1 | /*
|
---|
2 | * Copyright (C) 2011-2019 Apple Inc. All rights reserved.
|
---|
3 | *
|
---|
4 | * Redistribution and use in source and binary forms, with or without
|
---|
5 | * modification, are permitted provided that the following conditions
|
---|
6 | * are met:
|
---|
7 | * 1. Redistributions of source code must retain the above copyright
|
---|
8 | * notice, this list of conditions and the following disclaimer.
|
---|
9 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer in the
|
---|
11 | * documentation and/or other materials provided with the distribution.
|
---|
12 | *
|
---|
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
|
---|
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
---|
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
---|
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
|
---|
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
---|
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
---|
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
---|
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
---|
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
24 | */
|
---|
25 |
|
---|
26 | #include "config.h"
|
---|
27 | #include "DFGOSREntry.h"
|
---|
28 |
|
---|
29 | #if ENABLE(DFG_JIT)
|
---|
30 |
|
---|
31 | #include "BytecodeStructs.h"
|
---|
32 | #include "CallFrame.h"
|
---|
33 | #include "CodeBlock.h"
|
---|
34 | #include "DFGJITCode.h"
|
---|
35 | #include "DFGNode.h"
|
---|
36 | #include "JSCJSValueInlines.h"
|
---|
37 | #include "RegisterAtOffsetList.h"
|
---|
38 | #include "VMInlines.h"
|
---|
39 | #include <wtf/CommaPrinter.h>
|
---|
40 |
|
---|
41 | namespace JSC { namespace DFG {
|
---|
42 |
|
---|
43 | void OSREntryData::dumpInContext(PrintStream& out, DumpContext* context) const
|
---|
44 | {
|
---|
45 | out.print(m_bytecodeIndex, ", machine code = ", RawPointer(m_machineCode.executableAddress()));
|
---|
46 | out.print(", stack rules = [");
|
---|
47 |
|
---|
48 | auto printOperand = [&] (VirtualRegister reg) {
|
---|
49 | out.print(inContext(m_expectedValues.operand(reg), context), " (");
|
---|
50 | VirtualRegister toReg;
|
---|
51 | bool overwritten = false;
|
---|
52 | for (OSREntryReshuffling reshuffling : m_reshufflings) {
|
---|
53 | if (reg == VirtualRegister(reshuffling.fromOffset)) {
|
---|
54 | toReg = VirtualRegister(reshuffling.toOffset);
|
---|
55 | break;
|
---|
56 | }
|
---|
57 | if (reg == VirtualRegister(reshuffling.toOffset))
|
---|
58 | overwritten = true;
|
---|
59 | }
|
---|
60 | if (!overwritten && !toReg.isValid())
|
---|
61 | toReg = reg;
|
---|
62 | if (toReg.isValid()) {
|
---|
63 | if (toReg.isLocal() && !m_machineStackUsed.get(toReg.toLocal()))
|
---|
64 | out.print("ignored");
|
---|
65 | else
|
---|
66 | out.print("maps to ", toReg);
|
---|
67 | } else
|
---|
68 | out.print("overwritten");
|
---|
69 | if (reg.isLocal() && m_localsForcedDouble.get(reg.toLocal()))
|
---|
70 | out.print(", forced double");
|
---|
71 | if (reg.isLocal() && m_localsForcedAnyInt.get(reg.toLocal()))
|
---|
