821 | #elif COMPILER(MSVC)
|
---|
2822 | return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
|
---|
2823 | #else
|
---|
2824 | return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
|
---|
2825 | #endif
|
---|
2826 | }
|
---|
2827 |
|
---|
2828 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
|
---|
2829 | TCMalloc_ThreadCache* ptr = NULL;
|
---|
2830 | if (!tsd_inited) {
|
---|
2831 | InitModule();
|
---|
2832 | } else {
|
---|
2833 | ptr = GetThreadHeap();
|
---|
2834 | }
|
---|
2835 | if (ptr == NULL) ptr = CreateCacheIfNecessary();
|
---|
2836 | return ptr;
|
---|
2837 | }
|
---|
2838 |
|
---|
2839 | // In deletion paths, we do not try to create a thread-cache. This is
|
---|
2840 | // because we may be in the thread destruction code and may have
|
---|
2841 | // already cleaned up the cache for this thread.
|
---|
2842 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
|
---|
2843 | if (!tsd_inited) return NULL;
|
---|
2844 | void* const p = GetThreadHeap();
|
---|
2845 | return reinterpret_cast<TCMalloc_ThreadCache*>(p);
|
---|
2846 | }
|
---|
2847 |
|
---|
2848 | void TCMalloc_ThreadCache::InitTSD() {
|
---|
2849 | ASSERT(!tsd_inited);
|
---|
2850 | pthread_key_create(&heap_key, DestroyThreadCache);
|
---|
2851 | #if COMPILER(MSVC)
|
---|
2852 | tlsIndex = TlsAlloc();
|
---|
2853 | #endif
|
---|
2854 | tsd_inited = true;
|
---|
2855 |
|
---|
2856 | #if !COMPILER(MSVC)
|
---|
2857 | // We may have used a fake pthread_t for the main thread. Fix it.
|
---|
2858 | pthread_t zero;
|
---|
2859 | memset(&zero, 0, sizeof(zero));
|
---|
2860 | #endif
|
---|
2861 | #ifndef WTF_CHANGES
|
---|
2862 | SpinLockHolder h(&pageheap_lock);
|
---|
2863 | #else
|
---|
2864 | ASSERT(pageheap_lock.IsHeld());
|
---|
2865 | #endif
|
---|
2866 | for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
|
---|
2867 | #if COMPILER(MSVC)
|
---|
2868 | if (h->tid_ == 0) {
|
---|
2869 | h->tid_ = GetCurrentThreadId();
|
---|
2870 | }
|
---|
2871 | #else
|
---|
2872 | if (pthread_equal(h->tid_, zero)) {
|
---|
2873 | h->tid_ = pthread_self();
|
---|
2874 | }
|
---|
2875 | #endif
|
---|
2876 | }
|
---|
2877 | }
|
---|
2878 |
|
---|
2879 | TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
|
---|
2880 | // Initialize per-thread data if necessary
|
---|
2881 | TCMalloc_ThreadCache* heap = NULL;
|
---|
2882 | {
|
---|
2883 | SpinLockHolder h(&pageheap_lock);
|
---|
2884 |
|
---|
2885 | #if COMPILER(MSVC)
|
---|
2886 | DWORD me;
|
---|
2887 | if (!tsd_inited) {
|
---|
2888 | me = 0;
|
---|
2889 | } else {
|
---|
2890 | me = GetCurrentThreadId();
|
---|
2891 | }
|
---|
2892 | #else
|
---|
2893 | // Early on in glibc's life, we cannot even call pthread_self()
|
---|
2894 | pthread_t me;
|
---|
2895 | if (!tsd_inited) {
|
---|
2896 | memset(&me, 0, sizeof(me));
|
---|
2897 | } else {
|
---|
2898 | me = pthread_self();
|
---|
2899 | }
|
---|
2900 | #endif
|
---|
2901 |
|
---|
2902 | // This may be a recursive malloc call from pthread_setspecific()
|
---|
2903 | // In that case, the heap for this thread has already been created
|
---|
2904 | // and added to the linked list. So we search for that first.
|
---|
2905 | for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
|
---|
2906 | #if COMPILER(MSVC)
|
---|
2907 | if (h->tid_ == me) {
|
---|
2908 | #else
|
---|
2909 | if (pthread_equal(h->tid_, me)) {
|
---|
2910 | #endif
|
---|
2911 | heap = h;
|
---|
2912 | break;
|
---|
2913 | }
|
---|
2914 | }
|
---|
2915 |
|
---|
2916 | if (heap == NULL) heap = NewHeap(me);
|
---|
2917 | }
|
---|
2918 |
|
---|
2919 | // We call pthread_setspecific() outside the lock because it may
|
---|
2920 | // call malloc() recursively. The recursive call will never get
|
---|
2921 | // here again because it will find the already allocated heap in the
|
---|
2922 | // linked list of heaps.
|
---|
2923 | if (!heap->in_setspecific_ && tsd_inited) {
|
---|
2924 | heap->in_setspecific_ = true;
|
---|
2925 | setThreadHeap(heap);
|
---|
2926 | }
|
---|
2927 | return heap;
|
---|
2928 | }
|
---|
2929 |
|
---|
2930 | void TCMalloc_ThreadCache::BecomeIdle() {
|
---|
2931 | if (!tsd_inited) return; // No caches yet
|
---|
2932 | TCMalloc_ThreadCache* heap = GetThreadHeap();
|
---|
2933 | if (heap == NULL) return; // No thread cache to remove
|
---|
2934 | if (heap->in_setspecific_) return; // Do not disturb the active caller
|
---|
2935 |
|
---|
2936 | heap->in_setspecific_ = true;
|
---|
2937 | pthread_setspecific(heap_key, NULL);
|
---|
2938 | #ifdef HAVE_TLS
|
---|
2939 | // Also update the copy in __thread
|
---|
2940 | threadlocal_heap = NULL;
|
---|
2941 | #endif
|
---|
2942 | heap->in_setspecific_ = false;
|
---|
2943 | if (GetThreadHeap() == heap) {
|
---|
2944 | // Somehow heap got reinstated by a recursive call to malloc
|
---|
2945 | // from pthread_setspecific. We give up in this case.
|
---|
2946 | return;
|
---|
2947 | }
|
---|
2948 |
|
---|
2949 | // We can now get rid of the heap
|
---|
2950 | DeleteCache(heap);
|
---|
2951 | }
|
---|
2952 |
|
---|
2953 | void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) {
|
---|
2954 | // Note that "ptr" cannot be NULL since pthread promises not
|
---|
2955 | // to invoke the destructor on NULL values, but for safety,
|
---|
2956 | // we check anyway.
|
---|
2957 | if (ptr == NULL) return;
|
---|
2958 | #ifdef HAVE_TLS
|
---|
2959 | // Prevent fast path of GetThreadHeap() from returning heap.
