1 | // Copyright (c) 2007, Google Inc.
|
---|
2 | // All rights reserved.
|
---|
3 | //
|
---|
4 | // Redistribution and use in source and binary forms, with or without
|
---|
5 | // modification, are permitted provided that the following conditions are
|
---|
6 | // met:
|
---|
7 | //
|
---|
8 | // * Redistributions of source code must retain the above copyright
|
---|
9 | // notice, this list of conditions and the following disclaimer.
|
---|
10 | // * Redistributions in binary form must reproduce the above
|
---|
11 | // copyright notice, this list of conditions and the following disclaimer
|
---|
12 | // in the documentation and/or other materials provided with the
|
---|
13 | // distribution.
|
---|
14 | // * Neither the name of Google Inc. nor the names of its
|
---|
15 | // contributors may be used to endorse or promote products derived from
|
---|
16 | // this software without specific prior written permission.
|
---|
17 | //
|
---|
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
29 |
|
---|
30 | // ---
|
---|
31 | // Author: Geoff Pike
|
---|
32 | //
|
---|
33 | // This file provides a minimal cache that can hold a <key, value> pair
|
---|
34 | // with little if any wasted space. The types of the key and value
|
---|
35 | // must be unsigned integral types or at least have unsigned semantics
|
---|
36 | // for >>, casting, and similar operations.
|
---|
37 | //
|
---|
38 | // Synchronization is not provided. However, the cache is implemented
|
---|
39 | // as an array of cache entries whose type is chosen at compile time.
|
---|
40 | // If a[i] is atomic on your hardware for the chosen array type then
|
---|
41 | // raciness will not necessarily lead to bugginess. The cache entries
|
---|
42 | // must be large enough to hold a partial key and a value packed
|
---|
43 | // together. The partial keys are bit strings of length
|
---|
44 | // kKeybits - kHashbits, and the values are bit strings of length kValuebits.
|
---|
45 | //
|
---|
46 | // In an effort to use minimal space, every cache entry represents
|
---|
47 | // some <key, value> pair; the class provides no way to mark a cache
|
---|
48 | // entry as empty or uninitialized. In practice, you may want to have
|
---|
49 | // reserved keys or values to get around this limitation. For example, in
|
---|
50 | // tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as
|
---|
51 | // "unknown sizeclass."
|
---|
52 | //
|
---|
53 | // Usage Considerations
|
---|
54 | // --------------------
|
---|
55 | //
|
---|
56 | // kHashbits controls the size of the cache. The best value for
|
---|
57 | // kHashbits will of course depend on the application. Perhaps try
|
---|
58 | // tuning the value of kHashbits by measuring different values on your
|
---|
59 | // favorite benchmark. Also remember not to be a pig; other
|
---|
60 | // programs that need resources may suffer if you are.
|
---|
61 | //
|
---|
62 | // The main uses for this class will be when performance is
|
---|
63 | // critical and there's a convenient type to hold the cache's
|
---|
64 | // entries. As described above, the number of bits required
|
---|
65 | // for a cache entry is (kKeybits - kHashbits) + kValuebits. Suppose
|
---|
66 | // kKeybits + kValuebits is 43. Then it probably makes sense to
|
---|
67 | // chose kHashbits >= 11 so that cache entries fit in a uint32.
|
---|
68 | //
|
---|
69 | // On the other hand, suppose kKeybits = kValuebits = 64. Then
|
---|
70 | // using this class may be less worthwhile. You'll probably
|
---|
71 | // be using 128 bits for each entry anyway, so maybe just pick
|
---|
72 | // a hash function, H, and use an array indexed by H(key):
|
---|
73 | // void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); }
|
---|
74 | // V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... }
|
---|
75 | // etc.
|
---|
76 | //
|
---|
77 | // Further Details
|
---|
78 | // ---------------
|
---|
79 | //
|
---|
80 | // For caches used only by one thread, the following is true:
|
---|
81 | // 1. For a cache c,
|
---|
82 | // (c.Put(key, value), c.GetOrDefault(key, 0)) == value
|
---|
83 | // and
|
---|
84 | // (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value
|
---|
85 | // if the elided code contains no c.Put calls.