72 | out.print(", forced machine int");
|
---|
73 | out.print(")");
|
---|
74 | };
|
---|
75 |
|
---|
76 | CommaPrinter comma;
|
---|
77 | for (size_t argumentIndex = m_expectedValues.numberOfArguments(); argumentIndex--;) {
|
---|
78 | out.print(comma, "arg", argumentIndex, ":");
|
---|
79 | printOperand(virtualRegisterForArgumentIncludingThis(argumentIndex));
|
---|
80 | }
|
---|
81 | for (size_t localIndex = 0; localIndex < m_expectedValues.numberOfLocals(); ++localIndex) {
|
---|
82 | out.print(comma, "loc", localIndex, ":");
|
---|
83 | printOperand(virtualRegisterForLocal(localIndex));
|
---|
84 | }
|
---|
85 |
|
---|
86 | out.print("], machine stack used = ", m_machineStackUsed);
|
---|
87 | }
|
---|
88 |
|
---|
89 | void OSREntryData::dump(PrintStream& out) const
|
---|
90 | {
|
---|
91 | dumpInContext(out, nullptr);
|
---|
92 | }
|
---|
93 |
|
---|
94 | SUPPRESS_ASAN
|
---|
95 | void* prepareOSREntry(VM& vm, CallFrame* callFrame, CodeBlock* codeBlock, BytecodeIndex bytecodeIndex)
|
---|
96 | {
|
---|
97 | ASSERT(JITCode::isOptimizingJIT(codeBlock->jitType()));
|
---|
98 | ASSERT(codeBlock->alternative());
|
---|
99 | ASSERT(codeBlock->alternative()->jitType() == JITType::BaselineJIT);
|
---|
100 | ASSERT(codeBlock->jitCode()->dfgCommon()->isStillValid());
|
---|
101 | ASSERT(!codeBlock->isJettisoned());
|
---|
102 |
|
---|
103 | if (!Options::useOSREntryToDFG())
|
---|
104 | return nullptr;
|
---|
105 |
|
---|
106 | dataLogLnIf(Options::verboseOSR(),
|
---|
107 | "DFG OSR in ", *codeBlock->alternative(), " -> ", *codeBlock,
|
---|
108 | " from ", bytecodeIndex);
|
---|
109 |
|
---|
110 | sanitizeStackForVM(vm);
|
---|
111 |
|
---|
112 | if (bytecodeIndex)
|
---|
113 | codeBlock->ownerExecutable()->setDidTryToEnterInLoop(true);
|
---|
114 |
|
---|
115 | if (codeBlock->jitType() != JITType::DFGJIT) {
|
---|
116 | RELEASE_ASSERT(codeBlock->jitType() == JITType::FTLJIT);
|
---|
117 |
|
---|
118 | // When will this happen? We could have:
|
---|
119 | //
|
---|
120 | // - An exit from the FTL JIT into the baseline JIT followed by an attempt
|
---|
121 | // to reenter. We're fine with allowing this to fail. If it happens
|
---|
122 | // enough we'll just reoptimize. It basically means that the OSR exit cost
|
---|
123 | // us dearly and so reoptimizing is the right thing to do.
|
---|
124 | //
|
---|
125 | // - We have recursive code with hot loops. Consider that foo has a hot loop
|
---|
126 | // that calls itself. We have two foo's on the stack, lets call them foo1
|
---|
127 | // and foo2, with foo1 having called foo2 from foo's hot loop. foo2 gets
|
---|
128 | // optimized all the way into the FTL. Then it returns into foo1, and then
|
---|
129 | // foo1 wants to get optimized. It might reach this conclusion from its
|
---|
130 | // hot loop and attempt to OSR enter. And we'll tell it that it can't. It
|
---|
131 | // might be worth addressing this case, but I just think this case will
|
---|
132 | // be super rare. For now, if it does happen, it'll cause some compilation
|
---|
133 | // thrashing.