|
---|
2960 | threadlocal_heap = NULL;
|
---|
2961 | #endif
|
---|
2962 | DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr));
|
---|
2963 | }
|
---|
2964 |
|
---|
2965 | void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) {
|
---|
2966 | // Remove all memory from heap
|
---|
2967 | heap->Cleanup();
|
---|
2968 |
|
---|
2969 | // Remove from linked list
|
---|
2970 | SpinLockHolder h(&pageheap_lock);
|
---|
2971 | if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
|
---|
2972 | if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
|
---|
2973 | if (thread_heaps == heap) thread_heaps = heap->next_;
|
---|
2974 | thread_heap_count--;
|
---|
2975 | RecomputeThreadCacheSize();
|
---|
2976 |
|
---|
2977 | threadheap_allocator.Delete(heap);
|
---|
2978 | }
|
---|
2979 |
|
---|
2980 | void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
|
---|
2981 | // Divide available space across threads
|
---|
2982 | int n = thread_heap_count > 0 ? thread_heap_count : 1;
|
---|
2983 | size_t space = overall_thread_cache_size / n;
|
---|
2984 |
|
---|
2985 | // Limit to allowed range
|
---|
2986 | if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
|
---|
2987 | if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
|
---|
2988 |
|
---|
2989 | per_thread_cache_size = space;
|
---|
2990 | }
|
---|
2991 |
|
---|
2992 | void TCMalloc_ThreadCache::Print() const {
|
---|
2993 | for (size_t cl = 0; cl < kNumClasses; ++cl) {
|
---|
2994 | MESSAGE(" %5" PRIuS " : %4d len; %4d lo\n",
|
---|
2995 | ByteSizeForClass(cl),
|
---|
2996 | list_[cl].length(),
|
---|
2997 | list_[cl].lowwatermark());
|
---|
2998 | }
|
---|
2999 | }
|
---|
3000 |
|
---|
3001 | // Extract interesting stats
|
---|
3002 | struct TCMallocStats {
|
---|
3003 | uint64_t system_bytes; // Bytes alloced from system
|
---|
3004 | uint64_t thread_bytes; // Bytes in thread caches
|
---|
3005 | uint64_t central_bytes; // Bytes in central cache
|
---|
3006 | uint64_t transfer_bytes; // Bytes in central transfer cache
|
---|
3007 | uint64_t pageheap_bytes; // Bytes in page heap
|
---|
3008 | uint64_t metadata_bytes; // Bytes alloced for metadata
|
---|
3009 | };
|
---|
3010 |
|
---|
3011 | #ifndef WTF_CHANGES
|
---|
3012 | // Get stats into "r". Also get per-size-class counts if class_count != NULL
|
---|
3013 | static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
|
---|
3014 | r->central_bytes = 0;
|
---|
3015 | r->transfer_bytes = 0;
|
---|
3016 | for (int cl = 0; cl < kNumClasses; ++cl) {
|
---|
3017 | const int length = central_cache[cl].length();
|
---|
3018 | const int tc_length = central_cache[cl].tc_length();
|
---|
3019 | r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
|
---|
3020 | r->transfer_bytes +=
|
---|
3021 | static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length;
|
---|
3022 | if (class_count) class_count[cl] = length + tc_length;
|
---|
3023 | }
|
---|
3024 |
|
---|
3025 | // Add stats from per-thread heaps
|
---|
3026 | r->thread_bytes = 0;
|
---|
3027 | { // scope
|
---|
3028 | SpinLockHolder h(&pageheap_lock);
|
---|
3029 | for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
|
---|
3030 | r->thread_bytes += h->Size();
|
---|
3031 | if (class_count) {
|
---|
3032 | for (size_t cl = 0; cl < kNumClasses; ++cl) {
|
---|
3033 | class_count[cl] += h->freelist_length(cl);
|
---|
3034 | }
|
---|
3035 | }
|
---|
3036 | }
|
---|
3037 | }
|
---|
3038 |
|
---|
3039 | { //scope
|
---|
3040 | SpinLockHolder h(&pageheap_lock);
|
---|
3041 | r->system_bytes = pageheap->SystemBytes();
|
---|
3042 | r->metadata_bytes = metadata_system_bytes;
|
---|
3043 | r->pageheap_bytes = pageheap->FreeBytes();
|
---|
3044 | }
|
---|
3045 | }
|
---|
3046 | #endif
|
---|
3047 |
|
---|
3048 | #ifndef WTF_CHANGES
|
---|
3049 | // WRITE stats to "out"
|
---|
3050 | static void DumpStats(TCMalloc_Printer* out, int level) {
|
---|
3051 | TCMallocStats stats;
|
---|
3052 | uint64_t class_count[kNumClasses];
|
---|
3053 | ExtractStats(&stats, (level >= 2 ? class_count : NULL));
|
---|
3054 |
|
---|
3055 | if (level >= 2) {
|
---|
3056 | out->printf("------------------------------------------------\n");
|
---|
3057 | uint64_t cumulative = 0;
|
---|
3058 | for (int cl = 0; cl < kNumClasses; ++cl) {
|
---|
3059 | if (class_count[cl] > 0) {
|
---|
3060 | uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
|
---|
3061 | cumulative += class_bytes;
|
---|
3062 | out->printf("class %3d [ %8" PRIuS " bytes ] : "
|
---|
3063 | "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
|
---|
3064 | cl, ByteSizeForClass(cl),
|
---|
3065 | class_count[cl],
|
---|
3066 | class_bytes / 1048576.0,
|
---|
3067 | cumulative / 1048576.0);
|
---|
3068 | }
|
---|
3069 | }
|
---|
3070 |
|
---|
3071 | SpinLockHolder h(&pageheap_lock);
|
---|
3072 | pageheap->Dump(out);
|
---|
3073 | }
|
---|
3074 |
|
---|
3075 | const uint64_t bytes_in_use = stats.system_bytes
|
---|
3076 | - stats.pageheap_bytes
|
---|
3077 | - stats.central_bytes
|
---|
3078 | - stats.transfer_bytes
|
---|
3079 | - stats.thread_bytes;
|
---|
3080 |
|
---|
3081 | out->printf("------------------------------------------------\n"
|
---|
3082 | "MALLOC: %12" PRIu64 " Heap size\n"
|
---|
3083 | "MALLOC: %12" PRIu64 " Bytes in use by application\n"
|
---|
3084 | "MALLOC: %12" PRIu64 " Bytes free in page heap\n"
|
---|
3085 | "MALLOC: %12" PRIu64 " Bytes free in central cache\n"
|
---|
3086 | "MALLOC: %12" PRIu64 " Bytes free in transfer cache\n"
|
---|
3087 | "MALLOC: %12" PRIu64 " Bytes free in thread caches\n"
|
---|
3088 | "MALLOC: %12" PRIu64 " Spans in use\n"
|
---|
3089 | "MALLOC: %12" PRIu64 " Thread heaps in use\n"
|
---|
3090 | "MALLOC: %12" PRIu64 " Metadata allocated\n"
|
---|
3091 | "------------------------------------------------\n",
|
---|
3092 | stats.system_bytes,
|
---|
3093 | bytes_in_use,
|
---|
3094 | stats.pageheap_bytes,
|
---|
3095 | stats.central_bytes,
|
---|
3096 | stats.transfer_bytes,
|
---|
3097 | stats.thread_bytes,
|
---|
3098 | uint64_t(span_allocator.inuse()),
|
---|
3099 | uint64_t(threadheap_allocator.inuse()),
|
---|
3100 | stats.metadata_bytes);
|
---|
3101 | }
|
---|
3102 |
|
---|
3103 | static void PrintStats(int level) {
|
---|
3104 | const int kBufferSize = 16 << 10;
|
---|
3105 | char* buffer = new char[kBufferSize];
|
---|
3106 | TCMalloc_Printer printer(buffer, kBufferSize);
|
---|
3107 | DumpStats(&printer, level);
|
---|
3108 | write(STDERR_FILENO, buffer, strlen(buffer));
|
---|
3109 | delete[] buffer;
|
---|
3110 | }
|
---|
3111 |
|
---|
3112 | static void** DumpStackTraces() {
|
---|
3113 | // Count how much space we need
|
---|
3114 | int needed_slots = 0;
|
---|
3115 | {
|
---|
3116 | SpinLockHolder h(&pageheap_lock);
|
---|
3117 | for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
|
---|
3118 | StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
|
---|
3119 | needed_slots += 3 + stack->depth;
|
---|
3120 | }
|
---|
3121 | needed_slots += 100; // Slop in case sample grows
|
---|
3122 | needed_slots += needed_slots/8; // An extra 12.5% slop
|
---|
3123 | }
|
---|
3124 |
|
---|
3125 | void** result = new void*[needed_slots];
|
---|
3126 | if (result == NULL) {
|
---|
3127 | MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
|
---|
3128 | needed_slots);
|
---|
3129 | return NULL;
|
---|
3130 | }
|
---|
3131 |
|
---|
3132 | SpinLockHolder h(&pageheap_lock);
|
---|
3133 | int used_slots = 0;
|
---|
3134 | for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
|
---|
3135 | ASSERT(used_slots < needed_slots); // Need to leave room for terminator
|
---|
3136 | StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
|
---|
3137 | if (used_slots + 3 + stack->depth >= needed_slots) {
|
---|
3138 | // No more room
|
---|
3139 | break;
|
---|
3140 | }
|
---|
3141 |
|
---|
3142 | result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
|
---|
3143 | result[used_slots+1] = reinterpret_cast<void*>(stack->size);
|
---|
3144 | result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
|
---|
3145 | for (int d = 0; d < stack->depth; d++) {
|
---|
3146 | result[used_slots+3+d] = stack->stack[d];
|
---|
3147 | }
|
---|
3148 | used_slots += 3 + stack->depth;
|
---|
3149 | }
|
---|
3150 | result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
|
---|
3151 | return result;
|
---|
3152 | }
|
---|
3153 | #endif
|
---|
3154 |
|
---|
3155 | #ifndef WTF_CHANGES
|
---|
3156 |
|
---|
3157 | // TCMalloc's support for extra malloc interfaces
|
---|
3158 | class TCMallocImplementation : public MallocExtension {
|
---|
3159 | public:
|
---|
3160 | virtual void GetStats(char* buffer, int buffer_length) {
|
---|
3161 | ASSERT(buffer_length > 0);
|
---|
3162 | TCMalloc_Printer printer(buffer, buffer_length);
|
---|
3163 |
|
---|
3164 | // Print level one stats unless lots of space is available
|
---|
3165 | if (buffer_length < 10000) {
|
---|
3166 | DumpStats(&printer, 1);
|
---|
3167 | } else {
|
---|
3168 | DumpStats(&printer, 2);
|
---|
3169 | }
|
---|
3170 | }
|
---|
3171 |
|
---|
3172 | virtual void** ReadStackTraces() {
|
---|
3173 | return DumpStackTraces();
|
---|
3174 | }
|
---|
3175 |
|
---|
3176 | virtual bool GetNumericProperty(const char* name, size_t* value) {
|
---|
3177 | ASSERT(name != NULL);
|
---|
3178 |
|
---|
3179 | if (strcmp(name, "generic.current_allocated_bytes") == 0) {
|
---|
3180 | TCMallocStats stats;
|
---|
3181 | ExtractStats(&stats, NULL);
|
---|
3182 | *value = stats.system_bytes
|
---|
3183 | - stats.thread_bytes
|
---|
3184 | - stats.central_bytes
|
---|
3185 | - stats.pageheap_bytes;
|
---|
3186 | return true;
|
---|
3187 | }
|
---|
3188 |
|
---|
3189 | if (strcmp(name, "generic.heap_size") == 0) {
|
---|
3190 | TCMallocStats stats;
|
---|
3191 | ExtractStats(&stats, NULL);
|
---|
3192 | *value = stats.system_bytes;
|
---|
3193 | return true;
|
---|
3194 | }
|
---|
3195 |
|
---|
3196 | if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
|
---|
3197 | // We assume that bytes in the page heap are not fragmented too
|
---|
3198 | // badly, and are therefore available for allocation.