|
---|
86 | //
|
---|
87 | // 2. Has(key) will return false if no <key, value> pair with that key
|
---|
88 | // has ever been Put. However, a newly initialized cache will have
|
---|
89 | // some <key, value> pairs already present. When you create a new
|
---|
90 | // cache, you must specify an "initial value." The initialization
|
---|
91 | // procedure is equivalent to Clear(initial_value), which is
|
---|
92 | // equivalent to Put(k, initial_value) for all keys k from 0 to
|
---|
93 | // 2^kHashbits - 1.
|
---|
94 | //
|
---|
95 | // 3. If key and key' differ then the only way Put(key, value) may
|
---|
96 | // cause Has(key') to change is that Has(key') may change from true to
|
---|
97 | // false. Furthermore, a Put() call that doesn't change Has(key')
|
---|
98 | // doesn't change GetOrDefault(key', ...) either.
|
---|
99 | //
|
---|
100 | // Implementation details:
|
---|
101 | //
|
---|
102 | // This is a direct-mapped cache with 2^kHashbits entries;
|
---|
103 | // the hash function simply takes the low bits of the key.
|
---|
104 | // So, we don't have to store the low bits of the key in the entries.
|
---|
105 | // Instead, an entry is the high bits of a key and a value, packed
|
---|
106 | // together. E.g., a 20 bit key and a 7 bit value only require
|
---|
107 | // a uint16 for each entry if kHashbits >= 11.
|
---|
108 | //
|
---|
109 | // Alternatives to this scheme will be added as needed.
|
---|
110 |
|
---|
111 | #ifndef TCMALLOC_PACKED_CACHE_INL_H__
|
---|
112 | #define TCMALLOC_PACKED_CACHE_INL_H__
|
---|
113 |
|
---|
114 | #ifndef WTF_CHANGES
|
---|
115 | #include "base/basictypes.h" // for COMPILE_ASSERT
|
---|
116 | #include "base/logging.h" // for DCHECK
|
---|
117 | #endif
|
---|
118 |
|
---|
119 | #ifndef DCHECK_EQ
|
---|
120 | #define DCHECK_EQ(val1, val2) ASSERT((val1) == (val2))
|
---|
121 | #endif
|
---|
122 |
|
---|
123 | // A safe way of doing "(1 << n) - 1" -- without worrying about overflow
|
---|
124 | // Note this will all be resolved to a constant expression at compile-time
|
---|
125 | #define N_ONES_(IntType, N) \
|
---|
126 | ( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 + \
|
---|
127 | (static_cast<IntType>(1) << ((N)-1))) )
|
---|
128 |
|
---|
129 | // The types K and V provide upper bounds on the number of valid keys
|
---|
130 | // and values, but we explicitly require the keys to be less than
|
---|
131 | // 2^kKeybits and the values to be less than 2^kValuebits. The size of
|
---|
132 | // the table is controlled by kHashbits, and the type of each entry in
|
---|
133 | // the cache is T. See also the big comment at the top of the file.
|
---|
134 | template <int kKeybits, typename T>
|
---|
135 | class PackedCache {
|
---|
136 | public:
|
---|
137 | typedef uintptr_t K;
|
---|
138 | typedef size_t V;
|
---|
139 | static const size_t kHashbits = 12;
|
---|
140 | static const size_t kValuebits = 8;
|
---|
141 |
|
---|
142 | explicit PackedCache(V initial_value) {
|
---|
143 | COMPILE_ASSERT(kKeybits <= sizeof(K) * 8, key_size);
|
---|
144 | COMPILE_ASSERT(kValuebits <= sizeof(V) * 8, value_size);
|
---|
145 | COMPILE_ASSERT(kHashbits <= kKeybits, hash_function);
|
---|
146 | COMPILE_ASSERT(kKeybits - kHashbits + kValuebits <= kTbits,
|
---|
147 | entry_size_must_be_big_enough);
|
---|
148 | Clear(initial_value);
|
---|
149 | }
|
---|
150 |
|
---|
151 | void Put(K key, V value) {
|
---|
152 | DCHECK_EQ(key, key & kKeyMask);
|
---|
153 | DCHECK_EQ(value, value & kValueMask);
|
---|
154 | array_[Hash(key)] = static_cast<T>(KeyToUpper(key) | value);
|
---|
155 | }
|
---|
156 |
|
---|
157 | bool Has(K key) const {
|
---|
158 | DCHECK_EQ(key, key & kKeyMask);
|
---|
159 | return KeyMatch(array_[Hash(key)], key);
|
---|
160 | }
|
---|
161 |
|
---|
162 | V GetOrDefault(K key, V default_value) const {
|
---|
163 | // As with other code in this class, we touch array_ as few times
|
---|
164 | // as we can. Assuming entries are read atomically (e.g., their
|
---|
165 | // type is uintptr_t on most hardware) then certain races are
|
---|
166 | // harmless.