|
---|
134 |
|
---|
135 | dataLogLnIf(Options::verboseOSR(), " OSR failed because the target code block is not DFG.");
|
---|
136 | return nullptr;
|
---|
137 | }
|
---|
138 |
|
---|
139 | JITCode* jitCode = codeBlock->jitCode()->dfg();
|
---|
140 | OSREntryData* entry = jitCode->osrEntryDataForBytecodeIndex(bytecodeIndex);
|
---|
141 |
|
---|
142 | if (!entry) {
|
---|
143 | dataLogLnIf(Options::verboseOSR(), " OSR failed because the entrypoint was optimized out.");
|
---|
144 | return nullptr;
|
---|
145 | }
|
---|
146 |
|
---|
147 | ASSERT(entry->m_bytecodeIndex == bytecodeIndex);
|
---|
148 |
|
---|
149 | // The code below checks if it is safe to perform OSR entry. It may find
|
---|
150 | // that it is unsafe to do so, for any number of reasons, which are documented
|
---|
151 | // below. If the code decides not to OSR then it returns 0, and it's the caller's
|
---|
152 | // responsibility to patch up the state in such a way as to ensure that it's
|
---|
153 | // both safe and efficient to continue executing baseline code for now. This
|
---|
154 | // should almost certainly include calling either codeBlock->optimizeAfterWarmUp()
|
---|
155 | // or codeBlock->dontOptimizeAnytimeSoon().
|
---|
156 |
|
---|
157 | // 1) Verify predictions. If the predictions are inconsistent with the actual
|
---|
158 | // values, then OSR entry is not possible at this time. It's tempting to
|
---|
159 | // assume that we could somehow avoid this case. We can certainly avoid it
|
---|
160 | // for first-time loop OSR - that is, OSR into a CodeBlock that we have just
|
---|
161 | // compiled. Then we are almost guaranteed that all of the predictions will
|
---|
162 | // check out. It would be pretty easy to make that a hard guarantee. But
|
---|
163 | // then there would still be the case where two call frames with the same
|
---|
164 | // baseline CodeBlock are on the stack at the same time. The top one
|
---|
165 | // triggers compilation and OSR. In that case, we may no longer have
|
---|
166 | // accurate value profiles for the one deeper in the stack. Hence, when we
|
---|
167 | // pop into the CodeBlock that is deeper on the stack, we might OSR and
|
---|
168 | // realize that the predictions are wrong. Probably, in most cases, this is
|
---|
169 | // just an anomaly in the sense that the older CodeBlock simply went off
|
---|
170 | // into a less-likely path. So, the wisest course of action is to simply not
|
---|
171 | // OSR at this time.
|
---|
172 |
|
---|
173 | for (size_t argument = 0; argument < entry->m_expectedValues.numberOfArguments(); ++argument) {
|
---|
174 | JSValue value;
|
---|
175 | if (!argument)
|
---|
176 | value = callFrame->thisValue();
|
---|
177 | else
|
---|
178 | value = callFrame->argument(argument - 1);
|
---|
179 |
|
---|
180 | if (!entry->m_expectedValues.argument(argument).validateOSREntryValue(value, FlushedJSValue)) {
|
---|
181 | dataLogLnIf(Options::verboseOSR(),
|
---|
182 | " OSR failed because argument ", argument, " is ", value,
|
---|
183 | ", expected ", entry->m_expectedValues.argument(argument));
|
---|
184 | return nullptr;
|
---|
185 | }
|
---|
186 | }
|
---|
187 |
|
---|
188 | for (size_t local = 0; local < entry->m_expectedValues.numberOfLocals(); ++local) {
|
---|
189 | int localOffset = virtualRegisterForLocal(local).offset();
|
---|
190 | JSValue value = callFrame->registers()[localOffset].asanUnsafeJSValue();
|
---|
191 | FlushFormat format = FlushedJSValue;
|
---|
192 |
|