|
---|
3199 | SpinLockHolder l(&pageheap_lock);
|
---|
3200 | *value = pageheap->FreeBytes();
|
---|
3201 | return true;
|
---|
3202 | }
|
---|
3203 |
|
---|
3204 | if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
|
---|
3205 | SpinLockHolder l(&pageheap_lock);
|
---|
3206 | *value = overall_thread_cache_size;
|
---|
3207 | return true;
|
---|
3208 | }
|
---|
3209 |
|
---|
3210 | if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
|
---|
3211 | TCMallocStats stats;
|
---|
3212 | ExtractStats(&stats, NULL);
|
---|
3213 | *value = stats.thread_bytes;
|
---|
3214 | return true;
|
---|
3215 | }
|
---|
3216 |
|
---|
3217 | return false;
|
---|
3218 | }
|
---|
3219 |
|
---|
3220 | virtual bool SetNumericProperty(const char* name, size_t value) {
|
---|
3221 | ASSERT(name != NULL);
|
---|
3222 |
|
---|
3223 | if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
|
---|
3224 | // Clip the value to a reasonable range
|
---|
3225 | if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
|
---|
3226 | if (value > (1<<30)) value = (1<<30); // Limit to 1GB
|
---|
3227 |
|
---|
3228 | SpinLockHolder l(&pageheap_lock);
|
---|
3229 | overall_thread_cache_size = static_cast<size_t>(value);
|
---|
3230 | TCMalloc_ThreadCache::RecomputeThreadCacheSize();
|
---|
3231 | return true;
|
---|
3232 | }
|
---|
3233 |
|
---|
3234 | return false;
|
---|
3235 | }
|
---|
3236 |
|
---|
3237 | virtual void MarkThreadIdle() {
|
---|
3238 | TCMalloc_ThreadCache::BecomeIdle();
|
---|
3239 | }
|
---|
3240 |
|
---|
3241 | virtual void ReleaseFreeMemory() {
|
---|
3242 | SpinLockHolder h(&pageheap_lock);
|
---|
3243 | pageheap->ReleaseFreePages();
|
---|
3244 | }
|
---|
3245 | };
|
---|
3246 | #endif
|
---|
3247 |
|
---|
3248 | // The constructor allocates an object to ensure that initialization
|
---|
3249 | // runs before main(), and therefore we do not have a chance to become
|
---|
3250 | // multi-threaded before initialization. We also create the TSD key
|
---|
3251 | // here. Presumably by the time this constructor runs, glibc is in
|
---|
3252 | // good enough shape to handle pthread_key_create().
|
---|
3253 | //
|
---|
3254 | // The constructor also takes the opportunity to tell STL to use
|
---|
3255 | // tcmalloc. We want to do this early, before construct time, so
|
---|
3256 | // all user STL allocations go through tcmalloc (which works really
|
---|
3257 | // well for STL).
|
---|
3258 | //
|
---|
3259 | // The destructor prints stats when the program exits.
|
---|
3260 | class TCMallocGuard {
|
---|
3261 | public:
|
---|
3262 |
|
---|
3263 | TCMallocGuard() {
|
---|
3264 | #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS
|
---|
3265 | // Check whether the kernel also supports TLS (needs to happen at runtime)
|
---|
3266 | CheckIfKernelSupportsTLS();
|
---|
3267 | #endif
|
---|
3268 | #ifndef WTF_CHANGES
|
---|
3269 | #ifdef WIN32 // patch the windows VirtualAlloc, etc.
|
---|
3270 | PatchWindowsFunctions(); // defined in windows/patch_functions.cc
|
---|
3271 | #endif
|
---|
3272 | #endif
|
---|
3273 | free(malloc(1));
|
---|
3274 | TCMalloc_ThreadCache::InitTSD();
|
---|
3275 | free(malloc(1));
|
---|
3276 | #ifndef WTF_CHANGES
|
---|
3277 | MallocExtension::Register(new TCMallocImplementation);
|
---|
3278 | #endif
|
---|
3279 | }
|
---|
3280 |
|
---|
3281 | #ifndef WTF_CHANGES
|
---|
3282 | ~TCMallocGuard() {
|
---|
3283 | const char* env = getenv("MALLOCSTATS");
|
---|
3284 | if (env != NULL) {
|
---|
3285 | int level = atoi(env);
|
---|
3286 | if (level < 1) level = 1;
|
---|
3287 | PrintStats(level);
|
---|
3288 | }
|
---|
3289 | #ifdef WIN32
|
---|
3290 | UnpatchWindowsFunctions();
|
---|
3291 | #endif
|
---|
3292 | }
|
---|
3293 | #endif
|
---|
3294 | };
|
---|
3295 |
|
---|
3296 | #ifndef WTF_CHANGES
|
---|
3297 | static TCMallocGuard module_enter_exit_hook;
|
---|
3298 | #endif
|
---|
3299 |
|
---|
3300 |
|
---|
3301 | //-------------------------------------------------------------------
|
---|
3302 | // Helpers for the exported routines below
|
---|
3303 | //-------------------------------------------------------------------
|
---|
3304 |
|
---|
3305 | #ifndef WTF_CHANGES
|
---|
3306 |
|
---|
3307 | static Span* DoSampledAllocation(size_t size) {
|
---|
3308 |
|
---|
3309 | // Grab the stack trace outside the heap lock
|
---|
3310 | StackTrace tmp;
|
---|
3311 | tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1);
|
---|
3312 | tmp.size = size;
|
---|
3313 |
|
---|
3314 | SpinLockHolder h(&pageheap_lock);
|
---|
3315 | // Allocate span
|
---|
3316 | Span *span = pageheap->New(pages(size == 0 ? 1 : size));
|
---|
3317 | if (span == NULL) {
|
---|
3318 | return NULL;
|
---|
3319 | }
|
---|
3320 |
|
---|
3321 | // Allocate stack trace
|
---|
3322 | StackTrace *stack = stacktrace_allocator.New();
|
---|
3323 | if (stack == NULL) {
|
---|
3324 | // Sampling failed because of lack of memory
|
---|
3325 | return span;
|
---|
3326 | }
|
---|
3327 |
|
---|
3328 | *stack = tmp;
|
---|
3329 | span->sample = 1;
|
---|
3330 | span->objects = stack;
|
---|
3331 | DLL_Prepend(&sampled_objects, span);
|
---|
3332 |
|
---|
3333 | return span;
|
---|
3334 | }
|
---|
3335 | #endif
|
---|
3336 |
|
---|
3337 | static inline bool CheckCachedSizeClass(void *ptr) {
|
---|
3338 | PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
|
---|
3339 | size_t cached_value = pageheap->GetSizeClassIfCached(p);
|
---|
3340 | return cached_value == 0 ||
|
---|
3341 | cached_value == pageheap->GetDescriptor(p)->sizeclass;
|
---|
3342 | }
|
---|
3343 |
|
---|
3344 | static inline void* CheckedMallocResult(void *result)
|
---|
3345 | {
|
---|
3346 | ASSERT(result == 0 || CheckCachedSizeClass(result));
|
---|
3347 | return result;
|
---|
3348 | }
|
---|
3349 |
|
---|
3350 | static inline void* SpanToMallocResult(Span *span) {
|
---|
3351 | ASSERT_SPAN_COMMITTED(span);
|
---|
3352 | pageheap->CacheSizeClass(span->start, 0);
|
---|
3353 | return
|
---|
3354 | CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
|
---|
3355 | }
|
---|
3356 |
|
---|
3357 | #ifdef WTF_CHANGES
|
---|
3358 | template <bool crashOnFailure>
|
---|
3359 | #endif
|
---|
3360 | static ALWAYS_INLINE void* do_malloc(size_t size) {
|
---|
3361 | void* ret = NULL;
|
---|
3362 |
|
---|
3363 | #ifdef WTF_CHANGES
|
---|
3364 | ASSERT(!isForbidden());
|
---|
3365 | #endif
|
---|
3366 |
|
---|
3367 | // The following call forces module initialization
|
---|
3368 | TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
|
---|
3369 | #ifndef WTF_CHANGES
|
---|
3370 | if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
|
---|
3371 | Span* span = DoSampledAllocation(size);
|
---|
3372 | if (span != NULL) {
|
---|
3373 | ret = SpanToMallocResult(span);
|
---|
3374 | }
|
---|
3375 | } else
|
---|
3376 | #endif
|
---|
3377 | if (size > kMaxSize) {
|
---|
3378 | // Use page-level allocator
|
---|
3379 | SpinLockHolder h(&pageheap_lock);
|
---|
3380 | Span* span = pageheap->New(pages(size));
|
---|
3381 | if (span != NULL) {
|
---|
3382 | ret = SpanToMallocResult(span);
|
---|
3383 | }
|
---|
3384 | } else {
|
---|
3385 | // The common case, and also the simplest. This just pops the
|
---|
3386 | // size-appropriate freelist, afer replenishing it if it's empty.
|
---|
3387 | ret = CheckedMallocResult(heap->Allocate(size));
|
---|
3388 | }
|
---|
3389 | if (!ret) {
|
---|
3390 | #ifdef WTF_CHANGES
|
---|
3391 | if (crashOnFailure) // This branch should be optimized out by the compiler.