|
---|
167 | DCHECK_EQ(key, key & kKeyMask);
|
---|
168 | T entry = array_[Hash(key)];
|
---|
169 | return KeyMatch(entry, key) ? EntryToValue(entry) : default_value;
|
---|
170 | }
|
---|
171 |
|
---|
172 | void Clear(V value) {
|
---|
173 | DCHECK_EQ(value, value & kValueMask);
|
---|
174 | for (int i = 0; i < 1 << kHashbits; i++) {
|
---|
175 | array_[i] = static_cast<T>(value);
|
---|
176 | }
|
---|
177 | }
|
---|
178 |
|
---|
179 | private:
|
---|
180 | // We are going to pack a value and the upper part of a key into
|
---|
181 | // an entry of type T. The UPPER type is for the upper part of a key,
|
---|
182 | // after the key has been masked and shifted for inclusion in an entry.
|
---|
183 | typedef T UPPER;
|
---|
184 |
|
---|
185 | static V EntryToValue(T t) { return t & kValueMask; }
|
---|
186 |
|
---|
187 | static UPPER EntryToUpper(T t) { return t & kUpperMask; }
|
---|
188 |
|
---|
189 | // If v is a V and u is an UPPER then you can create an entry by
|
---|
190 | // doing u | v. kHashbits determines where in a K to find the upper
|
---|
191 | // part of the key, and kValuebits determines where in the entry to put
|
---|
192 | // it.
|
---|
193 | static UPPER KeyToUpper(K k) {
|
---|
194 | const int shift = kHashbits - kValuebits;
|
---|
195 | // Assume kHashbits >= kValuebits. It would be easy to lift this assumption.
|
---|
196 | return static_cast<T>(k >> shift) & kUpperMask;
|
---|
197 | }
|
---|
198 |
|
---|
199 | // This is roughly the inverse of KeyToUpper(). Some of the key has been
|
---|
200 | // thrown away, since KeyToUpper() masks off the low bits of the key.
|
---|
201 | static K UpperToPartialKey(UPPER u) {
|
---|
202 | DCHECK_EQ(u, u & kUpperMask);
|
---|
203 | const int shift = kHashbits - kValuebits;
|
---|
204 | // Assume kHashbits >= kValuebits. It would be easy to lift this assumption.
|
---|
205 | return static_cast<K>(u) << shift;
|
---|
206 | }
|
---|
207 |
|
---|
208 | static size_t Hash(K key) {
|
---|
209 | return static_cast<size_t>(key) & N_ONES_(size_t, kHashbits);
|
---|
210 | }
|
---|
211 |
|
---|
212 | // Does the entry's partial key match the relevant part of the given key?
|
---|
213 | static bool KeyMatch(T entry, K key) {
|
---|
214 | return ((KeyToUpper(key) ^ entry) & kUpperMask) == 0;
|
---|
215 | }
|
---|
216 |
|
---|
217 | static const size_t kTbits = 8 * sizeof(T);
|
---|
218 | static const int kUpperbits = kKeybits - kHashbits;
|
---|
219 |
|
---|
220 | // For masking a K.
|
---|
221 | static const K kKeyMask = N_ONES_(K, kKeybits);
|
---|
222 |
|
---|
223 | // For masking a T.
|
---|
224 | static const T kUpperMask = N_ONES_(T, kUpperbits) << kValuebits;
|
---|
225 |
|
---|
226 | // For masking a V or a T.
|
---|
227 | static const V kValueMask = N_ONES_(V, kValuebits);
|
---|
228 |
|
---|
229 | T array_[1 << kHashbits];
|
---|
230 | };
|
---|
231 |
|
---|
232 | #undef N_ONES_
|
---|
233 |
|
---|
234 | #endif // TCMALLOC_PACKED_CACHE_INL_H__
|
---|