---|
193 | if (entry->m_localsForcedAnyInt.get(local)) {
|
---|
194 | if (!value.isAnyInt()) {
|
---|
195 | dataLogLnIf(Options::verboseOSR(),
|
---|
196 | " OSR failed because variable ", localOffset, " is ",
|
---|
197 | value, ", expected ",
|
---|
198 | "machine int.");
|
---|
199 | return nullptr;
|
---|
200 | }
|
---|
201 | value = jsDoubleNumber(value.asAnyInt());
|
---|
202 | format = FlushedInt52;
|
---|
203 | }
|
---|
204 |
|
---|
205 | if (entry->m_localsForcedDouble.get(local)) {
|
---|
206 | if (!value.isNumber()) {
|
---|
207 | dataLogLnIf(Options::verboseOSR(),
|
---|
208 | " OSR failed because variable ", localOffset, " is ",
|
---|
209 | value, ", expected number.");
|
---|
210 | return nullptr;
|
---|
211 | }
|
---|
212 | value = jsDoubleNumber(value.asNumber());
|
---|
213 | format = FlushedDouble;
|
---|
214 | }
|
---|
215 |
|
---|
216 | if (!entry->m_expectedValues.local(local).validateOSREntryValue(value, format)) {
|
---|
217 | dataLogLnIf(Options::verboseOSR(),
|
---|
218 | " OSR failed because variable ", VirtualRegister(localOffset), " is ",
|
---|
219 | value, ", expected ",
|
---|
220 | entry->m_expectedValues.local(local), ".");
|
---|
221 | return nullptr;
|
---|
222 | }
|
---|
223 | }
|
---|
224 |
|
---|
225 | // 2) Check the stack height. The DFG JIT may require a taller stack than the
|
---|
226 | // baseline JIT, in some cases. If we can't grow the stack, then don't do
|
---|
227 | // OSR right now. That's the only option we have unless we want basic block
|
---|
228 | // boundaries to start throwing RangeErrors. Although that would be possible,
|
---|
229 | // it seems silly: you'd be diverting the program to error handling when it
|
---|
230 | // would have otherwise just kept running albeit less quickly.
|
---|
231 |
|
---|
232 | unsigned frameSizeForCheck = jitCode->common.requiredRegisterCountForExecutionAndExit();
|
---|
233 | if (UNLIKELY(!vm.ensureStackCapacityFor(&callFrame->registers()[virtualRegisterForLocal(frameSizeForCheck - 1).offset()]))) {
|
---|
234 | dataLogLnIf(Options::verboseOSR(), " OSR failed because stack growth failed.");
|
---|
235 | return nullptr;
|
---|
236 | }
|
---|
237 |
|
---|
238 | dataLogLnIf(Options::verboseOSR(), " OSR should succeed.");
|
---|
239 |
|
---|
240 | // At this point we're committed to entering. We will do some work to set things up,
|
---|
241 | // but we also rely on our caller recognizing that when we return a non-null pointer,
|
---|
242 | // that means that we're already past the point of no return and we must succeed at
|
---|
243 | // entering.
|
---|
244 |
|
---|
245 | // 3) Set up the data in the scratch buffer and perform data format conversions.
|
---|
246 |
|
---|
247 | unsigned frameSize = jitCode->common.frameRegisterCount;
|
---|
248 | unsigned baselineFrameSize = entry->m_expectedValues.numberOfLocals();
|
---|
249 | unsigned maxFrameSize = std::max(frameSize, baselineFrameSize);
|
---|
250 |
|
---|
251 | Register* scratch = bitwise_cast<Register*>(vm.scratchBufferForSize(sizeof(Register) * (2 + CallFrame::headerSizeInRegisters + maxFrameSize))->dataBuffer());
|
---|
252 |
|
---|
253 | *bitwise_cast<size_t*>(scratch + 0) = frameSize;
|
---|
254 |
|
---|
255 | void* targetPC = entry->m_machineCode.executableAddress();
|
---|
256 | RELEASE_ASSERT(codeBlock->jitCode()->contains(entry->m_machineCode.untaggedExecutableAddress()));
|
---|
257 | dataLogLnIf(Options::verboseOSR(), " OSR using target PC ", RawPointer(targetPC));