|
---|
3392 | CRASH();
|
---|
3393 | #else
|
---|
3394 | errno = ENOMEM;
|
---|
3395 | #endif
|
---|
3396 | }
|
---|
3397 | return ret;
|
---|
3398 | }
|
---|
3399 |
|
---|
3400 | static ALWAYS_INLINE void do_free(void* ptr) {
|
---|
3401 | if (ptr == NULL) return;
|
---|
3402 | ASSERT(pageheap != NULL); // Should not call free() before malloc()
|
---|
3403 | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
|
---|
3404 | Span* span = NULL;
|
---|
3405 | size_t cl = pageheap->GetSizeClassIfCached(p);
|
---|
3406 |
|
---|
3407 | if (cl == 0) {
|
---|
3408 | span = pageheap->GetDescriptor(p);
|
---|
3409 | cl = span->sizeclass;
|
---|
3410 | pageheap->CacheSizeClass(p, cl);
|
---|
3411 | }
|
---|
3412 | if (cl != 0) {
|
---|
3413 | #ifndef NO_TCMALLOC_SAMPLES
|
---|
3414 | ASSERT(!pageheap->GetDescriptor(p)->sample);
|
---|
3415 | #endif
|
---|
3416 | TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
|
---|
3417 | if (heap != NULL) {
|
---|
3418 | heap->Deallocate(ptr, cl);
|
---|
3419 | } else {
|
---|
3420 | // Delete directly into central cache
|
---|
3421 | SLL_SetNext(ptr, NULL);
|
---|
3422 | central_cache[cl].InsertRange(ptr, ptr, 1);
|
---|
3423 | }
|
---|
3424 | } else {
|
---|
3425 | SpinLockHolder h(&pageheap_lock);
|
---|
3426 | ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
|
---|
3427 | ASSERT(span != NULL && span->start == p);
|
---|
3428 | #ifndef NO_TCMALLOC_SAMPLES
|
---|
3429 | if (span->sample) {
|
---|
3430 | DLL_Remove(span);
|
---|
3431 | stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
|
---|
3432 | span->objects = NULL;
|
---|
3433 | }
|
---|
3434 | #endif
|
---|
3435 | pageheap->Delete(span);
|
---|
3436 | }
|
---|
3437 | }
|
---|
3438 |
|
---|
3439 | #ifndef WTF_CHANGES
|
---|
3440 | // For use by exported routines below that want specific alignments
|
---|
3441 | //
|
---|
3442 | // Note: this code can be slow, and can significantly fragment memory.
|
---|
3443 | // The expectation is that memalign/posix_memalign/valloc/pvalloc will
|
---|
3444 | // not be invoked very often. This requirement simplifies our
|
---|
3445 | // implementation and allows us to tune for expected allocation
|
---|
3446 | // patterns.
|
---|
3447 | static void* do_memalign(size_t align, size_t size) {
|
---|
3448 | ASSERT((align & (align - 1)) == 0);
|
---|
3449 | ASSERT(align > 0);
|
---|
3450 | if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
|
---|
3451 |
|
---|
3452 | // Allocate at least one byte to avoid boundary conditions below
|
---|
3453 | if (size == 0) size = 1;
|
---|
3454 |
|
---|
3455 | if (size <= kMaxSize && align < kPageSize) {
|
---|
3456 | // Search through acceptable size classes looking for one with
|
---|
3457 | // enough alignment. This depends on the fact that
|
---|
3458 | // InitSizeClasses() currently produces several size classes that
|
---|
3459 | // are aligned at powers of two. We will waste time and space if
|
---|
3460 | // we miss in the size class array, but that is deemed acceptable
|
---|
3461 | // since memalign() should be used rarely.
|
---|
3462 | size_t cl = SizeClass(size);
|
---|
3463 | while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
|
---|
3464 | cl++;
|
---|
3465 | }
|
---|
3466 | if (cl < kNumClasses) {
|
---|
3467 | TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
|
---|
3468 | return CheckedMallocResult(heap->Allocate(class_to_size[cl]));
|
---|
3469 | }
|
---|
3470 | }
|
---|
3471 |
|
---|
3472 | // We will allocate directly from the page heap
|
---|
3473 | SpinLockHolder h(&pageheap_lock);
|
---|
3474 |
|
---|
3475 | if (align <= kPageSize) {
|
---|
3476 | // Any page-level allocation will be fine
|
---|
3477 | // TODO: We could put the rest of this page in the appropriate
|
---|
3478 | // TODO: cache but it does not seem worth it.
|
---|
3479 | Span* span = pageheap->New(pages(size));
|
---|
3480 | return span == NULL ? NULL : SpanToMallocResult(span);
|
---|
3481 | }
|
---|
3482 |
|
---|
3483 | // Allocate extra pages and carve off an aligned portion
|
---|
3484 | const Length alloc = pages(size + align);
|
---|
3485 | Span* span = pageheap->New(alloc);
|
---|
3486 | if (span == NULL) return NULL;
|
---|
3487 |
|
---|
3488 | // Skip starting portion so that we end up aligned
|
---|
3489 | Length skip = 0;
|
---|
3490 | while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
|
---|
3491 | skip++;
|
---|
3492 | }
|
---|
3493 | ASSERT(skip < alloc);
|
---|
3494 | if (skip > 0) {
|
---|
3495 | Span* rest = pageheap->Split(span, skip);
|
---|
3496 | pageheap->Delete(span);
|
---|
3497 | span = rest;
|
---|
3498 | }
|
---|
3499 |
|
---|
3500 | // Skip trailing portion that we do not need to return
|
---|
3501 | const Length needed = pages(size);
|
---|
3502 | ASSERT(span->length >= needed);
|
---|
3503 | if (span->length > needed) {
|
---|
3504 | Span* trailer = pageheap->Split(span, needed);
|
---|
3505 | pageheap->Delete(trailer);
|
---|
3506 | }
|
---|
3507 | return SpanToMallocResult(span);
|
---|
3508 | }
|
---|
3509 | #endif
|
---|
3510 |
|
---|
3511 | // Helpers for use by exported routines below:
|
---|
3512 |
|
---|
3513 | #ifndef WTF_CHANGES
|
---|
3514 | static inline void do_malloc_stats() {
|
---|
3515 | PrintStats(1);
|
---|
3516 | }
|
---|
3517 | #endif
|
---|
3518 |
|
---|
3519 | static inline int do_mallopt(int, int) {
|
---|
3520 | return 1; // Indicates error
|
---|
3521 | }
|
---|
3522 |
|
---|
3523 | #ifdef HAVE_STRUCT_MALLINFO // mallinfo isn't defined on freebsd, for instance
|
---|
3524 | static inline struct mallinfo do_mallinfo() {
|
---|
3525 | TCMallocStats stats;
|
---|
3526 | ExtractStats(&stats, NULL);
|
---|
3527 |
|
---|
3528 | // Just some of the fields are filled in.
|
---|
3529 | struct mallinfo info;
|
---|
3530 | memset(&info, 0, sizeof(info));
|
---|
3531 |
|
---|
3532 | // Unfortunately, the struct contains "int" field, so some of the
|
---|
3533 | // size values will be truncated.
|
---|
3534 | info.arena = static_cast<int>(stats.system_bytes);
|
---|
3535 | info.fsmblks = static_cast<int>(stats.thread_bytes
|
---|
3536 | + stats.central_bytes
|
---|
3537 | + stats.transfer_bytes);
|
---|
3538 | info.fordblks = static_cast<int>(stats.pageheap_bytes);
|
---|
3539 | info.uordblks = static_cast<int>(stats.system_bytes
|
---|
3540 | - stats.thread_bytes
|
---|
3541 | - stats.central_bytes
|
---|
3542 | - stats.transfer_bytes
|
---|
3543 | - stats.pageheap_bytes);
|
---|
3544 |
|
---|
3545 | return info;
|
---|
3546 | }
|
---|
3547 | #endif
|
---|
3548 |
|
---|
3549 | //-------------------------------------------------------------------
|
---|
3550 | // Exported routines
|
---|
3551 | //-------------------------------------------------------------------
|
---|
3552 |
|
---|
3553 | // CAVEAT: The code structure below ensures that MallocHook methods are always
|
---|
3554 | // called from the stack frame of the invoked allocation function.
|
---|
3555 | // heap-checker.cc depends on this to start a stack trace from
|
---|
3556 | // the call to the (de)allocation function.
|
---|
3557 |
|
---|
3558 | #ifndef WTF_CHANGES
|
---|
3559 | extern "C"
|
---|
3560 | #else
|
---|
3561 | #define do_malloc do_malloc<crashOnFailure>
|
---|
3562 |
|
---|
3563 | template <bool crashOnFailure>
|
---|
3564 | void* malloc(size_t);
|
---|
3565 |
|
---|
3566 | void* fastMalloc(size_t size)
|
---|
3567 | {
|
---|
3568 | return malloc<true>(size);
|
---|
3569 | }
|
---|
3570 |
|
---|
3571 | void* tryFastMalloc(size_t size)
|
---|
3572 | {
|
---|
3573 | return malloc<false>(size);
|
---|
3574 | }
|
---|
3575 |
|
---|
3576 | template <bool crashOnFailure>
|
---|
3577 | ALWAYS_INLINE
|
---|
3578 | #endif
|
---|
3579 | void* malloc(size_t size) {
|
---|
3580 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
3581 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= size) // If overflow would occur...