|
---|
258 | RELEASE_ASSERT(targetPC);
|
---|
259 | *bitwise_cast<void**>(scratch + 1) = tagCodePtrWithStackPointerForJITCall(untagCodePtr<OSREntryPtrTag>(targetPC), callFrame);
|
---|
260 |
|
---|
261 | Register* pivot = scratch + 2 + CallFrame::headerSizeInRegisters;
|
---|
262 |
|
---|
263 | for (int index = -CallFrame::headerSizeInRegisters; index < static_cast<int>(baselineFrameSize); ++index) {
|
---|
264 | VirtualRegister reg(-1 - index);
|
---|
265 |
|
---|
266 | if (reg.isLocal()) {
|
---|
267 | if (entry->m_localsForcedDouble.get(reg.toLocal())) {
|
---|
268 | *bitwise_cast<double*>(pivot + index) = callFrame->registers()[reg.offset()].asanUnsafeJSValue().asNumber();
|
---|
269 | continue;
|
---|
270 | }
|
---|
271 |
|
---|
272 | if (entry->m_localsForcedAnyInt.get(reg.toLocal())) {
|
---|
273 | *bitwise_cast<int64_t*>(pivot + index) = callFrame->registers()[reg.offset()].asanUnsafeJSValue().asAnyInt() << JSValue::int52ShiftAmount;
|
---|
274 | continue;
|
---|
275 | }
|
---|
276 | }
|
---|
277 |
|
---|
278 | pivot[index] = callFrame->registers()[reg.offset()].asanUnsafeJSValue();
|
---|
279 | }
|
---|
280 |
|
---|
281 | // 4) Reshuffle those registers that need reshuffling.
|
---|
282 | Vector<JSValue> temporaryLocals(entry->m_reshufflings.size());
|
---|
283 | for (unsigned i = entry->m_reshufflings.size(); i--;)
|
---|
284 | temporaryLocals[i] = pivot[VirtualRegister(entry->m_reshufflings[i].fromOffset).toLocal()].asanUnsafeJSValue();
|
---|
285 | for (unsigned i = entry->m_reshufflings.size(); i--;)
|
---|
286 | pivot[VirtualRegister(entry->m_reshufflings[i].toOffset).toLocal()] = temporaryLocals[i];
|
---|
287 |
|
---|
288 | // 5) Clear those parts of the call frame that the DFG ain't using. This helps GC on
|
---|
289 | // some programs by eliminating some stale pointer pathologies.
|
---|
290 | for (unsigned i = frameSize; i--;) {
|
---|
291 | if (entry->m_machineStackUsed.get(i))
|
---|
292 | continue;
|
---|
293 | pivot[i] = JSValue();
|
---|
294 | }
|
---|
295 |
|
---|
296 | // 6) Copy our callee saves to buffer.
|
---|
297 | #if NUMBER_OF_CALLEE_SAVES_REGISTERS > 0
|
---|
298 | const RegisterAtOffsetList* registerSaveLocations = codeBlock->jitCode()->calleeSaveRegisters();
|
---|
299 | RegisterAtOffsetList* allCalleeSaves = RegisterSet::vmCalleeSaveRegisterOffsets();
|
---|
300 | RegisterSet dontSaveRegisters = RegisterSet(RegisterSet::stackRegisters());
|
---|
301 |
|
---|
302 | unsigned registerCount = registerSaveLocations->registerCount();
|
---|
303 | VMEntryRecord* record = vmEntryRecord(vm.topEntryFrame);
|
---|
304 | for (unsigned i = 0; i < registerCount; i++) {
|
---|
305 | RegisterAtOffset currentEntry = registerSaveLocations->at(i);
|
---|
306 | if (dontSaveRegisters.get(currentEntry.reg()))
|
---|
307 | continue;
|
---|
308 | RELEASE_ASSERT(currentEntry.reg().isGPR());
|
---|
309 | RegisterAtOffset* calleeSavesEntry = allCalleeSaves->find(currentEntry.reg());
|
---|
310 |
|
---|
311 | if constexpr (CallerFrameAndPC::sizeInRegisters == 2)
|
---|
312 | *(bitwise_cast<intptr_t*>(pivot - 1) - currentEntry.offsetAsIndex()) = record->calleeSaveRegistersBuffer[calleeSavesEntry->offsetAsIndex()];
|
---|
313 | else {
|
---|
314 | // We need to adjust 4-bytes on 32-bits, otherwise we will clobber some parts of
|
---|
315 | // pivot[-1] when currentEntry.offsetAsIndex() returns -1. This region contains
|
---|
316 | // CallerFrameAndPC and if it is cloberred, we will have a corrupted stack.