|
---|
3582 | return 0;
|
---|
3583 | size += sizeof(AllocAlignmentInteger);
|
---|
3584 | void* result = do_malloc(size);
|
---|
3585 | if (!result)
|
---|
3586 | return 0;
|
---|
3587 |
|
---|
3588 | *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
|
---|
3589 | result = static_cast<AllocAlignmentInteger*>(result) + 1;
|
---|
3590 | #else
|
---|
3591 | void* result = do_malloc(size);
|
---|
3592 | #endif
|
---|
3593 |
|
---|
3594 | #ifndef WTF_CHANGES
|
---|
3595 | MallocHook::InvokeNewHook(result, size);
|
---|
3596 | #endif
|
---|
3597 | return result;
|
---|
3598 | }
|
---|
3599 |
|
---|
3600 | #ifndef WTF_CHANGES
|
---|
3601 | extern "C"
|
---|
3602 | #endif
|
---|
3603 | void free(void* ptr) {
|
---|
3604 | #ifndef WTF_CHANGES
|
---|
3605 | MallocHook::InvokeDeleteHook(ptr);
|
---|
3606 | #endif
|
---|
3607 |
|
---|
3608 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
3609 | if (!ptr)
|
---|
3610 | return;
|
---|
3611 |
|
---|
3612 | AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(ptr);
|
---|
3613 | if (*header != Internal::AllocTypeMalloc)
|
---|
3614 | Internal::fastMallocMatchFailed(ptr);
|
---|
3615 | do_free(header);
|
---|
3616 | #else
|
---|
3617 | do_free(ptr);
|
---|
3618 | #endif
|
---|
3619 | }
|
---|
3620 |
|
---|
3621 | #ifndef WTF_CHANGES
|
---|
3622 | extern "C"
|
---|
3623 | #else
|
---|
3624 | template <bool crashOnFailure>
|
---|
3625 | void* calloc(size_t, size_t);
|
---|
3626 |
|
---|
3627 | void* fastCalloc(size_t n, size_t elem_size)
|
---|
3628 | {
|
---|
3629 | return calloc<true>(n, elem_size);
|
---|
3630 | }
|
---|
3631 |
|
---|
3632 | void* tryFastCalloc(size_t n, size_t elem_size)
|
---|
3633 | {
|
---|
3634 | return calloc<false>(n, elem_size);
|
---|
3635 | }
|
---|
3636 |
|
---|
3637 | template <bool crashOnFailure>
|
---|
3638 | ALWAYS_INLINE
|
---|
3639 | #endif
|
---|
3640 | void* calloc(size_t n, size_t elem_size) {
|
---|
3641 | size_t totalBytes = n * elem_size;
|
---|
3642 |
|
---|
3643 | // Protect against overflow
|
---|
3644 | if (n > 1 && elem_size && (totalBytes / elem_size) != n)
|
---|
3645 | return 0;
|
---|
3646 |
|
---|
3647 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
3648 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes) // If overflow would occur...
|
---|
3649 | return 0;
|
---|
3650 |
|
---|
3651 | totalBytes += sizeof(AllocAlignmentInteger);
|
---|
3652 | void* result = do_malloc(totalBytes);
|
---|
3653 | if (!result)
|
---|
3654 | return 0;
|
---|
3655 |
|
---|
3656 | memset(result, 0, totalBytes);
|
---|
3657 | *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
|
---|
3658 | result = static_cast<AllocAlignmentInteger*>(result) + 1;
|
---|
3659 | #else
|
---|
3660 | void* result = do_malloc(totalBytes);
|
---|
3661 | if (result != NULL) {
|
---|
3662 | memset(result, 0, totalBytes);
|
---|
3663 | }
|
---|
3664 | #endif
|
---|
3665 |
|
---|
3666 | #ifndef WTF_CHANGES
|
---|
3667 | MallocHook::InvokeNewHook(result, totalBytes);
|
---|
3668 | #endif
|
---|
3669 | return result;
|
---|
3670 | }
|
---|
3671 |
|
---|
3672 | // Since cfree isn't used anywhere, we don't compile it in.
|
---|
3673 | #ifndef WTF_CHANGES
|
---|
3674 | #ifndef WTF_CHANGES
|
---|
3675 | extern "C"
|
---|
3676 | #endif
|
---|
3677 | void cfree(void* ptr) {
|
---|
3678 | #ifndef WTF_CHANGES
|
---|
3679 | MallocHook::InvokeDeleteHook(ptr);
|
---|
3680 | #endif
|
---|
3681 | do_free(ptr);
|
---|
3682 | }
|
---|
3683 | #endif
|
---|
3684 |
|
---|
3685 | #ifndef WTF_CHANGES
|
---|
3686 | extern "C"
|
---|
3687 | #else
|
---|
3688 | template <bool crashOnFailure>
|
---|
3689 | void* realloc(void*, size_t);
|
---|
3690 |
|
---|
3691 | void* fastRealloc(void* old_ptr, size_t new_size)
|
---|
3692 | {
|
---|
3693 | return realloc<true>(old_ptr, new_size);
|
---|
3694 | }
|
---|
3695 |
|
---|
3696 | void* tryFastRealloc(void* old_ptr, size_t new_size)
|
---|
3697 | {
|
---|
3698 | return realloc<false>(old_ptr, new_size);
|
---|
3699 | }
|
---|
3700 |
|
---|
3701 | template <bool crashOnFailure>
|
---|
3702 | ALWAYS_INLINE
|
---|
3703 | #endif
|
---|
3704 | void* realloc(void* old_ptr, size_t new_size) {
|
---|
3705 | if (old_ptr == NULL) {
|
---|
3706 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
3707 | void* result = malloc(new_size);
|
---|
3708 | #else
|
---|
3709 | void* result = do_malloc(new_size);
|
---|
3710 | #ifndef WTF_CHANGES
|
---|
3711 | MallocHook::InvokeNewHook(result, new_size);
|
---|
3712 | #endif
|
---|
3713 | #endif
|
---|
3714 | return result;
|
---|
3715 | }
|
---|
3716 | if (new_size == 0) {
|
---|
3717 | #ifndef WTF_CHANGES
|
---|
3718 | MallocHook::InvokeDeleteHook(old_ptr);
|
---|
3719 | #endif
|
---|
3720 | free(old_ptr);
|
---|
3721 | return NULL;
|
---|
3722 | }
|
---|
3723 |
|
---|
3724 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
3725 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= new_size) // If overflow would occur...
|
---|
3726 | return 0;
|
---|
3727 | new_size += sizeof(AllocAlignmentInteger);
|
---|
3728 | AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(old_ptr);
|
---|
3729 | if (*header != Internal::AllocTypeMalloc)
|
---|
3730 | Internal::fastMallocMatchFailed(old_ptr);
|
---|
3731 | old_ptr = header;
|
---|
3732 | #endif
|
---|
3733 |
|
---|
3734 | // Get the size of the old entry
|
---|
3735 | const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
|
---|
3736 | size_t cl = pageheap->GetSizeClassIfCached(p);
|
---|
3737 | Span *span = NULL;
|
---|
3738 | size_t old_size;
|
---|
3739 | if (cl == 0) {
|
---|
3740 | span = pageheap->GetDescriptor(p);
|
---|
3741 | cl = span->sizeclass;
|
---|
3742 | pageheap->CacheSizeClass(p, cl);
|
---|
3743 | }
|
---|
3744 | if (cl != 0) {
|
---|
3745 | old_size = ByteSizeForClass(cl);
|
---|
3746 | } else {
|
---|
3747 | ASSERT(span != NULL);
|
---|
3748 | old_size = span->length << kPageShift;
|
---|
3749 | }
|
---|
3750 |
|
---|
3751 | // Reallocate if the new size is larger than the old size,
|
---|
3752 | // or if the new size is significantly smaller than the old size.
|
---|
3753 | if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
|
---|
3754 | // Need to reallocate
|
---|
3755 | void* new_ptr = do_malloc(new_size);
|
---|
3756 | if (new_ptr == NULL) {
|
---|
3757 | return NULL;
|
---|
3758 | }
|
---|
3759 | #ifndef WTF_CHANGES
|
---|
3760 | MallocHook::InvokeNewHook(new_ptr, new_size);
|
---|
3761 | #endif
|
---|
3762 | memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
|
---|
3763 | #ifndef WTF_CHANGES
|
---|
3764 | MallocHook::InvokeDeleteHook(old_ptr);
|
---|
3765 | #endif
|
---|
3766 | // We could use a variant of do_free() that leverages the fact
|
---|
3767 | // that we already know the sizeclass of old_ptr. The benefit
|
---|
3768 | // would be small, so don't bother.
|
---|
3769 | do_free(old_ptr);
|
---|
3770 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
3771 | new_ptr = static_cast<AllocAlignmentInteger*>(new_ptr) + 1;
|
---|
3772 | #endif
|
---|
3773 | return new_ptr;
|
---|
3774 | } else {
|
---|
3775 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
|
---|
3776 | old_ptr = pByte + sizeof(AllocAlignmentInteger); // Set old_ptr back to the user pointer.
|
---|
3777 | #endif
|
---|
3778 | return old_ptr;
|
---|
3779 | }
|
---|
3780 | }
|
---|
3781 |
|
---|
3782 | #ifdef WTF_CHANGES
|
---|
3783 | #undef do_malloc
|
---|
3784 | #else
|
---|
3785 |
|
---|
3786 | static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER;
|
---|
3787 |
|
---|
3788 | static inline void* cpp_alloc(size_t size, bool nothrow) {
|
---|
3789 | for (;;) {
|
---|
3790 | void* p = do_malloc(size);
|
---|
3791 | #ifdef PREANSINEW
|
---|
3792 | return p;
|
---|
3793 | #else
|
---|
3794 | if (p == NULL) { // allocation failed
|
---|
3795 | // Get the current new handler. NB: this function is not
|
---|
3796 | // thread-safe. We make a feeble stab at making it so here, but
|
---|
3797 | // this lock only protects against tcmalloc interfering with
|
---|
3798 | // itself, not with other libraries calling set_new_handler.
|
---|
3799 | std::new_handler nh;
|
---|
3800 | {
|
---|
3801 | SpinLockHolder h(&set_new_handler_lock);
|
---|
3802 | nh = std::set_new_handler(0);
|
---|
3803 | (void) std::set_new_handler(nh);
|
---|
3804 | }
|
---|
3805 | // If no new_handler is established, the allocation failed.
|
---|
3806 | if (!nh) {
|
---|
3807 | if (nothrow) return 0;
|
---|
3808 | throw std::bad_alloc();
|
---|
3809 | }
|
---|
3810 | // Otherwise, try the new_handler. If it returns, retry the
|
---|
3811 | // allocation. If it throws std::bad_alloc, fail the allocation.
|
---|
3812 | // if it throws something else, don't interfere.
|
---|
3813 | try {
|
---|
3814 | (*nh)();
|
---|
3815 | } catch (const std::bad_alloc&) {
|
---|
3816 | if (!nothrow) throw;
|
---|
3817 | return p;
|
---|
3818 | }
|
---|
3819 | } else { // allocation success
|
---|
3820 | return p;
|
---|
3821 | }
|
---|
3822 | #endif
|
---|
3823 | }
|
---|
3824 | }
|
---|
3825 |
|
---|
3826 | void* operator new(size_t size) {
|
---|
3827 | void* p = cpp_alloc(size, false);
|
---|
3828 | // We keep this next instruction out of cpp_alloc for a reason: when
|
---|
3829 | // it's in, and new just calls cpp_alloc, the optimizer may fold the
|
---|
3830 | // new call into cpp_alloc, which messes up our whole section-based
|
---|
3831 | // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
|
---|
3832 | // isn't the last thing this fn calls, and prevents the folding.
|
---|
3833 | MallocHook::InvokeNewHook(p, size);
|
---|
3834 | return p;
|
---|
3835 | }
|
---|
3836 |
|
---|
3837 | void* operator new(size_t size, const std::nothrow_t&) __THROW {
|
---|
3838 | void* p = cpp_alloc(size, true);
|
---|
3839 | MallocHook::InvokeNewHook(p, size);
|
---|
3840 | return p;
|
---|
3841 | }
|
---|
3842 |
|
---|
3843 | void operator delete(void* p) __THROW {
|
---|
3844 | MallocHook::InvokeDeleteHook(p);
|
---|
3845 | do_free(p);
|
---|
3846 | }
|
---|
3847 |
|
---|
3848 | void operator delete(void* p, const std::nothrow_t&) __THROW {
|
---|
3849 | MallocHook::InvokeDeleteHook(p);
|
---|
3850 | do_free(p);
|
---|
3851 | }
|
---|
3852 |
|
---|
3853 | void* operator new[](size_t size) {
|
---|
3854 | void* p = cpp_alloc(size, false);
|
---|
3855 | // We keep this next instruction out of cpp_alloc for a reason: when
|
---|
3856 | // it's in, and new just calls cpp_alloc, the optimizer may fold the
|
---|
3857 | // new call into cpp_alloc, which messes up our whole section-based
|
---|
3858 | // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
|
---|
3859 | // isn't the last thing this fn calls, and prevents the folding.
|
---|
3860 | MallocHook::InvokeNewHook(p, size);
|
---|
3861 | return p;
|
---|
3862 | }
|
---|
3863 |
|
---|
3864 | void* operator new[](size_t size, const std::nothrow_t&) __THROW {
|
---|
3865 | void* p = cpp_alloc(size, true);
|
---|
3866 | MallocHook::InvokeNewHook(p, size);
|
---|
3867 | return p;
|
---|
3868 | }
|
---|
3869 |
|
---|
3870 | void operator delete[](void* p) __THROW {
|
---|
3871 | MallocHook::InvokeDeleteHook(p);
|
---|
3872 | do_free(p);
|
---|
3873 | }
|
---|
3874 |
|
---|
3875 | void operator delete[](void* p, const std::nothrow_t&) __THROW {
|
---|
3876 | MallocHook::InvokeDeleteHook(p);
|
---|
3877 | do_free(p);
|
---|
3878 | }
|
---|
3879 |
|
---|
3880 | extern "C" void* memalign(size_t align, size_t size) __THROW {
|
---|
3881 | void* result = do_memalign(align, size);
|
---|
3882 | MallocHook::InvokeNewHook(result, size);
|
---|
3883 | return result;
|
---|
3884 | }
|
---|
3885 |
|
---|
3886 | extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size)
|
---|
3887 | __THROW {
|
---|
3888 | if (((align % sizeof(void*)) != 0) ||
|
---|
3889 | ((align & (align - 1)) != 0) ||
|
---|
3890 | (align == 0)) {
|
---|
3891 | return EINVAL;
|
---|
3892 | }
|
---|
3893 |
|
---|
3894 | void* result = do_memalign(align, size);
|
---|
3895 | MallocHook::InvokeNewHook(result, size);
|
---|
3896 | if (result == NULL) {
|
---|
3897 | return ENOMEM;
|
---|
3898 | } else {
|
---|
3899 | *result_ptr = result;
|
---|
3900 | return 0;
|
---|
3901 | }
|
---|
3902 | }
|
---|
3903 |
|
---|
3904 | static size_t pagesize = 0;
|
---|
3905 |
|
---|
3906 | extern "C" void* valloc(size_t size) __THROW {
|
---|
3907 | // Allocate page-aligned object of length >= size bytes
|
---|
3908 | if (pagesize == 0) pagesize = getpagesize();
|
---|
3909 | void* result = do_memalign(pagesize, size);
|
---|
3910 | MallocHook::InvokeNewHook(result, size);
|
---|
3911 | return result;
|
---|
3912 | }
|
---|
3913 |
|
---|
3914 | extern "C" void* pvalloc(size_t size) __THROW {
|
---|
3915 | // Round up size to a multiple of pagesize
|
---|
3916 | if (pagesize == 0) pagesize = getpagesize();
|
---|
3917 | size = (size + pagesize - 1) & ~(pagesize - 1);
|
---|
3918 | void* result = do_memalign(pagesize, size);
|
---|
3919 | MallocHook::InvokeNewHook(result, size);
|
---|
3920 | return result;
|
---|
3921 | }
|
---|
3922 |
|
---|
3923 | extern "C" void malloc_stats(void) {
|
---|
3924 | do_malloc_stats();
|
---|
3925 | }
|
---|
3926 |
|
---|
3927 | extern "C" int mallopt(int cmd, int value) {
|
---|
3928 | return do_mallopt(cmd, value);
|
---|
3929 | }
|
---|
3930 |
|
---|
3931 | #ifdef HAVE_STRUCT_MALLINFO
|
---|
3932 | extern "C" struct mallinfo mallinfo(void) {
|
---|
3933 | return do_mallinfo();
|
---|
3934 | }
|
---|
3935 | #endif
|
---|
3936 |
|
---|
3937 | //-------------------------------------------------------------------
|
---|
3938 | // Some library routines on RedHat 9 allocate memory using malloc()
|
---|
3939 | // and free it using __libc_free() (or vice-versa). Since we provide
|
---|
3940 | // our own implementations of malloc/free, we need to make sure that
|
---|
3941 | // the __libc_XXX variants (defined as part of glibc) also point to
|
---|
3942 | // the same implementations.
|
---|
3943 | //-------------------------------------------------------------------
|
---|
3944 |
|
---|
3945 | #if defined(__GLIBC__)
|
---|
3946 | extern "C" {
|
---|
3947 | #if COMPILER(GCC) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__)
|
---|
3948 | // Potentially faster variants that use the gcc alias extension.