|
---|
317 | // Also, we need to store callee-save registers swapped in pairs on scratch buffer,
|
---|
318 | // otherwise they will be swapped when copied to call frame during OSR Entry code.
|
---|
319 | // Here is how we would like to have the buffer configured:
|
---|
320 | //
|
---|
321 | // pivot[-4] = ArgumentCountIncludingThis
|
---|
322 | // pivot[-3] = Callee
|
---|
323 | // pivot[-2] = CodeBlock
|
---|
324 | // pivot[-1] = CallerFrameAndReturnPC
|
---|
325 | // pivot[0] = csr1/csr0
|
---|
326 | // pivot[1] = csr3/csr2
|
---|
327 | // ...
|
---|
328 | ASSERT(sizeof(intptr_t) == 4);
|
---|
329 | ASSERT(CallerFrameAndPC::sizeInRegisters == 1);
|
---|
330 | ASSERT(currentEntry.offsetAsIndex() < 0);
|
---|
331 |
|
---|
332 | int offsetAsIndex = currentEntry.offsetAsIndex();
|
---|
333 | int properIndex = offsetAsIndex % 2 ? offsetAsIndex - 1 : offsetAsIndex + 1;
|
---|
334 | *(bitwise_cast<intptr_t*>(pivot - 1) + 1 - properIndex) = record->calleeSaveRegistersBuffer[calleeSavesEntry->offsetAsIndex()];
|
---|
335 | }
|
---|
336 | }
|
---|
337 | #endif
|
---|
338 |
|
---|
339 | // 7) Fix the call frame to have the right code block.
|
---|
340 |
|
---|
341 | *bitwise_cast<CodeBlock**>(pivot - (CallFrameSlot::codeBlock + 1)) = codeBlock;
|
---|
342 |
|
---|
343 | dataLogLnIf(Options::verboseOSR(), " OSR returning data buffer ", RawPointer(scratch));
|
---|
344 | return scratch;
|
---|
345 | }
|
---|
346 |
|
---|
347 | MacroAssemblerCodePtr<ExceptionHandlerPtrTag> prepareCatchOSREntry(VM& vm, CallFrame* callFrame, CodeBlock* baselineCodeBlock, CodeBlock* optimizedCodeBlock, BytecodeIndex bytecodeIndex)
|
---|
348 | {
|
---|
349 | ASSERT(optimizedCodeBlock->jitType() == JITType::DFGJIT || optimizedCodeBlock->jitType() == JITType::FTLJIT);
|
---|
350 | ASSERT(optimizedCodeBlock->jitCode()->dfgCommon()->isStillValid());
|
---|
351 | ASSERT(!optimizedCodeBlock->isJettisoned());
|
---|
352 |
|
---|
353 | if (!Options::useOSREntryToDFG() && optimizedCodeBlock->jitCode()->jitType() == JITType::DFGJIT)
|
---|
354 | return nullptr;
|
---|
355 | if (!Options::useOSREntryToFTL() && optimizedCodeBlock->jitCode()->jitType() == JITType::FTLJIT)
|
---|
356 | return nullptr;
|
---|
357 |
|
---|
358 | CommonData* dfgCommon = optimizedCodeBlock->jitCode()->dfgCommon();
|
---|
359 | RELEASE_ASSERT(dfgCommon);
|
---|
360 | DFG::CatchEntrypointData* catchEntrypoint = dfgCommon->catchOSREntryDataForBytecodeIndex(bytecodeIndex);
|
---|
361 | if (!catchEntrypoint) {
|
---|
362 | // This can be null under some circumstances. The most common is that we didn't
|
---|
363 | // compile this op_catch as an entrypoint since it had never executed when starting
|
---|
364 | // the compilation.