|
---|
3949 | // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
|
---|
3950 | # define ALIAS(x) __attribute__ ((weak, alias (x)))
|
---|
3951 | void* __libc_malloc(size_t size) ALIAS("malloc");
|
---|
3952 | void __libc_free(void* ptr) ALIAS("free");
|
---|
3953 | void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc");
|
---|
3954 | void* __libc_calloc(size_t n, size_t size) ALIAS("calloc");
|
---|
3955 | void __libc_cfree(void* ptr) ALIAS("cfree");
|
---|
3956 | void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
|
---|
3957 | void* __libc_valloc(size_t size) ALIAS("valloc");
|
---|
3958 | void* __libc_pvalloc(size_t size) ALIAS("pvalloc");
|
---|
3959 | int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
|
---|
3960 | # undef ALIAS
|
---|
3961 | # else /* not __GNUC__ */
|
---|
3962 | // Portable wrappers
|
---|
3963 | void* __libc_malloc(size_t size) { return malloc(size); }
|
---|
3964 | void __libc_free(void* ptr) { free(ptr); }
|
---|
3965 | void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); }
|
---|
3966 | void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); }
|
---|
3967 | void __libc_cfree(void* ptr) { cfree(ptr); }
|
---|
3968 | void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
|
---|
3969 | void* __libc_valloc(size_t size) { return valloc(size); }
|
---|
3970 | void* __libc_pvalloc(size_t size) { return pvalloc(size); }
|
---|
3971 | int __posix_memalign(void** r, size_t a, size_t s) {
|
---|
3972 | return posix_memalign(r, a, s);
|
---|
3973 | }
|
---|
3974 | # endif /* __GNUC__ */
|
---|
3975 | }
|
---|
3976 | #endif /* __GLIBC__ */
|
---|
3977 |
|
---|
3978 | // Override __libc_memalign in libc on linux boxes specially.
|
---|
3979 | // They have a bug in libc that causes them to (very rarely) allocate
|
---|
3980 | // with __libc_memalign() yet deallocate with free() and the
|
---|
3981 | // definitions above don't catch it.
|
---|
3982 | // This function is an exception to the rule of calling MallocHook method
|
---|
3983 | // from the stack frame of the allocation function;
|
---|
3984 | // heap-checker handles this special case explicitly.
|
---|
3985 | static void *MemalignOverride(size_t align, size_t size, const void *caller)
|
---|
3986 | __THROW {
|
---|
3987 | void* result = do_memalign(align, size);
|
---|
3988 | MallocHook::InvokeNewHook(result, size);
|
---|
3989 | return result;
|
---|
3990 | }
|
---|
3991 | void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
|
---|
3992 |
|
---|
3993 | #endif
|
---|
3994 |
|
---|
3995 | #if defined(WTF_CHANGES) && PLATFORM(DARWIN)
|
---|
3996 |
|
---|
3997 | class FreeObjectFinder {
|
---|
3998 | const RemoteMemoryReader& m_reader;
|
---|
3999 | HashSet<void*> m_freeObjects;
|
---|
4000 |
|
---|
4001 | public:
|
---|
4002 | FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
|
---|
4003 |
|
---|
4004 | void visit(void* ptr) { m_freeObjects.add(ptr); }
|
---|
4005 | bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
|
---|
4006 | bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); }
|
---|
4007 | size_t freeObjectCount() const { return m_freeObjects.size(); }
|
---|
4008 |
|
---|
4009 | void findFreeObjects(TCMalloc_ThreadCache* threadCache)
|
---|
4010 | {
|
---|
4011 | for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
|
---|
4012 | threadCache->enumerateFreeObjects(*this, m_reader);
|
---|
4013 | }
|
---|
4014 |
|
---|
4015 | void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList)
|
---|
4016 | {
|
---|
4017 | for (unsigned i = 0; i < numSizes; i++)
|
---|
4018 | centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i);
|
---|
4019 | }
|
---|
4020 | };
|
---|
4021 |
|
---|
4022 | class PageMapFreeObjectFinder {
|
---|
4023 | const RemoteMemoryReader& m_reader;
|
---|
4024 | FreeObjectFinder& m_freeObjectFinder;
|
---|
4025 |
|
---|
4026 | public:
|
---|
4027 | PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder)
|
---|
4028 | : m_reader(reader)
|
---|
4029 | , m_freeObjectFinder(freeObjectFinder)
|
---|
4030 | { }
|
---|
4031 |
|
---|
4032 | int visit(void* ptr) const
|
---|
4033 | {
|
---|
4034 | if (!ptr)
|
---|
4035 | return 1;
|
---|
4036 |
|
---|
4037 | Span* span = m_reader(reinterpret_cast<Span*>(ptr));
|
---|
4038 | if (span->free) {
|
---|
4039 | void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
|
---|
4040 | m_freeObjectFinder.visit(ptr);
|
---|
4041 | } else if (span->sizeclass) {
|
---|
4042 | // Walk the free list of the small-object span, keeping track of each object seen
|
---|
4043 | for (void* nextObject = span->objects; nextObject; nextObject = *m_reader(reinterpret_cast<void**>(nextObject)))
|
---|
4044 | m_freeObjectFinder.visit(nextObject);
|
---|
4045 | }
|
---|
4046 | return span->length;
|
---|
4047 | }
|
---|
4048 | };
|
---|
4049 |
|
---|
4050 | class PageMapMemoryUsageRecorder {
|
---|
4051 | task_t m_task;
|
---|
4052 | void* m_context;
|
---|
4053 | unsigned m_typeMask;
|
---|
4054 | vm_range_recorder_t* m_recorder;
|
---|
4055 | const RemoteMemoryReader& m_reader;
|
---|
4056 | const FreeObjectFinder& m_freeObjectFinder;
|
---|
4057 |
|
---|
4058 | HashSet<void*> m_seenPointers;
|
---|
4059 | Vector<Span*> m_coalescedSpans;
|
---|
4060 |
|
---|
4061 | public:
|
---|
4062 | PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
|
---|
4063 | : m_task(task)
|
---|
4064 | , m_context(context)
|
---|
4065 | , m_typeMask(typeMask)
|
---|
4066 | , m_recorder(recorder)
|
---|
4067 | , m_reader(reader)
|
---|
4068 | , m_freeObjectFinder(freeObjectFinder)
|
---|
4069 | { }
|
---|
4070 |
|
---|
4071 | ~PageMapMemoryUsageRecorder()
|
---|
4072 | {
|
---|
4073 | ASSERT(!m_coalescedSpans.size());
|
---|
4074 | }
|
---|
4075 |
|
---|
4076 | void recordPendingRegions()
|
---|
4077 | {
|
---|
4078 | Span* lastSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
|
---|
4079 | vm_range_t ptrRange = { m_coalescedSpans[0]->start << kPageShift, 0 };
|
---|
4080 | ptrRange.size = (lastSpan->start << kPageShift) - ptrRange.address + (lastSpan->length * kPageSize);
|
---|
4081 |
|
---|
4082 | // Mark the memory region the spans represent as a candidate for containing pointers
|
---|
4083 | if (m_typeMask & MALLOC_PTR_REGION_RANGE_TYPE)
|
---|
4084 | (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1);
|
---|
4085 |
|
---|
4086 | if (!(m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) {
|
---|
4087 | m_coalescedSpans.clear();
|
---|
4088 | return;
|
---|
4089 | }
|
---|
4090 |
|
---|
4091 | Vector<vm_range_t, 1024> allocatedPointers;
|
---|
4092 | for (size_t i = 0; i < m_coalescedSpans.size(); ++i) {
|
---|
4093 | Span *theSpan = m_coalescedSpans[i];
|
---|
4094 | if (theSpan->free)
|
---|
4095 | continue;
|
---|
4096 |
|
---|
4097 | vm_address_t spanStartAddress = theSpan->start << kPageShift;
|
---|
4098 | vm_size_t spanSizeInBytes = theSpan->length * kPageSize;
|
---|
4099 |
|
---|
4100 | if (!theSpan->sizeclass) {
|
---|
4101 | // If it's an allocated large object span, mark it as in use
|
---|
4102 | if (!m_freeObjectFinder.isFreeObject(spanStartAddress))
|
---|
4103 | allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes});
|
---|
4104 | } else {
|
---|
4105 | const size_t objectSize = ByteSizeForClass(theSpan->sizeclass);
|
---|
4106 |
|
---|
4107 | // Mark each allocated small object within the span as in use
|
---|
4108 | const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes;
|
---|
4109 | for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) {
|
---|
4110 | if (!m_freeObjectFinder.isFreeObject(object))
|
---|
4111 | allocatedPointers.append((vm_range_t){object, objectSize});
|
---|
4112 | }
|
---|
4113 | }
|
---|
4114 | }
|
---|
4115 |
|
---|
4116 | (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, allocatedPointers.data(), allocatedPointers.size());
|
---|
4117 |
|
---|
4118 | m_coalescedSpans.clear();
|
---|
4119 | }
|
---|
4120 |
|
---|
4121 | int visit(void* ptr)
|
---|
4122 | {
|
---|
4123 | if (!ptr)
|
---|
4124 | return 1;
|
---|
4125 |
|
---|
4126 | Span* span = m_reader(reinterpret_cast<Span*>(ptr));
|
---|
4127 | if (!span->start)
|
---|
4128 | return 1;
|
---|
4129 |
|
---|
4130 | if (m_seenPointers.contains(ptr))
|
---|
4131 | return span->length;
|
---|
4132 | m_seenPointers.add(ptr);
|
---|
4133 |
|
---|
4134 | if (!m_coalescedSpans.size()) {
|
---|
4135 | m_coalescedSpans.append(span);
|
---|
4136 | return span->length;
|
---|
4137 | }
|
---|
4138 |
|
---|
4139 | Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
|
---|
4140 | vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift;
|
---|
4141 | vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize;
|
---|
4142 |
|
---|
4143 | // If the new span is adjacent to the previous span, do nothing for now.