|
---|
365 | return nullptr;
|
---|
366 | }
|
---|
367 |
|
---|
368 | // We're only allowed to OSR enter if we've proven we have compatible argument types.
|
---|
369 | for (unsigned argument = 0; argument < catchEntrypoint->argumentFormats.size(); ++argument) {
|
---|
370 | JSValue value = callFrame->uncheckedR(virtualRegisterForArgumentIncludingThis(argument)).jsValue();
|
---|
371 | switch (catchEntrypoint->argumentFormats[argument]) {
|
---|
372 | case DFG::FlushedInt32:
|
---|
373 | if (!value.isInt32())
|
---|
374 | return nullptr;
|
---|
375 | break;
|
---|
376 | case DFG::FlushedCell:
|
---|
377 | if (!value.isCell())
|
---|
378 | return nullptr;
|
---|
379 | break;
|
---|
380 | case DFG::FlushedBoolean:
|
---|
381 | if (!value.isBoolean())
|
---|
382 | return nullptr;
|
---|
383 | break;
|
---|
384 | case DFG::DeadFlush:
|
---|
385 | // This means the argument is not alive. Therefore, it's allowed to be any type.
|
---|
386 | break;
|
---|
387 | case DFG::FlushedJSValue:
|
---|
388 | // An argument is trivially a JSValue.
|
---|
389 | break;
|
---|
390 | default:
|
---|
391 | RELEASE_ASSERT_NOT_REACHED();
|
---|
392 | }
|
---|
393 | }
|
---|
394 |
|
---|
395 | unsigned frameSizeForCheck = dfgCommon->requiredRegisterCountForExecutionAndExit();
|
---|
396 | if (UNLIKELY(!vm.ensureStackCapacityFor(&callFrame->registers()[virtualRegisterForLocal(frameSizeForCheck).offset()])))
|
---|
397 | return nullptr;
|
---|
398 |
|
---|
399 | auto instruction = baselineCodeBlock->instructions().at(callFrame->bytecodeIndex());
|
---|
400 | ASSERT(instruction->is<OpCatch>());
|
---|
401 | ValueProfileAndVirtualRegisterBuffer* buffer = instruction->as<OpCatch>().metadata(baselineCodeBlock).m_buffer;
|
---|
402 | JSValue* dataBuffer = reinterpret_cast<JSValue*>(dfgCommon->catchOSREntryBuffer->dataBuffer());
|
---|
403 | unsigned index = 0;
|
---|
404 | buffer->forEach([&] (ValueProfileAndVirtualRegister& profile) {
|
---|
405 | if (!VirtualRegister(profile.m_operand).isLocal())
|
---|
406 | return;
|
---|
407 | dataBuffer[index] = callFrame->uncheckedR(profile.m_operand).jsValue();
|
---|
408 | ++index;
|
---|
409 | });
|
---|
410 |
|
---|
411 | // The active length of catchOSREntryBuffer will be zeroed by ClearCatchLocals node.
|
---|
412 | dfgCommon->catchOSREntryBuffer->setActiveLength(sizeof(JSValue) * index);
|
---|
413 |
|
---|
414 | // At this point, we're committed to triggering an OSR entry immediately after we return. Hence, it is safe to modify stack here.
|
---|
415 | callFrame->setCodeBlock(optimizedCodeBlock);
|
---|
416 |
|
---|
417 | return catchEntrypoint->machineCode;
|
---|
418 | }
|
---|
419 |
|
---|
420 | } } // namespace JSC::DFG
|
---|
421 |
|
---|
422 | #endif // ENABLE(DFG_JIT)
|
---|