|
---|
4144 | vm_address_t spanStartAddress = span->start << kPageShift;
|
---|
4145 | if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) {
|
---|
4146 | m_coalescedSpans.append(span);
|
---|
4147 | return span->length;
|
---|
4148 | }
|
---|
4149 |
|
---|
4150 | // New span is not adjacent to previous span, so record the spans coalesced so far.
|
---|
4151 | recordPendingRegions();
|
---|
4152 | m_coalescedSpans.append(span);
|
---|
4153 |
|
---|
4154 | return span->length;
|
---|
4155 | }
|
---|
4156 | };
|
---|
4157 |
|
---|
4158 | class AdminRegionRecorder {
|
---|
4159 | task_t m_task;
|
---|
4160 | void* m_context;
|
---|
4161 | unsigned m_typeMask;
|
---|
4162 | vm_range_recorder_t* m_recorder;
|
---|
4163 | const RemoteMemoryReader& m_reader;
|
---|
4164 |
|
---|
4165 | Vector<vm_range_t, 1024> m_pendingRegions;
|
---|
4166 |
|
---|
4167 | public:
|
---|
4168 | AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader)
|
---|
4169 | : m_task(task)
|
---|
4170 | , m_context(context)
|
---|
4171 | , m_typeMask(typeMask)
|
---|
4172 | , m_recorder(recorder)
|
---|
4173 | , m_reader(reader)
|
---|
4174 | { }
|
---|
4175 |
|
---|
4176 | void recordRegion(vm_address_t ptr, size_t size)
|
---|
4177 | {
|
---|
4178 | if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE)
|
---|
4179 | m_pendingRegions.append((vm_range_t){ ptr, size });
|
---|
4180 | }
|
---|
4181 |
|
---|
4182 | void visit(void *ptr, size_t size)
|
---|
4183 | {
|
---|
4184 | recordRegion(reinterpret_cast<vm_address_t>(ptr), size);
|
---|
4185 | }
|
---|
4186 |
|
---|
4187 | void recordPendingRegions()
|
---|
4188 | {
|
---|
4189 | if (m_pendingRegions.size()) {
|
---|
4190 | (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size());
|
---|
4191 | m_pendingRegions.clear();
|
---|
4192 | }
|
---|
4193 | }
|
---|
4194 |
|
---|
4195 | ~AdminRegionRecorder()
|
---|
4196 | {
|
---|
4197 | ASSERT(!m_pendingRegions.size());
|
---|
4198 | }
|
---|
4199 | };
|
---|
4200 |
|
---|
4201 | kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
|
---|
4202 | {
|
---|
4203 | RemoteMemoryReader memoryReader(task, reader);
|
---|
4204 |
|
---|
4205 | InitSizeClasses();
|
---|
4206 |
|
---|
4207 | FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
|
---|
4208 | TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
|
---|
4209 | TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
|
---|
4210 | TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
|
---|
4211 |
|
---|
4212 | TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
|
---|
4213 |
|
---|
4214 | FreeObjectFinder finder(memoryReader);
|
---|
4215 | finder.findFreeObjects(threadHeaps);
|
---|
4216 | finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches);
|
---|
4217 |
|
---|
4218 | TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
|
---|
4219 | PageMapFreeObjectFinder pageMapFinder(memoryReader, finder);
|
---|
4220 | pageMap->visitValues(pageMapFinder, memoryReader);
|
---|
4221 |
|
---|
4222 | PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
|
---|
4223 | pageMap->visitValues(usageRecorder, memoryReader);
|
---|
4224 | usageRecorder.recordPendingRegions();
|
---|
4225 |
|
---|
4226 | AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder, memoryReader);
|
---|
4227 | pageMap->visitAllocations(adminRegionRecorder, memoryReader);
|
---|
4228 |
|
---|
4229 | PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator);
|
---|
4230 | PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator);
|
---|
4231 |
|
---|
4232 | spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
|
---|
4233 | pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
|
---|
4234 |
|
---|
4235 | adminRegionRecorder.recordPendingRegions();
|
---|
4236 |
|
---|
4237 | return 0;
|
---|
4238 | }
|
---|
4239 |
|
---|
4240 | size_t FastMallocZone::size(malloc_zone_t*, const void*)
|
---|
4241 | {
|
---|
4242 | return 0;
|
---|
4243 | }
|
---|
4244 |
|
---|
4245 | void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
|
---|
4246 | {
|
---|
4247 | return 0;
|
---|
4248 | }
|
---|
4249 |
|
---|
4250 | void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
|
---|
4251 | {
|
---|
4252 | return 0;
|
---|
4253 | }
|
---|
4254 |
|
---|
4255 | void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr)
|
---|
4256 | {
|
---|
4257 | // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer
|
---|
4258 | // is not in this zone. When this happens, the pointer being freed was not allocated by any
|
---|
4259 | // zone so we need to print a useful error for the application developer.
|
---|
4260 | malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr);
|
---|
4261 | }
|
---|
4262 |
|
---|
4263 | void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
|
---|
4264 | {
|
---|
4265 | return 0;
|
---|
4266 | }
|
---|
4267 |
|
---|
4268 |
|
---|
4269 | #undef malloc
|
---|
4270 | #undef free
|
---|
4271 | #undef realloc
|
---|
4272 | #undef calloc
|
---|
4273 |
|
---|
4274 | extern "C" {
|
---|
4275 | malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
|
---|
4276 | &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics
|
---|
4277 |
|
---|
4278 | #if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) && !PLATFORM(IPHONE)
|
---|
4279 | , 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher.
|
---|
4280 | #endif
|
---|
4281 |
|
---|
4282 | };
|
---|
4283 | }
|
---|
4284 |
|
---|
4285 | FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator)
|
---|
4286 | : m_pageHeap(pageHeap)
|
---|
4287 | , m_threadHeaps(threadHeaps)
|
---|
4288 | , m_centralCaches(centralCaches)
|
---|
4289 | , m_spanAllocator(spanAllocator)
|
---|
4290 | , m_pageHeapAllocator(pageHeapAllocator)
|
---|
4291 | {
|
---|
4292 | memset(&m_zone, 0, sizeof(m_zone));
|
---|
4293 | m_zone.version = 4;
|
---|
4294 | m_zone.zone_name = "JavaScriptCore FastMalloc";
|
---|
4295 | m_zone.size = &FastMallocZone::size;
|
---|
4296 | m_zone.malloc = &FastMallocZone::zoneMalloc;
|
---|
4297 | m_zone.calloc = &FastMallocZone::zoneCalloc;
|
---|
4298 | m_zone.realloc = &FastMallocZone::zoneRealloc;
|
---|
4299 | m_zone.free = &FastMallocZone::zoneFree;
|
---|
4300 | m_zone.valloc = &FastMallocZone::zoneValloc;
|
---|
4301 | m_zone.destroy = &FastMallocZone::zoneDestroy;
|
---|
4302 | m_zone.introspect = &jscore_fastmalloc_introspection;
|
---|
4303 | malloc_zone_register(&m_zone);
|
---|
4304 | }
|
---|
4305 |
|
---|
4306 |
|
---|
4307 | void FastMallocZone::init()
|
---|
4308 | {
|
---|
4309 | static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator);
|
---|
4310 | }
|
---|
4311 |
|
---|
4312 | #endif
|
---|
4313 |
|
---|
4314 | #if WTF_CHANGES
|
---|
4315 | void releaseFastMallocFreeMemory()
|
---|
4316 | {
|
---|
4317 | // Flush free pages in the current thread cache back to the page heap.
|
---|
4318 | // Low watermark mechanism in Scavenge() prevents full return on the first pass.
|
---|
4319 | // The second pass flushes everything.
|
---|
4320 | if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) {
|
---|
4321 | threadCache->Scavenge();
|
---|
4322 | threadCache->Scavenge();
|
---|
4323 | }
|
---|
4324 |
|
---|
4325 | SpinLockHolder h(&pageheap_lock);
|
---|
4326 | pageheap->ReleaseFreePages();
|
---|
4327 | }
|
---|
4328 |
|
---|
4329 | FastMallocStatistics fastMallocStatistics()
|
---|
4330 | {
|
---|
4331 | FastMallocStatistics statistics;
|
---|
4332 | {
|
---|
4333 | SpinLockHolder lockHolder(&pageheap_lock);
|
---|
4334 | statistics.heapSize = static_cast<size_t>(pageheap->SystemBytes());
|
---|
4335 | statistics.freeSizeInHeap = static_cast<size_t>(pageheap->FreeBytes());
|
---|
4336 | statistics.returnedSize = pageheap->ReturnedBytes();
|
---|
4337 | statistics.freeSizeInCaches = 0;
|
---|
4338 | for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_)
|
---|
4339 | statistics.freeSizeInCaches += threadCache->Size();
|
---|
4340 | }
|
---|
4341 | for (unsigned cl = 0; cl < kNumClasses; ++cl) {
|
---|
4342 | const int length = central_cache[cl].length();
|
---|
4343 | const int tc_length = central_cache[cl].tc_length();
|
---|
4344 | statistics.freeSizeInCaches += ByteSizeForClass(cl) * (length + tc_length);
|
---|
4345 | }
|
---|
4346 | return statistics;
|
---|
4347 | }
|
---|
4348 |
|
---|
4349 | } // namespace WTF
|
---|
4350 | #endif
|
---|
4351 |
|
---|
4352 | #endif // FORCE_SYSTEM_MALLOC
|
---|